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SUMMARY 

 

 In eukaryotic genomes ranging from plants to mammals, DNA methylation is a 

major epigenetic modification of DNA by adding a methyl group exclusively to cytosine 

residuals.  In mammalian genomes such as humans, these cytosine bases are usually 

followed by guanine [1].  Although it does not change the primary DNA sequence, this 

covalent modification plays critical roles in several regulatory processes and can impact 

gene activity in a heritable fashion [2, 3].  What is more important, DNA methylation is 

essential for mammalian embryonic development and aberrant DNA methylation is 

implicated in several human diseases, in particular in neuro-developmental syndromes 

(such as the fragile X and Rett syndromes) and cancer [4-6].  These biological 

significances disclose the importance of understanding genomic patterns and function 

role of DNA methylation in human, as a initial step to get to know the epigenotype and 

its manner in connecting the phenotype and genotype.   

 Two key papers back in 1975 independently suggested that methylation of CpG 

dinucleotides in vertebrates could be established de novo and inherited through somatic 

cell divisions by protein machineries of DNA methyltransferases that recognizes hemi-

methylated CpG palindromes [1, 7]. They also indicated that the methyl group could be 

recognized by DNA-binding proteins and that DNA methylation directly silences gene 

expression.  After almost four decades, several key points in these foundation papers are 

proved to be true. Take the mammalian genome for example, there are several findings 

indicating the epigenetic repression of gene expression by DNA methylation. These 

include: 1) X-chromosome inactivation, i.e. the inactivation of one of the two X 
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chromosomes in female somatic cells [8]; 2) Gene imprinting, the allelic-specific 

silencing occurring at imprinted genes, a group of mono-allelically expressed genes 

whose pattern are determined by the parental origin of the alleles. These genes are often 

found playing important roles in development, cellular proliferation and behavior [9, 10]; 

3) Suppress the proliferation of transposable elements and repeat elements of viral or 

retroviral origin [11]. In addition to these, many novel roles of DNA methylation have 

also been revealed. For example, intragenic methylation has been suggested playing 

major roles in regulating cell context-specific alternative promoters in gene bodies [12]. 

DNA methylation can also regulate alternative splicing by preventing CTCF, an 

evolutionarily conserved zinc-finger protein, binding to DNA [13]. By using the 

technique of fluorescence resonance energy transfer (FRET) and fluorescence 

polarization, DNA methylation has also been shown to increase nucleosome compaction 

through DNA-histone contacts [14]. What is more important, DNA methylation is 

essential for mammalian embryonic development and aberrant change of DNA 

methylation has been related to disease such as cancer [15, 16]. However, it is also 

notable there are several lines of evidence contradicting the relationship between DNA 

methylation and gene silencing. For example, comparison of DNA methylation levels in 

human genome on the active and inactive X chromosomes showed reduced methylation 

specifically over gene bodies on inactive X chromosomes [17, 18]. Not only in human, 

DNA methylation is found to be usually targeted to the transcription units of actively 

transcribed genes in invertebrate species [19-21]  These results prove that the function of 

DNA methylation is challenging to be unravel.  Besides, due to the development of 

sequencing technique, whole genome DNA methylation profiles have been detected in 
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diverse species. Comparing genomic patterns of DNA methylation shows considerable 

variation among taxa, especially between vertebrates and invertebrates.  However, even 

though extensive studies reveal the patterns and functions of DNA methylation in 

different species, in the mean time, they also highlight the limits to our understanding of 

this complex epigenetic system.  During my Ph.D., in order to perform in-depth studies of 

DNA methylation in diverse animals as a way to understand the complexity of DNA 

methylation and its functions,  I dedicated my efforts in investigating and analyzing the 

DNA methylation profiles in diverse species, ranging from insects to primates, including 

both model and non-model organisms. This dissertation, which constitutes an important 

part of my research, mainly focuses on the DNA methylation profile in primates 

including human and chimpanzee.  In general, I will use three chapters to elucidate my 

work in generating and interpreting the whole genome DNA methylation data.  Firstly, 

we generated nucleotide-resolution whole-genome methylation maps of the prefrontal 

cortex of multiple humans and chimpanzees, then comprehensive comparative studies for 

these DNA methylation maps have been performed, by integrating data on gene 

expression as well.  This work demonstrates that differential DNA methylation might be 

an important molecular mechanism driving gene-expression divergence between human 

and chimpanzee brains and also potentially contribute to the human-specific traits, such 

as evolution of disease vulnerabilities.  Secondly , we performed global analyses of CpG 

islands (CGIs) methylation across multiple methylomes of distinctive cellular origins in 

human.  The results from this work show that the human CpG islands can be distinctly 

classified into different clusters solely based upon the DNA methylation profiles, and 

these CpG islands clusters reflect their distinctive nature at many biological levels, 
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including both genomic characteristics and evolutionary features.  Moreover, these CpG 

islands clusters are non-randomly associated with several important biological 

phenomena and processes such as diseases, aging, and gene imprinting.  These new 

findings shed lights in deciphering the regulatory mechanisms of CpG islands in human 

health and diseases.  At last, by utilizing the DNA methylome from human sperm and 

genetic map generated from the International HapMap Consortium project,  we 

investigated the hypothesis suggesting a potential role of germ line DNA methylation in 

affecting  meiotic recombination, which is essential for successful meiosis and various 

evolutionary processes. Even thought the results imply that DNA methylation is a 

important factor affecting regional recombination rate, the strength of correlation 

between these two is not as strong as the previous report [22].  Besides, high-throughput 

analyses indicate that other epigenetic modifications, tri-methylation of histone 3 lysine 4 

and histone 3 lysine 27 are also global features at the recombination hotspots, and may 

interact with methylation to affect the recombination pattern simultaneously.  This work 

suggests epigenetic mechanisms as additional factors affecting recombination, which 

cannot be fully explained by the DNA sequence itself.  In summary, I hope the results 

from these work can expand our knowledge regarding the common and variable patterns 

of DNA methylation in different taxa, and shed light about the function role and its major 

change during animal evolution. 



 

1 

CHAPTER 1 

INTRODUCTION 

 

 Back to 1958, Francis Crick, who is most noted as the co-discoverer of the 

structure of the DNA molecule, proposed the famous statement of the central dogma of 

molecular biology. This explanation of the flow of genetic information within a 

biological system, which was re-stated in a Nature paper published in 1970 [23], built the 

bridge for connecting the genotype and phenotype, through the sequential information-

carrying biopolymers in living organisms.  Since then, major efforts have been dedicated 

in the identification of genetic mutations, their use as biomarkers, and the understanding 

of their consequences on human health and well-being. Besides, many comparative 

studies have been performed between humans and non-human primates at the molecular 

level to reveal the genetic basis of human specializations [24, 25].  These works 

suggested that many of the key phenotypic differences among primates mainly result  

from alterations in the regulation of genes rather than in their sequences [26]. In general, 

most mechanism studies of the phenotype differences mainly stay at the genomic level by 

focusing on the regulatory region.  For example, DNA-binding transcription factors, 

which used to be thought as the most crucial determinants of gene expression patterns, 

can choose genes for transcriptional activation or repression by recognizing the sequence 

of DNA based in their promoter regions.  However, the genotype of transcription factors 

alone are not sufficient to define the spectrum of gene activity in view of the stable 

manner of the transcriptional potential of a genome during development [27].  In the past 

decade, there is an emerging interest in the possibility that changes at levels other than 

the genetic information could also have long-lasting consequences to the phenotype. 

These changes usually involve covalent modifications both in DNA and amino acids that 

constitute the N-terminal tails of histones.  These processes are less irrevocable than 

http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/Molecule
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genetic mutation and fall under the term 'epigenotype' that can stably maintain patterns of 

gene expression without changes in DNA sequence.  More and more evidence shows that 

epigenotype constitute a dynamic link between the genotype and the phenotype, both at 

the stage of establishment in different lineages of the embryo and the stage of somatic 

maintenance [28]. Modified by many different intrinsic and environmental factors, the 

resulting epigenotype can determine whether genes are maintained in a repressed or 

potentially active state, which in turn influences the phenotype both during development 

and postnatal life.  Besides, being heritable and less irrevocable than genetic mutation,  

epigenotype more likely stands for mark of developmental history since the genomic 

sequence of a differentiated cell is thought to be identical to the zygote from which it is 

descended. 

 As one of the most well-studied epigenotype, DNA methylation is best known as 

its significance in regulation of gene expression.  We hypothesize that changes of DNA 

methylation may play important roles in regulatory divergence between closely related 

species.  In the first chapter, by generating whole genome, single-CpG resolution DNA 

methylation profiles in prefrontal cortex of humans and chimpanzees through methyl-C-

seq method, we performed a comprehensive comparison of DNA methylation in these 

closely related species, and provided an unbiased view of the evolution of gene regulation 

in the context of conservation or changes in DNA methylation profiles. 

 

 

MATERIALS AND METHODS 

Generating Methyl-C-Seq Libraries 

 Regions of prefrontal cortex were dissected out of postmortem brains of three 

humans (Homo sapiens) and three chimpanzees (Pan troglodytes). Chimpanzee samples 

came from animals that died of natural causes or were euthanized for humane reasons at 



 3 

the Yerkes National Primate Research Center, and all procedures involving these animals 

conformed to guidelines established by the Yerkes Institutional Animal Care and Use 

Committee. Human brain samples were obtained from the Maryland Brain and Tissue 

Bank from individuals who died of causes unrelated to neurological disorders. 

 Methyl-C-seq libraries for Illumina sequencing were custom constructed (Alpha 

Biolaboratory, Burlingame, CA) according to Lister et al. [29] with minor modifications. 

In brief, ~1 μg of genomic DNA was fragmented by sonication, end repaired, and ligated 

to custom-synthesized methylated adapters (Eurofins MWG Operon, Huntsville, AL) 

according to the manufacturer’s (Illumina, San Diego, CA) instructions. Adaptor-ligated 

libraries were subjected to two successive treatments of sodium bisulfite conversion with 

the EpiTect Bisulfite kit (QIAGEN, Valencia, CA) as outlined in the manufacturer’s 

instructions. Five to ten nanograms of bisulfite-converted libraries was PCR amplified 

with the following condition: 2.5 U of ExTaq DNA polymerase (Takara), 5 ml of 

10XExtaq reaction buffer, 25 mM dNTPs, 1 ml Primer 1.1, and 1 ml Primer 2.1 (50 ml 

final). The thermo cycle was as follows: 95 ºC for 3 min and then 14–16 cycles each of 

95 ºC for 30 s, 65 ºC for 30 s, and 72 ºC for 60 s. The enriched libraries were purified 

twice with the solid-phase reversible immobilization method with AMPure beads 

(Beckman Coulter, Brea, CA). We assessed the library quality by randomly subcloning 

and sequencing ~20–30 colonies to check for proper library construction and bisulfite 

conversion. The quality-controlled bisulfite-converted methyl-C-Seq libraries were then 

sequenced at the UC Berkeley Genome Center and Emory Genome Sequencing 

Laboratory with the Illumina Genome Analyzer II and the Illumina Hi-Seq, respectively. 

After quality control, the reads per lane ranged between 15 and 70 million reads. The 

average phred quality score for each read was 37. 
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Mapping and Annotation 

 We first converted all C’s to T’s both in the reads and in the reference genomes, 

and we then aligned the converted reads to the converted reference genomes by using the 

Bowtie algorithm [30].  The assembly versions of the reference genome we used for 

mapping are GRCh37/HG19 for humans and CGSC2.1/panTro2 for chimpanzees.  Total 

mapped reads accounted for 1.03 X 10
11

 (humans) and 9.80 X 10
10

 (chimpanzees) 

nucleotides, providing 34.33 and 32.63 species-level coverages for human and 

chimpanzee haploid genomes, respectively. 

 For comparative analyses of human and chimpanzee methylation profiles, we 

utilized the data sets from the Chimpanzee Sequencing and Analysis Consortium [31], 

consisting of 13,454 human-chimpanzee orthologous gene pairs.  The orthology of these 

gene alignments was considered unambiguous and covered the whole coding region.  On 

the basis of these ortholog RefSeq gene IDs, we downloaded the genomic coordinates 

from the UCSC genome browser.  Promoters were defined as regions 1.5 kb upstream 

and 0.5 kb downstream of the transcription start sites.  Gene bodies were defined as those 

encompassing the region from the transcription start site to the transcription end site. 

GeneTrail [32] and the DAVID tools [33] were used for the functional annotation 

enrichment and disease association tests. 

 

Identification of Methylated Cytosines Accounting for False-Positive Rates 

 We estimated the error rate (nonconversion rate plus sequencing error frequency), 

p, from the number of cytosine bases sequenced in reference cytosine positions in the 

unmethylated Lambda genome.  Error rates estimated from these were between 0.0013 

and 0.0017.  We controlled the number of false-positive methylcytosine calls below 0.1% 

of the total number of methylcytosines as follows: the minimum threshold number of 

cytosines sequenced at each reference cytosine position at which the position could be 

called as methylated is equal to (n * p) / (α(1 - p) + p), where n is the read depth for that 
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site, p is the error rate, and α is a predefined false-discovery value (0.001 for our case). 

Levels of DNA methylation were calculated by two methods.  First, in a false-discovery 

rate (FDR) method, each reference cytosine was examined and labeled as methylated or 

unmethylated according to the criterion that the number of false-positive methylcytosine 

calls should be below 0.1% (see above).  In the second method, we calculated the 

‘‘fractional methylation’’ values of each cytosine [21, 29]; these values are defined as the 

total number of ‘‘C’’ reads / (total number of ‘‘C’’ reads + total number of ‘‘T’’ reads). 

Results from these two methods were highly similar, and the results from the latter 

method are shown in the main text unless otherwise specified.  We discarded those sites 

with read depths of less than 3.  Results from before or after duplicates were removed 

with the Rmdup tool in the Samtools package were highly similar. 

 

Digital Gene-Expression Profiling Data 

 Frozen tissue samples from postmortem brains of six humans and six 

chimpanzees were used.  Human and chimpanzee individuals died of causes unrelated to 

neurological disorders.  Samples were dissected either from fresh tissue at the time of 

brain procurement or later on dry ice from frozen tissue pieces from the frontal pole 

region of the prefrontal cortex.  Total RNA was extracted with QIAGEN’s RNeasy or 

miRNeasy kits according to the manufacturer’s instructions.  All RNA samples were 

examined for quantity and quality by NanoDrop and Bioanalyzer (Agilent).  Sequencing 

libraries were generated from DpnII-digested poly-A enriched RNA according to the 

manufacturer’s (Illumina) instructions. BFAST [34] was used for aligning 20 bp reads to 

both the genome and RefSeq of the respective species.  We allowed up to one mismatch 

with the reference genome in any location within the read.  Only reads that aligned to one 

location in the genome were used for analysis.  Alignments to multiple isoforms of a gene 

were collapsed across gene symbol, and the maximum number of reads for a given 

isoform was used.  A gene was considered ‘‘present’’ if every individual of a species for 
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a given brain region had at least two reads aligned to the gene.  For differential 

expression analysis, a gene had to be present in at least one of the species being 

compared.  Reads were normalized with quantile normalization. 

 To examine whether there were any underlying batch effects in our data, we 

processed all samples from both species together.  Analysis of variance [35] of sample 

traits via univariate linear regression analysis with the first principal component as 

outcome revealed that species was the most significant sample covariate and was 

followed by individual and then age.  Technical variation sources, including postmortem 

interval, RNA batch, run batch, and library batch, were not significant, similar to a 

previous study [36].  Statistical significance of differentially expressed genes was 

determined with a Bayesian t test.  We also performed a two-sample permutation test 

between human and chimpanzee expression values and compared it to the p value from 

our original method. At the 5% significance level, approximately 92% of genes showed a 

concordant pattern between these two methods. For the inconsistent genes, most were 

significant from the permutation test and weakly significant from our original method. 

 

Comparative Human Methylome Analysis among Different Tissues 

 We compared the human prefrontal cortex (brain) methylome that had the highest 

mean read depth and lowest duplicate read count (Hs1570) to methylomes generated 

from human embryonic stem cells (ESCs) [37], human neonatal foreskin fibroblasts [37] 

and human peripheral-blood mononuclear cells (PBMCs) [38].  Methylation data from 

other tissues and cell lines were obtained from respective publications.  In brief, the ESCs 

were derived from aWA09 hESC line, and were cultured feeder free on Matrigel (Becton 

Dickinson) in StemPro medium (Lifetech), and were passaged with Accutase (Lifetech). 

The neonatal fibroblast cell lines were obtained from GlobalStem (newborn human 

foreskin fibroblasts, untreated) and were harvested for analysis at passage.  The human 

PBMCs were obtained from the same individual as in the YanHuang project, which is the 
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first finished diploid genome sequence of an Asian individual.  Methylome data on ESCs, 

neonatal fibroblasts, and PBMCs were downloaded from the Gene Expression Omnibus, 

and coordinates were converted from human genome build hg18 to hg19 with the UCSC 

liftover tool.  Bisulfite-converted sequence data were merged for all CG dinucleotides 

and CH dinucleotides (H = A, C, or T) that had at least three strand-specific reads in each 

of the four methylomes being compared.  Mean fractional methylation of annotated 

elements was calculated as the mean of fractional methylation values for each site within 

the annotated element. 

 

 

RESULTS 

Genome-wide DNA-Methylation Patterns Reveal Extremely Heavily Methylated 

Brains 

 By sequencing the bisulfite-converted genomic DNA from prefrontal cortex 

samples, we generated whole genome, nucleotide-resolution DNA methylation maps 

(methylomes) from three humans and three chimpanzees.  Sequencing reads representing 

1.03  10
11

  and 9.80  10
10

 base pairs were generated from human and chimpanzee 

prefrontal cortex samples, respectively, corresponding to an average read depth of 11.4X 

and 10.9X per haploid genome.  Bisulfite conversion rates estimated from unmethylated 

lambda DNA controls show that the conversion rates are high enough to make sure our 

method faithfully captures patterns of genomic DNA methylation in these samples 

(Methods).  Prefrontal cortex methylation maps from both species revealed extremely 

heavy CpG methylation, where between 79.4% to 82.5% of CpGs are methylated.  In 

comparison, only minor fractions of non-CpG sites (1.3% to 2.2%) are methylated 

(Figure 1.1). Among the genomic regions, promoters and CpG islands are generally 

hypomethylated.  Transposable elements are the most heavily methylated in both species 

(Figure 1.1C), supporting the idea that DNA methylation suppresses proliferation of 
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transposons in these genomes [3].  DNA methylation levels across transcription units 

exhibit distinctive patterns similar to previous findings, where DNA methylation levels 

dip at the transcription start site, increase along the transcribed unit (gene body), and 

decrease again at the transcription termination site. 

 To gauge tissue-specific differences in levels of DNA methylation, we compared 

the methylation maps of the human prefrontal cortex to those from three other tissues, 

including ESCs, fibroblasts, and PBMCs.  These methylomes were all generated using 

similar methods, facilitating a direct comparison of overall levels of DNA methylation 

among these tissues [37, 38].  Our analysis reveals that the prefrontal cortex is the most 

heavily methylated of these four tissues (Figure 1.1A).  A high level of methylation of 

prefrontal cortex is consistent throughout different genomic regions and across different 

cytosine classes (Figure 1.1). 
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Figure 1.1. Differences in DNA-Methylation Levels among Human Tissues and 

Genomic Features (A) Proportional representation of genome-wide DNA-methylation 

levels for individual CG dinucleotides in the human prefrontal cortex (brain), ESCs, 

neonatal fibroblasts, and PBMCs.(B) Same analyses as in (A) but for CH dinucleotide 

context (H = A, T, or C). (C) Mean methylation levels in each tissue for gene promoters 

(CG context, n = 18,416; CH context, n ? 18,584), gene bodies (CG context, n = 18,477; 

CH context, n = 18,656), and transposable elements (CG context, n = 1,837,431; CH 

context, n = 2,989,765). Horizontal lines indicate global means of methylation levels for 

individual CG sites (main panel) or CH sites (inset). Error bars indicate 95% confidence 

intervals of the mean. 

 

 

Interspecies and Intraspecies Variation of Genome-wide Patterns of DNA 

Methylation 

 Genome-wide brain methylation maps of humans and chimpanzees exhibit 

intriguing intraspecific and interspecific variation (Figure 1.2).  Interestingly, prefrontal 

cortex samples from younger individuals in our study exhibit higher levels of DNA 

methylation in both species (Figure 1.2C and 1.2D).  For example, the chimpanzee 
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individuals are 24, 27, and 43 years of age. At the genome-wide level, the third (43-year-

old) individual exhibits slightly but significantly lower methylation than the other 

individuals. In human samples, a younger (31-year-old) individual is overall more 

heavily methylated than the other two individuals of ages 47 and 48 years.  However, 

given the small sample size, these results should be taken with caution and need to be 

validated in a study with a larger number of individuals spanning greater variation 

of ages. In term of the interspecies variations, the degree of DNA methylation is also 

slightly but significantly different between human and chimpanzee brains.  At the whole 

genome level, the average fractional methylation levels of CpG dinucleotides in the 

human and chimpanzee genomes are 80.9% (0.036%) and 82.1% (0.034%), 

respectively (Mann-Whitney test, P < 10
-15

).  In addition, species differences in DNA 

methylation levels are also apparent in both promoters and gene bodies of 12,533 human-

chimpanzee orthologs by using principal-component analyses (Figure 1.2A and 1.2B).  

Thus, our data suggest that human prefrontal cortex regions are generally less methylated 

than chimpanzee prefrontal cortex regions.  Our findings are at odds with a previous 

study that reported the opposite trend based upon a limited number of CpG sites [39].  

However, an analysis of the specific CpG sites included previously  revealed no 

difference between the two species in our data.  The difference might in part be due to the 

fact that the previous study used a low-resolution methylation array developed 

specifically for the human genome.  Moreover, our genome-wide results are consistent 

with another earlier study using HPLC, which suggested that human brains are generally 

less methylated than brains of other primates [40]. 
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Figure 1.2. Between- and Within-Species Variation of Genomic DNA Methylation 

in Human and Chimpanzee Prefrontal Cortex Regions.  Principal-component 

analyses of (A) promoters and (B) gene bodies of human-chimpanzee orthologs 

demonstrate that the patterns of DNA methylation are distinct between humans and 

chimpanzees. For promoters, the first principal component, which explains 46.1% of 

variation, distinguishes samples from human and chimpanzees. The second principal 

component, explaining 27.7% of total variation, separates two human samples from the 

third one. For gene bodies, the first principal component (explaining 42.8% of total 

variation) separates the third human from the rest, whereas the second principal 

component (explaining 22.6% of total variation) separates the human and chimpanzee 

brains. Hierarchical clustering analyses of (C) promoters and (D) gene bodies 

demonstrate that the overall levels of methylation are lower in human brains than in the 

chimpanzee brains. The youngest human individual (H3) exhibits the most distinctive 
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pattern of DNA methylation. The error bars indicate 95% confidence intervals of the 

mean. 

 

Distinctive Patterns of Promoter Methylation, Functional Enrichment, and Disease 

Association 

 Previous studies determined that DNA methylation in vertebrate promoters occurs 

in a discrete fashion—these promoters can be classified as hypermethylated and 

hypomethylated [41, 42].  In accordance with these studies, promoter DNA methylation 

in human and chimpanzee brains falls into distinct hypermethylated and hypomethylated 

classes (Figure 1.3A). In comparison, gene bodies are generally heavily methylated in the 

prefrontal cortex of both species (Figure 1.3B), which is expected under ‘‘global’’ 

patterns of genomic DNA methylation [41, 43].  Levels of DNA methylation in 

promoters and gene bodies are clearly lower in the human brain than in the chimpanzee 

brain(Figure 1.3A and 1.3B), a difference that is especially marked for promoters 

(Figures 1.3A and 1.3C), which on average exhibit 23% less methylation in humans than 

in chimpanzees. 

 To identify significantly differentially methylated promoters between human and 

chimpanzee brains, we performed the following tests. First, we performed a Fisher’s 

exact test by using the total numbers of methylated and unmethylated CpG sites in all 

samples and calculated adjusted p values by the FDR method for multiple testing [44, 

45].  Then, from the pool of significantly differentially methylated promoters obtained by 

this test, we further classified genes into those with hypermethylated (defined as 

fractional methylation levels > 0.8) or hypomethylated (fractional methylation levels < 

0.2) promoters (Figure 1.3). From these gene sets, we identified 474 genes whose 

promoters had ‘‘switched’’ between the hypermethylated and hypomethylated classes 

between the human and chimpanzee brains. In the majority (n = 468) of these promoters, 

human brains exhibit conspicuously lower levels of DNA methylation than do 

chimpanzee brains.  Interestingly, these genes are significantly enriched in molecular 
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functions such as protein binding and phosphotransferase activity (Table 1.1).  Moreover, 

they exhibit striking associations with several disorders, including neurological and 

psychological disorders and cancers. For example, genes whose variants are associated 

with autism are 3.5-fold enriched in this group of genes (although not significantly so 

because of the small number of genes (Table 1.2) ).  

 

Figure 1.3. Patterns of DNA Methylation in Genic Regions Influence Gene 

Expression. Density plots of (A) promoter and (B) gene-body DNA methylation from 

humans and chimpanzees. Promoter DNA methylation exhibits distinctive ‘‘bimodal’’ 

patterns.  In comparison, gene bodies of both species are heavily methylated (B).  DNA-

methylation-level differences, measured as the mean of human methylation levels minus 

the mean of chimpanzee methylation levels, show that promoters particularly exhibit 

lower levels of DNA methylation in the human brain than in the chimpanzee brain (C). In 

contrast, gene bodies show similar levels of DNA methylation between species (D). 

 

 The above-described method for identifying differentially methylated promoters 

is perhaps overly stringent.  Thus, we developed a second method, based on the relative 
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difference in promoter methylation, to identify differentially methylated promoters.  

Beginning with genes for which Fisher’s exact test using the false discovery method was 

significant, we first defined genes whose relative methylation levels have changed more 

than 50% (in other words, |(Chimp fractional methylation level - Human fractional 

methylation level)/(Chimp fractional methylation level + Human fractional methylation 

level)| is greater than 0.5).  We further restricted analysis to genes for which the absolute 

difference between the fractional methylation levels of humans and chimpanzees is 

greater than 0.2.  Using this method, we identified 1055 genes that are significantly less 

methylated in the human brains compared to the chimpanzee brains.  Analyses of these 

promoters again demonstrate patterns of functional enrichment and disease association 

similar to the above results. 

 

Table 1.1. Genes whose promoters are hypo-methylated in the human brains while 

hyper-methylated in the chimpanzee brains (n=468) are enriched in specific gene 

ontology (GO) terms. 

GO terms Accession P-value (FDR) 

cellular process GO:0009987 7.2e-05 

protein binding GO:0005515 1.8e-04 

cellular macromolecule metabolic 

process 
GO:0044260 1.9e-03 

cellular metabolic process GO:0044237 4.3e-03 

transferase activity, transferring 

phosphorus-containing groups 
GO:0016772 1.0e-02 

 

  



 15 

Table 1.2. Disease genes found in genes whose promoters are hypo-methylated in the 

human brains while hyper-methylated in the chimpanzee brains  (n=468). 

Category Count 

Fold 

Enrichment 

Genes 

neural tube defects 5 4.7 

PDGFRA(MIM 173490), 

SHMT1(MIM 182144), TYMS(MIM 

188350), DHFR(MIM 126060), 

CXCL6(MIM 138965) 

Autism 6 3.5 

GABRA2(MIM 137140) , 

GSTM1(MIM 138350) , 

SLC6A4(MIM 182138), 

ACCN1(MIM 601784), 

CLOCK(MIM 601851), 

GABRG1(MIM 137166) 

alcohol dependence 4 5.0 GABRA2(MIM 137140), SLC6A4, 

GABRB1(MIM 137190), GABRG1 

Chemodependency 9 2.0 

GABRA2, GSTM1, SLC6A4, 

GABRB1, CLOCK, SCN5A(MIM 

600163), HOMER1(MIM 604798), 

GABRG1, CRTC1(MIM 607536) 

Cancer 27 1.3 

HPSE(MIM 604724), IRAK4(MIM 

606883), TES(MIM 606085), 

KIT(MIM 164920), RECQL(MIM 

600537), DHFR, KDR(MIM 

191306), IKZF3(MIM 606221), 

RAD51D(MIM 602954), 

CDK4(MIM 123829), CSF1(MIM 

120420), LIG3(MIM 600940), 

SUOX(MIM 606887), CXCL5(MIM 

600324), NRAS(MIM 164790), 

PDGFRA, GHR, RASSF8(MIM 

608231), TYMS(MIM 188350), 

POLR2B(MIM 180661), VDR(MIM 

601769), SLC6A4, GSTM1, 

SHMT1(MIM 182144), 

STARD3(MIM 607048), 

IGFBP7(MIM 602867), 

POLK(MIM 605650) 
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DNA Methylation and Gene Expression in the Human and Chimpanzee Brains 

 A well-known consequence of DNA methylation is its effect on the regulation of 

gene expression [46].  Furthermore, differential expression of genes in humans and 

chimpanzees may drive lineage-specific patterns of evolution [25, 26, 47].  Given the 

profound influence of promoter DNA methylation on the regulation of gene expression, 

we asked whether changes of DNA methylation might underlie gene expression 

divergence between human and chimpanzee brains.  To address this question we 

integrated data on DNA methylation with data on gene expression from human and 

chimpanzee prefrontal cortex, generated using a next-generation sequencing method, 

digital gene expression profiling (DGEP, see Materials and Methods).   

 Levels of DNA methylation from promoters and gene bodies are each 

significantly negatively correlated with levels of gene expression (Spearman’s correlation 

coefficients range between -0.18 ~-0.24, as shown in Figure 1.4).  Several recent studies 

demonstrated a ‘bell shape’ relationship between gene expression and methylation, where 

the most heavily methylated gene bodies are often expressed at intermediate levels, and 

genes expressed at high and low levels are moderately methylated [20, 21].  However, in 

the prefrontal cortex samples, gene body methylation decreases roughly linearly with 

increasing levels of gene expression in both species (Figures 1.4B and 1.4D).  This 

finding is similar to a recent study where a linear and negative relationship between gene 

expression and DNA methylation in brain (both the occipital lobe and whole brain) was 

reported [46].  Thus the effect of gene body DNA methylation and gene expression is not 

universal across different tissues. 
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Figure 1.4. DNA methylation is negatively correlated with gene expression level in 

both promoters and gene bodies in prefrontal cortex.  Integrating levels of DNA 

methylation with levels of gene expression measured by digital gene expression profiling, 

we observe a negative correlation between human gene expression level and (A) human 

promoter methylation (Spearman’s correlation coefficient r = -0.24, P < 10
-15

) as well as 

(B) human gene body methylation (r = -0.18, P < 10
-15

).  The X-axis represents 

increasing levels of gene expression from left to right.  We also observe a negative 

correlation between chimpanzee gene expression level and (C) chimpanzee promoter 

methylation (r = -0.19, P < 10
-15

) as well as (D) chimpanzee gene body methylation (r = -

0.20, P < 10
-15

).  

 

 Among the genes whose promoters are hypo-methylated in human but hyper-

methylated in chimpanzee brains, expression-level data are available for 273 genes.  A 

majority of these exhibit higher expression in human brains compared to chimpanzee 
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brains (168 out of 273, P < 10
-4

, binomial test).  In comparison, none of the three genes 

whose promoters are hyper-methylated in humans compared to chimpanzees exhibit 

increased expression in humans.  When we restrict our analyses to genes with expression 

patterns that are significantly different between human and chimpanzee brains (Bayesian 

t-test, P < 0.05), the same pattern is observed: 41 out of 58 genes with significantly hypo-

methylated promoters in humans compared to chimpanzees exhibit higher levels of 

expression in human (P < 10
-4

).  Thus, differential promoter methylation between humans 

and chimpanzees manifest in different transcriptional levels (Figure 1.5A).  

 Again we find that many of these genes are implicated in neurological functions 

and disorders (Figure 1.5B).  For example, the insulin-like growth factor binding protein 

7 (IGFBP7 [MIM 602867]) gene regulates insulin-like growth factor availability and 

receptor binding, and is implicated in extinction of fear memories and neuro-genesis [48].  

Methylation levels of IGFBP7 promoters are dramatically different between the human 

and chimpanzee brains, and the expression of this gene exhibits a pattern concordant with 

the methylation pattern (Figure 1.5).  In another example, the sodium channel, voltage 

gated, type VIII alpha subunit (SCN8A [MIM 600702]) gene is implicated in wide-

ranging neurological and behavioral disorders and cognitive impairment, [49, 50] and is 

also hypo-methylated and significantly more strongly expressed in the human brain 

compared to chimpanzee brain (Figure 1.5).  
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Figure 1.5. Differences in promoter methylation associated with differences in gene 

expression between human and chimpanzee prefrontal cortex. (A) The proportion of 

genes with higher or lower expression values in human, as compared to chimpanzee, 

prefrontal cortex.  Each bar represents a class of genes based on the number of standard 

deviations from the mean ratio of methylation measures in human versus chimpanzee 

promoters in the prefrontal cortex. (B) Selected genes with hypo-methylated promoters in 

human, hyper-methylated promoters in chimpanzee, and significantly higher expression 

in human than chimpanzee.  Error bars, 95% confidence intervals of the mean (n = 6).  

Gamma-aminobutyric acid (GABA) A receptor, beta 1 (GABRB1) is involved in 

neurotransmission of the central nervous system.  Clock homolog (mouse) (CLOCK) 

encodes a transcription factor essential to the circadian rhythm.  Sodium channel, voltage 

gated, type VIII, alpha subunit (SCN8A) facilitates the generation of action potentials in 

neurons and other cells.  Growth hormone receptor (GHR) is integral to activating 

insulin-like growth factor production, leading to growth.  Insulin-like growth factor 

binding protein 7 (IGFBP7) regulates insulin-like growth factor availability and receptor 

binding.   
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DISCUSSION 

 Recent technical advances have enabled us to examine genomic variation of DNA 

methylation at the nucleotide-level [21, 29], revealing highly complex and dynamic 

tissue- and cell type- specific patterns of genomic DNA methylation.  In parallel, new 

functional studies are illuminating multi-faceted connections between DNA methylation 

and regulation of gene expression.  In addition to the well-known effect of promoter 

methylation in silencing gene expression, DNA methylation is also implicated in the 

regulation of alternative splicing [12] and the regulation of miRNA [51].  Thus, DNA 

methylation harbors a strong potential to influence regulatory divergence between 

species.   

 To elucidate the evolutionary significance of DNA methylation, in this study we 

examined the differences in genome-wide DNA methylation maps of human and 

chimpanzee brains and their consequences on gene expression divergence.  A few studies 

have previously investigated methylation difference between humans and non-human 

primates, but these studies either examined an extremely limited number of sites or used 

methods that are low-resolution and potentially biased due to underlying sequence 

differences [39, 40, 52].  In contrast, our study used the methyl-C seq method to resolve 

detailed patterns of genomic DNA methylation at individual nucleotide resolution.  

 One of the advantages of the methyl-C seq method is that it allows us to infer 

methylation frequencies of individual CpGs quantitatively.  Our DNA methylation maps 

reveal the prefrontal cortex to be by far the most heavily methylated tissue investigated so 

far (Figure 1.1).  Our results stand in contrast to the hypothesis that DNA methylation 

decreases in conjunction with cellular differentiation [37].  Rather, our study suggests 

that DNA methylation patterns undergo dynamic reprogramming in a tissue and cell-type 

specific manner.  The striking enrichment of DNA methylation in brains (Figure 1.1) also 

has important evolutionary implications.  It has been shown repeatedly that genes 

expressed in brains are, on average, the most evolutionarily constrained both in terms of 
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sequence evolution as well as gene expression patterns [25, 53].  The observation that the 

brain is the most heavily methylated among the tissues investigated so far suggests that 

DNA methylation may contribute to the constraints on sequence and expression 

evolution, possibly by suppressing gene expression noise [54].  Similarly, heavy 

methylation of transposable elements in brain may indicate particularly strong silencing 

of transposable elements [3].  

 We observed intriguing within- and between-species variation of DNA 

methylation in the brains of humans and chimpanzees.  In both species, samples from 

younger individuals (31 versus 47 and 48 in humans, 24 and 27 versus 43 in 

chimpanzees) tend to exhibit heavier DNA methylation compared to older individuals 

(Figure 1.2).  Previous studies, investigating limited numbers of CpG sites or genes, 

reported both increases and decreases of DNA methylation with aging [55-59].  Our data, 

while representing the first genome-wide analyses of CpG sites, consist of only three 

individuals per species with relatively similar ages, thus should be taken with caution.  

Nevertheless, it is interesting to note that studies analyzing CpG islands have generally 

reported increased DNA methylation with increasing age, while some studies reported 

that CpGs that are not in CpG island context tend to lose DNA methylation with aging 

[58].  

 The overall patterns of DNA methylation differ between human and chimpanzee 

brains: notably the chimpanzee brains exhibited higher DNA methylation levels 

compared to human brains.  Our results are in accord with an earlier study that used high 

performance liquid chromatography (HPLC) to quantify the levels of methylcytosines 

from the brains of human, macaque, African green monkey and squirrel monkey and 

showed that the human brain exhibited the least amount of methylcytosines among these 

species [40].  However, the fact that DNA methylation varies with age, and that it is not 

straightforward to ‘match’ ages between human and chimpanzee samples, cautions 

drawing a general conclusion from the limited number of samples used in this study.  
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Nevertheless, it is notable that the species-level difference between humans and 

chimpanzees is the most pronounced in promoters (Figure 1.3).  Given the observation 

that human promoters are generally hypo-methylated compared to chimpanzee 

promoters, the increase of gene expression in the human brains compared to the brains of 

chimpanzees [60-62] may be partially mediated by an overall decrease of DNA 

methylation, particularly in promoters.  Future analyses of outgroup primates, such as 

Old World monkeys, will help elucidate lineage-specific changes in these epigenetic 

modifications.  

 Furthermore, promoters that are significantly differentially methylated between 

the brains of humans and chimpanzees (most of which are hypo-methylated in the human 

brains compared to the chimpanzee brains) are enriched in several functional categories, 

including protein binding and cellular metabolic processes.  Strikingly, the list of genes 

harboring differentially methylated promoters includes disproportionately high numbers 

of those associated with human diseases (Table 1.2).  In particular, this list of disease 

includes neuro-developmental and psychological disorders, such as neural tube defects, 

autism, and alcohol and other chemical dependencies.  Interestingly, they represent a 

characteristic set of diseases to which modern humans are particularly susceptible [63].  

This suggests that methylation differences between human and chimpanzee brains may 

have significant functional consequences and potentially bear relevance to the evolution 

of human specific disease vulnerabilities.  Given that DNA methylation functions as a 

modulator of environmental signals to cellular regulatory machineries [64, 65], 

comparative epigenomic studies like ours will allow us to better understand both the 

genetic and environmental contributions to species differences.  Thus, our results 

highlight the utility of comparative studies in identifying key epigenomic modifications 

underlying human specific phenotypes, including disease vulnerabilities.  
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CHAPTER 2 

INTRODUCTION 

 

 Thirty-eight years ago, two independent studies proposed that cytosine DNA 

methylation in eukaryotes could act as a stably inherited modification affecting gene 

regulation and cellular differentiation [1, 7].  Since then, intense effort has expanded our 

understanding of diverse aspects of DNA methylation in higher eukaryotic organisms, 

especially human.  Now it is well known that the degree of DNA methylation in the 

human genome is extensive: most of CpG dinucleotides in the human genome are 

methylated in most tissues and developmental stages, which is referred to as "global 

DNA methylation" [66].  However, some genomic regions, e.g., CpG islands, exhibit 

prominent exceptions to this pattern [67].  Originally, CpG islands were defined as 

clusters of hypo-methylated CpG dinucleotides in the heavily methylated mammalian 

genomes [68, 69].  In order to get a comprehensive map of CpG islands among genomic 

sequences, several computational algorithms have been developed [70, 71].  A key 

feature of these computational algorithms is a metric to quantify the observed frequency 

of CpG dinucleotides normalized by the G+C content, commonly referred to as ‘CpG 

O/E’.  Genomic regions exhibiting particularly CpG O/E, among other characteristics, are 

generally considered as good candidates of CpG islands. 

 Accompanied with the improvement of CpG islands definition, numerous studies 

also indicated the critical importance of CpG islands in regulatory and developmental 

processes. For example, many CpG islands co-localize with promoters [72-74].  They are 

often characterized by transcriptionally permissive chromatin states [75, 76], and 

frequently overlap with enhancers and other regulatory elements [77-80].   

 The regulatory effects of CpG islands often critically rest on the ‘correct’ (or the 

lack of) DNA methylation. For example, even though CpG islands are generally 
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characterized by their unmethylated status, some CpG islands undergo DNA methylation, 

often in tissue- or developmental stage-specific manner.  What is more important, 

aberrant methylation at some CpG islands is implicated with diseases, in particular, 

cancer [81, 82].  Therefore, understanding the full extent of variation of DNA 

methylation in CpG islands and its functional consequences has tremendous implications 

for advancing our knowledge of molecular mechanisms of regulation and development. 

 Moreover, recent studies begin to unfold intriguing functional heterogeneity 

among CpG islands.  For example, long CpG islands and short CpG islands exhibit 

different regulatory activities such as gene expression complexity [83] as well as 

nucleosome depletion patterns [84].  A recent evolutionary study has determined that 

while the majority of CpG islands may actively avoid DNA methylation, some CpG 

islands are likely to maintain high CpG contents via methylation-independent processes 

such as biased gene conversion [85].  These findings begin to shed lights on the potential 

diversity among CpG islands.  At the same time, they highlight many unanswered, 

critical questions: for example, do the computationally predicted lists of CpG islands 

capture the true epigenomic and functional complexity of CpG islands?  Do all CpG 

islands exhibit tissue and developmental stage specific variation of DNA methylation?  

Alternatively, is there a group of CpG islands that tend to exhibit variable patterns of 

DNA methylation?  How are these variations of DNA methylation related to regulatory 

functions of CpG islands?  Do methylation profiles of CpG islands differ according to 

their evolutionary mechanisms? In chapter 2, I will describe my investigation of these 

pressing questions by analyzing whole-genome, nucleotide resolution methylation maps 

from multiple methylomes of distinctive origins. 
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MATERIALS AND METHODS 

Whole Genome Methylomes 

 We used whole genome, nucleotide-resolution DNA methylation maps 

(methylomes).  We focused on analyzing normal tissues or primarily tissue derived cell 

lines, rather than differentiated cell lines or cancer genomes.  Primary data consists of 

methylomes generated from human embryonic stem cells (ESCs) [86], human neonatal 

foreskin fibroblasts [86], human peripheral-blood mononuclear cells (PBMCs) [87], 

prefrontal cortex of human brain [88] and human sperms [89].  These methylomes were 

all generated with next-generation bisulfite sequencing technology and have similar 

number of mapped CpG sites, facilitating a direct comparison of CpG island methylation 

among tissues.  As a comparison, we contrasted the whole genome methylation data from 

the prefrontal cortex to those generated via the reduced representation bisulfite 

sequencing methods as a part of the ENCODE project from the " BC_Brain_H11058N " 

cell line.  Comparison of these data sets demonstrates that the whole genome methylation 

sequencing provides a superior coverage of CpG islands (Figure 2.1).  We extended our 

analyses to three additional methylomes: placenta, kidney and cerebellum [90].  These 

three methylomes were generated using the same methods, but are of lower coverages 

(Table 2.1). 
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Figure 2.1. CpG island coverages. We compared the coverages of CpG sites in CpG 

islands between the data generated by the ENCODE project to the data from 

comprehensive methyl C seq method.   The ENCODE project used a modified version of 

Reduced Representation Bisulfite Sequencing.  These profiles present an excellent 

overview of genomic DNA methylation variation.  However, to obtain a comprehensive 

variation of DNA methylation of CpG islands, the methylC seq data clearly outperforms 

this data, as shown below.  We compared the brain methyl seq data to ENCODE data 

from the BC_Brain_H11058N cell line. The distribution of CpG sites coverage within 

CpG islands is shown for the ENCODE data (black) and for the methylC-seq data (red).  

Coverage is calculated as number of mapped CpGs divided by number of total CpGs in 

each CpG island. 
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Table 2.1. Human DNA methylome datasets used in chapter 2  

Tissue Gender Dataset ID Coverage 
Total Mapped 

CpGs (millions) 

Mapping 

program1 

and 

efficiency2 

Embryonic stem 

cells 
F GSE19418 9.1X 26.2 

SOAP2 

(98.5%) 

Neonatal foreskin 

fibroblasts 
M GSE19418 9.8x 26.4 

SOAP2 

(99.3%) 

Prefrontal cortex 

of brain 
M GSE37202 11.4X 26.8 

BS-seeker 

(99.8%) 

Peripheral Blood 

Mononuclear Cells 
M GSE17972 10X 27.1 

SOAPalign

er 

(99.1%) 

Sperm M GSE30340 16X 28.2 
RMAPBS 

(98.7%) 

Placenta F GSE39775 1.6X 23.9 
BS-seeker 

(99.3%) 

Cerebellum M GSE39775 0.3X 8.3 
BS-seeker 

(99.3%) 

Kidney M GSE39775 0.5X 8.9 
BS-seeker 

(99.3%) 

1: The mapping procedures for all tissues used a "reduced"’ three-letter alphabet 

comprising A, G, and T, where all C’s were converted to T’s both in the reads and in the 

reference genome to accommodate the conversion of unmethylated cytosines to thymines 

by bisulfite conversion. Besides, all the datasets contain the quality control steps such as 

the standard Illumina sequencing pipeline for base calling and quality filtering, all the 

redundant reads were removed before the alignment to the reference genome.  

2: The efficiency is referred as the conversion rate of the unmethylated CpGs from the 

bisulfite treatment. 

 

CpG Island Annotation and Methylation 

 The annotations of the CpG island used in this study were downloaded from 

UCSC Genome Browser [91].  These CpG islands are characterized as at least 200 bps in 

length, GC content of 50% or greater, and a CpG frequency (observed/expected; [o/e]) of 

0.6 and exclusive of repetitive sequences.  To estimate the methylation level for each 

CpG island, we calculated the mean fractional methylation value for all the mapped 
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cytosines within the CpG island.  For each mapped cytosine, the fractional methylation 

value was calculated as: total number of "C" reads / (total number of "C" reads + total 

number of "T" reads), following previous studies [92].  To identify differentially 

methylated CpG islands between oocyte and sperm in mouse, we extracted the location of 

these CpG islands from, and used the UCSC liftOver tools to convert the coordinates 

from genome build mm10 to hg18. 

 Genomic control regions (non-CpG island controls) are obtained using the 

following procedures.  We first removed all the CpG islands from the whole genome and 

then randomly sampled genomic regions with the length distribution identical to the list 

of CpG islands.  Methylation levels of these control regions are calculated the same way 

as CpG islands.  We repeated this procedure 1000 times. We performed this sampling 

with and without removing CpG islands. The results from both analyses are consistent, 

and in this dissertation we present results obtained without removing CpG islands. 

 

Identification of High Methylation Variability Regions 

 We identified highly differentially methylated regions (‘High Methylation 

Variability Regions, HMVRs’) from the comparison of the five methylomes using a 

sliding window approach.  First, we calculated coefficient of variation of DNA 

methylation (standard deviation/mean) of all CpG sites in the human genome, using the 

comprehensive methylation information of all nucleotides in the five methylomes.  Then, 

we identified individual CpG sites that exhibit high variation using a cutoff value of C.V. 

= 1 (this roughly corresponds to >2.4SD, and top 0.5% quantile of the whole CpG sites).  

A total of 0.69 million CpGs out of 21.7 millions examined CpGs sufficed this criterion.  

Then, using a 2-kb sliding window with a 200 bps step size of increment, we extended 

the window until each window contained less than 50% of HMV CpG sites.  HMVRs are 

then defined as genomic regions that include 5 or more HMV CpG sites.  We also tried 
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combinations of different parameters to identify HMVRs: our results did not change 

qualitatively. 

 

Hierarchical Clustering Analyses 

 Clustering of CpG islands of the five tissues methylome data was performed using 

a function called 'clustergram' in MATLAB.  It employs hierarchical clustering with a 

Euclidean distance metric to first cluster the tissues and then cluster the CpG islands.  

Ward linkage was employed to generate both dendograms. 

 

Analyses of Gene Expression 

 Gene expression data from 6 human tissues (prefrontal cortex, cerebellum, heart, 

kidney, liver and testis) were based upon whole genome RNA sequencing [93].  These 

data were aligned to the respective genome sequences by the TopHat program. The 

expression levels were normalized by mean per-base read coverage with unambiguously 

mapping reads.  The samples measured for the same tissue were averaged to represent the 

expression level for that specific tissue.  The second data set is based upon Affymetrix 

human genome U133A array which were downloaded from Gene AtlasV2 (GSE1133), 

where the expression level is standardized by MAS5.0 algorithm [94].  We removed 

disease tissues and used only normal tissues.  Based upon these expression values, the 

"tissue specificity index" [95] is defined by incorporating information on the maximum 

expression level among the tissues in each data set, as follows:  

 

where n is the number of tissues analyzed, Ej the expression level of the gene in the 

jth tissue and Emax the maximum expression level of the gene across the 6 tissues. The 

higher the tissue specificity index of a gene, the more the tissue-specific its expression 

pattern is. To define the association of the genes to certain CpG island, we first extended 
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the genes at both 5' and 3' end by 1500 bp, and we called that the gene is associated with 

certain CpG island if there is any overlap between the extended region and the CpG 

island.  

 To examine overlaps between CpG islands and transcription factor binding sites, 

we downloaded the location of transcription factor binding sites conserved in the 

human/mouse/rat alignment from UCSC genome browser.  A binding site is considered 

conserved across the alignment based upon the score threshold computed with the 

Transfac Matrix Database (v7.0).  Transcription factor binding sites that are completely 

located within the CpG islands are counted for each CpG island. 

 

Evolutionary Substitution Rates of CpG Islands 

 We used Cohen et al. [85]’s evolutionary data downloaded from the Tanay lab 

website (http://compgenomics.weizmann.ac.il/tanay).  The data consist of a list of bigWig 

tracks containing observed and expected evolutionary dynamics in 50bp resolution, 

smoothed over 2kb windows.  We converted the bigWig encrypted files to bedGraph files 

using the UCSC utility bigWigToBedGraph.  We then computed the weighted average of 

observed and expected rates for each CpG island region using custom perl scripts. 

 

Discriminant and Classification Analyses 

 We performed linear discriminant analyses using the "lda" function from the 

package of "MASS" in R.  We also performed support vector machine analyses using the 

"ksvm" function from the package of "kernlab" in R.  For both analyses, 20% of the 

whole data were randomly selected as the training data set.  After training the model, the 

predictions were made for the test data set and the accuracy was evaluated based upon the 

comparison between prediction and the actual label in test data set.    
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RESULTS 

 

Patterns of CpG Islands DNA Methylation in Whole Genome Methylomes 

 We analyzed comprehensive whole genome nucleotide-resolution DNA 

methylation maps (referred to as ‘methylomes’ henceforth) from eight distinctive human 

samples (prefrontal cortex of brain, embryonic stem cells, neonatal foreskin fibroblasts, 

peripheral-blood mononuclear cells, sperms, placenta, cerebellum, and kidney: Table 

2.1).  We did not include methylomes originating from induced pluripotent stem cells 

[96], as the epigenetic patterns of these cells may differ from those from normal somatic 

cells.  Among these methylomes, five (prefrontal cortex of brain, embryonic stem cells, 

neonatal foreskin fibroblasts, peripheral-blood mononuclear cells, sperms) methylomes 

offer similarly comprehensive, high coverage information across the whole genome 

(Table 2.1).  Including data from all eight methylomes reduced the number of examined 

CpG sites dramatically (~8 fold: Table 2.1).  Nevertheless, the results of the analyses of 

these five methylomes and the total eight methylomes are highly similar, and for the rest 

of the results in this study,  only results from the five comprehensive methylomes are 

presented. 

 We calculated methylome-specific DNA methylation levels of CpGs across the 

whole genome (Materials and Methods).  From the five whole genome methylomes, we 

annotated methylome-specific DNA methylation of 26.7 million CpG dinucleotides, 

corresponding to 88.7% of all CpG dinucleotides in the human genome.  Using this 

method, we determined methylome-specific levels of DNA methylation for 25,131 CpG 

islands, encompassing 89% of all annotated CpG islands in the UCSC genome browser.  

Comparisons to methylation data from other methods indicate that the data we used offer 

superior resolution for examining the detailed variation of DNA methylation in CpG 

islands (Figure 2.1).   

 As expected, CpG islands exhibit significantly reduced methylation compared to 

the genomic background (Mann-Whitney test, P < 10
-15

, Figure 2.2A).  Notably, CpG 
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islands in sperms are the least methylated among the 5 methylomes, even though the 

sperms themselves are not the least methylated among those (Figure 2.2A).  This is not 

due to inactivation of the X chromosome during spermatogenesis: this pattern persists 

even when the data from the X chromosome is removed.  When examined individually, 

the majority of CpG islands are hypo-methylated (methylation level <20%).  However, 

substantial numbers of CpG islands are hyper-methylated (methylation level >80%) 

(Figure 2.2B).  The percentages of hyper-methylated CpG islands range between 15% in 

sperm, to 23% in embryonic stem cells.  Interestingly, we discovered a strong negative 

correlation between CpG island lengths and the average methylation levels across the 

methylomes: longer CpG islands tend to be more markedly hypo-methylated (Spearman’s 

 = -0.38, P < 10
-16

, Figure 2.2C).
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Figure 2.2. Overview of DNA methylation at CpG islands across tissues (A) Mean methylation levels of CpG sites in genomic 

background (blue bars) versus those in CpG island context (red bars). (B) Distribution of CpG islands that are lowly methylated 

(<20% mean fractional methylation levels), intermediately methylated (20%~80% mean fractional methylation levels) and highly 

methylated (>80% mean fractional methylation levels) across the five methylomes examined.  (C) Correlation of CpG island length 

and methylation level.  A regression of log transformed CpG island length versus log transformed average methylation level from 5 

human methylomes, divided into 40 bins, shows a high negative correlation (R
2
 = 0.96 for binned data). 
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CpG Islands Mark Highly Variable DNA Methylation Regions 

 Having demonstrated the overall hypo-methylation of CpG islands and hyper-

methylation of some CpG islands, we then examined DNA methylation variability of 

CpG islands.  Several studies have identified differentially methylated CpG dinucleotides 

and genomic regions among different tissues and cell types, many of them (but not all) 

included CpG islands [97-103].  Analyses of whole genome methylation maps provide a 

unique opportunity to identify genomic regions whose methylation levels vary between 

different tissues.  With the methylation level of individual CpGs present in 5 

methylomes, we examined variability of DNA methylation.  For this purpose, we used 

the coefficient of variation (CV: standard deviation divided by mean), which is a 

commonly used metric to compare the level of variability of biological data [104-106].  

Then we developed a sliding window approach to define ‘high methylation variability 

regions’ (HMVR, Materials and Method) of the human genome.  We identified a total of 

17,045 HMVRs, spanning 51.2 million bps and containing 0.70 million CpG 

dinucleotides.  Remarkably, CpG islands are highly significantly over-represented in 

these HMVRs.  Under a criterion of over 80% overlap, 12,683 CpG islands overlap with 

these HMVRs.  In comparison, the expected number of CpG islands in HMVRs is only 

483 (P < 10
-20

, Fisher’s exact test).  Similar results were obtained when different criteria 

were used to identify HMVRs.  Thus, even though generally hypo-methylated, CpG 

islands in fact exhibit tremendous level of DNA methylation variation across 

methylomes.  This pattern is apparent when we compare the variability of methylation 

levels of CpG islands to those of ‘control’ regions (Figure 2.3). 
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Figure 2.3. Comparisons DNA methylation level and variation between CpG islands 

and control region (A) CpG islands (blue bars) exhibit lower level of DNA methylation 

compared to genomic background (red bars). (B) Levels of DNA methylation variation, 

measured by C. V. (coefficient of variation), are higher for CpG islands than genomic 

background.  

 

 

Distinctive Clusters of Human CpG Islands Based On DNA Methylation Patterns 

 Having established that CpG islands exhibit highly variable DNA methylation 

across the whole genome methylomes, we investigated patterns of DNA methylation 

variation more deeply.  We employed a hierarchical clustering approach (Materials and 

Methods) to group CpG islands according to their similarities of DNA methylation across 

the five methylomes.  The resulting ‘heat map’ of DNA methylation variation across CpG 

islands reveals several intriguing patterns (Figure 2.4).  Interestingly, the clustering 

pattern of the methylomes does not reflect the gender or developmental stages of the 

original tissue or cell samples: among the five methylomes, only the ESC has female 

origin.  ESC methylome clusters with other methylomes of male origin.  It is also notable 

that the ESC methylome is closer to those of highly differentiated cell methylomes.  On 

the other hand, sperm methylome is the most distinct among the five methylomes, which 

is consistent with our previous results indicating that sperm CpG islands are the least 

methylated among the five methylomes.  This pattern highlights epigenetic differences 

between germ lines and somatic tissues, and regulatory effects of DNA methylation on 

spermatogenesis [107-109].  CpG islands in embryonic stem cells also exhibit distinct 
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patterns of DNA methylation from that of other tissues, highlighting the unique 

developmental potential of these cells.   

 Strikingly, CpG islands form several distinct clusters according to their 

methylome-specific DNA methylation patterns (Figure 2.4).  As expected, many CpG 

islands exhibit sparse levels of DNA methylation in all five methylomes.  These are 

designated as ‘Cluster I’ (Figure 2.4A).  Note that many CpG islands in this cluster still 

exhibit high levels of methylation variability (Figure 2.4A).  The rest of CpG islands are 

differentially methylated in different methylomes.  Among these, approximately half of 

CpG islands are notably hypo-methylated in sperms, yet exhibit highly variable patterns 

of methylation in somatic tissues and embryonic stem cells (cluster II, Figure 2.4A).  The 

remaining CpG islands tend to be heavily methylated in sperms and methylated in some 

somatic tissues and embryonic stem cells (cluster III in Figure 2.4A).  We can further 

divide the clusters II and III to sub-clusters, which exhibit distinctive variability of DNA 

methylation.  For example, cluster II can be subdivided into those that exhibit sparse 

methylation in sperm but relatively heavy methylation in somatic cells (sub-cluster IIa), 

and those exhibiting sparse methylation in sperm and highly variable and often sparse 

patterns of methylation in somatic cells (sub-cluster IIb) (Figure 2.4B). Cluster III 

includes a distinctive subcluster of CpG islands that exhibit heavy methylation in all 

tissues (sub-cluster IIIa), compared to those that show variably methylated across tissues 

(sub-cluster IIIb, Figure 2.4C).  

 To determine whether the observed pattern is applicable to a larger number of 

tissues and cell types, we incorporated nucleotide-resolution DNA methylation maps 

from additional three methylomes generated from placenta, cerebellum and kidney 

(Materials and Methods).  These additional methylomes consist of markedly lower 

sequencing coverage and/or few CpG sites compared to the five comprehensive 

methylomes.  Despite such difference in sequence coverage and quantity, clustering 

analyses using these eight methylomes clearly demonstrate distinctive CpG islands 
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clusters that are highly similar to the above results (Figure 2.5).  Together, these results 

indicate that human CpG islands can be clearly classified into several groups according to 

the patterns of DNA methylation variability across multiple methylomes.
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Figure 2.4. Hierarchical Clustering of CpG islands according to their methylation levels in 5 human methylomes.  The bar on 

top left represents relative methylation levels, where "Heavy" stands for the methylation level of 100% while "Sparse" stands for no 

methylation.  (A) Three distinctive clusters are indicated  (B) Some CpG islands are hypo-methylated in the sperm methylome, but 

hyper-methylated in other methylomes (IIa, n=2357) or exhibit variable levels of hyper-methylation in other methylomes (IIb, 

n=1751).  (C) Some CpG islands are generally hyper-methylated in all methylomes (IIIa, n=3885) or exhibit some level of tissue-

specific hypo-methylation (IIIb, n=589). 

(A) 

(B) (C) 
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Figure 2.5. Hierarchical Clustering of CpG islands according to their methylation levels in 8 human methylomes.  The bar on 

the top left represents relative methylation levels. Three distinctive clusters are indicated. Cluster I , II, II consists of 11231, 1437 and 

2283 CpG islands respectively. Individual cluster consistency percentage with 5-tissues clustering is indicated in the parenthesis 

below each cluster numbers. The total consistency is 94.66% . 
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Epigenomically Identified CpG Island Clusters Are Genomically Distinctive  

 Having identified distinctive patterns of DNA methylation variability across CpG 

islands, we examined whether these CpG islands clusters exhibit different characteristics. 

Intriguingly, we find that these clusters, which have been identified solely based upon 

patterns of DNA methylation variation, differ significantly in several genomic 

characteristics.  The cluster I CpG islands tend to be the longest, which is consistent with 

our observation that longer CpG islands tend to be less methylated.  They also contain the 

most G and C nucleotides and exhibit the highest CpG O/Es, and harbor the largest 

numbers of CpG dinucleotides, compared to those in other clusters (Figure 2.6A-C).  On 

the other hand, cluster III CpG islands are distinctively shorter than those in other 

clusters, as well as exhibiting lower GC contents and lower CpG O/Es.  Notably, these 

CpG islands consist of strikingly fewer numbers of CpG dinucleotides compared to those 

in other clusters (Figure 2.6D).  In comparison, CpG islands in the cluster II generally 

exhibit genomic characteristics that are intermediate of the other two clusters.  These 

differences are not due to the bias in mapping: CpG islands in the three clusters show 

similarly high mapping coverages.  Autosomal and X-linked CpG islands also exhibit 

heterogeneous distribution: CpG islands on the X chromosome are slightly yet 

significantly enriched in cluster I, while deficient in cluster III (Table 2.2).  These 

clusters also exhibit enrichment of distinctive genomic regions: cluster I consist of largely 

promoter-associated CpG islands, while clusters II and III include large numbers of 

intragenic and intergenic CpG islands (Figure 2.6E).  The observation that CpG islands in 

clusters II and III tend to exhibit highly methylome-specific patterns of DNA methylation 

is thus consistent with the idea that intragenic and intergenic CpG sites are highly 

variably methylated and exhibit tissue- specific DNA methylation [110].   
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Figure 2.6. Contrasting genomic features of the three CpG island clusters. 
Significant differences are found in (A) lengths, (B) GC content, (C) CpG O/E, and (D) 

number of CpG dinucleotides among the three clusters. (E) Occurrence of promoter-, 

intragenic- and intergenic- CpG islands across the three CpG islands clusters.  

Significance level ***: P < 10
-6
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Table 2.2.  The numbers of X-linked CpG islands compared to all CpG islands.  X-linked 

CpG islands are over-represented in the cluster I and under-represented in cluster III.   

 Cluster I Cluster II Cluster III  

X-linked CpG 

islands 

366 76 27  

All CpG islands 16183 4032 4447  

    P < 10
-16*

 

 

DNA Methylation Variation Supports Evolutionary Diversity of CpG Islands  

 As genomic features are determined by evolutionary processes, we sought to 

determine underlying evolutionary mechanisms of distinctive CpG island clusters.  For 

this we used recently available evolutionary classification of CpG islands by Cohen et al. 

[85].  This study used parameter-rich evolutionary models to infer evolutionary forces 

underlying the evolution and maintenance of CpG islands in primate genomes.  Because 

methylated cytosines frequently mutate to thymines, DNA methylation in effect depletes 

CpG dinucleotides [111, 112].  It was originally proposed that CpG islands manage to 

maintain high CpG contents against this mutational pressure of DNA methylation by 

avoiding DNA methylation [67-69].  Indeed, Cohen et al. identified many CpG islands 

with evolutionary signatures of hypo-methylation.  They named these CpG islands as 

‘hypo-deamination’ CpG islands.  On the other hand, their analyses revealed that some 

CpG islands maintain CpG contents via biased gene conversion process (referred to as 

‘biased gene conversion’ CpG islands).  They also identified ‘pseudo’ CpG islands, 

which are genomic regions that happen to harbor large numbers of CpG dinucleotides by 

chance, and expected to lose their CpG contents through evolution.   

 Our data on high resolution DNA methylation variation of CpG islands provide a 

novel way to test some of the predictions and implications of these evolutionary analyses.  

First, ‘hypo-deaminated’ CpG islands should exhibit hypo-methylation in germlines.  We 

found that cluster I CpG islands, which are hypo-methylated in all five methylomes, are 
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overrepresented in ‘hypo-deamination’ groups (Figure 2.7B).  The fact that they are also 

hypo-methylated across somatic tissues (in addition to in sperms) indicates that 

evolutionary pressures for hypo-methylation of these CpG islands may share some of the 

same underlying mechanisms with somatic hypo-methylation.  On the other hand, we 

detected a strong influence of biased gene conversion in CpG islands in clusters II and III 

(Figures 2.7C and 2.7D).  Because biased gene conversion process preferentially fixes C 

and G nucleotides, they can generate CpG dinucleotides, and consequently, counter-

balance the mutational depletion of CpGs.  CpG islands in the cluster III also include 

disproportionately large numbers of ‘pseudo’ CpG islands (9%, significantly higher than 

0 and 2% in CpG island clusters I and II).  

 

Figure 2.7. Evolutionary Diversity of 3 CpG Island Clusters. Frequencies of hypo-

deaminated, biased gene conversion (BGC), and pseudo CpG islands in (A) all CpG 

islands, (B) cluster I, (C) cluster II and (D) cluster III. 
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Functional Diversity of CpG Islands Reflected in DNA Methylation Variation 

 We have so far demonstrated that epigenetic variability of CpG islands represents 

distinctive clusters, and is tightly linked to genomic and evolutionary variability in the 

human genome.  We posit that these distinctive CpG clusters further indicate regulatory 

diversity among CpG islands.  Specifically we hypothesize that the regulatory functions 

of cluster I CpG islands are tightly linked to their hypo-methylation status.  In contrast 

the regulatory effects of CpG islands in the clusters II and III may critically rest on their 

cell- and tissue-specific hypo- and hyper-methylation.   

 To test these hypotheses we performed several analyses to examine functional 

diversity among CpG island clusters in the human genome.  First, we performed gene 

ontology analysis to determine whether these clusters are enriched in different functions.  

Indeed, these clusters are enriched in highly functionally distinct genes (Table 2.3).  

Cluster I CpG islands are generally associated with genes participating in ‘housekeeping’ 

functions such as transcription and RNA-processing.  In addition, some developmental 

functions, in particular neuron development, are also overrepresented in Cluster I.  

Cluster II CpG islands are associated with genes involved in morphogenesis and cell-cell 

adhesion.  Genes associated with cluster III CpG islands have fewer ontology terms that 

are significantly enriched, which include protein phosphorylation, negative-regulation 

pathways, and signal transduction (Table 2.3).  

 These results are consistent with the idea that hypo-methylation of Cluster I CpG 

islands may regulate housekeeping functions, while variable DNA methylation of 

Clusters II and III may regulate tissue- and developmental stage- specific functions.  We 

further hypothesize that these distinctive functions are likely to be achieved by distinctive 

transcriptional regulation.  Specifically we hypothesize that the cluster I may represent 

generally highly expressed genes across tissues and cells while the clusters II and III 

encode more variably expressed genes.  To test this hypothesis, we examined tissue-

specific transcription of associated genes utilizing recent RNA-seq based gene expression 
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profiles from six distinct human tissues [93].  Tissue specific pattern of expression is 

summarized by the "tissue specificity index" measure (Materials and Methods).  We 

found that genes associated with the cluster I CpG islands are the most broadly expressed 

(tissue specificity is the lowest) compared to those associated with cluster II and III CpG 

islands (Figure 2.8B).  Genes associated with the cluster II exhibit the most tissue-

specific patterns of gene expression (Figure 2.8B). Cluster III CpG islands are associated 

with genes demonstrating intermediate tissue specificity of gene expression compared to 

the other two clusters.  To ascertain that this observation is consistent across large 

number of different types of tissues, we also analyzed the Novartis tissue specific gene 

expression data, encompassing 67 normal tissues [94].  Analyses of these data again 

indicate that the genes associated with the CpG island cluster I are most broadly 

expressed and the genes associated with clusters II and III are associated with narrower 

gene expression patterns (Figures 2.8A,B).  Thus, tissue- specific DNA methylation of 

CpG islands may contribute to tissue- specific expression of associated genes.  

 One way in which CpG islands affect transcriptional regulation is by encoding 

transcription factor binding sites [113].  We examined how often CpG islands overlap 

with transcription factor binding sites conserved in the human/mouse/rat alignment 

(Materials and Methods).  We found that the average number of transcription factor 

binding sites, after normalized by lengths, is significantly higher in CpG islands than in 

the control regions.  Interestingly, the cluster I CpG islands has the largest number of 

TFBSs while the cluster II has the least (Figure 2.8C).  This is consistent with the 

observation that the cluster I is enriched in promoters, while the others are often found in 

intergenic and intragenic regions (Figure 2.6E).  It is also consistent with experimental 

results demonstrating that ubiquitously active promoters harbor large numbers of 

transcription factor binding sites and many CpGs, while promoters that are tissue-specific 

have fewer CpGs [114].  At the same time, even tissue-specific CpG islands appear to 

encode large number of potential transcription factor binding sites (Figure 2.8C).
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Figure 2.8. Contrasting expression patterns and transcription factor binding sites of the three CpG island clusters.  Tissue 

specificity gene expression indices based upon RNA-seq (A) and microarray (B) data are shown for the CpG islands genes (blue bars) 

and non CpG islands genes (red bar).  (C) The mean numbers of TFBSs (per kb) for each CpG island cluster (blue bars) and control 

regions (red bar)
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Table 2.3. Distinctive functional enrichments of specific genes according to the variable 

DNA methylation of CpG islands.   

GO terms Description  P-values FDR-P-

values* 

 

     

Cluster I CpG islands 

sparse sperm methylation, sparse ESC and somatic cell methylation 

     

GO:0006350 transcription 2.00 X 10
-28

 3.90 X 10
-25

   

GO:0045449 regulation of transcription 3.77 X 10
-27

 7.36 X 10
-24

   

GO:0006396 RNA processing 1.11 X 10
-17

 2.16 X 10
-14

   

GO:0030182 neuron differentiation 2.49 X 10
-15

 4.76 X 10
-12

   

GO:0051252 regulation of RNA metabolic 

process 5.14 X 10
-15

 9.96 X 10
-12

  

 

     

 

Cluster II CpG islands 

sparse sperm methylation, variable ESC and somatic cell methylation 

     

GO:0007156 homophilic cell adhesion 1.64 X 10
-9

 3.00 X 10
-6

   

GO:0016339 calcium-dependent cell-cell 

adhesion 9.42 X 10
-9

 1.72 X 10
-5

  

 

GO:0007155 cell adhesion 1.83 X 10
-8

 3.35 X 10
-5

   

GO:0022610 biological adhesion 1.98 X 10
-8

 3.62 X 10
-5

   

GO:0048598 embryonic morphogenesis 6.95 X 10
-7

 1.27 X 10
-3

   

     

 

Cluster III CpG islands 

variable methylation in all five methylomes 

GO:0006468 protein amino acid 

phosphorylation 6.89 X 10
-6

 0.013 

 

GO:0051056 regulation of small GTPase 

mediated signal transduction 1.06 X 10
-5

 0.019 

 

GO:0031327 negative regulation of cellular 

biosynthetic process 1.40 X 10
-5

 0.025 

 

GO:0007010 cytoskeleton organization 2.62 X 10
-5

 0.048  

GO:0046578 regulation of Ras protein signal 

transduction 2.74 X 10
-5

 0.050 
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CpG Islands in Disease, Genomic Imprinting, and Aging 

 Having established the CpG island clusters and their distinctive properties at 

genomic, evolutionary and functional levels, we further hypothesized that CpG islands 

with respect to different aspects of human healths and aging may show different 

enrichment over the three clusters. We first asked whether CpG islands in certain clusters 

tend to be over-represented in disease, in particular cancer.  A recent study [115] 

compared DNA methylation maps of over 1,149 tumors of different tissue origins and 

identified genes whose CpG island promoters frequently exhibit aberrant hyper-

methylation in cancers.  Among these promoters that are prone to aberrant hyper-

methylation in cancers, 663 overlapped with our CpG island data.  We find that 649 

(97.8%) of them belonged to cluster I, an extremely significant over-representation (P < 

10
-20

, Fisher’s exact test).  The remaining 14 CpG islands are from the cluster II.  

 We next examined the association between imprinted genes and different CpG 

island clusters.  Imprinted regions are expected to be differentially methylated between 

germline and somatic cells.  To test these hypotheses, we downloaded a list of 

monoallelicly expressed human genes from the genomic imprinting website 

(http://www.geneimprint.org/, Materials and Methods).  Among these imprinted genes, 

33 overlapped with the CpG islands in our data.  Thirteen out of these 33 imprinted genes 

are found in the cluster II, representing a significant enrichment (the expected number of 

imprinted genes in the cluster II is 5, P < 0.05 by Fisher’s exact test; Figure 2.9).  Thus, 

as expected, imprinted genes are over-represented in cluster II which is distinctively 

methylated between germlines and somatic cells.  

 In addition we investigated whether CpG islands that exhibit differential DNA 

methylation with respect to aging tend to be preferentially associated with specific 

clusters.  Recently, whole genome DNA methylation maps of three individuals of 

different ages (newborns, 26 years old, and a centenarian) have become available [116].  

This study has identified 17,930 ‘aging’ differentially methylated regions (DMRs).  The 
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occurrences of 294 CpG islands overlapping with these aging-DMRs in the three clusters 

are shown in Figure 2.9.  While these CpG islands are distributed across all three clusters, 

they are highly significantly over-represented in the cluster II, and significantly under-

represented in the clusters I and III (Figure 2.9). 

   

Figure 2.9. Non-random association between CpG island clusters and distinctive 

biological processes, including gene imprinting (Imprinted), differentially methylation 

region associated with aging (aDMR) and germ line (gDMR).  Significance is assessed 

by Fisher’s exact test: NS P > 0.05; *P < 0.05 ; ** P < 10
-6

; *** P < 10
-9

. 

 

DISCUSSION 

 CpG islands are considered as genomic regulatory hotspots.  The advent of 

molecular techniques to examine nucleotide level DNA methylation of all CpG 

dinucleotides in a genome provides an exciting opportunity to investigate detailed 

variation of DNA methylation of these important regulatory regions.  Here we examined 

variation of DNA methylation across multiple methylomes of distinctive origins.  We 

showed that on average CpG islands are highly hypo-methylated, consistent with the 

prevailing idea that CpG islands generally lack DNA methylation [68, 69].  However, we 
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across multiple methylomes (Figure 2.3).  In fact, CpG islands exhibit significantly 

greater degrees of methylation variation than genomic background (Figure 2.3), a 

surprising pattern counter to the general notion that DNA methylation levels of CpG 

islands are stable[117].  CpG islands are also more highly variable than adjacent regions, 

or ‘CpG shores’[101]  in our data (Figure 2.10).  When we examined methylation levels 

of CpG island shores (defined as 2kb upstream of CpG islands), CpG island shores 

exhibited lower variability of DNA methylation compared to CpG islands (Figure 2.10).  

We further examined CpG sites that are ranked at the top 1% of their variability.  These 

sites are highly enriched with those belonging to CpG islands.  Sites classified as CpG 

shores also exhibit significant enrichments in these sites, but not as strikingly as CpG 

islands. However, there are several critical differences between our study and the 

previous studies of CpG shores: it is possible that CpG shores may specifically increase 

methylation variation in cancer cell lines.  In addition, our study does not consider inter-

individual variability, which may be an important source of epigenetic variability.  

However, tissue specific epigenetic patterns such as DNA methylation are conserved 

between distantly related species such as humans and mouse, despite tens of millions of 

years of divergence [118-120].  Thus, tissue specific DNA methylation patterns have 

deeper evolutionary origins than variation due to demographic factors.  Future studies of 

epigenetic variability are necessary to test some of these hypotheses.  

 

Figure 2.10. Comparison of DNA methylation variability of CpG islands and CpG 

island shores. (A) Comparison of mean methylation levels of CpG sites in CpG island 

shores (red bars) versus those in CpG island context (blue bars). (B) Comparison of 
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methylation variation among 5 human tissues of CpG sites, measured by C. V. 

(coefficient of variation), in CpG islands versus those in CpG island shores.  

 

 Based upon methylome-specific DNA methylation patterns, we can identify 

several distinctive groups of CpG islands, or ‘clusters’.  The first cluster of CpG islands 

are hypo-methylated in all five methylomes.  At the genomic level, these CpG islands 

tend to be longer than those in other clusters, and harbor larger numbers of G and C 

nucleotides and CpG dinucleotides than others (Figure 2.6).  They are also found in or 

near genes involved in essential, housekeeping pathways including regulation of 

transcription and RNA processing.  These CpG islands generally maintain their CpG 

contents, and their CpG island status, on an evolutionary timescale by avoiding DNA 

methylation.  Therefore, cluster I CpG islands are closer to the original definition of CpG 

islands.  We refer to them as ‘broad’ CpG island clusters.  

 We also found that some CpG islands are sparsely methylated in sperms, yet 

exhibit variable levels of DNA methylation in other methylomes (Figure 2.4).  We 

tentatively refer to them as ‘germline’ CpG island clusters.  CpG islands in this cluster 

(cluster II in Figure 2.4A) tend to be shorter and harbor fewer G and C nucleotides and 

CpG dinucleotides than those in the cluster I (Figure 2.6).  They are enriched in cell 

adhesion and embryonic morphogenesis functions, and generally exhibit more tissue-

specific transcription profiles compared to those in the cluster I. 

 Finally, we show that approximately one fifth of all CpG islands exhibit some 

degree of DNA methylation in the five methylomes (cluster III in Figure 2.4).  They tend 

to be much shorter than CpG islands in the other two clusters and harbor distinctively 

fewer CpG dinucleotides (Figure 2.6).  The fact that these are generally hyper-methylated 

in the examined methylomes raises the possibility that these regions may not encode 

regulatory potentials of true CpG islands.  However, an appreciable number (a count of 

327) of CpG islands in this cluster exhibit evolutionary signatures of hypo-deamination, 

indicating that these are maintained as CpG islands by avoiding DNA methylation 
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(Figure 2.7).  It is also notable that there are some CpG islands that clearly exhibit tissue-

specific hypo-methylation among this cluster (Figure 3C, sub-cluster IIIb).  These 

observations indicate that at least some of the CpG islands in this cluster likely to harbor 

true regulatory potential.  On the other hand, almost 10% of these CpG islands were even 

classified as ‘pseudo’ CpG islands, which are genomic regions possessing large number 

of CpG dinucleotides by chance (Figure 2.7).  We have used linear discriminant analyses 

and support vector machine (Material and Method) to examine whether we can separate 

these cluster III ‘pseudo’ CpG islands from the rest of CpG islands ('normal' CpG 

islands).  However, these analyses did not indicate the presence of specific genomic 

features of these ‘pseudo’ CpG islands that are heavily methylated in all methylomes.  

Future analyses of DNA methylation variation in larger number of tissues and from 

different developmental stages are necessary to shed light on the functional significance 

of CpG islands that appear hyper-methylated in the currently examined methylomes.  

 We sought to explicitly connect the observed variation of CpG islands at 

epigenomic and functional levels to the underlying evolutionary features.  A recent 

evolutionary analyses classified CpG islands to several groups, namely ‘hypo-

deamination’, ‘biased-gene conversion’ and ‘pseudo’ CpG islands [85].  We examined 

the correspondence between evolutionary classifications and across tissue variability of 

CpG islands.  First, we confirm that many hypo-methylated CpG islands in the cluster I 

correspond to hypo-deamination CpG islands.  Thus for these CpG islands, the 

evolutionary classification and epigenetic classification correspond fairly well.  

Interestingly however, many CpG islands in the ‘germline’ CpG island cluster, which are 

hypo-methylated in sperm, were classified as ‘biased-gene conversion’ CpG islands 

(Figure 2.7C).  This is puzzling; if they do indeed avoid DNA methylation in germlines, 

they should be more enriched in hypo-deamination CpG islands, similar to the CpG 

islands in cluster I.  To resolve this discrepancy, we hypothesize the following two 

mutually non-exclusive possibilities.  First, the sperm methylation patterns may be 



 53 

distinctive from the methylation patterns during other stages of spermatogenesis that are 

more subject to evolutionary dynamics.  Second, the sperm DNA methylation profiles 

may be highly different from those in oogenesis.  

 Currently, whole methylome data for human oocytes are not available.  However, 

data on sperm and oocyte methylation from mice are available.  Specifically, a recent 

study identified 1678 differentially methylated CpG islands between oocyte and sperm in 

mouse [121].  We thus examined how the orthologous CpG islands of these differentially 

methylated mouse CpG islands are distributed among the CpG island clusters.  We found 

that differentially methylated CpG islands between gametes are significantly more 

prevalent in clusters II and III than expected (Fisher's exact test, P < 2 x 10
-16

 for both 

clusters), while they are significantly under-represented in cluster I (Fisher's exact test, P 

< 2 x 10
-16

, Figure 2.9).  These results provide strong support to the hypothesis that the 

evolutionary signatures of hypo-deamination in cluster II and III CpG islands is due to 

differential DNA methylation between sperms and oocytes.  

 The fact that DNA methylation patterns of human CpG islands do not completely 

correspond to the evolutionary classifications (Figure 2.7) provides unique insights into 

the origin and maintenance of CpG islands.  Many CpG islands may have arisen by non-

methylation related mechanisms such as biased gene conversion (BGC) or by chance 

(pseudo islands), but have been co-opted as regulatory hotspots due to the epigenetic 

functional advantage in the current human genome.  This pattern is particularly strong for 

those CpG islands that are variably methylated across different tissues (Figure 2.7). 

 We show that the variation of DNA methylation across individual CpG islands is 

complex.  Importantly, our analyses illustrate that human CpG islands vary substantially 

in several biological levels, from genomic and evolutionary features to epigenomic 

variation, and functional enrichments.  These observations suggest the presence of a 

fundamental diversity underlying regulatory mechanisms of CpG islands.  For example, 

many intragenic and intergenic CpG islands, such as those in the clusters II and III, may 
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encode cryptic promoters and enhancers that function in a highly tissue- and cell type- 

specific manner.  Furthermore, with the new knowledge gained on the variation of DNA 

methylation found among in normal cell types and tissues, we can contrast epigenetic 

variations of clinical interest to those that naturally exist in future studies.  For instance, 

we demonstrated that the majority of cancer-implicated CpG islands are those that belong 

to the cluster I, which stay hypo-methylated in all examined methylomes so far (cluster I 

in Figure 2.4).  This observation suggests that regulatory function of cluster I CpG islands 

is tightly linked to their hypo-methylation, and DNA methylation of these CpG islands is 

likely to be detrimental and particularly disease-prone.  On the other hand, ‘aging’ CpG 

islands show a distinctive distribution across the three clusters: they are significantly 

more enriched in the cluster II, which consist of CpG islands whose methylation levels 

are highly variable in somatic tissues and embryonic stem cells (Figure 2.9).  We 

hypothesize that some of DNA methylation variation observed during the aging process 

may share common molecular mechanisms with tissue-specific methylation variation.  

For example some CpG islands may be more prone to stochastic variation of DNA 

methylation between cell types and with aging.  However, it should be noted that many 

studies of aging DMRs may be confounded by the effect of different cell types present in 

samples: aging studies often use blood samples which contain diverse cell types, each of 

them exhibiting potentially different methylation patterns [122, 123].  These effects, 

particularly the role of immune system related changes of specific cell types on aging-

DMRs [124, 125], need to be clarified in future studies.  

 Our study illustrates that comprehensive epigenetic profiling of distinctive cells 

will be highly useful in understanding regulatory processes of CpG islands, and 

consequently, furthering our knowledge on the role of CpG islands in disease and/or 

aging.  Our findings may also have immediate practical implications.  For example, the 

widely used infinium human methylation chip (‘Illumina 450K chip’) includes 136K 

positions that are annotated as CpG islands.  Compared to the total number of CpG sites 
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within CpG islands in the human genome (approximately 1.8Mbps), this corresponds to 

7.2% of CpG island CpG sites.  If we examine the representation of CpG sites with 

respect to our CpG island clusters, 7.2, 5.8, and 10% of CpG sites belonging to the 

clusters I, II, and III are targeted by this array.  In other words, this array targets 

significantly a higher proportion of CpG islands in the cluster III, which include 

substantial number of ‘pseudo’ CpG islands.  Consequently, some of the epigenomic 

variation detected by these positions may lack true regulatory meanings.  On the other 

hand, given the enrichment of ‘aging’ CpG islands in cluster II, a method targeting more 

positions in the cluster II could be more efficient in identifying aging associated variation 

of CpG islands.  Findings from our study may help in designing better methods to 

examine variation of DNA methylation across different biological conditions.   

 With the positive outlook on whole genome methylation profiling, we expect that 

the number of distinctive human methylomes will increase by an order of magnitude 

within the next few years.  We expect our framework of CpG island diversity at many 

biological levels to be helpful in interpreting such new data.  In turn, these new data will 

allow us to investigate biological diversity of CpG islands more deeply, and answer some 

of the new questions posited here. 
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CHAPTER 3 

INTRODUCTION 

 

 Recombination, which involves the exchange of genetic information by the 

pairing of homologous chromosomes during meiosis, is a common biological process in 

diploid eukaryotic organisms [126].  As such, it is a fundamental evolutionary 

mechanism that profoundly affects genomic variation.  For example, more than 50% of 

the variation in nucleotide heterozygosity across the genome is due to recombination in 

flies and humans [127].  Evidence also shows that genomic features such as codon bias, 

nucleotide substitutions and dynamics of repetitive DNA elements are extensively shaped 

by recombination [128-130].  Due to its essential role in reproduction as well as its 

critical importance in genetic analyses, major efforts have been dedicated in constructing 

genome-scale, high-resolution recombination maps [131-133] and developing new 

molecular techniques to analyze recombination patterns [134, 135].  This work has 

substantially furthered our understanding of this important biological phenomenon.  One 

important finding is that the distributions of recombination rates are non-uniform across 

the genomes in many species; recombination events are concentrated in highly localized 

areas known as "hotspots", which in the human genome are typically 1-2kb long and 

surrounded by much longer regions that are essentially devoid of recombination [136-

138].  For example, in the human genome, about 80% of the recombination take place in 

less than 15% of the sequence [139].  Moreover, recombination rates appear to vary 

between individuals, populations and species, indicating that recombination rates can 

rapidly between closely related species, and even within a species [140-142].  For 

example, it is proposed, based upon studies of human recombination hotspots, that 

hotspots can emerge and disappear in as little as 120,000 years, and certainly within the 

six million years since humans diverged from chimpanzees [143].  Such variable and 

http://en.wikipedia.org/wiki/Synapsis
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heritable patterns also indicate that recombination may evolve in response to natural 

selection [144, 145].   

 However, the causative factors underlying this variation are largely unknown.  

Previous studies have identified numerous factors, including molecular, environmental 

and demographic factors, that affect recombination rates [146].  At the genomic level, 

recombination rates are significantly associated with several sequence characteristics 

such as GC content, gene density, simple repeats, transposable elements and a number of 

different sequence motifs [147-150].  However, DNA sequence itself does not provide a 

full explanation for variation of recombination rates.  For example, the locations and 

usage of recombination hotspots vary between extremely closely related species such as 

humans and chimpanzees [140], and even among human individuals [151], where the 

underlying sequences are extremely similar.  These observations have thus sparked much 

interest on exploring how epigenetic factors may be involved in determination of 

recombination patterns. 

 As an epigenetic modification known to be established at prophase I in meiosis 

when recombination occurs [152], DNA methylation could be a potential factor affecting 

meiotic recombination rates.  By using methylation-associated single nucleotide 

polymorphisms (mSNPs) as a surrogate marker for germ line DNA methylation, 

Sigurdsson et al. [22] reported a significantly positive correlation between recombination 

rate and DNA methylation.  In addition, Auton et al. [153] reported that promoters that 

have high levels of DNA methylation in human sperms generally exhibit high levels of 

recombination rates.  They also noted that in chimpanzee genomes however the opposite 

pattern was observed (Auton et al. 2012). Other epigenetic modifications, such as histone 

modifications, may also affect the location and activity of recombination events.  For 

example, PRDM9, an important trans-acting factor that controls hotspots specification in 

human, contains a PR/SET domain that is capable of trimethylation of histone 3 lysine 4, 

or H3K4me3 [154].  In mouse genome, H3K4 tri- (H3K4me3) and di-methylation 
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(H3K4me2), which precedes recombination, are enriched at the Psmb9 and Hlx1 hotspots 

[155], and H3K4me3 in yeast is a prominent and pre-existing marks of active 

recombination sites [156].  Together, there is substantial amount of support for the 

hypothesis that epigenetic modifications may affect variation of recombination events.  

However, what are the main epigenetic modification(s) that may underlie variation of 

recombination rates, and how do they affect evolutionary dynamics of recombination 

rates, remain to be resolved.  In this study, we explored the impact of epigenetic 

mechanisms on determining species specific recombination hotspots.  We show that at 

the global level, DNA methylation explains a large amount of variation in recombination 

rates observed in the human genome.  However, DNA methylation levels appear to be a 

weak indicator of fine scale recombination.  On the other hand, specific modifications of 

histone tails stand out to be important molecular features at the recombination hotspots.  

We show an extensive overlap between both the H3K4me3 and H3K27me3 enriched 

regions to the recombination hotspots across the human genome.  Together with the 

elevated recombination rate at the H3K4me3 and H3K27me3 enriched regions, these 

results indicate that histone modifications may play an important role in shaping the 

genomic landscape of meiotic recombination in human genome. 

 

MATERIALS AND METHODS 

Epigenetic Features 

 In order to analyze DNA methylation at the genomic level, whole genome, 

nucleotide-resolution DNA methylation maps (methylomes) generated from prefrontal 

cortex of human brain [157], and from human and chimpanzee sperms [158] were used.  

These methylomes were all generated with next-generation bisulfite sequencing 

technology and have similar number of mapped CpG sites.  To estimate methylation 

levels of specific genomic regions, we calculated the mean fractional methylation value 

for all the mapped cytosines within that region.  For each mapped cytosine, the fractional 
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methylation value was calculated as: total number of "C" reads / (total number of "C" 

reads + total number of "T" reads), following the method in the previous chapters.  We 

also downloaded the human sperm profiles of H3K4me3 and H3K27me3, which were 

generated by the chromatin-immunoprecipitation sequencing method [159].  Enriched 

genomic regions of these two histone modifications relative to input were identified using 

the USeq analysis package (http://useq.sourceforge.net), which entails calculating false 

discovery rates (FDRS) converting from a window binomial p-value. 

 

Sequence Features 

 For information on GC content, CpG normalized content (CpG O/E), and CpG 

dinucleotide count, custom Perl scripts were written to search within the human (NCBI 

36/ HG 18) and chimpanzee (CGSC2.1/panTro2) genome sequence, downloaded from 

the UCSC Genome Browser (http://genome.ucsc.edu).  We calculated the proportion of 

repeats from certain genomic region based upon the rmsk table for the location and 

properties of repeated elements created using the RepeatMasker 

(http://www.repeatmasker.org), which was built on the Repbase database of repeated 

elements.  For the human genetic map and locations of recombination hotspots, the data 

were based upon applied statistical inference methods to genome-wide genetic 

polymorphism data [160], which is the phase II of the International HapMap.  The 

chimpanzee genetic map and recombination hotspots were retrieved from a study using 

similar methods on polymorphism data of 10 Western chimpanzees [153].  A custom Perl 

script was used to calculate the recombination rates in certain genomic regions (e.g. 

recombination hotspots and coldspots).  In order to check the overlap between the 

species-specific recombination hotspots as well as the overlap between the human 

recombination hotspots and histone modification enriched regions, we intersected the 

genomic locations by using the liftOver tool from the UCSC Genome Browser.  Genomic 

control regions were obtained using the following procedures.  We first removed all the 
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recombination hotspots from the whole genome and then for each simulation of the 

control regions, we randomly sampled genomic regions for the number of times equal to 

the species-specific recombination hotspots and with the identical distribution of CpG 

number to the species-specific recombination hotspots.  We repeated the simulation 1 

million times.  Methylation levels and recombination rates of these control regions are 

calculated the same way as recombination hotspots. 

 

Sliding Windows Correlation and Statistical Analysis 

 The genome-wide analyses were done using three different window 

sizes (250kb, 500 kb, and 1000 kb).  For each window size, we divided the genome into 

non-overlapping windows.  Each window was then assigned values according to its 

genetic and epigenetic properties (recombination rate, number of CpG dinucleotides, 

proportion of repeats, GC content, mean fractional methylation level).  Prior to multiple 

linear regression analysis, we first transformed the data to provide a better fit to normal 

distribution using Box–Cox transformation, a form of lognormal transformation. 

Linear regression was then done using regional recombination rate as the response 

variable using a stepwise backward method.   All the statistical analyses were done using 

R package version 2.5.1. 

RESULTS 

Genome-wide analysis of the correlation between DNA methylation and 

recombination  

 In order to test the hypothesis that germline DNA methylation affects rates of 

meiotic recombination, we analyzed the relationship between experimentally determined 

sperm DNA methylation levels and recombination rates in 500kb non-overlapping 

windows across the whole human genome.  As a control, we also performed a similar 

analysis between somatic DNA methylation and recombination using methylation maps 
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from prefrontal cortex of brain (see Materials and Methods).  We observed that 

recombination rate increases roughly linearly with increasing level of DNA methylation 

in sperm at the 500kb genomic windows (Pearson's correlation coefficient = 0.211, P < 

10
-16

; Figure 3.1A).  In contrast, this pattern is not obvious in brain (Figure 3.1B).  

Recombination rate and DNA methylation level are only slightly correlated in brain 

(Pearson's correlation coefficient = 0.03, P = 0.01), indicating that the association of 

DNA methylation and recombination may be unique in germlines.  We also performed a 

genome-wide analysis of correlation between DNA methylation and recombination rate 

in chimpanzees using the same method.  Intriguingly, we found that the trend of the 

correlation in sperm is weak at most, in the opposite direction to what’s observed in the 

human genome (Pearson's correlation coefficient = -0.04, P = 0.002), and no correlation 

at all in chimpanzee brain (Pearson's correlation coefficient = -0.002, P = 0.84).  

 In order to confirm that the observed correlation between DNA methylation and 

recombination rate in human sperm is robust against different window sizes, we 

performed the genome-wide analyses using other two different window sizes (250kb and 

1000kb).  The results show that the significantly positive correlations are present in all 

analyses with different window sizes (Table 3.1).  The correlation coefficients increase 

with increasing window sizes, implying that DNA methylation may influence 

recombination rates in a broad-scale. 

 The observed correlations could be due to other genomic features that influence 

both DNA methylation and recombination rates [147, 148].  Therefore, we performed a 

partial correlation analysis accounting for previously suggested sequence factors 

influencing recombination rate (GC content, repeats) as well as factors correlated with 

DNA methylation (CpG density).  After correcting for these factors, we still found a 

significant and positive correlation between DNA methylation level and recombination 

rate (Pearson's correlation coefficient = 0.199, P < 10
-16

).  We also built a linear model 

where recombination rate was a response variable, and sequence features (GC content, 
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number of CpGs, proportion of repeats) and epigenetic feature (sperm DNA methylation 

level) were predictor variables in the 500kb genomic windows.  We first checked the 

variance inflation factors (VIFs), which are indicators of multi-colinearity among 

variables.  None of the explanatory variables exhibit VIFs greater than 5 (Table 3.2), 

demonstrating that we could assess individual contributions of each genomic trait without 

the influence of multi-colinearity.  We then calculated the standardized coefficients, 

which facilitates an assessment of the strength of association between each predictor 

variable and the response variable.  We found that GC content and proportion of repeats 

in the genome window are the strongest and second strongest predictors for the 

recombination rate (Table 3.2).  Consistent with the partial correlation results, DNA 

methylation is also a strong predictor for recombination rates (Table 3.2).  In total, the 

proportion of recombination rate variability explained by the linear model was 0.324. 
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Table 3.1. Genome-wide analysis of the correlation between DNA methylation and 

recombination rate using different window sizes. 

Window size (kb) R P-value  

250 0.158 < 2.2 X 10
-16

 

500 0.212 < 2.2 X 10
-16

 

1000  0.261 < 2..2 X 10
-16

 

 

Table 3.2. Multiple linear regression of recombination rate as a response to sequence and 

epigenetic feature predictors in 500kb genomic window. 

 Standardized β P-value  VIF 

GC content 0.375 < 2.2 X 10
-16

 3.27 

Proportion of repeats -0.237 < 2.2 X 10
-16

 1.17 

Fractional methylation 0.134 < 2.2 X 10
-16

 1.42 

Number of CpGs -0.044 0.05 3.59 

Adjust R
2
 0.342   

 

Figure 3.1. Recombination rate is positively correlated with DNA methylation level 

in sperm but not in brain. Integrating fraction methylation level with recombination 

rate, we observe a positive correlation between these two factors in sperm (A) but not in 

Brain (B).  The x-axis represents increasing levels of DNA methylation from left to right.  
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DNA methylation and recombination hotspots 

 After identifying positive correlations between germline methylation and broad-

scale recombination rates in the human genome, we continued to explore whether DNA 

methylation is associated with fine-scale recombination patterns.  We investigated 

recombination hotspots, which are usually 1-2kb in length and have significant (usually 

in orders of magnitude) increase in recombination rate from the background [136, 137].  

Based upon the positive correlations between DNA methylation and recombination rate 

in human sperm, it would be expected that the DNA methylation level of recombination 

hotspots should be higher than the genomic background.  Consistent with this prediction, 

we found that DNA methylation levels at the species-specific hotspots are significantly 

higher than the genome average as well as the genomic control regions in the human 

genome (Figure 3.2A).  The genomic control regions have the same CpG number 

distribution of the recombination hotspots (see Materials and Methods).  Interestingly, we 

found the same pattern in the chimpanzee genome.  However, the difference of DNA 

methylation level between recombination hotspots and genomic background is more 

significant in human than in chimpanzee (Figure 3.2A). 

 Several studies have shown that recombination hotspot locations and usage are 

highly divergent between humans and chimpanzees [140, 141, 151].  Considering that 

these two species have highly similar genomes, other factors, such as epigenetic factors, 

may contribute to the evolution of species-specific hotspots.  We also utilized the fact 

that there are small numbers of recombination hotspots that are common between human 

and chimpanzee genomes.  We identified a total of 131 ‘common’ recombination 

hotspots (see Materials and Methods).  The most parsimonious explanation for these 

common hotspots is that they may have existed in the genome of human and chimpanzee 

common ancestor: thus species specific hotspots may be evolutionarily ‘younger’ than 

the common hotspots.  We then compared the variation of recombination rates and DNA 

methylation levels of 1) common recombination hotspots (n = 131), 2) species-specific 
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recombination hotspots (n = 9169 and 4906, for humans and chimpanzees, respectively), 

and 3) the syntenic genomic regions corresponding to the species-specific hotspots of the 

other species (e.g., human genomic regions syntenic to chimpanzee recombination 

hotspots while not recombination hotspots in the human genome: n = 4906, chimpanzee 

genomic regions syntenic to human recombination hotspots while not recombination 

hotspots in the chimpanzee genomes: n = 9169).  The syntenic regions may be considered 

as genomic ‘control’ regions for those recently became recombination hotspots in the 

genome of the other species.  

 We first examined distributions of recombination rates across these three types of 

genomic regions.  As expected, human-specific recombination hotspots have much higher 

recombination rates than the syntenic regions of chimpanzee recombination hotspots 

(Figure 3.2C) and vice versa (Figure 3.2D).  We also observed that species-specific 

recombination hotspots exhibit significantly higher recombination rates than the common 

recombination hotspots in both species (Figure 3.2C, 3.2D).   

 We then compared DNA methylation levels of these three types of genomic 

regions.  Interestingly, the patterns observed here do not follow the genome-wide trend of 

strong correlation between DNA methylation and recombination.  In the human genome,  

syntenic regions of chimpanzee recombination hotspots on average exhibit lower levels 

of DNA methylation than human-specific recombination hotspots, but significantly 

higher than common recombination hotspots (Figure 3.2E).  In the chimpanzee genome, 

syntenic regions of human recombination hotspots are significantly more methylated than 

both the chimpanzee-specific recombination hotspots and common recombination 

hotspots (Figure 3.2F).  Thus, both species exhibit the following pattern of methylation 

gradient: human recombination hotspots (or regions syntenic to human recombination 

hotspots) > chimpanzee recombination hotspots (or regions syntenic to chimpanzee 

recombination hotspots) > common recombination hotspots.  
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 To examine this observation further we performed the following experiment.  We 

calculated inter-species methylation differences between the average fractional 

methylation level at the human-specific recombination hotspots and their syntenic regions 

in chimpanzee, as well as the methylation difference between the chimpanzee-specific 

recombination hotspots and their syntenic regions in human (to facilitate a direct 

comparison, the difference was always calculated as mean methylation level in human - 

mean methylation level in chimpanzee).  In order to take the methylation difference at the 

genomic level between human and chimpanzee into account, we calculated the 

methylation differences by generating the genomic control regions and obtained the 

distribution of the these methylation differences by bootstrapping one million times (see 

Materials and Methods).  If the correlation between DNA methylation and recombination 

is consistent at the recombination hotspots with the genome-wide level, we should 

observe a decreased methylation level difference at the chimpanzee-specific 

recombination hotspots and increased one at the human-specific recombination hotspots 

when compared to the genomic control regions.  However, methylation differences at 

both human- and chimpanzee-specific recombination hotspots do not deviate 

significantly from the distribution of bootstrapped methylation difference (Figure 3.2B).  

Together, these results demonstrate that DNA methylation may have different effects on 

fine scale versus broad scale recombination patterns. 
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Figure 3.2. Comparison of DNA methylation and recombination rates between 

recombination hotspots and syntenic regions. (A) Comparison of average fractional 

DNA methylation level among recombination hotspots, genomic control regions and 

genome background in human and chimpanzee. (B) Distribution of bootstrapped 

methylation difference (always calculated as ‘Human-Chimp’).  The observed inter-

species methylation difference are marked for human-specific recombination hotspots 

(blue arrow) and chimpanzee-specific recombination hotspots (red arrow). Comparison of 

average recombination rate (C) and fractional DNA methylation level (E) among human-

specific recombination hotspots (Human specific), common recombination hotspots 

(Common) and human syntenic regions of chimpanzee-specific hotspots (Syntenic) in 

human genome. Comparison of average recombination rate (D)  and fractional DNA 

methylation level (F) among chimpanzee-specific recombination hotspots (Chimpanzee 

specific), common recombination hotspots (Common) and chimpanzee syntenic regions 

of human-specific hotspots (Syntenic).  For (C), (D), (E) and (F), the average of 

recombination rate or DNA methylation level for the genomic control regions in the 

corresponding species are indicated by the dash lines. 
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Histone modifications and recombination hotspots 

 The PR domain-containing 9 locus (PRDM9) is an important trans-acting factor 

that controls hotspots specification in both human and mice [154, 161, 162].  This factor 

can specifically binds to a 13-bp consensus motif that is common to many human 

hotspots.  PRDM9 contains a KR protein-protein binding domain [163], a PR/SET 

domain that can trimethylate H3K4 [164] and an array of 8–16 zinc fingers.  It is 

expressed only during early meiosis, and deficiency of the protein results in abnormal 

meiosis with aberrant location of DNA strand breaks [164].  In a detailed study of two 

recombination hotspots in mouse, it was shown that H3K4 trimethylation (H3K4me3) 

precedes recombination and potentiates hotspot activity [155].  Therefore, we 

hypothesize that the H3K4me3 profile in germline may affect recombination patterns, 

especially the location and activity of hotspots.  To investigate whether H3K4me3 is a 

global feature of recombination hotspots, we examined histone modification profiles of 

human sperms.  Human sperm generally lacks histones, as most of histones are replaced 

with protamines during early germ cell development [159].  Nevertheless, we found that 

human specific recombination hotspots exhibit over 3-fold enrichment of H3K4me3 

enriched regions: we found that 816 human recombination hotspots are overlapped with 

H3K4me3 enriched regions (see Materials and Methods), while the expected number of 

overlap is 229 if the H3K4me3 marks were uniformly distributed in the genome (Figure 

3.3).  This is a highly significant enrichment based upon Fisher’s exact test (P < 10
-16

, 

Figure 3.3).  By contrast, neither common recombination hotspots nor syntenic regions to 

chimpanzee recombination hotspots exhibited statistically significant enrichment (Figure 

3.3).   

We also examined the distribution of the H3K27me3 mark at the hotspots.  We 

found that the H3K27me3 mark is also significantly over-represented in the human 

recombination hotspots but not as strongly as the H3K4me3 mark (Figure 3.3).  

Intriguingly, H3K27me3 is also slightly (1.6-fold) but significantly over-represented at 
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the human syntenic region of chimpanzee recombination hotspots (Figure 3.3).  The 

number of H3K27me3 enriched regions is also higher than expected in the common 

recombination hotspots (11 observed compared to 4 expected), but this comparison is not 

significant due to the small sample size.  Moreover, we found that the average fine-scale 

recombination rates around both the H3K4me3 and H3K27me3 enriched region show an 

interesting pattern: we found recombination rates are elevated by about 20% and 25% at 

the H3K4me3 and H3H27me3 enriched regions respectively, when compared to the 

genomic background (Figure 3.4A). 

 

Figure 3.3.Histone modifications are associated with human recombination hotspots. 
Fold enrichment between observed and expected overlapping of H3K4me3 and 

H3K27me3 to human-specific recombination hotspots (Human), common recombination 

hotspots between human and chimpanzee (Common) and human syntenic region of 

chimpanzee recombination hotspots (Syntenic). 
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evolutionary processes [165].  Emerging evidence indicates that DNA sequences 

themselves are not the sole determinants of inter- and intra-species variation in 

recombination patterns.  For example, hotspot locations and usage vary among human 

individuals, and between humans and chimpanzees [153, 160].  DNA methylation is a 

strong candidate epigenetic factor that may affect recombination patterns, since it was 

proven to be established at prophase I in meiosis when recombination occurs [152].  In 

this study, we thus examined detailed relationships between DNA methylation levels and 

recombination rates utilizing comprehensive whole genome nucleotide-resolution DNA 

methylation maps from human and chimpanzee sperms and brains.  These nucleotide-

resolution DNA methylation maps allow us to investigate fine-scale variation of DNA 

methylation and correlate with the evolution of recombination hotspots.  We found that 

DNA methylation level is significantly and positively correlated with recombination rate 

in sperm but not in brain.  This indicates that the germline DNA methylation affects 

variation of broad-scale recombination patterns, while somatic DNA methylation patterns 

do not. 

 Sigurdsson et. al [22] have previously explored the co-variation between germline 

DNA methylation and recombination.  Due to the lack of experimentally determined 

DNA methylation data at that time, they used methylation-associated SNPs (mSNPs) 

from HapMap data set as a surrogate marker for germline DNA methylation.  Even 

though the result of this study (referred to as ‘mSNP’ henceforth) also showed a genome-

widely positive correlation between mSNPs and regional recombination rate, there are 

several notable and significant difference between the mSNP study and the current study: 

1) mSNPs were generally higher correlated with recombination rate than our study. For 

example, the correlation coefficient was 0.622 in 500-kb windows from the mSNPs 

study, while it is 0.212 based on the result from our study.  2) mSNPs was found to be the 

strongest predictor of recombination rate in a linear model from the ENCODE regions 

with increased density of known SNPs and sequence information.  But our model 
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indicates that the effect of DNA methylation in recombination rate is weaker than other 

sequence features (Table 3.2).  These two discrepancies can be explained by the idea that 

mSNP density actually not only reflects DNA methylation levels per se, but also other 

sequence features, such as GC contents, CpG dinucleotide contents and repeat 

frequencies.  Our study thus may provide more realistic representation of the genome-

wide relationship between DNA methylation and recombination rates.   

 Unlike the observation in human genome, we found a slightly but significantly 

negative correlation between DNA methylation level and recombination rate in the 

chimpanzee genome.  This result is consistent with the finding of recombination 

elevations at the promoters of genes with high level of DNA methylation in human, but in 

chimpanzee the elevations occur at the genes with low level of DNA methylation [153].  

Therefore, DNA methylation may have species-specific effect in shaping the global 

and/or regional recombination pattern.  Alternatively, it is possible that chimpanzee 

recombination rates data contains more noise than the human data, and the observed 

(weak) negative correlation is spurious.  Analyses of future more refined chimpanzee 

genomic recombination rates variation of recombination rates in chimpanzee genomes are 

necessary to resolve this question.  

 The third and the most significant difference between our study and that of 

Sigurdsson et al.  is the relationship between fine-scale recombination rates and DNA 

methylation.  In Sigurdsson et al. [22], mSNP frequencies were positively correlated with 

the number of bases within recombination hot spots in a genome-wide resolution of 125

–1000 kb, thus the authors claimed that DNA methylation might also affect 

recombination strongly at fine-scale.  However, when we examine experimentally 

determined DNA methylation levels at human- and chimpanzee-specific recombination 

hotspots, we find a very intriguing pattern: while recombination rates show significant 

difference between species-specific recombination hotspots versus syntenic genomic 

regions corresponding to the recombination hotspots in the other species, DNA 
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methylation levels do not (Figure 3.2B, E and F).  This observation implies that 

molecular mechanisms linking recombination and DNA methylation may be divergent 

between fine-scale and broad-scale recombination patterns.   

 To explore this observation further, we utilized the fact that there are ‘common’ 

recombination hotspots shared between human and chimpanzee genomes.  Given that 

recombination hotspots evolve rapidly [141, 142, 160] and that there is no evidence that 

common recombination hotspots independently evolve in human and chimpanzee 

genomes, a parsimonious explanation is that these common hotspots represent those that 

were shared between the two genomes before the evolution of species-specific 

recombination hotspots.  Interestingly, in both species, genomic regions belonging to 

human recombination hotspots exhibit the highest DNA methylation levels, followed by 

chimpanzee-specific recombination hotspots, and the common recombination hotspots 

(Figure 3.2E, 3.2F).  These observations suggest that some sequence characteristics can 

account for the high degree of DNA methylation in both species in spite of the highly 

divergent inter-species recombination rates.  Human recombination hotspots, and 

chimpanzee genomic regions syntenic to human recombination hotspots, may harbor 

specific sequence characteristics that are associated with high DNA methylation.  

Chimpanzee recombination hotspots and human syntenic regions to chimpanzee 

recombination hotspots also carry some sequence signatures for high levels of DNA 

methylation.  On the other hand common recombination hotspots may have lost some of 

these sequence features which lead to the decrease of DNA methylation level.  

 The observed correlation between DNA methylation and recombination rate could 

due to a third variable, such as histone modification that can interact with both variables 

and may be more proximal to the cause.  The PRDM9 locus plays significant roles 

generating recombination hotspots [154, 161, 162].  This protein encodes a SET-

methyltransferase domain in the Prdm9 gene, which is responsible for the trimethylation 

of H3K4 [164].  Mutations in zinc-finger-encoding region of this locus leads to the 
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change of contact residues in the DNA sequences, provide a simple means of replacing 

lost hotspots [166].  We thus investigated the association of the H3K4me3 and 

H3K27me3 to the recombination hotspots using Chip-Seq in human sperm [159].  We 

and found that both of these histone modifications are significantly enriched at the 

human-specific recombination hotspots, but not at the common recombination hotspots 

(Figure 3.3).  This result is consistent with the idea that the PRDM9 play a critical role in 

creating a whole new family of recombination hotspots [166].  This result, together with 

the observation of elevated recombination rates at the H3K4me3 enriched loci (Figure 

3.4A), supports the idea that H3K4me3 may be a global feature at the human 

recombination hotspots, as it was observed in mouse genome [167].  Our observation of 

enriched H3K27me3 mark at the human-specific recombination hotspots is partially 

contradict to the study showing the H3K27me3 is enriched at the Psmb9 hotspot in the 

recombinationally inactive mouse strain [155].  However, the previous study only 

investigated a single recombination hotspot in mouse while our study checked the 

association of H3K27me3 to the human-specific hotspots genome-widely.  In addition, 

there are 10,621 genomic regions bear both H3K4me3 and H3K27me3 marks, thus 

termed bivalent regions, and we found that one third of the overlaps between human-

specific recombination hotspots and the H3K27me3 mark are from the bivalent regions.  

These results indicate that the H3K27me3 mark could also be an important molecular 

feature at the human recombination hotspots and it may affect the recombination pattern 

simultaneously and interactively with the H3K4me3.  This is supported by the 

observation of ~4 fold-enrichment of the association between recombination hotspots and 

the bivalent regions (P < 10
-16

).   
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Figure 3.4. The fine-scale profile of recombination rate at histone modifications and 

their interactions with DNA methylation. (A) Average recombination rate as a function 

of distance to nearest H3K4me3 and H3K27me3 enrich regions. (B) Comparison of DNA 

methylation at the recombination hotspots co-localize with H3K4me3 enriched regions 

alone (H3K4me3), H3K27me3 enriched regions alone (H3K27me3), both H3K4me3 and 

H3K27me3 enriched regions (Bivalent) and the ones without any overlap of the enriched 

regions (None). 
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CHAPTER 4 

CONCLUSIONS 

 As one of the best studied covalent epigenetic modifications, DNA methylation 

has been investigated in diverse species for the past four decades.  From the studies of 

short individual DNA segments to the high-throughput whole genome analyses, our 

understanding of the function of DNA methylation, especially its relationship to 

transcriptional control, is growing fast.  Even though some generalizations about the 

function role of DNA methylation are holding up, new and unexpected phenomena are 

also being detected all the time, which highlights our limitation in understanding this 

epigenetic system.  The aim of my research was to build an unbiased and comparative 

framework in order to answer several novel and critical questions regarding the 

functional role and evolutionary significance of DNA methylation.  Toward this end, I 

first set out to investigate questions regarding how patterns of DNA methylation differ 

between closely related species and whether such differences contribute to species-

specific phenotypes.  To investigate these questions, we generated nucleotide-resolution, 

whole-genome methylation maps of the prefrontal cortex of multiple humans and 

chimpanzees (methyl-C-seq).  This method is a superior choice for comparative studies 

for a couple of reasons; First, the methyl-C-seq method does not depend on underlying 

sequences, thus making it ideal to be used in comparisons of genome-wide patterns of 

DNA methylation between species. Second, because the methyl-C-seq approach enables 

the methylation frequency of each cytosine to be estimated independently, we can 

evaluate global differences between methylation maps of different tissues and species.  

By using this method, we discovered several significant patterns in the brain methylation 

maps, and inferred potential global-level differences between the brain DNA-methylation 

maps of humans and chimpanzees. Integrating data on DNA methylation with newly 

generated data on gene expression, we show that changes in DNA methylation at least 
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partially explain the divergence of gene-expression patterns in human and chimpanzee 

brains. Furthermore, differentially methylated genes show striking associations with 

specific neurological and psychological disorders and cancers, suggesting that changes of 

DNA methylation might be linked to the evolution of human-specific disease 

vulnerabilities.  In summary, the results of chapter 1 highlight the utility of comparative 

studies in identifying key epigenomic modifications underlying human-specific 

phenotypes, including disease vulnerabilities. 

 In chapter 2, I continued to study the function role of DNA methylation in a 

comparative frameworks and focused on the human CpG islands, which mark epigenetic 

regulatory hotspots of mammalian genomes.  By performing global analyses of DNA 

methylation of CpG islands in the human genome, we examined variation of CpG island 

methylation across multiple methylomes of distinctive cellular origins.  This analysis 

reveals that, contrary to the prevailing notion, CpG islands mark the most highly variably 

methylated regions in the human genome.  Many CpG islands exhibit methylome-specific 

patterns of DNA methylation.  Remarkably, DNA methylation patterns of CpG islands 

reflect their distinctive nature at many biological levels, including genomic 

characteristics such as lengths and nucleotide composition, as well as evolutionary 

features.  Moreover, the regulatory functions of CpG islands are tightly linked to their 

genomic, evolutionary, and DNA methylation features, as evidenced by the co-variation 

between DNA methylation variability and functional ontology terms and transcriptional 

profiles.  In addition, CpG islands implicated in distinctive biological processes such as 

diseases, aging, and imprinting exhibit intriguing differences in their genomic, 

epigenomic and functional features.  These new findings from chapter 2 provide novel 

insights into deciphering the regulatory mechanisms of CpG islands in human health and 

diseases.  What is more important, our results may be used to improve empirical studies 

of DNA methylation variation across different biological conditions and demography. 
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 Finally, as a way to understand the influence of DNA methylation on primates 

genome evolution, we investigated the relationship between germline DNA methylation 

and meiotic recombination, which generates the raw material of evolution and lies at the 

heart of all genetic analysis.  Our genome-wide correlation analyses indicate the positive 

correlation between DNA methylation and recombination rates is present in germline but 

not in somatic tissue such as brain.  Multiple regression analyses suggest that DNA 

methylation might be one additional factor affecting recombination in addition to the 

sequence features.  Intriguingly, we observed that DNA methylation has different effect 

in broad- and fine-scale recombination pattern by comparing both intra- and inter- DNA 

methylation levels at human- and chimpanzee-specific recombination hotspots.  Our 

results also revealed that DNA methylation may closely interact with histone 

modifications to simultaneously regulate the fine-scale recombination pattern.  The work 

in chapter 3 sheds lights on the role of epigenetic mechanisms in explaining the 

phenomenon of inter-individual differences in recombinational activity, despite identical 

DNA sequence, and also highlights the evolutionary significance of DNA methylation in 

the human genome  

 In summary, due to the development of next generation sequencing technique, I 

got the chance to generate and utilize the whole-genome DNA methylation profile, and 

thus provide an unbiased and comprehensive view of DNA methylation pattern in human 

genome as well as in the closely related species, chimpanzee.  The three chapters from 

this dissertations integrate patterns found in genomes, methylomes, and transcriptomes to 

comprehensively analyze the effect of DNA methylation on the regulation of gene 

expression and genome evolution.  By addressing knowledge gaps and longstanding 

questions at DNA methylation in human genome, I hope these work can expand our 

knowledge for this complex epigenetic system, which would finally provide a deeper 

understanding of the much-needed connections between genotypes and phenotypes.  
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