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SUMMARY

The objective of this dissertation is to develop task scheduling guidelines

and algorithms for wireless sensor nodes that harvest energy from ambient environ-

ment and use supercapacitor based storage systems to buffer the harvested energy.

This dissertation makes five contributions. First, a physics based equivalent circuit

model for supercapacitors is developed. The variable leakage resistance (VLR) model

takes into account three mechanisms of supercapacitors: voltage dependency of ca-

pacitance, charge redistribution, and self-discharge. Second, the effects of time and

supercapacitor initial state on supercapacitor voltage change and energy loss during

charge redistribution are investigated. Third, the task scheduling problem in superca-

pacitor based environmentally powered wireless sensor nodes is studied qualitatively.

The impacts of supercapacitor state and energy harvesting on task scheduling are

examined. Task scheduling rules are developed. Fourth, the task scheduling prob-

lem in supercapacitor based environmentally powered wireless sensor nodes is studied

quantitatively. The modified earliest deadline first (MEDF) algorithm is developed to

schedule nonpreemptable tasks without precedence constraints. Finally, the modified

first in first out (MFIFO) algorithm is proposed to schedule nonpreemptable tasks

with precedence constraints. The MEDF and MFIFO algorithms take into account

energy constraints of tasks in addition to timing constraints. The MEDF and MFIFO

algorithms improve the energy performance and maintain the timing performance of

the earliest deadline first (EDF) and first in first out (FIFO) algorithms, respectively.

xiii



CHAPTER I

INTRODUCTION

This dissertation considers the task scheduling problem in wireless sensor nodes that

harvest energy from ambient environment and buffer the scavenged energy using su-

percapacitor based storage systems. This chapter introduces the background of this

dissertation. Section 1.1 defines the terms in the dissertation title. The term “envi-

ronmentally powered wireless sensor nodes” refers to wireless sensor nodes powered

by energy harvested from environment. The energy storage systems of these wire-

less sensor nodes use “supercapacitor based” configurations. The “task scheduling”

problem in supercapacitor based environmentally powered wireless sensor nodes is

studied. Section 1.2 summarizes the objective of this dissertation and outlines the

work presented in this dissertation.

Starting with the Distributed Sensor Networks program at the Defense Advanced

Research Projects Agency (DARPA) around 1980 [13], sensor networks have been

evolving into a key technology. Driven by the advances in microelectromechanical

systems (MEMS), wireless communications, and digital electronics [4], inexpensive,

multifunctional, and low power sensor nodes such as Mica [24], PicoRadios [51], and

Smart Dust [73] have been developed to perform sensing, data processing, and com-

municating tasks. Wireless sensor networks (WSNs) have been deployed for various

applications [4] including military surveillance [23], habitat monitoring [68], biomed-

ical health monitoring [40], underground WSNs [3], underwater WSNs [2], and mul-

timedia WSNs [1].
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1.1 Background

1.1.1 Power Subsystems of Wireless Sensor Nodes

A wireless sensor node is an integrated system composed of multiple components:

micro-controller, communication subsystem, sensor/actuator subsystem, storage sub-

system, and power subsystem [25]. In this dissertation, the power subsystem is con-

sidered and the other subsystems are taken as load. While the size and cost of

electronics are scaling down, the power subsystem is usually the largest and most

expensive part of a sensor node [58]. Meanwhile, the power subsystem is also the

lifetime limiting factor of a sensor node [58]. Depending on the energy source charac-

teristics, the power subsystems can be classified into three groups: energy reservoirs,

power distribution, and energy harvesting [25,58].

A sensor node can be powered by the energy stored in energy reservoirs. Non-

rechargeable primary batteries such as zinc air, lithium, and alkaline chemistries are

examples of such energy reservoirs. This power subsystem is the most predominant

means of providing energy to sensor nodes. The benefits of this way include that

non-rechargeable batteries are relatively inexpensive and that sensor nodes can be

located anywhere without requiring the existing power infrastructure. However, using

non-rechargeable batteries can be problematic in that the lifetime of sensor nodes is

limited due to the limited battery capacity. For example, the lifetime of the Great

Duck Island sensor node is limited to about two months [68].

The second way to supply energy to sensor nodes is to distribute power to the

nodes from a nearby energy rich source. Sensor nodes powered by energy distributed

in wired or wireless manners have been proposed. A wired back channel is originally

used to reprogram or monitor a sensor node. As a side effect, the sensor node can be

powered through the wire. Depending on the energy source, two categories of wire-

powered sensor nodes are the Power-over-Ethernet (PoE)-powered nodes and USB-

powered nodes. PoE-powered nodes such as Mirage [14] and MicaZ-based MoteLab

2



[74] are powered through the wire if the programming board can take power from the

PoE cable. USB-powered nodes including Omega test bed [50] and TWIST [22] are

powered through the USB host. Although it is easy to power a sensor node using

a back wire, this power solution only works for deployments where a PoE or USB

wiring is available. The wireless way to distribute power is to use radio frequency

(RF) radiation. In [21], electronic identification tags are powered by a nearby energy

rich source that transmits RF energy to the tags. This approach is less efficient

in densely deployed sensor networks where a large area must be flooded with RF

radiation.

Wireless sensor nodes can also be powered by energy harvested from ambient

environment. A sensor node powered by renewable energy is expected to run for a

long period of time. A renewable energy powered sensor node usually consists of

energy source, energy collector, energy storage, and regulator. The renewable energy

is converted into electric energy by the energy collector from the energy source. The

energy can directly power the load or be stored in the energy storage. A regulator

may be used to match the operating ranges of different components. The amount of

harvested energy depends on how long the energy source is in operation and the energy

source power density. Various energy harvesting technologies have been developed.

For example, solar energy [30], mechanical vibration [42], RF radiation [34], human

power [60], thermoelectric energy [66], and wind energy [69]. Among these energy

sources, the outdoor solar energy is popular for two reasons: it has high power density

and solar panels are commercially available.

In this dissertation, the third category of power subsystems is considered. Wire-

less sensor nodes powered by energy harvested from ambient environment are called

“environmentally powered wireless sensor nodes”.

3



1.1.2 Energy Buffers: Rechargeable Batteries and Supercapacitors

For environmentally powered wireless sensor nodes, the energy harvested from am-

bient environment is the primary power source. Usually, secondary energy buffers

such as rechargeable batteries and supercapacitors are needed to store the harvested

energy. The energy buffer characteristics [25,30,31] and sensor nodes [67] using these

buffers to store the harvested energy are reviewed in this section.

The NiMH battery is one of the most popular energy buffers for wireless sensor

network applications because it has relatively high energy density, simple charging

method, and low cost. Wireless sensor nodes using NiMH batteries include Heliomote

[54], Fleck [16], HydroWatch [70], and the node in [5].

The Li-ion battery has the highest energy density and high charge-discharge effi-

ciency. While these characteristics make this chemistry a good candidate for wireless

sensor network applications, the complicated charging mechanism is a limiting factor.

Systems using the Li-ion battery need either a dedicated charging management chip

or a software package to correctly control the battery. The Li-ion chemistry is used

in sensor nodes such as ZebraNet [77].

The NiCd battery is similar to the NiMH battery in that both chemistries have

similar charging and discharging characteristics, and that both chemistries are avail-

able in standard form factors such as AA. The NiCd chemistry is inferior to the NiMH

chemistry due to its smaller capacity and the memory effect that causes its capacity

to decrease over multiple uses. Therefore, the NiMH battery is preferred over the

NiCd battery for wireless sensor network applications.

The lead acid battery is the most commonly used energy storage in high power

systems due to its large capacity and simple charging control. However, this battery

is not usually used for low power wireless sensor network applications because of its

small energy density.

4



Figure 1: A 10 F supercapacitor.

A supercapacitor (also known as ultracapacitor or electric double-layer capaci-

tor (EDLC)) is a capacitor with capacity high enough to serve as energy buffer for

wireless sensor network applications. Figure 1 shows a 10 F supercapacitor manu-

factured by Maxwell. Its model number is BCAP0010. The nominal capacitance

and voltage of this supercapacitor is 10 F and 2.7 V, respectively. This superca-

pacitor is used as a sample in this dissertation. A supercapacitor has a long cycle

life, high charge-discharge efficiency, and fast charge-discharge characteristic. How-

ever, the supercapacitor leakage rate is also high. Sensor nodes such as Everlast [62],

TwinStar [79], and the solar harvester in [8] use supercapacitors as energy buffer.

In general, a rechargeable battery has high capacity and low leakage rate. How-

ever, its relatively short cycle life limits the lifetime of a sensor node. The cycle life of

a rechargeable battery is defined as the number of charge-discharge cycles before its

capacity falls below 80% of its rated capacity [31]. For instance, the cycle life of the

NiMH and Li-ion chemistries is 500-800 cycles and 1000-1200 cycles, respectively [31].

On the other hand, a supercapacitor has a much longer cycle life, which can be more

than 500,000 cycles [62]. To leverage the complementary strengths of rechargeable

batteries and supercapacitors, sensor nodes using hybrid energy storage systems such

as Prometheus [26] (Li-polymer and supercapacitor), Trio [18] (Li-ion and superca-

pacitor), and the node in [48] (Li-ion and supercapacitor) have been developed.

This dissertation considers environmentally powered wireless sensor nodes that

use supercapacitor based energy storage systems, which are called “supercapacitor

based environmentally powered wireless sensor nodes”.
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1.1.3 Power Management in Battery Based Sensor Nodes

Energy efficiency is a major concern in wireless sensor networks [53]. Considerable

efforts have been made to develop power management strategies for various applica-

tions [57,75,78]. Depending on the characteristics of the power subsystems of wireless

sensor networks, power management goals can be different. For sensor nodes pow-

ered by energy reservoirs such as primary batteries, the power management goals

are usually to minimize energy consumption [43, 64] or to maximize expected life-

time [35,59,63,76] while certain performance requirements are met.

Environmentally powered wireless sensor networks may have different power man-

agement goals and policies. The harvested energy may be used in two modes. First,

the harvested energy is treated as a supplement to the energy stored in rechargeable

batteries or in supercapacitors. Therefore, the power management objective is still

to maximize system lifetime. Second, the harvested energy is used by a sensor node

at an appropriate rate such that the node can operate perpetually, which is called

energy neutral operation in [27]. Sensor nodes can achieve energy neutral operation

while an expected performance level is supported (subject to hardware failure). For

environmentally powered sensor nodes, the power management goals are to achieve

energy neutral operation and to maximize performance level [27].

Most existing works on power management in environmentally powered wireless

sensor nodes focus on rechargeable battery based energy storage systems. As shown in

[28,72], energy harvesting aware decisions improve the system performance compared

to battery aware decisions for the specific applications considered. The concept of

energy neutral operation of a solar energy powered sensor node is proposed in [27].

A heuristic algorithm is proposed to decrease the sensor node duty cycle when the

harvested energy is low and to increase the duty cycle when the harvested energy

is high. The work in [27] is improved by [71]. An energy management framework

for energy harvesting embedded systems is developed in [45]. A set of algorithms
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is developed for various application scenarios: real time scheduling, application rate

control, and reward maximization. Dynamic voltage and frequency scaling (DVFS)

is introduced to further improve the system energy efficiency in [38].

Power management problems for supercapacitor based and hybrid energy storage

systems are not well investigated. A switching policy between supercapacitor and

rechargeable battery is developed in [26]. In [79], a supercapacitor leakage aware en-

ergy synchronization framework is presented for a supercapacitor based energy storage

system. Sizing and topology reconfiguration strategies are optimized for charging and

discharging multiple supercapacitors in [29].

In this dissertation, the task scheduling problem in supercapacitor based environ-

mentally powered wireless sensor nodes is considered. A task refers to an event in

a wireless sensor node that draws certain amount of energy from the energy storage

system. Task scheduling is a fundamental power management problem because the

typical operations in a wireless sensor node such as sensing the environment, process-

ing the collected data, and transmitting the data packets can all be interpreted as

different tasks.

1.2 Dissertation Objective and Outline

The objective of this dissertation is to develop task scheduling guidelines and algo-

rithms for wireless sensor nodes that harvest energy from ambient environment and

use supercapacitor based storage systems to buffer the harvested energy. This disser-

tation makes five contributions. First, a physics based equivalent circuit model for

supercapacitors is developed. The variable leakage resistance (VLR) model takes into

account three mechanisms of supercapacitors: voltage dependency of capacitance,

charge redistribution, and self-discharge. Second, the effects of time and superca-

pacitor initial state on supercapacitor voltage change and energy loss during charge

redistribution are investigated. Third, the task scheduling problem in supercapacitor
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based environmentally powered wireless sensor nodes is studied qualitatively. The

impacts of supercapacitor state and energy harvesting on task scheduling are exam-

ined. Task scheduling rules are developed. Fourth, the task scheduling problem in

supercapacitor based environmentally powered wireless sensor nodes is studied quan-

titatively. The modified earliest deadline first (MEDF) algorithm is developed to

schedule nonpreemptable tasks without precedence constraints. Finally, the modified

first in first out (MFIFO) algorithm is proposed to schedule nonpreemptable tasks

with precedence constraints. The MEDF and MFIFO algorithms take into account

energy constraints of tasks in addition to timing constraints. The MEDF and MFIFO

algorithms improve the energy performance and maintain the timing performance of

the earliest deadline first (EDF) and first in first out (FIFO) algorithms, respectively.

The remaining part of this dissertation is organized as follows. Chapter II presents

the VLR model for supercapacitors. Chapter III analyzes supercapacitor charge re-

distribution and energy loss. Chapter IV studies the effects of supercapacitor state

and energy harvesting on task scheduling. Chapter V proposes the MEDF algorithm

for nonpreemptable tasks without precedence constraints. Chapter VI proposes the

MFIFO algorithm for nonpreemptable tasks with precedence constraints. Chapter

VII concludes this dissertation.
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CHAPTER II

SUPERCAPACITOR MODELING AND

CHARACTERIZATION

This chapter presents the variable leakage resistance (VLR) model for supercapac-

itors. Section 2.1 reviews supercapacitor physics and three supercapacitor models

based on which the VLR model is developed: energy iteration equation (EIE) model,

two branch model, and three branch model. Section 2.2 analyzes supercapacitor self-

discharge and presents the VLR model. The VLR model is an equivalent circuit

model that takes into account three mechanisms of supercapacitors: voltage depen-

dency of capacitance, charge redistribution, and self-discharge. Section 2.3 demon-

strates the characterization procedures for the VLR model parameters. Section 2.4

evaluates the four supercapacitor models (VLR, EIE, two branch model, and three

branch model) by comparing the simulated voltages using these models and the mea-

sured voltage during three experiments: charging-redistribution, self-discharge, and

dynamic charging-discharging experiments. Section 2.5 is a summary.

2.1 Related Work

2.1.1 Supercapacitor Physics

A supercapacitor is constructed with two porous activated carbon electrodes impreg-

nated with electrolyte and separated by a porous insulating membrane [10], as shown

in Figure 2. When a voltage is applied to the supercapacitor terminals, a double layer

is formed at the interface between the electrode and the electrolyte [52]. The energy

storage mechanism is primarily electrostatic rather than Faradaic [52]. It is possible

that a pseudocapacitive component also contributes to the total capacitance [10]. One
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Figure 2: Supercapacitor structure [10].

of the most important internal characteristics of a supercapacitor is the porous na-

ture of its electrodes [49]. The internal kinetic effects of the supercapacitor electrodes

are different from those observed in the conventional planar electrodes due to the

high porosity of the supercapacitor electrodes [19]. Consequently, the supercapacitor

impedance cannot be modeled by a simple RC circuit. Instead, a supercapacitor can

be modeled by a distributed parameter system [32]. The interface electrochemistry

suggests that a complex RC network can describe the behavior of supercapacitors [32].

Supercapacitors can be characterized using the electrochemical impedance spec-

troscopy (EIS) technique, which is a general approach to characterize energy storage

devices by measuring their complex impedances [9]. The nature of impedances in

various frequency ranges can be determined by analyzing the frequency dependen-

cies of the real part and the imaginary part [33]. Various equivalent circuit mod-

els [7,11,19,49,52,56] have been developed. They use the porous electrode theory to
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interpret the impedance spectrum of a supercapacitor. With the assumption of homo-

geneous electrode pore size, a general impedance model consists of three impedances

linking to electrode, electrolyte and electrode/electrolyte interface, respectively [7].

The general impedance model can be modified if interface roughness [61] or pore size

randomness [65] is considered. The general impedance model can be approximated

by a set of N interleaved RC branches. However, it is usually very difficult to deter-

mine more than five or six independent parameters efficiently considering their strong

influences on each other [9].

Alternatively, supercapacitors can be characterized in time domain by conducting

various experiments such as constant power tests and constant current tests [33]. This

approach is often used to develop an equivalent circuit model [6,17,20,80] to describe

the terminal behavior of a supercapacitor. These models usually contain at least two

RC branches to take into account the species diffusion phenomena (also called the

long range phenomena) during supercapacitor relaxation [7]. In these models, one RC

branch models the fast dynamics and the other branches model the slower dynamics.

Therefore, each RC branch has a different time constant. During supercapacitor

relaxation, the charge stored in a supercapacitor tends to redistribute among different

RC branches to achieve a balanced state and the supercapacitor terminal voltage

changes. In this dissertation, charge redistribution refers to the species diffusion

phenomena during supercapacitor relaxation. Supercapacitor charge redistribution is

originated from the distributive nature of supercapacitor impedance and the species

diffusion phenomena during supercapacitor relaxation. The supercapacitor activated

carbon electrodes are composed of pores of randomly distributed sizes [65]. Pores of

different sizes have different impedances. Therefore, after a charging or discharging

action, the charge stored in a supercapacitor redistributes among different pores to

reach a balanced state.
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2.1.2 Supercapacitor Models

2.1.2.1 Energy Iteration Equation (EIE) Model

The supercapacitor model used in wireless sensor node energy storage system design

in [79] is called the energy iteration equation (EIE) model in this dissertation. The

EIE model is developed based on the leakage power profile of a supercapacitor. After a

supercapacitor is fully charged, its terminal voltage is measured during a self-discharge

experiment. As given by Eq. (1), the remaining energy E stored in a supercapacitor

can be calculated from its terminal voltage V and rated capacitance C:

E =
1

2
CV 2. (1)

Taking into account the harvested energy and consumed energy, the energy stored

in the supercapacitor at the beginning of every T -second time slot is calculated as

follows:

E(n+ 1) = E(n) + EH(n)− EC(n)− P (n) ∗ T, (2)

where E(n+1) and E(n) are the remaining energy at the beginning of the (n+1)-th

and n-th time slots, EH(n) and EC(n) are the harvested energy and consumed energy

during the n-th time slot, P (n) is the leakage power corresponding to E(n) and is

treated as a constant during a time slot, respectively. The supercapacitor voltage

V (n + 1) at the beginning of the (n + 1)-th time slot can be calculated from the

remaining energy as follows:

V (n+ 1) =

√

2E(n+ 1)

C
. (3)

Supercapacitor leakage power profile can be approximated using a piecewise linear

function Eq. (4):

P =































c1 ∗ E + d1, E1 ≤ E < E2,

c2 ∗ E + d2, E2 ≤ E < E3,

c3 ∗ E + d3, E3 ≤ E ≤ E4.

(4)
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Figure 3: Supercapacitor voltage during constant current charging or discharging
experiments [12].
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Figure 4: Supercapacitor capacitance versus voltage.

The EIE model has two problems. First, the EIE model assumes that supercapac-

itor capacitance is always equal to its nominal capacitance. In fact, supercapacitor

capacitance depends on its terminal voltage. Supercapacitor nominal capacitance is

characterized using Eq. (5) according to the standard IEC 62391, as shown in Figure

3. Figure 4 shows the capacitances of the 10 F sample supercapacitor (Figure 1)

measured at various terminal voltages. This voltage dependency of capacitance can

be approximately characterized using a linear function.

C =
I ∗ (t2 − t1)

U1 − U2

(5)

The second problem is that the EIE model assumes that supercapacitor voltage

drop is only due to self-discharge when no external charging or discharging current

is present. A supercapacitor can be modeled as a network of multiple RC branches.
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Figure 5: Supercapacitor voltage drops during charging-redistribution and self-
discharge experiments.

The time constants of the RC branches are different. After a charging or discharging

action, the voltages across the capacitances are usually different. Therefore, charge

redistribution among different branches takes place. The supercapacitor terminal

voltage changes during charge redistribution. Figure 5 compares the measured super-

capacitor voltages during a self-discharge experiment and a charging-redistribution

experiment. For the self-discharge experiment, the supercapacitor voltage is mea-

sured after the supercapacitor is charged using a 2.7 V voltage source for 1 h. For

the charging-redistribution experiment, the fully discharged supercapacitor is charged

using a 1 A current source to 2.7 V. After the charging current is disconnected, the

supercapacitor voltage is measured during the following charge redistribution phase.

Figure 5 shows that charge redistribution results in a much larger voltage drop than

self-discharge.

2.1.2.2 Two Branch Model

The two branch model shown in Figure 6 is an equivalent circuit model [20]. The

first branch is composed of a resistance R1 and a differential capacitance C1. The

differential capacitance C1 includes a constant capacitance C0 and a voltage dependent

capacitance KV ∗ V . The total capacitance is C1 = C0 + KV ∗ V . The first branch

dominates the immediate behavior of a supercapacitor in response to a charging or
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Figure 6: Supercapacitor two branch model [20].

discharging action. This branch captures the voltage dependency of capacitance.

The second branch including R2 and C2 models charge redistribution. The equivalent

parallel resistance RP represents the effect of self-discharge.

2.1.2.3 Three Branch Model

The three branch model shown in Figure 7 is proposed to better model supercapacitor

self-discharge [17]. In the two branch model, supercapacitor self-discharge is repre-

sented by the equivalent parallel resistance RP and only the internal ohmic leakage

is considered. In the three branch model, the third branch composed of Rr and Cr is

introduced to represent the self-discharge due to diffusion controlled Faradaic redox

reactions. The leakage current due to diffusion controlled Faradaic redox reactions is

proportional to the concentration gradient of the diffusible redox species [17]. The

time dependence of the concentration gradient at a particular distance from a plane

electrode is generally inversely proportional to the square root of time, which leads

to a decreasing self-discharge rate.

2.2 Supercapacitor Modeling

2.2.1 Supercapacitor Self-discharge

A charged supercapacitor is in a state of high Gibbs energy [47]. Therefore, a ther-

modynamic “driving force” results in spontaneous decline of Gibbs energy [47]. This
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Figure 7: Supercapacitor three branch model [17].

Figure 8: Maccor supercapacitor testing system.

decline manifested as decay in supercapacitor voltage is called self-discharge. Self-

discharge rate, which is usually diminishing with time, determines the shelf life of a

supercapacitor [15]. Figure 8 shows the Maccor supercapacitor testing system. The

measured supercapacitor terminal voltage of the 10 F sample supercapacitor is shown

in Figure 9. The supercapacitor is first charged to its rated voltage 2.7 V using a

constant voltage source for 1 h. The supercapacitor terminal voltage is measured for

the following 12 h after the voltage source is disconnected.

Open circuit self-discharge of a supercapacitor must take place through coupled

anodic and cathodic processes to pass parasitic currents at one or both electrodes since
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Figure 9: Measured supercapacitor voltage during a self-discharge experiment.

there is no external circuit through which discharge can pass [47]. Supercapacitor self-

discharge can be ascribed to three mechanisms [15,39,47,55]:

1. A Faradaic charge transfer reaction can occur if the voltage across an electrolyte-

carbon interface exceeds the decomposition potential limit of the electrolyte.

This action results in a self-discharge process that has a voltage dependent

Faradaic resistance.

2. A diffusion controlled Faradaic process involving depolarization by impurity re-

actions, which appears to dominate self-discharge in the first few hours. Accu-

mulation of an excess ionic concentration can occur near the electrolyte-carbon

interface if a supercapacitor is charged to a threshold voltage. When the super-

capacitor is disconnected from the charging source, part of the charge undergoes

self-discharge because of the presence of impurities. A simplified relationship

between the supercapacitor voltage during self-discharge and its initial voltage

is represented by the following equation:

V = V0 −m
√
t, (6)

where V is the supercapacitor voltage during self-discharge, V0 is the initial

voltage, m is the diffusion parameter, and t is the self-discharge time.
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3. A leakage current can arise through the double layer at the electrolyte-carbon

interface if a supercapacitor has internal ohmic leakage pathways. The charac-

teristic behavior of this self-discharge mechanism is modeled as follows:

V = V0e
−t/RLC , (7)

where RL is a constant leakage resistance and C is the supercapactitor capaci-

tance.

Under normal operation conditions, the first self-discharge mechanism does not

need to be modeled because supercapacitor voltage is below the electrolyte decom-

position potential limit. The second mechanism dominates self-discharge in the first

few hours. Then the internal ohmic leakage becomes the dominant factor, which

causes supercapacitor voltage to decay exponentially [55]. As shown in Figure 10, a

single exponential function (the dashed line) does not match the 12-h measurement.

However, after 7 h, the supercapacitor voltage can be fitted well using an exponential

function with a fixed time constant (the dash-dotted line). When this function is

extended to the first 7 h, the fitting function deviates significantly from the mea-

surement. Based on this observation, a variable leakage resistance can be adopted to

model self-discharge for the first few hours. Afterwards, the leakage resistance can be

assumed to be a constant.

2.2.2 Variable Leakage Resistance (VLR) Model

As shown in the previous sections, the EIE model takes into account the time varying

supercapacitor self-discharge, the two branch model and three branch model take into

account supercapacitor voltage dependency of capacitance and charge redistribution.

The proposed variable leakage resistance (VLR) model shown in Figure 11 combines

the respective benefits of two modeling approaches. The VLR model is a simplified

equivalent circuit model. The first branch has three components: resistance R1, a

constant capacitance C0, and a voltage dependent capacitance KV ∗ V . The total
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Figure 10: Fitting supercapacitor voltage during self-discharge experiment using
exponential functions.
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R3

C1=C0+KV*V

Figure 11: Supercapacitor variable leakage resistance (VLR) model.

capacitance of the first branch is C1 = C0 + KV ∗ V . This branch models voltage

dependency of capacitance. Its time constant is in the order of seconds. The second

branch includes R2 and C2. This branch models charge redistribution with a time

constant of minutes. The variable leakage resistance R3 models the time varying

self-discharge.

2.3 Supercapacitor Characterization

This section demonstrates the procedures to characterize the VLR model parame-

ters. The VLR model parameters can be determined by performing two experiments:

a charging-redistribution experiment for the first and second branches, and a self-

discharge experiment for R3. The 10 F Maxwell supercapacitor is used as an example

in this dissertation to illustrate the characterization procedures.
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Figure 12: Measured supercapacitor voltage during a charging-redistribution exper-
iment. Charging current is 1 A.
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Figure 13: Characterization of the first and second branches of VLR model.

2.3.1 Characterization of First and Second Branches

The VLR model parameters of the first and second branches are determined using

the approach in [20]. Figure 12 shows the measured supercapacitor terminal voltage

during a charging-redistribution experiment. The fully depleted supercapacitor is

charged to 2.7 V using a 1 A constant current source. The charging current is then

disconnected and the supercapacitor experiences charge redistribution. The total

experiment time is 900 s. The data points used to determine the model parameters

are marked in Figure 13.
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2.3.1.1 R0

The resistanceR0 is calculated using data point P0(t0, V0). In Eq. (8), V0 is the voltage

difference between the supercapacitor terminals at the beginning of the charging-

redistribution experiment. The charging current is denoted by IC .

R1 =
V0

IC
(8)

2.3.1.2 C0 and KV

The constant capacitance C0 and linear capacitance coefficient KV are determined

using data points P1(t1, V1) and P2(t2, V2). Assuming that all the charge is injected

into the first branch during the charging process, the current-voltage relationship for

C1 is given by Eq. (9):

i =
dq

dt
=

dq

dv

dv

dt
= (C0 +KV v)

dv

dt
. (9)

In case of a constant charging current IC , the time-voltage relationship for the super-

capacitor can be derived from Eq. (9):

t = f(V ) =
C0

IC
V +

KV

2IC
V 2. (10)

Given two data points P1(t1, V1) and P2(t2, V2) in the measured supercapacitor voltage

profile during the charging phase, the following equations must hold:















t1 =
C0

IC
V1 +

KV

2IC
V1

2,

t2 =
C0

IC
V2 +

KV

2IC
V2

2.

(11)

The values of C0 and KV can be solved from Eq. (11):















C0 =

(

t1
V1

− V1t2 − t1V2

V 2
2 − V1V2

)

IC ,

KV = 2

(

V1t2 − t1V2

V1V 2
2 − V 2

1 V2

)

IC .

(12)
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Table 1: VLR Model Parameter Values of a 10 F Supercapacitor

R1(Ω) C0(F) KV (F/V) R2(Ω) C2(F)

0.0677 7.011 1.042 64.52 1.825

2.3.1.3 C2 and R2

The second branch parameters C2 and R2 are determined using data points P3(tC , VC)

and P4(t2f , V2f ). After the supercapacitor reaches its rated voltage, the charging

current is removed. Part of the charge stored in the first branch is transferred to the

second branch during the charge redistribution phase. It is assumed that the voltages

across the capacitances C1 and C2 are same at time t = 3τ2, where τ2 = R2C2 is

the second branch time constant. The value of τ2 is determined by observing the

supercapacitor voltage during the charge redistribution phase. After a certain period

of time, the supercapacitor voltage changes very slowly and it can be assumed that

charge redistribution is completed. This period of time is assumed to be t = 3τ2.

In this experiment, t = 3τ2 is approximately 400 s. The data points P3(tC , VC) and

P4(t2f , V2f ) are the ending points of the charging and charge redistribution phases,

respectively. Assuming that the charge injected into the supercapacitor is conserved

during the charging and redistribution phases, C2 can be determined as follows:

Q = ICTC = C2V2f + (C0 +
KV

2
V2f )V2f , (13)

where TC is the charging time. Finally, R2 is calculated using Eq. (14):

R2 =
τ2
C2

. (14)

The VLR model first and second branch parameter values are listed in Table 1.

2.3.2 Supercapacitor Self-discharge Analysis

Supercapacitor terminal voltage decreases during self-discharge. Figure 14 shows the

circuit used to analyze supercapacitor terminal voltage change during self-discharge.
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Figure 14: Circuit for self-discharge analysis.

The three branch currents are related by the Kirchhoff’s Current Law:

I3 = −I1 − I2. (15)

Once the current I3 is determined, together with the measured supercapacitor ter-

minal voltage V3 during self-discharge, the resistance R3 can be calculated using the

Ohm’s Law:

R3 =
V3

I3
. (16)

The first branch current I1 is also the current through the capacitance C1:

I1 =
d(C1V1)

dt
=

d((C0 +KV V1)V1)

dt
= (C0 + 2KV V1)

dV1

dt
. (17)

The voltage V1 across the capacitance C1 is related to V3 as follows:

V1 = V3 − I1R1. (18)

Similarly, the current and voltage relationships for the second branch are:

I2 =
d(C2V2)

dt
= C2

dV2

dt
, (19)

V2 = V3 − I2R2. (20)

Since the circuit element voltages and currents are tangled, it is difficult to derive

the analytical solutions for I3 and R3. A numerical approach is adopted to solve the

system composed of Eqs. (15)-(20).
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 Figure 15: MATLAB Simulink model for R3 calculation.

2.3.3 Supercapacitor Self-discharge Characterization

As shown in Figure 15, a MATLAB Simulink model is implemented to determine

R3 from the system composed of Eqs. (15)-(20). The input is the supercapacitor

terminal voltage V3 measured during self-discharge. The output is the variable leakage

resistance R3. The blocks representing the VLR model parameters are annotated. For

example, the constant capacitance C0 is represented by the block “Step1”.

The variable leakage resistance R3 is determined by feeding the supercapacitor

terminal voltage (Figure 9) measured in the 12-h self-discharge experiment to the

Simulink model. As shown in Figure 16, the VLR value varies with self-discharge

time. The VLR value increases from 11,000 Ω to 175,920 Ω in the first 7 h (0-25,920

s), and stays at this value till the end of this experiment (at 43,200 s). The increase

in VLR value during the first 7 h is the result of combined self-discharge mechanisms,
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Figure 16: Calculated R3 versus self-discharge time.
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Figure 17: Calculated and fitted R3 versus supercapacitor voltage.

which include diffusion controlled Faradaic process and internal ohmic leakage. The

diffusion controlled Faradaic process dominates. After 7 h, the internal ohmic leakage

takes over and a constant leakage resistance accounts for the exponential decay of

supercapacitor voltage.

Since supercapacitor voltage decreases when self-discharge time increases, the

VLR value can also be related to supercapacitor voltage, as shown in Figure 17.

The VLR value increases from 11,000 Ω to 175,920 Ω when supercapacitor voltage

decreases from 2.7 V to 2.6309 V. This voltage range corresponds to the first 7 h

(0-25,920 s) of the self-discharge experiment.
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Although the VLR value can be expressed as a function of either self-discharge

time or supercapacitor voltage, the latter relationship is preferred because superca-

pacitor voltage can be readily measured. To describe the relationship between vari-

able leakage resistance and supercapacitor voltage, piecewise linear approximation is

adopted. The start and end points of line segments are determined by the turning

points where the resistance-voltage curve has considerable slope change. Since the

VLR value only shows a very slow increase when supercapacitor voltage is below

2.6309 V, a constant resistance is used for this voltage range. The constant 173,700

Ω is calculated as the average of the resistances for the voltage range 2.6149-2.6309

V. The variable leakage resistance R3 is related to supercapacitor terminal voltage V3

by a piecewise linear function Eq. (21). This approximation matches the calculated

values well, as shown in Figure 17.

R3 =































173700, 0 < V3 < 2.6309,

(−3.906 ∗ V3 + 10.45)× 106, 2.6309 ≤ V3 < 2.6634,

(−1.045 ∗ V3 + 2.830)× 106, 2.6634 ≤ V3 ≤ 2.7000.

(21)

2.4 Supercapacitor Model Evaluation

This section evaluates the four supercapacitor models (VLR, EIE, two branch model,

and three branch model) by comparing the simulated supercapacitor voltages us-

ing these models and the measured voltage during three experiments: charging-

redistribution, self-discharge, and dynamic charging-discharging experiments. The

four model parameter values are first determined.

2.4.1 Supercapacitor Model Parameters

2.4.1.1 VLR Model

The VLR model parameter values of the 10 F sample supercapacitor are shown in

Table 1 and Eq. (21). When an external charging or discharging current is present,
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Figure 19: MATLAB Simulink model for VLR model implementation.

as shown in Figure 18, the external current IC is related to the three branch currents

by the following equation:

IC = I1 + I2 + I3. (22)

Combining Eqs. (16)-(20) and (22), another MATLAB Simulink model is imple-

mented to determine supercapacitor voltage, as shown in Figure 19. The charging or

discharging current IC generated by the block “Current Profile” is the input. The

output is supercapacitor terminal voltage V3.
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2.4.1.2 EIE Model

The EIE model uses the rated capacitance of a supercapacitor and needs the leakage

power profile of a supercapacitor. For the supercapacitor voltage during the self-

discharge experiment shown in Figure 9, the leakage power profile is shown in Figure

20. The leakage power profile is approximated using the piecewise linear function Eq.

(23). Together with the Eqs. (1)-(3) from Chapter I, the supercapacitor voltage can

be calculated.

P =































0.032, 1 ≤ E < 35.02,

0.1270 ∗ E − 4.415, 35.02 ≤ E < 35.91,

0.2605 ∗ E − 9.209, 35.91 ≤ E < 40.00.

(23)

2.4.1.3 Two Branch Model

The first and second branch parameter values of the two branch model are the same

as the VLR model. The parallel leakage resistance is determined using Eq. (24):

RP =
VN

IL
, (24)

where VN is the nominal voltage of a supercapacitor, and IL is the leakage current of

a supercapacitor. For the 10 F sample supercapacitor, VN = 2.7 V and IL = 0.03 mA

are given by its datasheet [41]. The parameter values are listed in Table 2.
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Table 2: Two Branch Model Parameter Values of a 10 F Supercapacitor

R1(Ω) C0(F) KV (F/V) R2(Ω) C2(F) RP (Ω)

0.0677 7.011 1.042 64.52 1.825 90000

Table 3: Three Branch Model Parameter Values of a 10 F Supercapacitor

R1(Ω) C0(F) KV (F/V) R2(Ω) C2(F) Rr(Ω) Cr(F) Rle(Ω)

0.0677 7.011 1.042 64.52 1.825 11890 0.2005 152470

2.4.1.4 Three Branch Model

The first and second branch parameter values of the three branch model are the same

as the VLR model. The other three parameter values Rr, Cr, and Rle are determined

using the procedure in [17]. The three branch model parameter values are listed in

Table 3.

2.4.2 Charging-redistribution Experiment

The four supercapacitor models are first evaluated using a charging-redistribution

experiment. The fully depleted 10 F supercapacitor is charged to its rated voltage 2.7

V using a constant current 0.3 A. The charging time is approximately 94 s. When the

supercapacitor voltage reaches 2.7 V, the charging current is disconnected and the

supercapacitor experiences charge redistribution for the following 100 s. The mea-

sured supercapacitor voltage and the simulated voltages using the two branch model

and three branch model are shown in Figure 21(a). The measured supercapacitor

voltage and the simulated voltages using the VLR model and EIE model are shown

in Figure 21(b). For the three equivalent circuit models (VLR, two branch model,

and three branch model), the supercapacitor voltage is a zero state response to the

charging current. For the EIE model, the consumed energy term in Eq. (2) is zero

for the charging phase and the harvested energy term is calculated using the charg-

ing current. Both the consumed energy and harvested energy terms are zero for the

charge redistribution phase.
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Figure 21: Measured and simulated supercapacitor voltages during a charging-
redistribution experiment. Charging current is 0.3 A. (a) Two branch model and
three branch model. (b) VLR model and EIE model.

As shown in Figure 21, the simulation results using the three equivalent circuit

models match the measurement well. However, the EIE model results show noticeable

deviations. At the end of the charging phase (94 s), the EIE model predicts a voltage

of 2.7898 V, which overestimates the actual voltage. The deviation during the charge

redistribution phase is even more significant. The measured supercapacitor voltage is

2.5790 V at the end of this charging-redistribution experiment (194 s). The simulated

voltage using the EIE model is 2.7865 V. The deviations are due to the fact that the

EIE model does not take into account voltage dependency of capacitance and charge

redistribution. The voltage drop during the charge redistribution phase cannot be

ascribed to self-discharge.
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Figure 22: Measured and simulated supercapacitor voltages during a self-discharge
experiment. (a) Two branch model and three branch model. (b) VLR model and
EIE model.

2.4.3 Self-discharge Experiment

The four supercapacitor models are then evaluated using the self-discharge experiment

shown in Figure 9. Figure 22 shows the measured supercapacitor voltage during this

experiment and the simulated voltages. For the three equivalent circuit models, the

supercapacitor voltage is a zero input response to the initial state of the circuit where

all the capacitances are charged to the rated voltage 2.7 V. In Eq. (2) of the EIE

model, both the harvested energy and consumed energy terms are zero.

As shown in Figure 22(a), the simulated voltage using the two branch model has

significant error. This observation is consistent with the conclusion that supercapaci-

tor self-discharge cannot be fully characterized using a single exponential function, as
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Figure 23: A dynamic charging-discharging test. (a) Test current profile. (b)
Measured and simulated voltages.

shown in Figure 10. The three branch model simulation results match the measure-

ment well during the last 9 h of this experiment, but underestimate supercapacitor

voltage during the first 3 h. Figure 22(b) shows that the simulated voltages using the

VLR model and EIE model match the measurement well.

2.4.4 Dynamic Charging-discharging Experiment

The third experiment is a dynamic charging-discharging test. As shown in Figure

23(a), the test current profile is composed of various phases: charging, discharging,

and idle. These different phases correspond to the current profiles during various
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operation modes of an environmentally powered wireless sensor node. The super-

capacitor is charged when the energy harvested from the environment is injected

into a sensor node. A current is drawn from the supercapacitor if a sensor node is

transmitting or receiving data packets. The current is approximately zero when a

sensor node is switched to the sleep mode and no harvested energy is injected into

the supercapacitor.

In Figure 23(a), the magnitudes of the test currents are determined based on the

typical current ranges of solar energy powered wireless sensor nodes. These nodes

usually have a solar panel to convert the solar energy into electric energy, an input

stage to interface the solar panel and the energy storage system, an energy storage

system, an output stage to condition the output voltage of the energy storage system,

and a sensor node that consumes energy [25]. The charging and discharging current

upper bounds are determined as follows.

Take the sensor node in [8] for example. The output current of the solar panel

is around 150 mA. After being conditioned by the maximum power point tracker

(MPPT), the current injected into the supercapacitor is around 350 mA. This value

is used as the charging current upper bound.

For the output stage, a step-up DC-DC converter LTC3401 [36] is used to boost

the supercapacitor voltage. The sensor node is a TmoteSky platform [46]. The

upper bound of the discharging current is determined based on the datasheets of

LTC3401 and TmoteSky. The major energy consumer of TmoteSky is its radio.

The radio only operates if its supply voltage is between 2.1 and 3.6 V. When the

radio is receiving packets and the MCU is on, the nominal and maximum current

consumptions are 21.8 and 23 mA, respectively. The input and output voltage ranges

of LTC3401 are 0.5-5.5 and 2.6-5.5 V, respectively. Considering the rated voltage

of the 10 F supercapacitor, the input voltage range of LTC3401 in this dissertation

is taken as 1-2.7 V. To determine the upper bound of the current drawn from the
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supercapacitor, the TmoteSky voltage is assumed to be VTmoteSky = 3.6 V and current

is ITmoteSky = 23 mA. For this current, the power efficiency of LTC3401 is about

η = 88%. For the supercapacitor voltage range VSC = 1− 2.7 V, the current range is

determined as ISC = 94− 35 mA using Eq. (25).

η =
VTmoteSkyITmoteSky

VSCISC
(25)

In this dissertation, the upper bound of the discharging current is assumed to be 94

mA. As shown in Figure 23(a), the maximum charging and discharging currents are

300 and 80 mA, respectively, which are smaller than their respective upper bounds.

A comparison between the measured and simulated voltages is shown in Figure

23(b). The simulated voltage using the VLR model matches the measurement well.

For the majority of the simulation duration, the EIE simulation results show notice-

able deviations from the measurement.

2.5 Summary

This chapter presents an equivalent circuit model called the VLR model for super-

capacitors. Supercapacitor physics and three supercapacitor models are reviewed in

Section 2.1: EIE model, two branch model, and three branch model. The EIE model

is developed based on supercapacitor leakage power profile. This model is accurate in

modeling supercapacitor self-discharge. However, it does not consider supercapacitor

voltage dependency of capacitance and charge redistribution. The two branch model

and three branch model are equivalent circuit models. They take into account the

supercapacitor mechanisms that the EIE model does not. However, supercapacitor

self-discharge is not well modeled by these two models.

Section 2.2 analyzes the time varying supercapacitor self-discharge and presents

the VLR model. The VLR model is an equivalent circuit model that takes into

account three mechanisms of supercapacitors: voltage dependency of capacitance,
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charge redistribution, and self-discharge. The VLR model combines the respective

advantages of the EIE model and the two equivalent circuit models.

Section 2.3 illustrates the characterization procedures for the VLR model parame-

ters using a 10 F sample supercapacitor. A MATLAB Simulink model is implemented

to determine the variable leakage resistance using the measured supercapacitor volt-

age during a self-discharge experiment. The variable leakage resistance is related to

supercapacitor terminal voltage by a piecewise linear function.

Section 2.4 evaluates the four supercapacitor models by comparing the simulated

supercapacitor voltages using these models and the measured voltage during three ex-

periments: charging-redistribution, self-discharge, and dynamic charging-discharging

experiments. For the charging-redistribution experiment, the VLR model, two branch

model, and three branch model results match the measurement well. The EIE model

results show noticeable deviations. For the self-discharge experiment, the VLR model

and EIE model are the most accurate. The three branch model results slightly mis-

match the measurement during certain period of time. The two branch model is the

least accurate for this experiment. For the dynamic charging-discharging experiment,

the VLR model is much more accurate than the EIE model.
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CHAPTER III

SUPERCAPACITOR CHARGE REDISTRIBUTION AND

ENERGY LOSS

Supercapacitor charge redistribution can result in a larger voltage drop than self-

discharge. As shown in Figure 9, the voltage drop during the 12 h self-discharge

experiment is 0.0849 V. As a comparison, the voltage drop during the charging-

redistribution experiment is 0.2887 V, as shown in Figure 12. Supercapacitor terminal

voltage is a critical parameter for energy storage system design and power manage-

ment policy development in environmentally powered wireless sensor nodes. A sensor

node can only operate if the supercapacitor voltage is above a certain threshold.

Therefore, an analysis of supercapacitor voltage change during charge redistribution

is important.

This chapter analyzes supercapacitor voltage change and energy loss during charge

redistribution. Section 3.1 investigates the impacts of time and supercapacitor ini-

tial state on supercapacitor voltage change during charge redistribution. Section 3.2

explores the relationship between supercapacitor energy loss and time, and the rela-

tionship between supercapacitor energy loss and supercapacitor initial state. Section

3.3 is a summary.

3.1 Supercapacitor Charge Redistribution

After a charging or discharging process, the charge stored in a supercapacitor tends

to redistribute among different RC branches. Circuit theory argues that charge re-

distribution is a transient response to supercapacitor initial state. The VLR model
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is used to define supercapacitor initial state. Supercapacitor initial state is charac-

terized by the initial voltages V1(0) and V2(0) across the capacitors C1 and C2 at

time t = 0, respectively. The initial time t = 0 can be any time instant of interest.

The voltages across the capacitors C1 and C2 during charge redistribution are V1 and

V2, respectively. For the sake of simplicity, the initial voltages V1(0) and V2(0) are

also denoted by V1 and V2 in the following sections, respectively. Depending on the

previous charging or discharging state of a supercapacitor, the relationship between

the initial voltages V1 and V2 must fall into one of the three cases: V1 = V2, V1 > V2,

or V1 < V2. Charge redistribution takes place when the last two cases are true. The

analysis presented in this chapter is based on the second case where V1 > V2. Similar

conclusions hold for the case where V1 < V2.

3.1.1 Supercapacitor Charge Redistribution Versus Time

As a transient response, charge redistribution is dependent on time and supercapacitor

initial state. The effect of time on charge redistribution for a specific supercapacitor

initial state is first investigated. Figure 12 shows the measured supercapacitor ter-

minal voltage during a charging-redistribution experiment. In this experiment, the

fully discharged 10 F supercapacitor is first charged to 2.7002 V using a 1 A current

at 26.515 s. The charging current is then disconnected and the supercapacitor expe-

riences charge redistribution. The supercapacitor terminal voltage decreases during

the following period of time. For convenience, Figure 12 is redrawn and shown in

Figure 24.

The identification procedure of supercapacitor initial state is illustrated as fol-

lows. As already defined, supercapacitor initial state is the initial voltages across the

capacitors in the VLR model. What the Maccor testing system and other testers

can measure is the supercapacitor terminal voltage. To relate the capacitor voltages

to the supercapacitor terminal voltage, the circuit shown in Figure 14 is analyzed.
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Figure 24: Copy of Figure 12: measured supercapacitor voltage during a charging-
redistribution experiment. Charging current is 1 A.

Assuming the current I1 through R1 and C1 flows from the top node to the bottom

node, the supercapacitor terminal voltage VSC is related to the C1 voltage V1 by Eq.

(26). Similarly, VSC is related to the C2 voltage V2 by Eq. (27).

VSC = I1R1 + V1 (26)

VSC = I2R2 + V2 (27)

It can be assumed that V1 ≈ VSC due to the small magnitude of R1. For instance,

the upper bound of the difference between VSC and V1 during the 1 A charging phase is

0.0677 V with the assumption that the charging current is totally injected into C1. For

smaller charging currents, the difference is smaller. During the charge redistribution

phase, the magnitude of I1 is several mAs and the contribution of R1 to the terminal

voltage is much smaller. Therefore, the measured supercapacitor terminal voltage

VSC can be used as the C1 voltage V1. On the other hand, V2 cannot be determined

based on VSC since R2 is large in magnitude. For example, the voltage across R2

is 0.6452 V if I2 is 1 mA. The evolution of V2 can be determined using the VLR

model. For the experiment shown in Figure 24, the initial voltages are extracted

from the simulation results using the VLR model at t = 26.52 s: V1 = 2.6527 V and

V2 = 0.3176 V. For accuracy, the initial time is taken as 26.52 s instead of 26.515 s
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to exclude the voltage drop due to R1. The 5 ms delay is the time resolution of the

Maccor tester. The current I1 is approximately 1 A (the charging current) at 26.515

s and a couple of mAs (the charge redistribution current) at 26.52 s. As given by Eq.

(26), a voltage drop across R1 is resulted from this current change. At t = 26.52 s,

the C1 voltage V1 (2.6527 V) is very close to the terminal voltage VSC (2.6502 V).

On the other hand, at t = 26.52 s, the C2 voltage V2 (0.3176 V) differs greatly from

the terminal voltage VSC (2.6502 V). As a matter of fact, both observations are valid

during charge redistribution.

3.1.2 Supercapacitor Charge Redistribution Versus Initial State

Figure 25 shows the effect of supercapacitor initial state on charge redistribution. The

fully depleted 10 F supercapacitor is charged to 2.7 V using a constant current source

of 1 A and 0.3 A, respectively. The supercapacitor experiences charge redistribution

for the following 100 s after the charging current is disconnected. The different

charging current results in difference in the supercapacitor initial state of charge

redistribution. The initial time for both experiments is the moment at which the

charging current is disconnected. Again, to exclude the voltage drop due to R1, the

actual initial time includes a 5 ms delay. For the 1 A current experiment, the initial

state is V1 = 2.6527 V and V2 = 0.3176 V at t = 26.52 s. The initial state for

the 0.3 A case is V1 = 2.6869 V and V2 = 0.9280 V at t = 93.92 s. The measured

supercapacitor terminal voltage drop is 0.1779 V for the 1 A current experiment and

0.1045 V for the 0.3 A current experiment, respectively. The larger voltage drop in

the 1 A current experiment is due to the greater initial voltage difference resulted

from a larger charging current.

3.2 Supercapacitor Energy Loss

Depending on the relative magnitudes of V1 and V2, the supercapacitor terminal volt-

age during charge redistribution may change in two ways. If V1 > V2, part of the

39



0 20 40 60 80 100 120 140 160 180 200
0  

0.5

1.0

1.5

2.0

2.5

3.0

Time (s)

V
o

lt
a

g
e

 (
V

)

Charging Current: 1 A

Charging Current: 0.3 A

Figure 25: Two charging-redistribution experiments using different charging cur-
rents: 1 A and 0.3 A. Redistribution time is 100 s for both experiments.

charge stored in C1 is redistributed to C2 and the supercapacitor terminal voltage

decreases. If V1 < V2, charge is transferred from C2 to C1 and the supercapacitor

terminal voltage increases. For example, Figure 26 shows the VLR component volt-

ages during charge redistribution for initial state: V1 = 2.7 and V2 = 2.4 V. Without

loss of generality, the initial state is taken as V1 = 2.7 V and V2 = 2.4 V for the

sake of convenience. This initial state is an approximation of a charging process. The

simulation results show that if the fully depleted 10 F supercapacitor is charged by a

35 mA current for 880 s, the capacitor voltages will be V1 = 2.6917 V and V2 = 2.3972

V. The current magnitude falls into the typical range of the charging current specified

in Section 2.4. Since V1 > V2, part of the charge stored in C1 is transferred to C2.

Therefore, V1 decreases with time and V2 increases with time. The supercapacitor

terminal voltage is equal to the voltage V3 across R3, which is approximately equal

to the voltage V1. This is because the resistor R1 is relatively small.

Charging or discharging currents flow through the resistors during charge redistri-

bution. Therefore, some electric energy is dissipated. Energy loss is the time integral

of the dissipated power of a resistor. Because of the changing current and dissipated

power, energy loss is also varying with time and dependent on two factors: charge

redistribution time and supercapacitor initial state.
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Figure 26: VLR component voltages for initial state: V1 = 2.7 V and V2 = 2.4 V.
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Figure 27: VLR resistor currents for initial state: V1 = 2.7 V and V2 = 2.4 V.

3.2.1 Supercapacitor Energy Loss Versus Time

The relationship between supercapacitor energy loss and charge redistribution time is

first investigated while fixing the initial state. Figure 27 shows the currents through

the resistors for initial state V1 = 2.7 V and V2 = 2.4 V. The discharging current I1

through R1 and charging current I2 through R2 are approximately equal in magnitude.

Both currents are much greater in magnitude than the current I3 through R3.

During charge redistribution, the dissipated power of a resistor is determined using

Eq. (28).

P = I2R (28)
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Figure 28: Dissipated powers of R2 and R3 for initial state: V1 = 2.7 V and V2 = 2.4
V. Dissipated power of R1 is negligible.

Figure 28 shows the dissipated powers of R2 and R3. The dissipated power of R1 is

negligible given that |I1| ≈ |I2| and R1 << R2. The dissipated powers P2 and P3

decrease as the charge redistribution time increases because of the decreasing I2 and

I3. The respective contributions of P2 and P3 to the total energy loss vary with time.

For the first 100 s, P2 is greater than P3. After 100 s, P3 is greater than P2. At

approximately 300 s, P2 decays to zero. The charging current I2 is dependent on the

difference between V1 and V2: ∆V = V1−V2. As charge redistribution continues, ∆V

decreases and I2 also decreases. The dissipated power P3 can also be determined by

Eq. (29) where V3 ≈ V1.

P3 =
V 2
3

R3

(29)

During charge redistribution, V1 decreases and V3 decreases, too. Therefore, P3 also

decreases as charge redistribution time increases.

The energy loss of a resistor during charge redistribution is calculated using Eq.

(30).

E(t) =

∫ t

0

P (t)dt (30)

Figure 29 shows the energy losses of R2 and R3. The energy loss of R2 increases

with charge redistribution time for the first 300 s, which is approximately three times

of the VLR model second branch time constant. After 300 s, E2 remains constant
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Figure 29: Energy losses of R2 and R3 for initial state: V1 = 2.7 V and V2 = 2.4 V.

because P2 is almost zero. On the other hand, E3 is always increasing with time.

Therefore, the energy loss is mainly contributed by R2 during the initial phase of

charge redistribution and by R3 for a relatively long term.

3.2.2 Supercapacitor Energy Loss Versus Initial State

The relationship between supercapacitor energy loss and initial state is also studied.

The supercapacitor initial state is characterized in two aspects: absolute initial volt-

ages (V1 and V2) and relative initial voltage difference (∆V = V1 − V2). The effect of

relative initial voltage difference on energy loss is first examined. The energy losses

for two relative initial voltage differences are compared. The initial voltage V1 is fixed

at the rated voltage 2.7 V and V2 is 2.4 V and 2.1 V, respectively. The initial state

V1 = 2.7 V and V2 = 2.1 V approximates a charging process where the current is 70

mA and the time is 433 s. The simulation results are V1 = 2.6971 V and V2 = 2.0931

V. Correspondingly, the relative initial voltage differences are 0.3 V and 0.6 V. The

dissipated powers of R2 and R3 are shown in Figure 30. Again, the dissipated power

of R1 is neglected. As shown in Figure 30(a), for a specific charge redistribution

time, P2 and E2 increase with the relative initial voltage difference. This is because

a greater charging current is generated by a greater initial voltage difference. For R3,

Figure 30(b) shows that P3 and E3 decrease with the relative initial voltage difference.
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Figure 30: Dissipated powers of R2 and R3 for two initial voltage differences: 0.3 V
and 0.6 V. The initial states are V1 = 2.7, V2 = 2.4 V and V1 = 2.7, V2 = 2.1 V. (a)
P2. (b) P3. (c) P2 + P3.
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Figure 31: Dissipated powers of R2 and R3 for a fixed initial voltage difference: 0.3
V. The initial states are V1 = 2.7, V2 = 2.4 V and V1 = 2.3, V2 = 2.0 V. (a) P2. (b)
P3. (c) P2 + P3.
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This result can be explained by Eq. (29). For a specific charge redistribution time,

the voltage V3 for initial state V1 = 2.7 V and V2 = 2.1 V is less than the voltage

V3 for initial state V1 = 2.7 V and V2 = 2.4 V. Figure 30(c) shows that the total

dissipated power P2 +P3 and the total energy loss E2 +E3 increase with the relative

initial voltage difference for the first 170 s. During this period of time, P2 dominates

the total dissipated power. After 170 s, P3 dominates the total dissipated power. The

total dissipated power P2 + P3 and the total energy loss E2 + E3 decrease with the

relative initial voltage difference.

The effect of absolute initial voltages on energy loss is also explored. The energy

losses for two initial states that have the same relative initial voltage difference are

compared. The initial states are V1 = 2.7, V2 = 2.4 V and V1 = 2.3, V2 = 2.0 V,

respectively. The initial state V1 = 2.3 V and V2 = 2.0 V corresponds to a charging

process with a 35 mA current for 722 s. The simulated voltages are V1 = 2.3004 V and

V2 = 1.9872 V. The relative initial voltage difference is 0.3 V for both initial states.

The dissipated powers of R2 and R3 are shown in Figure 31. Figure 31(a) shows

that P2 is almost identical for both initial states due to the same relative initial

voltage difference. Figure 31(b) shows that P3 and E3 decrease with the absolute

initial voltages. Again, Eq. (29) explains this result. The voltage V3 for initial state

V1 = 2.3, V2 = 2.0 V is less than the voltage V3 for initial state V1 = 2.7, V2 = 2.4 V.

Figure 31(c) shows that the total dissipated power P2 + P3 and the total energy loss

E2 + E3 decrease if the absolute initial voltages decrease.

3.3 Summary

This chapter analyzes supercapacitor voltage change and energy loss during charge

redistribution. Supercapacitor terminal voltage is a crucial parameter because a wire-

less sensor node can only operate if the energy storage system provides a voltage above

a specific threshold. The voltages across the supercapacitor branch capacitors may be
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different at a given time instant. Therefore, charge redistribution takes place. Super-

capacitor voltage change and energy loss during charge redistribution are analyzed.

The VLR model for supercapacitors is used to perform this analysis.

Section 3.1 examines the effects of time and supercapacitor initial state on super-

capacitor voltage change during charge redistribution for the case where V1 > V2. For

a fixed supercapacitor initial state, supercapacitor terminal voltage decreases with

time because part of the charge stored in C1 is transferred to C2. For a particular

time, supercapacitor terminal voltage drop is greater if the initial voltage difference

∆V = V1 − V2 is larger.

Section 3.2 studies the impacts of time and supercapacitor initial state on super-

capacitor energy loss for the case where V1 > V2. For a fixed supercapacitor initial

state, the dissipated powers P2 and P3 due to resistors R2 and R3 decrease with time.

The respective contributions of P2 and P3 to the total energy loss vary with time. The

energy loss is mainly contributed by R2 during the initial phase of charge redistribu-

tion and by R3 for a relatively long term. The relationship between supercapacitor

energy loss and supercapacitor initial state is also studied. The supercapacitor initial

state is characterized in two aspects: absolute initial voltages (V1 and V2) and relative

initial voltage difference (∆V = V1 − V2). During the initial phase of charge redis-

tribution, the total dissipated power P2 + P3 and total energy loss E2 + E3 increase

with relative initial voltage difference. For a relatively long term, the total dissipated

power P2 +P3 and the total energy loss E2 +E3 decrease with relative initial voltage

difference. The total dissipated power P2+P3 and total energy loss E2+E3 decrease

if the absolute initial voltages decrease.
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CHAPTER IV

EFFECTS OF SUPERCAPACITOR STATE AND

ENERGY HARVESTING ON TASK SCHEDULING

Chapter III analyzes the effects of time and supercapacitor initial state on super-

capacitor voltage change and energy loss during charge redistribution. To consider

the impacts of supercapacitor characteristics on power management in supercapacitor

based environmentally powered wireless sensor nodes, the task scheduling problem is

studied. A task refers to an event in a wireless sensor node that draws certain amount

of energy from the energy storage system. Task scheduling is a fundamental power

management problem because the typical operations of a wireless sensor node such

as sensing the environment, processing the collected data, and transmitting the data

packets can all be taken as different tasks.

Unlike the task scheduling problem in conventional real time systems, it is more

complicated in environmentally powered wireless sensor nodes due to the spatial and

temporal uncertainty of the harvested energy [38]. It is demonstrated in [44] that

greedy scheduling algorithms such as the earliest deadline first (EDF) algorithm may

not be suitable for environmentally powered wireless sensor nodes. Therefore, a lazy

scheduling algorithm (LSA) is proposed in [44]. In [44], the task scheduling problem

is considered for rechargeable battery based systems. This dissertation considers the

task scheduling problem in supercapacitor based environmentally powered wireless

sensor nodes.

The task scheduling problem is first studied qualitatively. This chapter investi-

gates the effects of supercapacitor state and energy harvesting on task scheduling.

Section 4.1 introduces the investigation methodology. Supercapacitor state has three

48



Table 4: Task Scheduling Simulation Setups and Results

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Supercapacitor State V1 > V2 V1 < V2 V1 = V2 V1 > V2 V1 < V2 V1 = V2

Energy Harvesting No No No Yes Yes Yes

Task Execution Greedy Lazy N/A Lazy Lazy Lazy

Energy Loss Greedy Lazy Lazy Greedy Lazy N/A

cases: V1 > V2, V1 < V2, and V1 = V2. Energy harvesting is characterized by two

scenarios: whether or not energy is harvested during a certain period of time. All to-

gether, a set of six cases that covers the various combinations of supercapacitor state

and energy harvesting is designed for this investigation. Table 4 lists the simulation

setups and results of the six cases. Section 4.2 studies the effects of supercapacitor

state on task scheduling. Three cases with different supercapacitor states are exam-

ined. No energy harvesting is considered. Section 4.3 explores the effects of energy

harvesting on task scheduling. Another three cases with various supercapacitor states

are studied. Energy harvesting is considered. Section 4.4 is a summary.

4.1 Methodology

The investigation methodology is illustrated using the simulation setups Case 1 and

Case 4. The simulation parameters are selected based on the typical voltage and

current ranges presented in Section 2.4.4. Each simulation setup has five components.

First, the supercapacitor state is specified. Supercapacitor state is the initial volt-

ages V1 and V2 across the VLR model capacitors C1 and C2. Case 1 extracts the

supercapacitor initial voltages from an experiment and the other five cases assume

initial states with more flexibility for the sake of convenience. For Case 1, the su-

percapacitor initial state is V1 = 1.1855 V and V2 = 0.3994 V. This initial state is

extracted from the simulation results for a charging experiment. The fully discharged

supercapacitor is charged by a 110 mA current for 95.5 s to 1.15 V. For Case 4, the

supercapacitor initial state is V1 = 1.05 V and V2 = 0.50 V.
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Figure 32: Greedy and lazy schedules of the task.

Second, the task to be scheduled is defined. All the six cases use the same task

model. The task to be scheduled is a current pulse, which is defined by four parame-

ters: amplitude 80 mA, release time 0 s, execution time 10 s, and deadline 300 s. The

task current magnitude is selected to be smaller than the discharging current upper

bound 94 mA specified in Section 2.4.4. The simulation duration is 300 s, which is

approximately three times of the second branch time constant of the VLR model.

Third, the greedy and lazy scheduling policies are studied. The supercapacitor

only operates if its terminal voltage is greater than a threshold Vth = 1 V. The

supercapacitor threshold voltage and initial voltages fall into the range of 1-2.7 V.

The greedy policy schedules the task aggressively. As long as the supercapacitor

voltage is above the threshold, the task is scheduled. The greedy schedule is between

0-10 s. The lazy policy works in the opposite way. The task is only scheduled when

the deadline is approaching. The lazy schedule is between 290-300 s. The schedules

apply to all the six cases. Figure 32 shows the task and the schedules.

Fourth, energy harvesting is considered for Cases 4-6. Cases 1-3 do not consider

energy harvesting. As shown in Figure 33, a current pulse is injected into the super-

capacitor to model the harvested energy. The current pulse is characterized by its

amplitude 100 mA and timing 100-120 s. The current magnitude also falls into the

charging current range specified in Section 2.4.4.
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Figure 33: Harvested current pulse for Cases 4-6.

Finally, the scheduling policies are evaluated in terms of two metrics: task exe-

cution and energy loss. A successful task execution requires that the supercapacitor

terminal voltage is always greater than the threshold while the task is being executed.

If the supercpacitor voltage is below the threshold during the task execution period,

the execution is considered as unsuccessful. Energy loss is characterized using the

approach presented in Chapter III.

4.2 Effects of Supercapacitor State on Task Scheduling

4.2.1 Case 1: V1 > V2, Without Energy Harvesting

For Case 1, the supercapacitor initial state is V1 = 1.1855 V and V2 = 0.3994 V.

No energy harvesting is considered. The supercapacitor terminal voltage is measured

experimentally for Case 1. As shown in Figure 34(a), the measured supercapacitor

terminal voltage after executing the task is 1.0359 V (t = 10 s) and 0.9805 V (t = 300

s) for the greedy and lazy schedules, respectively. Therefore, the greedy policy results

in a successful execution of the task and the lazy policy an unsuccessful one. The

unsuccessful execution using the lazy policy is due to supercapacitor charge redistri-

bution. The task current is mainly drawn from C1 because the time constant of the

first branch is much smaller. Task execution results in a sharp drop in the superca-

pacitor terminal voltage while the task is being executed. For the greedy schedule,

the voltage difference between V1 and V2 is reduced and the charge redistribution
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Figure 34: Supercapacitor voltages for Case 1. V1 = 1.1855 V and V2 = 0.3994 V.
Without energy harvesting. (a) Terminal voltage. (b) V2.

current is smaller. Therefore, less charge is transferred from C1 to C2 and V2 is lower

for the greedy schedule, as shown in Figure 34(b). For the lazy policy, more charge

is transferred from C1 to C2 during 0-290 s and there is no enough charge stored in

C1 to support the task, which results in an unsuccessful execution of the task.

The dissipated powers of resistors are shown in Figure 35. Figure 35(a) shows that

the dissipated power of R1 needs to be considered when the task is being executed.

The task current is mainly drawn from C1 due to the small time constant of the first

branch. When the task is not being executed, P1 is negligible. As shown in Figure

35(b), the greedy schedule results in a smaller P2 than the lazy schedule and the

52



0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

Time (s)

D
is

s
ip

a
te

d
 P

o
w

e
r 

o
f 

R
1

 (
m

W
) P1: Greedy Schedule

P1: Lazy Schedule

(a)

0 50 100 150 200 250 300
0

2

4

6

8

10

Time (s)

D
is

s
ip

a
te

d
 P

o
w

e
r 

o
f 

R
2

 (
m

W
)

P2: Greedy Schedule

P2: Lazy Schedule

(b)

0 50 100 150 200 250 300
5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

Time (s)

D
is

s
ip

a
te

d
 P

o
w

e
r 

o
f 

R
3

 (
u

W
) P3: Greedy Schedule

P3: Lazy Schedule

(c)

Figure 35: Dissipated powers of resistors for Case 1. (a) P1. (b) P2. (c) P3.

53



0 50 100 150 200 250 300
0.95

1.00

1.05

1.10

1.15

Time (s)

V
o

lt
a

g
e

: 
T

e
rm

in
a

l 
(V

)

Vsc: Greedy Schedule

Vsc: Lazy Schedule

(a)

0 50 100 150 200 250 300
1.0

1.1

1.2

1.3

1.4

1.5

Time (s)

V
o

lt
a

g
e

: 
V

2
 (

V
)

V2: Greedy Schedule

V2: Lazy Schedule

(b)

Figure 36: Supercapacitor voltages for Case 2. V1 = 1.05 V and V2 = 1.50 V.
Without energy harvesting. (a) Terminal voltage. (b) V2.

energy loss E2 is also smaller. For the greedy policy, V1 is reduced after executing the

task. The voltage difference ∆V = V1 − V2 is also reduced, which results in a smaller

dissipated power and a smaller energy loss for R2. Figure 35(c) shows that P3 can be

neglected. It should be noted that the unit of the dissipated power is µW in Figure

35(c) while Figure 35(a) and Figure 35(b) use mW. Therefore, the greedy scheduling

policy is preferred for Case 1 in terms of both metrics.

4.2.2 Case 2: V1 < V2, Without Energy Harvesting

The initial state of Case 2 is V1 = 1.05 V and V2 = 1.50 V. No energy harvesting

is considered. This initial state approximates the supercapacitor voltages after a
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discharging process. The supercapacitor is discharged by a 60 mA current for 134

s from 1.8 V (V1 = V2 = 1.8 V). The simulated voltages after discharging are V1 =

1.0491 V and V2 = 1.4971 V.

Figure 36(a) shows that the task execution is unsuccessful when the task is sched-

uled using the greedy policy. On the other hand, the task can be successfully executed

if the lazy policy is applied because part of the charge in C2 is redistributed to C1. For

the greedy schedule, the voltage difference between V2 and V1 is increased after the

task is executed during 0-10 s, which results in a larger charge redistribution current

and a lower V2, as shown in Figure 36(b).

Figure 37 shows the dissipated powers. It can be observed that P2 is the major

contributor to energy loss. The dissipated power and energy loss for the lazy schedule

are smaller. When the greedy policy is adopted, V1 is reduced after the task is

executed. The voltage difference ∆V = V2 − V1 increases. Therefore, the dissipated

power and energy loss are greater. While Case 1 prefers the greedy schedule, the lazy

schedule works better for Case 2 in terms of both metrics.

4.2.3 Case 3: V1 = V2, Without Energy Harvesting

While supercapacitor charge redistribution takes place when V1 6= V2, a supercapaci-

tor may be in the state where V1 = V2. A charging or discharging action will change

this state and result in unequal supercapacitor voltages. For Case 3, the initial volt-

ages are V1 = V2 = 1.05 V. No energy harvesting is considered.

Figure 38 shows the supercapacitor terminal voltage and V2. For the greedy

schedule, the terminal voltage (which is approximately equal to V1) has a sharp drop

during 0-10 s because of the task current. Therefore, V2 is greater than V1 after 10

s and C2 charges C1, which explains the increasing terminal voltage and decreasing

V2 during 10-300 s. For the lazy schedule, the terminal voltage and V2 almost do not

change during 0-290 s because of the equal initial voltages. During 290-300 s, the
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Figure 37: Dissipated powers of resistors for Case 2. (a) P1. (b) P2. (c) P3.
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Figure 38: Supercapacitor voltages for Case 3. V1 = V2 = 1.05 V. Without energy
harvesting. (a) Terminal voltage. (b) V2.

task is scheduled. The supercapacitor terminal voltage and V2 decrease with time.

The voltage drop in the terminal voltage is much greater than the voltage drop in

V2 because the task current is mainly drawn from C1. In terms of supercapacitor

terminal voltage, both schedules result in an unsuccessful execution of the task.

The dissipated powers of resistors for both schedules are shown in Figure 39. As

shown in Figure 39(a), P1 is significant when the task is executed for both schedules.

The energy losses due to R1 are almost equal for both schedules. Figure 39(b) shows

that the dissipated power P2 is approximately equal when the task is executed for

both schedules. During such periods of time (0-10 s for the greedy schedule and

290-300 for the lazy schedule), the current drawn from C2 is approximately equal for

both schedules. While P2 is close to zero during 0-290 s for the lazy schedule, the
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greedy schedule results in P2 that cannot be neglected because charge redistribution

takes place during this period of time. Figure 39(c) shows that the energy loss due to

R3 is greater for the lazy schedule. The greedy schedule reduces the supercapacitor

terminal voltage after 10 s and the energy loss is smaller. The total energy loss for

the greedy schedule is greater considering the magnitudes of P2 and P3. Therefore,

the lazy schedule is better in terms of energy loss for Case 3.

4.3 Effects of Energy Harvesting on Task Scheduling

4.3.1 Case 4: V1 > V2, With Energy Harvesting

The impacts of energy harvesting on task scheduling can be illustrated by Cases 1

and 4 that have similar supercapacitor initial states. The initial state of Case 4 is

V1 = 1.05 V and V2 = 0.50 V. The simulation setup for this initial state is charging

the supercapacitor using a 60 mA current for 157 s. The simulated voltages are

V1 = 1.0500 V and V2 = 0.4981 V. Energy harvesting is considered. A current pulse

is injected into the supercapacitor to model the harvested energy. The current pulse

is characterized by its amplitude 100 mA and timing 100-120 s.

As shown in Figure 40(a), the harvested current pulse boosts the supercapacitor

terminal voltage during 100-120 s. Consequently, the lazy schedule results in a suc-

cessful task execution and the harvested current pulse is actually utilized. On the

other hand, the greedy schedule does not take advantage of the harvested current

pulse. Figure 40(b) shows that V2 behaves similarly as in Case 1.

Figure 41 shows the dissipated powers. As shown in Figure 41(b), the dissipated

power and energy loss for the greedy schedule are smaller. Although both Case 1 and

Case 4 favor the greedy schedule for smaller energy loss, the lazy schedule is better

for Case 4 to guarantee a successful execution of the task. Therefore, depending on

the specific applications the tradeoff between the two performance metrics needs to

be considered for Case 4.
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Figure 39: Dissipated powers of resistors for Case 3. (a) P1. (b) P2. (c) P3.
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Figure 40: Supercapacitor voltages for Case 4. V1 = 1.05 V and V2 = 0.50 V. With
energy harvesting. (a) Terminal voltage. (b) V2.
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Figure 41: Dissipated powers of resistors for Case 4. (a) P1. (b) P2. (c) P3.
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4.3.2 Case 5: V1 < V2, With Energy Harvesting

For Case 5, the initial state is V1 = 1.05 V and V2 = 1.50 V and energy harvesting

is considered. The intial state is the same as the one specified for Case 2. The

lazy policy is preferred in terms of both metrics. Compared with the results shown

in Figure 36(a), Figure 42(a) shows that the harvested current pulse results in a

greater terminal voltage during 290-300 s for the lazy schedule. Therefore, the task

can be successfully executed with a larger voltage margin between the supercapacitor

terminal voltage and the threshold voltage.

Figure 42(b) shows that V2 decreases before the harvested current pulse is injected

into the supercapacitor for both schedules. During this period of time, V2 is greater

than V1 and C2 charges C1. After 120 s, V1 is greater than V2 because the harvested

current pulse is mainly injected into C1. Therefore, charge is transferred from C1 to

C2. For energy loss, Figure 43 shows that the lazy schedule is better than the greedy

schedule. Therefore, the lazy schedule is preferred in terms of both metrics.

4.3.3 Case 6: V1 = V2, With Energy Harvesting

Case 6 uses the same initial state as the one for Case 3: V1 = V2 = 1.05 V. Energy

harvesting is considered. Figure 44(a) shows that the task execution is unsuccess-

ful when the greedy schedule is used. On the other hand, the lazy schedule takes

advantage of the harvested current pulse and results in a successful task execution.

Figure 45 shows the dissipated powers. Both P1 and P2 need to be taken into

account. For both schedules, P1 is approximately equal. As shown in Figure 45(b),

the greedy schedule has a larger P2 during 0-100 s because the discharging process

during 0-10 s initiates charge redistribution. For the following 200 s, the lazy schedule

results in a larger P2. The total energy loss for both schedules is approximately equal.

The simulation results of the six cases are summarized in Table 4. The preferred

schedule for each case is indicated. For Case 3, both schedules result in an unsuccessful
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Figure 42: Supercapacitor voltages for Case 5. V1 = 1.05 V and V2 = 1.50 V. With
energy harvesting. (a) Terminal voltage. (b) V2.
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Figure 43: Dissipated powers of resistors for Case 5. (a) P1. (b) P2. (c) P3.
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Figure 44: Supercapacitor voltages for Case 6. V1 = V2 = 1.05 V. With energy
harvesting. (a) Terminal voltage. (b) V2.
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Figure 45: Dissipated powers of resistors for Case 6. (a) P1. (b) P2. (c) P3.
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task execution. There is no difference between the two schedules in terms of this

metric and this result is denoted by “N/A”. For Case 6, the greedy and lazy schedules

result in approximately equal energy loss. For this metric, the result is also marked

as “N/A”.

Based on the results in Table 4, task scheduling rules can be developed. To

maximize the number of successfully executed tasks, the rules are: use the greedy

schedule when supercapacitor state is V1 > V2 and energy harvesting is not available;

otherwise, use the lazy policy. To minimize energy loss, the rules are: use the greedy

schedule when supercapacitor state is V1 > V2; otherwise, use the lazy policy.

4.4 Summary

This chapter qualitatively studies the task scheduling problem in supercapacitor based

environmentally powered wireless sensor nodes. The impacts of supercapacitor state

and energy harvesting on task scheduling are investigated. Section 4.1 introduces

the investigation methodology. A set of six simulation cases is designed to cover

the various scenarios of supercapacitor state and energy harvesting to evaluate the

greedy and lazy task scheduling policies in terms of two metrics: task execution and

energy loss. Section 4.2 studies the effects of supercapacitor state on task scheduling

using the first three simulation cases. Energy harvesting is not considered. Section

4.3 examines the effects of energy harvesting on task scheduling using the last three

simulation cases. Energy harvesting is considered. Based on the simulation results,

task scheduling rules are developed. To maximize the number of successfully executed

tasks, the rules are: use the greedy schedule when supercapacitor state is V1 > V2 and

energy harvesting is not available; otherwise, use the lazy policy. To minimize energy

loss, the rules are: use the greedy schedule when supercapacitor state is V1 > V2;

otherwise, use the lazy policy.
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CHAPTER V

SCHEDULING INDEPENDENT TASKS

The task scheduling problem is further investigated quantitatively in this chapter and

the next chapter. This chapter presents a task scheduling algorithm for nonpreempt-

able tasks without precedence constraints, which are also called independent tasks.

Some operations in a wireless sensor node are independent tasks. For example, a

sensor node routes data packets from other sensor nodes. Transmissions of the data

packets are independent tasks. The proposed modified earliest deadline first (MEDF)

algorithm takes into account supercapacitor state and energy harvesting.

Section 5.1 introduces the system model for a supercapacitor based environmen-

tally powered wireless sensor node. The system model has three components: energy

source, energy storage, and energy consumer. Section 5.2 presents the MEDF al-

gorithm. The MEDF algorithm has three steps. First, generate an initial schedule

using the earliest deadline first (EDF) algorithm [37]. This step takes care of the

timing constraints of tasks. Second, calculate task ready time adjustment margin.

This margin determines how much delay is allowed if the initial schedule is adjusted.

Third, task ready time offset is determined based on supercapacitor state and en-

ergy harvesting. Task start time is the sum of ready time and ready time offset.

The MEDF algorithm tries to improve the energy performance of the EDF algorithm

while not hurting the timing performance. Section 5.3 implements and evaluates the

MEDF algorithm in terms of two metrics: deadline miss rate for timing performance

and energy violation rate for energy performance. Section 5.4 is a summary.
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Figure 47: Energy source model.

5.1 System Model

The system model for a supercapacitor based environmentally powered wireless sensor

node used in this dissertation to develop task scheduling algorithms is shown in Figure

46. This model has three components: energy source, energy storage, and energy

consumer. The component models are elaborated in this section.

5.1.1 Energy Source Model

The energy source model characterizes the harvested energy of a sensor node. The

energy source model is composed of multiple current pulses. A single current pulse is

shown in Figure 47. This pulse is characterized by three parameters: begin time BS,

duration DS, and weight WS. The end time of a pulse is therefore ES = BS + DS.

Weight WS is the current magnitude of a pulse. It should be noted that the pulse

is the conditioned pulse that is actually injected into the energy storage system. For

example, a solar powered sensor node usually has a maximum power point tracker

(MPPT) to interface the solar panel and the energy storage system. The current

pulse conditioned by the MPPT and fed into the energy storage system is the current

pulse used in this model.
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5.1.2 Energy Storage Model

The energy storage system is a single supercapacitor. An environmentally pow-

ered wireless sensor node usually has various power conditioning components such

as MPPT and DC-DC converters. In this system model, the effects of interfacing

circuits are considered by the energy source and energy consumer models. The VLR

model developed for the 10 F supercapacitor in Chapter II is used in this chapter as

the energy storage model. Supercapacitor initial state is characterized by the initial

voltages across the capacitors in the VLR model.

5.1.3 Energy Consumer Model

The energy consumer is modeled as a set of tasks that draw certain amount of cur-

rent from the supercapacitor. As shown in Figure 48, each task is defined by four

parameters: release time R, execution time E, absolute deadline D, and weight W .

The release time of a task is the instant of time at which the task becomes available

for execution. The execution time is the amount of time required to complete the

execution. The absolute deadline is the instant of time by which the task execution

is required to be completed. There is another deadline called the relative deadline,

which is defined as the length of time from the release time to the time instant when

the task execution completes. The relative deadline in then determined as D−R. In

this chapter, the term “deadline” refers to absolute deadline by default. The release

time, execution time, and deadline are the temporal parameters defining the timing

constraint of a task. The weight of a task is its current magnitude. This parameter

defines the energy constraint of a task.

In this chapter, the tasks are independent and nonpreemptable. Independent

tasks can be executed in any order. In other words, the tasks do not have precedence

constraints. The tasks are also nonpreemptable. A nonpreemptable task must be

executed from start to completion without interruption.
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5.2 Modified Earliest Deadline First (MEDF) Algorithm

The MEDF algorithm has three steps. First, an initial schedule is created using the

EDF algorithm. The initial schedule only considers the timing constraints of tasks.

The initial schedule determines the ready time of each task. The ready time of a task

is the earliest time instant at which the task can be executed. Second, the ready time

adjustment margin is calculated based on the initial schedule. As shown in Chapter

IV, a task execution may be postponed to ensure that the supercapacitor voltage is

above the voltage threshold. If a task has some delay margin to guarantee that its

deadline can be still respected, it may be preferable to take advantage of this margin

to take care of the energy constraint. This step determines the maximum available

delay margin. Third, the ready time offset is determined based on supercapacitor

state and energy harvesting. The start time of a task is its ready time plus the ready

time offset. The MEDF schedule is then finalized.

5.2.1 Generate An Initial Schedule Using EDF Algorithm

The EDF algorithm is used to create an initial schedule for a set of N tasks. Each

task Ti is defined by four parameters (Ri, Ei, Di,Wi). The EDF algorithm schedules

tasks based on their deadlines. The task with the earliest deadline is first scheduled.

The algorithm first sorts all the ready but not scheduled tasks in the ascending order

of their deadlines. An intermediate variable called current time TC is introduced,

71



which is initialized as TC = 0 at the beginning of the algorithm. The ready time of

each task Ai is calculated as the maximum value between the current time TC and

its release time Ri. Once the ready time of a task is determined, the current time

is updated as the end time of the current task: TC = Ai + Ei. The initial schedule

TEDF is defined by the ready time of each task Ai: TEDF = Ti(Ai, Ei, Di,Wi). The

algorithm is shown in Algorithm 1.

Algorithm 1 Generate An Initial Schedule Using EDF Algorithm

Require: A set of N ready but not scheduled tasks: T = Ti(Ri, Ei, Di,Wi).
1: Sort N tasks in the ascending order of their deadlines.
2: Current Time TC = 0 ⊲ Initialization.
3: for i = 1 : N do
4: Ready Time Ai = max(TC , Ri) ⊲ Tasks are nonpreemptable.
5: Current Time TC = Ai + Ei ⊲ Update TC .
6: end for
7: Algorithm output is initial schedule TEDF defined by task ready time Ai: TEDF =

Ti(Ai, Ei, Di,Wi).

5.2.2 Calculate Ready Time Adjustment Margin

The initial schedule is a greedy schedule: as long as the task is ready, it will be

executed. As shown in Chapter IV, if supercapacitor voltage falls below the operation

threshold during the execution of a task, the task execution is unsuccessful even

though its deadline is respected. If there is some delay margin allowing the task

execution to be postponed to some extent such that its deadline is still respected and

supercapacitor operation requirement is met at the same time, the adjusted schedule

is then a better choice. This subsection examines how much the delay margin can be

for a task scheduled using the EDF algorithm.

The fundamental rule to determine the delay margin is to improve the energy

performance while not affecting the timing performance of the initial schedule. Several

intermediate timing parameters are defined to determine the delay margin. Figure

49 shows the definitions of two parameters: maximum delay margin MM and ready
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Figure 49: Definitions of maximum delay margin and ready time flag.

time flag F for task Ti. Figure 49 also shows the initial schedule of two tasks Ti

and Ti+1 denoted by the solid line rectangles. For task Ti, the earliest and latest

possible schedules that respect its deadline are represented by the dotted and dashed

line rectangles, respectively.

The maximum delay margin is defined as the maximum length of time by which

a task can be postponed for execution from its release time so that the deadline is

not missed. The maximum delay margin is the difference between relative deadline

and execution time, as given by Eq. (31). The maximum delay margin is a property

of a task itself and is not dependent on any other tasks or the specific schedule.

MM = D −R− E (31)

The ready time flag is defined as the difference between the ready time and the release

time, as given by Eq. (32). This parameter depends on the specific schedule of a task.

F = A−R (32)

Depending on the relative magnitudes of maximum delay margin and ready time

flag, the ready time of a task may be or may not be adjusted. Specifically, if F > MM ,

as shown in Figure 49, the deadline of a task is already missed. Therefore, there is

no need to consider adjusting its ready time. On the other hand, if 0 ≤ F ≤ MM ,

there may be some delay margin a task can take advantage of. The case where
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0 < F < MM is analyzed to determine the possible delay margin of a task. The

cases where F = 0 or F = MM can be analyzed in a similar manner. Actually, the

results of the 0 < F < MM case apply to both cases where F = 0 or F = MM .

The fact that 0 < F < MM does not guarantee that there is some delay margin

for a task to exploit. As shown in Figure 50, 0 < Fi < MMi holds for task Ti.

However, the end time of Ti is also the ready time of Ti+1. Although the execution of

Ti can be postponed without missing its deadline, it is possible that the postponed

Ti+1 may miss its deadline. Again, the fundamental rule of adjusting the ready time

of a task is to improve the energy performance and not affect the timing performance.

It is also a possibility that Ti and Ti+1 are swapped to take advantage of the delay

margin of Ti. This adjustment is not considered in the proposed algorithm. The

proposed algorithm sticks to the EDF scheduling rule when the timing constraint is

considered. Swapping is against the EDF algorithm and may lead to more deadline

misses.

In Figure 50, another timing parameter is defined. The available delay margin is

defined as the difference between the maximum delay margin and the ready time flag,

as given by Eq. (33). For the two special cases, MA = MM if F = 0, and MA = 0
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Figure 51: Definition of end time interval.

if F = MM .

MA = MM − F (33)

If a task is not immediately followed by another task, or in other words, the end

time of the current task is not equal to the ready time of the next task, there will be

some delay margin for the current task. Figure 51 shows one of such scenarios. The

end time of Ti is ahead of the ready time of Ti+1. A parameter called the end time

interval of a task is defined as the difference between its end time and the ready time

of the next task, as given by Eq. (34).

Ii = Ai+1 − (Ai + Ei) (34)

The end time interval of a task is a measure of the maximum time length by which

a task can be delayed for execution before the next task is ready. For the scenario

shown in Figure 51, the task Ti can be postponed for execution from its ready time Ai

by its end time interval Ii. In this scenario, the available delay margin MAi is greater

than Ti. Although Ti can be executed from the time instant as late as Ai +MAi to

respect its deadline, the maximum delay should be Ii so that the schedule of Ti+1 is

not altered. A parameter called the ready time adjustment margin M is defined to

be the minimum value between available delay margin and end time interval, as given
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by Eq. (35). For the scenario shown in Figure 50, the end time interval is zero. The

definition of ready time adjustment margin also applies.

M = min(MA, I) (35)

Figure 52 shows the scenario where available delay margin is less than end time

interval of a task. For this scenario, ready time adjustment margin is equal to available

delay margin. The task Ti must be executed no later than Ai +MAi to respect its

deadline. Therefore, for a task with 0 < F < MM , the ready time adjustment

margin M = min(MA, I). For the special case F = MM and MA = 0, the ready

time adjustment margin is M = 0 = min(MA, I). For the special case F = 0 and

MA = MM , the ready time adjustment margin is M = min(MM, I) = min(MA, I).

In summary, the ready time adjustment margin of a task is the minimum value

between its available delay margin and end time interval when 0 ≤ F ≤ MM . For

the case F > MM , the ready time adjustment margin is always M = 0. A task with

initial ready time Ai may be executed from any time instant no earlier than Ai and

no later than Ai +Mi to respect its deadline. In the meantime, the ready time of the

next task is not changed. Algorithm 2 is used to calculate the ready time adjustment

margin of a task based on the initial ready time determined using the EDF algorithm

shown in Algorithm 1. The ready time adjustment margin is calculated for tasks
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T1 ≤ Ti ≤ TN−1 but not for the last task TN . This is because the calculation of the

end time interval of the current task needs the ready time of the next task, which

is not available for the last task. For the last task TN , the ready time adjustment

margin is set to be MN = 0.

Algorithm 2 Calculate Ready Time Adjustment Margin

Require: A set of N tasks T = Ti(Ri, Ei, Di,Wi) and initial schedule with task ready
time TEDF = Ti(Ai, Ei, Di,Wi).

1: for i = 1 : N − 1 do
2: Ready Time Flag Fi = Ai −Ri

3: Maximum Delay Margin MMi = Di −Ri − Ei

4: if Fi > MMi then ⊲ Deadline is already missed.
5: Ready Time Adjustment Margin Mi = 0
6: else
7: Available Delay Margin MAi = MMi − Fi

8: End Time Interval Ii = Ai+1 − (Ai + Ei)
9: Ready Time Adjustment Margin Mi = min(MAi, Ii)

10: end if
11: end for
12: if i == N then
13: Mi = 0
14: end if
15: Algorithm output is Ready Time Adjustment Margin: Mi.

5.2.3 Determine Ready Time Offset

The actual start time of a task is determined based on the ready time generated

using Algorithm 1 and the ready time adjustment margin calculated using Algorithm

2. The actual start time is the sum of the ready time and a new parameter called

the ready time offset. The ready time adjustment margin is the length of time by

which the start time can be delayed from the ready time. Whether or not this margin

is exploited depends on supercapacitor state and energy harvesting. The ready time

offset is the actual adjustment made on the ready time. This subsection presents the

rules to determine the ready time offset. The rules are based on the results presented

in Chapter IV.
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Figure 53 shows the ready time and ready time adjustment margin of a task. The

start time of this task Si can be any time instant that satisfies Ai ≤ Si ≤ (Ai +Mi).

The latest end time of this task Li is therefore Li = Ai + Mi + Ei. The greedy

schedule sets the start time as Si = Ai and the lazy schedule uses Si = Ai + Mi.

Both schedules respect the task deadline. The difference is that one schedule may

be preferable if energy constraint is considered. To determine if the greedy or lazy

schedule is adopted, supercapacitor initial state at time instant Ai is needed. The

initial state is the initial voltages V1(t = Ai) and V2(t = Ai). Meanwhile, the energy

source profile during the interval between Ai and Li must be considered.

Based on the results in Chapter IV, the rules to determine which schedule should

be used are summarized as follows.

1. Rule 1: If the supercapacitor state satisfies the condition that V1(t = A) >

V2(t = A) and there is no harvested energy during the interval between A and

L, the greedy schedule is adopted. The ready time offset is zero: ∆ = 0. The

start time is the ready time: S = A.

2. Rule 2: For any other scenarios of supercapacitor state and energy harvesting,

the lazy schedule is used. The ready time offset is the ready time adjustment

margin: ∆ = M . The start time is the ready time plus the ready time offset:

S = A+∆. This start time expression also applies to the first scenario.

The ready time offset is determined using the Algorithm 3. Again, the ready time
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offset is calculated for tasks T1 ≤ Ti ≤ TN−1 but not for the last task TN . For the

last task TN , the ready time offset is set to be ∆N = 0. Once the ready time offset

is known, the start time of a task is calculated as the ready time plus the ready time

offset. The initial schedule is modified. The modified schedule maintains the timing

performance of the initial schedule and potentially improves the energy performance.

Algorithm 3 Determine Ready Time Offset

Require: A set of N tasks: T = Ti(Ri, Ei, Di,Wi); initial schedule TEDF with ready
time Ai: TEDF = Ti(Ai, Ei, Di,Wi); ready time adjustment margin: Mi; energy
source model: ES(BS, DS,WS); and supercapacitor initial state: V1(t = 0) and
V2(t = 0).

1: Simulation time: t
2: Simulation input 1: Supercapacitor initial state V1(t = 0) and V2(t = 0)
3: Simulation input 2: Energy source profile built using ES(BS, DS,WS)
4: Simulation input 3: Task set profile built using initial schedule TEDF =

Ti(Ai, Ei, Di,Wi)
5: for i = 1 : N − 1 do
6: Calculate supercapacitor voltage for 0 ≤ t ≤ Ai using inputs 1-3
7: Get supercapacitor state V1(t = Ai) and V2(t = Ai)
8: Latest End Time Li = Ai +Mi + Ei

9: if (V1(t = Ai) > V2(t = Ai))&(WS(Ai < t < Li) == 0) then ⊲ Rule 1
10: Ready Time Offset ∆i = 0
11: else ⊲ Rule 2
12: Ready Time Offset ∆i = Mi

13: end if
14: Start Time Si = Ai +∆i

15: Modified Schedule TMEDF = Ti(Si, Ei, Di,Wi)
16: Update task set profile using modified schedule TMEDF = Ti(Si, Ei, Di,Wi)
17: end for
18: if i == N then
19: Ready Time Offset ∆i = 0
20: Start Time Si = Ai

21: end if
22: Algorithm output is modified schedule TMEDF defined by task start time Si:

TMEDF = Ti(Si, Ei, Di,Wi).

5.2.4 MEDF Algorithm

The complete MEDF algorithm is summarized in Algorithm 4. The inputs of this

algorithm include: a set of N ready but not scheduled tasks: T = Ti(Ri, Ei, Di,Wi);
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energy source model: ES(BS, DS,WS); and supercapacitor initial state: V1(t = 0)

and V2(t = 0). The algorithm is a three step process:

1. Step 1: Generate an initial schedule using Algorithm 1. The input of this algo-

rithm is the task set T = Ti(Ri, Ei, Di,Wi). The output is the initial schedule

defined by task ready time Ai: TEDF = Ti(Ai, Ei, Di,Wi).

2. Step 2: Calculate ready time adjustment margin of the initial schedule using

Algorithm 2. The inputs of Algorithm 2 are the task set T = Ti(Ri, Ei, Di,Wi)

and the initial schedule TEDF = Ti(Ai, Ei, Di,Wi). The output is the task ready

time adjustment margin Mi.

3. Step 3: Determine ready time offset of the initial schedule using Algorithm

3. The inputs are: the task set T = Ti(Ri, Ei, Di,Wi); the initial schedule

TEDF = Ti(Ai, Ei, Di,Wi); ready time adjustment margin Mi; energy source

model ES(BS, DS,WS); and supercapacitor initial state: V1(t = 0) and V2(t =

0). The output is the modified schedule TMEDF defined by task start time Si:

TMEDF = Ti(Si, Ei, Di,Wi).

5.3 MEDF Algorithm Implementation and Evaluation

5.3.1 Simulation Setup

The MEDF algorithm is implemented based on the system model presented in Section

5.1. The supercapacitor VLR model for the 10 F supercapacitor developed in Chapter

II is used as the energy storage model. Its initial state is set to be V1(t = 0) = V2(t =

0) = 1 V, which is the supercapacitor threshold voltage.

The energy source is modeled as a periodic current pulse train. The period is 100

s. The begin time of each pulse is BS(i) = 50 + 100 ∗ (i − 1) s. The execution time

is same for all the pulses and is set to be ES(i) = 10 s. The weights of the pulses
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Algorithm 4 MEDF Algorithm

Require: A set of N ready but not scheduled tasks: T = Ti(Ri, Ei, Di,Wi); energy
source model: ES(BS, DS,WS); and supercapacitor initial state: V1(t = 0) and
V2(t = 0).

1: Step 1: Generate an initial schedule using Algorithm 1.
2: Input: task set T .
3: Output: initial schedule TEDF .
4: Step 2: Calculate ready time adjustment margin of the initial schedule using

Algorithm 2.
5: Input: task set T and initial schedule TEDF .
6: Output: task ready time adjustment margin Mi.
7: Step 3: Determine ready time offset of the initial schedule using Algorithm 3.
8: Input: task set T ; initial schedule TEDF ; ready time adjustment margin Mi;

energy source model: ES(BS, DS,WS); and supercapacitor initial state: V1(t = 0)
and V2(t = 0).

9: Output: modified schedule TMEDF .
10: MEDF Algorithm Output: modified schedule TMEDF defined by task start time

Si: TMEDF = Ti(Si, Ei, Di,Wi).

WS(i) are uniformly distributed between [100, 300] mA. The current magnitude range

is adopted from Section 2.4.4.

Every simulation run creates a task set composed of multiple periodic tasks. A

periodic task with two jobs T1 and T2 is shown in Figure 54. The release times of

T1 and T2 are R1 and R2, respectively. The interrelease time is defined as the period

P of a task: P = R2 − R1. The execution times of the jobs in a periodic task are

equal. Based on the execution time and period of a task, its duty cycle is defined as

DC = E/P . The release time of the first job in a periodic task is called the phase of

a task. For the task shown in Figure 54, the phase Φ = R1. The release times of the

jobs are Ri = Φ+P ∗ (i− 1). The relative deadline of a job is set to be the period of

the task. Therefore, the absolute deadline of each job is Di = Φ+P ∗ i. For example,

the deadline of the first job is D1 = Φ+ P .

In this simulation setup, each task set is composed of five periodic tasks. Each

task has five jobs. Therefore, each task set has 25 jobs to be scheduled. The periods

are randomly selected from a set {10, 20, 30, . . . , 100} s, each value having an equal

81



Time  
C

u
rr

e
n
t 
 

P

R1 R2=D1

T1

T2

 

Figure 54: A periodic task with two jobs.

probability of being selected. The duty cycles are selected from a set {0.1, 0.2, 0.3,

. . . , 1}, each value having an equal probability of being selected. The phase of a task

Φi is uniformly distributed between [0, Pi], where Pi is its period. The weights of the

jobs are uniformly distributed between [30, 80] mA. This current range is also taken

from Section 2.4.4. With a slight abuse of the terminology, the jobs are also called

the tasks in this dissertation.

5.3.2 Evaluation Metrics

For each simulation run, two outputs are generated. The task schedule TMEDF created

by the MEDF algorithm is used to evaluate the timing performance of this algorithm.

The supercapacitor terminal voltage profile VMEDF is used to evaluate the energy

performance. As a comparison, the task schedule TEDF and supercapacitor terminal

voltage profile VEDF are also generated. The MEDF algorithm is evaluated in terms

of two metrics: deadline miss rate α and energy violation rate β.

A task misses its deadline if the completion time is later than its deadline. For

the MEDF algorithm, the deadline is missed if Si+Ei > Di. For the EDF algorithm,

the deadline is missed if Ai + Ei > Di. Deadline miss rate α is defined as the ratio

between the number of tasks missing their deadlines ND and the number of tasks to

be scheduled N , as given by Eq. (36).

α =
ND

N
(36)
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Figure 55: Energy source model for a simulation setup.

The MEDF algorithm guarantees that the task timing constraints of the EDF

schedule are preserved in Step 2. Therefore, it is expected that the timing perfor-

mance of the MEDF algorithm in terms of deadline miss rate is the same as the EDF

algorithm. This observation will be verified using the simulation results.

The execution of a task is considered as an energy violation if the supercapacitor

terminal voltage falls below the operation threshold voltage during task execution.

For the MEDF algorithm, an energy violation occurs when min(VMEDF (Si ≤ t ≤

(Si+Ei)) < 1. For the EDF algorithm, an energy violation occurs if min(VEDF (Ai ≤

t ≤ (Ai + Ei)) < 1. The energy violation rate β is defined as the ratio between the

number of tasks having energy violations NE and the number of tasks to be scheduled

N , as given by Eq. (37).

β =
NE

N
(37)

5.3.3 An Example

The implementation and evaluation of the MEDF algorithm is illustrated using a

simulation setup detailed in this subsection. The supercapacitor initial state is V1(t =

0) = V2(t = 0) = 1 V. The energy source model is shown in Figure 55 for the first

three periods. The period is 100 s. The begin times of the three pulses are 50, 150,

and 250 s. The durations are all 10 s. The weights are 125, 155, and 180 mA.
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Figure 56: Two periodic tasks for a simulation setup. (a) Tasks 1-3. (b) Tasks 4-6.

Figure 56 shows the task set used in this simulation. For simplicity, the task set

consists of two periodic tasks and each task is composed of three jobs. All together,

six tasks (jobs) need to be scheduled. As shown in Figure 56(a), tasks T1 − T3 are

created using the first periodic task. The period is 80 s, phase is 0 s, duty cycle is 0.1.

The execution time is therefore 8 s. Figure 56(b) shows the second periodic task and

the last three tasks T4 − T6. The period is 100 s, phase is 30 s, and execution time

is 10 s corresponding to a duty cycle 0.1. The weights of the six tasks are randomly

selected between [30, 80] mA. The task parameters are listed in Table 5. The values

of the temporal parameters Ri, Ei, and Di are in the units of seconds. The values of

weights Wi are in the units of mA.

The EDF schedule determined using Algorithm 1 is shown in Figure 57. All the
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Table 5: Tasks to Be Scheduled

T1 T2 T3 T4 T5 T6

Release Time (Ri) 0 80 160 30 130 230

Execution Time (Ei) 8 8 8 10 10 10

Deadline (Di) 80 160 240 130 230 330

Weight (Wi) 35 30 40 42 37 33
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Figure 57: Task schedule determined using EDF algorithm.

tasks are executed immediately after it is released. All the deadlines are respected.

Therefore, the deadline miss rate is αEDF = 0. The supercapacitor terminal voltage

profile is shown in Figure 58. Three energy violations occur: T1, T4, and T5. The

minimum supercapacitor terminal voltages during the executions of the three tasks

are 0.9670 V, 0.9216 V, and 0.9888 V, respectively. The energy violation rate is

therefore βEDF = 3/6 = 0.5.
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Figure 58: Supercapacitor terminal voltage profile of EDF schedule.
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Table 6: EDF Schedule and Ready Time Adjustment Margin

EDF Schedule T1 T4 T2 T5 T3 T6

EDF Schedule Ready Time (Ai) 0 30 80 130 160 230

Ready Time Flag (Fi = Ai −Ri) 0 0 0 0 0 0

Maximum Delay Margin (MMi = Di −Ri − Ei) 72 90 72 90 72 90

Available Delay Margin (MAi = MMi − Fi) 72 90 72 90 72 90

End Time Interval (Ii = Ai+1 − (Ai + Ei)) 22 40 42 20 62 N/A

Ready Time Adjustment Margin 22 40 42 20 62 N/A

Mi = min(MAi, Ii)

Algorithm 2 is executed to determine the task ready time adjustment margin based

on the EDF schedule. Table 6 lists the calculated parameters. Algorithm 3 is run to

calculate the task ready time offset. The results are shown in Table 7. The task start

time is then determined and the MEDF schedule is finalized. The MEDF schedule

is shown in Figure 59. Tasks T1, T4, and T5 are postponed for execution. Although

some tasks are delayed for execution, all the deadlines are still respected. Therefore,

the deadline miss rate is again αMEDF = 0. The MEDF and EDF algorithms have

the same timing performance. The supercapacitor terminal voltage profile is shown

in Figure 60. One energy violation occurs. The minimum supercapacitor voltage

during the T1 execution is 0.9670 V, which results in an unsuccessful execution. The

energy violation rate is βMEDF = 1/6 = 0.167. This example demonstrates that the

MEDF algorithm is better in terms of energy performance than the EDF algorithm

while maintaining the same timing performance.

5.3.4 Evaluation Results

The simulations are run for 200 times using the setup specified in Section 5.3.1.

The deadline miss rates and energy violation rates are recorded for the MEDF and

EDF schedules. The obtained evaluation metrics are sorted in the ascending orders

and plotted. As shown in Figure 61, 120 out of the 200 simulation runs have zero

deadline miss rates. The EDF and MEDF algorithms always have the same deadline
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Table 7: MEDF Schedule and Ready Time Offset

EDF Schedule T1 T4 T2 T5 T3 T6

EDF Schedule Ready Time (Ai) 0 30 80 130 160 230

Ready Time Adjustment Margin 22 40 42 20 62 N/A

Mi = min(MAi, Ii)

Execution Time (Ei) 8 10 8 10 8 10

Latest End Time 30 80 130 160 230 N/A

Li = Ai +Mi + Ei

V1(t = Ai) 1 0.9693 1.0575 0.8947 1.1554 N/A

V2(t = Ai) 1 0.9988 1.0130 0.9974 1.0277 N/A

If V1(t = Ai) > V2(t = Ai) False False True False True N/A

If WS(Ai < t < Li) == 0 True False True False True N/A

Ready Time Offset (∆i) 22 40 0 20 0 N/A

MEDF Start Time (Si = Ai +∆i) 22 70 80 150 160 230
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Figure 59: Task schedule determined using MEDF algorithm.
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Figure 60: Supercapacitor terminal voltage profile of MEDF schedule.
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Figure 61: Deadline miss rates of EDF and MEDF algorithms.
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Figure 62: Energy violation rates of EDF and MEDF algorithms.

miss rates. This is due to the rules used to develop the MEDF algorithm. The task

timing constraints of the EDF algorithm are preserved in the MEDF algorithm. The

energy violation rates are shown in Figure 62. For the EDF algorithm, 110 out of the

200 simulation runs have an energy violation rate βEDF = 1. Among the 110 runs,

the MEDF schedules have an energy violation rate less than one for five runs. Among

the other 90 runs, the MEDF algorithm results in an energy violation rate smaller

than that of the EDF algorithm for 54 runs. All together, the MEDF schedules result

in a smaller energy violation rate for 59 runs and a same energy violation rate for

141 runs. The simulation results again verify that the MEDF algorithm improves the

energy performance of the EDF algorithm and maintains the timing performance at

the same time.

To quantitatively evaluate the improvement of the MEDF algorithm over the EDF
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algorithm in terms of energy violation rate, the simulation setup is slightly modified.

As defined in [38,44], the utilization of a scheduler is

U =
N
∑

i=1

Ei

Pi

, (38)

where N is the number of the periodic tasks, Ei and Pi are the execution times and

periods, respectively. In this simulation setup, N = 5. For each task set, the duty

cycles of the five periodic tasks are set to be equal. Therefore, the utilization is

U = 5 ∗ DC, where DC is the duty cycle of a periodic task. The duty cycle varies

from 0.02 to 0.14 with a step of 0.02. The utilization is therefore scanned from 0.1

to 0.7 with a step of 0.1. The periods, phases, and weights of the tasks are defined

using the same setup specified in Section 5.3.1.

The mean absolute percentage error (MAPE) is used to characterize the improve-

ment of the MEDF algorithm over the EDF algorithm in terms of energy violation

rate. The MAPE is defined as follows:

MAPE =
1

M

M
∑

j=1

|βMEDF (j)− βEDF (j)|
βEDF (j)

∗ 100%, (39)

where M is the number of simulation runs. The MAPE is a measure of the extent to

which the energy violation rate of the EDF algorithm can be reduced if the MEDF

algorithm is used. In this simulation setup, 30 simulations are run for each utilization

and therefore M = 30.

The calculated MAPE values for different utilizations are plotted in Figure 63. The

MAPE increases when the utilization decreases. The average MAPE is 17.5% for the

utilizations shown in Figure 63, which means that the average energy violation rate

of the EDF algorithm is reduced by 17.5%. The MAPE is 37% for utilization U = 0.1

and decreases all the way to 0.8% for U = 0.7. Therefore, the MEDF algorithm

improves the EDF algorithm in terms of energy violation rate more significantly when

a sensor node is lightly loaded. Wireless sensor nodes usually operate periodically.
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Figure 63: MAPE versus utilization for MEDF algorithm.

If the duty cycle of a sensor node is relatively low, the MEDF algorithm can better

utilize the harvested energy than the EDF algorithm.

5.4 Summary

This chapter presents the MEDF algorithm for independent tasks, which are non-

preemptable tasks without precedence constraints. Section 5.1 introduces the system

model for a supercapacitor based environmentally powered wireless sensor node. The

system model has three components: energy source, energy storage, and energy con-

sumer. Section 5.2 presents the MEDF algorithm. The MEDF algorithm has three

steps. First, generate an initial schedule using the EDF algorithm. This step takes

care of the timing constraints of tasks. Second, calculate task ready time adjustment

margin based on the initial schedule. This margin determines how much delay is

allowed if task ready time of the initial schedule is adjusted. Third, task ready time

offset is determined based on supercapacitor state and energy harvesting. Task start

time is task ready time plus the ready time offset. The MEDF algorithm takes into

account the energy constraints of tasks in addition to timing constraints. In Sec-

tion 5.3, the MEDF algorithm is implemented and evaluated in terms of two metrics:

deadline miss rate and energy violation rate. Simulation results show that the MEDF

algorithm improves the energy performance of the EDF algorithm while maintaining

the same timing performance.

90



CHAPTER VI

SCHEDULING TASKS WITH PRECEDENCE

CONSTRAINTS

This chapter continues the quantitative study of the task scheduling problem in su-

percapacitor based environmentally powered wireless sensor nodes. Nonpreemptable

tasks with precedence constraints are considered. Some tasks in a wireless sensor

node may be constrained to execute in certain order. For example, a sensor node can

only transmit data packets after sensing the environment and processing the data.

A task scheduling algorithm for nonpreemptable tasks with precedence constraints

is presented in this chapter. Section 6.1 proposes the modified first in first out

(MFIFO) algorithm. The MFIFO algorithm takes into account supercapacitor state

and energy harvesting. Task precedence constraints are handled by defining a variable

called task effective release time. The MFIFO algorithm is also a three step process.

First, the first in first out (FIFO) algorithm is used to create an initial schedule.

The second and third steps are similar to those of the MEDF algorithm. Section

6.2 implements and evaluates the MFIFO algorithm. Results show that the MFIFO

algorithm improves the energy performance of the FIFO algorithm and maintains the

timing performance at the same time. Section 6.3 is a summary.

6.1 Modified First In First Out (MFIFO) Algorithm

The system model presented in Section 5.1 is used in this chapter to develop the

MFIFO algorithm. The energy source and energy storage models are exactly the

same as the ones defined in Section 5.1. The energy consumer model is modified to

take into account task precedence constraints.
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6.1.1 Task Precedence Constraint and Effective Release Time

In addition to the four parameters (release time, execution time, deadline, and weight)

used to characterize the task model presented in Section 5.1, a task may also have

precedence constraints. If tasks are constrained to execute in some order, they are

said to have precedence constraints. The precedence constraints among tasks are

specified using precedence relations [37]. A task Tp is a predecessor of another task

Tq (and Tq a successor of Tp) if Tq cannot begin execution until the execution of Tp

completes. This fact is usually denoted by Tp < Tq. Two tasks are independent

when neither Tp < Tq or Tp > Tq. A task with predecessors is ready for execution

when the time is at or after its release time and executions of all the predecessors are

completed. Without loss of generality, it is assumed that in this chapter a task may

have no more than one predecessor or successor for simplicity.

The release times of tasks with precedence constraints are sometimes inconsistent

with the precedence constraints, which means that the release time of a task may be

later than that of its successor. Figure 64 shows two tasks Tp and Tq using solid lines.

If Tp < Tq, the release time of task Tq is earlier than the release time of Tp, which

is not consistent with the precedence constraint. A parameter called the effective

release time of a task is defined to deal with such inconsistency. The effective release

time of a task without predecessor is equal to its release time. The effective release

time of a task with predecessor is equal to the maximum value between its release

time and the release time of its predecessor plus the execution time of its predecessor.

For example, the effective release time ERq of Tq is defined by Eq. (40) depending

on if there is a precedence constraint. As shown in Figure 64, the task Tq denoted by

dashed lines shows its effective release time if Tp < Tq.

ERq =















max(Rq, Rp + Ep), Tp < Tq;

Rq, otherwise.

(40)
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Figure 64: Definition of task effective release time.

6.1.2 Create An Initial Schedule Using FIFO Algorithm

The FIFO algorithm is used to create an initial schedule instead of the EDF algorithm

used in Chapter V to ensure that the task precedence constraints are satisfied. The

tasks are originally defined by the task set T = Ti(Ri, Ei, Di,Wi) and the precedence

constraints Tp < Tq. The precedence constraints are transformed into timing con-

straints by defining the effective release times. A task is then characterized by four

parameters: effective release time ER, execution time E, deadline D, and weight W .

The task set is now TE = Ti(ERi, Ei, Di,Wi). The FIFO algorithm sorts the effective

release times in the ascending order and determines the ready times of the tasks. The

initial schedule is determined using Algorithm 5.

6.1.3 MFIFO Algorithm

Once the initial schedule is determined, the ready time adjustment margin and ready

time offset can be calculated using Algorithms 2 and 3 shown in Chapter V, respec-

tively. It should be noted that the release times used in Algorithms 2 and 3 should

be replaced by the effective release times. The complete MFIFO algorithm is sum-

marized in Algorithm 6. The inputs of this algorithm include: a set of N ready but

not scheduled tasks: T = Ti(Ri, Ei, Di,Wi); task precedence constraints: Tp < Tq;

energy source model: ES(BS, DS,WS); and supercapacitor initial state: V1(t = 0)

and V2(t = 0). The MFIFO algorithm is a three step process:
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Algorithm 5 Create An Initial Schedule Using FIFO Algorithm

Require: A set of N ready but not scheduled tasks: T = Ti(Ri, Ei, Di,Wi) and task
precedence constraints: Tp < Tq.

1: for i = 1 : N do
2: if Tp < Tq then
3: ERq = max(Rq, Rp + Ep)
4: else
5: ERq = Rq

6: end if
7: end for
8: Sort N tasks in the ascending order of their effective release times.
9: Current Time TC = 0

10: for i = 1 : N do
11: Ready Time Ai = max(TC , ERi)
12: Current Time TC = Ai + Ei

13: end for
14: Algorithm output is initial schedule TFIFO defined by task ready timeAi: TFIFO =

Ti(Ai, Ei, Di,Wi) and modified task set TE = Ti(ERi, Ei, Di,Wi).

1. Step 1: Create an initial schedule using Algorithm 5. The input of this al-

gorithm is the task set T = Ti(Ri, Ei, Di,Wi) and task precedence constraints

Tp < Tq. The output is the initial schedule TFIFO defined by task ready time

Ai: TFIFO = Ti(Ai, Ei, Di,Wi) and modified task set TE = Ti(ERi, Ei, Di,Wi).

2. Step 2: Calculate ready time adjustment margin of the initial schedule us-

ing Algorithm 2. The inputs of Algorithm 2 are the modified task set TE =

Ti(ERi, Ei, Di,Wi) and the initial schedule TFIFO = Ti(Ai, Ei, Di,Wi). The

output is the task ready time adjustment margin Mi.

3. Step 3: Determine ready time offset of the initial schedule using Algorithm

3. The inputs are: the modified task set TE = Ti(ERi, Ei, Di,Wi); the initial

schedule TFIFO = Ti(Ai, Ei, Di,Wi); the ready time adjustment margin Mi;

the energy source model ES(BS, DS,WS); and the supercapacitor initial state

V1(t = 0) and V2(t = 0). The output is the modified schedule TMFIFO defined

by task start time Si: TMFIFO = Ti(Si, Ei, Di,Wi).
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Algorithm 6 MFIFO Algorithm

Require: A set of N ready but not scheduled tasks: T = Ti(Ri, Ei, Di,Wi); task
precedence constraints: Tp < Tq; energy source model: ES(BS, DS,WS); and
supercapacitor initial state: V1(t = 0) and V2(t = 0).

1: Step 1: Create an initial schedule using Algorithm 5.
2: Input: task set T and task precedence constraints Tp < Tq.
3: Output: initial schedule TFIFO and modified task set TE.
4: Step 2: Calculate ready time adjustment margin of the initial schedule using

Algorithm 2.
5: Input: modified task set TE and initial schedule TFIFO.
6: Output: task ready time adjustment margin Mi.
7: Step 3: Determine ready time offset of the initial schedule using Algorithm 3.
8: Input: modified task set TE; initial schedule TFIFO; ready time adjustment mar-

gin Mi; energy source model: ES(BS, DS,WS); and supercapacitor initial state:
V1(t = 0) and V2(t = 0).

9: Output: modified schedule TMFIFO.
10: MFIFO Algorithm Output: modified schedule TMFIFO defined by task start time

Si: TMFIFO = Ti(Si, Ei, Di,Wi).

6.2 MFIFO Algorithm Implementation and Evaluation

6.2.1 Simulation Setup

The MFIFO algorithm is implemented and evaluated using a simulation setup similar

to the one used for the MEDF algorithm presented in Section 5.3.1. The energy

source and energy storage models are exactly the same. The energy consumer model

is modified. Each task set has six periodic tasks and each periodic task has five jobs.

Therefore, each task set is composed of 30 tasks. The timing and energy parameters

of a task are defined in the same way as the one used for the MEDF algorithm,

too. The precedence constraints are assigned with controlled randomness. The six

periodic tasks are grouped into three groups. Each group consists of two periodic

tasks. For convenience, the six periodic tasks are numbered as {P1, P2, . . . , P6}. The

three groups are then {P1, P2}, {P3, P4}, and {P5, P6}. For each group, a job of the

first periodic task is randomly selected as the predecessor of a job randomly selected

from the second periodic task. Therefore, three pairs of precedence constraints are

assigned for each task set. For example, Figure 65 shows that in the first group
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Figure 65: Assignment of precedence constraint.

{P1, P2}, the third job T3 of the first periodic task P1 is selected as the predecessor

of the second job T7 of the second periodic task P2: T3 < T7. The MFIFO algorithm

is also evaluated in terms of the two metrics used for the MEDF algorithm: deadline

miss rate and energy violation rate.

6.2.2 An Example

An example is used to illustrate the implementation and evaluation of the MFIFO

algorithm. The simulation setup is adopted from Section 5.3.3, which is used to

illustrate the MEDF algorithm implementation and evaluation. The energy source

model uses the model shown in Figure 55. The supercapacitor initial state is V1(t =

0) = V2(t = 0) = 1 V. The two periodic tasks shown in Figure 56 are used to

define the task timing and energy constraints. The job T2 from the first periodic

task is selected as the predecessor of the job T4 from the second periodic task. The

precedence constraint is therefore T2 < T4. The effective release time of task T4 is

ER4 = max(R4, R2 + E2) = 88 s. The effective release times of the other five tasks

are their release times. The task characteristics are listed in Table 8.

The FIFO schedule determined using Algorithm 5 is shown in Figure 66. All the

tasks are scheduled for execution at their effective release times. The task T4 begins
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Table 8: Tasks With Precedence Constraints to Be Scheduled

T1 T2 T3 T4 T5 T6

Release Time (Ri) 0 80 160 30 130 230

Effective Release Time (ERi) 0 80 160 88 130 230

Execution Time (Ei) 8 8 8 10 10 10

Deadline (Di) 80 160 240 130 230 330

Weight (Wi) 35 30 40 42 37 33
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Figure 66: Task schedule determined using FIFO algorithm.

execution when its predecessor T2 completes execution. The precedence constraint is

satisfied. All the tasks respect their deadlines. The deadline miss rate is therefore

αFIFO = 0. The supercapacitor terminal voltage profile is shown in Figure 67. Two

energy violations occur: T1 and T5. The minimum supercapacitor terminal voltages

during the executions of the two tasks are 0.9670 V and 0.9867 V, respectively. The

energy violation rate is therefore βFIFO = 2/6 = 0.333.
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Figure 67: Supercapacitor terminal voltage profile of FIFO schedule.
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Table 9: FIFO Schedule and Ready Time Adjustment Margin

FIFO Schedule T1 T2 T4 T5 T3 T6

FIFO Schedule Ready Time (Ai) 0 80 88 130 160 230

Ready Time Flag (Fi = Ai − ERi) 0 0 0 0 0 0

Maximum Delay Margin 72 72 32 90 72 90

MMi = Di − ERi − Ei

Available Delay Margin (MAi = MMi − Fi) 72 72 32 90 72 90

End Time Interval (Ii = Ai+1 − (Ai + Ei)) 72 0 32 20 62 N/A

Ready Time Adjustment Margin 72 0 32 20 62 N/A

Mi = min(MAi, Ii)
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Figure 68: Task schedule determined using MFIFO algorithm.

The task ready time adjustment margin based on the FIFO schedule is calculated

using Algorithm 2. Table 9 lists the calculated parameters. Algorithm 3 is run to

calculate the task ready time offset. The results are shown in Table 10. The task

start time is then determined and the MFIFO schedule is finalized. The MFIFO

schedule is shown in Figure 68. Tasks T1 and T5 are postponed for execution. All the

deadlines are respected. Therefore, the deadline miss rate is still αMFIFO = 0. The

MFIFO and FIFO algorithms have the same timing performance. The supercapacitor

terminal voltage profile is shown in Figure 69. No energy violation occurs. The energy

violation rate is βMFIFO = 0. This example demonstrates that the MFIFO algorithm

is better than the FIFO algorithm in terms of energy performance while maintaining

the same timing performance.
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Table 10: MFIFO Schedule and Ready Time Offset

FIFO Schedule T1 T2 T4 T5 T3 T6

FIFO Schedule Ready Time (Ai) 0 80 88 130 160 230

Ready Time Adjustment Margin 72 0 32 20 62 N/A

Mi = min(MAi, Ii)

Execution Time (Ei) 8 8 10 10 8 10

Latest End Time 80 88 130 160 230 N/A

Li = Ai +Mi + Ei

V1(t = Ai) 1 1.1005 1.0738 0.8825 1.1539 N/A

V2(t = Ai) 1 1.0247 1.0287 1.0109 1.0352 N/A

If V1(t = Ai) > V2(t = Ai) False True True False True N/A

If WS(Ai < t < Li) == 0 False True True False True N/A

Ready Time Offset (∆i) 72 0 0 20 0 N/A

MFIFO Start Time 72 80 88 150 160 230

Si = Ai +∆i
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Figure 69: Supercapacitor terminal voltage profile of MFIFO schedule.
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Figure 70: Deadline miss rates of FIFO and MFIFO algorithms.

6.2.3 Evaluation Results

The simulations are run for 200 times using the setup specified in Section 6.2.1. The

deadline miss rates and energy violation rates are recorded for the FIFO and MFIFO

schedules. The obtained evaluation metrics are sorted in the ascending orders and

plotted. As shown in Figure 70, 35 out of the 200 simulation runs have zero deadline

miss rates. The FIFO and MFIFO algorithms always have the same deadline miss

rates. The timing and precedence constraints of the FIFO schedules are preserved

in the MFIFO schedules. The energy violation rates are shown in Figure 71. For

the FIFO algorithm, 96 out of the 200 simulation runs have an energy violation rate

βFIFO = 1. Among the 96 runs, the MFIFO schedules have an energy violation rate

less than one for seven runs. Among the other 104 runs, the MFIFO algorithm results

in an energy violation rate smaller than that of the FIFO algorithm for 81 runs. All

together, the MFIFO schedules result in a smaller energy violation rate for 88 runs

and a same energy violation rate for 112 runs. The simulation results verify that

the MFIFO algorithm improves the energy performance of the FIFO algorithm and

maintains the timing performance at the same time.

The simulation setup is slightly modified to quantitatively compare the energy

violation rates of the FIFO and MFIFO algorithms. In Eq. (38), N = 6 for this

simulation setup. The duty cycles of the six periodic tasks take the same value for
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Figure 71: Energy violation rates of FIFO and MFIFO algorithms.
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Figure 72: MAPE versus utilization for MFIFO algorithm.

each utilization. The utilization is U = 6 ∗DC. The duty cycle increases from 0.02

to 0.1 with a step of 0.02. The utilization is scanned from 0.12 to 0.6 with a step

of 0.12. The other parameters of the tasks including periods, phases, weights, and

precedence constraints are still defined using the setup specified in Section 6.2.1. The

simulations are run for 30 times for each utilization. In Eq. (39), M = 30. Figure 72

shows the calculated MAPE values for the different utilizations. The MAPE decreases

as the utilization increases. The average MAPE for the five utilizations is 12.1%. The

MFIFO algorithm reduces the average energy violation rate of the FIFO algorithm by

12.1%. The MAPE is 25% for utilization U = 0.12. Like the MEDF algorithm, the

MFIFO algorithm improves the energy violation rate more significantly if the sensor

node operates with a relatively low duty cycle.
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6.3 Summary

This chapter proposes the MFIFO algorithm for nonpreemptable tasks with prece-

dence constraints. Section 6.1 presents the MFIFO algorithm. The task precedence

constraints are transformed into timing constraints by defining the effective release

time of a task. The effective release time of a task with predecessor is equal to the

maximum value between its release time and the release time of its predecessor plus

the execution time of its predecessor. The MFIFO algorithm has three steps. First,

create an initial schedule using the FIFO algorithm. This step takes care of the

timing constraints and precedence constraints of tasks. Second, calculate the ready

time adjustment margin based on the initial schedule. This margin determines how

much delay is allowed if the ready time of the initial schedule is adjusted. Third, the

ready time offset is determined based on supercapacitor state and energy harvesting.

The start time of a task is the ready time plus the ready time offset. The MFIFO

algorithm takes into account the energy constraints of tasks in addition to the tim-

ing constraints. The MFIFO algorithm is implemented and evaluated in Section 6.2.

An example is shown to illustrate how the MFIFO algorithm works. Simulation re-

sults show that the MFIFO algorithm improves the energy performance of the FIFO

algorithm and maintains the timing performance at the same time.
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CHAPTER VII

CONCLUSION

7.1 Dissertation Contributions

This dissertation considers the task scheduling problem in wireless sensor nodes that

harvest energy from ambient environment and use supercapacitor based storage sys-

tems to buffer the harvested energy. This dissertation makes five contributions. First,

a physics based equivalent circuit model for supercapacitors is developed. The variable

leakage resistance (VLR) model takes into account three mechanisms of supercapac-

itors: voltage dependency of capacitance, charge redistribution, and self-discharge.

Second, the effects of time and supercapacitor initial state on supercapacitor volt-

age change and energy loss during charge redistribution are investigated. Third,

the task scheduling problem in supercapacitor based environmentally powered wire-

less sensor nodes is studied qualitatively. The impacts of supercapacitor state and

energy harvesting on task scheduling are examined. Task scheduling rules are devel-

oped. Fourth, the task scheduling problem in supercapacitor based environmentally

powered wireless sensor nodes is studied quantitatively. The modified earliest dead-

line first (MEDF) algorithm is developed to schedule nonpreemptable tasks without

precedence constraints. Finally, the modified first in first out (MFIFO) algorithm is

proposed to schedule nonpreemptable tasks with precedence constraints. The MEDF

and MFIFO algorithms take into account energy constraints of tasks in addition to

timing constraints. The MEDF and MFIFO algorithms improve the energy perfor-

mance and maintain the timing performance of the earliest deadline first (EDF) and

first in first out (FIFO) algorithms, respectively. The contributions are summarized

as follows.
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Chapter II presents the VLR model for supercapacitors. The VLR model is an

equivalent circuit model that takes into account three mechanisms of supercapaci-

tors: voltage dependency of capacitance, charge redistribution, and self-discharge.

The characterization procedures for the VLR model parameters are illustrated us-

ing a 10 F sample supercapacitor. A MATLAB Simulink model is implemented to

determine the variable leakage resistance using the measured supercapacitor voltage

during a self-discharge experiment. The variable leakage resistance is related to the

supercapacitor terminal voltage by a piecewise linear function. Four supercapacitor

models (VLR, EIE, two branch model, and three branch model) are evaluated by

comparing the simulated supercapacitor voltages using these models and the mea-

sured voltage during three experiments: charging-redistribution, self-discharge, and

dynamic charging-discharging experiments. For the charging-redistribution experi-

ment, the VLR model, two branch model, and three branch model results match the

measurement well. The EIE model results show noticeable deviations. For the self-

discharge experiment, the VLR model and EIE model are the most accurate. The

three branch model results slightly mismatch the measurement during certain period

of time. The two branch model is the least accurate for this experiment. For the dy-

namic charging-discharging experiment, the VLR model is much more accurate than

the EIE model.

Chapter III analyzes supercapacitor voltage change and energy loss during charge

redistribution. The VLR model for supercapacitors is used to perform this analy-

sis. The effects of time and supercapacitor initial state on supercapacitor voltage

change during charge redistribution are examined for the case where V1 > V2. For

a fixed supercapacitor initial state, supercapacitor terminal voltage decreases with

time because part of the charge stored in C1 is transferred to C2. For a particular

time, supercapacitor terminal voltage drop is greater if the initial voltage difference

∆V = V1 − V2 is larger. The impacts of time and supercapacitor initial state on
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supercapacitor energy loss are also studied for the case where V1 > V2. For a fixed

supercapacitor initial state, the dissipated powers P2 and P3 due to resistors R2 and

R3 decrease with time. The respective contributions of P2 and P3 to the total energy

loss vary with time. The energy loss is mainly contributed by R2 during the initial

phase of charge redistribution and by R3 for a relatively long term. The relationship

between supercapacitor energy loss and supercapacitor initial state is also studied.

The supercapacitor initial state is characterized in two aspects: absolute initial volt-

ages (V1 and V2) and relative initial voltage difference (∆V = V1 − V2). During the

initial phase of charge redistribution, the total dissipated power P2+P3 and total en-

ergy loss E2+E3 increase with relative initial voltage difference. For a relatively long

term, the total dissipated power P2 + P3 and the total energy loss E2 + E3 decrease

with relative initial voltage difference. The total dissipated power P2 + P3 and total

energy loss E2 + E3 decrease if the absolute initial voltages decrease.

Chapter IV qualitatively studies the task scheduling problem in supercapacitor

based environmentally powered wireless sensor nodes. The impacts of supercapacitor

state and energy harvesting on task scheduling are investigated. A set of six sim-

ulation cases is designed to cover the various scenarios of supercapacitor state and

energy harvesting to evaluate the greedy and lazy task scheduling policies in terms

of two metrics: task execution and energy loss. Based on the simulation results, task

scheduling rules are developed. To maximize the number of successfully executed

tasks, the rules are: use the greedy schedule when supercapacitor state is V1 > V2

and energy harvesting is not available; otherwise, use the lazy policy.

Chapter V and Chapter VI quantitatively study the task scheduling problem in

supercapacitor based environmentally powered wireless sensor nodes. Chapter V con-

siders independent tasks, which are nonpreemptable tasks without precedence con-

straints. Chapter VI considers nonpreemptable tasks with precedence constraints.
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Chapter V presents the MEDF algorithm for independent tasks. The MEDF algo-

rithm has three steps. First, generate an initial schedule using the EDF algorithm.

This step takes care of the timing constraints of tasks. Second, calculate task ready

time adjustment margin based on the initial schedule. This margin determines how

much delay is allowed if task ready time of the initial schedule is adjusted. Third, task

ready time offset is determined based on supercapacitor state and energy harvesting.

Task start time is task ready time plus the ready time offset. The MEDF algorithm

takes into account the energy constraints of tasks in addition to timing constraints.

The MEDF algorithm is implemented and evaluated in terms of two metrics: dead-

line miss rate and energy violation rate. Simulation results show that the MEDF

algorithm improves the energy performance of the EDF algorithm while maintaining

the same timing performance.

Chapter VI presents the MFIFO algorithm for nonpreemptable tasks with prece-

dence constraints. The task precedence constraints are transformed into timing con-

straints by defining the effective release time of a task. The effective release time of a

task with predecessor is equal to the maximum value between its release time and the

release time of its predecessor plus the execution time of its predecessor. The MFIFO

algorithm has three steps. First, create an initial schedule using the FIFO algorithm.

This step takes care of the timing constraints and precedence constraints of tasks.

Second, calculate the ready time adjustment margin based on the initial schedule.

Third, the ready time offset is determined based on supercapacitor state and energy

harvesting. The start time of a task is the ready time plus the ready time offset. The

MFIFO algorithm takes into account the energy constraints of tasks in addition to

the timing constraints. The MFIFO algorithm is implemented and evaluated. Sim-

ulation results show that the MFIFO algorithm improves the energy performance of

the FIFO algorithm and maintains the timing performance at the same time.

The contributions have been reported in the following publications.
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1. Yang, H. and Zhang, Y., “A task scheduling algorithm for supercapacitor

based environmentally powered wireless sensor nodes,” IEEE Transactions on

Power Electronics, submitted.

2. Yang, H. and Zhang, Y., “Analysis of supercapacitor energy loss for power

management in environmentally powered wireless sensor nodes,” IEEE Trans-

actions on Power Electronics, accepted.

3. Yang, H. and Zhang, Y., “Self-discharge analysis and characterization of

supercapacitors for environmentally powered wireless sensor network applica-

tions,” Journal of Power Sources, vol. 196, no. 20, pp. 8866–8873, 2011.

4. Zhang, Y. and Yang, H., “Modeling and characterization of supercapacitors

for wireless sensor network applications,” Journal of Power Sources, vol. 196,

no. 8, pp. 4128–4135, 2011.

5. Yang, H. and Zhang, Y., “Modeling and analysis of a solar powered wireless

sensor node,” in Proceedings of the 2012 International Conference on Comput-

ing, Networking and Communications (ICNC 2012), pp. 970–974, 2012.

6. Yang, H. and Zhang, Y., “Evaluation of supercapacitor models for wireless

sensor network applications,” in Proceedings of the 5th International Conference

on Signal Processing and Communication Systems (ICSPCS 2011), pp. 1–6,

2011.

7. Yang, H. and Zhang, Y., “An equivalent circuit model of supercapacitors

for applications in wireless sensor networks,” Proceedings of SPIE, vol. 7981,

pp. 79810D:1–79810D:9, 2011.

8. Yang, H. and Zhang, Y., “Modeling and analysis of hybrid energy storage

systems for wireless sensor networks,” Proceedings of SPIE, vol. 7647, pp. 76472U:

1–76472U:10, 2010.

107



7.2 Future Work

In this dissertation, the task scheduling problem is considered for nonpreemptable

tasks in a single wireless sensor node that uses supercapacitor based energy storage

systems. The proposed task scheduling algorithms may be extended in three aspects.

First, the task scheduling algorithms for tasks with more characteristics can be

developed. The task model used in this dissertation assumes that the tasks are

nonpreemptable. For example, the MEDF and MFIFO algorithms need to be modified

if task preemptivity is considered.

Second, the task scheduling problem for wireless sensor nodes using other energy

storage systems can be considered. For example, hybrid energy storage systems that

combine supercapacitors and rechargeable batteries have proven to be a viable con-

figuration. In addition to the supercapacitor characteristics, the characteristics of

rechargeable batteries also need to be taken into account to develop task scheduling

algorithms suited for hybrid energy storage systems.

Third, the task scheduling problem for wireless sensor networks is another possible

extension. The network wide task scheduling problem deserves extra efforts because

different sensor nodes in a distributed network usually have different energy harvesting

profiles. Meanwhile, the available energy for a single sensor node typically varies with

time in a nondeterministic manner. This coupled spatial temporal uncertainty adds

complexity to global power management.
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