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SUMMARY

UWB communication is an attractive technology that has the potential to

provide low-power, low-complexity, and high-speed communications in short range

links. One of the main challenges of UWB communications is the highly frequency-

selective channel, which induces hundreds of overlapped copies of the transmitted

pulse with different delays and amplitudes. To collect the energy of these multipath

components, coherent Rake receivers are proposed, but suffer from high implementa-

tion and computational costs on channel estimation. To avoid the stringent channel

estimation, several noncoherent receivers, including energy detector (ED) and trans-

mitted reference (TR), are proposed at the cost of degraded performance. In addi-

tion, when taking into account some practical issues of UWB communications, e.g.,

non-Gaussian impulsive noise, non-ideal antennas, and limited coverage, significant

performance degradation may be introduced by noncoherent receivers.

In this dissertation, we present low-complexity, high-performance, noncoherent

receiver designs for UWB communications that i) avoid the stringent channel estima-

tion; ii) lower the computational complexity of the existing receivers with the aid of

advanced digital signal processing techniques; and iii) improve the error performance

of the noncoherent receivers by accommodating practical imperfections.

First, we propose three multi-symbol detectors (MSDs) for multi-symbol different

detection (MSDD), which has recently caught attention in UWB communications

because of its high performance without requiring explicit channel estimation. To

alleviate the non-deterministic polynomial hardness (NP-hard) of MSDD, we analyze

the statistical model of MSDD and propose an iterative MSD and two MSDs based on

relaxation technique with near-optimal performance and low complexity. Moreover,

xv



the error performance of MSDs is further enhanced by exploiting joint soft-input

soft-output MSDD and forward error correction codes.

Next, we consider the non-Gaussian noise in the presence of multi-access interfer-

ence, which is impulsive when the number of active users is small. To mitigate the

impulsive noise effect, in this dissertation, we propose new differential UWB receivers

based on the generalized Gaussian distribution and Laplace distribution and achieve

better error performance.

Another main issue of UWB communications is the limited radio coverage. To

extend the coverage and improve the performance of UWB systems, we focus on a nov-

el differentially encoded decode-and-forward (DF) non-cooperative relaying scheme.

Putting emphasis on the general case of multi-hop relaying, we illustrate a novel

algorithm for the joint power allocation and path selection (JPAPS), minimizing an

approximate of the overall bit error rate (BER). A simplified scheme is also presented,

which reduces the complexity to O(N2) and achieves a negligible performance loss.

Finally, we concentrate on code-multiplexing (CM) systems, which have recently

drawn attention mainly because they enable noncoherent detection without requiring

either a delay component, as in TR, or an analog carrier, as in frequency-shifted

reference. In this dissertation, we propose a generalized code-multiplexing (GCM)

system based on the formulation of a constrained mixed-integer optimization problem.

The GCM extends the concept of existing CM while retaining their simple receiver

structure, even offering better BER performance and a higher data rate in the sense

that more data symbols can be embedded in each transmitted block. Moreover,

the impacts of non-ideal antennas on the GCM systems are investigated given some

practical antenna measurement data and IEEE 802.15.4a channel environments.

xvi



CHAPTER I

INTRODUCTION

1.1 Motivations

Ultra-wideband (UWB) transmission is a radio technology that utilizes a relatively

large bandwidth (usually greater than 500 MHz). Because of its high resolution, low

probability of intercept, resistance of jamming, and easy extraction of target features,

UWB techniques have caught a great deal of attention in military radar applications

at its early development stage from 1960s [80, 38]. However, those military-focused re-

search activities were classified, and little development has been put into commercial

area until recently [29, 63, 68, 2]. On the other side, UWB technique is promis-

ing for wireless communications, because the large bandwidth enables high channel

capacity, which is proportional to the bandwidth as indicated by the famous Shan-

non theorem. In addition, by transmitting the signal at very low spectral density,

UWB signal could coexist with current narrow-band services with limited mutual

interference [89, 91, 64, 98, 93], avoiding the current overcrowded spectrum issue.

The potential of UWB communications was further unleashed by the U.S. Federal

Communications Commission (FCC), which allowed low-power UWB transmission-

s in a huge unlicensed band [23]. Because of these merits, UWB communications

have recently gain wide interest as an enabling technique that provides low-power,

low-complexity, and high-speed communications in short range links. For example,

IEEE 802.15.4a [40] has regulated UWB communications with maximum 27.24 Mbps

transmission within 10 meters in a single UWB channel (the maximum aggregate

data rate is 653.76 Mbps with 24 non-overlapped channels). The WiMedia UWB [87]

has the capability of 1,024 Mbps, and supports applications such as wireless USB,

1



DVI, and HDMI.

By transmitting ultra-short pulses at a very low-power spectral density, the im-

pulse radio UWB (IR-UWB) is one of the most popular signaling in UWB communi-

cations and was adopted in IEEE 802.15.4a. However, one of the main challenges of

the IR-UWB communication is the highly frequency-selective channel [90, 17, 92, 11],

which induces hundreds of overlapped copies of the transmitted pulse with differ-

ent delays and amplitudes into the received signal. To collect the energy of these

multipath components (MPCs), the coherent Rake receivers [10, 16] are proposed,

but require the high implementation cost on a large number of Rake fingers and the

intensive computational cost for estimating the amplitudes and delays of the MPCs

[49].

To cope with the multipath effect while considering the implementation cost, the

sub-optimal noncoherent UWB receivers, including the energy detector (ED) [82, 20]

and the transmitted-reference (TR) receivers [94, 15, 19], are proposed. The ED

makes decisions on the information symbols by collecting the energy of the received

signal over a desired time and frequency window, and the TR systems transmit a

reference pulse prior to an information pulse and detect the information symbols

by correlating the reference and information signals. Although the ED and the TR

receivers do not require explicit channel estimation and enable simple receiver struc-

tures, they exhibit considerable error performance degradation compared to the ideal

Rake receiver as a result of the high-order noise effect.

To mitigate the effect of the high-order noise, multi-symbol detectors (MSDs)

[33, 50] are designed to jointly detect M consecutive information symbols for differ-

ential UWB systems. By increasing the block size M , the MSDs achieve significant

performance improvements over the TR receivers. However, since the multi-symbol d-

ifferential detection (MSDD) problem is generally non-deterministic polynomial-time

hard (NP-hard), the existing MSDs require considerable computational efforts when
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M is large. If high-performance MSD is of our interest with large M , the optimal MS-

D is prohibited for its exponential complexity, and thus near-optimal low-complexity

MSDs are strongly desired for practical applications.

Meanwhile, most of existing differential UWB receivers are derived based on Gaus-

sian approximation of correlation noise, which is well justified when the noise pro-

cess is Gaussian distributed and the correlation-time-bandwidth product is long [66].

However, in the case of multiple user transmissions, recent studies for coherent Rake

receivers show that the noise can be impulsive [5, 75, 56] when the number of ac-

tive users is small. The non-Gaussian noise distribution could result in performance

degradation without proper handling, and several methods in [5, 75, 56] have been

proposed to mitigate the impulsive noise. However, for differential UWB systems, the

statistics of correlation noise with few active users and the impacts to the differential

receivers are not investigated.

One issue of UWB systems is that the communication range is limited due to the

stringent emission power constraint imposed by the Federal Communications Com-

mission (FCC). To extend the coverage of UWB communications, relaying systems are

proposed for differential UWB systems. However, most of the existing relaying designs

[3, 105, 86, 34, 58] employ equal power allocation and/or fixed path selection, which

are simple but yield degraded performance, while the optimization of optimal power

allocation and path selection is a high-dimensional combinatorial problem, which re-

quires high complexity. Thus, the problem of finding a near-optimal low-complexity

power allocation and path selection solution to the UWB relaying systems is of much

interest.

Another main concern of the differential UWB receivers is the cost of accurate

delay components on the order of nanoseconds. To overcome the implementation is-

sue posed by the delay components, the frequency-shifted reference (FSR) system has

been proposed to separate the reference and data-modulated signals in the frequency
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domain at the price of requiring an analog carrier [30]. The FSR is further sim-

plified by the code-multiplexed TR (CM-TR) [18] and code-shifted reference (CSR)

[61] schemes based on orthogonal code sequence design. Both systems are promising

schemes as they require neither delay elements nor analog carriers, while even exhibit-

ing better bit error rate (BER) performance compared to the FSR solution. However,

existing studies do not address the fundamental limits about the error performance

of code-multiplexed systems and their corresponding code designs.

Finally, most of studies assume ideal antennas, which have perfect delta impulse

response. However, the practical antennas could introduce linear and/or nonlinear

distortions, which may degrade the performance. The performance impacts of the

non-ideal antennas are not investigated.

1.2 Objectives

The objective of the proposed research is to design low-complexity, high-performance,

noncoherent receivers for UWB communications. To be specific, the goals are given

as follows:

1. Avoid the stringent channel estimation by exploiting noncoherent detection;

2. Maintain the simple hardware structure of the noncoherent receivers;

3. Lower the computational and hardware complexity of the existing detectors by

employing advanced digital signal processing techniques; and

4. Improve the error performance of the noncoherent receivers by taking account

of practical imperfections, e.g., impulsive noise, poor signal in long distance,

and non-ideal antennas.

1.3 Outline

The rest of the dissertation is organized as follows:
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Chapter 2 gives a brief introduction to UWB communications and presents the

existing UWB receiver designs and their complexity-performance tradeoffs.

Chapter 3 proposes a fast iterative multi-symbol detector with low complexity

and near-optimal performance.

Chapter 4 shows that the multi-symbol detection problem is “rank-one pertur-

bation” problem and develops improved low-complexity near-optimal multi-symbol

detectors using relaxation techniques.

Chapter 5 presents a soft-input soft-output multi-symbol detector to further en-

hance the error performance with error correction code.

Chapter 6 studies the distribution of correlation noise and proposes improved

differential UWB receives in the presence of impulsive correlation noise.

Chapter 7 proposes joint power allocation and path selection for non-coherent

UWB relaying systems.

Chapter 8 develops generalized code-multiplexing with delay components and ana-

log carriers and discovers the fundamental limits of such systems.

Chapter 9 investigates the performance impacts of non-ideal antennas.

Chapter 10 concludes the dissertation and proposes some future research topics.

1.4 Notations

Notations. Matrices are in upper case bold while column vectors are in lower case

bold, (·)T denotes the transpose, [A]m,n denotes the (m,n)th entry of the matrix A,

a(i) denotes the ith row of matrix A, � denotes the Hadamard element-by-element

vector multiplication, ⊗ denotes the Kronecker product, diag(·) converts a sequence

of size N into an N×N diagonal matrix, ∗ denotes linear convolution, d·e denotes the

ceiling function,
∆
= stands for definition, AN×L denotes an N ×L matrix, IN denotes

the N × N identity matrix, JN denotes an N × N matrix with 1 below the main

diagonal and 0 elsewhere, 0N×L is the N × L matrix with all entries zero, 1N×L is
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the N × L matrix with all entries one, and sgn(x) is the sign function, which takes

values -1 and 1 depending on the polarity of the argument. E{·} denotes statistical

expectation, and Var{·} denotes statistical variance. The Q-function is defined as

Q(x)
∆
= 1√

2π

∫ +∞
x

e−t
2/2dt
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CHAPTER II

BACKGROUND

The background information of UWB communications and the existing work on UWB

receiver designs are presented in this chapter. Be specific, the first part describes the

main characteristics of UWB communications, which have great impacts on UWB

receiver designs, are presented in Section 2.1. A brief literature review of the existing

receiver designs and their complexity-performance tradeoffs is given in Section 2.2.

2.1 Overview of UWB Communications

UWB communications use a very large bandwidth to transmit signals at a very low-

power spectral density (PSD) [98]. According to the definition from the Federal

Communications Commission (FCC) in the United States, the bandwidth of a UW-

B communication occupies at least 500 MHz or a fractional bandwidth exceeding

20% [23]. The huge signaling bandwidth reveals several attractive features of UWB

communications, including the potential high-data-rate communications, the fine-

resolution ranging, and the possibility of low-complexity devices.

However, as a result of the very large bandwidth of UWB communications, the

spectrum of UWB systems inevitably overlays those of the existing narrowband or

wideband signals, e.g., GSM, GPS, and WiFi, resulting in interference. To avoid

the mutual interference with the existing signals, the transmission power of UWB

communications has to be limited at a very low level (usually at the noise floor).

Figure 1 illustrates the FCC spectral mask for indoor UWB commercial systems,

which allows the operation of UWB systems over an up to 7.5 GHz bandwidth at the

noise floor (-40 dBm).
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Figure 1: The FCC spectral mask for indoor UWB communications.

To exploit the large bandwidth of UWB communications with affordable complex-

ity, the impulse-radio (IR) UWB [89], which is one of the most popular schemes of

UWB communications, transmits the information symbols with low-power ultra-short

pulses. Since the pulses are real, the IR-UWB signaling can be carrier-free, which

greatly simplifies the transceiver structure. For the transmitted pulse, the IR-UWB

adopts the Gaussian pulse or the high-order derivatives of the Gaussian pulse with

duration Tp on the order of subnanoseconds (see Figure 2). The main benefits of

the Gaussian pulses are i) their smallest possible time-bandwidth product of 0.5; ii)

the well known analytical expression of the Fourier transform of the Gaussian pulses,

which is useful for pulse shaping designs; and iii) the easy generation of the Gaussian

pulses from antennas [70]. To match the FCC spectral mask using one of the Gaus-

sian pulses as the basic pulse, the pulse shaper design in [51] can be used to generate

the transmitted pulse based on the Parks-McClellan algorithm [62].
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Figure 2: Transmitted pulses for IR-UWB systems with duration Tp = 1.0 ns.

Since the transmitted pulses are low power, each information symbol is conveyed

over Nf pulses such that the receiver can collect enough energy. Each pulse is trans-

mitted within a frame with duration Tf � Tp. A modulation (e.g., pulse posi-

tion modulation (PPM), pulse amplitude modulation (PAM), or differential modu-

lation) is applied for each pulse in each frame to carry the information of the de-

sired symbol. For an IR-UWB transmission with a sequence of information symbols

{ai}∞i=−∞, ai ∈ {±1}, using PAM, the transmitted signal is

s(t) =
∞∑

i=−∞

Nf−1∑
j=0

biNf+jp(t− iTs − jTf − cjTc), (1)

where biNf+j is the modulated symbol for the jth frame of the ith information symbol,

which equals ai for coherent detection, p(t) is the transmitted pulse, and Ts = NfTf

is the symbol duration. The time-hopping codes cj are integers chosen from 0 ≤

cj ≤ Nc − 1 so that multiple users can access the channel concurrently, and the

transmission time of the jth pulse is delayed with cjTc seconds. To eliminate inter-

frame interference (IFI), the frame duration is chosen such that Tf > Tm+Tp+(Nc−
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1)Tc, where Tm is the maximum excess delay of the channel.

After the signal is transmitted, the receiver will obtain the signal that is mainly

distorted by two effects: i) the highly frequency-selective UWB fading channel; and

ii) the additive white Gaussian noise (AWGN). As a result of the large bandwidth

of the transmitted pulse, the UWB channel is highly frequency selective, where the

receiver can observe hundreds of overlapped copies of the transmitted pulse with

different delays and amplitudes. The delays and amplitudes of these MPCs can be

well characterized by the well-known Saleh-Valenzuela (S-V) channel model [69, 17,

92, 11, 25, 40], in which the channel impulse response is modeled as

h(t) =
∞∑
l=0

∞∑
k=0

βklpklδ(t− Tl − τkl), (2)

where Tl + τkl represents the delay of the kth ray of the lth cluster and βklpkl models

the double-sided Rayleigh distributed amplitudes with exponentially decaying profile.

Fig. 3 depicts a realization of the IEEE802.15.4Ga channel impulse response [40]

based on the S-V channel model. From Fig. 3, we observe hundreds of MPCs and

that the maximum excess delay Tm can be up to 300 ns.

2.2 Existing UWB Receiver Designs

This section gives a brief overview of the existing UWB receiver designs and their

complexity-performance tradeoffs. Unless stated otherwise, we use the transmission

model in Eq. (1), the channel model in Eq. (2), and the corresponding received signal

model as

x(t) = (s(t) ∗ h(t) + n(t)) ∗ frx(t)

=
∞∑

i=−∞

Nf−1∑
j=0

biNf+jg(t− iTs − jTf − cjTc) + w(t), (3)

where frx(t) is an ideal bandpass filter with bandwidth B at the receiver, g(t) =

p(t) ∗ h(t) ∗ frx(t) is called channel template, and n(t) stands for the noise including
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Figure 3: A realization of the channel impulse response of the IEEE802.15.4Ga CM1
channel model.

multiple access interference (MAI) and AWGN with zero mean and two-sided power

spectral density N0

2
. The noiseless received signal energy in each frame is defined as

Ef =
∫ Tf

0
g2(t)dt.

To simplify the notations, xiNf+j(t) = x(t + iTs + jTf + cjTc) = biNf+jg(t) +

wiNf+j(t), 0 ≤ t ≤ Tf , represents the received signal of the jth frame (0 ≤ j ≤ Nf−1)

of the ith symbol, wiNf+j(t) = w(t + iTs + jTf + cjTc) represents the corresponding

noise in the frame, and the received signal-to-noise ratio (SNR) is defined as γ =

Eb/N0 = EfNf/N0.

2.2.1 Coherent Rake Receiver

With coherent PAM, i.e., biNf+j = ai,∀j ∈ [0, Nf −1], the ideal Rake receiver [10, 16,

88] applies a perfect match filter (channel template) g(t) to collect all the energies of
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the MPCs [90] and estimates the information symbols as

âRAKE
i = sgn

 1

Nf

Nf∑
j=0

∫ Tf

0

g(t)xiNf+j(t)dt

 (4)

= sgn

aiEf +
1

Nf

Nf∑
j=0

∫ Tf

0

g(t)wiNf+j(t)dt

 . (5)

Note that in the absence of IFI, wi,j(t)’s and 0 ≤ t ≤ Tf are identically independent

distributed (i.i.d.) noise processes. Hence, the bit-error-rate (BER) performance of

the ideal Rake receiver is

PRAKE
e = Q(

√
2γ). (6)

Although the ideal Rake receiver achieves the optimal error performance, the Rake

receiver faces several challenges in practice: i) The Rake receiver requires perfect

channel state information, which incurs the extremely high sampling rate and the

intensive computational cost for estimating the amplitudes and delays of the MPCs

[49]. ii) The Rake receiver may suffer from the error performance degradation as a

consequence of the channel estimation error [49]. iii) The Rake receiver requires the

high implementation cost on a large number of Rake fingers to construct g(t).

2.2.2 Simple Transmitted-Reference Receiver

As an alternative of the Rake receiver, the simple TR (STR) method [37, 16, 14, 66, 97]

sends a reference pulse along with the data-modulated pulse for each frame as

s(t) =
∞∑

i=−∞

Nf−1∑
j=0

p(t− iTs − jTf − cjTc) + aip(t− iTs − jTf − cjTc − Td), (7)

where the first pulse is used to generate a noisy channel template and the second pulse

is delayed with Td. Similar to the transmitted signal model in Eq. (1), to avoid inter-

pulse interference (IPI), Td ≥ Tm+Tp+(Nc−1)Tc and Tf ≥ Td+Tm+Tp+(Nc−1)Tc

must hold. The corresponding received signal for a TR transmission is

x(t) =
∞∑

i=−∞

Nf−1∑
j=0

g(t− iTs − jTf − cjTc) + aig(t− iTs − jTf − cjTc − Td) +w(t). (8)
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At the receiver, the STR receiver is simply an autocorrelation receiver (AcR),

which estimates the information symbols by correlating the reference signals with the

data-modulated signals as

âSTR
i = sgn

 1

Nf

Nf∑
j=0

∫ Tr

0

xiNf+j(t)xiNf+j(t+ Td)dt


= sgn

 1

Nf

Nf∑
j=0

∫ Tr

0

(
g(t) + wiNf+j(t)

) (
aig(t) + wiNf+j(t+ Td)

)
dt


= sgn

1

2
aiEfρ+

1

Nf

Nf∑
j=0

∫ Tr

0

(aig(t)wiNf+j(t) + g(t)wiNf+j(t+ Td)︸ ︷︷ ︸
First-order noise term

+

wiNf+j(t)wiNf+j(t+ Td))︸ ︷︷ ︸
Second-order noise term

dt

 , (9)

where 0 < Tr ≤ Tf denotes integration interval, ρ =
∫ Tr

0
g2(t)dt/

∫ Tf
0
g2(t)dt denotes

the fraction of the frame of energy collected by the correlation, and the perfect channel

template g(t) for the ideal Rake receiver in Eq. (4) is replaced by the noisy channel

template g(t) + wiNf+j(t) for the TR transmission. Note that, since two pulses are

transmitted in one frame, Ef = 2
∫ Tf

0
g2(t)dt at the STR receiver. Unless stated

otherwise, we set Tr = Tf for all integrations such that ρ = 1.

Assuming sufficiently large time-bandwidth product TrB, we evaluate the BER of

the STR receiver as [14, 66]

P STR
e = Q

([
2

γ
+
NfL

γ2

]− 1
2

)
, (10)

where L = 2TfB is the twice time-bandwidth product. Note that, the terms with 1/γ

and 1/γ2 in Eq. (10) are caused by the first-order noise and the second-order noise,

respectively.

Although the STR receiver does not require explicit channel estimation, compared

to the ideal Rake receiver, the STR method exhibits several drawbacks: i) The STR

method requires two pulses per frame, which increases transmission power and de-

creases data rate, yielding lower spectral efficiency. ii) The error performance of the
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STR receiver is severely degraded by the second-order noise term in Eq. (9), espe-

cially when the twice time-bandwidth product L is large, which is usually satisfied in

UWB communications1.

2.2.3 Differential Transmitted-Reference Receiver

To save the transmission power of the reference signal, the differential TR (DTR)

method transmits one pulse per frame as in Eq. (1) by employing the frame-by-frame

differential encoding as

bi = bi−1abi/Nf c, (11)

where b−∞ = ±1 and b·c is a floor function.

After obtaining the signal in Eq. (3), the DTR receiver detects the information

symbols by correlating the received signals in the adjacent frames as

âDTR
i = sgn

 1

Nf

Nf∑
j=0

∫ Tf

0

xiNf+j−1(t)xiNf+j(t)dt


= sgn

 1

Nf

Nf∑
j=0

ziNf+j−1,iNf+j

 (12)

= sgn

aiEf +
1

Nf

Nf−1∑
j=0

ηiNf+j,iNf+j−1

 (13)

where zi,j is the correlation between the ith and jth frame signals as

zi,j =

∫ Tf

0

xi(t)xj(t)dt

= bibjEf +

∫ Tr

0

big(t)wj(t) + bjg(t)wi(t)︸ ︷︷ ︸
First-order noise term

+ wi(t)wj(t)︸ ︷︷ ︸
Second-order noise term

 dt

= bibjEf + ηi,j (14)

where ηi,j is the correlation noise term, which can be well approximated as a Gaussian

distributed variable when w(t) is a white Gaussian process [14, 66].

1Taking as an example a system with bandwidth B of 2.5 GHz and a frame interval Tf of 80 ns,
L = 400 can be obtained.
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With Tr = Tf , i.e., ρ = 1, the BER performance of the DTR receiver is given as

[14]

PDTR
e = Q

([
2Nf − 1

Nfγ
+
NfL

4γ2

]− 1
2

)
. (15)

Compared to the error performance of the STR in Eq. (10), since both effects of the

first-order noise and the second-order noise are mitigated, the error performance of

the DTR receiver is enhanced.

2.2.4 Differential Detection Receiver

To alleviate the noise effect in the DTR system, especially the second-order noise ef-

fect, the differential detection (DD) scheme utilizes the symbol-by-symbol differential

encoding as

biNf
= b(i−1)Nf

ai and biNf+j = biNf
,∀j ∈ [1, Nf − 1], (16)

and detects the information symbol ai using the averaged symbol signals instead of

the frame signals of the DTR as [19]

âDD
i = sgn (Zi,i−1) , (17)

where

Zi,j =

∫ Tr

0

 1

Nf

Nf−1∑
l=0

xiNf+l(t)

 1

Nf

Nf−1∑
n=0

xjNf+n(t)

 dt

=

∫ Tr

0

yi(t)yj(t)dt

=

j∏
k=i+1

akEf +
1

N2
f

Nf−1∑
l=0

Nf−1∑
n=0

ηiNf+l,jNf+n, (18)

which is the symbol-by-symbol correlation between the ith and jth averaged symbol

signals with yi(t) being the averaged symbol signal for the ith information symbol as

yi(t) =
1

Nf

Nf−1∑
l=0

xiNf+l(t). (19)
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With the symbol-by-symbol correlation and Tr = Tf , the BER of the DD receiver

can be derived as [19]

PDD
e = Q

([
1

γ
+

L

4γ2

]−1/2
)
. (20)

2.2.5 Multi-Symbol Differential Detectors

To further mitigate the noise-cross-noise effect of the DD receiver, the multi-symbol

differential detection (MSDD) is proposed to perform joint estimation on M consecu-

tive information symbols. Without loss of generality, we focus on the joint detection

on information symbols a = [a1, · · · , aM ]T . Under the assumption that the noise

process n(t) is a white Gaussian process, by applying the generalized likelihood ratio

test (GLRT), the MSDD receiver is in the form [33, 50]:

b̂ = arg max
b̃∈{±1}M+1

(
M∑
i=0

M∑
j=i+1

b̃ib̃jZi,j

)
, (21)

and

âMSDD
i = b̂i−1b̂i, i ∈ [1,M ], (22)

where Zi,j’s are the symbol-by-symbol correlations defined in Eq (18), and b̂ =

[b̂0, · · · , b̂M ]T and b̃ = [b̃0, · · · , b̃M ]T are the estimates and the candidates of the mod-

ulated symbols [b0, bNf
, · · · , bMNf

], respectively. When M = 1, the MSDD receiver

becomes the DD receiver in Eq. (17).

Written in matrix form, the MSDD receiver based on the GLRT rule can be

reformulated as

b̂ = arg max
b̃∈{±1}M+1

(
b̃TQb̃

)
, (23)

where Q is an (M + 1) × (M + 1) matrix, whose (i, j)th element is Zi−1,j−1. It is

worth noting that the diagonal elements of Q can be any finite constant because these

diagonal elements do not affect the optimal solution to (23). Thus, we set Zi,i = 0 in

this proposal.
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The main challenges of the MSDD are the implementation of M -branch AcRs and

the design of reliable and computationally efficient MSDs. For the implementation

of AcRs, accurate analog delay lines on the order of multiples of symbol intervals are

still under investigation [4, 13, 24], and thus digital delay elements become a strong

candidate for the TR-based UWB systems [13, 24, 26]. Based on the fast development

of high-speed analog-to-digital converters, the digital delay element for UWB systems

may be realizable in the near future (see [45, 13, 26, 47]).

For the computational complexity, the problem in Eq. (23) is generally NP-hard.

To (approximately) solve this NP-hard problem in Eq. (23) in a reliable and computa-

tionally efficient manner, several MSDs have been proposed, including the exhaustive

search method [33], the sphere decoding algorithm (SDA) [50, 74], the Viterbi al-

gorithm (VA) [50], and the sorted block-wise decision-feedback differential detector

(sbDF-DD). The exhaustive search method of [33] enumerates all 2M possibilities of

the candidate solutions to find the optimal one. This enumeration requires exponen-

tial complexity in block size M . The SDA proposed in [50, 74] reduces the complexity

of the exhaustive search by searching the candidate solutions only within a specif-

ic radius, but the complexity remains exponential [42]. A sub-optimal MSD based

on the VA is proposed in [50], which has polynomial complexity in M . However,

the performance of the VA-based approach heavily depends on the memory length L

and degrades significantly if the memory length is relatively small compared to M .

The sbDF-DD is proposed in [72], which has low complexity, but the performance is

inferior to the optimal performance.

2.3 Complexity-Performance Tradeoffs

The complexity-performance tradeoffs of the existing receivers discussed in the pre-

vious sections are summarized in Table 1. The complexity is measured in terms of

hardware complexity and computational complexity.

17



Table 1: Complexity-performance comparisons of the existing UWB receivers (L is
the memory length of the VA, and M is the block size of the MSD).
Receiver Hardware cost Computational

cost
Error performance

Rake receiver High High Optimal
TR Low Low Low
DTR Low Low Better than TR
DD Mid Low Better than DTR
MSD with SDA Mid Exponential in M Close to the Rake receiver

when M is large
MSD with VA Mid Exponential in L Degraded when L is small
MSD with sbDF-DD Mid Low Inferior to the optimal one

To further illustrate the performance of the existing detectors, Fig. 4 depicts the

error performance of the ideal Rake receiver, the STR receiver, the DTR receiver, the

DD receiver, and the optimal MSD using the SDA in [50] with different block sizes M

for UWB communications. We adopt the CM1 channel model described in [25], where

Tf = 80 ns to exclude the ISI. The one-sided bandwidth of the baseband filter at the

receiver is B = 2.5 GHz, and the twice time-bandwidth product L = 2BTf = 400.

The frame repetition factor is Nf = 20. From Fig. 4, the idea Rake receiver achieves

the best error performance, which is 16 dB better than that of the STR receiver at

BER = 10−4. The STR receiver shows the worst error performance among all the

receivers. The DTR receiver exhibits an about 2.5 dB gain over the STR receiver,

and the DD receiver obtains an about 6 dB gain over the DTR receiver at BER =

10−4. The performance of the noncoherent detection is further improved by the MSD,

whose error performance approaches that of the ideal Rake receiver as M increases.

When M = 30, the optimal MSD exhibits an about 2 dB loss to the ideal Rake one

at BER = 10−4.
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Figure 4: Performance of the UWB receivers with L = 400 and Nf = 20.
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CHAPTER III

A FAST MULTI-SYMBOL BASED ITERATIVE

DETECTOR

In this chapter, we develop an iterative MSDD algorithm that avoids the high compu-

tational complexity of the existing GLRT-based detectors (e.g., the exhaustive search

[33]). As studied in Sec. 2, the MSDD based on the GLRT rule exhibits considerable

error performance improvement over the STR, DTR, and DD methods while main-

taining the simple AcR structure. However, the main concern of the MSDD is the

computational complexity as a consequence of the NP-hardness of the GLRT problem

in Eq. (23), especially when the block size M is large. To lower the complexity of

the optimal MSD, this section presents iterative MSDs with low complexity and high

performance.

Similar to the TR detection scheme, the proposed method first generates a ref-

erence template by using the initial symbol only, and then the method estimates

the information symbols by correlating the reference template with the symbol wave-

forms. Furthermore, with the help of the information from the multiple transmitted

symbols, our method manages to suppress the reference template noise. However, our

method also generates additional noise-cross-signal and noise-cross-noise terms in TR

BER analysis, which do not appear in the case of an ideal Rake receiver with perfect

channel knowledge.

For the initialization, since the only known symbol is b0 = 1, the best template at

this stage is:

g̃(1)(t) = b0y0(t) = y0(t), (24)

where y0(t) can be found in Eq. (19).
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The decision variables for the M information symbols are:

z(1)
m =

∫ Tf

0

g̃(1)(t)ym(t)dt

=

∫ Tf

0

y0(t)ym(t)dt

= Z0,m, ∀m ∈ [1,M ]. (25)

The estimated modulated symbols in this iteration are:

b̃(1)
m = sgn(Z0,m),∀m ∈ [1,M ]. (26)

This means that at the first step the estimated symbols are obtained by correlating

the waveform corresponding to b0 with the mth symbol waveform. Hence, the BER

performance is the same as that of the DD in Eq. (20).

For the nth iteration, the method firstly constructs a new reference template by

weighting the products of each symbol waveform yi(t) and its corresponding detected

symbol b̃
(n−1)
i obtained from the previous iteration:

g̃(n)(t) = w
(n−1)
0 y0(t) +

M∑
i=1

w
(n−1)
i b̃

(n−1)
i yi(t). (27)

Then, the decision variable for the mth symbol is evaluated in the same way as

the one in Eq. (25):

z(n)
m =

∫ Tf

0

g̃(n)
m (t)ym(t)dt

= w
(n−1)
0 Z0,m +

M∑
i=1,i 6=m

w
(n−1)
i b̃

(n−1)
i Zi,m, (28)

where g̃
(n)
m (t) is the reference template for the mth symbol by removing the mth

waveform ym(t) from g̃(n)(t):

g̃(n)
m (t) = w

(n−1)
0 y0(t) +

M∑
i=1,i 6=m

w
(n−1)
i b̃

(n−1)
i yi(t). (29)

At last, the iteration outputs the estimated symbols as:

b̃(n)
m = sgn(z(n)

m ). (30)

21



3.1 Weight Selections

A key factor that affects the performance of the method and the convergence is how

to update the weights in each iteration. The ultimate goal of selecting the weights is

to reduce BER while maintaining low computational complexity and requiring little

extra knowledge (such as channel information). Here, we propose the hard-decision

rule for the choice of the weights in each iteration.

The rule constructs the reference template as

g̃(n)(t) = y0(t) +
M∑
i=1

b̃
(n−1)
i yi(t), (31)

which indicates that w(n−1) = [1, 1, . . . , 1] in Eq. (27).

An interesting observation on the reference template in (31) is that the variance

of the reference template is constant given the detected symbols b̃
(n−1)
m :

Var{g̃(n)(t)} = Var{y0(t)}+
M∑
i=1

Var{b̃(n−1)
i yi(t)}

= (M + 1)Var{y0(t)}. (32)

The conditional mean of the template is:

E{g̃(n)(t)|b} = g(t) +
M∑
m=1

{b̂(n−1)
m bmNf

}g(t)

= (1 + 2N (n−1)
c −M)g(t), (33)

where b = [b0, bNf
, · · · , bMNf

]T and N
(n−1)
c is the number of correct symbols for the

(n− 1)st iteration. Hence, the mean and standard deviation ratio is

E{g̃(n)(t)|b}
Std{g̃(n)(t)}

=
(1 + 2N

(n−1)
c −M)g(t)√

(M + 1)Std{y0(t)}
, (34)

where Std{·} is the standard deviation of the random variable. In general, the larger

the mean-standard deviation ratio, the better the BER performance. Thus, in the

case of the hard decision, if more correct symbols are detected for the current iteration,

during the next iteration, the reference template is improved, and then the method
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potentially results in better BER performance. The iterative procedure runs back and

forth until no symbol is changed or the maximum number of iterations is reached.

We call the iterative MSD using the hard-decision rule the “hard-decision-directed

MSD (HDD-MSD).”

Now, we summarize the HDD-MSD in the following steps for one block symbol

detection:

Table 2: Hard-decision-directed multi-symbol detector.
Input: Correlation matrix Zi,j in Eq. (18) and the maximum number of iterations N .

Step 0 Initialize w(0) = [1, 1, ..., 1], b̃(0) = [1, 0, ..., 0], n = 0.
Step 1 n = n+ 1.
Step 2 Obtain the decision variables by Eq. (28).
Step 3 Obtain the detected symbols by Eq. (30).
Step 4 Set w(n) = w(0).

Step 5 If n < N and b̃(n) 6= b̃(n−1) goto Step 1, otherwise output b̃(n) and exit.

3.2 Convergence and Discussions

• The convergence rate also affects the practical value of the method (e.g., a

system with a tight constraint on decoding delay), and the number of iterations

affects the performance. These will be verified by the numerical simulation, in

which the proposed method converges to the stable performance curve within

a few iterations (usually ≤ 5 iterations).

• Instead of evaluating the reference template of each iteration g̃(n)(t) explicitly,

the method computes the decision variables by linear combining the correlation

coefficients Zi,j, which can be computed in the first iteration and reused later.

• For each iteration, Step 2 requires 2M(M−1) multiplications and M2 additions

to attain the decision variables for all M symbols. In Step 3, M sign operations

are performed to obtain the detected symbols. No arithmetic is required for

the HDD-MSD in Step 4, and then the computational complexity of the HDD-

MSD for each iteration is O (M2) where M is the block size. Note that the

23



complexity of the proposed method is independent of channel realizations whilst

the computational complexity of the SDA relies on the specific realization of

channels and SNR.

3.3 Numerical Results

This section compares the BER performance of the proposed HDD-MSD and the

optimal MSD as benchmark. The channel scheme evaluated in this section is the

same as the one in Sec. 2.3.

3.3.1 BER with Different Block Sizes

Fig. 5 illustrates the BER results for different M for the HDD-MSD. The proposed

HDD-MSD can obtain an about 2 dB gain relative to the DD in the case of M = 5

and an about 3 dB gain if M = 10 at BER= 10−4. With the increasing number of the

symbols in one block, the performance of the proposed method grows monotonically

but the improvement decelerates (a 5 dB gain for M = 20 and a 5.3 dB gain for

M = 30 at BER= 10−4). We also perform some simulations with very large M

(M = 100), which is intractable for the optimal MSD. The system provides similar

performance to that of the ideal Rake receiver, especially in high SNR range, where

the difference is around 1 dB.

Compared to the HDD-MSD, the optimal MSD has an advantage when M is small

(if M = 2, about 1.1 dB gain at BER= 10−4) and the performance gap becomes

smaller when M is larger. When M = 10, the gap reduces to around 0.5 dB for

the HDD-MSD at BER= 10−4. This shows that with the increasing value of M the

difference between the optimal MSD method and our proposed HDD-MSD decreases

rapidly and that the gap can be ignored for a sufficiently large M . Furthermore, the

optimal MSD incurs much higher computational cost than our HDD-MSD.
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Figure 5: Performance of the HDD-MSD for different M and L = 400.

3.3.2 BER with Different Iterations

To answer the convergence question in Sec. 3.2, Fig. 6 depicts the BER values

recorded in each iteration for M = 5, 30. When there is only one iteration, the

system reduces to the DD system, and the BER result overlaps with that given by

Eq. (20) (See Fig. 6). The BER is improved significantly in the second iteration and

just after about 4 iterations, the algorithm reaches a stable BER performance curve

with a small improvement in the 5th iteration at low SNRs. These show that our

method converges fast, and thus it is practical for UWB systems.
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CHAPTER IV

MULTI-SYMBOL DETECTORS BASED ON

RELAXATION TECHNIQUES

4.1 Semi-Definite Programming Based Multi-Symbol De-
tector

In this section, we develop a near-optimal detector based on semi-definite program-

ming (SDP) by performing semi-definite relaxation on the boolean constraints in

(23).

The GLRT problem in (23) can be rewritten as

max JGLRT(X) = Trace(XQ), (35)

s.t. X = b̃b̃T ,

b̃0 = +1,

Xi,i = 1, for i = 1, · · · , (M + 1),

where Trace(·) is the trace of a matrix, b̃TQb̃ = Trace(b̃b̃
T
Q), and matrix X is a

rank-1 positive semi-definite (PSD) matrix because of the constraint X = b̃b̃T . To

relax the non-convex optimization problem (35) to a convex one, which can be solved

in polynomial time, the rank-1 constraint is omitted on matrix X, giving the following

SDP problem:

max JSDP(X) = Trace(XQ), (36)

s.t. X � 0,

Xi,i = 1, for i = 1, · · · , (M + 1),

where � 0 denotes the PSD constraint on the left hand side matrix (matrix X in
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(36)). Since the problem in (36) is a relaxation of (35), the optimal solution X∗ of

(36) can be a matrix with rank higher than one.

To convert the higher-rank solution matrix to an approximate rank-1 matrix solu-

tion, two methods can be employed: The first method uses the randomization method

from [53, 31, 59], and the second method uses the sign of the principal eigenvector of

X∗, i.e.,

b̂SDP,i = sgn(vi/v0), for i = 0, · · · ,M, (37)

where v = [v0, v1, · · · , vM ]T is the eigenvector corresponding to the largest eigenvalue

of the optimal solution X∗ for problem (36). The randomization method generally

provides better error performance, however, it lacks a closed form solution. Later by

simulations, we show that the deterministic eigenvector method in (37) is sufficiently

close in performance to the GLRT solution in (23). Thus, the deterministic eigenvec-

tor method is used for this work. The estimates of the information symbols for the

SDP-MSD are:

âSDP,i = b̂SDP,i−1b̂SDP,i, for i = 1, · · · ,M.

The SDP-MSD in (36)-(37) has the following properties:

Property 1. To solve (36), we adopt the interior-point methods [67, 35], which can

find an optimal solution to (36) in O((M + 1)3.5) ' O(M3.5) for a given accuracy.

Property 2. For the SDP problem in (36), the optimal solution is independent of

the diagonal elements of matrix Q [53].

Property 3. If the optimal solution X∗ to (36) is a rank-1 matrix, the solution to

b̂SDP,i in (37) is also the optimal GLRT solution to (23).

Note that Property 3 also holds for randomization methods with probability 1

[53].
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4.2 Performance Analysis of the SDP-MSD

In this section, we derive a discrete-time model for the GLRT problem by represent-

ing the transmitted and received signals in discrete form. The discrete-time model

provides insights to the detection process and helps quantify the performance of the

SDP-MSD.

4.2.1 Discrete-Time Model for Performance Analysis

Following the work in [82, 66], the continuous-time received waveform ym(t) is rep-

resented as a series of discrete samples based on the Sampling Theorem. Starting

from a single user case with a low-pass filter, given the time interval [0, Tf ], the signal

ym(t) in (19) can be well approximated using L = 2BTf samples [82, 66] as

ym(t) = bmNf
g(t) + σωm(t)

≈
L−1∑
n=0

(bmNf
gn + σωm,n)

√
2Bsinc(2Bt− n), (38)

where sinc(x) = sin(πx)
πx

, ωm(t) is a band-limited AWGN process with two-sided power

spectrum 1, gn = 1√
2B
g( n

2B
), ωm,n = 1√

2B
wm( n

2B
), and σ2 = N0

2Nf
. It is easy to verify

that ωm,n’s are i.i.d. Gaussian variables with zero mean and unit variance. Note

that, although we obtain Eq. (38) for a low-pass process, it is shown in [82, 66] that

a band-pass process is equivalent with respect to the decision statistics.

The frame energy and the correlation can be approximated by the discrete samples

as [66]

Ef =

∫ Tf

0

g2(t)dt

≈
∫ Tf

0

(
L−1∑
n=0

gn
√

2Bsinc(2Bt− n)

)2

dt ≈ ‖g‖2
2, (39)
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and

Zi,j =

∫ Tf

0

yi(t)yj(t)dt

≈
∫ Tf

0

(
L−1∑
n=0

yi,n
√

2Bsinc(2Bt− n)

)

×

(
L−1∑
n=0

yj,n
√

2Bsinc(2Bt− n)

)
dt,

≈ yTi yj, (40)

where ym = [ym,0, ym,1, · · · , ym,L−1]T with ym,n = 1√
2B
ym( n

2B
) = bmNf

gn + σωm,n are

the samples of the mth received symbol, g = [g0, g1, · · · , gL−1]T is the sampled channel

template, and ωm = [ωm,0, ωm,1, · · · , ωm,L−1]T is the sampled noise in the mth received

symbol signal. In vector form,

ym = bmNf
g + σωm. (41)

With the approximated correlation in Eq. (40), the correlation matrix Q is con-

structed using the discrete-time signals. Without loss of generality, one may choose

‖g‖2
2 = 1, which can be done by normalizing the received signal ym(t). The received

SNR then becomes

γ =
Eb
N0

=
NfEf
N0

=
1

2σ2
. (42)

By collecting all samples of the received symbol waveforms ym(t),m = 0, · · · ,M ,

an L× (M + 1) discrete-time signal matrix can be defined as

Y = [y0,y1,y2, · · · ,yM ] = [b0g, bNf
g, · · · , bMNf

g] + σW, (43)

where W = [ω0,ω1, · · · ,ωM ].

Now, define P = YTY. Since the (i, j)th element of P is Pi,j = yTi−1yj−1 ≈

Zi−1,j−1 according to Eq. (40), it is clear that P is an approximation of Q using

the discrete samples with the exception of the diagonal elements. We previously

proved that the optimal solution of (23) does not depend on the diagonal elements
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of Q, and thus by replacing matrix Q with matrix P in Eq. (23), the discrete-time

approximation of the detection problem is obtained in the following form:

maxJ (b̃) = b̃TPb̃ (44)

= ‖Yb̃‖2
2,

s.t. b̃i ∈ {+1,−1}, for i = 1, · · · ,M,

b̃0 = +1.

To further modify the formation of P in Eq. (44), we construct a unitary matrix G

as

G =

[
g G⊥L×(L−1)

]
L×L

, (45)

where the columns of G⊥L×(L−1) are (L − 1) vectors in an orthonormal basis for the

complementary space of g so that GTG = I. Left multiplying the transpose of the

unitary matrix G to Y in (43) gives

GTY =

 bT

0(L−1)×(M+1)

+ σU =



bT + σuT1

σuT2
...

σuTL


, (46)

where b = [b0, bNf
, · · · , bMNf

]T , UL×(M+1) = GTW, whose elements are still i.i.d.

standard normal variables, and uTi represents the ith row of matrix U. Since P =

(GTY)T (GTY), and plugging (46) into (44), we obtain the following optimization

problem

maxJ (b̃) = b̃T (GTY)T (GTY)b̃

= b̃T

(
(b + σu1)(bT + σuT1 ) + σ2

L∑
l=2

ulu
T
l

)
b̃, (47)

s.t. b̃i ∈ {+1,−1}, for i = 1, · · · ,M,

b̃0 = +1.
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There are several interesting comments that can be drawn by observing (47):

• In the absence of noise, P = bbT is a rank-1 matrix, hence the modulated

symbols b are equal to the sign of the eigenvector associated with the non-zero

(largest) eigenvalue of matrix P.

• In the presence of noise and L = 1, matrix P is still rank-1, and the principal

eigenvector of P is distorted by an additive noise u1. In this case, the optimal

solution for the modulated symbols is the quantized value of the eigenvector

corresponding to the non-zero (largest) eigenvalue of matrix P. Note that in-

creasing the block size M will not alleviate the additive noise effect.

• When L > 1, matrix P is a rank-1 matrix (b + σu1)(bT + σuT1 ) perturbed by a

Wishart random matrix σ2
∑L

l=2 ulu
T
l . If SNR is sufficiently high, the effect of

the Wishart perturbation matrix can be ignored. However, because L = 2BTf

is usually a large number for IR-UWB systems, in the low to moderate SNR

regime, the Wishart perturbation term plays an important role to the system

performance. Intuitively, the approximation of (b + σu1) is obtained using the

eigenvector corresponding to the largest eigenvalue of matrix P. This forms the

motivation of the second detector in Section 4.3.

• If the block size M = 1, the MSDD receiver reduces to the DD receiver as

â1 = sgn(Z1,0).

Using the discrete version of Zi,j in Eq. (40), Z1,0 is given as

Z1,0 = a1 + b0σgTω1 + bNf
σωT0 g + σ2ωT1ω0, (48)

where the last term in Eq. (48) is the sum of the products of two normal

random variables, which can be approximated as a Gaussian variable for large

L by invoking central limit theorem. As a result, Z1,0 is approximated as a
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normal distributed random variable with mean a1 and variance 2σ2 +Lσ4. The

BER is given as

PDD
e ≈ Q

([
2σ2 + Lσ4

]−1/2
)

= Q

([
1

γ
+

L

4γ2

]−1/2
)
,

which is identical to the one in Eq. (20).

4.2.1.1 Performance Analysis of the SDP-MSD Based on Discrete-Time Model

This subsection develops a necessary and sufficient condition for the SDP-MSD to

produce a rank-1 solution. An M = 2 example demonstrates the tightness of the

SDP-MSD.

Proposition 1. Given b, the proposed SDP-MSD produces the rank-1 error-free so-

lution if and only if the noise vectors [u1,u2, · · · ,uL] are in the following set

Ub =

{
[u1,u2, · · · ,uL]|λA,max ≤

(M + 1)

σ

}
, (49)

where

A = u1b
T + buT1 + σ

L∑
l=1

ulu
T
l

−Diag(b)Diag

((
u1b

T + buT1 + σ
L∑
l=1

ulu
T
l

)
b

)
, (50)

Diag(z) returns a diagonal matrix with z on its main diagonal, and λA,max is the

largest eigenvalue of matrix A.

Proof: See Appendix A.

To help clarify Proposition 1, the following remarks are provided.

• Based on Property 3 of SDP-MSD, if the proposed MSD produces a rank-1

solution, it is optimal. However, the eigenvector associated with the largest

eigenvalue of the higher-rank solutions X∗ from SDP-MSD may also yield the

optimal GLRT solution with a high probability. Later, simulations confirm this

claim.
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• Note that matrix A can be rewritten as

A = u1b
T + buT1 −Diag(b)Diag

((
u1b

T + buT1
)
b
)

+ σ

(
L∑
l=1

ulu
T
l −Diag(b)Diag

((
L∑
l=1

ulu
T
l

)
b

))

= B + σC. (51)

Because of the fact that σλA,max ≤ σλB,max + σ2λC,max, there exists an upper

bound of σλA,max, which is at least linearly decreasing as σ decreases and SNR

> 0.5 for the given λB,max and λC,max. Hence, the rank-1 condition holds with

a high probability at high SNR. As SNR goes to infinity, we have

lim
σ→0+

P

{
λA,max ≤

(M + 1)

σ

}
= 1. (52)

To illustrate that the condition in Proposition 1 is satisfied with a high proba-

bility at high SNR, Fig. 7 displays the histograms of the largest eigenvalues of

σA
M+1

with block size M = 5 and SNR = 5, 10, 15 dB. When SNR is low (5 dB),

the largest eigenvalue of σA
M+1

is usually a large number as a result of the high

level of noise and the detector may give an error with a high probability. As the

SNR increases, the largest eigenvalue of σA
M+1

decreases rapidly and when SNR

= 15 dB, the condition defined in Proposition 1 holds with a high probability.
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Figure 7: Histograms of the largest eigenvalues of σA/(M + 1) for M = 5 with SNR
= 5, 10, 15 dB.

• The condition in (49) only relies on the distribution of the largest eigenvalue of

the random matrix A. As a result, in the case of MAI, the SDP-MSD can still

obtain a rank-1 error-free solution if the noise space caused by MAI satisfies

(49). The near-optimal performance of SDP-MSD in the presence of MAI will

be verified via simulations in Section 4.4.3.

4.3 Modified Unconstrained Relaxation MSD

In this section, an alternative low-complexity MSD [104] is presented, which achieves

near-optimal performance with a closed form. First of all, matrix Q has the following

property:

Property 4. Q is an indefinite matrix with probability one.

Proof: See Appendix B.

To derive the modified unconstrained relaxation (MUR) MSD, we first modify

the matrix Q to negative semi-definite and find the optimal solution without binary
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constraints:

max JMUR(x) = xTQ′x (53)

s.t. x0 = 1, x ∈ R(M+1),

where a constant is added to each of the diagonal elements of Q such that Q′ = Q−dI

by choosing d = λQ,max, which is the largest eigenvalue of Q. Since Q′ is negative

semi-definite, the solution to (53) is

x̂MUR,i = vi/v0, for i = 0, · · · ,M. (54)

where v = [v0, v1, · · · , vM ]T is the eigenvector corresponding to the largest eigenvalue

of matrix Q.

The estimates of the modulated symbol b and the information symbol a are given

as

b̂MUR,i = sgn(x̂MUR,i), for i = 0, · · · ,M, (55)

and

âMUR,i = b̂MUR,i−1b̂MUR,i, for i = 1, · · · ,M. (56)

Observations for MUR-MSD in (54)-(56) are given as follows.

• Unlike the GLRT problem in (23) and the SDP problem in (36), the optimal

solution to the MUR problem in (53) generally relies on the diagonal elements

of matrix Q. Thus, the solution to (53) is not equivalent to the one for (23)

or (36). As d gets smaller, the MUR problem in (53) becomes similar to the

GLRT problem in (23). For simplicity, to make Q′ negative semi-definite, in

this proposal, we choose d as λQ,max.

• For the computational complexity of the MUR-MSD, the modern eigendecom-

position algorithm is used to evaluate the largest eigenvalue and its eigenvector

of matrix P on the order of O((M + 1)3) ' O(M3). Hence, we would expect
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that the MUR-MSD requires lower computational complexity than the SDP-

MSD especially for large M .

• The unconstrained relaxation step is similar to the decorrelator adopted for

code division multiple access (CDMA) and zero-forcing detectors for multi-

input multi-output and/or orthogonal frequency division multiplexing (OFDM)

systems [52, 65, 85]. By choosing d = λQ,max, the MUR step is equivalent to

the sphere constrained relaxation

max JMUR(x) = xTQx (57)

s.t. ‖x‖2
2 = M + 1.

Since Q has at least one positive eigenvalue, the sphere constrained relaxation

is also equivalent to the ball constrained relaxation adopted in [79, 99]

max JMUR(x) = xTQx (58)

s.t. ‖x‖2
2 ≤M + 1.

However, our problem and approach are different from the existing approaches in

two main aspects: i) Matrix Q in (23) is generally indefinite, and directly apply-

ing methods in [79, 99, 78, 52, 65, 85] yield non-convex optimization problems;

and ii) matrix Q has a special structure – a rank-1 perturbed matrix as shown

in Sec. 4.2. Since the eigenvector of the perturbed rank-1 matrix is still close

to the one without perturbation with a high probability, our MUR approach

reaches near-optimal performance while the detectors in [79, 99, 78, 52, 65, 85]

can only achieve inferior performance relative to their optimal ones in CDMA

or OFDM systems.

• The following proposition establishes the relation between the MUR-MSD and

the SDP-MSD.
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Proposition 2. The MUR problem (53) is a relaxation of the SDP problem

(36).

Proof: See [53, Theorem 1].

Hence, the SDP-MSD yields a tighter approximation of the GLRT solution

than the MUR-MSD, and thus we expect that the SDP-MSD performs favor-

ably compared to the MUR-MSD in terms of BER. This claim is verified via

simulations in Section 4.4.

4.4 Numerical Results

In this section, the performance of the proposed MUR-MSD and SDP-MSD, and the

optimal MSD for UWB communications is demonstrated using Monte-Carlo simula-

tions. The system is simulated based on continuous-time signals and subsequently

validates discrete-time approximation by comparisons. BER performance for differ-

ent detectors with different block sizes M is compared for the single user case. Next,

the performance of the proposed detectors is considered in the presence of MAI. In

the last sub-section, the complexity comparisons of the proposed detectors with the

existing ones is conducted. In the simulation figures, SNR is defined as in Eq. (42).

4.4.1 Comparison of Continuous-Time and Discrete-Time Detection Mod-
els

For the continuous-time signal, the transmitted pulse p(t) is the second derivative

of a Gaussian pulse with duration Tp = 1.0 ns. We adopt the CM1 channel model

described in [25] with Tf = 80 ns and B = 2.5 GHz. To simulate the continuous-time

signal, we employ an 8 times oversampling, which equates to 3200 samples per frame.

For the discrete-time model, there are 400 samples per symbol (Nyquist sampling

rate). The single user case is considered, where Nc = 1.

Fig. 8 shows the performance comparisons of the discrete-time and continuous-

time models with the optimal MSD. Clearly, the optimal MSD yields almost the same
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performance for the continuous-time and discrete-time models. The comparison re-

sults of the SDP-MSD and the MUR-MSD have similar characteristics, which are not

shown here. These results confirm that the discrete-time model is a close approxima-

tion to the continuous-time signal. Therefore, it is valid and convenient to analyze

the performance based on the discrete-time model.
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Figure 8: Performance of the optimal MSD for the continuous-time and discrete-time
models with block sizes M = 5, 10.
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4.4.2 BER Performance of Different Detectors

The BER performance for the optimal MSD (23), the SDP-MSD, and the MUR-MSD

is compared over different block sizes M . The discrete-time detection model is used,

where the twice time-bandwidth product L = 400.

Figs. 9 and 10 depict the BER results with different block sizesM = 2, 5, 10, 20, 30, 100

for the SDP-MSD and the MUR-MSD, respectively. Compared to the optimal per-

formance obtained using the SDA in [50], the performance of the SDP-MSD is almost

the same (with a negligible gap) for all SNR range when M = 2, 5, 10, 20, 30, respec-

tively. Hence, the semi-definite relaxation on the GLRT problem can yield a very

tight approximation. The MUR-MSD achieves a close result to that of the GLRT

with an about 0.1 dB loss for M = 5 and a 0.2 dB loss for M = 10, 20, 30. Also

as SNR increases, the gap between the MUR-MSD and the optimal GLRT detector

decreases.

4 6 8 10 12 14 16 18
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

 

 

SDP−MSD, M = 2
SDP−MSD, M = 5
SDP−MSD, M = 10
SDP−MSD, M = 20
SDP−MSD, M = 30
SDP−MSD, M = 100
Optimal MSD, M = 2
Optimal MSD, M = 5
Optimal MSD, M = 10
Optimal MSD, M = 20
Optimal MSD, M = 30
DD
Ideal Rake

Figure 9: BER comparisons of the SDP-MSD and the optimal MSD for different
block sizes M with L = 400.
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Figure 10: BER comparisons of the MUR-MSD and the optimal MSD for different
block sizes M with L = 400.

The superior performance of the SDP-MSD to that of the MUR-MSD in Propo-

sition 2 is also confirmed. However, both detectors (the MUR-MSD and the SDP-

MSD) enjoy polynomial computational complexity, while the optimal MSD (through

exhaustive search or SDA [50]) require exponential complexity in terms of block size

[42].

Furthermore, compared to the performance of the DD [19], the proposed methods

obtain an about 3 dB gain in the case of M = 5 and an about 4 dB gain if M = 10

at BER = 10−4. The BER performance improves when the block size grows while

the rate of improvement decelerates (an about 5.4 dB gain for M = 30). In addition,

in the case of very large block size M (M = 100), where the SDA and the VA

are infeasible, the proposed detectors are still practical. The performance closely

approaches that of the ideal Rake receiver, especially in high SNR regime, where the

gap is less than 1.5 dB.
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4.4.3 BER Performance with MAI

In this sub-section, performance is evaluated for the proposed detectors in the presence

of MAI with CM1 channel. The frame repetition factor is Nf = 20 and Tf = 80 ns.

In the case of MAI, the chip interval is Tc = 1.0 ns, and the TH codes cj are randomly

selected from the range [0, Nc− 1] where Nc = 91. For simplicity, we assume that the

received energy for each interfering user is equal.

Fig. 11 illustrates the BER performance of the SDP-MSD, the MUR-MSD, the

optimal MSD with the SDA, and the sbDF-DD [72] in the presence of MAI. When

the number of users Nu is 50, both proposed detectors show significant robustness in

the present of MAI. The SDP-MSD has an about 1.5 dB loss relative to the single

user case but retains near-optimal performance compared to the optimal MSD. The

MUR-MSD detector is slightly worse than SDP-MSD. This matches with our analysis

since the MUR-MSD is a relaxation of the SDP-MSD, and the SDP-MSD should

statistically perform better than that of the MUR-MSD. When Nu = 150, with the

stringent MAI, the strong robustness of the proposed SDP-MSD and MUR-MSD is

demonstrated, and the performance loss to the single user case is approximately 6.5

dB at BER = 10−5. The sbDF-DD exhibits inferior performance to the SDP-MSD

and the MUR-MSD. When Nu = 50, the gap between the sbDF-DD and the proposed

detectors is about 1 dB at BER = 10−5, and the gap increases as Nu increases, where

the sbDF-DD has an approximately 2.5 dB performance degradation at BER = 10−5

when Nu = 150.

4.4.4 Complexity Comparisons of Different Detectors

Fig. 12 compares the average and the 1% upper percentile CPU computational time

for the detectors. When the block size M is small (e.g., M < 10), the SDA, the

MUR-MSD, and the sbDF-DD requires less complexity than that of the SDP-MSD.

However, when the high performance MSD is of interest and the block size M is large,
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Figure 11: BER comparisons of the detectors with M = 30, L = 400, MAI, and
CM1 channel.

the advantages of the SDP-MSD and the MUR-MSD in term of complexity are clear,

and the exponential complexity of the SDA can be observed. In particular, the SDA

with low SNR (SNR = 5 dB) requires much higher complexity than the SDA with

high SNR (SNR = 10 dB), while the complexity of the MUR-MSD and the SDP-

MSD generally does not rely on SNR. The sbDF-DD has the lowest complexity at

the price of inferior error performance. We also conduct the comparisons of the 1%

upper percentile complexity for all detectors except the sbDF-DD, which has fixed

complexity given M . The results indicate that the worst-case complexity of the SDA

is much higher than the average complexity, and there is no big difference between

the worst-case complexity and the average complexity for the SDP-MSD and the

MUR-MSD.
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Figure 12: Complexity comparisons of the detectors.
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CHAPTER V

SOFT-INPUT SOFT-OUTPUT MULTI-SYMBOL

DIFFERENTIAL DETECTION FOR UWB

COMMUNICATIONS

To further enhance the system performance, FEC codes, e.g. Turbo codes [7] and low-

density parity check codes (LDPC) [28], are considered in most communication sys-

tems including UWB communications. However, most existing decoding schemes are

combined with coherent detectors [40, 76], where a trellis-coded modulation scheme

that is compatible for both coherent and TR receivers is proposed in [76], which uses

a coherent receiver to resolve the extra parity information that is carried in the ref-

erence pulses of the TR signaling. Some soft-output MSDD methods are proposed in

[71, 73], which combine FEC codes with MSDD noncoherent detector.

In this chapter, the performance of the MSD will be further improved by exploit-

ing joint MSDD and FEC code decoding. The system diagram of a coded UWB

transmission is depicted in Fig. 13. The soft-input soft-output (SISO) MSDD is de-

veloped to deliver a posteriori information, and a modified list sphere decoding (LSD)

is used to generate a list of soft candidates and to alleviate the high complexity of

evaluating exact soft information. Compared to the soft-output MSDD in [71, 73],

the proposed SISO MSDD enables iterative processing between the SISO MSDD and

the SISO channel decoder. Simulations are conducted to show that significant BER

performance improvement can be achieved by the iterative processing.

45



FEC

a

Interleaver

bc

Diff. Encoding SISO MSDD
UWB

Channel+Noise

yi(t)
Deinterleaver

LE, in LA,out

SISO Decoder

Interleaver

â

LE,outLA, in

Despreading

x(t)

Correlator

Zi,j

Figure 13: System diagram of the coded MSDD for UWB communications.

5.1 Log-Likelihood Metric for MSDD

As shown in [73, 66, 101], in the absence of IFI and with sufficiently large time-

bandwidth product TrW = TfW , the correlations Zi,j in Eq. (18) can be well ap-

proximated as i.i.d. Gaussian variables with mean
∏j

k=i+1 ckEf and variance σ2 =

N0Ef/Nf +WTfN
2
0/(2N

2
f ), where ck’s are the symbols after FEC code encoding and

we assume Tr = Tf in this chapterp. Therefore, the log-likelihood metric of the

candidate symbols c̃ given the correlations Zi,j is

Γ(c̃) = ln p(Q|c̃)

= C +
EfΛ(c̃)

σ2
, (59)

where Q is an (M + 1) × (M + 1) matrix with the (i, j)th entry being Zi−1,j−1 in

(23), C is a constant that is irrelevant to the SISO detector, p(Q|c̃) is the likelihood

metric of c̃ given Q, and

Λ(c̃) =
M−1∑
i=0

M∑
j=i+1

Zi,j

j∏
k=i+1

c̃k. (60)

Thus, the hard-output MSDD becomes

ĉ = arg max
c̃∈{±1}M

Γ(c̃) = arg max
c̃∈{±1}M

Λ(c̃), (61)

which is identical to that based on GLRT rule in Eq. (23), where biNf
= cib(i−1)Nf

.

5.2 Soft-Input Soft-Output MSDD

Given the soft information (a priori information) LA,in for the coded symbols c, the

extrinsic information of the ith coded symbol is (cf. [36, Eq. (7)])

LE,in(ci) = ln

∑
c̃∈Ci,+1

p(Q|c̃) exp
(

1
2
(c̃TLA,in − LA,in(ci))

)∑
c̃∈Ci,−1

p(Q|c̃) exp
(

1
2
(c̃TLA,in + LA,in(ci))

) , (62)
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where Ci,±1 = {c|∀c, ci = ±1}, containing all possible realizations of the coded sym-

bols c with ci = +1 or ci = −1, respectively. The soft information LA,in is initialized

as a zero vector and is updated to the extrinsic information from the outer SISO

decoder in each iteration [36].

With the max-log approximation, the extrinsic information can be simplified as

(cf. [36, Eq. (12)])

LE,in(ci) ≈ max
c̃∈Ci,+1

{Γ(c̃) +
1

2
(c̃TLA,in − LA,in(ci))}

− max
c̃∈Ci,−1

{Γ(c̃) +
1

2
(c̃TLA,in + LA,in(ci))}, (63)

where Γ(c̃) is the log-likelihood metric defined in Eq. (59). Note that constant C in

Eq. (59) is canceled in (63) while the information of Ef and σ2 is still required. To

further simplify the SISO detection without acquiring the information of Ef and σ2,

we ignore these scale terms and approximate Eq. (63) as

LE,in(ci) ≈ max
c̃∈Ci,+1

{Λ(c̃) +
1

2
(c̃TLA,in − LA,in(ci))}

− max
c̃∈Ci,−1

{Λ(c̃) +
1

2
(c̃TLA,in + LA,in(ci))}. (64)

Although the approximation in Eq. (64) results in some performance degradation,

studies in [96] show that the max-log turbo decoding without SNR information leads

to a negligible performance loss compared to the exact log-MAP turbo decoding,

especially for high SNR. Thus, the scale-invariant max-log turbo decoder that does

not require the knowledge about signal-to-noise ratio (SNR) is then exploited as the

SISO channel decoder in this section.

5.2.1 Modified List Sphere Decoding

One issue of evaluating Eq. (64) is that the cardinality of the candidate sets Ci,±1

grows exponentially when the MSDD block size M increases. Therefore, if M is large,

it is computationally prohibited to evaluate the exact extrinsic metric in Eq. (64) over
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all possible coded symbol candidates. To alleviate this issue, we employ a modified

list sphere decoding (LSD) [36] that generates Nc, Nc � 2M candidates L with the

top Nc highest metrics. The modified LSD reformulates the metric function to a cost

function as

Υ(c̃) =
M−1∑
i=0

M∑
j=i+1

(
|Zi,j| − Zi,j

j∏
k=i+1

c̃k

)
. (65)

Since the terms in the double summation in Eq. (65) are non-negative, the modified

LSD performs depth-first search from c̃M to c̃1 and finds all candidate symbols within

a radius δ. Similar to the sphere decoding algorithm in [50], during the search, the

modified LSD eliminates the paths with partial candidates [c̃l, · · · , c̃M ]T if the cost of

the path exceeds the radius, i.e.,

M−1∑
i=l−1

M∑
j=i+1

(
|Zi,j| − Zi,j

j∏
k=i+1

c̃k

)
> δ.

However, compared to the SDA in [50], the modified LSD here uses a different

update rule for δ. When a candidate symbol vector c̃ is found within the radius, c̃ is

added to the set L. If the cardinality of L exceeds Nc, then the modified LSD removes

the candidate symbol vector in L that has the largest cost. After L is updated, if

the cardinality of L equals Nc, then the radius is changed to the largest cost for all

candidate symbol vectors in L.

Once the modified LSD obtains L, the SISO MSDD evaluates the extrinsic metric

over the subset L with reduced complexity.

5.3 Numerical Results

In this section, we demonstrate the BER performance of iterative decoding and detec-

tion with SISO MSDD. The transmitted pulse p(t) is the normalized second deriva-

tive of a Gaussian function with Tp = 1ns. The number of frames is Nf = 20 and

Tf = 60ns. We adopt CM1 channel in [25], and a 2.5 GHz baseband filter is employed

at the receiver. SNR is defined as EfNf/(RN0). The block size of the information
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bits is N = 9000. The FEC code encoder is a rate 1/2 parallel concatenated turbo

encoder with feedback polynomial 78 and feedforward polynomial 68. For each MSDD

block, our simulations show that 6 iterations within the outer SISO turbo decoder

and 6 iterations between the inner SISO MSDD and the outer decoder are sufficient

to generate converged performance, and thus are adopted.

Fig. 14 illustrates the performance comparisons of the uncoded MSDD and the

coded MSDD with different block sizes M . It is clear to see that significant per-

formance gain is achieved by using iterative processing with powerful codes. When

M = 2 and 5, coded MSDD obtains about 3.5 dB gain over uncoded MSDD at BER

= 10−5. Simulation with M = 20 is performed, where the LSD with Nc = 1024

candidates is used to obtain a subset of coded symbol candidates. Performance gain

becomes larger when the MSDD block size M increases, where for the case that

M = 20, the coded MSDD outperforms the uncoded one with about 4.5 dB by using

only 1024/220 ≈ 0.1% candidates of the overall candidate set.
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Figure 14: BER comparisons of coded MSDD and uncoded MSDD for different block
sizes M .
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Fig. 15 depicts the performance comparisons of coded MSDD with M = 5 and

different numbers of inner iterations between detection and decoding. When the

number of inner iteration is 1, the SISO MSDD degenerates to the soft-output MSDD

since the SISO MSDD obtains no extrinsic information from the outer turbo decoder.

In this case, the coded MSDD with 1 inner iteration exhibits about 0.6 dB loss relative

to that with 6 inner iterations. In addition, one can observe that the performance of

coded MSDD with 5 iterations is very close to that with 6 iterations, indicating that

6 iterations between the inner SISO MSDD and the outer SISO turbo decoder are

sufficient to generate converged error performance.
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Figure 15: BER comparisons of coded MSDD with M = 5 and different numbers of
iterations between detection and decoding.

Fig. 16 demonstrates the performance comparisons of the proposed SISO MSDD

and the hard-output MSDD. First, compared to the results of the uncoded MSDD in

Fig. 14, the coded hard-output MSDD using the powerful turbo decoding gains about

2 dB for M = 2, 5 and about 3 dB for M = 20 at BER = 10−5. Next, the proposed

SISO MSDD significantly improves the performance of the hard-output one, and the
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gain is about 1.4 dB for different M at BER = 10−5.
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Figure 16: BER comparisons of SISO MSDD and hard-output MSDD for different
block sizes M .

Fig. 17 compares the performance of the proposed SISO MSDD and the soft-

output MSDD in [71]. Both schemes adopt a rate 1/2 convolution code (CC) with

generator polynomial (1338, 1718) and 3 iterations between CC decoder and inner

SISO MSDD are performed for our proposed method. Compared to the results using

turbo codes in Fig. 15, the gain of the proposed SISO MSDD over soft-output MSDD

using CC is clearer. When M = 2, the SISO MSDD obtains about 0.8 dB gain over

the soft output one, and when M = 5, 20, the gain of the SISO MSDD over the soft

output one increases to about 1.5 dB.
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M = 2, SISO MSDD with CC
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Figure 17: BER comparisons of SISO MSDD and soft-output MSDD for different
block sizes M with convolution code.
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CHAPTER VI

RECEIVER DESIGNS FOR DIFFERENTIAL UWB

SYSTEMS WITH MULTIPLE ACCESS INTERFERENCE

6.1 Introduction

When considering TR systems in a multi-user environment, most of the existing

differential UWB receivers (e.g., DTR, DD, and MSDD receivers) [94, 15, 19, 33, 50]

employ Gaussian approximation to multiple access interference (MAI). However, in

recent literature [6, 5, 75, 56], the results for time-hopping impulse-radio (TH-IR)

UWB systems with Rake reception suggest the inaccuracy of Gaussian approximation

to impulsive MAI when a small number of active users emit strong interference. In [5],

the non-Gaussian distributed MAI is studied by simulations, and a soft-limiting (SL)

receiver is proposed, which is optimal in the presence of Laplace noise. The SL receiver

is extended in [6] by using generalized Gaussian (GG) distribution, which subsumes

Gaussian distribution and Laplace distribution as special cases. The MAI for TH-IR

UWB systems is further analyzed in [56], where a two-term (TT) detector and an

α-detector are proposed. Since the studies in [6, 5, 75, 56] are conducted for Rake

receivers (or matched filter receivers) only, they inherit the aforementioned drawbacks

of Rake receivers as well. Our previous work in [100] developed an improved DTR

receiver in the presence of impulsive MAI, but the general differential UWB receivers

have not been studied.

In this chapter, we focus on designs for of the noncoherent differential UWB re-

ceivers in the presence of impulsive MAI. We employ numerical results on random

channels [25] to study the distribution of the MAI in differential UWB systems. We

find that the correlation noise in the presence of MAI can be well approximated by
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the GG distribution. The differential UWB receivers based on the GG approxima-

tion are developed. Furthermore, soft-limiting (SL) differential UWB receivers are

proposed by employing the Laplace approximation to the correlation noise. Different

from the receivers in [6, 5], our GG receivers work on the frame-level correlations and

thus circumvents the stringent channel estimation issue of Rake receivers. The SL

receivers have slightly inferior performance to the GG receivers when the number of

users is large. However, they require less parametric information to perform detec-

tion. In addition, we show that the MSDD problem using GG approximation can

be formulated as the same form as the conventional MSDD problem and thus can

be efficiently solved using existing low-complexity detectors. The number of training

symbols required to estimate the parametric information is also studied. Extensive

simulations are conducted to validate the improved error performance of our proposed

receivers relative to the conventional differential UWB receivers.

6.2 System Model for Multiple User Transmissions

The transmitted signal of a differential UWB system at the kth transmitter is

s(k)(t) =
∞∑

i=−∞

b
(k)
i d

(k)
i p(t− iTf − c(k)

i Tc − T (k)
u ), (66)

where b
(k)
i ∈ {±1} is the modulated symbol, d

(k)
i ∈ {±1} is the polarity code, p(t) is

a Gaussian monocycle waveform with width Tp, Tf is the frame duration, T
(k)
u , 0 ≤

T
(k)
u ≤ Tf determines the transmission time of the kth user (i.e., asynchronous users),

Tc is the chip duration, and the c
(k)
i ’s are the pseudo-random time-hopping (TH)

codes for the kth user, which are integers uniformly distributed in [0, Nc − 1]. To

eliminate inter-frame interference (IFI), the frame duration is chosen such that Tf >

Tm + Tp + (Nc − 1)Tc, where Tm is the maximum excess delay of the channel.

Note that, compared to the transmitted signal in Eq. (1), the multiple user trans-

missions introduce polarity codes d
(k)
i ’s to enhance multiple user capacity. In addition,

for each transmitter k, the corresponding kth receiver is assumed to know the polarity
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codes d
(k)
i ’s and TH codes c

(k)
i ’s, but it has no knowledge about the polarity codes

and TH codes of other transmitters. In addition, perfect synchronization between

the kth transmitter/receiver is assumed such that the kth receiver knows the trans-

mission time T
(k)
u , but the users are asynchronous. Without loss of generality, in the

following, we focus on the transmission from transmitter 1 to corresponding receiver

1.

The channel impulse response (CIR) of the UWB communication from transmitter

k to receiver 1 is modeled with multipath propagation [25, 17]:

h(k)(t) =

N
(k)
p∑
i=1

α
(k)
i δ(t− τ (k)

i ), (67)

where N
(k)
p is the total number of MPCs with amplitude α

(k)
i and delay τ

(k)
i . We

assume a quasi-static channel model, which is time-invariant during the transmission.

At the receiver, the signal is obtained after processing with a bandpass filter to

eliminate the out-of-band interference and noise as (see Eq. (3) for single user case)

x(t) =

(
Nu∑
k=1

s(k)(t) ∗ h(k)(t) + n(t)

)
∗ frx(t)

=
Nu∑
k=1

∞∑
i=−∞

b
(k)
i g(k)(t− iTf − c(k)

i Tc − T (k)
u ) + w(t), (68)

where Nu is the total number of concurrent transmissions, g(k)(t) = p(t)∗h(k)(t)∗frx(t)

is called channel template of the kth user, frx(t) is the ideal bandpass filter at the

receiver, ∗ denotes the linear convolution operation, w(t) represents the AWGN with

zero mean and two-sided power spectral density N0

2
, and w(t) = n(t) ∗ frx(t). The

noise-free received signal energy in each frame from the kth transmitter is defined as

E
(k)
f =

∫ Tf
0

(g(k)(t))2dt with the frame energy for the desired transmission denoting as

Ef = E
(1)
f .

To separate the desired user signal and the MAI signal, we could further rewrite
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Eq. (68) as

x(t) =
∞∑

i=−∞

b
(1)
i g(1)(t− iTf − c(1)

i Tc − T (1)
u ) + n(t), (69)

where

n(t) =
Nu∑
k=2

∞∑
i=−∞

b
(k)
i g(k)(t− iTf − c(k)

i Tc − T (k)
u ) + η(t),

which stands for the aggregated noise term including MAI and AWGN.

6.3 Analysis of Conventional Differential UWB Receivers

In this section, we derive the differential UWB receivers presented in Sec. 2.2 by

employing Gaussian assumption. Although the Gaussian assumption results in the

same receivers in Sec. 2.2, this sheds light on those receivers in the viewpoint of

detection theory. To distinguish the proposed receivers in this chapter, we called

them “convectional receivers.”

First of all, we need to determine the way to encode the information symbols

a
(k)
i to modulated symbols b

(k)
i , which is critical to the demodulation structure at the

receiver side for each differential UWB system. Similar to the single user case in Eqs.

(11) and (16), we list two kinds of encoders:

• Frame-by-frame encoder for DTR with b
(k)
i = b

(k)
i−1a

(k)
bi/Nf c;

• Symbol-by-symbol encoder for DD and MSDD with b
(k)
iNf

= b
(k)
(i−1)Nf

a
(k)
i and

b
(k)
iNf+j = b

(k)
iNf
,∀j ∈ [1, Nf − 1];

where the modulated symbol is initialized as b
(k)
−∞ ∈ {±1}, Nf is the number of frames

per information symbol, and b·c denotes a floor function.

For both differential UWB systems, the detection is based on the correlation

between the ith and jth frame signals as

zi,j =

∫ Tr

0

y
(1)
i (t)y

(1)
j (t)dt, (70)
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where Tr is the integration interval and y
(k)
l indicates the received signal of the lth

frame of the kth user as

y
(k)
l (t) = d

(k)
l x

(
t+ lTf + c

(k)
l Tc + T (k)

u

)
. (71)

By plugging Eq. (69) into Eqs. (70) and (71), we have (see Eq. (14) for single

user case)

zi,j = ρEfb
(1)
i b

(1)
j + ηi,j, (72)

where ρ denotes the fraction of the desired frame energy collected at the receiver,

and ηi,j is the correlation noise term, which can be well approximated as a Gaussian

distributed variable for UWB communications when MAI is a Gaussian process [14,

66].

6.3.1 DTR Receiver

The DTR receiver detects each information symbol ai = a
(1)
i based on the following

Nf correlations between the reference and data-modulated frames:

ziNf+j,iNf+j−1 = ρEfai + ηiNf+j,iNf+j−1, j ∈ [0, Nf − 1]. (73)

Given the correlations ziNf+j,iNf+j−1, j ∈ [0, Nf−1], by approximating ηiNf+j,iNf+j−1’s

as independent and identically distributed (i.i.d.) Gaussian variables and invoking

maximum likelihood (ML) principle, the conventional DTR (C-DTR) receiver detects

information symbols by averaging all frame correlations for each information symbol

as [15]

âC−DTR
i = sgn

 1

Nf

Nf−1∑
j=0

ziNf+j,iNf+j−1


= sgn

ρEfai +
1

Nf

Nf−1∑
j=0

ηiNf+j,iNf+j−1

 . (74)
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6.3.2 DD Receiver

One of the main drawbacks of the C-DTR receiver is that the noise-cross-noise term in

ηiNf+j,iNf+j−1 degrades the system error performance significantly [15]. To alleviate

the noise-cross-noise effect, the conventional differential detection (C-DD) receiver

detects the information symbol ai using the averaged symbol signals instead of the

frame signals as [19]

âC−DD
i = sgn (Zi,i−1) , (75)

where

Zi,j =

∫ Tr

0

 1

Nf

Nf−1∑
l=0

yiNf+l(t)

 1

Nf

Nf−1∑
n=0

yjNf+n(t)

 dt

= ρEfbibj +
1

N2
f

Nf−1∑
l=0

Nf−1∑
n=0

ηiNf+l,jNf+n, (76)

which is the symbol-by-symbol correlation between the ith and jth averaged symbol

signals with bi = b
(1)
iNf

similar to Eq. (18). Note that similar to the C-DTR, the

C-DD receiver in Eq. (75) is also optimal in terms of ML principle under the assump-

tion that all frame-level correlations between the ith and the (i − 1)st symbols, i.e.,

ziNf+l,(i−1)Nf+n’s, ∀l, n ∈ [0, Nf − 1], are i.i.d. Gaussian variables.

6.3.3 MSDD Receiver

To further mitigate the noise-cross-noise effect of the C-DD receiver, the conventional

multiple-symbol differential detection (C-MSDD) is proposed to perform joint esti-

mation on M consecutive information symbols. Without loss of generality, we focus

on the joint detection on information symbols a = [a1, · · · , aM ]T . By approximating

the noise process n(t) as a white Gaussian process and applying generalized likelihood

ratio test (GLRT), the C-MSDD receiver is of the form (See Eq. (23) for single user

case)

b̂ = arg max
b̃∈{±1}M+1

(
b̃TQb̃

)
, (77)
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where b̂ = [b̂0, · · · , b̂M ]T and b̃ = [b̃0, · · · , b̃M ]T are the estimates and candidates of

modulated symbols [b
(1)
0 , b

(1)
Nf
, · · · , b(1)

MNf
], respectively, Q is an (M + 1) × (M + 1)

matrix, whose (i, j)th element is Zi−1,j−1 defined in Eq. (76), and

âC−MSDD
i = b̂i−1b̂i, i ∈ [1,M ]. (78)

6.4 Improved Differential UWB Receivers with Impulsive
MAI

In this section, we propose improved differential UWB receivers in the presence of

impulsive MAI. First, we study the empirical distribution of the correlation noise

ηi,j, which is impulsive when a few users emit strong interference. Second, to cope

with this impulsive MAI, we study the generalized Gaussian (GG) distribution and

Laplace distribution, which well match the distribution of the impulsive correlation

noise. Third, by approximating the correlation noise as the GG distributed or Laplace

distributed variables, we propose improved differential UWB receivers based on ML

principle.

6.4.1 Examining the Distribution of the Correlation Noise

As shown in Sec. 6.3, the conventional differential receivers can be derived by em-

ploying Gaussian approximation on the correlations zi,j. However, recent studies

[6, 5, 75, 56] for TH-IR UWB system with Rake receivers show that the MAI is not

Gaussian distributed given the strong interference caused by a small number of users

Nu. The non-Gaussian distributed MAI also holds for differential UWB systems. Fig.

18 depicts the empirical probability density functions (PDFs) of the noise term ηi,j

with SNR= 30 dB, where the parameters of different distributions are estimated using

ML principle. As depicted in Fig. 18, the empirical PDF differs from the Gaussian

PDF significantly, especially when the total number of users is small (e.g., Nu = 3

in Fig. 18). This implies that the conventional differential receivers may suffer from

performance degradation when Nu is small. This issue is alleviated for large Nu,
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since ηi,j’s approach Gaussian variables as Nu increases (e.g., Nu = 9 in Fig. 18). In

addition, we plot the Laplace PDF, which is applied in [5] to design the soft-limiting

receiver. Although the Laplace PDF fits better to the empirical PDF than the Gaus-

sian PDF when Nu = 3, Laplace PDF also faces the PDF mismatch problem when

Nu is large. To address this issue, we adopt the GG distribution in [6] to approximate

the empirical PDF, where the GG distribution subsumes the Gaussian and Laplace

distributions as special cases. As shown in Fig. 18, a good approximation to the

empirical PDF can be conducted using the GG distribution regardless the number of

users Nu.
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Figure 18: Empirical PDFs of noise term ηi,j with SNR = 30 dB, EI = 32Ef (SIR
= −15 dB), and different Nu’s, which are generated using the configuration in Section
6.5 (left: α = 0.0179, β = 0.6315; right: α = 0.9843, β = 1.3551).

Based on the aforementioned observations, given moderate-to-high signal-to-Gaussian-

noise ratio (SNR), we relax the Gaussian assumption of the MAI and model the noise

term ηi,j’s in (72) to be i.i.d. GG distributed with zero mean, whose PDF is

fη(x) =
β

2αΓ(1/β)
exp

(
−
(
|x|
α

)β)
, (79)
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where α is the scale parameter, β is the shape parameter, and Γ(z) =
∫∞

0
tz−1 exp(−t)dt

is the gamma function. Note that, when the parameter β = 2, the GG distribution

becomes the Gaussian distribution, and when β = 1, the GG distribution becomes

the Laplace distribution.

To further illustrate the transition of the correlation noise from impulsive to

Gaussian-like, Figs. 19 and 20 display the histograms of the estimated β parameter

given different Nu’s and signal-to-interference ratios (SIRs) with 104 system realiza-

tions. From Fig. 19, we can observe that when Nu = 3, the estimated parameter

β ranges from 0.6 and 0.9, implying that correlation noise is rather impulsive, while

when Nu = 9, the estimated parameter β ranges from 1.1 to 1.8. As Nu increases,

the estimated parameter β gradually centers at 1.9 (E.g., Nu = 30), indicating that

correlation noise approaches Gaussian noise when Nu is large. In addition, the his-

tograms of β with different SIRs are provided in Fig. 20, where we could observe that

the correlation noise could be better approximated as Gaussian distributed when the

interference is weaker.
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Figure 19: Histograms of estimated β with SNR = 30 dB, EI = 32Ef (SIR= −15
dB), and different Nu’s.

61



1 1.2 1.4 1.6
0

200

400

600

SIR = −3 (dB)
0.7 0.8 0.9 1 1.1 1.2
0

200

400

600

SIR = −9 (dB)

Figure 20: Histograms of estimated β with SNR = 30 dB, Nu = 3, and different
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6.4.2 Improved DTR Receiver

By assuming that the receiver has the knowledge of the GG parameters α and β, the

proposed GG-DTR detector is derived as

âGG−DTR
i = sgn

Nf−1∑
j=0

(
|ziNf+j,iNf+j−1 + ρEf |β − |ziNf+j,iNf+j−1 − ρEf |β

) . (80)

Note that, although α is used to describe the GG distribution in Eq. (79), the GG-

DTR receiver does not require the knowledge of α. From Eq. (80), it is ready to

show that when β = 2, the GG-DTR receiver is equivalent to the C-DTR one, and

when β = 1, the GG-DTR detector becomes an SL-DTR receiver as

âSL−DTR
i = sgn

Nf−1∑
j=0

Ω (zi,j, ρEf )

 , (81)

where Ω(·, ·) is a threshold function as

Ω(x, y) =


|y|, if x > |y|;

x, if − |y| < x < |y|;

−|y|, if x < −|y|.

(82)

Note that the difference of this SL-DTR receiver with the one in [5] is that the SL-

DTR receiver is based on the correlations among the frames such that the channel

estimation issue of SL-Rake receivers is avoided.
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6.4.3 Improved MSDD Receiver

Since DD is a special case of MSDD when M = 1, we only study the improved MSDD

receiver in this subsection. First of all, by approximating ηiNf+l,jNf+n’s as i.i.d. GG

distributed variables with zero mean, the PDF of ziNf+l,jNf+n is

fziNf+l,jNf+n
(x) =

β

2αΓ(1/β)
exp

(
−
(
|x− bibjρEf |

α

)β)
, (83)

with bi = b
(1)
iNf+j, ∀j ∈ [0, Nf − 1].

Given the correlations ziNf+l,jNf+n,∀i, j ∈ [0,M ], i 6= j, l, n ∈ [0, Nf − 1], the

decision metric of the GG-MSDD is derived as

Λ(b̃) =
M∑
i=0

M∑
j=i+1

Nf−1∑
l=0

Nf−1∑
n=0

Ψ(ziNf+l,jNf+n, b̃ib̃j), (84)

where Ψ(·, ·) is the decision metric selection function as

Ψ(x, y) =

 − (|x− ρEf |)β , if y = +1;

− (|x+ ρEf |)β , if y = −1.
(85)

Therefore, the decision rule is of the form

b̂ = arg max
b̃∈{±1}M+1

(
Λ(b̃)

)
, (86)

and âGG−MSDD
i = b̂ib̂i−1,∀i ∈ [1,M ]. Compared to the C-MSDD problem in (77), the

problem in (86) replaces the product of candidate symbols and symbol correlations,

b̃ib̃jZi,j, in Eq. (77) with the summation of the decision metric selection functions

in Eq. (85). However, the problem in (86) is generally not a BQP problem, which

means that the state-of-the-art optimal or sub-optimal solvers (e.g., sphere decoding

algorithms) cannot be directly applied to the problem in (86). To convert the problem

into a BQP problem, we rewrite the decision metric selection function as

Ψ(x, y) =
(Ψ(x,+1)−Ψ(x,−1))y

2
+

Ψ(x,+1) + Ψ(x,−1)

2
, (87)
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where the first term is an odd function on y and the second term does not depend on

y.

Therefore, by plugging Eq. (87) into Eq. (84), the decision metric becomes

Λ(b̃) =
M∑
i=0

M∑
j=i+1

b̃ib̃j

Nf−1∑
l=0

Nf−1∑
n=0

(Ψ(ziNf+l,jNf+n,+1)−Ψ(ziNf+l,jNf+n,−1))

2

+
M∑
i=0

M∑
j=i+1

Nf−1∑
l=0

Nf−1∑
n=0

Ψ(ziNf+l,jNf+n,+1) + Ψ(ziNf+l,jNf+n,−1)

2
. (88)

Since the second term in Eq. (88) is constant regardless of candidate symbols b̃, we

drop the second term and finally arrive at the following GG-MSDD solution

b̂ = arg max
b̃∈{±1}M+1

(
M∑
i=0

M∑
j=i+1

b̃ib̃jYi,j

)
, (89)

with

Yi,j =

Nf−1∑
l=0

Nf−1∑
n=0

(
Ψ(ziNf+l,jNf+n,+1)−Ψ(ziNf+l,jNf+n,−1)

)
. (90)

It is worth noting the special cases of GG-MSDD. When β = 2, i.e., ηi,j’s are

approximated as Gaussian variables, Eq. (90) becomes (c.f. (18))

Yi,j = 4ρEf

Nf−1∑
l=0

Nf−1∑
n=0

ziNf+l,jNf+n = 4ρEfN
2
fZi,j, (91)

and thus, the GG-MSDD receiver reduces to the C-MSDD receiver in (77).

When β = 1, Laplace-approximated ηi,j’s yield

Yi,j = 2

Nf−1∑
l=0

Nf−1∑
n=0

Ω(ziNf+l,jNf+n, ρEf ), (92)

where Yi,j becomes the sum of the soft limiting functions on the N2
f correlations

between the frame signals of the ith and jth symbols. Therefore, we refer to the

GG-MSDD receiver as “the SL-MSDD receiver” when β = 1.

It is worthy noting the complexity of the proposed multiple-symbol receivers.

Compared to the C-MSDD, the main extra complexity of the proposed multiple-

symbol receivers is the computation of Yi,j in Eq. (90), where the complexity is
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on the order of O(N2
fM

2) for GG-MSDD and SL-MSDD and |x|β Eq. (90) can be

evaluated as exp(β log(|x|)), which can efficiently implemented using look-up table

or CORDIC [55] for exp and log functions. In addition, similar to the C-MSDD, the

proposed multiple-symbol receivers require an NfM -branch autocorrelation receiver,

which can be implemented in analog [4, 13, 24] or digital forms [45, 13, 26, 47].

Another complexity of the proposed multiple-symbol receivers is the computational

complexity for the GG-MSDD problem in (89). Similar to the C-MSDD problem, we

can resort to the SDA in [50], which has generally exponential complexity in terms of

M , and the existing near-optimal polynomial-complexity detectors developed in the

previous chapters. The performance of the existing multiple-symbol detectors for the

GG-MSDD problem will be studied in Sec. 6.5.

6.4.4 Parameter Estimation for SL and GG Differential UWB Receivers

Since no MAI information is required for the conventional UWB receivers, while the

SL differential receivers require ρEf and the GG differential receivers generally require

both ρEf and β, we need to determine the parameters required for the proposed

detectors when those parameters are unavailable or changed (e.g., Nu or the power

of interference levels changes).

In this paper, we employ a data-aided parameter estimator with a random but

known sequence of Ntr training symbols [a
(1)
0 , a

(1)
1 , · · · , a(1)

Ntr−1]. After obtaining frame-

level correlations at the receiver, the ML estimation is performed based on the training

samples. Taking a DTR UWB system as an example, the received samples from the

training symbols are

xl = a
(1)
bl/Nf czl,l−1

= ρEf + ωl, 0 ≤ l ≤ NfNtr, (93)

where ωl = a
(1)
bl/Nf cηl,l−1 is treated as i.i.d. additive Laplace noise or i.i.d. additive

GG noise for the SL-DTR or GG-DTR receivers, respectively. For an MSDD UWB
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system, the training samples xl’s are b
(1)
iNf+lb

(1)
jNf+nziNf+l,jNf+n,∀i, j ∈ [0, Ntr − 1], i 6=

j, |i− j| ≤M,∀l, n ∈ [0, Nf − 1].

For the SL differential receivers, the median of the training samples xl is the ML

estimate of ρEf . When it comes to the GG differential receivers, the estimation is

much more complicated since no closed form of the ML estimates is available to find

the three parameters (mean, scale, and shape) of the GG distribution simultaneously

[84, 21]. Here, we resort to the Newton-Raphson method in [21] to iteratively find

the ML estimates of β and ρEf .

For the complexity of parameter estimation for SL differential receivers, the com-

plexity of finding the median of the training samples is linearly in terms of the size of

the samples by using modern selection algorithms. For the complexity of parameter

estimation for GG differential receivers, as discussed in [21], generally three iterations

for the Newton-Raphson method can yield the ML estimates with accuracy 10−6.

6.5 Numerical Results

In this section, we study the effectiveness of our proposed GG and SL differential

UWB receivers via Monte-Carlo simulations. The transmitted pulse p(t) is a second

order derivative of the Gaussian function with duration Tp = 1.0 ns. We adopt the

CM1 channel model described in [25] with Tm being about 60 ns. The parameters

of the TH codes are Nc = 19 and Tc = 1 ns, Tf = 80 ns, Tr = 40 ns, and Nf = 10.

The one-sided bandwidth of the received filter is B = 2.5 GHz. The bit energy

is Eb = EfNf , and the overall frame energy from interfering users is defined as

EI =
∑Nu

k=2E
(k)
f . The SIR is defined as SIR= Ef/EI , and for simplicity, we employ

equal frame energy for each interfering user E
(k)
f = E

(j)
f , ∀k, j ∈ [2, Nu].

6.5.1 BER Comparisons with Different Numbers of Training Symbols

Fig. 21 displays the performance comparisons of the SL-DTR and GG-DTR receivers

with different numbers of training symbols Ntr. We find that with only Ntr = 10
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Figure 21: Performance comparisons of the GG-DTR and SL-DTR detectors with
Ntr = 10 or 5000, Nu = 3 or 9, and SNR= 30 dB.

training symbols, both SL-DTR and GG-DTR receivers can achieve close performance

to the detectors with large number of training symbols (Ntr = 5000). This shows that,

with a few number of training symbols, our proposed detectors quickly adapt to the

change of the environment (e.g., variant of channel, change of active number of users,

etc), and thus, become practical for realistic UWB communications. Hence, we adopt

Ntr = 10 in the following simulations.

6.5.2 BER Comparisons of the DTR Receivers

Fig. 22 illustrates the performance comparisons among the C-DTR, SL-DTR, and

GG-DTR receivers with different numbers of users Nu and SIR = −9 dB (i.e., EI =

8Ef ). First, when Nu = 3, compared to the C-DTR receiver, both the GG-DTR and

SL-DTR receivers achieve significant error performance improvement at moderate-to-

high SNR region (e.g., SNR ≥ 22 dB), where the error floor is reduced from around

2 × 10−3 for the C-DTR to 10−4 for the GG-DTR. Second, the GG-DTR receiver
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Figure 22: Performance comparisons of different DTR receivers with different num-
bers of users Nu and EI = 8Ef .

performs slightly better than the SL-DTR one, especially for low SNR region. Third,

as the number of users Nu increases, the performance gap between the C-DTR receiver

and our proposed GG-DTR and SL-DTR receivers at moderate-to-high SNR region

decreases. This is because the distribution of noise ηi,j is better approximated by the

Gaussian distribution as Nu increases. Finally, when the number of users increases,

the performance becomes better (e.g. Nu = 9) at moderate-to-high SNR region (e.g.,

SNR> 20 dB). The reason is that for a fixed interference power, when the number

of users increases, the power of each interfering user is also lower, and thus the

interference to the desired user is reduced when the TH sequence is long. However,

when the number of users is further increased, the interference to the desired users

gets saturated, and thus the performance curves get close.
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Figure 23: Performance comparisons of different DD receivers with different numbers
of users Nu and EI = 32Ef .

6.5.3 BER Comparisons of the MSDD Receivers

We first study the DD receivers with M = 1. Fig. 23 illustrates the performance

comparisons among the C-DD, SL-DD, and GG-DD receivers with different numbers

of users Nu and SIR = −15 dB. In this scenario, we have the following observations:

i) Similar to the results of the DTR receivers, both the GG-DD and SL-GG receivers

outperform the C-DD receiver remarkably at moderate-to-high SNR (e.g., SNR > 20

dB), and the error floor is reduced from around 9 × 10−3 for C-DD to 1 × 10−3. ii)

It is interesting to see that the performance of the GG-DD receiver is slightly worse

than the SL-DD receiver at moderate-to-high SNR region. The reason may be that

the GG parameter estimator is sensitive to the tail distribution of the correlation

noise and thus may obtain sub-optimal parameters for detection. iii) When Nu = 9,

the GG-DD receiver becomes the best one among the three receivers, especially for

high SNR (e.g., SNR = 30), while the SL-DD exhibits worse performance than C-DD
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receivers. iv) Compared to the results for the DTR receivers, the performance gap

between Nu = 3 and Nu = 9 for the DD receivers is smaller (e.g., for the proposed

SL-DD receiver, the error floor is around 1×10−3 when Nu = 3 and is around 6×10−4

when Nu = 9).

10 12 14 16 18 20 22 24 26 28 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
 / N

0
 (dB)

B
E

R

 

 

C−MSDD
SL−MSDD
GG−MSDD

N
u
 = 3

N
u
 = 9

Figure 24: Performance comparisons of different MSDD receivers with M = 2,
different numbers of users Nu, and EI = 32Ef .

Fig. 24 depicts the performance of the C-MSDD, SL-MSDD, and GG-MSDD

receivers with different numbers of users Nu, SIR = −15 dB, and M = 2. Unless

stated otherwise, all the MSDD problems are optimally solved using the SDA in [50].

First, compared to the results in Fig. 22, MSDD receivers outperform DD receivers,

especially at moderate-to-high SNR region. Second, similar to the results in Fig. 23,

when Nu = 3, the SL-MSDD obtains significant gain over the C-MSDD, and it is

slightly better than the GG-MSDD at moderate-to-high SNR (e..g, SNR > 20 dB).

However, when Nu = 9, the SL-MSDD shows inferior performance to the GG-MSDD,

and the the performance of GG-MSDD is slightly better than the C-MSDD at high

SNR.
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6.5.4 BER Comparisons with Different Levels of SIRs
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Figure 25: Performance comparisons of different DTR receivers with different levels
of SIRs, Nu = 3, 9, and SNR= 30 dB.

Fig. 25 shows the performance comparisons of the C-DTR, SL-DTR, and GG-

DTR receivers with different levels of SIRs. First of all, when Nu = 3, the GG-DTR

receiver has significant gain over the C-DTR, where the gain is about 1.5 dB at BER

= 10−4. In this case, considerable improvement of the SL-DTR receiver over the

C-DTR one is also observed, and the performance of the SL-DTR receiver is slightly

worse than that of the GG-DTR. However, the gap between the C-DTR receiver and

our proposed receivers is reduced to about 1.0 dB at BER = 10−5, implying that

the correlation noise becomes more Gaussian-like as SIR increases. When Nu = 9, all

detectors have almost the same performance, and their error performance outperforms

the ones when Nu = 3 when SIR ≥ −14 dB.

Fig. 26 demonstrates the performance comparisons between the SL differential

UWB receivers and the conventional differential UWB receivers when Nu = 3. The
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Figure 26: Performance comparisons of different detectors with different levels of
SIRs, Nu = 3, and SNR= 30 dB.

performance of the GG differential UWB receivers is close to that of the SL differential

UWB receivers, and is not presented. Again, the proposed SL differential UWB

receivers achieve considerable error performance gain over the conventional ones. In

addition, the SL-DD receiver has an about 5.5 dB SIR gain over the SL-DTR receiver,

and the SL-MSDD receiver with M = 15 has an about 4 dB SIR gain over the SL-DD

receiver at BER = 10−5.

Fig. 27 illustrates the performance of different detectors for the SL-MSDD prob-

lem with different levels of SIRs, Nu = 3, and SNR= 30 dB. We adopt the SDA

in [50], whose complexity is generally exponential in M at a fixed SNR [42], the

SDP-MSD in Sec. 4.1, whose complexity is O(M3.5), and the modified unconstrained

relaxation MUR-MSD in Sec. 4.3, whose complexity is O(M3). As shown in Fig. 27,

both SDP-MSD and MUR-MSD achieve almost the same performance as the SDA

for different block size M and SIRs.
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Figure 27: Performance comparisons of different detectors for the SL-MSDD problem
with different levels of SIRs, Nu = 3, and SNR= 30 dB.
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CHAPTER VII

JOINT POWER ALLOCATION AND PATH SELECTION

FOR NONCOHERENT UWB SYSTEMS

7.1 Introduction

In view of the tight restrictions on the transmitted power spectral density (PSD) is-

sued by the US Federal Communications Commission (FCC) to limit the interference

to licensed wireless services [22], an additional key issue for UWB systems consists in

the extension of the radio coverage. As a promising answer to this requirement, coop-

erative communications have been proposed in [44], where some different cooperating

strategies are developed and analyzed in terms of outage probability. Henceforward,

the cooperative communications concept has stimulated a lot of works: for instance,

multi-hop relaying to enhance the capacity of cellular networks [46], relaying opti-

mization based on the maximization of a network sum utility function [60], and op-

portunistic relaying based on relay selection through packet exchange at network level

[8]. Even if the above references have been de facto proposed for narrowband system-

s, they have prompted the applications of cooperative communications to the UWB

context as well. The BER performance analysis for a decode and forward (DF) UWB

relaying network is tackled in [54]. Herein, the focus is put on relaying nodes which

can adopt different configurations, either single or dual-antenna, and different detec-

tion schemes, either coherent or noncoherent, with an equal power allocation strategy.

Further, both [3] and [105] consider a network where the nodes are equipped with

coherent Rake receiver based on ideally-known channel response. In [3], the design of

distributed algebraic space-time codes is addressed to achieve performance gain with

the advantage of lower complexity decoding and lower peak-to-average-power-ratio.
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Alternatively, the two-step approach in [105] is to first derive a cooperative routing

strategy to select the highest quality two-hop route in the sense of the asymptotic

outage probability (AOP), and then to propose a cooperative scheme, where the re-

ceived signals from all the active two-hop links are equally weighted and combined

together for source-to-destination data transfer.

Noncoherent receivers have been applied to the context of relaying networks as

well [86], [34], [58]. In [86], a dual-hop two-way network is discussed wherein two de-

vices exchange information through a single DF relay employing a code-multiplexing

TR (CM-TR) signal structure. In [34], a non-cooperative relaying (NCR) strate-

gy is suggested as a way to improve system coverage and performance of multi-hop

networks. After multiple differential encoding, the source signal is forwarded to the

destination node via a number of subsequent amplify and forward (AF) relays, each

performing single differential demodulation. Numerical results indicate promising

performance competing even with that offered by some DF schemes. However, a few

limitations arise, namely: i) the relays have to be ordered before transmission starts;

ii) in the specific dual-hop case, the performance is severely degraded when the link

connecting either the source with the relay or the relay with the destination exhibits

poor quality, and iii) the power allocation (PA) across the transmitting nodes is given

in closed-form only for the dual-hop and through a sub-optimal recursive algorithm

for the multi-hop, whereas the DF case (introduced for performance comparison) is

solved through a demanding exhaustive search. In the scheme recently proposed in

[58], the signals from both the relayed and direct paths are combined at the desti-

nation through a decision rule based on log-likelihood ratio (LLR) test. Significant

performance gain is achieved with respect to both the direct transmission using s-

ingle differential encoding and the NCR scheme of [34], even though the proposed

semi-analytical PA strategy makes the extension to the multi-hop case unfeasible.

This chapter focuses on single differential encoded DF single-path NCR scheme,
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in which the intermediate nodes re-encode and transmit again the hard-detected sym-

bols, and proposes a novel relaying technique, referred to as joint power allocation and

path selection (JPAPS). The presented algorithm optimizes the power allocation co-

efficients associated to the intermediate nodes and selects the path connecting source

to destination capable of minimizing an approximate expression of the overall BER.

Compared with the previous works the results here show the following distinctive

features.

1. The power allocation over a path that crosses P relays is an optimization prob-

lem in P + 1 dimensions. A closed-form power allocation strategy is developed

which, according to simulation results, yields a BER close to the absolute min-

imum.

2. By performing the optimal path selection through a shortest path search on

a connected graph, the computational load required by the JPAPS results to

be polynomial in the number of relays of the network. In particular, it is

possible to further lower the complexity O(N3) of the exact JPAPS scheme by

introducing an approximated path selection algorithm (AJPAPS) which runs in

O(N2) without showing a significant performance loss.

3. In contrast to the position-based routing techniques discussed in [77], the pre-

sented approach does not require information about the network topology and

the coordinates of the source and destination.

4. A multi-hop CR strategy is also derived, which extends the AF approach in

[58] to the DF setting. Herein, each relay forwards the symbols which are de-

tected through first combining the signals received from the previous relays and

then thresholding the LLR metrics. However, due to both its overall compu-

tational complexity and the significant amount of channel state information
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(CSI) required, the DF CR scheme will be mainly employed as a performance

benchmark.

The effectiveness of the JPAPS algorithm is corroborated by extensive simulation

results over typical wireless propagation environments for various network setups.

Although derived under a number of approximations, the JPAPS not only favorably

compares to the AF and DF relaying techniques proposed in [34], [58], and [54], but

also appears to be competitive with the more burdensome DF CR scheme.

7.2 System Model Overview

Consider a single-user relay-based UWB network made up by N + 2 devices, namely

the source S transmitting the sequence of information symbols, the destination D

which collects them, and N DF relays Ri, i = 1, · · · , N , acting as intermediate nodes

to forward information toward the destination. For the ease of notation, let us denote

with:

1. P(S,Ri1 , · · · ,RiP ,D) the path connecting S to D passing through the relays

Ri1 , · · · ,RiP , with1 0 ≤ P ≤ N , i1, · · · , iP ∈ {1, · · · , N}, with ij 6= ik ∀j 6= k ∈

{1, · · · , P};

2. Ln,m the link existing from node n to node m, with n 6= m, n ∈ NP
∆
=

{S,Ri1 , · · · ,RiP } and m ∈MP
∆
= {Ri1 , · · · ,RiP ,D}.

Two different DF strategies will be proposed:

• NCR adopting a single path across P relays, with 0 ≤ P ≤ N , as described in

Sec. 7.3;

• CR exploiting all the N relays of the network, as described in Sec. 7.4.

1If P = 0, the direct path P(S,D) is considered.
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It is worth emphasizing that in the former case the path P is chosen among all the

possible routes according to the actual link propagation conditions, whereas in the

CR scheme all the N relays play as intermediate steps on retransmitting the detected

symbols.

7.2.1 Signal Model

At the device of index n ∈ NP , each symbol is transmitted as a block ofNf consecutive

frames, with one pulse g(t) per frame of sub-nanosecond width Tg and energy Eg
∆
=∫ +∞

−∞ g2(t)dt. Without loss of generality, let us adopt the following assumptions.

A1) P relays are active, with 0 ≤ P ≤ N .

A2) The source and relays transmit in adjacent time slots, each having duration

equal to the symbol interval Ts = NfTf , where Tf denotes the frame interval

which is long enough to avoid the inter-symbol interference (ISI) effect. As

a result, the time required to transmit from the source to the destination of

the network one information symbol spans (P + 1)Ts, thus ranging from Ts to

(N + 1)Ts.

A3) The index hn, n ∈ NP , designates the slot number, with hS = 0, hR1 =

1, · · · , hRP
= P .

Hence, the signal transmitted by node n ∈ NP corresponding to a block of M infor-

mation symbols can be written as

sn(t) =
√
pn

M−1∑
k=0

Nf−1∑
j=0

b
(n)
k g[t− jTf − k(P + 1)Ts − hnTs], (94)

where: i) pn is the power allocation coefficient; ii) the channel symbol b
(n)
k results

from the differential encoding rule

b
(n)
k =

 b
(n)
k−1 ak, if n = S

b
(n)
k−1 â

(n)
k , if n ∈ NP \ {S}

(95)
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given b
(n)
−1 as initial value; iii) ak, 0 ≤ k ≤ M − 1, is the sequence of the binary

information-bearing symbols transmitted by the source, modeled as independent and

identically distributed (i.i.d.) random variables (RVs) equiprobable in {±1}, and iv)

â
(n)
k is the hard decision taken at the relays having indices n ∈ NP \ {S}.

The signal (94) travels through a slow-fading multipath channel connecting node

n ∈ NP with node m ∈MP , n 6= m, which is assumed to be time-invariant within at

least the transmission of two consecutive channel symbols and have Ln,m paths, each

with delay τ
(n,m)
i and uncorrelated normalized gain ρ

(n,m)
i , so that2

∑Ln,m−1
i=0

[
ρ

(n,m)
i

]2

=

1. Under the assumptions A1)-A3), the signal at the output of the receiver bandpass

filter frx(t) of bandwidth W at node m is

rn,m(t) =
√
pnGn,m

M−1∑
k=0

Nf−1∑
j=0

b
(n)
k qn,m[t− jTf − k(P + 1)Ts − hnTs] + wn,m(t), (96)

with Gn,m accounting for both the path loss and the log-normal fading component,

where Gn,m|dB

∆
= 10 · log10Gn,m = −10ν · log10 dn,m + ϑn,m, ν being the path loss

exponent depending on the operating scenario, dn,m the length of the link Ln,m, and

ϑn,m a zero-mean Gaussian RV with variance σ2
F [57]. The shadowing terms associated

to different paths are supposed to be uncorrelated. Furthermore, the received frame-

level waveform qn,m(t) in (96) is expressed as

qn,m(t) =

[
Ln,m−1∑
i=0

ρ
(n,m)
i g(t− τ (n,m)

i )

]
∗ frx(t), (97)

and wn,m(t) denotes filtered AWGN with PSD
N0

2
over the bandwidth W of frx(t).

7.2.2 Symbol Detection

Each receiving node m ∈ MP , which belongs to the path P connecting the source

S with the destination D across P intermediate relays, in view of (95) performs

2The normalized gains are random variables given by the particular channel realization, but the
sum of their squares is normalized to 1 at the receiver.
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noncoherent differential detection without requiring the knowledge of the channel

impulse response (CIR) of the link Ln,m. Due to the time-slotted scheduling, first,

the received signal (96) is collected over the non-adjacent slots [(k − 1)(P + 1)Ts +

hnTs, (k− 1)(P + 1)Ts + hnTs + Ts] and [k(P + 1)Ts + hnTs, k(P + 1)Ts + hnTs + Ts],

within which the channel symbols b
(n)
k−1 and b

(n)
k have been transmitted, respectively.

Then, the soft estimate for the information symbol ak, i.e., the decision variable, is

evaluated as

λ
(n,m)
k,P =

Nf−1∑
j=0

∫ k(P+1)Ts+hnTs+jTf+Tε

k(P+1)Ts+hnTs+jTf

rn,m(t)rn,m[t− (P + 1)Ts]dt, (98)

where Tε is the integration interval depending on the CIR time span, which is assumed

for simplicity to be the same for all the active links.

In order to design the DF relaying network based on either the NCR or CR

strategy so that the BER performance at the destination node is maximized, some

basic issues arise from the system model perspective.

About the NCR scheme using P relays out of the N available ones:

• how the power coefficients pn, n ∈ NP , have to be chosen for the generic path

P connecting S to D across P relays, according to the actual link conditions;

• how the optimal path can be identified.

About the CR strategy using all the N relays:

• how to decide the transmit sequence of all relays;

• how to combine the soft estimates λ
(n,m)
k,N in (98), which are available at each

receiving node.

The next Sec. 7.3 and Sec. 7.4 will address the above issues for the NCR and CR

schemes, respectively, in the context of a DF multi-hop network. Significant effort

will be put on keeping the required computational load at affordable levels to agree

with the UWB philosophy that calls for as simple as possible processing schemes.
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7.3 Joint Power Allocation and Path Selection for Non-
Cooperative Relaying

In this section, we derive the JPAPS algorithm for a DF multi-hop single-path N-

CR scheme. The steps we will take can be summarized as follows: i) definition of

the transmission scheduling for the NCR network; ii) review of the statistics of the

decision variables at the relay and the destination nodes; iii) formulation of the PA

technique based on a sub-optimal yet efficient equal signal-to-noise ratio (SNR) s-

trategy, given a path crossing P relays, with 0 ≤ P ≤ N ; and iv) choice of the path

that minimizes a high-SNR approximation of the BER performance at the destination

node.

7.3.1 Multi-Hop Single-Path Non-Cooperative Relaying Transmission Schedul-
ing

Let us consider a generic path P(S,Ri1 , · · · ,RiP ,D) connecting S to D through P

relays, composed of the links Ln,m, with n ∈ NP and m ∈ MP , n 6= m. The nodes

transmit according to the following time-slot (TS) based scheduling:

• TS1: S transmits to Ri1 ,

• TS2: Ri1 transmits to Ri2 ,

• ...

• TSP+1: RiP transmits to D.

At node m, the hard decision

â
(m)
k = sgn

{
λ

(n,m)
k,P

}
(99)

is taken by thresholding the decision variable λ
(n,m)
k,P given by (98). Then, if m 6= D,

i.e., the destination has not been reached yet, after differential encoding (95) we obtain

the symbol b
(m)
k to be retransmitted over the corresponding time slot. Otherwise, if
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m = D, âk
∆
= â

(D)
k is the final decision on the information symbol ak made by the

destination node.

7.3.2 Statistical Modeling of the Decision Variables

The decision variable λ
(n,m)
k,P corresponding to the link Ln,m can be modeled as [93],

[14]

λ
(n,m)
k,P =

 αn,m ak + ξ
(n,m)
k , if n = S

αn,m â
(n)
k + ξ

(n,m)
k , if n 6= S

, (100)

where ξ
(n,m)
k is a zero-mean Gaussian RV with variance σ2

n,m, αn,m is the scaling

coefficient, and â
(n)
k is the hard decision at node n. Based on [34], it can be shown

that the scaling coefficient αn,m and the noise variance σ2
n,m are given by

αn,m = ET δn,m pn, (101)

σ2
n,m = αn,mN0 +

WNfTεN
2
0

2
. (102)

Note that in (101) ET
∆
= NfEg is the energy transmitted when pn = 1, and

δn,m
∆
= Gn,m

∫ Tε

0

q2
n,m(t)dt (103)

denotes the frame-level energy available at the output of the receiver bandpass filter

over the interval [0, Tε].

7.3.3 Power Allocation for a Fixed Relaying Path

In order to formulate the PA rule, we fix a generic path P̄(S,Ri1 , · · · , RiP ,D) which

crosses P of the N available relays, and we adopt the following assumptions.

A4) The available energy ET is shared among the source, that transmits pSET , and

the active relays Ri1 , · · · ,RiP , that transmit pRi1
ET , · · · , pRiP

ET , respectively.

After defining for simplicity Ri0
∆
= S, this means that the constraint

P∑
j=0

pRij
= 1 (104)

must hold at network level.
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A5) The SNR ET/N0 is thought to be sufficiently large so that (102) can be approx-

imated as σ2
n,m ' αn,mN0.

Now, let us focus on the BER expression for a given path P̄(S,Ri1 , · · · ,RiP ,D).

Due to the DF-based processing performed by the intermediate nodes, an error is

collected at the destination whenever there exists an odd number of errors along P̄ .

Upon neglecting the higher order terms given by the products of Q-functions in view

of the assumption A5, we can obtain a high-SNR approximation of the BER metric

as

ΦP̄(p) =
P∑
`=0

Q
(√

γRi`
,Ri`+1

)
. (105)

In plain words, ΦP̄(p) is given by the sum of the BERs of the links which compose

P̄ , where for ease of notation RiP+1

∆
= D, and from (100)-(102) and assumption A5,

the SNR at the output of the link LRi`
,Ri`+1

can be written as

γRi`
,Ri`+1

∆
=
α2

Ri`
,Ri`+1

σ2
Ri`

,Ri`+1

' ET
N0

δRi`
,Ri`+1

pRi`
, ` = 0, · · · , P, (106)

with p
∆
= [pRi0

, pRi1
, · · · , pRiP+1

]T denoting the vector of the power coefficients to be

allocated on the transmitting nodes belonging to the path P̄ .

Hence, the PA optimization problem (OP), or PA-OP for short, for a given path

P̄ can be formally stated as follows,
po = arg min

p
{ΦP̄(p)}

s.t. 1TP p = 1

. (107)

Notice that in the PA-OP (107) both the objective function and the constraint

result to be continuous and convex. Thus, the PA-OP is convex as well, and as such,

it admits a unique solution [9].

Unfortunately, applying the conventional method of Lagrange multipliers does not

yield a closed-form solution, and, as a consequence, some alternatives are required.

Due to the convex nature of the PA-OP, a possible numerical method relies on the
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iterative sub-gradient algorithm [9]. Once the method converges, we are sure that the

solution is the optimal one, although this is typically achieved with a slow convergence

rate. As the PA-OP has to be solved for all the possible paths P of the network, it can

be definitely concluded that the overall computational load required by this method

is unaffordable.

Prompted by the above consideration, the idea behind the proposed strategy is

heuristically based on the fact that the BER performance of a given path is well ap-

proximated by the BER of the link experiencing the worst channel conditions. There-

fore, the PA-OP is (sub-optimally) solved according to the equal-SNR PA (ESPA)

strategy, i.e., setting

γRi0
,Ri1

= γRi1
,Ri2

= · · · = γRiP
,RiP+1

, (108)

so that all the links will experience the same BER level. Coming into details, after

plugging the expression of the SNR (106) into condition (108) and exploiting the

constraint (104) of assumption A4, the linear matrix equation

∆p = b (109)

follows, where ∆ is the (P + 1)× (P + 1) matrix defined as

∆
∆
=



δRi0
,Ri1

−δRi1
,Ri2

0 · · · 0 0

0 δRi1
,Ri2

−δRi2
,Ri3

· · · 0 0

0 0 δRi2
,Ri3

· · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · δRiP−1
,RiP

−δRiP
,RiP+1

1 1 1 · · · 1 1


, (110)

and b
∆
= [0, · · · , 0, 1]T is a vector of size P + 1. The solution of (109) leads us to the

following proposition.
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Proposition 3. The closed-form sub-optimal ESPA solution for the path P̄ results

as

p
ESPA

=
1∑P

`=0 δ
−1
Ri`

,Ri`+1

· [δ−1
Ri0

,Ri1
, δ−1

Ri1
,Ri2

, · · · , δ−1
RiP

,RiP+1
]T , (111)

and accordingly, the minimum BER is approximately expressed by

ΦP̄(p
ESPA

) = (P + 1) ·Q


√√√√ET
N0

·

(
P∑
`=0

δ−1
Ri`

,Ri`+1

)−1
 . (112)

Proof. In view of the structure of the matrix ∆, it can be shown that its rows are

linearly independent. Hence, det ∆ > 0, and the solution of the linear system is

unique. Therefore, plugging (111) into (109) proves that the former is such a solution,

from which the minimum BER ΦP̄(p
ESPA

) given by (112) follows.

A few comments can help on grasping the meaning of Proposition 3.

1. Let us consider the dual-hop case (N = 1, and so P = 0 or P = 1), i.e., a

relaying network composed of the source S, the relay R, and the destination D,

where the possible paths are either the direct P(S,D) (P = 0) or the relayed one

P(S,R,D) (P = 1). As for the path P(S,R,D), let us assume δR,D > δS,R. If

the power coefficients were chosen as pS = pR = 1/2, the received energy for the

transmission over the link LR,D would be greater than that for the transmission

over LS,R, thus meaning that the BER of the overall path P(S,R,D) would be

dictated by the worst link LS,R. Applying the ESPA scheme, instead, the power

coefficients have the form

p
ESPA

= [pS, pR]T =
1

δS,R + δR,D

· [δR,D, δS,R]T , (113)

and the received energies for the two transmissions are “equalized”, so that the

SNRs at the output of the bandpass filters at R and D result to be the same

and equal to

γS,R = γR,D =
ET
N0

·
(

1

δS,R

+
1

δR,D

)−1

. (114)
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Consequently, the overall BER turns out to be

ΦP(S,R,D)(pESPA
) = Q

(√
γS,R

)
+Q

(√
γR,D

)
= 2Q

√ET
N0

·
(

1

δS,R

+
1

δR,D

)−1
 . (115)

On the other hand, focusing on the direct path P(S,D), the ESPA solution

(111) yields

p
ESPA

= [1, 0]T , (116)

i.e., all the available energy is assigned to the source S since the relay R is left

unused. Therefore, the corresponding BER results as

ΦP(S,D)(pESPA
) = Q

(√
γS,D

)
= Q

(√
ET
N0

· δS,D

)
. (117)

2. The ESPA (111) is a feasible solution for the PA-OP (107) since it satisfies

the power constraint. However, due to its sub-optimal nature, it does not

ensure to exactly hit the minimum of the objective function ΦP̄(p) in (105).

Nevertheless, the simulation results discussed in Sec. 7.5 will interestingly show

that the proposed ESPA approach is near-optimal, in the sense that it achieves a

BER value which is very close to the minimum obtainable through a numerical

solution based on exhaustive search.

7.3.4 Optimal Path Selection

The JPAPS algorithm can be finalized by selecting the optimal path that minimizes

the overall BER performance. Formally speaking, the optimal path selection problem

can be formulated as

Po = arg min
P∈G

{η(P)} , (118)

where G is the set of all possible paths connecting S with D and the objective function

η(P)
∆
= (P + 1) ·Q


√√√√ET
N0

·

(
P∑
`=0

δ−1
Ri`

,Ri`+1

)−1
 (119)
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coincides with the (approximate) minimum BER given by (112) employing the ESPA

strategy described in Sec. 7.3.3. Since there exist N !/(N − P )! different routes to go

from S to D passing through P relays, the cardinality of G amounts to
∑N

`=0N !/`!.

Therefore, solving (118) via a naive exhaustive search requires combinatorial com-

plexity, which even for small N is clearly unfeasible. However, the specific structure

of the metric η(P) suggests a much more efficient path selection algorithm, whose

rationale relies on: first, finding the set of candidates for the optimal path, i.e., one

path for each value of P , with 0 ≤ P ≤ N , and then, choosing the global optimal

path in the candidate set as the one which minimizes the metric η(P). The following

proposition clarifies these concepts.

Proposition 4. The solution to the minimization problem (118) can be obtained with

polynomial complexity O(N3) by means of a two-step procedure.

S1) The N + 1 sub-problems

P(P )
JPAPS = arg min

P∈GP
{µ(P)} , 0 ≤ P ≤ N, (120)

are solved adopting the path metric

µ(P)
∆
=

P∑
`=0

δ−1
Ri`

,Ri`+1
, (121)

where GP
∆
= {P |P ∈ G and passes throughP relays only}.

The result is the set C ∆
=
{
P(P )

JPAPS

}N
P=0

, which includes the N + 1 candidates for

the optimal path.

S2) The optimal path follows from

P(opt)
JPAPS = arg min

P∈C
{η(P)} , (122)

where η(P) is the metric defined in (119).
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Proof. Bearing in mind that: i) all the paths belonging to GP have P relays only, and

ii) the function Q(
√
x−1) is increasing in x, then minimizing η(P) for a given P and

ET
N0

ratio is equivalent to minimize µ(P) in (121). Furthermore, µ(P) is an additive

metric, i.e., it is the sum of the positive weights δ−1
Ri`

,Ri`+1
, one for each link LRi`

,Ri`+1

belonging to the path P . Hence, each sub-problem (120) of step S1 turns into a

shortest path problem constrained by P hops with non-negative link metric δ−1
Ri`

,Ri`+1
,

which can be efficiently solved with polynomial complexity by applying the modified

Bellman-Ford (BF) algorithm [32]. More precisely, under the assumption that the

relaying network is completely connected, the number of edges of the corresponding

graph results to be E =
(N + 1)(N + 2)

2
, and therefore the complexity of step S1 is

O(N ·E) = O(N3). The OP (122) of step S2 consists of selecting the path belonging

to C that minimizes the original metric η(P) in (119), i.e. of finding the minimum

among N + 1 elements, and as such, it can be performed in O(N). As a result, the

overall complexity of the procedure is O(N3).

Just to exemplify the path selection algorithm, let us focus again on the dual-hop

network considered in Sec. 7.3.3, wherein the possible paths are the direct P(S,D)

(P = 0) and the relayed one P(S,R,D) (P = 1). From (115) and (117), the metric

(119) evaluated for the relayed path amounts to

η[P(S,R,D)] = 2Q

√ET
N0

·
(

1

δS,R

+
1

δR,D

)−1
 , (123)

whereas that for the direct one is

η[P(S,D)] = Q

(√
ET
N0

· δS,D

)
. (124)

Therefore, the JPAPS algorithm reduces to the binary testing

P(opt)
JPAPS =

 P(S,R,D), η[P(S,R,D)] < η[P(S,D)]

P(S,D), otherwise
. (125)
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The meaning of (125) can be intuitively explained as follows. Let us assume that

P(S,D) is not reliable, for example due to a large distance between S and D or

to shadowing. This signifies that the BER of P(S,D) will be greater than that of

P(S,R,D). As a result, the JPAPS algorithm according to the values of η[P(S,D)]

and η[P(S,R,D)] will correctly choose the relayed path and use the intermediate

relay R. Vice versa, whenever δS,R or δR,D is so small that the BER associated to

P(S,R,D) is higher than that of P(S,D), the JPAPS algorithm will select the direct

path P(S,D). In both cases, the path selection diversity is properly exploited, thus

contributing to enhance the connectivity between source and destination.

7.3.5 Approximated Path Selection

In order to reduce the overall computational complexity, the path selection algorithm

can be suitably approximated, as showed in the following corollary.

Corollary 1. The approximated version of the JPAPS algorithm, or AJPAPS for

short, finds an approximation to the minimization problem (118) via the OP

P(opt)
AJPAPS = arg min

P∈G
{µ(P)} , (126)

which can be solved in O(N2).

Proof. Since the metric µ(P) defined in (121) is additive on the links belonging to a

given path P , the OP (126) is equivalent to an unconstrained shortest path problem

with non-negative link costs (see also Figure 28), which can be efficiently solved

through the Fibonacci-heap-based Dijkstra algorithm with complexity O(N2) [27].

A couple of comments about Corollary 1 can be of help.
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Figure 28: The AJPAPS algorithm reduces the path selection to an unconstrained
shortest path problem with non-negative link costs.

1. In the case of dual-hop network (N = 1), the AJPAPS algorithm reduces to

P(opt)
AJPAPS =

 P(S,R,D), if δ−1
S,R + δ−1

R,D < δ−1
S,D

P(S,D), otherwise
. (127)

2. The AJPAPS algorithm represents a good performance-versus-complexity trade-

off. Indeed, as shown in Sec. 7.5, the BER performance offered by AJPAPS is

very similar to that of the JPAPS algorithm, yet requiring a lower order of

computational load.

7.4 Cooperative Relaying

We develop in this section a multi-hop CR scheme in which each relay of the network

retransmits toward the destination the recovered symbol, obtained by first combining

the received signals from the previously transmitting nodes and then thresholding the

LLR corresponding to the soft estimates (98). The following points will be discussed:

i) definition of the transmission scheduling for the CR network; ii) evaluation of the

LLR for a given relay, and iii) choice of the power coefficients to be employed at the

network devices to optimize the BER performance at the destination node.
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7.4.1 Multi-Hop Cooperative Relaying Transmission Scheduling

Referring to Figure 29, let us consider the relaying network composed of the source S,

N intermediate relays R1, · · · ,RN , and the destination D. Given an ordering of the

N relays, transmissions take place according to the following TS-based scheduling:

• TS1: S transmits to R1, · · · ,RN , D

• TS2: R1 transmits to R2, · · · ,RN , D

• ...

• TSN+1: RN transmits to D.

Defining for notational simplicity RN+1
∆
= D, at the node of index Rj ∈ MN , the

k-th symbol is recovered by applying the optimal decision rule

â
(Rj)
k = sgn

{
Λ(λ

(Rj)
k,N )

}
, 1 ≤ j ≤ N + 1, (128)

where λ
(Rj)
k,N

∆
= [λ

(S,Rj)
k,N , λ

(R1,Rj)
k,N , · · · , λ(Rj−1,Rj)

k,N ]T is the j-dimensional vector includ-

ing the soft estimates collected in the time intervals TS1, TS2, · · · , TSj from the

links LS,Rj
,LR1,Rj

, · · · ,LRj−1,Rj
, and Λ(λ

(Rj)
k,N ) is the LLR corresponding to λ

(Rj)
k,N , as

evaluated in Sec. 7.4.2. After recovering the symbol â
(Rj)
k from (128), if j 6= N + 1

differential encoding (95) yields the channel symbol b
(Rj)
k to be retransmitted again.

Otherwise, if j = N + 1, âk
∆
= â

(RN+1)
k is the final decision taken by the destination

node on the information symbol ak.

7.4.2 Evaluation of the LLR Metric

The LLR evaluated at the node Rj is defined as

Λ(λ
(Rj)
k,N )

∆
= ln

fλ(λ
(Rj)
k,N |ak = 1)

fλ(λ
(Rj)
k,N |ak = −1)

, (129)

where fλ(λ
(Rj)
k,N ) is the joint probability density function (PDF) of λ

(Rj)
k,N . The metric

(129) is computed in the following proposition.
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(a) S transmits during the first time slot.

(b) R1 transmits during the second time slot.

(c) R2 transmits during the third time slot.

Figure 29: Multi-hop cooperative relaying (N = 2).

Proposition 5. Under the assumptions A1 (with P = N) and A2, the LLR Λ(λ
(Rj)
k,N ),

1 ≤ j ≤ N + 1, can be written as

Λ(λ
(Rj)
k,N ) =

2αS,Rj

σ2
S,Rj

λ
(S,Rj)
k,N +

j−1∑
i=1

Ω(λ
(Ri,Rj)
k,N ), (130)

with

Ω(λ
(Ri,Rj)
k,N )

∆
= ln

cosh

(
αRi,Rj

σ2
Ri,Rj

λ
(Ri,Rj)
k,N + ϕRj

)

cosh

(
αRi,Rj

σ2
Ri,Rj

λ
(Ri,Rj)
k,N − ϕRj

) , (131)

and approximated as

Λ(λ
(Rj)
k,N ) ' Z

(j)
k,N

∆
=

2αS,Rj

σ2
S,Rj

λ
(S,Rj)
k,N +

j−1∑
i=1

ω(λ
(Ri,Rj)
k,N ), (132)
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with

ω(λ
(Ri,Rj)
k,N )

∆
=

∣∣∣∣∣αRi,Rj

σ2
Ri,Rj

λ
(Ri,Rj)
k,N + ϕRj

∣∣∣∣∣−
∣∣∣∣∣αRi,Rj

σ2
Ri,Rj

λ
(Ri,Rj)
k,N − ϕRj

∣∣∣∣∣ , (133)

where ϕRj

∆
=

1

2
ln

1− peRj

peRj

, peRj

∆
= Pr{â(Rj)

k 6= ak} being the BER at the node Rj.

Proof. After setting R0
∆
= S for simplicity of notation, since the soft estimates at node

Rj ∈ MN , i.e., λ
(R0,Rj)
k,N , λ

(R1,Rj)
k,N , · · · , λ(Rj−1,Rj)

k,N , are independent from each other, the

LLR in (129) turns out to be

Λ(λ
(Rj)
k,N ) =

j−1∑
i=0

ln fλ(λ
(Ri,Rj)
k,N |ak = 1)−

j−1∑
i=0

ln fλ(λ
(Ri,Rj)
k,N |ak = −1). (134)

Exploiting (100)-(102), the conditional marginal PDF fλ(λ
(Ri,Rj)
k,N |ak) is given by

fλ(λ
(Ri,Rj)
k,N |ak) =



1

σRi,Rj

√
2π

exp

{
−

[λ
(Ri,Rj)
k,N − αRi,Rj

ak]
2

2σ2
Ri,Rj

}
, i = 0

Pr{â(Rj)
k 6= ak}

σRi,Rj

√
2π

exp

{
−

[λ
(Ri,Rj)
k,N + αRi,Rj

ak]
2

2σ2
Ri,Rj

}

+
Pr{â(Rj)

k = ak}
σRi,Rj

√
2π

exp

{
−

[λ
(Ri,Rj)
k,N − αRi,Rj

ak]
2

2σ2
Ri,Rj

}
, 1 ≤ i ≤ j − 1

.

(135)

Upon replacing (135) into (134), the exact expression of the LLR (130)-(131) can

thus be obtained. Furthermore, applying the Jacobi approximation, i.e., ln(ex+ey) '

max{x, y}, the approximations in (132)-(133) follow.

Some remarks can be given about the multi-hop CR scheme.

1. The N available relays have to be pre-ordered so that transmissions comply with

the TS-based scheduling procedure outlined in Sec. 7.4.1. Since there exist N !

different ways of sorting N relays, however, an exhaustive search looking for the

ordering that enables the best performance appears unfeasible even for small

N .

2. While the NCR JPAPS algorithm requires only partial CSI in the form of the

frame-level energies δn,m defined in (103), with n ∈ NN and m ∈ MN , n 6= m,
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in the CR scheme the model parameters αRi,Rj
and σ2

Ri,Rj
, with 0 ≤ i ≤ j − 1

and 1 ≤ j ≤ N + 1, have to be pre-computed together with an estimate of the

BER level for all the nodes. As a result, the overall computational complexity

of the CR is much higher than that of the JPAPS scheme.

7.4.3 Power Allocation for Multi-Hop Cooperative Relaying

The optimal power allocation strategy is far more demanding for the CR approach

than for the NCR JPAPS scheme.

In analogy with the dual-hop AF CR technique proposed in [58], a possible option

could be based on the solution of the OP
po = arg min

p
{SNRCR(p)}

s.t. 1TN+1 p = 1

, (136)

where p
∆
= [pR0 , pR1 , · · · , pRN+1

]T and the objective function

SNRCR(p)
∆
=

E2{Z(N+1)
k,N }

Var{Z(N+1)
k,N }

(137)

is the effective SNR at the destination node, based on the RV Z
(N+1)
k,N given by (132)

with j = N + 1. Unfortunately, differently from the AF CR scheme of [58], the

PA strategy defined in (136)-(137) proves ineffective. Indeed, in the current DF CR

scheme, the soft estimates included in Z
(N+1)
k,N , i.e., λ

(Rj ,RN+1)
k,N with 0 ≤ j ≤ N , cannot

be modeled as Gaussian RVs, but instead as mixtures of Gaussian RVs, because of

the presence of the hard decisions â
(Rj)
k .

In order to find an alternative power allocation strategy, let us observe that, from

a heuristic point of view, the best path coming into a given relay, say Rj, dominates

its performance. Hence, it can be argued that a good approximation of the BER at

the node Rj, i.e., peRj
, is just given by the minimum among all the BERs pertaining

to the admissible paths, namely those going from S to Rj, R1 to Rj, · · · , Rj−1 to Rj.

Hence, after discarding the higher order terms given by the products of Q-functions
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in line with the high-SNR assumption A5, the recursive equation peR0
= 0

peRj
= mini∈{0,1,··· , j−1}

{
peRi

+Q
(√

γRi,Rj

)}
, j = 1, · · · , N + 1

(138)

allows to evaluate the sequence peRj
, 1 ≤ j ≤ N of the BER at the relay nodes R1,

R2, · · · , RN , together with the BER at the destination node peD
∆
= peRN+1

. Assuming

as objective function peD from (138), we are thus led to formulate the OP for the PA

strategy in the CR scenario 
po = arg min

p
{peD(p)}

s.t. 1TN+1 p = 1

. (139)

The analogy between the OP (107) and that in (139) suggests that a good approxi-

mated solution of the latter can be found by exploiting the ESPA strategy outlined

in Sec. 7.3.3. Then, solving (139) yields the sequence peRj
, 1 ≤ j ≤ N , which is

eventually employed to evaluate the LLR metrics (130)-(131) or their approximate

versions (132)-(133).

7.5 Simulation Results

In this section, the effectiveness of the JPAPS and AJPAPS schemes is verified

through numerical simulations over realistic multipath wireless environments for var-

ious network configurations. The performance figure is quantified by the BER at the

destination node as a function of the Eg/N0 ratio with Eg and N0 being defined in

Sec. 7.2.

7.5.1 Benchmark Schemes

The following schemes will be taken as performance benchmarks:

1. source-destination direct transmission (DT) with single differential encoding;

2. DF NCR with single differential encoding and equal power allocation (DF-NCR-

EP), as proposed in [54];
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3. DF NCR with single differential encoding and the optimal power allocation

(DF-NCR-OP) proposed in Sec. 7.3.3;

4. DF CR with single differential encoding and equal power allocation (DF-CR-

EP), as discussed in Sec. 7.4.2;

5. DF CR with single differential encoding and optimal power distribution (DF-

CR-OP), in which the power allocation coefficients are optimized numerically

by making them vary in the interval [0, 1] and choosing the values that yield

the minimum BER;

6. AF CR with multiple differential encoding and the optimal power allocation

strategy (AF-CR-OP) proposed in [58];

7. AF NCR with multiple differential encoding and the optimal power allocation

strategy (AF-NCR-OP) proposed in [34];

8. DF NCR with single differential encoding and joint power allocation and path

selection (JPAPS), as proposed in Sec. 7.3.3 and 7.3.4;

9. DF NCR with single differential encoding and approximate joint power alloca-

tion and path selection (AJPAPS), as proposed in Sec. 7.3.5.

Note that, if not otherwise specified, all the performance comparisons among the

above benchmark schemes will be carried out taking as a reference the BER level of

10−3.

7.5.2 Simulation Setup

In the setup considered for the numerical simulations, the source node transmits

bursts of M binary information-bearing symbols, where the symbol interval is made

up of Nf = 2 frames with an ultra-short pulse g(t) per frame, the so-called monocycle,
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defined as

g(t) =

[
1− 4π

(
t− ϑ
ϕ

)2
]

e−2π[(t−ϑ)/ϕ]2 , (140)

with ϑ = 0.35 ns and ϕ = 0.2877 ns. The pulse and frame durations are Tg = 0.7 ns

and Tf = 70 ns, respectively, and accordingly, the symbol interval equals Ts = NfTf =

140 ns. No time-hopping code is employed, the bandwidth of the receiver band-pass

filter is set to W = 5 GHz, and the integration interval is Tε = 5.25 ns [34].

The channel model is assumed to be time-invariant within each burst, but ran-

domly varying from burst to burst according to the CM1 model [57]. The path loss

exponent is ν = 3, and the deviation of the log-normal fading component is σF = 2.5.

Thus, according to the time-spread of the channel model and the value of the frame

interval Tf , the ISI effect can be considered negligible.

We focus on five network configurations (NCs), as depicted in Figure 30, differing

for both the number of relays and their disposition.

NC1: line configuration with N = 1 relay between the source S and the destination

D;

NC2: isosceles triangle configuration with N = 1 relay;

NC3: line configuration with N = 2 relays between the source S and the destination

D;

NC4: square configuration with N = 2 relays positioned on the vertices;

NC5: generic configuration formed by a square room of side 4 meters, with the source

S and the destination D placed on a couple of diagonal vertices, and N = 10

relays, one of which is placed in the middle and the other ones are uniformly

and randomly distributed inside.
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(a) Line configuration with N = 1 relay (NC1).

(b) Triangle configuration with N = 1 relay (NC2).

(c) Line configuration with N = 2 relays (NC3).

(d) Square configuration with N = 2 relays
(NC4).
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(e) Generic configuration with N = 10 relays (NC5).

Figure 30: Network configurations.
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7.5.3 Check for the Power Allocation Adopted for the JPAPS Algorithm

Figs. 31-32 deal with the transmission of a single burst of M consecutive information

symbols over a given realization of the CIRs and channel gains, adopting the config-

urations NC1, NC2 (N = 1) and NC3 (N = 2). In both figures, the BER is plotted

against the N power allocation coefficients3 by making them vary in the interval [0, 1]

with the step-size of 10−2. For the single relay system analyzed in Figure 31, M = 106,

and two values of Eg/N0 are chosen for each of the two dual-hop scenarios, in order

to obtain a minimum BER close to 10−2 and 10−4. For the configuration with two

relays in Figure 32, M = 105 and Eg/N0 = 12 dB, so that the minimum BER is close

to 10−3. In all the cases, the BER performance achieved using the PA coefficients

given by (114) and (111) for the case N = 1 and N = 2 respectively, is very close to

that obtained through exhaustive search.
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Figure 31: BER as a function of the power allocation coefficient of the source S for
NC1 and NC2.

3The value of the (N + 1)-st power coefficient is obtained from the power constraint equation.
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Figure 32: BER as a function of power allocation coefficients of the source S and
relay R1 for NC3.

7.5.4 BER Performance for Dual-Hop Configurations

Figures 33-34 compare the schemes listed in Sec. 7.5.1 for the single relay config-

urations NC1 and NC2, respectively. For a specific value of the Eg/N0 ratio, 104

different bursts are transmitted, each conveying M = 103 information symbols and

experiencing a different realization of the wireless propagation channels. In particu-

lar, for each realization of the transmission, independent channel gains are generated

and the CIRs of the different links are selected randomly from a set of 100 sample

channel responses given by [25].

In Figure 33, it can be noted that the DF-NCR-EP [54] offers a gain of about 4 dB

at the target BER of 10−3 with respect to the conventional DT. In contrast, in Figure

34, the DT slightly outperforms the DF-NCR-EP by approximately 1 dB. The reason

is simply that the scenario NC1 of Figure 33 favors the relayed path P(S,R,D), while

for NC2 in Figure 34 P(S,R,D) turns out to be unfavorable. Anyway, it can be

argued from both the figures that the proposed JPAPS scheme: i) coincides with the
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approximated version AJPAPS, which, however, shows one less order of complexity;

ii) yields a performance improvement of 3 dB with respect to the DF-NCR-EP and

the DT in Figures 33 and 34, respectively, and iii) offers a gain of 1 dB with respect

to the AF-CR-OP [58] for both NC1 and NC2, and of about 2 dB (4.5 dB) for NC1

(NC2) with respect to the AF-NCR-OP [34]. It has to be noted that, although the

JPAPS requires a much lower computational load (and the AJPAPS even less), it

outperforms the DF-CR-EP by 1.5 dB (1 dB) for NC1 (NC2), and it incurs in a

negligible 0.4 dB loss compared to the DF-CR-OP in which the PA coefficients are

found by an exhaustive search, i.e., performing the transmission for each possible

couple of power coefficients (with a fixed step size) and then selecting the one that

minimizes the BER.
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Figure 33: BER as a function of the SNR for various transmission schemes (NC1).

7.5.5 BER Performance for Multi-Hop Configurations

Figures 35-36 address two scenarios with N = 2 relays corresponding to NC3 and

NC4, respectively. As in NC1, in the multi-hop line configuration NC3 of Figure 35,
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Figure 34: BER as a function of the SNR for various transmission schemes (NC2).

a more favorable path exists as well, i.e., the relayed path P(S,R1,R2,D). Thus,

the DF-NCR-EP based on P(S,R1,R2,D) shows a performance gain of 4 dB over

the DF-NCR-EP based on P(S,R1,D) and even of 7 dB with respect to the DT.

On the other hand, for the square configuration NC4 of Figure 36, P(S,R1,R2,D) is

no longer the most convenient path, and the DF-NCR-EP that employs that route

is outperformed by the DT and the DF-NRC-EP based on P(S,R1,D), which come

out to be almost equivalent. By applying the proposed JPAPS (or the AJPAPS,

which again yields the same error performance), a considerable gain of about 4 dB is

enabled on the DF-NCR-EP for NC3, which goes up to 5 dB for NC4. Interestingly,

the JPAPS keeps on having an advantage of 2 dB for both NC3 and NC4 also against

the cooperative DF-CR-EP, in spite of requiring a much lower complexity.

As the last test case, Figure 37 refers to the configuration NC5 in which up

to N = 10 relays can be adopted by the transmission schemes. To be specific,

the DF-NCR-OP scheme that employs the path P(S,Rc,D), where Rc is the relay

located at the center of the square, exhibits a gain of more than 6 dB compared to
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Figure 35: BER as a function of the SNR for various transmission schemes (NC3).
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Figure 36: BER as a function of the SNR for various transmission schemes (NC4).
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the DT, while, without optimizing the PA coefficients, the advantage on the direct

transmission reduces to 5 dB. Notice that the proposed JPAPS, even when only one

relay can be used, brings an additional performance gain of 4.5 dB relative to the DF-

NCR-OP, which always adopts the relay Rc. Then, if all the relays are available for

transmission, the multi-hop JPAPS (and also its approximated version) considerably

outperforms the dual-hop JPAPS scheme by more than 6 dB.

Hence, the results obtained for the multi-hop scenarios corroborate the effective-

ness of the proposed JPAPS and AJPAPS techniques, which show remarkable gains

compared to the benchmark schemes specified in Sec. 7.5.1.
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Figure 37: BER as a function of the SNR for various transmission schemes (NC5).
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CHAPTER VIII

GENERALIZED CODE-MULTIPLEXING FOR UWB

SYSTEMS

8.1 Introduction

The differential UWB receivers enable simple receiver structures, but the delay com-

ponent required by the correlation unit, amounting to tens or even hundreds of

nanoseconds, presents a non negligible drawback in terms of hardware implemen-

tation. In both cases, the delay component is built via either analog circuitry or

digital sampling [83, 24, 12]. However, they still suffer from the need for accurate

delay lines on the order of multiples of symbol intervals.

To overcome the implementation issue posed by the delay components, the frequency-

shifted reference (FSR) system has been proposed to separate the reference and data-

modulated signals in the frequency domain at the price of requiring an analog carrier

[30]. The FSR is further simplified by the code-multiplexed TR (CM-TR) [18] and

code-shifted reference (CSR) [61] schemes based on orthogonal code sequence de-

sign. Noteworthy, both systems are promising schemes as they require neither delay

elements nor analog carriers, while even exhibiting better bit error rate (BER) per-

formance compared to the FSR solution.

The aim of this section is to generalize the CM-TR and CSR concepts through

a novel design we refer to as “generalized code-multiplexing,” or GCM [102, 103]

for short in the following. The rationale of the proposed transmitter and receiv-

er structure relies on the formulation of a constrained optimization problem (OP),

which maximizes the BER performance metric under a given set of constraints main-

ly adopted to keep complexity at affordable levels. Several features differentiate the
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proposed approach from previous work and define our contributions.

1. The GCM inherits the basic structure of the CM-TR and CSR systems based on

a simple energy detector without any delay line components. As a further step,

however, after solving offline a joint OP on the transmitted and decoding codes

for a given frame size Nf and number of information symbols M conveyed within

each block, improved BER link performance and higher spectral efficiency are

enabled.

2. When the frame size Nf > 2M , the non-deterministic polynomial hard (NP-

hard) nature of the original constrained OP can circumvented by deriving the

closed-form optimal solution from an equivalent system with Nf = 2M .

3. To take account of the emission power restriction imposed by the Federal Com-

munications Commission (FCC) for UWB communications, we develop the

GCM systems with peak power constraint, which can maintain the same er-

ror performance as the existing designs while enjoying lower peak power levels.

4. The GCM framework is then extended to the more general case when inter-frame

interference (IFI) arises, as typically occurs in high data rate transmissions.

Through the formulation of an OP based on a properly modified signal model,

the IFI effects can be mitigated, and thus obtaining a considerable performance

improvement compared to some existing codes.

8.2 System Model

Consider the GCM system depicted in Fig. 38. A sequence of M information sym-

bols a
∆
= [a1, · · · , aM ]T , ai ∈ {±1} are encoded at the transmitter into a block

of Nf frame symbols b
∆
=
[
b0, · · · , bNf−1

]T
according to the rule b = χ(a), χ

∆
=

[χ0, χ1, · · · , χNf−1]T . Thus, the transmitted signal corresponding to the data block a
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Figure 38: System diagram of a block transmission for GCM systems.

can be written as

x(t) =

Nf−1∑
j=0

bjp(t− jTf ), (141)

where p(t) is the Gaussian monocycle pulse with duration Tp, Nf is the number of

frames in the block, and Tf is the frame interval. Note that, for the time being, inter-

frame interference (IFI) is avoided by choosing Tf > Tm + Tp, where Tm is defined as

the maximum excess delay of the channel; however this assumption will be dropped in

Sec. 8.4. For the sake of notational simplicity, we do not explicitly consider the typical

frame structure for time hopping (TH) in that it can be removed at the receiver prior

to further signal processing without incurring IFI under the condition of sufficiently

long Tf .

The UWB propagation channel is assumed to be highly frequency-selective with

the channel impulse response (CIR) modeled as

h(t) =

Np−1∑
n=0

αnδ(t− τn), (142)

where Np is the total number of paths with amplitude αn and delay τn. The channel

coherence time, wherein the CIR stays approximately constant, is assumed to be

longer than the block transmission interval Tb = TfNf .

107



After processing the received signal with a low-pass filter1 having impulse response

frx(t), which eliminates the out-of-band (OOB) interference and noise, in correspon-

dence of (141), we obtain

x(t) =

Nf−1∑
j=0

bjg(t− jTf ) + w(t), (143)

where w(t) is a band-limited AWGN component with two-sided power spectrum den-

sity N0/2, and the channel template g(t)
∆
= p(t) ∗ h(t) ∗ frx(t) has frame energy

Ef
∆
=
∫ Tm+Tp

0
g2(t)dt.

Under the assumption that timing has been acquired, energy integration is per-

formed on the received signal

rj =

∫ (j+1)Tf

jTf

x2(t)dt, j ∈ J , (144)

with J ∆
= {0, · · · , Nf−1}. Then, the decision variable for the kth information symbol

is obtained as

zk = cTk r, k ∈ K, (145)

where ck
∆
= [ck,0, ck,1, · · · , ck,Nf−1]T is the decoding vector, r

∆
= [r0, r1, · · · , rNf−1]T

includes the outputs in (144), and K ∆
= {1, · · · ,M}. As a final step, the estimate of

the information symbol is given by

âk = sgn(zk), k ∈ K. (146)

The system model in Eqs. (141), (143)-(146) subsumes some existing code-multiplexed

(CM) designs.

1. Code-Multiplexed Transmitted Reference (CM-TR) The CM-TR system trans-

mits the reference and the data-modulated signals together with M = 1[18].

The CM-TR encoder is specified by

bj = χj(a1) = dj + a1uj, j ∈ J , (147)

1A quite similar system model holds in the case of employing a bandpass filter.
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where the codewords d
∆
= [d0, d1, · · · , dNf−1]T and u

∆
= [u0, u1, · · · , uNf−1]T used

for the reference and the data-modulated signals, respectively, have the proper-

ties: i) dj, uj ∈ {±1}, j ∈ J ; and ii) they are orthogonal, i.e., dTu = 0. At the

receiver, the integrator output r, after being correlated by the decoding vector

c1 = d�u, yields the decision variable for the information symbol transmitted

at each block. Note that, in fact, the CM-TR system can be considered as a

generalized binary pulse position modulation (B-PPM) [81].

2. Code-Shifted Reference (CSR) In the CSR system, M ≥ 1 information symbols

a are transmitted into Nf frames according to the encoding rule [61]

bj = χj(a) =
√
Mv0,j +

M∑
k=1

akvk,j, j ∈ J , (148)

where among the transmitted codewords vk
∆
= [vk,0, vk,1, · · · , vk,Nf−1]T , k ∈ {0}∪

K, the codeword with k = 0 (v0) is for the reference signal, whereas those

for k ∈ K are used for the M information symbols. For data detection, the

transmitted codewords vk and decoding vectors ck are chosen such that the

following conditions are satisfied:

C1) ck,j, vi,j ∈ {±1}, k ∈ K, j ∈ J , i ∈ {0} ∪ K;

C2)
∑Nf−1

j=0 ck,j = 0, k ∈ K;

C3) cTk (v0 � vi) =

 Nf , i = k, k ∈ K

0, i 6= k, i ∈ {0} ∪ K, k ∈ K
;

C4) cTk (vi � vj) = 0,∀i, j, k ∈ K.

The following comments are worth emphasizing.

(a) To comply with C1)-C4), Walsh codes are employed for vk and ck in [61,

Table 1].
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(b) At most, M = Nf/2 information symbols can be encoded into Nf frames.

This is because, for the Walsh codes with length 2N , there exist, at most,

2N−1 + 1 transmitted codewords and 2N−1 decoding vectors that satisfy

conditions C1)-C4).

8.3 GCM Optimal Design

In this section, we formulate a constrained OP to design the GCM encoder b = χ(a)

and decoding matrix C
∆
= [c1, · · · , cM ] so that the link performance in terms of the

BER metric is optimized under a given set of assumptions.

8.3.1 Formulation of GCM Systems

Let us first define the GCM system we are dealing with, which subsumes CM-TR and

CSR as special cases.

Definition 1. A transmitter with encoder b = χ(a) and a receiver with decoding

matrix C form a GCM system if the following assumptions are satisfied:

A1) ck,j ∈ {±1}, k ∈ K, j ∈ J ;

A2)
∑Nf−1

j=0 ck,j = 0, k ∈ K;

A3) The error probabilities on ak, k ∈ K are equal.

Then, we derive an equivalent definition of the GCM system that will be particu-

larly useful to formulate the GCM OP. To be specific, we take the conditions of both

the absence of IFI and sufficiently large product BTf , B being the bandwidth of the

receiver low-pass filter frx(t).

Proposition 6. A GCM system with encoder b = χ(a) and decoding matrix C holds

if assumption A3) is replaced by A3a)-A3b) as:

A1) ck,j ∈ {±1}, k ∈ K, j ∈ J ;
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A2)
∑Nf−1

j=0 ck,j = 0, k ∈ K;

A3a) cTk (bi � bi) = Ψ ai,k, i ∈ I, k ∈ K;

A3b) ‖bi‖2
2 = Eb, i ∈ I,

where ai
∆
= [ai,1, · · · , ai,M ]T and bi

∆
=
[
bi,0, · · · , bi,Nf−1

]T
, with i ∈ I ∆

= {1, · · · , 2M},

denote the realizations of the information symbol a and the transmitted symbol b,

respectively, with bi = χ(ai); Eb is the energy of the transmitted symbol bi, assumed

to be constant ∀i ∈ I; and Ψ is a parameter that strictly depends on both the encoding

rule b = χ(a) and the decoding matrix C.

Proof. See Appendix C.

Now, a key result about the GCM system is ready to be derived, as stated in the

sequel.

Proposition 7. Assuming a GCM system with encoder χ(a) and decoding matrix

C satisfying Proposition 6, the BER performance is asymptotically approximated in

terms of the twice time-bandwidth product L
∆
= d2BTfe when L is large as

BERGCM(Ω) = Q

[
Ω

(
2M

γ
+
NfL

2γ2

)−1/2
]
, (149)

where Ω
∆
= MΨ/Eb, γ

∆
= Ebit/N0 is the received-bit-energy-to-noise-spectral-density

ratio, and Q(x)
∆
= 1√

2π

∫∞
x

exp(−t2/2)dt.

Proof. See Appendix D.

Given Propositions 6-7, we are now ready to establish the relationship between

our GCM systems and existing systems.

Corollary 2. The CM-TR system is a GCM system with M = 1 and Ω = 1.
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Proof. First, it can be shown that assumptions A1)-A2) hold for the CM-TR system

as well. The entries of the decoding vector c1 = d� u take values in {±1}, while

Nf−1∑
j=0

c1,j = dTu = 0. (150)

Then, the signal component in the decision variable z1 = cT1 r can be rearranged as

cT1 (b� b) = (d� u)T [(d + a1u)� (d + a1u)]

= 2(d� u)T
[
1Nf×1 + a1(d� u)

]
= 2Nfa1, (151)

and the energy of the transmitted symbols b1 (corresponding to a1) becomes

Eb = ‖b1‖2
2 = (d + a1u)T (d + a1u) = 2Nf , (152)

which indicates that assumptions A3a)-A3b) hold. Therefore, by exploiting the results

derived in the proof of Propositions 1-7, we conclude that the CM-TR system is a

special case of GCM systems with Ω = 1.

Corollary 3. The CSR system is equivalent to a GCM system with Ω =
√
M .

Proof. In order to prove the equivalence between the CSR under C1)-C4) and the

GCM under A1)-A3b) for a particular objective value Ω, let us start by replacing the

expression obtained from (148) for a generic realization of the transmitted symbols

b =
√
Mv0 +

∑M
i=1 aivi into the signal component at the integrator output given by

A3a). Thus, applying conditions C3)-C4) yields

cTk (b� b) = McTk (v0 � v0) + 2
√
M

M∑
i=1

aic
T
k (v0 � vi)

+
M∑
i=1

M∑
j=1

aiajc
T
k (vi � vj) = 2

√
MNfak, k ∈ K, (153)

which indicates that assumption A3a) holds for the CSR as well, with Ψ = 2
√
MNf .

Furthermore, due to the property vTi vj = 0, i 6= j, exhibited by the Walsh codes, we
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obtain

Eb = ‖b‖2
2 =

(
√
Mv0 +

M∑
j=1

ajvj

)T (√
Mv0 +

M∑
i=1

aivi

)
= 2MNf , (154)

which proves that the CSR also satisfies A3b). As a result, in view of the proof of

Propositions 1-7, the CSR system is a special case of GCM systems with Ω =
√
M .

8.3.2 Optimization Problem for GCM Systems

According to Proposition 7, it can be recognized that given Nf , M , and L the BER

performance metric is optimized whenever the encoder b = χ(a) and the decoding

matrix C are designed so that Ω in (149) is maximized under assumptions A1)-

A3b). Hence, Ω is just the objective function of the OP we are addressing. As

such, in light of A3a), it will be denoted in the sequel as Ω(C,X), namely depending

on both the decoding matrix C and the Nf × 2M matrix X
∆
= [x1, · · · ,x2M ] with

xi
∆
= bi�bi

∆
= [xi,0, · · · , xi,Nf−1]T , i ∈ I. Hence, after designating the M ×2M matrix

as A
∆
= [a1, · · · , a2M ], we formulate the GCM joint constrained OP over C and X, or

joint OP (J-OP) for short, as

(Co,Xo) = arg max
C,X

{Ω(C,X)}

s.t. CTX = Ω(C,X)A

1TNf×1X = M1T2M×1

X ≥ 0Nf×2M

CT1Nf×1 = 0M×1

C�C = 1Nf×M

, (155)

where for convenience, we set Eb = M ; X ≥ 0Nf×2M means that all entries of X are

greater than or equal to 0; C�C = 1Nf×M means that the entries of C take values

in {±1}; and the objective function is given by

Ω(C,X) =
1

M2M
· 1TM×1

[
(CTX)�A

]
12M×1, (156)
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which can be obtained from the first constraint of (155) originating from A3a). If the

decoding matrix C is given, the J-OP in (155) is simplified to

Xo = arg max
X

{Ω(X)}

s.t. CTX = Ω(X)A

1TNf×1X = M1T2M×1

X ≥ 0Nf×2M

, (157)

labeled as GCM encoder-based OP, or E-OP for short.

Now, the following remarks about the OPs (155)-(157) are of interest.

1. The J-OP in (155) is a mixed integer programming (MIP) problem since the

optimization has to be performed over the matrices C and X, whose entries

take integer and real values, respectively. As a result, it is generally NP-hard,

and its computational complexity is really demanding even for small Nf and M .

As will be shown in Sec. 8.3.3, however, the optimal transmitted and decoding

code matrices for Nf ≥ 2M can be found by solving an equivalent problem for

Nf = 2M with a closed-form optimal solution. In contrast, the (sub-optimal)

E-OP in (157), which belongs to the class of linear programming (LP) OPs, can

be solved by applying some well-known polynomial-complexity algorithms (see

e.g., [43, 9]).

2. The optimal GCM design offers several advantages over the existing CM-TR

and CSR: i) BER performance can be improved; ii) the system design does not

rely on the properties of any codeword set, such as the Walsh codes; iii) the

E-OP allows the optimization on any given decoding matrix satisfying A1)-A2)

only; iv) the frame length Nf is not restricted to the form 2N , with N being

some integers, as required by the CSR; and v) the number of symbols M that

can be embedded into a single data block, can be greater than those of the

CM-TR (M = 1) and the CSR (M ≤ Nf/2), which results in a higher spectral
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efficiency.

3. The solutions to the J-OP or E-OP aim at optimizing the BER performance.

The GCM framework gives the freedom to consider alternative optimization

criteria as well. A viable option is to minimize the peak power of the transmitted

signal (141) [3] under a predefined BER level determined by a value of Ω, say

Ωc, with Ωc ≤ Ωo, Ωo denoting the optimal objective value of J-OP in (155).

This means to constrain the entries of the matrix X to be below a threshold Υ,

or more formally [X]i,j ≤ Υ, ∀j ∈ J , ∀i ∈ I, and to modify the first constraint

of (155) into CTX = ΩcA. Hence, the corresponding OP is to minimize the

peak power Υ while keeping the average power as 1TNf×1X = M1T2M×1. Thus,

this peak power based OP, or PP-OP for short, can be formulated as

(Co,Xo) = arg min
C,X

{Υ(C,X)}

s.t. X ≤ Υ(C,X)1Nf×2M

CTX = ΩcA

1TNf×1X = M1T2M×1

X ≥ 0Nf×2M

CT1Nf×1 = 0M×1

C�C = 1Nf×M

. (158)

4. For practical UWB communications with predetermined system parameters,

i.e., Nf and M , the J-OP can be solved offline, and the optimized encoder χ(a)

and decoding matrix C
∆
= [c1, · · · , cM ] can be stored locally as look-up tables at

the transmitter and the receiver. When the system parameters are determined

in the real-time communications, the transmitter can solve J-OP and then send

the optimized decoding matrix to the receiver as preamble, or a central unit

can optimize the J-OP and send the optimized results to both the transmitter

and the receiver.
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8.3.3 Optimal Codes for Large Frame Size Nf

The considerable complexity of the MIP constrained J-OP in (155) when Nf > 2M

can be avoided by analytically solving an equivalent problem with Nf = 2M . For

the sake of convenience, the following two lemmas can help, where we designate the

original J-OP in (155) with frame length Nf > 2M as “larger problem,” or LJ-OP, and

the corresponding equivalent J-OP with Nf = 2M as “smaller problem,” or SJ-OP.

Lemma 1. For any feasible solution to the LJ-OP, there exists a feasible solution to

the SJ-OP such that the solutions provide the same objective value Ω.

Proof. See Appendix E.

Lemma 2. Assume that the mappings Γ : A2M×M → BNf×M and Λ : A2M×2M →

BNf×2M exist such that for any feasible solution (C,X) to the SJ-OP, [Γ(C),Λ(X)] is

the feasible solution corresponding to the LJ-OP, both with the same objective value,

i.e., Ω(C,X) = Ω [Γ(C),Λ(X)]. Then, [Γ(Co),Λ(Xo)] is the optimal solution to the

LJ-OP, when (Co,Xo) is the optimal solution of the SJ-OP.

Proof. Corresponding to the optimal solution (Co,Xo) for the SJ-OP, there exists a

feasible solution [Γ(Co),Λ(Xo)] for the LJ-OP such that Ω(Co,Xo) = Ω [Γ(Co),Λ(Xo)] =

Ωo. Then, [Γ(Co),Λ(Xo)] must also be optimal since if there exists a solution

(C′,X′) to the LJ-OP which is better than [Γ(Co),Λ(Xo)], i.e., with Ω(C′,X′) >

Ω [Γ(Co),Λ(Xo)], according to Lemma 1, there would exist a feasible solution for the

SJ-OP with objective value equal to Ω(C′,X′) greater than Ω(Co,Xo), which results

in a contradiction.

Lemmas 1 and 2 allow us to establish a one-to-one relationship between the opti-

mal solutions of the GCM J-OPs with Nf > 2M and those with Nf = 2M . Thus, the

problem is how to find the mappings Γ and Λ. A simple option is to apply the zero
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padding method, which gives

CNf×M = Γzp(C′2M×M) =


C′2M×M

1((Nf−2M )/2)×M

−1((Nf−2M )/2)×M

 , (159)

XNf×2M = Λzp(X′2M×2M ) =

 X′2M×2M

0(Nf−2M )×2M

 , (160)

or alternatively, the repetition codes with Nf = P2N , P being a positive integer, as

CNf×M = Γrc(C
′
2M×M) = 1P×1 ⊗C′2M×M , (161)

XNf×2M = Λrc(X
′
2M×2M ) =

1

P
1P×1 ⊗X′2M×2M . (162)

It can be easily verified that [Γ(C),Λ(X)] in (159)-(162) is the feasible solution for

LJ-OP, given the feasible solution (C,X) for the SJ-OP, and the solutions provide

the same objective value Ω.

Now, the next step is to show that the optimal encoding and decoding matrices

solving the SJ-OP can be analytically found, as stated in the sequel.

Proposition 8. Considering the GCM system with Nf = 2M , the optimal decoding

matrix Co is the 2M ×M matrix

Co = [z1, · · · , z2M ]T , (163)

where the vectors zi, i ∈ I, are all the 2M realizations of length M with entries ±1.

In addition, the optimal encoder for the information symbols a is given by

bj = χj(a) =

 ±
√
M, zj = a

0, otherwise
, j ∈ J , (164)

with the optimal objective value Ωo = M .

Proof. See Appendix F.
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As a further result, Lemmas 1-2 can be exploited together with Proposition 8 to

derive the optimal performance of the GCM system with Nf ≥ 2M , as summarized

in the following proposition.

Proposition 9. For a GCM system with Nf ≥ 2M , the optimal BER performance

can be asymptotically approximated as a function of the received-bit-energy-to-noise-

spectral-density ratio γ (defined after Eq. (149)) by

BERGCM|Nf≥2M = Q

[(
2

γM
+

NfL

2γ2M2

)−1/2
]
. (165)

Proof. This follows from Lemmas 1-2 and Proposition 8 by plugging Ωo = M into

(149).

The following remark about the optimal codes of GCM systems is now of interest.

• When Nf = 2M , the optimal GCM system derived in Proposition 8 is essentially

an M -PPM, and when Nf > 2M , the optimal GCM system can be treated as a

generalized M -PPM (e.g., PPM with zero padding or repetition in Eqs. (159)-

(162)). However, different from the conventional PPM, where data symbols are

carried via different delays of the transmitted pulse, the GCM systems convey

the data symbols via the amplitude values of frame symbols b, thus allowing

higher data rate communications by embedding more symbols in one block, i.e.,

M > log2(Nf ), than the M -PPM, and enabling the system optimization with

emission power constraint.

8.4 Code Design for Transmissions with IFI

This section extends the GCM framework to the case of high-rate transmissions where

IFI arises when the frame interval Tf is shorter than the channel delay spread. To

maintain a reasonable complexity, we will avoid an overall (constrained) optimization

of the codeword matrices C and X as made in the J-OP (155) in the case of the

absence of IFI. Instead, a sub-optimal yet effective IFI-mitigation method will be
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pursued based on a two-step procedure with a simple rationale. The basic result we

will exploit can be summarized in the following lemma.

Lemma 3. Any permutation of the feasible solution (C,X) to J-OP (155), namely

(C̄, X̄) = (PC,PX) with P being an Nf ×Nf permutation matrix, is still a feasible

solution satisfying all the constraints with the same objective value Ω.

Proof. From (155), it can be obtained that: i) C̄T X̄ = CTPTPX = CTX = ΩA;

ii) 1TNf×1X̄ = 1TNf×1PX = 1TNf×1X = M1T2M×1; iii) C̄T1Nf×1 = CTPT1Nf×1 =

CT1Nf×1 = 0M×1; and iv) C̄ � C̄ = C � C = 1Nf×M . Since all the constraints are

satisfied, it can be concluded that both (X,C) and (C̄, X̄) = (PC,PX) are feasible

solutions to the J-OP with the same objective value Ω.

Hence, in the first step of the proposed code design for transmissions with IFI,

we solve J-OP (155) assuming that IFI does not exist and thus obtaining the sub-

optimal solution (Co,Xo). Then given (Co,Xo), the second step consists of finding

the permutation matrix Po such that (PoCo,PoXo) still solves J-OP (155), but at

the same time, conveniently reduces the IFI contribution. Different from the J-OP,

however, the optimization of the matrix P is now based on the reformulation of

the mean value and the variance of the decision variable of Appendix A in order to

account for the IFI effect as well. The aforementioned approach leads to a modified

constrained OP, as stated in the following proposition.

Proposition 10. Assuming the channel template has support [0, 2Tf ], given the so-

lution to J-OP (155) (Co,Xo), the permutation matrix Po, which mitigates the IFI

effect in terms of BER performance, is found through the GCM IFI-based constrained
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OP, or I-OP for short, formulated as

Po = arg max
P

{Φ(P)}

s.t. CT
o PTJNf

PXo = AΦ

Φ > Φ(P)I2M

P ∈ P

, (166)

where Φ
∆
= diag {Φ1,Φ2, · · · ,Φ2M} and P is the set of all the permutation matrices

with size Nf ×Nf . According to (166), the codeword matrices to be employed for IFI

mitigation become (PoCo,PoXo).

Proof. See Appendix G.

A few remarks about Proposition 10 can be made as follows.

1. As shown in Appendix 10, the OP (166) relies on maximizing a part of the mean

value of the decision variable that corresponds to the contribution of interfering

symbols. Therefore, the optimal permutation matrix Po can be interpreted as

an “equalization” matrix such that the frame energy from the previous symbol

can be properly exploited within the current frame.

2. Unlike J-OP (155) where the constraint CTX = Ω(C,X)A holds with the scalar

Ω, in I-OP (166), this restriction is circumvented by adopting the diagonal

matrix Φ and adding the constraint Φ > Φ(P)I2M . After all, with only a

scalar as in (155), there may not exist a feasible P given (Co,Xo) such that

all 2M equalities can hold. Furthermore, although the aforementioned choice

yields better performance, as demonstrated in Sec. 8.5, the BER for different

realization ai of the information symbols may differ.

8.5 Numerical Results

In this section, we illustrate the optimal solutions of the proposed OPs for some values

of the number of frames Nf and the number of symbols M per block. Then, the
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performance of the proposed optimal GCM systems is quantified through numerical

simulations, taking as benchmark the existing CSR design in [61] using Walsh codes.

We do not consider the FSR system, which shows identical performance to the CM-

TR systems in the absence of IFI and inferior performance in the presence of IFI

[18, 61]. The transmitted pulse p(t) is the second derivative of a Gaussian function

with width Tp = 1.0 ns. We use the channel models described in [25] for random

channel realizations. The one-sided bandwidth of the low-pass filter at the receiver

is B = 2.5 GHz. In this section, all OPs are solved using the general solver in [1].

8.5.1 Optimal Codes for GCM Systems

Table 3 summarizes the optimization results of J-OP (155) corresponding to the

number of frames Nf = 2, 4, 6, 8 and a few values of the number of symbols M

conveyed by each block. When (Nf = 2, M = 1), (Nf = 4,M = 1), (Nf = 8,

M = 1), and (Nf = 8, M = 4), the proposed codes offer the same performance

as the CSR systems using Walsh codes, which means that Walsh codes are optimal

for these cases. On the other hand, when (Nf = 4, M = 2), (Nf = 8, M = 2),

and (Nf = 8, M = 3), since the CSR systems using Walsh codes yield sub-optimal

solutions to the OP in (155), i.e., the CSR systems are not optimized in the view

of power efficiency, the proposed codes achieve significant improvement compared to

the CSR systems. Additionally, the optimization performed on (Nf = 4,M = 3)

and Nf = 6, where Walsh codes do not exist, gives us the flexibility to design GCM

systems with different Nf and M . Finally, the results for Nf ≥ 2M corroborate

Proposition 9, where Ωo = M .

8.5.2 Performance of Optimal Codes for GCM Systems

Fig. 39 displays the BER performance of the proposed GCM systems for Nf = 4, 8

and different numbers of information symbols per block M . We adopt CM1 channel

model with Tf = 80 ns to avoid IFI and L = 2BTf = 400. Given Nf and M , it is
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Frame length Number of symbols Walsh codes Optimal codes
Nf = 2 M = 1 1 1
Nf = 4 M = 1 1 1

M = 2
√

2 2
M = 3 N/A 1

Nf = 6 M = 1 N/A 1
M = 2 N/A 2
M = 3 N/A 1

Nf = 8 M = 1 1 1

M = 2
√

2 2

M = 3
√

3 3
M = 4 2 2

Table 3: Objective value Ω for the CSR with Walsh codes and the GCM with optimal
codes.

worth noting that the theoretical BERs in (149) overlap with the simulated curves.

This result validates the accuracy of the Gaussian approximation whenever L is large

which we assumed in the proof of Proposition 1. In all, the system with (Nf = 8,

M = 3) achieves the best BER performance and gains about 1.8 dB over the (Nf = 8,

M = 2) one at BER = 10−5. When Nf = 4, the optimal system with M = 2 is close

to that with (Nf = 8, M = 3), while outperforms the (Nf = 4, M = 1) one by about

3 dB at BER= 10−5.

8.5.3 Performance Comparisons of Optimal GCM Systems with Existing
Design

In this subsection, we compare the performance of the GCM systems with optimal

codes to the CSR system in [61] and simple TR (STR) system in [14] with CM1

channel model and Tf = 80 ns. Fig. 40 verifies the BER improvement of the proposed

GCM over the existing designs. At BER= 10−5, indeed, for the cases of (Nf = 4,M =

2) and (Nf = 8,M = 2) the proposed GCM design outperforms the CSR by about 1.8

dB, whereas for (Nf = 8,M = 3) case, the advantage of the optimal system increases

to about 2.7 dB.
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Figure 39: BER performance of the optimal GCM with different frame sizes Nf and
number of symbols M .
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8.5.4 GCM Systems with Peak-to-Average Power Ratio Constraint

Fig. 41 depicts the relationship between the peak-to-average power ratio (PAPR)

which is defined as

PAPR =
maxXj,i

(
∑2M

i=1

∑Nf−1
j=0 Xj,i/2M/Nf )

, (167)

and Ωc of the GCM systems with Nf = 8 and different M . Here, we compare PAPRs

of the GCM systems optimized by PP-OP (158) for different levels of Ωc,Ωc ≤ Ωo

and the Walsh code. Note that, for M = 2, 4, since Ωo = 2, we only have the results

for Ωc ≤ 2. For GCM system in J-OP (155), PAPR becomes maxXj,iNf/M since we

assumed that 1TNf×1X = M1T2M×1. From Fig. 41, first of all, as Ωc increases (therefore,

with better error performance), the minimum PAPR increases monotonically, thus

providing the trade-off between the system error performance and the PAPR value.

Secondly, the PAPRs of M = 2 and M = 4 are the same when Ωc = 0.5, 1, 1.5, 2

and their PAPRs are higher than those of M = 3 when Ωc = 0.5, 1, 1.5. Thus, unlike

the case of Ωc, the PAPR is not a monotonically increasing or decreasing function

depending on M . Thirdly, the GCM system optimized by PP-OP (158) yields smaller

PAPR than the CSR system with the Walsh code thus confirming effectiveness of our

GCM code design.

8.5.5 Performance Comparisons of GCM with IFI

Fig. 42 illustrates the BER comparisons with CM1 channel model and the following

code-multiplexing systems: i) GCM system with optimal solution from J-OP (155)

and optimal code sequence design from I-OP (166), ii) GCM system with optimal

solution from J-OP (155) but with non-optimal code sequence design, and iii) CSR

with Walsh code. Nf = 8 and M = 2. For i) and ii), we firstly obtain the transmitted
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Figure 41: Peak-to-average power ratio for different GCM systems with Nf = 8.

symbols matrix and decoding matrix from J-OP (155) as:

Xo =



1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1



T

, (168)

Co =

+1 +1 +1 +1 −1 −1 −1 −1

+1 −1 +1 −1 +1 −1 +1 −1


T

, (169)

with Ωo = 2. Next, we solve I-OP (166) with (Co,Xo) in Eqs. (168) and (169) and

the optimal permutation matrix is

Po =

[
e1 e3 e2 e4 e5 e7 e6 e8

]
, (170)

where ej denotes the jth column of an identity matrix INf
. Therefore, the corre-

sponding codewords for i) are X̄o = PoXo, C̄o = PoCo with Φo = 0 and we adopt

(Co,Xo) in Eqs. (168) and (169) for ii) with Φ = −1.
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To simulate a high-rate UWB communication in a stringent channel environment,

we set Tf = 6, 8 ns to include IFI and data rate 41.67 Mbit/s and 31.25 Mbit/s,

respectively. As shown in Fig. 42, when Tf = 8 ns, the GCM with optimal code

sequence design achieves 1 dB gain over the one with non-optimal sequence design

and 4 dB gain over the CSR system with Walsh code at BER = 10−5. When the data

rate increases (Tf = 6 ns), the advantage of the optimal code sequence design is clear

and the gap between optimal sequence and non-optimal code sequence increases to

around 10 dB at BER = 2× 10−2.
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Figure 42: BER comparisons for different GCM systems with and without optimal
code sequence design in the presence of IFI with CM1 channel.

In addition, we compare the BER performance of different code-multiplexing sys-

tems with CM4 channel model, whose maximum excess delay Tm is about 360 ns.

Due to the long excess delay, the frame duration Tf is increased to 30 or 40 ns in

order to obtain affordable system performance. From Fig. 43, similar conclusions

about the results for the CM1 channel model can be drawn for the CM4 one as well.

In fact, the optimal GCM system with optimal code sequence design obtains the best
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error performance among the three systems and the gains relative to non-optimal code

sequence design become around 1.5 dB and 5 dB for Tf = 30, 40 ns, respectively, at

BER = 10−5.
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Figure 43: BER comparisons for different GCM systems with and without optimal
code sequence design in the presence of IFI with CM4 channel.
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CHAPTER IX

PERFORMANCE IMPACTS OF NON-IDEAL

ANTENNAS

Previous chapters assume that the UWB antennas are ideal, i.e., they have perfect

delta response. However, in practice, the UWB antennas are not ideal and can intro-

duce significant linear and/or nonlinear distortion [48]. Without proper handling, the

linear and/or nonlinear distortion can result in significant performance degradation,

which should be mitigated.

In this chapter, we investigate the performance impacts of the non-ideal antennas

for non-coherent UWB systems regulated by IEEE 802.15.4a-2007. Fig. 44 illustrates

the non-ideal frequency response of UWB antennas measured by experimental data

considered. From Fig. 44, the antennas exhibit almost ideal frequency response from

2 GHz to 5.5 GHz.

On the other hand, the antennas present significant distortion when the frequency

is greater than 5.5 GHz, which includes the spectrum of the mandatory channel in

high band in IEEE 802.15.4a-2007 [40] (now a part of IEEE 802.15.4-2011 [39]) with

center frequency 7.9872 GHz and bandwidth 499.2 MHz channel number 9 (see Fig.

45

Fig. 46 displays the error performance of optimal GCM transmissions with M = 2,

Nf = 8, IEEE 802.15.4a channel numbers 3, 5, 9, and non-ideal channel frequency

response in Fig. 45. We adopt CM1 channel model and Tf = 50ns. We observe

that, for mandatory channel number 3 (center frequency fc = 4.4928 GHz), the error

performance with non-ideal antennas exhibits almost the same as that with ideal

antennas for low SNR, and the loss is about 0.5 dB at BER= 10−5. When comes
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to mandatory channel number 9 (fc = 7.9872 GHz), the performance loss increases

to around 3 dB at BER= 10−5 because antenna distortion. We also consider the

optional channel number 5, where significant distortion caused by antennas can be

found. The performance degradation under channel number 5 (fc = 6.4896 GHz)

becomes 8 dB at BER= 10−5.
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CHAPTER X

CONCLUDING REMARKS

The objective of the proposed research is to design low-complexity high-performance

UWB systems that i) avoid the stringent channel estimation and maintain the simple

hardware structure of the noncoherent receivers; ii) lower the computational com-

plexity of the existing receivers with the aid of advanced digital signal processing

techniques; and iii) improve the error performance of the noncoherent receivers by

taking account of practical imperfections.

The main contributions of the thesis are listed as follows:

• Proposed low-complexity iterative multi-symbol detectors;

• Revealed the fundamental problem - rank-1 perturbation problem for multi-

symbol detection;

• Proposed low-complexity modified unconstrained relaxation multi-symbol de-

tectors;

• Proposed low-complexity semidefinite programming multi-symbol detectors;

• Studied the log-likelihood metric of multi-symbol detectors;

• Developed list sphere decoding for soft-input soft-output multi-symbol detec-

tors;

• Investigated the distribution of correlation noise when the number of concurrent

users is small;

• Proposed improved differential receivers in the presence of impulsive correlation

noise;
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• Proposed joint power allocation and path selection for differential transmitted

reference relaying systems;

• Proposed generalized code-multiplexing systems and formulated the optimiza-

tion problem for generalized code-multiplexing systems in terms of error per-

formance;

• Analyzed some optimal codes and their performance for code-multiplexing sys-

tems;

• Optimized the codes for code-multiplexing systems in the presence of inter-frame

interference; and

• Examined the performance impacts of non-ideal antennas.

10.1 Future Topics

In the following, we summarize a list of interesting research topics that can be pursued

along the line of this dissertation:

• Improved generalized code-multiplexing designs, including maximum-likelihood

detectors, code designs for relaying GCM systems, and multi-access interference

suppression. Despite the simplicity of GCM systems, the existing GCM receiver

is generally not an MLD given the integration outputs. The MLD for GCM

and its performance are unknown. In addition, in the presence of MAI, the

performance degradation and mitigation methods are not investigated for GCM

systems.

• Improved noncoherent systems with finite-bit (e.g., 1-bit)-resolution analog-to-

digital converters (ADCs). Most of noncoherent receivers assumes full-resolution

ADCs. However, because of the very high sampling rate of UWB signals, full-

resolution ADCs pose significant burden on hardware, and thus finite-resolution
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(e.g., 1-bit or 2-bit) ADCs for UWB systems are of great interest.

• Detection and synchronization for noncoherent UWB signals in the presence

of strong narrow-band interference (NBI). Because of the low power of UWB

signals and relative strong power of narrow-band signals, NBI could cause per-

formance degradation in UWB detection and synchronization. Hence, a future

extension is to study the impact of NBI to the work in this thesis and to propose

new methods of improvements.
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APPENDIX A

PROOF OF PROPOSITION 1

From the Karush-Kuhn-Tucker (KKT) conditions, the sufficient and necessary con-

dition for the optimal solution X∗ of the SDP problem (36) is (cf. [95, Ch. 4.2])

F � 0,

X∗ � 0,

X∗i,i = 1,

F + Diag(f) = −P,

X∗F = 0, (171)

where F and f are the dual variables of the SDP problem in (36).

Assuming that the SDP problem (36) yields a rank-1 solution X∗ = bbT , from

the last two equations in (171), we have (cf. [41, Eq. (10)])

f = −Diag(b)−1Pb. (172)

Now the problem is to find the necessary and sufficient condition that F is positive

semi-definite (PSD), where matrix F can be represented as

F = −P−Diag(f)

= −P + Diag(b)−1Diag(Pb)

= (M + 1)I− bbT − σu1b
T − σbuT1 − σ2

L∑
l=1

ulu
T
l

+ Diag(b)−1Diag

((
σu1b

T + σbuT1 + σ2

L∑
l=1

ulu
T
l

)
b

)

= (M + 1)I− bbT − σA. (173)
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Note that from the last equation in (171), b is the eigenvector of F with eigenvalue

0 and (M+1)I−bbT is a rank-M matrix with non-zero eigenvalues (M+1). Therefore,

matrix F is PSD if

λA,max ≤
M + 1

σ
. (174)

On the other hand, if (174) holds true and X = bbT , then F is PSD. Thus, X is an

optimal solution. This concludes the proof. A similar proof for binary least squares

problem can be found in [41].
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APPENDIX B

PROOF OF PROPERTY 4

Suppose the M+1 eigenvalues of matrix Q are λj, j = 0, · · · ,M . Since Q is a random

matrix with zeros on the diagonal,

M∑
j=0

λj = Trace(Q) = 0, (175)

and λj’s are distinct with probability one. Thus,

min
j
λj < 0 < max

j
λj (176)

with probability one.
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APPENDIX C

PROOF OF PROPOSITION 6

We prove that assumption A3) is equivalent to A3a)-A3b), assuming the absence of

IFI and a sufficiently large product BTf , i.e., between the bandwidth B of the receiver

low-pass filter frxp(t) and the frame interval Tf . First, let us focus on the statistics

of the samples at the integrator output rj, j ∈ J , given by (144). Exploiting the

IFI-free condition, i.e., that the support of the channel template g(t) is less than the

frame interval Tf , and keeping in mind the expression of the received signal in (143),

we obtain

rj = b2
j

∫ Tf

0

g2(t)dt+ 2bj

∫ Tf

0

g(t)wj(t)dt+

∫ Tf

0

w2
j (t)︸ ︷︷ ︸

ϕj

dt, (177)

where wj(t)
∆
= w(t+ jTf ).

Applying the sampling theorem to the (177) yields (c.f., [82])

rj = b2
jEf + 2bj

L−1∑
n=0

wj,ngn︸ ︷︷ ︸
ϕj,1

+
L−1∑
n=0

w2
j,n︸ ︷︷ ︸

ϕj,2

, (178)

where L
∆
= d2BTfe, gn

∆
=
√
Tsg(nTs), wj,n

∆
=
√
Tswj(nTs) are independent and iden-

tically distributed (i.i.d.) Gaussian random variables with zero mean and variance

N0/2, Ts
∆
=

1

2B
is the sampling interval, and Ef =

∑L−1
n=0 g

2
n. If L is sufficiently large,

in view of the central limit theorem, ϕj,2 can be approximated as a Gaussian random

variable. Since E{ϕj,1ϕj,2} = E{
∑L−1

n=0 gnw
3
j,n} = 0, we can treat ϕj,1 and ϕj,2 as

independent Gaussian-distributed variables. Therefore, the mean and the variance of

rj for a given realization of the symbols a are given, respectively, by [82, 18, 61]

E{rj|a} = b2
jEf +

LN0

2
, (179)
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Var{rj|a} = Var{ϕj|a}

= Var{ϕj,1|a}+ Var{ϕj,2|a}

= 4b2
j

L−1∑
n=0

g2
nVar{wj,n}+

L−1∑
n=0

(
E{w4

j,n} − E{w2
j,n}2

)
= 2b2

jEfN0 +
LN2

0

2
. (180)

Therefore, the decision variable zk, k ∈ K, in (145) can be rearranged as

zk = cTk r = Efc
T
k (b� b) + ξk, (181)

where, under assumptions A1)-A2) of Definition 6, ξk
∆
= cTkϕ, withϕ

∆
=
[
ϕ0, · · · , ϕNf−1

]T
,

has mean

E{ξk|a} =
LN0

2

Nf−1∑
j=0

ck,j = 0, (182)

and variance

Var{ξk|a} = 2EfN0

Nf−1∑
j=0

b2
j +

NfLN
2
0

2
. (183)

Hence, zk in (181) can be modeled for a given vector a as a Gaussian-distributed

random variable, whose mean and variance after imposing assumptions A3a)-A3b)

and (181)-(182) are given by

E{zk|a} = Efc
T
k (b� b) = EfΨ ai,k, i ∈ I, k ∈ K, (184)

and

Var{zk|a} = 2EfN0Eb +
NfLN

2
0

2
, (185)

respectively. Therefore, we deduce from (184)-(185) that the error probabilities on

ak, k ∈ K, are all the same. Similarly, it can be shown that assumption A3) induces

A3a)-A3b), which concludes the proof about the necessary and sufficient condition of

assumption A3).
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APPENDIX D

PROOF OF PROPOSITION 7

Due to assumption A3b), i.e., ‖bi‖2
2 = Eb, i ∈ I, the received bit energy results in

Ebit =
Ef
M

Nf−1∑
j=0

b2
j =

Ef
M
Eb. (186)

Hence, from (184)-(185), the error probabilities on the information symbols ak become

identical over k and are expressed by

BERGCM(Ω) = Q

[(
E{zk|a}2

Var{zk|a}

)1/2
]

= Q

[(
E2
fΨ

2

2EfN0Eb +NfLN2
0/2

)1/2
]

= Q

(2EfN0Eb +NfLN
2
0/2

E2
fΨ

2

)−1/2


= Q

[(
E2

b

Ψ2M2

(
2MN0

Ebit
+
NfLN

2
0

2E2
bit

))−1/2
]

= Q

[
Ω

(
2M

γ
+
NfL

2γ2

)−1/2
]
, (187)

where γ
∆
= Ebit/N0 and Ω

∆
= MΨ/Eb.
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APPENDIX E

PROOF OF LEMMA 1

The feasible solution C for the J-OP (155) is an Nf ×M matrix, which has, at most,

2M distinct rows due to assumption A1). Hence, a 2M ×M decoding matrix C̄ can

be constructed whose rows are all the 2M realizations with entries {±1} such that

C = TC̄, (188)

where T is an Nf × 2M mapping matrix having in each row only one element equal

to 1 and all the others equal to 0. It can be obtained

1T2M×1T
TX = 1TNf×1X = M1T2M×1, (189)

C̄T X̄ = C̄TTTX = (TC̄)TX = CTX, (190)

i.e., the matrices C̄ and X̄
∆
= TTX satisfy both the first and second constraints of

the J-OP as well. Since C̄T12M×1 = 0M×1 and C̄ � C̄ = 12M×M , we conclude that

(C̄, X̄) = (C̄,TTX) is a feasible solution to the J-OP (155) with Nf = 2M (SJ-OP)

and the value of the objective function is the same as that given by the feasible

solution (C,X) with Nf > 2M (LJ-OP).
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APPENDIX F

PROOF OF PROPOSITION 8

Bearing in mind the proof of Lemma 1, the optimal decoding matrix Co for the GCM

system with frame length Nf = 2M is known to be the 2M × M matrix given by

(163), with the rows being all the realizations of length M with entries ±1. Hence,

the J-OP in (155) can be relaxed to the set of 2M decoupled OPs

x
(o)
i = arg max

xi

{Ωi(xi)}

s.t. aTi aiΩi(xi) = (Coai)
Txi

1T2M×1xi = M

xi ≥ 02M×1

. (191)

each corresponding to a different realization ai of the information symbols.

It is readily shown that, the optimal solution of the OP (191) is

x
(o)
i,j =

 M, j = k̄

0, otherwise
, i, j ∈ I, (192)

where k̄ = arg maxk[Coai]k, i.e., zk̄ = ai. Now, we note that: i) since x
(o)
i in (192) is

the feasible solution of OP (191), then it optimally solves also (191); ii) the optimal

values of Ωi concerning the 2M OPs in (191) are all equal to M . Therefore, it can be

concluded that Xo
∆
= [x

(o)
1 , · · · ,x(o)

2M
] is the optimal solution of the J-OP (155).
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APPENDIX G

PROOF OF PROPOSITION 10

Assume that the channel template can be written as g(t) = g0(t) + g1(t − Tf ), with

both g0(t) and g1(t) having support [0, Tf ]. Similar to the approach used in Appendix

A, in view of large L = d2BTfe, the mean value and the variance of rj for a given

realization of the information symbols a can be written as

E{rj|a} = b2
jE

(0)
f + b2

j−1E
(1)
f + 2bjbj−1E

(0,1)
f +

LN0

2
, (193)

Var{rj|a} = 2
(
b2
jE

(0)
f + b2

j−1E
(1)
f + 2bjbj−1E

(0,1)
f

)
N0 +

LN2
0

2
, (194)

where E
(0)
f =

∫ Tf
0
g2

0(t)dt, E
(1)
f =

∫ Tf
0
g2

1(t)dt, and E
(0,1)
f =

∫ Tf
0
g1(t)g2(t)dt. Then,

assuming E
(0,1)
f � E

(0)
f and E

(0,1)
f � E

(1)
f [18], (193)-(194) can be approximated as

E{rj|a} ≈ b2
jE

(0)
f + b2

j−1E
(1)
f +

LN0

2
, (195)

Var{rj|a} ≈ 2
(
b2
jE

(0)
f + b2

j−1E
(1)
f

)
N0 +

LN2
0

2
. (196)

Now, by applying the Nf × Nf permutation matrix P on the solution (Co,Xo) to

J-OP (155), one obtains the feasible solution (C̄, X̄) = (PCo,PXo). Accordingly, the

mean value and the variance of the decision variable zk =
∑Nf−1

j=0 c̄j,krj, for a given

ai, result as

E{zk|ai} ≈
Nf−1∑
j=0

c̄j,k

[
E

(0)
f b̄2

j,i + E
(1)
f b̄2

j−1,i

]
, (197)

Var{zk|ai} ≈ 2N0Ef

Nf−1∑
j=0

b̄2
j,i,+

NfLN
2
0

2
, (198)

where c̄j,k
∆
=
[
C̄
]
j,k

and b̄2
j,i

∆
=
[
X̄
]
j,i

, j ∈ J , i ∈ I, 1 ≤ k ≤M . Since Lemma 3 shows

that both (Co,Xo) and (C̄, X̄) satisfy all constraints of the J-OP (155) with the same
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objective Ω, we have: i)
∑Nf−1

j=0 c̄j,kb̄
2
j,i = Ωai,k, and ii)

∑Nf−1
j=0 b̄2

j,i = M , ∀i ∈ I. This

means that (197)-(198) turn into

E{zk|ai}] ≈ E
(0)
f Ωai,k + E

(1)
f

Nf−1∑
j=0

c̄j,kb̄
2
j−1,i, (199)

Var{zk|ai} ≈ 2N0EfM +
NfLN

2
0

2
, (200)

respectively. Bearing in mind that the variance in (200) is independent of both C̄

and X̄, we can argue from (199) that a possible criterion to mitigate IFI in terms of

BER performance is to choose the permutation matrix P such that the constraints

Nf−1∑
j=0

c̄j,kb̄
2
j−1,i = Φiai,k, i ∈ I, (201)

hold. After dropping the terms b̄2
−1,i caused by inter-block interference (IBI), (201)

can be equivalently put in matrix notation as

CT
o PTJNf

PXo = AΦ, (202)

where Φ
∆
= diag {Φ1,Φ2, · · · ,Φ2M} and A is the M × 2M matrix containing all the

realizations ai. Then, we add the constraints

Φ > ΦI2M , (203)

and maximize Φ to have a scalar-valued objective function.

In summary, the matrices for IFI mitigation will result as (PoCo,PoXo), where

the optimal permutation matrix Po is found by maximizing the scalar objective Φ

under the constraints (202)-(203).

146



REFERENCES

[1] “LINGO - Optimization Modeling Software for Linear, Nonlinear, and Integer
Programming.”

[2] “PulsON 410: The Worlds Best Ranging Radio.”

[3] Abou-Rjeily, C., Daniele, N., and Belfiore, J.-C., “On the amplify-
and-forward cooperative diversity with time-hopping ultra-wideband communi-
cations,” IEEE Trans. Commun., vol. 56, pp. 630–641, Apr. 2008.

[4] Analui, B. and Hajimiri, A., “Statistical analysis of integrated passive de-
lay lines,” in Proc. IEEE Custom Integrated Circuits Conf., (San Jose, CA),
pp. 107–110, Sept. 2003.

[5] Beaulieu, N. C. and Hu, B., “Soft-limiting receiver structures for time-
hopping UWB in multiple-access interference,” IEEE Trans. Veh. Technol.,
vol. 57, pp. 810–818, Mar. 2008.

[6] Beaulieu, N. C., Shao, H., and Fiorina, J., “P-order metric UWB re-
ceiver structures with superior performance,” IEEE Trans. Commun., vol. 56,
pp. 1666–1676, Oct. 2008.

[7] Berrou, C., Glavieux, A., and Thitimajshima, P., “Near Shannon limit
error-correcting coding and decoding: Turbo-codes,” in Proc. IEEE Int. Conf.
Commu., vol. 2, (Geneva, Swizerland), pp. 1064–1070, May 1993.

[8] Bletsas, A., Khisti, A., Reed, D. P., and Lippman, A., “A simple coop-
erative diversity method based on network path selection,” IEEE J. Sel. Areas
Commun., vol. 24, pp. 659–672, Mar. 2006.

[9] Boyd, S. and Vandenberghe, L., Convex optimization. Cambridge univer-
sity press, 2004.

[10] Cassioli, D., Vatalaro, F., Win, M. Z., and Molisch, A. F., “Perfor-
mance of low-complexity Rake reception in a realistic UWB channel,” in Proc.
IEEE Int. Conf. Commun., vol. 2, (New York, NY), pp. 763–767, May 2002.

[11] Cassioli, D., Win, M. Z., and Molisch, A. F., “The ultra-wide bandwidth
indoor channel: from statistical model to simulations,” IEEE J. Sel. Areas
Commun., vol. 20, pp. 1247–1257, Aug. 2002.

[12] Casu, M. R. and Durisi, G., “Implementation aspects of a transmitted-
reference UWB receiver,” Wireless Commun. and Mobile Comput., vol. 5, p-
p. 537–549, May 2005.

147



[13] Casu, M. and Durisi, G., “Implementation aspects of a transmitted-reference
UWB receiver,” Wireless Commun. and Mobile Comput., vol. 5, pp. 537–549,
May 2005.

[14] Chao, Y.-L. and Scholtz, R. A., “Optimal and suboptimal receivers for
ultra-wideband transmitted reference systems,” in Proc. IEEE Globecom, vol. 2,
(San Francisco, CA), pp. 759–763, Dec. 2003.

[15] Chao, Y.-L. and Scholtz, R. A., “Multiple access performance of ultra-
wideband transmitted reference systems in multipath environments,” in Proc.
Wireless Commu. and Networking Conf. (WCNC), vol. 3, (Atlanta, GA), p-
p. 1788–1793, 2004.

[16] Choi, J. D. and Stark, W. E., “Performance of ultra-wideband communi-
cations with suboptimal receivers in multipath channels,” IEEE J. Sel. Areas
Commun., vol. 20, pp. 1754–1766, Dec. 2002.

[17] Cramer, R. J. M., Scholtz, R. A., and Win, M. Z., “Evaluation of an
ultra-wide-band propagation channel,” IEEE Trans. Antennas Propag., vol. 50,
pp. 561–570, May 2002.

[18] D’amico, A. A. and Mengali, U., “Code-multiplexed UWB transmitted-
reference radio,” IEEE Trans. Commun., vol. 56, pp. 2125–2132, Dec. 2008.

[19] D’Amico, A. A. and Taponecco, L., “A differential receiver for UWB sys-
tems,” IEEE Trans. Wireless Commun., vol. 5, pp. 1601–1605, July 2006.

[20] Digham, F. F., Alouini, M.-S., and Simon, M. K., “On the energy detec-
tion of unknown signals over fading channels,” IEEE Trans. Commun., vol. 55,
pp. 21–24, Jan. 2007.

[21] Do, M. N. and Vetterli, M., “Wavelet-based texture retrieval using gen-
eralized Gaussian density and kullback-leibler distance,” IEEE Trans. Image
Process., vol. 11, pp. 146–158, Feb. 2002.

[22] (FCC), F. C. C., “First report and order in the matter of revision of part
15 of the commissions rules regarding ultra-wideband transmission systems,”
Tech. Rep. ET Docket 98-153, Apr. 2002.

[23] FCC 02–48, “FFC First Report and Order: In the matter of Revision of Part 15
of the Commission’s Rules Regarding Ultra-Wideband Tranmission Systems,”
Apr. 2002.

[24] Feng, L. and Namgoong, W., “An oversampled channelized UWB receiv-
er with transmitted reference modulation,” IEEE Trans. Wireless Commun.,
vol. 5, pp. 1497–1505, June 2006.

[25] Foerster, J. R., “Channel modeling sub-committee report final,” 2002.

148



[26] Franz, S. and Mitra, U., “Generalized UWB transmitted reference systems,”
IEEE J. Sel. Areas Commun., vol. 24, pp. 780–786, Apr. 2006.

[27] Fredman, M. L. and Tarjan, R. E., “Fibonacci heaps and their uses in
improved network optimization algorithms,” Journal of the ACM, vol. 34, p-
p. 596–615, Jul. 1987.

[28] Gallager, R. G., Low-Density Parity-Check Codes. Cambridge, MA: MIT
Press, 1963.

[29] Gezici, S., Tian, Z., Giannakis, G. B., Kobayashi, H., Molisch, A. F.,
Poor, H. V., and Sahinoglu, Z., “Localization via ultra-wideband radios:
a look at positioning aspects for future sensor networks,” IEEE Signal Process.
Mag., vol. 22, pp. 70–84, July 2005.

[30] Goeckel, D. L. and Zhang, Q., “Slightly frequency-shifted reference ultra-
wideband (UWB) radio,” IEEE Trans. Commun., vol. 55, pp. 508–519, Mar.
2007.

[31] Goemans, M. X. and Williamson, D. P., “Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite program-
ming,” J. ACM, vol. 42, no. 6, pp. 1115–1145, 1995.
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