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SUMMARY 

 

Distillation and absorption columns offer significant energy demands for future 

development in the petrochemical and fine chemical industries. Membranes and 

adsorbents are attractive alternatives to these classical separation units due to lower 

operating cost and easy device fabrication; however, membranes possess an upper limit 

in separation performance that results in a trade-off between selectivity (purity) and 

permeability (productivity) for the target gas product, and adsorbents require the need to 

be water-resistant to natural gas streams in order to withstand typical gas compositions. 

Composite membranes, or mixed-matrix membranes, are an appealing alternative to pure 

polymeric membrane materials by use of a molecular sieve “filler” phase which has 

higher separation performance than the pure polymer. In this thesis, the structure-

property-processing relationships for a new class of molecular sieves known as zeolitic 

imidazolate frameworks (ZIFs) are investigated for their use as the filler phase in 

composite membranes or as adsorbents. These materials show robust chemical and 

thermal stability and are a promising class of molecular sieves for acid gas (CO2/CH4) 

separations. 

 

The synthesis of mixed-linker ZIFs is first investigated. It is shown that the 

organic linker composition in these materials is controllable without changing the crystal 

structure or significantly altering the thermal decomposition properties. There are 

observable changes in the adsorption properties, determined by N2 physisorption, that 

depend on the overall linker composition. The results suggest the proposed synthesis 
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route facilitates a tunable process to control either the adsorption or diffusion properties 

depending on the linker composition. The structure-property-processing relationship for a 

specific ZIF, ZIF-8, is then investigated to determine the proper processing conditions 

necessary for fabricating defect-free composite membranes. The effect of ultrasonication 

shows an unexpected coarsening of ZIF-8 nanoparticles that grow with increased 

sonication time, but the structural integrity is shown to be maintained after sonication by 

using X-ray diffraction, Pair Distribution Function analysis, and N2 physisorption. The 

permeation properties of composite membranes revealed that intense ultrasonication is 

necessary to fabricate defect- free membranes for CO2/CH4 gas separations. Finally, the 

separation properties of mixed- linker ZIFs is investigated by using adsorption studies of 

CO2 and CH4 and using composite membranes with differing linker compositions. 

Adsorption properties of mixed-linker ZIFs reveal that these materials possess tunable 

surface properties, and a selectivity enhancement of six fold over ZIF-8 is observed with 

mixed- linker ZIFs without changing the crystal structure. Gas permeation studies of 

composite membranes reveal that the separation properties of mixed- linker ZIFs are 

different from their parent frameworks. By proper selection of mixed- linker ZIFs, there is 

an overall improvement of separation properties in the composite membranes when 

compared to ZIF-8. 
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CHAPTER 1 

Introduction 

 

1.1 Natural Gas Use in the United States 

 During early development in the oil and gas industry, there was little need or 

infrastructure for natural gas products that would result during depressurization of oil 

wells. Often, if the gas was not needed in the immediate area of the oil well, it would be 

flared instead of captured or processed. With the increase in infrastructure and piping, 

natural gas has become a vital component for heating and electricity in the United States. 

In some cases, this gas can also be used as fuel for vehicles or as a feedstock in making 

chemicals. 

 

 With the use of shale sand hydraulic fracturing (fracking) to produce both gas and 

oil, the projected natural gas production is predicted to grow.1 The U.S. Energy 

Information Administration predicts shale sources will increase the United States 

production by 29% over the next 25 years (Figure 1.1). This expected growth means that 

reducing costs elsewhere (separations, transport, etc.) will help increase demand for 

natural gas to be used as a fuel or electricity source and also provide less greenhouse gas 

pollution than coal or gasoline. In addition, developing more modular separation units 

will aid the development of natural gas use in nations outside the U.S. that may not have 

the same well-developed infrastructure. 
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Figure 1.1. United States natural gas projections (in trillion cubic feet) from the EIA. 
With shale gas, there is an expected growth of nearly 30% in total gas production.1 

 

1.2 Industrial Separations of Acid Gases 

 Raw natural gas when pulled from a wellhead contains many different 

components. Table 1.1 provides a summary of the typical components and concentration 

ranges.2 Of these components, the two largest fractions other than CH4 are higher-chain 

hydrocarbons (C2s-C4s) and acid gases (CO2 and H2S). C2-C4 fractions require energy-

intensive separations, using cryogenic distillation columns, in order to produce pure 

products used in chemical feedstocks. Acid gases are typically converted to elemental 
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sulfur (H2S), and then the “tail gas” is incinerated to further clean the acid gas stream 

before emission to the atmosphere.2 

 

 Acid gas is normally separated using an aqueous amine solution, just before the 

natural gas is dehydrated (Figure 1.2).3 The amine solution (e.g., piperazine, 

monoethanolamine) is typically loaded in an absorber tower that strips the acid gases 

from the natural gas stream. Then, the saturated solution is pumped to a regeneration 

column, where heating up the solutions at low pressures lowers the solubility of the 

captured gas where it is removed for further processing. Although this process can have 

high separation efficiency, it requires the use of significant amounts of process water, is 

energy-intensive, and must be done at a refinery or processing site rather than the 

wellhead, which acid gases can corrode pipelines with higher concentrations (>8 mol%).3 

Therefore, more energy-efficient and modular separation technologies should be 

considered for removing and purifying acid gases. 

 

Table 1.1. Typical components and composition of raw natural gas in the United States 
and U.S. pipeline specifications for commercial natural gas used for heating.2,3 

 

Component 
Composition Range 

(mol %) 

U.S. Pipeline Specifications 

(mol%) 

CH4 

C2s – C4s 

CO2 

H2S 

N2 

H2O 

70-90% 

0-20% 

0-10% 

0-5% 

0-5% 

vapor 

 

 

< 2% 

< 4 ppm 

< 4% 

< 120 ppm 
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Figure 1.2. Process diagram of an aqueous amine absorber used to remove acid gases 

from natural gas stream. 
 

1.3 Gas Separations with Membrane Technology 

 Membrane-based separations provide several advantages over aqueous amine 

absorption for separating acid gases. Because the separation is driven by pressure and 

concentration gradients between the feed and the permeate sides, the operating cost for 

energy is much less if the number of modules is minimized.3 Additionally, membranes 

can be designed with a hollow-fiber architecture, which has very high surface area-to-

volume ratios, making it a smaller, and therefore, more portable, separation unit than 

typical absorption- or adsorption-based units. 

 

 Membranes are typically judged by several physical properties when dealing with 

natural gas separations: permeability, the intrinsic flux of a gas through a membrane 

material; selectivity, the ratio of permeability values for a gas pair; and plasticization 
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resistance, the amount of swelling that occurs when a gas is exposed to a membrane 

material. Advances in membrane technology have led to some adoption in different 

industries, including some use in the purification of natural gas and also nitrogen 

separation from air.4 

 

1.3.1 Polymeric-based Membranes 

 Polymer membranes have been in development for more than 30 years and have 

found uses not only in gas separations, but also in reverse-osmosis and pervaporation 

separations. Polymer membranes are typically dense and operate by a solution-diffusion 

mechanism.4 They can be categorized into two types of materials: glassy and rubbery. 

Glassy polymers operate below the glass transition temperature (Tg) and separate small 

molecules based on diffusion selectivity due to tight polymer chain packing. Rubbery 

polymers operate above Tg and separate based on sorption selectivity and generally have 

much higher permeability and lower selectivity than glassy polymers.  

 

An advantage of using polymer membranes is the easy scale-up that can be used 

by a hollow-fiber or spiral-wound module design. Typical fabrication conditions will 

produce membranes with thin selective skin layers (~200 nm) and high packing volumes 

in a membrane module (10,000 m2·m-3).5 However, in the early 1990s, a trend showed 

that there is an inherent trade-off in polymer membrane separation performance; as the 

permeability of a gas increases, the expected selectivity for a gas pair will decrease, and 

vice versa.6 This behavior has been known as the “Upper Bound” of polymer membrane 

performance and is shown in Figure 1.3.7 This relationship was found to be consistent 
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with the differences in molecular sizes for a given gas pair, meaning that the diffusion 

selectivity based on the polymer chain packing governs the trade-off in membrane 

performance.6 

 

 

Figure 1.3. Robeson plot showing the upper bound relationship between CO2 and CH4. 
Discounting thermally-rearranged polymers shows very little shift in the upper bound 
after 17 years of research activity.7 

 

1.3.2 Inorganic-based Membranes 

 There has been a number of other membrane technologies developed for gas 

separations using inorganic materials. These membranes can also operate by a solution-

diffusion mechanism (dense Pd membranes),8 but also can operate by a molecular-sieving 

mechanism. Molecular sieve membranes are porous materials that are formed with a skin 

layer of either zeolite, metal-organic framework (MOF), or a mesoporous material.9–11 
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Molecular sieves are able to operate above the upper bound because they are not limited 

by chain packing. Instead, these materials can separate gas molecules based entirely on 

size; therefore, if a material has a pore size smaller than a gas molecule in a separation, 

very high selectivity can be obtained.12 

 

 While, in theory, molecular sieves have the capability of exceeding polymer 

membrane performance, there are several problems in the fabrication and processing of 

these membranes. Cracks and grain-boundary defects are common problems associated 

with forming defect- free zeolite membranes.13 MOF membranes can also suffer from 

grain-boundary defects, but also have poor adhesion with other inorganic supports that 

are commonly used in zeolite membrane synthesis and require extra processing steps.14 

However, there have been developments more recently to address these issues; for 

instance, a MOF membrane has been grown successfully on a porous hollow fiber 

polymer support without any additional processing steps other than coating the fiber with 

the MOF seeds.15 

 

1.3.3 Mixed-Matrix Membranes 

 Mixed-matrix, or composite, membranes theoretically combine the advantages of 

both polymers (e.g., processibility) and molecular sieves (e.g., performance based on 

sieving).16,17 Historically, zeolites have been used as the molecular sieve “filler” material 

in these composite membranes. Due to the purely inorganic surface of zeolites, there is 

poor adhesion between the filler and the polymer matrix. This causes defects known as 

“sieve- in-a-cage” morphology, where gaps form between the zeolite and the polymer 
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creating unselective transport between the two phases. There are several other defects 

that have been shown to occur, and Figure 1.4 shows the general behavior for each of 

these known defects and has been discussed elsewhere.18,19 

  

 

Figure 1.4. Typical defects found during mixed-matrix membrane formation and the 

performance trends based on these defects.  
 

 To address the issue of poor adhesion, there have been several strategies to 

improve polymer and zeolite interaction by functionalizing the surface of the zeolite. The 

most successful of these is to deposit inorganic nanostructures on the zeolite surface by 

different techniques.20–23 This strategy helps adhesion by roughening the surface and 

promoting polymer chain entanglement along the surface of the zeolite.24 Some other 

strategies have been to react surface silanols of the zeolite with silane coupling agents 

that contain organic functional groups which interact or covalently bond with the polymer 
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chain; however, this has shown to cause “interface rigidification”-type defects in the 

composite membrane performance.25 Lastly, it is possible to grow mesoporous-

microporous zeolite hybrids.26 The mesopores in these materials are large enough to 

allow the polymer chains to actually enter and become entangled in the mesoporous 

regime; however, it is unclear what effect the mesopores have on the composite 

membrane performance.27 

 

 The other filler materials that can be considered are metal-organic framework 

materials. These materials are composed of metal centers and linked together by organic 

molecules, which together forms a continuous, porous network.28,29 There have been 

some studies showing that these materials do not have the same adhesion problems that 

zeolites do in a polymer matrix.30–32 However, there have not been any studies showing 

what processing and fabrication can do to these materials, which may be important since 

MOFs tend to be less thermally and chemically stable than zeolites. 

 

1.4 Nanoporous Materials 

1.4.1 Zeolites 

 Zeolites are classified as aluminosilicate materials with a microporous crystal 

structure (pore size < 2 nm).33,34 Composed of a tetrahedral arrangement of Si and Al (T-

atoms) connected by O-bridges, these materials form pores ranging from 6 T-atoms in the 

ring up to 18 T-atoms. Figure 1.5 shows the range of pore size and crystal structures 

available for zeolite materials. Besides Si and Al, there can also be a different number of 

arrangements of T-atoms for inorganic molecules sieves: Si only, Si-Ge, Al-P, and Si-Al-



10 

 

P. If the molecular sieve is composed of Si-Al or Si-Al-P, there is a net negative charge 

in the framework, and this is balanced by a cation, such as Na+ or Ca2+. The framework 

composition (Si/Al ratio, framework cations, etc.) is often derived from the synthetic 

route taken and any post-synthesis treatment steps used for activating the zeolite.  

 

 

Figure 1.5. Range of zeolite structures and pore sizes.35 
 

 Zeolites have been traditionally used as adsorbents, ion exchange resins and 

catalysts.36 While zeolites have been used primarily in pressure swing adsorption 

separation processes (e.g., air separations), there has been an increase in research activity 

using these materials as membranes.13,37 However, there have been very limited studies 

on the types of zeolites used in mixed-matrix membranes (IZA database zeolite code): 

MFI, CHA, and LTA. There are several small-pore (8 T-atom rings or less) that have 

promising application for CO2/CH4 separations.21–23,38 Specifically, zeolites RHO and 
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DDR have pore sizes within the range required for molecular sieving of CO2/CH4 gas 

mixtures (see Figure 1.6).39–41 Zeolite DDR has already shown promise for membrane 

separations of CO2/CH4; several studies have grown DDR on supports of alumina and 

stainless steel with selectivity as high as 150.42,43 Zeolite RHO has only been studied as 

an adsorbent; its pore window has shown some flexibility as a result of CO2 adsorption 

and little to no adsorption of CH4 in the material.44 Considering that surface 

functionalization methods have been used for different zeolite structures already (MFI 

and LTA), it is likely these same methods will work for both RHO and DDR. What effect 

these methods will have on the separation properties once the zeolite is embedded in the 

polymer matrix will provide insight into the breadth these functionalization methods 

could provide for making different composites.  

 

 

Figure 1.6. Wireframe structures of zeolites DDR and RHO showing small-pore 
windows capable of molecular sieving CO2/CH4. 
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1.4.2 Metal-Organic Frameworks 

 Metal-organic frameworks (MOFs) are classified as coordination polymers 

composed of a transition metal center linked together by some organic molecule that 

forms a continuous, porous framework.28 These materials were previously difficult in 

activating to take advantage of the highly porous networks, but advances have provided a 

range of materials with different transition metal centers and organic linkers with many 

different functional groups. Typically, MOFs are synthesized under solvothermal or 

hydrothermal conditions, but more recently, research activity has shown these materials 

can be made at room temperature.45,46 

 

 A subclass of MOFs named zeolitic imidazolate frameworks (ZIFs) are made of 

zinc (or sometimes cobalt) metals connected by imidazolate linkers, and these materials 

form zeolite- like structures and topologies analogous to zeolites (SOD, LTA, 

RHO).29,47,48 These materials have been shown to easily form under facile conditions and 

are robust to a number of solvents and even concentrated aqueous alkaline solutions.48 Of 

this subclass, ZIF-8 (structure shown in Figure 1.7) has been studied extensively for a 

number of applications and is one of the few MOFs produced commercially. Some ZIF 

structures have been formed by only having certain organic linker combinations and 

ratios in the reaction solution.49 It is not well understood if the adsorption and separation 

properties of ZIFs are greatly affected by changing these linker ratios but keeping the 

same crystal structure. 
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Figure 1.7. Unit cell and topology of ZIF-8 crystal structure.48 

 

 Like zeolites, MOFs can also be used for adsorption and membrane applications. 

There have been a number of studies more recently, showing tha t continuous MOF 

membrane layers can be grown on supports using similar techniques for zeolite 

membrane fabrication.10,50 Additionally, some studies have shown that MOFs easily 

adhere with polymers in mixed-matrix membrane fabrication.30 However, the fabrication 

process has so far not been studied to understand if there are any effects on the MOF 

separation properties during membrane formation. This is important to understand since 

often the pure MOF membrane studies do not agree with the mixed-matrix membrane 

studies in terms of separation performance.  

 

1.5 Research Objectives and Strategy 

 The focus of this thesis is to examine nanoporous materials for the application of 

natural gas purification by using both adsorption and mixed-matrix membranes as means 

for evaluating separation performance of CO2 and CH4. In addition, it is important to also 

study the effects that membrane processing has on MOF materials in order to help in 

evaluating mixed-matrix membrane separation performance.  
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1. Develop a synthetic method for mixed-linker ZIFs that have tunable pore sizes 

and surface functionality to tune CO2/CH4 separations 

 

Discussed in Section 1.4.2, ZIFs with controlled amounts of certain linkers 

precipitate a distinct crystal structure, but it is unclear if partial substitution of a linker 

(e.g., substitution of 2-methylimidazole in forming ZIF-8) would affect the properties of 

the ZIF without changing its crystal structure. By rational development of a synthetic 

procedure to alter the linker composition, ZIFs could have pore sizes tuned for a 

particular gas separation. In addition, introduction of certain functional groups could also 

allow tuning of the surface properties of the material; this would have effects on the 

adsorption selectivity, which plays a role in the overall selectivity of a gas pair for both 

adsorption and membrane applications.  

 

Chapter 3 will show that using a synthetic technique mixed- linker ZIFs can be 

formed by using linkers from already known ZIF structures (ZIF-7, ZIF-8 and ZIF-90) 

and also from linkers that do not form any known ZIF structures (e.g., 2-

aminobenzimidazole). Using different characterization techniques, it will be shown that 

this technique produces varying degrees of control on the composition of these ZIFs 

depending on synthesis conditions and molar ratios of reagents. In addition, the 

composition of linkers will also show the effects on crystal structure, thermal degradation 

behavior, and surface area properties.  
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2. Study the effects high-intensity ultrasonication has on MOF materials during 

mixed-matrix membrane fabrication 

 

Because MOFs have only been recently used in mixed-matrix membranes, the 

effect of processing conditions on MOF crystal structure and separation performance is 

not well understood. Ultrasonication is used regularly when preparing dense-film 

composite membranes. Because the mechanism creates localized areas of high 

temperature in the solution, this may severely alter the framework crystallinity and 

composition of a MOF material if not robust enough. ZIF-8 has shown to be very stable 

in alkaline solutions, but there is no understanding of its behavior when subjected to 

sonication. Therefore, using a robust MOF can help provide insight in changes to the 

crystal structure and any other material properties when ultrasonication is used for 

membrane fabrication. 

 

In Chapter 4, two different sonication techniques are used for dispersing ZIF-8 

nanoparticles in a mixed-matrix membrane to show the effects of gas separation 

performance properties. Structural characterization techniques are used on ZIF-8 

nanoparticles subjected to high- intensity sonication to understand changes in the crystal 

structure and chemical environment that result from this fabrication technique. Also, 

dynamic light scattering is used to show any changes in particle size distribution as a 

result of ultrasonication, and microscopy is used to see any effects on particle 

morphology and to confirm light scattering results.  
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3. Study the changes in gas adsorption properties and selectivity of mixed-linker 

ZIFs for CO2 and CH4 

 

 Adsorption studies help elucidate information about an adsorbent’s surface 

properties and can also be used to predict adsorption selectivity of gas mixtures. ZIF-8 

has shown to have very low CO2/CH4 selectivity in comparison to other adsorbents and 

synthesizing mixed-linker ZIFs may improve the selectivity for this gas pair. In addition, 

knowing the adsorption properties of a material before testing its separation performance 

in a mixed-matrix membrane can help in understanding any changes in the overall 

selectivity when a filler material is added to a membrane.  

 

 In Chapter 5, several mixed- linker ZIFs are chosen to explore the changes in gas 

adsorption properties for CO2 and CH4 using a custom built adsorption apparatus. In 

addition, some of these samples are also reacted with ethylenediamine to produce a 

functionalized material that also changes the adsorption properties. Measurements are 

done at different temperatures to obtain heats of adsorption values, and ideal adsorbed 

solution theory and breakthrough simulations of a fixed bed adsorber column are used to 

predict the adsorption selectivity and performance of these materials in mixtures of 

CO2/CH4. 
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4. Demonstrate mixed-linker ZIFs can improve separation performance of 

commercially-available polymer membranes for CO2/CH4 separations and 

develop structural-property relationships of mixed-linker ZIFs for gas separation 

performance 

 

 Commercial polymer membranes have well-understood gas separation 

performance and plasticization behavior. By incorporating mixed- linker ZIFs to form 

mixed-matrix membranes, the effect on gas separation performance from these mixed-

linker ZIFs can be well-understood. In addition, composite membrane models can help 

predict the permeability and selectivity of a mixed- linker ZIF based on the composite 

membrane experimental results. With knowing the adsorption properties, diffusion 

properties can be predicted from these models, giving a comprehensive understanding of 

the gas separation properties of mixed- linker ZIFs. 

 

 Chapter 6 shows the study of using mixed-linker ZIFs in a commercially-

available polyimide. The changes in separation performance with changing linker 

composition are explored for a series of these ZIFs embedded in a polymeric matrix. 

Using the time- lag method, both the permeability and diffusivity changes of each 

membrane are examined to find the relative changes originating from linker substitution 

in the ZIF-8 structure. In addition, mixed gas permeation is used to assess ZIF-containing 

composite membranes under more realistic concentrations of CO2 in the gas feed. Hollow 

fiber membrane simulations are used to evaluate the performance of membranes 

containing mixed-linker ZIFs with mixed gas permeation results.  
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CHAPTER 2 

Metal-Organic Framework-Based Mixed-Matrix Membranes: A Review 

 

2.1 Introduction 

 As global demand for energy rises, better process efficiency is needed for fuel and 

chemical production to increase the longevity of energy sources. Separation units 

currently require 45% of the total energy consumed in the downstream petrochemical and 

manufacturing industries.1 The benefits of reducing energy consumption can already be 

seen from the water purification sector, and extension to other separations (e.g., natural 

gas, olefin/paraffin) is necessary.1 Membrane technologies may offer these lower energy 

requirements, and by means of fundamental research on new materials design and 

membrane processing methods, non- incremental improvements in efficiency may be 

achieved. 

 

 As mentioned in Section 1.3, membrane-based separations can offer better 

efficiency over more mature technologies such as absorption and adsorption for acid gas 

separations, but not without trade-offs. To propose new materials for acid gas 

separations, and other molecular separations, several issues must be considered:  

1. Separation performance trade-off between productivity and purity 

2. Behavior over a range of operating conditions (pressure, temperature)  

3. Effects of impurities and other major components (H2O, C3 and higher 

hydrocarbons, etc.) 

4. Materials cost, ageing properties, and lifetime 
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This Chapter aims to frame the current understanding of using metal-organic 

frameworks (MOFs) in mixed-matrix membranes (MMMs) for improving gas separation 

properties. The main issues of interest in this Chapter are: (1) the state of art for 

synthesizing and modifying MOF materials; (2) the gas transport properties inside MOF 

materials; (3) stability of MOF materials in the presence of impurities commonly found 

in real gas streams; and (4) the state of art for mixed-matrix membranes fabricated with 

MOFs. While this Chapter cannot comprehensively address all issues, relevant comments 

are made when appropriate. Finally, an outlook on possible directions and necessary 

studies for MOF-based MMMs is given. 

 

2.2 Metal-Organic Frameworks 

 MOFs are organic- inorganic hybrid materials that have a metal atom coordinated 

to an organic linker bridging to another metal atom. These materials are typically porous 

and form many different structural topologies resulting in a wide variety of pore sizes.2 

Therefore, MOFs may be able to separate many different gases or liquids depending on 

their adsorption and transport properties. When considering these materials for gas 

separations, it is important to first distinguish how these separations are performed based 

on two very different concepts: equilibrium-based separations and kinetic-based 

separations. Membrane technologies often operate based on a combination of kinetic and 

equilibrium separations, wherein the differences in both the diffusion rates and sorption 

affinities of the gas pair being considered can play a role in the separation performance. 
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Therefore, the pore size, the topology and the surface properties of MOFs can all be 

expected to affect the resulting overall separation performance.  

 

In this section, several aspects of MOFs are discussed that are important for 

developing materials for gas separations, specifically focusing on mixed-matrix 

membranes. The synthesis of MOFs is important to consider if these materials are to 

replace existing porous materials in mixed-matrix membranes. Typical synthesis routes 

are discussed, and different routes for altering, or “designing,” these materials are also 

presented. When selecting a MOF material for gas separations, it is important to have 

some knowledge or estimate of its transport properties. Engineering models are presented 

that give an easy estimate for permeability and ideal selectivity of a gas pair, and then, 

known MOF properties, either determined by simulations or experiments, are provided as 

examples. Finally, it is also important to consider the relative stability of a MOF material 

for any anticipated impurities in a gas feed stream. Examples from the literature on the 

stability of MOFs in the presence of water and gaseous impurities are provided to give 

insight into the expected behavior for different classes of MOF materials.  

 

2.2.1 Synthesis and Design of Metal-Organic Frameworks 

 When selecting a MOF material for replacing current filler materials in mixed-

matrix membranes, not only are the crystal structure and surface properties important for 

consideration, but also the required reagents and steps to synthesize and “activate” (e.g., 

remove occluded solvent molecules) the material for use in a gas separation must be 

understood. While these are not necessarily limiting factors in materials selection, they 
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will ultimately determine the research still needed to make these materials competitive to 

commercially-available technologies. It is also important to note that some MOFs are 

already commercially available, but are manufactured on small scales relative to other 

commercially-available porous materials. 

 

 The conventional synthesis of MOFs can be categorized by two methods: 

solvothermal and non-solvothermal.2 Solvothermal synthesis represents a set of 

conditions that require heating solutions above the boiling point of the solvent in a sealed 

vessel under autogeneous pressures; non-solvothermal synthesis is performed at or below 

the boiling point and under atmospheric pressure. This distinction can be important in 

determining preliminary costs and expected properties of MOF materials for gas 

separations. For instance, synthesis of ZIF-8 can be done with methanol as the solvent at 

ambient temperatures and atmospheric pressure.3–5 With a low boiling point solvent, 

there is little need for high-temperature activation of the MOF after synthesis, reducing 

the steps required to use this material. Other synthesis techniques for MOFs do exist, and 

details can be found elsewhere.2  

 

Table 2.1 shows the synthesis conditions for several MOFs, including solvent, 

temperature, and reagent sources, and whether the MOF is commercially available. One 

important observation is that MOFs with less costly organic linkers (ZIF-8, HKUST-1, 

MIL-53) are already commercially available, while the others are not. Developing 

synthetic routes to produce these linkers by a more cost effective route may result in 

rapid commercial development of other MOFs. Another important note is that few MOFs 

have been scaled up to large batches.2 While this may be relatively easy to perform for 



27 

 

non-solvothermally synthesized materials, MOFs made under solvothermal conditions 

would require very expensive reactors to replicate the same conditions due to the required 

autogeneous pressures generated during synthesis.  

 

Table 2.1. Synthesis requirements for several common MOFs.  

 

MOF Code Solventa 
Temperature 

(°C) 
Linkerb Metal Commercial? 

MOF-56 DEF 130 H2BDC Zn2+ N 

MOF-747 DMF/EtOH/H2O 125 H2DOBDC Mg2+ N 

HKUST-18 DMSO/MeOH RT H3BTC Cu2+ Y (BASF) 

MIL-539 H2O 220 H2BDC Al3+ Y (BASF) 

ZIF-85 MeOH RT 2-MeIM Zn2+ Y (BASF) 

ZIF-2010 DMF 65 Pur Zn2+ N 

aDEF – diethylformamide, DMF – dimethylformamide, EtOH – ethanol, DMSO – 

dimethylsulfoxide, MeOH – methanol; bH2BDC – benzenedicarboxylic acid, H2DOBDC 

– 2,5-dihydroxyl-benzenedicarboxylic acid, H3BTC – benzenetricarboxylic acid, 2-MeIM 

– 2-methylimidazole, Pur – purine 

 

Another aspect of the synthesis of MOF materials is making crystallites suitable 

for membrane fabrication. Typically, solvothermal synthesis techniques can result in very 

large crystallites (>100 μm) that are too large for MMM applications. To avoid using 

solvothermal conditions, a technique has been developed that dissolves the reagents in a 

solvent, and then a “non-solvent” is added to force the crystal to precipitate by rapid 

solubility change of the nuclei.8,11 This may be referred to as non-solvent induced 

crystallization  (NSIC).  As shown in Figure 2.1, Bae et al. synthesized ZIF-90 particles 

using this technique and showed that using different non-solvents resulted in different 
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crystallite sizes. Other characterization methods revealed that the non-solvents used also 

affected the textual properties of ZIF-90 based on N2 physisorption and the gas separation 

performance in MMMs.11 

  

 

Figure 2.1. Using NSIC technique, ZIF-90 was synthesized, and different particle sizes 
were obtained depending on the non-solvent used.11 

 

 The “designable” aspect of MOFs makes them very appealing for developing 

materials tailored to different gas separation applications. There are a variety of means to 

design MOFs for different applications, and reviews and studies can be found 

elsewhere.12–15 Pertaining to kinetic separations, there are specific methods for tuning 

pore sizes and surface properties by either postsynthetic modification (PSM) or mixed-

linker synthesis.12,16–18 PSM allows the introduction of a pendant organic functional 

group to interact with a specific gas in the pores of the MOF. This technique has been 

used to successfully graft alkylamines to open-metal center MOFs to increase affinity for 

CO2, therefore enhancing the adsorption selectivity.7,19 Mixed- linker synthesis techniques 

have been explored less than PSM, possibly due to the difficulty in controlling the crystal 

phases formed during synthesis. Shown in Figure 2.2, Zhang et al. were able to 

synthesize mixed- linker MOF materials containing imidazolate and triazolate bridging 

linkers that formed the same crystal structure.16 Using linkers that form different crystal 
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structures may require more rigorous synthesis design approaches to form single crystal 

phases, but could result in tuning pore sizes and surface properties to a greater extent. 

 

 

Figure 2.2. Using similar bridging linkers, MOFs with varying linker composition can be 
synthesized to tune surface properties.16 
 

2.2.2 Adsorption and Transport Properties 

 In selecting a MOF or any porous material to separate a gas pair, it is important to 

understand the likely adsorption and transport properties. Detailed transport models can 

relate the expected permeability and selectivity in a microporous material to its 

adsorption and diffusion properties. The flux of a pure gas or gas mixture through a 

membrane is defined as: 

 

 i iN D q    (2.1) 

 

where Ni is the flux of component i in the MOF, Di is the diffusivity, and q  is the 

concentration gradient. If q can be defined by an adsorption isotherm model (e.g., the 

Langmuir isotherm in Equation 2.2), the flux equation becomes: 
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where qsat,i is the saturation capacity of the MOF, bi is the affinity constant, and pi is the 

partial pressure of gas. If the flux is assumed to occur linearly over a fixed length, l, with 

a negligible pressure drop, Equation 2.2 is simplified to: 
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where f represents the feed side and p is the permeate side. Because the permeability of a 

material is normalized by the pressure gradient and the length, the flux is related to 

permeability, Pi, by: 
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and the diffusion and adsorption properties are related to the intrinsic permeability by the 

following relationship: 
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This equation represents the permeability of a single component gas through any 

nanoporous material described by the Langmuir isotherm for its adsorption properties. In 

order to estimate mixed gas permeation, Maxwell-Stefan equations must be used.20 To 

obtain the ideal permselectivity of a nanoporous material, the ratios of two permeability 

values can be taken: 

 

  i
i

j
j

P

P
   (2.6) 

 

Because the permeability is dependent on both the adsorption and the diffusion 

properties, it is important to evaluate both when selecting a material; however, for 

molecular sieve materials, diffusion selectivity plays a major role in the overall 

permselectivity.21 

   

 The adsorption properties of many MOF materials have been studied and 

characterized, and there are several reviews focusing on the gas separation properties by 

adsorption.22–26 When comparing adsorption properties and selectivity of gas pairs for 

MOF materials, it is important to consider commercially available adsorbents as 

references. Henry’s law selectivities of BPL carbon at 303 K have been reported to be 

2.5, 7.5, and 11.1 for CO2 relative to CH4, CO, and N2, respectively.27 Table 2.2 

compares the predicted ideal selectivity from Henry’s constants of several ZIFs with BPL 

carbon. The overall trend shown in Table 2.2 is that ZIFs with very polar functional 

groups on the bridging organic linker (e.g., ZIF-78) lead to higher Henry’s constant 

selectivities when compared to a non-polar linker (e.g., ZIF-8). 
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Table 2.2. Ideal selectivity predicted from Henry’s constants at 303 K for CO2/CH4 and 
CO2/N2 gas pairs and the limiting pore diameter of each adsorbent.  

 

Sample 

Henry’s Law 

Ideal Selectivity 
Limiting Pore Diameter 

(nm) 
CO2/CH4 CO2/N2 

BPL Carbon27 2.5 11 2-3 

ZIF-828 1.8 5.1 0.34 

ZIF-7829 45 50 0.38 

ZIF-8229 32 35 0.81 

ZIF-9530 4.3 18 0.38 

ZIF-10030 5.9 25 0.34 

  

As mentioned above, both adsorption and diffusion may play an important role in 

the observed gas pair selectivity. When selecting a filler material for a MMM, it is 

important to select a material with the correct pore size range. In addition, knowing the 

diffusion properties of a MOF material a priori to using it in a MMM is very useful so 

the filler and polymer matrix can be properly matched in terms of permeability values. 

Molecular simulations have played a crucial role in evaluating MOFs for different gas 

pairs. Keskin et al. performed simulations on both Cu3(BTC)2 and MOF-5, examining the 

diffusion and adsorption behavior with the gas pairs CO2/H2, CH4/H2, and CO2/CH4.31 

Although Cu3(BTC)2 showed favorable adsorption selectivity for CH4/H2, diffusion 

selectivity favored the smaller H2 molecules, giving an overall low molecular separation 

selectivity. In addition, the authors also showed that CO2/CH4 separation in Cu3(BTC)2 

membranes was determined almost entirely by adsorption selectivity due to a diffusion 
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selectivity close to 1. Therefore, it is critical to properly select a material that would have 

a pore size small enough to give diffusion selectivity. 

 

 

Figure 2.3. (a) Adsorption selectivity, (b) diffusion selectivity, and (c) mixture 
selectivity of gas pair mixtures in Cu3(BTC)2 (closed symbols) and MOF-5 (open 

symbols).31 
 

 However, unlike many zeolite materials wherein a precipitous drop in diffusion 

rates can be expected once the gas molecule size approaches the crystal pore diameter,32 

MOF materials can have greater inherent lattice flexibility associated with the linkers 

bound to the metal centers when compared with purely inorganic molecular sieves. If a 

MOF has this flexibility, its nominal pore size may not be an accurate assessment of its 

potential separation performance for a target gas pair.33 ZIF-8 has been shown to undergo 

“gate-opening” upon adsorption of N2 molecules at 77 K.34 At a certain threshold 
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pressure (PGO), the organic linkers bridging the Zn2+ metal centers rotate to allow more 

gas molecules to adsorb into the crystal. The consequence of this rotation is a larger 

effective diameter than what is predicted from the crystal structure of ZIF-8. Zhang et al. 

studied the diffusion coefficients of ZIF-8 for a wide range of gases (H2 up to iso-

C4H10).35 The authors found that instead of molecular sieving occurring at the 

crystallographic pore size (0.34 nm) ZIF-8 actually shows a drop in diffusivity at 0.4 nm, 

indicating that gate-opening can severely alter the separation performance. As a result, 

the predicted CO2/CH4 performance is very low compared to other nanoporous 

materials.21 Therefore, when selecting a MOF material to use for membrane applications, 

it is important to consider if there is any evidence of flexibility and if there are adverse 

consequences concerning diffusion selectivity as a result of flexibility properties.  

 

2.2.3 Stability of MOF Materials 

Although most inorganic, porous materials (e.g. zeolites) have shown robust 

thermal and chemical stability, use of metal-organic frameworks for large scale 

separations has received skepticism due to the poor stability of some MOFs in the 

presence of water and various impurities. Table 1.1 showed that there can be a significant 

concentration of both H2S and H2O, and in flue gas streams, impurities, such as SOx and 

NOx, can also be present. It has already been shown that zeolites with low silicon-to-

alumina ratios can be adversely affected by the presence of water when considering 

transport and adsorption properties;36 therefore, studying the effects of these impurities in 

MOFs, which are considered to be less stable, is important in moving towards their use in 

industrial applications. 
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Figure 2.4. Corrected diffusivities of gases in ZIF-8, showing molecular sieving 
occurring at higher pore size than expected from crystallographic data.35 The dashed blue 
line represents the limiting pore diameter of ZIF-8 determined from X-ray 

crystallography, and the shaded red area is the effective molecular sieving diameter based 
on the diffusion data. 

  

When considering the water stability of a MOF material, it is important to 

consider two aspects: (1) the coordination of the metal atoms to the organic linkers (e.g., 

open metal center or coordinatively-saturated metal center); and (2) the bond strength 

between the metal and the organic linker.37 A common technique for testing water 

stability has been to boil powder MOF samples in water, and sometimes exposure to 

water vapor, followed by analyzing with X-ray diffraction (XRD) to confirm that the 

crystal structure is maintained.38,39 ZIF-8 has been shown to exhibit excellent crystal 

structure stability in boiling water, as well as various solvents and alkaline solutions; 
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however, the authors did not examine its porosity after exposure to these solutions.38 As 

pointed out by Schoenecker et al., only examining the XRD patterns of MOF materials 

fails to take into account changes in adsorption and diffusion properties.40 Using other 

characterization techniques, changes in adsorption properties or metal coordination 

environments can be confirmed. For example, Mg-MOF-74 is synthesized in water, 

which remains bound to the Mg2+ sites following synthesis. Schoenecker et al. showed 

that although Mg-MOF-74 maintained its crystal structure after exposure to 90% relative 

humidity (RH) of water vapor, the material exhibited 83% loss of surface area even after 

reactivation, suggesting that Mg-MOF-74 may not be useful in gas streams containing 

high concentrations of water vapor.40 Other researchers have suggested that Mg-MOF-74 

undergoes disordered rearrangement of coordinated Mg2+ metal centers upon dehydration 

of the material after exposure to water, and the original coordination symmetry of Mg2+ 

can only be obtained reversibly after exposure to 100% RH water.41 This disordered 

rearrangement in coordination may explain the drastic changes in adsorption properties 

that were observed by Schoenecker et al.  
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Figure 2.5. Upon dehydration of Mg-MOF-74, Mg2+ metal center undergoes a 
coordinative rearrangement that is near irreversible and may change the overall 

adsorption properties.40,41 
 

Although some classes of MOFs have inherent water stability (e.g., UiO-66, ZIF-

8), several strategies have been developed for generally improving water stability in 

MOFs.42–45 One common method is to develop syntheses that produce isostructural MOF 

materials with different organic functional groups or metal centers. Jasuja et al. found 

that using polar functional groups (-Br, -NO2, -OH, etc.) had no effect on the water 

stability when exposed to water vapor at 90% RH; however, non-polar, alkyl- or phenyl-

type functional groups produced materials with much higher stability, as determined by 

BET analysis.42  Kang et al. examined the chemical stability of the isostructural M-BDC 

(or M-MIL [Material of Institut Lavoisier]) series of MOFs, examining both surface area 

and XRD patterns after exposure to basic, acidic, and neutral H2O solutions.44 In general, 
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the trend found for stable MOFs with differing metal centers was Cr- > Al- > V-BDC, 

where V-BDC showed complete loss of crystallinity and surface area. The authors 

concluded that the stability was derived from inertness or lack of lability of the metal 

centers, which is the tendency of the organic linkers to be released and to rebind rapidly 

in an aqueous solution. Bond strength was not considered the common factor between 

these materials due to average bond strength following V-O > Al-O > Cr-O, and 

coordination environment was ruled out because all of the M-BDC materials form the 

same isostructural binding network. Therefore, if the metal center is highly labile and 

submerged in a solvent, the degree of stability may be lessened, but the authors of this 

study did not conclude whether this same trend was observed for water vapor as well.  

 

When examining MOF stability in the presence of gaseous impurities (e.g., SOx, 

NOx, H2S), many of the same characterization techniques (XRD, BET) can be used, as 

well as cyclic studies to understand if degradation is caused immediately or over many 

cycles of use. Several MOFs have been studied by both experiments and simulations to 

understand the effects of impurities on adsorption properties, typically in the context of 

CO2 separations.46–51 Of the MIL class of MOF materials,46 isostructural M-BDC (V, Al, 

Cr, Fe) materials showed no degradation of methane adsorption after exposure to H2S, 

except for Fe-BDC, suggesting that H2S only physically adsorbs on V-, Al-, and Cr-BDC 

materials; however, MIL-100(Cr) showed degradation of the quantity of methane 

adsorbed after exposure to H2S at 303 K (Figure 2.6). BET analysis showed 14% loss of 

surface area compared to the material before exposure. MIL-101, isostructural to MIL-

100, showed no change in methane adsorption properties before and after exposure to 
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H2S and maintained the same BET surface area. These results suggest that both the metal 

center and organic linker can play a crucial role in the stability of the MOF material when 

exposed to various impurities; however, no hypothesis was offered to help narrow the 

cause for degradation in some MIL-type materials, and not others.  

 

 

Figure 2.6. Methane adsorption properties of MIL-100(Cr) and MIL-101(Cr) before and 

after exposure to H2S at 303 K.46 
 

2.3 Metal-Organic Framework-Based Mixed-Matrix Membranes 

As discussed in Chapter 1, membrane-based gas separations provide a promising 

route to lower energy requirements and to improve process efficiency, but due to 

limitations in materials, polymeric membranes have inherent limitations in membrane 

performance when considering permeability and selectivity. Although several advanced 

membrane technologies exist that could replace pure polymeric membranes (e.g., carbon 

molecular sieves), mixed-matrix membranes provide a theoretically easy route due to the 



40 

 

same processibility and fabrication requirements as polymeric-based membranes, but 

with higher potential membrane performance due to the filler, in this case, MOF or 

zeolite, materials. 

 

2.3.1 Mixed-Matrix Membrane Fabrication 

Like zeolite-based mixed-matrix membranes, it is expected that MOF-based 

MMM materials require the same preparation steps for fabricating dense film and hollow 

fiber membranes. In general, the first step required is to prepare a dispersion of the MOF 

in the polymer casting solution. To properly disperse MOFs or zeolites in a solution on a 

lab scale, ultrasonication is widely used; however, there have been examples of using 

high-shear rate stirring and other preparative methods for fabricating membranes 

containing filler materials with different morphologies.52,53 Poor particle dispersion in 

solvents is one of several important challenges for successful membrane formation.54,55 

Typically, poor dispersion leads to aggregation and results in defective membrane 

performance. It is important to point out that increasing the particle loading in MMMs 

normally results in poorer dispersion due to more likely particle aggregation as the 

volume fraction of particles increases in the solvent.52 

 

Additives to the solution can typically alleviate dispersion problems for 

membrane fabrication if the additive is able to absorb to the surface of the particle and 

prevent aggregation from occurring. These additives may include dilute polymer dope 

solutions, surfactants, coupling agents and ionic liquids.56–59 However, with the latter 

three additives, there may be significant effects to the gas permeation properties, 
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sometimes resulting in lower expected permeability values. Therefore, the best solution 

may be to use a dilute polymeric solution that is ultimately a part of the polymer matrix 

in the composite membrane.60,61 By doing so, no new components are introduced to the 

composite membrane system, and separation performance is then more likely enhanced 

by the filler material and not a tertiary phase. However, there has been some work done 

to show that tertiary phases may enhance the MMM properties if chosen properly.58 

 

Once proper dispersion has been achieved, the polymer is added to obtain the 

desired ratios of the two phases. A dense film is obtained by either pouring the mixed-

matrix membrane solution into a Petri dish or pouring the solution across a glass or 

Teflon plate and pulling a uniform casing knife over the membrane solution. Because 

solvents used for membrane preparation typically have low boiling points (< 333 K), it 

may be necessary to use a controlled environment to prevent rapid evaporation and air 

bubble formation in the MMM.62 Many research groups have used glove bags to form an 

atmosphere containing the polymer dope solvent, and this slows the effective evaporation 

rate. Ultimately, scanning electron microscopy (SEM) can easily determine if the 

resulting membrane formed without significant defects by analyzing cross sections of the 

dense film membranes. The last step is to remove any remaining solvent before 

permeation testing. This is done by thermal annealing under vacuum with a temperature 

high enough to remove the solvent. Figure 2.7 shows a generalized procedure of the 

different fabrication steps.63 
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Figure 2.7. Generalized procedure for the fabrication of mixed-matrix membranes in the 

form of flat films.63 
 

As discussed in Section 1.3.3, membrane fabrication can result in a number of 

different permeability behaviors depending on the membrane morphology and particle 

dispersion in the polymer matrix. If poor dispersion results from the fabrication step, 

expected behavior will be either a “sieve- in-a-cage” or “leaky- interface” morphology.54,64 

While these are easy to see in a microscope, other defects may not be immediately 

obvious. Because MOFs may contain organic functional groups, it is possible for MOF 

surfaces to react with the surrounding polymer matrix depending on the organic 

functionality. This is analogous to the case of silylation of zeolite surfaces to create good 

adhesion with the polymer matrix, and the resulting composite may have a “rigidified” 

interface.59,65,66 Therefore, when selecting both a MOF material and the surrounding 

polymer matrix, it is important to consider adverse reactions of functional groups 

between these two materials.  

 

2.3.2 Performance of MOF-based Mixed-Matrix Membranes 

Because there are many factors controlling the effective transport properties of 

gases in MMMs, it may not always be obvious why a particular membrane combination 
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may show improved selectivity.54,55 When reporting new membrane data, it is necessary 

to consider as many factors as possible: dispersion, polymer chain adhesion and 

rigidification, MOF flexibility, MOF transport properties, etc. As a consequence, it may 

be difficult to properly interpret all membrane data in the literature. The subsequent 

review of MMM performance from the literature was chosen based on the following: (1) 

the transport properties of Cu3(BTC)2 have already been explored by simulations and 

discussed in Section 2.2.2, providing a basis to compare MMM data; (2) ZIF materials 

are to be explored in the remaining Chapters of this thesis and are of interest for using in 

different gas separation applications; and (3) interesting trends in membrane performance 

that depend on organic functionality in MOFs embedded in MMMs, which will be 

relevant in later discussion in this thesis.  

 

Mixed-matrix membranes containing Cu3(BTC)2 were some of the first composite 

membranes containing MOF materials to be explored. As pointed out in Section 2.2.2, it 

was expected that MMMs containing Cu3(BTC)2 will likely not provide any apparent 

CO2/CH4 separation improvements based on the transport properties. One of the first 

examples67 using Cu3(BTC)2 used poly(dimethylsiloxane) (PDMS) and 

poly(ethersulfone) (PSF) as the polymer matrix, and as expected, there was either no 

perceived trend in the change in selectivity for the gases explored (H2, N2, O2, CO2, CH4) 

or an overall drop in the permselectivity for PDMS. However, PSF MMMs did show an 

initial increase in selectivity at 5 wt% loading of Cu3(BTC)2, and then a significant drop 

at 10 wt%. This implies that there may be an optimal loading for Cu3(BTC)2 in glassy 

polymers to achieve a greater selectivity, but the enhancement of selectivity cannot be 
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simply explained as being due to inclusion of Cu3(BTC)2 because Figure 2.3 shows there 

is a lower permselectivity expected for CO2/CH4 for Cu3(BTC)2 (α ~ 10) compared to 

pure PSF (α ~ 18).  

 

Other MMMs containing Cu3(BTC)2 have shown different trends depending on 

the polymer matrix used. Zornoza et al.68 used mixed combinations of filler materials and 

with a 16 wt% Cu3(BTC)2/PSF membrane, showed similar behavior to a previous study, 

where the permselectivity for H2/CH4 decreased with the addition of Cu3(BTC)2. 

However, when authors have used polyimides (e.g., Matrimid® 5128) as the polymer 

matrix, most MMMs exhibited an enhancement in permselectivity CO2-based 

separations.69–72 For example, Basu et al.70,71 have shown in two studies that using 

Cu3(BTC)2 with Matrimid® 5128 as the polymer an increase in the selectivity for 

CO2/CH4 separations was observed, even in mixed-gas permeation experiments. In 

addition, a patent by Liu et al.69 also claimed either maintenance or improvement in 

permselectivity when using a 30 wt% Cu3(BTC)2/Matrimid MMM. Although it may be 

that polyimides have a different interaction with Cu3(BTC)2 than other polymer matrices, 

Basu et al.70 showed there to be no change in the glass transition temperature (Tg) of the 

polymer, suggesting that the polymer structure was not greatly influenced by the presence 

of the MOF. Therefore, it may be necessary to perform further investigation of the  

polymer structure and the influence of Cu3(BTC)2 using different characterization 

techniques besides examining Tg. 
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As discussed in Section 2.2.2, ZIF-8 exhibited an adsorbate- induced framework 

deformation termed “gate-opening”, and this had the consequence of lower than expected 

separation performance for gases like CO2/CH4. It is important to know if this “gate-

opening” phenomenon occurs when using ZIF-8 inside a polymer matrix. Although there 

have been several studies examining the membrane performance of ZIF-8 MMMs, most 

permeability trends did not show consistent performance as the weight loading is changed 

for CO2/CH4 separations.52,73 For example, Ordoñez et al.52 explored the separation 

performance at different weight loadings for ZIF-8 embedded in Matrimid® 5128. 

Although there was no overall trend in the separation performance for the MMMs as the 

weight loading is increased, at 60 wt% ZIF-8 in Matrimid®, the permeability for all gases 

examined was significantly lower than the pure polymer, and the selectivity of H2/CH4 

was much higher compared to Matrimid®. This observation implied that as the weight 

loading for these MMMs was increased there was actually some polymer rigidification 

that lowers the effective permeability of all gases and enhanced the permselectivity. 

 

Similarly, Song et al.73 did not observe any consistent trend in the change of the 

permselectivity for increasing the ZIF-8 weight loading using Matrimid® 5128 as the 

polymer matrix. However, they were able to show an overall significant increase in the 

permeability for CO2. It may be that preparation of the composite membranes was 

inconsistent from sample to sample, creating this inconsistent trend in selectivity. Díaz et 

al.74 used a different polymer matrix than Matrimid® 5128, poly(1,4-phenylene ether-

ether sulfone) (PPEES), in their study of ZIF-8 based MMMs. As the weight loading was 

increased, they observed poorer dispersion of ZIF-8 in the polymer matrix. As such, the 
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permselectivity for H2/CH4 for composite membranes increased at 10 wt% ZIF-8, but 

then an overall decrease in selectivity was observed as the weight loading was further 

increased. Dai et al.56 also observed an enhancement in selectivity when looking at 

CO2/N2 separations using Ultem 1000, a polyimide, as the polymer matrix. Using dense 

film and hollow fiber membranes, the authors observed a significant improvement in 

permselectivity at 13 wt% ZIF-8 loading; however, weight loadings beyond this were not 

explored.  

 

Besides ZIF-8 and Cu3(BTC)2 as MOF filler materials, there have been several 

studies using other MOFs, including MIL- and UiO-class materials. In these studies, the 

authors have normally sought to understand the influence of amine functional groups on 

the separation performance of different MMMs. Using NH2-MIL-53 as a filler material, 

both Zornoza et al.75 and Chen et al.76 observed significant enhancement in 

permselectivity for CO2/CH4, with Zornoza observing a permselectivity over 100 for 

CO2/CH4 using a 25 wt% NH2-MIL-53/PSF membrane. In both studies, the authors 

observed a precipitous drop in permselectivity at the maximum loading studied. This 

suggested that poor dispersion again plays a crucial role on the observed membrane 

performance for MOF-based MMMs. Nik et al.77 examined different MOF fillers with 

and without primary amines, while maintaining the same crystal structure. The authors 

found very little improvement when comparing functionalized and normal MOF fillers at 

the same weight loading. This was best explained by an adsorption study with NH2-MIL-

53 that showed the influence of primary aromatic amine groups in the MOF is not 

necessarily the cause for improved CO2/CH4 adsorption selectivity, but is instead caused 



47 

 

by changes in the crystal structure with inclusion of the –NH2 group.78 Considering all of 

the MOF filler materials examined have aromatic organic linkers similar to NH2-MIL-53, 

this may be a likely explanation for little improvement observed for –NH2 functionalized 

MOFs in composite membranes. 

 

Overall, the general trends of MMM performance data represented in the 

literature have shown an inconsistent picture for using MOF materials in MMMs. In 

general, all MOF materials incorporated in MMMs showed high permeability 

enhancement, unless a highly permeable polymer was used. However, permselectivity for 

MMMs did not show consistent changes with increasing weight loading, and different 

studies yielded different results. Indeed, there may need to be a uniform methodology for 

membrane fabrication and preparation to properly compare membrane performa nce 

between different studies. In addition, influences and studies on different fabrication 

methods (sonication methods, casting solvent, etc.) may yield more useful information on 

how to properly prepare MOF-based MMMs. A promising aspect of using MOFs in 

MMMs is the lack of extra processing steps required to provide better adhesion with the 

polymer matrix, compared to zeolite and other inorganic materials, but the general trends 

and membrane performance must be more closely scrutinized to draw any useful 

conclusions from the membrane data.  

 

2.3.3 Mixed-Matrix Membrane Permeation Models 

Currently, there exist several different models for predicting composite membrane 

permeation based on the permeation properties of the polymer and filler and the volume 
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fraction of the filler material. These models are typically adapted from thermal or 

electrical conductivity models because permeation is analogous to thermal and electrical 

conduction in composites.79 A model often used is the Maxwell model:80 
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where P is the permeability,  is the filler volume fraction, λd is the ratio of filler 

permeability to polymer ( d

m

P
P

) and subscripts eff, m, and d stand for effective, polymer, 

and filler phases, respectively. This model assumes a spherical filler phase and is often 

accurate only at low volume fraction loadings. The Bruggeman model has an improved 

derivation based on a differential effective medium approach, but has the same 

limitations concerning the accuracy at higher volume fractions.81 The Lewis-Nielsen 

model82 was originally developed to describe the elastic moduli in composite materials 

but has been adapted to describe the permeability: 
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where 
max  is the theoretical maximum loading for the filler phase and is normally 

assumed to be 0.64. 

 

All of the above models assume only two phases: the polymer and the filler. In 

some cases (especially with zeolites), there may be a ternary phase that represents 

defects, or even an ionic liquid, at the interface.83 In this case, models are typically solved 

by assuming two different modes: (1) a mode in which the bulk filler phase is surrounded 

by an “interphase” with properties different from the polymer or filler; and (2) a mode for 

the whole membrane where the “interphase” and the filler are lumped together by: 
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 (2.10) 

 

where I represents the “interphase” ternary volume fraction. This method has been 

applied successfully for zeolites, but because MOFs typically show good adhesion to a 

polymer matrix, this method is normally not used for MOF-based MMMs. 

 

Because the above models assume spherical morphology of the filler phase a nd 

anisotropic transport, several models have been developed to describe different particle 

morphologies and mass transport in filler materials.84–87 Kang et al.86 have developed a 
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model for describing transport of nanotubular filler materials and expected membrane 

performance based on average orientation of nanotube alignment. Although these studies 

have shown it is possible to derive models for transport while taking into account non-

spherical morphologies or more complicated transport mechanisms, in general, the 

Maxwell model has been the preferred model for predicting filler transport properties 

based on experimental MMM permeation data. However, this model may not be accurate 

depending on the membrane system.79 

 

2.4 Conclusions 

The MOF-based MMM literature is rapidly growing, but several important 

questions of interest remain. In general, because MOFs have lower chemical and thermal 

stability than zeolites or other inorganic materials, the influence on different membrane 

preparation techniques must be studied if any meaningful correlations are to be developed 

for the materials currently studied. In addition, more careful selection of MOF materials 

used as fillers needs to be employed. Currently, several MOFs have been used that have 

very large pore sizes (e.g., Cu3(BTC)2) that will not be capable of molecular sieving 

small gases using membrane technology. Since the goal of fabricating MOF/polymer 

MMMs is to enhance the membrane separation performance, close attention to its crystal 

structure must be observed in order to properly pick compatible materials with the current 

suite of polymers that are available for gas permeation membranes.  
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CHAPTER 3 

Synthesis and Characterization of Mixed-Linker Zeolitic Imidazolate 

Frameworks 

 

3.1 Introduction 

Recent studies have shown that zeolitic imidazolate frameworks (ZIFs) exhibit a 

“gate-opening” phenomenon:1–3 as they interact with adsorbing molecules, they undergo 

structural changes during adsorption, thereby allowing more adsorbate molecules into the 

framework. Because the organic linker components in the framework rotate to allow the 

above phenomena, the nature of the organic linker has significant implications on the 

selection and behavior of appropriate ZIF materials for specific applications. For 

instance, ZIF-8 has a crystallographic pore aperture of 0.34 nm as determined by X-ray 

diffraction; however, there is increasing evidence that the as-made material separates 

gases considerably larger than its pore aperture (e.g., C3H6/C3H8) more efficiently than 

gases closer to its crystallographically determined pore size (CO2/CH4).4–6 

 

In general, it is possible to tune the properties of MOFs for specific applications 

using methods such as chemical or structural modifications. One approach for chemically 

modifying a MOF is to use a linker that has a pendant functional group for postsynthe tic 

modification. For example, ZIF-90, an aldehyde-containing ZIF, can be modified using 

NaBH4 as a reducing agent to generate alcohol groups.7 Another approach to 

modification is to use organic linkers that can change the structural characteristics of the 
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material. MIL-53 exhibits a flexible framework,8 but modification of the terephthalic acid 

linker to include an amino functional group  improves the separation performance for 

CO2 by changing the structural properties of the material.9–11 Another recent approach to 

modification is the use of a triazolate linker in which a C-H moiety of the imidazole is 

replaced by a nitrogen atom for the synthesis of a ZIF-8-like material, thereby allowing 

crystallization of a hybrid material that does not disturb the crystal structure of the 

original material.12 However, in the case of using mixed linkers, determining appropriate 

linker combinations a priori is not always straightforward. It has been shown13–15 that the 

use of linkers with bulky substituents produces new ZIF frameworks with enhanced CO2 

adsorption properties by preventing crystallization of ZIF topologies with smaller unit 

cells and network cages; however, this discovery came from using high-throughput 

synthesis techniques. Similarly, the pore size of a MOF can be tuned by increasing the 

length of bridging organic linkers. A series of mixed- linker Zn-based MOFs were 

transformed from a nonporous material to one with relatively high surface area and 

porosity by increasing the length of bridging dicarboxylic or bipyridyl linkers.16 

 

In this Chapter, a novel structural modification approach is explored for tuning 

the properties of ZIF materials. In particular, hybrid, or mixed- linker, ZIFs containing a 

combination of different ligands in differing relative quantities are synthesized. The 

synthesis of hybrid ZIF materials that crystallize in a single crystal structure is 

demonstrated for a number of different combinations of linkers. Furthermore, in 

comparison to the triazolate linker,12 which replaces a C-H moiety of the original Me-IM 

linker with an N atom, several bulky benzimidazole-type linkers are used during 
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synthesis of hybrid ZIFs that create an additional steric complexity when trying to 

crystallize these materials. High-resolution nitrogen physisorption isotherms are used to 

track the gate-opening phenomenon, which has become increasingly more important to 

consider in understanding guest-host interactions in MOF materials. This synthetic 

approach is a facile route whereby chemically and thermally robust ZIFs (e.g. ZIF-8) can 

be subjected to continuous and tunable alterations in chemical functionality or 

microporosity by in situ incorporation of different imidazole linkers. Continuous control 

over composition is possible, as shown by solution 1H NMR spectroscopy. 

Characterization by X-ray diffraction and nitrogen physisorption demonstrates formation 

of a set of crystalline ZIF structures that exhibit adsorption properties different from their 

parent frameworks. 

 

3.2 Experimental Methods 

3.2.1 Materials 

Sodium formate (99%, NaCO2H), 2-methylimidazole (99%, 2-MeIM), 

Zn(NO3)2·6H2O (99%) and benzimidazole (99%, Bz-IM) were obtained from Sigma-

Aldrich. Methanol (MeOH), dimethylformamide (DMF), carboxaldehyde-2- imidazole 

(99%, OHC-IM), and 2-aminobenzimidazole (97%, 2-amBzIM) were obtained from Alfa 

Aesar. All materials were used without any further purification. 
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3.2.2 Synthesis of ZIF-8-90 Hybrids 

A solution of 20 mmol NaCO2H, (20-x) mmol 2-MeIM (ZIF-8 linker) and x mmol 

OHC-IM (ZIF-90 linker) in 50 mL MeOH was prepared. The value x varied between 0-

20 to alter the ratio of OHC-IM:2-MeIM in solution. In order to fully dissolve the OHC-

IM ligand, the solution was heated to 323 K until it became clear. A separate solution was 

prepared with 5 mmol Zn(NO3)2·6H2O and 50 mL deionized H2O. After the MeOH 

solution cooled to room temperature, the Zn salt solution was poured into the IM solution 

and allowed to stir at room temperature for 1 hr. The resulting milky solution was 

centrifuged at 10,000 rpm for 5 min, and the precipitate was redispersed in 45 mL MeOH 

and washed three times. The powder was dried in an oven at 358 K. 

 

3.2.3 Synthesis of ZIF-7-8 Hybrids 

A solution of 20 mmol NaCO2H, (20-x) mmol 2-MeIM and x mmol of Bz-IM 

(ZIF-7 linker) in 50 mL MeOH was prepared. Like the ZIF-8-90 hybrids, the value x was 

changed to alter the Bz-IM:2-MeIM ratio. A separate solution was prepared with 5 mmol 

Zn(NO3)2·6H2O and 50 mL DMF. The Zn salt solution was poured into the IM solution 

and allowed to stir at room temperature. Times for crystal formation varied between 1-48 

hrs. The resulting suspension was centrifuged at 10,000 rpm for 10 min, and the 

precipitate was redispersed in 45 mL MeOH. The product was washed three times and 

then recovered by vacuum filtration and dried in an oven at 358 K. 
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3.2.4 Synthesis of ZIF-8-ambz Hybrids 

A solution was prepared with (20-x) mmol 2-MeIM, x mmol 2-amBzIM, and 5 

mmol NaCO2H in 50 mL deionized H2O. The value x was varied between 0-10 to change 

the ratio of 2-MeIM:2-amBzIM in solution. To fully dissolve the 2-amBzIM, the solution 

was heated to 343 K for at least 2 hrs in a round bottom flask until the solution turned 

clear. A separate solution containing 5 mmol Zn(NO3)2·6H2O in 50 mL DMF was also 

prepared. After the imidazole solution cooled to room temperature, the Zn salt solution 

was added and allowed to stir for 1 hr. The solution was then centrifuged at 10,000 rpm 

for 5 min, and the precipitate was washed with MeOH. This washing was repeated three 

times, and then the precipitate was recovered by vacuum filtration and dried in an oven at 

358 K. The yield of product was approximately 20-25% based on Zn. 

 

3.2.5 Characterization Methods 

Powder X-ray diffraction (XRD) was performed at room temperature on an 

X’Pert Pro PANalytical X-Ray Diffractometer using Cu Κα radiation of wavelength λ = 

1.5406 Å. Measurements were carried out from 3.5-50° 2θ, using an X’celerator detector 

with low background sample holders. For unit cell volume calculations in the ZIF-8-90 

system, an internal standard (α-Al2O3) was added to the powder samples, and the 

diffraction pattern was shifted appropriately (typically by about 0.1° 2θ) such that the 

peak positions of the internal standard were correctly reproduced. Structureless (Le Bail) 

refinement of the full XRD patterns (excluding the internal standard peaks) was carried 

out with the Expo2009 package,17 to obtain the cubic lattice constant (a) and hence the 

unit cell volume (a3). Thermogravimetric and decomposition analyses were performed on 
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a Netzsch STA-409-PG thermogravimetric analyzer (TGA) and differential scanning 

calorimeter (DSC). Powder samples were heated from room temperature to 1173 K with 

a ramp rate of 10 K·min-1 in a diluted air stream (40% air-60% nitrogen). Smoothed 

differential mass loss curves were analyzed to determine decomposition temperature of 

hybrid materials.  Solution 1H NMR measurements were performed using a Mercury Vx 

400 MHz spectrometer by digesting crystals using d4-acetic acid (CD3CO2D) as the 

solvent. To determine the fraction of imidazole linkers in the framework of each sample, 

the areas of each peak were normalized to either the aldehyde proton of OHC-IM (9.84 

ppm) or the 2 position proton of Bz-IM (9.05 ppm) or the aromatic proton of 2-amBzIM 

(7.20 ppm). Particle size and morphology were examined using a JEOL 100CX 

transmission electron microscope (TEM) operating at 100 keV. Samples were dispersed 

in isopropanol and a drop of the dispersion was added to the TEM grid. Nitrogen 

physisorption measurements were carried out at 77 K on a Micromeritics ASAP 2020 

surface area analyzer. Samples were first degassed for 18 hrs at 473 K (ZIF-8-90 hybrids) 

or 523 K (ZIF-7-8 and ZIF-8-ambz hybrids) to remove occluded solvent molecules (H2O 

or DMF). The BET, Langmuir and t-plot micropore volume methods were used to 

analyze the relative surface properties of the hybrids.  

 

3.2.6 Horváth-Kawazoe Formulation and Selection of Parameters 

Horváth-Kawazoe (HK) equations18 were used to analyze nitrogen physisorption 

isotherms of hybrid materials. For a single plane interacting with a gas molecule, the 

potential energy function follows: 
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where Ns is the molecular surface area of the adsorbent (cm-2), σ is the interaction 

distance between the adsorbate and adsorbent at zero energy (Å), z is the separation 

between adsorbent and adsorbate (Å) and As is the dispersion constant defined as (J mol-1 

cm-6 molecule-1): 
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where α is the polarizability (cm3), χ is the diamagnetic susceptibility (cm3), m is the 

mass of an electron (kg) and c is the speed of light (m s-1). If now the plane becomes a 

slit, the potential energy function then becomes: 
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where L is the length of the slit (Å). If the length of separation, z, is defined as the 

average of the adsorbate and adsorbent diameters and adsorbate-adsorbate interactions 

are taken into account, the original HK derivation is found:18 
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where d0 and σ are defined as: 
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whereas NA is the surface molecular density of adsorbate and AA is the dispersion constant 

of the adsorbate: 
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In the original derivation18, the energy function is related to relative pressure by assuming 

Henry’s law behavior in the isotherm: 
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thus there is a relationship between P/P0 in the isotherm and the effective pore width (L-

ds). 

 

Lastly, there needs to be a set of criteria placed in order to pick parameters for 

each material. Because the ZIFs considered in this Chapter are coordinatively-saturated, 

the parameters chosen should be considered as properties of the imidazoles, and it is 

assumed that the Zn metal center plays no role in adsorption. Therefore, polarizability 

and diamagnetic susceptibility can be predicted by well-known empirical equations.19,20 

The diameter of the linker is predicted by assuming a van der Waals sphere around the 

linker. Then, the accessible surface area of the sphere is calculated using Marvin 5.3.7, 

and the diameter is found from this value. The molecular surface area (Ns) of the 

adsorbent can be found by first calculating the density of imidazoles based on the crystal 

structures of ZIF-8, ZIF-90, and ZIF-7, and then assuming the entire surface is accessible, 

use the following equation: 
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Lastly, because the set of equations derived above assume a uniform adsorbent surface, 

the parameters of the hybrids have been assumed to be the weighted geometric mean of 

its pure components, following this generic equation: 
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where a is a given parameter, y1 is the mole fraction of component 1 and y2 is the mole 

fraction of component 2. With this methodology, Table 3.1 shows the values used for the 

HK analysis. 

 

Table 3.1. Parameters of adsorbents and adsorbate used for H-K analysis. 
 

Parameters 
ZIF-8 

(2-MeIM) 

ZIF-90 

(OHC-IM) 

ZIF-7 

(Bz-IM) 
2-amBzIM N2 

α (cm3) x 1024 8.96 9.14 14.39 15.86 1.46 

χ(cm3) x 1029 3.68 5.48 10.12 11.55 2.00 

d (Å) 6.59 6.45 7.19 7.62 3.00 

N (cm-2) x 1015 4.35 4.76 4.66 5.03 0.671 

 

3.3 Results and Discussion 

3.3.1 Crystallization 

In preparing ZIF hybrids, some observations can be made about the behavior of 

the induction period and crystallization process. In all syntheses described here, the non-

solvent induced crystallization (NSIC) technique was used.21 By introducing a non-

solvent, rapid crystallization will occur due to a drastic solubility change in the reaction 

solution, and there will be a significant reduction (or elimination) of the induction period 

that involves precursor formation and crystallite nucleation. Because ZIF-8 has been 

synthesized in both non-solvents used in this study, it was hypothesized that addition of 

NaCO2H to the reactants would increase the nucleation time due to competitive 

coordination with the Zn2+ metal center.22–24 Furthermore, by using NaCO2H and the 
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linkers in equimolar amounts for the ZIF-8-90 and ZIF-7-8 hybrids, both linkers included 

in the framework will likely be deprotonated before addition of the Zn salt solution, 

thereby allowing for a more random distribution of linkers. Otherwise, deprotonation of 

the linker is driven by the energy of formation of the framework, and thus the ZIF with 

the more favorable lattice energy is more likely to crystallize in pure form rather than a 

phase containing a random mixture of linkers.25 

 

Upon adding the Zn salt solution in the ZIF-8-90 hybrid case, the solution 

remained clear for 30-60 s. A crystal suspension then formed rapidly. Crystal yields were 

20-25% based on the fraction of added Zn incorporated into the crystals. ZIF-7-8 hybrids 

behaved quite differently during crystallization. Several solvent systems were employed, 

but only the DMF-MeOH solvent system yielded crystalline materials over a wide range 

of Bz-IM:2-MeIM ratios reported here. Upon adding the Zn-DMF solution, a long 

induction period of 1-4 hrs was observed in the case of low Bz-IM percentages (0-10%). 

Thus, these reactions were all carried out for 48 hrs at room temperature. However, at 

25% Bz-IM in the reactant solution, there was rapid crystal formation, and hence 

reactions with higher Bz-IM percentages were only carried out for 1 hr. Yields varied 

considerably with the percentage of Bz-IM used, with 10% Bz-IM having the lowest 

(~1% based on Zn) and 100% Bz-IM having the highest crystallization yield (67% yield 

based on Zn). 
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3.3.2 Composition Analysis 

1H NMR was used to quantify the fraction of substituting linker (Bz-IM or OHC-

IM relative to 2-MeIM) in the crystals. Because the NSIC technique was used to form the 

hybrid materials, it can be expected that the linker with the lower solubility in the non-

solvent will be incorporated in precursors to a larger extent than the other linker. Figure 

3.1 shows the fraction of substituting linker used in the reactant solution versus the 

corresponding fraction that resulted in the framework, as determined by 1H NMR. Both 

OHC-IM and Bz-IM are incorporated into the framework at higher fractions than they are 

present in solution. It has been shown that ZIF-8 crystals grow in methanol solutions at 

room temperature by a nucleation- limited mechanism without addition of another 

coordinating linker.22,26 Considering that nucleation is further slowed by additives in the 

solution (NaCO2H), it is likely that the OHC-IM and Bz-IM linkers are incorporated into 

nuclei precursors more favorably than the 2-MeIM linker due to the rapid solubility 

change by addition of the non-solvent during synthesis.24 The hybrid composition can 

clearly be controlled; however in the case of ZIF-7-8 hybrids, a precise control of the 

synthesis may be necessary to reach any arbitrary linker composition.  
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Figure 3.1. Compositional analysis of ZIF hybrid frameworks by 1H NMR. Both hybrid 
systems show preferential inclusion of OHC-IM or Bz-IM over 2-MeIM. 
 

3.3.3 Crystal Structure 

Figures 3.2a and 3.2b show XRD patterns of the ZIF-8-90 and ZIF-7-8 hybrids, 

respectively. ZIF-8 and ZIF-90 have nearly identical I-43m cubic unit cells; structure 

refinement has shown that the unit cell dimension differs by 2-3%.7,27 This makes the 

XRD identification of separate phases during crystallization difficult for the ZIF-8-90 

hybrids. The unit cell volumes were obtained for the ZIF-8-90 hybrids using the Le Bail 

refinement technique.26 To account for peak position errors when measuring powder 

XRD patterns, the patterns were corrected using an α-Al2O3 internal standard. As shown 

Figure 3.3, there is an overall systematic increase in the unit cell volume with increasing 
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OHC-IM fraction. This volume changes by 2.7% as the hybrid composition goes from 

pure ZIF-8 to pure ZIF-90. 

 

Conversely to the ZIF-8-90 hybrids, ZIF-7 and ZIF-8 have considerably different 

crystal structures. Based on refinement, ZIF-7 has a rhombohedral R-3 space group while 

ZIF-8 has the cubic I-43m space group.27 Differences in XRD patterns are therefore 

easily discernible (Figure 3.2b). Up to 35% Bz-IM loading, the framework still maintains 

a cubic structure characteristic of ZIF-8, and thereafter transitions to the R-3 space group. 

Between 79-92% Bz-IM, significantly disordered materials are obtained. The diffraction 

pattern of 79% Bz-IM, in particular, has an apparent superposition of both ZIF-8 and 

ZIF-7 phases; however, subsequent TEM images (Figure 3.5) show clearly that a physical 

two-phase mixture of ZIF-7 and ZIF-8 crystals is not apparent based on microscopy. 

Because these materials have considerably different crystal structures, there may be  

compositional ranges wherein a hybrid with a completely random distribution of linkers 

is unable to crystallize. Therefore, this XRD pattern may represent an intergrowth of ZIF-

7 and ZIF-8 phases. However, distinguishing an intergrown material from a hybr id ZIF 

that has a truly random linker distribution would require a detailed microcrystallographic 

study (e.g., with electron diffraction) and the development of suitable intergrowth 

models. For example, indexing of the XRD patterns for loadings of 79-92% Bz-IM was 

attempted; however, the number of distinct usable peaks is low with only about 10 

reliable peaks present, and therefore, a reliable and unambiguous indexing was not 

possible to address the question of whether or not an intergrown material was formed.  
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No XRD patterns are shown for hybrids between loadings of 35-79% Bz-IM 

because of the narrow synthesis range (7-8% Bz-IM in solution) needed to obtain these 

materials. It is presently unclear whether hybrids in this composition range can be 

successfully obtained by a highly accurate adjustment of the reactant composition, or 

whether the materials in this range are unstable and hence transform to one of the phases 

obtained at lower or higher Bz-IM loadings. Further modification of the procedure could 

yield a material with a better range of tunability by producing more favorable 

crystallization conditions for the ZIF-7-8 hybrids. The XRD patterns shown, and the 

following TEM and nitrogen physisorption data, do not indicate the formation of a simple 

physical mixture of ZIF-7 and ZIF-8; instead, a single crystalline phase forms in every 

case. To investigate if functionality on the substituting linker plays, hybrids containing a 

pendant amine functional group are synthesized, and the results are discussed in Section 

3.3.7. 
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Figure 3.2. Powder XRD patterns of: (a) ZIF-8-90 hybrids, due to their identical space 

groups and very small differences in the unit cell dimensions between ZIF-8 and ZIF-90, 
the patterns appear almost identical but have subtle changes in peak positions and peak 
intensities; (b) ZIF-7-8 hybrids, there is a distinct shift from I-43m to R-3 space group 

after 35% Bz-IM loading. Asterisks represent positions of α-Al2O3 diffraction peaks. 
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Figure 3.3. Unit cell volume of ZIF-8-90 hybrids as a function of OHC-IM obtained by 

Le Bail (structureless) refinement of internal-standard-corrected XRD patterns, showing 
an overall increase in volume with increasing fraction of OHC-IM in the framework. 

 

3.3.4 Particle Size and Morphology 

TEM was used to examine changes in particle size or morphology with the linker 

composition. Figure 3.4 shows TEM images of ZIF-8-90 hybrids at different OHC-IM 

loadings. At 0% OHC-IM (pure ZIF-8), particles show a monodisperse distribution 

centered at approximately 250 nm in diameter, exhibiting the typical rhombic 

dodecahedral morphology of ZIF-8 particles when synthesized with NaCO2H.22 As the 

OHC-IM loading increases, the particle size increases, growing to more than 1 µm at 

24% OHC-IM. Significantly, all the TEM images showed only one particle size 

population, and thereby, this suggests formation of a single-phase hybrid material. If ZIF-

8 and ZIF-90 had precipitated separate phases, the particle sizes would likely be 
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considerably different, since the pure ZIF-8 phase (Figure 3.4a) exhibits sub-micron 

particles while the pure ZIF-90 phase (Figure 3.4d) exhibits micron-sized particles. 

 

 

 
 

Figure 3.4. TEM images of ZIF-8-90 hybrids at (a) 0%; (b) 24%; (c) 43%; and (d) 100% 

OHC-IM loading. 
 

TEM images of ZIF-7-8 hybrids are shown in Figure 3.5. The particle 

morphology of these materials is less well-defined than in the ZIF-8-90 hybrids, being 

closer to spherical in most cases than the rhombic dodecahedral morphology. This 

observation may support the formation of  a single crystal phase different from both ZIF-

7 and ZIF-8 at the intermediate loadings of Bz-IM, considering that ZIF-7 has been 

shown to form spherical or rod- like morphologies and ZIF-8 forms the rhombic 

dodecahedral morphology in the presence of an additive.22,28 The particle size of the 



78 

 

disordered hybrid material determined from XRD is shown in Figure 3.5b and is 

considerably smaller than that of the other materials in Figure 3.5. As 2-MeIM is still the 

major organic linker in the solution, it may be preventing crystallization of the R-3 phase 

and resulting in low crystallization yields and the disordered rhombohedral- like structure 

shown by XRD. Like the ZIF-8-90 hybrids, there are no different particle size 

populations or morphologies that indicate a physical mixture of the two phases. 

 

 

 
 

Figure 3.5. TEM images of ZIF-7-8 hybrids at (a) 35%; (b) 91%; (c) 94%; and (d) 100% 
Bz-IM loading. 
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3.3.5 Thermal Decomposition 

Previous studies on thermal decomposition of ZIFs showed the existence of a 

wide range of decomposition temperatures that also depend on synthesis conditions.21  

Thermogravimetric analysis (TGA) was used here to elucidate stability changes in the 

hybrid materials. To minimize the influence of solvent mass loss, samples were first 

degassed under vacuum for 12 hours at either 473 K (ZIF-8-90) or 523 K (ZIF-7-8). 

Figures 3.6a and 3.6b show differential mass loss curves for ZIF-8-90 and ZIF-7-8, 

respectively. ZIF-8 (0% OHC-IM) shows the highest thermal stability for the ZIF-8-90 

hybrids, with nearly no decomposition observed until 723 K. At 24% OHC-IM loading, 

decomposition begins closer to 673 K, and above 50% OHC-IM loading, the hybrid 

frameworks are thermally stable up to 573 K. Aldehydes typically oxidize easily in air, 

and this is the likely cause of the lower thermal stability under exposure to diluted air at 

elevated temperatures. On the other hand, the onset of decomposition in ZIF-7-8 hybrids 

remains unchanged at 673-723 K as the loading of Bz-IM changes. Materials at high 

loadings of Bz-IM (79-100%) are stable above 773 K. This increase in decomposition 

temperature of the framework may be attributed to the greater stability provided by the 

aryl groups of Bz-IM. 
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Figure 3.6. Differential mass loss curves of (a) ZIF-8-90 and (b) ZIF-7-8 hybrids as 

determined from thermogravimetry in a 40% air - 60% nitrogen gas stream. 
 

3.3.6 Porosity 

Figures 3.7a and 3.7b show nitrogen physisorption isotherms of ZIF-8-90 and 

ZIF-7-8 hybrids, respectively. Tabulated surface areas and micropore volumes are shown 
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in the Figures 3.8 and 3.9 for ZIF-8-90 and ZIF-7-8 hybrids, respectively. Inclusion of 

either OHC-IM or Bz-IM reduces the maximum quantity adsorbed in comparison to pure 

ZIF-8, thus decreasing the total micropore volume of the framework. It has been shown 

that ZIF-90 exhibits hysteresis at P/P0 ~ 0.4, and this was attributed to a constriction in 

the micropores.7 As the OHC-IM loading increases in the framework, the single 

inflection point seen in ZIF-8 at P/P0 ~ 5x10-3 (attributed to a gate-opening mechanism 

that allows more nitrogen into the micropores) turns into two inflection points as pure 

ZIF-90 is approached: one inflection still characteristic of the gate-opening effect at 

lower nitrogen activity (e.g., P/P0 ~ 10-4) and the other attributed to constriction in the 

micropores at higher nitrogen activity (e.g., P/P0 ~ 0.4). To confirm that these inflection 

points and the isotherms are indeed a result of hybrid materials containing a single phase 

with an essentially random dispersion of linkers in the framework, a 50-50 molar physical 

mixture of ZIF-8 and ZIF-90 crystals was prepared. As shown in Figure 3.7a, the 

inflection points in the corresponding isotherm are characteristic of the parent framework 

materials and not of the hybrids at similar overall composition (e.g., 43% OHC-IM). This 

is a further indication that the materials prepared with the proposed synthetic method 

utilizing both the NSIC technique and an additive, such as NaCO2H, are single phases 

with different microporosity and gate-opening behavior from pure ZIF-8 or ZIF-90.  
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Figure 3.7. Nitrogen physisorption isotherms of (a) ZIF-8-90, with isotherms stacked 
150 cm3·g-1 apart; and (b) ZIF-7-8 hybrids at different loadings of OHC-IM and Bz-IM, 

respectively. 
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Figure 3.7b shows physisorption isotherms of the ZIF-7-8 hybrids. As the Bz-IM 

loading increases, the micropore volume is severely reduced; for example, there is a 40% 

micropore volume reduction from pure ZIF-8 at only 20% Bz-IM loading. The inflection 

typical of ZIF-8 decreases and disappears as the loading increases. This indicates that the 

bulky Bz-IM linkers are much less amenable to rotational displacement compared to 2-

MeIM. Thus, it is hypothesized that inclusion of Bz-IM in the framework reduces and 

even eliminates gate-opening phenomena in the hybrid ZIF materials when probed with 

nitrogen adsorption at cryogenic temperatures. In fact, the shape of the isotherm (Type I) 

with 20% Bz-IM loading is similar to the isotherm predicted for ZIF-8 by grand 

canonical Monte Carlo (GCMC) simulations that assume a rigid framework.1 The 

progressive suppression of the gate-opening phenomena in these hybrids provides a 

method for tuning the average pore size and the flexibility so that the material can be 

adapted to specific applications (e.g., separations, catalysis). Although ZIF-7 has been 

shown to admit condensable gases (e.g., CO2, ethane) via a structural change,2,3 the pores 

are not accessible to nitrogen at 77 K, as shown in Figure 3.7b. 

 

Horváth-Kawazoe analysis was used to analyze the relative pore size distributions 

(PSDs) of the hybrid materials. It has been shown that some assumptions of these 

equations are not physically accurate and therefore do not provide correct absolute values 

of the PSDs.29 For example, the main pore size for both ZIF-8 and ZIF-90 predicted by 

the HK method are larger than the pore sizes determined crystallographically, as shown 

in Figure 3.10a.7,27 However, the HK method can be reliably used for relative comparison 

of a series of structurally related materials. Figures 3.10a and 3.10b show the PSDs for 



84 

 

both hybrid material types. ZIF-8 (0% OHC-IM) shows two pore size distribution 

maxima, centered at ~0.4 nm and ~0.75 nm. The former maximum represents the limiting 

pore diameter of the ZIF-8 windows. Considering the gate-opening mechanism, the latter 

PSD maximum is interpreted as resulting from rotational displacement of linkers to allow 

further adsorption of nitrogen, and not due to an actual secondary pore system (e.g., the 

SOD cages) in the framework. This interpretation is supported by the fact that while the 

main pore size becomes larger with increasing OHC-IM loading (the pure ZIF-90 

material shows a primary pore size of ~0.5 nm), the secondary PSD is quite different 

from the original ZIF-8 material and hence is unlikely to originate from a secondary pore 

system such as the ZIF cages, which maintain essentially the same dimensions in all the 

ZIF-8-90 hybrids. Interestingly, the gate-opening effect is still apparent in ZIF-90, an 

observation not shown or explained previously. This effect in ZIF-90 occurs at a 

significantly lower relative pressure (P/P0 ~ 10-4) than typically observed for ZIF-8 (P/P0 

~ 5x10-3). Considering this difference, the gate-opening in ZIF-90 and in hybrids with 

higher OHC-IM loading can be interpreted as being more easily induced than in pure 

ZIF-8. 

 

PSDs of the ZIF-7-8 hybrids are shown in Figure 3.10b. As noted before, the 

isotherm inflection is related to the second PSD maximum.  At 7% Bz-IM loading, the 

intensity of the second maximum is reduced considerably, and it disappears at 20% Bz-

IM. This indicates that Bz-IM groups block the rotational displacement of the imidazole 

linkers. The primary PSD shifts to overall smaller values, and at 20% Bz-IM, a PSD 
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centered at ~0.32 nm appears. This shift to smaller pore sizes indicates that Bz-IM is 

effectively reducing the average pore size.  

 

Figure 3.8. BET Surface Area, Langmuir Surface Area and t-plot Micropore Volume 

calculations for ZIF-8-90 Hybrids. 
 

 

Figure 3.9. BET Surface Area, Langmuir Surface Area and t-plot Micropore Volume 
Calculations for ZIF-7-8 Hybrids. 
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Figure 3.10. Pore size distributions determined by the HK method: (a) ZIF-8-90 hybrids; 
and (b) ZIF-7-8 hybrids. 
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3.3.7 Crystallization of ZIF-8-ambz Hybrids 

As section 3.3.2 and 3.3.3 showed, it is difficult to control crystallization of a ZIF 

hybrid containing Bz-IM with a ZIF-8-like structure. A set of ZIF materials were 

prepared containing different proportions of 2-MeIM and 2-amBzIM linkers to 

understand if this substitution could be better contro lled while maintaining a ZIF-8 

crystal structure. Figure 3.11a shows the fraction of 2-amBzIM linkers included in the 

framework obtained from 1H NMR spectra and derived from syntheses using up to 50% 

2-amBzIM in the synthesis solution. In comparison to the ZIF-7-8 hybrids (Figure 3.1), 

the inclusion of 2-amBzIM is more controllable than Bz-IM. Because 2-amBzIM does 

not form any known single- linker ZIF structure, it is likely that formation of the ZIF-7 

structure with Bz-IM is more thermodynamically favorable than any structure containing 

2-amBzIM; therefore, the ZIFs obtained with 2-amBzIM represent a mixed- linker system 

with better control of linker composition while maintaining the cubic I-43m structure of 

ZIF-8 and use of a benzimidazolate-type linker. Powder XRD patterns (Figure 3.11b) of 

the synthesized materials show that the I-43m crystal structure is maintained up to high 

substitution fractions of 2-amBzIM. At 47% 2-amBzIM in the framework, a significant 

peak broadening is observed in the XRD pattern. This is either due to the formation of a 

crystal with a disordered distribution of the two linkers or due to a high degree of crystal 

strain arising from incorporation of the high fraction of 2-amBzIM in the ZIF crystal 

structure. 
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Figure 3.11. (a) 1H NMR-based composition analysis and (b) powder XRD patterns of 
mixed- linker ZIFs prepared with 2-MeIM and 2-amBzIM linkers. 

 



89 

 

Nitrogen physisorption was used to investigate the gate-opening properties of 

these mixed- linker ZIFs. Figure 3.12 shows materials with modest loadings of 2-amBzIM 

(9.5% in the structure) have no evidence of gate-opening effects compared to ZIF-8.1 

There is a reduction in micropore volume (Table 3.2) with increasing linker substitution. 

Significantly, at 47% 2-amBzIM loading, there is complete loss of micropore volume and 

no uptake of N2 at 77 K. To activate this material properly (Figures 3.13 and 3.14), the 

powder sample needed to be washed and soaked with MeOH at 323 K for 24 hrs to 

remove occluded solvent molecules trapped in the pores during synthesis. If degassing at 

523 K was performed without this activation step, there was complete loss of crystallinity 

(Figure 3.13). When these samples were examined with TGA (Figure 3.14), the samples 

not soaked in MeOH showed mass loss before the material decomposed, whereas the 

samples soaked in MeOH showed no mass loss before decomposition. Based on the 

above observations, it is very likely that the higher 2-amBzIM substitution has 

significantly reduced the effective pore size and micropore volume of the ZIF material, 

blocking even small N2 molecules from accessing the pores at 77 K. 

 



90 

 

 

Figure 3.12. Nitrogen physisorption isotherms of mixed- linker ZIFs with 2-amBzIM, 

showing significant lowering of micropore volume with increasing substitution of 2-
MeIM by 2-amBzIM. There is no evidence of gate-opening effects, even at modest 

loadings of 2-amBzIM.  
 

 

Table 3.2. Linker substitution, micropore volume and BET surface area of ZIF-8-ambz 
hybrid materials. 
 

Sample 
Linker Substitution 

(mol %) 

t-plot micropore 

volume (cm3·cm-3) 

BET Surface 

Area (m2·cm-3) 

ZIF-8-ambz-(9) 9.5 0.627 1760 

ZIF-8-ambz-(14) 14 0.413 1180 

ZIF-8-ambz-(24) 24 0.314 860 

ZIF-8-ambz-(47) 47 0.012 60 
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Figure 3.13. Powder XRD patterns of ZIF-8-ambz-(47) samples showing complete loss 

of crystal structure without proper activation steps.  
 

 

Figure 3.14. TGA mass loss curves of ZIF-8-ambz-(47), showing some retention of 

solvent after synthesis but removal of occluded solvents after MeOH soak at 323 K.  
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3.4 Conclusions 

A synthetic approach for ZIF hybrid materials by in situ fractional linker substitution 

of ZIF-8 (2-MeIM linkers) has been demonstrated to produce continuously tunable 

framework functionality (with OHC-IM linkers) or microporosity (with Bz-IM or 2-

amBzIM linkers). By inclusion of these linkers, it may be possible to control adsorption 

and diffusion properties for gas separations using these hybrid frameworks. In particular, 

nitrogen physisorption produces isotherms that have different adsorption properties than 

their parent frameworks. Additionally, the reduction in microporosity in the ZIF-7-8 or 

ZIF-8-ambz hybrids is related to the tunability of the average pore size. By changing the 

functionality of the substituting linker (2-amBzIM), it may be possible to produce more 

controllable ZIF hybrid materials. The findings in this Chapter may enable the control of 

gate-opening phenomena observed in the interaction of ZIF materials with molecules 

such as CH4 and CO2 and will be further explored in Chapters 5 and 6.  
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CHAPTER 4 

Processing Condition Effects on Zeolitic Imidazolate Framework Materials 

during Mixed-Matrix Membrane Fabrication 

 

4.1 Introduction 

A critical step in the fabrication of composite, or mixed-matrix, membranes is the 

dispersion of the filler particles in the polymer solution. The use of surfactants and salts 

can provide colloidal stability and prevent particle aggregation, but ultrasonication is 

widely used to disperse particles for composite membrane fabrication. While some MOFs 

such as ZIF-8 have shown chemical and thermal stability in various solvents, the stability 

of MOFs upon exposure to high-powered ultrasonication is not currently known. Indeed, 

it is not uncommon for sonication to generate chemical reactions due to localized high 

temperatures, and some MOFs such as MOF-177 have been synthesized by a 

sonochemical route.1 

 

In this chapter, the effects of sonication on ZIF-8 nanoparticles during the 

fabrication of ZIF-8/Matrimid® MMMs are explored, using two distinct sonication 

methods. When high- intensity sonication is used for particle dispersion, there is a 

significant change in particle size, polydispersity, and morphology of the crystals. The 

results suggest that the phenomenon is a non-ideal coarsening effect induced by 

sonication. Dynamic light scattering measurements and electron microscopy show a 

distinctly bimodal particle size distribution that appears when sonication is applied to 
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ZIF-8 dispersions at different concentrations. The ZIF-8 nanoparticles are further 

characterized by examining the crystal structure of the coarsened ZIF-8 particles using 

XRD and pair distribution function (PDF) analysis.  

 

It is also shown that ZIF-8/Matrimid® MMMs have different microstructures and 

gas permeation behavior, depending on the sonication conditions used to prepare the 

polymer-nanoparticle dispersions. The observed membrane morphology-permeation 

property relationships are shown to be wholly consistent with expected MMM behavior, 

as described by Maxwell models for the different membrane microstructures. A 

significant conclusion of this Chapter is that a systematic understanding of MOF-MMM 

behavior is indeed possible through detailed structure-property correlations, and careful 

evaluation of the effects of commonly used processing conditions is necessary in the 

fabrication of such membranes. Due to the systematic and consistent trends observed in 

the performance of the ZIF-8/Matrimid® MMMs, The permeation characteristics of the 

ZIF-8 crystals are reliably estimated as existing in the MMMs and show that these 

separation properties are indeed different from those obtained by permeation 

measurements with pure ZIF-8 membranes or predicted by adsorption and diffusion 

studies with ZIF-8 crystals or by computational predictions.  

 

4.2 Experimental Methods 

4.2.1 ZIF-8 Nanoparticle Synthesis 

ZIF-8 nanoparticles were synthesized in a manner similar to a previously 

published procedure.2 Two reactant solutions were prepared: 1.50 g Zn(NO3)2·6H2O 
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(Sigma-Aldrich, 99%) in 50 mL MeOH; and 1.67 g 2-methylimidazole (2-MeIM, Sigma-

Aldrich, 99%) in 50 mL MeOH. The Zn salt solution was poured into the imidazole 

solution and stirred at room temperature for 1 hour. The resulting milky solution was 

centrifuged at 7,000 rpm for 5 min, and the supernatant was removed. After washing the 

precipitate with MeOH and sonicating in a bath to redisperse the powder product, this 

process was repeated three more times. The resulting powder was dried in an oven at 358 

K. 

 

4.2.2 Ultrasonication Studies 

The sonication horn used for direct sonication was a FisherSci Ultrasonic Model 

500 Dismembrator with an average power output of 200 W (400 W at 50% amplitude) 

and 20 kHz frequency. The sonication bath used for indirect sonication was a VWR 

Ultrasonication water bath, operating at 120 W and 40 kHz. To investigate ZIF-8 stability 

using direct sonication, dispersions were prepared in 20 mL borosilicate vials with 

constant ZIF-8 concentrations of 1.0 g·L-1 (0.025 g ZIF-8 in 5 mL tetrahydrofuran 

(THF)) and 20 g·L-1 (0.1 g ZIF-8 in 5 mL THF). These solutions were sonicated in 30-sec 

intervals and allowed to cool before sonicating again to minimize solvent evaporation. 

The dispersions were then filtered and washed with DI H2O to obtain the resulting 

powder, which was dried in an oven at 358 K.  

 

4.2.3 Composite Membrane Fabrication 

ZIF-8/Matrimid® mixed-matrix membranes were prepared by a solution-casting 

technique. Matrimid® is a glassy polyimide with a hydrophobic backbone; its structure is 
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shown in Figure 4.1. Dried ZIF-8 particles (0.1-0.25 g) were first dispersed in 5-10 mL 

THF (Sigma-Aldrich, 99%) by either direct or indirect sonication. Direct sonication was 

done by inserting a sonication horn into the colloidal solution, and indirect sonication was 

done by submerging the vial containing the colloidal solution in a sonication water bath. 

The mixture was sonicated for 5 min. Then, 1.0 g of 10 wt% Matrimid®/THF priming 

solution was added. Because the ZIF and polymer are assumed to have affinity for each 

other, the priming step is suggested to help the ZIF dispersion by allowing the polymer to 

adhere to the ZIF surface, thereby providing steric stability and preventing aggregation of 

the nanoparticles. This primed dispersion was sonicated for another 2 min. A balance of 

Matrimid® powder dried in an oven at 358 K was added to obtain the desired composite 

membrane composition, and the dispersion was tumbled overnight. The resulting ZIF-

polymer dope was placed in a glove bag, flushed with N2, and saturated with THF. The 

dope was poured across a glass plate, and a film was cast manually using a 200 µm 

casting knife. After the solvent evaporated and the membrane vitrified, it was annealed at 

523 K under vacuum for 12 hours.  

 

 

Figure 4.1. Chemical structure of Matrimid® 5128 polymer. 

 

4.2.4 Characterization Methods 

ZIF-8 particles were characterized with powder X-ray diffraction (XRD), 

synchrotron X-ray pair distribution function (PDF) analysis, scanning electron 
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microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), nitrogen physisorption, 

Fourier transform infrared spectroscopy (FTIR), Fourier transform Raman spectroscopy 

(FT-Raman), and dynamic light scattering (DLS). Powder XRD measurements were done 

on an X’Pert Pro PANalytical X-ray Diffractometer. Experiments were carried out 

scanning from 4-50° 2θ, using an X’celerator detector. Total scattering data suitable for 

PDF analysis were collected at beamline 11-ID-B at the Advanced Photon Source at 

Argonne National Laboratory. High energy X-rays (58 keV, λ = 0.2128 Å) were used, in 

combination with a large amorphous silicon-based area detector, to collect data to high 

values of momentum transfer, Qmax = 24 Å-1.3,4 The two-dimensional images were 

reduced to one-dimensional scattering data within fit2d.5 The PDFs, G(r), were extracted 

within PDFgetX2, subtracting contributions from the background and Compton scattering 

to the total scattering data.6 The PDFs were smoothed by r-averaging over the periodicity 

of the termination ripples (2π/Qmax) to minimize the influence of these artifacts on the 

subsequent analysis. The measured PDFs contain local structural information as a 

weighted histogram of all interatomic distances within the material, regardless of 

crystallinity. The intensity of features in the PDF was weighted by the scattering power 

of both atoms in a given correlation.  

 

SEM imaging and EDX measurements were carried out with Zeiss LEO 1530 and 

1550 scanning electron microscopes. Samples were first coated with either gold or a 

gold-palladium mixture by sputtering under vacuum. Images were taken at 10 kV 

accelerating voltage, and EDX analysis was done at 20 kV. Nitrogen physisorption 

measurements were done with a Micromeritics ASAP 2020 surface area analyzer at 77 K. 
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Samples were degassed for 18 hours at 308 K. The resulting isotherms were analyzed 

using the BET method, the Langmuir method, and the t-plot micropore volume method. 

FTIR and FT-Raman measurements were done with a Bruker Vertex 80v FTIR/RAM II 

FT-Raman Analyzer. FTIR measurements were performed under vacuum with samples 

prepared in KBr pellets; FT-Raman measurements were done in open atmosphere with 

powders deposited in NMR tubes. Spectra were analyzed from 4000-400 cm-1. DLS 

measurements were performed with a Protein Solutions DynaPro DLS. ZIF-8 or 

sonicated ZIF-8 powder was dispersed in filtered methanol with a sonication bath. The 

colloidal solution was then inserted into plastic cuvettes using a 5 µm syringe filter and 3 

mL syringe. Autocorrelation functions were analyzed by a regularization fit method 

solved with a non-negative least squares algorithm to obtain particle size distributions.  

 

ZIF-8/Matrimid® films were characterized using SEM, FTIR and differential 

scanning calorimetry (DSC). Samples for SEM were prepared by fracturing small 

portions of the film under liquid N2 and coating with gold or a gold-palladium mixture by 

sputtering. FTIR samples were small portions of the film used as- is and measurements 

were done under vacuum. DSC measurements were done on a Netzsch STA-409-PG 

thermogravimetric (TGA) and differential scanning calorimeter (DSC). Samples were 

subjected to two heating cycles from room temperature to 623 K at a 10 K·min-1 ramp 

rate. Glass transition temperatures of each film were determined from the second heating 

cycle. 
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4.2.5 Gas Permeation Measurements 

Permeation measurements were performed using a constant volume permeation 

cell described in earlier work.7 A small area of the film was cut out, and using aluminum 

tape, a mask was prepared with approximately 1 cm in diameter of exposed membrane 

area. Film thickness was measured with a micrometer in 5-10 different locations of the 

masked film and varied between 50-60 µm. At least two areas of a film and two separate 

films were tested for each membrane reported. After insertion into the permeation cell, 

the film was degassed at 308 K for at least 24 hours before each permeation test. Leak 

tests were done before each permeation experiment, ranging from 10-8-10-7 kPa·sec-1. 

Subsequent permeation tests were performed after degassing both sides of the film under 

vacuum for 12-24 hours and testing the leak rate. Permeation experiments were 

performed at 308 K with 450 kPa of upstream pressure of either CO2 or CH4. 

Measurements started once upstream gas was introduced to the cell and the downstream 

was evacuated (<10-3 kPa), and permeability values were calculated after the pressure rise 

rate reached steady state, monitored by taking the derivative o f the pressure as a function 

of time. The time to reach steady state varied between membranes, decreasing as the 

permeability of the membrane increased with loading of ZIF-8. 

 

4.3. Results & Discussion 

4.3.1. Stability of ZIF-8 Nanoparticles during Ultrasonication 

Figure 4.2 shows the morphology of the as-synthesized ZIF-8 particles and the 

particles obtained from 1 g·L-1 and 20 g·L-1 dispersions after 10 min of direct sonication. 

In comparison to as-made ZIF-8 (Figure 4.2a), there is a disparity in both particle size 
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distribution and particle morphology in Figures 4.2b and 4.2c. In the 1 g·L-1 dispersion, 

the morphology of the ZIF-8 particles was largely unchanged after sonication, but a 

number of larger particles (>500 nm in diameter) were present. In the 20 g·L-1 dispersion, 

there was no longer a well-defined particle morphology; closer examination showed a 

number of different structures with particle size reaching over 1 µm (Figure 4.3). EDX 

spectra (Figures 4.4 and 4.5) revealed that these structures were considerably more 

oxygen-rich than as-made ZIF-8, likely due to surface defects containing hydroxyl groups 

that are formed upon washing with water after sonication.  

 

To obtain quantitative insight into the SEM observations, DLS measurements 

were carried out over a range of sonication times, and the particle size distributions 

(Figure 4.6) obtained from the regularization fit were analyzed for both 1 g·L-1 and 20 

g·L-1 dispersions. Plotting the PSD over time for the 1 g·L-1 dispersion, there is first a 

broadening of the size distribution; however, after a short amount of sonication time, the 

distribution becomes bimodal. This corroborates well with SEM observations that there 

are two different particle populations after 10 min sonication. The PSD in Figure 4.6b 

shows the evolution of ZIF-8 nanoparticles as a function of sonication time at 20 g·L-1 

dispersion concentration. Due to an increase in volume fraction of nanoparticles, the rate 

of particle growth increases considerably, accounting for the much larger change in PSD 

from DLS.8 To verify these changes in PSD are directly related to the ultrasonication 

process, ZIF-8 nanoparticles were solvothermally treated in 10 mL THF at 373 K for 24 

hrs using a Parr digestion bomb. After treatment, no particle size changes were observed 
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by DLS. There were also no changes in the long-range crystallographic structure as 

observed by powder XRD (see Figures 4.7 and 4.8). 

 

 

 
 

Figure 4.2. SEM images of the ZIF-8 nanoparticles showing changes in particle size, 

polydispersity and morphology: (a) as-made; (b) 1 g·L-1 dispersion sonicated for 10 min; 
(c) 20 g·L-1 dispersion sonicated for 10 min. 
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Figure 4.3. SEM images of various structures after sonicating ZIF-8 for 10 min in THF 

at 20 g·L-1 concentration. 
 
 

 

Figure 4.4. EDX spectrum corresponding to SEM image in Figure 4.3c. Contains a small 

amount of zinc and is likely amorphous 2-methylimidazole formed during sonication.  
 

3 μm d 1 μm c 

200 nm a 200 nm b 
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Figure 4.5. EDX spectrum corresponding to Figure 4.3d. Structure shows a considerable 

increase in zinc and oxygen content.  
 

Combining the observations of SEM and DLS, these results support the 

occurrence of a sonication-induced Ostwald ripening- like mechanism involving 

preferential dissolution of smaller ZIF-8 particles and recrystallization and growth of 

larger ZIF-8 particles.9 During ultrasonication, cavitation from sonic waves creates 

localized areas wherein the pressure and temperature are significantly different than that 

of the surrounding medium, known as “hot spots”.10,11 It is likely that these cavitational 

effects from ultrasonication lead to the dissolution of the ZIF-8 constituents at the particle 

surfaces. This is followed by diffusion of the dissolved species and rapid recrystallization 

on the other particles. Since the smaller particles have a lower thermodynamic stability 

and a higher surface-to-volume ratio,12 the ripening process leads to the slow 
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disappearance of small particles and the rapid growth of large particles to minimize the 

surface free energy, thereby leading to an increase in the average particle size and a shift 

from a narrow to a bimodal PSD (Figure 4.6).  

 

 

 

Figure 4.6. Evolution of ZIF-8 particle size distribution in 1 g·L-1 (a) and 20 g·L-1 (b) 
suspensions during sonication, showing the shifts as well as broadening of the size 

distribution: i) 0 min sonication; ii) 0.5 min; iii) 1 min; iv) 2 min; v) 5 min; vi) 10 min. 
The appearance of a bimodal distribution is indicative of a non- ideal nanoparticle 
coarsening phenomenon. 



108 

 

 

Figure 4.7. Powder XRD pattern of as-made ZIF-8 (a) compared with ZIF-8 
solvothermally treated in THF at 373 K (b). 
 

 

Figure 4.8. Particle size distribution of solvothermally treated ZIF-8. 
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Because the PSD becomes bimodal, it is important to deconvolute the two 

distributions to analyze the growth kinetics.13 If the ripening process is limited by 

diffusion of the solute from the small particles to the large particles, then the radius (r) of 

the large particles should grow with time (t) at a rate given by r ~ Kt1/3 according to LSW 

theory.14,15 In Figure 4.9, r is plotted as a function of t1/3. The radius, r, is calculated by 

integrating the area of each particle size distribution obtained from the curves shown in 

Figure 4.6. The initial lack of particle growth could be interpreted as an “induction” 

period, which may be necessary to gain a critical disparity in particle sizes before there 

are any noticeable ripening effects using DLS. After this induction period, there are large 

enough particle populations above and below the critical radius for Ostwald ripening to 

occur.16 However, it is important to note that under sonication conditions two 

assumptions of LSW theory are possibly not satisfied, resulting in the observed non- ideal 

coarsening behavior. The particles are likely colliding from Brownian motion and from 

cavitation in the sonicated solution; therefore, the particles are not fixed in space and are 

experiencing interparticle interactions, both of which are not accounted for by LSW 

theory. 

 

The size of the dissolving smaller particles is also shown in Figure 4.9 for both 

dispersions, revealing an overall decrease in the smaller particle size with sonication 

time. This confirms the slow disappearance of the smaller particle population, an effect of 

Ostwald ripening- like mechanisms. In both dispersions, the larger particles show 

primarily an increasing particle size with time; however, in the 20 g·L-1 dispersion the 

larger particle size actually shows an apparent decrease at long sonication times. This 
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leads to the hypothesis that elastic stress effects may play a role in the particle ripening 

(see Figure 4.10 and discussion). It has been shown that a large increase in elastic stress 

in “soft” particles leads to their breakage into smaller particles to minimize the energy of 

the system.8 This may also be accompanied by a morphological change; for instance, 

spherical nanoparticles can become cuboidal as the ratio of the interfacial energy to the 

elastic energy decreases.17 Because the 20 g·L-1 dispersion ripens at a faster rate than the 

1 g·L-1 suspension, this ratio would decrease more rapidly in the former case, leading to 

particles breaking to reduce the elastic stress and also leading to formation of different 

morphologies seen in SEM. 

 

 

Figure 4.9. Ostwald ripening of ZIF-8 suspensions: r as a function of sonication time, 

t1/3. Squares: 1 g·L-1; Circles: 20 g·L-1; Closed symbols: growing particles; Open 
symbols: shrinking particles. 
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Figure 4.10. Powder XRD patterns (a) and Williamson-Hall plots (b) of as-made ZIF-8 

(i, black squares), ZIF-8 sonicated for 5 min (ii, red circles), and ZIF-8 sonicated for 10 
min (iii, blue triangles). 
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Powder XRD patterns of the sonicated samples (20 g·L-1 concentration) are 

shown in Figure 4.10a. Although the low-angle region of the XRD patterns indicates that 

the long-range topology of the ZIF-8 framework is preserved, the XRD peaks of the 

sonicated samples are both shifted as well as broadened. Because XRD peaks at higher 2θ 

(lower d-spacing) disappeared with longer sonication time, this indicates the framework 

became more locally disordered. These observations suggest that the ZIF-8 nanoparticles 

maintain long-range crystallinity, but may have a greater degree of static disorder (e.g., 

rotational orientation of the imidazolate linkers). The crystallite domain size and crystal 

strain as a result of sonication can be estimated respectively from the intercept and the 

slope of a Williamson-Hall plot, as shown in Figure 4.10b and Equation 4.1:18 

 

 cos sin
K

L


      (4.1) 

  

where β is the full-width half-maximum (FWHM) of the diffraction peak, θ is the 

diffraction angle, K is a constant equal to 0.9, λ is the X-ray wavelength, η is the 

crystalline strain, and L is the crystallite size. The FWHM of a set of low-angle peaks was 

determined by fitting the data to a Cauchy-Lorentz peak shape. The as-made ZIF-8 and 

ZIF-8 sonicated for 5 minutes both show a negligible slope, indicating that the crystal 

lattice is not significantly strained even after 5 minutes of intense sonication. However at 

10 minutes of sonication, there is a clear development of lattice strain (~4%), as well as 

an increase in crystallite domain size consistent with significant Ostwald ripening and 

formation of larger crystallites (see inset Table in Figure 4.10b). The lattice strain 
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developed at 10 min of sonication correlates well with the behavior observed in Figure 

4.9. As a large elastic stress develops in the particles, they begin to break apart and/or 

form different morphologies (both shown in Figures 4.2b and 4.2c) to reduce the overall 

energy of the system. The synchrotron X-ray PDF patterns (Figure 4.11) also corroborate 

the observations from powder XRD patterns of maintenance of the crystal structure. The 

distributions of short-range atomic distances (<1 nm) in sonicated and as-made ZIF-8 are 

essentially identical, thereby indicating that sonication does not cause localized defects 

(such as missing metal centers or organic linkers) in the bulk structure. Although there 

are slight changes in the PDFs at 3.26 and 8.33 Å, this is not indicative of significant 

differences between the materials, since the changes do not appear to be a function of 

sonication time. 

 

 

Figure 4.11. Synchrotron X-ray pair distribution functions of sonicated and as-made ZIF-
8. Solid line: as-made ZIF-8; Dashed line: ZIF-8 sonicated for 5 min; Dotted line: 

sonicated for 10 min; Dashed-Dotted line: sonicated for 20 min. 
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Nitrogen physisorption isotherms of as-made and sonicated ZIF-8 are shown in 

Figure 4.12. The calculated BET surface area, Langmuir surface area, and t-plot 

micropore volume are shown in Table 4.1. Because ZIF-8 has an adsorption inflection at 

P/P0 ~ 5x10-3, selection of the range for BET and Langmuir surface area calculations 

were done by consistency criteria established previously.19 There was a noticeable 

decrease (~10%) in the micropore volume and Langmuir surface area after sonication, 

although the BET surface area did no change significantly.  

 

 

Figure 4.12. Nitrogen physisorption isotherms at 77 K. Squares: as-made ZIF-8; Circles: 

ZIF-8 sonicated for 5 min; Triangles: ZIF-8 sonicated for 10 min. 
 



115 

Table 4.1. Surface area and micropore volume of ZIF-8 based on N2 physisorption 
isotherms at 77 K, showing decreases in both Langmuir surface area and t-plot micropore 

volume. 
 

Sonication time 

(mins) 

BET SA 

(m2·g-1) 

Langmuir SA 

(m2·g-1) 

t-plot micropore 

volume (cm3·g-1) 

0 1700 ± 60 1870 ± 50 0.64 ± 0.03 

5 1650 ± 60 1720 ± 50 0.56 ± 0.03 

10 1710 ± 60 1740 ± 50 0.58 ± 0.03 

 

 

FTIR and FT-Raman spectra (Figure 4.13) were used to further examine the 

chemical bonding changes in the material. After sonication for 5-10 min, an additional 

vibrational band appeared in the FTIR spectra at 480 cm-1 and the vibration at 3400 cm-1 

increased in intensity relative to other vibrations in the framework. These vibrations 

correspond to v(Zn-O) and v(-OH), respectively.20 EDX analysis of sonicated ZIF-8 

nanoparticles (Figure 4.4 and 4.5) indicates that these particles can have significantly 

higher oxygen content than as-made ZIF-8. Interestingly, there were no changes in the 

FT-Raman spectra after sonicating for 10 min. Since the appearance of Raman-active 

phonons in ZnO is strongly related to the inherent symmetry of the crystalline wurtzite 

structure and the wurtzite structure generally has different morphology than ZIF-8, these 

oxygen-rich domains can be attributed to surface hydroxyl (Zn-OH) groups.21,22 
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Figure 4.13. FTIR (a) and FT-Raman (b) spectra of ZIF-8 before and after sonication. 
FTIR labels: i) as-made ZIF-8; ii) ZIF-8 sonicated for 5 min; iii) ZIF-8 sonicated for 10 
min. FT-Raman labels: i) as-made ZIF-8; ii) ZIF-8 sonicated for 5 min. 
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Overall, the characterization results are consistent with the conclusion that the 

bulk structure of ZIF-8 remains essentially intact after sonication and even after the non-

ideal nanoparticle coarsening, albeit with a somewhat higher degree of static disorder 

shown by XRD. While the bulk of the resulting ZIF-8 particles may retain a structure 

close to that of the as-made ZIF-8 crystals, these observations indicate that the outer 

regions and surfaces of the sonicated particles likely contain more localized defects. The 

reduction in Langmuir surface area and micropore volume are also consistent with an 

increased frequency of defects (e.g., Zn-OH bonds occurring at the particle surface) and 

pore blockages created during rapid recrystallization of ZIF-8 nanoparticles upon 

sonication. This may alter the rate of molecular diffusion into the crystal if the 

micropores on the surface are partially blocked, resulting in ZIF-8 composite membrane 

permeation behavior that cannot be predicted from the structure of the as-made ZIF-8 

material or from permeation data collected from as-made ZIF-8 membranes.23 

 

4.3.2 ZIF-8/Matrimid® Composite Membranes 

Composite membranes were prepared by the solution-casting technique. 

Permeation measurements were performed on membranes containing 0, 10, and 25 wt% 

of ZIF-8 and subjected to two different sonication methods (direct and indirect) for 

dispersing the ZIF-8 particles prior to membrane casting. Different sonication conditions 

were used to illustrate the large differences in ultrasound energy intensity between direct 

and indirect sonication and to show the required processing conditions to fabricate defect-

free composite membranes. The power output per unit area was 156 W·cm-2 for direct 

sonication and 3.78 W·cm-2 for indirect sonication.24 Cross-sections of membranes 
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prepared by both sonication methods are shown in Figure 4.14. While the dispersion of 

nanoparticles in the polymer matrix varies, Figures 4.14a and 4.14b show no large 

agglomerates when direct sonication was used. Overall, the ZIF-8 particles showed good 

adhesion to the polymer with some evidence of non-ideal coarsening occurring during 

membrane fabrication. 

 

 

 
 

Figure 4.14. SEM images of cross sections of ZIF-8/Matrimid® composite membranes 

prepared by direct (a, b) and indirect (c, d) sonication: (a, c) 10 wt% loading; (b, d) 25 
wt% loading. 

 

FTIR measurements of as-made films indicated that there was a small shift for the 

symmetric imide carbonyl group vibration of the polymer (Figure 4.15) in the composite 

membranes when compared to the pure polymer membrane. This suggests that the 

carbonyl groups of the polymer interact with the organic linkers on the surface of the 
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ZIF-8 nanoparticles. Upon annealing at 523 K, the imide carbonyl group vibration 

(~1775 cm-1) is similar for the composite films while the pure Matrimid® film still shows 

a higher carbonyl frequency (~1780 cm-1). Additionally, the broadening of the carbonyl 

band in the composite membranes (FWHM ~20 cm-1) is noticeably larger than in pure 

Matrimid® (~10 cm-1). These observations indicate that the composite membrane 

carbonyl groups are in different, more widely distributed electronic environments than 

the pure polymer and may be interacting with the surface of ZIF-8 nanoparticles. 

 

The annealed films were analyzed by DSC to determine shifts in the glass 

transition temperature (Tg). In Figure 4.16, there is a clear, upward shift in Tg from 583 K 

to 593 K. This shift does not appear to be a strong function of the loading of ZIF-8 as the 

Tg does not change greatly with loading of ZIF-8. Previously, it was shown that only a 

single Tg was observable in ZIF-8/poly-(ethersulfone) composite membranes, which 

showed no apparent Tg shift.25 Considering the more electronegative nature of the 

carbonyl versus the sulfonyl functional groups, it is hypothesized that the shifts seen in 

both FTIR and DSC are due to a change in the conjugation of the carbonyl functional 

groups at the ZIF-8 surface, interacting with terminal imidazolate groups.  
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Figure 4.15. FTIR spectra (a) of ZIF-8 and composite membranes at different loadings: 
i) as-made ZIF-8; ii) Pure Matrimid®; iii) 10 wt% ZIF-8/Matrimid® composite; iv) 25 
wt% ZIF-8/Matrimid® composite. Zooming in at 1780 cm-1 shows a shift to lower 

wavenumber before (b) and after annealing (c), indicating the imide carbonyl group is 
interacting with the ZIF-8 surface: i) Pure Matrimid®; ii) 10 wt% ZIF-8/Matrimid®; iii) 

25 wt% ZIF-8/Matrimid®. 
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Figure 4.16. DSC curves of the second heating cycle for (a) Pure Matrimid®, (b) 10 wt% 
ZIF-8/Matrimid®, and (c) 25 wt% ZIF-8/Matrimid®. 

 

Cross-sections of membranes prepared by indirect sonication are shown in 

Figures 4.14c and 4.14d. There was no change in the particle size, polydispersity, or 

morphology in comparison to the as-made ZIF-8. Because of its much smaller power 

density, the indirect sonication method does not provide enough energy to fully break 

apart nanoparticle aggregates or cause nanoparticle coarsening. Although the ZIF-8 

particles still showed good adhesion with the polymer, the nanoparticles in the matrix 

were in large aggregates, ranging up to several micrometers in size (emphasized with red 

circles in Figures 4.14c and 4.14d). Poor dispersion typically creates paths for unselective 

transport of gases between the particles during permeation, resulting in a large increase in 

permeability and a decrease in selectivity.26 Conversely, the use of the direct sonication 

method allowed successful dispersion of the ZIF-8 nanoparticles in the polymer solution, 
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but also lead to significant changes in the particle size distribution (coarsening) and the 

quality of the ZIF-8 crystals at the end of the sonication procedure.  

 

Table 4.2. Permeation data from composites membranes prepared by different sonication 

methods.  
 

Wt 

% 

Composite Membrane Prepared by 

Direct Sonication 

Composite Membrane Prepared by 

Indirect Sonication 

CO2 

Permeability 

(Barrer) 

CH4 

Permeability 

(Barrer) 

Ideal 

CO2/CH4 

Selectivity 

CO2 

Permeability 

(Barrer) 

CH4 

Permeability 

(Barrer) 

Ideal 

CO2/CH4 

Selectivity 

0 10.7 ± 0.2 0.32 ± 0.01 34 ± 1 10.7 ± 0.2 0.32 ± 0.01 34 ± 1 

10 13.2 ± 0.2 0.37 ± 0.01 36 ± 1 21.9 ± 0.3 0.71 ± 0.03 31 ± 2 

25 23.2 ± 0.9 0.59 ± 0.02 39 ± 2 47 ± 2 1.5 ± 0.2 32 ± 5 

 

The results of pure gas permeation measurements of the composite membranes 

are shown in Figure 4.17. Table 4.2 lists the values plotted in Figure 4.17. The error 

reported represents the standard deviation of the average permeability obtained for each 

membrane reported. The CO2/CH4 gas pair separation was considered due to previous 

studies showing pure ZIF-8 membranes exhibit poor separation performance for this gas 

pair. Membranes prepared with direct sonication show a large increase in the  

permeability of CO2 as well as a modest increase in ideal gas selectivity compared to the 

pure polymer film. On the other hand, the use of indirect sonication results in membranes 

with poor performance, in particular a drop in the selectivity and very high CO2 

permeability even at low ZIF-8 loadings. These characteristics are due to unselective 

transport through the void spaces in the regions occupied by aggregates of ZIF-8 

nanoparticles. The permeation data for composite membranes prepared with direct 
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sonication exhibit characteristics of a generally defect-free microstructure. Furthermore, 

the data show a clear and consistent trend in enhancement of membrane performance as a 

function of ZIF-8 loading. Such a set of permeation data can be analyzed in terms of the 

Maxwell model (see Equation 2.7), which can be used to estimate the permeation 

properties of the ZIF-8 filler particles from composite membrane data.27–30 This analysis 

leads to a CO2 permeability of 300 Barrer and CO2/CH4 ideal selectivity of 85 for ZIF-8, 

based on fitting the experimental data from Figure 4.17.  

 

 

Figure 4.17. Permeation properties at 308 K of ZIF-8/Matrimid® composite membranes, 

prepared using either direct or indirect sonication. The wt% loadings of ZIF-8 in the 

membrane are indicated. The Maxwell model is used to predict the membrane 

performance up to 50 wt% ZIF-8 loading. Squares: direct sonication; Circles: indirect 

sonication; Solid line: Upper Bound; Dotted line: Maxwell model predictions.  
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The permeability and selectivity values estimated here reflect the properties of the 

ZIF-8 material actually constituting the filler in the membranes. These cannot be 

considered to be the same as those of the as-made ZIF-8 material. Indeed, it is not clear if 

there is a single “definitive” set of permeation properties of ZIF-8 materials in their 

practically applied form since the findings from this Chapter indicate clearly that MOFs 

such as ZIF-8 can be significantly altered by commonly used membrane processing 

conditions. There is also evidence that many MOFs possess flexible frameworks capable 

of adsorption and diffusion of molecules larger than the nominal crystallographic pore 

size.31–35 It has also been shown that the ZIF-8 framework is much less rigid in 

comparison with other ZIF materials.36 With these considerations, it is reasonable that 

composite membranes containing ZIF-8 may show quite different gas separation 

performance than pure ZIF-8 membranes due to alterations in the structure of the ZIF 

material during different processing conditions. A recent study showed that ZIF-8 

enhanced the performance of Ultem® hollow-fiber membranes for CO2/N2 separation, 

whereas other studies have shown ZIF-8 to have poor separation performance.37,38 With 

the sonication- induced structural changes, adsorption of polymer to the surface of the 

ZIF-8 crystals, and subsequent annealing at high temperatures, the effective pore size and 

flexibility of ZIF-8 could be reduced to provide the separation enhancement observed in 

ZIF-8 composite membranes presented in this Chapter. Finally, the Maxwell model is 

also used (Figure 4.17) to extrapolate composite membrane performance up to a 

hypothetical 50 wt% ZIF-8/Matrimid® membrane. Although the present membranes show 

an increase in separation performance, the present combination of ZIF-8 and Matrimid® 

is not predicted to allow the fabrication of composite membranes that reach the “upper 
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bound” of pure polymer membrane separation performance; therefore, other polymers 

can be selected as matrix materials for ZIF-8 if desired.39,40 In addition, it may be 

beneficial to examine the predicted process calculations using permeation data when 

utilizing ZIF-8 or other filler materials in polymeric membranes and how the required 

membrane area and product recovery are affected by inclusion of these materials.41–43 

 

4.4 Conclusions  

High- intensity ultrasonication with a sonication horn is shown to induce a non-

ideal coarsening on ZIF-8 nanoparticles in THF. Although there are significant changes 

in the particle morphology, there are only minor losses in crystallinity and microporosity 

as concluded from powder XRD, PDF analysis and nitrogen physisorption. From FTIR 

and EDX data, an increase in Zn-OH groups is observed, most likely due to surface 

defects created during the ripening process. Light scattering measurements show a clear 

trend in the coarsening of nanoparticles, and ultrasonication eventually creates a bimodal 

particle size distribution with long sonication times. The subsequent behavior of the 

bimodal distribution is affected by the sonication time and the concentration of 

nanoparticles in solution as well as the development of elastic stresses in the growing 

nanoparticles. Composite films prepared with both direct and indirect sonication show 

apparent good adhesion between the polymer and ZIF-8 phases; however, films 

fabricated using indirect sonication exhibit severe agglomeration of nanoparticles while 

direct sonication produced coarsened nanoparticles with variable dispersion. Permeation 

measurements reveal that direct sonication produces an effective composite membrane 

system whose properties are enhanced over the pure polymer material, and show a full 
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consistency with the Maxwell model. The latter fact also enables a reliable estimation of 

the permeation properties of the ZIF-8 particles existing in the composite membranes, 

and they are shown to be quite different from those obtained using measurements of ZIF-

8 crystals, pure ZIF-8 membranes, or computational predictions.  
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CHAPTER 5 

Gas Adsorption Properties and Application of Mixed-Linker Zeolitic 

Imidazolate Frameworks for Acid Gas Separations 

 

5.1 Introduction 

Framework modification of porous materials has considerable potential to enable 

tuning of the material properties in order to increase performance in a variety of 

applications such as separations, catalysis, and chemical sensors.1–4 In particular, 

improving material performance for separations is highly desirable to reduce the overall 

process energy requirements. Typically, the two material properties in porous materials 

that determine separation performance are pore size (kinetic separation) and adsorption 

selectivity (thermodynamic effect).5 The different ZIF topologies possess a variety of 

pore sizes and surface properties.6–8 ZIFs have been studied for CO2 adsorption and 

membrane-based separations by both experiments and computations.9–15 Although these 

materials normally have high CO2 capacity, the adsorption selectivity for typical gas pairs 

of interest (e.g., CO2/CH4) tends to be low  and comparable with commercially available 

adsorbent materials such as BPL carbon.13,16 Practically, increasing the adsorption 

selectivity would greatly increase the potential for commercialization. Currently, very 

few ZIF materials (e.g., ZIF-78) have shown significant CO2/CH4 (or CO2/N2) adsorption 

selectivities of 10 (50) or more.9 Some large pore MOF structures exhibit higher CO2 

affinity and selectivity for these gas pairs; however, these materials typically have open 

metal centers that are susceptible to performance degradation from steam exposure and 
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poison from trace contaminants, which adversely affect CO2 capacity. 1,17–21  Conversely, 

ZIFs have relatively high thermal and chemical stability that permits modification of the 

surface properties and have the added benefit of small pore apertures that are promising 

for kinetic gas separations, which further improves separation performance.22 

 

Several techniques have been employed for modifying surface properties of MOF 

materials to improve CO2 affinity and separation properties, including postsynthetic 

modification (PSM) and postsynthetic exchange (PSE) of the linker and metal center. 

Postsynthetic modification (PSM) involves reaction of a small molecule with a functional 

group on the organic linker of the MOF.23,24 In the first report of ZIF-90 postsynthetic 

modification, the aldehyde moiety on the organic linker was modified with ethanolamine, 

producing an imine with a pendant alcohol functionality near 100% conversion; however, 

due to the small pore size of ZIF-90, this treatment eliminated the porosity, as determined 

through N2 physisorption at 77 K.25 Alternatively, PSM of the metal center is possible, 

provided that the metal center has an open coordination site; however, ZIF materials 

contain tetrahedrally coordinated Zn2+ metal centers that are not open metal sites.8,17,26 

Another way to modify surface properties is by postsynthetic exchange (PSE) of the 

organic linkers or metal centers by heating the MOF material in a solvent containing a 

different linker or metal ion that exchanges into the material while maintaining the crystal 

structure.27 Recently, the linker of ZIF-71 (4,5-dichloroimidazole) was successfully 

subjected to PSE with a linker that is not otherwise found in ZIF structures (4-

bromoimidazole).28  ZIF-8 has also been subjected to PSE, replacing the framework 
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linkers (2-methylimidazole) with imidazole. This produced a material with 85% 

substituted linkers while maintaining the ZIF-8 crystal structure.29 

 

However, the above postsynthetic techniques do not allow control over the 

amount of sites that are functionalized without consideration of the reaction conditions. 

In Chapter 3, the linker composition of ZIF materials was shown to be controllable in situ 

(during synthesis) without altering the crystal structure.  Both the linkers of ZIF-8 and 

ZIF-90, ZIF-7 and ZIF-8, or ZIF-8 and 2-aminobenzimidazole were incorporated in the 

same framework during the ZIF synthesis, while maintaining the ZIF-8 crystal structure. 

By this synthetic method, the surface functionalities in these ZIF materials can be better 

controlled, and improvement in gas separations may be realized without severely altering 

the pore volume of the material. In this Chapter, in situ linker substitution in ZIF-8 with 

two different linkers is performed to introduce two different functionalities in the material 

without changing the crystal structure. A linker not found in other ZIF materials (2-

aminobenzimidazole) is incorporated into the ZIF-8 structure, with good control over the 

linker substitution stoichiometry, as shown in Chapter 3. Although this linker contains a 

primary amine functional group, the substituting linker has little effect on the CO 2 

adsorption affinity even at high substitution loadings, due to the aromaticity of the linker 

which reduces the basicity of the primary amine. Subsequently, a mixed-linker ZIF 

containing an aldehyde functionality, termed ZIF-8-90-(50), can undergo PSM without 

detrimental loss of pore volume and produces a ZIF material with high CO2/CH4 

adsorption selectivity. 
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5.2 Experimental Methods 

5.2.1 Materials 

Sodium formate (99%, NaCO2H), 2-methylimidazole (98%, 2-MeIM), 

Zn(NO3)2·6H2O (99%), 2-aminobenzimidazole (97%, 2-amBzIM), and carboxaldehyde-

2-imidazole (99%, OHC-IM) were obtained from Alfa Aesar. Hydrogen peroxide (H2O2, 

30 wt% in H2O), aqueous ammonia (10 wt% NH3 in H2O), methanol (MeOH) and 

dimethylformamide (DMF) were obtained from BDH. Ethylenediamine (99%, en) and 

methanolic ammonia (2.0 M NH3 in MeOH) were obtained from Sigma-Aldrich. All 

chemicals were used as received without further purification.  

 

5.2.2. Synthesis of ZIF-8-ambz Hybrids 

The ZIF-8-ambz-(x) materials used in this chapter were synthesized in the same 

manner as those from Chapter 3. Details on the synthesis can be found in Section 3.2.4.  

 

5.2.3. Synthesis of ZIF-90 and ZIF-8-90-(50) Hybrids 

Synthesis of ZIF-8-90-(50) is a scaled-up reaction of the procedure described in 

Section 3.2.2. A solution was prepared containing 12.6 mmol OHC-IM, 87.4 mmol 2-

MeIM, and 100 mmol of NaCO2H in 250 mL MeOH. To fully dissolve all the OHC-IM, 

this solution was heated to 323 K in a sealed polyethylene bottle for 2 hrs. A separate 

solution was then prepared with 25 mmol Zn(NO3)2·6H2O in 250 mL deionized H2O. 

After the imidazole solution had cooled to room temperature, the Zn salt solution was 

added and allowed to stir for 1 hr. The solution was centrifuged at 10,000 rpm for 5 min, 
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and the precipitate was washed with MeOH after pouring off the supernatant. This was 

repeated again, and then the precipitate was recovered by vacuum filtration. The 

recovered product was dried in an oven at 358 K. The yield was approximately 20% 

based on Zn. ZIF-90 was synthesized exactly as described in Section 3.2.2.  

 

5.2.4. Functionalization Study of ZIF-90 and ZIF-8-90-(50). 

To test the stability of ZIF-90 for functionalization, several probes were used. To 

test the oxidation of the aldehyde linker, ZIF-90 was reacted for 24 hrs with 10 g solution 

of hydrogen peroxide at two concentrations (1 wt% and 30 wt%) in water. Three 

conditions were used: (1) reaction at 323 K and 30 wt% H2O2/H2O; (2) reaction at room 

temperature and 30 wt% H2O2/H2O; and (3) reaction at room temperature and 1 wt% 

H2O2/H2O. After reaction, the powder sample was recovered by vacuum filtration and 

washed with MeOH. The powder sample remained white following the reaction. To test 

the reactivity of the aldehyde with amines, ZIF-90 samples were reacted for 24 hrs with 

10 g ammonia solutions in both water and methanol under the following conditions at 

room temperature: (1) 10 wt% NH3/H2O; (2) 1 wt% NH3/H2O; and (3) 0.4M NH3/MeOH. 

After reaction, the powder sample was recovered by vacuum filtration and washed with 

MeOH. The powder sample turned a distinct yellow color following reaction with 

ammonia. 

 

The ZIF-8-90-(50) samples were functionalized with ethylenediamine to form 

ZIF-en samples. A dispersion of 0.2 g ZIF-8-90-(50) was prepared in 25 mL MeOH. 

Then, at room temperature, 1 mL ethylenediamine was added to the dispersion.  Sealed in 
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a Teflon cup, the ZIF dispersion was heated to 353 K and stirred for 24 hrs. After cooling 

to room temperature, the powder was washed with MeOH and recovered by vacuum 

filtration. The powder sample turned from white to yellow after reaction.  

 

5.2.5. Characterization Methods 

The ZIF materials were analyzed by powder X-ray diffraction (XRD) using an 

X’Pert Pro PANalytical X-ray Diffractometer. Diffraction measurements were done from 

3.5-50° 2θ using an X’celerator detector. Nitrogen physisorption measurements were 

done on a Micromeritics ASAP 2020 surface area analyzer at 77 K. ZIF-8-90-(50) and 

ZIF-en samples were degassed at 423 K under vacuum for 12 hrs, and ZIF-90 and ZIF-

COOH samples were degassed at 473 K. The BET surface area and t-plot micropore 

volume methods were used to analyze the relative surface properties of each sample. 

Fourier-transform infrared (FTIR) and Fourier-transform Raman (FT-Raman) 

spectroscopy were performed on ZIF-8-90-(50) and ZIF-en samples. The powder samples 

were prepared in KBr pellets for FTIR spectroscopy and then analyzed on a Bruker 

Vertex 80v FTIR Analyzer from 4000-400 cm-1. For FT-Raman, powder samples were 

packed tightly in NMR tubes and analyzed on a Bruker RAM II FT-Raman Analyzer 

from 4000-400 cm-1. To determine the linker composition in the framework, all samples 

were analyzed with solution 1H nuclear magnetic resonance (NMR) spectroscopy on a 

Mercury Vx 400 MHz spectrometer after digesting samples using d4-acetic acid 

(CD3CO2D). Solid state (SS) 13C cross polarization-magic angle spinning (CP-MAS) 

NMR was performed on a Bruker 300 MHz spectrometer, using a spinning rate of 10 kHz 

with a 4 mm rotor and collecting a minimum of 5,000 scans. ZIF decomposition stability 
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was tested on a Netzsch STA-409-PG thermogravimetric analyzer (TGA). Powder 

samples were heated from room temperature to 1173 K with a ramp rate of 10 K·min-1 in 

a diluted air stream (25% air/75% N2). 

 

5.2.6. Adsorption Measurements 

Adsorption measurements for CO2 and CH4 were carried out in a custom-built, 

constant-volume apparatus.30 Samples were tested at temperatures of 308, 328, and 348 K 

to provide data at multiple temperatures for the calculation of heats of adsorption for each 

gas and sample. Pressure ranges tested were typically from 0-1000 kPa. Samples were 

degassed at 373 K under vacuum for at least 12 hrs before testing. Ultra-high purity CH4 

(99.999%) and bone-dry CO2 (99.999%) were used in all adsorption measurements.  

 

5.2.7. Adsorption Analysis 

Isotherms obtained from adsorption measurements were fit to a Toth isotherm to 

describe the heterogeneous surface resulting from the mixed- linker structure:31,32 
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where qi is the capacity for adsorbing component i at pressure, p, qsat is the saturation 

capacity, bi is the affinity constant of component i, and ti is the heterogeneity parameter. 

When ti is equal to 1, this equation becomes the Langmuir isotherm model. The change in 
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the affinity constant, bi, the heterogeneity parameter, ti, and the saturation capacity, qsat, 

with temperature can be described with the following:33 
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where bi,0 is the pre-exponential affinity constant, -ΔH is the heat of adsorption at zero 

adsorbate loading, T is the absolute temperature, T0 is the reference temperature (308 K), 

α and t0 are parameters used for thermal variation in the heterogeneity parameter, ti, and 

qsat,0 and χ represent changes in saturation capacity for each adsorbent with temperature. 

Isotherms at different temperatures for a single gas were fit to the Toth isotherm by 

maximizing the coefficient of determination (R2) for all data simultaneously using 

OriginPro 8.5.  

 

The ZIF materials were analyzed with ideal adsorbed solution theory (IAST) 

assuming a gas mixture of 25% CO2/75% CH4.32,34,35 To perform the analysis, a 
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thermodynamic criterion must be satisfied: the spreading pressures of each component 

are equal to each other (
i j  ), where π is the spreading pressure calculated as: 
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Using Equation 5.1, the spreading pressure of component i can be expressed in terms of 

isotherm parameters: 
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Here, pi
0 is obtained from the expression: 
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where yi is the gas phase mole fraction, p is the absolute pressure, xi is the adsorbed phase 

mole fraction and pi
0 is the gas-phase pressure corresponding to adsorbed-phase 

spreading pressure π for the adsorption of pure component i.34  The adsorption selectivity 

(α1,2) for a specific gas pair can be calculated as: 
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and the capacity at p and T can be calculated by 
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and 
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 (5.10) 

 

To solve for xi and calculate selectivity and capacity, Equations 5.6-7 were solved 

iteratively. 

 

Breakthrough curves are convenient for assessing performance of adsorbents for 

different adsorption applications.35,36 Modeling of adsorbents for breakthrough curve 

analysis normally involves very simple assumptions in order to rapidly assess potential 

materials: (1) isothermal conditions; and (2) negligible pressure drop along the fixed bed 

(constant pressure). Using these assumptions, the following equation applies for a packed 

bed adsorbing column (see Figure 5.1): 
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where pi is the partial pressure of component i, u is the superficial velocity, ε is the bed 

voidage, ρ is the framework density of the adsorbent, and z and t represent the length of 

the adsorbent column and the time. If it is assumed that the equilibrium of the adsorbent 

is instantaneous ( q q ), then the following governing equations apply: 
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and using the chain rule, the iq

t




 terms can be converted to the following: 

 

 i i i

i

q dq p

t dp t

 


 
 (5.14) 

 

Since one of the assumptions made is constant pressure and a binary system of CO2/CH4 

will only be considered, Equations 5.12 and 5.13 can be converted to be expressed in 

terms of mole fraction, y, rather than partial pressure:35 
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Utilizing scaling arguments, the following terms were used to make these equations 

useful to compare adsorbents without specifying dimensions for an adsorber column: 
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and substituting Equations 5.17-5.19 into Equations 5.15 and 5.16 yields the following 

partial differential equations: 
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As IAST is important to use for predicting multicomponent adsorption, an algorithm was 

developed that first calculated the quantity adsorbed, qi, of each component at the 

adsorption pressure, P, then a polynomial was fit to relate qi to y, and using the 

derivative, the PDEs in Equations 5.20 and 5.21 were solved using Matlab code with the 

length of the column discretized into 100 slices.  

 

 

Figure 5.1. Schematic diagram of an ideal packed bed adsorber.  

 

5.3. Results and Discussion 

5.3.1 Adsorption Properties of ZIF-8-ambz Hybrids 

CO2 and CH4 adsorption measurements were used to assess the changes in surface 

properties for the mixed- linker ZIFs containing 2-amBzIM, compared to ZIF-8. For 

comparison, the heats of adsorption at zero adsorbate loading for ZIF-8 are calculated to 
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be -15.6 kJ mol-1 and -12.3 kJ mol-1 for CO2 and CH4, respectively (Table 5.2).11,13 

Framework densities were calculated assuming no change in the unit cell volume of ZIF  

compared to ZIF-8, and these values are shown in Table 5.1 for each sample presented in 

this Chapter. Figure 5.2 shows the CO2 and CH4 adsorption data and fits of the Toth 

isotherm for the ZIF-8-ambz-(14) material. The capacities reported in this figure  are 

presented in units of mmol cm-3, instead of the more typical mmol g-1. Because the mass 

adsorption capacity of MOFs can often be misleading due to low bulk or framework 

densities, the adsorption units used in this Chapter reflect the material capacity and 

performance more accurately.37  

 

 

Figure 5.2. CO2 and CH4 adsorption isotherms for ZIF-8-ambz-(14). Open symbols 

denote CH4 adsorption, closed symbols CO2. Squares: T = 308 K; circles: T = 328 K; 
triangles: T = 348 K. 
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Table 5.1. Linker substitution and framework density of ZIF adsorbent materials.  
 

Sample 
Linker Substitution 

(mol %)a 

Framework Density 

(g·cm-3)b 

ZIF-8-ambz-(14) 14 0.983 

ZIF-8-ambz-(24) 24 1.024 

ZIF-8-ambz-(47) 47 1.120 

ZIF-8-90-(50) 48 0.983 

ZIF-en 27c 1.048 

a Calculated from solution 1H NMR, balance is 2-MeIM 

 bCalculated from assuming no change in unit cell volume 

cTotal substitution = 22% en-IM + 5% OHC-IM 

 
 

When comparing the initial slope of the adsorption isotherms of the ZIF-8-ambz-

(14) material to those of ZIF-8, it is clear that there is not a significant change in the 

affinity for CO2 or CH4 at this substitution level of 2-amBzIM. Although the substituting 

linker contains a primary amine functional group, the basicity of this amine is greatly 

affected by the fused aromatic ring of the imidazolate and benzyl groups.38 From the 

isotherm fit, the heats of adsorption were found to be -19.4 kJ mol-1 and -12.5 kJ mol-1 for 

CO2 and CH4, respectively. The heat of adsorption for CH4 is almost identical with that of 

ZIF-8. It has been shown by both simulations and neutron scattering measurements that 

CH4 adsorbs in the 6-membered ring (MR) of ZIF-8 at lower pressures, interacting 

directly with the C=C bond on the 2-MeIM linker.39,40 Because 2-amBzIM has similar 

adsorption sites, it is not surprising that no change in the heat of adsorption of CH4 was 

seen in ZIF-8-ambz-(x) materials compared with ZIF-8. An increase of about 4 kJ mol-1 

in the heat of adsorption for CO2 in the ZIF-8-ambz-(x) material relative to ZIF-8 is also 

consistent with the introduction of a more polar functional group than the methyl group 
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on the ZIF-8 linker; however, this does not greatly affect the overall affinity for CO2 in 

this sample.13,38 

 

As Figures 5.3a and 5.3b show, with increasing substitution of 2-amBzIM in the 

ZIF framework, there is an overall increase in the affinity for CO2 without much change 

in the affinity for CH4 (see also Table 5.3). There is a concomitant increase in the heat of 

adsorption for CO2. Table 5.2 summarizes the heats of adsorption obtained for each 

material. With increasing fraction of 2-amBzIM, the heats of CO2 adsorption show a 

monotonic increase, consistent with the increasing binding energy due to the polar 

functional groups.13 Although ZIF-8-ambz-(14) and ZIF-8-ambz-(24) showed excellent 

fits to a Langmuir isotherm (ti = 1), the Toth isotherm provided the best overall fit for the 

ZIF-8-ambz-(47) material (Table 5.3). It is likely that the high substitution obtained in 

this sample causes significant heterogeneity in the internal surface of the ZIF. 

Interestingly, although N2 physisorption showed complete loss of micropore volume at 77 

K in Chapter 3, ZIF-8-ambz-(47) adsorbed both CO2 and CH4 at ambient temperatures. 

This shows these materials can have significant “breathing” and “flexibility” effects that 

allow molecular adsorption and diffusion even when containing bulky benzimidazolate-

type linkers.41,42 Although no gate-opening phenomena is observed from N2 

physisorption, there is clearly some freedom for the linkers to rotate or vibrate to allow 

adsorption of larger molecules at ambient temperatures, similar to behavior observed in 

ZIF-8.43  
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Figure 5.3. CO2 and CH4 adsorption isotherms for (a) ZIF-8-ambz-(24) and (b) ZIF-8-

ambz-47. Open symbols denote CH4 adsorption, closed symbols CO2. Squares: T = 308 
K; circles: T = 328 K; triangles: T = 348 K. 
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Table 5.2. Heats of adsorption for CO2 and CH4 obtained from Langmuir and Toth 
isotherm fits, Henry’s law constants of ZIF materials and ideal selectivity of CO2/CH4. 

 

Sample 
-ΔH (kJ·mol-1) K (cm3 (STP)·cm-3·adsorbent kPa-1)a α 

(ideal) CO2 CH4 CO2 CH4 

ZIF-813 15.6 12.3 0.119 0.050 2.4 

ZIF-8-ambz-(14) 19.4 12.5 0.184 0.067 2.8 

ZIF-8-ambz-(24) 20.4 12.4 0.235 0.075 3.1 

ZIF-8-ambz-(47) 22.1 15.6 0.134 0.038 3.5 

ZIF-8-90-(50) 25.6 20.0 0.393 0.070 5.6 

ZIF-en 33.9 26.2 0.981 0.075 13.1 

aHenry’s constants were predicted by (qsat∙b) 

 

Table 5.2 shows the Henry’s constants obtained from isotherm fits and the ideal 

selectivity, as well as data from ZIF-8 as a standard to compare the CO2/CH4 selectivity. 

Because there is significant reduction in the total adsorption capacity in the ZIF-8-ambz-

(47) sample, the Henry’s constant decreases, but there is an overall increase in selectivity 

as the 2-amBzIM fraction increases. Considering that these materials also have a 

shrinking pore size with increasing 2-amBzIM fraction, it is likely the overall transport 

selectivity of these materials is higher than that of ZIF-8, and hence, the materials may be 

useful for membrane-based CO2 separations.5 

 

5.3.2. Postsynthetic Modification of ZIF-90 and ZIF-8-90-(50) Hybrid 

Postsynthetic modification was used on ZIF-90 to investigate functionalization 

stability in the presence of reagents that form different functional groups. Shown in 

Figure 5.4, it was hypothesized that ZIF-90 may form either carboxylic acid or imine 

functional groups when reacted with either H2O2 or NH3, respectively. Figure 5.5a shows 
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powder XRD patterns of ZIF-90 reacted with H2O2 at three different conditions. In all 

conditions, there is a significant change in the overall crystal structure, and there is no 

longer an appearance of the I-43m crystal structure. Nitrogen physisorption shown in 

Figure 5.5b reveals there to be a complete loss in micropore volume upon transformation 

to this new crystal structure. Since there is formation of a carboxylic acid in an aqueous 

solution, there are likely to be free protons in solution. ZIF materials can be very 

susceptible to materials degradation or changes in acidic conditions due to the basic 

imidazolate linkers accepting protons in solution, and there is likely a new crystal 

formation due to the protonation of the imidazolate linkers during the reaction with H2O2. 

Although Amrouche et al.13 showed that ZIF-COOH structures could have very high 

affinity for CO2 by using molecular simulations, it may not be practical to pursue 

synthesized ZIF materials with acidic groups due to the instability shown in Figure 5.5.  

 

 

 

Figure 5.4. Reaction of ZIF-90 with H2O2 and NH3 to form new functional groups.  
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Figure 5.5. (a) Powder XRD patterns and (b) N2 physisorption of ZIF-90 treated with 
H2O2 in aqueous solutions. 
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ZIF-90 was also tested under basic conditions using NH3 in either water or 

methanol. Since the imine reaction forms water, it is likely that there will be little 

conversion of the aldehyde to the imine when water is the solvent; however, methanol 

has a similar pKa to water, making it weakly acidic and a reasonable solvent and c atalyst 

for the reaction.44 Figure 5.6a shows powder XRD patterns of ZIF-90 samples treated 

with NH3 solutions at three conditions. From Figures 5.5a and 5.6a, it is obvious that 

ZIF-90 is not a stable structure under either oxidative or basic reaction conditions, except 

when the base forms a mild pH as in the case of the 1 wt% NH3/H2O solution. FTIR 

spectra in Figure 5.5b show the appearance of a shoulder next to the v(C=O) following 

treatment in the 1 wt% NH3/H2O solution that is indicative of v(C=N) vibrations; 

however, due to the low stability shown in both Figures 5.5a and 5.6a, using pure ZIF-90 

may not be suitable for designing ZIF materials with more polar functional groups than 

the aldehyde and for using in CO2/CH4 separations. In addition, the FTIR spectra in 

Figure 5.6b shows that ZIF-90 still maintains a larger amount of aldehyde functional 

groups following reaction with NH3 and using a different solvent than water and different 

amine molecules may yield higher conversion to the imine group as a result if the 

structural stability can be maintained.  
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Figure 5.6. (a) Powder XRD and (b) FTIR spectra of ZIF-90 subjected to imine 
formation reactions at different conditions.  
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Due to previous PSM attempts on ZIF materials showing a detrimental loss of 

micropore volume after functionalization and the poor chemical stability of ZIF-90 when 

subjected to treatment with H2O2 or NH3,25 the mixed-linker synthetic strategy, presented 

in Chapter 3, allows control over the amount of reactive sites and may be able to prevent 

a total loss of pore volume or crystal structure while still providing active sites for 

functionalization.45 Figure 5.7 shows the strategy for producing a ZIF material with a 

primary amine far enough removed from the aromatic ring of the organic linker to have 

useful basicity for CO2-based separations. 

 

 

Figure 5.7. Reaction of carbonyl moiety in ZIF-8-90-(50) with ethylenediamine to form 
ZIF-en. 
 

Figure 5.8 shows FTIR and FT-Raman spectra of ZIF-8-90-(50) and the modified 

material, ZIF-en. Several FTIR bands that show significant changes are highlighted in 

Figure 5.8a. Although the bands in the N-H stretching region (3600-3200 cm-1) are broad, 

there is an appearance of two symmetric bands and one asymmetric band after 

functionalization, indicating the –NH2 moiety in ZIF-en. In the carbonyl region (1700-

1600 cm-1), there is a disappearance of the band from the aldehyde and an appearance of 

a band in the imine region, suggesting that the aldehyde is converted to an imine by 

reacting with ethylenediamine; however, there can be an appearance of –N-H bending in 

the same region, making it necessary to also examine the FT-Raman spectra of ZIF-en. 
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FT-Raman spectra (Figure 5.8b) confirm the disappearance of the v(C=O) at 1700 cm-1 

and the appearance of the v(C=N) band at 1650 cm-1; however, a weaker v(C=O) band is 

still present in ZIF-en, indicating that not all carbonyl groups were reacted.  

 

 

 

Figure 5.8. (a) FTIR and (b) FT-Raman spectra of ZIF-8-90-(50) (squares) and ZIF-en 
(circles), showing appearance of broad N-H bands (IR), C-H bands (IR) and a shift in the 

band in the 1700-1600 cm-1 region (IR and Raman). 
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NMR spectroscopy was used to identify the functional groups in the ZIF 

framework and also to determine if there is any “cross- linking” caused by reaction of –

NH2 groups of ethylenediamine with nearby OHC-IM linkers. Solution 1H NMR spectra 

of the deuterated acid-digested ZIF materials are shown in Figure 5.9a. The chemical 

shift associated with the aldehyde (δ ~ 9.9 ppm) nearly disappears after PSM, and there is 

an appearance of a peak associated with an imine bonded to an aromatic ring (δ ~ 8.5 

ppm). Taken together, these chemical shifts show a combined linker substitution of 27% 

(5% OHC-IM and 22% en) after functionalization compared with 48% substitution prior 

to functionalization. This indicates 46% loss of total OHC-IM linker during PSM, with 

81% of the remaining OHC-IM linkers in ZIF-en converted to the functionalized amine 

linker. However, the TGA mass loss curves (Figure 5.10) of these materials show no 

significant changes in the total inorganic content (Zn). This indicates that there is some 

overall loss of ZIF particles during functionalization, but not the selective etching of a 

linker. It should also be noted that the overall yield of ZIF following functionalization 

was approximately 60% of the starting ZIF mass, and the filtered reactant solution 

maintained a yellow color after removal of powder. Therefore, the change in the relative 

fractions of the different linkers in ZIF-en, compared to ZIF-8-90-(50), is best explained 

as being due to some dissolution of the ZIF material during PSM. The linkers dissolved 

in solution can then undergo PSE with the ZIF material, changing the overall linker ratios 

in the final material. It has already been shown that ZIF materials can easily dissolve in 

certain solvents and even recrystallize upon cooling.28 When the integrated area of the 

imine chemical shift (δ ~ 8.5 ppm) was compared to the methylene groups (δ ~ 4.2, 3.5 
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ppm), a ratio of 1:2 was calculated, suggesting no cross- linking of OHC-IM linkers by 

ethylenediamine molecules.  

 

 

 

Figure 5.9. (a) Solution 1H NMR and (b) SS 13C CP-MAS NMR spectra of ZIF-8-90-
(50) (squares) and ZIF-en (circles). 
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In the case of SS 13C CP-MAS NMR spectra (Figure 5.9b), there was no 

appearance of an aldehyde peak in the region of δ ~ 170-180 ppm following 

functionalization likely due to low concentration in the framework. Two methylene (–

CH2) peaks appear at δ ~ 55-70 ppm and 42 ppm and may be associated with the ethyl 

linker between the imine and amine functional groups in ZIF-en. Previously, the peak 

associated with imine formation in ZIF-90 was attributed to a chemical shift of 60 ppm, 

meaning the broad peak at δ ~ 55-70 ppm is the methylene –CH2 bonded to imine 

nitrogen.25 Therefore, the other peak at 42 ppm is a resonance of the methylene –CH2 

bonded to the primary amine nitrogen group. The shoulder at 150 ppm is likely 

associated with C=N bond formation from the imine.25 Overall, the NMR spectra suggest 

a high conversion of the aldehyde groups of ZIF-8-90-(50) to imine groups in ZIF-en, 

and there is no evidence of cross- linking of nearby linkers by ethylenediamine.  

 

 

Figure 5.10. TGA mass loss curves of ZIF-8-90-(50) and ZIF-en. 
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Although there are changes in the relative fractions of the two linkers following 

PSM, both powder XRD and N2 physisorption (Figure 5.11) show preservation of the ZIF 

crystal structure and significant retention of micropore volume compared with previous 

attempts of PSM of ZIF-90. From t-plot micropore volume calculations, a loss of 52% of 

the pore volume was observed after functionalizing the ZIF material. Considering that 

previous efforts to functionalize the internal carbonyl groups of ZIF-90 led to near-

complete loss of micropore volume or complete degradation of the crystal structure,25 

these characterization results are encouraging. They indicate that ZIF-en still allows gas 

diffusion through the pores and has good adsorption properties – both of which make it 

potentially useful for gas separation applications. The preservation of the crystal structure 

is also encouraging that the mixed- linker synthesis strategy offers a method of changing 

the functional group in ZIF materials without significant alterations or destruction of the 

crystal structure. Overall, the mixed-linker synthesis to produce a ZIF-8-90 material 

followed by PSM with ethylenediamine is a promising example of utilizing these 

materials for different applications. 
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Figure 5.11. (a) Powder XRD patterns of ZIF-8-90-(50) and ZIF-en showing 
maintenance of crystal structure after functionalization; and (b) N2 physisorption 
isotherms of these materials with no detrimental loss of micropore volume following 

functionalization. 
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Figures 5.12a and 5.12b show CO2 and CH4 adsorption properties of ZIF-8-90-

(50) and ZIF-en, respectively. As seen in Table 5.2, the heats of adsorption for both CO2 

and CH4 increased after PSM of ZIF-8-90-(50). The heat of adsorption values obtained 

for ZIF-en are close to typical values for the commercial CO2 adsorbent zeolite 13X; 

however, the affinity constants for ZIF-en are much lower than 13X (compare Tables 5.3 

with Ref. 33).33 Unlike zeolite 13X, ZIF-en likely does not have high affinity for H2O, 

which significantly affects separation performance in 13X. There is significant 

enhancement of CO2 affinity for ZIF-en when compared to ZIF-8-90-(50) or previously 

published data on ZIF-8.13 In addition, even though there is a 52% reduction in micropore 

volume in ZIF-en, the CO2 capacity does not decrease greatly based on the Toth isotherm 

fit shown in Table 5.3.  hen comparing the Henry’s law constants of ZIF-8-90-(50) and 

ZIF-en, the ideal selectivity is found to increase from 5.6 to 13 after PSM, the latter being 

nearly 6 times higher than that of BPL carbon or ZIF-8.13,16 Overall, the functionalization 

of ZIF-8-90-(50) with ethylenediamine leads to a promising enhancement in the affinity 

of CO2 over CH4. 
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Figure 5.12. CO2 and CH4 adsorption isotherms of (a) ZIF-8-90-(50) and (b) ZIF-en. 

There are substantial increases in CO2 adsorption affinity after functionalization. Open 
symbols denote CH4 adsorption, closed symbols CO2. Squares: T = 308 K; circles: T = 

328 K; triangles: T = 348 K. 
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Table 5.3. Isotherm parameters obtained from global fits for CO2 and CH4: qsat, 
saturation capacity; b0, affinity constant at Tref, -∆H, heat of adsorption; t0, heterogeneity 

parameter of Tref; α and χ, thermal changes for heterogeneity parameter and saturation 
capacity, respectively.  
 

Sample 

CO2 

qsat 

(mmol·cm-3) b0 (kPa-1) 

 -ΔH 

(kJ·mol-1) t0 α χ R2 

ZIF-8-ambz-(14) 12.2 6.18E-04 19.37 1 0 0 0.999 

ZIF-8-ambz-(24) 9.0 1.07E-03 20.40 1 0 0 0.999 

ZIF-8-ambz-(47) 3.5 1.57E-03 22.1 0.942 -0.085 0 0.989 

ZIF-8-90-(50) 12.7 1.27E-03 25.6 1 0 0 0.998 

ZIF-en 9.7 4.15E-03 33.9 0.539 0.347 0 0.999 

 

Sample 

CH4 

qsat 

(mmol·cm-3) b0 (kPa-1) 

 -ΔH 

(kJ·mol-1) t0 α χ R2 

ZIF-8-ambz-(14) 12.2 2.23E-04 12.5 1 0 0 0.996 

ZIF-8-ambz-(24) 9.0 3.43E-04 12.4 1 0 0 0.996 

ZIF-8-ambz-(47) 3.5 4.47E-04 15.6 1 0 0 0.960 

ZIF-8-90-(50) 12.7 2.26E-04 20.0 1 0 0 0.991 

ZIF-en 9.7 4.01E-04 26.2 0.546 1.77 1.9 0.992 

 

5.3.3. IAST, Breakthrough Curve, and PSA Analysis 

Ideal adsorbed solution theory is useful for assessing an adsorbent’s performance 

in multicomponent systems.5,34 Figure 5.13a shows the adsorption selectivity from IAST 

calculations for the adsorbents considered in this Chapter. The single-component 
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adsorption parameters required for the IAST predictions are obtained from the 

experimental data. Although mixed- linker ZIFs may have heterogeneous surfaces, 

thereby potentially decreasing the accuracy of IAST predictions, it is still useful as a tool 

for initial assessment of adsorption characteristics.46,47 Additionally, it has been shown 

that if the chosen single-component adsorption model fits the experimental data well, 

then IAST provides good predictions of mixed gas adsorption.48 Overall, the materials 

studied here show improvement over ZIF-8 and BPL carbon for CO2/CH4 selectivity. 

Considering the difficulty and expensive linkers required to make ZIFs with selectivities 

comparable to ZIF-en (e.g., ZIF-78), it may be more prudent to alter ZIF adsorption and 

gas separation properties by a mixed- linker and/or PSM route rather than using more 

expensive linkers if the materials are to be considered for practical replacements of 

commercially available materials (BPL carbon). Interestingly, ZIF-en shows an 

asymptotic behavior for selectivity at low pressures. The mixed gas adsorption capacity 

for this sample is shown in Figure 5.13b. Like other amine-modified adsorbents, ZIF-en 

may have high heats of adsorption (and thus selectivity) at low partial pressures of 

CO2.17,49 
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Figure 5.13. IAST calculations of the selective CO2 adsorption performance of ZIF 

materials assuming 25% CO2/75% CH4 gas phase mixture. 
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Breakthrough curve analysis is useful to compare different adsorbents under the 

same conditions. Krishna and Long36 proposed that analyzing both the breakthrough time 

and the capacity adsorbed in a simulated packed bed adsorber would aid in PSA and TSA 

process design for choosing an adsorbent. Breakthrough analysis described in Section 

5.2.7 was used to compare the adsorbents presented in this Chapter. Figure 5.14 shows 

the simulated breakthrough curves, using the assumptions discussed in Section 5.2.7, 

with a simulated gas feed of 50:50 CO2:CH4 at 1000 kPa and bed voidage of 0.4. 

Interestingly, ZIF-8-90-(50) has a longer calculated dimensionless breakthrough time 

than ZIF-en. This is likely related to the larger saturation capacity of ZIF-8-90-(50) 

compared to ZIF-en at the adsorption pressure; however, the sharpness of the 

breakthrough curve, sometimes expressed as the length of unused bed (LUB), shows that 

ZIF-en has higher overall selectivity than ZIF-8-90-(50), which is manifested in the IAST 

calculations.  

 

Other feed conditions were examined to gain understanding of how each 

adsorbent is affected by different mole fractions of CO2. In Figure 5.15, the 

dimensionless breakthrough time, determined by the outlet mole fraction of CO2 being 

2%, is plotted as a function of feed mole fraction of CO2 at constant feed pressure of 

1000 kPa. The increase in breakthrough time observed with all the adsorbents with 

decreasing CO2 feed fraction is related to longer time to reach the equilibrated capacity 

when less CO2 is present in the feed stream. Because ZIF-en has an asymptotic selectivity 

behavior, the increase in breakthrough time observed in Figure 5.15 may be related to a 

higher selectivity at lower concentrations of CO2 in the feed gas. The breakthrough 
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simulations overall indicate that feed conditions can largely dictate the expected behavior 

of an adsorbent, showing that at lower CO2 feed concentrations ZIF-en has a larger 

breakthrough time than ZIF-8-90-(50). This observation is important since typical natural 

gas wells contain CO2 in mole fractions of 0.1 or less. 

 

 

Figure 5.14. Breakthrough curve simulations of different adsorbents for a CO2/CH4 feed 
mixture of 50:50 at 1000 kPa. ZIF-8 and ZIF-8-ambz-(14) closely overlap. 
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Figure 5.15. Dimensionless breakthrough time related to incoming CO2 mole fraction of 

feed gas for a fixed bed adsorber.  
 

Krishna and Long proposed that an adsorbent can be screened based on the 

dimensionless breakthrough time and the total amount of CO2 adsorbed in a column that 

is free of adsorbate prior to adsorption;36 however, this implies that the adsorbent is fully 

regenerated between adsorption cycles. In practice, this is typically not done, and instead, 

the pressure and/or temperature of the adsorber column is changed to provoke a change in 

the equilibrium capacity.35 To illustrate why a full regeneration may not be desirable, 

breakthrough curves for the desorption of ZIF-8, ZIF-8-90-(50) and ZIF-en were 

calculated and are shown in Figure 5.16, assuming the adsorbent is regenerated by 

purging the adsorption column at 100 kPa with the product stream, nearly pure CH4, with 

the initial conditions having a 50:50 CO2:CH4 mixture. Even with ZIF-8 as the adsorbent, 
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the time to purge CO2 from the adsorption column is 3 times larger than the time to 

adsorb CO2. This is not surprising, considering that adsorption of CO2 in all these 

adsorbents is favorable, making the desorption unfavorable.35 It is also important to note 

that desorption under these conditions appears to mainly be dictated by adsorption 

selectivity and not capacity. This is correlated by ZIF-en showing the longest desorption 

time, even though the breakthrough curves for adsorption in Figure 5.14 indicate that 

ZIF-8-90-(50) would have the longest breakthrough curve under the feed conditions of a 

50:50 CO2:CH4 feed stream. With these desorption curves in mind, in order to provide a 

proper assessment of an adsorbent’s performance, along with using the dimensionless 

breakthrough time and total adsorption capacity at the feed pressure, other parameters 

should be consider, such as the working capacity – the capacity difference between the 

adsorption step and the desorption step.50 In addition, the amount of CH4 recovered is an 

important parameter to consider since increasing loss of CH4 will relate directly to less 

product recovered during the separation process. 
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Figure 5.16. Breakthrough curve simulations for purging adsorbents with product gas of 

99.95% CH4. 
 

Table 5.4 shows the dimensionless breakthrough time, the total CO2 capacity at 

the adsorption pressure (1000 kPa), the working capacity of CO2 between the adsorption 

and desorption pressure (100 kPa), the ideal CH4 recovery, determined by assuming CH4 

lost in the PSA process is only the working capacity of the adsorbent and one bed volume 

of the adsorber, and the adsorbent selectivity for a CO2:CH4 feed with a 50:50 mixture. 

Although the adsorption selectivity and CH4 recovery increases for the adsorbents 

containing 2-aminobenzimidazole, there is not much incentive to consider these materials 

for equilibrium adsorption-based separations due to a decrease in both the total CO2 

capacity and the working CO2 capacity when compared with ZIF-8. The use of either 

ZIF-8-90-(50) and ZIF-en does provide some benefit by increasing both the breakthrough 

time and adsorption selectivity while still maintaining a modest CO2 working capacity. If 

the CH4 recovery is not of great importance, then it may be more beneficial to use an 
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adsorbent such as ZIF-8-90-(50) due to longer breakthrough time, larger working CO2 

capacity compared to ZIF-en, and no requirements for postsynthetic modification of the 

ZIF material. However, if there is a desire to consider the CH4 recovery, then ZIF-en 

offers excellent operating parameters, considering the higher selectivity and sharper 

breakthrough curve behavior compared to the other adsorbents in this Chapter. In 

addition, optimization of the PSM of ZIF-8-90-(50) to make an amine-functionalized 

material with high loadings of aliphatic amines may greatly improve the comparison to 

its parent material, ZIF-8-90-(50). 

 

Table 5.4. Parameters to consider for screening adsorbents for different applications.  

 

Adsorbent τbreak 
NCO2

ads 

(mmol·cm-3) 

ΔNCO2 

(mmol·cm-3) 

Ideal CH4 

Recovery 

(%) 

αads 

ZIF-8 23.6 6.80 4.35 42 2.60 

ZIF-8-ambz-(14) 25.6 2.65 2.29 45 2.77 

ZIF-8-ambz-(24) 28.0 2.82 2.37 49 3.12 

ZIF-8-ambz-(47) 14.8 1.31 1.06 43 3.40 

ZIF-8-90-(50) 45.1 4.61 3.86 62 5.62 

ZIF-en 38.3 3.52 2.50 64 9.98 

 

Overall, the breakthrough simulations shown here illustrate the need to assess 

more than just the breakthrough time and total amount of target gas adsorbed in an 

adsorption column. Many parameters need to be considered before deciding on an 

adsorbent for a target application. In addition, actual breakthrough experiments should be 

considered before a narrowed selection of materials is made. For example, although Mg-
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MOF-74 has been predicted to be one of the better adsorbent materials for adsorption 

applications,36,51 experimental breakthrough curves with a series of M-MOF-74 samples 

have shown there to be complex and dispersive breakthrough behavior depending on the 

metal center selected for the material for CO2/CH4 separations, indicating non- ideal 

behavior of the adsorbent under real conditions.52 

 

5.4 Conclusions 

Two different strategies for improving CO2 selectivity and tuning the surface 

properties of ZIF materials have been demonstrated: (i) the use of amine-containing 

imidazolate linkers to substitute for ZIF-8 linkers during synthesis and prepare an amine-

containing mixed-linker ZIF; and (ii) postsynthetic modification of carbonyl groups in a 

mixed- linker ZIF-8-90 material using ethylenediamine molecules. The two routes yield 

different adsorption properties as assessed by single-component measurements and 

binary IAST predictions and breakthrough curve simulations, with the route utilizing 

PSM leading to a more CO2 selective material compared to ZIF-8 or BPL carbon. In 

addition, these ZIF materials were compared using breakthrough curve simulations to 

assess the performance for a fixed bed adsorption process. The simulations and analysis 

demonstrated that there is a complicated, and not straightforward, method for choosing 

the right adsorbent, but ZIF-8-90-(50) and ZIF-en samples showed the best overall 

predicted performance for an equilibrium-based adsorption process. Although the present 

work is focused on the CO2/CH4 gas pair, it is also likely the above materials would have 

much higher CO2/N2 selectivity when compared to ZIF-8 and other commercially 

available adsorbents, since N2 typically has lower affinity in adsorbents compared to 
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CH4, due to lower polarizability.5 Equally important, because these materials all maintain 

the same I-43m cubic crystal topology and have a reduced pore volume and micropore 

distribution in comparison to ZIF-8, the kinetic separation performance of these materials 

may show improvement over ZIF-8, and these new materials may provide a novel route 

for CO2/CH4 or CO2/N2 separations using pure ZIF membranes or polymer/ZIF 

composite membranes, of which the latter will be explored in Chapter 6.5,53–55 
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CHAPTER 6 

Fabrication and Performance of Zeolitic Imidazolate Framework-Based 

Mixed-Matrix Membranes for Acid Gas Separations 

 

6.1 Introduction 

Mixed-matrix membranes (MMMs) are a promising membrane technology for 

gas and liquid separations due to combining the ease of processability from the polymer 

matrix and the improved molecular sieving properties from the filler phase.1–3 In addition, 

MMMs can be a promising platform for testing the gas separation properties of 

nanoporous materials prior to developing fabrication techniques for pure nanoporous 

membranes.4–7 As shown in Chapter 2 and recent review articles, there are currently few 

studies that convincingly and comprehensively show the utility of metal-organic 

frameworks (MOFs) to improve CO2-based gas separation properties in comparison to 

pure polymeric membranes.1,8–12 In particular, often the previous works do not utilize 

materials that closely match the permeation properties of the polymer, making assessment 

of the composite membranes difficult.13–15 In Chapter 4, the need to closely study the 

fabrication steps for preparing MMMs was demonstrated. The use of high- intensity 

ultrasonication resulted in well-dispersed zeolitic imidazole framework (ZIF) materials in 

a Matrimid® polymer matrix, but characterization of the sonicated ZIF-8 revealed 

changes in the textual and particle properties that may affect the gas transport through the 

crystal structure;16 therefore, fabrication steps of MMMs should be carefully considered 

in analyzing the gas separation properties of ZIF and other MOF materials.  
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In this Chapter, ZIF materials are synthesized utilizing synthesis techniques 

described in preceding Chapters. Control over the pore size distribution and the linker 

composition of different ZIFs is shown to alter the effective permeability and diffusivity 

properties of composite membranes based on single gas permeation experiments. To 

prevent nanoparticle coarsening during membrane fabrication, a different solvent is 

chosen from that used in Chapter 4, and mixed-matrix membranes are prepared 

containing similar weight percentages of each ZIF. Single gas permeation experiments 

reveal considerable differences in effective permeability and diffusivity properties of 

composite membranes, and overall, both the linker functionality and composition are 

shown to have significant effects on the permeability of CO2 and CH4 in the ZIF 

composite membranes. Mixed gas permeation experiments demonstrate that although 

there is some enhancement in ideal permselectivity in single gas permeation experiments, 

there is still little enhancement in the permselectivity of composite membranes compared 

to the pure Matrimid® polymer at high operating pressures. However, high pressure 

mixed gas permeation shows stabilization of CH4 permeability when mixed- linker ZIF 

materials are used as the filler phase, an indication that there is enhancement in 

plasticization resistance in the composite membranes. Process calculations of a simulated 

hollow fiber membrane module are performed to demonstrate tha t although there are 

improvements in both permeability and selectivity in some ZIF composite membranes, 

the major benefit of including these filler materials in composite membranes is significant 

reduction of membrane area for a desired feed flow rate and product purity due to large 

increases in effective permeability.  
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6.2 Experimental Methods 

6.2.1 Materials 

Sodium formate (99%, NaCO2H), Zn(NO3)2·6H2O (99%), 2-methylimidazole 

(99%, 2-MeIM), 2-aminobenzimidazole (97%, 2-amBzIM), benzimidazole (BzIM), and 

chloroform (HPLC grade, CHCl3) were obtained from Alfa Aesar. Dimethylformamide 

(99%, DMF) and methanol (99%, MeOH) were obtained from BDH. Matrimid® 5128 

was obtained from Ciba. All materials were used without further purification.  

 

6.2.2 Synthesis of ZIF-8 

ZIF-8 was synthesized using a scaled-up procedure reported in Chapter 4. In one 

solution, 80 mmol 2-MeIM was dissolved in 200 mL MeOH. In a separate solution, 20 

mmol Zn(NO3)2·6H2O was dissolved in 200 mL MeOH. After stirring separately for 5 

min, the Zn salt solution was poured into the 2-MeIM solution, and after 5 min of mixing, 

a milky white precipitate formed, an indication of crystal formation. The combined 

mixture was allowed to stir for 1 hr.  The precipitate solution was then centrifuged at 

10,000 rpm for 5 mins. The supernatant was removed, and the precipitate was washed 

with MeOH. This procedure was repeated 3 times, and then the product was collected by 

vacuum filtration and dried at 358 K. The yield for the ZIF-8 product was approximately 

25% based on Zn added to the solution. 
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6.2.3 Synthesis of ZIF-8-ambz Hybrids 

ZIF-8-ambz-(15) and ZIF-8-ambz-(30) hybrid samples were synthesized using the 

procedure reported in Chapter 3. First, 2 mmol (8 mmol) of 2-amBzIM, 18 mmol (12 

mmol) 2-MeIM, and 5 mmol NaCO2H were dissolved in 50 mL deionized (DI) H2O by 

heating the solution to 348 K for 2 hrs to form the imidazole solution for ZIF-8-ambz-

(14) (or ZIF-8-ambz-(30)). A separate solution containing 5 mmol Zn(NO3)2·6H2O was 

prepared with 50 mL DMF. After the imidazole solution cooled to room temperature, the 

Zn salt solution was added, and a precipitate formed almost immediately. The solution 

was allowed to react for 1 hr before centrifugation at 10,000 rpm for 10 mins. The 

supernatant was removed, and the precipitate was washed with MeOH. This procedure 

was repeated 3 times, and then the product was recovered by vacuum filtration and dried 

at 358 K. The yield of ZIF-8-ambz-(x) hybrids was approximately 30-40% based on Zn 

added to the solution. 

 

6.2.4 Synthesis of ZIF-7-8-(20) Hybrid 

ZIF-7-8-(20) was synthesized by a scaled-up procedure similar to what is reported 

in Chapter 3. A solution of 8.4 mmol BzIM, 111.6 mmol 2-MeIM, and 120 mmol 

NaCO2H was prepared in 300 mL MeOH. A separate solution of 30 mmol 

Zn(NO3)2·6H2O was prepared in 300 mL DMF. Once both solutions were clear, the Zn 

salt solution was poured into the imidazole solution. The combined mixture was then 

placed in an oven in a sealed polyethylene bottle and allowed to stir for 24 hrs at 323 K. 

After cooling to room temperature, the milky solution was centrifuged at 10,000 rpm for 

5 min. The supernatant was removed, and the precipitate was washed with MeOH. This 
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washing procedure was repeated 3 times, and then the product was recovered by vacuum 

filtration and dried at 358 K. The yield of ZIF-7-8-(20) was approximately 10% based on 

Zn added to the solution. 

 

6.2.5 Mixed-Matrix Membrane Fabrication 

Mixed-matrix membranes were prepared by first dispersing ZIF samples in a 

solvent, and then after addition of polymer, films were prepared using the solution-

casting technique.17 In a typical film preparation procedure, 0.15 g ZIF sample was 

sonicated in 5 mL CHCl3, using a sonication bath with a sonication intensity of 3.8 

W·cm-2. Once particles appeared well-dispersed after approximately 1-2 hrs of 

sonication, 0.2 g Matrimid® 5128 (chemical structure shown in Figure 4.1) was added 

and allowed to dissolve while sonicating in the sonication bath. The addition of 

Matrimid® acts as a primer to cover the ZIF surface with polymer to help promote 

adhesion to the polymeric phase and to prevent aggregation during film preparation.18 

Once the polymer was fully dissolved, the primed ZIF dispersion was sonicated using an 

ultrasonication horn with a sonication intensity of 156 W·cm-2. In order to prevent 

solvent evaporation, primed ZIF dispersions were sonicated with the horn in 30 sec 

intervals, and this procedure was repeated twice. The primed dispersion was then 

sonicated in the bath again for 1 hr. The primed ZIF dispersion was sonicated with the 

horn for two more 30 sec intervals and then poured over the remaining balance of 

Matrimid® to obtain the desired ratio of ZIF to polymer (0.15:0.85 w/w). The membrane 

dope solution was allowed to tumble overnight on a roller. A glove bag was prepared 

with N2/CHCl3 atmosphere, and using a casting knife of 200 μm, a film was manually 
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cast and allowed to vitrify overnight. All films were roughly 30-50 μm in thickness, 

measured using a micrometer, and films were annealed at 498 K for 24 hrs under 

vacuum. 

 

6.2.6 Characterization Methods 

The ZIF materials were analyzed by powder X-ray diffraction (XRD) using an 

X’Pert Pro PANalytical X-ray Diffractometer. Diffraction measurements were done from 

3.5-50° 2θ using an X’celerator detector. Nitrogen physisorption measurements were 

done on a Micromeritics ASAP 2020 surface area analyzer at 77 K. All samples were 

degassed at 523 K for 18 hrs prior to physisorption measurements.  The BET surface area 

and t-plot micropore volume methods were used to analyze the relative surface properties 

of each sample. Horváth-Kawazoe pore size distributions were used to compare the 

relative changes in pore size distributions between the different ZIF samples. The 

methodology for this analysis was covered in Chapter 3. To determine the linker 

composition in the ZIF framework, all samples were analyzed with solution 1H nuclear 

magnetic resonance (NMR) spectroscopy on a Mercury Vx 400 MHz spectrometer after 

digesting samples using d4-acetic acid (CD3CO2D). SEM imaging of ZIF particles was 

done on a Zeiss Leo 1550 scanning electron microscope (SEM). Samples were coated 

with gold by sputtering under vacuum, and images were taken with an accelerating 

voltage of 10 kV. Mixed-matrix membrane films were characterized using Fourier-

transform Infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). FTIR 

measurements were done in transmission mode on a Bruker Vertex 80v FTIR analyzer 

from 4000-400 cm-1. SEM imaging was done on a Zeiss LEO 1550 SEM. Membrane 
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microscopy samples were prepared by submerging films in liquid nitrogen and fracturing 

the film to examine the cross section of the mixed-matrix membrane. Samples were 

coated by sputtering gold under vacuum, and images were taken with an accelerating 

voltage of 10 kV. 

 

6.2.7 Gas Permeation Measurements 

Permeation measurements were performed using a constant volume permeation 

cell described in earlier work.19 A small area of the film was cut out from a larger 

membrane film, and using aluminum tape, a mask was prepared with approximately 1 cm 

in diameter of exposed membrane area. At least two areas of a film and two separate 

films were tested for each membrane reported for single gas measurements. The 

membrane area edges were sealed using Duralco 4525 high temperature epoxy obtained 

from Cortronics and allowed to set overnight before sealing the permeation cell. After 

insertion of the film into the permeation cell, the film was degassed at 308 K for at least 

24 hours before each permeation test. Leak tests were done before each permeation 

experiment, ranging from 10-8-10-7 kPa·sec-1. Subsequent permeation tests following the 

first test were performed after degassing both sides of the film under vacuum for 12-24 

hours and testing the leak rate again. Single gas permeation experiments were performed 

at 308 K with 345 kPa of upstream pressure of either CO2 or CH4. Measurements started 

once upstream gas was introduced to the cell and the downstream was evacuated (<10 -3 

kPa. Permeability of CO2 and CH4 were calculated by the following: 
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where 
dp

dt
 is the pressure rise rate, Vd is the volume of the permeate side of the 

membrane, l is the thickness of the membrane, R is the ideal gas constant, T is the 

absolute temperature, Am is the measured area of the exposed membrane, and Δf is the 

fugacity difference of the feed and permeate sides of the membrane.  

 

Time lag measurements were performed by analyzing the time for gas to permeate 

through the film. By this method, the approximate time to reach the permeation flux 

steady-state  and the apparent diffusion coefficient of the film can be calculated by the 

following:10 
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where Dapp is the effective diffusion coefficient of the membrane, l is the membrane 

thickness measured by a micrometer, and θ is the measured time lag of the membrane 

film. The approximate time to reach steady-state can be estimated by allowing each 

permeation measurement to take at least 4-6 θ, but in most cases, 10 θ was used for each 

measurement. Although fillers have been shown to affect the measured time lag in 

mixed-matrix membranes, this typically only occurs if the fillers strongly adsorb the gas 

that is being tested.20,21 From Chapter 5, it has been shown that the primary amine on the 
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2-amBzIM substituting linker does not greatly influence the overall CO2 affinity in these 

mixed- linker ZIF materials, making Equation 6.2 a reasonable approximation for the 

apparent diffusion rate through a mixed-matrix membrane film. 

 

Mixed gas permeation experiments were performed on a constant volume 

apparatus with a feed mole fraction of 50:50 CO2:CH4. Prior to mixed gas testing, each 

membrane was tested for single gas permeation to confirm if there were noticeable 

differences in performance between mixed gas-tested films and single gas-tested films. 

Films for mixed gas testing had areas approximately 2.5 times larger compared to single 

gas-tested films to obtain a representative performance of each membrane sample tested 

for mixed gas. The retenate flow rate was set to approximately 100 times the downstream 

gas flux in the permeate side of the apparatus. Pressures tested for each film were 

approximately 690, 1380, 2760, and 4140 kPa of total feed pressure. To confirm that at 

each pressure point the membrane was at steady state, films were allow to equilibrate 

over a 12 hr period, which was well-beyond the time required to reach steady-state 

permeation as estimated by the pure gas time- lag measurements. Additionally, 

permeability was measured 1-3 hr after the steady-state time had been reached to confirm 

equilibrium. The composition of gas in the permeate side was determined by using a 

Bruker Daltronics Varian 450 gas chromatograph (GC) with a thermal conductivity 

detector and He reference gas. At each pressure point, at least 3-6 GC injections were 

done to obtain an average of the permeate composition, and at least two injections at 

different times were performed to check that each film was at steady state. The permeate 

composition was used to calculate the separation factor: 
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where yi is the mole fraction of component i in the feed or permeate side. Permeability 

values were calculated by the molar flux across the membrane and the gas composition 

on the permeate side obtained from GC measurements, and mixed gas permselectivity is 

the ratio of the CO2 and CH4 permeability values: 
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where Pi is the permeability of component i. It should be noted that as the feed pressure is 

reduced to low pressures the mixed gas permselectivity will appear to be the same as the 

separation factor due to low differences in driving force for a 50:50 CO2:CH4 feed 

mixture. 

 

6.2.8 Process Calculations 

To compare the effects of adding ZIFs to mixed-matrix membranes, process 

calculations were done using the permeation data obtained for each mixed-matrix 

membrane sample. A single hollow fiber membrane module was modeled using a VBA 

macro program in Microsoft Excel that has been developed by the Koros Research 
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Group, assuming counter-current flow with a shell side feed.22 The permeance of the 

hollow fiber module was predicted by assuming the selective skin layer of the membrane 

to be 500 nm in thickness, and permeance can then be predicted by: 
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By this prediction, the required membrane area and resulting CH4 recovery to obtain a 98 

mol% CH4 product stream was calculated as a function of feed pressure, assuming a 

50:50 CO2:CH4 feed stream of 1 m3·hr-1 volumetric flow rate. This methodology is 

similar to the procedures used by other researchers to compare performance of different 

membrane materials.23 In addition, the product stream was varied from 90-98 mol% CH4 

to understand the relative changes in required membrane area and CH4 recovery for each 

membrane sample. 

 

6.3 Results and Discussion 

6.3.1 ZIF Synthesis and Characterization 

Different ZIF samples were synthesized to understand the relative changes in 

effective permeability and diffusivity in mixed-matrix membranes. Figure 6.1 shows the 

1H NMR spectra of each sample prepared, following degassing at 523 K. The NMR 

peaks have been assigned, and the calculated linker substitutions for the samples are: 100 

mol% 2-MeIM in ZIF-8 sample; 20 mol% BzIM/80 mol% 2-MeIM in ZIF-7-8-(20) 

sample; 15 mol% 2-amBzIM/85 mol% 2-MeIM in ZIF-8-ambz-(15) sample; and 30 
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mol% 2-amBzIM/70 mol% 2-MeIM in ZIF-8-ambz-(30) sample. The substitutions 

chosen for this Chapter represent two hypotheses: (1) the organic functionality in small 

pore ZIFs affects the overall transport through the ZIF crystal based on differences in 

effective flexibility at ambient temperatures;24 and (2) increasing the amount of 

substitution of bulky organic linkers in the ZIF sample, while maintaining the same ZIF 

crystal structure, increases the overall gas transport permselectivity for CO2/CH4. Figure 

6.2 shows the powder XRD patterns of each sample compared with the simulated ZIF-8 

structure, using Mercury. In all cases, even at the higher 2-amBzIM substitution, the 

cubic I-43m ZIF-8 structure is maintained, as demonstrated in Chapter 3; however, there 

appears to be some differences in peak positions and peak broadening related to 

framework substitutions in the ZIF crystal structure.  

 

 

Figure 6.1. Solution 1H NMR of ZIF samples prepared for mixed-matrix membrane 

fabrication. 
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Figure 6.2. Powder XRD patterns of ZIF samples prepared for mixed-matrix membrane 
fabrication and compared with simulated ZIF-8 structure. 

 

Figure 6.3 shows high-resolution, low-pressure N2 physisorption isotherms of the 

ZIF samples used in mixed-matrix membrane preparation. As the ZIF-8 crystal structure 

changes in linker substitution, there is a decrease in both the BET surface area and t-plot 

micropore volume (Table 6.1). Using the methodology from Chapter 3, the H-K pore size 

distributions (PSD) of each sample were calculated and are shown in Figure 6.4. 

Interestingly, ZIF-7-8-(20) and ZIF-8-ambz-(15) have the same PSDs, making 

comparison of permeation data crucial to understanding the effects of organic 

functionality on bridging organic linkers in small pore ZIFs. Additionally, as the 

substitution of 2-amBzIM is increased, the PSD has a shift to smaller pore widths, 

indicating more difficult diffusion pathways for larger gas molecules, such as CH4. 
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Figure. 6.3. Nitrogen physisorption of ZIF samples, showing decrease in surface area and 

micropore volume as ZIF composition changes.  
 

Table 6.1. Linker substitution amounts, framework density, BET surface area and t-plot 
micropore volume of ZIF samples used in mixed-matrix membrane films. 

 

Sample 

Linker 

Substitution 

(mol%) 

Framework 

Density 

(g·cm-3) 

BET Surface 

Area 

(m2·g-1) 

t-plot micropore 

volume 

(cm3·g-1) 

ZIF-8 0 0.925 1860 0.671 

ZIF-7-8-(20) 20 0.983 1100 0.389 

ZIF-8-ambz-(15) 15 0.987 1150 0.399 

ZIF-8-ambz-(30) 30 1.049 350 0.122 
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Figure 6.4. Horváth-Kawazoe pore size distributions of ZIF samples. As BzIM or 2-

amBzIM is added to ZIF framework, there is a shift in PSD to a smaller pore width.  
 

6.3.2 Mixed-Matrix Membrane Performance 

SEM images of ZIF particles and MMM film cross sections shown in Figures 6.5 

and 6.6 demonstrate good adhesion to the Matrimid® polymeric matrix and adequate 

dispersion throughout the film. It is important to note that without the priming step 

described previously there was inadequate dispersion and adhesion of ZIF particles 

throughout the polymeric matrix; therefore, it is recommended with further MMM studies 

utilizing ZIF materials to use a polymeric priming step to obtain well-dispersed particles. 

Unlike the SEM images shown in Chapter 4, the ZIF particles do not exhibit any 

significant changes in particle size or morphology following membrane fabrication. It is 
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likely that the solvent chosen for this study, CHCl3, does not provide sufficient solubility 

of the ZIF framework to cause any nanoparticle coarsening.  

 

 

Figure 6.5. SEM images of ZIF particles prior to membrane fabrication: (a) ZIF-8; (b) 

ZIF-7-8-(20); (c) ZIF-8-ambz-(15); (d) ZIF-8-ambz-(30). 
 

FTIR spectra of annealed films in Figure 6.7 show vibrations typical for 

Matrimid® with both symmetric and asymmetric vibrations for the imide group in the 

polymer backbone at approximately 1700 cm-1. Unlike the FTIR spectra in Chapter 4, 

there is no apparent shift in the imide vibrations when ZIFs are added to the polymeric 

film. This may be due to the lower annealing conditions chosen for the set of films in this 

Chapter compared with Chapter 4. In addition, there are significant differences in the 

membrane fabrication steps for these films, including a different casting solvent and 

sonication procedure. The presence of ZIF materials is evident in the FTIR spectra due to 
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v(Z-N) at 450 cm-1 and to v(C-H) at 3150 cm-1 corresponding to the imidazolate ring. The 

v(-N-H) band that appears at 3400 cm-1 in the ZIF-8-ambz-(x) samples is due to the 

presence of the primary amine functional group in the mixed- linker ZIFs. 

 

 

Figure 6.6. SEM images of 15 wt% ZIF/Matrimid films fabricated, using priming and 
solution casting techniques: (a) ZIF-8; (b) ZIF-7-8-(20); (c) ZIF-8-ambz-(15); (d) ZIF-8-

ambz-(30). 
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Figure 6.7. FTIR spectra of annealed ZIF/Matrimid films, showing presence of ZIF with 

v(Z-N) at 450 cm-1 and no shift or broadening of the imide vibration.  
 

Permeation results for pure Matrimid® and ZIF/Matrimid® membranes are shown 

in Figure 6.8. As expected from previous studies,14,25 when ZIF-8 is used as the filler 

phase in a highly-selective, glassy polymeric matrix, without the occurrence of 

nanoparticle coarsening as seen in Chapter 4, there is no change or a slight decrease in 

the ideal selectivity and a large increase in the effective permeability of the membrane. 

These permeation characteristics for ZIF-8 are due to low selective transport of CO2 and 

CH4 in the ZIF crystal, resulting in a polymer-filler mismatch in terms of permeability.26 

To compare the effect of functional groups in small pore ZIFs, ZIF-7-8-(20) and ZIF-8-

ambz-(15), which have similar micropore volume and PSD, are used with the same 

weight percentage and fabrication steps. As Figure 6.8 shows, there is a slight increase in 

ideal permselectivity when ZIF-7-8-(20) is used as the filler phase and a decrease in the 



197 

effective CO2 permeability, compared with the ZIF-8/Matrimid® films; however, when 

ZIF-8-ambz-(15) is used as the filler phase, there is a further increase in CO2/CH4 ideal 

permselectivity compared to the pure polymer, the ZIF-8/Matrimid® membrane, and the 

ZIF-7-8-(20)/Matrimid® membrane samples. Additionally, there is a significant reduction 

in CO2 permeability compared to the ZIF-8/Matrimid® membrane. Because the ZIF-8 

unit cell has eight open pore windows and the amount of substitution for 2-amBzIM in 

the sample is roughly more than 1/7 of total linkers in the framework, there may be 

substantial intermolecular interaction between the 2-amBzIM linkers, possibly via 

hydrogen bonding, that could change the effective flexibility of the ZIF pore window in 

comparison to ZIF-8 or ZIF-7-8-(20), thus altering the diffusion pathway through the ZIF 

crystal.24,27 Other mixed-matrix membrane studies using both an amine-functionalized 

and unfunctionalized MOF fillers have shown substantial differences in CO2 and CH4 

permeation characteristics between membrane samples, likely due to structural changes 

in the MOF filler and not due to the pendant amine enhancing separation performance 

based on affinity for CO2.12,21 

 

As the effective substitution of 2-amBzIM is further increased, there is a 

concurrent increase in ideal permselectivity with a slight decrease in the effective CO 2 

permeability compared to ZIF-8-ambz-(15)/Matrimid®. It is likely that at the studied 

linker loadings there is not significant hindrance of CO2 diffusion as the substitution of 2-

amBzIM increases; however, when the mixed- linker ZIF/Matrimid® membranes are 

compared, there are apparent differences in the CO2 permeability when BzIM or 2-

amBzIM is used in the mixed- linker ZIF structure. Regardless, the permeation results 
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suggest that the mixed- linker ZIF approach does provide enhancement in CO2/CH4 

selectivity for a ZIF-8-type structure, and that this approach may be useful for tuning not 

just the CO2/CH4 gas separation properties, but other molecular separations, in different 

ZIF materials.26,28,29 

 

 

Figure 6.8. Single gas permeation results of ZIF/Matrimid membranes at 345 kPa and 
308 K. There is an increase in ideal selectivity when there is a substitution in the ZIF-8 

framework for a bulkier organic linker.  
 

Diffusion coefficients of each film were calculated using the time lag method and 

are shown in Table 6.2. When the diffusion coefficients are compared with the 

permeability values obtained for each membrane, it is apparent that the ideal 

permselectivity increase observed for the mixed- linker ZIFs is related to an increase in 
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diffusion selectivity, and the decrease in CO2 permeability is linked to a decrease in 

diffusivity. This implies that substitution of 2-MeIM for a bulkier organic linker, such as 

BzIM or 2-amBzIM, enhances the effective transport selectivity for CO2/CH4. This may 

also enhance other gas pair separations for these mixed-linker ZIFs; for instance, ZIF-8 

has been shown to have low C2H4/C2H6 kinetic selectivity,30,31 but careful substitution 

with a bulky linker may improve the diffusion selectivity without severe hindrance of 

diffusion for C2H4. It should be noted that at the highest linker substitution in the ZIF-8 

framework, ZIF-8-ambz-(30), the diffusion coefficient is close to the Matrimid® diffusion 

coefficient. If there is any further increase in substitution, there may be a substantial drop 

in diffusion for CO2, resulting in a “plugged-sieve” type behavior for mixed-matrix 

membranes. 

 

Table 6.2. Diffusion coefficients of Matrimid® and ZIF/Matrimid® films, determined by 
the time lag method. Error of each sample is shown in parentheses.  
 

Sample 
CO2 Diffusivity 

(10-9 cm2·sec-1) 

CH4 Diffusivity 

(10-9 cm2·sec-1) 

Diffusion 

Selectivity 

Matrimid® 8 (2) 0.8 (0.2) 11 (1) 

15 wt% ZIF-8/Matrimid® 25 (2) 2.3 (0.2) 10 (1) 

15 wt% ZIF-7-8-(20)/Matrimid® 18 (2) 1.5 (0.1) 11 (1) 

15 wt% ZIF-8-ambz-(15)/Matrimid® 10.6 (0.7) 0.86 (0.04) 12 (1) 

15 wt% ZIF-8-ambz-(30)/Matrimid® 8.8 (0.5) 0.67 (0.05) 13 (1) 

 

Mixed gas permeation isotherms can reveal behavior of membranes under 

realistic feed conditions for natural gas purification.32 Often, single gas permeation can be 

misleading when determining permselectivity due to competitive sorption and diffusion 
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affecting the overall separation performance in a pure polymer matrix as well as CO 2 

plasticization decreasing the permselectivity at high operating pressures.33,34 Separation 

factor values of membrane samples determined from mixed gas permeation expe riments 

are shown in Figure 6.9. As previous studies have shown,23 the ideal permselectivity of 

pure Matrimid® is often lower than the mixed gas separation factor and permselectivity, 

which is evident when comparing Figures 6.8 and 6.9 for pure Matrimid®. The composite 

membranes show interesting behavior as the partial pressure of CO2 is increased in the 

feed. The separation factor is close to or even less than pure Matrimid® below the 

expected plasticization pressure; however, above the plasticization pressure, the ZIF-8-

ambz-(30) composite membrane shows higher separation factor than pure Matrimid®. 

Additionally, the other composite membranes show a constant separation factor as the 

partial pressure of CO2 is increased by 700 kPa above the plasticization pressure.  This 

indicates that the presence of mixed-linker ZIFs in the polymeric matrix suppresses the 

plasticization effect that is typically expected in glassy polymeric membranes.35  
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Figure 6.9. Separation factor of mixed-matrix membranes with increasing feed and CO2 

partial pressure. Error bars represent variance in measured GC injections. Shaded area 
represents typical plasticization pressure for Matrimid®. 
 

The CO2 and CH4 permeability values, shown in Figure 6.10, reveal that at the 

highest pressure tested the CH4 permeability is stabilized in the composite membranes 

while the CO2 permeability continues to decrease, similar to the behavior in pure 

Matrimid®.  The near-constant CO2 permeability at high CO2 partial pressure is a result 

of saturated sorption sites in the surrounding polymeric matrix as the feed pressure 

increases.36,37 The stabilized CH4 permeability suggests that the observed improvement in 

separation factor found in the composite membranes is caused by suppression of 

plasticization when the ZIF is used as a filler in Matrimid®. As the surrounding polymeric 

matrix continues to swell due to an increase in the partial pressure of CO2, resulting in 

increased CH4 permeability around the ZIF as seen in pure Matrimid®, the ZIF crystals 
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may exhibit some hindrance in CH4 transport with increasing pressure, giving the 

apparent enhancement in plasticization resistance. Chmelik et al.38 have explored the 

transport diffusion properties of ZIF-8 in pure gases and mixtures of CO2 and CH4, 

measured by IR microscopy. The authors found that without the presence of CO2 the 

diffusion coefficient of CH4 increased considerably with loading (analogous to increasing 

feed pressure). When mixtures of CO2 and CH4 in different concentrations is present in 

the ZIF-8 crystal, the CH4 diffusivity did not exhibit this same increase with adsorbate 

loading and showed an apparent hindrance in diffusion due to the presence of CO 2. 

Molecular simulations revealed that CO2 adsorption sites occur near the pore window of 

ZIF-8, and this adsorption behavior slows the transport of CH4 in gas mixtures as the 

adsorbate loading increases. Hindering diffusion effects have also been shown with other 

nanoporous materials, such as zeolite DDR, using molecular simulations.39 It is likely 

that use of bulky organic linkers in the ZIF framework, while maintaining a ZIF-8-like 

structure, results in further hindrance of CH4 diffusion as the loading of CO2 inside the 

ZIF crystal increases with feed pressure. This increased hindrance would result in 

apparent CH4 permeability and permselectivity stabilization (Figure 6.11) with increasing 

partial pressure of CO2 if the mixed- linker ZIFs have higher permselectivity than the 

parent ZIF-8 material. 

 



203 

 

 

Figure 6.10. Permeability of CO2 (a) and CH4 (b) calculated from mixed-gas permeation, 
normalized by fugacity driving force. Dashed lines represent permeability values from 

pure gas measurements. Shaded area represents typical plasticization pressure for 
Matrimid®. 
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Figure 6.11. Mixed gas permselectivity of membrane samples with increasing feed and 
CO2 partial pressure. Error bars represent variance in GC injection measurements.  

Shaded area represents typical plasticization pressure for Matrimid®. 
 

These mixed gas results shows that the mixed- linker ZIFs have mixed gas 

permselectivity comparable to Matrimid® at lower feed pressures, but as the CO2 partial 

pressure increases, the mixed gas permselectivity inside the ZIF crystal shows 

improvement and even suppresses transport of CH4 through the ZIF crystal, resulting in 

an effective stabilization of CH4 permeability in the composite membranes. Increasing 

either the weight loading of ZIF in the polymer or increasing the molar ratio of the 

substituting bulky organic linkers in the ZIF framework may further improve the 

permselectivity and separation performance of the composite membrane; however, as 
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diffusivity measurements showed, there may exist an “upper limit” in the linker 

substitution to maintain highly permeable ZIF materials. More importantly, these results 

are the first to examine permeation behavior of dense-film mixed-matrix membranes 

above the CO2 plasticization pressure of the surrounding polymeric matrix and at CO2 

partial pressures that are relevant for industrial gas separations.32 Although there is 

increased polymeric chain mobility associated with CO2-induced swelling and 

plasticization,35 there is no degradation of the polymer/ZIF interface that results in large 

changes in the CH4 permeability or separation factor for CO2/CH4.  

 

6.3.3 Hollow Fiber Membrane Process Simulations 

Hollow fiber membrane simulations are useful for comparing different 

membranes without determining proper hollow fiber spinning and fabrication techniques, 

and these simulations can help screen different filler materials without the need of testing 

each filler sample.40,41 Furthermore, it has already been shown that the membrane 

properties of mixed-matrix dense film membranes containing ZIF-8 are transferrable to 

hollow fiber membranes with suitable spinning and fabrication.42 Table 6.3 shows the 

permeance values assumed for each membrane studied, calculated by assuming a 500 nm 

selective skin layer and using the mixed gas permeability values of CO2 and CH4 

calculated from mixed gas testing. Because Matrimid® shows a decrease in selectivity as 

the CO2 feed pressure increases in mixed gas streams, it is important to consider 

anticipated separation performance under conditions more closely related to industrially 

relevant separations.32 The dimensions of the hollow fiber module and the conditions 
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assumed for the fiber module are shown in Table 6.4 and represent typical commercial 

hollow fiber module properties.32  

 

Table 6.3. Hollow fiber membrane permeance values assumed for process calculations, 

based on a 500 nm selective skin layer. 
 

Sample 

CO2 Permeance (GPU) CH4 Permeance (GPU) 

690 

kPa 

1380 

kPa 

2760 

kPa 

4140 

kPa 

690 

kPa 

1380 

kPa 

2760 

kPa 

4140 

kPa 

Matrimid 16.0 15.3 14.5 14.4 0.37 0.34 0.38 0.40 

ZIF-7-8-(20)/Matrimid 37.6 35.1 34.1 34.4 0.91 0.84 1.02 0.98 

ZIF-8-ambz-(15)/Matrimid 27.4 26.6 25.2 25.6 0.69 0.66 0.77 0.72 

ZIF-8-ambz-(30)/Matrimid 21.4 19.7 18.9 18.5 0.51 0.46 0.46 0.47 

         

 

Table 6.4. Hollow fiber membrane module dimensions and parameters.  

 

Hollow Fiber Module Properties 

Feed Flow Rate (m3(STP)·hr-1) 1.00 

Temperature (K) 308 

Fiber Outer Diameter (μm) 300 

Fiber Inner Diameter (μm) 150 

Active Fiber Length (m) 0.8 

Permeate Pressure (kPa) 103 

Feed Location Shell Side 

CO2:CH4 Feed Composition 50:50 mol% 

 

The first case considered for hollow fiber membrane process simulations was 

done under the requirement that 98 mol% CH4 and 2 mol% CO2 are the product 

composition based on the feed flow rate of 1 m3·hr-1. The flow rate chosen for these case 
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studies represents a base line that can then allow the membrane area to be scaled linearly 

with increasing feed flow rate.23 The required membrane area to reach this composition 

and the total CH4 recovery are shown in Figure 6.12. Because the separation factor and 

permselectivity does not change greatly when ZIF materials are added to the polymeric 

matrix, the major difference in hollow fiber membrane performance between pure 

Matrimid® and the composite membranes is the predicted area needed to reach the 

product composition; therefore, if the cost of ZIF materials is the same or less than the 

polymeric matrix, the inclusion of ZIFs in the membrane module provides a significant 

cost benefit by reducing the overall area required for CO2/CH4 separations. Figure 6.12a 

also shows a significant reduction in membrane area with increasing feed pressure due to 

higher effective flux through the hollow fiber module.23 The approximate membrane area 

reduction with adding ZIFs to the polymeric matrix is at least 25% and varies based on 

the feed pressure and the mixed- linker ZIF used in the composite membrane. Because 

membrane area typically scales linearly with feed flow rate, a 25% reduction of 

membrane area can be very cost-beneficial as the desired feed flow rate increases.  
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Figure 6.12. Required membrane area (a) and CH4 recovery (b) to reach target product 
composition of 98 mol% CH4. 
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The second case considered for process simulations is varying the required 

product composition with a constant feed pressure of 4200 kPa. The membrane area and 

CH4 recovery are shown in Figure 6.13. Again, because the separation performance of all 

the membranes examined in this Chapter does not change substantially with inclusion of 

ZIF in the polymer, the CH4 recovery does not vary greatly between membranes. The 

benefit of ZIF materials is manifested in the reduction of required membrane area to 

reach the target CH4 product composition. To avoid a great loss in CH4 recovery, it may 

be beneficial to use these membranes for a “rough cut” of the CO2/CH4 feed stream that 

can then be further purified by other separation techniques. For instance, if a product 

composition of 8 mol% CO2 is desired for transport in pipelines to a gas processing 

facility,32 these simulations predict CH4 recovery of approximately 93% can be achieved 

with one module. Additionally, it may be possible to increase the overall CH4 recovery 

with these mixed-matrix membranes by utilizing higher weight loading of ZIF in the 

polymer or assuming a smaller selective skin layer can be achieved.22,43 As these 

simulations and mixed gas experiments have shown, inclusion of mixed- linker ZIFs can 

reduce the required membrane area to perform natural gas purification. It may be possible 

to use mixed- linker syntheses on smaller pore ZIF materials (e.g., ZIF-11) to further 

enhance the observed separation performance in ZIF-containing mixed-matrix 

membranes without significantly altering the diffusion of CO2 inside the ZIF crystal. 
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Figure 6.13. Required membrane area and CH4 recovery as a function of target CH4 

composition in the product stream. Closed symbols: membrane area; open symbols: CH4 
recovery. 

 

6.4 Conclusions 

The work in this Chapter has shown that by controlling the organic linker 

composition in ZIF materials the apparent diffusion and permeability of gases can be 

controlled in mixed-matrix membranes. This ultimately results in improved separation 

properties, as shown by single and mixed gas CO2/CH4 permeation, for mixed-matrix 

membranes containing mixed-linker ZIFs. High pressure mixed gas permeation has 

shown that ZIF materials have unusual permeation behavior that results in effective 

stabilization of permselectivity with increasing pressure by suppressing the transport of 

CH4 in the composite membrane. Hollow fiber membrane process simulations revealed 

that the largest benefit of including ZIF materials in mixed-matrix membranes is 
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reduction of membrane area for a target gas separation and feed conditions. These 

simulations are promising for mixed- linker ZIFs, and now hollow fiber membranes 

containing these materials are the next step in investigating the effective separation 

properties of mixed- linker ZIF materials. 
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CHAPTER 7 

Summary and Outlook 

 

7.1 Summary 

The focus of this thesis has been to examine the possible synthesis and fabrication 

methods necessary to engineer materials useful for acid gas separations by either 

adsorption or membrane separations. The main theme has been the synthesis of zeolitic 

imidazolate frameworks with controlled organic linker compositions that alter the 

adsorption and diffusion properties. These mixed- linker ZIFs showed promising results 

for improving the CO2/CH4 gas separation properties in a ZIF-8-like structure, but may 

also extend to other gas pairs such as olefin/paraffin separations. Fabrication of mixed-

matrix membranes has shown a number of interesting results. In particular, depending on 

the solvent and dispersion techniques, there are significant differences in the effective 

permeability properties of the composite membrane. Mixed- linker ZIFs used to fabricate 

mixed-matrix membranes demonstrated an improvement in the overall separation 

properties compared to the parent ZIF material, ZIF-8, and permeation experiments 

demonstrated this improvement to be linked to enhancing the diffusion selectivity by 

substitution in the ZIF framework with a bulky organic linker.  

 

7.1.1 Synthesis and Characterization of Mixed-Linker Zeolitic Imidazolate Frameworks 

In Chapter 3, a synthesis method was presented that allowed the control of 

organic linkers in a ZIF material without severely altering the apparent crystal structure. 
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This synthesis method, termed as non-solvent induced crystallization, has shown to be 

applicable to a number of different crystal structures and organic linkers with examples 

of synthesizing materials containing: (1) 2-methylimidazole; (2) carboxaldehyde-2-

imidazole; (3) benzimidazole; and (4) 2-aminobenzimidazole. These results were 

promising that this may be a general synthesis technique which could be applied to 

different ZIF crystal structures, or even different MOF structures.  

 

Nitrogen physisorption was used as the primary characterization method for 

analyzing these mixed- linker ZIF materials. For ZIFs containing 2-methylimidazole and 

carboxaldehyde-2-imidazole, the N2 physisorption isotherms showed a great deal of 

control over where the gate-opening pressure in the ZIF structure occurred along the 

isotherm. When bulkier organic linkers were used in the mixed- linker ZIF synthesis, such 

as benzimidazole and 2-aminobenzimidazole, the isotherms revealed that there was no 

evidence of gate-opening as the loading of the bulky linkers increased in the ZIF material 

while maintaining the ZIF-8 crystal structure. In addition to analyzing the isotherms, a 

methodology for using Horváth-Kawazoe equations in these mixed- linker ZIFs was 

proposed, and the subsequent pore size distributions of the bulky linker-substituted ZIF 

materials showed the appearance of a secondary pore size that was smaller than the 

primary pore size distribution. Due to the current understanding of how flexibility affects 

transport in these ZIF materials, it is likely that the bulky linkers preventing the gate-

opening from occurring will affect the molecular diffusion in the ZIF crystal and improve 

the gas separation performance for CO2/CH4. 
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Other characterization showed consistent trends between different techniques. 

TEM images did not reveal different crystal phases by analyzing the crystal size 

distribution and morphology, and the crystals obtained from this synthesis technique 

showed particle size distributions useful for mixed-matrix membrane fabrication. TGA 

analysis showed that incorporation of different organic linkers would lead to thermal 

stability changes, but did not significantly reduce the overall stability that the parent ZIF 

materials exhibited or show evidence of two separate decomposition temperatures to 

indicate different crystal phase formation.  

 

7.1.2 Processing Condition Effects on Zeolitic Imidazolate Framework Materials during 

Mixed-Matrix Membrane Fabrication 

In Chapter 4, the effects of ultrasonication were investigated to understand the 

stability of ZIF materials using fabrication techniques typically employed for making 

mixed-matrix membranes. Different sonication times, dispersion concentrations, and 

sonication power were examined to know changes in ZIF-8 related to its structure, its 

adsorption properties and its particle size and morphology. Additionally, mixed-matrix 

membranes were fabricated using different sonication intensity and tested with CO2/CH4 

permeation experiments to understand changes in membrane performance related to 

membrane fabrication methods. 

 

High- intensity ultrasonication utilizing a sonication horn showed that there are 

significant alterations in the ZIF-8 particle size and morphology following 

ultrasonication. SEM images and dynamic light scattering measurements showed the 
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particle size of ZIF-8 increased with increasing sonication time, but when the ZIF 

nanoparticles were solvothermally treated in the same organic solvent, there was no 

apparent change in particle size or morphology. These results indicated that 

ultrasonication causes a non- ideal nanoparticle coarsening that may be related to Ostwald 

ripening effects caused by rapid dissolution and recrystallization in the chosen organic 

solvent, tetrahydrofuran.  

 

Characterization of ZIF-8 nanoparticles following ultrasonication showed 

maintenance of the crystal structure with some evidence from Williamson-Hall analysis 

that there is an increase in the crystallite size and strain related to the coarsening 

phenomenon. Nitrogen physisorption showed some reduction in Langmuir surface area 

and t-plot micropore volume that may correlate to changes in the diffusion pathways 

inside the ZIF-8 crystals. Lastly, X-ray synchrotron measurements and Pair Distribution 

Function analysis revealed the local atomic structure of the ZIF-8 nanoparticles did not 

change significantly following ultrasonication. 

 

Mixed-matrix membranes fabricated from different sonication intensities revealed 

that the composite membrane transport of CO2 and CH4 can be very dependent on the 

fabrication steps. Importantly, membranes prepared with high- intensity ultrasonication 

showed membrane performance consistent with expected mixed-matrix membranes as 

the weight loading of ZIF-8 increased. The membranes showed both an increase in the 

selectivity and permeability for the gas pairs considered while membranes prepared with 

low-intensity ultrasonication exhibited poor separation performance in comparison to the 
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pure Matrimid® polymer. SEM images revealed this to be related to the poor dispersion 

of ZIF-8 nanoparticles in the surrounding polymeric matrix. Several characterization 

techniques of the membranes prepared with high- intensity ultrasonication showed good 

adhesion and interaction with the polymeric matrix as indicated by changes in FTIR 

spectra and glass transition temperature measurements using differential scanning 

calorimetry. 

 

7.1.3 Gas Adsorption Properties and Application of Mixed-Linker Zeolitic Imidazolate 

Frameworks for Acid Gas Separations 

Chapter 5 was the investigation of how mixed- linker ZIFs affect the CO2 and CH4 

adsorption properties and how these properties are related to an ideal adsorption process 

by utilizing thermodynamic and chemical engineering relations to simulate a packed bed 

adsorption column. Different mixed- linker ZIF materials were fabricated, and the CO2 

and CH4 isotherms were measured to obtain Henry’s constants, isotherm parameters and 

heats of adsorption. Ideal adsorbed solution theory was used to calculate the adsorption 

behavior in gas mixtures containing different concentrations of CO2 and CH4, and a 

packed bed adsorption column was simulated to obtain the breakthrough characteristics 

of each adsorbent as well as the CH4 recovery for a typical adsorption cycle.  

 

Incorporation of 2-aminobenzimidazole in mixed- linker ZIFs revealed that there 

was only a small enhancement for CO2 affinity compared to a pure ZIF-8 material and 

was best explained by reduction of basicity of the primary amine group from the aromatic 

ring fused with the imidazolate linker. However, there was an observable increase in 
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adsorption selectivity based on the calculated Henry’s constants and a concomitant 

increase in the CO2 heat of adsorption compared to ZIF-8. These results indicate that 

mixed- linker ZIFs containing 2-aminobenzimdiazole may not be necessarily useful for 

equilibrium-based separation techniques, but kinetic-based separations (either an 

adsorption column or membrane) may show significant improvement in separation 

enhancement compared to ZIF-8, considering the degree of control for incorporating the 

substitution linker into the ZIF-8 framework. 

 

Modification of a pure ZIF-90 structure revealed low chemical stability and 

susceptibility to postsynthetic modification to enhance or change the adsorption 

properties. Synthesis of a mixed-linker ZIF material containing the ZIF-90 linker showed 

excellent chemical stability when reacted with ethylenediamine to form a ZIF material 

containing a primary amine functional group not affected by an aromatic ring. CO 2 

adsorption experiments revealed significant enhancement of Henry’s constant and heat of 

adsorption while showing little change in the CH4 adsorption properties. The ideal 

adsorption selectivity of this functionalized material showed the highest CO2/CH4 

adsorption selectivity in a ZIF material.  

 

Breakthrough simulations were used to assess the performance o f each adsorbent 

by using several simplifying assumptions. Overall, the results showed that use of mixed-

linker ZIFs as adsorbents significantly increased the breakthrough time, and this was 

shown to occur over different feed compositions based on constant feed pressure. 

Additionally, CH4 recovery, based on loss of CH4 adsorbed and CH4 in the adsorption 
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column at a certain breakthrough time, increased substantially with the use of mixed-

linker ZIFs. These simulations indicated that in a limiting case ZIFs that incorporate more 

polar functional groups than ZIF-8 will outperform the parent material for an adsorption 

process. More detailed simulations, taking into account mass and heat transfer 

resistances, may reveal even more enhancement in separation performance when utilizing 

mixed- linker ZIF materials. 

 

7.1.4 Fabrication and Performance of Zeolitic Imidazolate Framework-Based Mixed-

Matrix Membranes for Acid Gas Separations 

In Chapter 6, the effects of mixed- linker ZIFs on the permeability and separation 

performance of mixed-matrix membranes was studied to understand how functional 

groups in small pore ZIFs and how increasing substitution in mixed- linker ZIFs changes 

the transport properties without changing the overall crystal structure. ZIF materials were 

synthesized with controlled pore size distributions and incorporated into mixed-matrix 

membranes by typical fabrication techniques. Both single gas and mixed gas permeation 

experiments revealed changes in the separation properties when compared to the pure 

polymeric membrane performance. Mixed gas permeation experiments were used to 

simulate a hollow fiber membrane module containing different ZIF materials in the 

selective skin layer. These process simulations demonstrated that the primary benefit of 

incorporating ZIF materials was the significant reduction of membrane surface area 

required to obtain different separation product targets.  
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Synthesis of mixed- linker ZIFs with controlled organic linker compositions 

showed an associated control in pore size distribution, determined from N2 physisorption 

experiments and Horváth-Kawazoe pore size distribution analysis. Fabrication and 

characterization of membranes containing different ZIF materials showed there to be 

adequate dispersion of ZIF particles in the polymeric matrix and excellent adhesion to the 

surrounding polymeric phase. SEM images revealed there to be no relative changes in 

particle size and morphology following fabrication, and this was attributed to using 

different fabrication conditions to avoid nanoparticle coarsening during membrane 

preparation. 

 

Single gas permeation experiments showed a decrease in effective permeability in 

mixed-matrix membranes as the linker composition changed in either organic 

functionality or molar loading. Comparison of permeability and diffusivity values 

between mixed-linker ZIFs containing benzimidazole and 2-aminobenzimidazole with 

similar pore size distributions revealed a relative decrease when a primary amine 

functional group was used, and this may be related to changes in localized flexibility in 

the ZIF framework. Increasing the loading of 2-aminobenzimidazole in the ZIF 

framework without altering the crystal structure showed a slight decrease in the CO 2 

diffusivity inside the membrane and a significant reduction in the CH4 diffusivity, 

lowering below the intrinsic polymeric diffusivity. This was likely due to the amount of 

2-aminobenzimidazole linkers blocking the effective transport of CH4 inside the ZIF 

crystal. 
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Mixed gas permeation revealed unusual permeation behavior when mixed-linker 

ZIFs were used in mixed-matrix membranes. In all samples, the effective CO2 

permeability increased at high pressures, above the plasticization pressure, while the 

effective CH4 permeability remained constant above the plasticization pressure. This may 

likely be related to the hindering diffusion effects that have been observed previously for 

ZIF-8. Hollow fiber membrane simulations using the mixed gas permeation data showed 

that the largest benefit of utilizing ZIFs in a polymeric matrix was significant reduction in 

required membrane area to obtain a desired CH4 product purity at various feed pressures. 

Calculation of CH4 recovery at a constant feed pressure revealed there to be no difference 

between the pure polymeric membrane and membranes containing mixed-linker ZIF 

materials. 

 

7.2 Future Work 

7.2.1 Mixed-Linker and Mixed-Metal Strategies for Zeolitic Imidazolate Frameworks 

The work presented in this thesis offers multiple avenues for future research in the 

science and engineering of metal-organic frameworks for gas separations. As Chapter 3 

demonstrated, the mixed- linker synthesis strategy can be used to make materials with 

different organic functional groups and different crystal structures. To probe if materials 

could be synthesized that do not have the SOD topology, a brief study, shown in 

Appendix A, shows that ZIF-11, a ZIF material with a zeolite RHO topology, could be 

synthesized using the non-solvent induced crystallization technique in a similar manner 

as ZIF-8, ZIF-90 and ZIF-7. Therefore, it may be possible to apply the same synthesis 
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techniques demonstrated in this thesis to other ZIF materials besides the ZIF-8 crystal 

structure or SOD topology.1  

 

While amine and carbonyl groups are the only functional groups investigated in 

this thesis for changing the separation properties in ZIFs, it should be possible to include 

other functional groups of interest into the ZIF structure. As this thesis has shown, the 

effect of different functional groups may change the ZIF framework flexibility, affecting 

adsorption and molecular diffusion of gas molecules through the crystal structure. 

Introduction of different functional groups may also change the ZIF flexibility to enhance 

separation properties. Additionally, it may also be possible to “open up” ZIF-8 by 

introducing imidazole linkers with no functional groups. This has been demonstrated 

previously by using postsynthetic exchange techniques;2 therefore, by introducing the 

imidazole in the synthesis stage, a more uniform distribution of linkers could be realized. 

By “opening up” ZIF-8, changes in diffusion coefficients of larger gas molecules may 

make an imidazole-substituted ZIF-8 material attractive for larger hydrocarbon 

separations, such as n-butane/iso-butane molecular separations.3 Though zinc has been 

used exclusively in this thesis, it is possible to use other transition metals to fabricate ZIF 

materials.1,4,5 By introducing different metal groups, ZIF materials can have many 

different properties, including adsorption, diffusion, and even catalytic properties.6,7 It 

may be possible to introduce different metal salts in controlled quantities besides zinc to 

change the overall properties. Overall, the synthesis techniques may be generally applied 

to different ZIF structures to tailor the desired properties of the crystal to the target 

molecular separation. 
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7.2.2 Asymmetric Hollow Fiber Membranes with Zeolitic Imidazolate Frameworks  

All membranes studied in this thesis are fabricated into dense film membranes to 

study the fundamental permeability properties of the composite membranes. In order to 

be applied to industrially relevant separations, these membranes must be fabricated into 

membranes with much higher surface area packing per volume, and hollow fiber 

membranes are an ideal platform for mixed-matrix membranes. 

 

There already exist some examples of MOFs and ZIFs incorporated into 

polymeric membranes in hollow fiber membrane form.8–10 It is likely that the mixed-

linker ZIF strategy presented in this thesis can be easily scaled up to synthesize enough 

materials for hollow fiber membrane fabrication. As Chapter 6 demonstrated, the main 

benefit of including ZIF materials in a polymeric matrix will be significant reduction for 

the target CH4 purity and feed flow rate. These simulations may predict the actual 

behavior in the hollow fiber membrane, assuming that fabrication of ZIF-containing 

hollow fiber membranes does not greatly affect the porosity and crystal structure of the 

filler ZIF material. 
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APPENDIX A 

Room-Temperature Synthesis and CO2/CH4 Adsorption Properties of 

Zeolitic Imidazolate Framework-11 

 

A.1 Introduction 

In the preceding Chapters, only one crystal structure, ZIF-8, was closely 

examined for preparing mixed- linker zeolitic imidazolate frameworks for acid gas 

separations. There are many other ZIF topologies that exist, and in particular, ZIF-11 is 

of interest for CO2/CH4 and CO2/N2 separations due to its small pore channel.1–3 Figure 

A.1 compares the ZIF topologies of ZIF-8 and ZIF-11. The challenge of studying ZIF-11 

so far has been synthesizing the material without the presence of other crystalline phases. 

Seoane et al. have shown that traditional solvothermal techniques for making ZIF-11 

result in a non-porous ZIF phase as a secondary crystal phase.4 By sonochemical 

synthesis, the authors obtained a pure ZIF-11 phase after 12 hrs following an initial ZIF-7 

phase formation; however, by this technique, the authors only obtained ZIF-11 in very 

small quantities (1.1-7.5 mg) and low yields (0.4-2.9%).4 

 

The work presented in this thesis has shown that utilization of the non-solvent 

induced crystallization (NSIC) technique can provide a unique route to crystallizing 

materials that would normally require solvothermal techniques (e.g. ZIF-7). The goal of 

this Appendix is to demonstrate that NSIC techniques can be applied to other crystal 

structures other than the ZIF sodalite topology. In addition, because ZIF-11 has an 

interesting pore structure and crystal topology, it would be useful to ob tain gas adsorption 

properties relevant to possible target separations. CO2 and CH4 adsorption measurements 
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were performed at 308, 328 and 348 K to obtained heats of adsorption and Henry’s 

constants. 

 

 

Figure A.1. Comparison of ZIF-8 and ZIF-11 topologies, with 1x1x1 unit cell displayed. 
ZIF-8 has one open pore window constructed from a 6-membered ring. ZIF-11 has two 

open pore windows constructed from a 6-membered ring and a 8-membered ring. 
 

A.2 Experimental Methods  

A.2.1 Materials 

 N,N-diethylformamide (DEF, 99%) and formamide (99%) were obtained from 

Alfa Aesar. Zn(NO3)2·6H2O (98%) and benzimidazole (BzIM, 99%) were obtained from 

Sigma Aldrich. Methanol (MeOH, 99%) and N,N-dimethylformamide (DMF, 99%) were 

obtained from BDH. All chemicals were used as- is without further purification. 

 

A.2.2 Synthesis of ZIF-11 

To understand the effects of different synthesis preparation steps, Table A.1 

shows the different conditions examined to precipitate ZIF-11 using NSIC. In general, 5 
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mmol Zn(NO3)2·6H2O and 20 mmol BzIM was dissolved in 50 mL DEF, formamide or 

DMF and aged for 0-24 hrs at room temperature or 328 K. After cooling to room 

temperature, a non-solvent (MeOH or deionized H2O) was added to the solution and left 

stirring for 1-24 hrs. A white precipitate formed, and the precipitate was separated from 

the solution by centrifugation at 10,000 rpm for 5 mins. The precipitate was washed with 

MeOH, and this process was repeated twice. In general, the product recovered resulted in 

yields of 0.3-0.4 g (10-15% based on Zn). 

 

Table A.1. Synthesis conditions to test necessary crystallization conditions to prepare 
ZIF-11. 
 

Experiment 
Aging Time 

(hrs) 

Aging Temp. 

(K) 
Solvent Non-Solvent 

Volumetric 

Ratio (S:NS) 

1 0 RT Formamide MeOH 1:1 

2 0 RT DMF MeOH 1:1 

3 0 RT DEF MeOH 1:1 

4 2 RT DEF MeOH 1:1 

5 24 RT DEF MeOH 1:1 

6 2 328 DEF MeOH 1:1 

7 24 RT DEF MeOH 1:0.2 

8 24 RT DEF H2O 1:1 

 

A.2.3. Gas Adsorption Measurements of ZIF-11 

Adsorption measurements for CO2 and CH4 were carried out in a custom-built 

adsorption apparatus.5 Samples were tested at temperatures of 308, 328, and 348 K. 

Pressure ranges tested were typically 0-1500 kPa. ZIF-11 samples were first degassed in 

a vacuum oven at 523 K for 24 hrs to remove any occluded solvent molecules in the 

framework. After insertion into the adsorption cell, samples were degassed again at 393 
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K for 12 hrs prior to each adsorption measurement. Ultra-high purity CH4 (99.999%) and 

bone-dry CO2 (99.999%) were used in all adsorption measurements.  

 

A.3. Results and Discussion 

A.3.1. Crystallization of ZIF-11 

Previous synthesis procedures for crystallizing ZIF-11 required the use of DEF as 

the solvent.1,4 To test if this solvent is required, the first several syntheses attempted were 

without the use of DEF. It was found (see Figure A.2) that without DEF only a non-

porous, dense ZIF phase or ZIF-7 precipitated when formamide or N,N-

dimethylformamide were used, respectively, as determined by powder XRD. This 

suggests that DEF allows some preferred precursor and nuclei formation that promote the 

growth of ZIF-11 over other phases; however, crystallization of ZIF-11 also occurred 

with the precipitation of the non-porous, dense ZIF phase. 

 

 

Figure A.2. Powder XRD patterns of synthesis experiments, showing dependence of ZIF 
crystal phase formation on the solvent used. Asterisks represent peaks of undesired dense 
ZIF phase. 
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Effects of aging the precursor solution with varying time and temperature is 

shown in Figure A.3. As the aging time increased, the intensity of the peaks associated 

with the non-porous ZIF phase decreased relative to the ZIF-11 XRD peaks, indicating 

suppression of formation of the dense ZIF phase. Interestingly, if the precursor solution 

was aged at higher temperatures, the XRD peaks associated with ZIF-11 nearly 

disappeared. This indicates that increased aging temperatures may promote the 

crystallization of more dense ZIF phases using the NSIC technique. This may be related 

to more energetically-favorable conditions to form a more thermodynamically-stable ZIF 

structure;6,7 therefore, other methods of promoting ZIF-11 crystallization were pursued. 

 

 

Figure A.3. Powder XRD patterns, demonstrating suppression of the dense ZIF phase 
with increased aging time. Asterisks represent peaks of undesired dense ZIF phase.  
 

The last synthesis conditions tested were varying either the non-solvent 

volumetric ratio compared to the solvent or changing the non-solvent to DI water. When 

less non-solvent was used to precipitate a ZIF structure, powder XRD showed favorable 

formation of the dense ZIF phase. Therefore, either more non-solvent should be used to 
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rapidly promote formation of ZIF-11 or an entirely different non-solvent should be 

chosen. When DI water was used, there is only formation of ZIF-11. As shown in Figure 

A.4, when compared to the simulated ZIF-11 pattern, there is only evidence of the 

desired crystal phase, ZIF-11, and no X-ray peaks to indicate formation of the undesired 

dense ZIF structure. These series of crystallization experiments help show that NSIC is a 

technique that can be applied generally to other ZIF crystal structures and may be useful 

as a higher yield, easy-to-scale synthesis technique compared to solvothermal or 

sonochemical synthesis techniques. Because ZIF-11 has small pores, powder XRD 

patterns of degassed ZIF-11 were also measured to understand if there is any structural 

degradation or alteration during degassing at 523 K. Figure A.5 shows maintenance of 

the ZIF-11 phase following the degassing step. This suggests that, unlike ZIF-7, ZIF-11 

does not undergo structural changes once the solvent is removed from its pores.8 

 

 

Figure A.4. Powder XRD patterns of ZIF samples prepared with different non-solvent 

compositions, showing that H2O as a non-solvent produces the desired ZIF-11 phase. 
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Figure A.5. Powder XRD patterns of as-made and degassed ZIF-11 samples, 
demonstrating maintenance of the crystal structure after high-temperature degassing to 

remove occluded solvent molecules.  
 

A.3.2 Adsorption Properties of ZIF-11 

CO2 and CH4 adsorption measurements were performed at multiple temperatures 

to obtain both the Henry’s constants of each gas and the isosteric heats of adsorption, 

calculated by the virial isotherm equation.9,10 Figure A.6 shows the CO2 and CH4 

adsorption isotherms of ZIF-11 measured at 308, 328 and 348 K. Like other ZIF 

materials with non-polar organic linkers, ZIF-11 does not exhibit much apparent 

adsorption affinity for CO2 over CH4.11 In the low pressure, linear region of the isotherms 

(see Figure A.7), the Henry’s constants were calculated by find ing the slope of the 

isotherm. Based on the Henry’s constants of CO2 and CH4, ZIF-11 has an ideal 

adsorption selectivity of 2.9 for CO2/CH4, approximately 16% larger compared to ZIF-8 

(Table 5.2). 
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Figure A.6. CO2 and CH4 adsorption isotherms of ZIF-11. Open symbols are CH4; closed 
symbols are CO2. Squares: T = 308 K; circles: T = 328 K; triangles: T = 348 K. 

 

 

Figure A.7. Low pressure, linear region of CO2 and CH4 isotherms. Open symbols are 

CH4; closed symbols are CO2. 
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Previous studies on ZIF-11 with experiments and simulations have shown CO2 

isosteric heats of adsorption to be 22-18 kJ/mol with the isosteric heat of adsorption 

decreasing with increasing capacity of adsorbate.12 Utilizing the virial isotherm equation, 

the isosteric heats of adsorption for CO2 and CH4 were calculated and are shown in 

Figure A.7. The values obtained for CO2 match well with previous studies, indicating 

complete removal of solvent during degassing.12 Interestingly, the CH4 heat of adsorption 

is considerably higher when compared to ZIF-8 (18 kJ/mol for ZIF-11; 12 kJ/mol for 

ZIF-8).13,14 This suggests more favorable adsorption sites for CH4 in ZIF-11 and may be 

related to the high H2 affinity in ZIF-11 compared to ZIF-8 that has been demonstrated 

with molecular simulations previously.15  

 

 

Figure A.7. Isosteric heats of adsorption determined from the virial isotherm equation. 
CO2 heats of adsorption match well with previous experimental studies.  

 

A.4 Conclusions 

This synthesis and adsorption study has shown that NSIC is a synthesis technique 

that can be applied to other crystal systems, even crystal structures that are considerably 
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more complex than simpler, cubic structures such as ZIF-8. In particular, ZIF-11 was 

successfully synthesized without the need for solvothermal techniques, and other ZIF 

structures may be synthesized in a similar manner; however, as the results have shown, 

determining proper crystallization parameters is necessary for successful synthesis of the 

desired crystal structure. CO2 and CH4 adsorption properties show that ZIF-11 is not very 

selective based on equilibrium separation techniques for the CO2/CH4 gas pair. However, 

molecular simulations suggest that ZIF-11, and possible hybrid ZIF structures, would be 

very selective utilizing kinetic or transport-based separation technologies.3    

 



239 

 

A.5 References 

(1)  Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, 

H. K.; O’Keeffe, M.; Yaghi, O. M. Proc. Nat. Acad. Sci. 2006, 103, 10186–10191. 

(2)  Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’Keeffe, M.; Yaghi, 

O. M.; O’Keeffe, M. Acc. Chem. Res. 2010, 43, 58–67. 

(3)  Yilmaz, G.; Keskin, S. Ind. Eng. Chem. Res. 2012, 51, 14218–14228. 

(4)  Seoane, B.; Zamaro, J. M.; Tellez, C.; Coronas, J. CrystEngComm 2012, 14, 3103–

3107. 

(5)  Koros, W. J.; Paul, D. R. J. Polym. Sci. Polym. Phys. Ed. 1976, 14, 1903–1907. 

(6)  Lewis, D. W.; Ruiz-Salvador, A. R.; Gómez, A.; Rodriguez-Albelo, L. M.; 

Coudert, F.-X.; Slater, B.; Cheetham, A. K.; Mellot-Draznieks, C. CrystEngComm 

2009, 11, 2272–2276. 

(7)  Baburin, I. A.; Leoni, S. J. Mater. Chem. 2012, 22, 10152–10154. 

(8)  Aguado, S.; Bergeret, G.; Titus, M. P.; Moizan, V.; Nieto-Draghi, C.; Bats, N.; 

Farrusseng, D. New J. Chem. 2011, 35, 546–550. 

(9)  Demessence, A.; D’Alessandro, D. M.; Foo, M. L.; Long, J. R. J. Am. Chem. Soc. 

2009, 131, 8784–8786. 



240 

 

(10)  Ruthven, D. M. Principles of Adsorption and Adsorption Processes; John Wiley & 

Sons, Inc., 1984. 

(11)  Amrouche, H.; Aguado, S.; Pérez-Pellitero, J.; Chizallet, C.; Siperstein, F.; 

Farrusseng, D.; Bats, N.; Nieto-Draghi, C. J. Phys. Chem. C 2011, 115, 16425–

16432. 

(12)  Morris, W.; He, N.; Ray, K. G.; Klonowski, P.; Furukawa, H.; Daniels, I. N.; 

Houndonougbo, Y. A.; Asta, M.; Yaghi, O. M.; Laird, B. B. J. Phys. Chem. C 

2012, 116, 24084–24090. 

(13)  Pérez-Pellitero, J.; Amrouche, H.; Siperstein, F. R.; Pirngruber, G.; Nieto-Draghi, 

C.; Chaplais, G.; Simon-Masseron, A.; Bazer-Bachi, D.; Peralta, D.; Bats, N. 

Chem. Eur. J. 2010, 16, 1560–1571. 

(14)  Fairen-Jimenez, D.; Galvelis, R.; Torrisi, A.; Gellan, A. D.; Wharmby, M. T.; 

Wright, P. A.; Mellot-Draznieks, C.; Düren, T. Dalton Trans. 2012, 41, 10752–

10762. 

(15)  Assfour, B.; Leoni, S.; Seifert, G. J. Phys. Chem. C 2010, 114, 13381–13384.  



241 

 

 

APPENDIX B 

Matlab Code for Horváth-Kawazoe Pore Size Distributions 

clear all; 

  

%Author: Joshua A. Thompson 
%e-mail: thompson.josh.a@gmail.com 
%Date last updated: 05-22-2012 

  
%The following is code developed to calculate pore size distributions 

in 
%microporous materials using a slit-shaped geometry using HK equations, 
%both original and modified. 

  

%See the following publication for comparison of the two models for 

different pore  
%geometries: S.U. Rege, R.T. Yang, "Corrected Horvath-Kawazoe Equations 

for 
%Pore-Size Distributions," AICHE Journal, 46(4), 2000, 734-750. NOTE: 

There 
%are several typos in the equation derivations. 

  
%To remain in the micropore range, do not enter data that goes over 

P/P0 =  
%0.05. Quantity adsorbed units are suggested, but are not necessary; 

the  
%code will work with whatever units. 

  
%All other units are specified. If they are in different units, the 

code 
%will not work. 

  
%Insert Relative Pressure (P/P0) 

  
RP = []; 

  
%Insert Quantity Adsorbed (cm3/g) corresponding to RP and also the 

maximum 
%QA value from isotherm OR maximum QA determined from Langmuir equation 

  
QA = []; 

  
QAmax = ; 

  
%Enter thermodynamic parameters for Horvath-Kawazoe equations 

  
%For adsorbent 
d1 = 7.01; %diamter of adsorbent (d); units [=] Angstroms 
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alpha1 = 11.59e-24; %polarizability of adsorbent (alpha); units [=] 

cm^3 
chi1 = 6.90e-29; %susceptibility of adsorbent (chi); units [=] cm^3 
rho1 = 4.51e15; %surface density of adsorbent (rho); units [=] 

molecule/cm^2 

  
%For adsorbate 
d2 = 3.00; %diameter of adsorbate (d); units [=] Angstroms 
alpha2 = 1.46e-24; %polarizability of adsorbate(alpha); units [=] cm^3 
chi2 = 2.00e-29; %susceptiblity of adsorbate (chi); units [=] cm^3 
rho2 = 6.71e14; %surface density of adsorbent (rho); units [=] 

molecule/cm^2 

  
%Cheng-Yang Correction -- HK Model assumes Henry's law for adsorption. 
%CY-correction will account for LANGMUIR behavior. 0 = no; 1 = yes. 

  
CYcorr = 0; 

  
%Modified HK Equations -- There are some inconsistencies in the 

original 
%assumptions for the derivation of the HK equations. 0 = no; %1 = yes. 

  
MHK = 0; 

  
%Constants 
me = 9.11e-31; %mass of an electron; units [=] kg 
c = 3.00e8; %speed of light; units [=] m/s 
R = 1.986; %Ideal Gas constant; units [=] cal/mol/K 
T = 77.3; %Temperature of Experiment; units [=] K 

  
%Dispersion Constants 

  

A1 = 6 * me * c^2 * alpha1 * alpha2 / (alpha1/chi1 + alpha2/chi2); 

%Dispersion between adsorbent and adsorbate; units [=] J/mol/cm^6 
A2 = 3 * me * c^2 * alpha2 * chi2 / 2; %Dispersion between adsorbate 

and adsorbate; units [=] J/mol/cm^6 

  
%Diameter constants 

  
d01 = (d1 + d2) / 2; %units [=] Angstroms 
d02 = d2; %units [=] Angstroms 
sigma1 = (2/5)^(1/6) * d01; %Minimum Distance at zero energy between 

adsorbent and adsorbate; units [=] Angstroms 
sigma2 = (2/5)^(1/6) * d02; %Minimum Distance at zero energy between 

adsorbate and adsorbate; units [=] Angstroms 

  
%Energy Term for HK Slit Model based on Relative Pressure 

  
dimension = length(RP); %Dimension length of Relative Pressure vector 
Etot = zeros(dimension,1); %Generation of Experimental Energy Term 

Vector 

  
for i = 1:dimension 
    if CYcorr == 0 
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        Etot(i) = R * T / 1000 * log(RP(i)); 
    else 
        Etot(i) = R * T / 1000 * log(RP(i)) + R * T / 1000 * (1-

1/(QA(i) / QAmax)*log(1/(1-(QA(i) / QAmax)))); 
    end     
end 

  
%Vector generation for length, L 

  
Lopt = zeros(dimension,1); 
Ll = d1 + d2; %Lower limit of L 
Lu = d1 + d2 + 17; %Upper limit of L 
length = 10000; 
deltaL = (Lu - Ll)/length; 
Lv = zeros(length,1); 

  
for j = 1:length+1 
    Lv(j) = Ll + (j - 1)*deltaL; 
end 

  
%Fitting and least-squares parameters 

  
RMSE = 1000*ones(dimension,1); 
Emodel = zeros(dimension,1); 
sqrt = zeros(dimension,1); 
Eplot = zeros(dimension,1); %Used to compare experimental and modeled 

data 

  
%HK Equation calculations 

  
for l = 1:dimension %Loop to determine both Lopt and Eplot 
   for k = 1:length+1 
        sqrt(l) = 0; 

        if MHK == 0 
            Emodel(l) = 2.39 * 0.0001 * 6.022 * 10^23 * (rho1*A1 + 

rho2*A2) / sigma1^4 / (Lv(k) - 2*d01) * (10^10 / 100)^4 * 

(sigma1^4/3/(Lv(k) - d01)^3 - sigma1^10/9/(Lv(k) - d01)^9 - 

sigma1^4/3/d01^3 + sigma1^10/9/d01^9); %HK Equation to a slit-shaped 

pore 
        else 
            M = (Lv(k) - d1) / d2; 
            E1 = rho1 * A1 / 2 / sigma1^4 * (10^10 / 100)^4 * (-1 * 

(sigma1 / d01)^4 + 1 * (sigma1 / d01)^10 - 1 * (sigma1 / (Lv(k) - 

d01))^4 + 1 * (sigma1 / (Lv(k) - d01)^10)); 
            E2 = rho1 * A1 / 2 / sigma1^4 * (10^10 / 100)^4 * (-1 * 

(sigma1 / d01)^4 + 1 * (sigma1 / d01)^10) + rho2 * A2 / 2 / sigma2^4 * 

(10^10 / 100)^4 * (-1 * (sigma2 / d02)^4 + 1 * (sigma2 / d02)^10); 
            E3 = 2 * rho2 * A2 / 2 / sigma2^4 * (10^10 / 100)^4 * (-1 * 

(sigma2 / d02)^4 + 1 * (sigma2 / d02)^10); 
            if M < 2 
                Emodel(l) = 2.39 * 0.0001 * 6.022 * 10^23 * E1; 
            else 
                Emodel(l) = 2.39 * 0.0001 * 6.022 * 10^23 * (2 * E2 + 

(M - 2) * E3) / M; 
            end 
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        end 
        sqrt(l) = sqrt(l) + (Emodel(l) - Etot(l))^2; 
        if Emodel(l) < Etot(l) %Condition set to not overshoot Lopt 
            if sqrt(l) < RMSE(l) 
                RMSE(l) = sqrt(l); 
                Lopt(l) = Lv(k); 
                Eplot(l) = Emodel(l); 
            end 
        end 
   end 
end 

  
d = Lopt - d1; %Slit pore width 
dqdL = zeros(dimension,1); %Differential volume 

  

for m = 1:dimension 
    if d(m) < d2 %If the slit width is less than the adsorbate size 
        d(m) = 0; %Make the slit equal to 0 
        dqdL(m) = 0; %Make differential volume equal to 0 
    elseif m - 1 == 0 %If the initial point is some actual value 
        dqdL(m) = QA(m)/d(m); %Extrapolate to 0 
    elseif d(m) < d(m-1) %When using CY correction, there is sometimes 

decreasing L as RP increase due to coverage approaching 1. 
        d(m) = max(d) + 1; 

        dqdL(m) = 0; 
    else 
        dqdL(m) = (QA(m) - QA(m - 1))/(d(m) - d(m - 1)); 
    end 
end 

  
%Differential volume plot 
figure; 
plot(d,dqdL,'b'); 

xlabel({'Slit Width (Angstroms)'},'FontSize',14); 
ylabel({'dq/dL (cm3/g/Angstrom)'},'FontSize',14); 

  
%Write data to Excel (or ASC) file 

  
user_entry = input('Enter 1 to write data to an Excel file. Enter 0 to 

cancel.  '); 
if user_entry == 1 
    user_entry = input('Specify desired file name:  ', 's'); 
    filename = user_entry; 
    xlswrite(filename,[d, dqdL]); 
end 

  
clc; 
d 
dqdL 
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APPENDIX C 

Matlab Code for Ideal Adsorbed Solution Theory 

%======================================================================

==% 
%   The following is a program to perform Ideal Adsorbed Solution 

Theory 
%   calculations by using either Henry's law, Langmuir or Toth isotherm  
%   parameters. This method is useful for predicting binary 
%   adsorption mixtures and calculating adsorption selecitivities. For  
%   references on these calculations and isotherms and how they are 

useful, 
%   see the following: 
% 
%   1) A.L. Myers, J.M. Prausnitz, AIChE J., 11 (1965), 121 
%   2) D.M. Ruthven, Molecular Sieves, 7 (2008), 1-43 
%======================================================================

==% 
%   Author: Joshua A. Thompson 
%   email: thompson.josh.a@gmail.com 
%   Date: 07-05-2012 
%   Last Date Modified: 07-17-2012 
%======================================================================

==% 

  

clear all 
%======================================================================

==% 
%Isotherm Parameters 
%Component 1 = CO2; Component 2 = CH4. 

  
iso = 2;        % This determines which isotherm model to use. 1 = 

Henry's Law; 2 = Langmuir; 3 = Toth. 
qmax1 = 135.3;  % Saturation capacity of component 1 

b1 = 0.119;  % Affinity constant of component 1 
n1 = 1;     % Toth heterogeneous parameter of component 1 
qmax2 = 120.2;  % Saturation capacity of component 2 
b2 = 0.178;  % Affinity constant of component 2 
n2 = 1;    % Toth heterogenenous parameter of component 2 
rho = 1.019;    % Density of adsorbent 
%======================================================================

==% 

  
%Thermodynamic data 

  
Temp = 273.15 + 35; % Input temperature in degrees Celsius, K 
R = 8.314;          % Ideal gas constant, J/mol/K 
pmin = 1;          % Minimum pressure isotherm data was taken, kPa 
pmax = 1000;        % Maximum pressure isotherm data was taken, kPa 

  
%======================================================================

==% 
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y1 = (0.01:0.01:0.99);      % Gas phase mole fraction of component 1 
y1c = 0.5;                  % Constant gas phase mole fraction 
x1 = (0.0001:0.0001:0.9999);% Adsorbed phase mole fraction of component 

1 
sp1 = zeros(length(y1),1);  % Spreading pressure of component 1 
sp2 = zeros(length(y1),1);  % Spreading pressure of component 2 
x = zeros(length(y1),1);    % Adsorbed phase mole fraction of IAST 

sol'n 
y = zeros(length(y1),1);    % Gas phase mole fraction of IAST sol'n 
int = 100;                  % Number of intervals for 2nd set of 

calculations 
delp = (pmax-pmin)/int;     % Delta p step 
p = (pmin:delp:pmax);       % Array of pressure for 2nd set of 

calculations 

alpha = zeros(length(p),1); % Array of selectivity -- 2nd 
sp1c = zeros(length(p),1);  % Array of spreading pressure for component 

1 -- 2nd 
sp2c = zeros(length(p),1);  % Array of spreading pressure for component 

2 -- 2nd 
xc = zeros(length(p),1);    % Array of adsorbed phase mole fraction -- 

2nd 
yc = zeros(length(p),1);    % Array of gas phase mole fraction -- 2nd 
pc = zeros(length(p),1);    % Array of pressure output 

  
%======================================================================

==% 
%       Iterations to determine best fit of x1 vector                    

% 
%    The following will provide a y vs. x curve by specifying pmax.      

% 
%======================================================================

==% 

  
for i = 1:length(y1) 
   SSE = 1000; 
   sp11 = 0; 
   sp22 = 0; 
   for j = 1:length(x1) 
       if iso == 1 
           sp11 = rho*R*Temp*pmax*b1*y1(i)/x1(j); 
           sp22 = rho*R*Temp*pmax*b2*(1-y1(i))/(1-x1(j)); 
           diff = (sp11 - sp22)^2; 

           if diff < SSE 
               SSE = diff; 
               x(i) = x1(j); 
               y(i) = y1(i); 
               sp1(i) = sp11; 
               sp2(i) = sp22; 
           end 
       elseif iso == 2 
           sp11 = rho*R*Temp*qmax1*log(1 + b1*y1(i)*pmax/x1(j)); 
           sp22 = rho*R*Temp*qmax2*log(1 + b2*(1 - y1(i))*pmax/(1 - 

x1(j))); 
           diff = (sp11 - sp22)^2; 
           if diff < SSE 
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               SSE = diff; 
               x(i) = x1(j); 
               y(i) = y1(i); 
               sp1(i) = sp11; 
               sp2(i) = sp22; 
           end 
       elseif iso == 3 
           sp11 = 

rho*R*Temp*qmax1*quad(@(x)toth(x,b1,n1),0,y1(i)*pmax/x1(j)); 
           sp22 = rho*R*Temp*qmax2*quad(@(x)toth(x,b2,n2),0,(1-

y1(i))*pmax/(1-x1(j))); 
           diff = (sp11 - sp22)^2; 
           if diff < SSE 
               SSE = diff; 
               x(i) = x1(j); 

               y(i) = y1(i); 
               sp1(i) = sp11; 
               sp2(i) = sp22; 
           end 
       end 
   end 
end 

  
%======================================================================

===% 
%           Iterations to determine best fit of x1 vector                 

% 
%  The following will provide a P(total) vs. Selectivity 

(x1/x2)/(y1/y2)  % 
%======================================================================

===% 

  
for i = 1:length(p) 
   SSE = 1000; 

   sp11 = 0; 
   sp22 = 0; 
   for j = 1:length(x1) 
       if iso == 1 
           sp11 = rho*R*Temp*p(i)*b1*y1c/x1(j); 
           sp22 = rho*R*Temp*p(i)*b2*(1-y1c)/(1-x1(j)); 
           diff = (sp11 - sp22)^2; 
           if diff < SSE 
               SSE = diff; 

               xc(i) = x1(j); 
               yc(i) = y1c; 
               pc(i) = p(i); 
               alpha(i) = (x1(j)/(1-x1(j)))/(y1c/(1-y1c)); 
               sp1c(i) = sp11; 
               sp2c(i) = sp22; 
           end 
       elseif iso == 2 
           sp11 = rho*R*Temp*qmax1*log(1 + b1*y1c*p(i)/x1(j)); 
           sp22 = rho*R*Temp*qmax2*log(1 + b2*(1 - y1c)*p(i)/(1 - 

x1(j))); 
           diff = (sp11 - sp22)^2; 
           if diff < SSE 
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               SSE = diff; 
               xc(i) = x1(j); 
               yc(i) = y1c; 
               pc(i) = p(i); 
               alpha(i) = (x1(j)/(1-x1(j)))/(y1c/(1-y1c)); 
               sp1c(i) = sp11; 
               sp2c(i) = sp22; 
           end 
       elseif iso == 3 
           sp11 = 

rho*R*Temp*qmax1*quad(@(x)toth(x,b1,n1),0,y1c*p(i)/x1(j)); 
           sp22 = rho*R*Temp*qmax2*quad(@(x)toth(x,b2,n2),0,(1-

y1c)*p(i)/(1-x1(j))); 
           diff = (sp11 - sp22)^2; 
           if diff < SSE 

               SSE = diff; 
               xc(i) = x1(j); 
               yc(i) = y1c; 
               pc(i) = p(i); 
               alpha(i) = (x1(j)/(1-x1(j)))/(y1c/(1-y1c)); 
               sp1c(i) = sp11; 
               sp2c(i) = sp22; 
           end 
       end 
   end 
end 

  
figure; 
plot(y,x,'-b'); 
xlabel('Gas phase mole fraction'); 
ylabel('Adsorbed phase mole fraction'); 
title(['Plot of gase phase vs. adsorbed phase mole fraction at ' 

num2str(pmax) ' kPa']); 

  

figure; 
plot(p,alpha,'-r'); 
xlabel('Absolute pressure (kPa)'); 
ylabel('IAST Selectivity'); 
title('Plot of pressure vs. IAST selectivity'); 

  

  

  
clc; 
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APPENDIX D 

Matlab Code for Breakthrough Curve Simulations 

%======================================================================

===% 
%   The following is a program that simulates breakthrough curves for 
%   adsorbent beds based on physicochemical properties of an adsorbent 
%   powder. The program was adopted based on the methodology from the 
%   following reference: 
% 

%   R. Krishna, J.R. Long. "Screening Metal-Organic Frameworks by 

Analysis 
%   of Transient Breakthrough of Gas Mixtures in a Fixed Bed Adsorber." 

J. 
%   Phys. Chem. C, 2011, 115, 12941-12950. 
% 
%   D.M. Ruthven. "Principles of Adsorption and Adsorption Processes." 
%   Chapter 8. 
% 
%======================================================================

===% 
%   Author: Joshua A. Thompson 
%   Date Created: Jan. 28, 2013 
%   Last Date Modified: Jan. 28, 2013 
%   e-mail: thompson.josh.a@gmail.com 
%======================================================================

===% 
clear all 
%======================================================================

===% 

  
%   Isotherm Parameters 

  
components = 2; %Number of components 
qmax = zeros(components,1); %Saturation loading of each component 
qmax(1) = 12.7; %mol/kg 
qmax(2) = 12.7; %mol/kg 
%qmax(3) = x.xxx; %mol/kg, Remove % and copy if more than 2 components 

bi = zeros(components,1); 
bi(1) = 0.00127; %kPa^-1 
bi(2) = 0.000226; %kPa^-1 
%bi(3) = x.xxx; %kPa^-1, Remove % and copy if more than 2 components 
rho = 1; %kg/L, Framework density 
%======================================================================

===% 

  
%Thermodynamic data 

  
Temp = 273.15 + 35; % Input temperature in degrees Celsius, K 
R = 8.314;          % Ideal gas constant, kPa*L/mol/K 
p0 = 1000;          % Starting total pressure, kPa 
y0 = zeros(components,1); % Starting mole fraction 
y0(1) = 0.05;        %Component 1 
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y0(2) = 0.95;        %Component 2 
%y0(3) = 0.5;       %Component 3, Remove % and copy if more than 2 

components 
eps = 0.4;          %Bed voidage 
u0 = 1.0;            %Velocity, m/sec 

  
%======================================================================

==% 

  
%Discretization and initialization 

  
delz = 0.01; %Discretized bed length, bed is normalized to 0-1 
zmax = 1.0; %Dimensionless bed length 
m = zmax/delz; %Number of points 
z = zeros(1,m+1); %Zeroed z matrix 
delt = 0.01; %Discretized time scale, time is normalized to velocity 

and bed 
tmax = 200; %Max breakthrough time, dimensionless time 
n = tmax/delt;  %Number of points 
t = zeros(n+1,1); %Zeroed t matrix 
p1 = zeros(n+1,m+1); %Matrix for pressure 1 
p2 = zeros(n+1,m+1); %Matrix for pressure 2 
%p3 = zeros(n+1,m+1); %Matrix for pressure 3 
py1 = zeros(n+1,m+1); %Matrix for pressure 1 

py2 = zeros(n+1,m+1); %Matrix for pressure 2 
%p3 = zeros(n+1,m+1); %Matrix for pressure 3 
p1store = zeros(1,m+1); %Storage matrix 
p2store = zeros(1,m+1); %Storage matrix 
ustore = zeros(1,m+1); %Storage matrix 
y1 = zeros(n+1,m+1); %Matrix for mole fraction 1 
y2 = zeros(n+1,m+1); %Matrix for mole fraction 2 
u = zeros(n+1,m+1); %Matrix for superficial velocity 
q1 = zeros(n+1,m+1); %Matrix for adsorbed gas 1  

q2 = zeros(n+1,m+1); %Matrix for adsorbed gas 2 
%q3 = zeros(n+1,m+1); %Matrix for adsorbed gas 3 
for i = 1:m+1 %Initial conditions 
        p1(1,i) = 0; 
        p2(1,i) = 0; 
        py1(1,i) = 0; 
        py2(1,i) = 0; 
        y1(1,i) = 0; 
        y2(1,i) = 0; 
        u(1,i) = 0; 

        %p3(1,i) = 0;  
end 
for j = 2:n+1 %Boundary conditions 
        p1(j,1) = y0(1)*p0; 
        p2(j,1) = y0(2)*p0; 
        py1(j,1) = y0(1)*p0; 
        py2(j,1) = y0(2)*p0; 
        y1(j,1) = y0(1); 
        y2(j,1) = y0(2); 
        u(j,1) = 1; 
        %p3(j,1) = y0(3); 
end 
for i = 1:m 
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    z(i+1) = z(i) + delz; 
end 
for i = 1:n 
    t(i+1) = t(i) + delt; 
end 
%======================================================================

===% 

  
%PDE Solver 

  

  
for j = 2:m+1 

     
    for i = 1:n 
            p0 = 1000; 
            %dq1dy = 

qmax(1)*bi(1)*p0*(1+bi(2)*p0)/(1+y1(i,j)*p0*(bi(1)-bi(2))+bi(2)*p0)^2; 

%Langmuir isotherm 
            %dq2dy = -

qmax(2)*bi(2)*p0*(1+bi(1)*p0)/(1+y1(i,j)*p0*(bi(1)-bi(2))+bi(2)*p0)^2; 

%Langmuir isotherm 
            dq1dy = -1.1892*y1(i,j)^5+4.373*y1(i,j)^4-

7.2572*y1(i,j)^3+7.6065*y1(i,j)^2-6.04*y1(i,j)+3.6737; %IAST 
            dq2dy = 0.5556*y1(i,j)^5-2.1645*y1(i,j)^4+3.7656*y1(i,j)^3-

4.05*y1(i,j)^2+3.2202*y1(i,j)-1.9423; %IAST 
            func1 = 1+(1-eps)/eps*rho*R*Temp/p0*((1-

y1(i,j))*dq1dy+y1(i,j)*dq2dy); 
            func2 = -(1-eps)/eps^2*rho*R*Temp/p0*(dq1dy+dq2dy); 
            u11 = u(i,j-1) + delz*func2*u(i,j-1)*eps/func1*(y1(i,j)-

y1(i,j-1))/delz; 
            y11 = y1(i,j)-delt*u11*eps/func1*(y1(i,j)-y1(i,j-1))/delz; 
            y22 = (1-y11); 
            yt = y11 + y22; 

            if u11 == 0 
                p0 = 0; 
            else 
                p0 = 1000; 
            end 
            y1(i+1,j) = y11; 
            y2(i+1,j) = y22; 
            u(i,j) = u11; 
            py1(i+1,j) = y11*p0; 
            py2(i+1,j) = y22*p0; 
            if j == m+1 
                if y11 <= 0.02 
                    tbreak = t(i+1); 
                    p1store = py1(i+1,:); 
                    p2store = py2(i+1,:); 
                    ustore = u(i,:); 
                end 
                if y11/y0(1) <= 0.5 
                    tstoich = t(i+1); 

                end 
            end 
    end  
end 
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figure; 
plot(z,p1store,z,p2store); 
figure; 
plot(z,ustore); 

  
tbreak 
LUB = (1-tbreak/tstoich) 

  

 

 


