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SUMMARY 

 

Stainless steel has garnered attention as an alternative structural material to 

conventional carbon steel due to its corrosion resistance properties and aesthetic 

appearance.  Of interest are single angles, which are frequently used in trusses, 

transmission towers, and as bracing diaphragms.  When subjected to compression, 

knowledge concerning the behavior, analysis, and design of stainless steel single angles is 

very limited.   

This thesis addresses the behavior of duplex stainless steel single equal-leg angles 

subject to concentric compressive loading.  Two complementary approaches are used in 

this study, the first of which was experimental and consisted of conducting 33 full-scale 

buckling tests on S32003 duplex stainless steel single equal-leg angle components.  

Angles specimens had slenderness ratios ranging from 35 to 350 and leg width-to-

thickness ratios of 7.5 to 12.3.  In the second approach, computational models that 

accounted for material nonlinearity, material anisotropy, and geometric out-of-

straightness were developed and validated using the experimentally obtained test results.  

These models were subsequently used to perform numerical buckling experiments to 

shed light on the behavior of axially loaded compression duplex stainless steel single 

angles for a wide range of practical leg width-to-thickness ratios. 

Results from the full-scale tests and from the numerical models are shown to 

correlate well with the classical mechanics-based formulae, which considers nonlinear 

stress-strain relationships, for predicting flexural and flexural-torsional buckling strengths 

of singly-symmetric stainless steel members.  Finally, design criteria in the form of load 
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and resistance factor design (LRFD) with a reliability index of 3 for buckling limit states 

are proposed for possible adoption in future U.S. national standards. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 MOTIVATION 

Stainless steel has attracted attention as a structural material in recent years due to 

its corrosion resistance and aesthetic appearance.  A class of high strength grades of 

austenitic-ferritic stainless steel, called duplex, offers excellent strength and corrosion 

properties and gives indication of being a cost-effective material alternative to carbon 

steel for industrial and nuclear applications. Of particular interest are single angles which 

are frequently used in built-up sections, bracing systems, and lattice structures.  While 

nearly all angle struts used in construction are eccentrically loaded, the eccentric strength 

of any compressive member requires understanding of its concentric strength.  When 

subjected to compression, knowledge concerning the behavior, analysis, and design of 

stainless steel single angles is very limited.   

1.2 OBJECTIVES AND SCOPE 

The objectives of this research were to study the behavior of concentrically loaded 

duplex stainless steel single equal-leg angles experimentally and analytically across all 

practical slenderness and leg width-to-thickness ratios.  The results of this study were 

used to determine an appropriate method for predicting the strength of single equal-leg 

angles for design.  
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1.3 THESIS OUTLINE 

This thesis is organized according to the objectives identified above.  The first 

focus of this investigation is the experimental behavior of duplex stainless steel single 

equal-leg angle struts, which was achieved through full-scale buckling tests.  This data 

was then used to evaluate the design formulations given in current standards, using the 

material properties determined experimentally for the duplex grade used in the buckling 

tests.  Numerical buckling analyses were used to further examine the design rules and 

standards. 

Chapter 2 presents the results of a literature review which introduces the 

theoretical buckling formulations for singly-symmetric sections as well as experimental 

tests that have been conducted on equal-leg angles.  Inelastic buckling theory for various 

buckling modes is also reviewed.  The focus transitions to stainless steel compression 

members, which are considered in reviewing the experimental studies of concentrically-

loaded struts and the existing stainless steel design standards.  Lastly, the numerical 

methods that have been used to model the behavior of stainless steel struts are covered. 

Chapter 3 presents the results from material tests, including compression, shear, 

and flexure, which were used to determine the material properties of grade S32003 

duplex stainless steel necessary to analyze the structural response of single equal-leg 

angles.  The distribution of residual stresses for built-up S32003 stainless steel equal-leg 

angle sections was also investigated. 

Chapter 4 describes the experimental test program on duplex stainless steel single 

equal-leg angle struts.  The experimental data was compared to the strengths predicted by 



3 
 

existing design formulations, using the material properties determined in Chapter 3.  A 

first-order reliability analysis was performed to calculate resistance factors for design. 

Chapter 5 discusses a finite element study that was performed to further evaluate 

the concentric strengths of single equal-leg angle sections for all practical slenderness 

ratios and leg slenderness.  This modeling procedure was used to examine the effect of 

boundary conditions, out-of-straightness, and material anisotropy on column strength. 

Chapter 6 presents the findings and conclusions of this thesis.  The future work 

section gives recommendations for related topics to investigate. 



 
 

4 
 

CHAPTER 2 

BACKGROUND 

 

This investigation relates to both the stability of singly-symmetric sections and 

the inelastic buckling of columns.  This chapter reviews the literature relevant to both 

topics.  Particular attention is paid to stainless steel columns and current stainless steel 

design standards.  

2.1 EQUAL-LEG SINGLE ANGLE STRUT 

Linear Elastic Behavior 

For an equal-leg single angle member, shown in Figure 2.1 wherein the shear 

center and centroid do not coincide, loaded concentrically in compression, the strength 

can be determined from consideration of four limit states including the material strength, 

local buckling, and overall buckling limit states, whose formulations are given by 

Timoshenko and Gere (1961). 

1. When material strength governs the limit state, the nominal axial compression 

strength can be estimated from: 

 jk = mbn (2-1) 

2. The nominal flexural buckling strength about the minor x-axis, Pfx, can be 

estimated from: 

 j�o = pAqrostouovA (2-2) 
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3. The nominal flexural-torsional buckling strength, Pft, can be estimated from:  

 j�_ = 12w xyj�z + j_{ − Uyj�z + j_{A − 4wj_j�z| (2-3) 

 

Where 

 j�z = pAqrzytzuz{A (2-4) 

   

 j_ = mrH} x~� + pAq��st_u_vA| (2-5) 

 w = 1 − �?@B@ �A
 (2-6) 

4. The load associated with plate buckling, Pl, can be estimated from: 

 jG = pAq�
12s1 − �Av ����A  m (2-7) 

 

 

 

Figure 2.1- Cross-section of an equal-leg angle 
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The local buckling stress for equal-leg angles can be determined by treating a leg 

as a plate simply supported along three of the sides and free along the fourth side.  It has 

been noted by Zureick and Steffen (2000) that the formulation for the torsional buckling 

stress of an equal-leg angle is identical to the plate buckling stress formulation for 

orthotropic materials.  For linearly-elastic, isotropic, and initially straight plate members, 

Bleich (1952) suggested that plate buckling and flexural-torsional buckling modes are 

indistinguishable for equal-leg angles because they buckle simultaneously.   

Since equal-leg angle sections are open thin-walled members, the warping term in 

Eq. (2-5) is small in comparison to the St. Venant torsion term, GJ, and the torsional 

buckling strength is often ignored (Galambos 1991; Kitipornchai and Lee 1986a; Zureick 

and Steffen 2000).  Additionally, when considered, the difference in calculated capacities 

between warping restrained, Kt=0.5, and warping unrestrained, Kt=1.0, was shown to be 

less than 2% for carbon steel angles (Adluri and Madugula 1996b).  

Review of Experimental Research Performed on Angle Struts 

Hot-Rolled Mild-Steel Sections  

The earliest research concerning hot-rolled carbon steel equal-leg single angles as 

compression members was performed on sections loaded through common construction 

connections by Stang and Strickenberg (1922).  Later studies that investigated the 

behavior of concentrically loaded equal-leg carbon steel angles in compression include 

(Adluri and Madugula 1996b; Adluri and Murty 1996; Al-Sayed and Bjorhovde 1989a; 

Kennedy and Murty 1972; Kitipornchai and Lee 1986b; Thurlimann and Haaijer 1953; 

Wakabayashi and Nonaka 1965). 
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Aluminum Angles Sections  

Much of the early research involving angle compression members was devoted to 

aeronautical applications, which focused heavily on aluminum sections based on weight 

considerations.  The earliest experimental work of this nature was performed on 

concentrically loaded single duralumin angles by Jenkin (1920).  A study was later 

conducted that focused primarily on the torsional buckling modes of plain and lipped 

aluminum sections (Lundquist 1930).  The database was later augmented by experimental 

testing of approximately 250 aluminum equal-leg angles (Kollbrunner 1935).   The 

buckling mode transition point for the local and torsional buckling modes was 

investigated in a parametric study on b/t ratios in extruded aluminum angles by Thomas 

(1941).  The strength of aluminum angles was later tested as part of a larger survey on 

aluminum cross-sections by  Leary and Holt (1946).  Experimental work was later 

performed on angles loaded through one leg (Marshall et al. 1963). 

Light Gage Steel Angles Sections  

Light gage steel angles were tested along with the aluminum angles in the 

investigations by Kollbrunner (1935) and Thomas (1941).  Lipped and plane brake-

pressed steel angles sections were included in a study, which examined inelastic flexural-

torsional buckling (Fang and Winter 1965).  Slender columns with outstanding leg 

width/thickness (b/t) ratios of 15 were investigated and compared against local buckling 

parameters outlined in existing design specifications byMadugula et al. (1983).  A later 

study by the same authors examined the effects of eccentric loading of cold-formed steel 

angles (Madugula and Ray 1984).  Testing of cold-formed steel specimens, representing 

three b/t ratios and loaded with an L/1000 eccentricity, revealed that coupled flexural and 
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flexural-torsional buckling occurs for columns in the intermediate slenderness range and 

pure flexural-torsional buckling occurs for the shortest specimens (Popovic et al. 1999).  

Additionally, a decrease in member capacity was observed when the load eccentricity 

was applied toward the unrestrained edges (toes).  The effective width provisions of the 

b/t ratio on member capacity was investigated using both experimental and finite element 

analyses and compared to the effective width provision outlined in AS/NZS 4673 by 

Ellobody and Young (2005).  Lipped angle sections were also tested and compared to the 

effective area provisions of the 2001 North American Standard and the 1996 

Australian/New Zealand Standard for light gage sections (Young 2005). 

Inelastic Formulations of Overall Member Buckling 

Inelastic buckling was first considered by Engesser in 1889, who replaced the 

longitudinal modulus, Eo, with the tangent modulus, Et, in the Euler buckling equation.  

This can be represented by multiplying the elastic equation by a nonlinear reduction 

factor, η, as shown in Eq. (2-8).  This strength was later shown by Shanley (1947) to 

correspond to the maximum load at which an initially straight column would remain 

straight.  Although this is considered the bifurcation solution of inelastic column 

buckling, load may continue to increase with bending and the tangent modulus load can 

be considered a lower bound of column strength.  Due to imperfections in actual 

columns, the tangent modulus method for strength prediction corresponds well with 

experimental data and has frequently been adopted for design purposes. 

 

 j�o = pAq@rostouvA �;  � = q_q@ (2-8) 
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The actual strengths for imperfect columns in the inelastic range cannot be as 

easily determined as for linear-elastic materials, since the deformed shape is not 

sinusoidal and changes as a function of the applied load as illustrated by Figure 2.2. Von 

Karman used nonlinear moment-curvature relationships to predict the flexural behavior 

of inelastic beam-columns (1910).  Chwalla’s (1934; 1935) generalized procedure, which 

extended on von Karman’s work to concentrically loaded columns, relies on a graphical 

interpretation for determining column strength.   Unlike similar studies concerning 

elastic-perfectly plastic material models for which closed form solutions could be 

obtained (Horne 1956; Ježek 1934), Chwalla’s method may be applied to materials with 

rounded nonlinear stress-strain relationships.  It has been suggested by Bažant and 

Cedolin (1991) that the strengths of imperfect columns in the inelastic range are today 

best determined according to the finite element method. 

 

 

Figure 2.2- Buckled shape for increased nonlinear material behavior (Baker et al. 1949) 
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Experimental Buckling Tests 

Experimental results for equal-leg single angle members which buckled 

inelastically in the flexural mode generally showed agreement with loads predicted using 

the tangent modulus formula, given by Eq. (2-8), which sometimes gave unconservative 

strength predictions based on the initially-straight assumption of tangent modulus theory 

(Bredenkamp and van den Berg 1995; Kennedy and Murty 1972; Wakabayashi and 

Nonaka 1965).  Later studies considered the patterning of residual stresses in predicting 

inelastic column strength (Al-Sayed and Bjorhovde 1989b; Kitipornchai and Lee 1986a).   

The majority of experimental equal-leg single angle test specimens have buckled 

flexurally; however, in the few tests which considered the flexural-torsional buckling of 

equal-leg angles, buckling was characterized by sudden deformation in comparison to 

both the flexural-torsional buckling of unequal-leg angles or the flexural buckling of 

equal-leg angles (Adluri and Madugula 1996b; Al-Sayed and Bjorhovde 1989a; Kennedy 

and Murty 1972; Wakabayashi and Nonaka 1965).  The increasing susceptibility of single 

equal-leg angles to flexural-torsional buckling with increasing b/t ratios for equal-leg 

angles was noted by Al-Sayed and Bjorhovde (1989a).  Formulations used to estimate the 

inelastic flexural-torsional buckling strength have generally involved applying nonlinear 

reduction factors to the elastic and shear moduli to account for nonlinear behavior.  The 

tangent modulus is used in place of the longitudinal modulus for the flexural buckling 

about the major axis Eq. (2-9), as in Eq. (2-8), but different approaches have been taken 

concerning the shear modulus plasticity reduction factor, ηs.  The most common approach 

involves keeping the shear modulus proportional to the longitudinal tangent modulus 

(ηs=η) for the torsional buckling strength, Eq. (2-10) (Adluri and Madugula 1996b; Al-
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Sayed and Bjorhovde 1989b; Fang and Winter 1965; van den Berg and van der Merwe 

1988).  This approach was found to be very conservative based on the experimental data 

of aluminum angles (Leary and Holt 1946) and has prompted other researchers to use the 

initial shear modulus (ηs=1) (Kitipornchai and Lee 1986a).  It was later shown that the 

flexural-torsional buckling load governs the capacities of stocky carbon steel equal-leg 

single angle columns if the shear modulus remained proportional to the tangent modulus, 

but would never govern if it remained unreduced, as shown in Figure 2.3 (Galambos 

1991).   

 j�z = pAq@rzytzu{A �;  � = q_q@ (2-9) 

   

 j_ = mrH} x~@��} + pAq@��st_uvA �| ;  � = q_q@ 
(2-10) 

  
 

 

Figure 2.3- Flexural-torsional buckling sensitivity to shear (Galambos 1991) 

 

Inelastic Formulations for Local Plate Buckling 

Unlike treatment of the minor axis flexural buckling strength, inelastic plate 

buckling involves biaxial bending.  The material stiffness in the transverse direction may 

not remain proportional to the longitudinal modulus for increased nonlinear behavior.  
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This implies increased orthotropic behavior beyond the elastic range.  Solutions for the 

buckling strength of uniformly loaded orthotropic plates simply supported on three sides 

have been derived by Haaijer (1957) and Holston (1970).  Inelastic buckling of plates, 

however, has been treated differently by various researchers.  Several empirical nonlinear 

reduction factors have been proposed for Eq. (2-7) to account for the differing stiffness in 

the longitudinal and transverse directions: 
c�q� q�� ��Uq� q��

�$�Uq� q�� �Y  (Kollbrunner 1935), q} q@�   (Gerard 

1946), Uq� q���
 (Leary and Holt 1946), and Uq_ q@�  (Bleich 1952). 

Plasticity theories were later employed to develop expressions for the plate 

buckling stresses.  Ilyushin (1947) developed a plastic plate buckling theory based on 

deformation plasticity theory, which was modified by Stowell (1948) to account for 

lateral deflection prior to buckling.  A formulation for inelastic plate buckling was 

developed based on the J2 incremental flow theory by Handelman and Prager (1948), 

which did not follow the behavior observed by Pride and Heimerl (1949) on tests of 

aluminum SHS sections.  A formulation based on incremental plasticity theory later 

showed agreement with experimental results of outstanding elements when orthotropic 

material behavior was considered (Haaijer 1957).  More recently, flow theory was used 

shown to predict the inelastic buckling stress of anisotropic plates when inelastic shear 

stiffness was considered (Becque 2010). This study gave theoretical justification to the 

empirical nonlinear reduction factors proposed by Bleich for a long simply supported 

plate on four sides and Gerard for a long simply supported plate on three sides. 
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2.2 COMPRESSIVE BEHAVIOR OF STAINLESS STEELS 

Material Characterization of Stainless Steels 

Unlike carbon steels, stainless steels exhibit nonlinear stress-strain behavior for 

all stress values.  This can be seen based on their low proportional limits, indistinct yield 

points, and strain-hardening as shown in Figure 2.4.  The stress-strain relationship is 

commonly characterized using a three-parameter modified Ramberg-Osgood relationship, 

given by Eq. (2-11), which was developed by Ramberg and Osgood (1943) and 

subsequently modified by Hill (1944). The Ramberg-Osgood hardening parameter, n, 

varies depending on the grade of stainless steel as well as whether loading is tensile or 

compressive.  The tensile stress-strain behavior of stainless steels is typically 

characterized by larger values of n, which corresponds to sharper changes in curvature 

around the yield stress and less pronounced strain-hardening.  Stainless steels in 

compression exhibit more gradual yielding than in tension and are described using a 

smaller strain hardening parameter.  As n approaches infinity, the Ramberg-Osgood 

stress-strain curve becomes identical to that of an elastic-perfectly plastic material.   
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Figure 2.4- Idealized stress-strain behavior for various engineering metals 

 

 E = bq@ + 0.002 � b z�k ; b ≤  z 
(2-11) 

f  

 
Where    

Eo = Initial Modulus of Elasticity 

     � = Yield Stress, (0.2% Proof Stress) 

     � = Proportional Limit, (0.01% Proof Stress) 

 � = lns0.05vln � H z�  (2-12) 
 d 

    σ = Engineering Stress 

    ε = Engineering Strain 

 

Beyond Fy, Eq. (2-11) mischaracterizes the stress-strain relationship of stainless 

steel.  To describe full-range stress-strain behavior of stainless steel in compression, a 

0

10

20

30

40

50

60

70

80

90

100

110

120

0.000 0.002 0.004 0.006 0.008 0.010

S
tr

es
s 

(k
si

)

Strain (in./in.)

Aluminum (6000 Series)a

Ferritic Grade S41003b

A992 Carbon Steel

a.   Mazzolani et. al. 2011
b.   Becque & Rasmussen 2009
c.   Theofanous & Gardner 2009

Austenitic Grade S304003b



15 
 

post-yield Ramberg-Osgood relationship was developed by Gardner and Nethercot 

(2004a) based on a similar relationship developed for stainless steel in tension by 

Rasmussen (2003).  This relationship uses Eq. (2-11) to describe the stress-strain 

relationship up to Fy, and Eq. (2-13) for Fy to the 1.0% proof stress, F1.0. 

   

E = b −  zqz + �0.008 −  $.! −  zqz � � b −  z $.! −  z�k�.Y,�.�� + Ez;  b >  z 
(2-13) 

f  

  

Where    
  $.! = 1.0% Proof Stress 

  Ez = 0.002 +  zq@ 
(2-14) d 

  qz =  zq@ z + 0.002�q@ (2-15) d 

 

Cold-formed Stainless Steel Columns 

The majority of experimental research on stainless steel columns has been 

devoted to concentrically loaded cold-formed sections, which buckle in the flexural 

mode.  Studies have mostly been limited to doubly-symmetric hollow sections including 

square hollow sections (SHS), rectangular hollow sections (RHS), and circular hollow 

sections (CHS), (Gardner and Nethercot 2004b; Liu and Young 2003; Rasmussen and 

Hancock 1990; Talja and Salmi 1995; Young and Hartono 2002; Young and Liu 2003; 

Young and Lui 2006).  Additionally, closed hollow sections have been tested which were 

fabricated by bonding two open sections together (Hammer and Petersen 1955; Johnson 

and Winter 1966).  Early stainless steel buckling tests involving open sections also 

examined flexural buckling (Coetsee et al. 1990; Johnson and Winter 1966), but recent 
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studies have focused on the interaction between global buckling modes and local 

buckling or distortional buckling (Becque and Rasmussen 2009a; Becque and Rasmussen 

2009b; Lecce and Rasmussen 2006; Rossi et al. 2010).  Test specimens have 

predominantly represented austenitic grades of stainless steel, S30100 and S30400.  More 

recent tests involved sections made from high strength duplex stainless steel, (Ellobody 

2007; Ellobody and Young 2005; Theofanous and Gardner 2009; Young and Lui 2006). 

Interaction between flexural and local buckling modes was observed in many of 

these investigations due to the plate slenderness of cold-formed sections.  Pure flexural 

buckling generally only occurs for slender columns or specimens which have nonslender 

cross-sections.  Of the specimens which exhibited pure flexural buckling, close 

agreement was seen between experimental data and capacities predicted using the tangent 

modulus approach (Hammer and Petersen 1955; Johnson and Winter 1966; Rasmussen 

and Hancock 1990).  The column strengths have been shown to be dependent on the 

cross-sectional shape.  When corners, which undergo work-hardening in the fabrication 

process, are located near the extreme fibers of a cross-section, the cross-section exhibits a 

strength greater than the tangent modulus prediction, which does not take into account the 

location of the strained hardened regions in the cross-section (Hammer and Petersen 

1955; Johnson and Winter 1966; Rasmussen and Hancock 1990).  

The flexural-torsional buckling mode has not been explored as thoroughly for 

stainless steels as the flexural buckling mode.  For singly-symmetric sections, it occurs at 

high stresses, which can also cause local or distortional buckling thereby making it 

difficult to investigate.  Only one study has directly investigated the flexural-torsional 

buckling mode of failure for stainless steel members (van den Berg and van der Merwe 
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1988).  The lengths of the hat specimens were selected to ensure flexural-torsional 

buckling mode of failure. It was not reported whether or not cross-sectional distortion 

occurred during testing, but several of the slender specimens failed due to flexural 

buckling.  Experimental data were compared to the tangent modulus formulation given 

by Eq. (2-8), taking ηs=η, and are shown in Figure 2.5.  The flexural-torsional buckling 

mode was also peripherally considered in a later study which investigated the interaction 

between distortional and flexural-torsional buckling (Rossi et al. 2010).  All the lipped-

channel sections were designed to undergo distortional buckling prior to global buckling, 

and uncoupled flexural-torsional buckling was only observed for the longest columns. 

 

 

Figure 2.5- Results of flexural-torsional buckling tests.  Left: S30400, Right S41003 
(van den Berg 2000) 

 

Hot-rolled and Built-up Stainless Steel Columns 

Limited data exists on hot-rolled or built-up sections.  The available data was 

performed on sections made of S41003 (3Cr12) grade stainless steel at Rand Afrikaans 

University.  Built-up I-sections were fabricated by welding hot-rolled plates together and 

tested in compression to determine the flexural buckling strength (Bredenkamp and van 

den Berg 1995).  Experimental results generally exceeded the stub column tangent 



18 
 

modulus predictions by approximately 20%, suggesting that the end fixtures exerted 

greater fixity than assumed.  Similar tests were conducted on hot-rolled specimens of the 

same shape and material; however, experimental results showed better agreement with 

the tangent modulus predictions, as shown in Figure 2.6 (Bredenkamp et al. 1994). 

 

 

Figure 2.6- Hot-rolled S41003 I-column results (ABAQUS 2011; Bredenkamp et al. 
1994) 

 

An experimental investigation was conducted to determine the strengths of 17 

hot-rolled compact equal-leg angles having the same cross-section, b/t=8 (van den Berg 

et al. 1995); however, all of the specimens buckled in the flexural mode.  Like the hot-

rolled wide-flange columns, data correlated well with the tangent modulus buckling load 

predictions; however, it should be noted that in these studies, columns were aligned by 

adjusting the loading eccentricity to achieve uniform strain at midheight. 

Current Design Practice 

Experimental research has been used in the development of structural stainless 

steel design rules and standards:  Design Manual for Structural Stainless Steel (Euro-

Inox)  (SCI and Euro-Inox 2006), Eurocode3 Part 1-4: General Rules – Supplementary 
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rules for Stainless Stee s (EC3, 1-4) (Eurocode 3 2006),  the SEI/ASCE 8-02: 

Specification for the Design of Cold-formed Stainless Steel Structural 

members(SEI/ASCE 8-02), AS/NZS 4673:2001 Cold-formed Stainless Steel 

Structures(AS/NZS 4673), and AISC Design Guide: Structural Stainless Steel (AISC 

2012).  The treatment of concentrically loaded sections by each of these design rules is 

briefly described below, and further discussion is presented in Chapter 4.  It should first 

be noted that four of the five design rules are suitable for the design of cold-formed 

members, while the (draft) AISC Design Guide for stainless steel limits its scope to hot-

rolled and welded sections.  The European standards can be used to design built-up thick 

plate members in addition to cold-formed sections. 

Slender elements 

It is important to note that each standard and design rule accounts for slender 

elements differently.  Most design rules use some form of the effective width concept, 

which was first used by von Karman et al. (1932)  and later formulated by Winter (1947).  

Additionally two other approaches exist, including the Continuous Strength Method 

(Gardner and Nethercot 2004c) and the Direct Strength Method (Schafer 2008), which 

are not considered in this review.  

The draft AISC Design Guide for stainless steel utilizes the Q-reduction method 

incorporated in its carbon steel design manual (AISC 2005).  Both AS/NZS 4673 and 

SEI/ASCE 8-02 calculate the effective widths based on both cross-sectional dimensions 

and the limit state stress, which is multiplied by the effective cross-sectional area to 

calculate the design strength.  EC3, 1-4 and Euro-Inox only consider cross-sectional 
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dimensions in computing effective widths, which are used in computing effective column 

slenderness.   

SEI/ASCE 8-02:  Specification for the Design of Cold-formed Stainless Steel 

Structural Members 

The SEI/ASCE 8-02 utilizes the tangent modulus approach defined in Eq. (2-8) for 

minor-axis flexural buckling.  The tangent modulus approach is also employed in 

calculating the flexural-torsional buckling load, Eq. (2-3), of singly-symmetric sections, 

using Et/Eo for both η Eq. (2-10) and ηs Eq. (2-9).  Both equations require iterative 

calculations to determine the buckling load.  For singly-symmetric sections, the design 

stress is taken as the stress associated with the lower of the flexural or flexural-torsional 

buckling loads (SEI/ASCE 8-02).   

Eurocode 3 EN 1993 1-4: Design of Steel Structures, Supplementary Rules for 

Stainless Steels; Design Manual for Structural Stainless Steel 

These design rules utilize an explicit approach to calculate the flexural buckling 

strength of a stainless steel member.  The design stress is computed using the Perry-

Robertson Curve given by Eq. (2-16), which is also used in Eurocode 3, 1993 1-1 for 

carbon steel; however, different values are used for the parameters, λo and α, which are 

based on calibrations against the stainless steel test data.  These values vary depending on 

the method by which the section was fabricated.  Additionally, alternate values exist for 

λo and α if the flexural-torsional buckling mode is considered.  An equivalent column 

slenderness ratio, λ, must be used in computing the flexural-torsional buckling strength.  

It is noted that these design rules generalize the behavior of all grades of duplex and 

austenitic stainless steel, making no adjustment to consider the stress-strain relationship 
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of the stainless steel being used (specifically the Ramberg-Osgood hardening parameter 

n) (Eurocode 3 2006; SCI and Euro-Inox 2006). 

 

 bk =  z�s�, �@ , �v + ��As�, �@ , �v − �A ≤  z (2-16) 
f  

 

Australian/New Zealand 4673: Cold-Formed Stainless Steel Structures 

The AS/NZS 4673 standard allows for the strength of concentrically loaded 

columns to be computed using the same iterative methods as SEI/ASCE 8-02.  

Alternatively, an explicit Perry-Robertson formulation, given by Eq. (2-17), may be used 

to compute the flexural buckling strength (AS/NZS 4673 2001).  Unlike the European 

standard, the imperfection parameter, φ, varies depending on the stress-strain relationship 

of the selected grade of stainless steel.  It is computed using the parameters, α, β, λo, and 

λ1, which can be calculated using the Ramberg-Osgood parameters of the selected grade.  

It has been observed that the iterative (tangent modulus) approach used in SEI/ASCE 8-02 

predicts higher column strengths than the Australian/New Zealand explicit formulation 

along with more scatter.  As a result, the explicit formulation is associated with a higher 

resistance factor (Rasmussen and Rondal 1997a).   

 

 bk = bz�s�, w, �@ , �$, �v + ��As�, w, �@ , �$, �v − �A ≤ bz (2-17) 
f  
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AISC Design Guide: Structural Stainless Steel 

The AISC Design Guide for structural stainless steel, which is in draft form at the 

time that this thesis was written, adjusts the formulations found in (AISC 2005) based on 

experimental test data for stainless steel members.  In compression, the buckling stresses 

are computed for stainless steel columns assuming linear elastic material behavior, which 

are substituted into stainless steel column curve formulations.  Like the European 

standard, the AISC Design Guide does not consider the degree of nonlinearity of a stress-

strain curve. 

2.3 NUMERICAL BUCKLING ANALYSES 

Numerical analyses have been effectively used by researchers to generate column 

curves for different sections.  The earliest analyses were conducted on members that 

failed due to overall flexural buckling.  Probabilistic column curves were generated based 

on variations in the values of residual stresses and magnitudes of column out-of-

straightness (Bjorhovde 1972).  The effect of residual-stresses on initially-straight angle 

sections was investigated numerically by Kitipornchai and Lee (1986a) and Al-Sayed and 

Bjorhovde (1989b).  This method was later applied to the flexural buckling of hot-rolled 

angle sections using documented residual stress patterns and an out-of-straightness of 

L/1500 (Adluri and Madugula 1996a). 

For columns made of materials with nonlinear stress-strain-relationships, it is 

necessary to model columns with local and global imperfections in order to cause non-

axial/longitudinal deformations.  An algorithm frequently used to investigate the load-

displacement relationships of such cases is the Wempner-Riks loading procedure.  One of 

the earliest applications of this algorithm in investigating stainless steel was in 
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determining the buckling strength of S310803 grade stainless steel plates, which closely 

matched experimental test results when a multi-linear isotropic hardening material model 

was used (Rasmussen et al. 2003)  Additionally, it was also noted in this study that using 

anisotropic material models resulted almost no difference compared to an isotropic 

material model.  This modeling procedure was later used to determine effective-width 

parameters in terms of Ramberg-Osgood properties (Bezkorovainy et al. 2003). 

The Wempner-Riks procedure was extended to stainless steel columns to 

investigate the interaction of buckling modes.  This was first used to perform a 

parametric study on plate slenderness values of cold-formed SHS and RHS S31803 

columns for various slenderness ratios (Ellobody and Young 2005).  A similar parametric 

study was undertaken to determine the strength increase associated with adding midplate 

stiffeners to the SHS and RHS sections (Ellobody 2007).  The Wempner-Riks procedure 

has also been used to model S32101 lean-duplex stainless steel RHS and SHS sections 

(Huang and Young 2012; Theofanous and Gardner 2009).  This procedure was also 

extended to open stainless steel sections to investigate the interaction between flexural 

and local buckling (Becque and Rasmussen 2009a; Becque and Rasmussen 2009b).  

2.4 CRITICAL REVIEW 

The behavior of stainless steel sections in compression is not a new topic, but the 

majority of this research has either focused on cold-formed sections or on ferritic 

stainless steels. For cold-formed sections, data often reflects work-hardening and 

interaction between local and global buckling modes.  For ferritic stainless steel sections, 

data related to overall buckling modes often does not show deviation from linear material 

behavior since ferritic grades of stainless steel have a high proportional limit.  Flexural 
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buckling data generally showed agreement with the strength predictions computed using 

the tangent modulus; however much of the data eliminated the effects of column out-of-

straightness based on the alignment of their specimens.  Less work has focused on the 

overall flexural-torsional buckling of stainless steel members, which is currently limited 

to hat sections (van den Berg and van der Merwe 1988).   

Limited attention has been paid to equal-leg stainless steel angles.  Ferritic 

stainless steel equal-leg single angles have been tested, which showed agreement with the 

tangent modulus column curve (van den Berg et al. 1995); however, data in this study 

were based on the results of one compact cross-section.  As a result, specimens only 

buckled in the flexural mode, which prevented analysis of the effect of plate 

width/thickness ratios on flexural-torsional buckling in stainless steel.    

This review of existing literature revealed that insufficient data exists for design 

recommendations to be made for stainless steel equal-leg single angle sections.  Current 

limit-state design practice requires that concentrically loaded singly-symmetric columns 

be designed for flexural and flexural-torsional buckling modes; however, this requires 

that both the transition between two global buckling modes and their associated strengths 

be understood.  Existing design standards will be evaluated through experimental and 

numerical testing, which is described in subsequent chapters. 
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CHAPTER 3 

MATERIAL CHARACTERIZATION 

 

The chapter presents the results of tests conducted to determine the material 

properties of UNS S32003 (ATI 2003®) grade duplex stainless steel which are relevant 

for the structural analysis of sections composed of S32003 in compression. Also 

presented are the residual stress patterns of welded S32003 stainless steel angles. 

3.1 UNS S32003 MATERIAL DESCRIPTION 

The microstructure of S32003, shown in Figure 3.1, contains both body-centered 

cubic (BCC) ferritic and face-centered cubic (FCC) austenitic phases.  The elemental 

composition of S32003 is given in Table 3.1.  

 

  

Figure 3.1- S32003 duplex microstructure (ATI Allegheny Ludlum) 

 

 

 

 

 ® Registered trademark of ATI Properties, Inc. 
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Table 3.1- Elemental composition of S32003(ASTM A240-11)  

Element Composition, 
(% Weight) 

C 0.030max. 
Mn 2.00 max. 
P 0.030max. 
S 0.020max. 
Si 1.00max. 
Mo 1.50-2.00 
N 0.14-0.20 
Cr 19.5 - 22.5 
Ni 3.0 – 4.0 

Iron Balance 
 

Compressive Stress-strain Relationship 

To construct the full-range compressive stress-strain curve for S32003, five stub 

column tests were conducted, guided by “Technical Memorandum No. 3” of the Guide to 

Stability Design Criteria for Metal Structures (Ziemian 2006).  In order to avoid local 

buckling of angle sections tested in compression, doubly-symmetric tubular sections were 

tested.  Due to the unavailability of laser-welded tubular sections, tubular sections were 

fabricated by TIG welding together two L2 x 2 x ¼ in. S32003 equal-leg angles 

positioned toe-to-toe.  Each column was instrumented with four strain rosettes, with one 

rosette mounted at midheight on each face as shown in Figure 3.2.  The test set-up also 

included a 200-kip load cell to measure load, which was applied using a SATEC testing 

machine.  Data were recorded continuously using data acquisition software. 
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Figure 3.2- Stub column test set-up 

 

Results 

The experimental stress-strain curve of each stub column is plotted in Figure 3.3.  

During testing of Column 3, the soldering tabs disconnected from one of the strain 

rosettes prior to yield.  As a result, only three strain rosettes were used to analyze the data 

for this specimen.  Principal strains were calculated from the strain rosettes data.  For 

each rosette, the compressive principal strain was found to be within 1% of the strain 

measured by the strain gage oriented parallel to the direction of loading.  Poisson’s ratio 

was computed using the data from each of the 19 functioning strain rosettes by dividing 

the principal strain in the direction transverse to loading by the principal strain parallel to 

the loading direction.  The resulting values are plotted in Figure 3.4. 
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Figure 3.3- Stub column stress-strain behavior 

 

 

Figure 3.4- Poisson's ratio corresponding to various longitudinal strains 
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Discussions 

Initial Modulus of Elasticity  

The initial compression modulus of elasticity, Eo, was determined from stress-

strain curves at strains less than 0.25% using the method proscribed by Section 9.4 of 

(ASTM E111-04).  The resulting values for Eo are listed in Table 3.2. 

 

Table 3.2- Modulus of elasticity based on ASTM E111-04 

Specimen Eo 
(ksi) 

Stub column 1 28318 
Stub column 2 27925 
Stub column 3 28631 
Stub column 4 29356 
Stub column 5 28987 

Average 28643 
 

Poisson’s Ratio 

The mean and coefficient of variation of Poisson’s ratio data were calculated at 

each 0.0005 in./in. increment; these values are given in Table 3.3.  Large variability in the 

calculated Poisson’s ratios existed for strains near 0.0005 (in./in.), but variability 

decreased for strains of 0.001 (in./in.) and higher.  This can be seen in Figure 3.5. 

Poisson’s ratio approaches 0.24 at strains of 0.003 (in./in.) and higher.  This is less than 

the Poisson’s ratio value of 0.3 reported in AS/NZS 4673, indicating that further 

examination of Poisson’s ratio is necessary in the future.  
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Table 3.3-  Poisson's ratio for longitudinal compression 

Longitudinal Strain 
(in./in.) 

Mean Poisson’s 
Ratio 

Coefficient of 
Variation 

0.0005 0.185 0.238 
0.0010 0.204 0.141 
0.0015 0.215 0.121 
0.0020 0.228 0.126 
0.0025 0.235 0.140 
0.0030 0.239 0.143 
0.0035 0.241 0.139 
0.0040 0.242 0.132 
0.0045 0.242 0.124 
0.0050 0.242 0.116 
0.0055 0.242 0.110 
0.0060 0.242 0.104 
0.0065 0.242 0.099 
0.0070 0.241 0.094 
0.0075 0.241 0.091 

 

 

Figure 3.5- Poisson's ratio variability 
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Initial Shear Modulus 

The initial shear modulus of S32003, Go, was determined from eight tests 

conducted on notched coupons subject to a four-point asymmetric loading configuration.  

This test procedure is commonly used for determining the in-plane shear modulus of 

polymer composites and outlined in ASTM D-5379.   The eight shear coupon specimens, 

of which four were oriented in the longitudinal direction and four were oriented in the 

transverse direction (as shown in Figure 3.6), were cut from S32003 L4 x 4 x 5/16 angle 

sections using a water jet cutter.   

 

 

Figure 3.6- V-notched shear coupon orientations 

 

The experimental test setup is shown in Figure 3.7.  Each specimen was 

instrumented with two orthogonal strain gages on the front and back faces of the 

specimens, oriented at ±45° from horizontal.  Tests were conducted in a SATEC testing 

machine where the load was applied to the loading fixture using a 0.5 in. diameter 

hardened steel ball.  Load was measured using a 10-kip load cell.  Data were recorded 

Longitudinal 
Coupon 

Transverse 
Coupon 
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continuously using data acquisition software. Due to limitations of the testing fixture, 

tests were terminated at 3 kips. 

 

 

 

Figure 3.7- Shear testing setup 

Results 

Shear stress was calculated as the measured load divided by the cross-sectional 

area of the narrow section of the notch, and the shear strain was computed for each face 

as �E��#°� + �E �#°�.  The in-plane shear moduli were determined through regression 

analyses of data.     

Data were examined to determine how much bending and twisting was present 

during testing. Cho (1998) recommends that data meet the tolerances 
¡¢£¤¥°¡ ¡¢¦¤¥°¡�¢£¤¥°���¢¦¤¥°� ≤ 5% 

and 0.9 ≤ ¡¢£¤¥°¡�¢¦¤¥°� ≤ 1.1 to satisfy pure shear loading conditions.  ASTM D-5379 also 

requires that the twist factor, Tw, given by Eq. (3-1) does not exceed 3.0% at 0.4% 

absolute strain.  Although strains never reached that level, values for the twist fell below 

3%.  The coupon bending/twisting indicators, reported in Table 3.4, generally fall within 
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these tolerances, demonstrating the validity of the testing procedure.  The results from the 

shear testing are summarized below in Table 3.5. 

 

 
©� = �~@_�T@k_ − ~@_^«¬]�~@_�T@k_ + ~@_^«¬]  

 

(3-1) 

  

Table 3.4- Shear tolerances 

Specimen Tw 

Front Face Back Face �E��#°� − �E �#°�|E��#°| + |E �#°| �E��#°�|E �#°| �E��#°� − �E �#°�|E��#°| + |E �#°| �E��#°�|E �#°| 

T
ra

n
sv

e
rs

e 1 0.003 0.03 1.04 0.09 1.19 
2 0.025 0.07 0.87 0.07 0.88 
3 0.003 0.03 0.93 0.04 0.92 
4 0.009 0.07 1.15 0.04 1.08 

Lo
n

gi
tu

d
in

al
 1 0.010 0.07 0.86 0.06 0.88 

2 0.027 0.01 0.97 0.06 0.89 
3 0.000 0.04 0.92 0.10 0.81 
4 0.008 0.01 1.02 0.03 1.07 

 

 

Table 3.5- In-plane shear modulus results 

 
Specimen 

Cross-Sectional 
Area (in.2) 

Go_front (ksi) Go_back (ksi) Go_avg. (ksi) 

T
ra

ns
ve

rs
e

 

1 0.127 9340 9279 9309 
2 0.127 9663 10161 9912 
3 0.128 9552 9498 9525 
4 0.127 9793 9625 9709 

Average 9610 

Lo
ng

. 
 

1 0.127 9877 9976 9927 
2 0.126 9607 10131 9869 
3 0.127 9879 9870 9875 
4 0.127 10411 10571 10491 

Average 10,040 
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Discussion 

Anisotropy of S32003 Angles 

Although the average shear modulus from the longitudinally cut specimens was 

slightly higher than the average for transverse specimens (10040 ksi vs. 9610 ksi), the 

two values are close enough from a practical point of view to not consider anisotropy in 

shear.  Thus, the in-plane shear modulus was calculated as 9830 ksi by averaging the 

moduli from the 8 coupons. 

Alternative Approach for Determining the Initial Mo dulus of Elasticity 

The purpose of this section is to develop an alternative approach for determining 

the initial modulus of elasticity, Eo, in order to eliminate the difficulty associated with 

fabricating and testing stub columns.  Since the stress-strain behavior of S32003 is 

approximately linear at low strain values, the modulus of elasticity can be determined 

from experimental load-deflection data for long span beams, where flexural behavior 

dominates deflection response, tested at low strain values.  A total of six specimens 

measuring 1.7 in. x 0.25 in. were cut from L2 x 2 x ¼ angle sections using a vertical 

bandsaw.  Specimens were designed to have span-to-depth ratios greater or equal to 48, 

causing shear deformation to be negligible.  The span lengths were 12 in., 18 in., and 24 

in; two specimens were tested for each span length.   Dimensions for these specimens are 

listed in Table 3.6. 

 

 

 

 



35 
 

 

Table 3.6- Three-point bending specimen dimensions 

Specimen 
Span/Depth 

Ratio 
Span, 
L (in.) 

Width, 
b (in.) 

Thickness, 
t (in.) 

Area, A 
(in2) 

Moment of 
Inertia, I  (in4) 

12a 48.2 12 1.704 0.249 0.424 0.00219 

12b 49.6 12 1.713 0.242 0.414 0.00202 

18a 72.6 18 1.684 0.248 0.417 0.00213 
18b 72.6 18 1.671 0.248 0.415 0.00213 

24a 99.6 24 1.681 0.241 0.406 0.00197 

24b 99.6 24 1.697 0.249 0.423 0.00219 
  

The specimens were tested in a Tinius Olsen flexure fixture simulating simply 

supported conditions as shown in Figure 3.8.  This fixture consisted of two movable 60° 

wedge supports.  Loading was applied at midspan using a hydraulic jack and transferred 

to the specimens through a ¾ in. diameter cylindrical steel rod.  Loading was applied 

such that the crosshead displacement rate did not exceed 0.009 in/sec.  Loading continued 

until the displacement reached at least 0.4 inches.  The applied load was measured using 

a 10-kip Interface® load cell, and the deflection was determined by averaging the 

displacements recorded from two linear variable differential transducers (LVDTs) 

attached to the ends of the cylindrical load applicator.  Data were continuously recorded 

using data acquisition software.  The load-deflection curves of the six test specimens are 

shown below in Figure 3.9. 
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Figure 3.8- Three-point bending test set-up 

 
  

 

 

 

 

Figure 3.9- Load-deflection plot for three-point flexure tests 
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Discussion 

The load and deflection data were normalized with the linear elastic equations, 

Eq. (3-2) and Eq. (3-3), to obtain stress and strain, respectively, which are plotted in 

Figure 3.10.  The modulus of elasticity, E, was calculated at each data point by 

performing a linear regression of the data up to that point.   Only data between 5 ksi and 

30 ksi were considered.  Plots of E versus its corresponding load, P, for the six specimens 

are shown in Figure 3.11.  Average values of E for data in this range are listed in Table 

3.7.  The  average value, 27,600 ksi, is within 3.5% of the the Eo determined from the 

stub column tests— 28,600 ksi; thus, the validity of this method in determining the 

modulus of elasticity has been verified against a validated procedure. 

 
σ = PLt8r  

 

(3-2) 

 E = 6 δtuA (3-3) 
d 

 

 

Figure 3.10- Transformed load-deflection data 
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Figure 3.11- Three-point bending modulus determination plot 

 

Table 3.7- Modulus of elasticity 

Specimen Eo 
(ksi) 

12a 27900 
12b 25900 
18a 27900 
18b 27800 
24a 28200 
24b 28900 

Average 27600 
 

Stress-strain Modeling   

The stub column compressive stress-strain behavior was modeled in two parts. 

The preyield stress-strain data was modeled using the modified Ramberg-Osgood 

relationship, given by Eq. (2-11).  The stress-strain behavior for stresses exceeding Fy 

was modeled using Eq. (2-13); however, it is to be noted that the post-yield hardening 
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parameter, n’
0.2,1.0 was computed in the present study using Eq. (3-4), which requires 

determination of the 0.5% proof stress, F0.5.   

   
  

 

 

  
�′!.A,$.! =

ln °0.003 − 0.002� � !.# −  z z �
0.008 −  $.! −  zqz

±
ln � !.# −  z $.! −  z�  

(3-4) 

  
A value of 28,200 ksi was adapted in subsequent sections for Eo based on results 

of the stub column and flexural tests and was used in determining all other parameters.  

These parameters are listed in Table 3.8.  Comparisons between the experimental and 

modeled behavior are shown in Appendix A. 

 

Table 3.8- Stub column modeling parameters 

Parameter  1 2 3 4 5 
Initial Modulus, Eo (ksi) 28200 28200 28200 28200 28200 
0.2% Proof Stress, Fy (ksi) 72.76 74.57 77.38 76.29 76.87 
0.01% Proof Stress, Fp (ksi) 40.48 42.56 41.20 54.96 49.07 
Hardening Parameter, n 5.11 5.34 4.75 9.14 6.67 
1% Proof Stress, F1. 0   (ksi) 88.38 90.64 96.46 90.96 93.29 
Tangent Modulus at Fy, Ey (ksi) 5685 5595 6317 3637 4782 
Strain at Fy, εy 0.00458 0.00464 0.00474 0.00471 0.00473 
Post-yield Hardening     
         Parameter, n0.2, 1 .0 

2.40 2.47 2.25 2.95 2.90 

0.5% Proof Stress, F0. 5  (ksi) 82.39 84.53 88.87 85.12 87.23 
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 Development of a typical stress-strain curve 

A typical stress-strain curve was developed from the stub column stress-strain 

data of S32003, which enables values such as tangent and secant moduli and curvature of 

the stress-strain relationship to be calculated.  From the S32003 stub column data, a 

typical stress-strain relationship was constructed based on the procedure described by 

“Technical Memorandum B.2.1” of the Guide to Stability Design Criteria for Metal 

Structures  (Ziemian 2006).  The resulting parameters are summarized in Table 3.9.  The 

typical stress-strain curve is plotted alongside with the stub column data in Figure 3.12.  

 

Table 3.9- S32003 Material properties  

Parameter Value 
Initial Modulus, Eo (ksi) 28200 
0.2% Proof Stress, Fy (ksi) 75.6 
0.01% Proof Stress, Fp (ksi) 44.7 
Hardening Parameter, n 5.71 
1% Proof Stress, F1.0   (ksi) 92.0 
Tangent Modulus at Fy, Ey (ksi) 5363 
Strain at Fy, εy 0.00468 
Post-yield Hardening Parameter, n0.2,1.0 2.63 
0.5% Proof Stress, F0.5  (ksi) 85.8 
Poisson’s Ratio 0.24 
Initial Shear Modulus, Go (ksi) 9830 
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Figure 3.12- Full-range typical stress-strain curve comparison 
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3.2 RESIDUAL STRESSES 

The distribution of residual stresses for S32003 built-up equal-leg angles was 

experimentally determined by the method of sectioning (Huber and Beedle 1954; 

Tebedge et al. 1972).  Residual stress patterns for laser-welded duplex stainless steel 

structural shapes have not been investigated in the past, and an attempt is made here to 

present the pattern for the angle structural component. 

Laser Welding 

Laser welding is a high energy keyhole fusion welding technique, illustrated in 

Figure 3.13, where a laser with a power density on the order of magnitude of 104 W/mm2 

is focused along the union of two metals plates.  Initial contact with the metal surface 

vaporizes the metals and forms a keyhole.  The vapor pressure keeps the keyhole open 

and scatters the light of the laser.  The energy of the scattered laser converts the metal 

adjacent to the keyhole into a molten state.  As the laser is moved along the joint line, the 

molten walls rejoin where the laser had been and solidify.  Because of the dependency on 

the laser’s high energy density rather than heat conduction, this welding method results in 

heat affected zones (HAZ) that are smaller than those associated with arc welding 

(Dawes 1992).  
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Figure 3.13- Mechanisms of laser welding (Dawes 1992) 

 

Experimental Method 

A total of four angles were investigated using the method of sectioning—two L2 

x 2 x ¼ sections and two L4 x 4 x 5/16 sections.  The sectioning procedure is illustrated in 

Figure 3.14.  The angles were cut 10 in. in length from longer sections, and 0.25 in. wide 

segments were marked along the cross-section.   For each cross-sectional strip, two 1/16 

in. Ø gage holes were drilled 8 in. apart in the longitudinal direction on each exposed 

face, as shown in Figure 3.15.  After specimens were placed in an environmental 

chamber for 6 hours, initial gage length measurements were made using digital calipers 

precise to 0.001 in. The calipers measured the shortest distance between the gage holes, 

as shown in Figure 3.16.  Specimens were cut at the heel to separate their legs and then 

then cut into the 10 x 0.25 in strips.  All cuts were made using a horizontal bandsaw with 

cutting coolant flowing continuously across the cut.  The strips, as shown in Figure 3.17, 

were again placed in the environmental chamber for 6 hours before new length 

measurements were made. 
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Figure 3.14- Sectioning procedure 

 

 

Figure 3.15- Gage marker patterns for residual stress specimens 
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Figure 3.16- Method of sectioning measurement scheme 

 

 

 

Figure 3.17- Sectioned residual stress specimens 

 

Residual Stress Calculations 

Prior to calculating the residual stresses, length measurements were corrected to 

account for errors caused by curvature of the strips and changes in temperature.  The 

residual stresses were calculated using Eq. (3-5).   

 

Gage Hole Center-to-Center  

Inside Distance (measured) 
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 bT = −q@ yu� − u¶{u¶  (3-5) 

Where   

Eo = Initial Modulus of Elasticity 

Lf = Final length 

Li = Initial length 

σr = Residual Stress 

 
Due to the discretization of the cross-section, the method of sectioning often 

indicates an internal force/moment imbalance.  In several investigations of carbon steel 

angles, residual stress measurements were corrected to achieve equilibrium (Adluri and 

Murty 1996; Al-Sayed and Bjorhovde 1989a). The internal force/moment imbalance was 

checked and corrected numerically using a method summarized in Figure 3.18.  

Comparisons between the corrected and uncorrected residual stress profiles are shown in 

Figure 3.19(a)-(d).  The equilibrium correction procedure caused the residual strains at 

the site of the weld to vary by approximately 11-16% for the L2 x 2 x ¼ sections and 8% 

for the L4 x 4 x 5/16 sections, which are of the same order of magnitude as the equilibrium 

corrections seen in (Al-Sayed and Bjorhovde 1989a).  The corrected residual stress 

patterns are shown in Figure 3.20 and Figure 3.21. 
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Figure 3.18- Equilibrium correction methodology 
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Figure 3.19- Equilibrium corrected/uncorrected residual stress profiles for (a) L2 x 2 x ¼ 
- A; (b) L2 x 2 x ¼ - B; (c) L4 x 4 x 5/16 - A; and (d) L4 x 4 x 5/16 - B  
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Figure 3.20- Residual stress pattern for S32003 L2 x 2 x 1/4 angle specimens 

 

 

Figure 3.21- Residual stress pattern for S32003 L4 x 4 x 5/16 angle specimens 
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Discussion of Residual Stress Pattern Results 

The peak residual stresses at the HAZ, toes, and midplate are given in Table 3.10  

The laser welding procedure created a concentration of tensile residual stresses at the 

weld zone whose value was as high as 50% of the yield stress in compression, Fy,c.  This 

is similar to the residual stresses of a built-up I-section made with S32205 grade duplex 

stainless steel, wherein the residual stresses were approximately 50% of Fy  at the HAZ in 

the flanges and 95% of Fy at the HAZ in the web (Lagerquist and Olsson 2001).  

The middle of each leg was determined to be in residual compression, whereas the 

toes are in residual tension.  This is similar to the residual stress pattern of the built-up 

L10 x 10 x ½ equal-leg angle made from mild steel plates at Lehigh University, as shown 

in Figure 3.22 (Rao et al. 1963).  From Table 3.10, it can be seen based on two tests only, 

that the magnitudes of the residual stresses away from the HAZ are higher in the L2 x 2 x 

¼ sections than in the L4 x 4 x 5/16 sections.  Since L2 x 2 x ¼  has a smaller cross-

section than L4 x 4 x 5/16, its greater residual stresses magnitudes are necessary to balance 

the residual stresses associated with the HAZ  in order to achieve internal force and 

moment equilibrium.   

 

Table 3.10- Peak residual stress values 

 HAZ Midplate Toe 

Angle 
bT,·¸¹  
(ksi) 

bT,·¸¹ z,¬  bT,¬ 
(ksi) 

ºbT,¬ z,¬º bT,_  
(ksi) 

bT,_ z,¬ 

L2 x 2 x ¼ -A 26.2 0.35 -18.8 0.25 15.4 0.20 
L2 x 2 x ¼ - B 35.6 0.47 -21.8 0.29 16.4 0.22 

L4 x 4 x 5/16 - A 32.1 0.43 -12.1 0.16 8.8 0.12 
L4 x 4 x 5/16 - B 37.7 0.50 -10.5 0.14 13.8 0.18 

 Positive values indicate residual tensile stresses 
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Figure 3.22- Residual stress pattern for a welded built-up mild steel angle (Rao et al. 
1963) 

 

Because laser welding is a less heat intensive process than arc welding and the 

thermal conductivity of mild steel, 49 W/(m·K) (Bentz and Prasad 2007), is nearly three 

times the thermal conductivity of S32003 at room temperature, 17 W/(m·K) (ATI 

Allegheny Ludlum), the size of the HAZ for built-up stainless steel angles was expected 

to be smaller than that of built-up carbon steel sections.  No attempt was made to quantify 

the size of the HAZ; however, the size of the region surrounding the HAZ in residual 

tension was compared to corresponding regions in built-up carbon steel sections. The 

distance from the weld to a point of zero residual stress was approximately 17.5% of the 

outstanding leg dimension for the L2 x 2 x ¼  angles and 14% of the outstanding leg 

dimension for the L4 x 4 x 5/16 angles.  This is comparable to the same distances reported 

by Rao et al. (1963) for the stems of welded carbon-steel T-sections, which vary between 
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14% and 27% of the height of the stem.  Additionally it should be noted that while the 

residual stresses in the HAZ are on the order of 0.50Fy,c, the magnitude (38 ksi) of the 

residual stress at the HAZ is similar to that of welded carbon steel box (38 ksi) (Rao et al. 

1963). 

3.3 SECTION CHARACTERIZATION 

Compressive stress-strain relationships that include the effect of residual stresses 

found in the laser-welded equal-leg angles could not be obtained by directly testing angle 

stub columns since their legs were susceptible to local buckling.  Instead, tubular stub 

columns were fabricated and tested as described in Section 3.1; however, they had 

residual stresses which differed from those found in L2 x 2 x ¼ angles as a result of 

welding.  Thus, the stress-strain curves from the stub column tests were approximations, 

rather than true representations, of the effect of the residual stresses found in the laser-

welded equal-leg angles.  These stress-strain relationships, however, are valid for analysis 

of single equal-leg angle columns for several reasons.  Firstly, fabricating the stub 

columns did not reverse the residual stresses.  Since the doubly-symmetric stub columns 

were fabricated by welding L2 x 2 x ¼ angles at their toes, which were already in 

residual tension, the toes would be subject to increased residual tensile stresses; thus, the 

residual stress patterns were not altered.  Secondly, the stub columns were fabricated 

using TIG-welding rather than laser-welding.  It was noted by Klopper et al. (2011) in 

fabricating ferritic steel T-sections, that the residual stresses associated with full-

penetration laser-welding were up to 25% higher at the HAZ than full-penetration arc-

welding.  As a result, the change in the residual stresses would be less than if a laser-

welded tubular section had been tested.   
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3.4 CONCLUSION 

The material properties of S32003 angles, including their longitudinal modulus, 

compressive stress-strain relationship, Poisson’s ratio, and shear modulus, were 

determined from experimental tests.  The results from the residual stress investigation 

indicate a consistent pattern of residual tensile stresses in the toes and heels and residual 

compressive stresses at midplate of each leg.  A summary of the material parameters 

determined from these tests is given in Table 3.9, which can be used in analysis of the 

S32003 angles in compression. 
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CHAPTER 4 

EXPERIMENTAL BUCKLING TESTS 

 

This chapter presents the results from a series of experimental buckling tests 

conducted on S32003 equal-leg angles loaded concentrically in compression.  A total of 

33 test specimens having three different cross-sections were tested.  The results from 

these tests were then compared to the predicted strengths using existing stainless steel 

standards and design rules.  

4.1 TEST SPECIMENS 

Thirty-three equal-leg angles, representing three different cross-sections, were 

tested.  These cross-sections consisted of ten L4 x 4 x 5/16, eleven L3 x 3 x ¼, and twelve 

L2 x 2 x ¼ angles, designated hereafter as L4, L3, and L2, respectively.  In all test 

components the overall slenderness ratio Le/rx ranged from 35 to 350 while the angle leg 

slenderness (b/t) ratio ranged from 7.5 to 12.3.  Angle specimens were fabricated by butt-

welding two hot-rolled plates using a laser-welding technique.  The measured dimensions 

of each angle specimen, as defined by Figure 4.1 are listed alongside its Column ID in 

Table 4.1.  The first number of the Column ID refers to the nominal leg width in inches, 

and the second number refers to the length of the angle specimen without end fixtures.  

From these measurements, cross-sectional properties were computed.  These include the 

cross-sectional area (A), maximum and minimum moments of inertia (Iy and Ix, 

respectively), section torsion constant (J), and warping constant (Cw).  All computed 

values are also reported in Table 4.1.     
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Table 4.1- Cross-sectional properties of angle specimens 

 ��1
* t1

*  ��2
*  t2

*  A† I x
† I y

† J† Cw
† δo

*  u»@ 

 
( in.) (in.) (in.) (in.) (in2)  (in4)  (in4)  (in4)  (in6)  (in.) 

L2-18a 2.008 0.248 2.023 0.248 0.939 0.146 0.562 0.019 0.006 0.005 3801 

L2-18b 2.021 0.248 2.010 0.248 0.938 0.146 0.562 0.019 0.006 0.005 3804 

L2-24 1.999 0.248 2.023 0.248 0.935 0.145 0.558 0.019 0.006 0.004 6000 

L2-36a 2.019 0.244 1.997 0.248 0.929 0.143 0.552 0.019 0.006 0.013 2763 

L2-36b 1.995 0.248 2.024 0.243 0.927 0.143 0.552 0.019 0.006 0.005 6909 

L2-48 2.027 0.247 2.012 0.250 0.942 0.147 0.566 0.019 0.006 0.036 1330 

L2-60a 2.020 0.251 2.024 0.250 0.950 0.149 0.572 0.020 0.006 0.039 1535 

L2-60b 2.012 0.250 2.024 0.249 0.945 0.147 0.567 0.020 0.006 0.029 2048 

L2-72 2.025 0.247 2.005 0.250 0.939 0.146 0.562 0.019 0.006 0.067 1073 

L2-84 2.019 0.250 2.024 0.249 0.946 0.148 0.570 0.020 0.006 0.065 1302 

L2-96 2.027 0.250 2.023 0.250 0.950 0.149 0.574 0.020 0.006 0.068 1414 

L2-132 2.006 0.252 2.024 0.251 0.951 0.148 0.568 0.020 0.006 0.044 3007 

L3-18 3.023 0.249 2.994 0.249 1.436 0.507 1.994 0.030 0.021 0.012 1519 

L3-24a 2.999 0.250 3.024 0.250 1.442 0.510 2.007 0.030 0.021 0.047 509 

L3-24b 3.023 0.250 3.001 0.248 1.438 0.509 2.002 0.030 0.021 0.005 5082 

L3-36 3.028 0.248 2.996 0.249 1.436 0.508 1.999 0.030 0.021 0.013 2754 

L3-48a 3.021 0.250 2.998 0.250 1.444 0.510 2.006 0.030 0.021 0.009 5455 

L3-48b 3.027 0.250 3.002 0.250 1.444 0.512 2.013 0.030 0.021 0.052 920 

L3-60a 3.000 0.251 3.024 0.250 1.444 0.511 2.009 0.030 0.021 0.033 1807 

L3-60b 3.024 0.250 3.004 0.251 1.446 0.512 2.015 0.030 0.021 0.014 4225 

L3-72 3.030 0.249 3.001 0.250 1.443 0.512 2.014 0.030 0.021 0.044 1651 

L3-84 3.023 0.249 2.999 0.250 1.442 0.510 2.006 0.030 0.021 0.030 2772 

L3-132 3.024 0.249 2.999 0.251 1.444 0.511 2.009 0.030 0.021 0.030 4415 

L4-24 3.986 0.313 3.996 0.312 2.395 1.492 5.879 0.078 0.095 0.024 1017 

L4-36a 4.007 0.308 3.997 0.311 2.382 1.493 5.886 0.076 0.094 0.018 1989 

L4-36b 4.004 0.312 4.000 0.309 2.390 1.497 5.902 0.077 0.095 0.016 2308 

L4-48 4.009 0.305 4.000 0.311 2.370 1.487 5.866 0.075 0.092 0.010 4660 

L4-60a 4.017 0.308 4.003 0.312 2.390 1.504 5.930 0.077 0.095 0.015 4054 

L4-60b 3.992 0.308 4.015 0.312 2.388 1.498 5.900 0.076 0.094 0.014 4225 

L4-72 4.001 0.312 4.006 0.311 2.398 1.504 5.925 0.078 0.096 0.011 6429 

L4-84 3.999 0.312 4.007 0.313 2.402 1.505 5.933 0.078 0.096 0.018 4565 

L4-96 4.025 0.317 4.019 0.315 2.442 1.544 6.085 0.081 0.101 0.033 2936 

L4-132 3.997 0.314 3.988 0.313 2.405 1.499 5.908 0.079 0.097 0.055 2422 

                                                 
* Measured, refer to Figure 4.1 
† Computed, Madugula and Kennedy (1984) 
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Figure 4.1- Angle specimen axis and dimension definitions 

 

Table 4.1 also presents the maximum out-of-straightness, δo, measurements of all 

test specimens, which were measured using a theodolite.  For specimens 36 in. in length 

and shorter the maximum out-of-straightness, δp, of each leg was measured with respect 

to a machinist table, as illustrated by Figure 4.2.  For a given angle, the larger δp from its 

two legs is recorded in Table 4.2.  
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Figure 4.2- Leg out-of-straightness measurement (Zureick and Steffen 2000) 

 

Table 4.2- Maximum plate out-of-straightness measurements 

Specimen 
L 

(in.) 
δp 

(in.) 
L/ δp 

L2-18a 18 0.080 225 
L2-18b 18 -0.020 -900 
L3-18 18 0.008 2250 
L2-24 24 0.005 4800 
L3-24a 24 0.028 857 
L3-24b 24 0.005 4800 
L4-24 24 0.045 533 
L2-36a 36 0.000 -- 
L2-36b 36 -0.013 -2769 
L3-36 36 0.013 2769 
L4-36a 36 0.002 18000 
L4-36b 36 0.020 1800 

 

4.2 TEST SETUP 

Columns were supported vertically between a concrete strong floor and a steel 

load frame with adjustable beam height and tested with end fixtures simulating pinned 

boundary conditions about the minor principal axis of the single angles. An overview of 

 

δ
p
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the test set-up is shown in Figure 4.3.  Two sets of end fixtures were used: knife-edges 

for slender columns whose predicted strengths were less than 50 kip and roller end 

fixtures for columns whose predicted strengths exceeded 50 kips.   Load was applied 

using a hydraulic ram mounted to the load frame, to which the top end fixture was 

mounted. 

Instrumentation  

The following instrumentation was used in testing: 

1. Four string potentiometers (SPs) to measure midheight lateral deflections 

2. Two strain gages mounted back-to-back on each leg at midheight (Figure 

4.4) to detect the onset of local buckling and to assess accidental 

eccentricities resulting from loading 

3. One string potentiometer (SP) to measure column shortening  

4. A pair of linear variable differential transformers (LVDTs) to measure the 

slope of the column at its ends 

5. A load cell 
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Figure 4.3- Test setup 
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Figure 4.4- Strain gage locations 

 

End Fixtures 

Two types of end fixtures, shown in Figure 4.5, were used to test columns—knife-

edge and roller end fixtures.  These end fixtures approximated torsionally restrained, 

minor-axis pinned, major-axis fixed, and warping restrained boundary conditions.  The 

top end fixtures were attached to safety chains which safeguarded against the end 

fixtures’ falling if the angle snapped out of the test setup; however, enough slack was 

included to ensure the chains did not interfere with the rotational movement of the end 

fixtures as seen in Figure 4.6 

 

   

Figure 4.5- End Fixtures: Knife-edge end fixture (left); Roller end fixture (right) 

Minor Principal Axis 

Strain Gage 
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Figure 4.6- End fixture safety chains 

 

Knife-Edge End Fixtures 

Each knife edge consisted of a 1 in. x 1 in. square hardened carbon steel bar 

situated between of two grooved steel plates, one with a 130° grove and the other with a 

90° to which it was welded.  A malleable 1/16 in. lead plate was placed between each end 

of the column specimen and the bearing plate to level possible unevenness of the contact 

surface.  The knife-edge end fixtures added 5.323 in. to the length of the column.   

Roller End Fixtures 

Each roller end fixture consisted of a  13/8 in. Ø cylindrical rod welded situated 

between two steel plates—one with a 4 in. Ø cylindrical groove and the other ¾ in. thick 

plate to which it was welded.  The end fixtures added 4.160 inches to the length of the 

column.   

Twisting of the top end fixtures was restrained using anchored tie rods that 

prevented twist but allowed vertical displacement (Figure 4.7).  The tie rods were 
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anchored to a strong wall adjacent to the test setup.  Twisting of the bottom end fixtures 

was restrained by anchor bolts protruding from the strong floor.   

To keep columns from becoming misaligned during flexural-torsional buckling, 

5/16 in. thick S32003 endplates were welded to the ends of the stocky columns and bolted 

to the end fixtures, as shown in Figure 4.8. These welded endplates also better imposed 

both fixed conditions for rotation about the major principal axis and warping restrained 

conditions. 

 

        

Figure 4.7- Tie rod torsional restraint anchoring scheme (left), slotted hole detail (right) 

 

  

Figure 4.8- Angle endplate weld 
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Examination of End Fixtures’ Rotational Restraint 

Prior to testing the S32003 stainless steel sections, a series of buckling tests were 

performed on mild steel angles using these end fixtures to determine the rotational-

restraint the fixtures imposed.  In comparing the predicted Euler buckling load against the 

load determined from the Southwell plot, an effective length factor was determined for 

the end fixtures used in that test.  For the knife-edge end fixtures, the effective length 

factor was calculated to be approximately 1.00 based on the results of an 8ft L3 x 3 x 5/16 

�S¼½¾¿¼ÀÁ¶k = 174� carbon steel angle.  Similarly, the effective length factor value of 

approximately 0.95 was calculated for the roller end fixture from results of tests on a 7ft 

L4 x 4 x ½ �S¼½¾¿¼ÀÁ¶k = 113� angle, a 6 ft L3 x 3 x 5/16  �S¼½¾¿¼ÀÁ¶k = 130� angle, and a 5ft L3 

x 3 x 5/16 �S¼½¾¿¼ÀÁ¶k = 110�.  These effective length factors are reflected in values of Le, 

reported in Table 4.3. 

4.3 TESTING PROCEDURE 

The experimental procedure was guided by “Technical Memorandum B.4” of 

Guide to Stability Design Criteria for Metal Structures (Ziemian 2006).  Each column 

was mounted between the end fixtures so that its minor principal axis coincided with the 

axis of the knife edge, and its centroidal axis coincided with the axis of the ram.  Prior to 

loading, angles in this study were loaded to 40% of their predicted strengths and 

unloaded several times to shake down the test specimens in the fixtures.  

Each column was loaded monotonically until a maximum force was observed and 

the force had dropped off about 10%.  Measurements were continuously recorded using 

data acquisition software.  After testing, the distortion of the section was examined by 
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manually measuring the distance between the toes at midheight with digital calipers and 

comparing it to the distance measured prior to testing. 

4.4 BEHAVIOR OF ANGLE SPECIMENS 

The results of the experimental buckling tests are shown in Figure 4.9 along with 

the flexural buckling stress curves calculated using both Et and Eo.  The strength, Pexp, of 

each test specimen was determined based on the peak load reached during testing.  It is 

convenient to normalize strength with respect to cross-sectional area (σexp= Pexp /A), in 

order to provide insight into the buckling of various cross-sections.  Buckling modes 

were identified using the midheight deflections; typical load-deflection curves plots for 

flexural buckling and flexural-torsional buckling can be seen in Figure 4.10 and Figure 

4.11, respectively.    

Of the 33 specimens tested, 28 angle specimens experienced minor-axis flexural 

buckling (Figure 4.12) while the remaining 5 experienced flexural-torsional buckling 

(Figure 4.13).  No local buckling was observed in any of the angle specimens and plate 

bending was only detected in specimens that underwent flexural-torsional buckling.  The 

midheight deflections of specimen L4-60a, which underwent flexural buckling, were in 

the direction of its heel, subjecting its toes to increased compression.  This eventually 

caused the specimen to suddenly twist in the post-buckling range.  Cross-sectional 

distortion was only observed in the post-buckling range in L2-18a whose midheight 

deflections were also toward its heel.   
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Figure 4.9- Experimental column curve for S32003 equal-leg angles 

 

 

 

Figure 4.10-Typical load-deflection curves test specimens exhibiting flexural buckling 
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Figure 4.11- Typical load-deflection curves test specimens exhibiting flexural-torsional 
buckling 

 

 

Figure 4.12- Flexural buckling specimens 
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Figure 4.13- Flexural-torsional buckling specimens 

 

Analysis of the Column Curve 

The data closely follows the flexural buckling curve that was calculated using the 

tangent modulus as shown in Figure 4.9.  For reference, the flexural buckling curve that 

was calculated using the initial modulus of elasticity is also plotted to give indication of 

the deviation of the data from linear material behavior.  Trends for the flexural-torsional 

data in Figure 4.9 could not be analyzed due to the limited number of specimens which 

buckled in this mode; further investigation is needed to evaluate this limit state. 

Although the columns strengths of duplicate specimens generally show agreement 

with each other, the difference in strength between some duplicate test specimens can be 

attributed to experimental error related to loading eccentricity.  Most notably, L4-36a 

underwent flexural buckling while L4-36b underwent flexural-torsional buckling.  For 

this reason L4-36a is considered an outlier and will not be considered in subsequent 

analysis. 
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Load-deformation behavior 

Flexural buckling 

The influence of nonlinear material behavior can be seen by looking at the post-

buckling behavior of flexural buckling specimens. The post-buckling load loss associated 

with increased lateral deflection occurred at a greater rate for stockier sections than 

slender sections, as shown in Figure 4.14.  This is attributable to the fact that slender 

columns buckle at low stresses, which correspond to higher tangent moduli, whereas 

stockier columns are associated with reduced material stiffness.   

 

Figure 4.14- Normalized load-deflection curves 

 

The influence of material nonlinearity on column deformation can also be seen by 

examining the deformed shape.  For linear elastic material behavior, the deformed shape 

of a concentrically loaded prismatic pinned column is sinusoidal (Euler buckling), based 

on the solution to the equilibrium differential equation.  For nonlinear material behavior, 

the extreme case is the formation of a plastic hinge, which causes the deformed shape to 
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be triangular for a pinned prismatic column.  These two deformed shapes represent 

bounds between which the deformed shape of all pinned prismatic columns will lie.  The 

midheight deflections of these bounds, shown in Figure 4.15, can be defined in terms of 

the slope, θ, of the deformed column at its ends. 

 

 

Figure 4.15- Deformed shape bounds and associated midheight deflections 

  

Having experimentally measured the slope at the ends of the columns, the 

progression of material nonlinearity was examined by comparing the midheight 

deflection, δy, against the two bounds described in Figure 4.15.  The resulting plot is 

shown in Figure 4.16.  The peak loads are seen to occur near the sinusoidal bound, after 

which the material nonlinearity increases.  Slender specimens, which are associated with 

lower buckling stresses closely follow the linear bound, even in the post buckling range.  

Shorter columns, which correspond to higher average stresses and material nonlinearity, 

exhibited greater deviation from the Euler buckling curve with increased base rotation.   
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The most apparent nonlinear behavior can be seen in specimen L2-18a, which approaches 

the plastic hinge bound immediately following its peak load.  This apparent difference in 

deformed shape can be seen by visual comparison of its deformed shape to one following 

the Euler bound (L3-132), in Figure 4.17. 

 

Figure 4.16- Experimental deformed shape plots for flexural buckling specimens 
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Figure 4.17- Deformed flexual-buckling specimens: L2-18a (left), L3-132 (right) 

 

Flexural-torsional buckling 

Flexural-torsional buckling was characterized by sudden twist, as seen in the 

time-stamped video frames shown in Figure 4.18.  There was no evidence to suggest that 

cross-sectional distortion occurred during flexural-torsional buckling; thus the cross-

sectional rotation at midheight could be determined numerically using deflection 

measurements.  The midheight twist angle of the five specimens that underwent flexural-

torsional buckling prior to reaching their peak loads is shown in Figure 4.19.  Post-peak 

twisting behavior could not be analyzed due instrumentation failure.  It can be seen that 
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for most specimens, the cross-section rotated approximately 0.07-0.09 rad. (4-5 degrees) 

at which point the load carried by the specimens dropped.   

 

 

Figure 4.18- Progression of flexural-torsional buckling mode 

 

 

Figure 4.19- Midheight cross-sectional rotation for flexural-torsional buckling specimens 
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Southwell Plots 

Although the Southwell plotting procedure was derived assuming linear material 

behavior (Southwell 1932), its applicability to inelastic column data was demonstrated by  

Wang (1948) and Singer (1989).  Based on their survey of literature, the strengths 

determined from Southwell plots exceeded the tangent modulus buckling loads by 8% on 

average.   

Southwell plots were prepared for specimens that buckled in the flexural mode 

using the axial force and midheight deflection data.  A typical Southwell plot for a 

S32003 angle specimen (L3-48a) can be seen in Figure 4.20.  Southwell plots were linear 

prior to buckling, but became nonlinear in the post-buckling range.  Data for constructing 

the Southwell plots were taken in the range from approximately 70% of the peak load up 

to the peak load, since this region corresponded to the flexural rigidity present at the time 

of buckling.  Data for each specimen is given in Table 4.3, and raw plots can be seen in 

Appendix B.  

 

 

Figure 4.20- Typical Southwell plot (L3-48a) 
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Table 4.3- Southwell plot results and tangent modulus calculations 

Specimen 
PSouthwel l 

(kips) 
j
oHjÆ@n_Ç�
GG 

jÆ@n_Ç�
GGj_  »@ + 4Èp  

(in.) 

u
»@ + 4Èp  

L2-18a 61.05 0.928 1.245 0.014 1609 
L2-18b 60.99 0.982 1.243 0.003 6237 
L2-24 47.18 0.939 1.164 0.015 1491 
L2-36a 27.79 0.896 1.065 0.038 721 
L2-36b 26.41 0.969 1.016 0.018 1530 
L2-48 14.26 0.922 0.993 0.061 626 
L2-60a 8.59 0.895 0.886 0.104 373 
L2-60b 8.77 0.947 0.914 0.056 952 
L2-72 6.55 0.974 0.965 0.039 1695 
L2-84 5.07 0.959 0.982 0.064 964 
L2-96 4.02 0.943 0.995 0.052 1478 
L2-132 2.12 0.960 0.975 0.105 847 
L3-36 69.15 0.966 1.044 0.010 2744 
L3-48a 45.77 0.863 0.986 0.055 696 
L3-48b 42.40 0.962 0.912 0.017 2353 
L3-60a 31.64 0.913 0.964 0.058 913 
L3-60b 31.45 0.899 0.956 0.068 788 
L3-72 24.04 0.964 1.012 0.012 5439 
L3-84 18.83 1.036 1.060 0.008 7526 
L3-132 7.76 0.989 1.029 0.004 21751 
L4-36a 131.15 0.947 0.980 0.018 1571 
L4-48 121.51 0.982 1.087 0.004 8647 
L4-60a 94.19 0.930 1.013 0.043 1183 
L4-60b 90.06 1.013 0.974 0.018 3690 
L4-72 73.49 0.983 0.982 0.005 12702 
L4-84 58.43 0.976 1.001 0.006 13702 
L4-96 41.59 0.942 0.997 0.043 1693 
L4-132 23.49 0.946 1.062 0.010 8686 
AVERAGE -- 0.953 1.016   
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4.5 DESIGN OF CONCENTRICALLY LOADED ANGLE STRUTS 

The strengths of the experimental specimens were compared to the predicted 

strengths computed from existing stainless steel standards and design rules including 

Design Manual for Structural Stainless Steel(Euro-Inox)  (SCI and Euro-Inox 2006), 

Eurcode3 Part 1-4: General Rules – Supplementary rules for Stainless Steels (EC3, 1-4),  

the SEI/ASCE 8-02: Specification for the Design of Cold-formed Stainless Steel 

Structural Members (SEI/ASCE 8-02), AS/NZS 4673:2001 Cold-formed Stainless Steel 

Structures(AS/NZS 4673), and AISC Design Guide: Structural Stainless Steel (AISC 

2012).  From each standard or design rule, the strength was calculated using its 

provisions for concentrically loaded compression members, effective cross-sectional area 

(for unstiffened/outstand elements), and welded built-up sections (if applicable). The 

ratios of the experimental strengths of the specimens to their calculated strengths were 

used to in a first-order reliability analyses to calculate resistance factors for design.   

It is noted that the following effective length factors were used in computing the 

buckling stresses (where applicable) to reflect the test boundary conditions for the angle 

specimens: Kx=1.0, Ky=0.5, and Kt=0.5.  Additionally, it should be pointed out that 

because the legs of the angle were welded to base plates, the plate boundary conditions of 

each leg were rotationally restrained at the top and bottom instead of simply supported.  

The elastic torsional buckling stress, Ft,e, associated with these boundary conditions is 

given by Eq. (4-1) (Thomas 1941) and was used in computing the elastic torsional 

buckling stress in the stainless steel design standards (where applicable).  



75 
 

  _,
 = 1mÉB@A �~� + 4 pAq��st_u_vA� (4-1) 

Design Manual for Structural Stainless Steel and EC3 1.4 (European) 

  Eurocode 3, Part 1.4 adopted the design formulations for concentrically loaded 

columns and effective area provisions found in the Design Manual for Structural 

Stainless Steel.  The rules extend to non-cold-formed stainless steel structures, including 

the design of built-up welded members.  These design formulations are explicit and were 

calibrated to test data, but do not consider the Ramberg-Osgood hardening parameter, n, 

in any formulations (Eurocode 3 2006; SCI and Euro-Inox 2006). 

Effective Area 

For welded sections, effective cross-sectional areas must be used if Eq. (4-2) is 

satisfied; the effective area is computed on the basis of the effective width method.  The 

effective width, ��
��, of each leg is calculated using Eq. (4-3). 

 
��� > 0.30Ê q z (4-2) 

 ��
�� = �� �1 − 0.242�H ��H ≤ �� (4-3) 
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Where 

 
 
 
 

�H = 1.053��Ë
��� Ê zq  (4-4) 

�� = leg width measured from heel to toe 

E = Initial modulus of elasticity 

Fy = Yield stress (0.2% proof stress) 

t  = leg thickness 

�Ë = 0.43 

Member strength 

The strengths of the flexural and flexural-torsional buckling limit states are 

calculated using Eq. (4-5). 

 jk = Ìm
 z (4-5) 

Where 

 Ì = 1� + ��A − �A ≤ 1 (4-6) 

 � = 12 Í1 + �s� − �@v + �AÎ (4-7) 

 � = Ê zm
j¬T,
  (4-8) 

 

Ae = the effective cross-sectional area 
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Pcr = the critical elastic buckling force, (either Pfx,e, or Pft,e) 

α, λo  = Parameters that depend on the buckling mode 

For flexural buckling 

 j¬T,,
 = pAqrostouovA (4-9) 

   

α  = 0.76 

λo  = 0.20 

For flexural-torsional buckling 

 j¬T,
 = j�z,
2w Ï�1 + j_,
j�z,
� − Ê�1 + j_,
j�z,
�A − 4wj_,
j�z,
 Ð (4-10) 

 j�z,
 = pAqrzytzuz{A (4-11) 

 w = 1 − �?@B@ �A
 (4-12) 

 j_,
 =  _,
mÉ (4-13) 

Where 

α  = 0.34 

λo  =  0.20 

yo = distance from the centroid to the shear center 

ro =polar radius of gyration about the shear center 
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Ft,e = Given by Eq. (4-1) 

SEI/ASCE 8-02 

  This design standard applies to cold-formed stainless steel members.  The 

Ramberg-Osgood parameters for select austenitic and ferritic grades are listed in the 

appendices; however, the strengths of the angle specimens were calculated using the 

SEI/ASCE 8-02 formulations with the Ramberg-Osgood properties for S32003 

determined in Chapter 3 (SEI/ASCE 8-02 2002). 

Effective Area 

The SEI/ASCE 8-02 standard uses the effective width approach to compute the 

effective cross-sectional area of a concentrically loaded column if Eq. (4-14) is satisfied.  

It is of interest to note that this is the same threshold for a slender unstiffened element in 

Section E7.1 of the AISC Steel Construction Manual (13th Ed.) for carbon steel when f is 

taken as the yield stress.  The effective width, ��
��, of each leg is computed using 

Eq. (4-15).  In SEI/ASCE 8-02, �� is defined as the width of the flat portion of the 

outstanding element, which implies that the curved region caused by the cold-forming 

process need not be included.  Because built-up angles had no curved section, �� was 

taken as the width of the leg measured from the heel to the toe (as in EC3, 1-4 and AISC 

(carbon) Steel Construction Manual). 

 
��� > 0.45ÊqÑ (4-14) 
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 ��
�� = �� �1 − 0.22�H ��H ≤ �� (4-15) 

 

Where 

 �H = 1.053��Ë
��� Ê zq  (4-16) 

f = Minimum of the nonlinear flexural buckling stress Eq.  

(4-18)  and nonlinear flexural-torsional buckling  

stress Eq. (4-19) 

t  = leg thickness 

�Ë = 0.5 

Member strength 

The design strength Eq. (4-17) of concentrically loaded, singly-symmetric 

compression members is taken as the effective cross-sectional area multiplied by the 

lesser of the minor-axis flexural buckling stress and the flexural-torsional buckling stress.   

The SEI/ASCE 8-02 formulations are linear elastic buckling equations multiplied by the 

tangent modulus reduction factor, 
Z¾Z[, which is tantamount to assuming that the shear 

modulus remains proportional to the longitudinal modulus for increased nonlinearity.  

 jk = m
min y �o,  �_{ (4-17) 

Where 
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  �o = pAq_�touoBo �A (4-18) 

  �_ = 12w xy �z +  _{ − Uy �z +  _{A − 4w _ �z| (4-19) 

 
 �z = pAq_�tzuzBz �A 

(4-20) 

  _ = 1mÉB@A �~@� + 4 pAq@��st_u_vA � �q_q@� (4-21) 

AS/NZS 4673 

AS/NZS 4673 is a similar design standard to SEI/ASCE 8-02.  In addition to also 

being limited to cold-formed sections, AS/NZS 4673 computes the effective cross-

sectional areas and flexural and flexural-torsional buckling stresses using the same 

formulations as SEI/ASCE 8-02.  It does, however, offer an alternative, explicit approach 

for calculating the flexural-buckling stress of a concentrically loaded column.  This 

explicit approach utilizes the Perry-Robertson formulation, given by Eq. (4-22), which is 

similar to the Perry-Robertson formulation given by the European design rules; however, 

unlike EC3, 1-4, which does not account for nonlinear material behavior, AS/NZS 4673  

accounts for nonlinear material behavior by using the parameters α, β, λ0, and λ1 in Eq. 

(4-25), which were calibrated for various values of modified-Ramberg-Osgood 

parameters by Rasmussen and Rondal (1997b), (AS/NZS 4673). 

  �o =  z� + ��A − �A ≤  z (4-22) 
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Where 

 � = 12 s1 + � + �Av (4-23) 

 � = 1p touBo Ê zq@ (4-24) 

 � = �Òs� − �$vÓ − �!Ô (4-25) 

For the AS/NZS 4673 standard, the predicted flexural-torsional buckling stresses 

were calculated using Eq. (4-19)-(4-21), and the predicted flexural buckling stresses were 

computed using the explicit formulation given by Eq. (4-22)-(4-25).  In AS/NZS 4673 the 

parameters α, β, λ0, and λ1 are tabulated for select grades.  In this study, these parameters 

were computed for S32003 using the formulations, Eq. (4-26)-(4-30), given by 

(Rasmussen and Rondal 1997a).  The parameters for S32002 are presented in Table 4.4. 

 � = 1.5sÈ!.µ + 0.03vÒ�s!.!!�Õ
¦�.¥¥�$.�v + 13Ô + 0.002È!.µ  (4-26) 

 w = 0.36exp s−�vÈ!.�# + 0.007 + tanh � �180 + 6q − 6È$.� + 0.04� (4-27) 

 �! = 0.82 � ÈÈ + 0.0004 − 0.01�� ≥ 0.2 (4-28) 

 �$ = 0.8 ÈÈ + 0.0018 °1 − Ö � − 5.5� + 6È − 0.0054È + 0.0015 ×$.A± (4-29) 

 È =  zq@ (4-30) 

n = Ramberg-Osgood Hardening Parameter 
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Table 4.4- AS/NZS explicit design parameters, S32003 

AS/NZS Perry 
Curve 

Parameter 
Values 

α 1.009 
β 0.111 
λ0 0.667 
λ1 0.473 

 

AISC Design Guide: Structural Stainless Steel 

The (draft) AISC Design Guide for structural stainless steel applies to hot-rolled 

and built-up stainless steel sections whose plate thicknesses exceed ⅛ in.  The design 

formations are similar to those in (AISC 2005).   

Effective Area  

The Q-reduction factor approach is used to account for slender elements.  For 

equal-leg angles, slender column formulas must be used to calculate column strength if 

Eq. (4-31) is satisfied. 

 
��� > 0.38Ê q z (4-31) 

For equal-leg angles, the Q-reduction factor is equal to the reduction factor for 

slender unstiffened elements, Qs, since there are no stiffened elements, Q= Qs, which was 

calculated used on Eq. (4-32).  It is noted that there is an inconsistency in this formulation 

in comparison to Eq. (4-31)—there is a range �0.38U ZVW ≤ �̂_ ≤ 0.47U ZVW� in which an 

angle is considered slender but no reductions are made.  Despite this assumed error, Q 

was calculated based on Eq. (4-32) 
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Ø =

ÙÚÚ
ÚÚÛ
ÚÚÚ
ÚÜ 1.0,     ÝÑ     ��� ≤ 0.47Ê q z 

1.498 − 1.06 ����� Ê zq ,     ÝÑ      0.47Ê q z < ��� ≤ 0.90Ê q z       
0.44q

 z �����A ,       ÝÑ      ��� > 0.90Ê q z

 (4-32) 

 

Member Strength 

  For singly-symmetric compression members with slender elements in uniform 

compression, the nominal compressive strength is taken as the lowest value of the 

flexural and flexural-torsional buckling limit states. 

 jk = mÉmin y ¬T,�o,  ¬T,�_{ (4-33) 

Flexural buckling 

  ¬T,�o =
ÙÚ
Û
ÚÜØ x0.50ßVWVà |  z ,   ÝÑ    touoBo ≤ 3.77Ê qØ z

0.531 
 ,   ÝÑ touoBo > 3.77Ê qØ z
 (4-34) 

Where 

  
 = pAq@�touoBo �A (4-35) 

Flexural-torsional buckling 

  ¬T,�_ =
ÙÚÛ
ÚÜØ x0.50ßVWVà |  z ,   ÝÑ    Ø z 
 ≤ 1.44

0.531 
 ,   ÝÑ  Ø z 
 > 1.44  (4-36) 
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Where 

  
 =  �z,
2w Ï�1 +  _,
 �z,
� − Ê�1 +  _,
 �z,
�A − 4w _,
 �z,
 Ð (4-37) 

 
 
 = pAq@�tzuzBz �A 

(4-38) 

Ft,e = Given by Eq. (4-1) 

Computed Strength Comparison 

The computed strengths for flexural and flexural-torsional buckling are reported 

in Table 4.5 and Table 4.6, respectively.  It can be seen that strength predictions from 

SEI/ASCE 8-02, AS/NZS 4673, and AISC Design Guide all predicted the buckling mode 

that was observed during experimental tests.  The EC3, 1-4 predicted flexural buckling 

for all 32 angles, including those which underwent flexural-torsional buckling during the 

experimental buckling tests.  It should be noted that EC3, 1-4, and AISC Design Guide, 

which do not take into account the nonlinear behavior specific to S32003, give very 

conservative load predictions in comparison to the strengths computed using the 

SEI/ASCE 8-02 and AS/NZS 4673, both of which took into account the nonlinear behavior 

of S32003, resulting in closer strength predictions.  Additionally, the SEI/ASCE 8-02 and 

AS/NZS 4673 design formulations for the flexural-torsional buckling mode give more 

conservative strength predictions than for the flexural-buckling mode.  
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Table 4.5- Flexural-buckling experimental/calculated strength ratios 

 Experiment SEI/ASCE 8-02 AS/NZS 4673 EC3, Part 1-4 
AISC 

Stainless 
Steel 

 �áá�  
uoBo  uo 

Pexp 
(kips) 

PASCE  
(kips) 

j
oHj̧ ÆâZ 
PAS/NZS  
(kips) 

j
oHj̧ Æ/ã¹Æ PEC3  
(kips) 

j
oHjZâc 
PAISC  
(kips) 

j
oHj̧ äÆâ 

L2-18a 8.15 55 21.8 56.6 49.0 1.16 46.2 1.23 35.6 1.59 40.0 1.42 
L2-18b 8.15 55 21.7 59.9 49.0 1.22 46.2 1.30 35.6 1.68 40.0 1.50 
L2-24 8.17 70 27.5 44.3 40.5 1.09 36.5 1.21 27.4 1.62 28.1 1.58 
L2-36a 8.27 98 38.3 24.9 26.1 0.95 22.6 1.10 17.3 1.44 14.4 1.73 
L2-36b 8.32 98 38.4 25.6 26.0 0.98 22.5 1.14 17.2 1.49 14.3 1.78 
L2-48 8.20 135 53.3 13.1 14.4 0.92 13.1 1.00 10.5 1.26 7.6 1.72 
L2-60a 8.09 165 65.3 7.7 9.7 0.79 9.1 0.85 7.5 1.03 5.1 1.49 
L2-60b 8.11 165 65.3 8.3 9.6 0.87 9.0 0.92 7.4 1.12 5.1 1.63 
L2-72 8.19 196 77.3 6.4 6.8 0.94 6.5 0.98 5.5 1.17 3.6 1.77 
L2-84 8.14 226 89.3 4.9 5.2 0.94 5.0 0.98 4.3 1.14 2.7 1.77 
L2-96 8.10 256 101.3 3.8 4.0 0.94 3.9 0.97 3.4 1.11 2.1 1.77 

L2-132 8.06 349 137.3 2.0 2.2 0.94 2.1 0.95 1.9 1.06 1.2 1.76 
L3-36 12.07 65 38.8 66.8 63.3 1.06 59.4 1.13 40.8 1.64 46.3 1.44 
L3-48a 12.13 90 53.3 39.5 46.4 0.85 40.1 0.98 28.3 1.40 26.5 1.49 
L3-48b 12.11 90 53.3 40.8 46.5 0.88 40.2 1.01 28.3 1.44 26.6 1.53 
L3-60a 12.09 110 65.3 28.9 32.8 0.88 28.9 1.00 21.2 1.36 17.7 1.63 
L3-60b 12.16 110 65.3 28.3 32.9 0.86 29.0 0.98 21.2 1.33 17.7 1.59 
L3-72 12.13 130 77.3 23.2 23.7 0.98 21.5 1.08 16.3 1.42 12.7 1.83 
L3-84 12.15 150 89.3 19.5 17.8 1.10 16.5 1.19 12.9 1.52 9.4 2.07 

L3-132 12.07 231 137.3 7.7 7.5 1.02 7.3 1.05 67.4 1.77 4.0 1.92 
L4-48 13.15 63 50.3 119.4 101.6 1.17 96.0 1.24 55.0 1.59 77.2 1.55 
L4-60a 13.04 78 61.6 87.6 89.9 0.97 81.7 1.07 54.7 1.67 58.2 1.51 
L4-60b 12.96 78 61.8 91.3 89.5 1.02 81.2 1.12 45.0 1.61 57.7 1.58 
L4-72 12.88 91 72.4 72.2 74.8 0.97 64.7 1.12 36.7 1.55 42.3 1.71 
L4-84 12.83 106 83.8 57.0 58.4 0.98 51.1 1.12 28.2 1.39 31.6 1.80 
L4-96 12.75 127 101.3 39.2 41.7 0.94 37.7 1.04 16.6 1.34 22.2 1.76 

L4-132 12.74 174 137.3 22.3 22.1 1.01 20.9 1.07 67.4 1.77 11.7 1.90 
 Average  0.98  1.07  1.41  1.68 

COV  0.11  0.10  0.15  0.10 
φ f   0.70  0.77  0.94  1.21 
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Table 4.6- Flexural-torsional buckling experimental/calculated strength ratios 

 Experiment SEI/ASCE 8-02 AS/NZS 4673 EC3, Part 1-4 
AISC Stainless 

Steel 

 
���  

uzBz  Ly 

(in.) 
Pexp 

(kips) 
PASCE  
(kips) 

j
oHj̧ ÆâZ 
PAS/NZS  
(kips) 

j
oHj̧ Æ/ã¹Æ PEC3   
(kips) 

j
oHjZâc 
PAISC  
(kips) 

j
oHj̧ äÆâ 

L3-18 12.15 15.7 18.5 98.7 75.1 1.31 75.1 1.31 61.8*  -- 65.8 1.50 
L3-24a 12.12 20.8 24.6 90.4 72.4 1.25 72.4 1.25 54.6*  -- 61.1 1.48 
L3-24b 12.10 20.8 24.6 86.3 71.9 1.20 71.9 1.20 54.3*  -- 60.8 1.42 
L4-24 12.81 15.7 24.6 136.6 118.3 1.15 118.3 1.15 102.3*  -- 102.8 1.33 

L4-36b 12.93 23.3 36.6 144.6 109.8 1.32 109.8 1.32 84.1*  -- 89.6 1.61 
 Average  1.25  1.25  --  1.47 

COV  0.06  0.06  --  0.07 
φ f t   0.92  0.92  --  1.06 

  *Flexural buckling predicted as limit state
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4.6 RELIABILITY ANALYSIS 

The strength of each angle section was divided by the strength predicted by each 

standard and design rule.  These strength ratios were then used to calculate a resistance 

factor for design based on that design method.  Flexural-torsional buckling was not 

considered for EC3, 1-4 since it failed to predict that buckling mode.  Using first-order 

reliability, the resistance factor can be computed from Eq. (4-39) (SEI/ASCE 8-02 2002). 

 

 � = �1.2åkuk + 1.6�
�1.05åkuk + 1� æÁ ÁjÁÈ� Ó[UçèY �çéY�çêY�âëçëY�

 (4-39) 

 ìß = Êx�1.05åkuk �A ìíA + ìSA|
�1.05åkuk + 1�  

(4-40) 

  

For a nominal live-to-dead load ratio Ln/Dn =3, which is used in (AISC 2005), Eq. 

(4-39) becomes Eq. (4-41).  Additionally, knowing VL=0.25 vs. VD=0.1 (SEI/ASCE 8-02 

2002), VQ  is calculated to be 0.19. 

 � = 1.481æÁ ÁjÁÈ� Ó[UçèY �çéY�çêY�âëçëY�
 

(4-41) 

Using the average, Pm, and coefficient of variation, VP, experimental/computed 

strength ratios of each standard or design rule and buckling mode, the resistance factor 

was computed with the following parameters. 

1. Target reliability index, βo, was selected to be a value of 3.0. 
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2. Material factor mean, Mm, was taken as 1.0 since the strengths were computed 

using the stress-strain relationship resulting from stub column tests.  The 

coefficient of variation in the material factor, Vm, was taken 0.10 from (SEI/ASCE 

8-02 2002). 

3. The values of the fabrication statistical parameters, Fm and VF, were taken from 

(SEI/ASCE 8-02 2002); they are 1.0 and 0.05, respectively. 

4. The sample size correction factor, Cp , given by Eq. (4-42), was taken from Eq. 

6.2-3 of (SEI/ASCE 8-02 2002) (n=27 for flexural buckling, and n=5 for flexural-

torsional buckling). 

 �H = � − 1� − 3 (4-42) 

 
The computed resistance factors are listed in Tables 4.5-6 along with the design 

standard and mode they accompany.  It is noted that the AISC Design Guide is unduly 

conservative for both the flexural and flexural-torsional buckling modes, due to its 

resistance factors being nearly 150%.  This suggests that the model adopted does not 

reflect the behavior of axially loaded columns, and alternative formulations should be 

used.  The resistance factor associated with flexural buckling design by EC3, 1-4 was 

calculated to be 0.94; however, EC3, 1-4 was unable to predict flexural-torsional 

buckling as limit state for the angles tested. Since the flexural-torsional buckling 

formulation is identical for both SEI/ASCE 8-02 and AS/NZS 4673, and each design 

standard predicted the same as the other (0.92), the resistance factor for flexural-torsional 

buckling was the same for both standards.  For flexural buckling, AS/NZS 4673 gives 
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more conservative strength predictions than SEI/ASCE 8-02, resulting in higher resistance 

factors.  This was reflected by the S32003 angle data, and has been similarly observed 

elsewhere (Baddoo 2003; Rasmussen and Rondal 1997a).   

4.7 CONCLUSIONS 

Based on a test series that involved full-scale testing of 33 equal-leg angles, 

nonlinear material behavior becomes increasingly apparent, both in terms of column 

strength and deformation for stockier columns.  Stocky columns were also more 

susceptible to flexural-torsional buckling, particular for angles with larger b/t ratios.   

The results were used to evaluate existing design standards and design rules.  This 

evaluation revealed that design rules such as EC3, 1-4 and the AISC Design Guide which 

do not reflect the stress-strain behavior of a column either predicted the incorrect limit 

state or were unduly conservative.  The cold-formed standards, SEI/ASCE 8-02 and 

AS/NZS 4673, which do consider the nonlinear stress-strain behavior, were shown to 

closely predict both the buckling mode and strengths of the tested angle specimens.  

Therefore it is concluded that the mechanics-based strength formulations rated to 

concentrically loaded columns in the American and Australian cold-formed stainless steel 

standards can be used to predict the strength of built-up stainless steel sections.   
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CHAPTER 5 

NUMERICAL ANALYSES 

 

This chapter presents a series of finite element analyses that were used to model 

the buckling behavior of concentrically loaded S32003 stainless steel single equal-leg 

angles. The modeling procedure was validated from experimental results and then used as 

a computational tool to generate additional data from which recommendations could be 

made for design purposes.  The effects of material anisotropy, boundary conditions, and 

out-of-straightness on column strength were also investigated.  

5.1 NUMERICAL EXPERIMENTATION 

Overview of Wempner-Riks Method 

As described in Chapter 2, numerical experimentation using the finite element 

method has previously been employed as a cost-effective computational tool to simulate 

the compressive behavior of stainless steel sections.  One of the algorithms used for such 

analysis is the Wempner-Riks procedure.  This incremental procedure, which traces the 

static equilibrium path of a discrete formulation (i.e. finite element model) in the load-

displacement space, can be used to determine member strength while incorporating 

second-order effects and nonlinear material behavior.  The magnitude, λ, of the load 

pattern, PN, applied to the structure is unknown, but it remains proportional from 

increment to increment.   

This procedure was first developed by Wempner (1971) and subsequently 

modified by Crisfield (1981); Riks (1972).  The loading increments are sized on the basis 

of arc length, which enables the equilibrium path of events like snap-through buckling 
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and post-buckling, where the load and displacements do not have a monotonic 

relationship, to be traced. Convergence is achieved for each increment using the Newton-

Raphson method.  

Commercial finite element software, ABAQUS, includes a Wempner-Riks arc-

length algorithm (called STATIC, RIKS).  The initial load increment at the beginning of 

analysis is based on user-defined arc-length input and is calculated automatically for 

subsequent increment steps so that regions of high-curvature are traced with small 

increments and near-linear regions are traced with larger increments.  Within each 

increment, potential solution points are limited by the plane orthogonal to the previous 

iteration’s tangent stiffness, Ki-1
NM, and passing through the previous potential solution 

point, Ai-1 (ABAQUS 2011).  This procedure is summarized in Figure 5.1 and is seen 

visually in Figure 5.2.   Furthermore, it should be noted that ABAQUS also scales the 

solution space so that the load magnitude parameter, λ, and displacements, uN, are 

approximately the same magnitude for each increment, which is not reflected in either 

figure.  
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Figure 5.1- ABAQUS Wempner-Riks increment and iteration procedure  
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Figure 5.2- Equilibrium surface tracing according to Wempner-Riks method in ABAQUS 

 

Aims of Numerical Experimentation in Present Study 

Due to the limited number of full-scale compression tests conducted on S32003 

single equal-leg angles, it was deemed necessary to conduct numerical experiments for 

the purpose of generating additional data. Of interest is the effect of out-standing leg 

slenderness (b/t) ratios on column strength.  This is an important aspect of column 

strength to address since relatively little work has been devoted to the flexural-torsional 

buckling strength of stainless steel columns, and only a very narrow range of leg 

slenderness ratios were experimentally tested and reported in Chapter 4.  A finite element 

study was thus undertaken to expand upon the experimental data and to evaluate the 

strength of angle sections based on outstanding leg-slenderness ratios. 
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5.2 MODELING PROCEDURE 

All numerical buckling analyses were conducted using commercial finite element 

software, ABAQUS v.6.12-1.  A consistent unit system was established for the modeling 

procedure, relying on base units which included pounds-force, inches, and seconds. 

Model Geometry 

Each angle was modeled and positioned such that its centroidal axis coincided 

with the global Z axis, and the cross-sectional principal axes coincided with the global X 

and Y axes, as shown in Figure 5.3.  This figure also shows the orientation of the element 

coordinate axes.  Angles were modeled using two-dimensional shells positioned mid-

thickness of the actual cross-section, as shown in Figure 5.4.  

 

Figure 5.3- Element and global coordinate systems of finite element models 
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Figure 5.4- Cross-sectional representation of angle 

 

Modeling Procedure 

The angle sections were modeled with the S4R general purpose shell element. 

The S4R consists of four nodes with 6 degrees of freedom per node. It utilizes reduced 

integrations with hour-glass control (ABAQUS 2011).  The integration through the 

thickness of the shell sections was executed using Simpson’s rule, which was the 

program default; the number of through-thickness integration points was determined 

through a sensitivity study.   Previous numerical studies have used this element in 

modeling the structural response of cold-formed stainless steel members to compressive 

loading (Becque and Rasmussen 2009c; Becque and Rasmussen 2009d; Ellobody 2007; 

Ellobody and Young 2005; Theofanous and Gardner 2009). 

Each end fixture was modeled using two R3D3 rigid triangular shell elements, 

which transferred loads between the boundary conditions and the deformable S4R shell 

elements, as shown in Figure 5.5.  Interaction between the S4R and R3D3 elements was 
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defined using a tied slave-master (respectively) surface relationship.  With respect to 

plate behavior of the legs of the angles, this interaction simulates fixed rotational 

boundary conditions at the top and bottom edges of the plate to correspond to the 

boundary conditions imposed by the welded end plates on the test specimens.  The 

desired boundary conditions were defined at the nodes labeled as the “Top Support 

Node” and “Base Support Node” in Figure 5.5.  The loading pattern consisted of a unit 

point-load oriented in the negative Z-direction, which was applied at the “Top Support 

Node.” 

 

 

Figure 5.5- Finite element model components 
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Material Model 

The material model used in the finite element models was based on the typical 

stress-strain relationship developed in Chapter 3.  The material model was constructed 

summoning both the *ELASTIC command, to describe the linear material behavior, and 

the *PLASTIC command, to describe the nonlinear material behavior.   Within 

*ELASTIC the LAMINA suboption was selected.  This treats the shell elements as 

orthotropic plates under plane stress conditions whose behavior is governed using five 

material constants, E1, E2, ν, G12, G23, and G31 (ABAQUS 2011).   The LAMINA 

suboption was selected rather than the default isotropic case to include the in-plane shear 

modulus determined in Chapter 3.  E2, G23, and G31 were not experimentally determined, 

but were instead set equal to the longitudinal and in-plane values that were determined 

for E1 and G12.  This is summarized below in Table 5.1. 

 

Table 5.1- Elastic material model parameters 

E1 (psi) E2 (psi) ν G12 (psi) G23 (psi) G31 (psi) 
28.2E+6 28.2E+6 0.24 9.83E+6 9.83E+6 9.83E+6 

 

The nonlinear material behavior was described using a multi-linear representation 

of the typical stress-strain curve within the *PLASTIC option.  This option utilizes an 

associated flow rule with isotropic hardening (ABAQUS 2011).  The multi-linear curve 

used in the material model consisted of 100 points, which were distributed in proportion 

to the curvature of the stress-strain curve, as suggested by Theofanous and Gardner 

(2009).  The input syntax required that stress-strain data be converted to true stress-true 

plastic strain forms, which were calculated using Eq. (5-1) and Eq. (5-2).  Plastic 



 

98 
 

behavior was specified to initiate at the first point datum, 23.3 ksi, rather than the 0.2% 

proof stress, 75.6 ksi to capture early nonlinear material behavior.  The resulting 

experimental model can be seen in Figure 5.6. 

 

 

 

E_HG. = ln s1 + Ev − b_q@ (5-1) 
 d 

 b_ = b s1 + Ev (5-2) 

 

Figure 5.6- Finite element material model for S32003 

  

Analysis Procedure 

A two-step analysis procedure was followed that was similar to those used by 

Becque and Rasmussen (2009c); Becque and Rasmussen (2009d); Ellobody (2007); and 

Ellobody and Young (2005).   In the first step, a linear eigenvalue buckling analysis was 

0

10

20

30

40

50

60

70

80

90

100

0.000 0.002 0.004 0.006 0.008 0.010

σ
t
(k

si
)

εt
pl



 

99 
 

performed on a defect-free model with linear material behavior to determine the nodal 

displacements associated with various buckling modes.  In the second step, geometric 

imperfections were imposed on the model using the *IMPERFECTION command, which 

scales the nodal displacements determined from the first step.  This was done for the sake 

of simplicity in imposing out-of-straightness and plate imperfections with desired 

magnitudes; however, it is to be noted that this assumes that the initial imperfections are 

proportional to the elastic buckled shape.  A nonlinear analysis was performed.  The 

*NLGEOM option was enabled to consider second-order effects.  Analyses were 

terminated when the axial displacement of the top support node reached a threshold 

value.  

History Output Requests 

Certain nodes and elements, shown in Figure 5.5, were flagged during the 

creation of the model to track their movement throughout analysis.  This data could then 

be compared against experimentally recorded data.  These include the displacements of 

toes and heel of the angle at midheight, which were tracked experimentally with string 

potentiometers.  Vertical (Z) displacement at the point of load application was tracked 

and compared to the axial shortening which was measured using a potentiometer during 

experimental testing.  The strain was tracked for the elements whose locations coincided 

with the location of the strain gages on the test specimens.   

Modeling Sensitivity Analyses  

Prior to conducting numerical experiments, the modeling procedure was evaluated 

to ensure that the models were not artificially strong/weak due to the modeling 

methodology.  These checks included convergence studies to determine adequate mesh 
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size, arc-length increment sensitivity studies to determine its effect on peak load, and a 

sensitivity study to determine the effect of the number of through-thickness points on 

peak load.  These checks were performed in this order to ensure that only one aspect of 

modeling was considered at a time.  Additionally, the sensitivity of the strength of the 

models to changes in the material model was investigated.  

Convergence Study 

The proper element mesh density was examined to ensure that the models were 

not artificially stiff or computationally expensive.  Convergence studies were conducted 

on five models to examine the influence of element size on strength and computation 

time.  Models were meshed such that the elements were approximately square.  Five 

models were constructed and subjected to eigenvalue buckling analyses.  From the 

convergence analyses, whose results can be seen in further detail in Appendix C, it was 

decided at least 8 elements were necessary to model the width of each leg in order to 

obtain the converged strength.  

Arc-Length Sensitivity 

Although the arc-length solving procedure in ABAQUS will determine the arc-

length for each increment based on the curvature of the equilibrium path, user-defined 

bounds will limit what arc-length the auto-incrementation script can calculate.  It is 

desirable to maintain small arc-length increments to prevent significant deviation from 

the equilibrium path; however, small-arc length increments are computationally 

expensive. Large arc-length increments result in coarse traces of equilibrium paths, which 

may underestimate the strength of the model, despite their computational efficiency.   
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To determine the effect of the specified maximum arc-length on model strength, 

four models were subject to sensitivity analyses—a 18 in. long L2 x 2 x ¼, a 132 in. long  

L2 x 2 x ¼ , a 24 in. long  L4 x 4 x 5/16, and a 60 in. long L4 x 4 x 5/16.  The sections were 

selected to evaluate the effect of arc-length on various load levels and buckling modes.  

Two different maximum arc-length increments were compared for each of the models: 

1,000,000 and 10,000.  Although no specimen ever reached loads near 1,000,000, this 

maximum arc-length was specified as an arbitrarily large bound for the auto-

incrementation calculations. It was observed that specifying maximum arc-length 

increments smaller than 10,000 caused some of the analyses to become unstable.  The 

results of this study, which can be found in Appendix C, indicate that model strength is 

not sensitive to the maximum specified arc-length with the maximum difference being 

1.6% between the two cases.  It was ultimately decided to use an arc-length of 20,000, 

which produced refined traces of the equilibrium path while still reducing the 

computation time.   

Through-thickness integration points 

A sensitivity study was conducted to select the proper number of through-

thickness integration points to use in the S4R elements for Simpson’s rule.  The number 

of integration points must be, inclusively, an odd number between 3 and 99.  Because 

flexural-torsional buckling involves plate bending in addition to flexure, the strength of a 

24 in. long L4 x 4 x 5/16 model was analyzed using varying through-thickness integration 

points.  From the results, which are summarized in Appendix C, it was decided to use 

seven through-thickness integration points for Simpson’s rule. 
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Material Model Sensitivity 

The sensitivity of the models to changes in material parameters was investigated 

in order to determine the validity of the findings of these analyses to angles with different 

material parameters.  Specifically, the influences of the initial shear modulus and of 

Poisson’s ratio on the strength of the angles were investigated.   Two models were used 

in this investigation, a 26 in. long L3¼ x 3¼ x ¼ angle and a 71.75 in. long L5⅛ x 5⅛ x 

¼ angle.  The strengths of these two models, using the material model previously 

described, were determined based on a full nonlinear analysis and served for comparison 

when material parameters were varied.   

Three cases were considered for comparison.  Firstly, both models were 

reexamined when Poisson’s ratio was set equal to 0.31.  Secondly, both models were 

examined when the material model was assumed to be isotropic with Poisson’s ratio set 

equal to 0.31, rather than orthotropic under plane stress conditions.  Lastly, both models 

were examined when orthotropic material behavior under plane stress conditions were 

assumed along with a Poisson’s ratio equal to 0.24, but with the shear modulus equal to 

10,800 ksi, which corresponds to the shear modulus computed using isotropic material 

relationships and a Poisson’s ratio of 0.3.  The strengths of the two models under each 

condition are given in Appendix C.  From these three cases, it can be seen that the model 

strengths are most sensitive to the value of the shear modulus, which caused the strengths 

to vary by up to 9% based on the values considered.  Varying only Poisson’s ratio caused 

the strengths to increase by approximately 0.1%.  Assuming isotropic material behavior 

rather than orthotropic/plane stress material behavior caused negligible change in the 

model strengths.  Thus, the models showed little sensitivity to changes in Poisson’s ratio, 
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and the findings of subsequent analyses, whose models use a Poisson’s ratio of 0.24, are 

valid for angles with similar shear properties, but with different values of Poisson’s ratio.  

5.3 VALIDATION OF MODELING PROCEDURE 

Prior to using finite element analyses to generate additional data, the modeling 

procedure was validated by comparing its results to the results from the experimental 

tests described in Chapter 4.  Each of the 33 test specimens was modeled and loaded 

using ABAQUS.   

Modeling Considerations 

To match the boundary conditions of the experiments, the support nodes were 

specified to permit rotation about the minor principal axis as well as axial deformation 

while all other degrees of freedom at the support nodes were restrained.  To incorporate 

the rotational restraint imposed on the test specimens by the experimental end fixtures, 

the depth of the R3D3 end fixture elements was adjusted so that the length between the 

support nodes matched the effective length of the column given in Chapter 4.   

Angles that underwent flexural buckling during experimental testing were 

modeled to have out-of-straightness magnitudes equal to those determined from their 

Southwell plots in Chapter 4; angles that underwent flexural-torsional buckling were 

modeled to have out-of-straightness magnitudes equal to the out-of-straightness measured 

with a theodolite.  Flexural-torsional imperfections were scaled by the plate out-of-

straightness determined in Chapter 4; however, flexural-torsional imperfections were not 

included for specimens longer than 36 in. 
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Comparison of Experimental and Numerical Behavior 

Results from the finite element analyses were compared to the experimental 

results. For each angle, Table 5.2 lists the peak load and buckling mode determined from 

numerical analyses and experimental testing.  From this table it can be seen that this 

modeling procedure is able to predict the strength within 4% on average and the 

corresponding buckling mode (including L4-36a, which buckled in the flexural mode 

during experimental testing).  Based on the load-deflection curves (for specimens that 

underwent flexural buckling) and on the load-twist curves (for the angles that underwent 

flexural-torsional buckling), deformational behavior of the analytical models was also 

seen to closely match experiments.  Typical load-deflection and load–twist curves can be 

seen in Figure 5.7 and Figure 5.8.  Load-deflection and load-twist curves for each angle 

can be found in Appendix C.  Additionally, it can be seen in Figure 5.9 that this finite 

element procedure is able to capture the complex buckled shapes of each of the buckling 

modes, including the post-buckling torsion that was observed for L4-60a.  

It can be seen in Table 5.2 that the strengths of the stockiest L2 angles do not 

match the experimentally determined strengths.  This is attributable to the effective 

length used in the analysis.  In Chapter 4, an effective length factor of 0.95 was 

determined based on tests of slender carbon steel columns.  The rotational restraint that 

the end fixtures impose on stocky columns was not tested.  Based on the observed 

strength in comparison to the tangent modulus predictions, it can be inferred that the 

effective length factor is actually less than 0.95 for the stockiest columns.  Based on 

agreement with specimen test strength for other angles, it is concluded that this procedure 

can be used to model S32003 single equal-leg angles for numerical experiments.    
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Table 5.2- Experimental/Finite element comparison 

Specimen 
Experimental Finite Element j
oHjVZ÷ Pexp  

(kip) 
Mode 

PFEM 

(kip) 
Mode 

L2-18a 56.6 F 48.4 F 1.17 
L2-18b 59.9 F 49.4 F 1.21 
L2-24 44.3 F 38.2 F 1.16 
L2-36a 24.9 F 23.3 F 1.07 
L2-36b 25.6 F 25.1 F 1.02 
L2-48 13.1 F 12.4 F 1.06 
L2-60a 7.7 F 8.4 F 0.92 
L2-60b 8.3 F 8.6 F 0.96 
L2-72 6.4 F 6.3 F 1.00 
L2-84 4.9 F 4.8 F 1.02 
L2-96 3.8 F 3.8 F 1.00 
L2-132 2.0 F 2.0 F 1.00 
L3-18 98.7 FT 88.5 FT 1.11 
L3-24a 90.4 FT 86.2 FT 1.05 
L3-24b 86.3 FT 84.9 FT 1.02 
L3-36 66.8 F 66.3 F 1.01 
L3-48a 39.5 F 39.1 F 1.01 
L3-48b 40.8 F 42.5 F 0.96 
L3-60a 28.9 F 28.4 F 1.02 
L3-60b 28.3 F 28.1 F 1.00 
L3-72 23.2 F 22.8 F 1.02 
L3-84 19.5 F 17.3 F 1.13 
L3-132 7.7 F 7.4 F 1.04 
L4-24 136.6 FT 119.8 FT 1.14 
L4-36a 124.3 F 134.6 F 0.92 
L4-36b 144.6 FT 121.1 FT 1.19 
L4-48 119.4 F 109.0 F 1.09 
L4-60a 87.6 F 87.2 F 1.00 
L4-60b 91.3 F 91.0 F 1.00 
L4-72 72.2 F 77.1 F 0.94 
L4-84 57.0 F 55.7 F 1.02 
L4-96 39.2 F 38.6 F 1.01 
L4-132 22.3 F 21.6 F 1.03 
    AVERAGE 1.04 
F-Flexural Buckling     
FT-Flexural-torsional Buckling    
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Figure 5.7- Experimental/numerical comparison of load-deflection curves for flexural 
buckling (L4-60b) 

 

 

 

 

Figure 5.8- Experimental/numerical comparison of load-twist curves for flexural-
torsional buckling (L3-24a) 
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Figure 5.9- Comparison of finite element buckled shapes to buckled shapes from experiments

L4-24 L4-36a L4-60a 
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5.4 PARAMETRIC STUDY 

The validated numerical testing procedure was subsequently used as a 

computational tool to perform numerical experiments.  These analyses evaluated the 

strength angles across various leg slenderness and overall member slenderness ratios.  

Additionally, it was used to examine the effect of several design parameters on column 

strength.   

Modeling procedure 

In subsequent analyses, the following modeling procedures were standardized so 

the effect of individual parameters could be investigated between corresponding angles.   

Boundary conditions 

Boundary conditions were again modeled using R3D3 elements; however, the 

end-fixtures thickness was set equal to zero, as shown in Figure 5.10.  Rotational 

boundary conditions about the principal axes could still be controlled by changing the 

constraints at the support nodes.  Additionally, these boundary conditions still restrained 

warping at the S4R and R3D3 interfaces and imposed the same boundary conditions to 

the edges of the shells as described in Section 5.2.  Except where noted, numerical 

analyses were conducted under pinned conditions for both major and minor axis bending. 
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Figure 5.10- Parametric study end fixtures 

 

Column Imperfections 

For most of the analyses, it was decided to standardize the magnitude of column 

out-of-straightness as L/1500 based on the average out-of-straightness reported by 

Bjorhovde (1972) on his survey of carbon steel columns.  Preliminary analyses indicated 

that out-of-straightness in the negative Y-direction resulted in lower strengths than when 

out-of-straightness was specified in the positive Y-direction.  Subsequent analyses 

included out-of-straightness in the negative Y-direction.  

The magnitudes by which the flexural-torsional imperfections were scaled were 

based on sensitivity analyses.  The strengths of a 24 in. long L3x3x24 angle and a 30 in. 

long  L51/8 x 51/8 x ¼ angle were determined based on variation in the magnitude of the 

flexural-torsional imperfections.  It was decided to scale flexural-torsional nodal 
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imperfections by 1% of the thickness, which corresponded to 0.01% and 1.6% drops in 

strength, respectively, for the two models in comparison to the strengths of comparable 

modes with imperfections equal to 0.1% of the thickness.  When flexural-torsional 

imperfections were scaled by less than 0.1% of the thickness, models exhibited 

distortional buckling rather than flexural-torsional buckling. 

Leg-Slenderness Parametric Study 

The leg slenderness (�/t) ratio of hot-rolled carbon steel equal-leg angles vary 

between 4.5 and 18.7, where b is defined as the distance from the shear center to the toe.  

Based on the increased susceptibility to flexural-torsional buckling for increased leg 

slenderness, a parametric study was conducted for all-realistic ranges of ��/t ratios to 

determine their effect on column strength and buckling mode.   

Six cross-sections were selected to correspond to six different leg slenderness 

ratios—L2 x 2 x ¼ (b/t=7.5), L25/8 x 25/8 x ¼ (b/t=10), L3¼ x 3¼ x ¼ (b/t=12.5), L37/8 x 

37/8 x ¼ (b/t=15), L4½ x 4½ x ¼ (b/t=17.5), and L51/8 x 51/8 x ¼ (b/t=20).  It was decided 

to use a plate thickness of 0.25 in. for all models since this was the plate thickness used in 

most of the experimental tests.  The strength of each cross-section was determined across 

all practical column lengths—(L/rx) =30 to 200.  The peak load normalized by cross-

sectional area for each of the major axis pinned cases is plotted in Figure 5.11.  For 

validation of these results, the flexural buckling stresses for S32003 that were calculated 

using the explicit formulation given in Section 3.4.2 of the AS/NZS 4673 are also plotted 

in Figure 5.11; this formulation was developed based on finite element analyses of 

imperfect columns made of nonlinear materials whose out-of-straightness magnitudes 
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were also L/1500 (Rasmussen and Rondal 1997b).  The tangent modulus formulation 

presented by SEI/ASCE 8-02 is plotted for reference. 

 

 

Figure 5.11- Column curves for various equal-leg angle cross-sections 
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labeled in Figure 5.12—one which corresponds to flexural-torsional buckling for stockier 
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top-of-the-knee method, as illustrated in Figure 5.12.  Additionally, the transition point 

will be defined as the point determined using the top-of-the-knee method.  

 

 

Figure 5.12- Characterization of the column curves for a single equal-leg angle 
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and continues into the post-buckling range; little lateral deflection occurs even in the 

post-buckling range.  Point B, which falls along the flexural-torsional buckling portion of 

the column curve near the transition region, shares similar deformation characteristics 

with Point A.  Deformation at Point C, which falls inside the transition region, is 

characterized by flexural bending followed by a sudden drop in the carried load.  The 

sudden drop in the carried load corresponds to the onset of twist at midheight.  The 

suddenness of the torsion can be seen by visually comparing the sharpness of the knee in 

the load-twist curve for C against those for A or B.   

The load-deflection curves for Points D and E, both of which fall in the flexural 

buckling region, follow the pattern of a column undergoing flexural buckling; however, a 

drop in load similar to C can be seen in the post-buckling range corresponding to cross-

sectional twist at midheight.  The buckling behavior at C differs from the behavior at D 

or E due to the onset of torsional deformation almost immediately upon reaching the peak 

load; D and E experienced torsional deformation in the post-buckling region of the 

flexural load-deflection curve.  Additionally, it should be noted that the angle at point E, 

which has a higher slenderness than at D, is able to undergo further post-buckling 

flexural deformation before the onset of torsion than D.  Similarly, F, which is more 

slender than E, did not ever exhibit torsional deformation and only exhibits flexural 

buckling behavior.   
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Note: Scale of horizontal axis is constant for all plots in a column.  

Figure 5.13- Characterization of load-deflection/twist behavior at various points along the 
column curve (b/t=15) 
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Influence of Major Axis Rotational Fixity  

Having previously evaluated the strength of the columns when rotation about the 

major principal axes was unrestrained (pinned), angle strength was examined when 

rotation about the major principal axes was restrained (fixed) for evaluation of the 

experimental test results.  The same models were analyzed by restraining major axis 

rotation at the top and bottom support nodes.  The resulting strengths from the fixed cases 

are plotted along with the strengths determined for the pinned cases in Figure 5.14.  

Strengths are reported in Appendix C.  The strengths for corresponding columns from the 

two series show close agreement for the two cases— there is a slight strength increase in 

the flexural-torsional buckling arm of the column curve for angles with low b/t ratios and 

little to no difference everywhere else.  The maximum strength increase was 

approximately 1%, which occurred for the L3¼ x 3¼ x ¼ (b/t=12.5) and L37/8 x 37/8 x ¼ 

(b/t=15) sections.  It is concluded that major axis fixity is not an important design 

parameter to consider in determining the flexural-torsional buckling strength of a 

concentrically-loaded duplex stainless steel angle, and thus the experimental results 

obtained using the end fixtures described in Chapter 4 may be compared to the results of 

numerical buckling experiments.   

When the flexural-torsional buckling strengths are computed for the major axis 

pinned and fixed cases using the flexural-torsional buckling formulation presented by 

AS/NZS 4673 and SEI/ASCE 8-02, the difference can vary by as much as 4% if effective 

cross-sectional area provisions are used and 9% if gross cross-section areas are used.  For 

the purposes of design, the major axis fixity factor should be conservatively taken as one.  
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Figure 5.14- Column curve comparison—major axis rotationally pinned and fixed 
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Ñsbv =  sbAA − bccvA + ~sb$$ − bccvA + 

úsbAA − b$$vA + 2subAcA + æbc$A + ôb$AA v = 1 
(5-3) 

 

F, G, H, L, M, and N are material constants that are determined from tests on 

different material orientations.  These constants are defined in ABAQUS using the 

anisotropic yield stress ratios, R11, R22, R33, R23, R31, and R12, using the relations Eq. (5-4) 

through Eq. (5-10) (ABAQUS 2011). 

  = 12 � 1îccA + 1îAAA − 1î$$A � (5-4) 
 d 

 ~ = 12 � 1îccA + 1î$$A − 1îAAA � 
(5-5) 

 ú = 12 � 1îAAA + 1î$$A − 1îccA � 
(5-6) 

 u = 32 � 1îAcA � 
(5-7) 

 æ = 32 � 1îc$A � 
(5-8) 

 u = 32 � 1î$AA � 
(5-9) 

Where 

 
 

î$$ = b�$$b! ; îAA = b�AAb! ; îcc = b�ccb! ; 
îAc = √3 b�Acb! ; îc$ = √3 b�c$b! ; î$A = √3 b�$Ab!  

(5-10) 

     b! = the user-defined reference yield stress. 

b� = the yield stresses for different material orientations. 
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Rather than perform 6 material tests, a parametric study was performed to 

determine the parameters necessary to define anisotropic yielding for the present loading 

conditions.  The loading conditions were idealized as a plate uniformly loaded along 

opposite edges under plane stress conditions whose material coordinate axes coincide 

with the geometric coordinate axes, as shown in Figure 5.15.  Under such conditions Eq. 

(5-3) simplifies to Eq. (5-11). 

 

Figure 5.15- Idealized loading 
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The plastic strain increment ratio, κ, given by Eq. (5-12), can be determined based 
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corresponding to that state of stress (0,b�AA). Rewritten using the ABAQUS anisotropic 

input parameters, Eq. (5-12) becomes Eq. (5-13). 

 û = EFHG,AEFHG,$ = −
üÑ üb$$�
üÑ übAA� ýý

Ë��þ!
= − ú + ú (5-12) 

 d 

 û = − 12 �1 + 1î$$A − 1îccA � 
(5-13) 

For the isotropic case, b�$$ = b�AA = b�cc = b! Eq. (5-13) becomes κ=-0.5, which 

corresponds to the plastic strain increment ratio associated with the von Mises yield 

criterion.  For the anisotropic case, no data was available for the yield stress along non-

longitudinal plate orientations for the S32003 plates used in Chapter 3; instead, a survey 

of literature was conducted concerning the inelastic anisotropic behavior of stainless steel 

plates and is summarized in Table 5.3.  The data indicates that the rolling process used to 

manufacture stainless steel plates induces anisotropic material behavior in the inelastic 

range (Becque and Rasmussen 2009a; Becque and Rasmussen 2009b; Kim 2010; 

Rasmussen et al. 2003).  In these studies, the 0.2% proof stress was determined to be up 

to 17% higher in the direction oriented perpendicular to the rolling direction than parallel 

to the rolling direction for virgin plates. Since the longitudinal axis of structural shapes 

are normally parallel to the rolling direction, only cases where R11>1 were examined.  

This is consistent with Section 5.1.3 of the AS/NZS 4673, which notes that duplex grades 

of stainless steel have a lower yield stress in the longitudinal direction. 
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Table 5.3- Stainless steel plate anisotropy in the inelastic range 

Source 
Tension/ 
Compression 

Alloy î$$ 

Rasmussen et al. (2003) Tension S31803 1.10 
Compression  1.17 

Kim (2010) Tension S32003 1.06 
Becque and Rasmussen (2009a) Tension S30400 1.02 

Compression  1.06 
Tension S43000 1.05 
Compression  1.11 
Tension S40900 1.03 
Compression  1.16 

Becque and Rasmussen (2009b) Tension S30400 1.01 
 Compression  1.03 
 Tension S40400 1.03 
 Compression  1.12 

 

To evaluate the effect of anisotropic yielding, it was decided to use R11 = 1.2 

based on the maximum yield stress ratios observed from the review of literature.  

Substituting this into Eq. (5-13), κ will deviate most from its isotropic value when R33 = 

1, which results in a value of κ=-0.35.  This is shown graphically with respect to the 

isotropic and anisotropic yield surfaces in Figure 5.16.   



 

121 
 

 

Figure 5.16- Plastic strain increment ratio for isotropic and anisotropic yielding 

 

These yield stress ratios are listed in Table 5.4.  The yield stress ratios for all the 

shear terms, as well as the through-thickness modulus, were taken as one.  Additionally, 

it should be noted that the studies in Table 5.3 reported higher elastic moduli in the 

transverse direction, E1, than in the longitudinal direction, E2.  Preliminary finite element 

analyses, which included reflected this (E1 = 1.1 E2), showed strength increases in the 

models.  Since the aim of investigating this property was to determine if anisotropic 

material behavior resulted in reduced strength, subsequent analyses did not include the 

elastic anisotropy, and only anisotropic yielding was modeled. The resulting column 

curves are plotted alongside the isotropic yielding case in Figure 5.17. 
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Table 5.4- Material model parameters for severe anisotropy case 

Anisotropic Yielding 
R11 1 
R22 1.2 
R33 1 
R23 1 
R31 1 
R12 1 

 

 

Figure 5.17- Column curve comparison--isotropic and anisotropic yielding 

 

It is apparent from Figure 5.17 that anisotropic yielding does not contribute to a 

noticeable change in the strength of angles.  A similar conclusion was made by 
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plate when only perfectly plastic material models were considered. The ratio of the two 

strengths for each angle, which are listed in Appendix C, show that there is less than a 

0.01% difference in strengths on average.  This indicates that anisotropic yielding does 

not need to be considered in determining the strength of concentrically loaded single 

equal-leg stainless steel angles for the case where rolling direction of plates is oriented 

parallel to the longitudinal axis of the member in fabrication.   

Out-of-straightness 

Previous numerical analyses considered the case where column out-of-

straightness was set equal to L/1500, for which most design column curves are calibrated; 

however, angles were also tested with out-of-straightness magnitude set equal to L/1000 

to consider the sensitivity of strength based on the out-of-straightness limits specified in 

(ASTM A6-12).  The resulting strengths are seen in Figure 5.18 and are reported in 

Appendix C. 



 

124 
 

 

Figure 5.18- Effect of out-of-straightness on column strength 

 

The increased out of straightness has limited effect on the member strength, as 

shown in Figure 5.18.  In the flexural buckling region, the buckling stress decreases 

approximately 2% when the initial out-of-straightness increases from L/1500 to L/1000; 

however, the strength decreases less than 1% for members in the flexural-torsional 

buckling region of the column curve.  The effect of initial out-of-straightness is greatest 

for columns which fall in the transitional region, wherein this change can result in up to a 

5% drop in the buckling stress.  Thus, while initial out-of-straightness has a greater effect 

on member strength than anisotropic yielding behavior or major axis fixity, the difference 

between these two cases is small enough to justify use of column curves based on an 

L/1500 out-of-straightness for duplex stainless steel single equal-leg angles. 
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5.5 COMPARISON TO DESIGN FORMULATIONS 

Results from the L/1500 out-of-straightness finite element study and the 

mechanistic-based flexural and flexural-torsional buckling stresses in SEI/ASCE 8-02 are 

plotted together in Figure 5.19.  This figure indicates that larger b/t ratios cause a 

concentrically loaded single equal-leg angle strut to become susceptible to flexural-

torsional buckling at higher member slenderness ratios.  Additionally, it can be seen that 

flexural-torsional buckling stress formulation becomes less conservative for angles with 

b/t>12.5.  As a result, the effective cross-sectional area must be performed in computing 

the predicted strengths. 

 

  

Figure 5.19- Calculated/FEA buckling stress comparison (gross cross-sectional area) 
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The strength of each angle was computed using SEI/ASCE 8-02, AS/NZS 4673, 

EC3, 1-4/Euro-Inox, and the AISC Design Guide (whose formulations are described in 

further detail in Chapter 4) and compared to the strengths determined from finite element 

analysis.  The effective length factors were taken as Kx=1.0, Ky=1.0, Kt=0.5.  Effective 

area calculations were computed using the full width of the leg, ��, as in Chapter 4, 

instead of b for consistency.  Additionally, the strengths were computed using the 

SEI/ASCE 8-02 and AS/NZS 4673 design provisions (found in Section 3.4-3 and Section 

3.4.1, respectively) for concentrically-loaded cold-formed stainless steel angles that 

requires consideration of a loading eccentricity of L/1000 toward the toes of the angle.  

The computed strength of each angle was divided by its gross cross-sectional area in 

order to compare different cross-sections and design standards (including effective area 

provisions) to the buckling stress determined from the finite element buckling 

experiments.  The resulting comparisons are seen in Figures 5.20-5.25. 
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Figure 5.20- Predicted/FEA buckling stress comparison (b/t = 7.5) 

 

 

Figure 5.21- Predicted/FEA buckling stress comparison (b/t = 10) 
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Figure 5.22- Predicted/FEA buckling stress comparison (b/t = 12.5) 

 

 

Figure 5.23- Predicted/FEA buckling stress comparison (b/t = 15) 
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Figure 5.24- Predicted/FEA buckling stress comparison (b/t = 17.5) 

 

 

Figure 5.25- Predicted/FEA buckling stress comparison (b/t = 20) 
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From Figures 5.20-25, it can be seen that the buckling stresses predicted using 

cold-formed stainless steel standards, AS/NZS 4673 and SEI/ASCE 8-02, closely follow 

the finite element data along the flexural buckling arm of the column curve.  The 

flexural-torsional buckling formulation, which is identical for both standards, closely 

predicts the intersection of the buckling modes.  The flexural-torsional buckling stress 

predicted by this formulation becomes increasingly conservative for stockier angles.  It 

can also be noted that while both SEI/ASCE 8-02 and AS/NZS 4673 overestimate the 

flexural buckling stress determined from the finite element data, SEI/ASCE 8-02 does so 

more.  The maximum difference between predicted and actual stress was approximately 

17%, which occurred at a slenderness ratio around 90 for the L2 x 2 x ¼ (b/t=7.5) cross-

section.  This tendency to overestimate the buckling stress is attributable to the initially-

straight assumption inherent in tangent-modulus buckling theory.  

The buckling stresses predicted using EC3, 1-4 and the AISC Design Guide, 

neither of which incorporate the nonlinear stress-strain behavior of a particular grade of 

stainless steel in their formulations, can be seen to be very conservative for all 

slenderness values.  This supports the findings in Chapter 4, wherein the resistance 

factors for the AISC Design Guide were seen to exceed 1 for both buckling modes.  This 

indicates that this design formulation is overly conservative and would result in 

inefficient design.   

Figures 5.20-25 also indicate that the different design rules predict different 

slenderness ratios for the point at which the flexural buckling stress is equal to the 

flexural-torsional buckling stress (buckling mode transition point).  This is an important 

design consideration given that different buckling modes may have different resistance 
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factors.  EC3, 1-4 is seen to predict the buckling mode transition point at lower 

slenderness ratios than was seen in the finite element data, whereas SEI/ASCE 8-02 and 

AISC Design Guide predict that this transition occurs at a slenderness ratio higher than is 

reflected by the data.  It is of interest to note that in assuming that the shear modulus 

remains proportional to the longitudinal modulus of elasticity �i. e. ~_ = ~@ Z¾Z[� the 

buckling mode transition point will be the same for both linear and nonlinear materials; 

thus, the AISC Design Guide predicts the same buckling mode transition point as 

SEI/ASCE 8-02 despite underestimating the buckling stresses.  The slenderness ratios at 

the buckling mode transition point are summarized in Table 5.5. 

 

Table 5.5- Buckling mode transition slenderness ratio (KL/r)x 

Method 
 b/t 

10 12.5 15 17.5 20 
FEA1000 -- 44.2 67.8 80.9 94.2 
FEA1500 -- 45.8 69.3 83.3 97.3 

SEI/ASCE 8-02 48.1 64.0 79.3 94.2 108.9 
AS/NZS 4673 42.5 56.6 69.4 83.4 98.8 

EC3, 1-4 24.4 38.6 67.7 70.0 84.9 
AISC 48.1 64.0 79.3 94.2 108.9 

 

Based on the extreme conservatism seen in the AISC Design Guide and EC3, 1-4, 

only AS/NZS 4673 and SEI/ASCE 8-02 will be considered in the remainder of the 

discussion.  The fact that the AS/NZS 4673 is able to more closely predict the slenderness 

ratio at the buckling mode transition point than SEI/ASCE 8-02 highlights the 

shortcomings of the initially straight assumption of tangent modulus buckling theory.  

For finite element models with out-of-straightnesses equal to L/1500, the tangent 

modulus formulation over-predicted the strength.  This causes the ratio of the flexural 
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buckling strength (PFEM) to the calculated flexural buckling strength (Pn) to vary with the 

slenderness of the column, as shown in Figure 5.26a.  In contrast, the AS/NZS 4673 

explicit formulation resulted in more precise strength predictions, as shown in Figure 

5.26b. 
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(a) (b) 

 
(c) 

Figure 5.26- Strength ratio comparison for flexural buckling (a) SEI/ASCE 8-02, (b) 
AS/NZS 4673, and (c) flexural-torsional buckling 
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The ratio of the flexural-torsional buckling strength (PFEM) to the predicted 

flexural-torsional buckling strength (Pn) computed using the formulation of AS/NZS 4673 

and SEI/ASCE 8-02 is shown in Figure 5.26c.  As noted in the figure, different flexural 

buckling stress formulations cause some data near the buckling mode transition point to 

be included for the SEI/ASCE 8-02 standard, but not for the AS/NZS 4673 standard.  It 

can be seen that this flexural-torsional buckling formulation becomes less conservative 

for larger b/t ratios.  Experimental flexural-torsional buckling data from Chapter 4 (b/t 

ratios of 11.7 and 12.3 and (KL/r)x between 35 and 50) are geometrically closest to the 

b/t=12.5 models.  In Figure 5.26c, the b/t=12.5 flexural-torsional buckling data is the 

most conservative; thus, the resistance factor (φft=0.92) computed in Chapter 4 for the 

flexural-torsional buckling mode may high due to the sampled data.  Further 

experimental investigation is necessary to determine if this resistance factor needs to be 

reduced for larger b/t ratios.   

5.6 CONCLUSIONS 

A modeling procedure, which was validated against experimental test data, was 

used to perform numerical experiments for concentrically loaded S32003 single equal-leg 

angle struts.  The strengths and buckling modes were determined for all practical cross-

sections across all ranges of column slenderness.  Rotational fixity about the major 

principal axis and material anisotropy were determined to have negligible effect on the 

strength of angles and therefore do not need to be considered in design.  These are 

important design considerations which can simplify the design of duplex stainless steel 

single equal-leg angles.  In the case of anisotropic hardening, no transverse material 

testing is necessary, and the longitudinal stress-strain relationship can be conservatively 
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used in calculating column strength, assuming that the longitudinal direction corresponds 

to the plate rolling direction.  Initial column out-of-straightness was seen to have the 

greatest influence on column strength, particularly in the transitional regions where 

columns are susceptible to either flexural or flexural-torsional buckling. 

A comparison of the strengths determined from the finite element tests to the 

strengths predicted using different stainless steel design rules reveals that consideration 

of the nonlinear stress-strain relationship of a particular grade of stainless steel leads to 

more precise column strength predictions than design rules that generalize the stress-

strain relationship of all stainless steels.  This latter approach gives overly-conservative 

strength predictions.  This indicates that the mechanistic-based design formulations for 

the flexural and flexural-torsional buckling modes of concentrically loaded columns 

found in the cold-formed standards, AS/NZS 4673 and SEI/ASCE 8-02, can be applied to 

built-up stainless steel sections as a method of calculating more realistic column strength. 

Comparison of predicted column strengths calculated using tangent modulus 

flexural formulation of SEI/ASCE 8-02 and the explicit formulation of AS/NZS 4673 

highlights the limitations of tangent modulus theory in determining the flexural buckling 

strength.  In overestimating column strength, the initially straight assumption of tangent 

modulus theory can cause the incorrect buckling mode to be predicted.  The explicit 

formulation used in AS/NZS 4673 predicts strengths closer to those determined from the 

finite element analyses, and corresponds more closely with the observed buckling modes.  

The ideal limit-state design provisions to use for design are those of AS/NZS 4673; 

however, if the SEI/ASCE 8-02 provisions are used in design, caution should be exercised 

by designers near the buckling mode transition point. 
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CHAPTER 6 

SUMMARY, CONCLUSIONS, AND FUTURE WORK 

 

This chapter summarizes the major accomplishments of this dissertation while 

highlighting its important conclusions. The summary and conclusions are followed by 

ideas for possible future work, which were identified during the course of this research. 

6.1 SUMMARY OF RESEARCH 

This dissertation addresses the behavior of built-up laser-welded duplex stainless 

steel single equal-leg angles subject to concentric loading.  The work is conducted by 

means of two complementary approaches, the first of which was experimental and 

consisted of conducting 33 full-scale buckling tests on S32003 duplex stainless steel 

single equal-leg angle components.  Angle specimens had slenderness ratios ranging from 

35 to 350 and leg width-to-thickness ratios of 7.5 to 12.3.  In the second approach, finite 

element models that accounted for material nonlinearity, material anisotropy, and 

geometric out-of-straightness were developed and validated using the experimentally 

obtained test results.  These models were subsequently used to perform numerical 

buckling experiments, which examined the influence of leg width-to-thickness ratios on 

buckling mode and strength.  

Results from the full-scale tests and from the numerical models were shown to 

correlate well with the classical mechanics-based formulae for predicting flexural and 

flexural-torsional buckling strengths of singly-symmetric members made of nonlinear 

materials.  Finally, a first-order reliability analysis was performed using the experimental 

test data to calculate resistance factors for design purposes. 
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6.2 CONCLUSIONS 

Based on the results of this thesis, the following conclusions can be made:  

1. The residual stress patterns of built-up duplex stainless steel angles are 

similar to those found for built-up carbon steel angles.  The peak tensile 

stress was found to be approximately 0.5Fy,c at the site of the weld. 

2. Duplex stainless steel single equal-leg angles loaded concentrically in 

compression exhibit increased nonlinear material behavior for decreased 

column slenderness, which can be seen in its experimental buckling load 

and deformed shape.   

3. Duplex stainless steel equal-leg angles become increasingly susceptible to 

flexural-torsional buckling as the leg slenderness ratio increases.  Strength 

predictions using gross cross-sectional area ceased to be conservative for b/t 

ratios exceeding 12.5, which require the use of effective area provisions. 

4. The transition between flexural and flexural-torsional buckling does not 

occur at a specific slenderness ratio; rather a transitional region exists in 

which an angle will begin to deflect laterally, as in flexural buckling, 

followed by cross-sectional twist.   

5. The mechanics-based flexural-torsional buckling strength formulation of 

AS/NZS 4673 and SEI/ASCE 8-02 closely predicts the flexural-torsional 

buckling strength of single equal-leg struts, as well as the buckling mode 

transition point. 

6. The assumption of tangent modulus buckling theory that columns are 

perfectly straight causes the flexural buckling strength of imperfect columns 
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to be overestimated, particularly for columns with slenderness ratios around 

100; instead, the explicit flexural buckling formulation used by AS/NZS 

4673 closely predicts the flexural buckling strength of imperfect columns 

across all ranges of slenderness, as well as the intersection of buckling 

modes on the column curve. 

7. EC3, 1-4/Euro-Inox and AISC Design Guide, which generalize the 

nonlinearity of different grades of stainless steel, result in overly 

conservative design strengths.  The European standards predict that the 

buckling mode transition point occurs at slenderness ratios lower than seen 

in the data. 

8. Angles showed little sensitivity (<1%) to the major-axis rotational fixity in 

numerical buckling tests; however, the difference between major axis fixed 

and pinned cases for AS/NZS 4673 and SEI/ASCE 8-02 indicate greater 

sensitivity (~4%).  The major axis effective length factor, Ky, should thus be 

conservatively taken as 1.0.  

9. Anisotropic yielding was shown to have negligible effect on column 

strength. Since stainless steel had a higher modulus of elasticity in the 

transverse direction (which causes strength increase), column strength can 

be conservatively predicted using the longitudinal stress-strain relationship 

for cases where the longitudinal axis of the section coincides with the 

rolling direction. 

10. Concentrically-loaded, laser-welded, built-up, single equal-leg angles 

composed of duplex stainless steel can be designed using the Load and 
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Resistance Factor Design (LRFD) criteria, given by jn ≤ �jk, where jn is 

the factored load,  jkis the nominal strength, and � can be taken as 0.70 

when designing for the flexural buckling limit state using the SEI/ASCE 8-

02 tangent modulus formulation, as 0.75 when designing for the flexural 

buckling limit using the AS/NZS 4673 explicit formulation, and (for single 

equal-leg angles that have b/t ratios less than 12.5) as 0.90 when using 

either standard to design for the flexural-torsional buckling limit state. 

6.3 RECOMMENDATIONS FOR FUTURE WORK 

Over the course of this research, a number of issues were identified on which 

future investigations should focus.  Firstly, improvement can be made on the material 

characterization performed in Chapter 3.  The stress-strain curve used for analysis was 

based on fabricated stub columns, which have different residual stress patterns than the 

angles tested in the buckling experiments.  This stress-strain curve approximated the 

effects of residual stresses and assumed homogenous material behavior across the cross-

section.  The influence of residual stresses can be more realistically modeled by imposing 

the distribution of the magnitudes of the residual stresses onto the cross-section, which 

would be modeled with virgin material behavior.  Additionally, Poisson’s ratio requires 

further examination, despite have little influence on the strength of the analytical models. 

Secondly, additional data is needed to address the flexural-torsional mode of 

buckling for stainless steel columns.  Only five experimental specimens in the present 

study exhibited this buckling mode.  Additionally, only one other study (van den Berg 

and van der Merwe 1988) has addressed the flexural-torsional buckling mode in stainless 

steel columns, which was limited to cold-formed hat sections; it represents 100% of the 
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flexural-torsional buckling data used to calculate the resistance factor in stainless steel 

design standards.  Validation of the existing resistance factors is needed for other 

stainless steel cross-sections, particularly built-up sections. Ideally, such an investigation 

would consider not only unequal-leg angles, which always buckle in the flexural-

torsional mode, but also singly-symmetric sections, such as T-sections, and equal-leg 

angles with highly slender legs.  Tests on singly-symmetric sections would shed light on 

transition and interaction between buckling modes.  The outcome of this study would be 

a flexural-torsional design formulation that has been validated across multiple cross-

sections.  One possible formulation that ought to be examined in such a study is using the 

secant modulus nonlinear reduction factor, 
Z�Z[, instead of the tangent modulus nonlinear 

reduction factor, 
Z¾Z[, in calculating the torsional buckling stress.  This was considered as 

an alternative to current design formulations because it is currently used as a nonlinear 

reduction factor in calculating plate buckling stresses of unstiffened elements.  A 

comparison of the strength data from the finite element analyses performed in Chapter 5 

to the flexural-torsional buckling strength calculated using this formulation gave 

indications of being more precise for different cross-sections; however, little 

experimental test data was available to validate it.    

Thirdly, future work should also focus on the strength and behavior of 

eccentrically loaded single equal-leg angle sections.  Such research is necessary to 

implement duplex stainless steel angles in construction since angles are usually 

connected and loaded through one of their legs. The strength of eccentrically loaded 

angles is notoriously complex to analyze.  Empirical design formulations, such as the 

effective slenderness ratio method, which are used for the design of eccentrically loaded 
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carbon steel single angle sections, have not been validated for stainless steels to account 

for their nonlinear material behavior.  This investigation would also address topics such 

as non-principal axis bending, which was not covered in the present study.  

Lastly, work is also needed to address the way in which material variability is 

approached.  Variation in material properties is currently only addressed in SEI/ASCE 8-

02, AS/NZS 4673, and AISC Design Guide with statistical parameters relating to the 0.2% 

proof/yield stress.  The nonlinear stress-strain relationship of stainless steels varies from 

grade to grade and depends on three material parameters; it is possible for two grades of 

stainless steel to have the same yield stress and initial modulus, but different stress-strain 

curves.  In this way, the yield stress does not encompass variation in material behavior as 

it does for carbon steel.  Since stability problems require understanding of the slope of the 

stress-strain curve, future investigations should develop effective statistical material 

parameters Mm and Vm, which take into account both n and the 0.2% proof stress.  
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APPENDIX A 

MATERIAL DATA 

 

Stub Colum Stress-Strain Curves and Extended Ramberg-Osgood Model 

 

 

 Figure A.1- Modeled/experimental stress-strain data, stub column 1 
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Figure A.2- Modeled/experimental stress-strain data, stub column 2 

 

 

Figure A.3- Modeled/experimental stress-strain data, stub column 3 
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Figure A.4- Modeled/experimental stress-strain data, stub column 4 

 

 

Figure A.5- Modeled/experimental stress-strain data, stub column 5 
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Four-point Asymmetric Loading Shear Test Results

 

Figure A.6- Transverse specimen 1 

 

 

Figure A.7- Transverse specimen 2 
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Figure A.8- Transverse specimen 3 

 

 

Figure A.9- Transverse specimen 4 
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Figure A.10- Longitudinal specimen 1 

 

 

Figure A.11- Longitudinal specimen 2 
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Figure A.12- Longitudinal specimen 3 
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APPENDIX B 

EXPERIMENTAL BUCKLING TEST DATA 

 

Load Deflection Curves 

 

Figure B.1- Load-deflection curves, L2-18a 

 

Figure B.2- Load-deflection curves, L2-18b 
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Figure B.3- Load-deflection curves, L3-18 

 

 

Figure B.4- Load-deflection curves, L2-24 
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Figure B.5- Load-deflection curves, L3-24a 

 

 

 

Figure B.6- Load-deflection curves, L3-24b 
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Figure B.7- Load-deflection curves, L4-24 

 

 

 

Figure B.8- Load-deflection curves, L2-36a 
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Figure B.9- Load-deflection curves, L2-36b 

 

 

Figure B.10- Load-deflection curves, L3-36 
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Figure B.11- Load-deflection curves, L4-36a 

 

 

 

Figure B.12- Load-deflection curves, L4-36b 
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Figure B.13 Load-deflection curves, L2-48 

 

 

 

Figure B.14- Load-deflection curves, L3-48a 
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Figure B.15- Load-deflection curves, L3-48b 

 

 

 

Figure B.16- Load-deflection curves, L4-48 
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Figure B.17- Load-deflection curves, L2-60a 

 

 

 

Figure B.18- Load-deflection curves, L2-60b 
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Figure B.19- Load-deflection curves, L3-60a 

 

 

Figure B.20- Load-deflection curves, L3-60b 
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Figure B.21- Load-deflection curves, L4-60a 

 

 

Figure B.22- Load-deflection curves, L4-60b 
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Figure B.23- Load-deflection curves, L2-72 

 

 

 

Figure B.24- Load-deflection curves, L3-72 
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Figure B.25- Load-deflection curves, L4-72 

 

 

 

Figure B.26- Load-deflection curves, L2-84 
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Figure B.27- Load-deflection curves, L3-84 

 

 

 

Figure B.28- Load-deflection curves, L4-84 

 

0

5

10

15

20

25

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

Lo
ad

 (
ki

p)

Midheight deflection (in.)

SPL

SPM

SPR

0

10

20

30

40

50

60

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Lo
ad

 (
ki

p)

Midheight deflection (in.)

SPL

SPM

SPR



 

163 
 

 

Figure B.29- Load-deflection curves, L2-96 

 

 

 

 

Figure B.30- Load-deflection curves, L4-96 
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Figure B.31- Load-deflection curves, L2-132 

 

 

 

Figure B.32- Load-deflection curves, L3-132 
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Figure B.33- Load-deflection curves, L4-132 

 

Load-Shortening Data 

NOTE: Load-shortening data for L2-18b, L3-24b, and L4-24 unavailable due to 

instrumentation malfunction.  

 

 

Figure B.1- Load-shortening curve, L2-18a 

0

5

10

15

20

25

-1.0 0.0 1.0 2.0 3.0 4.0 5.0

Lo
ad

 (
ki

p)

Midheight deflection (in.)

SPL

SPM

SPR

0.0

10.0

20.0

30.0

40.0

50.0

60.0

0.00 0.05 0.10 0.15 0.20

Lo
ad

 (
ki

p)

Axial Shortening (in.)



 

166 
 

 

 

Figure B.2- Load-shortening curve, L3-18 

 

 

Figure B.3- Load-shortening curve, L2-24 

 

0.0

20.0

40.0

60.0

80.0

100.0

120.0

0.000 0.002 0.004 0.006 0.008 0.010 0.012

Lo
ad

 (
ki

p)

Axial Shortening (in.)

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0

0.000 0.005 0.010 0.015 0.020 0.025

Lo
ad

 (
ki

p)

Axial Shortening (in.)



 

167 
 

 

Figure B.4- Load-shortening curve, L2-36a 

 

 

 

Figure B.5- Load-shortening curve, L2-36a 
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Figure B.6- Load-shortening curve, L2-36b 

 

 

Figure B.7- Load-shortening curve, L3-36 
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Figure B.8- Load-shortening curve, L4-36a 

 

 

Figure B.9- Load-shortening curve, L4-36b 
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Figure B.10- Load-shortening curve, L2-48 

 

 

Figure B.11- Load-shortening curve, L3-48a 
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Figure B.12- Load-shortening curve, L3-48b 

 

 

Figure B.13- Load-shortening curve, L4-48 
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Figure B.14- Load-shortening curve, L2-60a 

 

 

Figure B.15- Load-shortening curve, L2-60b 
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Figure B.16- Load-shortening curve, L3-60a 

 

 

Figure B.17- Load-shortening curve, L3-60b 
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Figure B.18- Load-shortening curve, L4-60a 

 

 

Figure B.19- Load-shortening curve, L4-60b 
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Figure B.20- Load-shortening curve, L2-72 

 

 

Figure B.21- Load-shortening curve, L3-72 
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Figure B.22- Load-shortening curve, L4-72 

 

 

Figure B.23- Load-shortening curve, L2-84 
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Figure B.24- Load-shortening curve, L3-84 

 

 

Figure B.25- Load-shortening curve, L4-84 
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Figure B.26- Load-shortening curve, L2-96 

 

 

Figure B.27- Load-shortening curve, L4-96 
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Figure B.28- Load-shortening curve, L2-132 

 

 

Figure B.29- Load-shortening curve, L3-132 
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Figure B.30- Load-shortening curve, L4-132 
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Southwell Plots 

  

Figure B.1- Southwell-plot, L2-18a; Prebuckling data (left), Regression data (right) 

 

 

 

Figure B.2- Southwell-plot, L2-18b; Prebuckling data (left), Regression data (right) 
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Figure B.3- Southwell-plot, L2-24; Prebuckling data (left), Regression data (right) 

 

 

  

Figure B.4- Southwell-plot, L2-36a; Prebuckling data (left), Regression data (right) 
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Figure B.5- Southwell-plot, L2-36b; Prebuckling data (left), Regression data (right) 

 

 

 

 

 

 
Figure B.6- Southwell-plot, L3-36; Prebuckling data (left), Regression data (right) 
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Figure B.7- Southwell-plot, L4-36a; Prebuckling data (left), Regression data (right) 

 

 

 

Figure B.8- Southwell-plot, L2-48; Prebuckling data (left), Regression data (right) 
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Figure B.9- Southwell-plot, L3-48a; Prebuckling data (left), Regression data (right) 

 

 

  

Figure B.10- Southwell-plot, L3-48b; Prebuckling data (left), Regression data (right) 
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Figure B.11- Southwell-plot, L4-48; Prebuckling data (left), Regression data (right) 

 

 

  

Figure B.12- Southwell-plot, L2-60a; Prebuckling data (left), Regression data (right) 
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Figure B.13- Southwell-plot, L2-60b; Prebuckling data (left), Regression data (right) 

 

 

  

Figure B.14- Southwell-plot, L3-60a; Prebuckling data (left), Regression data (right) 
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Figure B.15- Southwell-plot, L3-60b; Prebuckling data (left), Regression data (right) 

 

 

  

Figure B.16- Southwell-plot, L4-60a; Prebuckling data (left), Regression data (right) 
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Figure B.17- Southwell-plot, L4-60b; Prebuckling data (left), Regression data (right) 

 

 

  

Figure B.18- Southwell-plot, L2-72; Prebuckling data (left), Regression data (right) 
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Figure B.19- Southwell-plot, L3-72; Prebuckling data (left), Regression data (right) 

 

 

  

Figure B.20- Southwell-plot, L4-72; Prebuckling data (left), Regression data (right) 
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Figure B.21- Southwell-plot, L2-84; Prebuckling data (left), Regression data (right) 

 

 

  

Figure B.22- Southwell-plot, L3-84; Prebuckling data (left), Regression data (right) 
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Figure B.23- Southwell-plot, L4-84; Prebuckling data (left), Regression data (right) 

 

 

  

Figure B.24- Southwell-plot, L2-96; Prebuckling data (left), Regression data (right) 
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Figure B.25- Southwell-plot, L4-96; Prebuckling data (left), Regression data (right) 

 

 

 

Figure B.26- Southwell-plot, L2-132 
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Figure B.27- Southwell-plot, L3-132; Prebuckling data (left), Regression data (right) 

 

 

  

Figure B.28- Southwell-plot, L4-132; Prebuckling data (left), Regression data (right) 
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APPENDIX C 

FINITE ELEMENT ANALYSES 

 

Modeling Sensitivity Studies 

Convergence  

 

Figure C.1- Convergence study for L2-18 (Eigenvalue) 

 

 Table C.1- Convergence study for L2-18 (Eigenvalue) 

Maximum Element 
Size (in.) 

Number of 
Elements 

Peak Load 
(lb.) 

CPU Time 
(sec.) 

1 72 54391 0.3 
0.5 288 67059 0.7 

0.25 1152 70137 2.2 
0.125 4608 70896 9.6 

0.0625 18205 71080 38.5 
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Figure C.2- Convergence study for L2-60 (Eigenvalue) 

 

 

 

 

 

 

Table C.2- Convergence Study for L2-60 (Eigenvalue) 

Maximum Element 
Size (in.) 

Number of 
Elements 

Peak Load 
(lb.) 

CPU Time 
(sec.) 

1 204 6839 0.6 
0.5 960 8457 2.3 

0.25 3840 8852 7.8 
0.125 15360 8949 32.1 

0.0625 59520 8973 132.3 
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Figure C.3- Convergence study for L4-24 (Eigenvalue) 

 

 

 

 

 

Table C.3- Convergence Study for L4-24 (Eigenvalue) 

Maximum Element 
Size (in.) 

Number of 
Elements 

Peak Load 
(lb.) 

CPU Time 
(sec.) 

2 48 226675 0.3 
1 96 213501 0.4 

0.5 768 208757 1.5 
0.25 3072 206802 5.6 

0.125 12545 205934 27.0 
0.0625 48384 205559 106.7 
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Figure C.4- Convergence study for L4-60 (Eigenvalue) 

 

 

 

 

 

 

Table C.4- Convergence Study for L4-60 (Eigenvalue) 

Maximum Element 
Size (in.) 

Number of 
Elements 

Peak Load 
(lb.) 

CPU Time 
(sec.) 

2 96 72028 0.5 
1 480 89400 1.2 

0.5 1920 93654 3.9 
0.25 7680 94694 14.4 

0.125 30720 94951 77.4 
0.0625 119040 95015 350.4 
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Figure C.5- Convergence study for L5-30 (Eigenvalue) 

 

 

 

 

 

 

Table C.5- Convergence Study for L5-30 (Eigenvalue) 

Maximum Element 
Size (in.) 

Number of 
Elements 

Peak Load 
(lb.) 

CPU Time 
(sec.) 

2.5 48 93030 0.3 
1.25 192 88126 0.6 

0.625 768 86496 2.5 
0.3125 3072 85791 6.8 

0.15625 12288 85445 30.8 
0.078125 49152 85286 115.8 
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 Arc-length sensitivity studies 

Table C.6- Maximum arc-length sensitivity studies 

Max.Arc- 
Length 

Increment 

L2-18 L2-132 L4-24 L4-60 

PPeak 
(lb.) 

CPU 
Time 
(s) 

PPeak 
(lb.) 

CPU 
Time 
(s) 

PPeak 
(lb.) 

CPU 
Time 
(s) 

PPeak 
(lb.) 

CPU 
Time 
(s) 

100,000 43239.9 264.4 1973.32 1242.6 134880 121.8 76519 317.8 
10,000 43240.8 880.8 1973.32 1235.3 132727 1126.1 76538.2 3066.8 

 

Through-thickness integration points 

 

Figure C.6- Though-thickness integration points sensitivity study (L4-24) 

  
 Table C.7- Though-thickness integration points sensitivity study (L4-24) 

No. of Through-
thickness Integration 

Points 

Peak Load 
(lb.) 

CPU Time 
(sec.) 

3 134.689 208.9 
5 135.666 240.8 
7 135.711 220.1 
9 135.718 228.8 

11 135.72 240.8 
13 135.72 264.2 
15 135.721 271.6 
25 135.721 346.4 
99 135.721 856.4 
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Table C.8- Material model sensitivity studies for L3¼ x 3¼ x ¼   (26 in.)  

Material Model Strength (kip) 
Change in 
Strength 

Orthotropic/Plane Stress, ν=0.24, 
Go = 9830 ksi 

85.77 -- 

Orthotropic/Plane Stress, ν=0.31, 
Go = 9830 ksi 

85.82 0.06% 

Isotropic, ν=0.31 88.44 3.02% 
Orthotropic/Plane Stress, ν=0.24, 

Go = 10800 ksi 
87.77 2.28% 

 

 

 

 

Table C.9- Material model sensitivity studies for a L5⅛ x 5⅛ x ¼ (71.75 in.) 

Material Model Strength (kip) 
Change in 
Strength  

Orthotropic/Plane Stress, ν=0.24, 
Go = 9830 ksi 

57.87 -- 

Orthotropic/Plane Stress, ν=0.31, 
Go = 9830 ksi 

57.94 0.12% 

Isotropic, ν=0.31 62.72 8.38% 
Orthotropic/Plane Stress, ν=0.24, 

Go = 10800 ksi 
63.08 9.00% 
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Validation Study 

 

 

Figure C.7- Load-deflection comparison of experimental and numerical tests (L2-18a) 

 

 

 

Figure C.8- Load-deflection comparison of experimental and numerical tests (L2-18b) 
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Figure C.9- Load-twist comparison of experimental and numerical tests (L3-18) 

 

 

 

Figure C.10- Load-deflection comparison of experimental and numerical tests (L2-24) 
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Figure C.11- Load-twist comparison of experimental and numerical tests (L3-24a) 

 

 

 

Figure C.13- Load-twist comparison of experimental and numerical tests (L3-24b) 
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Figure C.14- Load-twist comparison of experimental and numerical tests (L4-24) 

 

 

 

Figure C.15- Load-deflection comparison of experimental and numerical tests (L2-36a) 
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Figure C.16- Load-deflection comparison of experimental and numerical tests (L2-36b) 

 

 

 

Figure C.17- Load-deflection comparison of experimental and numerical tests (L3-36) 
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Figure C.18- Load-deflection comparison of experimental and numerical tests (L4-36a) 

 

 

 

Figure C.19- Load-twist comparison of experimental and numerical tests (L4-36b) 
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Figure C.20- Load-deflection comparison of experimental and numerical tests (L2-48) 

 

 

Figure C.21- Load-deflection comparison of experimental and numerical tests (L3-48a) 
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Figure C.22- Load-deflection comparison of experimental and numerical tests (L3-48b) 

 

 

 

 

Figure C.23- Load-deflection comparison of experimental and numerical tests (L4-48) 
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Figure C.24- Load-deflection comparison of experimental and numerical tests (L2-60a) 

 

 

 

 

Figure C.25- Load-deflection comparison of experimental and numerical tests (L2-60b) 
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Figure C.26- Load-deflection comparison of experimental and numerical tests (L3-60a) 

 

 

 

Figure C.27- Load-deflection comparison of experimental and numerical tests (L3-60b) 
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Figure C.28- Load-deflection comparison of experimental and numerical tests (L4-60a) 

 

 

 

Figure C.29- Load-deflection comparison of experimental and numerical tests (L4-60b) 
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Figure C.30- Load-deflection comparison of experimental and numerical tests (L2-72) 

 

 

Figure C.31- Load-deflection comparison of experimental and numerical tests (L3-72) 
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Figure C.32- Load-deflection comparison of experimental and numerical tests (L4-72) 

 

 

 

Figure C.33- Load-deflection comparison of experimental and numerical tests (L2-84) 
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Figure C.34- Load-deflection comparison of experimental and numerical tests (L2-96) 

 

 

 

 

Figure C.34- Load-deflection comparison of experimental and numerical tests (L3-84) 
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Figure C.35- Load-deflection comparison of experimental and numerical tests (L4-84) 

 

 

Figure C.37- Load-deflection comparison of experimental and numerical tests (L4-96) 

0

10

20

30

40

50

60

0.0 0.5 1.0 1.5 2.0 2.5

Lo
ad

 (
ki

ps
)

Midheight deflection (in.)

 Experiment

 FEA

0

5

10

15

20

25

30

35

40

45

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

Lo
ad

 (
ki

ps
)

Midheight deflection (in.)

 Experiment

 FEA



 

217 
 

 

Figure C.38- Load-deflection comparison of experimental and numerical tests (L2-132) 

 

 

Figure C.39- Load-deflection comparison of experimental and numerical tests (L3-132) 
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Figure C.40- Load-deflection comparison of experimental and numerical tests (L4-132) 
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Parametric Studies 

 Table C.10- Summary of Results from Parametric Studies 

 
 

bVZ÷*  

Major-Axis 
Sensitivity 

Anisotropic 
Sensitivity 

Computed 
Strength uBo 

bz,�¶o 
bz,�¶obVZ÷  b«k¶}@ b«k¶}@bVZ÷_  bS/$!!! bVZ÷bS/$!!!_ (ksi) (ksi) (ksi) (ksi) 

L2  x 2 x 1/4 31 71.17 71.18 1.00 71.23 1.00 69.96 1.02 
(b/t = 7.5) 41 61.26 61.26 1.00 61.29 1.00 60.02 1.02 

51 52.57 52.57 1.00 52.57 1.00 51.25 1.03 
61 45.00 45.01 1.00 45.01 1.00 43.63 1.03 
72 38.20 38.20 1.00 38.21 1.00 36.86 1.04 
82 32.11 32.11 1.00 32.11 1.00 30.93 1.04 
92 26.90 26.90 1.00 26.90 1.00 25.94 1.04 

102 22.61 22.61 1.00 22.61 1.00 21.84 1.04 
112 19.13 19.13 1.00 19.13 1.00 18.53 1.03 
123 16.34 16.34 1.00 16.34 1.00 15.86 1.03 
133 14.08 14.08 1.00 14.08 1.00 13.70 1.03 
143 12.25 12.25 1.00 12.25 1.00 11.94 1.03 
153 10.74 10.74 1.00 10.74 1.00 10.49 1.02 
164 9.49 9.49 1.00 9.49 1.00 9.28 1.02 
174 8.44 8.44 1.00 8.44 1.00 8.27 1.02 
184 7.56 7.56 1.00 7.56 1.00 7.41 1.02 
194 6.80 6.80 1.00 6.80 1.00 6.67 1.02 
205 6.16 6.16 1.00 6.16 1.00 6.05 1.02 

L25/8x25/8x1/4 30 69.77 70.17 1.01 69.70 1.00 68.87 1.01 
(b/t = 10) 41 61.13 61.15 1.00 61.16 1.00 59.98 1.02 

51 52.64 52.64 1.00 52.65 1.00 51.39 1.02 
61 45.19 45.19 1.00 45.20 1.00 43.88 1.03 
71 38.48 38.48 1.00 38.48 1.00 37.18 1.03 
81 32.46 32.46 1.00 32.46 1.00 31.31 1.04 
91 27.28 27.28 1.00 27.28 1.00 26.32 1.04 

102 22.98 22.98 1.00 22.98 1.00 22.21 1.03 
112 19.49 19.49 1.00 19.49 1.00 18.88 1.03 
122 16.66 16.66 1.00 16.66 1.00 16.18 1.03 
132 14.38 14.38 1.00 14.38 1.00 13.99 1.03 
142 12.51 12.51 1.00 12.51 1.00 12.20 1.03 
152 10.98 10.98 1.00 10.98 1.00 10.72 1.02 
163 9.70 9.70 1.00 9.70 1.00 9.49 1.02 
173 8.64 8.64 1.00 8.64 1.00 8.45 1.02 
183 7.73 7.73 1.00 7.73 1.00 7.58 1.02 
193 6.96 6.96 1.00 6.96 1.00 6.83 1.02 

 

203 6.30 6.30 1.00 6.30 1.00 6.19 1.02 
*Major Axis Pinned, Isotropic Yielding, Out-of-Straightness=L/1500 
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L31/4x31/4x1/4 30 58.76 59.18 1.01 58.50 1.00 58.37 1.01 
(b/t = 12.5) 40 54.89 55.41 1.01 54.80 1.00 54.19 1.01 

51 50.06 50.21 1.00 50.05 1.00 48.95 1.02 
61 43.48 43.48 1.00 43.48 1.00 42.24 1.03 
71 37.10 37.10 1.00 37.10 1.00 35.86 1.03 
81 31.35 31.35 1.00 31.35 1.00 30.24 1.04 
91 26.39 26.39 1.00 26.39 1.00 25.47 1.04 

101 22.26 22.26 1.00 22.26 1.00 21.52 1.03 
111 18.89 18.89 1.00 18.89 1.00 18.30 1.03 
121 16.16 16.16 1.00 16.16 1.00 15.70 1.03 
131 13.95 13.95 1.00 13.95 1.00 13.58 1.03 
142 12.15 12.15 1.00 12.15 1.00 11.84 1.03 
152 10.66 10.66 1.00 10.66 1.00 10.41 1.02 
162 9.43 9.43 1.00 9.43 1.00 9.22 1.02 
172 8.39 8.39 1.00 8.39 1.00 8.21 1.02 
182 7.52 7.52 1.00 7.52 1.00 7.36 1.02 
192 6.77 6.77 1.00 6.77 1.00 6.64 1.02 
202 6.13 6.13 1.00 6.13 1.00 6.01 1.02 

L37/8x37/8x1/4 30 46.54 46.65 1.00 46.38 1.00 46.31 1.00 
(b/t = 15) 40 43.27 43.48 1.00 43.20 1.00 42.93 1.01 

50 41.08 41.38 1.01 41.05 1.00 40.59 1.01 
60 39.07 39.38 1.01 39.05 1.00 38.35 1.02 
70 36.54 36.66 1.00 36.53 1.00 35.50 1.03 
81 32.60 32.56 1.00 32.60 1.00 31.42 1.04 
91 27.70 27.70 1.00 27.71 1.00 26.73 1.04 

101 23.40 23.40 1.00 23.40 1.00 22.62 1.03 
111 19.88 19.88 1.00 19.88 1.00 19.26 1.03 
121 17.02 17.02 1.00 17.02 1.00 16.53 1.03 
131 14.70 14.70 1.00 14.70 1.00 14.30 1.03 
141 12.81 12.81 1.00 12.81 1.00 12.48 1.03 
151 11.24 11.24 1.00 11.24 1.00 10.97 1.02 
161 9.94 9.94 1.00 9.94 1.00 9.72 1.02 
171 8.85 8.85 1.00 8.85 1.00 8.66 1.02 
181 7.93 7.93 1.00 7.93 1.00 7.77 1.02 
191 7.14 7.14 1.00 7.14 1.00 7.00 1.02 
201 6.46 6.46 1.00 6.46 1.00 6.34 1.02 
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L41/2x41/2x1/4 30 36.69 36.72 1.00 36.62 1.00 36.53 1.00 
(b/t = 17.5) 40 33.60 33.68 1.00 33.58 1.00 33.37 1.01 

50 31.83 31.95 1.00 31.82 1.00 31.52 1.01 
60 30.53 30.69 1.01 30.52 1.00 30.11 1.01 
70 29.31 29.48 1.01 29.31 1.00 28.73 1.02 
80 27.88 27.98 1.00 27.88 1.00 27.09 1.03 
90 25.86 25.81 1.00 25.86 1.00 24.88 1.04 

100 22.99 22.93 1.00 22.98 1.00 22.06 1.04 
110 19.87 19.85 1.00 19.87 1.00 19.14 1.04 
120 17.09 17.08 1.00 17.09 1.00 16.55 1.03 
130 14.77 14.77 1.00 14.77 1.00 14.36 1.03 
141 12.86 12.86 1.00 12.86 1.00 12.54 1.03 
151 11.30 11.30 1.00 11.30 1.00 11.03 1.02 
161 9.99 9.99 1.00 9.99 1.00 9.76 1.02 
171 8.90 8.90 1.00 8.90 1.00 8.71 1.02 
181 7.97 7.97 1.00 7.97 1.00 7.81 1.02 
191 7.18 7.18 1.00 7.18 1.00 7.04 1.02 
201 6.50 6.50 1.00 6.50 1.00 6.38 1.02 

L51/8x51/8x1/4 30 29.01 29.01 1.00 28.98 1.00 28.89 1.00 
(b/t = 20) 40 26.33 26.35 1.00 26.32 1.00 26.16 1.01 

50 24.89 24.93 1.00 24.88 1.00 24.67 1.01 
60 23.93 23.99 1.00 23.92 1.00 23.65 1.01 
70 23.15 23.23 1.00 23.14 1.00 22.78 1.02 
80 22.38 22.47 1.00 22.38 1.00 21.89 1.02 
90 21.49 21.54 1.00 21.49 1.00 20.84 1.03 

100 20.27 20.24 1.00 20.27 1.00 19.47 1.04 
110 18.57 18.51 1.00 18.57 1.00 17.74 1.05 
120 16.55 16.51 1.00 16.55 1.00 15.84 1.04 
130 14.58 14.56 1.00 14.58 1.00 14.02 1.04 
140 12.82 12.81 1.00 12.82 1.00 12.37 1.04 
150 11.31 11.30 1.00 11.31 1.00 10.97 1.03 
160 10.03 10.69 1.07 10.03 1.00 9.76 1.03 
170 8.94 8.94 1.00 8.95 1.00 8.75 1.02 
180 8.02 8.01 1.00 8.02 1.00 7.85 1.02 
190 7.22 7.22 1.00 7.22 1.00 7.07 1.02 
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