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SUMMARY

Microelectronics has enjoyed great success in the past century. As the tech-

nology node progresses, the complementary metal-oxide-semiconductor scaling has

already reached a wall, and serious challenges in high-bandwidth interconnects and

fast-speed signal processing arise. The incorporation of photonics to microelectron-

ics provides potential solutions. The theme of this thesis is focused on the novel

applications of travelling-wave microresonators such as microdisks and microrings

for the on-chip optical interconnects and signal processing. Challenges arising from

these applications including theoretical and experimental ones are addressed. On

the theoretical aspect, a modified version of coupled mode theory is offered for the

TM-polarization in high index contrast material systems. Through numerical com-

parisons, it is shown that our modified coupled mode theory is more accurate than all

the existing ones. The coupling-induced phase responses are also studied, which is of

critical importance to coupled-resonator structures. Different coupling structures are

studied by a customized numerical code, revealing that the phase response of symmet-

ric couplers with the symmetry about the wave propagating direction can be simply

estimated while the one of asymmetric couplers is more complicated. Mode split-

ting and scattering loss, which are two important features commonly observed in the

spectrum of high-Q microresonators, are also investigated. Our review of the existing

analytical approaches shows that they have only achieved partial success. Especially,

different models have been proposed for several distinct regimes and cannot be rec-

onciled. In this thesis, a unified approach is developed for the general case to achieve

a complete understanding of these two effects. On the experimental aspect, we first

develop a new fabrication recipe with a focus on the accurate dimensional control and

xvi



low-loss performance. HSQ is employed as the electron-beam resist, and the lithog-

raphy and plasma etching steps are both optimized to achieve vertical and smooth

sidewalls. A third-order temperature-insensitive coupled-resonator filter is designed

and demonstrated in the silicon-on-insulator (SOI) platform, which serves as a critical

building block element in terabit/s on-chip networks. Two design challenges, i.e., a

broadband flat-band response and a temperature-insensitive design, are coherently

addressed by employing the redundant bandwidth of the filter channel caused by the

dispersion as thermal guard band. As a result, the filter can accommodate 21 WDM

channels with a data rate up to 100 gigabit/s per wavelength channel, while providing

a sufficient thermal guard band to tolerate more than ±15oC temperature fluctua-

tions in the on-chip environment. In this thesis, high-Q microdisk resonators are also

proposed to be used as low-loss delay lines for narrowband filters. Pulley coupling

scheme is used to selectively couple to one of the radial modes of the microdisk and

also to achieve a strong coupling. A first-order tunable narrowband filter based on the

microdisk-based delay line is experimentally demonstrated in an SOI platform, which

shows a tunable bandwidth from 4.1 GHz to 0.47 GHz with an overall size of 0.05

mm2. Finally, to address the challenges for the resonator-based delay lines encoun-

tered in the SOI platform, we propose to vertically integrate silicon nitride to the SOI

platform, which can potentially have significantly lower propagation loss and higher

power handling capability. High-Q silicon nitride microresonators are demonstrated;

especially, microresonators with a 16 million intrinsic Q and a moderate size of 240

µm radius are realized, which is one order of magnitude improvement compared to

what can be achieved in the SOI platform using the same fabrication technology. We

have also successfully grown silicon nitride on top of SOI and a good coupling has

been achieved between the silicon nitride and the silicon layers.
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CHAPTER I

INTRODUCTION

Microelectronics has enjoyed great success in the past century. Vast developments

in this area are perhaps best described by Moore’s law [1], which states that the

number of transistors on an integrated circuit (IC) doubles approximately every two

years. While this trend has been maintained for the past 50 years, it cannot go on

indefinitely. Serious problems, such as power consumption and heat dissipation, have

already arisen as the size scaling continues. In Intel’s 22 nm microprocessor (Ivy-

Bridge), a three-dimensional (3D) Tri-Gate technology is developed to keep Moore’s

law [2]. On the other hand, the equivalent physical gate oxide thickness has been

predicted not to scale below 0.5 nm, indicating that the complementary metal-oxide-

semiconductor (CMOS) scaling in this area has reached a wall [2]. While ingenious

solutions to this problem might be possible, such efforts become more and more

difficult when the fundamental limits are approached.

The integration of photonics and microelectronics provides new perspectives. For

example, a major trend in computer architecture is to build multicore system-on-chip

processors, which integrate many independent processing units on the same die [3].

With the increase in integration levels, communication among these units becomes

bandwidth demanding. For instance, in PlayStation 3, a video game console produced

by Sony Computer Entertainment, one power processing element and eight synergistic

processing elements are implemented, and an interconnect bus with a peak bandwidth

more than 200 gigabyte/s is implemented to facilitate the data exchange among the

processors [3]. Because of the limited bandwidth capacity of the electrical wires,

a high bandwidth requires a significant amount of physical links. Therefore, the
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electrical interconnects can easily consume more than 50% of the total power budget,

making the system design difficult [4]. In contrast, optics is capable of handling high

bandwidth because of the high carrier frequency. Wavelength division multiplexing

(WDM) is another option that is available for enhancing the bandwidth performance.

To replace the electrical wires, a complete optical link including the optical signal

generation, modulation, and detection is required. The power consumption of such

optical links has been shown to be significantly lower than that of the electrical

interconnects [5, 6], which makes the optical interconnects very attractive to system

designers.

The incorporation of photonics to microelectronics is not only beneficial for the

interconnecting problem of the digital electronic circuits. Radio-frequency (RF) pho-

tonics is another area that manifests the usefulness of such technological combination.

By converting the RF signal to the optical domain, RF photonics takes advantage of

low-loss waveguiding, easy reconfiguration, and high-speed responses of optical com-

ponents. Traditionally, optical fiber is used because of its extreme low loss, light

weight, and affordable cost [7]. One major shortcoming of this approach is the low

integration level limited by the size of the fiber. Completely on-chip integration via

the photonic integrated circuit (PIC) would not only make the devices compact and

low-cost, but also enable applications which require a high level of integration to ac-

complish complex functionalities. For example, high-bandwidth analog-to-digital con-

verter (ADC) implemented with the microelectronic circuits has difficulty in achieving

a large dynamic range in the digital domain [8]. The availability of narrow-bandwidth

filtering (around MHz) and fast reconfiguration (around ns) in photonics permits the

realization of wideband-tunable narrowband optical filters, which can be rapidly pro-

grammed for real-time applications. By imposing the RF signal to an optical carrier

and performing the signal processing in the optical domain, similar functionalities

such as ADC can be attained in a cost-effective manner.
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Currently silicon-on-insulator (SOI) technology seems to be the most promising

candidate for the on-chip photonic and microelectronic integration [9, 10, 11]. Sili-

con is the host material for the majority of microelectronic devices. It also offers an

excellent platform for most of photonic applications considering the following attrac-

tive properties [9, 10, 11]: (1) silicon has a large refractive index contrast to silicon

dioxide, which enables tight confinement of optical waves; (2) intrinsic silicon is trans-

parent at the telecommunication wavelength thus promising low-loss waveguides; (3)

several mechanisms are available for refractive index tuning, including the thermo-

optic effect and the free-carrier plasma dispersion effect; (4) the strong third-order

nonlinearity of silicon can be exploited for novel applications such as wavelength con-

version and on-chip amplification. Of course, no material is perfect and silicon is no

exception. The biggest concern about silicon is that it has an indirect bandgap, and

on-chip light sources are difficult to realize [9]. Nevertheless, silicon photonics have

attracted intense research interest over the last decade and tremendous progresses

have been made. Building blocks such as hybrid silicon lasers [12], high-speed mod-

ulators and switches [13, 14], hybrid detectors [15], WDM band-pass filters [16], and

optical buffers [17] are reported. On the system integration side, Intel has successfully

demonstrated a 50 gigabit/s photonic link with all the components on the chip scale

[18], signaling that volume manufacturing of silicon photonics are within the near

future.

Similar to Moore’s law for microelectronics, dense integration is envisioned to be

the major trend for photonic devices. Microresonators, capable of localizing and stor-

ing the optical waves both spatially and temporally at a specific wavelength range,

are considered as the key building blocks for highly integrated photonic chips [19, 20].

Various types of microresonators with different geometrical and resonant properties

have been proposed in the past [20]. Among all the possible microresonator archi-

tectures, microdisk and microring resonators are the ones that have been heavily
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investigated [20]. Thanks to their simple structure and high flexibility in both the

design and the implementation, the microdisk and microring resonators are suitable

for the dense integration purpose. Various functionalities ranging from the compact

modulators [14] to on-chip logics [21] have been demonstrated.

The research work presented in this thesis is focused on the novel applications of

the microdisk and microring resonators for the on-chip optical interconnects and signal

processing. For the interconnects, a wideband coupled-resonator filter is designed and

demonstrated with a terabit/s bandwidth capacity. In addition, high-Q microdisk-

based delay lines are explored for narrowband signal processing in both the silicon-on-

insulator (SOI) and silicon nitride on SOI platforms. During the course of the thesis

development, various challenges from the design, fabrication and characterization are

overcome. Therefore, the presented work has both the theoretical and experimental

flavors. For example, the initial responses from the coupled-resonator filters always

show a certain level of distortions, for which two sources are identified: one is from

the coupling-induced resonance frequency shift and the other from the imperfect

fabrication process. For the former one, a theoretical study is carried out with the

aid of numerical simulations; for the latter one, an improved fabrication process is

developed to accurately control the device sizes. Another example could be found

for the application of high-Q microresonators for narrowband filters. Fabrication

processes are optimized to reduce the sidewall roughness of microresonators, so their

propagation losses can be minimized. Moreover, theoretical studies are performed for

a better understanding of the commonly observed phenomena such as mode splitting

and scattering loss.

1.1 Thesis organization

This thesis consists of five chapters. Except for the first Introduction chapter, the

rest of the thesis are organized as follows:
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• Chapter II: We first review the basic concepts of high-Q microresonators, such

as quality factors, mode volumes, mode splitting and scattering loss. Following

that, a new fabrication process that is specifically developed for the thesis work

is described. A brief discussion on the characterization of high-Q microres-

onators is also provided. These elements are all indispensible for the following

works. We put them together so we do not have to revisit them in each indi-

vidual work.

• Chapter III: In this chapter, theoretical efforts for the study of photonic devices

are presented. Unlike electronic circuit design where sufficient knowledge is al-

ready gained and powerful designing software is available, for photonic devices

it is often necessary to resort to analytical studies and customized numerical

simulations. Three important problems are studied in this chapter. The first

problem is on the power coupling between photonic structures, which is a com-

mon problem in the design of almost every device. We will show that for high-

index-contrast material systems (e.g., SOI), the existing coupled-mode theories

are not satisfactory and a modified version is provided. In the second problem,

we study the phase shift caused by the coupling process, which is important

for coupled-resonator devices since the phase shift will change the resonance

frequency of the coupled resonator. In the third problem, mode splitting and

scattering loss are studied, for which a unified model is developed.

• Chapter IV: In this chapter, experimental efforts based on the SOI platform are

presented. Two devices are discussed. The first one is a third-order temperature-

insensitive coupled-resonator filter, which serves as a critical building block el-

ement in terabit/s on-chip networks. The second one is on the use of high-Q

microdisks for compact and low-loss delay lines, which are especially useful for

narrowband filters for the RF signal processing. A tunable first-order filter is
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demonstrated using such a delay line structure. In addition, several problems

are identified for delay lines based on the silicon high-Q microresonators, in-

cluding the relatively large propagation loss and the strong nonlinearity from

silicon which limits the maximum power that can be handled by the device.

• Chapter V: To solve the problems encountered in delay lines based on silicon

microresonators , in this chapter we will develop a new material platform based

on the vertical integration of silicon nitride into the SOI platform. High-Q

silicon nitride microresonators with compact sizes are demonstrated. Moreover,

the silicon nitride has been successfully integrated with the SOI and an efficient

coupling between these two layers is achieved.

• Chapter VI: The thesis work is summarized and a brief discussion on the future

extensions is provided.
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CHAPTER II

HIGH-Q MICRORESONATORS

Microresonators are considered as one of the key building blocks for integrated photon-

ics because of their capability of localizing and storing optical waves both spatially

and temporally at a specific wavelength range [19, 20]. Their high quality factors

(Qs) and microscale mode volumes enable strong light-matter interactions, which

are the essential reasons behind the wide applications of microresonators including

low-threshold lasing [22], low-power optical modulation [14], single-nanoparticle sens-

ing [23, 24], ultrasensitive micromechanical displacement detection [25], as well as

fundamental studies on cavity quantum electrodynamics [26].

Over the past few decades, various microresonator architectures, including Fabry-

Perot resonators, photonic crystal cavities, and whispering gallery mode (WGM)

resonators have been investigated [19]. Among these different types of resonators,

microrings and microdisks have received considerable interest, thanks to their simple

structures and high flexibilities in both the design and implementation for integrated

photonic circuits. An array of functionalities ranging from compact modulators [14]

to on-chip logics [21] has been demonstrated by different groups.

In this chapter, we will first introduce the fundamental properties of microres-

onators which are necessary for device applications as presented in the following

chapters. We will also cover the fabrication of planar microresonators such as micror-

ings and microdisks, using the silicon-on-insulator material platform as an example.

The last section is devoted to the proper characterization of microresonators, and

discussions on the insertion loss, polarization control and laser-related issues are pre-

sented.
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2.1 Fundamental properties of microresonators

There are a few parameters which we frequently use to characterize the properties

of a microresonator. Among them are quality factor (Q), mode volume and free

spectral range (FSR), whose definitions and common usage will be reviewed below.

In addition, a detailed review of mode splitting and scattering loss, which are two

important features of microresonators, is provided.

2.1.1 Quality factor

The quality factor is a parameter defined as

Q ≡ ω · Uc

Ploss
, (1)

where ω is the frequency of oscillation, Uc is the mode energy, and Ploss is the power

dissipation rate. Using the relation ω = 2π/T , where T is the temporal period of the

oscillation, one can easily verify that Q equals 2π times the ratio of the energy stored

in the resonator to the energy loss per optical cycle. If the resonator has no external

excitation, Eq. 1 can be written as

Ploss = −dUc(t)

dt
=

ω

Q
Uc(t), (2)

whose solution for Uc(t) is

Uc(t) = U0e
− ω

Q
t. (3)

From Eq. 3, the so-called photon lifetime τ is defined as τ ≡ Q/ω 1, which is often

interchangeably used with Q [27] . Another parameter associated with Q or τ is the

cavity decay rate γ defined as γ ≡ 1/τ = ω/Q.

Equation 3 indicates how the Q of a resonator can be measured in the time

domain. However, in practice it is often more convenient to measure the spectrum of

1in the literature there is another definition of the photon lifetime as τ ≡ 2Q/ω. The difference
between these two definitions is that in our case the photon lifetime is defined for the cavity energy
while the other one is for the cavity amplitude.

8



a resonator rather than the time-domain response. By performing a Fourier transform

to Eq. 3, we get a Lorentzian-shaped resonance from which an alternative expression

for Q can be derived as

Q =
ω

δω
, (4)

where δω denotes the full width at half maximum (FWHM) of the resonance.

According to Eq. 1, we can ascribe different Qs for different loss mechanisms. For

example, in silicon microresonators, loss can arise from scattering which is caused by

the surface roughness at the sidewalls. Absorption loss also occurs if there are un-

saturated surface states. Moreover, when the injected power is high, free carriers are

generated in silicon through the two photon absorption process, which contribute an

additional loss. Generally, all these loss terms are undesired. There is one exception,

however, that is, the coupling loss, which refers to the energy intentionally coupled

out of the resonator for a proper device functioning. We use intrinsic Q to represent

all the losses except the coupling loss, coupling Q for the coupling loss, and loaded Q

for the total loss. Since the loss terms are additive, from Eq. 1, we have

1

Qloaded
=

1

Qi
+

1

Qc
, (5)

where Qi and Qc represent the intrinsic and coupling Qs, respectively.

2.1.2 Mode volume

The mode volume Vm is a parameter that is used to evaluate the confinement of a

resonant mode. There are certain flexibilities in defining the mode volume and the

most common expression is given by [28]

Vm ≡
∫

ε(r)|E(r)|2dV
max [ε(r)|E(r)|2] , (6)

where ε(r) is the permittivity and E(r) is the electric field of the resonant mode.

Other forms of mode volume are possible by replacing the expression in the denomi-

nator in Eq. 6 to assume different physical meanings. Most of the time, mode volume
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is a concept that is useful when comparison is involved.

2.1.3 Free spectral range

Because of the wave nature of electromagnetic fields, there are a series of resonant

modes for microresonators with periodic boundary conditions. For example, for mi-

crorings and microdisks, the wave propagating in the azimuthal direction has the

exp(imφ) factor (φ is the azimuth), where m should be an integer following the

boundary condition. For each m, there is a corresponding resonance, and together

they form a resonant mode family, for which the free spectral range (FSR) is defined

as the frequency or wavelength spacing between adjacent resonances.

FSR is a concept that is not limited to microresonators with cylindrical symmetry.

For example, for Fabry-Perot resonators, the FSR is given by [27]

FSR =
c

ngL
, (7)

where c is the speed of light in vacuum, ng is the group index of the forming waveguide,

and L is the round-trip length. However, for resonators such as microrings and

microdisks, only FSR is a well-defined parameter and neither ng nor L is well defined.

In some cases, we can take L ≡ 2πR where R is the outer radius of the microresonator

(other definitions for L are possible), and the group index ng for these resonant modes

can be defined as

ng ≡
c

FSR · 2πR. (8)

It is worth emphasizing here that the group index ng for microresonator modes is only

meaningful when comparison is involved and should be considered as an alternative

parameter for the FSR.

2.1.4 Mode splitting and scattering loss

An ideal WGM resonator usually has degenerate resonant modes because of its struc-

tural symmetry. For example, clockwise (CW) and counterclockwise (CCW) WGMs
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are both supported in microtoroid and microdisk resonators with identical mode prop-

erties. In particular, because they share the same resonance frequency and linewidth,

only one single resonance will be observed in the transmission measurement.

The degeneracy in the resonant modes can be lifted by destroying the structural

symmetry, either done purposely such as by introducing nanoparticles to the surface of

microresonators [29, 30], or caused by the ubiquitous roughness from nanofabrication

[28]. As a result, the two degenerate modes (i.e., the CW and CCWmodes) will couple

to each other and a doublet appears in the transmission spectrum, a phenomenon

known as mode splitting [31]. The structural defects can also couple the confined

WGMs to free-space radiation modes, generating scattering loss and thus linewidth

broadening to these resonances [29].

Mode splitting and scattering loss have been investigated in many different works

[28, 29, 30, 32, 33, 34]. Based on the number of scatterers and the applications,

previous works can be categorized into two distinct scenarios. In the first scenario,

small nanoparticles are introduced to the surface of high-Q microresonators, with

focused applications such as strong light-matter interactions and nanoparticle sensing

[23, 24, 26]. The number of nanoparticles is usually limited to a few, and reasonably

good agreements between experimental observations and developed models have been

achieved. The other scenario considers sub-wavelength scatterers that are intrinsic

to microresonators, such as surface roughness caused by fabrication imperfections.

In such cases, the number of scatterers is typically on the order of hundreds or even

thousands, and a different approach has to be taken to study the mode splitting and

scattering loss [28].

The first approach considers a coupled system consisting of the CW and CCW

WGMs as wells as free space radiation modes, with their interactions assisted by

each individual scatterer. The single-scatterer case has been well studied in high-Q
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Figure 1: (a) Transmission response of a single dielectric scatterer on the surface of
a microresonator. (b) Transmission response of numerous dielectric scatterers which
uniformly cover the surface of a microresonator except for a vacancy.

microtoroid resonators [29, 32]. Two standing-wave modes, being symmetric and anti-

symmetric combinations of the CW and CCW travelling modes, appear in the reso-

nance spectrum. The symmetric mode has a nonzero field overlap with the scatterer,

resulting in a red shift in its resonance frequency and a broadening in its linewidth

(we assume positive dielectric perturbations from scatterers unless otherwise speci-

fied). On the other hand, the anti-symmetric mode has a zero field overlap with the

scatterer; therefore, its resonance frequency and linewidth stay the same as those of

the CW (CCW) mode without the scatterer. These two resonances are illustrated in

Fig. 1(a), with ω+ (ω−) and γ+ (γ−) denoting the resonance frequency and loss rate of

the eigenmode that has a higher (lower) resonance frequency of the two split modes

(i.e., ω+ ≥ ω−). Based on the above reasoning, we conclude that γ+ < γ− for the

single-scatterer case. The two-scatterer scenario has also been explored in Ref. [34],

which has experimentally demonstrated that the two eigenmodes can either have no

mode spitting (ω+ = ω−) or a symmetric (γ+ = γ−) or an asymmetric (γ+ < γ−)

doublet, depending on the relative position of the two scatterers. These experimental

results can be analyzed by a generalized model presented in Ref. [34], which consid-

ers multiple scatterers that are well separated apart so that the contribution from
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each scatterer can be considered to be independent with each other. However, when

the scatterers are closely spaced, this independent-scatterer approach fails to predict

correct results. For example, for N identical scatterers, the model in Ref. [34] gives

ω± = ωc−NG0 ±G0

∣

∣

∣

∣

∣

N
∑

n=1

ei2kxn

∣

∣

∣

∣

∣

, (9)

γ± = NΓ0 ∓ Γ0

∣

∣

∣

∣

∣

N
∑

n=1

ei2kxn

∣

∣

∣

∣

∣

, (10)

where ωc is the originally degenerate resonance frequency of the WGMs before the

introduction of scatterers; G0 and Γ0 are parameters (both positive) characterizing

the resonance frequency shift and linewidth broadening caused by an individual scat-

terer, respectively; k is the wavenumber of the WGM; and xn is the projection of the

nth scatterer’s position on the WGM’s wave travelling direction. From Eq. 10, one

can infer that for an arbitrary number of identical scatterers, γ+ ≤ γ−. This con-

clusion seems valid, by arguing that the resonance corresponding to ω− has a lower

resonance frequency because of the more field overlap with the scatterers, which is

also responsible for a stronger scattering loss. However, such intuitive belief is not

generally true. Here we consider one extreme example in Fig. 1(b), where identical

scatterers have uniformly covered the outer surface of a microresonator except for one

vacancy. Assuming the scatterers and the microresonator share the same dielectric

constant, the resulting structure can be regarded as a larger-radius microresonator

with a negative-dielectric-constant scatterer at the vacancy point. Consequently, the

mode that has a nonzero field overlap with the scatterer will incur a blue shift in

the resonance frequency (relative to the resonance frequency of the larger-radius mi-

croresonator) as well as a linewidth broadening from the scattering. Hence, γ+ > γ−,

contrary to the result of Eq. 10.

The second approach, developed mainly for the surface roughness present in high-

Q microresonators, employs an intuitive physical model (which is essentially a phe-

nomenological model) to describe the mode splitting and uses the volume current
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method to obtain the scattering loss [28]. Here, we use the microdisk resonator as an

example to give an introduction to this approach. For an isolated microdisk resonator

(i.e., no external coupling), we have [27]

daccw
dt

=
(

−iωc + i∆ωccw +
γccw
2

)

accw + iβccwacw, (11)

dacw
dt

= −
(

iωc + i∆ωcw +
γcw
2

)

acw + iβcwaccw, (12)

where accw and acw represent the normalized energy amplitudes of the CCW and CW

modes, respectively; ωc assumes the same meaning as in Eq. 9, which denotes the

unperturbed resonance frequency of the WGMs; ∆ωccw and ∆ωcw are the resonance

frequency shifts caused by the surface roughness to the CCW and CW modes, re-

spectively; γccw and γcw describe the corresponding scattering loss rates; βccw is a

parameter characterizing the coupling from the CCW to the CW modes and βcw is

defined vice versa. From the fact that the CCW and CW modes only differ in their

circulating directions, it is expected that

∆ωccw = ∆ωcw, γccw = γcw, and βccw = β∗
cw. (13)

In fact, from Maxwell’s equations, ∆ωccw and βccw can be derived as [28]

∆ωccw = −ωc

∫

∆ε(r) |Eccw(r)|2 d3r

2
∫

ε(r) |Eccw(r)|2 d3r
, (14)

βccw =
ωc

∫

∆ε(r)E∗
ccw(r) ·Ecw(r) d

3r

2
∫

ε(r) |Eccw(r)|2 d3r
, (15)

where ε(r) and ∆ε(r) correspond to the dielectric constant of a perfect microresonator

and that of the surface roughness, respectively, and Eccw(r) (Ecw(r)) is the electric

field of the CCW (CW) mode. Similar expressions for ∆ωcw and βcw exist with the

exchange of the CCW and CW subscripts in Eqs. 14 and 15, and the relations in

Eq. 13 become evident considering Eccw(r) and Ecw(r) are conjugates of each other

(assuming ε(r) is real).

The scattering loss parameter γccw (γcw) is obtained using the volume current

method by computing the radiation power excited by the polarization current Jccw(r) =
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−iωc∆ε(r)Eccw(r). For example, the far-field electric field is given by [35]

Efar
ccw(r) =

ω2
ce

ik0r

4πε0c2r

∫

∆ǫ(r′)Eccw(r
′) · (1− r̂r̂)e−ik0r̂·r′

d3r′, (16)

where ε0 and c are the permittivity and speed of light in free space, respectively; k0

is the wavenumber; and (r, θ, φ) are the spherical coordinates of the far-field position

r, with (r̂, θ̂, φ̂) denoting the orthogonal unit vectors in the directions of increasing

(r, θ, φ), respectively. In Eq. 16, we have adopted the exp (−iωct+ ik0r) format

for the outgoing light to be consistent with the convention used in Eqs. 11 and 12.

The radiation power is calculated by integrating the Poynting vector over the sphere

with radius r; and γccw, according to its definition, is given by the power loss rate

normalized by the mode energy as

γccw =
ε0c
∫∫
∣

∣rEfar
ccw(θ, φ)

∣

∣

2
sin θ dθdφ

2
∫

ε(r) |Eccw(r)|2 d3r
. (17)

In addition, statistical information of the surface roughness can be inserted into

Eq. 17, leading to an ensemble average for γccw (γcw)[28].

The eigenmodes of the coupled system are then obtained by solving the eigenvalue

problem of Eqs. 11 and 12, which yields

a± =
1√
2

(

accw ∓ βccw

|βccw|
acw

)

, (18)

where a± denote the two eigenmodes, whose resonance frequencies and scattering loss

rates are given by

ω± = ωc+∆ωccw ± |βccw| , (19)

γ± = γccw. (20)

Equation 20 predicts that a± should exhibit identical linewidths, while in experiments

asymmetric lineshapes are often observed. For practical applications, γ± are generally

assumed to be different to fit the model to the experimental data [28]. However, such

an assumption contradicts Eq. 20.
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To summarize, we conclude that the two major existing approaches for mode

splitting and scattering loss have only achieved partial success. The first approach,

which we call the independent-scatterer approach since it is based on collective con-

tributions from each individual scatterer, works well when the number of scatterers

is small and the scatterers are well separated from each other. On the other hand,

the second approach, which we refer to as the intuitive physical approach since it is

based on a phenomenological model for the mode splitting and the volume current

method for the scattering loss, fits well for many-scatterer cases such as the surface

roughness problem. However, both approaches have difficulties in providing correct

scattering loss rates for the eigenmodes of the coupled system. In the independent-

scatterer approach, lineshapes are predicted to be symmetric or asymmetric, but γ+

is always no more than γ−. In the intuitive physical approach, the model cannot

predict asymmetric lineshapes (i.e., γ+ 6= γ−) in a self-consistent manner. Therefore,

a unified approach which could provide a full understanding of the mode splitting

and scattering loss needs to be developed. This will be presented in the next chapter.

2.2 Fabrication of planar microresonators

In this thesis we are primarily concerned with planar nanophotonic structures whose

fabrication process consists of two major steps [36]. First, the pattern is defined using

the lithography method. In the academic environment, electron-beam lithography

(EBL) is typically employed in the patterning step because of its high accuracy and

high flexibility. For nanophotonic devices, dimensional control with accuracy on the

order of nanometers is often required to achieve acceptable device performance. In

addition, because of the limited resolution from both the lithography system and the

adopted resist, a certain level of roughness is always present in the pattern and should

be minimized. In the second step, the pattern is transferred from the resist to the

underneath device layer through plasma etching. An ideal etching process is desired
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to add minimal roughness to the device as well as to ensure a vertical sidewall angle,

which is a critical factor for dense integration.

2.2.1 Recipe using ZEP

Prior to this work, a fabrication process has already been developed within the Pho-

tonic Research Group using the JEOL JBX-9300FS EBL system available in the

cleanroom for the silicon-on-insulator (SOI) material platform [36]. ZEP (ZEP520A

by Zeon corporation) has been chosen as the e-beam resist, which is capable of defin-

ing fine features with a relatively good etch resistance. Individual elements such as

waveguides and microdisk resonators are demonstrated with good performance. Es-

pecially, the propagation loss for microdisk resonators is among the best results ever

reported (∼ 0.2 dB/cm)[37]. We show some photonic structures fabricated with this

recipe in Fig. 2. Figure 2(a) shows the scanning-electron micrograph (SEM) of a

20-µm-radius microdisk resonator side coupled to a waveguide, and Fig. 2(b) shows

the SEM of the microdisk sidewall, whose roughness is estimated to be below 5 nm.

One problem with this recipe is the limited accuracy on controlling the device size,

which is mainly caused by the tilted sidewalls of the fabricated structures. Figure 2(c)

shows the cross-section of a 500-nm-wide waveguide. The sidewall angle is measured

to be around 83 degrees. The fact that the sidewall is nonvertical is also evident

from the top view of a straight waveguide, as shown in Fig. 2(d). At each side of the

waveguide, two edge lines appear which correspond to the top and bottom surfaces

of the waveguide. For a 250-nm-thick device layer, the difference between the top

and bottom widths of the waveguide can be up to 50 nm. The effective waveguide

width thus has to be adjusted considering this tilting effect, which is difficult since

the sidewall angle can vary unpredictably by a few degrees from run to run. The error

in the structure size (up to tens of nanometers) will lead to poor device performance

and low yields for devices that are sensitive to size variations, and a more accurate
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Figure 2: (a) SEM of a 20-µm-radius silicon microdisk resonator side coupled to a
waveguide; (b) sidewall of the microdisk captured at a tilt angle of 30o; (c) cross-
section of a 500-nm-wide waveguide at a tilt angle of 60o; (d) top view of the waveg-
uide.
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recipe has to be developed.

2.2.2 Recipe using HSQ

The starting point of developing a new recipe is to choose an appropriate e-beam

resist. HSQ (XR-1541 by Dow Corning) has been reported in the literature as an

accurate resist with a similar etch resistance as that of silicon dioxide. This promises

a high selectivity to silicon in the subsequent plasma etching. Employing a resist with

a high selectivity has several benefits. First, the sidewall of the etched structure can

be more vertical even if the resist itself has a tilted sidewall. Second, only a thin layer

of resist is required to mask the underneath device layer, allowing a better lithography

resolution and finer feature sizes. We choose the 6% concentration of HSQ, which

forms a 110-nm-thick resist layer after spin coating. TMAH (Tetramethylammonium

hydroxide, by Moses Lake Industries, Inc.) is employed for the HSQ development,

whose concentration is typically varied between 2% to 25% to allow different contrast

(the higher the concentration, the better the contrast). The contrast of TMAH can

be further enhanced by developing HSQ at high temperatures. However, as the

temperature rises, TMAH starts to attack silicon as well. For example, at 80oC

the 25% TMAH would etch silicon at a rate of 600 nm/min [39]. Certainly, such

a situation has to be avoided because the wet etch of silicon will result in a poor

sidewall angle. In our process, the developing condition has been optimized to be a

30-second dip in 25% TMAH which is heated by a hotplate set at 80oC. The actual

temperature of the TMAH solution is around 43oC. After the TMAH dip, the sample

is washed under running deionized water for 5 minutes to get rid of possible HSQ

residues. The EBL dosage is then optimized by comparing the developed patterns

for different dosage levels with the help of SEM.

We show some photonic structures fabricated with this recipe in Figure 3. Figure
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3(a) shows the SEM of the HSQ pattern for a 500-nm-wide waveguide after develop-

ment, using an optimized dosage of 3600 µC/cm2 for such a dimension. The width

of the HSQ pattern is monitored for various runs under the same fabrication condi-

tion, which falls in the range from 495 nm to 505 nm, indicating that the deviation

from the design is less than 5 nm. This is a significant improvement compared to

the ZEP case. The sidewall angle of the HSQ pattern, on the other hand, is about

75 degrees. Thanks to the high selectivity attainable in the plasma etching (∼ 5),

vertical sidewalls for silicon structures are still achievable, as shown by the SEM of

the cross-section of the 500-nm-wide waveguide in Fig. 3(b). The HSQ is excessive

for the etching of the 250 nm silicon layer and the remaining HSQ is on top of the

waveguide, which can be removed by buffered oxide etcher (BOE). However, BOE also

attacks the underneath oxide substrate, resulting in undercut structure, as illustrated

by Fig. 3(c). For most applications, there is no need to remove the remaining HSQ

mask, and its existence is experimentally verified to be minimal. Finally, Fig. 3(d)

shows the top view of the waveguide. In contrast to the two edge lines shown in

Fig. 2(d) for the ZEP process, here only one sharp edge is observed at each side of

the waveguide, implying that the sidewall of the waveguide is indeed vertical.

2.3 Characterization of microresonators

The setup we use to characterize the fabricated samples is illustrated in Fig. 4(a),

where the light coming out of a tunable laser is coupled to the waveguide through a

tapered lens fiber and collected using another tapered lens fiber at the output of the

waveguide before it is sent to a photo-detector. Wavelength is scanned at the laser

source and transmission spectrum is measured. Figure 4(b) shows the picture of the

boxed window in Fig. 4(a), where the input and output tapered lens fibers can be

aligned to the on-chip waveguides through 3-D precision stages [36].
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Figure 3: (a) SEM of the developed HSQ pattern for a 500-nm-wide waveguide;
(b) cross-section of a silicon waveguide with 500 nm width and 250 nm height after
etching, with remaining HSQ mask on top; (c) cross-section of the waveguide shown
in (b) after BOE dip to strip the top HSQ; the underneath oxide substrate also gets
undercut; (d) top view of the waveguide, with HSQ remaining on top.
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Figure 4: (a) Illustration of the tapered lens fiber setup used for microresonator
characterization. (b) Portion of the setup that corresponds to the region in the
dotted window in (a).
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2.3.1 Insertion loss

One important parameter for the characterization process is the insertion loss (IL),

which refers to the reduction of power from the laser to the photo-detector and is

typically expressed in decibels (dB). Insertion loss can arise from many factors. For

example, at the input and output stages, because the mode profiles between the

tapered lens fiber and the on-chip waveguide are generally different, loss occurs due to

an incomplete field overlap between these two modes. In addition, the difference of the

propagation constants between the lens fiber mode and the waveguide mode can lead

to an impedance mismatch, which also contributes some extra loss. Mathematically,

these two loss terms can be expressed as [27]

ILin = ILfield(∆r) + ILimped, (21)

with ILfield(∆r) given by

ILfield(∆r) = −10 lg

(

∣

∣

∫

E∗
WG(r)×HFiber(r +∆r) · dS

∣

∣

2

∫

E∗
Fiber(r)×HFiber(r) · dS

∫

E∗
WG(r)×HWG(r) · dS

)

,

(22)

and ILimped given by

ILimped = −10 lg

(

1−
(

βFiber − βWG

βFiber + βWG

)2
)

, (23)

where EFiber and EWG denote the electric fields of the tapered lens fiber and the

waveguide, respectively; HFiber and HWG are the corresponding magnetic fields; ∆r

is the displacement between the mode centers of EFiber (HFiber) and EWG (HWG)

which depends on the alignment; S is the integration area that is perpendicular to

the wave propagating direction; and βFiber and βWG denote the propagation constants

of the tapered lens fiber mode and waveguide mode, respectively. Equation 23 is

derived based on the Fresnel equations under the normal incidence condition.

For samples fabricated on SOI platforms, the light propagating in the waveguide

has the possibility of leaking into the underneath silicon substrate if the buried oxide
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layer (BOX) is not thick enough. This loss is illustrated in Fig. 5, where ILsub de-

notes the substrate leakage loss. Other insertion losses include the propagation loss

resulting from scattering due to rough sidewalls and the surface absorption due to un-

saturated surface states. Finally, the device itself (other than the access waveguide)

will introduce an additional insertion loss.

Figure 5: Illustration of the insertion loss occurring at the input ant output stages
and also the substrate leakage loss.

2.3.2 Insertion loss from input and output stages

The field coming out of the tapered lens fiber can be approximated by a Gaussian

beam propagating in the free space. To achieve an optimal coupling, the distance

between the tapered lens fiber and the sample’s facet has to be adjusted such that

HFiber is at its beam waist when it reaches the waveguide input, where its expression

is assumed to be [27]

HFiber =
2

w

1√
2π

e−r2/w2

eik0z, (24)

with w being the spot size and z being the wave propagating direction. ILfield(∆r)

can then be computed from Eq. 22. One such example is given in Fig. 6 for the

fundamental TE-polarized (electric field parallel to the device plane) mode of a sil-

icon waveguide with a width of 500 nm and a height of 250 nm. We have assumed

the polarization of HFiber has been aligned to that of HWG, whose mode profile is

obtained through an in-house waveguide mode solver [36] and shown in Fig. 6(a). In

Fig. 6(b), ILfield(∆r) is plotted as a function of the displacement ∆r. It is observed
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that ILfield(∆r) is mostly dependent on the distance between the mode centers of the

waveguide and the fiber (i.e., ∆r), but not much on the angles of the displacement.

In Fig. 6(c), which displays the result of ILfield(∆r) as a function of the distance ∆r,

we conclude that a misalignment of 0.75 µm will lead to a degradation of coupling

efficiency by 3 dB.

Figure 6: (a)Mode profiles of HFiber and HWG with a displacement of ∆r between
the two mode centers; (b) ILfield(∆r) as a function of ∆r for a silicon waveguide with
a width of 500 nm and a height of 250 nm in the air cladding. The spot size w of
HFiber is assumed to be 1.25 µm; (c) ILfield(∆r) as a function of the distance ∆r.

In Fig. 7(a), the effect of different waveguide geometries has been investigated,

where the minimum of ILfield for each waveguide geometry (i.e., ∆r = 0) in both

the air and oxide cladding has been plotted. The result shown in Fig. 7(a) suggests

that waveguides with smaller dimensions have a larger mode volume and better field

overlap with the tapered lens fiber, resulting in a smaller intertion loss. In practice,

access waveguides are usually tapered down at the input and output to form the so-

called nanotapers. Most of our designs use w=250 nm waveguide width when a low

insertion loss is required.

The computation of ILimped is straightforward from Eq. 23, where βFiber = k0,

and βWG = k0neff with neff representing the effective index of the waveguide mode.

Numerical results for the waveguide dimensions shown in Fig. 7(a) are provided in

Fig. 7(b). Comparing ILimped to ILfield, we conclude ILimped is much smaller and is
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not the dominant factor for the insertion loss at the input and output stages.

Figure 7: (a) ILfield under the ideal alignment condition for different silicon waveg-
uides with a fixed height of 250 nm and different widths. The red and blue curves
correspond to the oxide and air claddings, respectively. Both polarizations for the
waveguide mode and the tapered lens fiber modes are assumed to be TE. (b) The
corresponding ILimped for waveguides shown in (a).

2.3.3 Substrate leakage loss

As we have mentioned before, the substrate leakage loss only occurs when the BOX is

not thick enough to prevent optical power from leaking to the substrate. Typical BOX

layer thickness ranges from 1 µm to 3 µm. For most of devices, 3 µm BOX is thick

enough to eliminate the leakage while for 1 µm BOX, the leakage loss might be strong

under certain circumstances. We investigate the substrate leakage loss using the RF

module available in the commercial software COMSOL. The simulated structure is

illustrated in Fig. 8, where perfectly matched layers (PMLs) are implemented under

the substrate to truncate the simulation window. By solving the eigenvalue problem,

complex propagation constants are obtained whose imaginary part corresponds to the

substrate leakage loss. Figure 9(a) shows the simulation results for silicon waveguides

with a height of 220 nm and various widths on a 1-µm-thick BOX. As can be observed,

for the TM-polarized mode in an air cladding, the leakage loss is more than 10 dB/cm

when the waveguide width is smaller than 500 nm. By contrast, the leakage loss
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becomes much less if the top cladding becomes oxide. This is because the higher

refractive index of the cladding material pulls up the mode profile so that the leakage

through the 1-µm-thick BOX to the substrate is significantly reduced. On the other

hand, for the TE-polarized mode, the leakage loss is always small (< 0.25 dB/cm) in

both the air and oxide claddings, due to the fact that its mode is much more confined.

Figure 8: Cross section of the waveguide structure for the simulation of substrate
leakage loss.

From the above example, we conclude that the substrate leakage loss is critically

dependent on the mode confinement conditions. It is then a trivial extension that in-

creasing the silicon thickness can also reduce the substrate leakage. In addition, since

the waveguide modes typically exhibit strong dispersions, we expect that the sub-

strate leakage loss will vary with the wavelength. In Fig. 9(b), two silicon thicknesses

are studied, one with 220 nm and the other with 250 nm, for the TM-polarized mode

in the air cladding. The results indicate that the substrate leakage loss increases

with the wavelength, which is reasonable since the mode confinement is weaker at

longer wavelengths. Also, for the TM mode, if the thickness is more than 250 nm,
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the substrate leakage loss becomes small enough (< 1 dB/cm) for waveguides with

width more than 450 nm.

Figure 9: (a) Substrate leakage loss for silicon waveguides with height of 220 nm and
1 µm BOX at the wavelength of 1550 nm. The red and blue curves correspond to the
oxide and air claddings, respectively. (b)Substrate leakage losses for the TM mode
of silicon waveguides with width of 450 nm and air cladding. Two different heights
(220 nm and 250 nm) are studied.

2.3.4 Polarization control

Unlike fiber-based communication links where polarization insensitivity is sought,

the majority of integrated photonic circuits based on high-index-contrast material

platforms are only designed for one polarization. To properly characterize the device,

light with the correct polarization has to be sent into the access waveguide. However,

in the setup shown in Fig. 4(a), only one polarization rotator is available in the

optical path, which can rotate the polarization of light but the exact polarization

state coming out of the tapered lens fiber is generally unknown.

For some waveguide geometries, it is possible to differentiate between the TE and

TM polarizations using their insertion losses. For example, for the 1-µm-thick BOX

and air cladding, the TM mode suffers a strong substrate leakage loss for waveguides

with width less than 500 nm while the substrate leakage loss for the TE mode is

generally negligible. On the other hand, as shown in Fig. 10(a), the insertion loss

28



at the input (or the output) stage for the TM mode is about 5-6 dB smaller than

that of the TE. In Fig. 10(b), we calculate the difference of the total insertion loss

between the TE and TM modes for a 6-mm-long waveguide with a 1 µm BOX and

220 nm silicon thickness. We consider the loss arising from the input and output

stages as well as the substrate leakage loss; other loss terms are assumed to be either

negligible or identical for the two polarizations. From Fig. 10, it is observed that

for the air cladding, the insertion loss of the TM mode is much larger (mainly due

to large substrate leakage loss) than that of the TE mode if the waveguide width

is less than 550 nm and the measurement is done at the wavelength of 1600 nm.

The TE and TM polarizations can then be found by maximizing and minimizing the

transmission when adjusting the polarization rotator, respectively. The situation is

different for the wavelength of 1550 nm, where the contrast between the TE and TM

modes is small for waveguides with width larger than 450 nm. Consequently, such

an approach based on the insertion loss to distinguish the polarization may not be

applicable. In the presence of the top oxide cladding, the TM mode has about 10-12

dB less insertion loss than the TE, thanks to the reduced substrate leakage loss and

better field overlap with the tapered lens fiber mode. Therefore, the TE and TM

polarizations can be found by minimizing and maximizing the transmission when

adjusting the polarization rotator, respectively.

2.3.5 Laser noise, scan linearity and repeatability

The tunable laser employed in the setup shown in Fig. 4 plays a central role in the

spectral characterization of microresonators. Among its various properties that may

affect the measurement results, here we discuss three important issues, namely, the

laser noise, scan repeatability and linearity.

From elementary lasing theory, it is well known that accompanying the lasing

process there is always the inevitable spontaneous emission. Consequently, a certain
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Figure 10: (a)ILfield for the TE and TM polarizations for silicon waveguides with
height of 220 nm and 1 µm BOX, in both the air and oxide cladding. (b) The
difference of the total insertion loss between the TE and TM polarizations for silicon
waveguides with height of 220 nm and 1 µm BOX.

amount of incoherent light exists in the laser output that acts as noise. In Fig. 11(a),

we show the transmission result for a 10-µm-radius silicon microdisk resonator under

different power settings from an Agilent 81680A tunable laser. To avoid any nonlinear

effects, we have misaligned the input tapered lens fiber so that the power sent into

the waveguide is low enough. As can be seen from Fig. 11(a) (the resonances have

been intentionally shifted for a better illustration), the extinction ratio of the same

resonance increases with the laser output power and becomes saturated when the

power of the laser is more than 200 µW. In addition, it has been observed in the

experiment that the transmission result is independent of the actual power sent into

the resonator, as long as it is not too strong to incur any nonlinear phenomenon. In

other words, as we vary ILin or ILout, the transmission curve stays the same after

power normalization (i.e., the maximum is 0 dB). This finding leads us to conclude

that there is a certain amount of wideband incoherent light from the laser which arises

from the spontaneous emission. Its impact to the measurement becomes smaller if

the laser output increases, which agrees with the lasing theory and has been verified

in Fig. 11(a). Thus, to properly characterize the device at a low injection power, the
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laser is better to be set at a high working power while using external attenuations

(such as having a large ILin by intentional misalignment) to reduce the power coupled

to the device.

Figure 11: (a) Transmission response of a 10-µm-radius silicon microdisk resonator
with height of 220 nm in the air cladding. Curves with different colors correspond to
different laser setting powers, and ILin has been adjusted for each case so the power
coupled into the access waveguide is almost the same. (b) Five repeated transmission
measurements for one resonance of a 10-µm-radius silicon microdisk resonator in a
short time.

Scan repeatability refers to how well we can repeat the transmission measurement

for the same device. One can understand the necessity to consider this issue from

the wavelength tuning mechanism of diode lasers, which is based on piezo tuning of

the cavity length. Because of the hysteresis associated with the piezo, the starting

point of each scan is not exactly the same. In Fig. 11(b), we show five measurements

for the same resonance of a 10-µm-radius microdisk resonator repeated in a short

time. The result demonstrates that the variation of wavelength for each scan is on

the order of a few picometers. Moreover, if the time interval between different scans

is relatively long (typically more than a few minutes), we have also to consider the

effect of the ambient environment, particularly the temperature. One degree change

of temperature can shift the resonance of silicon resonators by tens of picometers, and

it will also change the wavelength of the tunable laser if it has not been calibrated.
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Finally, we want to discuss the scan linearity of the tunable laser, an issue that

is also related to the piezo tuning of the cavity length. Usually, the laser has been

designed such that the output wavelength is tuned as linearly with time as possible

during the scan process. Here we use the on-chip resonator to access the scan linearity

of the tunable laser. In Fig. 12(a), we plot the transmission measurement of a 10-

µm-radius microdisk resonator by black curve. Starting with an arbitrary resonance

and an estimated FSR (either from simulation or experience, which does not have to

be very accurate), we can find its radial mode family with different azimuthal orders.

Two such examples, which are marked by red and green curves, are illustrated in

Fig. 12(a). Then, we measure the FSRs for each radial mode family and convert

them to group indices using Eq. 8. The results are provided in Fig. 12(b), with the

red and green squares corresponding to the radial mode families marked by the curves

of the same color in Fig. 12(a), respectively. To identify their radial mode orders, we

also plot the simulation results of the group indices for the lowest five radial modes

by black lines in Fig. 12(b). It is straightforward to conclude from there that the red

and green squares represent resonances of the second- and fifth-order radial modes,

respectively. The good agreement between the experimental measurement and the

numerical simulation demonstrates the excellent scan linearity of the tunable laser.

In fact, if the error in the measured FSRs (resulting from the scan nonlinearity) is

more than a few picometers, there will be a noticeable deviation of the measured

result from the simulation. Especially, instead of showing a linear dispersion with

the wavelength, the measured group indices will have irregular variations (spikes and

dips) around their true values.

To summarize, when performing the characterization, the tunable laser has to be

set at a high output power rather than a small one to reduce the impact of spontaneous

emission. The laser also has a random drift from the set point which is on the order of

a few picometers when starting a scan. In addition, the scan linearity of the tunable
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Figure 12: (a) Transmission response of a 10-µm-radius silicon microdisk resonator
with height of 220 nm in the air cladding. The red and blue curves mark two different
radial mode families. (b) Measured (red and blue squares) group indices for the
resonances marked in (a) and also the simulation results (black lines) for the lowest
five radial modes. All of them are TE polarized.

laser is generally good, and therefore the measured FSRs can be trusted to a good

degree.
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CHAPTER III

THEORETICAL AND NUMERICAL INVESTIGATION

OF PHOTONIC DEVICES

3.1 Introduction

Theoretical modeling and numerical simulation play an important role in the funda-

mental studies and real applications of photonic devices. A good model will not only

offer a thorough understanding on the device itself, but also may provide valuable

insights on some novel applications. However, unlike electronic circuit design where

standard simulation toolboxes are available, for photonic circuits it is often necessary

to develop customized codes for specific tasks. Moreover, direct numerical simulations

may be difficult for some structures and analytical solutions have to be sought.

In this chapter, we will focus on three important problems. The first problem is

on the power coupling between photonic devices. In the second problem, we study the

phase shift caused by the coupling process, which is important for coupled-resonator

devices since the phase shift will change the resonance frequency of the coupled res-

onator. In the third problem, mode splitting and scattering loss are studied, for which

a unified model is developed.

3.2 Power coupling between photonic structures

Except for a few simple structures, a direct numerical simulation of the power coupling

coefficient between photonic devices is usually a formidable task due to the enormous

need of computational resources. Instead, designers usually simulate the mode of each

individual element first and then use the coupled mode theory (CMT) to estimate the

power transfer rate between two coupled structures [36]. There are several versions
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of CMT, which we will briefly review in the following. A modified CMT is then

proposed for the TM-polarized (transverse magnetic) light with a focus on the high-

index-contrast material systems. Numerical examinations reveal that the modified

CMT provides more accurate results compared with the existing ones.

3.2.1 Existing coupled mode theory

We use the basic structure of two parallel waveguides for the explanation of the

existing CMT theories. For the two waveguides shown in Fig. 13, we assume their

modes are E1 = E1(rT ) exp(iβ1z) and E2 = E2(rT ) exp(iβ2z), where z is the wave

propagation direction and rT denotes the transverse spatial variables (i.e., x and y

in Fig. 13(a)); E1(rT ) and E2(rT ) are the electric fields of the individual waveguide

modes 1 and 2, respectively; and β1 and β2 are their corresponding propagation

constants. From Maxwell’s equations, we have

∇× (∇×E)− k2
0εrE = 0, (25)

where εr is the relative permittivity which is related to the refractive index n as εr =

n2, and k0 ≡ ω/c is the wavenumber of light in vacuum. After some arrangements,

Eq. 25 can be rewritten as

∇(∇ ·E)−
(

∇2
T +

d2

dz2

)

E − k2
0εrE = 0, (26)

where ∇2
T denotes a Laplacian operated on the transverse parameters only.

First we consider the TE (transverse electric) polarization of slab waveguides,

where only the y component of the electric field is nonzero and uniform in that

direction (see Fig. 13(a)). In consequence, ∇ · E = 0 in Eq. 26. We assume the

total electric field can be expressed as E = a1(z)E1 + a2(z)E2 with a1(z) and a2(z)

being the amplitudes. After the substitution, the so-called slowly varying envelop

approximation is used to further simplify the equation: |a′′(z)| ≪ k0|a′(z)| so the
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Figure 13: (a) Illustration of two coupled waveguides; (b) εr, εr1, εr2, ∆εr1, and ∆εr2
as a function of x.

second-order derivative can be neglected. As a result, we arrive at

2iβ1
da1(z)

dz
E1(rT )e

iβ1z + 2iβ2
da2(z)

dz
E2(rT )e

iβ2z = −k2
0(εr − εr1)a1(z)E1(rT )e

iβ1z

− k2
0(εr − εr2)a2(z)E2(rT )e

iβ2z,

(27)

where εr is the relative permittivity of the whole waveguide system while εr1 and εr2

are defined for the individual waveguides 1 and 2, respectively (see Fig. 13(b)); and

we have used the fact that En(rT )(n = 1, 2) satisfies Eq. 26 with the corresponding

relative permittivity εrn substituted.

By projecting Eq. 27 ontoEn(rT )(n = 1, 2) and performing an integration over the

transverse area, we obtain equations for a1(z) and a2(z). For example, by projecting

on E1(rT ), we have

2i
da1(z)

dz
eiβ1z

∫

β1E
∗
1(rT ) ·E1(rT ) d

2rT + 2i
da2(z)

dz
eiβ2z

∫

β2E
∗
1(rT ) ·E2(rT ) d

2rT

= − k2
0a1(z)e

iβ1z

∫

∆εr1E
∗
1(rT ) ·E1(rT ) d

2rT − k2
0a2(z)e

iβ2z

∫

∆εr2E
∗
1(rT ) ·E2(rT ) d

2rT ,

(28)

where ∆εr1 ≡ εr − εr1 and ∆εr2 ≡ εr − εr2, which are illustrated in Fig. 13(b).
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A further simplification can be carried out as follows. From Maxwell’s equations,

for the TE-polarized mode, Hnx = −βnEny/ωµ (n = 1, 2) with µ being the vacuum

permeability. Therefore,

∫

βmE
∗
n(rT ) ·Em(rT ) d

2rT =

∫

βmE
∗
ny(rT )Emy(rT ) d

2rT

= −ωµ

∫

E∗
ny(rT )Hmx(rT ) d

2rT

= ωµ

∫

E∗
n(rT )×Hm(rT ) · ẑ d2rT .

(29)

For the case of n = m, the integrand in the last line of Eq. 29 is identified as the

Poynting vector of the waveguide mode n, and its integration over the transverse area

gives the propagating power. A convenient assumption is that each field has been

normalized so it has unit power. For the case of n 6= m, the integration in Eq. 29

is generally nonzero, indicating the two waveguide modes are not orthogonal to each

other.

Finally, we define ā1(z) ≡ a1(z) exp(i∆βz/2) and ā2(z) ≡ a2(z) exp(−i∆βz/2)

with ∆β ≡ β1− β2, for which we obtain the following equation set after applying the

result of Eq. 29 to Eq. 28:







1 X12

X21 1







d

dz







ā1(z)

ā2(z)






= i







k11 k12

k21 k22













ā1(z)

ā2(z)






, (30)

where Xnm and knm (n,m = 1, 2) are defined as

Xnm =
1

2

∫

E∗
n(rT )×Hm(rT ) · ẑ d2rT , (31)

knm =
∆β

2
(−1)n+1δnm +

ωε0
4

∫

∆εrmE
∗
n(rT ) ·Em(rT ) d

2rT , (32)

where i =
√
−1, δnm is the Kronecker delta function, and we have assumed unit power

for each waveguide mode as

1

2

∫

E∗
n(rT )×Hn(rT ) · ẑ d2rT = 1, (n = 1, 2). (33)
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From Eq. 31, it is easy to verify that X11 and X22 are both unity, and X12 and X21

are generally nonzero, a fact arising from the non-orthogonality of the two waveguide

modes.

The above results (mainly Eqs. 31-32) are derived for the TE-polarized light.

However, if we assume the electromagnetic fields of the coupled structure can be

expressed as a sum of the modes from each individual waveguide, that is,

ET (r) =a1(z)E1T (r) + a2(z)E2T (r), (34)

HT (r) =a1(z)H1T (r) + a2(z)H2T (r), (35)

where the subscript T denotes the transverse part of the field 1. Then it is shown by

Refs. [27, 38] that Eqs. 31-32 are valid for the general case.

On the other hand, the old version of CMT is derived by treating the adjacent

waveguide as a first-order perturbation to the waveguide mode under consideration

and neglecting the fact that the two waveguide modes are generally not orthogonal.

Mathematically, in Eq. 30, X21 and X12 are equal to zero in the old CMT.

Therefore, it is expected that the CMT with the Xnm (n,m = 1, 2) factors should

be more accurate, which has been verified through numerical simulations for the

TE-polarized light [38]. Surprisingly, when considering the TM polarization for high-

index-contrast material systems, it is found in Refs. [39, 40] that the old CMT without

the Xnm factors still works quite well while the CMT embracing the cross power

overlaping factors have significant errors. This unexpected result is explained by

Ref. [39] to be caused by the assumption made in Eq. 34. In high-index-contrast

material systems, the component of the electric field that is normal to the waveguide

surface is discontinuous, and it is easy to verify that the total electric field given by

Eq. 34 fails to obey the appropriate boundary conditions. For example, on the surface

of waveguide 2, E2x satisfies the correct boundary condition, but E1x does not since

1we can only specify the relation on the transverse part because Maxwell’s euqations dictate that
the transverse and longitudinal components of an electromagnetic field are dependent.
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it is continuous outside of waveguide 1; therefore, Ex given by Eq. 34 does not satisfy

the required boundary condition. The same is true for Ex on the surface of waveguide

1.

In our work, high-index-contrast material systems such as silicon-on-insulator plat-

forms are employed. The device layer is usually thin with a typical thickness of silicon

around 220 nm. As a result, the fundamental mode of the fabricated photonic de-

vices has its predominant electric field parallel to the device layer. When we use the

effective-index method to remove the vertical dimension (i.e., y in Fig. 13(a)), this

fundamental mode corresponds to the TM polarization based on its definition 2. In

practice, the old-version CMT is typically employed to design the coupling between

coupled devices, which turns out to agree with the experimental results well. Nev-

ertheless, it remains to be clarified why the old CMT without the Xnm factors still

works despite the fact that it is a very crude model. More importantly, we want to

know whether there is any better formula for the coupling calculation, a subject to

be addressed in the following subsection.

3.2.2 Modified CMT for the TM polarization

As we have pointed out, the incorrect boundary assumption imposed by Eq. 34 is

responsible for the problems of the CMT incorporating the Xnm factors. Since the

magnetic field H is continuous in dielectric waveguides, Eq. 35 is still a good ap-

proximation. Furthermore, we will show that it is the only approximation needed for

the TM polarized light, following which the electric field automatically satisfies the

required boundary conditions.

For the TM polarized light, the only nonzero magnetic field component Hy obeys

2However, in the 3-D sense, it is often called TE-like polarization. We suggest readers to use the
context to avoid any confusion.
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the following Maxwell’s equation

∂

∂x

(

∂

εr∂x
Hy

)

+
∂

∂z

(

∂

εr∂z
Hy

)

+ k2
0Hy = 0, (36)

where εr is only a function of x. According to Eq. 35, we assume that Hy can be

approximated by the sum of the individual waveguide modes as

Hy(x, z) = a1(z)H1y(x)e
iβ1z + a2(z)H2y(x)e

iβ2z, (37)

where H1y and H2y are the magnetic fields of waveguides 1 and 2, respectively, and β1

and β2 are their corresponding propagation constants. Note that such an approxima-

tion is good for single-mode waveguides, since all we have neglected are the radiation

modes which are typically very small. Substituting Eq. 37 into Eq. 36, and using the

fact that H1y(x)e
iβ1z and H2y(x)e

iβ2z satisfy Eq. 36 too if εr is replaced by εr1 and

εr2, respectively, we obtain






X ′
11 X ′

12

X ′
21 X ′

22







d

dz







ā1(z)

ā2(z)






= i







k′
11 k′

12

k′
21 k′

22













ā1(z)

ā2(z)






, (38)

which is similar to Eq. 30 but with different coefficients of X ′
nm and k′

nm (n,m = 1, 2)

as

X ′
nm =

1

2

∫

εrm
εr

Em(rT )×H∗
n(rT ) · ẑ d2rT , (39)

k′
nm =

∆β

2
(−1)n+1δnm +

ωε0
4

∫

εrn
εr

∆εrmE
∗
n(rT ) ·Em(rT ) d

2rT . (40)

In the following, we will compare the modified CMT given by Eq. 38 to the existing

CMTs for several different cases so the difference between these formulas can be

appreciated. In addition, with the aid of numerical simulations, we can determine

which formula provides the most accurate results.

3.2.3 Symmetric waveguide coupler

The first structure we study is two coupled waveguides with identical sizes. Due to

the structural symmetry, by proper field normalization in Eqs. 31 and 32, we could
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have X12 = X21, k11 = k22 and k12 = k21, all of which are real numbers. There are

two possible solutions for Eq. 30, which correspond to the propagation constants of

the two system modes and could be solved as

β± =
β1 + β2

2
+

k11 −X12k12
1−X2

12

± k12 −X12k11
1−X2

12

, (41)

where the subscript“+” (“-”) denotes the mode with a higher (lower) propagation

constant. It is well known that the modes of couplers which are made of identical

waveguides are composed of symmetric and anti-symmetric combinations of the indi-

vidual waveguide modes, and the power coupling coefficient of such couplers is given

by the difference of the propagation constants of the two system modes [27]. In other

words, if we launch unit power at the input of the waveguide 1, the power in the

waveguide 2 is a function of the coupling length L as

P21(L) = sin2(κL), (42)

where the power coupling coefficient κ is given by

κX =
β+ − β−

2
=

k12 −X12k11
1−X2

12

. (43)

The subscript “X” in Eq. 43 suggests that this coupling coefficient is derived based on

the CMT that embraces the X12 factor. On the other hand, the coupling coefficient

derived from the old CMT can be simply obtained by setting X12 to be zero in Eq. 43,

resulting

κold = k12, (44)

where the meaning of the subscript“old” in Eq. 44 is self-explained.

Following a similar fashion, our modified CMT predicts the propagation constants

of the coupler are

βmod,± =
β1 + β2

2
+

X ′
11k

′
11 −X ′

12k
′
12

X
′2
11 −X

′2
12

± X ′
11k

′
12 −X ′

12k
′
11

X
′2
11 −X

′2
12

, (45)
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where the subscript “mod” indicates the result is from the modified CMT. The power

coupling coefficient is then given by

κmod =
X ′

11k
′
12 −X ′

12k
′
11

X
′2
11 −X

′2
12

, (46)

with the parameters X ′
nm and k′

nm given by Eqs. 39 and 40, respectively.

Now we have three different expressions for the power coupling coefficient of a

symmetric parallel waveguide coupler, namely, κX (Eq. 43), κold (Eq. 44) and κmod

(Eq. 46). As we have mentioned in the beginning of this section, for the high-index-

contrast material systems, κold gives more accurate results compared to κX . From

Eq. 43, we find that to the first order of X12,

κX ≈ k12 −X12k11 = κold −X12k11, (47)

which shows that the difference between κX and κold is mainly determined by the

product of X12 and k11. In the high-index-contrast materials, k11 is usually compa-

rable to k12, and therefore κX and κold can be very different if |X12| is not negligible.

Turning to κmod, we first have to inspect the coefficients of X ′
nm (Eq. 39) and k′

nm

(Eq. 40). A careful examination of Eq. 40 reveals that if n 6= m, k′
nm = knm, since

where ∆εrm 6= 0, εrn = εr if n 6= m (see Fig. 13(b)). As a result, we have k′
12 = k12.

Similarly, when n = m, it is easy to verify that

k′
11 =

εclad
εWG

k11, (48)

where εclad and εWG refer to the dielectric constants of the cladding and waveguide

core, respectively. In the high-index-contrast materials, εWG is much larger than εclad,

and therefore k′
11 is much smaller than k11. Regarding X ′

11, if we assume the majority

of the field is confined inside the waveguide for which εr1 = εr, we could approximate

X ′
11 ≈ 1 from Eq. 39. κmod shown by Eq. 46 can then be reduced to the first order of

X ′
12 as

κmod ≈ k12 −
εclad
εWG

X ′
12k11, (49)
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which indicates that κmod is close to κold (i.e., κ12) when the refractive index contrast is

high, since the second term in Eq. 49 can be neglected. Therefore, we have offered an

explanation for the better performance of κold compared to κX for the TM polarization

in high-index-contrast material systems.

Next, we proceed to perform a rigorous check on these three expressions with

the aid of numerical simulations. Figure 14(a) shows one such example for a 2-

dimensional (2-D) waveguide coupler, which is composed of waveguides with a width

of 400 nm and various gaps. The refractive index of the waveguide core is 2.829,

corresponding to the effective index of a 220-nm-thick silicon slab at the wavelength

of 1550 nm (air cladding). We first simulate the waveguide coupler modes using an in-

house numerical code implemented in the COMSOL environment. The exact power

coupling coefficient is obtained from the difference between the propagation constants

of the symmetric and the anti-symmetric modes. The coupling coefficients given by

Eqs. 43, 44 and 46 are then computed, with the individual waveguide modes provided

by the numerical mode solver too. We plot the relative error of each expression in

Fig. 14(a), which is defined for any κpredict as

Relative error of κpredict =
κpredict − κexact

κexact
× 100%. (50)

As can be seen in Fig. 14(a), κold and κmod are almost overlapping with each other,

while κX has much larger errors compared to κold and κmod, especially when the gap

between the two waveguides is small and the power overlapping factor X12 is large.

Though we have derived the expression of κmod for the TM-polarized light in 2-D slabs,

we expect that it will also apply to the TE-like mode of 3-D waveguides 3. To verify

that, we examine 3-D silicon waveguides in Fig. 14(b) through a similar numerical

code in COMSOL [41]. The waveguide structure is the same as in Fig. 14(a), with the

height of 220 nm and width of 400 nm in the air cladding. As shown in Fig. 14(b),

3When the TE-like polarizaiton of 3-D waveguides is reduced to 2-D, it is TM-polarized.
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κold and κmod are very close while κX has larger errors.

Figure 14: The relative error of κ of (a) a 2-D symmetric coupler for the TM-polarized
light, and (b) a 3-D symmetric coupler for the TE-polarized light.

From the above numerical example, it seems that our modified CMT gives similar

results as the old CMT without the Xnm factors. However, according to Eq. 43, κ

is only related to the difference between β+ and β−, and hence the examination of κ

does not provide a full picture. In fact, there is another important parameter α that

should be investigated, which is defined as

α ≡ β+ + β− − β1 − β2

2
, (51)

where β1 = β2 is the propagation constant of the individual waveguide. The physical

significance of α can be understood by considering the response of the symmetric

waveguide coupler again. Assuming a unit input at the waveguide 1, after a coupling

length L the field in the waveguide 2 will be (excluding the phase factor resulting

from the free propagation)

t21(L) = ieiαL sin(κL), (52)

indicating that α is connected to the phase response of t21 while κ is related to its

amplitude response. The nonzero α is responsible for the so-called“coupling-induced
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phase shift”, which is of critical importance to coupled-resonator structures and will

be discussed in detail in the next section [42, 43]. In Fig. 15, we plot the corresponding

α for the waveguide structures studied in Fig. 14. It is easy to observe that αold is

similar to αX and both are several times larger than αexact. In contrast, αmod is a few

times smaller than αexact. Therefore, the relative error of αold and αX is significantly

larger than that of αmod.

Figure 15: α of (a) a 2-D symmetric coupler for the TM-polarized light, and (b) a
3-D symmetric coupler for the TE-polarized light.

From a practical standpoint of view, however, the relative error may not a good

parameter to evaluate the accuracy of these coupled mode formulations for α. For

example, when α is small enough to be negligible, a large relative error is acceptable

as long as its absolute error is still unimportant. Here, an appropriate measure of

being small or large enough should be the power coupling coefficient κ. For this

reason, we define the normalized error of αpredict

Normalized error of αpredict =
αpredict − αexact

κexact
× 100%, (53)

and compute its value for all the cases shown in Fig. 15 in Fig. 16. For both the 2-D

and 3-D cases, the normalized error of αold and αX is a few times larger than that

45



of αmod, as expected. In addition, the normalized error of αmod is reasonably small,

suggesting the modified CMT offers satisfactory results.

Figure 16: Normalized error of α of (a) a 2-D symmetric coupler for the TM-polarized
light, and (b) a 3-D symmetric coupler for the TE-polarized light.

3.2.4 Asymmetric waveguide coupler

In this subsection, we will extend our analysis to general waveguide couplers, for

which the two waveguides do not necessarily share identical properties. Without loss

of generality, the coupled mode equation can be written as

d

dz







ā1(z)

ā2(z)






= i


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γ11 γ12
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


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

ā1(z)

ā2(z)






= iΓ







ā1(z)

ā2(z)






, (54)

where the matrix Γ assumes different expressions in different coupled mode formula-

tions. For example, for the old CMT without considering the Xnm factors, γnm = knm

so

Γold =







k11 k12

k21 k22






. (55)

For the CMT with the Xnm factors, from Eq. 30 we have

ΓX =







1 X12

X21 1







−1 





k11 k12

k21 k22






, (56)
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while for the modified CMT,

Γmod =







X ′
11 X ′

12

X ′
21 X ′

22







−1 





k′
11 k′

12

k′
21 k′

22






. (57)

Solving the eigenvalue problem of Eq. 54, we obtain the propagation constants of the

system modes as

β± =
γ11 + γ22 ±

√

(γ11 − γ22)2 + 4γ12γ21
2

. (58)

Furthermore, assuming unit power launched at the waveguide 1, after a propagation

length L the transmitted power at the waveguide 2 will be

P21(L) =
4|γ21|2

|(γ11 − γ22)2 + 4γ12γ21|
sin2(

√

(
γ11 − γ22

2
)2 + γ12γ21 L). (59)

Likewise, if we send unit power at the waveguide 2, after a propagation length L the

transmitted power at the waveguide 1 will be

P12(L) =
4|γ12|2

|(γ11 − γ22)2 + 4γ12γ21|
sin2(

√

(
γ11 − γ22

2
)2 + γ12γ21 L). (60)

Equations 59 and 60 reveal several important points: (1) since |γ12| 6= |γ21| in general

case, P12 6= P21; (2) |γ11− γ22| is generally nonzero and could be comparable or much

larger than |γ12|(|γ21|), especially when β1 6= β2. If |γ11 − γ22|2 ≫ |γ12γ21|, then for

P21,

P21 ≤
4|γ21|2

|γ11 − γ22|2
≪ 1, (61)

which indicates that the maximum power transferred from the waveguide 1 to 2 is

significantly less than 100%, no matter how large the coupling length L is. The same

conclusion applies to P12. In consequence, to achieve an efficient coupling between

the two waveguides, it is important to ensure |γ11 − γ22| ≪ |γ12| (or |γ21|), which is

the so-called phase matching condition. For the symmetric waveguide case, phase

matching is automatically satisfied, which is one of the reasons that the symmetric

waveguide couplers are more popular than the asymmetric ones in photonic circuits.
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However, under certain circumstances, asymmetric waveguide couplers become

necessary. For example, the two waveguides may be fabricated in two distinct material

systems so the refractive indices of their waveguide cores are very different. The

conventional designing rule for the phase matching is to engineer each individual

waveguide geometry so that β1 ≈ β2. Here, we will examine this intuitive result

based on the coupled mode formulations. For example, in the old CMT without the

Xnm factors,

γ11 − γ22 = k11 − k22 = ∆β +
ωε0
4

∫

∆εr1E
∗
1(rT ) ·E1(rT ) d

2rT

− ωε0
4

∫

∆εr2E
∗
2(rT ) ·E2(rT ) d

2rT ,

(62)

which suggests that the true phase matching condition, i.e., γ11 = γ22, is not identical

to ∆β = 0, since the two integrals in Eq. 62 generally do not cancel with each other.

As a result, even if we have designed the waveguides such that ∆β = 0 (i.e., β1 = β2),

the two waveguides are still phase mismatched. The same conclusion applies to the

CTM with the Xnm factors and also our modified CMT, though γ11 and γ22 are given

by significantly different expressions so the exact phase matching condition will vary

(i.e., different values of ∆β are required to bring γ11 = γ22 in these CMTs).

We examine the three different CMT formulations using the structure shown in

Fig. 17. The two waveguides 1 and 2 have widths of 400 nm and 800 nm, respectively;

their refractive indices have been chosen to be 2.5 and 2.02 (in the air cladding),

respectively, so that their effective indices are the same at the wavelength of 1550

nm (neff = 1.8174). Then the two waveguides are brought closer so the power in one

waveguide can be transferred to the other. To accurately measure the power at each

waveguide output without ambiguity, we bend both waveguides away with perfectly

matched layers (PMLs) implemented in the waveguide ends. Details of the numerical

simulation will be given in the next section. According to Eq. 59, if we send unit

power at the input of waveguide 1, the coupled power at the waveguide 2 can be
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described as a function of the coupling length L as

P21(L) = |T |2 sin2(κ(L+ L0)), (63)

where |T |2(≤ 1) and κ are functions of γnm as given by Eq. 59, and L0 is the effective

coupling length contributed by the bending part. We compute the parameters of |T |2

and κ given by these CMTs, and compare the predicted power transfer (P21 here)

to numerical simulations in Fig. 17(b). In addition, we have fitted the simulation

results with Eq. 63, where |T |2, κ and L0 are extracted as 0.83, 0.185/µm and 1.4

µm, respectively. In other words, the maximum power transfer that can be achieved

from waveguide 1 to 2 is 83%, even though the intuitive phase matching condition

β1 = β2 has been satisfied. Moreover, as shown in Fig. 17(b), the old CMT without

the Xnm factors and the modified CMT agree with the simulation result well when

P21 is small (i.e., L is small). However, the maximum transferable power predicted by

the old CMT is 70.8% while the one from our modified CMT is 88.7%. As a result,

when L is large, the modified CMT gives more accurate result compared to the old

CMT. On the other hand, the CMT with the Xnm factors deviates significantly from

the simulation result, for which the maximum transferrable power is predicted only

to be 43.6%. We list all the parameters used in Fig. 17(b) in Table 1.

Table 1: Parameters used for P21 in Fig. 17

P21 (gap=100 nm) Simulation Fit CMTmod CMTold CMTX

|T |2 0.83 0.887 0.708 0.436
κ (1/µm) 0.185 0.169 0.199 0.170

3.2.5 Conclusions

Combining all the examples examined from Fig. 14 to Fig. 17, we conclude that the

old CMT without the Xnm factors offers good predictions for the power coupling

coefficient, but generally cannot be trusted for the phase response resulting from the

self-perturbation effect (usually a few times overestimate). The CMT with the Xnm
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Figure 17: (a) Schematic of an asymmetric waveguide coupler with PMLs imple-
mented in the waveguide ends. The widths of the two waveguides are 400 nm and
800 nm. (b) The numerical result and analytical predictions by various CMTs for P21

as a function of the coupling length L.

factors, surprisingly, is worse for the power coupling calculation (compared to the

old CMT) and cannot predict an accurate phase response either (which is similar to

the old CMT). Our modified CMT, overall, gives much better results on the power

coupling and the phase responses. Especially, from the numerical example shown in

Fig. 17, it is essential to use the modified CMT for asymmetric couplers to obtain the

most accurate result.

3.3 Phase response between coupled photonic structures

In the last section, the power coupling between two closely spaced photonic struc-

tures is studied. Recently, phase responses associated with the power coupling pro-

cess also attract a lot of research interest. It is shown by Refs. [42, 43] that the

coupling can change the resonance frequency of each coupled resonator (the so-called

“coupling-induced resonance frequency shift” (CIFS)), leading to distorted responses

in coupled-resonator devices. In this section, we will first formally introduce the

phase response, then we will describe the numerical method that is developed for its

accurate simulation, and finally, the phase responses of a few typical structures are
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studied using the developed numerical approach.

3.3.1 Phase response and its properties

Without loss of generality, the coupling region can be treated as a multi-port coupler.

Figure 18 shows two such examples with different coupling geometries, where a1 and

a2 stand for input signals, and b1 and b2 stand for output signals. We also assume

that the reference planes for ai and bi (i = 1, 2) are far from the coupling region, and

therefore the signals can be normalized in a way that |ai|2 and |bi|2 (i = 1, 2) represent

powers at their respective ports. Assuming the coupling is lossless and reflection is

also negligible, the output signals can be related to the input by a unitary 2 × 2

transfer matrix as [27]







b1

b2






= U







a1

a2






=







u11e
iφ11 u12e

iφ12

u21e
iφ21 u22e

iφ22













a1

a2






, (64)

where uij and φij (i, j = 1, 2) are the amplitude and phase responses of each com-

ponent of the transfer matrix U , respectively. As a convention, in Eq. 64 we have

assumed that the free propagation phase term, namely, the phase contribution result-

ing from the wave propagation from the reference plane of a1 (a2) to that of b1 (b2)

in the absence of coupling is excluded. In this sense, φ11 and φ22 are contributed by

the coupling interaction and will asymptotically approach zero when the coupling is

weakened to a negligible extent.

Before going into the detailed calculation of these phase terms, it is worthwhile

to mention a few properties of the transfer matrix U imposed by some general con-

siderations. For example, power conservation requires U to be unitary, which is

mathematically equivalent to (using U † = U−1)

U =







u11e
iφ11 u12e

iφ12

u21e
iφ21 u22e

iφ22






= eiθ0







√
1− κ2eiθ1 iκeiθ2

iκe−iθ2
√
1− κ2e−iθ1






, (65)
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Figure 18: Schematic of the phase simulation for (a) couplers with symmetry about
the vertical axis, and (b) couplers with symmetry about both the vertical and horizon-
tal axes. Optical sources and PMLs are implemented based on the method described
in the text.

where θ0, θ1 and θ2 are phase parameters related to φij(i, j = 1, 2) and κ is the power

coupling coefficient between the two coupled structures (all these variables are real).

From Eq. 65, it is easy to observe that

u21 = u12, (66)

φ11 + φ22 = φ12 + φ21 − π. (67)

Note that from Eq. 66 it seems that that P21 = P12 no matter what the coupling

geometry is, contradicting with the result of Eqs. 59 and 60 which suggests P21 6= P12

for asymmetric waveguide couplers. This contradiction is due to different assumptions

made for the input power configurations. To deduce P21 = P12 from Eq. 66, we should

have unit power at one input port and zero at the other. However, for the results of

Eqs. 59 and 60 to be valid, we have assumed unit power for one waveguide mode and

zero for the other. These two assumptions are not equivalent, since the former one is

for the two input ports that are far from the coupling region while the latter one is

for two waveguides that are closely spaced with a nonzero field overlap.

When the couplers have the symmetry about the middle vertical axis (see Fig. 18(a)),
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reciprocity and symmetry considerations give [43]

φ11 + φ22

2
= φ12 −

π

2
= φ21 −

π

2
. (68)

Moreover, if the coupler has the additional symmetry about the middle horizontal

axis in the coupling region, as shown by Fig. 18(b), we have

φ11 = φ22 = φ12 −
π

2
= φ21 −

π

2
. (69)

Note that for the coupler shown in Fig. 18(a), no such horizontal axis exists, and

hence, in general φ11 6= φ22.

3.3.2 Numerical approach for phase simulation

A brief survey of literature reveals that the majority of numerical studies on photonic

structures focus on the amplitude responses of the coupling effect, such as the power

exchange between coupled structures or the radiation loss caused by the bend [27].

To the best of our knowledge, before Ref. [43], the phase responses resulting from

the coupling are usually ignored since no important effects are known. Extending

the previous numerical approaches to the study of phase responses, however, is not

trivial. To get a reliable phase responses, numerical simulations based on either the

finite-ifference time domian (FDTD) method or finite element method (FEM) require

a much higher resolution compared to those for amplitude responses. To understand

this, we can write the simulated field as

Esimulation = Eexact(1 + a + ib) (a and b are both real), (70)

where a and b represent the errors in the numerical simulation, which are always

nonzero due to reflection caused by imperfect PML boundaries, large grid size, or

insufficient simulation time. The amplitude responses are tolerant to these errors.

For example, increasing |b| from 0 to 0.1 only change the amplitude |Esimulation|2 by

less than 1%. Similarly, increasing |a| from 0 to 0.1 changes |Esimulation|2 by less than
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20%. On the other hand, the phase responses are very sensitive to these errors. For

example, the change of |b| from 0 to 0.1 will add or subtract 0.1 rad from the exact

phase value, which itself might be a small number. As a result, the relative error of

the phase responses can be quite big.

In this work, Maxwell’s equations are implemented and solved as partial differen-

tial equations in the commercial software COMSOL. Perfectly matched layers (PMLs)

are implemented based on the stretched coordinate method [44, 45, 46]. For example,

for the TE-polarized light in 2-D Cartesian coordinate system, the following equation

is implemented

∂

∂x

(

Sy

Sx

∂Ez

∂x

)

+
∂

∂y

(

Sx

Sy

∂Ez

∂y

)

+ k2
0n

2SxSyEz = 0, (71)

where Sx and Sy are the complex coordinate stretching factors for the x and y co-

ordinates 4, respectively . The key point of the stretched coordinate method is that

Sx and Sy are equal to unity in normal regions so Eq. 71 is identical to Maxwell’s

equation. In contrast, for the PML region, Sx and Sy have a gradually increasing

imaginary part so the light is attenuated without getting reflected. In our code, Sx

is chosen to be

Sx = 1− 2i(
ρ

dx
)2, (72)

where ρ is the distance from the beginning of the PML and dx is the thickness of the

PML layer for the x coordinate. Similar expressions apply to Sy for the y coordinate.

On the other hand, for the TM-polarized light in 2-D Cartesian coordinate system,

the following equation can be implemented

∂

∂x

(

Sy

Sx

1

n2

∂Hz

∂x

)

+
∂

∂y

(

Sx

Sy

1

n2

∂Hz

∂y

)

+ k2
0SxSyHz = 0, (73)

where the 1/n2 factor has to stay inside the differential bracket since it is a function

of x and y. The last component we need for a complete wave propagation simulation

4From hereon the coordinate system is different from what’s shown in Fig. 13(a): x, y, and z in
Fig. 19 correspond to z, x, y in Fig. 13.
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is the optical source, which is achieved in COMSOL by setting proper boundary

conditions. As illustrated in Fig. 19(a), the waveguide mode that we want to launch

is specified at the source line. In addition, the source is surrounded by PMLs to

absorb any radiated wave, which can either arise from the source or reflection from

other components.

Figure 19: (a) Simulation structure to obtain the phase responses in COMSOL. The
blue regions are PMLs and the red regions are waveguides. The rest of the area is
cladding (air here). The optical source is implemented at the source line by specifying
the appropriate boundary condition. (b) Optical power measured along the waveguide
till the end of the PML in the case of a simple waveguide.

For simulations based on FEM, mesh size has to be small enough to avoid any

artificial effects. In our case, cubic meshes with a grid size less than 50 nm are

employed. To further minimize the impact of the mesh, we focus on the net effect of

the coupling by comparing two situations when the neighboring waveguide is absent

and present, which can be achieved by changing the refractive index of the neighboring

waveguide while keeping the same mesh. Before performing any real simulations, it

is essential to verify that a simple waveguide mode can be launched and absorbed by

the PML with negligible reflection. Figure 19(b) shows the normalized power along

a waveguide till the end of the PML, and good PML performance is observed.
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3.3.3 Simulation results and discussions

We start with the simple coupler shown in Fig. 18(b). Similar to the numerical

simulations carried out in the last section, we use the 2-D version of the SOI material

system which has an effective index of 2.829 at the wavelength of 1578 nm [42]. The

polarization is chosen to be TM 5. For the simulation, the waveguide width w1 is

chosen to be 400 nm, the radius of the bend R is 6 µm, and the gap is fixed to be 100

nm while the coupling length L is varied. Figure 20(a) shows the simulated φ11 and

φ12 as a function of the coupling length L, both of which exhibit a linear response

with the same slope. Such responses can be easily understood from Eqs. 52 and 69,

from which we conclude

φ11 = φ12 −
π

2
= α(L+ L0), (74)

where α is defined in Eq. 51 and L0 is the effective length of the bending part. If

we compute α based on the definition, its value agrees with the one extracted from

Fig. 20(a) well (0.077 rad/µm) [42]. We want to point out that α is not always

positive, as examples with a negative α have been examined in Ref. [43].

Next, we proceed to examine the coupler shown in Fig. 18(a), and the results are

plotted in Fig. 20(b). Because of the lack of symmetry about the horizontal axis, φ11 6=

φ22. In addition, we observe that as L increases, φ11 first increases then decreases

to a negative value. A negative φ11 means the net contribution of the coupling to

the waveguide mode 1 is to reduce its effective propagation constant (remember that

phase is a product of the propagation constant and the propagation length), which is

counterintuitive since the conventional wisdom considers the neighboring waveguide

as a positive index perturbation and hence the propagation constant of the perturbed

mode will always increase. On the other hand, the relation of Eq. 68 is still satisfied,

5Most of the results here are taken from Ref. [42]. It should be noted that the polarization there
(TE) is defined for a 3-D waveguide,i.e., the predominant electric field is in the silicon layer. When
reduced to a 2-D waveguide, the same mode corresponds to the TM-polarized light based on the
definition.
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and the slope of φ12, φ21 and (φ11 + φ22)/2 with L is the same as the one shown in

Fig. 20(a).

Figure 20: Simulated phase responses for (a) couplers shown in Fig. 18(a), and (b)
couplers shown in Fig. 18(b). The detailed geometric parameters are provided in the
text.

The major difference between the couplers shown in Figs. 18(a) and (b) are their

the input and output bend parts, which are asymmetric about the horizontal axis

in the former and symmetric in the latter. This reveals the importance of the input

and output bends to the whole coupling structure. A semi-analytical model has

been developed in Ref. [42], which explains the behavior of each coupler shown in

Fig. 20. We will not go into the details here, but only point out the implications

of this study to the practical applications of coupling structures. First of all, the

coupler shown in Fig. 18(a) is equivalent to an asymmetric waveguide coupler even

the two waveguides have the same width, and consequently, the maximum power

transfer is always less than unity. Second, for structures that are sensitive to such

coupling-induced phase responses, symmetric couplers as shown in Fig. 18(b) are

more preferred because their phase responses are a simple function of the coupling

length as given by Eq. 74. This is especially advantageous for 3-D devices, for which

the direct simulation of wave propagation is difficult. However, we can still use Eq. 74
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to estimate the phase responses by computing α for the 3-D case and substituting

an approximate effective length for the bend parts. In contrast, the phase responses

for the asymmetric couplers as shown in Fig. 18(a) are comprised of two terms. The

first term is contributed by the linear response given by Eq. 74, which is shared by

both φ11 and φ22. The second term is contributed by the input and output bends

and is nonlinear with the coupling length L. What’s more, its sign is different in

φ11 and φ22, so both φ11 and φ22 are nonlinear with L but their sum is still linear,

agreeing with the simulation results shown in Fig. 20(b). Because of the presence of

this nonlinear term, calculation of the phase responses for 3-D asymmetric couplers

is challenging, and therefore we recommend symmetric couplers for devices such as

coupled-resonator filters so the coupling-induced phase shift can be easily estimated

and corrected.

3.4 A unified approach to mode splitting and scattering loss

The basics of the mode splitting and scattering loss are reviewed in Chapter II, and

we conclude there that the existing approaches are only applicable to some specific

situations. Here, we will develop a unified approach to the mode splitting and scat-

tering loss, which applies to an arbitrary number of scatterers. In addition, we will

reveal the conditions under which our model can be reduced to the results of the two

existing approaches discussed in chapter II in their respective regimes. Numerical ev-

idences and experimental results are provided to support the validity of the developed

model.

3.4.1 Model derivation

Our approach considers the interactions among the CW and CCW modes and the

free space continuum, with the coupling provided by scatterers. This is similar to the

independent-scatterer approach as in Refs. [29, 34], but with a key modification that

leads to distinct results.
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For clarity, we use the microdisk resonator as an example for the derivation, while

the result is generally applicable to any microresonator with a two-fold degeneracy

in its resonance spectrum. For an isolated microdisk resonator (i.e., no external

coupling), we can intuitively write down the following equation set

dam
dt

= −
(

iωc +
κ0

2

)

am + i
N
∑

n=1

(

∑

m′=cw,ccw

gn,m,m′am′ +
∑

j

gn,m,jbj

)

, (75)

dbj
dt

= −iωjbj + i
N
∑

n=1

∑

m=cw,ccw

gn,j,mam, (76)

where am and bj are the normalized energy amplitudes of the m (m = cw or ccw)

WGM and the jth free space mode, respectively (ωc and ωj are their corresponding

original resonance frequencies); κ0 is the intrinsic cavity loss without including the

scattering loss; gn,m,m′ is a parameter describing the scattering of the m WGM to

the same (m = m′) or the counterpropagating (m 6= m′) WGM induced by the

nth scatterer; gn,j,m is a similar parameter characterizing the nth-scatterer-induced

scattering of the m WGM to the jth free space mode and gn,m,j is defined vice versa.

For now we have used a discrete set of eigenmodes [bj ] normalized in a finite but

large enough volume to represent the free space continuum, and this restriction will

be removed later.

In this model, each scatterer is treated as a dipole. The electric field E excites

the polarization of the nth scatterer as P = ε0αnEn, where αn and En are the

polarizability and the electric field at the location of the nth scatterer, respectively.

The interaction of the polarization P with the electric field E is given by −P · E∗

[47], with both the electric fields in P and E normalized to their corresponding mode

energies. For example, the jth free space mode is expressed as

Ej(r) =
1√
ε0Vc

eikj ·rn̂j, (77)

where Vc is the normalization volume of the free space modes; kj is the wave vector of

the jth mode; and n̂j is the unit polarization vector. Similarly, the energy-normalized
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electric field of the m WGM has the following form

Em(r) =
f(r)

√

∫

ε(r) |f(r)|2 d3r
eikmxn̂m, (78)

where we have explicitly written out the phase term exp (ikmx) with km being the

wavenumber of the m WGM along the mode circulating direction and x being the

projection of r on that; f(r) accounts for the amplitude as well as the phase variation

other than exp (ikmx); ε(r) is the dielectric constant; and n̂m is the unit vector

describing the polarization of the m WGM. To simplify the above expression, we can

define a parameter Vm as

Vm ≡
∫

ε(r) |f(r)|2 d3r

ε0
, (79)

and Em(r) can be alternatively expressed as

Em(r) =
f(r)√
ε0Vm

eikmxn̂m. (80)

Note that Vm defined in Eq. 79 generally does not bear the unit of volume. However,

we notice that f(r) is scalable in Eq. 78. If we normalize the electric field of the

WGM to that of a reference point, for instance, where the amplitude of the electric

field is the maximum, f(r) can be interpreted as the relative field strength and Vm

defined above has the unit of volume.

We now proceed to calculate the coupling coefficients gn,m,m′, gn,m,j, and gn,j,m

based on their definitions in Eqs. 75 and 76. Starting with Maxwell’s equations, we

have [35]

∇× (∇×E(r, t)) + µε(r)
∂2E(r, t)

∂t2
= −µ

∂2P (r, t)

∂t2
, (81)

where µ is the permeability of free space. For the m WGM,

E(r, t) = am(t)Em(r) = e−iωct(am(t)e
iωct)Em(r), (82)

where we have separated the fast oscillating term exp (−iωct) with the slowly varying

term am(t) exp (iωct). Treating P (r, t) as a first-order perturbation, Eq. 81 can be
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approximated as [35, 48]

2
d

dt
(am(t)e

iωct) ≈ iωce
iωct

∫

P (r, t) ·E∗
m(r) d

3r. (83)

P (r, t) consists of contributions from each scatterer as

P (r, t) = ε0

N
∑

n=1

αn

(

∑

m

am(t)Em(r) +
∑

j

bj(t)Ej(r)
)

δ(r − rn), (84)

where rn stands for the position of the nth scatterer. Substituting the detailed ex-

pression of P (r, t) into Eq. 84 and comparing it to Eq. 75, we arrive at

gn,m,m′ =
αnωc |f(rn)|2

2Vm

ei(km′−km)xn , (85)

gn,m,j =
αnωcf

∗(rn)

2
√
VmVc

ei(kj ·rn−kmxn)
(

n̂j · n̂m(rn)
)

, (86)

where xn is the projection of the nth-scatterer’s position rn along the WGM circu-

lating direction. In Eq. 86, the dependence of the polarization of the m WGM n̂m

on the position of the nth scatterer rn has been explicitly expressed, given that n̂m

is not necessarily a constant vector (for example, the dominant electric field for the

TM-polarized WGM is Eφ, which is in the direction of φ̂). In deriving gn,m,j, we have

used the fact that only those free space modes that can resonate with the WGMs

(i.e., ωj ≈ ωc) need to be considered. Taking a similar procedure for Eq. 76 leads us

to

gn,j,m =
αnωcf(rn)

2
√
VmVc

ei(−kj ·rn+kmxn)
(

n̂j · n̂m(rn)
)

. (87)

Note that gn,m,j and gn,j,m obtained here are different from those obtained in Refs. [29,

34], where the derivation is based on the interaction among quantized fields and the

exp(ikj · rn) (exp(−ikj · rn)) factor is missing in gn,m,j (gn,j,m).

With the knowledge of the coupling coefficients gn,m,m′, gn,m,j, and gn,j,m, we

are ready to solve Eqs. 75 and 76. Instead of studying the fast oscillating terms

am(t) and bj(t), it is more convenient to work with the slowly changing variables

ām(t) ≡ am(t) exp (iωct) and b̄j(t) ≡ bj(t) exp (iωjt). We first solve for Eq. 76 for
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b̄j(t) which is then substituted back to Eq. 75 to obtain ām(t) . In addition, we have

used the standard procedure to change the summation over the mode number j by

an integral over the wave vector k space, which gives us [49]

dām(t)

dt
= −κ0

2
ām(t) +

∑

m′=cw,ccw

(iGm,m′ − Γm,m′

2
)ām′(t), (88)

with

Gm,m′ ≡ αnωc |f(rn)|2
2Vm

ei(km′−km)xn , (89)

Γm,m′ ≡
N
∑

n=1

N
∑

n′=1

αnαn′ω4
cf

∗(rn)f(rn′)

(4π)2Vmc3
ei(−kmxn+km′xn′ )×

∫∫

[

(1− k̂k̂) · n̂m(rn)
]

·
[

(1− k̂k̂) · n̂m′(rn′)
]

× eik0k̂·(rn−rn′) sin θ dθdφ,

(90)

where k0 = ωc/c is the wavenumber of light with angular frequency ωc in free space;

(k, θ, φ) are the spherical coordinates of the wave vector k, with (k̂, θ̂, φ̂) denoting

the orthogonal unit vectors in the directions of increasing (k, θ, φ), respectively. The

integral in Γm,m′ involves an integration over the spherical surface in the wave vector

space, and its value depends on the polarization of the WGMs as well as the relative

positions of scatterers. Hence, it is a geometric factor.

3.4.2 Comparison with the independent-scatterer approach

The geometric integral in Γm,m′ given by Eq. 90 can be computed for any given rn

and rn′. For example, if the WGM is TE-polarized, n̂m = ẑ (see Fig. 21(a)). In

addition, we can choose the x axis to be in the direction of rn − rn′ . The geometric

integral in Eq. 90 can then be simplified as

π
∫

0

sin3 θ dθ

π
∫

−π

eik0|rn−rn′ | sin θ cosφ dφ

= 2π

π
∫

0

sin3 θJ0(k0dn,n′ sin θ) dθ =
8π

3
p(k0dn,n′),

(91)
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Figure 21: (a) Illustration of the adopted coordinate system for the calculation of
the geometric integral in Eq. 91: the z axis is perpendicular to the microresonator,
and the x axis is chosen to be along the relative position of the two scatterers under
consideration. (b) The solid line is the numerical result of p(x) defined in Eq. 92, and
the dotted line is 3/2x, which corresponds to the envelop of p(x) when x is large.

where dn,n′ ≡ |rn − rn′|; J0(x) is the Bessel function of the first kind of order zero;

and p(x) is defined as

p(x) ≡ 3

4

π
∫

0

sin3 θJ0(x sin θ) dθ. (92)

In deriving Eq. 91, integral representations of the Bessel functions are used and math-

ematical details are left to Ref. [49]. From Eq. 91, we find that the geometric integral

in Γm,m′ is only a function of the separation distance between scatterers; consequently,

Γm,m′ =

N
∑

n=1

N
∑

n′=1

αnαn′ω4
cf

∗(rn)f(rn′)

6πVmc3
ei(−kmxn+km′xn′)p(k0dn,n′). (93)

In Fig. 21(b), numerical values of p(x) are evaluated. For x = 0, p(0) = 1; when the

argument x is large, the envelope of p(x) decreases at a rate of x−1, which can be

proven by a rigorous calculation [49]. In the independent-scatterer approach discussed

in chapter II, only the n = n′ terms (i.e., dn,n′ = 0 and p(0) = 1) are considered in

the double summation over n and n′ for Γm,m′ , and the n 6= n′ terms are neglected,

with the hope that the contribution from these terms is small if scatterers are well

separated from each other [34]. From Fig. 21(b), we estimate that a reasonably large
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separation should be on the order of dn,n′/λ0 > 2.4 (|p(k0dn,n′)| < 0.1), with λ0

corresponding to the free space wavelength (λ0 = 2πc/ωc). Otherwise, the omission

of n 6= n′ terms can introduce significant errors and even lead to erroneous conclusions

(such as γ+ ≤ γ−). In the following, we will examine one numerical example for two

scatterers attached to the surface of a microresonator, where we show it is essential

to include p(x) for a complete understanding of the simulation results.

3.4.3 Comparison with the intuitive physical approach

When the number of scatterers is large, the forms of Γm,m′ given by Eq. 90 (or Eq. 93)

is not that convenient to work with. From Eq. 90, we notice that if we define

Sm(θ, φ) ≡
ω2
c

4π
√
Vmc3

N
∑

n=1

αnf(rn)e
ikmxnn̂m(rn) · (1− k̂k̂)e−ik0k̂·rn, (94)

Γm,m′ can be rewritten as

Γm,m′ =

∫∫

S∗
m(θ, φ) · Sm′(θ, φ) sin θ dθdφ. (95)

The expression of Sm(θ, φ) in Eq. 94 is invariant if we scale f(r); hence, we can

remove the restriction of Em(r) defined in Eq. 78 (or Eq. 80) which requires it to be

energy normalized, and extend the definition of Sm(θ, φ) to arbitrary Em(r) as

Sm(θ, φ) =
ω2
c

4π

√

ε0
Umc3

N
∑

n=1

αnEm(rn) · (1− k̂k̂)e−ik0k̂·rn, (96)

with Um defined as

Um ≡
∫

ε(r) |Em(r)|2 d3r, (97)

which corresponds to the energy of the m WGM. Also, any distribution of scatterers

on the surface of a microresonator can be treated as a special case of surface roughness,

with the dielectric perturbation given by

∆ε(r) =
N
∑

n=1

ε0αnδ(r − rn). (98)
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Combining Eqs. 96 and 98, a general form for Sm(θ, φ) is found as

Sm(θ, φ) =
ω2
c

4π

√

1

ε0Umc3

∫

∆ε(r)Em(r) · (1− k̂k̂)e−ik0k̂·r d3r. (99)

A direct comparison shows that, except a constant, Sm(θ, φ) given by Eq. 99 in our

model is equal to rEfar
ccw with Efar

ccw given by Eq. 16 in chapter II, provided that we can

identify (k̂, θ̂, φ̂) (which are the coordinates of the wave vector k) in Eq. 99 with (r̂,

θ̂, φ̂)(which are the coordinates of the far-field position r) in Eq. 16. Furthermore,

according to Eq. 88, Γm,m describes the scattering loss rate of the CCW (CW) WGM,

similar to γccw in the phenomenological model described in the last chapter. Their

difference is that Γm,m, given by Eq. 95, is a spherical integration of |Sm(θ, φ)|2 in

the wave vector space, and γccw, given by Eq. 17(of the last chapter), is a spherical

integration of |rEfar
ccw|2 in the coordinate space. From the mathematical point of

view, however, there is no difference in their detailed expressions and one can verify

γccw = Γm,m.

3.4.4 Applications: two scatterers

We start with two identical submicron scatterers (α1 = α2 = α) which are placed on

the surface of a microdisk resonator with an angular separation of 2φ0. The mode of

the resonator is assumed to be TE polarized. From Eqs. 89 and 93, we obtain

Gm,m = 2G0, (100)

Gm,−m = 2G0 cos(2mφ0), (101)

Γm,m = 2Γ0 (1 + p(2k0R sin φ0) cos 2mφ0) , (102)

Γm,−m = 2Γ0 (p(2k0R sin φ0) + cos 2mφ0) . (103)

where G0 = αωc|f(r1)|2/2Vm and Γ0 = α2ω4
c |f(r1)|2/6πVmc

3. Substituting these

expressions into Eq. 88, we obtain two solutions which correspond to the split modes.

Following the same convention as in the last chapter, we use ω+ to indicate the mode
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with a higher resonance frequency, with γ+ being its loss rate. The solutions can be

found as

ω± = ωc − 2G0 ± 2G0| cos 2mφ0| , (104)

γ± =2Γ0 (1 + p(2k0R sin φ0) cos 2mφ0)

∓ 2Γ0 (| cos 2mφ0|+ sign(cos 2mφ0)p(2k0R sinφ0)) .

(105)

As has been discussed in the comparison with the independent-scatterer approach,

when the two scatterers are separated at large distances, p(x) can be neglected in

Eq. 105 and we have

γ± ≈ 2Γ0 ∓ 2Γ0| cos 2mφ0|, (106)

which is identical with Eq. 10 of the previous chapter from the independent-scatterer

model (N = 2). However, when the two scatterers are close to each other, p(x)

has to be considered in Eq. 105. One special example is that the two scatterers

overlap with each other (i.e., φ0 = 0 and p(0) = 1), which can be treated as a single-

scatterer case. Equation 105 then predicts γ+ and γ− to be 0 and 8Γ0, respectively.

In contrast, Eq. 10(of the previous chapter) provides γ+ and γ− to be 0 and 4Γ0,

respectively. Using the result for the single scatterer (γ+ = 0 and γ− = 2Γ0), we find

that Eq. 105 is accurate and Eq. 10 only predicts half of the exact number for γ−

6. Another interesting observation is that when approaching the zeros of cos 2mφ0,

p(2k0R sinφ0) is generally nonzero, and

γ± ≈ 2Γ0 ∓ 2Γ0sign(cos 2mφ0)p(2k0R sin φ0). (107)

If we sweep φ0 continuously, each time cos 2mφ0 crosses its zero points, its sign will

change and there will be abrupt changes in γ+ and γ−, indicating the zeros ofGm,−m(∝

cos 2mφ0) are singular points of γ+ and γ−. Moreover, since the relation between γ+

6The scattering loss is proportional to the square of the dielectric perturbation so should be four
times bigger if the dielectric perturbation doubles
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and γ− are reversed when passing the zeros of cos 2mφ0, it is always possible to observe

γ+ > γ− in the neighborhood of Gm,−m = 0 (as long as p(x) is not negligible).

3.4.5 Numerical approach for eigenfrequency simulation

To verify the derived theoretical results, we perform a numerical investigation for a

two-scatterer example using an in-house two-dimensional (2-D) microresonator mode

solver implemented in the COMSOL environment [41]. To obtain the scattering loss,

perfectly matched layers (PMLs) are implemented based on the stretched coordinate

method [46]. For example, in the cylindrical coordinate system, for the TE polariza-

tion, we have [44]

[

∂

ρ ∂ρ

(

ρ
∂

∂ρ

)

+
1

ρ2
∂2

∂φ2

]

Ez = −k2
0n

2s2ρEz, (108)

where n is the refractive index at each region; sρ is the complex coordinate stretching

factor for the PML (light is only attenuated in the increasing ρ direction); and k0 is

the eigenvalue we try to obtain, which is related to the complex eigenfrequency ω as

ω = k0c.

Equation 108 is implemented and solved as a partial differential equation (PDE) in

COMSOL [41]. Because COMSOL does not provide the cylindrical coordinate system

for structures without axial symmetry, Eq. 108 is converted back to the Cartesian

coordinate system as
[

∂2

∂x2
+

∂2

∂y2

]

Ez = −k2
0n

2s2ρEz. (109)

Figure 22 shows the structure we simulate, where the microdisk is centered at the

origin. sρ is chosen to be the following form for the PML region

sρ = 1 + ia
(
√

x2 + y2 − ρ0)
2

d2
, (110)

where ρ0 and d are the starting radius and the thickness of the PML region, respec-

tively, and a is a parameter that can be adjusted for the optimum performance of

PML (we take a = 3 in our simulation). sρ is 1 for other regions.
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Similarly, for the TM polarization, the equation can be implemented as

[

∂

∂x

(

∂

n2∂x

)

+
∂

∂y

(

∂

n2∂y

)]

Hz = −k2
0s

2
ρHz. (111)

The placement of n2 inside the first-order derivative is to ensure correct boundary

conditions when the PDE is solved (i.e., Eφ to be continuous) [45].

Figure 22: Simulated structure in COMSOL. The two small scatterers have been
exaggerated in size for the illustration purpose.

3.4.6 Simulation results and discussions

The inset of Fig. 23 illustrates the studied structure, which consists of two 10-nm-

radius scatterers attached to the surface of a 2-µm-radius microdisk resonator. We

fix the position of one scatterer and sweep the position of the other. The complex

eigenfrequencies of the coupled system are computed by the mode solver, offering

both the resonance frequencies and the scattering loss rates for the two eigenmodes.

In Fig. 23, two normalized parameters ωdiff and γdiff are plotted, which are defined as

ωdiff ≡ ω+ − ω−

4G0

, (112)

γdiff ≡ γ+ − γ−
4Γ0

. (113)
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Figure 23: Simulation results of ωdiff and γdiff, which are defined by Eqs. 112 and 113,
respectively, for two 10-nm-radius scatterers attached to the surface of a 2-µm-radius
microdisk resonator as illustrated by the inset. The refractive index of the microdisk
is 2.829 (obtained using the effective index method for a 220-nm-thick silicon layer),
and the refractive index of the scatterers is twice as big (i.e., nscatterer = 5.658) to
make the scattering effect significant. m is the azimuthal order of the WGM (TE
polarized), which is 19. ωc is obtained from the simulation for an ideal microdisk
resonator without any scatterers as 1.2282723e15 rad/s, and G0 and Γ0 are obtained
from the single-scatterer simulation as 5.88e10 rad/s and 9.3e8 rad/s, respectively.

From Eqs. 104 and 105, our theoretical model predicts

ωdiff = | cosmφ|, (114)

γdiff = −| cosmφ| − sign(cosmφ)p(φ), (115)

where the angular separation between the two scatterers are φ = 2φ0 as shown in the

inset of Fig. 23. Comparing Fig. 23 to Eqs. 114 and 115, we find ωdiff agrees with

Eq. 114 well; and γdiff indeed changes sign when passing the zeros of ωdiff. We also

notice that the magnitude of γdiff can be less than −1; especially, it approaches to −2

when the two scatterers are close to each other. In Fig. 24, we plot two additional

normalized parameters ωsum and γsum defined as

ωsum ≡ ω+ + ω− − 2ωc

4G0
, (116)

γsum ≡ γ+ + γ−
4Γ0

, (117)
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which are shown by blue solid line and red triangle marks, respectively. According to

Eqs. 104 and 105,

ωsum = −1, (118)

γsum = 1+p(φ) cosmφ. (119)

As observed from Fig. 24, ωsum has a few percent fluctuations around the theoretical

Figure 24: Numerical results of ωsum and γsum, which are defined by Eqs. 116 and 117,
respectively. The red triangles corresponds to γsum directly from simulation, while the
black line corresponds to γsum obtain by extracting p(φ) from the simulation result
of γdiff first (using Eq. 115) and then computing the numerical values of Eq. 119.

value (i.e., −1), largely arising from the limited positioning resolution of the mov-

ing scatterer when we sweep it along the perimeter of the microdisk (1 nm in the

COMSOL environment). With the help of Eq. 115, we could extract p(φ) from the

numerical result of γdiff shown in Fig. 23, and the result is depicted by the red trian-

gles in Fig. 25. Moreover, using the obtained p(φ), γsum could be computed based on

Eq. 119. The result, which is shown by black solid line in Fig. 24, agrees with the one

from direct simulation (red triangle marks) well, implying that our theoretical model

is self-consistent. One may notice that p(φ) shown in Fig. 25 is different from the

one plotted in Fig. 21(b). This is because p(φ) shown in Fig. 21(b) is for the three-

dimensional (3-D) case, while our simulation considers a 2-D model. The essential

difference can be traced back to the difference in the free-space Green’s function [35].
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Employing the 2-D free-space Green’s function and following a similar procedure as

in the 3-D case, we obtain

p(φ) = J0(k0d) = J0

(

2k0R sin
φ

2

)

, (120)

where d is the distance between the two scatterers. This result can also be expected

Figure 25: The red triangles corresponds to p(φ) extracted from the simulation result
of γdiff shown in Fig. 23 based on Eq. 115. The black solid line is the numerical result
of Eq. 120, which is the theoretical prediction of p(φ) using the approximate 2-D
Green’s function. The blue dashed line is the theoretical prediction of p(φ) using the
accurate 2-D Green’s function.

from Eq. 92, by taking the inclination coordinate θ = π/2 and skipping the integration

over θ. In Fig. 25, we have plotted the predicted p(φ) given by Eq. 120 by black solid

line, which agrees with the one extracted from the numerical simulation (shown by red

triangles) reasonably well. The deviation there arises from two facts. First, we have

certain positioning error when sweeping the scatterer in the simulation, as already

mentioned for ωsum in Fig. 24. Second, an accurate p(φ) requires taking the effect of

the microdisk resonator to the free-space Green’s functions into account, which has

been omitted in Eq. 120 (or Eq. 92). In Ref. [49], a derivation is provided for the

accurate calculation of p(φ) in the 2-D space, and the result is shown by blue dashed

line in Fig. 25, which agrees with the simulation result well. From the asymptotic

behavior of J0(x), one notice that in the 2-D case, the magnitude of p(x) decreases
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with the separation distance d of the two scatterers as 1/
√
k0d, instead of 1/k0d as in

the 3-D case (Fig. 21(b)). Therefore, a larger separation distance is required for 2-D

models to neglect the effect of p(φ) (d/λ0 > 8 for |p(φ)| < 0.1).

3.4.7 Conclusions

In summary, we have developed a unified model that applies to an arbitrary number of

scatterers, which provides a comprehensive understanding on the mode splitting and

scattering loss in high-Q WGM microresonators. Compared with the independent-

scatterer approach which is commonly used for the a-few-scatterer scenario, our work

reveals that the independent-scatterer model has neglected the interference terms

from different scatterers, whose effect decreases with the separation distance d as

1/k0d for 3-D cases and as 1/
√
k0d for 2-D cases. Thus, the independent-scatterer

model only works when scatterers are well separated. Compared with the intuitive

physical approach which is developed for the many-scatterer scenario, we have derived

an additional coupling term between the CW and CCW modes (i.e., Γm,−m) that has

been missing in the phenomenological model used by the intuitive physical approach.

This modification leads to the prediction of asymmetric lineshapes in a self-consistent

manner. Moreover, combined with numerical studies and experimental results, the

unified model has provided many new understandings on the mode splitting and

scattering loss in high-Q WGM microresonators. For example, we prove that the

intuitive belief that γ+ ≤ γ− is not generally true, and counter examples can even be

found for two scatterers attached to the surface of WGM microresonators. Our work

also unveils that when mode splitting disappears, the scattering loss rates of the two

eigenmodes are generally different, and γ+ and γ− become singular at these points.

In Ref. [49], the model has also applied to the fabrication-induced roughness case,

which corresponds to thousands of scatterers, and a good agreement between our

model and experimental observations has been achieved. We believe such a unified
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approach does not only fill the gap for the existing theoretical works on the mode

splitting and scattering loss in high-Q WGM microresonators, but also will play an

indispensable role for the practical applications of these phenomenons to produce the

most accurate results.
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CHAPTER IV

DEVICES ON SILICON-ON-INSULATOR PLATFORM

In this chapter, we are going to present two pieces of experimental work demonstrated

on the silicon-on-insulator (SOI) platform. The first one is a third-order temperature-

insensitive coupled-resonator filter, which serves as a critical building block element

in on-chip terabit/s networks. The second one is on the use of high-Q microdisks for

compact and low-loss delay lines, which are especially useful for narrowband filters

for RF signal processing.

4.1 A temperature-insensitive wideband coupled-resonator

filter

Recently, bandwidth capacity on the order of terabit/s has been in real demand for on-

chip interconnects for switching and routing signals among multicore microprocessors

[5, 6]. Integrated optical filters are one of the promising solutions to achieve on-chip

interconnects with a reasonable power budget. In such approaches, the large band-

width is provided by the aggregate bandwidth contributed by each WDM channel,

which itself is accommodated by each filter channel. For this reason, filters with many

identical channels are required. In addition, the passband of these filter channels is

desired to be flat to minimize the signal distortion. However, because of the strong

material dispersion of silicon, achieving a flat-band response over a wide bandwidth

is difficult. Another challenge for such filters is related to the existence of random

hot spots in the on-chip environment, where the local temperature variation can be

up to tens of degrees. The large temperature fluctuation will make the filter channels

drift with temperature, causing the wavelength-registration problem [17].
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In previous studies, both single- and coupled-resonator filter architectures imple-

mented in the SOI platform have been reported [16, 17, 50, 51]. In Ref. [50], 20 wave-

length channels were simultaneously switched using a single microring resonator. Be-

cause of the narrowband filter channels (3-dB bandwidth around 0.1 nm), small tem-

perature shifts can easily cause a frequency mismatch between the WDM signal and

the filter channel. In Refs. [16, 17, 51], coupled-resonator structures with large band-

width filter channels were utilized to provide extra thermal guard bands. However,

these coupled-resonator filters suffered from a large free spectral range (FSR), which

makes scalability to large WDM channel counts challenging. In addition, though

a multimode interferometer coupler has been employed for a wavelength-insensitive

coupling between the access waveguide and the end resonators in Ref. [17], the cou-

pling between resonators is evanescent and exhibits a strong dispersion over the entire

wavelength range. Consequently, the overall filter performance shows a strong wave-

length dependence, and large distortions are observed in Ref. [17].

In this work, we show that using an evanescent coupling scheme for both the

waveguide-to-resonator and resonator-to-resonator couplings can ensure the flat-band

filter response over a large wavelength range. One drawback of the evanescent cou-

pling scheme is that the bandwidth of the filter channel increases with wavelength,

resulting in a redundant channel bandwidth at high wavelengths. We show that by

overlaying a polymer cladding with a negative thermo-optic coefficient on top of the

silicon device, we can significantly reduce the sensitivity of the filter performance to

the ambient temperature variations. Moreover, through careful balancing between

the dispersion of the bandwidth and the thermal property of the filter, the redundant

bandwidth of the filter channel caused by the dispersion can be employed as a thermal

guard band. As a result, the filter can accommodate 21 WDM channels with a data

rate up to 100 gigabit/s (Gb/s) per wavelength channel, while providing a sufficient

thermal guard band to tolerate more than ±15oC temperature fluctuations in the
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on-chip environment [17, 51].

4.1.1 Device design

In response to the design challenges mentioned at the beginning for the multi-channel

filters, the design approach adopted in this work consists of two aspects, the first be-

ing a broadband coupling engineering and the second being a temperature-insensitive

design. Key results for the first aspect of the design are summarized in Fig. 26. The

structure investigated in this work is a third-order filter as shown by Fig. 26(a), where

κ2
0 and κ2

1 denote the power-coupling ratios between the end resonator and the ac-

cess waveguide and that between the adjacent resonators, respectively. Because such

coupled-resonator filters are sensitive to the coupling-induced resonance frequency

shifts (CIFS), the coupling between the access waveguide and the end resonator is

achieved through a symmetric coupler which has the symmetry along the wave prop-

agation direction. Using the approximation method for the coupling-induced phase

shift of the symmetric couplers (see discussions in Chapter III), the CIFS could be

calculated and corrected by pre-distorting the resonator [51]. To minimize the im-

pact of the strong material dispersion of silicon as wells as the waveguide geometric

dispersion, the FSR of the filter has to be as small as possible. Since the targeted

3-dB bandwidth of the filter channel is on the order of 1 nm to accommodate a

wideband wavelength channel (e.g., 100 Gb/s), an FSR around 5 nm is empirically

found to be appropriate to provide the necessary bandwidth and adequate channel

isolation. To obtain a flat-band response, κ4
0 and κ2

1 have to satisfy certain relation.

For example, in the narrowband-filter design, κ2
1/κ

4
0 ≈ 1/8 is required, while in the

wideband-filter design the exact ratio of κ2
1/κ

4
0 may be different [51]. Nevertheless,

to preserve this ratio for the whole wavelength range, κ2
1 and κ4

0 must follow similar

wavelength-dispersion curves.

In this work, resonators and waveguides are evanescently coupled to each other.
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Figure 26: (a) Schematic of the third-order filter; (b) power-coupling ratios of the
synchronous parallel waveguide couplers with different gaps and coupling lengths: κ2

0

(gap 160 nm, length 4.4 µm), κ
′2
0 (gap 300 nm, length 10.2 µm), and κ2

1 (gap 300
nm, length 5.2 µm); (c) three simulated filter channel responses with power-coupling
ratios κ2

0 and κ2
1 provided in (b).

The waveguide dimension is first optimized to fine tune the thermal property of the

filter. We use a waveguide with a height of 144 nm and a width of 425 nm covered with

a top polymer cladding to achieve an athermal response exactly at the wavelength of

1.5 µm for the fundamental transverse electric mode (i.e., the predominant electric

field is oriented in the silicon layer). The choice of this wavelength for the athermal

operation will be explained later. Since we are targeting many filter channels (∼ 20)

over a wide wavelength range (∼ 100 nm), the resonator’s coupling to the access

waveguides and the adjacent resonators needs to be optimized to achieve a wideband

performance. In this regard, a microring performs better than a racetrack because

the microring has a shorter coupling length under the same FSR and power coupling

ratio. While a detailed comparison could be performed through three-dimensional

finite-difference time-domain (FDTD) simulations, here we adopt a simpler approach

where the coupling region of the two coupled structures is modeled by a parallel

waveguide coupler with the same gap and an equivalent coupling length [42]. Figure

26(b) shows the simulation results for the dispersion of the power coupling rate of a
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synchronous parallel waveguide coupler (with the mentioned waveguide dimension)

with different gaps and coupling lengths. The upper two curves correspond to two

couplers with identical power coupling ratios at 1.55 µm. As can be seen, the one

with a shorter coupling length exhibits a weaker dispersion over the wavelength range

of 1.5 − 1.6 µm. This observation leads us to use microrings (instead of racetracks)

with a radius of 21 µm, which follows the choice of the FSR of 5 nm.

The gaps between the waveguide-resonator and resonator-resonator are found us-

ing the following procedure. First we employ the modified coupled mode theory which

has been discussed in detail in Chapter III to calculate κ2
0 and κ2

1 for a range of gaps,

and a table could be drawn. Then based on the required bandwidth of the filter chan-

nel at a specific wavelength (typically at 1.55 µm), we determine the appropriate κ2
0

and κ2
1. The gaps can be simply looked up from the computed coupling table, which

are found to be 160 nm for the resonator and waveguide coupling and 300 nm for the

coupling between resonators. Finally, κ2
0 and κ2

1 are computed for all the wavelengths

using the modified CMT, and the results are shown in Fig. 26(b), where the upper

solid and the lower solid lines correspond to κ2
0 and κ2

1, respectively. The condition

for a flat-band response is also verified in Fig. 26(b), where κ4
0 and κ2

1 exhibit similar

dispersion curves. Using these parameters for the device, the overall filter response is

obtained through a rigorous matrix analysis [52]. In Fig. 26(c), we show three such

filter channels around 1.5 µm, 1.55 µm, and 1.6 µm. From Fig. 26(c), we observe

that: (1) filter responses are reasonably good, and flat-band filter channels exhibit

more than 15-dB extinctions in the through port and more than 20-dB out-of-band

rejections in the drop port; (2) the 3-dB bandwidth increases from 0.75 nm at 1.5

µm to 1.5 nm at 1.6 µm, primarily because of the dispersion; (3) the bandwidth of

the filter channels increases with wavelength, and the finesse of the filter decreases;

consequently, the out-of-band rejection becomes smaller (more than 30 dB at 1.5 µm

and only 20 dB at 1.6 µm); and (4) the through-port responses are improved at high
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wavelengths, indicating a better impedance match among the coupled resonators.

Following the broadband coupling engineering, we proceed to the second aspect

of the design for the temperature-insensitive operation. Major results of this part are

shown in Fig. 27. Figure 27(a) shows the concept of a thermal guard band. The solid

curve shows the pass-band response of the optical filter, and the solid filled rectangle

shows the information bandwidth of the optical signal. The information bandwidth

can be as large as the 3-dB bandwidth of the filter channel without incurring strong

distortions [36]. The remaining spectral portion of the filter bandwidth, shown by

the hatched region, illustrates the available thermal guard band. Our design for the

temperature-insensitive filter chooses the complete athermal operating point at the

filter channel with the smallest bandwidth (in our case this is at λ = 1.5 µm). This

ensures that throughout the entire working wavelength range, the overall available

thermal guard band is optimally utilized.

Figure 27: (a) Illustration of extra channel bandwidth as thermal guard band
(hatched region); CB: filter channel bandwidth; SB: signal information bandwidth;
(b) cross section of the waveguide structure on an SOI substrate with a polymer
cladding; (c) the left axis shows the wavelength temperature dependence of the filter,
and the right axis shows the thermal guard band for 100 Gb/s wavelength channels.

To achieve the temperature-insensitive operation, we overlay the silicon device

with an acrylate polymer (see Fig. 27(b)) with a refractive index close to oxide (1.45)
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and a large negative thermo-optic coefficient of −4.5 × 10−4/K [53]. To increase the

overlap between the optical field and the polymer cladding, the silicon device layer

is thinned to 144 nm, and the required waveguide width is calculated to be 425 nm

for the athermal operation at 1.5 µm. Figure 27(c) shows the simulated temperature

dependence of the filter over the entire working wavelength range, which increases

from 0 pm/K at 1.5 µm to -23 pm/K at 1.6 µm.

To illustrate the operation of our filter, we consider the following scenario: if the

filter is used for incoming signals modulated at a 100 Gb/s data rate per wavelength

channel, at 1.5 µm the available guard bandwidth is small (3-dB bandwidth 0.75 nm),

but because of the centering of the athermal operation to this wavelength, the filter

channel shifts little with temperature change. At the other end of the filter operation,

i.e., at 1.6 µm, the filter channel has a relatively large temperature dependence of

-23 pm/K, but it also has a large available thermal guard band of 0.75 nm (with

3-dB bandwidth of 1.5 nm), thus allowing for ±15oC emperature fluctuations. For

lower-data-rate signals, even larger temperature fluctuations can be tolerated.

4.1.2 Device fabrication and characterization

The device is fabricated on an SOI wafer with a 144-nm-thick silicon layer on top of

a 3-µm-thick oxide substrate. The device is patterned using a JBX-9300FS e-beam

lithography system based on the HSQ process, followed by plasma etching with the

Cl2 gas. Details of these fabrication steps could be found in Chapter II. For this

device, the remaining HSQ has to be removed so the acrylate polymer can be applied

directly on top of the silicon waveguide, otherwise the thermal compensation by the

polymer will be discounted. To do that, we dip the sample in the buffered oxide etcher,

which also attacks the oxide underneath the silicon waveguide. Fortunately, after the

spin-coating, the polymer will fill the undercut region; and since the refractive index

of the polymer is close to that of oxide, such undercutting has a negligible impact on
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the device performance.

Figure 28(a) shows the scanning-electron micrograph (SEM) of the fabricated

device, and Fig. 28(b) provides the measured transmission result, where 21 filter

channels with more than 10-dB through-port extinctions and 20-dB drop-port out-

of-band rejections are obtained. The insertion loss of the filter can be estimated

by the difference between the maxima of the through and the drop ports to be less

than 1 dB. In Fig. 28(c), we show three representative filter channels at wavelengths

1.5 µm, 1.55 µm, and 1.6 µm, respectively. Compared with the simulation results

shown in Fig. 27(c), the 3-dB bandwidths agree well with the design, being 0.75 nm,

1.12nm, and 1.5 nm for the corresponding channels. The out-of-band rejections in the

drop port at low wavelengths are limited to 22 dB, while the ones predicted by the

simulation shown in Fig. 27(c) are higher (> 25 dB). This deviation is believed to arise

from the limited dynamic range of our measurement setup, which has a relatively large

noise floor. The reduction of the out-of-band rejections at high wavelengths, as seen

for the filter channels near 1.6 µm, is expected and is in agreement with the theory.

The through-port responses are a little degraded from the design, as the extinction

drops to 10 dB at 1.5 µm instead of 15 dB, and the shape is also deformed. This

is because the through-port responses are very sensitive to the resonance-frequency

mismatches between the coupled resonators [42], which can be easily caused by the

imperfect fabrication process.

The temperature behavior of the filter is also tested by heating the device using

a thermal stage and measuring the transmission subsequently. In Fig.28(c), the cor-

responding through-port responses after a 10oC temperature rise are shown by the

dotted lines (deliberately lowered down by 3 dB for a better illustration). We can

verify that the filter is indeed athermal at 1.5 µm and has wavelength temperature

dependencies of -12 pm/K and -25 pm/K at wavelengths 1.55 µm and 1.6 µm, re-

spectively. This is a significant improvement compared to the conventional unclad
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Figure 28: (a) SEM of the fabricated filter; (b) measured transmission responses for
the fabricated filter; (c) detailed measured spectra of three representative channels.
The dotted lines show the through-port responses after a 10oC temperature rise.
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filters (∼ 70 pm/K) [17].

In conclusion, we have designed and demonstrated a third-order flat-band filter

that can accommodate 21 WDM channels with a data rate up to 100 Gb/s per

wavelength channel, totaling up to a 2.1 terabit/s aggregate capacity. The filter can

tolerate more than thirty-degree temperature fluctuations in the on-chip environment.

The footprint of the filter is less than 0.005 mm2. In the future, we envision the

addition of active switching functionality to the filter through carrier injection (either

all-optically or electrically), and a high-performance switch with a switching speed on

the order of nanoseconds is expected. Such a compact, wideband, and temperature-

insensitive optical switch would be a critical building block in future on-chip optical

networks.

4.2 Tunable and low-loss microdisk-based delay lines

Integrated optical filters have numerous important applications. Recently, wideband-

tunable narrowband filters have attracted a lot of research interest for radio-frequency

(RF) signal processing, which can potentially outperform current RF technologies in

terms of bandwidth and dynamic range [54]. Developments in this area are fueled by

progress made in both the design and implementation of narrowband optical filters.

For example, a systematic design methodology has been introduced in Ref. [54], which

requires only three basic building elements, i.e., couplers, phase shifters and all-pass

filters (APFs) for the design of almost arbitrary filters. Figure 29(a) shows one such

example, where the filter is a cascade of many unit cells. Each unit cell is composed of

a 3-dB coupler, a phase shifter and an APF, and therefore its transmission response

has one pole and one zero [54]. Using a similar approach as for digital filter design, any

filtering function can be decomposed to poles and zeros that can be implemented by

these unit cells. For example, in Fig. 29(b), a Butterworth filter is demonstrated with
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the use of eight stages of unit cell. Regarding the physical realization, the silicon-

on-insulator (SOI) platform emerges as a suitable choice due to the possibility of

forming low-loss waveguides, accurate couplers, and tunable devices. Moreover, being

compatible with the standard complementary metal-oxide-semiconductor (CMOS)

technology, it promises large-scale integration and manufacturing at a low cost. This

is important since in practice many stages of unit cell (> 16) are required to achieve

desired filtering responses.

Figure 29: (a) Schematic of a IIR lattice filter which is a cascade of unit cells; (b)
the amplitude response of a Butterworth filter made of eight stages of unit cell.

For narrowband filters, the implementation of 3-dB couplers and phase shifters are

straightforward (although, fast-response phase shifters are quite challenging). The

APF, in its simplest form, can also be constructed using a closed waveguide loop.

However, such a loop has to be very big to access the RF domain, since the time

delay we want to get from the loop is on the order of 100 ps (so the bandwidth

of the filter can be tuned from a few GHz to tens of MHz), which translates to a

propagation length of 7 mm for typical silicon waveguides. More importantly, the

insertion loss from such a loop has to be negligible, which is challenging for silicon

ridge waveguides with typical propagation loss rates (per unit length) on the order

of 2-3 dB/cm [55]. In Ref. [56], rib waveguide is used for the low-loss delay line.
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Though the propagation loss rate is reduced to 0.5 dB/cm, the bending radius of the

rib waveguides has to be large enough to avoid radiation loss. As a result, the size

of the delay line is on the order of millimeters, making dense integration difficult.

On the other hand, delay lines based on microresonators, such as microrings and

microdisks, can be more compact. Microrings are single mode and easy to work with,

but their propagation loss is similar to ridge waveguide’s (2-3 dB/cm). Microdisks

usually show lower loss, but due to the multimode nature, its implementation is not

straightforward. In this work, we will focus on the design of delay lines using over-

coupled microdisk resonators. In addition, a first-order tunable narrowband filter is

experimentally demonstrated based on such a delay line structure.

4.2.1 Device design

To design a microdisk-based delay line, several challenges should be overcome. First

of all, microdisks are multimode; one usually has to work with one particular mode

while avoiding interference from others. To make this task easier, a modified microdisk

structure is employed here. As shown by the scanning-electron micrograph (SEM) in

Fig. 30(a), the microdisk has an outer radius of 20 µm with a 230-nm-thick silicon

device layer and a 1-µm-thick oxide cladding. A hole is etched in the center of

the microdisk to minimize the number of modes yet not perturbing the first few

radial modes (i.e., the fields of the first few radial modes do not overlap with the

inner wall). The geometry of the structure is optimized using a three-dimensional

finite-element-method (FEM) microresonator mode solver implemented in COMSOL

(details could be found in Ref. [36]), and the resulting structure is a microdonut

with a width of 4 µm. The mode profiles and effective indices for the lowest four

radial TE modes (electric field parallel to the microdisk plane) of the microdonut are

shown in Figs. 30(b) and (c), respectively. As can be seen, the optimized microdisk

resonator is still multimode though the number of modes has been reduced. The
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second design challenge is the required strong coupling between the waveguide and

the microresonator to achieve delays in the order of 100 ps. This is difficult because

the microdisk modes are highly confined inside the disk, and their field overlaps with

the mode of the access waveguide are small.

Figure 30: (a) SEM of a 20-µm-radius microdisk resonator pulley coupled to an
access waveguide with a width of 500 nm. (b) Mode profiles of the lowest four radial
TE modes of the microdisk resonator (left) and the access waveguide (right). (c)
Effective indices for the microdisk modes (dashed line) and the waveguides (dotted
line) with different widths. (d) Coupling Qs (Qc) of the 1

st-(square), 2nd-(cross), and
4th-order (diamond) microdisk modes relative to that of the phase-matched 3rd-order
mode as a function of the coupling length (the coupling gap is 250 nm). The dotted
line corresponds to the case that the 3rd-order mode has certain phase mismatch
caused by a 10-nm deviation in the access waveguide width from the phase-matching
point (i.e., 500 nm). The two stars mark the two optimum coupling lengths which
give us more than 20 dB suppression of coupling for the undesired modes.

To resolve these two problems mentioned above, we use the pulley coupling scheme,

as shown by the SEM in Fig. 30(a), where the modes of the microdisk and the waveg-

uide weakly interact for a long coupling length to achieve the desired coupling strength
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[57]. Furthermore, the pulley coupling scheme enables us to selectively couple to the

desired mode, since for long coupling lengths the coupling process becomes very sen-

sitive to the phase-matching condition. To see this, we use the result from Chapter

III for the asymmetric couplers,

P21(L) =
4|γ21|2

|(γ11 − γ22)2 + 4γ12γ21|
sin2(

√

(
γ11 − γ22

2
)2 + γ12γ21 L)

= (|γ21|L)2 sinc2

(

√

(
γ11 − γ22

2
)2 + γ12γ21 L

)

,

(121)

where the sinc(x) function is defined as sinc(x) = sin(x)/x. Let us assume the

“1” represents the access waveguide, and “2” represents the microdisk mode with a

specific radial mode order. First we consider the phase matched radial mode, for

which γ11 = γ22, and Pmatch,21 = sin2(|γ21|L) ≈ (|γ21|L)2 if |γ21|L ≪ 1 1. Then, for

the phase-mismatched radial modes, we assume their γ12 and γ21 are still similar to

those of the matched mode (which are given by field overlaps and in practice are a

few tens of percent different). But for those radial modes |γ11 − γ22| could be much

bigger than |γ21| (or |γ12|), due to different effective indices as shown in Figs. 30(c).

Consequently,

Pn,21(L)

Pmatch,21(L)
≈ sinc2 (∆γnL) , (122)

where n stands for the radial mode order and ∆γn ≡ (γn,11− γn,22)/2. From Eq. 122,

we find that if the radial mode n is phase mismatched, its coupling relative to that of

the matched one will generally decrease as L increases 2. Therefore, if we make one

mode of the microdisk resonator phase-matched to the access waveguide and other

modes phase-mismatched, in principle by using a large L we can ensure only one

radial mode is excited with others being suppressed.

In this work, we choose to work with the third-order radial mode of the microdisk

resonator due to its ease of phase matching to the typical waveguide widths around

1We assume γ12 = γ∗

21, which is true for symmetric waveguide couplers but may not be the case
for asymmetric waveguide couplers. However, mathematical rigor is not our focus here.

2The sinc function is rapidly oscillating. Here we are talking about the envelop of the curve.

87



500 nm, whose mode profile and effective indices are also provided in Figs. 30(b) and

(c), respectively. As already pointed out in the discussions for asymmetric waveguide

couplers in Chapter III, the conventional phase-matching condition, i.e., β1 = β2, is

not exact. But here we will use it as a good approximation for the phase-matching

condition, which corresponds to the intersection point in Fig. 30(c) where the dis-

persion curves of the microdisk and the waveguide meet. At a specific wavelength,

the actual coupling strength may deviate from its designed value due to the lim-

ited fabrication accuracy on controlling the waveguide width (which is on the order

of 10 nm in our fabrication process). Therefore, one has to optimize the coupling

length to effectively suppress the undesired resonant modes, but still to tolerate the

fabrication-imperfection-induced phase mismatch for the desired mode. This opti-

mization is carried out based on Eq. 121, where all the parameters are calculated

using the modified coupled mode theory discussed in Chapter III. In Fig. 30(d) , the

coupling quality factors (coupling Qs) for the undesired modes as well as that for

the desired mode with a 10-nm deviation in the waveguide width from the phase-

matching point (as discussed in Chapter II, the coupling Q of each radial mode is

inversely proportional to its coupling strength to the access waveguide). Note that

all the values in Fig. 30(d) are normalized to the coupling Q of the phase-matched

mode. From Fig. 30(d), there are two optimum lengths, i.e., 19 µm and 37 µm, with

which the coupling Qs of the adjacent modes are more than 20 dB higher than that

of third-order microdisk mode. We choose to use the 37 µm so the gap between the

microdisk and waveguide can be relaxed to 250 nm, and the fabrication error (±10 nm

deviation in waveguide width) will only cause a small increase (2 dB) in the coupling

Q of the desired mode.
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4.2.2 A tunable first-order filter: design

To illustrate the application of the microdisk-based delay line, we apply it to a first-

order filter architecture as shown in Fig. 31, where an APF is placed at the upper

arm of a Mach-Zehnder interferometer (MZI). The APF itself consists of a racetrack

resonator with a microdisk-based delay line inserted in the loop. The coupling be-

tween the MZI arm to the APF is achieved through another MZI with a tunable phase

shifter (φMZI as shown in Fig. 31) implemented in its lower arm. Two additional phase

shifters are employed to tune the resonance frequencies of the microdisk (φdisk) and

the racetrack resonators (φFB). In the lower arm of the MZI, a similar APF without

the microdisk delay line is installed, which is used to balance the MZI response, as

will be explained later. Using the transfer matrix analysis [52], the transfer function

of the upper APF is obtained as

TAPF = i exp(i
φMZI

2
)
sin (φMZI/2)− Tdisk exp (i(φMZI + 2φFB − π)/2 + iβrLAPF)

1− sin (φMZI/2)Tdisk exp (i(φMZI + 2φFB − π)/2 + iβrLAPF)
,

(123)

where i =
√
−1; βr is the complex propagation constant of the forming waveguide of

the APF with the imaginary part corresponding to the propagation loss; LAPF is the

perimeter of the APF; and Tdisk is the transfer function of the microdisk resonator

given by

Tdisk =
r − exp(iφdisk + iβdLdisk)

1− r exp(iφdisk + iβdLdisk)
, (124)

where βd is the complex propagation constant of the microdisk resonator; Ldisk is its

perimeter; and r =
√
1− κ2 with κ being the power coupling coefficient between the

microdisk resonator and the access waveguide.

If the loss of the microdisk is neglected, Tdisk can be approximated as

Tdisk ≈ − exp
(

2itan−1
(δωdτd

2

)

)

, (125)

where δωd is the angular frequency detuning relative to the resonance frequency ωd of

the microdisk, and τd is the group delay on resonance. In Eq. 123, if we also neglect
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Figure 31: Schematic of a first-order tunable filter. The APF is shown by the optical
micrograph. The highlighted areas show the metallic microheaters that work as phase
shifters. The three phase shifters share the same ground for current injection.

the loss term in βr and expand it around the resonance frequency of the microdisk as

βr(ω) ≈ β0
r (ωd) +

1

vg
δωd, (126)

where vg s the group velocity of the waveguide mode. By controlling the phase shift

φFB, the following condition can be satisfied

(φMZI + 2φFB + π)

2
+ β0

r (ωd)LAPF = 2mπ, (127)

where m is an integer. Under this condition, and with a further approximation of

tan−1(δωdτd/2) ≈ δωdτd/2 for |δωdτd/2| < 1, Eq. 123 can be simplified as

TAPF ≈ i exp(i
φMZI

2
)
sin (φMZI/2)− exp (iδωd (LAPF + τdvg) /vg)

1− sin (φMZI/2) exp (iδωd (LAPF + τdvg) /vg)
. (128)

Equation 128 can now be interpreted as the response of an APF with a tunable

power coupling coefficient of cos(φMZI/2) and an effective perimeter of LAPF + τdvg.

Compared to the physical length of LAPF, it suggests much more compact filters can

be designed using this APF as a unit cell. To give an example, the APF shown in
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Fig. 30 has a perimeter of 300 µm, and the microdisk resonator is designed to provide

a 100-ps delay on resonance. As a result, the effective perimeter is about 7.8 mm, a

size that the waveguide-based delay lines have to end up with to achieve similar delay

responses [56]. Finally, the first phase term in Eq. 128 can be neglected, since we

have a similar APF implemented in the lower arm of the MZI without the microdisk

in its loop. In the off-resonance regime of the microdisk resonator, the responses

from the upper and the lower racetrack resonators cancel with each other, and the

MZI is balanced. In this sense, the filter is first-order because its response is mainly

contributed by the microdisk resonator in the upper APF.

4.2.3 A tunable first-order filter: demonstration

The first-order filter shown in Fig. 31 is fabricated on an SOI wafer with a 230-

nm-thick silicon device layer and a 1-µm-thick buried-oxide layer. The devices are

patterned using a JBX-9300FS e-beam lithography system followed by plasma etching

with a Cl2 chemistry. Next, a 1-µm-thick flowable-oxide (FOx) layer is spin coated

on top of the silicon devices, and metallic microheaters are fabricated on top of the

FOx layer to implement the phase shifters using the thermo-optic effect [58]. We have

to configure the phase shifters to generate desired filtering responses. For example,

φMZI controls the bandwidth of the filter; φdisk is to shift the resonance frequency of

the microdisk and thus the center frequency of the filter; and whenever φMZI or φdisk

changes, φFB has to be adjusted according to Eq. 127. The APF at the lower arm

of the MZI should follow the same operation as that of the upper APF for φMZI and

φFB to keep a balanced MZI in the off-resonance regime of the microdisk resonator.

We show some configuration results of the output port P2 (see Fig. 31) in Fig. 32,

where a notch filter with a tunable bandwidth and center frequency has been realized.

In Fig. 32(a), only one resonance appears in the spectrum and no racetrack modes

are observed due to our balanced operation; other radial modes of the microdisk
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Figure 32: (a) Notch-filter responses of the P2 port of the first-order filter shown in
Fig. 31 measured around wavelength 1530 nm. (b) The 3-dB bandwidth has been
tuned from 32 pm (blue solid line) to 10 pm (magenta dash-dotted line) and to 3.6
pm (black dotted line). The center frequency can also be tuned (blue to cyan solid
lines). (c) Summary of the experimental data of the 3-dB bandwidths (squares) and
extinction ratios (circles) under different coupling conditions controlled by φMZI. The
solid curves are the fitted results based on Eqs. 123 and 124. Loss parameters and
on-resonance delay offered by the microdisk resonator are extracted.

are also absent, suggesting the pulley coupling scheme has successfully achieved a

single-mode operation. In Fig. 32(b), we show several representative resonances with

different tuning parameters, whose 3-dB bandwidths are varied from 32 pm (4.1 GHz)

to 10 pm (1.3 GHz) and to 3.6 pm (0.47 GHz). The resonance frequency of the filter

can also be tuned. In addition, we observe that the extinction ratio of the resonance

decreases as the filtering bandwidth becomes smaller, which is caused by the nonzero

propagation loss from the racetrack as well as the microdisk resonator. Most of the

losses come from the microdisk, since that is where the optical signal gets most of its

delay. By fitting Eqs. 123 and 124 to the experimental data (assuming complex βr

and βd), as shown in Fig. 32(c), the propagation losses of the racetrack waveguide and

the microdisk resonators are extracted to be 5 dB/cm and 0.5 dB/cm, respectively.

This reveals another advantage of using the microdisk-based delay lines instead of the

waveguide-based ones (besides compactness): a reduction of the propagation loss by

one order of magnitude under the same fabrication conditions for typical single-mode
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ridge waveguides. In our case, the loss of the microdisk is still high, which limits the

minimum bandwidth that can be attained (0.47 GHz here). On the other hand, the

maximum bandwidth (4.1 GHz here) is limited by the on-resonance delay offered by

the microdisk, which is inferred from Fig. 32(c) to be 160 ps. The deviation from

the design (100 ps) is largely caused by the fabrication error in the access waveguide

width (2 dB increase in coupling Q). The power consumption of each phase shifter

is measured to be 20-30 mW per π phase shift, and we estimate the total power

consumption of this first-order filter is less than 100 mW [59].

4.2.4 Power handing capability: nonlinear analysis

From the above example, it seems that the silicon microdisk resonator works well as

a low-loss delay line. The implicit assumption is that the power is low enough so

only linear responses need to be considered. However, silicon is a strong nonlinear

material with a large χ3 coefficient. The real part of χ3 is responsible for the self-phase

modulation and also cross-phase modulation if more than one frequencies are involved,

and phenomena such as four-wave mixing result. On the other hand, the imaginary

part of χ3 is responsible for the two photon absorption (TPA), which refers to the

excitation of electron-hole pairs through the absorption of two photons consecutively.

As a result, silicon is no longer transparent at the telecommunication wavelength

range (∼ 1.55 µm), despite the fact that its bandgap (1.24 eV) is much larger than

the single photon energy (∼ 0.8 eV around 1.55 µm). In addition, the generated free

carriers (i.e., electrons and holes) will also modify the refractive index of silicon and

absorb the light. In typical silicon ridge waveguides (i.e., around 500 × 200 nm2),

such complicated nonlinear processes become important when the travelling power is

more than 50 mW. Unfortunately, the power range of RF signals can be up to 100

mW. The situation is even worse for our resonator-based delay lines, since the power

travelling inside the resonator is significantly enhanced from the resonant effect. For
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example, in our microdisk-based delay line, the circulating power in the microdisk

resonator is about 15 times larger than what is in the access waveguide. Therefore,

as the power increases, the nonlinear effects will first take place in the delay line and

distort its response.

We are interested in finding out the range of power that the microdisk-based delay

line works properly. While an exact nonlinear analysis for an arbitrary input power is

quite complicated, here we only need to know the point at which the delay response

starts to deviate from its low-power behavior. To do that, we first calculate the power

coupled into the resonator from the input light (assuming no nonlinear effects), then

the propagation constant of the resonant mode βd (see Eq. 124) is modified by the

nonlinear process as [48, 58]

βd = βd,linear + k0(∆nFC + n2Id) + i(αFC + β2Id), (129)

where n2 (Kerr coefficient) and β2 (TPA coefficient) correspond to the real and imag-

inary parts of χ3, respectively; Id is the intensity of the travelling light inside the

resonator; and ∆nFC and αFC are the refractive index change and absorption loss

caused by the free carriers, respectively, whose values are empirically found as

∆nFC = −(8.8× 10−4Ne + 8.5N0.8
h )× 10−18, (130)

αFC = (8.5Ne + 6.0Nh)× 10−18, (131)

where Ne (Nh) is the electron (hole) density with the unit of cm−3 and αFC has the

unit of cm−1. Finally, Ne (=Nh) is obtained through the following rate equation

dNe

dt
= − Ne

τFC
+

β2I
2
d

2~ω
, (132)

with τFC being the free carrier lifetime.

The above equations are integrated in a numerical code. We study one narrowband

filter which has a 3dB bandwidth of 1 GHz under different input powers, and the

results are shown in Fig. 33, where the three columns correspond to the amplitude
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and phase responses of the APF and the transmission of the P2 port, respectively. As

clearly seen there, when the input power is on the order of 1 mW, the results start to

show deviation from the low-power case. In addition, Fig. 33(a) and (b) correspond to

two different free carrier lifetimes, and the enhanced distortions observed in Fig. 33(b)

suggest that the free carriers are the major source of nonlinearity. This can also be

verified by the blue shift of the resonance frequency with the increased power level,

which arises from Eq. 130. Also, Eq. 131 explains the increased insertion loss of the

APF and the reduction of the extinction ratio of the P2 port with the power.

Figure 33: The three columns correspond to the amplitude and phase responses of
the APF and the transmission of the P2 port: (a) τFC = 0.5 ns, and (b) τFC = 2 ns.

4.2.5 Conclusions

In conclusion, we have proposed and demonstrated the use of over-coupled microdisk

resonators as delay lines for narrowband optical filters. Compared to delay lines
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based on single-mode ridge waveguides, they are more than two orders of magnitude

smaller in size and at least one order of magnitude lower in insertion loss under

the same fabrication conditions. A first-order tunable narrowband filter using the

microdisk-based delay line is experimentally demonstrated in an SOI platform, which

shows a tunable bandwidth from 4.1 GHz to 0.47 GHz with an overall size of 0.05

mm2. More complex functionalities can be demonstrated using such a filter as a unit

cell in a cascaded structure [60]. However, the current microdisk resonator suffers

from two drawbacks: (1) first, the intrinsic Q of the silicon microdisk resonator is

still low (∼1.5 million), which limits the minimum bandwidth that can be achieved;

(2) second, silicon is a strong nonlinear material, which limits the maximum power

that can be sent into the filter (generally less than 1 mW). While the first drawback

may be overcome by improved fabrication techniques, the second one is intrinsic to

silicon and cannot be easily avoided in the SOI platform. In the next chapter, we will

introduce a different material platform to reduce the propagation loss and to increase

the power handling capability of such resonator-based delay lines.
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CHAPTER V

VERTICAL INTEGRATION OF SILICON NITRIDE TO

SOI PLATFORM

5.1 Introduction

As we have discussed in the previous chapter, though silicon (Si) is an excellent pho-

tonic material for various applications of integrated optics, it has its own challenges.

For example, for certain passive devices such as low-loss delay lines, Si cannot com-

pete with silicon dioxide (SiO2) or silicon nitride (SiN) in terms of insertion loss and

power handling capability for the following two reasons: (1) Si has a relatively large

propagation loss (> 0.1 dB/cm) due to its large refractive index contrast and small

mode volume [28], while in SiO2 or SiN, the refractive index contrast is lower and

the mode volume is larger, and consequently the propagation loss can be one order of

magnitude smaller (< 0.01 dB/cm) [61]; (2) Si has strong nonlinear effects, primarily

due to the free carriers generated via the two-photon absorption [48, 58]. This non-

linearity can strongly distort the optical signal at high power levels, while in SiO2 or

SiN, free carriers are absent and the corresponding nonlinear effects are much weaker.

On the other hand, active elements such as modulators and phase shifters are difficult

to realize in SiO2 or SiN due to the difficulty in tuning the refractive index of the host

material, while Si devices can be easily tuned using thermal or free-carrier-injection

processes.

There are several groups which have explored SiN for a range of applications.

Dr. Lipson’s group (Cornell) has successfully grown thick SiN films up to 700 nm,

and compact microresonators with radius down to 20 µm and intrinsic Qs around 3

million have been demonstrated [62], which have served as an enabling element for
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applications such as optical frequency comb sources [63] and efficient second-harmonic

generations [64]. Dr. Bower’s group (UCSB), on the other hand, employs a very thin

layer of SiN (less than 100 nm) as the guiding core, and very low-loss waveguides

(with propagation loss less than 0.1 dB/m) have been achieved [61, 65]. High-Q

microresonators are also reported based on the same platform, though the bending

radii have to be on the order of millimeters to avoid significant radiation loss.

Here, we propose a material platform based on the monolithic integration of SiN

on SOI to enable reconfiguration, high power handling and also low-loss performance.

As illustrated by Fig. 34, SiN is vertically integrated on top of SOI with SiO2 as

the buffer. In this platform, active and reconfigurable devices (e.g., modulators and

tunable phase shifters) as well as short-length devices (e.g., couplers) are formed in

Si, and passive components which require either low loss or high-power tolerance are

formed in the SiN layer (see Fig. 34(b)). To experimentally demonstrate such a hybrid

material platform, the following steps have to be carried out: (1) high-quality SiN

film growth; (2) demonstration of compact SiN microresonators with very high Qs;

and (3) vertical integration of SiN into SOI with proper coupling between devices

fabricated in these two different layers.

Figure 34: (a) Illustration of the vertical integration of SiN to the SOI platform. (b)
Cross section of the SiN-on-SOI platform with metallic heaters implemented on top
of the Si devices for reconfigurability.
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5.2 SiN growth

For the dense integration purpose, the SiN film thickness has to be large enough to

warrant compact microresonators and sharp waveguide bends. Numerical simulations

show that a 400-nm-thick silicon nitride permits the realization of microresonators

with a radiation Q more than a billion for radii as small as 40 µm. Low-pressure

chemical vapor deposition (LPCVD) method is conventionally used for stoichiomet-

ric SiN (Si3N4) deposition at temperature around 800oC [66]. The standard source

gases are dichlorosilane (SiH2Cl2, or DCS) and ammonia (NH3), with the gas ratio

being the dominant factor for the film stress and material absorption Low-stress SiN

films, which are routinely used as mechanical membrane material and isolation/buffer

layer in micromachining, can be grown using a large dichlorosilane to ammonia ratio

(3 ∼ 6) with thicknesses up to a few micrometers [66]. However, low-stress SiN films

usually have a high hydrogen content, which is responsible for the strong N-H bond

material absorption around the wavelength of 1.55 µm and is not desired for optical

applications at the telecommunication wavelengths (N-H bond has a vibrational fre-

quency around the wavelength of 3 µm and its second harmonic is around 1.55 µm

[66]). Decreasing the dichlorosilane to ammonia ratio (0.1 ∼ 1) can reduce the hydro-

gen content and therefore make the SiN film more transparent to light. The stress of

the film, however, then increases significantly and the thickness of the SiN is typically

limited to a few hundred nanometers. For our applications, it is clear that a careful

balance between the film thickness and material absorption has to be found. Post

annealing process has also to be developed to further reduce the hydrogen content.

Table 2 lists the details of the recipe we have optimized for the SiN growth in the

Tystar Nitride LPCVD tool available in Gatech Petit cleanroom facility.

Table 2: SiN growth recipe

Pressure(mT) DCS(sccm) NH3 (sccm) T (oC) Deposition rate (nm/min)

165 50 140 800 4.15
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To fabricate high-Q SiN microresonators, devices are first patterned using a JEOL

JBX-9300FS electron-beam lithography (EBL) system. ZEP (ZEP520A by Zeon co-

operation) is chosen as the e-beam resist, which is capable of defining fine features

with a relatively good etch resistance. Here, HSQ is no longer is good mask because

the selectivity we can get for SiN to HSQ is around 1, and HSQ is too thin (maximum

200 nm) to etch a 400-nm SiN film. One problem with SiN is that it is an insulating

material, and electrons can accumulate at the SiN surface as the exposure progresses.

This charge-up effect will somehow disturb the beam writing process, and under cer-

tain circumstances, it can become strong enough to cause fracture errors. Figure 35

shows two such examples: in Fig. 35(a) a line is missing and in Fig. 35(b) the circular

boundary becomes jagged. To solve this problem, ESPACER, a conducting polymer

developed by Shawa Denko K.K., is spin-coated on top of the ZEP before the e-beam

exposure, which shall be removed by dipping the sample into DI water before the

development of ZEP.

Figure 35: SEM of SiN microring resonators (8 µm width, after etching) with fracture
errors: (a) a line is missing, and (b) the microring boundary becomes jagged.

Next, the pattern is transferred to the SiN layer using plasma etching with a
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CF4/CHF3 gas mixture. For the etching process, there are three important parame-

ters: etch rate, selectivity and anisotropicity. High selectivity is required in our pro-

cess since the e-beam resist (ZEP) is only a few hundred nanometers thick. Roughly

speaking, increasing the etching pressure will improve the selectivity at the cost of

anisotropicity, since at a higher pressure, the etching is more likely to take place

through chemical reaction rather than physical bombardment. Adding more CHF3

to CF4 will also increase the selectivity, but its amount should be carefully controlled

to avoid a strong polymerization. We have optimized the etching recipe using the

SiN-on-Si wafers, where the conducting Si substrate helps reduce the charge-up effect

from SiN so good SEMs can be taken to examine the etching quality. Figure 36(a)

shows the SEM of the cross section of a 400-nm-thick SiN waveguide, which shows

fairly vertical sidewalls have been achieved. Figure 36(b) is the SEM for the corre-

sponding sidewall, where the sidewall roughness is estimated to be less than 10 nm.

Table 3 lists the details of the recipe we use for the SiN etch in an Oxford Endpoint

RIE tool in Gatech Marcus Inorganic cleanroom facility.

Figure 36: (a) SEM of the cross section of a SiN waveguide structure with a width
of 1.2 µm and a height of 400 nm.(b) SEM of the sidewall of the waveguide shown in
(a).
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Table 3: SiN plasma etch recipe

Pressure(mT) Gases(sccm) Power (W) DC bias(V) Etch rate(nm/min)
CF4 CHF3 ZEP SiN

250 50 5 175 215 22 43

The sidewall roughness can be further reduced using a post wet-etch process.

Phosphoric acid (H3PO4) is used due to its selective etching of SiN to Si and SiO2.

After stripping the remaining ZEP,the SiN sample is put in 180oC 85% H3PO4 solution

for 10 minutes, during which time around 26 nm SiN is etched away. Figures 37(a)

and (b) show the cross section and sidewall of a wet-etched SiN waveguide, respec-

tively. Comparing Fig. 37(b) to Fig. 36(b), we conclude that the sidewall roughness

has been visibly improved by the post wet-etch process. Buffered oxide etcher (BOE)

is also a good choice for the wet etching of SiN with a etch rate around 0.75 nm/min

at room temperature.

Figure 37: (a) SEM of the cross section of the SiN waveguide as shown in Fig. 36
after the post wet-etch process.(b) SEM of the sidewall of the waveguide shown in
(a).
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5.3 High-Q SiN microresonators

With the developed fabrication recipes, high-Q SiN microresonators are fabricated.

One important parameter we want to know is their intrinsic Q. To do that, a series of

microrings with different gaps to the access waveguides are fabricated so the critical

coupling condition can be satisfied for one of the resonators. In addition, different

annealing conditions have been tested to achieve the best results. Figure 38 shows the

transmission measurements of a 60-µm-radius microring with a width of 8 µm and a

height of 400 nm, with the oxide cladding on top. The access waveguide has a width of

1.2 µm. The gap between the SiN microresonator and the access waveguide is 700 nm.

The blue curve shown in Fig. 38(a) depicts the transmission of the microring before

the annealing process and the red curve depicts the transmission measurement of the

same device after the annealing treatment. From the blue curve shown in Fig. 38(a),

we observe that the resonance dips are much shallower for the wavelength range of

1490− 1555 nm compared to those outside of this range, indicating that the material

absorption is strong at these wavelengths. This absorption spectrum is characteristic

of the overtone absorption of the N-H bond [66]. After proper annealing at high

temperatures (8 hours in an O2 ambient and 4 hours in a N2 ambient at 1100oC), the

resonance dips become more uniform across the whole wavelength range (red curve),

indicating that the hydrogen content has been significantly reduced. Figure 38(b)

shows the zoom-in figure for one specific resonance around the wavelength of 1530

nm, which is marked by star in Fig. 38(a). As can be seen, before the annealing,

the absorption-limited intrinsic Q is around 150,000, corresponding to a propagation

loss around 2.35 dB/cm; after the annealing, the intrinsic Q dramatically increases

to 6,000,000, corresponding to a propagation loss around 0.06 dB/cm (6 dB/m).

Next, we want to know what are the limiting factors of the intrinsic Q that we

obtain. For SiN, there are two major sources of loss: the first one is the material

absorption loss from the remaining N-H bonds after the annealing process, and the
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Figure 38: (a) Transmission measurements for a 60-µm-radius microring resonator
fabricated with a 400-nm-thick SiN layer: the blue curve is before the annealing and
the red curve is after the annealing (intentionally moved down by 15 dB for a better
comparison). (b) Zoom-in figures for one resonance around 1530 nm: the upper figure
is before the annealing and the lower figure is after the annealing.

second one is the scattering loss which results from the sidewall roughness caused by

fabrication imperfections. There is an easy way to distinguish these two loss terms.

As discussed in Chapter II, Q is defined as

Q ≡ ω · Uc

Ploss
, (133)

where Uc is the energy of the resonant mode which is proportional to the mode volume

and Ploss is its power dissipation rate. We can exploit different scaling behaviors of

these loss terms with the size of the resonator (i.e., R) to differentiate them. For

example, the material absorption is a volume effect, which means as R increases, its

value increases as R2. On the other hand, the scattering loss is a surface effect, so it

varies linearly with R. Since our microring is very thick, the first fundamental mode

does not interact with the inner sidewall, and its mode volume scales with the radius

R as R2 1. Combing these results, we conclude that if the resonator is limited by the

material absorption loss, its intrinsic Q will not change much with the radius, while

1If the microring is very thin, then the mode volume just scales with the perimeter.
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if it is limited by the scattering loss, its intrinsic Q will linearly increase with the size

of the resonator.

In Fig. 39(a), we summarize the statistically averaged intrinsic Qs for radii ranging

from 40 µm to 240 µm. Note that although the example provided in Fig. 38(b) shows

an intrinsic Q of 6 million, the ensemble averaged Q (i.e., average from many inde-

pendently fabricated samples under the same condition) for 60-µm-radius microres-

onators is around 4 million (such a variation in the intrinsic Q has been explained in

Ref. [49]). From the linear behavior of the intrinsic Q with the radius R, we conclude

that for our resonators, the intrinsic Q is still limited by the sidewall scattering loss.

In Fig. 39(b), the resonance for a 240-µm-radius microresonator is plotted, which

shows an intrinsic Q around 16 million (equivalent to 2.2 dB/m propagation loss).

Such a low-loss microresonator with a moderate size is an ideal candidate for delay

lines that can be densely integrated.

Figure 39: (a) Statistically averaged intrinsicQs of SiN microresonators with different
radii. The width of the microrings is fixed as 8 µm. (b) One resonance of a 240 µm-
radius SiN microring showing an intrinsic Q of 16 million.
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5.4 Vertical coupling between the SiN and SOI

As illustrated by Fig. 40(a), SiN is grown on top of SOI with the oxide as the buffer.

The coupling between the SiN and the Si structures is achieved through evanescent

field overlap, which can be controlled by adjusting the oxide thickness (i.e., the verti-

cal gap). Since the fundamental mode of the 400-nm-thick SiN microresonators is TE

polarized (electric field is predominantly parallel to the device layer), the Si waveg-

uides have to be designed for the same polarization. Moreover, their propagation

constants ought to be similar to achieve an efficient power exchange. For that pur-

pose, we use a thin SOI with a thickness around 110 nm (instead of the conventional

220 nm SOI). Another benefit of using a thinner SOI is that the optical mode of the

Si waveguide is less confined, leading to a larger field overlap with the SiN mode.

In Fig. 40(b), we plot the power coupling coefficient between a typical Si waveguide

(450× 110 nm2) and SiN waveguide (2200× 400 nm2), whose value falls into a wide

range and could be fully controlled by the vertical gap.

Figure 40: (a) Illustration of the vertical coupling between the SiN and the Si layers
with SiO2 as the buffer. (b) The power coupling coefficient between a typical Si
waveguide (450× 110 nm2) and SiN waveguide (2200× 400 nm2) as a function of the
vertical gap.
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5.5 Integrating the SiN to the SOI

The fabrication procedures of integrating SiN to SOI are illustrated in Fig. 41 and

explained below:

• Steps 1-4: starting with an SOI wafer with a 110-nm-thick Si layer and a 3-µm-

thick buried oxide layer, the Si devices are fabricated using the HSQ process;

• Step 5: Flowable oxide (FOx) is spin coated, which serves as the buffer layer

between the SiN and Si layers. As shown by the adjacent SEMs, the top surface

of the FOx layer is almost flat, which makes the planarization unnecessary.

In addition, after annealing in the oxygen ambient above 800oC, the FOx is

converted to SiO2 (see SEM in Step 6);

• Step 6: 400 nm SiN is deposited by LPCVD, and annealing is performed;

• Step 7: In order to align the SiN microresonators to the underneath Si waveg-

uides, we have markers made in the Si layer. However, the top SiO2 and SiN

make them invisible under the SEM of the EBL system. To solve this issue,

we use photolithography to open a window on top of these markers, and the

SiN and SiO2 are removed subsequently by a dry etching process. We also

note from the corresponding optical micrograph there that a few cracking lines

appear after the SiN annealing, which are acceptable as long as they have no

overlap with the devices.

• Step 8: SiN microresonators are fabricated, which have to be aligned to the

underneath Si waveguides using the markers in the Si layer. The adjacent optical

micrographs show that a good alignment between the SiN microresonator and

the underneath Si waveguide has been achieved.

The fabricated samples are characterized using the same setup discussed in Chap-

ter II. As illustrated in Fig. 42(a), the light is firstly coupled into the Si waveguide
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Figure 41: Fabrication procedures of integrating SiN to the SOI platform. Detailed
description for each step is provided in the text.
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input and then collected at the Si waveguide output. When the SiN microresonator is

on resonance, strong scattering light can be observed there from the top infrared cam-

era (see Fig. 42(a)), indicating a good coupling has been achieved between the Si and

SiN layers. The preliminary characterization results are shown in Fig. 42(b), where

an intrinsic Q around 2 million is measured for a 60-µm-radius SiN microresonator.

Note that this Q is about half of what we can get from a SiN-on-SiO2 structure. We

believe the decrease of the intrinsic Q is mainly due to the degradation of the SiN

material quality deposited on the nonuniform FOx surface (which is almost flat but

not strictly so). In the future, a chemical-mechanical polishing should improve the

surface quality of FOx.

Figure 42: (a) Illustration of the characterization process for the SiN-on-SOI samples:
light is coupled from the tunable laser to the Si waveguide input and then collected at
the Si waveguide output before sent to the detector. The top image is captured by the
infrared camera when the SiN microresonator is on resonance. (b) Characterization
result of a 60-µm-radius SiN microresonator fabricated on top of the SOI, showing
an intrinsic Q around 2 million.

5.6 Conclusions

We have proposed and demonstrated a new material platform by vertically integrating

SiN to the SOI platform. High-Q SiN microresonators have been demonstrated;

especially, microresonators with a 16 million intrinsic Q and a moderate size of 240
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µm radius are realized. Our experimental results also show that a good coupling

between the SiN and the Si layers can be achieved. In the future, by implementing

microheaters on top of the Si devices, low-loss optical devices with reconfigurability

and high power handling capability are expected to be demonstrated based on this

platform.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

The theme of this thesis is to apply travelling-wave microresonators such as microdisks

and microrings for on-chip optical interconnects and signal processing. Challenges

arising from these applications including theoretical and experimental ones are ad-

dressed. On the theoretical aspect, we start with a study on the coupled mode theory

(CMT), which is widely used in photonic circuit design to obtain the power coupling

coefficient between coupled devices. A modified version of CMT is offered in this work

for the TM-polarized light in high index contrast material systems. It does not only

justify the better performance of the old CMT compared to the one incorporating the

cross power overlapping factors, but also predicts better phase responses than all the

existing CMTs. Moreover, numerical simulations show that for asymmetric couplers,

it is essential to use the modified CMT to obtain the most accurate result.

The coupling-induced phase responses are also studied in this thesis, which is of

critical importance to coupled-resonator structures since the phase shift will change

the resonance frequency of the coupled resonator. A numerical approach based on

the finite element method is developed to study such phase responses. Compared

to the conventional approaches based on the finite-difference time domain method,

our numerical code is very efficient in the simulation time (minutes versus hours or

even days). The numerical study reveals that the phase responses from symmetric

couplers which have the symmetry about the wave propagating direction can be

simply estimated by a linear expression, while the ones from asymmetric couplers

are quite complicated. Therefore, symmetric couplers are recommended to designers

for coupled-resonator devices.
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Mode splitting and scattering loss are two important features commonly observed

in the spectrum of high-Q microresonators. Our review of the existing analytical

approaches shows that they have only achieved partial success. Especially, different

models have been proposed for several distinct regimes and cannot be reconciled. In

this thesis, a unified approach is developed for the general case, and we show condi-

tions under which our model can be reduced to the results of the existing approaches

in their respective regimes. A numerical study on the two-scatterer example shows

a good agreement between our model and the simulation. In contrast, the existing

models have significant errors.

On the experimental aspect, we first develop a new fabrication recipe with a focus

on the accurate dimensional control and low-loss performance. For coupled-resonator

devices, it is essential to have the dimensional control on the order of nanometers

so the fabrication-induced resonance frequency mismatch is negligible. For high-Q

microresonators, sidewall roughness has to be minimized to reduce the propagation

loss. In this work, HSQ is employed as the electron-beam resist, and the lithography

and plasma etching steps are both optimized to achieve vertical and smooth sidewalls.

This recipe has been widely used within the Photonics Research Group for many

different applications.

A third-order temperature-insensitive coupled-resonator filter is designed and demon-

strated in the silicon-on-insulator (SOI) platform, which serves as a critical building

block element in terabit/s on-chip networks. Two design challenges are overcome.

The first one, being broadband engineering, is addressed by using microring res-

onators with a small free spectral range instead of racetrack resonators; in addition,

the coupling has been engineered so the flat-band response is preserved over a large

wavelength range. The second challenge, being a temperature-insensitive design, is

addressed by overlaying a polymer with a negative thermo-optic coefficient on top of

the silicon waveguide. Moreover, through careful balancing between the dispersion
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of the bandwidth and the thermal property of the filter, the redundant bandwidth of

the filter channel caused by the dispersion can be employed as a thermal guard band.

As a result, the filter can accommodate 21 WDM channels with a data rate up to 100

gigabit/s per wavelength channel, while providing a sufficient thermal guard band to

tolerate more than ±15oC temperature fluctuations in the on-chip environment.

In this thesis, high-Q microdisk resonators are proposed to be used as low-loss

delay lines for narrowband filters. To selectively couple to one of the radial modes of

the microdisk and also to achieve a strong coupling, pulley coupling scheme is used

based the on the modified coupled mode theory. The width of the access waveguide

is chosen for the phase matching to the third-order radial mode while the coupling

length is optimized for the maximum suppression of other radial modes. A first-order

tunable narrowband filter based on the microdisk-based delay line is experimentally

demonstrated in an SOI platform, which shows a tunable bandwidth from 4.1 GHz

to 0.47 GHz with an overall size of 0.05 mm2. A few problems associated with

silicon microdisk resonators are also identified. First, the intrinsic Q of the silicon

microdisk resonator is still low (∼ 1.5 million), which limits the minimum bandwidth

that can be achieved. Second, silicon is a strong nonlinear material, which limits the

maximum power that can be sent into the filter (generally less than 1 mW). While

the first problem may be overcome by improved fabrication techniques, the second

one is intrinsic to silicon and cannot be easily avoided in the SOI platform.

To address the challenges for the resonator-based delay lines encountered in the

SOI platform, we propose to vertically integrate silicon nitride to the SOI platform,

which can potentially have significantly lower propagation loss and higher power han-

dling capability. A complete fabrication procedure, including the silicon nitride film

growth, annealing, EBL patterning and plasma etching, is developed and optimized.

High-Q silicon nitride microresonators are demonstrated; especially, microresonators

with a 16 million intrinsic Q and a moderate size of 240 µm radius are realized, which
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is one order of magnitude improvement compared to what can be achieved in the

SOI platform using the same fabrication technology. We have also successfully grown

silicon nitride on top of SOI and a good coupling has been demonstrated between the

silicon nitride and the silicon layers.

In the end, we would like to discuss a few possible extensions of this thesis work

in the future, which are listed below.

• For the third-order coupled resonator filter, we envision the addition of active

switching functionality to the filter through carrier injection (either all-optically

or electrically), and a high-performance switch with a switching speed on the

order of nanoseconds is expected. In addition, higher-order filters can be used

to achieve a better channel isolation and therefore a higher on-off contrast.

• We have demonstrated a first-order tunable filter using microdisk-based delay

lines. In the future, more complex functionalities can be demonstrated using

such a filter as a unit cell in a cascaded structure. In fact, a forth-order filter has

been demonstrated in Ref. [60]. As the number of stages increases, it becomes

very challenging to configure all the tuning components (i.e., microheaters) in

a systematic way. Therefore, an efficient algorithm has to be developed for an

automatic reconfiguration strategy. Moreover, to apply such a technology for

real applications, a number of challenges have to be addressed. For example,

the optical chip has to be packed in a way so the external laser can be easily

plugged into the chip with a negligible insertion loss.

• For the silicon nitride on the SOI platform, all the necessary elements have been

demonstrated. In the future, by implementing microheaters on top of the silicon

devices, low-loss optical devices with reconfigurability and high power handling

capability are expected to be demonstrated based on this platform.
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