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SUMMARY

The major achievements of this work are based on two categories: (A)
introduction of an advanced simulation technique in both time domain and frequency
domain, and (B) realistic and reliable models for converters applicable to analysis of

alternative transmission systems.

The proposed modeling-methodology using a combination of model
quadratization and quadratic integration has been demonstrated as a more robust, stable,
and accurate method for power system analysis than previous numerical-methods. In
particular, the quadratic-integration method is free of artificial numerical-oscillations
exhibited by trapezoidal integration (which is the most widely used method for power-
transient analysis) during simulations of power systems with nonlinearities and switching
subsystems. Artificial numerical oscillations can be the direct reason for switching
malfunction and switching failure, even though the system to be analyzed is in a stable
condition. However, by the application of the quadratic-integration method, fictitious
oscillations can be easily eliminated without any additional control algorithm (such as
numerical stabilizers, damping adjustment methods, and wave digital filters); and

accurate simulations can be assured of power systems.

Also, model quadratization allows nonlinear equations to be solved without any
approximation methods, such as the linearization of nonlinear equations. In this method,
high-order, nonlinear equations are transformed into linear and quadratic equations, in
which the highest order is not bigger than two. After model quadratization, Newton’s
method is applied to iteratively solve the quadratized models. It is worth noting that the

quadratized models are inherently best matched to Newton’s method. Therefore, the

XVi



combination of model quadratization and quadratic integration is suitable for simulations

of network systems with nonlinear components and switching subsystems.

Realistic and reliable models by the combination method of model quadratization
and quadratic-integration method can be used for advanced designs and optimization
studies for alternative transmission systems; they can also be used to perform a
comprehensive evaluation of the technical performance and economics of alternative
transmission systems. For example, the converters can be used for comprehensive
methodology for determining the optimal topology, kV-levels, etc. of alternative
transmission systems for wind farms, for given distances of wind farms from major
power grid substations. In this case, a comprehensive evaluation may help make more-
informed decisions for the type of transmission (HVAC, HVDC, and LFAC) for wind

farms.
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CHAPTER 1

INTRODUCTION AND OBJECTIVE OF THE RESEARCH

1.1 Problem Statement

The increasing interest and gradual necessity of using renewable resources, such
as wind, hydro and solar energy, have brought about strong demands for economic and
technical innovation and development. In particular, both the interconnection and
transmission of renewable resources into synchronous grid systems have become
promising topics to power engineers. Generally, switching systems, such as HVDC-
transmission systems and boost-type converters, have been used for the robust and
reliable transmission and interconnection of renewable energy into central grid systems,
since switching systems can easily permit excellent controllability of electrical signals:
changing voltage and frequency levels, and power factors. Converter systems recently

seem to be key factors in the integration of renewable resources.

Furthermore, since the demands for using long-distant sources and linking
different-frequency systems have been increasing, transmission systems using HVDC-
transmission systems and LFAC-transmission systems are becoming two of the
promising technologies to meet the need for reliable and cost-effective transmission of
electrical power from renewable resources. In particular, the rapid increase of wind
power in remote and offshore locations has accelerated the necessity of more advanced,
reliable and cost-effective applications of alternative transmission systems. A simulation

technique in high fidelity can be one of many useful tools for advanced design and



optimization of alternative transmission systems with switching subsystems (containing

AC-to-DC / DC-to-AC converters, cycloconverters, boost-type converters, etc.).

Numerical integration methods have been extensively studied and applied to
transient analyses of power systems. The most predominant method among transient
simulation methods is the trapezoidal-integration method, since this method has
demonstrated the following properties: simplicity in application, adequate precision, and
absolute stability [1], [2]. However, trapezoidal integration is problematic when applied
to network systems with nonlinearities and switching subsystems (such as HVDC-
transmission systems and LFAC-transmission systems). Fictitious oscillations can be
generated, when the state of the network model suddenly changes. In addition, fictitious
oscillations can be shown at certain combinations of integration time-steps and natural
frequencies of systems to be analyzed. These fictitious oscillations are an artifact of the
trapezoidal-integration method. Therefore, the system model with switching subsystems
and nonlinearities cannot be properly analyzed by the pure application of trapezoidal
integration. Additional algorithmic controls are needed with trapezoidal integration when

it is used in systems with power electronics (switching systems) and nonlinearities.

To suppress the numerical oscillations derived from trapezoidal integration,
several additional-algorithms have been proposed, such as the numerical stabilizer
method [3], (b) critical damping adjustment (CDA) [4], [5], and (c) the wave digital filter
(WDF) [1], [6]. Numerical stabilizers slightly change both the structure and the state
equations of the network model, and cannot flawlessly eliminate fictitious oscillations in
some cases. The CDA method requires variable time-steps. These variable time-steps

require the companion matrices of all the devices to be recomputed for critical conditions.



The sampling rate during critical conditions is twice that during standard conditions. The
WDF method can generate some abnormal distortions, and these distortions may be

problematic in some cases, thus leading to less accurate results.

Therefore, trapezoidal integration is not a proper method for mixed power
systems with nonlinearities and switching systems, even though this method has been
successfully used for each component, which should be a nonlinear component and a
switching system, with additional algorithms. Mixed-power systems have barely been
modeled by the application of trapezoidal integration, and more reliable and stable

methods are required for power systems to integrate renewable resources.

1.2 Objectives of the Research

The objectives of this research are (a) to introduce a high-fidelity simulation-
method for alternative transmission systems (HVDC and LFAC) using converters; (b) to
develop a realistic and accurate model of converters (such as phase-controlled converters
and PWM converters); and (c) to study the capability of alternate transmission topologies
using the proposed modeling method and developed converters. Consequently, the
combination method of model quadratization and quadratic integration will be applied to

several converter models in this work.

The proposed method is motivated with two concepts: (a) nonlinear model
equations are converted into a set of linear and quadratic equations with the introduction
of new additional variables (model quadratization) and (b) the resulting equations are
integrated, assuming a quadratic variation within the integration time-step (quadratic

integration). The quadratic-integration method has demonstrated advanced properties to



eliminate the artificial numerical oscillations exhibited by the application of trapezoidal
integration and to enhance simulation accuracy. Since the quadratic-integration method
has a natural characteristic to eliminate fictitious oscillation, additional algorithmic
controls to suppress numerical oscillation are not needed. The quadratic-integration

method is highly robust and stable.

Quadratic integration accompanies model quadratization to model power systems
with nonlinearities and switching systems. Generally, the mixed-power systems of
nonlinearities and switching systems have barely been modeled, since numerical
oscillations, which are frequently generated when they are modeled, give difficulty to
control switching systems and require a complex modeling process to suppress the
numerical oscillations. However, the proposed modeling methodology, a combination
method of model quadratization and quadratic integration (QMQI), can be applied to the
mixed-power systems with nonlinearities and switching systems without additional
algorithms, since the method has a natural characteristic to eliminate artificial oscillations.
Modal quadratization is introduced for high-order nonlinearities such as saturable
reactors and saturable transformers. Using modal quadratization, high-order nonlinear
equations can be converted into a set of linear and quadratic equations. Consequently,
quadratized models are denoted as linear, quadratic, and differential equations. Then,
quadratic integration is applied to the quadratized models to transform the differential

equations into algebraic equations.

The QMQI method permits modeling and analyzing power systems with
nonlinearities and switching systems, with great accuracy and simplicity. In this research,

the superior properties of the QMQI method to analyze power systems with nonlinearities



and switching systems are presented in comparison to two other methods (the trapezoidal
integration method, which is one of the most popularly used methods for power system
analysis and the cubic integration method that is an extension of trapezoidal integration
and the quadratic-integration method). After demonstrating the superior properties of the
QMQI method, this method is applied to converters, such as phase-controlled converters,
PWM converters, and push-pull, resonant converters, for reliable and realistic models in

both the frequency domain and time domain.

Using reliable and realistic models, alternative transmission systems, such as
HVDC-transmission systems and LFAC-transmission systems, are analyzed and studied
for cost-effective and technically suitable interconnections between synchronous grid
systems and renewable resources. Specifically, in this work, LFAC-transmission systems
connecting wind-farm systems are analyzed by performing operational studies, transient-
stability studies, power-transient studies, and harmonic studies. In this case,
comprehensive evaluations may help make more informed decisions for the type of

transmission (HVAC, HVDC, and LFAC) involving for the wind farms.

1.3 Thesis Outline

A brief outline of the remainder of this dissertation is presented in this section:

In Chapter 2, the origin and history of the research topic is described. First,
general descriptions of alternative-power-transmission systems, for example, HVDC-
transmission systems and LFAC-transmission systems, are presented. Then, a transient-
simulation method for alternative transmission systems with switching subsystems is

presented. In addition, the results of a literature survey are presented.



A new type of modeling methodology using a combination of model
quadratization and quadratic integration, which is denoted as the QMQI method in
brevity, is presented in Chapter 3. In this chapter, quadratic integration is compared to
other methods to demonstrate the superior properties of the QMQI method in analyses of
power systems with nonlinearities and switching subsystems. Also, the QMQI method is
applied to a push-pull, resonant converter to show how to model converters by the

application of the QMQI method.

Chapter 4 provides converter models in a (quasi-) steady state using an averaging
modeling concept. In this chapter, averaging methods of a three-phase, six-pulse
converter, a three-phase, six-pulse cycloconverter, and a three-phase, PWM converter are
presented. The averaged converter models in a steady-state are suitable for the
quantitative analysis of power systems, and the averaged converter models in a quasi-
steady state are used to analyze the dynamic behavior of power systems at a specific

frequency.

Chapter 5 provides a brief explanation of time-domain models of a three-phase,
six-pulse converter, a three-phase, six-pulse cycloconverter, and a three-phase, PWM
converter. Since the time-domain models are realistic models using physical components,
the equivalent circuits and controllers of converters are modeled in a realistic manner.
Consequently, the QMQI method is applied to the equivalent circuits and controllers for

the converter models, leading to realistic and accurate converters.

In Chapter 6, demonstrative examples of LFAC-transmission systems are

presented and studied. The LFAC-transmission systems are a new type of transmission



system integrating wind-farm systems to main grid systems, using an operating frequency
of 20-Hz. Using the converter models developed in Chapter 4 and Chapter 5, operational
studies, voltage stability studies, power transient studies, and harmonic studies are

performed in this chapter.

Finally, chapter 7 provides a concise description of completed and remaining

work.



CHAPTER 2

ORIGIN AND HISTORY AND LITERATURE REVIEW

In this chapter, the origin and history of both the alterative-transmission systems
and numerical integration methods are presented. The main focus of this work is to
propose a new modeling approach (which is named QMQI) to model power systems with
nonlinearities and switching systems, and to realistically model converters (containing
PWM converters, phase-control converters, and a push-pull resonant converter) for
alternative transmission systems. So, the origins and history with a substantial literature
survey of alternative transmission systems using converter systems and the modeling
methodologies to solve these systems are presented in this chapter. Subsequent sections

present origins and history according to the following subtitles:
« HVDC-transmission systems;
» LFAC-transmission systems; and

» Numerical integration methods.

2.1 HVDC-Transmission Systems

2.1.1 Overview

As a very well-known historical fact, the first commercial electrical power
transmission was developed with direct current (DC) by Thomas Alva Edison in 1882.
However, the difficulty in transmitting DC-power to remote utilities, which is due to low
voltage, restrained its wide utilization. With the development of electrical machines

(generating alternating power) and transformers (increasing or decreasing voltage levels),



alternating-current (AC) electrical systems have become worldwide dominant
applications to transmit electrical energy [7]-[10]. Therefore, AC-systems have governed
in terms of generation, transmission, and distribution of electrical power for over 125
years and continuing to do so.

Since power electronics (semiconductor devices) with improved rated voltage (in
the case of a thyristor, the rated voltage is up to 10-kV) have become available as
applications in high-power systems, HVDC-transmission systems have increasingly
become a practical and commercially viable solution for economical alternative
transmission systems to transmit bulk electrical power [7]. Since the first commercial
HVDC-transmission system was built on the island of Gotland, Sweden in 1954, HVDC
systems have spread out around the world. The highest total rated power (the greatest
capacity) of HVDC transmission reached 6300-MW (the Itaipu HVDC-transmission

system in Brazil [8]).

2.1.2 Usual Configurations of HYDC Systems

HVDC-transmission systems consist of two converter stations of a sending end
(rectifier) and a receiving end (inverter). The rectifier transforms AC- to DC power, and
the inverter transforms DC- to AC power. Each converter station is comprised of several
subsystems: electrical valves, converter transformers, AC-harmonic filters, DC-harmonic
filters, controllers, etc. [9]. Figure 2.1 shows the typical configurations of HVDC-

transmission systems.

HVDC-transmission systems can be classified into monopolar, bipolar, and back-
to-back link. The monopolar system is the cheapest and simplest configuration, since it
needs only one conductor line and uses the earth as the return conductor. Also, a metallic
return can be used in case the ground return is not allowed. The bipolar configuration has

two conductor lines with different polarities (positive and negative), and can be seen as a



combination of two monopolar systems. Thanks to the combination of two monopolar
systems, one monopolar system can be used with a ground return in case a fault condition
is generated in one pole. In the back-to-back link, the two converters (rectifier and

inverter) are located next to each other, and they are directly connected [10].

A Monopolar HVDC link

Source 1 Source 3
—®— T—X—©
Bus 1 Bus 2
j—%n%li- [REig op
Source 2 Source 4

@_ X Rectifier / Inverter  Inverter / Rectifier X (:)

A Bipolar HVDC link
Source 1 Source 3

O—®—S

Bus 1 Bus 2

Source 2 Source 4

@— g —_— Rectifier / Inverter  Inverter / Rectifier E— g —@

A Back-to-Back HVDC link

Source 1 Source 3
O—R— —R—©
Bus 1 Bus 2
II—%\%“ 1
Source 2 Source 4

@ X Rectifier / Inverter  Inverter / Rectifier X @

Figure 2.1: Example configurations of HVDC links: (a) monopolar HVDC link, (b)
bipolar HVDC link, and (c) back-to-back HVDC link.
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2.1.3  Application of HVDC Systems

The introduction of HVDC-transmission systems is justified for economical
transmission from remote areas and the interconnection of asynchronous systems. High-
voltage, alternating-current (HVAC) systems can exhibit some disadvantages in certain
cases: (a) HVAC-transmission systems can suffer from higher electrical losses derived
from the skin effect. (b) Electric-power transmission via a long cable is impractical, since
high capacitance is derived from charging currents. (c) Asynchronous systems (different
frequency systems) cannot be easily connected to each system. However, HVDC-
transmission systems can solve these disadvantages with more economical applications
[10]. Therefore, HVDC-transmission systems can be more attractive in the following

cases, when compared with HVAC-transmission systems.

«  Electric-power transmission from remote areas;
« Interconnection of asynchronous systems; and

»  Electric-power transmission via long cable.

2.1.3.1 Application of HVDC Systems

Most of the renewable resources, such as hydro power, wind power, and solar
power, are located in remote areas from power grids. As a well known fact, hydropower
resources are concentrated around great rivers, such as the Amazon River and the Congo
River; wind power can be located in offshore fields; and solar power resources can be
easily gathered in deserts. For these renewable sources from remote areas, HVDC-
transmission systems are more reasonable than HVAC-transmission systems in terms of
economical aspects. The inductance and electrical losses along transmission lines can be

generated by the operating frequency in AC-transmission. However, DC-transmission
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systems are not affected by such inductance and electrical losses, but are dependent only

on conductor dc-resistance.

In addition, HVDC-transmission systems only need one or two conductor(s): In
the case of ground return, only one conductor is needed, and two conductors are needed
for the metallic return in the monopolar and bipolar configurations. When compared with
HVAC-transmission systems, HVDC-transmission systems can transmit the same
electrical energy with fewer conductors [10], [11]. Therefore, bulk-power transmissions
are possible by HVDC-transmission systems with lower losses and fewer conductors

from remote areas, compared to HVAC-transmission systems.

2.1.3.2 Interconnection of Asynchronous Systems

The incipient utilizations of HVDC-transmission systems were intended to
interconnect either regional or national grid systems with different frequencies or
asynchronous networks. In particular, the increased population of wind turbines has
accelerated the necessity of robust and stable interconnections between wind farms and
power grids. Furthermore, HVDC-transmission systems have created an international
exchange of surplus electrical energy among nations with different frequencies. In this

case, back-to-back converters can be used without long DC-lines.

Interconnections between remote wind turbines and power grid can be offered
effectively by HVDC-transmission systems, since these HVDC-transmission systems can
be used as a collector system, reactive power compensator, and outlet from remote wind
turbines. In this case, converters with an on/off capability can be used to transmit

electrical power, and to compensate for reactive power.

These interconnections can work as a firewall between connected systems [9]-

[11]. In the case of either system failure or fault in one of systems, HVDC-transmission

12



systems can prevent the propagation of disturbances from a faulted system, and can
separate properly working systems from the contaminated system. The Northeast
blackout in 2003 was an example of such an operation as a firewall against cascading

outages [11], [12].

2.1.3.3 Electric-Power Transmission via Long Cable

HVDC-transmission systems can be one of the viable solutions for long
underground or submarine cables. HVAC-transmission via long cable suffers from
reactive components (capacitance); and therefore, cable lines have to be compensated
with reactors (inductors). Even though the capacitance can be immediately compensated
with inductance, the installation cost of inductors is not practical in long-distance
transmission via cables. In the case of submarine cables, inductive compensation is
impractical or is not economically feasible. The break-even distance between HVDC-
transmission and HVAC-transmission does not exceed 50-km in economical aspects.
However, the operation of HVDC cable transmission is not affected by the capacitance,
and HVDC-transmission systems are feasible for lengths of hundreds of kilometers to
transmit electrical power. Therefore, HVDC-transmission systems are more cost effective

and are more technically feasible for long-distance cables.
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2.2 LFAC-transmission Systems

2.2.1 Overview

Low-frequency, alternating-current (LFAC) transmission systems are more
advanced and cost-effective technology than HVDC-transmission systems for short and
intermediate distances (50-150km) [13]. The basic concept of LFAC transmission is to
use frequency (16.666/20Hz) lower than nominal frequency (50/60Hz) by introducing a
phase-controlled thyristor-cycloconverter. LFAC-transmission systems are very similar to
HVDC-transmission systems, except that they use a cycloconverter instead of a DC-to-
AC converter. This usage makes the economics of their transmission systems more
effective. For example, the rating voltage of the electrical switches in their converters can
be reduced, and high-voltage transmission is available, since existing transformers can be
used in low-frequency transmission. Furthermore, existing technologies, such as
transmission-line design and protection systems used in 60-Hz networks, can also be used

for LFAC-transmission systems [14], [35].

2.2.2 Proposed Configuration of LFAC-Transmission Systems

LFAC-transmission systems are based on converters, such as AC-to-DC or DC-
to-AC converters and AC-to-AC converters. Figure 2.2 shows examples of LFAC-

transmission systems.
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Figure 2.2: Example configurations of a LFAC-transmission system for remote wind
farm: (A) DC collection and a LFAC-transmission system, and (B) LFAC collection
and transmission.

o1k

In the transmission system of example (A), wind turbines are connected to each AC-to-
DC converter, and electrical power from wind turbines can be collected as DC power. A
DC-to-AC converter offers an interconnection between DC systems and an LFAC-
transmission system, and a cycloconverter offers an interconnection between the LFAC-
transmission system and a 60-Hz power grid. The example configuration (B) shows an
LFAC-transmission system with doubly-fed induction machines (DFIM). Electrical

power can be accumulated and transmitted using LFAC power. The LFAC-transmission
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system is connected to the power grid via a phase-controlled cycloconverter in example

(B).

2.2.3 Application and Benefit of LFAC-Transmission Systems

Typically, the geographic sites for wind-power plants are in remote locations and
offshore locations (tens of miles from shore), so as to capture strong wind capacity. In
these cases, the transmission of wind energy to main grids (central loads) is a major issue
for economically suitable connections and stable, robust integration of wind farms [15].
Presently, HVAC- and HVDC-transmission systems have been researched, and well

established for wind farms.

However, for the transmission from offshore wind farms of short and intermediate
distance (50km-150km), HVDC-transmission systems are not economically effective,
since the initial investment costs for HVDC-transmission systems are more expensive
than those of onshore wind farms. The converter substation to collect and transform the
electrical energy (AC into DC) is needed nearby the wind farms on the sea. That is, the
installation cost is increased, and HVDC-transmission systems for offshore wind farms

are not effective, compared with HVAC for short and intermediate distances [13].

LFAC-transmission systems can be applied for offshore wind farms. As in the
case of Figure 2.2 (B), the converter substation is only needed in on-shore to offer the
interconnection between the wind farm and the main grid via a phase-controlled
cycloconverter; and thus, the initial investment can be reduced. Furthermore, LFAC
transmission can increase the transmission capability, since the impedance is theoretically

one-third that of a 60-Hz system.
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2.3 Numerical Integration Methods

2.3.1 Overview

Numerical-integration methods are intended to solve problems of continuous
mathematics, according to the process of creating, analyzing, and implementing proper
algorithms. Normally, these problems, in which the variables change continuously, are
directly derived from physical components in the natural world. However, the
mathematical problems cannot usually be analyzed and solved exactly in explicit
calculations and the necessity of approximate methods to solve these problems has been

emphasized for several generations [16].

In power engineering, the mathematical model derived by physical components
(circuit elements or power devices) is essential for analyzing dynamic power systems.
However, these physical components cannot exactly be modeled by intuitive methods,
since the physical components are normally addressed by either differential or algebraic
equations. In such case, differential equations can be recomputed into algebraic equations

and solved in simple computation processes by the application of numerical methods [1],

[3], [17].

Many numerical integration methods have been introduced and studied for power
system analysis for over a century. The backward-Euler method is one of the most
popularly used methods, and is the simplest method among linear-multistep methods for
power-system analysis. However, the backward-Euler method is not proper for a precise
analysis of power systems, since the method is first-order accurate for solving ordinary

differential-equations (ODE). Another method among well-known linear-multistep
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methods is trapezoidal integration. The trapezoidal-integration method has become the
dominant one among numerical methods in power-system simulation with the properties

of low distortion and absolute stability (A-stable) [1].

However, trapezoidal integration is problematic when applied to network systems
with nonlinearities and switching subsystems: (a) fictitious oscillations can be generated
when used as a differentiator; and (b) precision problems still exist in analyses by the

application of trapezoidal integration (which is second-order accurate) [1], [3], [17].

2.3.2 Trapezoidal-Integration Method

One of the most popularly used methods among numerical-integration methods
for power-system analysis is trapezoidal integration. The trapezoidal-integration method
has demonstrated valid accuracy and reliability in the time-domain analysis of power
systems consisting of linear components. Specifically, since trapezoidal integration is
simple and fast, the method is popularly used in analyses of mass power systems.

The trapezoidal-integration method belongs to the following classes of methods:
e Implicit numerical-methods; and
e Collocation methods.

The trapezoidal integration rule is an implicit method. In the case of the explicit
methods, the algebraic equations of the system to be analyzed can only be represented as
the relationship of the state variables at previous times. Otherwise, in the case of the
implicit methods, the algebraic companion equations after the application of one among
the numerical methods can be denoted as a combination of state variables at different

time instances (present and previous times). The Euler method is one of the explicit
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methods, and this method can be denoted as follow:  X,,1 =X, +hf(t,,X,) , where

Xn41 IS the unknown value at time t,,1, and X, is the known value at time t,,. The

unknown state can be represented only by the previous state; therefore, the equation can
be solved explicitly. However, the trapezoidal-integration method is an implicit method,
and its application can yield system equations with combinations of both unknown and
known values. The equations have to be modified as a compact matrix form, and can be
solved by forward and backward substitution [18]. Therefore, the implicit methods take
more time to compute the system equations compared with the explicit methods, since the
implicit methods need more computations during each time-step. However, the implicit
numerical integration methods use more information to compute unknown values, so that
the methods are more robust, accurate, and stable for analyzing power transient systems.
That is, the implicit numerical methods present better performance to analyze complex,
stiff power systems. Since trapezoidal integration is also in the family of implicit methods,
it is a robust and absolute stable method (A-stable) [1]. Assuming that the model
equations of a system are stable, the results by application of trapezoidal integration are

also stable.

Trapezoidal integration is one of the family of collocation methods. In more detail,
the trapezoidal-integration method is a member of the Lobatto IIIA among implicit
Runge-Kutta methods. The Lobatto 111A methods are known as collocation methods and
the functions (polynomial equations) for the numerical-integration methods in the
methods are sampled at both end-points of the integration time-step as well as the inner
collocation-point(s). The dominant error of the Lobatto IlIA is defined as order 2s-2,

where s is a stage value and is matched to the number of collocation points. The
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trapezoidal is sampled at two collocation points of both ends of the integration time-steps.
That is, the trapezoidal-integration method is a second-order accurate method. Also, the

implicit Runge-Kutta methods are known as A-stable methods [19].

Therefore, the trapezoidal-integration method has become the most dominantly
used method for power transient simulations with the following properties: stability,
simplicity, and proper precision. For example, trapezoidal integration is implemented in

the EMTP, Spice, and Virtual Test Bed [1], [3].

2.3.3 Artificial Numerical Oscillation

Trapezoidal integration is based on two assumptions: (a) systems can be linearly
modeled; and (b) the state variables of the systems vary linearly within each time-step
[18]. In the two conditions, the trapezoidal-integration method has demonstrated
numerically stable characteristics and proper precision to analyses power systems.
However, most power systems integrating renewable resources include nonlinear
components and switching systems, such as saturable core transformers and converters.
Trapezoidal integration generates numerical oscillations, while the method is applied to
nonlinearities and switching systems. Numerical oscillations are not natural phenomena
from systems to be analyzed, but are artifacts derived from the application of the
trapezoidal-integration method. Particularly speaking, in the case of analyzing power
systems with nonlinearities and switching subsystems, the state variables of network
models suddenly change and numerical oscillations are frequently generated. Also, it is
known that numerical oscillations can be shown at certain combinations of integration

time-steps and natural frequencies of a system to be analyzed [17]. These phenomena
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have been frequently found during the state changes of electrical switches in switching
systems. When the valves of switching systems change the state from on-state to off-state,
the combination of the integration time-step and the natural frequency of the switching
systems could lead numerical solutions to oscillation zones (Note that the reason for the
phenomena is mathematically analyzed in the next section). In this case, the switching
systems can generate numerical oscillations, which can be a direct reason for switching
misfiring and failure. Figure 2.3 shows the true solutions and the oscillatory solutions,
derived from the trapezoidal-integration methods, of a three-phase, six-pulse converter:
(@) the true value of line-to-line voltage (A-B); and (b) the results by the application of
the trapezoidal integration of line-to-line voltage (A-B). The results show that the
trapezoidal-integration method suffers from certain fictitious oscillations as reported in

previous publications [1], [3], [17].
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Figure 2.3: Numerical oscillations: (a) the true value of line-to-line voltage; and (b)
the results by the application of the trapezoidal integration of line-to-line voltage of
a six-pulse converter.
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2.3.4 Elimination of Numerical Oscillations

In an analysis of power systems with nonlinearities and switching subsystems
using trapezoidal integration, numerical oscillations have decreased the simulation
efficiency and precision. An additional algorithm to eliminate or suppress the problems is
needed. Thus, several approaches have been proposed for suppressing numerical
oscillations. The most well-known methods can be presented as follows:

e External damping (stabilizer method);
e Critical damping adjustment (CDA); and

e Wave digital filter (WDF).

The external damping method adds fictitious resistance (stabilizer) to systems
with an artificial, numerical, and oscillatory solution. Fictitious resistance can be added in
parallel with the inductances and in series with the capacitance [20], [21], [22]. However,
numerical stabilizers slightly change both the structure and the state equations of the
network model and cannot flawlessly eliminate fictitious oscillation. The major
disadvantage of adding fictitious damping using stabilizers is that the rest of the normal

network system response is distorted by the phase errors introduced by the damping [20].

The most widely used method is critical damping adjustment (CDA). This method
uses a combination of both trapezoidal integration and the backward-Euler method. The
backward-Euler method is free of numerical oscillations, and therefore, is used during
critical conditions when the switching systems change the state. However, the method
requires variable time-steps, leading to different sampling rates. The sampling rate in

critical conditions is twice that during standard conditions, and the variable time-steps
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require the companion matrices of all devices to be recomputed for critical conditions.
Furthermore, the backward-Euler method is first-order accurate so that the combination
of both the trapezoidal integration and backward-Euler method lowers the degree of

precision [1], [17], [20].

The WDF method is also a well-known implementation used to suppress
numerical oscillations. This method uses two parameters, referred to as incident and
reflected voltage wave quantities and port resistance. With these quantities, the WDF
method establishes the series and parallel adaptors originating from the physical
components, and the power networks can be modeled by connecting the series and
parallel adaptors [2], [4]. However, the WDF is an auxiliary algorithm added to analog
systems to suppress fictitious oscillation, and the method can generate some distortions

unrelated to the true values [2].

Therefore, the trapezoidal-integration method is not suitable for power systems
with nonlinearities and switching systems, even though additional algorithms can
eliminate or suppress numerical oscillations. The additional algorithms require a complex
modeling process as well as decreased simulation accuracy. Better simulation methods

are needed for power systems interconnecting renewable resources and grid systems.
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CHAPTER 3

A NEW MODELING APPROACH: THE QMQI METHOD

A new modeling approach is introduced for modeling and analysis of the mixed
power-systems with nonlinearities and switching subsystems, such as the HVDC-
transmission systems and the LFAC-transmission systems. The modeling method uses a
combination of model quadratization (quadratized models) and quadratic integration and
the combination method is denoted as the QMQI method for brevity. This QMQI method
is suitable for power systems of switching subsystems with highly nonlinear components
such as saturable core reactors and transformers, since the method is free of numerical
oscillations, and nonlinear equations are treated without simplification or approximation of

nonlinear equations.

In this chapter, the superior properties of the quadratic-integration method are
presented in comparison to other numerical methods of trapezoidal integration and cubic
integration, which are in the family of collocation methods among implicit Runge-Kutta
(RK) methods. For this purpose, several simple switching systems are modeled and
simulated by the application of three numerical-integration methods. Also, the modeling
methodology using QMQI is carefully explained with the modeling process of a push-pull
resonant converter. Subsequent sections present the performance properties and the
modeling process using the QMQI method, according to the following subtitles:

e Basic concept of the quadratic integration;

e Performance properties in comparison to other methods; and
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e Detailed modeling process using QMQI.

3.1 Basic Concept of Quadratic Integration

The quadratic-integration method is a special case in a class of methods known
as collocation methods [1] and is sampled at three collocation points, as shown in Figure

3.1.
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Figure 3.1: Graphical illustration of quadratic integration.

Quadratic integration is based on two concepts: (a) The time-domain functions vary
quadratically within the integration time-step; and (b) the model of the system is linear or
quadratic. With these assumptions, the general form of the time-domain functions can be
written within the integration time-step as follows:

x(r)=a+b-r+c-7° (3.1.1)
The three parameters of a, b, and c in Equation (3.1) can be expressed as the sampled

values of x(t-h), xm, and x(t) at the three collocation-points. The results are as follows:
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a=x(t—h), (3.1.2)

b:%(—Bx(t—h)+4xm —x(t)), and (3.1.3)

c:h%(x(t—h)—me +X(t)), (3.1.4)

where xq, is the value x at the mid-point (ty).
Then, the integration of the quadratic function is straightforward. The procedure will be
illustrated with a first-order, dynamical system:

dx(t) _
— A (3.1.5)

The equation above is integrated from t-h to t and from t-h to t-h/2, yielding:

x(t) — x(t—h) = A-J.tihx(r)dr ,and (3.1.6)

X —x(t—h) = A-jt‘_’h“’zx(r)dr. (3.1.7)

Upon evaluation and rearrangement of the integrals, the following matrix equation is
obtained (algebraic-companion form), which can be applied repetitively to provide the

solution to the differential equation:

h h ( 5h j
—A 1-ZA I+ A
%" 3 ,R(t)}z 2] xt=h) (3.1.8)
l——A —Z2A| LXm (I+—A)

6 3 6

The algebraic form of Equation (3.1.8) can be used as a solution method of ordinary-
differential equations (ODE). In this case, quadratic integration has demonstrated the
following advantages: (a) the natural elimination of artificial numerical oscillations; and
(b) better performance in stability and accuracy than those of trapezoidal integration.

These performance properties are presented in the next subsection.
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3.2 Properties of Quadratic Integration

In this section, the superior properties of the quadratic integration (QI) method
are demonstrated in comparison to other collocation methods of trapezoidal and cubic
integration (T1 and CI). Quadratic and cubic integration are extensions of trapezoidal
integration, which can be viewed as a collocation method. In more detail, the three
numerical integration methods are the members of Lobatto I1IA among implicit Runge-
Kutta methods. The Lobatto I11A methods are known as collocation methods and the
functions (polynomial equations) for numerical integration methods are sampled at both
end-points of the integration time-step as well as the inner collocation point(s). The three
numerical integration methods of TI, QI, and CI are a two-, three-, and four-collocation
method, respectively, as shown in Figure 3.2. Also, other forms of collocation methods

can be induced while the collocation points are increased.
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Figure 3.2: Graphical illustration of the trapezoidal, quadratic, and cubic-
integration method
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Since the numerical integration methods are sampled at collocation points, high-order
methods offer more accurate simulation results in the time-domain analysis. However,
the computation burden and calculation complexity are substantially increased according
to the number of collocation points. For example, a first-order dynamical system is
presented in Equation (3.2.1), and the algebraic companion form (ACF) of the dynamical
system derived from the three numerical-integration methods (T1, QI, and CI) are induced,
as shown in Equations (3.2.2) to (3.2.4), respectively.

dx(t)

e AX(t) (3.2.1)
The ACF by the application of Tl is at each time-step:
h h
——A-Xx({t)=—=A-x(t-h) (3.2.2)
2 2
The ACF by the application of QI is at each time-step:
h 2h h
——A-=A —A
h6 ﬁ .{X(t)}_ f;] X(t-h) (3.2.3)
Doa Zha b |2ha
24 3 24
The ACF by the application of the Cl is at each time-step:
hy 3hy 3l Thy
8 8 8 x(t) 8
_h —@A 5—hA X, |= EA x(t—h) (3.2.4)
72 72 72 y 8
0 A _halb®d by
L 9 9 | ]

where : Xm, Xa, and X, are the state variables at tn, t,, and t,, respectively. Note: assuming

that the number of state equations is n, the matrix of A is an n-by-n matrix, and the total

number of state variables from TI, QI, and Cl is n, 2n, and 3n, respectively.
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3.2.1 Comparison of the Three Numerical Integration Methods

The QI is compared to TI, which has been popularly used in time-domain
analyses of power systems, and CI, which is an extension version of Tl and QI. Though
the comparison, why the quadratic-integration method is introduced, and why other
higher-order collocation methods are not considered as a solution method to analysis
power systems with nonlinearities and switching subsystems are presented. Also, the
superior properties of QI are presented. For this purpose, the three numerical integration
methods are compared in four properties of accuracy, computational speed, stability, and

numerical oscillations, using simple example systems with electronics.

3.2.1.1 Comparison in Accuracy and Computational Speed

The accuracy and computational speed of QI are compared to those of Tl and Cl,
since the simulation reliability and applicability to massive power systems depend on the
two properties. The accuracy and computational speed of the three numerical integration

methods are compared by using an example system, as shown in Figure 3.3.

L=0.3H R=2Q /c

i (t) AN S1
S2 +_| Reo0€2
= V=100V Ve(t) == §
C=500uF

S2

;81

Figure 3.3: A simple switching system with ideal electronics.
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The simple switching system consists of ideal electronics and the passive components of
two resistors, an inductor, and a capacitor. The ideal electronics are operated in the
sequence of switching given the following: Switches S1 are closed at t=0.0T+kT and
opened at t=0.5T+KT, and switches S2 are reversely operated. The switching period T is

0.02 seconds, and k={0,1,2,...}.

The simulation results from numerical methods are compared to those of the
analytical solution. The analytical solution is calculated by the application of the Laplace
transform and the inverse Laplace transform. Figure 3.4 shows the inductor current and

the capacitor voltage from the analytical solution.

Inductor current

"

-
LU L e R A G G T L G O U G A T A U

(0] 0.2 04 0.6 0.8 1.0 1.2
Capacitor voltage
T

200 AR
ve (€ o AR A SR R
@ 200 TR T HEH
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o

1.6 1.8 2.0
Seconds-s

Figure 3.4: Inductor current and capacitor voltage from the analytical solution.

The results by application of the three numerical integration methods are so similar in
form, like the waveforms of Figure 3.4, that the difference from the analytical solutions
cannot be recognized without a detailed analysis. So as to show the error clearly, the
absolute errors of inductor currents are presented between the numerical solutions from

the numerical-integration methods and the analytical solutions from the Laplace
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transform. The absolute error is denoted in mathematical form as follows:

Error=abs( i t(t)-in(t) ),

where it and iy are the inductor current from the analytical solution and the three-

numerical integration methods, respectively. Figure 3.5 shows the absolute errors of the

inductor currents.

x10°3
1.28

1.16

1.28

/ \/\/\/ \/ \/\/\/\/\/\

Absolute error of Quadranc |ntegrat|on W|th time Step (O 1 msS)

As Shown in Figure 3.5, QI and CI substantially improve simulation accuracy compared
to the TI method, while the simulation is performed with the same time-step of 0.1 micro-

seconds. Next is the comparison of the maximum error during the entire simulation-time

1.93 1.94

of 2.0 seconds, as shown in Table 3.1.

1.95 1.96 1.97

(3.2.5)

Absolute error of Trapezoidal integration with time step (0.1 mS)

Absolute error of Trape20|dal |ntegrat|on Wlth tlrne Step(O o1 MmMS)

L 1 1 1 1 1 1 1
Absolute error of Cubic integration with time step (0.1 mS)
T T T T T T T T

1.98 1.99
Seconds-S

Figure 3.5: Absolute error of the inductor current according to applied methods.

Table 3.1: Maximum Value of the Absolute Error during Simulation Time.

Time-step Maximum errors during simulation period
(seconds) Trapezoidal Quadratic Cubic
0.001 1.243 x10™ 2.299x10 2.554x10°°
0.0001 1.241x10° 2.305x107° 2.640x10™
0.00001 1.241x107° 1.365x10™%° 6.172x10™"
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The results of Table 3.1 can be analyzed theoretically. The three collection-methods are
special cases of the Lobatto 1A, the family of the implicit Runge-Kutta methods, since
the definition of the Lobatto I11A is exactly matched to the butcher-tableau of the three
collocation methods [23]. The dominant error of the Lobatto I11A is defined as order 2s-2,
where s is a stage value and is matched to the number of collocation points. That is, the
TI, QI , and CI methods can be denoted as second-, fourth-, and sixth-order methods
respectively, in terms of accuracy. Mathematically, the dominant error of the three
collocation-methods is denoted as:
Etrap =O(h%), Equad =O(h?), and Ecupic =O(h®). (3.2.6)

In Table 3.1, the absolute error from TI is quadratically decreasing according to the rule
of Equation (3.2.6), while the time-step is decreasing; also, QI is quartically decreasing
until the absolute error is bigger than 10™°. However, the absolute error violates the rule
of Equation (3.2.6), when the absolute error is smaller than 10™*°. The round-off error in
the computer calculation is dominant, compared to the truncation-error of the applied
methods. Therefore, the Cl method is demonstrated as the most accurate method among
the three collocation methods, while T1 is the worst accurate method. The QI is also an
accurate method, and the difference of the absolute error between QI and Cl is trivial (ten

times).

Next, the computational effort of the three collocation methods is compared also
by using the simple switching system of Figure 3.3. Table 3.2 presents the computational
effort of the collocation methods during the simulation time of 1.0 second. In the
simulation, the memory for the state variables is not allocated to offer a similar condition

in which other processing is dominantly involved, such as a control algorithm and data
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processing for references of the control algorithm. For example, QI needs sampling data
at mid-points (t,) as well as present points (t). Assuming that the number of state
variables is n, the number of state variables for the TI, QI, and CI methods are n, 2n, and
3n, respectively. That is, the computational effort for QI needs more than twice that for
TI, while the CI needs more than three times, as shown in Table 3.2.

Table 3.2: Computational Effort-One Second Simulation

Time-step The computational cost (seconds)

(seconds) Trapezoidal Quadratic Cubic
0.0001 0.700283 1.674141 2.761643
0.00001 101.269275 238.64339 473.08906

Therefore, the collocation methods are listed in the order of computational speed: Tl is
the fastest, QI is the second-fastest, and ClI is the latest, while the same time-step is used.
However, it is worth noting that QI with a time-step of 100 microseconds, as compared to
Tl with a time-step of 10 microseconds, offers more accurate results (around fourth
orders of magnitude, as shown in Table 1) with a small fraction of the execution time

(about 2% of the execution time of TI, as shown in Table II).

3.2.1.2 Comparison in Numerical Stability and Numerical Oscillations

The next property to be compared is the numerical stability: A-stability and the
possibility of numerical oscillations. Most of the Runge-Kutta (RK) methods had
historically been explicit RK-methods. The explicit RK-methods generate stability
problems since the region of the A-stability is bounded: the explicit RK-methods should
present unstable results in some cases, even though the system to be analyzed is stable.
Thus, implicit RK methods are considered, since implicit RK methods are A-stable
methods [24]. In particular, the modeling of power systems with nonlinearities and

switching subsystems requires a large region of A-stability for rapid and dramatic
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variations of states. Here, the comparison of the three collocation-methods is presented
based on A-stability. For this purpose, a first-order dynamic system is introduced as
x(t) = Ax(t). The digital and true solution of the dynamical system can be represented as
x(t)=e’ x(t-h) within [t-h, t], where z=1h and 4 represents complex numbers. The stability
function of RK-methods is represented as follows:
e’ =R(2)+0(h")=1+2zb" (1 -zA) *-1+0(h") (3.2.7)

Note that Equation (3.2.7) is generally used to analyze the stability of RK methods and is
easily found in previous literature [24], [25]. Assuming that the truncation error of O(h")
is trivial and negligible, the numerical solution can be represented as x(t)=R(z) x(t-h) and
the stability of the three collocation-methods can be investigated with the stability

function R(z) from Equation (3.2.8) to Equation (3.2.10).

Trapezoidd : R(z) :%, (3.2.8)
2
. 7°+62+12
udaratic R(z2) = ———, 3.2.9
Q (2) 72 —62+12 (3:2.9)
3 2
and Cubic: R(z) = 212" +542+108 (3.2.10)

~2°+117* -542+108
The region of absolute stability satisfies |R(z)|<1 and the numerical methods are A-stable
if the region of absolute stability includes the entire left-half plane of z-coordination [25].
That is, the numerical solutions from A-stable methods are stable with the proper time-
step, while the system to be analyzed is stable. Figure 3.6 shows the contours of

Equations from (3.2.8) to (3.2.10).
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Trapezoidal Quadratic Cubic
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Figure 3.6: Contours of stable functions and zones of A-stability.

As shown in Figure 3.6, the contours of |R(z)|, derived from the three collocation
methods, have magnitudes that are equal to one or smaller than one in the entire left-half

plane. That is, the three collocation methods of the TI, QI, and CI are A-stable.

For a time-domain analysis of power systems with nonlinearities and switching
systems, the most important property is the possibility of numerical oscillations. These
numerical oscillations are not natural phenomena from systems but rather fictitious
phenomena derived from numerical integration methods. Numerical oscillations are
usually generated, when the state variables of the algebraic equations, derived from
numerical integration methods, are suddenly changed. These phenomena have been
frequently found in time-domain analyses of switching systems and nonlinearities using
TI. Here, the mathematical reason for numerical oscillations and the comparison of the
three-collocation methods in the possibility of numerical oscillations are presented. For
this purpose, the numerical solution of the first-order dynamic system is also used:

X(t)=R(z) x(t-h). The numerical oscillations are generated while the stability function R(z)
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IS negative. Assuming that R(z)<O in the numerical solution above, the direction of the
state variable x(t) is changed at each time-step, and the numerical solution should
oscillate, based on true solutions. Figure 3.7 and Table 3.3 represent the zones free of
numerical oscillations. Note that the zones (shaded parts) are computed with the
equations from (3.2.8) to (3.2.10). As shown in Figure 3.7, quadratic and quartic
integration are totally free of numerical oscillations, assuming that Im(z) is zero and z is
real numbers. Since power components, such as an inductor, capacitor, resistor, etc., are
modeled with algebraic and differential equations (in which the coefficients of the
equations are real numbers in the power system analysis), the set of z (1h) represents real
numbers. Therefore, it can be concluded that quadratic and quartic integration are totally
free of numerical oscillation in time-domain analyses. Note that the zones (free of
numerical oscillations) of quartic integration are presented to demonstrate that the

collocation methods with odd numbers of collocation points are free of numerical

oscillations.
_ _Trapezoidal _ _ Quadratic
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=20}
15 410

,

N - . -
o l

ol |

Real Real

Figure 3.7: Zone(s) free of artificial numerical oscillations of the three methods
(shown as shaded regions).
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Table 3.3: Zone free of numerical oscillation while Im(z) is zero.
Method TI Ql Cl
Free zone -2<72<2 Totally free -4.3<7<4.3

Here, a simple switching system, a half-wave diode-rectifier, is introduced to
graphically verify whether QI is totally free of numerical oscillations. As shown in Figure
3.8, the electronics is a piecewise linear model, in which the diode is represented as

Ron=107 during on-state and as Ro=10" during off-state.

——Jp| A
7
V(t)=14cos(wt+e)

Figure 3.8: An example system of a half-wave diode rectifier.

Using the three numerical integration methods, the diode voltage is analyzed from 0.0 to
0.05 seconds, as shown in Figures 3.9 to 3.11. Note that all simulation conditions are the

same, except for the applied methods in this analysis and the integration time-step is 10°.
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Figure 3.9: Inductor current and diode voltage-Trapezoidal integration.

Inductor current-Quadratic integration

5 | | | | | |
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Diode voltage-Quadratic integration ~ Seconds-S

| i ; , ; , : |
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Seconds-S
Figure 3.10: Inductor current and diode voltage-Quadratic integration.
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Inductor current-Cubic integration
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Figure 3.11: Inductor current and diode voltage-Cubic integration.

As mentioned in Table 3.3, Tl and CI should generate numerical oscillations, while |z| is
bigger than 2 and 4.3, respectively. Thus, the value of z is calculated when the diode in
Figure 3.8 resides in on-state and in off-state: z=-10" in off-state and z=-10" in on-state.
That is, Tl and CI generate fictitious oscillations during off-state, while QI is free of
fictitious oscillations as shown in Figure 3.10.

In summary, quadratic integration is not only free of numerical oscillations, which
are a main reason of switching malfunction in switching systems, but is also an accurate
and stable method, leading to a reliable analysis of power systems with a wide variation
of state variables. Other collocation methods with high-order collocation points could
also be used for power systems analysis. However, they require a high computational
burden and modeling complexity, and even some (even-number collocation methods) of
them may generate numerical oscillations with a high possibility in an analysis of power

systems with nonlinearities and switching systems. For power systems interconnecting
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renewable resources and grid systems, such as HVDC-transmission systems and LFAC-
transmission systems, quadratic integration seem to be the best simulation method, with

great accuracy and stability.

3.3 Model Quadratization and Quadratic Integration (QMQI)

In this section, the QMQI method is introduced to model both devices and power
systems with nonlinear components and switching components. Generally, power
systems have been modeled linearly with the application of the trapezoidal-integration
method: nonlinearities and switching systems are modeled by a combination of Tl and
additional methods, such as numerical dampers and critical damping adjustment methods
(CDA) after the linearization of nonlinear equations. However, these methods do not only

decrease simulation accuracy, but also accompany modeling complexity.

The QMQI allows exact and realistic models of power systems with nonlinear and
switching components in simplicity, since QI is totally free of numerical oscillations, and
model quadratization permits the possibility to solve nonlinearities in a nonlinear concept.
The modeling methodology using QMQI is performed in four steps: (a) a device is
written in state-space equations consisting of algebraic, differential, and nonlinear
equations; (b) model quadratization is performed on state-space equations to transform
nonlinear (high-order) equations into a combination of linear and quadratic equations; (c)
the QI method is applied to the quadratized model to induce algebraic equations from the
differential equations; and (d) the algebraic equations are computed by Newton’s method.

Note that in the time-domain simulation the processes are repeated at each time-step. The
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modeling process is explained in the following subsections, using a push-pull, resonant
converter with a single-phase saturable transformer shown in Figure 3.12 [26].

4(39)  7(42)
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v T M1] M2 9-20
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Figure 3.12: An equivalent model of a push-pull resonant converter

3.3.1 State-Space Equations

The push-pull, resonant converter in Figure 3.12 consists of a single phase
saturable-transformer, MOSFETS, diodes, inductors, and capacitors. Each component is
modeled and merged based on Kirchhoff’s law to form an entire model of the push-pull
converter. Since the modeling process of each component is the same as each other, the
modeling process of a single-phase saturable transformer is only presented. The single-
phase saturable transform consists of winding resistance (r, and r,), leakage reactance (L

and L,), core loss (r¢c), and magnetizing reactance (L), as shown in Figure 3.13.

. L L .
0(21)V4(t) U 33 1Y V(t)
iH_(B rc{% i81(t1 3(24)
1(22) V(1) 0'2“2 ) t,e(t)
. i (t
TG fc{%_ «(} |
223)yt) B T ) 59 0
oL (256-24101) 1:1:t, 4(25)

Figure 3.13: An equivalent model of a single-phase saturable transformer
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The state-space equations of the transformer shown in Figure 3.13 can be represented as

follows:

iy(©) =iy (1) (33.1)
i, () =i (0 -i, (1) (3.3.2)
i,(t) =i, (1) (33.3)
[ (t)—__|31(t) sz(t) (3-3-4)
|(t)_ 31(t)+ 'sz(t) (3.3.9)
O:is(t)_im(t)_isz(t) (3.3.6)
0=_e(t)_rcim1(t)+ rCiH (t)_rci81(t) (3-3-7)
O=e(t)+r.i,, (t)+rei (t)+rig, (t) (3.3.8)
0=-v,(t)+v, (t)+e(t)+rl|H(t)+Ll | b (©) (3.3.9)
O:—v2(t)+v3(t)+e(t)—rliL(t)—Ll%iL(t) (3.3.10)
0=—v, () +v. () +t e)—2i. -2 Li_ ) (3.3.11)

4 5 n tn S tn dt S T
0=e(t)—i/1(t) (3.3.12)

" 3.
0=i_ (t)—i, /1() sign(A(t)) (3.3.13)
0=im2(t)—i0% sign(A(t)) (3.3.14)
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where t, is the transformer ratio, Ao is the nominal constant flux, and ig is the nominal
magnetizing current.
The state-space equations were written in linear, differential, and nonlinear equations of

exponent n, as shown in Equations (3.3.1) to (3.3.14).

3.3.2 Model Quadratization (Quadratic Model)

The high-order equations, such as Equations (3.3.13) and (3.3.14), are quadratized as
linear and quadratic equations, in which the degree is not bigger than two. Generally, the
magnetizing current of saturable transformers can be expressed with the magnetic flux of
exponent n from 9 to 13. Thus, the exponent n of Equation (3.3.13), which is representing
a relationship between magnetizing current and magnetizing flux linkage, is selected into

9 and the model quadratization is performed on the following equation.

9

0=i ()i, /If) sign(A(t)) (3.3.15)

0

The resulting equations by application of model quadratization are as follows:

0= iml(t)—/iliﬁ(t)zl(t) (3.3.16)
0=2z(t)-22(t) (3.3.17)
0=2z,(t)-2z2(t) (3.3.18)
0=122-2,(t) - 2(t) (3.3.19)

The magnetizing current, a nonlinear equation of exponent 9, is represented in quadratic

forms with additional states from z; to zs.
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3.3.3 Application of Quadratic Integration (QI)

Numerical integration methods are introduced to solve the differential equations,
since these differential equations cannot be calculated in explicit mathematics. An
approximation method is required, and QI is selected with the advantages explained in
the previous section to induce algebraic forms from differential equations. For example,
quadratic integration is applied to Equation (3.3.12), and the algebraic equations are

represented at each time-step as follows:

0 =%e(t) —/1(t)+2—;em +%e(t —h)+A(t—h) (3.3.20)
h h 5h

O=——e(t)—A_+—e_+—e(t—h)+A_(t=h 3.3.21
2380~ 2+ e(t=h)+ 2, (t=h) (3:321)

All differential equations from (3.3.9) to (3.3.12) in the state-space equations can be
denoted as algebraic equations by the application of QI, and the saturable transformer can

be represented in a compact form of the algebraic equations as follows:

i(t) 0
X (@) F, . X(t
= Ve X (£) —byg + ®) P X ) (3.3.22)
. 0
0 X (t)T I:eq(i+l~j)>( (t)

Where: i(t) =[ii (t) i, (t) i5(®) i,@) 5O,
X()=[vt) y@) z(t) v, ¥ z,],
v(t) =) V(1) V() v, ) V(b))
YO =[et) in(®) ino(®) i ® i) i) i, @) is®) AD)]
2(t) =[7,(t) 2,(t) z(®)]
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Note that yeq and Feq are n-by-n matrices, beq is an n-by-1 vector of historical data at t-h,
and j is the number of nonlinear terms.

All components of passive devices and electronics are written in the same form,
which is referred to an algebraic companion form (ACF) as the single-phase saturable
transformer, and are merged by a computer algorithm. For this purpose, it is noted that
each component is connected to specific nodes of the push-pull resonant converter. The
connectivity of each component is defined in terms of the order of the corresponding
states. Figure 3.12 shows the node numbers on specific nodes. Since the merging process
of all components is the same as one another, the merging process of the single-phase
saturable transformer is only presented. Table IV provides the connectivity pointers of
the single-phase saturable transformer.

Table 3.4: Connective pointers of the single-phase saturable transformer

Connective pointers of the single-phase transformer

t tm
4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, | 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
17,18, 19, 20 51, 52, 53, 54, 55

The merging of the single-phase saturable transformer into the push-pull, resonant
converter is achieved by writing Kirchhoff’s current law at each internal node of the
push-pull resonant converter, substituting the appropriate equations. This process is

achieved with the algorithm below:
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DO WHILE (i <the number of rows)
il=1-¢ transformea pointer|i]
Beq oo [11] = b, [1]
DO WHILE (i <the number of columns)
ji=1—¢ transformea pointer[i]
Yeq.pp LI J1]= Yoo L1111
Feq. o [111[111=F, 11111
END DO
END DO
where i = 1,2,...,the number of rows of each matrix,
j=1,2,...,the number of columns of each matrix.
Note that the 1-¢ transformer pointer is the order of the connective pointers in Table IV,
and Xeqpp denotes the matrix or vector of the push-pull converter. After all components

are merged by the computer algorithm, the end result is an algebraic companion form

(ACF) of the push-pull resonant converter, given by the following equation:

i(t) 0
X ()" Fegaoiy,pp X (1)
= yeq,pp X (t)_beq,pp + q((-;L »P (3323)
0 X (t)T Feq(i+l~j),pp X (1)

where Yeqpp and Feqpp are 70-by-70 matrices and beqpp iS @ 70-vector, which are

automatically built with the computer algorithm above.

3.3.4 Application of Newton’s Method

As soon as all components (devices) in a system to be analyzed are modeled, they

have to be merged to form an entire system by using a computer algorithm, as in the case
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of the push-pull resonant converter, shown in Figure 3.12. Then the system currents can

be eliminated and the state variables only remain in the ACF of the system as follows:

X (1) Fu X (1)

= Yo X () =y + X©' F‘*‘”X(t) (3.3.24)

eql

o O O O

X' Feqn X (1)

where X(t) and beq are n-vectors, and yeq and Feq are n-by-n matrices, while the total
number of state variables is n.
Here, Newton’s method is applied for iterative calculation of the quadratized model and

the solution is given by the following form:

X' ()" P X (1)

X't Feqzxv(t)

XU = X (@) =3 | v X (1) b + (3.3.25)

X'’ Feqn X*(t)

X' @7 (F eq1+FT )

X (t +F
where: J =y, + o ( %2 e

X (t) ( eq2)

Newton’s method has demonstrated that the convergence characteristics of the
quadratized equations are outstanding, compared to other methods [27]. For example, the
simulations of a DC-DC system (in the next subsection) using the push-pull resonant

converter are converged to the total error of 10 before four iterations at each time-step.
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3.4 Demonstrative Example

In this subsection, an example system is presented to demonstrate the superior
properties of the QMQI method. The demonstrative example is a DC system using the
push-pull DC-DC converter, shown in Figure 3.14. The push-pull DC-DC converter is
interconnecting the 24V-ideal source and a passive load (R.) of 200-ohms. The ratio of
the single-phase saturable-transformer is 24V/200V, and the push-pull, resonant
converter is operated in an open-loop control algorithm with a modulation index of 0.48.

Note that the switching frequency is 65-kH.

24V: 200V | | i (0
+
| s e % % % +
Is(t)4 N %
Rs ot : G == VISR
Vg (t) T G JI— 14 i B L
T M(t)J: L% 1 i

Figure 3.14: A Push-pull resonant converter interconnecting an ideal source and a
passive load.
Figure 3.15 represents the (A) source voltage and (B) current; (C) load voltage and
(D) current; the (E) induced EMF of the saturable transformer; and the (F) voltage and
(G) current of the MOSFET. Figure 3.16 shows the case when the push-pull resonant
converter fails in the operation of zero voltage switching (ZVC). Graphs (A) and (B) are
the voltage and current of a MOSFET on an operation of ZVS, while graphs (C) and (D)

are the voltage and current of a MOSFET at nonzero voltage switching. Note that the

48



modulation index of 0.47 and faster resonant frequency is used to present graphs (C) and

(D).
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Figure 3.15: Simulation results of the DC system using the push-pull converter.
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Figure 3.16: Voltage and current of a MOSFET: (A) and (B) in ZVC and (C) and

(D) non-ZVC.
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3.5 Summary

This section presents a new approach, a combination method of model
quadratization and quadratic integration. The quadratic-integration method is not only
totally free of numerical oscillations in time-domain analyses, but also increases the
simulation accuracy and robustness, compared to popularly used methods in previous
power system analyses. Also, modal quadratization allows nonlinearities to be modeled
in a nonlinear concept without the approximation of models (such as linearization of
nonlinear equations) accompanied with Newton’s method. The QMQI method is
especially suitable to model and analyses mixed-power systems of nonlinearities and
switching subsystems, since the method permits more accurate and reliable analyses than
previous modeling methods in simple modeling process. It is important to note that
mixed-power systems with power electronics and nonlinearities have barely been
modeled due to the difficulty in controlling switching systems. However, the QMQI

method is used for these cases with simplicity and great precision.
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CHAPTER 4

AVERAGING MODELS OF CONVERTERS

4.1 Introduction

The modeling methodology for power systems with nonlinearities and switching
systems was presented in Chapter 3. In this chapter, a method for modeling converters,
which is referred to the averaging method, is presented. The averaging method is based
on the steady-state analysis and the equivalent relationship between input and output
(two-port network analysis). In these averaging concepts, the voltage and current ripples
are averaged, and the harmonics at both the AC-side and the DC-side of the converters
are ignored. Note that the dynamic behaviors, such as switching operation and transient
phenomena, are not in consideration for the averaged converter models. However, this
method has the distinct advantage of quantitative analysis, such as power transfer

capability, total operational losses, and optimal kV-level studies of networks.

Here, three converters are developed: a phase-controlled, six-pulse converter, a

phase-controlled cycloconverter, and a PWM converter.

4.2 Averaging Model of a Six-Pulse Converter

Here, a three-phase, six-pulse converter is modeled in the averaging modeling
concept. The averaging method could be used for two modes of a rectifier and an inverter.
Since the averaging model of the inverter is almost the same as that of the rectifier, the
averaging model of the rectifier is only presented in this subsection. The averaging

model of a three-phase, six-pulse rectifier consists of the simplified limiting current
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reactors (-jB) and simplified internal admittances (G). The converter is controlled based
on an equidistant control algorithm using firing angle (a) to control the DC-voltage level.
Note that the inverter uses extinction angle (y) to control the firing angle. Figure 4.1

shows the equivalent circuit of the standard six-pulse converter.

UKD IKD
AN <e— Vi
i‘ i‘ G
.1 -jB _
\,elio —»fa YJYY\—. E.el®
a
Vaej(é'lzo) Ol Y Y Y _
Vaej(5+120) O Y YV
UAD I
AD
VVi< ° VAD

Figure 4.1: An averaging model of a three-phase, six-pulse converter.

For the DC-voltage control-mode, the six-pulse converter equations are denoted as state

equations. The model equations are as follows:

I, =—ijB(,-E,) 4.2.1)
I,=—jB(,—E,) (4.2.2)
I.=—JB(,.-E,) (4.2.3)
lo =GV ~Uyo) (4.2.4)
Lo =GVap—U o) (4.2.5)
0=1lyp +105=G(Vip Uy )+ GVap ~U 10 (4.2.6)
0=Vio =Vap =Voc s (4.2.7)
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2-12,
G

0=(de_VAd)'|Ad+ _Re{\/a|;+vb|;+vc|:}

0=3V,
_ﬁr\,

a

sing—Im{V, 17 +V, 1, +V, 1.}

Ia

0=V,

0=Uyp —Upp —Vy, -COS(@)

0=cos(¢)—0.5cos(a + ) —0.5cos(xx)

o-f

cos(p)-|V,

1
cos(a) +——=—1
(@) TS

%

—1<cos(p) <1
—1<cos(x) <1

—1<cos(a+ ) <1

(4.2.8)

(4.2.9)

(4.2.10)

(4.2.11)

(4.2.12)

(4.2.13)

(4.2.14)

(4.2.15)

(4.2.16)
(4.2.17)
(4.2.18)

(4.2.19)

where Vq, is a no-load DC-voltage, o and f are the firing angle and the commutation

angle, respectively, and ¢ is the control angle, which is related to the firing angle and

commutation angle.

Equations (4.2.1) to (4.2.5) are external state-equations and Equations (4.2.6) to (4.2.13)
are internal state equations, while Equations (4.2.14) to (4.2.19) are constraints of the

control angle, the firing angle, and the commutation angle.

The model equations derived from the six-pulse converter can be represented as

phasor representations and quadratized equations, using model quadratization to convert
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nonlinear equations into linear and quadratic equations. The averaging model of the six-

pulse rectifier can be rewritten as follows:

|, =BV, —BE, (4.2.20)
|, =BV, +BE, (4.2.21)
l, =BV, +(V3/2)8-E, +05-B-E, (4.2.22)
|, =—BV, —0.5-B-E, +(3/2)8-E, (4.2.23)
I, =BV, -(\3/2)B-E, +0.5-B-E, (4.2.24)
|, =-BV, —05-B-E, —(\3/2)8-E, (4.2.25)
Lo, =GVyo, — Gy, (4.2.26)
lioi =1.0Vyp; (4.2.27)
Lo, =GV, —Gl,g, (4.2.28)
lpi =1.0Vpp, (4.2.29)
0=GV,y, —GuUy, +GV,5, —GU,p, (4.2.30)
0=V, ~V,, —V,, (4.2.31)
0 =cos(¢) —0.5cos(a + ) —0.5cos(xx) (4.2.32)
0=V, 36 X, (4.2.33)
T
0=x V5, +U,, (4.2.34)
0=x,-V, +E, (4.2.35)
0=x,+V, —E, (4.2.36)
0=x,-V, —(V3/2)E, —0.5E, (4.2.37)
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0=x+V, +05E, —(V3/2)E, (4.2.38)
0=x,-V, +(V3/2)E, ~05E, (4.2.39)
0=x,+V, +05E, +(V3/2)E, (4.2.40)
0=G-X,(Viy; —Vag;) +2G - XZ —B(X,V,, + XV, +XV,, + XV, + XV, +%V,) (4.2.41)

0=3B-X, X;—B-XV, +B-xV,, —B-X,V,; + B- XV, —B-XV; +B-XxV, (4.2.42)

0 = X3 COS(p) — X COS(ex) + % X% (4.2.43)
0=Up, —Un, —V, COS(p) (4.2.44)
0=x>-V2-V? (4.2.45)
0=x-%—x (4.2.46)
0=X, X X (4.2.47)
0=-1.0+cos(p) + %4 (4.2.48)
0=-1.0+cos(a) + x5 (4.2.49)
0=-1.0+cos(a + B)* + x5 (4.2.50)
0=x,— X, (4.2.51)
0=x,— X5 (4.2.52)
0=x,— X5 (4.2.53)
0=x—%% (4.2.54)
0=X,— X5 (4.2.55)

As shown in the quadratized equations above, the high-order equations are converted into

linear and quadratic equations, introducing additional state variables. Also, the angle
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constraints are represented in quadratic equations. The quadratized model can be denoted
in algebraic companion form, in which the components (or devices) are written in the
same matrix form so that all devices in a system to be analyzed can be merged. The

algebraic companion form of the three-phase, six-pulse converter can be reformulated as

follows:
"o ]
I \Y 0
szeq Y |=by, +| Xy X (4.2.56)
X XTFquZX
X" P X |

where: X =V Y X,
V:[Var Vai Vbr Vbi Vcr Vci VKD.r VKD.i VAD.r VAD.i]’
Y =[E, E U, Uy, COS@ cos(a+pf) cosa V,] ,and
X, :[Xl Xo X3 Xy X5 Xg X7 Xg X9 Xig Xpy Xpp X3 Xy X5 X5 X X18]-

IZ[Iar i Tor 1o 1o 1o hor Teoi laor IAD.i]T
4.3 Averaging Model of a Phase-Controlled Cycloconverter

A three-phase, six-pulse cycloconverter is modeled in the averaging modeling
concept. The averaging method consists of three-phase isolation-transformers and the
simplified reactors (-jB) and admittances (G), as shown in Figure 4.2. The converter is
modeled under certain assumptions: the converter is working in a circulating current-free

mode of operation, the control algorithm of the converter is a cosine-wave-crossing
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method, and the transformers are a wye-wye winding connection with the voltage ratio of

one.

Eqelr  luelb
aL VaLeJOC

¥

T——wv—<—o \pLe J(a-120)

jo ' —
s €T Eanel .
_!

—p 21T
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%He](ﬁlZO)w ¥

\jpe!

Ql(6+120)_, .
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¥
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Figure 4.2: An averaging model of a three-phase, six-pulse cycloconverter.

In the cycloconverter model, the averaging input-currents at high frequency
cannot be separately controlled and depend on the displacement factor at low frequency
and the modulation index which is the magnitude ratio between the input voltages and
output voltages. Also, the averaging values have many variations according to the control
algorithm and the physical structure itself. Thus, it is difficult to model cycloconverters
with fixed parameters and the parameters in the cycloconverter must be selected in
specific conditions. For this purpose, the averaging model of the cycloconverter uses pre-

calculated values to compute the relationship between the input currents and the output
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currents of the cycloconverter [28]. The fundamental components of the input currents

consist of an in-phase current (l,) and a lagging quadrature current (l4) as follows:

=1, + jl, =12+ 12 cosg, (4.3.1)

where cosd; is the power factor of the input current.

I, =q‘s£ |, cosg, (4.3.2)
2r
n=» —a, €0s2n
l,=0-s 2\/25 I, B 2 (4.3.3)
T =~ (2n-1)(2n+1)

Where: g is the number of output phase (q=3);

s is the number of 3-pulse groups connected in series with one another (s=2);

I, is the RMS current of each output phase ; and

cosd, IS the power factor of the LF(low frequency)-AC side.
Here, the modulation index (r) is calculated and then the coefficients (a1, a2, a4, etc.) of
the fundamental components are selected to find the relationship between the input-
currents and output-currents as follows.
First, the modulation index can be computed using the rated voltage of the cycloconverter

and the reference output-voltage as follows:

Vref
r=——~ (4.3.4)
V_ .. cos30°

rate
where: V¢ is the reference output voltage (Line-to-Line) and V4 is the rating voltage at
the input side of the cycloconverter. Note that the modulation index is from 0.1 to 1.

The next is to select the coefficients of the fundamental component in Table 4.1. The

coefficients in Table 4.1 are calculated mathematically in [28].
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Table 4.1: The coefficients of the fundamental component for input currents

00 at1o 0e (a O pONe

dle a1y a1, ay, aig aig an, | a1, an, | Au
1.0 0.637 0.424 -0.085 0.036 -0.020 0.013 -0.009 0.007 -0.005
0.9 0.746 0.277 -0.027 0.005 -0.001 0.000 0.000 0.000 0.000
0.8 0.813 0.198 -0.012 0.002 0.000 0.000 0.000 0.000 0.000
0.7 0.863 0.142 -0.006 0.000 0.000 0.000 0.000 0.000 0.000
0.6 0.903 0.100 -0.003 0.000 0.000 0.000 0.000 0.000 0.000
0.5 0.934 0.067 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
0.4 0.959 0.042 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.3 0.977 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.2 0.990 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.1 0.997 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Using Equations (4.3.2) and (4.3.3) and the selected coefficients in Table 4.1, the three-

phase, six-pulse cycloconverter are written as follows:

- _jB(\7aH

H :_jB(V~bH

- EaH

_EbH)

0= Re{vabcH rach }+ Re{ EabcL rabcL }

0 = I { abcH ~abcH }

0_| 33

0=1

q

p 7|IaL|'r'y1

1243 123, |{

_ &,
3

AN

15

Y2_a14 ys}
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(4.3.5)

(4.3.6)

(4.3.7)

(4.3.8)

(4.3.9)

(4.3.10)

(4.3.11)

(4.3.12)

(4.3.13)

(4.3.14)

(4.3.15)




0 = PL + Re{ EabcL r;bCL } (4316)

0=Q +Im{ E, is | (4.3.17)
0=P*+Q-y,— P, (4.3.18)
0=y, —-2y; +1 (4.3.19)
0=y,-2y2+1 (4.3.20)
0=|l]y, -1, (4.3.21)
0=3V,|-r-Vy (4.3.22)
~1<y, <1 (4.3.23)
~1<y, <1 (4.3.24)
~1<y, <1 (4.3.25)
0<y, <1 (4.3.26)
0<r<i (4.3.27)

~

Where: y1, Y2, Y3 and y4 represent cos¢g, ,cos24,, cosdg, , andsin ¢ respectively, V,, is the

reference voltage at low-frequency, and P. and Q. are real- and reactive-power at the
low-frequency side. Equations (4.3.5) to (4.3.10) are external state equations and
Equations (4.3.11) to (4.3.22) are internal state equations, while Equations (4.3.23) to

(4.3.27) are constraints of the displacement factors at both sides.

The model equations derived from the three-phase, six-pulse cycloconverter can be
represented as phasor representations and quadratized equations using model
quadratization to convert nonlinear equations into linear and quadratic equations. The

averaging model of the cycloconverter can be rewritten as follows:
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Lo = BVa —BEy,

|, =—BV,, +BE,

lyy =BV, +(V3/2)B - E,, +0.5BE,
lys =BV, —0.58-E,, +(V3/2)BE,
lyy =BV, — (V3/2)B-E,, +05BE,
|y =—BV,, —0.58-E,, —(3/2)BE,,
I, =GV, —GE,_

., =GV,

alLi

aLi _GELi

Iy, =GV,, +0.56-E, - (V3/2)6-E,,
Iy =GV, + (V3/2)5 - E,, +0.5G - E,,
I, =GV,, +05G-E, +(3/2)c - E,

I =GV, —(V3/2)5-E,, +05G-E,

0 :VaLr _Vref r
0 =VaLi _Vref i
0=x —Vu +Ey

0= X, +VaHr - EHr
0=X, —Vy, —(3/2)E,, —05E,
0=X, +Vy, +05E,, —(V3/2)E,

0=x —Vy, +(\3/2)E, —05E,
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(4.3.28)
(4.3.29)
(4.3.30)
(4.3.31)
(4.3.32)
(4.3.33)
(4.3.34)
(4.3.35)
(4.3.36)
(4.3.37)
(4.3.38)
(4.3.39)
(4.3.40)
(4.3.41)
(4.3.42)
(4.3.43)
(4.3.44)
(4.3.45)

(4.3.46)



0=X; +V,y +05E,, +(V3/2)E, (4.3.47)

0=x, +05E, - (V3/2)E, (4.3.48)
0=x,+(/3/2)E,, +05E, (4.3.49)
0=x, +0.5E, +(3/2)E, (4.3.50)
0=x, - (vV3/2)E,, +05E, (4.351)
0=x, -V, +E, (4.3.52)
0=x, -V, +E,_ (4.3.53)
0=X3 =V, +% (4.3.54)
0=X, =V, + X% (4.3.55)
0=x:—-Vy, +X% (4.3.56)
0=xXg—Vy; +Xp (4.3.57)
0=x2 —VZ, —V2, (4.3.58)
0=x3—12-17 (4.3.59)
0=3x,l,- R, (4.3.60)
0= X5 — X2 — X5 (4.3.61)

0=BV,, X +BV,;X, + BV, X; + BV,,; X, + BV, X + BV, Xs +

(4.3.62)
- GELr Xy — GELi X, — GX7X13 - GX8X14 - GX9X15 - GX10X16

0= _BVaHr X+ BVaHi X = BVbHr Xq BVbHi X3~ BVcHr Xe + BVcHi X5 — 3X19 Y, (4.3.63)
3V3r
0=1, —TG-xzoy1 (4.3.64)
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0:Iq—W_%G-xzo+12\§7;ah6~xzoyz+12£/§—ﬂ'2a1“6~x20y3 (4.3.65)
0=PR —-GE_ x; —GE;X;, —GX; X3 — GXgX;, — GXgX;s — GX,o X6 (4.3.66)
0=0Q, +GE X, —GE;X;; + GX; X, — GXX;3 + GXyX;s — GX;o X5 (4.3.67)
0=x; -P*-Q¢ (4.3.68)
0=x,y,— PR (4.3.69)
0=y, -2y’ +1 (4.3.70)
O=y,-2y5+1 (4.3.71)
0=Xgy, -1, (4.3.72)
0=y2+x5 -1 (4.3.73)
O=y5+x5-1 (4.3.74)
0=y2+x% -1 (4.3.75)
0=y2+x% -1 (4.3.76)
0=y, — X5 (4.3.77)
0=x,— X5 (4.3.78)
0 = X5 — X5 (4.3.79)
0= X, — Xy (4.3.80)
0= Xy — X (4.3.81)
0=3x,-r-V, (4.3.82)
0=r2+x3-1 (4.3.83)
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0=r-x (4.3.84)
0=X,g (4.3.85)

As shown in the quadratized equations above, the high-order equations are converted into
linear and quadratic equations, introducing additional state variables. Also, the angle
constraints are represented in the quadratic equations. The quadratized model can be
denoted as an algebraic companion form, in which the components (or devices) are
written in the same matrix-form so that all devices in the system to be analyzed can be
merged. The algebraic companion form of the three-phase, six-pulse cycloconverter can

be reformulated as follows:

0
0
v T
I X FypX
0 =VYeq| ¥ |~ D+ XTE. X (4.3.86)
X eq3l
xTFeq57X
— O -

where: X =[V Y X, X,T';

I:[IaHr IaLHi IbHr IbHi IcHr IcHi IaLr IaLi Ier IbLi Ich IcLi]T;

VZ[V Hr VcHi VaLr VaLi Ver VbLi Vch VcLi ]’

aHr

VaHi VbHr VbHi VC
Y=lEHr Ewi Ev B 1, 1y P QU Y Yo Y5 Vs I’J

Xl =[X1 X2 XS X4 X5 X6 X7 X8 X9 XlO Xll X12 XlS X14 X15 Xlﬁ Xl7 X18 X19 X20]

X2 :[le X22 X23 X24 X25 X26 X27 X28 X29 XSO X3l X32 X33]
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4.4 Averaging Model of a Three-Phase, PWM Converter

A three-phase, pulse-width-modulation (PWM) converter is modeled in the
averaging modeling concept. The averaging method is used for two modes: a VQ-control
(DC-voltage and reactive power control) mode and a PQ-control (real-power and
reactive-power control) mode. Since the averaging model of the converter using the PQ-
control mode is almost the same as that using VQ-control, the averaging model of the
PWM converter with the VQ-control mode is only modeled in this subsection. The
averaging model of the PWM converter consists of simplified limiting current reactors (-
jB) and simplified internal admittances (G) as shown in Figure 4.3. The converter is
controlled based on space-vector modulation (SVM) using the modulation index, which
is the relationship between input voltage and output voltage. Note that converters with the

PQ- and VQ-control mode can be used as both an inverter and a rectifier.

UKD IKD
MN——o \/
G
\, e o e” {jl jo {jl {jl
]
V. @ 10120) o e Fa L
\{ gi(6+120) O‘»”ém
-
I DI
UAD IAD
AMN—g=—o Vpp

Figure 4.3: An averaging model of a three-phase, PWM converter.

For the VQ-control mode, the averaging model of the three-phase, PWM converter is

denoted as state equations. The model equations are as follows:
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I, =—JjB(V,-E,) (4.4.1)

1,=—jB(V, —E,) 4.4.2)
I_=—jB(V,—E,) (4.4.3)
lo =GV ~Uyo) (4.4.9)
l,o =GV, -U,,) (4.4.5)
0=V, —V,, )1 +2 L1 —RelV, 17 +V, 1] +V,17 )} (4.4.6)
0=l + 1,5 =GV, Uy )+GV,o -U ;) 4.4.7)
0=+3|E,|-m,—0.707(U,, -U ;) (4.4.8)
0=+3|E,|-0.707U, ., (4.4.9)
0=V max My +Vy et —2Up +2Vip (4.4.10)
0=Qy —IM{, 174V, 17 +V, 17} (4.4.11)
0<m, <1 (4.4.12)

where m, is the modulation index, and Vi rer IS the reference voltage at the DC-side of the
converter. Equations (4.3.1) to (4.3.5) are external state equations, and Equations (4.3.6)
to (4.3.11) are internal state equations, while Equation (4.4.12) is a constraint of the

modulation index.

The model equations derived from the PWM converter can be represented as phasor
representations and quadratized equations using model quadratization to convert
nonlinear equations into linear and quadratic equations. The averaging model of the

PWM converter can be rewritten as follows:
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|, =BV, —BE, (4.4.13)

|, =—BV, +BE, (4.4.14)
l, =BV, +(V3/2)B-E, +05-B-E, (4.4.15)
l, =—BV, —05-B-E, +(v3/2B-E, (4.4.16)
I, =BV, —(V3/2)B-E, +05-B-E, (4.4.17)
|, =-BV, —05-B-E, —(V3/2)8 E (4.4.18)
lor =GV, —GU,, (4.4.19)
lo; =10V, (4.4.20)
lior =Vio, ~GUp, (4.4.21)
o =10V, (4.4.22)
0=GV,, ~GU,,, +GV,. ~GU,, (4.4.23)
0=1/3% —0.707U, ... (4.4.24)
0=x,-V, +E, (4.4.25)
0=x+V, —E, (4.4.26)
0=Xx, -V, - (V3/2), - 05E, (4.4.27)
0=x, +V, +0.5E, —(V3/2)E, (4.4.28)
0=x -V, +(\3/2)E, —05E, (4.4.29)
0=x, +V, +0.5E, +(V3/2)E, (4.4.30)

0= Xg _VAD.r +UAD.r

0=G-X(Vkp.r =Vap,) +2G- X; - B(szar + XV + XV + XV + XV + X7V ) (4.4.31)
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0=Q, —B-XV,; +B-XV, —B-X,V,; +B-XV,, —B-XV,; +B- XV, (4.4.32)

3% ar 7%cr

0=V M AV +2U, 5, —2Vo, (4.4.33)
0=+/3x.-m, —0.707(U ,, U .o, ) (4.4.34)
0=x’—-E?-E’ (4.4.35)
0=1-m-x? (4.4.36)
0=m, —x3 (4.4.37)
0=x,— x4 (4.4.38)
0=x, (4.4.39)

As shown in the quadratized equations above, the high-order equations are converted into
linear and quadratic equations, introducing additional state variables. Also, the constraint
of the modulation index is represented in quadratic equations. The quadratized model can
be denoted as an algebraic companion form, in which the components (or devices) are
written in the same matrix form so that all devices in the system to be analyzed can be
merged. The algebraic companion form of the three-phase, PWM converter can be

reformulated as follows:

oL

I V V T| Teq19 V
szeq Yo =bg +|Y || )Y (4.4.40)

eq22

m T T
T

Feq 26

where: X =[V Y X]';
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I = [I ar Iai Ibr Ibi Icr Ici I KD-r I KD-i IAD-r IAD-i ] ;
V = [Var Vai Vbr Vbi Vcr Vci VKD-r VKD-i VAD-r VAD-i ] ;
Y = [Er Ei U KD-r U AD-r ma U dc.max ] , and

X:[Xl Xy X3 Xy X5 Xg X7 Xg Xy Xy Xyq X12]'

4.5 Summary

This section presents the averaging models of converters: a three-phase, six-pulse
converter, a three-phase, six-pulse cycloconverter, and a three-phase, PWM converter.
These models are based on model quadratization and phasor representation in the
frequency-domain. The models have the advantages of simple and fast analysis in
quantitative analysis, such as the power transfer capability of transmission systems,
electrical loss analysis, etc. Also, the models can be used in a quasi-steady state in which
the converters are operating in sinusoidal, steady-state condition, and it is assumed that
mechanical system of generators is only working dynamically [29]. The quasi-steady-

state models can be used to analyze the dynamical behavior of specific frequency.
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CHAPTER 5

FULL TIME-DOMAIN MODELS OF CONVERTERS

5.1 Introduction

This section presents the time-domain models of a three-phase, six-pulse
converter, a three-phase, six-pulse cycloconverter, and a three-phase, PWM converter.
Time-domain models are utilized to better understand the dynamic behavior of power
systems, such as the operation of electrical switches, harmonics, and power transients. In
this section, realistic models of converters consisting of physical components (such as
resistors, inductors, capacitors, electrical switches, etc.) are presented. The modeling
methodology is based on a combination of model quadratization and quadratic integration
(QMQI), which is explained in Chapter 3. Since the modeling process of converters is
almost the same as that of the push-pull resonant converter shown in Chapter 3, converter

models are explained below in brevity.

5.2 A Three-Phase, Six-Pulse Converter

A three-phase, six-pulse converter is modeled in two parts: modeling an equivalent
circuit of the three-phase, six-pulse converter and designing a specific controller to
generate switching pulses. The three-phase converter is based on an equidistant-control
algorithm using the firing delay angle (a), in which the firing pulses are generated at the
same interval of 60°. The equidistant control algorithm has demonstrated a characteristic

to minimize total harmonic distortion among phase-control algorithms for the three-phase,
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six-pulse converter [28].

The modeling methodology and the equidistant firing angle

control of the three-phase, six-pulse converter have been presented in previous research

from [30] to [31], according to their own modeling methodology. In this subsection, the

QMQI method is introduced to model the three-phase, six-pulse converter, thereby

leading a more realistic and reliable model of the converter in time-domain.

5.2.1 Equivalent Circuit of a Three-Phase, Six-Pulse Converter

A six-pulse converter consists of six valves containing a thyristor, a snubber

circuit, and a current-rate-limiting circuit. They are interconnected to yield the topology

of the three-phase, six-pulse converter. The overall system of the three-phase, six-pulse

converter is shown in Figure 5.1.

-
Copy Prirt Help
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0.1 uF

Circuit # A —

[ 1 |B

1200.0 Oh;s\—

Six-Pulse Converter Model (ID = 1)
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—

Rated Voltage

13.8

kV, L-L, RMS

co |

AC Bus Name

NEWBUS1

Controller
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© Real Power
~ Voltage

Firing Angle Mode

Firing Angle (Degrees) 45.0
Real Power (MW) 130.0
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\ DSPModel:Pos.Seq./ZeroCrossing
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-« ZEROX
-] POSSEQMAG
‘-

EE&
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‘ 20.0 Capacitance (nF)
DC Smoothing Cap
50.0 microFarads
Current Lim. Inductor
| 3000.0 Ohms
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DC1
Controller Reference

Positive Seq. Zero Crossing
Positive Seq. Magnitude

POWER

Figure 5.1: Input-data form of the three-phase six-pulse converter
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The circuit parameters of the three-phase, six-pulse converter are as follows:

G,; ~ G, : thyristor conductance of each valve;

R : snubber circuit resistance;

C, : snubber circuit capacitance;

R= }6 : resistance in parallel with reactor;
L : current rate limiting inductance;
C,: thyristor parasitic capacitance; and
C : DC side smoothing capacitance.

Since the three-phase, six-pulse converter is a complex system with several physical
components (of six valves and a capacitor), each component is modeled and merged to
form an entire system. Thus, the QMQI method is applied to each component and
Newton’s method is performed after merging all components. Since the modeling process
is presented in our previous research of [17], as well as in Chapter 3, the state equations
of an electrical valve, shown in Figure 5.2 and a smoothing capacitor, shown in Figure

5.3 are only presented in this subsection.

Vo(t) 1o 1
oM

2 ¢ ()

i.(t) f
vi(t) lO

Figure 5.2: An electrical-valve model.
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The state equations of the electrical valve are written as a set of algebraic equations and

differential equations as follows:

L (6) = G - [ (8) — Vo (O] + Gl (1) — v, (O] + i, () (5.2.)
(1) = G- [V (1) — v, (O] + Gy V> () — Ve ()] — it () (5.22)
0= G4 [ (O -V (O]+Cy 1% (O -v, 0] (5.2.3)

0= Gv ’[VP (t) -V, (t)] +CP %[VP (t) -V, (t)] +G '[VP (t) _Vl(t)] - iL(t) (5-2-4)

0=—v, (1) +V, (t) + L%iL(t) (5.2.5)

Note that the electrical-valve model is represented with conductance Gy. This
conductance-value (Gy) changes, according to the valve states (on-state: Gyo, and off-

state: Gyor).

The smoothing capacitor, shown in Figure 5.3, is used for reducing voltage

ripples at the DC-side, leading constant DC-voltage.

1
i,(0) ;0 v, ()

C =

i, (t) } AL
0

Figure 5.3: A smoothing capacitor model.
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The state equations of the smoothing capacitor are as follows:

iy (t) = Cy, (t) (5.2.6)
i (t) =iy (t) (5.2.7)
dv, (t)
=y, (t
a 10 (5.2.8)

0=V, (t) = vy (t) +V, (1) (5.2.9)

5.2.2 Control Algorithm: Equidistant Firing Angle Control

The converter controller can be a complex system, depending on the sophistication
of the control scheme and the objectives of the designers. In this section, a specific
controller is demonstrated for the three-phase, six-pulse converter, which is referred as an
equidistant firing controller, and its integration into the quadratic-integration method. The
implementation of the control scheme consists of two steps. In the first step, an
estimation method is applied to determine the control references. In the second step, the
equidistant control scheme using the firing-delay angle, o, related to the control
references, is applied to decide the switching time of the six valves. The six-pulse
converter can be controlled with a number of strategies. The equidistant firing angle
control is elected, since the control algorithm is suitable for high-power converters
connected to grid systems. The digital controller for the equidistant control includes an
estimator of control references, and the actual control in terms of the equidistant valve

firing pulses [30]-[31].

The control references in the equidistant control algorithm consist of two

parameters: magnitude and zero-crossing time of line-to-line voltage (Vag) between phase
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A and phase B. Since converter systems contain several components with nonlinear
characteristics, Vag can be distorted by harmonics. For better accuracy of the control
scheme references, first the positive sequence of fundamental frequency is estimated by
using Fourier-series analysis and modal decomposition, and then the reference is

computed (Vap1)-

For the equidistant control scheme, the firing delay angle (o) is used to control the

switching sequence. The scheme of equidistant control is shown in Figure 5.4.
Steady state

Transient condition

AR RNRNRNANL

60° 60° 60° L, |60° 60° )  60° 4  60° ,
o | | |

Valve 1 Valve 2 Valve 3 Valve 4 Valve 5 Valve 6 Valve 1

60° 60° 60° 60° 4 60° 60° 60° L
3 pad 1 T
Zero wt=0 Valve 1 ( Valve iValve 3 Q/alve 4 Valve 5 Valve 6 Valve 1
crossing
Time Aoy Ao, Aoy

Figure 5.4: Scheme of equidistant control for switching sequence

In steady-state, the six firing signals for the six thyristors are generated from the
zero-crossing time and are arranged in equal intervals of 60° from each signal pulse.
Since the alternative transmission systems are dynamic systems with their specific
transient responses, such as power order changes, feeding power variations, and
frequency variations, the firing delay angle has to be regulated until the system reaches
the steady-state, as shown in Figure 5.4. Thus, the controller of the six-pulse converter

have to regulate the switching sequences in real-time to meet these requirements from the
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systems. Therefore, the next subsection is dedicated to a dynamic control algorithm for
the three-phase, six-pulse converter: the methodology to estimate the references and the

equidistant firing controller with the following titles:
» Estimation of control references; and

« Dynamic control using the equidistant firing angle algorithm.

5.2.2.1 Estimation of Control References for Equidistant Control

The exact control of the three-phase, six-pulse converter depends on the estimation
of references for the on-state switching sequence, since thyristors are automatically
turned-off during reverse bias. Here, zero-crossing time, magnitude, and the phase angle
of a voltage (line-to-line voltage between phase A and phase B) will be estimated as

control references. For this purpose, a digital signal processor (DSP) is used as shown in

Figure 5.5.
= EBX
DSP Model Accept
Voltage Positive Sequence / Zero Crossing Cancel
DSP Model: Pos.Seq./Zero Crossing
| NEwWBUS1A
‘ NEWBUS1 B Six-PulseConverterModel(ID=1)
| NEWBUS1_C 1
| NEWBUSI_N = Equidistant \
- DPC-SVM
vy
| & > ZEROX
 Fixed Frequency ——| 60.0 Hz
| -— " Frequency Estimation # POSSEQMAG
Window Size ’W ms
| -« ﬁ POWER

Figure 5.5: A DSP model to estimate control references.



First, the fundamental voltages of vg(t), Vic(t), and vca(t) can be estimated by the

application of Fourier Series representation as follows:

Vo (1) = 3 A COSK (1) + b SiMK 1] (5.2.10)
V. (1) = i[aBCk cosk (et )+ byg, sink(wt)] (5.2.11)
Voo (1) = [y, COSK(e0t) + by, sink(t)] (5.2.12)

To compute the Fourier coefficient, aag:, Of the fundamental component of the voltage

V(1) , Equation (5.2.10) is multiplied by cos(wt;) , which is described by the

fundamental frequency, and the result is then integrated over one period T numerically as

follows:
T t+T
[Vap (r)cos(@r)dT = [ cos(wr)dr (5.2.13)
t t
2 m
Qg1 :H|:Zvab (tj)cos(a)tj)j| (5.2.14)
j=1

where j=1, 2,---,m, which is equivalent to one period, and the period is the reciprocal of
the fundamental frequency.

Also Equation (5.2.10) is multiplied by sin(wt;) and the result is integrated. The

coefficient bagy can be computed as follows:
2| & .
bpes = E|:Zvab (t;)sin(at, )} (5. 2.15)
j=1

Application of the same procedure to the voltage v, (t)and v, (t)yields:
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Agey = %{i Vi (tj)cos(a)tj )} (5. 2.16)

me:% ivbc(tj)sin(a)tj)} (5. 2.17)
Aca :% ivca (tj)cos(a)tj)} (5.2.18)
bCM:% ivca(tj)sin(a)tj)} (5.2.19)

Note that at each time-step, the quantitiesa,g,, @gc;, 8cars Dagys Dgers @nd b, can be

computed. The fundamental frequency components of all three-phase voltages in polar

coordinates can be expressed as follows:

~ 4 b
VABl :VA314¢A511 where VABl = aiBl + biBl ) ¢ABl =tan l[_ ﬂ] (5- 2-20)

AB1

~ 4 b
VBCl :VBC14¢301 , Where VBCl =4 aém + bEZ;c1 ) ¢BC1 =tan 1[_ ﬂj (5- 2-21)

BC1

7 [ 4 b
Vem =VemZ Pear » where VCAl = a<23A1 +b§Al ) ¢CA1 =tan 1[_&j (5- 2-22)

cAL
Therefore, the fundamental frequency component of v, (t) is written as follows:
V p1 (1) = 8,5, COS(@t )+ o SIN(e0t ) =V, COS(c0t + B, ) (5.2.23)
A similar expression can be written for the other two phases as follows:
Vgey (1) = @ge, COS(@t )+ by, Sin(awt) =V, cos(@t + By, ) (5.2.23)
Veay () = 8cny €OS(c0t )+ by, SiN(c0t ) =V, COS(0t + ey, ) (5.2.23)
The three-phase phasor notations may be unbalanced and may contain negative and zero

sequence components. To use the positive sequence fundamental component as the
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reference voltage, modal decomposition is performed to extract the positive sequence
component from the three unbalanced phasors. The transformation process is expressed

in the following relation:

\7ab1 1 1 a a2 VABl 2
V,, =3 1 a® a |V, | where a=g (5. 2.24)
ab0 1 1 1 VCAl

where V,,,V,, and V,, are the positive, negative and zero sequence components of V., ,

respectively.

Therefore, the positive sequence component of the fundamental components of line-to-

line voltage v, (t)obtained from the Fourier analysis and modal decomposition can be

expressed as follows:

Va1 (1) =V COS(0t + 44, ) (5. 2.25)

| V a1 COS(@ + gy )+ Vigey cos[cot + aer + %ﬂj +Ven cos[a)t + Pep + %ﬁﬂ

Wl

- % vy cos(at)+V, sin(awt)]

where:

27 A
Vx =+ VABl COS(¢A81)+VBC1 COS[¢BC1 + ?j +VCA1 COS(¢CA1 + ?H ;

) . 27 . dr
VY == VABl Sm( AB1)+VBCI S'”(¢Bc1 + ?) +VCA1 Sm(¢CAl + ?ﬂ .

Therefore, the peak value and phase angle of the line-to-line voltage v, (t) are calculated

as follows:
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Vo, :%- V, > +V,? s the peak line voltage; (5. 2.26)
4V . .
¢, =tan Ve is the phase angle of line voltage. (5. 2.27)
X
For power-flow control, it is necessary to compute the real power of the converter.
The real-power is computed by using the positive sequence fundamental voltage and

current. The positive sequence fundamental currents of i (t) , i,(t), and i (t) are

computed with the same procedure of the positive sequence fundamental voltage as

follows:
i,(t) = [P cosk(wt) + q sink(t)] (5. 2.28)
i, (1) :i[pBk cosk(ewt)+ g, sink(wt )] (5. 2.29)
i.(1) =3 [P, cosk(et) + g, sink(wt)] (5. 2.30)

After computing the phasors, denoted by the magnitudes and angles of all three phases,

the positive sequence fundamental current is also computed in a phasor form as follows:

I, = {IM COS(fpy )+ g cos(qﬁBl + 2?7[} +1g, cos(gzﬁCl + %ﬂ (5.2.31)

l, = _|:IA1 Sin(¢A1)+ g1 Sin(¢81 + 2?”) +le, Sin(¢01 + %ﬂ (5.2.32)

Also, the positive sequence fundamental current can be described as follows:
I (1) =1, cos(@t +4,_) (5.2.33)

where:
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I, =%-,/ I,2+1,% isthe peak current; (5.2.34)

$. = tan‘l(— :—Yj is the phase angle. (5.2.35)

X

The phasors of the positive sequence fundamental voltage and current are denoted as

V, =V, el and T =1_e" from Equations (5.2.25) and (5.2.33). Here, using the

computed values of the voltage and current, the real-power of the converter is computed

as follows:

J3
P=7;Wmmpm@%m—%—¢ﬂj. (5.2.36)

To calculate the zero-crossing time of V,,,, the positive sequence fundamental voltage is

used. The equation of the positive sequence component of the fundamental voltage is:
Vg (1) =V, COS(0t + @) (5.2.37)

From the equation above, the zero-crossing time is calculated as follows.

w@+@—%:% (5.2.38)
wty + ¢, =27  wheren= P (5.2.39)
360°
2 —
t, =k (5.2.40)
w

T 2m—-¢, =«
t =t - — v__ 2 5241
0 ol ow W w ( )

where: t, is the nearest zero-crossing time from the running time;
t,, Is the time at the maximum value of v, ; and

t, is the zero-crossing time.
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5.2.2.2 Dynamic control using the equidistant firing angle algorithm

The three-phase, six-pulse converter can be controlled with a number of strategies.
We have elected to use an equidistant control algorithm to minimize the THD (Total
Harmonic Distortion). The digital controller for equidistant control includes an estimator
of control references and control action in terms of equidistant valve firing pulses. The
estimation of the control references was performed with the DSP model, shown in Figure
5.5, and a dynamic controller using the equidistant control scheme is presented in this
subsection. The equidistant control scheme has two modes for a rectifier and an inverter.
The rectifier uses the firing delay angle (a), while the inverter is controlled using the

extinction angle (y).

In the equidistant control, the firing pulses for thyristors are generated at equal
intervals 0f 60°. To keep the distance of firing pulses equal, all firing has to be delayed by
the same delay angle, « in steady-state. The scheme for the firing sequence for the

rectifier mode is shown in Figure 5.6.

wt=0

60 3 60 60 v 60 3 60 60 3 60 3

Valve 1 Valve 2 Valve 3 Valve 4 Valve 5 Valve 6 Valve 1
Zero crossing Time Zero crossing Time

Figure 5.6: The scheme of the equidistant firing angle control in a converter mode.
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To compute the firing delay angle, two steps are needed. First, the no-load direct voltage
has to be computed, and then the firing delay angle should be calculated. The no-load
voltage is a DC-voltage, while the firing angle is zero, as shown in Figure 5.7. The no-
load voltage can be computed in the integration of Area A in Figure 5.7. The integration

is as follows:
A= J?\/EVLL cos(wt + %)d (wt) =+/2v,, sin(%) —2v,, sin(0)=+2v,, (5.2.42)
Since one period of the DC-voltage ripples is n/3, the no-load voltage is as follows:
Vio = %J'OZ \/EV,_L cos[wt + %jd (wt) = %vu : (5.2.43)

where V,, is the no-load voltage.

Figure 5.7: Direct voltage,V, during the time firing delay angle is zero

The limit of integration of Area A has to be decreased by o as in Figure5.8. the voltage

drop Area A, is the integral of v,, —v, (=V,.) as follows:

V,. =+/2v,, sinwt (5.2.44)
A, = jo “J2v,, sinwt d(wt) =~/2v,, (1- cosa) (5.2.45)
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The average DC-voltage from the three-phase, six-pulse converter is computed as

follows:

V, =V, P =ﬂvu cosar (5.2.46)
/3 T

oo Cosl[V_dJ (5.2.47)
VdO

(04
t =——xT 5.2.48
delay 360 ( )

where: V4, = Ideal no-load direct voltage;

V, = direct Voltage of Load side; and

I, = direct Current of Load side.

wi=0 «a

Figure 5.8: Voltage drop according to firing delay, a.

To dynamically control the three-phase, six-pulse converter, the firing delay angle a is
controlled based on the calculated value from the relationship between the direct voltage
(Vg) and the no-load direct voltage (Vqo) at every integration time-step. Figure 5.9 shows

the block diagram of the control strategy for constant output-power for the rectifier mode.
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Figure 5.9: The principle of equidistant control for constant output-power in a
rectifier mode.

The important parameters for the control scheme of the rectifier mode are as follows:

P

ref *

Prospective output-power;

P,:  Output-power calculated by using measured voltage and current;

32

V,,: No-load direct-voltage (V,, ==V, );
T

o

K:  Proportionality constant;
Aca:  Firing angle deviation;

Aq;, : Filtered firing angle-deviation; and
t,: Zero-crossing time of line-to-line voltage between Phase A and Phase B.

The design of each block is explained as follows:

Block A: To compute the voltage order from the prospective output-power.

The reference voltage can be calculated with the prospective output-power and a
measured direct-current. The equation is:

P
V., =" (5.2.49)

lq
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Note that the maximum value of the direct voltage is ideally the same as the no-load
direct voltage, so that the voltage reference has to be limited to the no-load direct voltage.
Block B: To compute the deviation of the firing angle.

The deviation of the firing delay angle for the next time-step is calculated with the

present firing angle and no-load direct voltage. The deviation is computed as follows:

Vy =Vyo COSx where V4, = ﬁVLL (5.2.50)
T
AV =V, sina-Aa where AV =V, -V, (5.2.51)
Aa = L (5.2.52)
~VyoSina

Block C: To compute the filtered deviation of the firing angle.

Since sudden changes of the firing angle can generate switching failure or malfunction of
the valves, the deviation has to be filtered in order to reduce the changing rate of the
firing angle.

Aa; =K -Aa where K is a proportionality constant (5.2.53)

Block D: To compute the firing angle.
The firing angle for the next step is calculated by summing the present firing-angle and
filtered deviation of the firing angle.

Anext = Qpresent + Al (5.2.54)
Block E: To check the limitation of the firing angle.
The firing angle has to be limited between 5° and 90° because assuming that the firing
angle is not in this boundary, the deviation of the firing angle cannot be calculated

properly. For example, the Aa goes to infinity, assuming that the firing angle is zero,
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while assuming that the firing delay angle is bigger than 90°, the DC voltage will change
to its opposite direction, and the converter will work as an inverter.
If the firing angle is smaller than 5°, then a =5°
If the firing angle is bigger than 85°, then a =85°
Block F: To compute the switching time of each valve.
Once the firing delay tgelay has been computed, the closing time of the thyristor valves

will be computed as the following time-steps:

a

tdelay = % xT

Valve 1: t) =t; +tgeay +i (5.2.55)
6f,

Valve 2: t) =1, +tgelay +i (5.2.56)
6f,

Valve 3: ts =t +tgeray +i (5.2.57)
6f,

Valve 4: ty =15 +gelay +i (5.2.58)
6f,

Valve 5: ts =15 +tgeray +i (5.2.59)
6f,

Valve 6: ts =15 +lgelay +6if (5.2.60)

0

where fis the fundamental frequency.

The next subsection presents the strategy of inverter control, which is also an
equidistant control scheme. However, the relationship between three-phase voltages and

DC-voltage in the inverter mode is based on the extinction angle 7, as shown in Figure
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5.10. The equations below show the relationship between DC-voltage and no-load
voltage in the inverter mode: Vg =V q; COSy,

(5.2.61)

where V; is the DC-voltage, and V,,,; is the no-load direct voltage in the inverter mode.
From the equation above, the firing angle & is calculated. The relationship between the

firing angle and the extinction angle isa =180° —y .

zero crossing of Vg,

1
1
60° | fa e

Figure 5.10: The scheme of equidistant-firing-angle control in an inverter mode

To dynamically control the three-phase six-pulse converter, firing delay angle a is
controlled based on the calculated value from the relationship between direct voltage (Vq)
and ideal no-load direct voltage (Vqo) at every integration time-step. Figure 5.11 shows

the block diagram of the control strategy for constant output-power for the inverter mode.

Block A Block B Block C
Voltage order Vdi, ref [Extinction angle A V4 Proportional AJ/ f
P f—> - deviation — )
re compute filter
compute
tz | i Vi Vaoi 7 K
t3 Block F Block E Block D
Valve (04 .
St next Firing angle
~-— switchin [ - ——
t, computg _/ compute
ts t
t (0}
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Figure 5.11: The principle of equidistant control for constant output-power in an
inverter mode.
The important parameters for the control scheme of the inverter mode are as follows:

Prer - Prospective DC-power of an inverter;
(I DC-current at the inverter side;

Vi ref - Reference voltage at the inverter side;
V! DC-voltage at inverter side;

y Extinction angle;

Ay Deviation of the extinction angle; and
t,: Zero-crossing time of V,, .

The design of each block is explained as follows:
Block A: To compute the voltage order from the reference power.

The reference voltage is calculated from the power order p,; and a measured direct
current 1 5 . The equation is as follows:

P

ref

Viiret = (5.2.62)

Idi
Note that the maximum value of the direct voltage is ideally the same as the no-load
direct voltage, so that the voltage reference has to be limited to the no-load voltage.
Block B: To compute the deviation of the extinction angle.
The deviation of the extinction angle is calculated with the present extinction-angle, and

the no-load direct-voltage. The deviation is computed as follows:

Vg =Vy0i COSY where V4, = 3‘/EVLL (5.2.63)
T
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AV
Ay=—"— (5.2.65)
—Vyoi Siny

Block C: To compute the filtered deviation of the extinction angle.
Since sudden changes of the extinction angle can lead to sudden changes of the firing
angle, the deviation has to be filtered in order to reduce the changing rate of the firing
angle.

Ays =K-Ay where K is a proportional constant. (5.2.66)
Block D: To compute the firing angle.
The firing delay angle is computed in Block D. The firing angle for the next-step is
computed by using the extinction angle, the deviation of the extinction angle, and the

commutation angle.

Qe =180° —y —Ay — u where u is commutation angle. (5.2.67)
Block E: To check the limitation of the firing angle.
The firing angle has to be limited between 90 degrees and a_, degrees. Assuming that
the firing angle is not bigger than 90 degrees, the inverter will work as a rectifier, and
assuming that the firing angle is not smaller than a,, degrees, the switching of valves
can experience switching failure.

If the firing angle is smaller than 90°, then a=90°

If the firing angle is bigger than a,, , then a=a,,,

where a,, =180—y, .., —u
Block F: To compute the switching time of each valve.

Once the firing delay ty,,, has been computed, the closing time of the thyristor valves

will be computed as the following time steps:
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(04

tdelay = % xT

Valve 1: t =ty +taelay +i (5.2.68)
6f,

Valve 2: ty =t +lgeray +i (5.2.69)
6f,

Valve 3: ty =ty +lgery + 3 (5.2.70)
6f,

Valve 4: ty =1t +leray +i (5.2.71)
6f,

Valve 5: ts =15 +lgelay +i (5.2.72)
6f,

Valve 6: ts =15 +lgeray +£ (5.2.73)

0

where f,is the fundamental frequency.
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5.3 A Three-Phase, Six-pulse Cycloconverter

A three-phase, six-pulse cycloconverter is modeled in two parts: modeling an
equivalent circuit of the three-phase, six-pulse cycloconverter and designing a specific
controller to generate switching pulses. The three-phase, six-pulse cycloconverter is
based on a cosine-wave-crossing algorithm using the firing delay angle (a), in which
firing pulses are generated according to the output-voltage reference. The cosine-wave-
crossing algorithm has demonstrated a characteristic to minimize total harmonic
distortion among phase control algorithms for the three-phase, six-pulse cycloconverter
[28]. The modeling methodology and the cosine wave-crossing method of the three-
phase, six-pulse cycloconverter have been presented in previous research from [33] to
[37], according to their own modeling-methodology. In this subsection, the QMQI
method is applied to model the three-phase, six-pulse cycloconverter, leading to a more
realistic and reliable model of a converter in full time-domain.

5.3.1 Equivalent Circuit of a Three-Phase, Six-Pulse
Cycloconverter

The three-phase, six-pulse cycloconverter consists of three single-phase, six-pulse
cycloconverters, and the each single-phase, six-pulse cycloconverter consists of twelve
electrical-valves, (which consist of a limiting current reactor and resistor, and a snubber
capacitor and resistor) circulating current reactors, and three-phase isolation transformers.

Figure 5.12 shows the entire system of the three-phase, six-pulse cycloconverter.
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Figure 5.12: Input-data form of the three-phase six-pulse cycloconverter.

The circuit parameters of the cycloconverter above are represented as follows:

G

Rs

v

Thyristor conductance of each valve (G, o and Gy on);

Snubber circuit resistance;
Resistance in parallel with the reactor;

Current rate limiting inductance ;
Thyristor parasitic capacitance;

Snubber capacitance; and

Circulating-current reactance.
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Since the three-phase, six-pulse cycloconverter is a complex system with several physical
components as shown in Figure 5.12, each component is modeled and merged to form an
entire system. Thus, the QMQI method is applied to each component and Newton’s
method is applied after merging all components. Since the modeling process is presented
in our previous research of [35], [36], and [37], as well as in Chapter 3, the state
equations of a single-phase transformer and a circulating-current reactor are only
presented in this subsection. Note that the time-domain model of the three-phase isolation
transformers is formed by the proper combinations of three single-phase transformers, as
shown in Figure 5.13. Also, since the state equations of the electrical valve (thyristor) are

presented in Chapter 5.2, the model of the electrical valve is omitted in this subsection.

The three-phase isolation transformers are used for electrical isolation of each
individual six-pulse bridge, since the three-phase, six-pulse cycloconverter does not have

any common connected points between the input and output [28].

t L ° ° Lo
Vi) (1) r1 =5 &/zv 3() V3(t)

In(®) V()
—
20 e®)  te(t) 407

2()

Figure 5.13: An equivalent circuit of a single-phase transformer.

The single-phase transformer consists of winding resistance (r; and r»), leakage reactance

(Ly and L), core loss (rc), and magnetizing reactance (L), as shown in Figure 5.13.

94



Using the parameters, the state equations are written as a set of algebraic equations and

differential equations as follows:

i,(t) =iy, (t) (5.3.1)
i, (t) =—iy, (t) (5.3.2)
i () =iy () (5.3.3)
i, (1) =iy (1) (5.3.4)
0=—r.iy (t) - r.tiy (1) + i, (1) +e(t) (5.3.5)
0=L,i,(t)—A(t) (5.3.6)
0=V, (t) -V, (t)—e(t)—ri, ) - L, %in (t) (5.3.7)
0=V, (t) -V, (t) —te(t)—r,i, ()-L, %igL (t) (5.38)
0=e(t) _%M) (5.3.9)

The discontinuous transactions between the positive and negative converter
(bank) generate abnormal distortions of output-voltages. Here, circulating current circuits
are introduced to avoid voltage distortions from discontinuous transactions, since the
circulating current circuits should support continuous conduction of both converters. Also,
the circulating current circuits can support both a full circulating current mode and a
partial circulating current mode in which the electrical loss can be reduced compared to
the full circulating current model. Figure 4 shows the equivalent circuit of the circulating

current circuit.
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Figure 5.14: An equivalent circuit of a circulating-current circuit

The state equations for the circulating current circuit can also be denoted by a set of

algebraic equations and differential equations. The model equations are:

i, (®) =y, 1) (5.3.10)

i (1) =y, () (5.3.11)

i, (1) ==y, () + Y, (t) (5.3.12)

0=N,y, (t) + N, y,(t) - Rg(t) (5.3.13)
v u . dNS®) d

0=V, (1) =V, () =5 + L = %0 (5.3.14)
vy ANg) o d

0=V, (t) —v,(t) ot +L, p Yy, (t) (5.3.15)

Note that L, is the leakage inductance of the circulating current circuit, and N1 and N, are
coil-turns.

5.3.2 Control Algorithm: Cosine Wave-Crossing Method

The basic control principle of the three-phase, six-pulse cycloconverter is to
continuously modulate the firing angles of the individual converters (positive and

negative converters), according to its control algorithms. Here, the cosine wave-crossing
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method with the partial circulating current mode is selected for its switching sequences,
since the proposed control algorithm has demonstrated the following properties:
e Partial circulating current mode
— The partial circulating current mode can prevent discontinuous operations
during bank-exchange operations from the positive to negative bank, or
conversely, with minimal circulating loss;
— Distortion of output-currents can be eliminated in this mode.
e Cosine wave-crossing controller
— Firing pulses are generated by the crossing points of both wanted and threshold
voltages of reference voltages;
— This method demonstrates superior properties, such as minimum total

harmonic distortion of output-voltages, and simplicity of implementation.

The control action for the three-phase, six-pulse cycloconverter can modulate the
frequency, magnitude, and phase angle of output-voltages. The operating-frequency level
in this work is limited to 20-Hz, since frequencies higher than 20Hz can cause high THD
(Total Harmonic Distortion). The voltage level and phase angle are also controlled by the
application of the cosine wave-crossing method, since electrical power (capacity) can be

regulated by the voltage level and phase angle.

The control action is based on the references (zero-crossing time, magnitude, and
phase angle of the estimated voltages) from the DSP (Digital Signal Processor); thus,
switching sequences are generated for positive and negative converters using the

references from the DSP. Note that the DSP model is omitted, since the model is already
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presented in Chapter 5.2. The entire control algorithm is presented in Figure 5.15, and
the control action is explained in steps as follows:

Step 1 Step 2

Wanted Voltage

_| Input line to line voltage
= Generater

generater

i

Pulse generater of Both
DSP Model Step 3 converters ﬁﬁﬁﬁ 1

Current sensing P
Step 4 Bank selection | —---------

i

Bank selection
Step 5 Logic

Transmit firing pulse
Step 6 to proper thyristor VVVY
Step 7 i

» Close loop control
- Logic

*——

qenBesod \e—

Jamod nduy
enbBensod

eA9|buy aseyd je—

T
=
QD
w
@
>
>
a
®
<
QD
o

User Date
RMS.Voltage.Va
Phase Angle.Va

Figure 5.15: Entire control scheme of the cycloconverter.

Step 1: To generate line-to-line voltage at the high-frequency side.
From the DSP, the magnitude (Va1) and phase angle (fiap) Of Vapi(t) are estimated.
Therefore, three-phase, line-to-line voltages at the high-frequency side are estimated,

based on the magnitude and phase angle of Vgp(t)as follows:

V, (t) =V, cos(wt+6.,) (5.3.16)
V.. (t)=V,, cos(wt+8,, —60°) (5.3.17)
V. (t) =V, cos(wit+6,, —120°) (5.3.18)
V,, (t) =V, cos(wt+86,, —180°) (5.3.19)
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V., (t)=V

acl

cos(w,t+6,, —240°) (5.3.20)

Vcb (t) =V

o1 COS(Wt+ 8, —300°) (5.3.21)
Step 2: To generate wanted output-voltages.
Wanted output-voltages are computed by user given values of V,Z6. and positive

sequence fundamental output-voltage from the DSP model. The detailed explanation is

given in Step 7.

V,. (t)=V,, cos(w,t+6,) (5.3.22)
V,, )=V, cos(w,t+6, —120°) (5.3.23)
V,. () =V,, cos(w,t+6, —240°) (5.3.24)

where V,, is the wanted output-voltage of Phase A, wyis 2af,, f, is frequency of the

output-voltage, and 6, is the phase angle of Phase A.

Step 3: To generate switching pulses of both converters.

Firing pulses are generated by comparing V; with V,,, as in the algorithm below. The
threshold voltage (V) is generated by the average value of adjacent input-voltages. For
example, assuming that V_, and V, are the adjacent input voltages,

Vab (t) +Vac (t)

Vi (t) = . Therefore, the firing pulses are generated at the point,

Vr(t)=Vu(t), as in Figure 5.16.
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Figure 5.16: The scheme of pulse generation for both converters

Step 5: To check the magnitude of the output-current and select the proper banks.

To fulfill the cosine wave-crossing method with partial circulating current mode, the
output-currents have to be measured at every time-step. The magnitude of the output-
currents is used to select either the positive or negative bank. Assuming that the output-
current is bigger than -I+, the positive bank is active; assuming that the output-current is
smaller than I, the negative bank is active. Figure 5.17 shows an example of bank

selection(s) according to ioa(t). Note that ioa(t) is the output-current of phase A.
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Figure 5.17: The explanation of bank selection (ica, ioh, and ioc are a three-phase

output-current).

Step 6: To transmit firing pulses to Proper Thyristors.

Assuming that the positive bank is activated, pulse signals are transmitted to the positive

converter, and assuming that the negative bank is activated, pulse signals are transmitted

to the negative converter. Note that since the switches are thyristor valves, there is no

control algorithm for off-state conditions. Figure 5.18 shows the theoretical output-

voltage by the application of the cosine wave-crossing method with the partial circulating

current mode.
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Step 7: To perform close-loop control.

The closed-loop controller regulates the magnitude and phase angle of output-voltage by
manipulating the wanted output-voltages. The magnitude and phase angle, which are
estimated by the DSP model, are compared to the magnitude and phase angle of the
reference voltage. Therefore, the mismatched values between the wanted output-voltages
and output-voltages from the DSP are continuously regulated to meet the reference values.
Note that the magnitude of the output-voltages is inherently bigger than those of the
wanted voltages in the application of the cosine wave-crossing method; thus, closed-loop
control is needed to regulate the exact magnitude of the output-voltage. Figure 5.19

shows a block diagram for controlling the magnitude of the output-voltages.

u X1 =Err X
1 1 2
Vord @ Pl Viant

V

est

Figure 5.19: Block diagram to control the magnitude of the output-voltages.
The equations to control the magnitude of the output-voltage are as follows:
X (1) =u, (1) —u, (1) (5.3.25)
X, (1) =K, (1) +k, [% (1) (5.3.26)

where U = [ul uZ]T = [Vord Ves’[]T ' and X = [Xl XZ]T = [Err Vwant]T'

The algebraic-companion form via the application of quadratic integration to the control

equations is as follows: (5.3.27)
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Phase angles of the output-voltages also have to be controlled for to meet the power-order,
since the real power depends on the differences between the voltage angles of the sending
bus and the receiving bus. The block diagram to control the phase angle of the output-

voltage is shown in Figure 5.20.

U X; =Err Xy =AS X3 =5(t) /\ X4 =0,
POI'd _ _ K =+ ) ~w
k 5]
Pest S(t'h) 62

Figure 5.20: Block diagram to control the angle of the output-voltages.

The relationship between real power and the power angle is as follows:

V-V

p= %sin S (5.3.28)

Obviously the power and power angle do not have a linear relationship. However, power
deviation is regulated linearly by the deviation of the power angle.

V1 'Vz

AP =——2¢c0s0-A0 where AP=P,, — P, (5.3.29)
AP=K-AS where K =2 V2 o555 (5.3.30)
St)=5(t—-h)+As (5.3.31)
6,(t) =6,(t) - 5(t) (5.3.32)
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The control equation is presented as follows.

% (1) =u,(t) —u,(t) (5.3.33)
K- () —x,(t)=0 (5.3.34)
— X (1) + X5 (t) = —u,(t) (5.3.35)
X3 (1) + X, (1) = u, (t) (5.3.36)

The compact matrix form of the equations is denoted as follows:

-1

X, (t) 1 0 00 1 -1 0 0 ult)
X, (t K -100 0 0 0 Ofu,lt
(1) ] _ . 2(1) (5.3.37)
X5 (t) 0 -1 10 0 0 1 0fut)
X, (t) 0 0 11 0 0 0 1fu,l)

5.4 A Three-Phase PWM Converter

The modeling methodology for the three-phase, pulse-width-modulation (PWM)
converter is presented in this subsection. The three-phase, PWM converter is widely used
for the integration of renewable resources, since phase-controlled converters using
thyristors are impractical for weak synchronous systems and induction machines for wind
farms. Also, the three-phase PWM converters have demonstrated several superior
properties, such as (a) bi-directional power-flow control, (b) low-harmonic distortion of
AC-line currents, and (c) flexible reactive power control [38]. The purpose of converters
is to support maximum power capturing from wind turbine systems and to offer constant
output-voltage frequency from variable-speed wind [38]. For the control algorithm, the
direct-power control algorithm (DPC) is utilized, since the control algorithm has
demonstrated some outstanding characteristics, including: a simple algorithm, a superior

dynamic response, and steady-state performance [41].
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5.4.1 Equivalent Circuit of a Three-Phase, PWM Converter

The three-phase PWM converter consists of six electrical valves (IGBTs) and a
smoothing capacitor, as shown in Figure 5.21. Furthermore, controllers are needed to
generate switching sequences for on/off-controllable switches of the three-phase PWM
converter. The controllers are based on a direct-power control algorithm using space
vectors, since the controllers have demonstrated a rapid dynamic response with a simple

structure [40].
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Figure 5.21: Input-data form of the three-phase PWM converter.
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The models of the electrical-valves and the smoothing capacitor in the three-phase
PWM converter are the same as those in the three-phase, six-pulse converter in Chapter
5.2, except that the electrical switches are on/off-controllable switches. Even though the
physical structure of the electrical valves in the three-phase PWM converter is different
from those of the electrical valves in the three-phase, six-pulse converter, the
mathematical equations for the valve are equivalent to each other. Thus, the mathematical

models of the three-phase PWM converter are omitted in this subsection.

5.4.2 Control Algorithm: Direct-Power-Control Algorithm

The direct-power control (DPC) algorithm is used to control the three-phase PWM
converters, since the control algorithm has demonstrated some outstanding properties,
including the following advantages: a simple algorithm, a superior dynamic response, and
steady-state performance [41]. The DPC algorithm is modeled for both (1) constant
frequency applications and (2) variable frequency applications. Generally, the three-
phase PWM converter with a control algorithm in constant operating frequency (for
brevity, the control algorithm is denoted as a constant frequency control algorithm),
which is referred to a grid-side converter (GSC), is directly connected to the grid systems,
and the GSC supports constant DC-voltage and reactive power controllability for grid-
connected systems. Otherwise, the PWM converter with the control algorithm in variable
operating frequency (for brevity, the control algorithm is denoted as the variable
frequency control algorithm), which is referred to the machine-side converter (MSC), is
directly connected to the wind turbines, and the MSC supports maximum power
capturing from the wind-turbine systems and the reactive power controllability to them.

Note that the MSC is directly connected to the rotor of a doubly fed induction generator
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(DFIG) in Type-3 wind-generation units, and the stator of a permanent magnet
synchronous generator (PMSG) in Type-4 wind-generation units. Since the control
algorithms of the three-phase PWM converter are very diverse, according to the control
purpose and controlled devices, all cannot be considered in this subsection. Thus, two
general control algorithms are only presented for both a constant frequency controller and
a variable frequency controller as shown in Figure 5.22 and Figure 5.23. Note that the
constant frequency controller is only presented since the DPC algorithms for the Type-4

wind-generation unit are easily found in previous research from [39]to [43].
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Figure 5.22: A constant frequency controller using direct-power algorithm with
space-vector modulation.
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Figure 5.23: A variable frequency controller using the direct-power algorithm with
hysteresis controllers.

Figure 5.22 shows a constant frequency control algorithm, which is based on a direct-
power control algorithm with a space-vector modulation (DPC-SVM). The control

algorithm is modeled, based on three steps as follows:
Step 1: To estimate active- and reactive-power and synchronous-position angle.

Active- and reactive-power and the synchronous position angle are estimated with the
DSP model, as shown in Figure 5.5. The powers are easily computed using positive
sequence fundamental voltages and positive sequence fundamental currents from the DSP

model, as follows:

P— gvaﬂ wcoslg, 4. ) (5.4.1)

Q= gvaﬂal sinlg, —¢, ) (5.4.2)
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To find the synchronous position angle, the voltages in af-coordination are calculated
while the Clarke direct transformation is applied to the positive sequence fundamental

voltages as follows:

y , 1 — 1 111V,
a 2 2
<. |V, (5.4.3)
L’/j 310 ﬁ - ﬁ
2 2 | [Va

Using the v, and vg from Equation (5.4.3), the synchronous angle-position (6s) is
computed as follows:

0, = atan(z—ﬂj (5.4.4)

Step 2: To estimate voltage references in of-coordination.

The reference voltages in af-coordination are computed based on the DPC algorithm. In
the DPC algorithm, the errors between the estimated references (real-time DC-voltage,
powers, and the synchronous position angle) and prospective references (power order and
DC-voltage order) are collected and manipulated, using three PI controllers to compute
the reference voltages in af-coordination. Figure 5.24 is the entire block diagram of the
DPC algorithm. The block diagram of the DPC algorithm can be represented as state-

space equations.
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X X * x
1 2

Figure 5.24: Block Diagram of the DPC Control Algorithm

The vectors of U and X are a set of the inputs and states in the DPC, and the vectors are

denoted in mathematic representation as follows:

U:[ul U, U U, Us UG]T:[Qref Vieret Ve Q P gs]T

*

T * * « |T
X:[Xl Xy Xg X4 X5 Xg X7] :[ ref _Q Uq Vdc.ref _Vdc I P P*-P Ud]

The state-space equations of the DPC are as follows:

0=x,(t)—u, (t)+u,(t) (5.4.5)
Ky % (£) + %, (6) =Ky - %, (1) (5.4.6)
0= X, (t) —U, (t) + U, (t) (5.4.7)
—K X (£) 4 %, (1) =K, - X5 (1) (5.4.8)
0=, (t)X, (t) — X, () (5.4.9)
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0=x.(t)—xs (t) —us(t) (5.4.10)

_kps'X6(t)+x7(t):k|3'x6(t) (5-4-11)

The state-space equations of the DPC algorithm are represented in a compact matrix form

as follows:
A-X=B-X+C-U (5.4.12)
where;
0 0 O 00 0 O] 1 0 0 0 O 0 O]
-k, 1 0 00 0 O k, 0 0 0 0 0 O
0O 0 0 00 0 O 0 01 0 0 0 O
A= 0 0 -k, 10 0 0[,B={0 0k, O 0 0 O and
0O 0 0 00 O O 0 0 0 u( -1 0 O
0O 0 0 00 0 O 0 00 0 1 -10
0 0 0 00 -k, 1 0 0 O 0 0 k; 0
(<12 0 01 0 O]
0 0 00 O O
0 -110 0 O
C=/0 0 00 0 0.
0 0 00 O O
0 0 00 -10
|0 0 00 0 O]

Note that ky; and kj; are constant coefficients for PI controllers, and j represents integer

numbers from 1 to 3.

Since the state-space equations are written as differential and algebraic equations, the
quadratic-integration method is applied to convert the state-space equations into an

algebraic companion form as the previous algebraic models of the physical components

in converters. In the algebraic equations, the voltages of u;‘ and u; in dg-coordination are
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denoted as x, and x7, and the voltages are transformed into reference voltages in af-

coordination as follows:

u, | [cosu, —sinug [
< =] (5.4.13)
Uy sinu,  cosug || X,
Step 3: To estimate the switching sequence from the SVM-algorithm.

The SVM-diagram shown in Figure 5.25 is used to calculate the switching sequence and
switching interval of on/off-states. The SVM is popularly used as one of the digital
control algorithms for the three-phase PWM converter connected to the constant
frequency systems.

The switching sequence and switching intervals are decided, according to the reference
voltages in af-coordination. For this purpose, the reference voltages are written in polar

form as follows:

0 (5.4.14)

a

stm,ref = ’stm.ref

* * u*
where Nsvm.ref‘= (ua)2+(uﬁ)2 and ga_ardanlu_ﬁ].

*
o
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V5 (O0P) Section 5 (POP) V6

Figure 5.25: A diagram for space-vector modulation

The dwelling time (pulse-width) that denotes the switching interval of on/off-states is

calculated by using the volt-second-balancing principle as follows.

T, :TSmaSin(%_ej’ (5.4.15)

T, =Tsm,sin @), and

(5.4.16)
To=Ts-T,-T, (5.4.17)
where: m, = % , =06, —(n —1)%, and n is the section number in the SVM diagram.
dc

Note T,, Ty, and T, are the dwelling times (switching intervals) of each phase of phase A,

phase B, and phase C, respectively, and the modulation index m, exists in the range of

0<m, <1. As soon as the dwelling times are computed, the switching sequence is
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arranged for the three legs: The switching sequence is based on a seven-segment
arrangement with switching patterns for even-order-harmonics elimination, as shown in

Figure 5.26. The switching sequence is selected for the following requirements [44]:

e Only two switches in the same leg have to be involved during the transition from

one-state to another.

e None or a minimum number of switching is required during the transition from

one section to another in the SVM diagram.

\73 (OPO) Section 2 (PPO) \72

@ Clockwise
) .
Counterclockwise

V5 (OOP) Section 5 (POP) V6

Figure 5.26: Mirror image in the SVM diagram.

Elimination of even-order harmonics can be accomplished while waveforms are arranged
in half-wave symmetry. For this purpose, two regions facing each other in the SVM
diagram can be arranged in a mirror image as shown in Figure 5.26 and the line-t-line
voltages at the AC-side become half-wave symmetrical forms. Note that the switching

sequences rotate clockwise or counterclockwise to achieve the mirror image.
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55 Summary

This section presents time-domain models of converters: a three-phase, six-pulse
converter, a three-phase, six-pulse cycloconverter, and a three-phase PWM converter.
These models are based on model quadratization and quadratic integration, leading to
reliable and accurate models. These converters are controlled by using a specific control
algorithm according to their purposes.

The converter models in the time-domain help to conduct accurate analyses of
alternative transmission systems, such as harmonics analyses, power-transient analyses,

switching performance analyses, etc.
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CHAPTER 6

DEMONSTRATIVE EXAMPLES

6.1 Introduction

In this section, demonstrative examples of alternative transmission systems are
presented and studied, using reliable models in the frequency-domain, quasi steady-state,
and time-domain. First, in the frequency-domain models, averaging converter models are
used for operational studies of LFAC-transmission systems interconnecting wind-farm
systems and synchronous grid systems. The next involves transient-stability studies,
using averaging converter models in quasi steady-states. In these studies, the voltage ride
through (VRT) capability of wind farm systems, using LFAC-transmission systems, is
analyzed. The last concern time-domain studies using time-domain models of converters.
In these studies, power transient studies and harmonics studies are performed using
example configurations of wind farm systems. Note that more detailed studies and
knowledge of the LFAC-transmission system are shown in [14], since this chapter is a
partial fulfillment of the technical research supported by PESEC (the Power Systems

Engineering Research Center)

6.2 Operational Study in Steady-State

In this study, the maximum power transfer capability (MPTC) of alternative
transmission systems using LFAC-transmission systems, in which the operational

frequency is 20-Hz, is compared to that of nominal frequency (60-Hz) transmission
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systems. LFAC-transmission systems use the averaging models of a three-phase, PWM
converter and a three-phase, six-pulse cycloconverter, since the power transfer capability
IS a quantitative analysis. In the quantitative analysis of power transfer capability, the
ability of electrical power systems to transfer electrical power from one to another place
is analyzed in the operational constraints of physical and electrical limitations that assure
robust and secure operation of the power systems. For the power-transfer capability
studies of LFAC-transmission systems, several constraints are considered, such as the
operational margins of converters (cycloconverters and PWM converters) and voltage-
drop margins on AC transmission lines interconnecting a common connection point

(PCC) of wind farm systems and a synchronous grid system.

Note that the limitation of power transfer capability is decided as the maximum

quantity of power-transfer capability under the most restrictive among several constraints.

6.2.1 Technical Approach of Power Transfer Capability Study

The studies of power transfer capability are comparative studies between two
transmission systems interconnecting a PCC of wind farm systems and a synchronous
grid. For this purpose, two different transmission systems are introduced, as shown in
Figure 6.1: Type-1 is a typical transmission system to transfer 60-Hz electrical power,
while Type-2 is one of the LFAC-transmission systems using a PWM converter and a
cycloconverter. Type-1 is a simple configuration using a three-phase, overhead
transmission line and a three-phase, step-up transformer. Type-2 seems like a combined
configuration of the typical transmission system of type-1 and the converters of a PWM

inverter and a cycloconverter.
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Type 1: 60-Hz transmission system

g i

Load Center

Type 2: 20-Hz transmission system using a three-phase PWM

converter (VSC)

k Ay

PWM converter Cycloconverter

Figure 6.1: Two Types of Transmission Configurations for Case Studies.

Since the MPTC study is a quantitative analysis, the frequency-domain models of
the three-phase transmission lines and three-phase transformers are needed, as well as the
averaging models of a three-phase, six-pulse cycloconverter and a three-phase PWM
inverter. The overhead transmission line and the three-phase transformer should have the
ability to support different frequency operations, since the models are used for a 60-Hz
system (Type-1) and a 20-Hz system (Type-2). The three-phase cycloconverter allows the
interconnection between the LFAC-transmission system and a grid system, as well as the
controllability of the AC-voltage level at the LFAC-transmission system. The three-phase
PWM inverter permits the possibility to control the DC voltage level and reactive power
level in the LFAC-transmission system. Also, the AC voltage level of the PWM inverter

is automatically synchronized to the voltage level derived from the cycloconverter.
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For the MPTC study, the physical and electrical constraints are considered such as
the AC-voltage and the DC-voltage limit at transmission lines, and the modulation-index

limits of converters. The mathematical representation is written as follows:

MPTC = minimum{AC-voltage limit, DC-voltage limit, modulation index limits, etc.}
The maximum power transfer capability is the maximum power that satisfies all of the
constraints. That is, the maximum power-transfer capability is decided under the most

restrictive among the three constraints [45].

6.2.2 Case Studies of Power Transfer Capability

The studies of the maximum power transfer capability are based on a quantitative
analysis using computer models. The quantity of maximum power transfer capability is
a scalar parameter, which can vary in the system configurations. The amount of transfer
is gradually increased from the minimum to the maximum quantity of transfer power
under operational constraints, and the maximum quantity is recorded, according to
distances [14]. The quantity of the maximum power transfer capability varies according
to the operating voltage, the operating frequency, and the transmission distances in the
test configuration, as shown in Figure 6.1. The MPTC should be recorded according to

the variation of the three parameters.

Since the variations of the operational frequency, voltage, and distance are
boundless, only some cases among the variations are considered in these operational
studies: the operational voltages of 38-kV, 76-kV, and 115-kV, operational frequencies

of 20-Hz and 60-Hz, and the distances from O to 200 miles. Note that the operating
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voltages are selected at 1/3 of the nominal voltages of 115-kV, 230-kV, and 345-kV,
since one of the advantages by introducing LFAC-transmission systems is that one can
use the devices (of the same V/H operating value) that have generally been used in
nominal frequency such as transmission lines, transformers, and protection relays [14].
Table 6.1 shows three cases, according to operational voltages. In the three cases, the
transmission distance is changed from 0 to 200 miles, and the MPTC is recorded

according to the transmission distance.

Table 6.1: Operating Voltages for Power Transfer Studies

Case 1 Case 2 Case 3

Operating Frequency 38-kV 76-kV 115-kV
of 60Hz

Operating Frequency 38-kV 76-kV 115-kV
of 20Hz

In this operational study, the maximum transmitted power from the PCC to the
grid system is investigated in the variations of the three parameters (operational voltage
and frequency, and transmission distance), while the voltage drop between the sending
and the receiving terminal of the three-phase transmission lines remains between -5% and
5% of the operating voltage. Also, the modulation indices of the converters are checked
as to whether the converters are working within reasonable limits of the modulation
indices (around 0.93-0.85) and of the DC-voltage level. Note that small modulation
indices can generate huge harmonics, leading to impractical filter designs. The inverter
should support DC voltage for the rectifiers connecting wind turbine systems, since the
DC voltage level is important for the reliable operation of the LFAC-transmission

systems. Here, the simulation results of three cases shown in Table 6.1 are presented in
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tables and graphs, in which the maximum power transfer capability is recorded,

according to the transmission distance from 10 to 200 miles.

Case 1: Rated Power Line Voltage: 38 kV (line-to-line).

Table 6.2: Maximum Transmission Capability at the Operation Voltage of 38kV.

Capability of Power Transmission (MW)

Distance

X 10 30 50 70 90 | 100 | 120 | 140 | 160 | 180 | 200
(miles)

Transfer

Capability
(MW) at 64.0 | 23.05| 1394 | 996 | 7.73 | 6.95 | 6.05 | 529 | 4.89 | 4.59 | 440

60Hz

Transfer

Capability | 1, 7 | 65.44 | 41.40 | 20.68 | 23.07 | 2030 | 17.36 | 14.23 | 11.72 | 9.49 | 7.24
(MW) at

20Hz

38-kV Maximum power transfer capability
140

120 S
—=-20Hz

S 100
=
] N
g 80 \\
o
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20 \\ e
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OO 20 40 60 80 100 120 140 160 180 200

Distance (mile)

Figure 6.2: Power Transmission Capability of the Operation Voltage of 38-kV.
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Case 2: Rated Power Line Voltage: 76 kV (line-to-line).

Table 6.3: Maximum Transmission Capability at the Operation Voltage of 76-kV.

Capability of Power Transmission (MW)

Distance

X 10 | 30 | 50 | 70 | 90 | 100 | 120 | 140 | 160 | 180 | 200
(miles)

Transfer
Capability
(MW) at
60Hz

180.3 | 82.8 | 57.54 | 44.17 | 36.78 | 34.31 | 30.56 | 27.98 | 26.19 | 24.84 | 23.38

Transfer
Capability
(MW) at
20Hz

2253 | 141.3 | 106.1 | 86.28 | 73.49 | 68.29 | 60.19 | 54.27 | 49.22 | 45.21 | 41.96

76-kV Maximum power transfer capability
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Figure 6.3: Power Transmission Capability of the Operation Voltage of 76-kV.
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Case 3: Rated Power Line Voltage: 115 kV (line-to-line).

Table 6.4: Maximum Transmission Capability at the Operation Voltage of 115-kV.

Capability of Power Transmission (MW)

Distance (mile)

Distance
. 10 30 50 70 90 | 100 | 120 | 140 | 160 | 180 | 200
(miles)
Transfer
Capablllty 301.4 | 147.8 | 101.8 | 79.21 | 66.44 | 61.54 | 55.60 | 51.14 | 48.01 | 45.62 | 43.98
(MW) at
60Hz
Transfer
Capablllty 401.5 | 264.9 | 202.8 | 169.0 | 143.8 | 135.7 | 120.7 | 108.1 | 98.69 | 91.16 | 84.60
(MW) at
20Hz
115-kV Maximum power transfer capability
450
400 &
350 \ —~—60Hz
_ \ —=-20Hz
5 300
=
% 250 \\\
£ 200 \\E
- L\\‘\——A\ﬂ_‘“\q.—_‘\; 77777777777777 i
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Figure 6.4: Power Transmission Capability of the Operation Voltage of 115-kV.
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6.3 Transient-Stability Study in Quasi-Steady State

This section presents the transient stability studies of LFAC-transmission systems
using a three-phase, six-pulse cy