
MODELING METHODOLOGY OF CONVERTERS FOR HVDC SYSTEMS AND 

LFAC SYSTEMS: INTEGRATION AND TRANSMISSION OF RENEWABLE 

ENERGY 

 

 

 

 

 

 

 

  

 

A Dissertation 

Presented to 

The Academic Faculty 

 

 

 

 

by 

 

 

 

Yongnam Cho 

 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy in the 

School of Electrical and Computer Engineering 

 

 

 

 

 

 

Georgia Institute of Technology 

August 2013 

 

 

Copyright ©  2013 by Yongnam Cho 



MODELING METHODOLOGY OF CONVERTERS FOR HVDC SYSTEMS AND 

LFAC SYSTEMS: INTEGRATION AND TRANSMISSION OF RENEWABLE 

ENERGY  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Approved by:   

   

Dr. A. P. Sakis Meliopoulos, Advisor 

School of Electrical and Computer 

Engineering  

Georgia Institute of Technology 

 Dr. Anthony Joseph Yezzi 

School of Electrical and Computer 

Engineering  

Georgia Institute of Technology 

   

Dr. Ronald G. Harley, Committee Chair 

School of Electrical and Computer 

Engineering  

Georgia Institute of Technology 

 Dr. David G. Taylor 

School of Electrical and Computer 

Engineering  

Georgia Institute of Technology 

   

Dr. Shijie Deng 

School of Industrial and Systems 

Engineering  

Georgia Institute of Technology 

  

   

  Date Approved: [May 24, 2013]
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my father, Hongkyu Cho:  

 

Even though you are not with us, I am sure that you are eagerly looking forward to my 

graduation. Father, the work is now complete in your dedication. 

 

To my beloved mother, Waoulhee Yoon, to my sisters, Eunhee Cho and Eunjin Cho 

  

 

 

 

 

 



 

iv 

ACKNOWLEDGEMENTS 
 

Your word is a lamp to guide my feet and a light for my path. 

    PSALM: 119: 105 

 When I look back on my Ph. D. period at Georgia Institute of Technology, the 

journey is filled with a life full of hardship and struggle. However, the quote above leads 

me to reach the end of the doctoral degree. First of all, I would like to thank my God for 

seeing me through these seven years. I would also like to thank the people who have 

supported and encouraged me during this period.  

I remember the first encounter I had with my Ph. D. advisor, Professor A. P. Sakis 

Meliopoulos. He was (and still is) a very kind and approachable person. Even though I 

couldn’t speak English well, he always carefully listened to my word and helped me to 

improve my verbal English. During my Ph.D., He has fully supported and encouraged me 

academically and personally. Specifically, I remember that he consoled and supported me 

when my father passed away, this is something I could never forget. Also, I have come to 

see what a great educator and advisor Professor Meliopoulos is. If I am ever opportune to 

advice students, I would really want to emulate my advisor. I am truly grateful to him for 

his immense support both academically and personally. 

Furthermore, I would like to thank Professor Ronald G. Harley, Professor Shijie 

Deng, Professor Anthony Joseph Yezzi, and Professor David G. Taylor, who as my Ph. D. 

committee members, have helped me get to where I am today. These committee members 

of my Ph.D. dissertation were the key to the success of this work. Their comments and 

guidance were instrumental in making a lot of improvement to my initial work. They 



 v 

provided the directions for my dissertation and the knowledge in the classes they taught 

me.  

 I would like to express my appreciation to Dr. George J. Cokkinides for his noble 

support and help in my research. He was always ready to help amidst his busy schedule. I 

consider him a specialist in power system engineering, and have learned a lot under his 

supervision.  

 In addition, I would like to show my appreciation to my friends and colleagues 

which were and are in the Power Systems Control and Automation Laboratory including 

the ones that have graduated already. First, when I joined the laboratory, Dr. Georgios K. 

Stefopoulos, Dr. Salman Mohagheghi, and Dr. Q. Binh Dam welcomed me and 

delightfully shared their knowledge and wisdom with me. Also, I had the pleasure to 

exchange opinions with Dr. Vangelis Farantatos, Kyle Howells, Dr. Curtis Roe, Renke 

Huang, Dr. Ye Tao, Sandhya Madan, Stephanie M. Gossman, Anupama Keeli, and 

Xuebei Yu.  

 Moreover, I would like to express my appreciation for the support my Korean 

friends in power group gave me. Yonghee Lee, Jongkook Park, Namhum Cho, Dr. 

Sangtek Han and Insu Kim were very supportive during my difficulties. I would like to 

specifically thank Sungyun Choi who was a companion that studied together with me 

during the whole period of my journey at Georgia Institute of Technology. Also, I would 

also like to thank visiting scholars that came to our lab later, Dr. Beung-Jin Kim, Dr. 

Sungsam Kim, Dr. SooHyoung Lee, and Dr. Sungyul Kim. 



 vi 

 Finally, I am grateful to the new members in the Power Systems Control and 

Automation Laboratory for their help. They include: Dongbo Zhao, Evangelos 

Polymeneas, Rui Fan, Zhenyu Tan, Liangyi Sun, and Thamer Alquthami. Specially, I 

would like to thank Aniemi Umana who has helped me to practice and improve my 

conversational English.   

 



 vii 

TABLE OF CONTENTS 
 

Page 

ACKNOWLEDGEMENTS ........................................................................................... IV 

LIST OF TABLES .......................................................................................................... IX 

LIST OF FIGURES ......................................................................................................... X 

SUMMARY .................................................................................................................. XVI 

CHAPTER 1 INTRODUCTION AND OBJECTIVE OF THE RESEARCH ....... 1 

1.1 Problem Statement ...................................................................................... 1 

1.2 Objectives of the Research .......................................................................... 3 

1.3 Thesis Outline .............................................................................................. 5 

CHAPTER 2 ORIGIN AND HISTORY AND LITERATURE REVIEW.............. 8 

2.1 HVDC-Transmission Systems .................................................................... 8 

2.2 LFAC-transmission Systems .................................................................... 14 

2.3 Numerical Integration Methods ............................................................... 17 

CHAPTER 3 A NEW MODELING APPROACH: THE QMQI METHOD   . ... 24 

3.1 Basic Concept of Quadratic Integration .................................................. 25 

3.2 Properties of Quadratic Integration ........................................................ 27 

3.3 Model Quadratization and Quadratic Integration (QMQI) .................. 40 

3.4 Demonstrative Example ............................................................................ 48 

3.5 Summary .................................................................................................... 50 

CHAPTER 4 AVERAGING MODELS OF CONVERTERS ................................ 51 

4.1 Introduction ............................................................................................... 51 

4.2 Averaging Model of a Six-Pulse Converter ............................................. 51 



 viii 

4.3 Averaging Model of a Phase-Controlled Cycloconverter ...................... 56 

4.4 Averaging Model of a Three-Phase, PWM Converter ........................... 65 

4.5 Summary .................................................................................................... 69 

CHAPTER 5 FULL TIME-DOMAIN MODELS OF CONVERTERS   . ............ 70 

5.1 Introduction ............................................................................................... 70 

5.2 A Three-Phase, Six-Pulse Converter ....................................................... 70 

5.3 A Three-Phase, Six-pulse Cycloconverter ............................................... 92 

5.4 A Three-Phase PWM Converter ............................................................ 104 

5.5 Summary .................................................................................................. 115 

CHAPTER 6 DEMONSTRATIVE EXAMPLES.................................................. 116 

6.1 Introduction ............................................................................................. 116 

6.2 Operational Study in Steady-State ......................................................... 116 

6.3 Transient-Stability Study in Quasi-Steady State .................................. 124 

6.4 Time-domain Study ................................................................................. 137 

CHAPTER 7 CONCLUSION ................................................................................. 154 

7.1 Conclusions ............................................................................................... 154 

7.2 Future Work ............................................................................................ 160 

REFERENCES .............................................................................................................. 162 

VITA............................................................................................................................... 167 

 



 ix 

LIST OF TABLES 
 

Page 

Table 3.1: Maximum Value of the Absolute Error during Simulation Time.

 ......................................................................................................................... 31 

Table 3.2: Computational Effort-One Second Simulation ........................................... 33 

Table 3.3: Zone free of numerical oscillation  while Im(z) is zero. .............................. 37 

Table 3.4: Connective pointers of the single-phase saturable transformer ................ 45 

Table 4.1: The coefficients of the fundamental component for input 

currents .......................................................................................................... 59 

Table 6.1: Operating Voltages for Power Transfer Studies ....................................... 120 

Table 6.2: Maximum Transmission Capability at the Operation Voltage of 

38kV. ............................................................................................................ 121 

Table 6.3: Maximum Transmission Capability at the Operation Voltage of 

76-kV. ........................................................................................................... 122 

Table 6.4: Maximum Transmission Capability at the Operation Voltage of 

115-kV. ......................................................................................................... 123 

Table 6.5: NERC PRC-024-1 Voltage-Ride-Through Requirement. ........................ 126 

Table 6.6: Numerical Values of Harmonic Contents of the Phase Voltage 

at LFAC ....................................................................................................... 151 

Table 6.7: Numerical Values of Harmonic Contents of the Phase Voltage 

at LFAC Side in Both Full- and Fifty Percent-Circulating 

Current Modes. ........................................................................................... 153 

 



 x 

LIST OF FIGURES 

Page 

Figure 2.1: Example configurations of HVDC links: (a) monopolar HVDC 

link, (b) bipolar HVDC link, and (c) back-to-back HVDC link. ............ 10 

Figure 2.2: Example configurations of a LFAC-transmission system for 

remote wind farm: (A) DC collection and a LFAC-transmission 

system, and (B) LFAC collection and transmission. ............................... 15 

Figure 2.3: Numerical oscillations: (a) the true value of line-to-line voltage; 

and (b) the results by the application of the trapezoidal 

integration of line-to-line voltage of a six-pulse converter. .................... 21 

Figure 3.1: Graphical illustration of quadratic integration. ........................................ 25 

Figure 3.2: Graphical illustration of the trapezoidal, quadratic, and cubic-

integration method ..................................................................................... 27 

Figure 3.3: A simple switching system with ideal electronics. ..................................... 29 

Figure 3.4: Inductor current and capacitor voltage from the analytical 

solution. ....................................................................................................... 30 

Figure 3.5: Absolute error of the inductor current according to applied 

methods. ....................................................................................................... 31 

Figure 3.6: Contours of stable functions and zones of A-stability. .............................. 35 

Figure 3.7: Zone(s) free of artificial numerical oscillations of the three 

methods (shown as shaded regions). ......................................................... 36 

Figure 3.8: An example system of a half-wave diode rectifier. .................................... 37 

Figure 3.9: Inductor current and diode voltage-Trapezoidal integration. ................. 38 

Figure 3.10: Inductor current and diode voltage-Quadratic integration. .................. 38 

Figure 3.11: Inductor current and diode voltage-Cubic integration. ......................... 39 

Figure 3.12: An equivalent model of a push-pull resonant converter ......................... 41 

Figure 3.13: An equivalent model of a single-phase saturable transformer .............. 41 

Figure 3.14: A Push-pull resonant converter interconnecting an ideal source 

and a passive load. ...................................................................................... 48 



 xi 

Figure 3.15: Simulation results of the DC system using the push-pull 

converter. ..................................................................................................... 49 

Figure 3.16: Voltage and current of a MOSFET: (A) and (B) in ZVC and 

(C) and (D) non-ZVC. ................................................................................ 49 

Figure 4.1: An averaging model of a three-phase, six-pulse converter. ...................... 52 

Figure 4.2: An averaging model of a three-phase, six-pulse cycloconverter. ............. 57 

Figure 4.3: An averaging model of a three-phase, PWM converter. .......................... 65 

Figure 5.1: Input-data form of the three-phase six-pulse converter ........................... 71 

Figure 5.2: An electrical-valve model. ............................................................................ 72 

Figure 5.3: A smoothing capacitor model. ..................................................................... 73 

Figure 5.4: Scheme of equidistant control for switching sequence ............................. 75 

Figure 5.5: A DSP model to estimate control references. ............................................. 76 

Figure 5.6: The scheme of the equidistant firing angle control in a converter 

mode. ............................................................................................................ 82 

Figure 5.7: Direct voltage, dV  during the time firing delay angle is zero .................... 83 

Figure 5.8: Voltage drop according to firing delay, α. ................................................. 84 

Figure 5.9: The principle of equidistant control for constant output-power 

in a rectifier mode. ...................................................................................... 85 

Figure 5.10: The scheme of equidistant-firing-angle control in an inverter 

mode ............................................................................................................. 88 

Figure 5.11: The principle of equidistant control for constant output-power 

in an inverter mode. ................................................................................... 89 

Figure 5.12: Input-data form of the three-phase six-pulse cycloconverter. ............... 93 

Figure 5.13: An equivalent circuit of a single-phase transformer. .............................. 94 

Figure 5.14: An equivalent circuit of a circulating-current circuit ............................. 96 

Figure 5.15: Entire control scheme of the cycloconverter. ........................................... 98 

Figure 5.16: The scheme of pulse generation for both converters ............................ 100 



 xii 

Figure 5.17: The explanation of bank selection (ioa, iob, and ioc are a three-

phase output-current). ............................................................................. 101 

Figure 5.18: Firing-pulse transmission in the proper manner. ................................. 101 

Figure 5.19: Block diagram to control the magnitude of the output-voltages. ........ 102 

Figure 5.20: Block diagram to control the angle of the output-voltages................... 103 

Figure 5.21: Input-data form of the three-phase PWM converter. ........................... 105 

Figure 5.22: A constant frequency controller using direct-power algorithm 

with space-vector modulation.................................................................. 107 

Figure 5.23: A variable frequency controller using the direct-power 

algorithm with hysteresis controllers. .................................................... 108 

Figure 5.24: Block Diagram of the DPC Control Algorithm ..................................... 110 

Figure 5.25: A diagram for space-vector modulation................................................. 113 

Figure 5.26: Mirror image in the SVM diagram. ....................................................... 114 

Figure 6.1: Two Types of Transmission Configurations for Case Studies. .............. 118 

Figure 6.2: Power Transmission Capability of the Operation Voltage of 38-

kV. .............................................................................................................. 121 

Figure 6.3: Power Transmission Capability of the Operation Voltage of 76-

kV. .............................................................................................................. 122 

Figure 6.4: Power Transmission Capability of the Operation Voltage of 115-

kV. .............................................................................................................. 123 

Figure 6.5: NERC PRC-024-1 Voltage-Ride-Through Requirement Curve. ........... 126 

Figure 6.6: Single-Line Diagram of an LFAC-Transmission System 

Connecting a Series LFAC Wind Farm to the Main Grid. .................. 128 

Figure 6.7: Configuration 1: Voltage Magnitude of Phase A at (A) the 

Remote Grid; (B) the Local Grid; (C) before the 

Cycloconverter. ......................................................................................... 129 

Figure 6.8: Configuration 1: (A) Operating Frequency; and (B) Real Power 

at the Remote Grid during a Three-Phase Fault at the Remote 

Grid. ........................................................................................................... 130 



 xiii 

Figure 6.9: Configuration 1: Voltage Magnitude of Phase A at (A) the 

Remote Grid; (B) the Local Grid; and (C) before the 

Cycloconverter. ......................................................................................... 131 

Figure 6.10: Configuration 1: (A) Operating Frequency; and (B) Real 

Power at the Remote Grid during the Recloser Operation. ................. 131 

Figure 6.11: Single-Line Diagram of LFAC Transmission Network  

Connecting a Series DC Wind Farms. .................................................... 132 

Figure 6.12: Configuration 2: Voltage Magnitude of Phase A (A) at the 

Remote Grid; (B) at the Local Grid 1; and (C) before the 

Cycloconverter during a Three-Phase Fault at the Remote Grid ........ 133 

Figure 6.13: Configuration 2: (A) Operating Frequency; and (B) Real 

Power at the Remote Grid during a Three-Phase Fault at the 

Remote Grid. ............................................................................................. 134 

Figure 6.14: Configuration 2: Magnitude of Phase A Voltages at (A) the 

Remote Grid; and (B) the Local Grid 1; and (C) Real Power 

and Operating Frequency at the Remote Grid. ..................................... 135 

Figure 6.15: Configuration 2: Magnitude of Phase A Voltages at (A) the 

Remote Grid; and (B) the Local Grid 1 during the Recloser 

Operation at RECLOSOR-LFAC1-TR. ................................................. 136 

Figure 6.16: Wind Farm Configuration: LFAC Wind Farm and LFAC 

Transmission. ............................................................................................ 139 

Figure 6.17: Wind Farm Configuration: Series DC Wind Farm and LFAC 

Transmission. ............................................................................................ 139 

Figure 6.18: Wind Farm Configuration: LFAC Wind Farm and LFAC 

Transmission ............................................................................................. 141 

Figure 6.19: Three-Phase (a) Line-to-Line Voltages and (d) Currents at 

60Hz AC Transmission Connected to the Cycloconverter; 

Three-Phase (c) Voltages and (b) Currents at LFAC 

Transmission Connected to the Cycloconverter; and (e) Real 

Power from the Wind Farm and (f) the RMS Voltage at the 

LFAC from 0.0 to 7.0 Seconds. ................................................................ 143 

Figure 6.20: Three-Phase (a) Line-to-Line Voltage and (d) Currents at 60Hz 

AC Transmission Connected to the Cycloconverter; Three-

Phase (c) Voltages and  (b) Currents at LFAC Transmission 

Connected to the Cycloconverter; and (e) Real Power from the 

Wind Farm and (f) the RMS Voltage at the LFAC from 2.8 to 

3.4 Seconds. ............................................................................................... 143 



 xiv 

Figure 6.21: Three-Phase (a) Line-to-Line Voltage and (d) Current at 60Hz 

AC Transmission Connected to the Cycloconverter; Three-

Phase (c) Voltages and (b) Currents at LFAC Transmission 

Connected to the Cycloconverter; and (e) Real Power from the 

Wind Farm and (f) the RMS Voltage at the LFAC from 6.75 to 

7.0 Seconds ................................................................................................ 144 

Figure 6.22: Single-Line Diagram of a Power Transient Test System. ..................... 145 

Figure 6.23: (a) Three-Phase Line-to-Line Voltages and (b) Three-Phase 

Currents at 60Hz AC Transmission Connected to the 

Cycloconverter; Three-Phase (c) Voltages and (b) Currents at 

LFAC Transmission Connected to the Cycloconverter; and (e) 

Real Power from the Wind Farm and (f) the RMS Voltage at 

the LFAC from 0.0 to 8.0 Seconds. ......................................................... 146 

Figure 6.24: (a) Three-Phase Line-to-Line Voltages and (b) Three-Phase 

Currents at 60Hz AC Transmission Connected to the 

Cycloconverter; and Three-Phase (c) Voltages and (b) 

Currents at LFAC Transmission Connected to the 

Cycloconverter during Steady-State from 4.846 to 5.0 Seconds. ......... 146 

Figure 6.25: (a) Three-Phase Line-to-Line Voltages and (b) Three-Phase 

Currents at 60Hz AC Transmission Connected to the 

Cycloconverter; Three-Phase (c) Voltages and (b) Currents at 

LFAC Transmission Connected to the Cycloconverter during 

Steady-State from 9.785 to 8.0 Seconds. ................................................. 147 

Figure 6.26: (a) Three-Phase Currents at 60Hz AC Transmission Connected 

to the Cycloconverter; and Three-Phase (b) Voltages and (c) 

Currents at LFAC Transmission Connected to the 

Cycloconverter during Steady-State from 0.0 to 0.500 Seconds. ......... 148 

Figure 6.27: (a) Three-Phase Currents at 60Hz AC Transmission Connected 

to the Cycloconverter; and Three-Phase (b) Voltages and (c) 

Currents at LFAC Transmission Connected to the 

Cycloconverter during Steady-State from 4.867 to 5.423 

Seconds. ..................................................................................................... 148 

Figure 6.28: (A) Line-to-Line Voltage between Phase A and Phase B; (B) 

Current at Phase A; (C) Phase Voltage and (D) Phase Current 

at Phase A. ................................................................................................. 150 

Figure 6.29: Harmonic Spectra:  (A) Line-to-Line Voltage between Phase A 

and Phase B; (B) Current at Phase A; (C) Phase Voltage at 

Phase A; and (D) Phase Current at Phase A. ......................................... 150 

Figure 6.30: Harmonic Spectra of the Phase Voltage at the LFAC Side .................. 152 



 xv 

Figure 6.31: Harmonic Spectra of the Phase Voltage at the LFAC Side: 

(Blue) Full Circulating-Current Mode and (Red) 50% 

Circulating-Current Mode. ..................................................................... 153 

 

 



 xvi 

SUMMARY 

 

 The major achievements of this work are based on two categories: (A) 

introduction of an advanced simulation technique in both time domain and frequency 

domain, and (B) realistic and reliable models for converters applicable to analysis of 

alternative transmission systems. 

 The proposed modeling-methodology using a combination of model 

quadratization and quadratic integration has been demonstrated as a more robust, stable, 

and accurate method for power system analysis than previous numerical-methods.  In 

particular, the quadratic-integration method is free of artificial numerical-oscillations 

exhibited by trapezoidal integration (which is the most widely used method for power-

transient analysis) during simulations of power systems with nonlinearities and switching 

subsystems. Artificial numerical oscillations can be the direct reason for switching 

malfunction and switching failure, even though the system to be analyzed is in a stable 

condition. However, by the application of the quadratic-integration method, fictitious 

oscillations can be easily eliminated without any additional control algorithm (such as 

numerical stabilizers, damping adjustment methods, and wave digital filters); and 

accurate simulations can be assured of power systems. 

 Also, model quadratization allows nonlinear equations to be solved without any 

approximation methods, such as the linearization of nonlinear equations. In this method, 

high-order, nonlinear equations are transformed into linear and quadratic equations, in 

which the highest order is not bigger than two. After model quadratization, Newton’s 

method is applied to iteratively solve the quadratized models. It is worth noting that the 

quadratized models are inherently best matched to Newton’s method. Therefore, the 
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combination of model quadratization and quadratic integration is suitable for simulations 

of network systems with nonlinear components and switching subsystems.    

  Realistic and reliable models by the combination method of model quadratization 

and quadratic-integration method can be used for advanced designs and optimization 

studies for alternative transmission systems; they can also be used to perform a 

comprehensive evaluation of the technical performance and economics of alternative 

transmission systems. For example, the converters can be used for comprehensive 

methodology for determining the optimal topology, kV-levels, etc. of alternative 

transmission systems for wind farms, for given distances of wind farms from major 

power grid substations. In this case, a comprehensive evaluation may help make more-

informed decisions for the type of transmission (HVAC, HVDC, and LFAC) for wind 

farms. 

 



 

1 

CHAPTER 1  

INTRODUCTION AND OBJECTIVE OF THE RESEARCH 

1.1 Problem Statement 

The increasing interest and gradual necessity of using renewable resources, such 

as wind, hydro and solar energy, have brought about strong demands for economic and 

technical innovation and development. In particular, both the interconnection and 

transmission of renewable resources into synchronous grid systems have become 

promising topics to power engineers. Generally, switching systems, such as HVDC-

transmission systems and boost-type converters, have been used for the robust and 

reliable transmission and interconnection of renewable energy into central grid systems, 

since switching systems can easily permit excellent controllability of electrical signals: 

changing voltage and frequency levels, and power factors. Converter systems recently 

seem to be key factors in the integration of renewable resources. 

Furthermore, since the demands for using long-distant sources and linking 

different-frequency systems have been increasing, transmission systems using HVDC-

transmission systems and LFAC-transmission systems are becoming two of the 

promising technologies to meet the need for reliable and cost-effective transmission of 

electrical power from renewable resources. In particular, the rapid increase of wind 

power in remote and offshore locations has accelerated the necessity of more advanced, 

reliable and cost-effective applications of alternative transmission systems. A simulation 

technique in high fidelity can be one of many useful tools for advanced design and 
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optimization of alternative transmission systems with switching subsystems (containing 

AC-to-DC / DC-to-AC converters, cycloconverters, boost-type converters, etc.). 

Numerical integration methods have been extensively studied and applied to 

transient analyses of power systems. The most predominant method among transient 

simulation methods is the trapezoidal-integration method, since this method has 

demonstrated the following properties: simplicity in application, adequate precision, and 

absolute stability [1], [2]. However, trapezoidal integration is problematic when applied 

to network systems with nonlinearities and switching subsystems (such as HVDC-

transmission systems and LFAC-transmission systems). Fictitious oscillations can be 

generated, when the state of the network model suddenly changes. In addition, fictitious 

oscillations can be shown at certain combinations of integration time-steps and natural 

frequencies of systems to be analyzed. These fictitious oscillations are an artifact of the 

trapezoidal-integration method. Therefore, the system model with switching subsystems 

and nonlinearities cannot be properly analyzed by the pure application of trapezoidal 

integration. Additional algorithmic controls are needed with trapezoidal integration when 

it is used in systems with power electronics (switching systems) and nonlinearities. 

 To suppress the numerical oscillations derived from trapezoidal integration, 

several additional-algorithms have been proposed, such as the numerical stabilizer 

method [3], (b) critical damping adjustment (CDA) [4], [5], and (c) the wave digital filter 

(WDF) [1], [6]. Numerical stabilizers slightly change both the structure and the state 

equations of the network model, and cannot flawlessly eliminate fictitious oscillations in 

some cases. The CDA method requires variable time-steps. These variable time-steps 

require the companion matrices of all the devices to be recomputed for critical conditions. 
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The sampling rate during critical conditions is twice that during standard conditions. The 

WDF method can generate some abnormal distortions, and these distortions may be 

problematic in some cases, thus leading to less accurate results.    

 Therefore, trapezoidal integration is not a proper method for mixed power 

systems with nonlinearities and switching systems, even though this method has been 

successfully used for each component, which should be a nonlinear component and a 

switching system, with additional algorithms. Mixed-power systems have barely been 

modeled by the application of trapezoidal integration, and more reliable and stable 

methods are required for power systems to integrate renewable resources.    

1.2 Objectives of the Research 

 

The objectives of this research are (a) to introduce a high-fidelity simulation-

method for alternative transmission systems (HVDC and LFAC) using converters; (b) to 

develop a realistic and accurate model of converters (such as phase-controlled converters 

and PWM converters); and (c) to study the capability of alternate transmission topologies 

using the proposed modeling method and developed converters. Consequently, the 

combination method of model quadratization and quadratic integration will be applied to 

several converter models in this work. 

 The proposed method is motivated with two concepts: (a) nonlinear model 

equations are converted into a set of linear and quadratic equations with the introduction 

of new additional variables (model quadratization) and (b) the resulting equations are 

integrated, assuming a quadratic variation within the integration time-step (quadratic 

integration).  The quadratic-integration method has demonstrated advanced properties to 
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eliminate the artificial numerical oscillations exhibited by the application of trapezoidal 

integration and to enhance simulation accuracy. Since the quadratic-integration method 

has a natural characteristic to eliminate fictitious oscillation, additional algorithmic 

controls to suppress numerical oscillation are not needed. The quadratic-integration 

method is highly robust and stable. 

 Quadratic integration accompanies model quadratization to model power systems 

with nonlinearities and switching systems. Generally, the mixed-power systems of 

nonlinearities and switching systems have barely been modeled, since numerical 

oscillations, which are frequently generated when they are modeled, give difficulty to 

control switching systems and require a complex modeling process to suppress the 

numerical oscillations. However, the proposed modeling methodology, a combination 

method of model quadratization and quadratic integration (QMQI), can be applied to the 

mixed-power systems with nonlinearities and switching systems without additional 

algorithms, since the method has a natural characteristic to eliminate artificial oscillations. 

Modal quadratization is introduced for high-order nonlinearities such as saturable 

reactors and saturable transformers. Using modal quadratization, high-order nonlinear 

equations can be converted into a set of linear and quadratic equations. Consequently, 

quadratized models are denoted as linear, quadratic, and differential equations. Then, 

quadratic integration is applied to the quadratized models to transform the differential 

equations into algebraic equations.  

 The QMQI method permits modeling and analyzing power systems with 

nonlinearities and switching systems, with great accuracy and simplicity. In this research, 

the superior properties of the QMQI method to analyze power systems with nonlinearities 
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and switching systems are presented in comparison to two other methods (the trapezoidal 

integration method, which is one of the most popularly used methods for power system 

analysis and the cubic integration method that is an extension of trapezoidal integration 

and the quadratic-integration method). After demonstrating the superior properties of the 

QMQI method, this method is applied to converters, such as phase-controlled converters, 

PWM converters, and push-pull, resonant converters, for reliable and realistic models in 

both the frequency domain and time domain. 

 Using reliable and realistic models, alternative transmission systems, such as 

HVDC-transmission systems and LFAC-transmission systems, are analyzed and studied 

for cost-effective and technically suitable interconnections between synchronous grid 

systems and renewable resources. Specifically, in this work, LFAC-transmission systems 

connecting wind-farm systems are analyzed by performing operational studies, transient-

stability studies, power-transient studies, and harmonic studies. In this case, 

comprehensive evaluations may help make more informed decisions for the type of 

transmission (HVAC, HVDC, and LFAC) involving for the wind farms. 

1.3 Thesis Outline 

 

A brief outline of the remainder of this dissertation is presented in this section: 

In Chapter 2, the origin and history of the research topic is described. First, 

general descriptions of alternative-power-transmission systems, for example, HVDC-

transmission systems and LFAC-transmission systems, are presented. Then, a transient-

simulation method for alternative transmission systems with switching subsystems is 

presented. In addition, the results of a literature survey are presented.  
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 A new type of modeling methodology using a combination of model 

quadratization and quadratic integration, which is denoted as the QMQI method in 

brevity, is presented in Chapter 3. In this chapter, quadratic integration is compared to 

other methods to demonstrate the superior properties of the QMQI method in analyses of 

power systems with nonlinearities and switching subsystems. Also, the QMQI method is 

applied to a push-pull, resonant converter to show how to model converters by the 

application of the QMQI method. 

 Chapter 4 provides converter models in a (quasi-) steady state using an averaging 

modeling concept. In this chapter, averaging methods of a three-phase, six-pulse 

converter, a three-phase, six-pulse cycloconverter, and a three-phase, PWM converter are 

presented. The averaged converter models in a steady-state are suitable for the 

quantitative analysis of power systems, and the averaged converter models in a quasi-

steady state are used to analyze the dynamic behavior of power systems at a specific 

frequency.  

 Chapter 5 provides a brief explanation of time-domain models of a three-phase, 

six-pulse converter, a three-phase, six-pulse cycloconverter, and a three-phase, PWM 

converter. Since the time-domain models are realistic models using physical components, 

the equivalent circuits and controllers of converters are modeled in a realistic manner. 

Consequently, the QMQI method is applied to the equivalent circuits and controllers for 

the converter models, leading to realistic and accurate converters.  

  In Chapter 6, demonstrative examples of LFAC-transmission systems are 

presented and studied. The LFAC-transmission systems are a new type of transmission 



 7 

system integrating wind-farm systems to main grid systems, using an operating frequency 

of 20-Hz. Using the converter models developed in Chapter 4 and Chapter 5, operational 

studies, voltage stability studies, power transient studies, and harmonic studies are 

performed in this chapter.   

 Finally, chapter 7 provides a concise description of completed and remaining 

work. 
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CHAPTER 2  

ORIGIN AND HISTORY AND LITERATURE REVIEW 

 

 In this chapter, the origin and history of both the alterative-transmission systems 

and numerical integration methods are presented. The main focus of this work is to 

propose a new modeling approach (which is named QMQI) to model power systems with 

nonlinearities and switching systems, and to realistically model converters (containing 

PWM converters, phase-control converters, and a push-pull resonant converter) for 

alternative transmission systems. So, the origins and history with a substantial literature 

survey of alternative transmission systems using converter systems and the modeling 

methodologies to solve these systems are presented in this chapter. Subsequent sections 

present origins and history according to the following subtitles: 

• HVDC-transmission systems; 

• LFAC-transmission systems; and 

• Numerical integration methods. 

2.1 HVDC-Transmission Systems 

 

2.1.1 Overview 

 

 As a very well-known historical fact, the first commercial electrical power 

transmission was developed with direct current (DC) by Thomas Alva Edison in 1882. 

However, the difficulty in transmitting DC-power to remote utilities, which is due to low 

voltage, restrained its wide utilization. With the development of electrical machines 

(generating alternating power) and transformers (increasing or decreasing voltage levels), 
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alternating-current (AC) electrical systems have become worldwide dominant 

applications to transmit electrical energy [7]-[10]. Therefore, AC-systems have governed 

in terms of generation, transmission, and distribution of electrical power for over 125 

years and continuing to do so.  

 Since power electronics (semiconductor devices) with improved rated voltage (in 

the case of a thyristor, the rated voltage is up to 10-kV) have become available as 

applications in high-power systems, HVDC-transmission systems have increasingly 

become a practical and commercially viable solution for economical alternative 

transmission systems to transmit bulk electrical power [7]. Since the first commercial 

HVDC-transmission system was built on the island of Gotland, Sweden in 1954, HVDC 

systems have spread out around the world. The highest total rated power (the greatest 

capacity) of HVDC transmission reached 6300-MW (the Itaipu HVDC-transmission 

system in Brazil [8]). 

2.1.2 Usual Configurations of HVDC Systems 

 

 HVDC-transmission systems consist of two converter stations of a sending end 

(rectifier) and a receiving end (inverter). The rectifier transforms AC- to DC power, and 

the inverter transforms DC- to AC power. Each converter station is comprised of several 

subsystems: electrical valves, converter transformers, AC-harmonic filters, DC-harmonic 

filters, controllers, etc. [9]. Figure 2.1 shows the typical configurations of HVDC-

transmission systems.  

 HVDC-transmission systems can be classified into monopolar, bipolar, and back-

to-back link. The monopolar system is the cheapest and simplest configuration, since it 

needs only one conductor line and uses the earth as the return conductor. Also, a metallic 

return can be used in case the ground return is not allowed. The bipolar configuration has 

two conductor lines with different polarities (positive and negative), and can be seen as a 



 10 

combination of two monopolar systems. Thanks to the combination of two monopolar 

systems, one monopolar system can be used with a ground return in case a fault condition 

is generated in one pole. In the back-to-back link, the two converters (rectifier and 

inverter) are located next to each other, and they are directly connected [10]. 
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Figure 2.1: Example configurations of HVDC links: (a) monopolar HVDC link, (b) 

bipolar HVDC link, and (c) back-to-back HVDC link. 
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2.1.3  Application of HVDC Systems  

 

 The introduction of HVDC-transmission systems is justified for economical 

transmission from remote areas and the interconnection of asynchronous systems. High-

voltage, alternating-current (HVAC) systems can exhibit some disadvantages in certain 

cases: (a) HVAC-transmission systems can suffer from higher electrical losses derived 

from the skin effect. (b) Electric-power transmission via a long cable is impractical, since 

high capacitance is derived from charging currents. (c) Asynchronous systems (different 

frequency systems) cannot be easily connected to each system. However, HVDC-

transmission systems can solve these disadvantages with more economical applications 

[10]. Therefore, HVDC-transmission systems can be more attractive in the following 

cases, when compared with HVAC-transmission systems.  

• Electric-power transmission from remote areas; 

• Interconnection of asynchronous systems; and 

• Electric-power transmission via long cable. 

2.1.3.1  Application of HVDC Systems 

 

 Most of the renewable resources, such as hydro power, wind power, and solar 

power, are located in remote areas from power grids. As a well known fact, hydropower 

resources are concentrated around great rivers, such as the Amazon River and the Congo 

River; wind power can be located in offshore fields; and solar power resources can be 

easily gathered in deserts. For these renewable sources from remote areas, HVDC-

transmission systems are more reasonable than HVAC-transmission systems in terms of 

economical aspects. The inductance and electrical losses along transmission lines can be 

generated by the operating frequency in AC-transmission. However, DC-transmission 
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systems are not affected by such inductance and electrical losses, but are dependent only 

on conductor dc-resistance. 

 In addition, HVDC-transmission systems only need one or two conductor(s): In 

the case of ground return, only one conductor is needed, and two conductors are needed 

for the metallic return in the monopolar and bipolar configurations. When compared with 

HVAC-transmission systems, HVDC-transmission systems can transmit the same 

electrical energy with fewer conductors [10], [11]. Therefore, bulk-power transmissions 

are possible by HVDC-transmission systems with lower losses and fewer conductors 

from remote areas, compared to HVAC-transmission systems. 

2.1.3.2  Interconnection of Asynchronous Systems 

 

 The incipient utilizations of HVDC-transmission systems were intended to 

interconnect either regional or national grid systems with different frequencies or 

asynchronous networks. In particular, the increased population of wind turbines has 

accelerated the necessity of robust and stable interconnections between wind farms and 

power grids. Furthermore, HVDC-transmission systems have created an international 

exchange of surplus electrical energy among nations with different frequencies. In this 

case, back-to-back converters can be used without long DC-lines.  

 Interconnections between remote wind turbines and power grid can be offered 

effectively by HVDC-transmission systems, since these HVDC-transmission systems can 

be used as a collector system, reactive power compensator, and outlet from remote wind 

turbines. In this case, converters with an on/off capability can be used to transmit 

electrical power, and to compensate for reactive power. 

 These interconnections can work as a firewall between connected systems [9]-

[11]. In the case of either system failure or fault in one of systems, HVDC-transmission 
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systems can prevent the propagation of disturbances from a faulted system, and can 

separate properly working systems from the contaminated system. The Northeast 

blackout in 2003 was an example of such an operation as a firewall against cascading 

outages [11], [12]. 

2.1.3.3 Electric-Power Transmission via Long Cable 

 

 HVDC-transmission systems can be one of the viable solutions for long 

underground or submarine cables. HVAC-transmission via long cable suffers from 

reactive components (capacitance); and therefore, cable lines have to be compensated 

with reactors (inductors). Even though the capacitance can be immediately compensated 

with inductance, the installation cost of inductors is not practical in long-distance 

transmission via cables. In the case of submarine cables, inductive compensation is 

impractical or is not economically feasible. The break-even distance between HVDC-

transmission and HVAC-transmission does not exceed 50-km in economical aspects.  

However, the operation of HVDC cable transmission is not affected by the capacitance, 

and HVDC-transmission systems are feasible for lengths of hundreds of kilometers to 

transmit electrical power. Therefore, HVDC-transmission systems are more cost effective 

and are more technically feasible for long-distance cables. 



 14 

2.2 LFAC-transmission Systems 

 

2.2.1 Overview 

 

Low-frequency, alternating-current (LFAC) transmission systems are more 

advanced and cost-effective technology than HVDC-transmission systems for short and 

intermediate distances (50-150km) [13]. The basic concept of LFAC transmission is to 

use frequency (16.666/20Hz) lower than nominal frequency (50/60Hz) by introducing a 

phase-controlled thyristor-cycloconverter. LFAC-transmission systems are very similar to 

HVDC-transmission systems, except that they use a cycloconverter instead of a DC-to-

AC converter. This usage makes the economics of their transmission systems more 

effective. For example, the rating voltage of the electrical switches in their converters can 

be reduced, and high-voltage transmission is available, since existing transformers can be 

used in low-frequency transmission. Furthermore, existing technologies, such as 

transmission-line design and protection systems used in 60-Hz networks, can also be used 

for LFAC-transmission systems [14], [35].  

2.2.2 Proposed Configuration of LFAC-Transmission Systems 

 

 LFAC-transmission systems are based on converters, such as AC-to-DC or DC-

to-AC converters and AC-to-AC converters. Figure 2.2 shows examples of LFAC-

transmission systems.  
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Figure 2.2: Example configurations of a LFAC-transmission system for remote wind 

farm: (A) DC collection and a LFAC-transmission system, and (B) LFAC collection 

and transmission. 

 

In the transmission system of example (A), wind turbines are connected to each AC-to-

DC converter, and electrical power from wind turbines can be collected as DC power. A 

DC-to-AC converter offers an interconnection between DC systems and an LFAC-

transmission system, and a cycloconverter offers an interconnection between the LFAC-

transmission system and a 60-Hz power grid. The example configuration (B) shows an 

LFAC-transmission system with doubly-fed induction machines (DFIM). Electrical 

power can be accumulated and transmitted using LFAC power. The LFAC-transmission 
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system is connected to the power grid via a phase-controlled cycloconverter in example 

(B).   

2.2.3 Application and Benefit of LFAC-Transmission Systems 

 

 Typically, the geographic sites for wind-power plants are in remote locations and 

offshore locations (tens of miles from shore), so as to capture strong wind capacity. In 

these cases, the transmission of wind energy to main grids (central loads) is a major issue 

for economically suitable connections and stable, robust integration of wind farms [15]. 

Presently, HVAC- and HVDC-transmission systems have been researched, and well 

established for wind farms.  

 However, for the transmission from offshore wind farms of short and intermediate 

distance (50km-150km), HVDC-transmission systems are not economically effective, 

since the initial investment costs for HVDC-transmission systems are more expensive 

than those of onshore wind farms. The converter substation to collect and transform the 

electrical energy (AC into DC) is needed nearby the wind farms on the sea. That is, the 

installation cost is increased, and HVDC-transmission systems for offshore wind farms 

are not effective, compared with HVAC for short and intermediate distances [13].  

 LFAC-transmission systems can be applied for offshore wind farms. As  in the 

case of Figure 2.2 (B), the converter substation is only needed in on-shore to offer the 

interconnection between the wind farm and the main grid via a phase-controlled 

cycloconverter; and thus, the initial investment can be reduced. Furthermore, LFAC 

transmission can increase the transmission capability, since the impedance is theoretically 

one-third that of a 60-Hz system.    
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2.3 Numerical Integration Methods 

 

2.3.1  Overview 

 

 Numerical-integration methods are intended to solve problems of continuous 

mathematics, according to the process of creating, analyzing, and implementing proper 

algorithms. Normally, these problems, in which the variables change continuously, are 

directly derived from physical components in the natural world. However, the 

mathematical problems cannot usually be analyzed and solved exactly in explicit 

calculations and the necessity of approximate methods to solve these problems has been 

emphasized for several generations [16].  

 In power engineering, the mathematical model derived by physical components 

(circuit elements or power devices) is essential for analyzing dynamic power systems. 

However, these physical components cannot exactly be modeled by intuitive methods, 

since the physical components are normally addressed by either differential or algebraic 

equations. In such case, differential equations can be recomputed into algebraic equations 

and solved in simple computation processes by the application of numerical methods [1], 

[3], [17]. 

 Many numerical integration methods have been introduced and studied for power 

system analysis for over a century.  The backward-Euler method is one of the most 

popularly used methods, and is the simplest method among linear-multistep methods for 

power-system analysis. However, the backward-Euler method is not proper for a precise 

analysis of power systems, since the method is first-order accurate for solving ordinary 

differential-equations (ODE). Another method among well-known linear-multistep 

http://endic.naver.com/enkrEntry.nhn?entryId=bfc34cbb17da4d808713e95cd3d15dff
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methods is trapezoidal integration. The trapezoidal-integration method has become the 

dominant one among numerical methods in power-system simulation with the properties 

of low distortion and absolute stability (A-stable) [1]. 

 However, trapezoidal integration is problematic when applied to network systems 

with nonlinearities and switching subsystems: (a) fictitious oscillations can be generated 

when used as a differentiator; and (b) precision problems still exist in analyses by the 

application of trapezoidal integration (which is second-order accurate) [1], [3], [17]. 

2.3.2 Trapezoidal-Integration Method 

 

 One of the most popularly used methods among numerical-integration methods 

for power-system analysis is trapezoidal integration. The trapezoidal-integration method 

has demonstrated valid accuracy and reliability in the time-domain analysis of power 

systems consisting of linear components. Specifically, since trapezoidal integration is 

simple and fast, the method is popularly used in analyses of mass power systems.  

The trapezoidal-integration method belongs to the following classes of methods: 

 Implicit numerical-methods; and 

 Collocation methods. 

 The trapezoidal integration rule is an implicit method. In the case of the explicit 

methods, the algebraic equations of the system to be analyzed can only be represented as 

the relationship of the state variables at previous times. Otherwise, in the case of the 

implicit methods, the algebraic companion equations after the application of one among 

the numerical methods can be denoted as a combination of state variables at different 

time instances (present and previous times). The Euler method is one of the explicit 
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methods, and this method can be denoted as follow:   ),(1 nnnn xthfxx   , where 

1nx  is the unknown value at time 1nt , and  nx  is the known value at time nt . The 

unknown state can be represented only by the previous state; therefore, the equation can 

be solved explicitly. However, the trapezoidal-integration method is an implicit method, 

and its application can yield system equations with combinations of both unknown and 

known values. The equations have to be modified as a compact matrix form, and can be 

solved by forward and backward substitution [18]. Therefore, the implicit methods take 

more time to compute the system equations compared with the explicit methods, since the 

implicit methods need more computations during each time-step. However, the implicit 

numerical integration methods use more information to compute unknown values, so that 

the methods are more robust, accurate, and stable for analyzing power transient systems. 

That is, the implicit numerical methods present better performance to analyze complex, 

stiff power systems. Since trapezoidal integration is also in the family of implicit methods, 

it is a robust and absolute stable method (A-stable) [1]. Assuming that the model 

equations of a system are stable, the results by application of trapezoidal integration are 

also stable. 

Trapezoidal integration is one of the family of collocation methods. In more detail, 

the trapezoidal-integration method is a member of the Lobatto IIIA among implicit 

Runge-Kutta methods.  The Lobatto IIIA methods are known as collocation methods and 

the functions (polynomial equations) for the numerical-integration methods in the 

methods are sampled at both end-points of the integration time-step as well as the inner 

collocation-point(s). The dominant error of the Lobatto IIIA is defined as order 2s-2, 

where s is a stage value and is matched to the number of collocation points. The 
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trapezoidal is sampled at two collocation points of both ends of the integration time-steps. 

That is, the trapezoidal-integration method is a second-order accurate method. Also, the 

implicit Runge-Kutta methods are known as A-stable methods [19]. 

Therefore, the trapezoidal-integration method has become the most dominantly 

used method for power transient simulations with the following properties: stability, 

simplicity, and proper precision. For example, trapezoidal integration is implemented in 

the EMTP, Spice, and Virtual Test Bed [1], [3].   

2.3.3 Artificial Numerical Oscillation  

 

  Trapezoidal integration is based on two assumptions: (a) systems can be linearly 

modeled; and (b) the state variables of the systems vary linearly within each time-step 

[18]. In the two conditions, the trapezoidal-integration method has demonstrated 

numerically stable characteristics and proper precision to analyses power systems. 

However, most power systems integrating renewable resources include nonlinear 

components and switching systems, such as saturable core transformers and converters. 

Trapezoidal integration generates numerical oscillations, while the method is applied to 

nonlinearities and switching systems. Numerical oscillations are not natural phenomena 

from systems to be analyzed, but are artifacts derived from the application of the 

trapezoidal-integration method. Particularly speaking, in the case of analyzing power 

systems with nonlinearities and switching subsystems, the state variables of network 

models suddenly change and numerical oscillations are frequently generated. Also, it is 

known that numerical oscillations can be shown at certain combinations of integration 

time-steps and natural frequencies of a system to be analyzed [17]. These phenomena 
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have been frequently found during the state changes of electrical switches in switching 

systems. When the valves of switching systems change the state from on-state to off-state, 

the combination of the integration time-step and the natural frequency of the switching 

systems could lead numerical solutions to oscillation zones (Note that the reason for the 

phenomena is mathematically analyzed in the next section). In this case, the switching 

systems can generate numerical oscillations, which can be a direct reason for switching 

misfiring and failure. Figure 2.3 shows the true solutions and the oscillatory solutions, 

derived from the trapezoidal-integration methods, of a three-phase, six-pulse converter: 

(a) the true value of line-to-line voltage (A-B); and (b) the results by the application of 

the trapezoidal integration of line-to-line voltage (A-B). The results show that the 

trapezoidal-integration method suffers from certain fictitious oscillations as reported in 

previous publications [1], [3], [17]. 
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Figure 2.3: Numerical oscillations: (a) the true value of line-to-line voltage; and (b) 

the results by the application of the trapezoidal integration of line-to-line voltage of 

a six-pulse converter. 
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2.3.4 Elimination of Numerical Oscillations 

 

 In an analysis of power systems with nonlinearities and switching subsystems 

using trapezoidal integration, numerical oscillations have decreased the simulation 

efficiency and precision. An additional algorithm to eliminate or suppress the problems is 

needed. Thus, several approaches have been proposed for suppressing numerical 

oscillations. The most well-known methods can be presented as follows: 

 External damping (stabilizer method); 

 Critical damping adjustment (CDA); and 

 Wave digital filter (WDF). 

 The external damping method adds fictitious resistance (stabilizer) to systems 

with an artificial, numerical, and oscillatory solution. Fictitious resistance can be added in 

parallel with the inductances and in series with the capacitance [20], [21], [22]. However, 

numerical stabilizers slightly change both the structure and the state equations of the 

network model and cannot flawlessly eliminate fictitious oscillation. The major 

disadvantage of adding fictitious damping using stabilizers is that the rest of the normal 

network system response is distorted by the phase errors introduced by the damping [20].     

 The most widely used method is critical damping adjustment (CDA). This method 

uses a combination of both trapezoidal integration and the backward-Euler method. The 

backward-Euler method is free of numerical oscillations, and therefore, is used during 

critical conditions when the switching systems change the state. However, the method 

requires variable time-steps, leading to different sampling rates. The sampling rate in 

critical conditions is twice that during standard conditions, and the variable time-steps 
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require the companion matrices of all devices to be recomputed for critical conditions. 

Furthermore, the backward-Euler method is first-order accurate so that the combination 

of both the trapezoidal integration and backward-Euler method lowers the degree of 

precision [1], [17], [20]. 

 The WDF method is also a well-known implementation used to suppress 

numerical oscillations. This method uses two parameters, referred to as incident and 

reflected voltage wave quantities and port resistance. With these quantities, the WDF 

method establishes the series and parallel adaptors originating from the physical 

components, and the power networks can be modeled by connecting the series and 

parallel adaptors [2], [4]. However, the WDF is an auxiliary algorithm added to analog 

systems to suppress fictitious oscillation, and the method can generate some distortions 

unrelated to the true values [2].    

 Therefore, the trapezoidal-integration method is not suitable for power systems 

with nonlinearities and switching systems, even though additional algorithms can 

eliminate or suppress numerical oscillations. The additional algorithms require a complex 

modeling process as well as decreased simulation accuracy. Better simulation methods 

are needed for power systems interconnecting renewable resources and grid systems.  
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CHAPTER 3  

A NEW MODELING APPROACH: THE QMQI METHOD   . 

 

A new modeling approach is introduced for modeling and analysis of the mixed 

power-systems with nonlinearities and switching subsystems, such as the HVDC-

transmission systems and the LFAC-transmission systems. The modeling method uses a 

combination of model quadratization (quadratized models) and quadratic integration and 

the combination method is denoted as the QMQI method for brevity. This QMQI method 

is suitable for power systems of switching subsystems with highly nonlinear components 

such as saturable core reactors and transformers, since the method is free of numerical 

oscillations, and nonlinear equations are treated without simplification or approximation of 

nonlinear equations.  

In this chapter, the superior properties of the quadratic-integration method are 

presented in comparison to other numerical methods of trapezoidal integration and cubic 

integration, which are in the family of collocation methods among implicit Runge-Kutta 

(RK) methods. For this purpose, several simple switching systems are modeled and 

simulated by the application of three numerical-integration methods. Also, the modeling 

methodology using QMQI is carefully explained with the modeling process of a push-pull 

resonant converter. Subsequent sections present the performance properties and the 

modeling process using the QMQI method, according to the following subtitles: 

 Basic concept of the quadratic integration; 

 Performance properties in comparison to other methods; and 
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 Detailed modeling process using QMQI. 

3.1 Basic Concept of Quadratic Integration 

 

The quadratic-integration method is a special case in a class of methods known 

as collocation methods [1] and is sampled at three collocation points, as shown in Figure 

3.1.  
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Figure 3.1: Graphical illustration of quadratic integration. 

 

Quadratic integration is based on two concepts: (a) The time-domain functions vary 

quadratically within the integration time-step; and (b) the model of the system is linear or 

quadratic. With these assumptions, the general form of the time-domain functions can be 

written within the integration time-step as follows: 

2)(   cbax            (3.1.1) 

The three parameters of a, b, and c in Equation (3.1) can be expressed as the sampled 

values of x(t-h), xm, and x(t) at the three collocation-points. The results are as follows: 
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where xm is the value x at the mid-point (tm).  

Then, the integration of the quadratic function is straightforward. The procedure will be 

illustrated with a first-order, dynamical system:  
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The equation above is integrated from t-h to t and from t-h to t-h/2, yielding:  
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Upon evaluation and rearrangement of the integrals, the following matrix equation is 

obtained (algebraic-companion form), which can be applied repetitively to provide the 

solution to the differential equation:  
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The algebraic form of Equation (3.1.8) can be used as a solution method of ordinary-

differential equations (ODE). In this case, quadratic integration has demonstrated the 

following advantages:  (a) the natural elimination of artificial numerical oscillations; and 

(b) better performance in stability and accuracy than those of trapezoidal integration. 

These performance properties are presented in the next subsection. 
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3.2 Properties of Quadratic Integration 

 

In this section, the superior properties of the quadratic integration (QI) method 

are demonstrated in comparison to other collocation methods of trapezoidal and cubic 

integration (TI and CI). Quadratic and cubic integration are extensions of trapezoidal 

integration, which can be viewed as a collocation method. In more detail, the three 

numerical integration methods are the members of Lobatto IIIA among implicit Runge-

Kutta methods.  The Lobatto IIIA methods are known as collocation methods and the 

functions (polynomial equations) for numerical integration methods are sampled at both 

end-points of the integration time-step as well as the inner collocation point(s).  The three 

numerical integration methods of TI, QI, and CI are a two-, three-, and four-collocation 

method, respectively, as shown in Figure 3.2. Also, other forms of collocation methods 

can be induced while the collocation points are increased.  
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Figure 3.2: Graphical illustration of the trapezoidal, quadratic, and cubic-

integration method 
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Since the numerical integration methods are sampled at collocation points, high-order 

methods offer more accurate simulation results in the time-domain analysis. However, 

the computation burden and calculation complexity are substantially increased according 

to the number of collocation points. For example, a first-order dynamical system is 

presented in Equation (3.2.1), and the algebraic companion form (ACF) of the dynamical 

system derived from the three numerical-integration methods (TI, QI, and CI) are induced, 

as shown in Equations (3.2.2) to (3.2.4), respectively.  
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The ACF by the application of TI is at each time-step: 
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The ACF by the application of QI is at each time-step: 
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The ACF by the application of the CI is at each time-step: 
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   (3.2.4) 

where : xm, xa, and xb are the state variables at tm, ta, and tb, respectively. Note: assuming 

that the number of state equations is n, the matrix of A is an n-by-n matrix, and the total 

number of state variables from TI, QI, and CI is n, 2n, and 3n, respectively.  
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3.2.1 Comparison of the Three Numerical Integration Methods 

 

The QI is compared to TI, which has been popularly used in time-domain 

analyses of power systems, and CI, which is an extension version of TI and QI. Though 

the comparison, why the quadratic-integration method is introduced, and why other 

higher-order collocation methods are not considered as a solution method to analysis 

power systems with nonlinearities and switching subsystems are presented. Also, the 

superior properties of QI are presented. For this purpose, the three numerical integration 

methods are compared in four properties of accuracy, computational speed, stability, and 

numerical oscillations, using simple example systems with electronics.  

3.2.1.1 Comparison in Accuracy and Computational Speed 

 

The accuracy and computational speed of QI are compared to those of TI and CI, 

since the simulation reliability and applicability to massive power systems depend on the 

two properties. The accuracy and computational speed of the three numerical integration 

methods are compared by using an example system, as shown in Figure 3.3.  
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V=100V
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R=50Ω
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S2

S1

R  
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V (t)C

+

-

 

Figure 3.3: A simple switching system with ideal electronics. 
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The simple switching system consists of ideal electronics and the passive components of 

two resistors, an inductor, and a capacitor. The ideal electronics are operated in the 

sequence of switching given the following: Switches S1 are closed at t=0.0T+kT and 

opened at t=0.5T+kT, and switches S2 are reversely operated. The switching period T is 

0.02 seconds, and k={0,1,2,…}. 

The simulation results from numerical methods are compared to those of the 

analytical solution. The analytical solution is calculated by the application of the Laplace 

transform and the inverse Laplace transform. Figure 3.4 shows the inductor current and 

the capacitor voltage from the analytical solution.  
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Figure 3.4: Inductor current and capacitor voltage from the analytical solution. 

 

The results by application of the three numerical integration methods are so similar in 

form, like the waveforms of Figure 3.4, that the difference from the analytical solutions 

cannot be recognized without a detailed analysis. So as to show the error clearly, the 

absolute errors of inductor currents are presented between the numerical solutions from 

the numerical-integration methods and the analytical solutions from the Laplace 
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transform.  The absolute error is denoted in mathematical form as follows: 

 Error=abs( iLT(t)-iN(t) ),       (3.2.5) 

where iLT and iN are the inductor current from the analytical solution and the three-

numerical integration methods, respectively. Figure 3.5 shows the absolute errors of the 

inductor currents. 

 
Absolute error of Trapezoidal integration with time step (0.1 mS) 
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Figure 3.5: Absolute error of the inductor current according to applied methods. 

 

 

As Shown in Figure 3.5, QI and CI substantially improve simulation accuracy compared 

to the TI method, while the simulation is performed with the same time-step of 0.1 micro-

seconds. Next is the comparison of the maximum error during the entire simulation-time 

of 2.0 seconds, as shown in Table 3.1. 

 

Table 3.1: Maximum Value of the Absolute Error during Simulation Time. 

Time-step 

(seconds) 

Maximum errors during simulation period  

Trapezoidal Quadratic Cubic 

0.001 1.243 x10
-1 

2.299x10
-5

 2.554x10
-6

 

0.0001 1.241x10
-3 

2.305x10
-9

 2.640x10
-10

 

0.00001 1.241x10
-5

 1.365x10
-10

 6.172x10
-11
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The results of Table 3.1 can be analyzed theoretically. The three collection-methods are 

special cases of the Lobatto IIIA, the family of the implicit Runge-Kutta methods, since 

the definition of the Lobatto IIIA is exactly matched to the butcher-tableau of the three 

collocation methods [23]. The dominant error of the Lobatto IIIA is defined as order 2s-2, 

where s is a stage value and is matched to the number of collocation points. That is, the 

TI , QI , and CI  methods can be denoted as second-, fourth-, and sixth-order methods 

respectively, in terms of accuracy. Mathematically, the dominant error of the three 

collocation-methods is denoted as:  

ETrap =O(h
2
), EQuad =O(h

4
), and ECubic =O(h

6
).       (3.2.6) 

In Table 3.1, the absolute error from TI is quadratically decreasing according to the rule 

of Equation (3.2.6), while the time-step is decreasing; also, QI is quartically decreasing 

until the absolute error is bigger than 10
-10

. However, the absolute error violates the rule 

of Equation (3.2.6), when the absolute error is smaller than 10
-10

. The round-off error in 

the computer calculation is dominant, compared to the truncation-error of the applied 

methods.  Therefore, the CI method is demonstrated as the most accurate method among 

the three collocation methods, while TI is the worst accurate method. The QI is also an 

accurate method, and the difference of the absolute error between QI and CI is trivial (ten 

times).  

 Next, the computational effort of the three collocation methods is compared also 

by using the simple switching system of Figure 3.3. Table 3.2 presents the computational 

effort of the collocation methods during the simulation time of 1.0 second. In the 

simulation, the memory for the state variables is not allocated to offer a similar condition 

in which other processing is dominantly involved, such as a control algorithm and data 
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processing for references of the control algorithm. For example, QI needs sampling data 

at mid-points (tm) as well as present points (t). Assuming that the number of state 

variables is n, the number of state variables for the TI, QI, and CI methods are n, 2n, and 

3n, respectively. That is, the computational effort for QI needs more than twice that for 

TI, while the CI needs more than three times, as shown in Table 3.2. 

Table 3.2: Computational Effort-One Second Simulation 

Time-step 

(seconds) 

The computational cost (seconds) 

Trapezoidal Quadratic Cubic 

0.0001 0.700283
 

1.674141 2.761643 

0.00001 101.269275 238.64339 473.08906 

 

 Therefore, the collocation methods are listed in the order of computational speed: TI is 

the fastest, QI is the second-fastest, and CI is the latest, while the same time-step is used. 

However, it is worth noting that QI with a time-step of 100 microseconds, as compared to 

TI with a time-step of 10 microseconds, offers more accurate results (around fourth 

orders of magnitude, as shown in Table I) with a small fraction of the execution time 

(about 2% of the execution time of TI, as shown in Table II).  

3.2.1.2  Comparison in Numerical Stability and Numerical Oscillations 

 

  The next property to be compared is the numerical stability: A-stability and the 

possibility of numerical oscillations. Most of the Runge-Kutta (RK) methods had 

historically been explicit RK-methods. The explicit RK-methods generate stability 

problems since the region of the A-stability is bounded: the explicit RK-methods should 

present unstable results in some cases, even though the system to be analyzed is stable. 

Thus, implicit RK methods are considered, since implicit RK methods are A-stable 

methods [24]. In particular, the modeling of power systems with nonlinearities and 

switching subsystems requires a large region of A-stability for rapid and dramatic 
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variations of states. Here, the comparison of the three collocation-methods is presented 

based on A-stability. For this purpose, a first-order dynamic system is introduced as 

).()( txtx 
 
The digital and true solution of the dynamical system can be represented as 

x(t)=e
z
·x(t-h) within [t-h, t], where z=λh and λ represents complex numbers. The stability 

function of RK-methods is represented as follows:  

)(1)(1)()( 1 nTnZ hOzAIzbhOzRe       (3.2.7) 

Note that Equation (3.2.7) is generally used to analyze the stability of RK methods and is 

easily found in previous literature [24], [25]. Assuming that the truncation error of O(h
n
) 

is trivial and negligible, the numerical solution can be represented as x(t)=R(z)·x(t-h) and 

the stability of the three collocation-methods can be investigated with the stability 

function R(z) from Equation (3.2.8) to Equation (3.2.10). 
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The region of absolute stability satisfies |R(z)|≤1 and the numerical methods are A-stable 

if the region of  absolute stability includes the entire left-half plane of z-coordination [25]. 

That is, the numerical solutions from A-stable methods are stable with the proper time-

step, while the system to be analyzed is stable. Figure 3.6 shows the contours of 

Equations from (3.2.8) to (3.2.10). 
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Figure 3.6: Contours of stable functions and zones of A-stability. 

 

As shown in Figure 3.6, the contours of |R(z)|, derived from the three collocation 

methods, have magnitudes that are equal to one or smaller than one in the entire left-half 

plane. That is, the three collocation methods of the TI, QI, and CI are A-stable. 

For a time-domain analysis of power systems with nonlinearities and switching 

systems, the most important property is the possibility of numerical oscillations. These 

numerical oscillations are not natural phenomena from systems but rather fictitious 

phenomena derived from numerical integration methods. Numerical oscillations are 

usually generated, when the state variables of the algebraic equations, derived from 

numerical integration methods, are suddenly changed. These phenomena have been 

frequently found in time-domain analyses of switching systems and nonlinearities using   

TI. Here, the mathematical reason for numerical oscillations and the comparison of the 

three-collocation methods in the possibility of numerical oscillations are presented. For 

this purpose, the numerical solution of the first-order dynamic system is also used: 

x(t)=R(z)·x(t-h). The numerical oscillations are generated while the stability function R(z) 
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is negative. Assuming that R(z)<0 in the numerical solution above, the direction of the 

state variable x(t) is changed at each time-step, and the numerical solution should 

oscillate, based on true solutions. Figure 3.7 and Table 3.3 represent the zones free of 

numerical oscillations. Note that the zones (shaded parts) are computed with the 

equations from (3.2.8) to (3.2.10). As shown in Figure 3.7, quadratic and quartic 

integration are totally free of numerical oscillations, assuming that Im(z) is zero and z is 

real numbers. Since power components, such as an inductor, capacitor, resistor, etc., are 

modeled with algebraic and differential equations (in which the coefficients of the 

equations are real numbers in the power system analysis), the set of z (λh) represents real 

numbers. Therefore, it can be concluded that quadratic and quartic integration are totally 

free of numerical oscillation in time-domain analyses. Note that the zones (free of 

numerical oscillations) of quartic integration are presented to demonstrate that the 

collocation methods with odd numbers of collocation points are free of numerical 

oscillations. 

Im
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Figure 3.7: Zone(s) free of artificial numerical oscillations of the three methods 

(shown as shaded regions). 
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Table 3.3: Zone free of numerical oscillation  while Im(z) is zero. 

Method TI QI CI 

Free zone -2 < z ≤2 Totally free -4.3< z ≤4.3 

 

Here, a simple switching system, a half-wave diode-rectifier, is introduced to 

graphically verify whether QI is totally free of numerical oscillations. As shown in Figure 

3.8, the electronics is a piecewise linear model, in which the diode is represented as 

Ron=10
-2

 during on-state and as Roff=10
7
 during off-state.  

V(t)=14cos(wt+φ)

L=1.0mH

R =1Ω

Ron =10

Roff =10 Ω

iS(t)
Ω

-2

7

 

Figure 3.8: An example system of a half-wave diode rectifier. 

 

Using the three numerical integration methods, the diode voltage is analyzed from 0.0 to 

0.05 seconds, as shown in Figures 3.9 to 3.11. Note that all simulation conditions are the 

same, except for the applied methods in this analysis and the integration time-step is 10
-6

. 
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Figure 3.9: Inductor current and diode voltage-Trapezoidal integration. 
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Figure 3.10: Inductor current and diode voltage-Quadratic integration. 
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Figure 3.11: Inductor current and diode voltage-Cubic integration. 

 

As mentioned in Table 3.3, TI and CI should generate numerical oscillations, while |z| is 

bigger than 2 and 4.3, respectively. Thus, the value of z is calculated when the diode in 

Figure 3.8 resides in on-state and in off-state:  z≈-10
4
 in off-state and z≈-10

-3
 in on-state. 

That is, TI and CI generate fictitious oscillations during off-state, while QI is free of 

fictitious oscillations as shown in Figure 3.10. 

 In summary, quadratic integration is not only free of numerical oscillations, which 

are a main reason of switching malfunction in switching systems, but is also an accurate 

and stable method, leading to a reliable analysis of power systems with a wide variation 

of state variables. Other collocation methods with high-order collocation points could 

also be used for power systems analysis. However, they require a high computational 

burden and modeling complexity, and even some (even-number collocation methods) of 

them may generate numerical oscillations with a high possibility in an analysis of power 

systems with nonlinearities and switching systems. For power systems interconnecting 
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renewable resources and grid systems, such as HVDC-transmission systems and LFAC-

transmission systems, quadratic integration seem to be the best simulation method, with 

great accuracy and stability.  

3.3 Model Quadratization and Quadratic Integration (QMQI) 

 

In this section, the QMQI method is introduced to model both devices and power 

systems with nonlinear components and switching components. Generally, power 

systems have been modeled linearly with the application of the trapezoidal-integration 

method: nonlinearities and switching systems are modeled by a combination of TI and 

additional methods, such as numerical dampers and critical damping adjustment methods 

(CDA) after the linearization of nonlinear equations. However, these methods do not only 

decrease simulation accuracy, but also accompany modeling complexity. 

The QMQI allows exact and realistic models of power systems with nonlinear and 

switching components in simplicity, since QI is totally free of numerical oscillations, and 

model quadratization permits the possibility to solve nonlinearities in a nonlinear concept. 

The modeling methodology using QMQI is performed in four steps: (a) a device is 

written in state-space equations consisting of algebraic, differential, and nonlinear 

equations; (b) model quadratization is performed on state-space equations to transform 

nonlinear (high-order) equations into a combination of linear and quadratic equations; (c) 

the QI method is applied to the quadratized model to induce algebraic equations from the 

differential equations; and (d) the algebraic equations are computed by Newton’s method. 

Note that in the time-domain simulation the processes are repeated at each time-step. The 
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modeling process is explained in the following subsections, using a push-pull, resonant 

converter with a single-phase saturable transformer shown in Figure 3.12 [26].  
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Figure 3.12: An equivalent model of a push-pull resonant converter 

 

3.3.1 State-Space Equations  

 

The push-pull, resonant converter in Figure 3.12 consists of a single phase 

saturable-transformer, MOSFETs, diodes, inductors, and capacitors. Each component is 

modeled and merged based on Kirchhoff’s law to form an entire model of the push-pull 

converter. Since the modeling process of each component is the same as each other, the 

modeling process of a single-phase saturable transformer is only presented. The single-

phase saturable transform consists of winding resistance (r1 and r2), leakage reactance (L1 

and L2), core loss (rC), and magnetizing reactance (Lm), as shown in Figure 3.13.  
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Figure 3.13: An equivalent model of a single-phase saturable transformer 
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The state-space equations of the transformer shown in Figure 3.13 can be represented as 

follows: 
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where tn is the transformer ratio, λ0 is the nominal constant flux, and i0 is the nominal 

magnetizing current.  

The state-space equations were written in linear, differential, and nonlinear equations of 

exponent n, as shown in Equations (3.3.1) to (3.3.14).  

3.3.2 Model Quadratization (Quadratic Model)  

 

The high-order equations, such as Equations (3.3.13) and (3.3.14), are quadratized as 

linear and quadratic equations, in which the degree is not bigger than two. Generally, the 

magnetizing current of saturable transformers can be expressed with the magnetic flux of 

exponent n from 9 to 13. Thus, the exponent n of Equation (3.3.13), which is representing 

a relationship between magnetizing current and magnetizing flux linkage, is selected into 

9 and the model quadratization is performed on the following equation. 

    )(
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The resulting equations by application of model quadratization are as follows: 
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The magnetizing current, a nonlinear equation of exponent 9, is represented in quadratic 

forms with additional states from z1 to z3. 
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3.3.3 Application of Quadratic Integration (QI) 

 

Numerical integration methods are introduced to solve the differential equations, 

since these differential equations cannot be calculated in explicit mathematics. An 

approximation method is required, and QI is selected with the advantages explained in 

the previous section to induce algebraic forms from differential equations. For example, 

quadratic integration is applied to Equation (3.3.12), and the algebraic equations are 

represented at each time-step as follows: 
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All differential equations from (3.3.9) to (3.3.12) in the state-space equations can be 

denoted as algebraic equations by the application of QI, and the saturable transformer can 

be represented in a compact form of the algebraic equations as follows: 
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Note that yeq and Feq are n-by-n matrices, beq is an n-by-1 vector of historical data at t-h, 

and j is the number of nonlinear terms. 

All components of passive devices and electronics are written in the same form, 

which is referred to an algebraic companion form (ACF) as the single-phase saturable 

transformer, and are merged by a computer algorithm. For this purpose, it is noted that 

each component is connected to specific nodes of the push-pull resonant converter. The 

connectivity of each component is defined in terms of the order of the corresponding 

states. Figure 3.12 shows the node numbers on specific nodes. Since the merging process 

of all components is the same as one another, the merging process of the single-phase 

saturable transformer is only presented.  Table IV provides the connectivity pointers of 

the single-phase saturable transformer.  

Table 3.4: Connective pointers of the single-phase saturable transformer 

Connective pointers of the single-phase transformer 

t tm 

4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 

17, 18, 19, 20 

39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 

51, 52, 53, 54, 55 

 

The merging of the single-phase saturable transformer into the push-pull, resonant 

converter is achieved by writing Kirchhoff’s current law at each internal node of the 

push-pull resonant converter, substituting the appropriate equations. This process is 

achieved with the algorithm below: 
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where i = 1,2,…,the number of rows of each matrix, 

j = 1,2,…,the number of columns of each matrix. 

Note that the 1-φ transformer pointer is the order of the connective pointers in Table IV, 

and Xeq.pp denotes the matrix or vector of the push-pull converter. After all components 

are merged by the computer algorithm, the end result is an algebraic companion form 

(ACF) of the push-pull resonant converter, given by the following equation:   
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where yeq,pp and Feq,pp are 70-by-70 matrices and beq,pp is a 70-vector, which are 

automatically built with the computer algorithm above. 

3.3.4 Application of Newton’s Method 

 

As soon as all components (devices) in a system to be analyzed are modeled, they 

have to be merged to form an entire system by using a computer algorithm, as in the case 
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of the push-pull resonant converter, shown in Figure 3.12. Then the system currents can 

be eliminated and the state variables only remain in the ACF of the system as follows: 
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where X(t) and beq are n-vectors, and yeq and Feq are n-by-n matrices, while the total 

number of state variables is n.  

Here, Newton’s method is applied for iterative calculation of the quadratized model and 

the solution is given by the following form:       
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where: 
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Newton’s method has demonstrated that the convergence characteristics of the 

quadratized equations are outstanding, compared to other methods [27]. For example, the 

simulations of a DC-DC system (in the next subsection) using the push-pull resonant 

converter are converged to the total error of 10
-13

 before four iterations at each time-step.  
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3.4 Demonstrative Example 

 

In this subsection, an example system is presented to demonstrate the superior 

properties of the QMQI method. The demonstrative example is a DC system using the 

push-pull DC-DC converter, shown in Figure 3.14. The push-pull DC-DC converter is 

interconnecting the 24V-ideal source and a passive load (RL) of 200-ohms. The ratio of 

the single-phase saturable-transformer is 24V/200V, and the push-pull, resonant 

converter is operated in an open-loop control algorithm with a modulation index of 0.48. 

Note that the switching frequency is 65-kH.  

LS

Cf

CS RL

24V: 200V

RS

+

-

iS (t)

vS (t)

iL(t)

+

-

vL(t)

e(t)
+

-iM(t)
+

-

vM(t)

 

Figure 3.14: A Push-pull resonant converter interconnecting an ideal source and a 

passive load. 

 

Figure 3.15 represents the (A) source voltage and (B) current; (C) load voltage and 

(D) current; the (E) induced EMF of the saturable transformer; and the (F) voltage and 

(G) current of the MOSFET.  Figure 3.16 shows the case when the push-pull resonant 

converter fails in the operation of zero voltage switching (ZVC). Graphs (A) and (B) are 

the voltage and current of a MOSFET on an operation of ZVS, while graphs (C) and (D) 

are the voltage and current of a MOSFET at nonzero voltage switching. Note that the 
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modulation index of 0.47 and faster resonant frequency is used to present graphs (C) and 

(D).  
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Figure 3.15: Simulation results of the DC system using the push-pull converter. 
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Figure 3.16: Voltage and current of a MOSFET: (A) and (B) in ZVC and (C) and 

(D) non-ZVC. 
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3.5 Summary 

 

This section presents a new approach, a combination method of model 

quadratization and quadratic integration. The quadratic-integration method is not only 

totally free of numerical oscillations in time-domain analyses, but also increases the 

simulation accuracy and robustness, compared to popularly used methods in previous 

power system analyses. Also, modal quadratization allows nonlinearities to be modeled 

in a nonlinear concept without the approximation of models (such as linearization of 

nonlinear equations) accompanied with Newton’s method. The QMQI method is 

especially suitable to model and analyses mixed-power systems of nonlinearities and 

switching subsystems, since the method permits more accurate and reliable analyses than 

previous modeling methods in simple modeling process. It is important to note that 

mixed-power systems with power electronics and nonlinearities have barely been 

modeled due to the difficulty in controlling switching systems. However, the QMQI 

method is used for these cases with simplicity and great precision. 
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CHAPTER 4  

AVERAGING MODELS OF CONVERTERS 

4.1 Introduction  

 

The modeling methodology for power systems with nonlinearities and switching 

systems was presented in Chapter 3. In this chapter, a method for modeling converters, 

which is referred to the averaging method, is presented. The averaging method is based 

on the steady-state analysis and the equivalent relationship between input and output 

(two-port network analysis). In these averaging concepts, the voltage and current ripples 

are averaged, and the harmonics at both the AC-side and the DC-side of the converters 

are ignored. Note that the dynamic behaviors, such as switching operation and transient 

phenomena, are not in consideration for the averaged converter models. However, this 

method has the distinct advantage of quantitative analysis, such as power transfer 

capability, total operational losses, and optimal kV-level studies of networks. 

Here, three converters are developed: a phase-controlled, six-pulse converter, a 

phase-controlled cycloconverter, and a PWM converter.  

4.2 Averaging Model of a Six-Pulse Converter  

 

Here, a three-phase, six-pulse converter is modeled in the averaging modeling 

concept. The averaging method could be used for two modes of a rectifier and an inverter. 

Since the averaging model of the inverter is almost the same as that of the rectifier, the 

averaging model of the rectifier is only presented in this subsection.  The averaging 

model of a three-phase, six-pulse rectifier consists of the simplified limiting current 
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reactors (-jB) and simplified internal admittances (G). The converter is controlled based 

on an equidistant control algorithm using firing angle (α) to control the DC-voltage level. 

Note that the inverter uses extinction angle (γ) to control the firing angle.  Figure 4.1 

shows the equivalent circuit of the standard six-pulse converter. 
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Figure 4.1: An averaging model of a three-phase, six-pulse converter. 

 

For the DC-voltage control-mode, the six-pulse converter equations are denoted as state 

equations. The model equations are as follows:  

)
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aaa EVjBI             (4.2.1) 
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 0             (4.2.15) 

 0             (4.2.16) 

1)cos(1               (4.2.17) 

1)cos(1              (4.2.18) 

1)cos(1              (4.2.19) 

where Vdo is a no-load DC-voltage, α and β are the firing angle and the commutation 

angle, respectively, and φ is the control angle, which is related to the firing angle and 

commutation angle.  

Equations (4.2.1) to (4.2.5) are external state-equations and Equations (4.2.6) to (4.2.13) 

are internal state equations, while Equations (4.2.14) to (4.2.19) are constraints of the 

control angle, the firing angle, and the commutation angle.  

The model equations derived from the six-pulse converter can be represented as 

phasor representations and quadratized equations, using model quadratization to convert 
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nonlinear equations into linear and quadratic equations. The averaging model of the six-

pulse rectifier can be rewritten as follows: 

aiaiar BEBVI              (4.2.20) 

ararai BEBVI              (4.2.21) 
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As shown in the quadratized equations above, the high-order equations are converted into 

linear and quadratic equations, introducing additional state variables. Also, the angle 
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constraints are represented in quadratic equations. The quadratized model can be denoted 

in algebraic companion form, in which the components (or devices) are written in the 

same matrix form so that all devices in a system to be analyzed can be merged. The 

algebraic companion form of the three-phase, six-pulse converter can be reformulated as 

follows: 
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where:  T
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4.3 Averaging Model of a Phase-Controlled Cycloconverter 

 

A three-phase, six-pulse cycloconverter is modeled in the averaging modeling 

concept. The averaging method consists of three-phase isolation-transformers and the 

simplified reactors (-jB) and admittances (G), as shown in Figure 4.2. The converter is 

modeled under certain assumptions: the converter is working in a circulating current-free 

mode of operation, the control algorithm of the converter is a cosine-wave-crossing 
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method, and the transformers are a wye-wye winding connection with the voltage ratio of 

one.  
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Figure 4.2: An averaging model of a three-phase, six-pulse cycloconverter. 

 
 In the cycloconverter model, the averaging input-currents at high frequency 

cannot be separately controlled and depend on the displacement factor at low frequency 

and the modulation index which is the magnitude ratio between the input voltages and 

output voltages. Also, the averaging values have many variations according to the control 

algorithm and the physical structure itself. Thus, it is difficult to model cycloconverters 

with fixed parameters and the parameters in the cycloconverter must be selected in 

specific conditions. For this purpose, the averaging model of the cycloconverter uses pre-

calculated values to compute the relationship between the input currents and the output 



 58 

currents of the cycloconverter [28]. The fundamental components of the input currents 

consist of an in-phase current (Ip) and a lagging quadrature current (Iq) as follows: 

iqpqp IIjIII cos22
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where cosφi is the power factor of the input current.  
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Where: q is the number of output phase (q=3); 

 s is the number of 3-pulse groups connected in series with one another (s=2); 

 Io is the RMS current of each output phase ; and 

 cosφo is the power factor of the LF(low frequency)-AC side. 

Here, the modulation index (r) is calculated and then the coefficients (a10, a12, a14, etc.) of 

the fundamental components are selected to find the relationship between the input-

currents and output-currents as follows.  

First, the modulation index can be computed using the rated voltage of the cycloconverter 

and the reference output-voltage as follows: 

o

rate

ref

V

V
r

30cos
            (4.3.4) 

where: Vref is the reference output voltage (Line-to-Line) and Vrate is the rating voltage at 

the input side of the cycloconverter. Note that the modulation index is from 0.1 to 1.     

The next is to select the coefficients of the fundamental component in Table 4.1. The 

coefficients in Table 4.1 are calculated mathematically in [28].  
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Table 4.1: The coefficients of the fundamental component for input currents 

Modulation 

Index (r) 

Coefficients of fundament component 

a10
 a12

 a14
 a16

 a18
 a110

 a112
 a114

 a116
 

1.0 0.637 0.424 -0.085 0.036 -0.020 0.013 -0.009 0.007 -0.005 

0.9 0.746 0.277 -0.027 0.005 -0.001 0.000 0.000 0.000 0.000 

0.8 0.813 0.198 -0.012 0.002 0.000 0.000 0.000 0.000 0.000 

0.7 0.863 0.142 -0.006 0.000 0.000 0.000 0.000 0.000 0.000 

0.6 0.903 0.100 -0.003 0.000 0.000 0.000 0.000 0.000 0.000 

0.5 0.934 0.067 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 

0.4 0.959 0.042 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.3 0.977 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.2 0.990 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.1 0.997 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

Using Equations (4.3.2) and (4.3.3) and the selected coefficients in Table 4.1, the three-

phase, six-pulse cycloconverter are written as follows:  

 aHaHaH EVjBI
~~

             (4.3.5) 

 bHbHbH EVjBI
~~

             (4.3.6) 

 cHcHcH EVjBI
~~

             (4.3.7) 

 aLaLaL EVGI
~~

             (4.3.8) 

 bLbLbL EVGI
~~

             (4.3.9) 

 cLcLcL EVGI
~~

             (4.3.10) 

refaL VV
~~

0                 (4.3.11) 

   ** ~~
Re

~~
Re0 abcLabcLabcHabcH IEIV            (4.3.12) 

  41

* ~
3

~~
Im0 yIVIV aabcHabcH            (4.3.13) 

1

33
0 yrII aLp 


           (4.3.14) 









 3

1

2

1

12 153

312
0 42

0
y

a
y

a
aII aLq


         (4.3.15) 
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 *~~
Re0 abcLabcLL IEP             (4.3.16) 

 *~~
Im0 abcLabcLL IEQ             (4.3.17) 

LLL PyQP  1

220            (4.3.18) 

120 2

12  yy             (4.3.19) 

120 2

23  yy             (4.3.20) 

qIyI  410              (4.3.21) 

refaH VrV
~~

30              (4.3.22) 

11 1  y              (4.3.23) 

11 2  y              (4.3.24) 

11 3  y              (4.3.25) 

10 4  y              (4.3.26) 

10  r              (4.3.27) 

Where: y1, y2, y3, and y4 represent ocos , ,2cos o ,4cos o  and isin respectively, refV
~

is the 

reference voltage at low-frequency, and PL and QL are real- and reactive-power at the 

low-frequency side. Equations (4.3.5) to (4.3.10) are external state equations and 

Equations (4.3.11) to (4.3.22) are internal state equations, while Equations (4.3.23) to 

(4.3.27) are constraints of the displacement factors at both sides.  

The model equations derived from the three-phase, six-pulse cycloconverter can be 

represented as phasor representations and quadratized equations using model 

quadratization to convert nonlinear equations into linear and quadratic equations. The 

averaging model of the cycloconverter can be rewritten as follows: 
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HiaHiaHr BEBVI                (4.3.28) 

HraHraHi BEBVI                (4.3.29) 

  HiHrbHibHr BEEBBVI 5.02/3             (4.3.30) 

  HiHrbHrbHi BEEBBVI 2/35.0             (4.3.31) 

  HiHrcHicHr BEEBBVI 5.02/3             (4.3.32) 

  HiHrcHrcHi BEEBBVI 2/35.0             (4.3.33) 

LraLraLr GEGVI                (4.3.34) 

LiaLiaLi GEGVI                (4.3.35) 

  LiLrbLrbLr EGEGGVI  2/35.0            (4.3.36) 

  LiLrbLibLi EGEGGVI  5.02/3            (4.3.37) 

  LiLrcLrcLr EGEGGVI  2/35.0            (4.3.38) 

  LiLrcLicLi EGEGGVI  5.02/3            (4.3.39) 

rrefaLr VV 0               (4.3.40) 

irefaLi VV 0                (4.3.41) 

HiaHi EVx  10               (4.3.42) 

HraHr EVx  20               (4.3.43) 

  HiHrbHi EEVx 5.02/30 3              (4.3.44) 

  HiHrbHr EEVx 2/35.00 4              (4.3.45) 

  HiHrcHi EEVx 5.02/30 5              (4.3.46) 
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  HiHrcHr EEVx 2/35.00 6              (4.3.47) 

  LiLr EEx 2/35.00 7                    (4.3.48) 

  LiLr EEx 5.02/30 8                    (4.3.49) 

  LiLr EEx 2/35.00 9                    (4.3.50) 

  LiLr EEx 5.02/30 10                    (4.3.51) 

LraLr EVx  110               (4.3.52) 

LiaLi EVx  120                    (4.3.53) 

7130 xVx bLr                (4.3.54) 

8140 xVx bLi                     (4.3.55) 

9150 xVx cLr                      (4.3.56) 

10160 xVx cLi                     (4.3.57) 

222

170 aHiaHr VVx                     (4.3.58) 

222

180 qp IIx                        (4.3.59) 

Lp PIx  1930                   (4.3.60) 

2

12

2

11

2

200 xxx                (4.3.61) 

16101591481371211

6543210

xGxxGxxGxxGxxGExGE

xBVxBVxBVxBVxBVxBV

LiLr

cHicHrbHibHraHiaHr




        (4.3.62) 

419563412 30 yxxBVxBVxBVxBVxBVxBV cHicHrbHibHraHiaHr   (4.3.63) 

120

33
0 yxG

r
I p 


        (4.3.64) 
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3202

1

2202

1

202

1

15

312

3

312312
0 420 yxG

a
yxG

a
xG

a
Iq 











  (4.3.65) 

161015914813712110 xGxxGxxGxxGxxGExGEP LiLrL     (4.3.66) 

151016913814711120 xGxxGxxGxxGxxGExGEQ LiLrL      (4.3.67) 

222

210 LL QPx           (4.3.68) 

LPyx  1210           (4.3.69) 

120 2

12  yy                (4.3.70) 

120 2

23  yy                (4.3.71) 

qIyx  4180                (4.3.72) 

10 2

22

2

1  xy                (4.3.73) 

10 2

23

2

2  xy                (4.3.74) 

10 2

24

2

3  xy                (4.3.75) 

10 2

25

2

4  xy                (4.3.76) 

2

2640 xy                  (4.3.77) 

2

27170 xx                 (4.3.78) 

2

28180 xx                  (4.3.79) 

2

29200 xx                  (4.3.80) 

2

30210 xx                  (4.3.81) 

refVrx
~

30 17                (4.3.82) 

10 2

31

2  xr                (4.3.83) 
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2

320 xr                  (4.3.84) 

330 x                        (4.3.85)  

As shown in the quadratized equations above, the high-order equations are converted into 

linear and quadratic equations, introducing additional state variables. Also, the angle 

constraints are represented in the quadratic equations. The quadratized model can be 

denoted as an algebraic companion form, in which the components (or devices) are 

written in the same matrix-form so that all devices in the system to be analyzed can be 

merged. The algebraic companion form of the three-phase, six-pulse cycloconverter can 

be reformulated as follows: 
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31

30

XFX

XFX

XFX
b

X

Y

V

y
I

eq

T

eq

T

eq

T

eqeq



         (4.3.86) 

 

where: ;][ 21

TXXYVX    

  ;
T

cLicLrbLibLraLiaLrcHicHrbHibHraHiaHr IIIIIIIIIIIII   

 ;cLicLrbLibLraLiaLrcHicHrbHibHraHiaHr VVVVVVVVVVVVV   

 ryyyyQPIIEEEEY LLqpLiLrHiHr 4321  

][ 20191817161514131211109876543211 xxxxxxxxxxxxxxxxxxxxX   

      ][ 333231302928272625242322212 xxxxxxxxxxxxxX   
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4.4 Averaging Model of a Three-Phase, PWM Converter 

 

A three-phase, pulse-width-modulation (PWM) converter is modeled in the 

averaging modeling concept. The averaging method is used for two modes: a VQ-control 

(DC-voltage and reactive power control) mode and a PQ-control (real-power and 

reactive-power control) mode. Since the averaging model of the converter using the PQ-

control mode is almost the same as that using VQ-control, the averaging model of the 

PWM converter with the VQ-control mode is only modeled in this subsection.  The 

averaging model of the PWM converter consists of simplified limiting current reactors (-

jB) and simplified internal admittances (G) as shown in Figure 4.3. The converter is 

controlled based on space-vector modulation (SVM) using the modulation index, which 

is the relationship between input voltage and output voltage. Note that converters with the 

PQ- and VQ-control mode can be used as both an inverter and a rectifier.  

V ea
jδ

E ea
jΦ

I ea
jθ

VKD

VAD

UKD

UAD

IKD

IAD

-jB

G

V eb
j(δ-120)

V ec
j(δ+120)

 
Figure 4.3: An averaging model of a three-phase, PWM converter. 

 

For the VQ-control mode, the averaging model of the three-phase, PWM converter is 

denoted as state equations. The model equations are as follows:  
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)
~~

(
~

aaa EVjBI              (4.4.1) 

)
~~

(
~

bbb EVjBI              (4.4.2) 

)
~~

(
~

ccc EVjBI              (4.4.3) 

 KDKDKD UVGI              (4.4.4) 

 ADADAD UVGI               (4.4.5) 

 ***
2

Re
2

)(0 ccbbaa
Ad

AdAdkd IVIVIV
G

I
IVV 


         (4.4.6) 

   ADADKDKDADKD UVGUVGII 0          (4.4.7) 

 ADKDaa UUmE  707.0
~

30           (4.4.8) 

max.707.0
~

30 dca UE             (4.4.9) 

KDKDrefdcadc VUVmU 220 .max.           (4.4.10) 

 ***Im0 ccbbaaref IVIVIVQ            (4.4.11) 

10  am              (4.4.12) 

where ma is the modulation index, and Vdc.ref is the reference voltage at the DC-side of the 

converter. Equations (4.3.1) to (4.3.5) are external state equations, and Equations (4.3.6) 

to (4.3.11) are internal state equations, while Equation (4.4.12) is a constraint of the 

modulation index.  

The model equations derived from the PWM converter can be represented as phasor 

representations and quadratized equations using model quadratization to convert 

nonlinear equations into linear and quadratic equations. The averaging model of the 

PWM converter can be rewritten as follows: 
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iaiar BEBVI              (4.4.13) 

rarai BEBVI              (4.4.14) 

  irbibr EBEBBVI  5.02/3           (4.4.15) 

  irbrbi EBEBBVI  2/35.0          (4.4.16) 

  ircicr EBEBBVI  5.02/3           (4.4.17) 

  ircrci EBEBBVI  2/35.0          (4.4.18) 

rKDrKDrKD GUGVI              (4.4.19) 

iKDiKD VI   0.1             (4.4.20) 

rADrADrAD GUGVI              (4.4.21) 

iADiAD VI   0.1             (4.4.22) 

rADrADrKDrKD GUGVGUGV  0          (4.4.23) 

max.1 707.030 dcUx             (4.4.24) 

iai EVx  20             (4.4.25) 

rar EVx  30             (4.4.26) 

  irbi EEVx 5.02/30 4            (4.4.27) 

  irbr EEVx 2/35.00 5            (4.4.28) 

  irci EEVx 5.02/30 6            (4.4.29) 

  ircr EEVx 2/35.00 7              (4.4.30) 

rADrAD UVx ..80           

 cicrbibraiarrADrKD VxVxVxVxVxVxBxGVVxG 765432

2

8..8 2)(0   (4.4.31) 
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crcibrbiarairef VxBVxBVxBVxBVxBVxBQ 7654320       (4.4.32) 

rKDrKDrefadc VUVmU   220 max.                (4.4.33) 

 rADrKDa UUmx   707.030 1                 (4.4.34) 

222

10 ir EEx                    (4.4.35) 

2

9

210 xma                    (4.4.36) 

2

100 xma                     (4.4.37) 

2
1110 xx                     (4.4.38) 

120 x               (4.4.39) 

As shown in the quadratized equations above, the high-order equations are converted into 

linear and quadratic equations, introducing additional state variables. Also, the constraint 

of the modulation index is represented in quadratic equations. The quadratized model can 

be denoted as an algebraic companion form, in which the components (or devices) are 

written in the same matrix form so that all devices in the system to be analyzed can be 

merged. The algebraic companion form of the three-phase, PWM converter can be 

reformulated as follows: 
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              (4.4.40) 

where: ;][ TXYVX               
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 ;iADrADiKDrKDcicrbibraiar IIIIIIIIIII     

 ;iADrADiKDrKDcicrbibraiar VVVVVVVVVVV   

 ;max.dcarADrKDir UmUUEEY   and  

][ 121110987654321 xxxxxxxxxxxxX  . 

 

4.5 Summary 

 

This section presents the averaging models of converters: a three-phase, six-pulse 

converter, a three-phase, six-pulse cycloconverter, and a three-phase, PWM converter. 

These models are based on model quadratization and phasor representation in the 

frequency-domain. The models have the advantages of simple and fast analysis in 

quantitative analysis, such as the power transfer capability of transmission systems, 

electrical loss analysis, etc. Also, the models can be used in a quasi-steady state in which 

the converters are operating in sinusoidal, steady-state condition, and it is assumed that 

mechanical system of generators is only working dynamically [29]. The quasi-steady-

state models can be used to analyze the dynamical behavior of specific frequency.   
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CHAPTER 5  

FULL TIME-DOMAIN MODELS OF CONVERTERS   . 

 

5.1 Introduction 

 

This section presents the time-domain models of a three-phase, six-pulse 

converter, a three-phase, six-pulse cycloconverter, and a three-phase, PWM converter. 

Time-domain models are utilized to better understand the dynamic behavior of power 

systems, such as the operation of electrical switches, harmonics, and power transients. In 

this section, realistic models of converters consisting of physical components (such as 

resistors, inductors, capacitors, electrical switches, etc.) are presented. The modeling 

methodology is based on a combination of model quadratization and quadratic integration 

(QMQI), which is explained in Chapter 3. Since the modeling process of converters is 

almost the same as that of the push-pull resonant converter shown in Chapter 3, converter 

models are explained below in brevity.  

5.2 A Three-Phase, Six-Pulse Converter 

 

A three-phase, six-pulse converter is modeled in two parts: modeling an equivalent 

circuit of the three-phase, six-pulse converter and designing a specific controller to 

generate switching pulses. The three-phase converter is based on an equidistant-control 

algorithm using the firing delay angle (α), in which the firing pulses are generated at the 

same interval of 60
o
. The equidistant control algorithm has demonstrated a characteristic 

to minimize total harmonic distortion among phase-control algorithms for the three-phase, 
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six-pulse converter [28].  The modeling methodology and the equidistant firing angle 

control of the three-phase, six-pulse converter have been presented in previous research 

from [30] to [31], according to their own modeling methodology. In this subsection, the 

QMQI method is introduced to model the three-phase, six-pulse converter, thereby 

leading a more realistic and reliable model of the converter in time-domain. 

5.2.1 Equivalent Circuit of a Three-Phase, Six-Pulse Converter 

 

 A six-pulse converter consists of six valves containing a thyristor, a snubber 

circuit, and a current-rate-limiting circuit. They are interconnected to yield the topology 

of the three-phase, six-pulse converter. The overall system of the three-phase, six-pulse 

converter is shown in Figure 5.1.  

 

 
Figure 5.1: Input-data form of the three-phase six-pulse converter 
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The circuit parameters of the three-phase, six-pulse converter are as follows: 

 G GV V1 6~  :  thyristor conductance of each valve; 

 RS
 :   snubber circuit resistance; 

 CS
 :   snubber circuit capacitance; 

 
G

R 1  :  resistance in parallel with reactor; 

 L  :   current rate limiting inductance; 

 CP
 :   thyristor parasitic capacitance; and 

 C   :   DC side smoothing capacitance. 

Since the three-phase, six-pulse converter is a complex system with several physical 

components (of six valves and a capacitor), each component is modeled and merged to 

form an entire system. Thus, the QMQI method is applied to each component and 

Newton’s method is performed after merging all components. Since the modeling process 

is presented in our previous research of [17], as well as in Chapter 3, the state equations 

of an electrical valve, shown in Figure 5.2 and a smoothing capacitor, shown in Figure 

5.3 are only presented in this subsection.  
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Figure 5.2: An electrical-valve model. 
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The state equations of the electrical valve are written as a set of algebraic equations and 

differential equations as follows: 

)()]()([)]()([)( 211 titvtvGtvtvGti LSsP         (5.2.1)
 

)()]()([)]()([)( 212 titvtvGtvtvGti LSsP         (5.2.2)
 

)]()([)]()([0 12 tvtv
dt

d
CtvtvG SSSS          (5.2.3)

 

)()]()([)]()([)]()([0 122 titvtvGtvtv
dt

d
CtvtvG LPPPPV      (5.2.4)

 

)()()(0 1 ti
dt

d
Ltvtv LP            (5.2.5) 

Note that the electrical-valve model is represented with conductance GV. This 

conductance-value (GV) changes, according to the valve states (on-state: GVon and off-

state: GVoff).  

The smoothing capacitor, shown in Figure 5.3, is used for reducing voltage 

ripples at the DC-side, leading constant DC-voltage.  
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Figure 5.3: A smoothing capacitor model. 
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The state equations of the smoothing capacitor are as follows: 

)()( 11 tCyti                   (5.2.6) 

)()( 12 titi                  (5.2.7) 

)(
)(

1 ty
dt

tdvc 
                (5.2.8) 

)()()(0 21 tvtvtvc 
                (5.2.9) 

5.2.2 Control Algorithm: Equidistant Firing Angle Control  

 

The converter controller can be a complex system, depending on the sophistication 

of the control scheme and the objectives of the designers. In this section, a specific 

controller is demonstrated for the three-phase, six-pulse converter, which is referred as an 

equidistant firing controller, and its integration into the quadratic-integration method. The 

implementation of the control scheme consists of two steps. In the first step, an 

estimation method is applied to determine the control references. In the second step, the 

equidistant control scheme using the firing-delay angle, α, related to the control 

references, is applied to decide the switching time of the six valves. The six-pulse 

converter can be controlled with a number of strategies. The equidistant firing angle 

control is elected, since the control algorithm is suitable for high-power converters 

connected to grid systems. The digital controller for the equidistant control includes an 

estimator of control references, and the actual control in terms of the equidistant valve 

firing pulses [30]-[31]. 

The control references in the equidistant control algorithm consist of two 

parameters: magnitude and zero-crossing time of line-to-line voltage (VAB) between phase 
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A and phase B. Since converter systems contain several components with nonlinear 

characteristics, VAB can be distorted by harmonics. For better accuracy of the control 

scheme references, first the positive sequence of fundamental frequency is estimated by 

using Fourier-series analysis and modal decomposition, and then the reference is 

computed (Vab1).  

For the equidistant control scheme, the firing delay angle (α) is used to control the 

switching sequence. The scheme of equidistant control is shown in Figure 5.4. 


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Figure 5.4: Scheme of equidistant control for switching sequence 

 

In steady-state, the six firing signals for the six thyristors are generated from the 

zero-crossing time and are arranged in equal intervals of 60
0
 from each signal pulse. 

Since the alternative transmission systems are dynamic systems with their specific 

transient responses, such as power order changes, feeding power variations, and 

frequency variations, the firing delay angle has to be regulated until the system reaches 

the steady-state, as shown in Figure 5.4. Thus, the controller of the six-pulse converter 

have to regulate the switching sequences in real-time to meet these requirements from the 
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systems.  Therefore, the next subsection is dedicated to a dynamic control algorithm for 

the three-phase, six-pulse converter: the methodology to estimate the references and the 

equidistant firing controller with the following titles: 

• Estimation of control references; and 

• Dynamic control using the equidistant firing angle algorithm. 

5.2.2.1 Estimation of Control References for Equidistant Control 

 

The exact control of the three-phase, six-pulse converter depends on the estimation 

of references for the on-state switching sequence, since thyristors are automatically 

turned-off during reverse bias. Here, zero-crossing time, magnitude, and the phase angle 

of a voltage (line-to-line voltage between phase A and phase B) will be estimated as 

control references. For this purpose, a digital signal processor (DSP) is used as shown in 

Figure 5.5. 

 

 
Figure 5.5: A DSP model to estimate control references. 
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First, the fundamental voltages of vab(t), vbc(t), and vca(t) can be estimated by the 

application of Fourier Series representation as follows: 

     





1

sincos)(
k

ABkABkab tkbtkatv          (5.2.10)

     





1
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k

BCkBCkbc tkbtkatv          (5.2.11) 

     





1

sincos)(
k

CAkCAkca tkbtkatv          (5.2.12) 

To compute the Fourier coefficient, aAB1, of the fundamental component of the voltage 

)(tvab , Equation (5.2.10) is multiplied by )cos( jt , which is described by the 

fundamental frequency, and the result is then integrated over one period T numerically as 

follows: 






Tt

t

AB

Tt

t

ab dadv  )(cos)cos()( 2

1                 (5.2.13) 
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1 )cos()(
2

              (5.2.14) 

where j m 1 2, , , , which is equivalent to one period, and the period is the reciprocal of 

the fundamental frequency.  

Also Equation (5.2.10) is multiplied by )sin( jt  and the result is integrated. The 

coefficient bAB1 can be computed as follows: 









 



m

j

jjabAB ttv
m

b
1

1 )sin()(
2

          (5. 2.15) 

Application of the same procedure to the voltage )(tvbc and )(tvca yields: 
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Note that at each time-step, the quantities
1ABa , 1BCa , 1CAa , 

1ABb , 1BCb , and 1CAb  can be 

computed. The fundamental frequency components of all three-phase voltages in polar 

coordinates can be expressed as follows: 
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(5. 2.21) 

111

~
CACACA VV  , where 

2

1

2

11 CACACA baV  ,    







 

1

11

1 tan
CA

CA
CA

a

b


      

(5. 2.22) 

Therefore, the fundamental frequency component of )(tvab is written as follows: 

     11111 cossincos)( ABABABABAB tVtbtatv         (5. 2.23) 

A similar expression can be written for the other two phases as follows: 

     11111 cossincos)( BCBCBCBCBC tVtbtatv         (5. 2.23) 

     11111 cossincos)( CACACACACA tVtbtatv         (5. 2.23) 

The three-phase phasor notations may be unbalanced and may contain negative and zero 

sequence components. To use the positive sequence fundamental component as the 
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reference voltage, modal decomposition is performed to extract the positive sequence 

component from the three unbalanced phasors. The transformation process is expressed 

in the following relation: 
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where 
1ab

V
~

,
2ab

V
~

 and 
0ab

V
~

 are the positive, negative and zero sequence components of 
1AB

V
~

, 

respectively. 

Therefore, the positive sequence component of the fundamental components of line–to-

line voltage )(1 tvab obtained from the Fourier analysis and modal decomposition can be 

expressed as follows: 

 

)cos()(
111 abVabab tVtv          (5. 2.25) 

     


























3

4
cos

3

2
coscos

3

1
111111





 CACABCBCABAB tVtVtV  

       tVtV YX  sincos
3

1
  

where:  

  


























3

4
V

3

2
VVV 1CA1CA1BC1BC1AB1ABX





 coscoscos ; 

  


























3

4
sin

3

2
sinsin 111111





 CACABCBCABABY VVVV .  

 

Therefore, the peak value and phase angle of the line-to-line voltage )(1 tvab are calculated 

as follows: 



 80 

22

1
3

1
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  is the phase angle of line voltage.  (5. 2.27) 

For power-flow control, it is necessary to compute the real power of the converter. 

The real-power is computed by using the positive sequence fundamental voltage and 

current. The positive sequence fundamental currents of )(tia , )(tib , and )(tic  are 

computed with the same procedure of the positive sequence fundamental voltage as 

follows:  
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After computing the phasors, denoted by the magnitudes and angles of all three phases, 

the positive sequence fundamental current is also computed in a phasor form as follows: 
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(5. 2.31) 
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Also, the positive sequence fundamental current can be described as follows: 

)cos()(
111 aiaa tIti             (5.2.33) 

where:  
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The phasors of the positive sequence fundamental voltage and current are denoted as 

1
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  from Equations (5.2.25) and (5.2.33). Here, using the 

computed values of the voltage and current, the real-power of the converter is computed 

as follows: 
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To calculate the zero-crossing time of 1abV , the positive sequence fundamental voltage is  

used. The equation of the positive sequence component of the fundamental voltage is: 

)cos()( 11 Vabab tVtv  
          

(5.2.37)
 

From the equation above, the zero-crossing time is calculated as follows.  
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where: 
Rt is the nearest zero-crossing time from the running time; 

 01t is the time at the maximum value of 1abv ; and 

 0t is the zero-crossing time. 
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5.2.2.2 Dynamic control using the equidistant firing angle algorithm 

 

The three-phase, six-pulse converter can be controlled with a number of strategies. 

We have elected to use an equidistant control algorithm to minimize the THD (Total 

Harmonic Distortion). The digital controller for equidistant control includes an estimator 

of control references and control action in terms of equidistant valve firing pulses. The 

estimation of the control references was performed with the DSP model, shown in Figure 

5.5, and a dynamic controller using the equidistant control scheme is presented in this 

subsection. The equidistant control scheme has two modes for a rectifier and an inverter. 

The rectifier uses the firing delay angle (α), while the inverter is controlled using the 

extinction angle (γ). 

In the equidistant control, the firing pulses for thyristors are generated at equal 

intervals of o60 . To keep the distance of firing pulses equal, all firing has to be delayed by 

the same delay angle,  in steady-state. The scheme for the firing sequence for the 

rectifier mode is shown in Figure 5.6. 
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Figure 5.6: The scheme of the equidistant firing angle control in a converter mode. 
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To compute the firing delay angle, two steps are needed. First, the no-load direct voltage 

has to be computed, and then the firing delay angle should be calculated. The no-load 

voltage is a DC-voltage, while the firing angle is zero, as shown in Figure 5.7. The no-

load voltage can be computed in the integration of Area A in Figure 5.7. The integration 

is as follows:  
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(5.2.42) 

Since one period of the DC-voltage ripples is π/3, the no-load voltage is as follows: 
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where 0dV  is the no-load voltage. 

 
Figure 5.7: Direct voltage, dV  during the time firing delay angle is zero 

 

The limit of integration of Area A has to be decreased by α as in Figure5.8. the voltage 

drop Area aA is the integral of )( accbab vvv   as follows: 
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The average DC-voltage from the three-phase, six-pulse converter is computed as 

follows: 
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(5.2.47) 
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(5.2.48) 

where: 
 0dV = Ideal no-load direct voltage; 

dV = direct Voltage of Load side; and 

 dI = direct Current of Load side. 

 

Figure 5.8: Voltage drop according to firing delay, α. 
 

To dynamically control the three-phase, six-pulse converter, the firing delay angle α is 

controlled based on the calculated value from the relationship between the direct voltage 

(Vd) and the no-load direct voltage (Vd0) at every integration time-step. Figure 5.9 shows 

the block diagram of the control strategy for constant output-power for the rectifier mode. 
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Figure 5.9: The principle of equidistant control for constant output-power in a 

rectifier mode. 

 

The important parameters for the control scheme of the rectifier mode are as follows: 

refP :  Prospective output-power; 

dP : Output-power calculated by using measured voltage and current;  

doV : No-load direct-voltage (
LLd VV



23
0  ); 

K : Proportionality constant;  

 : Firing angle deviation; 

f : Filtered firing angle-deviation; and 

0t : Zero-crossing time of line-to-line voltage between Phase A and Phase B. 

The design of each block is explained as follows: 

Block A: To compute the voltage order from the prospective output-power.   

The reference voltage can be calculated with the prospective output-power and a 

measured direct-current. The equation is: 

d

ref

ref
I

P
V 

            

(5.2.49) 
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Note that the maximum value of the direct voltage is ideally the same as the no-load 

direct voltage, so that the voltage reference has to be limited to the no-load direct voltage.    

Block B: To compute the deviation of the firing angle.  

The deviation of the firing delay angle for the next time-step is calculated with the 

present firing angle and no-load direct voltage. The deviation is computed as follows: 

cos0dd VV           where LLd VV


23
0 

      
(5.2.50) 
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 Block C: To compute the filtered deviation of the firing angle.  

Since sudden changes of the firing angle can generate switching failure or malfunction of 

the valves, the deviation has to be filtered in order to reduce the changing rate of the 

firing angle.   

  Kf

  

where K is a proportionality constant     (5.2.53) 

Block D: To compute the firing angle.  

The firing angle for the next step is calculated by summing the present firing-angle and 

filtered deviation of the firing angle. 

fpresentnext aaa 
           

(5.2.54) 

Block E: To check the limitation of the firing angle. 

The firing angle has to be limited between 5
0
 and 90

0
 because assuming that the firing 

angle is not in this boundary, the deviation of the firing angle cannot be calculated 

properly. For example, the a  goes to infinity, assuming that the firing angle is zero, 
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while assuming that the firing delay angle is bigger than o90 , the DC voltage will change 

to its opposite direction, and the converter will work as an inverter.  

If the firing angle is smaller than o5 , then oa 5  

If the firing angle is bigger than 
o85 , then 

oa 85  

Block F: To compute the switching time of each valve.  

Once the firing delay tdelay has been computed, the closing time of the thyristor valves 

will be computed as the following time-steps: 

Ttdelay 
360



 

 Valve 1:  
o

delayo
f

ttt
6

1
1 

         

(5.2.55) 

 Valve 2:  
o

delayo
f

ttt
6

2
2 

         

(5.2.56) 

 Valve 3:  
o

delayo
f

ttt
6

3
3 

             

(5.2.57) 

 Valve 4:  
o

delayo
f

ttt
6

4
4 

             

(5.2.58) 

 Valve 5:  
o

delayo
f

ttt
6

5
5 

             

(5.2.59) 

 Valve 6:  
o

delayo
f

ttt
6

6
6 

             

(5.2.60) 

where of is the fundamental frequency. 

 The next subsection presents the strategy of inverter control, which is also an 

equidistant control scheme. However, the relationship between three-phase voltages and 

DC-voltage in the inverter mode is based on the extinction angle  , as shown in Figure 
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5.10. The equations below show the relationship between DC-voltage and no-load 

voltage in the inverter mode: cos0iddi VV  ,              

(5.2.61) 

where diV  is the DC-voltage, and idV 0  is the no-load direct voltage in the inverter mode. 

From the equation above, the firing angle   is calculated. The relationship between the 

firing angle and the extinction angle is   o180 .  

 

Figure 5.10: The scheme of equidistant-firing-angle control in an inverter mode 

 

To dynamically control the three-phase six-pulse converter, firing delay angle α is 

controlled based on the calculated value from the relationship between direct voltage (Vd) 

and ideal no-load direct voltage (Vd0) at every integration time-step. Figure 5.11 shows 

the block diagram of the control strategy for constant output-power for the inverter mode. 
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Figure 5.11: The principle of equidistant control for constant output-power in an 

inverter mode. 

The important parameters for the control scheme of the inverter mode are as follows: 

 refp  :  Prospective DC-power of an inverter; 

 diI  :  DC-current at the inverter side; 

 refdiV , :  Reference voltage at the inverter side; 

diV :  DC-voltage at inverter side; 

  :  Extinction angle; 

  :  Deviation of the extinction angle; and 

 0t :  Zero-crossing time of 1abV . 

 

The design of each block is explained as follows: 

Block A: To compute the voltage order from the reference power. 

The reference voltage is calculated from the power order refp  and a measured direct 

current diI . The equation is as follows: 

di

ref

refdi
I

P
V ,

                

(5.2.62) 

Note that the maximum value of the direct voltage is ideally the same as the no-load 

direct voltage, so that the voltage reference has to be limited to the no-load voltage.    

Block B: To compute the deviation of the extinction angle.
 

The deviation of the extinction angle is calculated with the present extinction-angle, and 

the no-load direct-voltage. The deviation is computed as follows: 

cos0iddi VV           where LLid VV


23
0 

          
(5.2.63) 

  sin0idi VV
     

where  direfdii VVV  ,
          

(5.2.64) 
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


sin0id

i

V

V






               

(5.2.65) 

Block C: To compute the filtered deviation of the extinction angle.  

Since sudden changes of the extinction angle can lead to sudden changes of the firing 

angle, the deviation has to be filtered in order to reduce the changing rate of the firing 

angle.   

  Kf

  

where K is a proportional constant.          (5.2.66) 

Block D: To compute the firing angle.  

The firing delay angle is computed in Block D. The firing angle for the next-step is 

computed by using the extinction angle, the deviation of the extinction angle, and the 

commutation angle.  

    o

nexta 180     where  is commutation angle.             (5.2.67) 

Block E: To check the limitation of the firing angle. 

The firing angle has to be limited between 90 degrees and maxa degrees. Assuming that 

the firing angle is not bigger than 90 degrees, the inverter will work as a rectifier, and 

assuming that the firing angle is not smaller than maxa  degrees, the switching of valves 

can experience switching failure.  

If the firing angle is smaller than o90 , then oa 90  

If the firing angle is bigger than maxa , then maxaa       

where   minmax 180a  

Block F: To compute the switching time of each valve.  

Once the firing delay delayt  has been computed, the closing time of the thyristor valves 

will be computed as the following time steps: 
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Ttdelay 
360



 

 Valve 1:  
o

delayo
f

ttt
6

1
1 

             

(5.2.68) 

 Valve 2:  
o

delayo
f

ttt
6

2
2 

         

(5.2.69) 

 Valve 3:  
o

delayo
f

ttt
6

3
3 

         

(5.2.70) 

 Valve 4:  
o

delayo
f

ttt
6

4
4 

         

(5.2.71) 

 Valve 5:  
o

delayo
f

ttt
6

5
5 

         

(5.2.72) 

 Valve 6:  
o

delayo
f

ttt
6

6
6 

         

(5.2.73) 

where of is the fundamental frequency. 
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5.3 A Three-Phase, Six-pulse Cycloconverter 

 

A three-phase, six-pulse cycloconverter is modeled in two parts: modeling an 

equivalent circuit of the three-phase, six-pulse cycloconverter and designing a specific 

controller to generate switching pulses. The three-phase, six-pulse cycloconverter is 

based on a cosine-wave-crossing algorithm using the firing delay angle (α), in which 

firing pulses are generated according to the output-voltage reference. The cosine-wave-

crossing algorithm has demonstrated a characteristic to minimize total harmonic 

distortion among phase control algorithms for the three-phase, six-pulse cycloconverter 

[28].  The modeling methodology and the cosine wave-crossing method of the three-

phase, six-pulse cycloconverter have been presented in previous research from [33] to 

[37], according to their own modeling-methodology. In this subsection, the QMQI 

method is applied to model the three-phase, six-pulse cycloconverter, leading to a more 

realistic and reliable model of a converter in full time-domain. 

5.3.1 Equivalent Circuit of a Three-Phase, Six-Pulse 
Cycloconverter 

 

 The three-phase, six-pulse cycloconverter consists of three single-phase, six-pulse 

cycloconverters, and the each single-phase, six-pulse cycloconverter consists of twelve 

electrical-valves, (which consist of a limiting current reactor and resistor, and a snubber 

capacitor and resistor) circulating current reactors, and three-phase isolation transformers. 

Figure 5.12 shows the entire system of the three-phase, six-pulse cycloconverter. 
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Figure 5.12: Input-data form of the three-phase six-pulse cycloconverter. 

 

The circuit parameters of the cycloconverter above are represented as follows: 

vG   :  Thyristor conductance of each valve (Gv_off and Gv_on); 

SR   :  Snubber circuit resistance; 

G
R 1  :  Resistance in parallel with the reactor; 

L     :  Current rate limiting inductance ; 

PC   :  Thyristor parasitic capacitance; 

SC   :  Snubber capacitance; and 

CL    :  Circulating-current reactance. 
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Since the three-phase, six-pulse cycloconverter is a complex system with several physical 

components as shown in Figure 5.12, each component is modeled and merged to form an 

entire system. Thus, the QMQI method is applied to each component and Newton’s 

method is applied after merging all components. Since the modeling process is presented 

in our previous research of [35], [36], and [37], as well as in Chapter 3, the state 

equations of a single-phase transformer and a circulating-current reactor are only 

presented in this subsection. Note that the time-domain model of the three-phase isolation 

transformers is formed by the proper combinations of three single-phase transformers, as 

shown in Figure 5.13.  Also, since the state equations of the electrical valve (thyristor) are 

presented in Chapter 5.2, the model of the electrical valve is omitted in this subsection.   

 The three-phase isolation transformers are used for electrical isolation of each 

individual six-pulse bridge, since the three-phase, six-pulse cycloconverter does not have 

any common connected points between the input and output [28]. 

)(1 tV
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Figure 5.13: An equivalent circuit of a single-phase transformer. 

 

The single-phase transformer consists of winding resistance (r1 and r2), leakage reactance 

(L1 and L2), core loss (rC), and magnetizing reactance (Lm), as shown in Figure 5.13. 
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Using the parameters, the state equations are written as a set of algebraic equations and 

differential equations as follows: 

)()( 11 titi L                    (5.3.1) 

)()( 12 titi L               (5.3.2) 

)()( 33 titi L
               (5.3.3) 

)()( 34 titi L
                (5.3.4) 

)()()()(0 31 tetirtitrtir mcLcLc 
         (5.3.5) 

)()(0 ttiL mm 
           (5.3.6) 

)()()()()(0 111121 ti
dt

d
Ltirtetvtv LL 

         (5.3.7) 

)()()()()(0 323243 ti
dt

d
Ltirtettvtv LL 

        (5.3.8) 

)()(0 t
dt

d
te 

           (5.3.9) 

 

 The discontinuous transactions between the positive and negative converter 

(bank) generate abnormal distortions of output-voltages. Here, circulating current circuits 

are introduced to avoid voltage distortions from discontinuous transactions, since the 

circulating current circuits should support continuous conduction of both converters. Also, 

the circulating current circuits can support both a full circulating current mode and a 

partial circulating current mode in which the electrical loss can be reduced compared to 

the full circulating current model. Figure 4 shows the equivalent circuit of the circulating 

current circuit. 
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Figure 5.14: An equivalent circuit of a circulating-current circuit 

 

The state equations for the circulating current circuit can also be denoted by a set of 

algebraic equations and differential equations.  The model equations are: 

)()( 10 tyti                         (5.3.10) 

)()( 21 tyti                      (5.3.11) 

)()()( 212 tytyti                (5.3.12) 

)()()(0 2211 ttyNtyN                   (5.3.13) 

)(
)(

)()(0 1

1

20 ty
dt

d
L

dt

tdN
tvtv l


                (5.3.14) 

)(
)(

)()(0 2

2

12 ty
dt

d
L

dt

tdN
tvtv l


              (5.3.15) 

Note that lL is the leakage inductance of the circulating current circuit, and N1 and N2 are 

coil-turns.  

 

5.3.2 Control Algorithm: Cosine Wave-Crossing Method  

 

 The basic control principle of the three-phase, six-pulse cycloconverter is to 

continuously modulate the firing angles of the individual converters (positive and 

negative converters), according to its control algorithms. Here, the cosine wave-crossing 
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method with the partial circulating current mode is selected for its switching sequences, 

since the proposed control algorithm has demonstrated the following properties:   

 Partial circulating current mode 

 The partial circulating current mode can prevent discontinuous operations 

during bank-exchange operations from the positive to negative bank, or 

conversely, with minimal circulating loss; 

 Distortion of output-currents can be eliminated in this mode.   

 Cosine wave-crossing controller  

 Firing pulses are generated by the crossing points of both wanted and threshold 

voltages of reference voltages; 

 This method demonstrates superior properties, such as minimum total 

harmonic distortion of output-voltages, and simplicity of implementation.   

 

 The control action for the three-phase, six-pulse cycloconverter can modulate the 

frequency, magnitude, and phase angle of output-voltages. The operating-frequency level 

in this work is limited to 20-Hz, since frequencies higher than 20Hz can cause high THD 

(Total Harmonic Distortion). The voltage level and phase angle are also controlled by the 

application of the cosine wave-crossing method, since electrical power (capacity) can be 

regulated by the voltage level and phase angle.  

 The control action is based on the references (zero-crossing time, magnitude, and 

phase angle of the estimated voltages) from the DSP (Digital Signal Processor); thus, 

switching sequences are generated for positive and negative converters using the 

references from the DSP. Note that the DSP model is omitted, since the model is already 



 98 

presented in Chapter 5.2.  The entire control algorithm is presented in Figure 5.15, and 

the control action is explained in steps as follows: 
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Figure 5.15: Entire control scheme of the cycloconverter. 

 

Step 1: To generate line-to-line voltage at the high-frequency side. 

From the DSP, the magnitude (Vab1) and phase angle (θiab) of Vab1(t) are estimated. 

Therefore, three-phase, line-to-line voltages at the high-frequency side are estimated, 

based on the magnitude and phase angle of Vab(t)as follows: 

)cos()( 1 iabiabab twVtV            (5.3.16) 

)60cos()( 1

o

iabiacac twVtV            (5.3.17) 

)120cos()( 1

o

iabiacbc twVtV            (5.3.18) 

)180cos()( 1

o

iabiacba twVtV            (5.3.19) 
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)240cos()( 1

o

iabiacca twVtV            (5.3.20) 

)300cos()( 1

o

iabiaccb twVtV            (5.3.21) 

Step 2: To generate wanted output-voltages. 

Wanted output-voltages are computed by user given values of rrV   and positive 

sequence fundamental output-voltage from the DSP model.  The detailed explanation is 

given in Step 7.  

)cos()( oowawa twVtV            (5.3.22) 

)120cos()( o

oowawb twVtV            (5.3.23) 

)240cos()( o

oowawc twVtV            (5.3.24) 

where waV is the wanted output-voltage of Phase A, 0w is of2 , of  is frequency of the 

output-voltage, and o  is the phase angle of Phase A. 

Step 3: To generate switching pulses of both converters. 

Firing pulses are generated by comparing  TV  with wV , as in the algorithm below. The 

threshold voltage ( TV ) is generated by the average value of adjacent input-voltages. For 

example, assuming that abV  and acV  are the adjacent input voltages, 

2

)()(
)(

tVtV
tV acab

T


 . Therefore, the firing pulses are generated at the point, 

VT(t)=Vw(t), as in Figure 5.16.  
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Positive 

 

Negative 

 
Figure 5.16: The scheme of pulse generation for both converters 

 

Step 5: To check the magnitude of the output-current and select the proper banks.  

To fulfill the cosine wave-crossing method with partial circulating current mode, the 

output-currents have to be measured at every time-step. The magnitude of the output-

currents is used to select either the positive or negative bank. Assuming that the output-

current is bigger than -IT, the positive bank is active; assuming that the output-current is 

smaller than IT, the negative bank is active. Figure 5.17 shows an example of bank 

selection(s) according to ioa(t). Note that ioa(t) is the output-current of phase A. 
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Figure 5.17: The explanation of bank selection (ioa, iob, and ioc are a three-phase 

output-current). 

 

Step 6: To transmit firing pulses to Proper Thyristors.  

Assuming that the positive bank is activated, pulse signals are transmitted to the positive 

converter, and assuming that the negative bank is activated, pulse signals are transmitted 

to the negative converter.  Note that since the switches are thyristor valves, there is no 

control algorithm for off-state conditions. Figure 5.18 shows the theoretical output-

voltage by the application of the cosine wave-crossing method with the partial circulating 

current mode. 

 
Figure 5.18: Firing-pulse transmission in the proper manner. 
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Step 7: To perform close-loop control.  

The closed-loop controller regulates the magnitude and phase angle of output-voltage by 

manipulating the wanted output-voltages. The magnitude and phase angle, which are 

estimated by the DSP model, are compared to the magnitude and phase angle of the 

reference voltage. Therefore, the mismatched values between the wanted output-voltages 

and output-voltages from the DSP are continuously regulated to meet the reference values. 

Note that the magnitude of the output-voltages is inherently bigger than those of the 

wanted voltages in the application of the cosine wave-crossing method; thus, closed-loop 

control is needed to regulate the exact magnitude of the output-voltage.  Figure 5.19 

shows a block diagram for controlling the magnitude of the output-voltages.   
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Figure 5.19: Block diagram to control the magnitude of the output-voltages. 

 

The equations to control the magnitude of the output-voltage are as follows: 

)()()( 211 tututx   
  

         (5.3.25) 

 )()()( 112 txktxktx Ip      
      (5.3.26) 

where    Testord

T
VVuuu  21 , and    Twant

T
VErrxxx  21 . 

The algebraic-companion form via the application of quadratic integration to the control 

equations is as follows:             (5.3.27) 
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Phase angles of the output-voltages also have to be controlled for to meet the power-order, 

since the real power depends on the differences between the voltage angles of the sending 

bus and the receiving bus. The block diagram to control the phase angle of the output-

voltage is shown in Figure 5.20. 
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Figure 5.20: Block diagram to control the angle of the output-voltages. 

 

The relationship between real power and the power angle is as follows: 

sin21

X

VV
p


  

   
       (5.3.28) 

Obviously the power and power angle do not have a linear relationship. However, power 

deviation is regulated linearly by the deviation of the power angle. 

 


 cos21

X

VV
P   where estord PPP 

 
     (5.3.29) 

 KP    where cos21

X

VV
K


      (5.3.30) 

  )()( htt
    

      (5.3.31) 

)()()( 21 ttt  
   

       (5.3.32) 
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The control equation is presented as follows. 

)()()( 211 tututx 
    

      (5.3.33) 

0)()( 21  txtxK
   

       (5.3.34) 

)()()( 332 tutxtx 
   

      (5.3.35) 

)()()( 443 tutxtx 
    

      (5.3.36) 

The compact matrix form of the equations is denoted as follows: 
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5.4 A Three-Phase PWM Converter 

 

The modeling methodology for the three-phase, pulse-width-modulation (PWM) 

converter is presented in this subsection. The three-phase, PWM converter is widely used 

for the integration of renewable resources, since phase-controlled converters using 

thyristors are impractical for weak synchronous systems and induction machines for wind 

farms. Also, the three-phase PWM converters have demonstrated several superior 

properties, such as (a) bi-directional power-flow control, (b) low-harmonic distortion of 

AC-line currents, and (c) flexible reactive power control [38]. The purpose of converters 

is to support maximum power capturing from wind turbine systems and to offer constant 

output-voltage frequency from variable-speed wind [38]. For the control algorithm, the 

direct-power control algorithm (DPC) is utilized, since the control algorithm has 

demonstrated some outstanding characteristics, including: a simple algorithm, a superior 

dynamic response, and steady-state performance [41]. 
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5.4.1 Equivalent Circuit of a Three-Phase, PWM Converter 

 

 The three-phase PWM converter consists of six electrical valves (IGBTs) and a 

smoothing capacitor, as shown in Figure 5.21. Furthermore, controllers are needed to 

generate switching sequences for on/off-controllable switches of the three-phase PWM 

converter. The controllers are based on a direct-power control algorithm using space 

vectors, since the controllers have demonstrated a rapid dynamic response with a simple 

structure [40]. 

 

 

Figure 5.21: Input-data form of the three-phase PWM converter. 
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The models of the electrical-valves and the smoothing capacitor in the three-phase 

PWM converter are the same as those in the three-phase, six-pulse converter in Chapter 

5.2, except that the electrical switches are on/off-controllable switches. Even though the 

physical structure of the electrical valves in the three-phase PWM converter is different 

from those of the electrical valves in the three-phase, six-pulse converter, the 

mathematical equations for the valve are equivalent to each other. Thus, the mathematical 

models of the three-phase PWM converter are omitted in this subsection. 

5.4.2 Control Algorithm: Direct-Power-Control Algorithm  

 

The direct-power control (DPC) algorithm is used to control the three-phase PWM 

converters, since the control algorithm has demonstrated some outstanding properties, 

including the following advantages: a simple algorithm, a superior dynamic response, and 

steady-state performance [41]. The DPC algorithm is modeled for both (1) constant 

frequency applications and (2) variable frequency applications. Generally, the three-

phase PWM converter with a control algorithm in constant operating frequency (for 

brevity, the control algorithm is denoted as a constant frequency control algorithm), 

which is referred to a grid-side converter (GSC), is directly connected to the grid systems, 

and the GSC supports constant DC-voltage and reactive power controllability for grid-

connected systems. Otherwise, the PWM converter with the control algorithm in variable 

operating frequency (for brevity, the control algorithm is denoted as the variable 

frequency control algorithm), which is referred to the machine-side converter (MSC), is 

directly connected to the wind turbines, and the MSC supports maximum power 

capturing from the wind-turbine systems and the reactive power controllability to them. 

Note that the MSC is directly connected to the rotor of a doubly fed induction generator 
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(DFIG) in Type-3 wind-generation units, and the stator of a permanent magnet 

synchronous generator (PMSG) in Type-4 wind-generation units. Since the control 

algorithms of the three-phase PWM converter are very diverse, according to the control 

purpose and controlled devices, all cannot be considered in this subsection. Thus, two 

general control algorithms are only presented for both a constant frequency controller and 

a variable frequency controller as shown in Figure 5.22 and Figure 5.23. Note that the 

constant frequency controller is only presented since the DPC algorithms for the Type-4 

wind-generation unit are easily found in previous research from [39]to [43].  
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Figure 5.22: A constant frequency controller using direct-power algorithm with 

space-vector modulation. 
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Figure 5.23: A variable frequency controller using the direct-power algorithm with 

hysteresis controllers. 

 

Figure 5.22 shows a constant frequency control algorithm, which is based on a direct-

power control algorithm with a space-vector modulation (DPC-SVM). The control 

algorithm is modeled, based on three steps as follows: 

Step 1:  To estimate active- and reactive-power and synchronous-position angle. 

Active- and reactive-power and the synchronous position angle are estimated with the 

DSP model, as shown in Figure 5.5. The powers are easily computed using positive 

sequence fundamental voltages and positive sequence fundamental currents from the DSP 

model, as follows: 

 
11

cos
2

3
11 aa ivaa IVP                   (5.4.1) 

 
11

sin
2

3
11 aa ivaa IVQ                    (5.4.2) 
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To find the synchronous position angle, the voltages in αβ-coordination are calculated 

while the Clarke direct transformation is applied to the positive sequence fundamental 

voltages as follows: 
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Using the vα and vβ from Equation (5.4.3), the synchronous angle-position (θs) is 

computed as follows: 


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v

v
anats

                             (5.4.4) 

Step 2:  To estimate voltage references in αβ-coordination.  

The reference voltages in αβ-coordination are computed based on the DPC algorithm. In 

the DPC algorithm, the errors between the estimated references (real-time DC-voltage, 

powers, and the synchronous position angle) and prospective references (power order and 

DC-voltage order) are collected and manipulated, using three PI controllers to compute 

the reference voltages in αβ-coordination. Figure 5.24 is the entire block diagram of the 

DPC algorithm.  The block diagram of the DPC algorithm can be represented as state-

space equations.  
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Figure 5.24: Block Diagram of the DPC Control Algorithm 

 

The vectors of U and X are a set of the inputs and states in the DPC, and the vectors are 

denoted in mathematic representation as follows:  

   Tsdcrefdcref

T
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The state-space equations of the DPC are as follows: 

)()()(0 411 tututx                     (5.4.5) 

)()()( 11211 txktxtxk Ip                     (5.4.6) 

)()()(0 323 tututx                     (5.4.7) 

)()()( 32432 txktxtxk Ip                     (5.4.8) 

)()()(0 543 txtxtu                     (5.4.9) 
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)()()(0 565 tutxtx                     (5.4.10) 

)()()( 63763 txktxtxk Ip                     (5.4.11) 

The state-space equations of the DPC algorithm are represented in a compact matrix form 

as follows: 

UCXBXA                        (5.4.12) 
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Note that kpj and kIj are constant coefficients for PI controllers, and j represents integer 

numbers from 1 to 3.  

Since the state-space equations are written as differential and algebraic equations, the 

quadratic-integration method is applied to convert the state-space equations into an 

algebraic companion form as the previous algebraic models of the physical components 

in converters. In the algebraic equations, the voltages of *

qu and *

du  in dq-coordination are 
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denoted as x2 and x7, and the voltages are transformed into reference voltages in αβ-

coordination as follows: 
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Step 3:  To estimate the switching sequence from the SVM-algorithm. 

The SVM-diagram shown in Figure 5.25 is used to calculate the switching sequence and 

switching interval of on/off-states. The SVM is popularly used as one of the digital 

control algorithms for the three-phase PWM converter connected to the constant 

frequency systems. 

The switching sequence and switching intervals are decided, according to the reference 

voltages in αβ-coordination. For this purpose, the reference voltages are written in polar 

form as follows: 
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where 2*2*
. )()(  uuV refsvm   and 
















*

*






u

u
antarc . 



 113 

Vsvm.ref

θα

(POO)

V1

V
2

V3

V4

V
6

V5

(PPO)(OPO)

(OPP)

(OOP) (POP)

Section 1

Section 2

Section 3

Section 4

Section 5

Section 6

       

Figure 5.25: A diagram for space-vector modulation 

 

The dwelling time (pulse-width) that denotes the switching interval of on/off-states is 

calculated by using the volt-second-balancing principle as follows.  









 



3
sinaSa mTT ,                 (5.4.15) 

sinaSb mTT  ), and                  (5.4.16) 

baS TTTT 0                  (5.4.17) 

where: 
dc
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3
 , 

3
)1(


   n , and n is the section number in the SVM diagram.  

Note Ta, Tb, and Tc are the dwelling times (switching intervals) of each phase of phase A, 

phase B, and phase C, respectively, and the modulation index ma exists in the range of 

10  am . As soon as the dwelling times are computed, the switching sequence is 



 114 

arranged for the three legs: The switching sequence is based on a seven–segment 

arrangement with switching patterns for even-order-harmonics elimination, as shown in 

Figure 5.26. The switching sequence is selected for the following requirements [44]: 

 Only two switches in the same leg have to be involved during the transition from 

one-state to another. 

 None or a minimum number of switching is required during the transition from 

one section to another in the SVM diagram.  
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Figure 5.26: Mirror image in the SVM diagram. 

 

Elimination of even-order harmonics can be accomplished while waveforms are arranged 

in half-wave symmetry. For this purpose, two regions facing each other in the SVM 

diagram can be arranged in a mirror image as shown in Figure 5.26 and the line-t-line 

voltages at the AC-side become half-wave symmetrical forms. Note that the switching 

sequences rotate clockwise or counterclockwise to achieve the mirror image. 
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5.5 Summary 

 

This section presents time-domain models of converters: a three-phase, six-pulse 

converter, a three-phase, six-pulse cycloconverter, and a three-phase PWM converter. 

These models are based on model quadratization and quadratic integration, leading to 

reliable and accurate models. These converters are controlled by using a specific control 

algorithm according to their purposes.  

The converter models in the time-domain help to conduct accurate analyses of 

alternative transmission systems, such as harmonics analyses, power-transient analyses, 

switching performance analyses, etc.  
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CHAPTER 6  

DEMONSTRATIVE EXAMPLES 

 

6.1 Introduction 

 

In this section, demonstrative examples of alternative transmission systems are 

presented and studied, using reliable models in the frequency-domain, quasi steady-state, 

and time-domain.  First, in the frequency-domain models, averaging converter models are 

used for operational studies of LFAC-transmission systems interconnecting wind-farm 

systems and synchronous grid systems. The next involves transient-stability studies, 

using averaging converter models in quasi steady-states. In these studies, the voltage ride 

through (VRT) capability of wind farm systems, using LFAC-transmission systems, is 

analyzed. The last concern time-domain studies using time-domain models of converters. 

In these studies, power transient studies and harmonics studies are performed using 

example configurations of wind farm systems. Note that more detailed studies and 

knowledge of the LFAC-transmission system are shown in [14], since this chapter is a 

partial fulfillment of the technical research supported by PESEC (the Power Systems 

Engineering Research Center) 

6.2 Operational Study in Steady-State 

 

In this study, the maximum power transfer capability (MPTC) of alternative 

transmission systems using LFAC-transmission systems, in which the operational 

frequency is 20-Hz, is compared to that of nominal frequency (60-Hz) transmission 



 117 

systems. LFAC-transmission systems use the averaging models of a three-phase, PWM 

converter and a three-phase, six-pulse cycloconverter, since the power transfer capability 

is a quantitative analysis. In the quantitative analysis of power transfer capability, the 

ability of electrical power systems to transfer electrical power from one to another place 

is analyzed in the operational constraints of physical and electrical limitations that assure 

robust and secure operation of the power systems. For the power-transfer capability 

studies of LFAC-transmission systems, several constraints are considered, such as the 

operational margins of converters (cycloconverters and PWM converters) and voltage-

drop margins on AC transmission lines interconnecting a common connection point 

(PCC) of wind farm systems and a synchronous grid system.  

Note that the limitation of power transfer capability is decided as the maximum 

quantity of power-transfer capability under the most restrictive among several constraints.  

6.2.1 Technical Approach of Power Transfer Capability Study 

 

The studies of power transfer capability are comparative studies between two 

transmission systems interconnecting a PCC of wind farm systems and a synchronous 

grid. For this purpose, two different transmission systems are introduced, as shown in 

Figure 6.1: Type-1 is a typical transmission system to transfer 60-Hz electrical power, 

while Type-2 is one of the LFAC-transmission systems using a PWM converter and a 

cycloconverter. Type-1 is a simple configuration using a three-phase, overhead 

transmission line and a three-phase, step-up transformer. Type-2 seems like a combined 

configuration of the typical transmission system of type-1 and the converters of a PWM 

inverter and a cycloconverter.  
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Type 1: 60-Hz transmission system

Type 2: 20-Hz transmission system using a three-phase PWM 

converter (VSC)

PCC Load Center

PWM converter Cycloconverter
 

Figure 6.1: Two Types of Transmission Configurations for Case Studies. 

 

Since the MPTC study is a quantitative analysis, the frequency-domain models of 

the three-phase transmission lines and three-phase transformers are needed, as well as the 

averaging models of a three-phase, six-pulse cycloconverter and a three-phase PWM 

inverter. The overhead transmission line and the three-phase transformer should have the 

ability to support different frequency operations, since the models are used for a 60-Hz 

system (Type-1) and a 20-Hz system (Type-2). The three-phase cycloconverter allows the 

interconnection between the LFAC-transmission system and a grid system, as well as the 

controllability of the AC-voltage level at the LFAC-transmission system. The three-phase 

PWM inverter permits the possibility to control the DC voltage level and reactive power 

level in the LFAC-transmission system. Also, the AC voltage level of the PWM inverter 

is automatically synchronized to the voltage level derived from the cycloconverter.  
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For the MPTC study, the physical and electrical constraints are considered such as 

the AC-voltage and the DC-voltage limit at transmission lines, and the modulation-index 

limits of converters. The mathematical representation is written as follows: 

MPTC = minimum{AC-voltage limit, DC-voltage limit, modulation index limits, etc.} 

The maximum power transfer capability is the maximum power that satisfies all of the 

constraints. That is, the maximum power-transfer capability is decided under the most 

restrictive among the three constraints [45]. 

 

6.2.2 Case Studies of Power Transfer Capability 

 

The studies of the maximum power transfer capability are based on a quantitative 

analysis using computer models. The quantity of maximum power transfer capability is 

a scalar parameter, which can vary in the system configurations. The amount of transfer 

is gradually increased from the minimum to the maximum quantity of transfer power 

under operational constraints, and the maximum quantity is recorded, according to 

distances [14]. The quantity of the maximum power transfer capability varies according 

to the operating voltage, the operating frequency, and the transmission distances in the 

test configuration, as shown in Figure 6.1. The MPTC should be recorded according to 

the variation of the three parameters.  

Since the variations of the operational frequency, voltage, and distance are 

boundless, only some cases among the variations are considered in these operational 

studies: the operational voltages of 38-kV, 76-kV, and 115-kV, operational frequencies 

of 20-Hz and 60-Hz, and the distances from 0 to 200 miles. Note that the operating 



 120 

voltages are selected at 1/3 of the nominal voltages of 115-kV, 230-kV, and 345-kV, 

since one of the advantages by introducing LFAC-transmission systems is that one can 

use the devices (of the same V/H operating value) that have generally been used in 

nominal frequency such as transmission lines, transformers, and protection relays [14]. 

Table 6.1 shows three cases, according to operational voltages. In the three cases, the 

transmission distance is changed from 0 to 200 miles, and the MPTC is recorded 

according to the transmission distance.      

Table 6.1: Operating Voltages for Power Transfer Studies 

 

 
Case 1 Case 2 Case 3 

Operating Frequency 

of 60Hz 
38-kV 76-kV 115-kV 

Operating Frequency 

of 20Hz 
38-kV 76-kV 115-kV 

 

In this operational study, the maximum transmitted power from the PCC to the 

grid system is investigated  in the variations of the three parameters (operational voltage 

and frequency, and transmission distance), while the voltage drop between the sending 

and the receiving terminal of the three-phase transmission lines remains between -5% and 

5% of the operating voltage. Also, the modulation indices of the converters are checked 

as to whether the converters are working within reasonable limits of the modulation 

indices (around 0.93-0.85) and of the DC-voltage level. Note that small modulation 

indices can generate huge harmonics, leading to impractical filter designs. The inverter 

should support DC voltage for the rectifiers connecting wind turbine systems, since the 

DC voltage level is important for the reliable operation of the LFAC-transmission 

systems. Here, the simulation results of three cases shown in Table 6.1 are presented in 
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tables and graphs, in which the maximum power transfer capability is recorded, 

according to the transmission distance from 10 to 200 miles.  

 

Case 1:  Rated Power Line Voltage: 38 kV (line-to-line). 

Table 6.2: Maximum Transmission Capability at the Operation Voltage of 38kV. 

 Capability of Power Transmission (MW) 

Distance 

(miles) 
10 30 50 70 90 100 120 140 160 180 200 

Transfer 

Capability 

(MW) at 

60Hz 

64.0 23.05 13.94 9.96 7.73 6.95 6.05 5.29 4.89 4.59 4.40 

Transfer 

Capability 

(MW) at 

20Hz 

124.7 65.44 41.40 29.68 23.07 20.39 17.36 14.23 11.72 9.49 7.24 

 

Figure 6.2: Power Transmission Capability of the Operation Voltage of 38-kV. 
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Case 2:  Rated Power Line Voltage: 76 kV (line-to-line). 

Table 6.3: Maximum Transmission Capability at the Operation Voltage of 76-kV. 

 Capability of Power Transmission (MW) 

Distance 

(miles) 
10 30 50 70 90 100 120 140 160 180 200 

Transfer 

Capability 

(MW) at 

60Hz 

180.3 82.8 57.54 44.17 36.78 34.31 30.56 27.98 26.19 24.84 23.38 

Transfer 

Capability 

(MW) at 

20Hz 

225.3 141.3 106.1 86.28 73.49 68.29 60.19 54.27 49.22 45.21 41.96 

 

 

Figure 6.3: Power Transmission Capability of the Operation Voltage of 76-kV. 
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Case 3: Rated Power Line Voltage: 115 kV (line-to-line). 

Table 6.4: Maximum Transmission Capability at the Operation Voltage of 115-kV. 

 Capability of Power Transmission (MW) 

Distance 

(miles) 
10 30 50 70 90 100 120 140 160 180 200 

Transfer 

Capability 

(MW) at 

60Hz 

301.4 147.8 101.8 79.21 66.44 61.54 55.60 51.14 48.01 45.62 43.98 

Transfer 

Capability 

(MW) at 

20Hz 

401.5 264.9 202.8 169.0 143.8 135.7 120.7 108.1 98.69 91.16 84.60 

 

 

Figure 6.4: Power Transmission Capability of the Operation Voltage of 115-kV. 
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6.3 Transient-Stability Study in Quasi-Steady State 

 

This section presents the transient stability studies of LFAC-transmission systems 

using a three-phase, six-pulse cycloconverter. For this purpose, the averaging models of 

converters in quasi steady-state are used. The converter models in quasi steady-state 

operate in sinusoidal, steady-state condition, and it is assumed that the mechanical system 

of generators is only working dynamically [29]. These models are presented in Chapter 4.  

 Power systems are subjected to frequent disturbances, which may be small or large 

[46]. The small disturbances in power systems should be state variations of electrical 

switches, transformer-tap, load configurations, etc. Since these small disturbances occur 

continuously, the disturbances must be managed continuously and appropriately in power 

systems for secure system operation. However, the large disturbances of a short circuit on 

transmission systems, the loss of a large generator, etc., become reasons for fluctuation of 

system voltages and severe damage to power systems. In transient stability studies, the 

ability of LFAC-transmission systems to sustain steady voltages from transient conditions 

is investigated in several cases. 

6.3.1 Technical Approach of Transient Stability Studies 

 

 Voltage stability and voltage recovery have been recognized to be of paramount 

importance for secure system operation. As a well-known fact, slow voltage recovery 

after disturbance causes significant damage, in which voltage collapse and blackout can 

be caused by power system instability in power systems [47] .  
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The integration of renewable resources (wind, solar, and hydro energy, etc.) and 

transmission using converters have highly increased electrical stress on power systems. 

The knowledge and understanding of the impact on alternative transmission systems 

during contingencies, such as system faults and partial shut-down of wind-farm systems, 

help secure the operation of wind farm systems. In the past, wind farms could be 

disconnected from power systems during excessive voltage instability since the total 

capacity of wind-energy generation was small, compared to that of other sources. 

However, the penetration of wind energy into the grid is rapidly increasing, and the 

transmission capacity from wind farms may be a substantial portion of the overall 

generation. Thus, the recent grid requirements demand the continuing operation of wind 

farms like synchronous power plants, during and after contingencies [48]. Therefore, grid 

codes for wind systems have become stricter than those of the past, and it even seems that 

wind farms are expected to work as synchronous power plants in order to be connected to 

other systems.  

  Voltage ride-through (VRT) capability for wind power systems is essential for 

secure operation of power systems. The VRT capability requirement for wind power 

systems is described by NERC standards. Table 6.5 and Figure 6.5 provide voltage 

profiles from NERC standards: the wind-power systems should be sustained within the 

voltage requirement during system disturbances [49]. High voltage ride-through (HVRT) 

refers to the upper limits, and low voltage ride-through (LVRT) refers to the lower limits, 

according to contingency time. 
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Table 6.5: NERC PRC-024-1 Voltage-Ride-Through Requirement. 

HVRT DURATION  LVRT DURATION 

Time 

(second) 

Voltage (pu)  Time 

(second) 

Voltage (pu) 

0.20 1.200  0.15 0.000 

0.50 1.175  0.30 0.450 

1.00 1.150  2.00 0.650 

4.00 1.100  3.00 0.750 

   4.00 0.900 

 

 

Figure 6.5: NERC PRC-024-1 Voltage-Ride-Through Requirement Curve. 

 

For transient stability studies, quasi steady-state models are introduced in an 

averaging concept. Since the quasi steady-state models consider dynamics at specific 

frequency, the analysis using averaging models in quasi steady-state presents a more 

reliable analysis, compared to earlier attempts for which wind generation systems are 

modeled in steady-state. Note that the transient stability analysis in the steady-state 

requires excessive simplicity leading to an erroneous assessment of system stability.  
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All models in power systems are modeled in quasi steady-state, but the modeling 

concepts are the similar to those in the steady-state. For example, the converters are 

modeled in averaging modeling concepts in phasor representation; however, the 

continuous power flow and control constraints in converters are allowed to vary in 

dynamics in each time-step. Therefore, the power systems modeled in quasi steady-state 

are desirable in voltage stability and voltage recovery phenomena, while avoiding either 

excessive modeling or simulation in the full time-domain [14].  

The methodology for stability study is also based on computer simulation over case 

configurations of wind farm systems, using LFAC-transmission systems. While the 

example configurations are operating under a normal conditions, a three-phase fault or a 

partial shutdown of wind farm systems are generated at a specific point in the example 

configuration. From the disturbance, the example systems are observed as to whether the 

example configurations using the LFAC-transmission systems can sustain continuing 

operation, and whether the configuration can satisfy the grid-code requirements. 

6.3.2  Case Studies of Voltage Stability Study 

 

Here, we introduce two wind farm configurations using LFAC-transmission systems for 

voltage stability studies: the first configuration (Configuration 1) is an LFAC-

transmission system interconnecting 20-Hz series wind farms and a 60-Hz grid system, 

while the second configuration (Configuration 2) is a network connection of LFAC-

transmission systems connecting DC wind farms. The transient stability studies are 

performed on the two wind farm configurations, using the voltage ride-through 
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requirement. The two configurations are investigated over their own scenarios, according 

to fault position, disturbance type, clearing time, etc. after a disturbance.   

Configuration 1: An LFAC-transmission system connecting 20-Hz series wind farms 

This configuration 1 presents an example configuration of a series LFAC-

transmission system interconnecting two wind farms of 25-MW and a grid system, as 

shown in Figure 6.6. The wind farm consists of tens of wind turbines and full-size 

inverters/converters. Each wind-turbine generates 20-Hz AC power of 5-MW with 2.5-

kV rating voltage and series connected to each other with 300-meter spacing. The 

distance of the LFAC-transmission system is 25-miles with a rating voltage of 35-kV. At 

the end of the LFAC-transmission line, a cycloconverter interconnects the LFAC-

transmission system and main grid system. A step-up transformer boosts the voltage to 

115-kV for voltage synchronization with the main grid system.  

 

Figure 6.6: Single-Line Diagram of an LFAC-Transmission System Connecting a 

Series LFAC Wind Farm to the Main Grid. 
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Scenario 1: While the wind farms transmit 50-MW electrical power into grid 

systems in steady state, a three-phase fault is generated at the remote grid (at the point of 

REMOT-GRID in Figure 6.6). A three-phase fault has an impact on Configuration 1 

during 0.15 seconds from the initial fault time and is clear at 0.25 seconds. Figure 6.7 

represents the simulation results from 0.0 to 4.0 seconds: the graphs from (A) to (C) 

represent the magnitude of phase-A voltage at the remote grid, the local grid, and the 

high-frequency side of the cycloconverter, respectively. Also, Figure 6.8 shows that the 

frequency and active power are oscillating on the equilibrium points after the three-phase 

fault is cleared. In this scenario, the wind-farm configuration using the LFAC-

transmission system has the ability to operate continually after the three-phase fault is 

cleared. 
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Figure 6.7: Configuration 1: Voltage Magnitude of Phase A at (A) the Remote Grid; 

(B) the Local Grid; (C) before the Cycloconverter. 
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Figure 6.8: Configuration 1: (A) Operating Frequency; and (B) Real Power at the 

Remote Grid during a Three-Phase Fault at the Remote Grid. 

 

Scenario 2: While the wind farm transmits 50-MW electrical power into grid 

systems in steady-state, a three-phase breaker opens during 0.15 seconds at PCC (at 

LFAC-Farm 1 as shown in Figure 6.6). This simulation shows a contingency in which a 

large part of the electrical sources (25-MW) is separated from the power system and is 

then reconnected. Figure 6.9 represents the simulation results from 0.0 to 4.0 seconds: the 

graphs from (A) to (C) represent the magnitude of the phase-A voltage at the remote grid, 

the local grid, and the high-frequency side of the cycloconverter, respectively. Also, 

Figure 6.10 shows that the frequency and real-power are oscillating on the equilibrium 

points after the contingency is cleared. Even though the test system is swing, the voltages 

are in-bound of the VRT requirement. Therefore, the systems have the ability to continue 

operation after the contingency.  
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Figure 6.9: Configuration 1: Voltage Magnitude of Phase A at (A) the Remote Grid; 

(B) the Local Grid; and (C) before the Cycloconverter. 
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Figure 6.10: Configuration 1: (A) Operating Frequency; and (B) Real Power at the 

Remote Grid during the Recloser Operation. 
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 Configuration 2: An LFAC-transmission system connecting the DC wind farm 

This configuration 2 presents a network configuration of LFAC-transmission 

systems interconnecting DC wind-farms and main grid systems as shown in Figure 6.11. 

Each wind turbine generates 20-Hz AC power of 5-MW at a 2.5-kV rating voltage and 

series connected to each other with 300-meter spacing. The distance of the LFAC-

transmission systems is 25-miles with a rating voltage of 35-kV. At the end of the LFAC-

transmission line, a cycloconverter interconnects the LFAC-transmission system and the 

grid system. A step-up transformer boosts the voltage to 115-kV to voltage 

synchronization. 

 

Figure 6.11: Single-Line Diagram of LFAC Transmission Network  

Connecting a Series DC Wind Farms. 
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Scenario 1: While the wind farm transmits 50-MW electrical power into grid 

systems in steady-state, a three-phase fault is generated at the remote grid (at the point of 

REMOT-GRID in Figure 6.11). A three-phase fault has an impact on the configuration 2 

during 0.15 seconds from the initial fault time and is cleared at 0.25 seconds. Figure 6.12 

represents the simulation results from 0.0 to 4.0 seconds: the graphs from (A) to (C) 

represent the magnitude of phase-A voltage at the remote grid, the local grid, and the 

high-frequency side of the cycloconverter, respectively. Also, Figure 6.13 shows that the 

frequency and real power are oscillating on the equilibrium points after the three-phase 

fault is cleared. In this scenario, the wind farm configuration, using the LFAC-

transmission systems, has the ability to operate continually after the three-phase fault is 

cleared, since the VRT requirement is satisfied.  
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Figure 6.12: Configuration 2: Voltage Magnitude of Phase A (A) at the Remote 

Grid; (B) at the Local Grid 1; and (C) before the Cycloconverter during a Three-

Phase Fault at the Remote Grid 
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Figure 6.13: Configuration 2: (A) Operating Frequency; and (B) Real Power at the 

Remote Grid during a Three-Phase Fault at the Remote Grid. 

 

Scenario 2: While the wind farm transmits 50-MW electrical power into the grid systems 

in steady-state, a three-phase fault is generated at the local grid (at the point of LOCAL-

GRID-1 in Figure 6.11). A three-phase fault has an impact on configuration 2 during 0.15 

seconds from the initial fault time and is cleared at 0.25 seconds. Figure 6.14 represents 

the simulation results from 0.0 to 4.0 seconds: graph (A) represents the magnitude of 

phase-A voltage at the remote grid, while the graph (B) represents the magnitude of 

phase-A voltage at the local grid. Also, Figure 6.14 shows that the real-power (C) and 

frequency (D) are swing after the three-phase fault is cleared. Even though the voltages 

are recovered, the phase-A voltage at the remote grid oscillates and is smaller than the 

LVRT requirement. Thus, configuration 2 is unstable after the three-phase fault is cleared. 
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Figure 6.14: Configuration 2: Magnitude of Phase A Voltages at (A) the Remote 

Grid; and (B) the Local Grid 1; and (C) Real Power and Operating Frequency at 

the Remote Grid. 
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Scenario 3:  While the wind farms transmit 50-MW electrical power into grid systems in 

steady-state, a three-phase breaker opens at 0.5 seconds at the point (RECLOSOR-

LFAC1-TR in Figure 6.11). This example simulation shows a contingency in which large 

parts of power generation units are disconnected, and the configuration of the power 

system is dramatically changed. Figure 6.15 represents the simulation results from 0.0 to 

4.0 seconds: graph (A) represents the magnitude of the phase-A voltage at the remote 

grid. Note that since the phase-A voltage at the local-grid 1 is not satisfied by the VRT 

requirement, in which the operational voltage exists between 0.9 and 1.1 of rated voltage. 

Thus, the system is in instability after the contingency is cleared. 
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Figure 6.15: Configuration 2: Magnitude of Phase A Voltages at (A) the Remote 

Grid; and (B) the Local Grid 1 during the Recloser Operation at RECLOSOR-

LFAC1-TR. 
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6.4 Time-domain Study 

 

This section presents time-domain studies of alternative transmission systems using 

LFAC-transmission systems. The LFAC-transmission systems consist of full time-

domain models which are realistic and accurate models directly derived from physical 

components using QMQI. The converter models of the three-phase, six-pulse converter, 

the three-phase, six-pulse cycloconverter, and the three-phase PWM converter shown in 

Chapter 5 are used for time-domain studies, such as power transient simulations and 

harmonics studies. These time-domain studies allow for a better understanding of the 

dynamic behavior of LFAC-transmission systems.  

LFAC-transmission systems employ a number of three-phase, PWM converters to 

connect wind turbine systems, and a three-phase, six-pulse cycloconverter to interconnect 

grid systems and an LFAC-transmission system. Since these converters use solid-state 

electronics to alter one wave-form to another according to their own purposes, the 

converters are highly productive harmonic sources. Harmonic pollution in power system 

causes several problems: heat problems in transformer and electrical machines, aging 

problems of isolation in power-system devices, malfunction of dynamic control systems, 

and inductive interference over communication networks [14],[50]. Harmonics should be 

eliminated and wave-forms, such as voltages and currents are nearly pure sinusoidal 

signals in power systems. Understanding harmonics from LFAC-transmission systems 

help to optimally design harmonic filters and allow power systems using LFAC-

transmission systems to operate with high quality.  
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LFAC-transmission systems should support continuing operation, while either 

electrical loads or variable wind sources vary in real-time. The flexible control of LFAC-

transmission systems is required for the reliable and robust operation of power systems. 

The converters in LFAC-transmission systems can support controllability for continuing 

operation: the three-phase PWM converters offer the controllability of active and reactive 

power and voltage level, while the three-phase, six-pulse converter allows frequency and 

voltage level control of a low-frequency side. However, inappropriate controller and 

circuit designs can become the reason for switching malfunctions, leading to voltage and 

current spikes. Note that electrical switches should be damaged physically, and then 

system shutdowns can occur from these spikes. Power transient studies are expected to 

help optimally design control systems of converters and understand the knowledge for 

continuing operation of LFAC-transmission systems.  

6.4.1 Technical Approach of Time-Domain Studies 

 

Time-domain studies are performed using two LFAC-transmission systems 

interconnecting a wind farm and main grid systems, as shown in Figure 6.16 and Figure 

6.17. For the LFAC-transmission systems, variable-speed wind turbine systems (Type-3 

and Type-4 wind-generation units) are considered, since variable-speed wind generation 

systems are attractive for increasing energy capture and reducing mechanical-fatigue 

damage. The variable-speed wind turbine systems cannot be directly connected to grid 

systems and converters are used to connect systems with different frequencies. In the 

proposed wind farm configurations, three-phase PWM converters and a three-phase, six-

pulse cycloconverter are used to interconnect systems with different frequencies. The 

three-phase PWM converters interconnect wind farms and an LFAC-transmission system, 
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while the three-phase cycloconverter interconnects the LFAC-transmission system and 

nominal frequency grid systems. Also, each converter performs its own roles: the 

cycloconverter controls the operating frequency of the LFAC-transmission system and 

allows voltage synchronization for the three-phase PWM inverters; the three-phase PWM 

inverters should support the DC voltage level and the controllability of the reactive power 

of the LFAC-transmission systems; and the three-phase PWM rectifiers allow power 

tracking to extract the maximum power from the wind turbines [14], [36],[37]. 
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Figure 6.16: Wind Farm Configuration: LFAC Wind Farm and LFAC 

Transmission. 
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Figure 6.17: Wind Farm Configuration: Series DC Wind Farm and LFAC 

Transmission. 

 



 140 

Using the example systems, power transient studies and harmonics studies are 

performed. For the power transient studies, power-step changes (the required power-

order) suddenly occur, while the LFAC-transmission systems are operating in steady-

state. Also, harmonics studies are performed, according to the control modes (partial- and 

full-circulating current modes), and the modulation indices of the cycloconverter. Since 

the cycloconverter is directly connected to the grid systems, the harmonic studies of the 

cycloconverter are of importance. 

 

6.4.2 Power Transient Studies of LFAC-Transmission Systems 

 

For power transient studies, we introduce two wind farm configurations using an 

LFAC-transmission system. The first wind farm configuration uses a parallel low-

frequency wind farm and a radial LFAC-transmission system, as shown in Figure 6.18, 

and the second configuration uses DC wind farm in series and a radial LFAC-

transmission system as shown, in Figure 6.22. Using the two wind farm configurations, 

power transient studies are performed. In this simulation, the power-step change suddenly 

occurs, while the LFAC-transmission system operates in steady-state.  

Case 1: Wind-Farm configuration: LFAC wind farm and LFAC-transmission system 

Case 1 presents the simulation results of an example wind farm with an LFAC-

transmission system connected to a power grid, as shown in Figure 6.18. The wind farm 

consists of many wind turbine systems - the example system includes three of them. The 

wind-generated power is rectified to DC, and then it is converted to 20-Hz AC power. A 

transformer boosts the voltage to 46-kV. An LFAC-transmission line operated at 46-kV 

transmits the power over a distance of 100-km to the nearest power grid substation. At 
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that point, a cycloconverter converts the 20-Hz AC power into 60-Hz AC power and 

another transformer boosts the voltage to 115-kV for the interconnection. The 

transformer is connected to the power grid, which is a 115-kV, 60-Hz system at that point. 

The three-phase six-pulse cycloconverter operates in a full circulating-current mode, and 

the control algorithm for generating the switching pulses is the cosine wave-crossing 

method [36]. 

 

Figure 6.18: Wind Farm Configuration: LFAC Wind Farm and LFAC 

Transmission 

 

Each wind turbine/generator system consists of a wind-turbine, full-rectifier and full-

inverter that converts variable frequency power into 20-Hz power and a transformer that 

boosts the voltage to 46 kV. The power from all wind turbine/generator systems is 

collected at a common connection point (PCC), and the total power is transmitted via an 

LFAC-transmission line to the interconnection point with the power grid. The 

interconnection is achieved with the cycloconverter and the step-up transformer. The 

wind farm system using the LFAC-transmission system was simulated in a transient 
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condition. Specifically, while the system is operating with 4-MW through the LFAC line, 

suddenly the wind power changes to the point that requires the LFAC line to transmit 9-

MW. 

Figure 6.19 represents three-phase (a) line-to-line voltages and (d) currents at the 

60Hz AC-transmission system connected to the three-phase, six-pulse cycloconverter, 

three-phase (c) voltages and (b) currents at the LFAC-transmission system connected to 

the three-phase, six-pulse cycloconverter, and the (e) real power from the wind farm and 

the (f) RMS voltage at the LFAC-transmission system, while the power demand suddenly 

changes from 4MW to 9MW after 3 seconds. Figure 6.20 shows the results during the 

transient condition from 2.80 to 3.40 (seconds) – a zoom-in view, and Figure 6.21 

represents the results during steady-state from 6.75 to 7.00 (seconds). Note that the output 

power can be automatically regulated by controlling the power angle δ. The transient 

conditions last shorter than 0.15 seconds. 
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Figure 6.19: Three-Phase (a) Line-to-Line Voltages and (d) Currents at 60Hz AC 

Transmission Connected to the Cycloconverter; Three-Phase (c) Voltages and (b) 

Currents at LFAC Transmission Connected to the Cycloconverter; and (e) Real 

Power from the Wind Farm and (f) the RMS Voltage at the LFAC from 0.0 to 7.0 

Seconds. 
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Figure 6.20: Three-Phase (a) Line-to-Line Voltage and (d) Currents at 60Hz AC 

Transmission Connected to the Cycloconverter; Three-Phase (c) Voltages and  

(b) Currents at LFAC Transmission Connected to the Cycloconverter; and (e) Real 

Power from the Wind Farm and (f) the RMS Voltage at the LFAC from 2.8 to 3.4 

Seconds. 
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Figure 6.21: Three-Phase (a) Line-to-Line Voltage and (d) Current at 60Hz AC 

Transmission Connected to the Cycloconverter; Three-Phase (c) Voltages and (b) 

Currents at LFAC Transmission Connected to the Cycloconverter; and (e) Real 

Power from the Wind Farm and (f) the RMS Voltage at the LFAC from 6.75 to 7.0 

Seconds 

 

Case 2: Wind farm configuration: DC wind farm and LFAC-transmission system 

This case study presents the simulation results of an example wind-farm with an 

LFAC-transmission system connected to a power grid, as shown in Figure 6.22. The wind 

farm consists of many wind turbine systems - the example system includes three of them. 

The wind turbine systems are connected in series after the wind-generated power is 

rectified to DC, and the DC power is converted to 20-Hz AC power using an inverter. A 

transformer boosts the voltage to 46-kV. An LFAC line operated at 46-kV transmits the 

power over a distance of 80-Km to the nearest power grid substation. At that point, a 

cycloconverter converts the LFAC power into 60-Hz AC power for the interconnection, 

and another transformer boosts the voltage to 115-kV. The transformer is connected to 

the power grid, which is a 115-kV, 60 Hz-transmission at that point [37]. 
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Figure 6.22: Single-Line Diagram of a Power Transient Test System. 

 

The results illustrate the operation of a wind farm transmission system by using a 

three-phase, six-pulse cycloconverter. The three-phase, six-pulse cycloconverter operates 

in a partial circulating-current mode and the control algorithm used to generate switching 

pulses is the cosine-wave crossing method. 

Figure 6.23 and Figure 6.25 represent three-phase (a) line-to-line voltages and (b) 

currents at the 60Hz AC transmission system connected to the three-phase, six-pulse 

cycloconverter, and three-phase (c) voltages and (d) currents at the LFAC- transmission 

system connected to the three-phase, six-pulse cycloconverter. In Figure 6.24, the power 

demand is 6-MW and the operation mode is a partial circulating-current mode of 0.7-pu 

of the phase currents at the LFAC side. Figure 6.25 shows the results with the following 

conditions: the power demand is 10MW, and the operation mode is a partial circulating-

current mode of 0.4-pu of the phase current at the LFAC side.  
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Figure 6.23: (a) Three-Phase Line-to-Line Voltages and (b) Three-Phase Currents at 

60Hz AC Transmission Connected to the Cycloconverter; Three-Phase (c) Voltages 

and (b) Currents at LFAC Transmission Connected to the Cycloconverter; and (e) 

Real Power from the Wind Farm and (f) the RMS Voltage at the LFAC from 0.0 to 

8.0 Seconds. 
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Figure 6.24: (a) Three-Phase Line-to-Line Voltages and (b) Three-Phase Currents at 

60Hz AC Transmission Connected to the Cycloconverter; and Three-Phase (c) 

Voltages and (b) Currents at LFAC Transmission Connected to the Cycloconverter 

during Steady-State from 4.846 to 5.0 Seconds. 
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Figure 6.25: (a) Three-Phase Line-to-Line Voltages and (b) Three-Phase Currents at 

60Hz AC Transmission Connected to the Cycloconverter; Three-Phase (c) Voltages 

and (b) Currents at LFAC Transmission Connected to the Cycloconverter during 

Steady-State from 9.785 to 8.0 Seconds. 

 

Figure 6.26 and Figure 6.27 represent the results in transient conditions: (a) three-

phase currents at the 60Hz AC transmission system connected to the three-phase, six-

pulse cycloconverter, three-phase (b) voltages and (c) currents at the LFAC-transmission 

system connected to the three-phase, six-pulse cycloconverter. Figure 6.26 shows the 

initial transient condition from 0.0 to 0.5 seconds. The cycloconverter is operated in a full 

circulating-current mode, while the maximum currents at the LFAC-transmission system 

are smaller than 80-A; otherwise, the cycloconverter is operated in a partial circulating-

current mode. In Figure 6.27, the power demand suddenly changes from 6MW to 10MW 

after 5.0 seconds. Note that the output power can be automatically regulated by 

controlling the power angle δ. The transient conditions last longer than 1.0 second.  
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Figure 6.26: (a) Three-Phase Currents at 60Hz AC Transmission Connected to the 

Cycloconverter; and Three-Phase (b) Voltages and (c) Currents at LFAC 

Transmission Connected to the Cycloconverter during Steady-State from 0.0 to 

0.500 Seconds. 
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Figure 6.27: (a) Three-Phase Currents at 60Hz AC Transmission Connected to the 

Cycloconverter; and Three-Phase (b) Voltages and (c) Currents at LFAC 

Transmission Connected to the Cycloconverter during Steady-State from 4.867 to 

5.423 Seconds. 
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6.4.3 Harmonic Study of LFAC-Transmission Systems 

 

In this subsection, harmonic studies are performed using the LFAC-transmission 

system, shown in Figure 6.18. The operating voltage of the cycloconverter is 70-kV 

(RMS) at the high-frequency side, and the operating voltage at the low-frequency side is 

regulated according to the modulation index of the cycloconverter. The harmonics from a 

three-phase, six-pulse cycloconverter are changed over the modulation index and the 

power factor at the low-frequency side. The modulation index is calculated as follows: 

o

inputLL

outputa

V

V
r

30cos





                      (6.1) 

The transmitted power from the LFAC-transmission system is 10-MW from the wind 

farm to the grid systems. 

Here, the LFAC-transmission system of Figure 6.18 is first analyzed with the 

modulation index of 1.0, since the wave forms of the voltages and currents are expected 

to contain a small quantity of harmonics compared to the wave forms from other 

modulation indices. Figure 6.28 represents the simulation results: (A) the line-to-line 

voltage between phase A and phase B and (B) the current at phase A, and (C) the phase-

voltage and (D) the phase-current at phase A. Note that the cycloconverter is operating in 

full circulating-current mode. The harmonics shown in Figure 6.29 are computed using 

discrete-Fourier analysis and the harmonic spectra are represented in logarithmic scale: 

graph (A) is line-to-line voltage between Phase A and Phase B, graph (B) is the current at 
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Phase A, graph (C) is the phase voltage at Phase A, and (D) is the phase-current at Phase 

A.  

 
Figure 6.28: (A) Line-to-Line Voltage between Phase A and Phase B; (B) Current at 

Phase A; (C) Phase Voltage and (D) Phase Current at Phase A. 

(A)  Harmonic spectrums of line-to-line voltage at the HF side (B)  Harmonic spectrums of phase-current at the HF side

  
  

(C)  Harmonic spectrums of Phase-voltage at the LF side (D)  Harmonic spectrums of phase-current at the LF side

 
Figure 6.29: Harmonic Spectra:  (A) Line-to-Line Voltage between Phase A and 

Phase B; (B) Current at Phase A; (C) Phase Voltage at Phase A; and (D) Phase 

Current at Phase A. 
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Note that the harmonic order is computed as follows:  

frequencylfundamenta

frequencyhigh
orderHarmonic             (6.2) 

where the fundamental frequency is 60-Hz at the high-frequency side and 20-Hz at the 

low-frequency side. 

To investigate the harmonic spectra of phase voltages at the low-frequency side, 

the modulation index of the three-phase, six-pulse cycloconverter is continuously 

increased from 0.35 to 1.0, and numerical values are recorded in Table 6.6, according to 

harmonic orders. Figure 6.30 represents the harmonic spectra to clearly show that the 

harmonics are increasing while the modulation index is decreased. As shown in Table 6.6 

and Figure 6.30, the unite modulation index only presents 20% of the total harmonic 

distortions (THDs) while the modulation index of 0.38 generates about 50% of THDs. 

Therefore, the harmonics are managed by manipulating the proper tap-setting of a 

transformer and the modulation index of the cycloconverter.  

Table 6.6: Numerical Values of Harmonic Contents of the Phase Voltage at LFAC 

Modulation 

Index ma 

Harmonic Order  

3 5 7 9 11 13 15 17 19 21 THDs 

1.00 0.41 0.62 1.2 1.8 1.7 8.9 8.3 3.8 2.9 8.1 20.1 

0.88 1.4 1.6 1.8 0.87 0.8 6.3 8.7 3.3 4 8.3 22.52 

0.75 2 1.8 2.1 0.51 1.1 4.6 8.7 8.1 8.4 8.3 26.43 

0.63 3.9 3.3 1.8 0.22 0.69 3 8.6 20 22 8.1 33.78 

0.50 8 3 1 0.77 2.5 8.9 8.9 31 30 6.5 42.14 

0.38 17 4.8 3.7 1.4 1.2 0.4 0.04 39 37 2.4 48.87 

          Unit: percentage (%) 
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Figure 6.30: Harmonic Spectra of the Phase Voltage at the LFAC Side 

 

As mentioned in Chapter 5, the circulating-current circuits are introduced to 

reduce abnormal distortions on wave forms and it is well known that the partial- and full-

circulating-current modes could reduce the harmonics compared to the circulating-current 

free mode [28]. However, the quantitative comparison of harmonics between the full- and 

the partial circulating-current mode has been barely performed. Here, a simple 

comparison between both methods is performed. For this purpose, the same modulation 

index of 0.38 is used for both cases and the magnitude of the threshold current ((IT)) for 

the partial circulating-current mode is half of the operating current at the LFAC-

transmission system. Table 6.7 presents the numerical values of the harmonics contents, 

while Figure 6.31 graphically represents the harmonic spectra for both modes. As shown 

in Table 6.7 and Figure 6.31, the full circulating-current mode allows better performance 

in a quantitative analysis of harmonics than that from the partial-circulating current mode. 
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Table 6.7: Numerical Values of Harmonic Contents of the Phase Voltage at LFAC 

Side in Both Full- and Fifty Percent-Circulating Current Modes. 

Circulating 

Mode 

Harmonic Order  

3 5 7 9 11 13 15 17 19 21 THDs 

Full 17 4.8 3.7 1.4 1.2 0.4 0.04 39 37 2.4 48.87 

50% 39 17 12 11 4.1 7.9 28 39 29 19 59.67 
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Figure 6.31: Harmonic Spectra of the Phase Voltage at the LFAC Side: (Blue) Full 

Circulating-Current Mode and (Red) 50% Circulating-Current Mode. 
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CHAPTER 7  

CONCLUSION 

        

7.1 Conclusions 

 

The increased pressure from environmental restrictions and the economical crisis 

from increased prices of non-renewable natural resources [35] make renewables 

gradually become economical energy sources. The European Union has forecasted that 

renewable energies will reach 20 percent of the total energy capacity in 2020. North 

America has adopted a similar plan for 25 percent of the total energy capacity by 

2025[13], [51]. In these cases, renewable energy sources, such as wind, solar, hydro 

energy, are experiencing dramatic innovations and improvements in terms of both quality 

and quantity. 

Specifically, the rapid increase of wind generation in remote and offshore 

locations has accelerated the necessity of more reliable and cost-effective applications of 

alternative transmission systems, such as HVDC transmission and LFAC transmission. In 

these cases, switching systems are highly involved for the transmission and 

interconnection of renewable energy, since switching systems can easily permit the 

excellent controllability of electrical signals: changing voltage and frequency levels, 

power factor, etc. Converter systems recently seem to be key factors in the integration 

and the transmission of renewable resources. 
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With large percent penetration of weak-synchronous renewables and switching 

systems, traditional power systems might experience a dramatic upheaval on paradigms 

in which traditional power systems have been designed and operated. For example, 

traditional control algorithms for either protection devices or converters may not play 

their role with the traditional paradigms. New paradigms and technologies should be 

essential for flexible and reliable operation of future power systems, highly involving 

converters and nonlinearities. In this case, an advanced simulation tool, such as the 

QMQI method, can be the first step to study and analyze the new paradigms and the 

optimal design of new technologies.  

 The work, performed in this research, focused on alternative transmission systems 

interfacing wind farm systems and synchronous grid systems, as well as reliable and 

robust models of converters that were used for alterative transmission systems. For this 

purpose, the QMQI method is introduced for converter models in steady-state, quasi 

steady-state, and full time-domain. Consequently, these converters are used for the 

analyses and studies of new-type configurations of LFAC-transmission systems using the 

converter models.  

In Chapter 3, a new modeling methodology was introduced for modeling and 

analyzing mixed power systems with nonlinearities and switching subsystems. The 

modeling method is based on the combination of model quadratization (quadratized 

models) and quadratic integration (QMQI). The quadratic-integration method was 

compared to trapezoidal integration and cubic integration to prove the superiorities in 

modeling power systems with nonlinearities and switching systems. In this comparative 

analysis, the quadratic-integration method was determined to be the best method among 
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the three collocation methods to model power systems with nonlinearities and switching 

systems. The quadratic integration method is an absolutely stable, quite accurate method 

to model them; moreover, the method is totally free of numerical oscillations. Also, the 

model quadratization can permit nonlinearities to be solved in nonlinear concept without 

simplification or approximation, leading to realistic models of nonlinearities described by 

nonlinear equations. Therefore, the QMQI method is suitable for power systems of 

switching subsystems with highly nonlinear components, such as saturable-core reactors 

and transformers [36].  

In terms of converter models, converters such as a three-phase, six-pulse 

converter, a three-phase, six-pulse cycloconverter, and a three-phase, PWM converter 

were modeled in (quasi) steady-state and time-domain. Also, a push-pull resonant 

converter was modeled to explain how to model converters using the QMQI method. 

These converter models, derived by the QMQI method, were used for analysis and 

studies of the alternative transmission systems integrating wind-farm systems.  

In Chapter 4, an averaging modeling concept was introduced for quantitative 

analyses of power systems with converters. The averaging method was based on the 

equivalent relationship between input and output (a two-port network analysis) in (quasi-) 

steady-state. In this averaging concept, the voltage and current ripples were averaged and 

the harmonics at both the AC side and the DC side of the converters were ignored. The 

dynamic behaviors, such as switching operation and transient phenomena, were not taken 

into consideration for the averaging converter models. However, this method has distinct 

advantages for quantitative analysis, such as power transfer capability, total operational 

losses, and optimal kV-level studies of networks. On the other hand, the averaging 
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models in a quasi steady-state used for simple dynamic analyses of power systems, since 

the models were developed with the assumptions: the electrical waves are operating in a 

sinusoidal, steady-state condition and the dynamics of the mechanical systems are 

explicitly models.  

In chapter 5, full-time domain converters were modeled. For this purpose, 

physical components in converters were modeled in a realistic manner and merged using 

Kirchhoff’s current law. Also, specific controllers were used for each converter. For the 

control algorithm, a DSP (digital signal processor) was used for sensing real-time values 

of currents and voltages from converters and for extracting proper references according to 

converters’ own purposes. Using estimated references from the DSP, the switching 

sequence was computed and switching pulses were generated for each converter. The 

three-phase, six-pulse converter used an equidistant control algorithm and the three-phase, 

six-pulse cycloconverter used a cosine wave-crossing method. Note that the equidistant 

control and the cosine wave-crossing algorithms have the characteristic to minimize the 

total harmonic distortion at input and output for phase-controlled converters. For the 

three-phase PWM converter, DPC-SVM (direct-power control with space vector 

modulation) was used, since the control algorithm has demonstrated some outstanding 

characteristics including: a simple algorithm, a superior dynamic response, and steady-

state performance [41]. The time-domain models were utilized for a better understanding 

of the dynamic behavior of power systems, such as the operation of electrical switches, 

harmonics, and power transients.  

The converters, developed in Chapter 4 and 5, were used to analyze and study 

LFAC-transmission systems integrating wind-farm systems, as shown in Chapter 6. The 
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averaging converter models in steady-state were used for operational studies of an LFAC-

transmission system using a three-phase, six-pulse cycloconverter and a three-phase 

PWM inverter, while the averaging models in quasi steady-state were used for voltage-

stability studies over the example systems of LFAC transmission systems. Also, the time-

domain models were used for power transient studies and harmonics studies. 

In operational studies, the maximum power transfer capability (MPTC) of LFAC-

transmission systems was compared to that of nominal frequency (60-Hz) transmission 

systems. For this purpose, the ability of electrical power systems to transfer electrical 

power from one place to another was analyzed within operational constraints of physical 

and electrical limitations. For the power transfer capability studies of LFAC-transmission 

systems, several constraints, which are assure the robust and secure operation of the 

power systems, were considered, such as the operational margins of converters (a 

cycloconverter and a PWM converter) and voltage-drop margins on AC-transmission 

lines. The results from these studies indicated that the LFAC transmissions have 

economic and performance advantages over conventional AC transmission, when the 

transmission distance is more than 50-miles. Note that the LFAC-transmission system 

greatly increased the MPTC and decreased the electrical loss, compared to conventional 

AC transmission. Also, it was detected that the power transfer capability of 20-Hz 

transmission is approximately two times of 60-Hz transmission.  

Also, voltage stability studies were performed over several example 

configurations of LFAC-transmission systems by using the voltage right-though (VRT) 

capability requirement described by NERC standards. These voltage stability studies 

have been recognized to be of paramount importance for secure system operation of 
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LFAC transmission systems. Slow voltage recovery after a disturbance can cause 

significant damage: a voltage collapse and blackout can be caused by power system 

instability in the LFAC transmission systems integrating wind-farm systems [47]. These 

voltage stability studies increased the knowledge and understanding about the impact of 

contingencies on LFAC transmission systems; also, the knowledge from these stability 

studies helped maintain the secure operation of LFAC transmission systems. In these 

studies, we demonstrated that the LFAC-transmission systems can be continuously 

sustained after contingencies such as a three-phase fault and the dramatic change of wind 

farm systems, assuming that the contingencies are cleared within proper time (critical 

clearing time). However, the critical clearing time and the behavior of the analyzed 

systems much depend on the system configuration and the location of contingencies.  

In time-domain studies, power-transient studies and harmonic studies were 

performed on LFAC-transmission systems.  The LFAC-transmission systems should 

support the continuing power transmission, while either electrical loads or variable wind-

sources vary in real-time. The flexible control of LFAC-transmission systems was 

required for the reliable and robust operation of power systems. The converters in LFAC-

transmission systems supported flexible controllability for continuing operation: The 

three-phase PWM converters offered controllability of real- and reactive-power and 

voltage, while the three-phase, six-pulse converter permitted frequency and voltage level 

control on the low-frequency side. These power transient studies demonstrated that while 

the control algorithms of converters were properly modeled, the demonstrative examples 

could support continuing operation during the large or small variation of electrical loads 

and wind sources. Also, harmonic studies are of important, since harmonic pollution in 
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power systems can cause several problems: overheating problems in transformers and 

electrical machines, aging problems of isolation in power-system devices, malfunction of 

dynamic-control systems, and inductive interference over communication networks [14], 

[50]. Harmonics should be eliminated from voltages and currents and these wave forms 

are nearly pure sinusoidal signals with accurate harmonic analyses. In these harmonic 

studies, LFAC-transmission systems were analyzed over harmonics, according to the 

modulation indices of the cycloconverter. The modulation index was indicated as an 

important parameter. While the modulation index was decreased, the THD was 

substantially increased. These harmonic studies over LFAC-transmission systems gave 

the reference to optimally design harmonic filters, leading to the high quality operation of 

the LFAC-transmission systems.  

7.2 Future Work 

 

The present research is dedicated to introducing a new modeling methodology for 

power systems with nonlinearities and switching subsystems, to model converter systems 

using advanced modeling-methodology, and to analyze new-type alternative 

configurations of LFAC-transmission systems. These LFAC-transmission systems are 

designed for the interconnection of remote wind farm systems and main grid systems in 

terms of economics and technical benefits. Future work may be extended in consideration 

of the economic and technical integration and transmission using alternative transmission 

systems.  

Alternative transmission systems are of paramount importance to the transmission 

and integration of renewable resources, since renewable energy is rapidly developing to 
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substitute for non-renewable energy. However, the economics and technical challenges of 

alternative transmission systems are challenging: they depend on many factors: distance 

between energy sources and load centers, topographic characteristics such as offshore and 

onshore, system configurations to be connected, etc. Thus, the configuration of 

alternative transmission systems should be carefully selected and intensively analyzed in 

technical and economic aspects. The converter models developed can be utilized to study 

other configurations of alternative transmission systems, leading to least cost integration 

of renewable resources.  

Another main concern in the integration and transmission of renewable resources is 

whether the paradigms used for traditional grid systems can also perform their role in the 

new topology connecting a large percentage of renewable generating systems. It is worth 

considering the characteristics of synchronous systems and synchronization procedures 

and comparing them to weak systems with high penetration of renewable resources. For 

example, traditional control algorithms, and protection devices must sense and estimate 

voltages and currents in real-time, and then they should perform their roles in fraction of 

a second. However, traditional devices may not work well in weak systems, since the 

operating frequency in these systems may require different data processing algorithms 

and different protection logic as compared to traditional power-systems. Therefore, new 

paradigms for weak synchronous power systems are required for reliable and robust 

operation. Specifically, new protection paradigms and algorithms must be developed for 

these systems [14]. The modeling and simulation methods developed in this Thesis can 

be utilized for the investigation of the mentioned challenges. 
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