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SUMMARY 
 
 
 

Under a number of practical operating scenarios, traditional moving target indicator (MTI) 

systems inadequately suppress ground clutter in airborne radar systems. Due to the moving 

platform, the clutter gains a nonzero relative velocity and spreads the power across Doppler 

frequencies. This obfuscates slow-moving targets of interest near the "direct current" 

component of the spectrum. In response, space-time adaptive processing (STAP) techniques 

have been developed that simultaneously operate in the space and time dimensions for 

effective clutter cancellation. STAP algorithms commonly operate under the assumption of 

homogeneous clutter, where the returns are described by complex, white Gaussian 

distributions. Empirical evidence shows that this assumption is invalid for many radar 

systems of interest, including high-resolution radar and radars operating at low grazing 

angles. When the heterogeneity stems from textured clutter, we demonstrate that a 0.5 loss 

in detection probability can be expected for a system that maintains a false alarm rate of 

      . Similarly, a 0.3 loss in detection probability can be expected in the presence of 

point clutter. We are interested in heterogeneous cases, i.e., cases when the Gaussian model 

no longer suffices [1],[2]. 

Hence, the development of reliable STAP algorithms for real systems depends on the 

accuracy of the heterogeneous clutter models. The clutter of interest in this work includes 

heterogeneous texture clutter and point clutter. We have developed a cell-based clutter 

model (CCM) that provides simple, yet faithful means to simulate clutter scenarios for 

algorithm testing [2]. The scene generated by the CMM can be tuned with two parameters, 

essentially describing the spikiness of the clutter scene. In one extreme, the texture resembles 



 

x 
 

point clutter, generating strong returns from localized range-azimuth bins. On the other 

hand, our model can also simulate a flat, homogeneous environment. We prove the 

importance of model-based STAP techniques, namely knowledge-aided parametric 

covariance estimation (KAPE), in filtering a gamut of heterogeneous texture scenes. We 

demonstrate that the efficacy of KAPE does not diminish in the presence of typical spiky 

clutter. In addition, for a system that maintains a false alarm rate of       , we show that 

KAPE actually improves the detection probability by 0.1 compared to standard algorithms in 

homogeneous clutter.  

Computational complexities and susceptibility to modeling errors prohibit the use of KAPE 

in real systems. The computational complexity is a major concern, as the standard KAPE 

algorithm requires the inversion of an       matrix for each range bin, where   and   

are the number of array elements and the number of pulses of the radar system, respectively. 

This is compounded with the requirement of greater than    power estimates, one for each 

steering vector. We developed a Gram Schmidt (GS) KAPE method that circumvents the 

need of a direct inversion and reduces the number of required power estimates. We 

demonstrate that no losses in detection, nor SINR, are incurred as a result of the new 

methods [3]. These developments allow for real-system implementations of the KAPE 

algorithm.  

Another unavoidable concern is the performance degradation arising from uncalibrated array 

errors. This problem is exacerbated in KAPE, as it is a model-based technique; mismatched 

element amplitudes and phase errors amount to a modeling mismatch. We demonstrate that 

SINR losses of -35 dB can be expected if array errors are not accounted for. Current 

calibration algorithms can boost performance, but can still incur losses of -10 dB. We have 



 

xi 
 

developed the power-ridge aligning (PRA) calibration technique, a novel iterative gradient 

descent algorithm that can maintain a -1 dB SINR loss in the presence of array errors, a vast 

improvement over the current methods [3]. 
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Chapter 1  
 
 
 

INTRODUCTION 
 
 
 
The aim of moving target indicator (MTI) radar is to extract moving targets from stationary 

clutter by processing Doppler shifts from a sequence of temporal pulse returns [4]. By 

relating the phases from successive pulses, the differential phases can be measured to 

calculate the frequency shift. For a moving target, the received frequency    is related to the 

transmit frequency    by 

    
       

       
                  

where    and   are the radial velocity and the speed of light, respectively. The approximation 

reasonably assumes that     . In contrast, for a stationary radar system, ground clutter 

has a zero relative radial velocity and does not accrue phase over time. This difference allows 

us to separate clutter from moving targets via the Doppler spectrum, as ground clutter tends 

to center around the "direct current" (DC) component. Targets with faster radial velocities 

attain greater separability, accruing larger phase differences over time.  

We are interested in airborne MTI systems, where the radar platform has a nonzero velocity. 

In this case, ground clutter gains a velocity proportional  to the velocity of the aircraft. This 

adds complexity to the problem, as the shifting and spreading of the clutter spectrum can 

potentially obfuscate the targets of interest. 
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This led to the development of space-time adaptive processing (STAP) algorithms designed 

to mitigate clutter on airborne radar systems [4], [5]. Building on the MTI concept of using 

time-domain samples, STAP also uses spatial samples collected via an array of   antenna 

elements, allowing for two-dimensional space-time filters. Additionally, the array gives spatial 

directivity to the receiver through beamforming. Figure 1 illustrates an example space-time 

spectrum of a clutter-plus-noise signal on a uniform linear array (ULA) system with   

    , where    spatial axis corresponds to the beam steered perpendicular to the 

platform direction. The clutter aligns on a clutter ridge, the diagonal of the 2D spectrum. 

When the array is steered at   , the received clutter return has zero velocity because it is 

moving in parallel with the platform. The clutter starts to accrue radial velocity as the beam 

is steered away from   , hence explaining the clutter ridge structure and the innate coupling 

of the Doppler shifts and angle of arrivals (AOA). A single element, stationary MTI system 

corresponds to the    cut. As discussed, the clutter is centered around the DC component 

of the Doppler spectrum.  

 
Figure 1. Example angle-Doppler spectrum for airborne radar clutter. 
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STAP is designed to exploit the space and time dependencies of ground clutter to extract 

targets of interest. For a given range   , the radar system receives   return pulses on an 

array of   elements. Upon designating an arbitrary element as the reference, the other 

elements of the array receive a positive or negative delayed version of the source signal due 

to their spatial differences. Time delays correspond to phase shifts in the frequency domain. 

Hence, we define the spatial steering vector         as the collection of phases across the 

array at an assumed steered direction defined by azimuth angle   and elevation angle  . The 

first element is typically used as the reference assigned a phase of zero. Assuming a ULA 

with element spacing   and design wavelength   ,  

               
   

  
                        

   

  
              

 

  

We can similarly define the temporal steering vector        as the collection of progressive 

phases along the received pulses for a target with radial velocity   . Denoting      as the 

pulse repetition frequency (PRF), i.e., the rate at which the pulses are pinged, 

              
    

      
            

    

      
  

 

  

The      space-time steering vector           is formed by combining the spatial and 

temporal steering vectors 
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where   is the Kronecker product. The received data can be compactly visualized as a 

matrix  , where an element        corresponds to the data of the     array element and 

    pulse. For STAP calculations, it is convenient to stack the matrix into a single vector 

        , 

where        corresponds to the column operation that reshapes a matrix into a vector.  

 

1.1.  Optimal Filter 

The aim of STAP is to suppress unwanted clutter from the received      data vectors 

          with a finite impulse response (FIR) filter specified by  , where   is the 

number of received range bins. The received data can be written as  

        

which is the sum of the desired signal    and clutter-plus-noise  . Hence, the STAP output 

is obtained via the dot product with the weights vector: 

       

To obtain the optimal filter, we can calculate the weight vector   that will yield the 

maximum signal-to-noise ratio (SNR). The resulting noise filter, and hence the optimum 

STAP filter, for data received at steering angle       with radial velocity    is the Wiener-

Hopf filter [6] 
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               , 

where   denotes the exact clutter-plus-noise covariance matrix and   is a complex scaling 

term. We refer to the exact covariance matrix   as the clairvoyant covariance matrix, as it is 

not known in practical applications and must be estimated. Assuming we have      

samples of the data, a simple approach is to compute the empirical correlation matrix of the 

data: 

   
 

 
     

  
   , 

often referred to as the sample matrix inversion (SMI) method. Given that the clutter is a 

white Gaussian process and that the set of samples         share the same statistics, SMI 

suffers, on average, a 3 dB loss from the clairvoyant case when using       3 range 

samples [7]. This scenario effectively describes performance in homogeneous clutter. 

Unfortunately, these assumptions are overly optimistic in many situations, leading to poor 

performance. For example, it has been observed that high-resolution and low-grazing angle 

radars exhibit clutter that is spikier [8],[9]. As we will show, when the heterogeneity stems 

from textured clutter with a single-channel, single-pulse clutter-to-noise-ratio of 25 dB, we 

can expect a 0.5 loss in detection probability for a system that maintains a false alarm rate of 

      . Furthermore, a 0.3 loss in detection probability has been observed with the 

inclusion of point clutter in a similar setting. The nature of heterogeneous texture clutter and 

point clutter will be further elaborated in Chapter 2. These losses necessitate the specialized 

algorithms we have developed.  
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1.2.  Cell-Based Clutter Model 

The losses we demonstrate underline the importance of properly modeling the clutter scenes 

of interest. The performance outcomes of our developed algorithms are only meaningful if 

the simulated clutter matches the real clutter scenes we aim to filter. We have developed the 

cell-based clutter model (CCM), a phenomenological approach to clutter modeling. 

Specifically, it is based on a compound model of clutter where two underlying clutter 

distributions are assumed: the modulation of the fast moving and the slow moving 

components of the scene. The CCM demonstrates its versatility by being able to simulate 

homogeneous clutter, heterogeneous texture clutter, and point clutter for algorithm analysis. 

This is elaborated in Chapter 3. The CCM is designed to be radar independent, only 

requiring parameters of the scene itself. This allows flexibility in comparing performances of 

different radar systems, such as systems with varying operational frequencies and array 

configurations.  

Chapter 3 illustrates the advantage of applying model-based STAP techniques in the 

presence of heterogeneous texture clutter. Specifically, we demonstrate the effectiveness of 

the knowledge-aided parametric covariance estimation (KAPE) in handling a range of spiky, 

heterogeneous clutter scenes. Under our simulation parameters, KAPE improves the 

detection probability by 0.6 over the ubiquitous SMI algorithm for a system that maintains a 

false alarm rate of       . This is attributed to the KAPE's ability to adapt over a single 

range bin, whereas the SMI averages data over the range swath. In general, this is the 

fundamental reason for the poor adaptivity of conventional methods in spiky clutter. 
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1.3.  Knowledge-aided Parametric Covariance Estimation 

Knowledge-aided parametric covariance estimation (KAPE) is a model-based approach to 

STAP that parameterizes the clutter ridge of the clutter covariance matrix. Its ability to adapt 

over single range bins, namely the cell-under test (CUT), makes it an ideal candidate to 

combat spiky heterogeneous clutter. We describe KAPE in more detail in Section 3.2.  

Despite KAPE's proficiency in adapting to clutter scenes of interest, it is burdened by large 

computational requirements that prohibit its use in real systems. The crux of the 

computations are the       matrix inversions required to calculate the STAP weights. 

Since KAPE operates on single range bins, the inversion must be performed for every range 

bin within the range swath. As discussed in Section 3.2, KAPE also requires power estimates 

for each of the steering vectors that form the clutter ridge. To address this problem, we 

developed a Gram Schmidt (GS) KAPE algorithm that bypasses the need to calculate direct 

inversions, making it feasible for real-time system implementation. Furthermore, GS KAPE 

reduces the number of steering vectors in its covariance matrix estimate, hence lessening the 

number of required power estimates. Section 4.2 details this novel algorithm. 

In contrast to SMI techniques, KAPE is more susceptible to array errors, since it is a model-

based technique. Uncalibrated array errors amount to a model mismatch; SINR losses of -35 

dB can be expected, as demonstrated in Section 4.3. Some array calibration algorithms can 

ameliorate such losses, but they can still incur SINR losses up to -10 dB. These heavy losses 

may restrict KAPE's effectiveness in real systems. To address this concern, we have 

developed the power-ridge aligning (PRA) calibration technique, a novel iterative gradient 

descent approach. Using this PRA technique, we can maintain a -1 dB SINR loss in the 



 

8 
 

presence of array errors, a significant boost over existing methods. Section 4.3 describes the 

approach and compares its performance. 

We refer to enhanced-KAPE (E-KAPE) as the collective use of the various upgrades we 

have developed over the standard KAPE algorithms. To demonstrate the performance 

improvements, Section 4.4 assesses it over a various scenarios, including the presence of 

point clutter and array errors. Coupled with the computational reduction, E-KAPE 

maintains the feasibility of real system implementation. 
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Chapter 2  
 
 
 

BACKGROUND 
 
 
 
This chapter aims to elucidate the contributions made in this dissertation by presenting the 

relevant background information. Section 2.1 begins by defining the assumed radar signal 

model for our research. We then clarify the distinctions between homogeneous and 

heterogeneous clutter models in Section 2.2 and Section 2.3. Models for targets of interest 

are presented in Section 2.4, which include the Swerling 1 model that we incorporate in our 

simulations. Section 2.5 focuses on important detection statistics that are directly used in our 

algorithm performance studies. This is followed by a survey of methods to reduce their 

computational complexities. Section 2.6 elaborates on the knowledge-aided parametric 

covariance estimation (KAPE) method, which is central to the contributions in this 

dissertation. Finally, Section 2.7 discusses the performance metrics that are employed to 

compare STAP algorithms. 

 

2.1.  Radar Returns 

The radar return over an area of interest is often approximated as the combination of the 

returns from many individual scatterers. The transmitted narrowband radar pulse       can 

be generally written as  
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where    is the transmit frequency,      is the amplitude modulation term and      is the 

phase modulation term. Assuming the scene consists of a single point source at range 

        , where   is the speed of light, the received pulse       is a delayed and 

attenuated echo of the transmitted pulse [4]: 

                                             

where       is the attenuated amplitude due to propagation loss,       is the distorted phase 

modulation, and      is the receiver noise. Phase distortion can be attributed to factors such 

as Doppler shifts. In STAP processing, the signal is received over an array of   spatial 

elements and observed over   pulses. Hence, we receive    signals of varying delays that 

are used to improve the SINR of the system and provide directivity, as explained in Chapter 

1. 

Let    be the power of the transmitted signal,   be the array gain, and    be the antenna 

aperture area. Then received power is 

   
      

       
 
         

where   is the radar cross section (RCS) that describes the fraction of the reflected transmit 

power. Hence, the RCS values are specific to the range   . In our case, we are interested in 

scatterers in an illuminated area  , where we assume that the individual scatterers share the 

same statistics. The reflected power is then quantified by the RCS in unit area, which has 

units of    [4].  
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Due to the intractable amount of scatterers, the RCS value is highly sensitive to the aspect 

angle and the transmit frequency of the radar. Hence, in practice, a statistical description of 

the RCS value is adopted to describe the scene. Although this model removes the azimuth-

aspect dependencies from scatterer fluctuations, the grazing angle can still affect the 

outcome RCS [10]. At low grazing angles, shadowing and multipath become a problem, 

while returns from high grazing angles are plagued with facet reflections. To account for 

these interferences, we adopted a constant gamma model [11],[12]. This model describes the 

reflectivity as 

           , 

where   is the normalized reflectivity and   is the grazing angle. The RCS is then calculated 

as       
 , where    is the area of radar illumination. 

To model the clutter signal received by the radar system, we divide the iso-range ring of 

interest into    clutter patches, each patch corresponding to an azimuth interval. The range 

interval of the ring depends on the sampling rate of the receiver. For this exposition, we 

assume a fixed elevation angle. Let    denote the space-time steering vector pointed towards 

the     clutter patch. Then the received data   is  

       
  

   , 

where    is the complex gain from the     clutter patch, which also accounts for the array 

gain as well as the reflectivity. This approximation forms the basis for the STAP algorithms 
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of interest in this dissertation. We see that the steering vectors    correspond exactly to 

points along the clutter ridge, the region STAP is designed to suppress.  

 

2.2.  Homogeneous model 

If we assume that the scatterers contributing to the reflectivity   in the area of interest 

consist of independent and identically distributed (i.i.d.) components, we can invoke the 

Central Limit Theorem (CLT), which states that the real and imaginary components of the 

composite voltage will be well approximated by white Gaussian random variables [13]. That 

is, the reflectivity values are drawn from the complex Gaussian distribution: 

            

with mean   and variance   . It follows that the magnitudes     are Rayleigh distributed. 

These assumptions define the homogeneous clutter model. Under such conditions, applying 

the sample matrix inverse (SMI) for clutter cancellation results in a 3 dB SINR loss, on 

average, from the clairvoyant case when using         range samples [7]. Hence SMI 

provides us with an effective and efficient clutter filter when the homogeneous criteria are 

met. 
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2.3.  Heterogeneous Clutter 

The homogeneous assumption may be too ideal to adequately describe scenes of interest. 

For example, spurious spikes observed from low grazing angles violate the i.i.d. assumption 

of the scatterers [14]. In addition, received data from high-resolution radar is poorly modeled 

with the homogeneous model, where the area of illumination is smaller; a small number of 

scatterers do not satisfy the assumptions of the CLT as well as a large number of scatterers. 

In general, heavier distribution tails have been observed that are inadequately parameterized 

by Gaussian models [15],[16]. Numerous distributions have been tried to model the 

deviations, including Weibull and log-normal distributions [16],[17]. For this dissertation, we 

are particularly interested in the K-distribution, noted for its adeptness in modeling various 

states of sea clutter [18]. 

 

2.3.1. Texture Clutter 

The purpose of heterogeneous clutter models is to better parameterize clutter distributions 

that do not satisfy the homogeneous conditions. The compound clutter model is a 

heterogeneous clutter model that attempts to match the underlying phenomenology by 

modulating two distributions [19],[20]. In particular, the two processes of interest 

characterize the scatterers with long time-correlations, or the slow-moving components, and 

the scatterers with short time-correlations. We can view the homogeneous model as the 

special case where only the short time-correlated scatterers exist, justifying the independence 

of the scatterer statistics. For sea clutter, the sea state dictates the long time-correlated 

clutter, modulated by the impulsive capillary waves [9]. Of the various cases of compound 
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clutter models, we are interested in the K-distribution model, as it has shown to be a good 

empirical fit to real data and presents a relatively simple parameterization [8],[18]. 

The K-distributed model uses a gamma random variable to model the long time-correlated 

process, modulated with a white complex Gaussian process describing the fast moving 

components. Specifically, we can write the probability density function for a K-distributed 

random variable as 

                  
 

 
    , 

where        is the Rayleigh probability density function 

       
 

 
    

   

  
       

and      is the gamma density function 

              
 

      
        

  

 
       

with shape and scale parameters   and  , respectively, and the gamma function     . 

Although the K-distribution is only parameterized with two parameters, it has the flexibility 

to model the clutter heterogeneities of interest. The gamma ratio                aptly 

describes the roughness of the scene [21]. For example, a low value of    trends toward a 

spikier scene, as it implies an increase in the standard deviation. In the other case, noting that 

       , we see that the shape parameter increases with increasing   . The Gamma 

distribution converges to a Gaussian distribution as     [13], and hence yielding a milder 
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scene. Figure 2 plots the empirical K-distributions for various gamma ratios with the mean 

fixed at       . We observe that the distributions trend towards spikier scenes with 

decreasing   . 

 
Figure 2. Gamma distributions for various gamma ratio values. 

 

2.3.2. Point Clutter 

The K-distribution describes the texture of the scene, as it models the contribution of the 

many scatterers in the region. It does not, however, model the highly reflective, outlier 

objects in the area of interest. These include speeding vessels and stationary objects such as 

docked boats. The received data from these discretes are localized and generally impulsive, 

spanning a fraction of the azimuth and range resolution of the system. We refer to these 

heterogeneities as point clutter. 

There are two distinct classes of point clutter: stationary clutter discretes (CD) and targets in 

secondary data (TSD) [22]. Each of these pose a different problem to STAP. CDs are 
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inherently stationary, and hence reside along the clutter ridge of the data. If a discrete is not 

properly nulled, the residue clutter power may spread across the Doppler bins, triggering 

false alarms. On the other hand, TSDs are seen away from the clutter ridge due to their 

nonzero radial velocities. When TSDs are present in the training data, e.g., the range interval 

to average over as in the case of SMI, nulls may be unintentionally placed in their location in 

the Doppler-angle spectrum. These nulls may reduce the detection probability, since they 

will filter out the targets of interest. 

To maintain the impulsiveness, data discretes are simulated by seeding into the received data 

rather than accounting for them in the RCS estimation. Let    be the data received from the 

    range bin. Let     be the steering vector corresponding to a CD. Then the injected data 

  
  is formulated as  

  
           , 

where     is the corresponding gain. TSDs are modeled in a similar manner: 

  
             , 

where      and      are the TSD gain and steering vector, respectively. 

 

2.4.  Targets 

Target data is simulated by injection, similar to the insertion of point clutter. In this work, we 

determine the power of the injected target by adopting the well-established Swerling models 
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[4],[23]. The Swerling models were chosen as a basis for our performance analysis because 

they form the foundation of much experimental and theoretical work in the radar literature. 

They were initially proposed to statistically describe the returns over multiple pulses within 

the cell-under-test (CUT). In particular, the Swerling 1 and Swerling 2 models describe 

scenarios where the return target signal is composed of many independent and identically 

distributed scatterers, which is in alignment with our initial assumptions of the scene. The 

magnitude of the returns are described with the Rayleigh distribution: 

     
 

 
      

     

which has a variance of   . The Swerling 1 model further assumes that the returns vary 

stochastically between the coherent processing intervals (CPI), but remain constant between 

the pulses of the CPIs. This is appropriate for an object with long temporal correlation 

times. On the other hand, the Swerling 2 model assumes that the returns vary stochastically 

between all pulse returns, so it is appropriate for an object with short temporal correlation 

times. Other Swerling models examine the case when the magnitudes of the returns are 

dominated by a strong scatterer, resulting in a Chi-squared distribution: 

     
  

  
     

  

 
   

which has a variance of     . In total, there are four distinct Swerling models as listed in 

Table 1. For our simulations, we will strictly assume a Swerling 1 target. 
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Table 1. Description of the four common Swerling models. 

 Short Correlation Times Long Correlation Times 

Uniform Scatterers Swerling 1 Swerling 2 

Dominant scatterer Swerling 3 Swerling 4 

 

2.5.  Detectors 

For targets with Doppler and angle corresponding to the steering vector  , the optimal filter 

is given by the Wiener-Hopf equation:  

      , 

where   is the clairvoyant covariance matrix. In practice, neither the exact steering vector 

nor the covariance matrix are known. Array errors deviate the spatial steering vector from 

the uniform linear array model discussed in Section Chapter 1. We denote the corrected 

steering vector as   and    as the covariance matrix estimate. The corrected steering vector   

accounts for the channel amplitude and phase errors caused by practical implementation 

issues, such as element displacements and mutual coupling. If we denote the     vector 

of exact array errors as  , then the corrected steering vector is  

            

where    is an     vector of ones. As noted in Section 1.1, the sample matrix inverse 

(SMI) gives a good estimate in homogeneous clutter and will be the main benchmark of our 
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algorithms. Recall that the covariance matrix estimate is essentially an average of the outer 

products of the given data: 

   
 

 
     

  
   , 

 where   is the number of available range samples. The following subsections will focus on 

direct and indirect modifications to this estimate. 

Ultimately, we require a statistic derived from the filter output that we can compare to a 

threshold. The threshold, which may be fixed or adaptive, will determine whether a target 

exists in the CUT. This implies a normalization of the outputs of the filter   to account for 

varying background noise. Some commonly used algorithms include Kelly's generalized 

likelihood ratio (GLR) detector [24] and the adaptive coherence estimator (ACE) [25]. 

Kelly's GLR approaches the problem as a hypothesis testing problem with two hypotheses: 

the noise-only case and the signal-plus-noise case. This approach is motivated by the 

difficulty encountered in choosing appropriate thresholds to maintain a desired false alarm 

rate using the SMI filter. Assuming unknown noise statistics and signal amplitude, the GLR 

is calculated in which the unknown parameters are substituted with their maximum-

likelihood estimates. The detection statistic is 

  
         

 

          
 
         

    

Kelly's GLR is compared to a threshold   , where   is the number of available range 

samples and   is chosen to maintain a desired false alarm rate. Note that the threshold 

directly depends on the support size.  
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Another useful detector is the adaptive coherence estimator (ACE) given by 

  
         

 

                 
    

ACE was designed to be invariant with respect to scaling inconsistencies between the CUT 

and the rest of the range samples. It is essentially the angle between the CUT and the 

steering vector projected onto the subspace defined by     , or 

                   
  

 

         
 

 
         

 

 
  
   

Hence, ACE can better filter out false detections away from the steered direction.  

The adaptive matched filter (AMF) is an efficient detection statistic that also approaches the 

problem as a hypothesis test [26]. The AMF follows from Kelly's GLR for    : 

  
         

 

       
    

We immediately see the reduction in computational complexity compared to Kelly's GLR 

and ACE by the omission of the matrix operation         . AMF is widely used in practice 

for its simplicity and effectiveness. Likewise, the AMF is used for our simulations to 

calculate performance metrics for algorithm comparisons. 
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2.5.1. Dimension Reduction 

One common requirement of the detectors discussed above is an estimate of the inverse 

covariance matrix     . When the SMI is employed, we require at least    range samples to 

ensure a full-rank covariance matrix    and     to maintain 3 dB SINR loss on average [7]. 

Even for our modest test system with     channels and      pulses, this implies a 

minimum of       range samples. The SMI further requires that the samples used for the 

estimation maintain homogeneity over the training interval, which is an optimistic 

assumption.  

Several dimension reducing techniques have been proposed to address this problem. These 

include a variety of eigenvalue techniques that assume the rank of the clutter component is 

much lower than    [27],[28],[29]. They maintain that the clutter has a rank    and attribute 

the full rank of the covariance matrix to the white background noise. The covariance 

estimate is then reformulated with a subset of the    eigenvectors and eigenvalues, assuming 

that the principal components are directed towards the clutter. This is a valid assumption, as 

the clutter components typically overpower the background noise. These algorithms face the 

additional problem of estimating the appropriate value of   . Since the eigenvectors are 

orthogonal, the inverse covariance matrix can be derived without a direct matrix inversion. 

Specifically, if we denote   as the matrix of the    eigenvectors and   as the       diagonal 

matrix with corresponding eigenvalues, the inverse of the clutter component is calculated as 
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where     is trivially calculated by taking the inverse of each diagonal entry of  . Hence, 

these approaches do not require    range samples. 

The extended factor algorithm (EFA) simplifies the problem by only processing     

adjacent Doppler bins at a time instead of simultaneously processing all data within the CPI. 

This essentially branches STAP into   parallel filter banks, each with dimension    [30]. 

The number of adjacent bins   is chosen to be big enough to capture most of the correlated 

information in the Doppler domain and small enough to sufficiently reduce the STAP 

dimension. The Joint-Domain Localized (JDL) method takes this idea a step further by 

localizing in the angle space as well as the Doppler space [31]. This method can exploit the 

fact that clutter lies along the clutter ridge in the angle-Doppler spectrum. Both EFA and 

JDL significantly reduce computational burden, since covariance matrix inversion is 

       , where DOF is the degrees of freedom. 

We are particularly interested in the EFA algorithm for its effectiveness and simplicity. Let 

                 be the     DFT matrix. We initially apply a Hamming window 

      of length   for sidelobe suppression, resulting in 

      
 
   

 
     

   
                                    

which can compactly computed as 

        
       

Assuming   is odd, the     filter bank of EFA can be represented with a transformation 

matrix 
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where    is an     identity matrix. The cyclic property of the DFT is used to represent 

   when     or      . When   is even, the filters are frequency shifted to maintain 

the symmetry of the transformation: 

                                                      

Hence, given the CUT  , the EFA gives   outputs: 

                             

The EFA reduced covariance matrices can be written as 

            
            

        
                       

which are used to calculate the      reduced-dimension Wiener-Hopf equations: 

       
            

     
   , 

Although   output calculations are required for each received data vector, the transformed 

covariance matrices have dimensions      , and hence are computationally favorable in 

most cases. For our simulations,     elements and     , which requires inversions of 

        matrices when operating in the full-dimension space. Setting    , the 

reduced-dimension matrices are      . Recalling that matrix inversions are       for a 

    matrix, we see that             , which verifies the efficiency of the EFA. 
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2.5.2. Rank Modifiers 

As an alternative to reducing the dimension of the problem, rank modifying techniques 

directly manipulate the covariance matrix estimate to increase its rank. The diagonal loading 

technique builds on the concept of retaining the principle components of the matrix and 

removing components with the smallest eigenvalues. To maintain a proper matrix rank, a 

scaled identity matrix    
     is added, where    

  is the background noise level estimate [32]. 

Essentially, the noise-only components are replaced with an average of the background, 

producing a better estimate.  

The colored loading technique generalizes the diagonal loading technique by adding a 

quiescent covariance structure    to the estimate [33]: 

               

where         and        .The quiescent matrix could be an identity matrix as in the 

diagonal loading technique, but it could represent clutter structure known a priori. This 

includes previous estimates of the clutter ridge, possibly derived from known terrain 

information. By incorporating a priori knowledge, we can better suppress false alarms caused 

by sidelobes. 

Covariance matrix tapers (CMTs) present another method of covariance manipulation, via 

element-wise multiplication with a positive semi-definite matrix [34]. Let      be the 

covariance matrix taper. Then the refined covariance matrix is given as 
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By constraining the second matrix to be positive semi-definite, the resultant matrix is 

positive definite, hence retaining the properties of a covariance matrix. 

We can perform diagonal loading via CMT by applying 

          
       

  

     

 
  

     

   
  

       

   

where    is the scale factor,       represents the         element of   , and         

denotes an operation that forms a diagonal matrix with its arguments on the diagonals. Color 

loading can be similarly performed. 

Aside from increasing the rank of the matrix, CMTs are able to model internal clutter 

motion (ICM), which are pulse-to-pulse fluctuations of the received data. ICM effectively 

spreads the clutter ridge, as it is essentially an increase in temporal correlation. Different 

ICM models are discussed in Section 2.6.4. 

 

2.5.3. Data Selection 

Data selection algorithms indirectly modify the covariance matrix estimate by operating on 

the training data. A subset of the data is extracted that better homogenizes the training set. 

In particular, when we assume homogeneous clutter, we can filter range bins containing 

anomalous spikes ahead of time, since they will degrade the covariance estimate. This is the 

basis for the nonhomogeneity detector (NHD) algorithm, which compares the statistics of 

each range bin with the covariance matrix formed with the remaining training data to find 
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and remove anomalies [35]. That is, the statistics of the     range sample    is compared 

with the estimate 

   
 

   
     

 
 

       
  

where we assume we have   available range bins. 

Power selected training (PST) takes a polar approach and opts to retain only the strongest 

range bins to overnull the data [36]. This may be desirable if the emphasis of the system is 

on the suppression of false alarms. The phase and power selected training is based on the 

PST, but also uses the phase information across the receiver channels to detect moving 

targets [37]. By omitting bins that contain moving targets, there is less chance of masking the 

targets of interest. The data selection methods are limited by the actual amount of 

homogeneous content available within the training set. If the clutter is too heterogeneous, 

we are left with a rather limited training set. This implies that the algorithm will likely be 

coupled with the aforementioned dimension-reducing or rank modifying techniques. 

Overall, the methods discussed thus far attempt to mold the problem into that of detection 

in homogeneous clutter. This is conceptually different than deriving a method that is 

designed to operate in any heterogeneous situation, as in the knowledge-aided parametric 

covariance estimate (KAPE) approach. KAPE is a model-based approach that parameterizes 

the clutter ridge of the covariance matrix [38],[39]. For a given range   , we can describe the 

received clutter as the sum of the returns along    clutter patches: 

     
  

   , 



 

27 
 

where    is the complex gain from the     clutter patch and    is the corresponding space-

time steering vector. We see that the sum represents the returns along the clutter ridge and 

that we only need estimates of the complex gains. This is an over-simplified model, and in 

practice KAPE takes additional steps to ensure a realistic clutter model. Remarkably, KAPE 

is able to estimate the covariance structure by solely using the CUT, that is, it does not 

require a training set. This property makes it ideal to combat heterogeneous clutter, where 

the statistics may drastically vary between range bins. The multistep implementation of 

KAPE is the focus of the next section.  

 

2.6.  KAPE 

The knowledge-aided parametric covariance estimation (KAPE) is a model-based approach 

to estimating the covariance matrix [38],[39]. KAPE is a knowledge-aided technique, i.e., a 

class of STAP algorithms that employ databases and a priori information to boost 

performance [40]. This includes any information about the array manifold, such as heading 

and known complex array gain errors, that affect the basic equation give in Section 2.1. 

When available, terrain information can also be used to accommodate null regions obscured 

by structures and to anticipate discretes in the data, such as moving vehicles.  

To parameterize the clutter ridge of the scene, the iso-range ring of interest is divided into 

   constant-sized azimuth patches, were    is chosen to be smaller than the Doppler and 

spatial beamforming resolution. For this exposition, we assume a fixed elevation angle and 

negligible contributions from range ambiguities. To reiterate, the return from the CUT at 

range    can be written as 
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Let            
  and                

          
      , where         denotes the 

formation of a diagonal matrix with the given arguments and      denote the expectation of 

its argument. The covariance matrix is compactly written as 

              

This formation assumes that the returns can be described with ideal steering vectors. We are 

able to estimate the gains         
 using a single range bin, namely the CUT, by averaging 

over the redundancies of the pulse returns. Let    be the voltage corresponding to the     

pulse and      be the     ideal spatial steering vector corresponding to the     clutter 

patch and     pulse. We estimate the gain as  

   
 

 
      

    
 

 

   

   

the mean gain over the available pulses. If available, additional range bins may be used to 

further improve the estimate. For our purpose, we will use only the CUT to demonstrate 

KAPE's efficacy in highly heterogeneous clutter. 
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2.6.1. Array Errors 

Realistically, the ideal space-time steering vectors         
 do not properly describe the 

returns as they do not account for inconsistencies such as sensor jittering and variances in 

the analog-to-digital voltage conversion, as well as complex gain errors in the spatial 

channels. We can divide the array errors into two cases: errors that are dependent on the 

steering direction    and angle-independent errors   . By including the angle-independent 

errors, the scene is better modeled with the set of steering vectors 

                            

We are less concerned with the angle-dependent errors, as    contributes most to the errors 

across the mainbeam [39]. We can utilize the given array information to obtain initial 

estimates of the errors    . This leads to a set of approximate spatial steering vectors: 

                                   

which are used to derive the corresponding space-time steering vectors           
. Letting 

              
 , the covariance matrix estimate is then       . 

Since KAPE is a parametric method, steering vector mismatches can lead to heavy losses, 

which we demonstrate in Section 4.3. Refined array error estimates are a necessity for 

successful applications by means of array calibration techniques. We are interested in in situ 

techniques that will adapt to any given clutter scene. These techniques are collectively 

referred to as cal-on-clutter methods, which include two notable methods: the maximum 

eigenvector method and the adjacent channel pairing (ACP) method [39]. 
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The maximum eigenvector method assumes strongest returns from broadside of the array. 

In the case of a sidelooking linear array, this corresponds to the spatial steering vector   , 

i.e., a vectors of ones. Since the principle eigenvector of the array manifold points towards 

the strongest power source, it follows that the principle eigenvector will ideally be a scaled 

vector of ones. In the presence of array errors, the broadside is perturbed, resulting in 

     . Likewise, the principal eigenvector follows this deviation. The maximum 

eigenvector method follows this concept by performing an eigendecomposition over the 

spatial covariance matrix from the available samples. The extracted principal component    

gives us the array error estimate: 

             

The spatial covariance matrix     is estimated by averaging over the available pulses and 

range bins: 

   
 

  
          

  
 

   

 

   
  

where      represents the     vector of values received from the     pulse of the     

range bin.  

The presence of multiple dominant scatterers about the iso-ring may bias the maximum 

eigenvalue method, as it violates the assumption that the broadside is strictly the strongest 

source. In such cases, the EFA centered at the DC bin can be employed to isolate the 

contributions from ground clutter at the expense of a reduced sample size for covariance 

estimation. This is the essence of the maximum eigenvector, Doppler centroid method [39]. 
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Specifically, let    be the EFA transformation matrix centered about the DC bin, as 

elaborated in Section 2.5.1. Then, the centered covariance estimate is calculated as 

    
 

 
   

     
   

 

   
  

where the average is performed over the available range bins. 

The adjacent channel pairing method (ACM) takes an alternative approach by relating the 

phase differences between the channels. The phase progression between adjacent elements 

of uniform linear array is [41] 

              

where   is the elemental spacing,   is the speed of light, and   is the transmit frequency. 

Since clutter maintains zero velocity for sidelooking radar steered at broadside, there will be 

zero progression between the elements. The adjacent pairing method assumes this and 

attributes any deviations in phase to array errors. Let          and      be the complex data 

received on the         and     channels of the     received pulse and     range bin. 

Then the relative array error between the channels is estimated as: 

        
        

          
                  

   , 

which accounts for gain as well as the phase errors. Using the first channel as the reference, 

the relative channel errors are calculated for       . The error estimates are 

subsequently refined by averaging over the   pulses and   available range bins: 
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If   is large enough, the error estimates may be obtained using solely the CUT. That is, this 

method is applicable when    . To calculate the absolute channel errors from the first 

channel, the relative errors are stacked, resulting in the array error estimate vector 

                                

Note that the first element is always 1, as it is the reference channel. The ACM provides a 

computationally simple yet effective way of estimating array errors. However, if the transmit 

pulses fail to maintain constant contact with the target during the CPI, the array error 

estimates will be biased. This describes the case of a short dwell return. Furthermore, 

estimation errors propagate across the channels because relative array errors are stacked to 

calculate the absolute channel errors. This implies that  

                                         

where    is the actual array error of the     channel and      calculates the statistical 

expectation of its argument. In general, the ACM method will degrade as the number of 

channels in the array increases. 

 

2.6.2. Discrete Matched Filter 

When multiple range bins are used for estimation, KAPE preemptively filters the data for 

anomalous points to better adapt to the underlying scene. The CLEAN algorithm, a method 
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of removing point-like returns, is well suited for this purpose [42],[43]. CLEAN is an 

iterative technique that, in this context, initially passes the data through a standard AMF 

filter using the SMI covariance matrix estimate. Upon locating a range-Doppler bin with a 

strong return, the exact Doppler and azimuth parameters of the outlier are further refined by 

applying a second AMF filter with a higher resolution. The power of the outlier is estimated 

and the anomalous discrete is subsequently subtracted from the data. This process is 

iteratively applied until no further outliers are detected. 

A common concern is in the choosing of an appropriate threshold to determine the presence 

of a discrete. If the threshold is too low, CLEAN will be too aggressive and remove salient 

clutter structures. Furthermore, the algorithm needs to distinguish between a stationary 

discrete along the clutter ridge and a moving discrete away from it. This requires a second 

threshold, introducing another source of estimation error.  

 

2.6.3. Clutter Ridge Shifts 

Shifts in the clutter ridge result from uncertainties in the exact mainbeam steering vector. 

This effect may be more profound when the system experiences yaw during the signal 

acquisition [39]. Though small, these shifts introduce errors into the covariance 

parameterization, ultimately affecting the performance of KAPE. To estimate the 

perturbations, the KAPE algorithm dithers the Doppler frequency over a set of fractional 

frequencies   , shifting the ridge up and down the angle-Doppler spectrum. The      

dithering vector is formulated as 
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which is reminiscent of the temporal steering vector described in Chapter 1. The dithering is 

applied to the covariance matrix estimate via the following CMT: 

                        
          

KAPE incorporates the dithering frequency that best whitens the received data. The AMF is 

an excellent metric for this purpose, as it is intuitive and computationally efficient. 

Specifically, we calculate 

      
 

 
 

   
               

  
   

 

  
               

  
  

 

   
  

where    is the current covariance estimate and    is the space-time steering vector centered 

about the mainlobe. Since ground clutter is concentrated within the mainlobe,    is a logical 

choice for the whitening metric. The frequency shift    that corresponds to the smallest 

AMF output       is incorporated into the KAPE, since it best whitens the received data. 

Note that the AMF calculations can be computed in reduced-dimension space via EFA to 

reduce the computational load. 
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2.6.4. Clutter Ridge Spread 

When the received pulses exhibit temporal decorrelation, the clutter ridge of the angle-

Doppler spectrum spreads laterally in Doppler. This is intuitive, considering that we are 

calculating the covariance function. This type of spreading can be attributed to internal 

clutter motion (ICM), which is induced by radar errors and clutter fluctuations in the 

environment. 

Since KAPE sums only the bins along the diagonal, severe spectral leakage can lead to 

under-nulling bins adjacent to zero Doppler. To compensate, KAPE employs covariance 

matrix tapers (CMT) that effectively model ICM. For example, the Gaussian temporal 

autocorrelation CMT is given as [17],[39] 

                                                      
 
     

where             denotes an operation where a Toeplitz matrix is formed from its 

arguments. The equation includes the constant   that controls the degree of the clutter ridge 

spread. The Gaussian model has been demonstrated to match water clutter. In practice, 

several values of   must be tested to find an appropriate fit to the given CUT. Similar to the 

clutter shift matching process discussed in Section 2.6.3, the AMF is employed to find the 

CMT parameters that best whiten the received data. 

Another popular CMT for modeling clutter ICM is the Billingsley model, which has 

demonstrated its efficacy in modeling land clutter spread [4],[14]. Its power distribution is 

given by 
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where      is the Dirac delta function and   is the shape parameter. The first and second 

terms represent the stationary and moving components, respectively, where   is the power 

ratio between them. 

 

2.7.  Performance Metrics 

This section discusses various metrics for comparing the performance of different 

algorithms. This includes receiver-operating characteristic (ROC) curves, SINR losses, and 

exceedance plots. Each metric offers a different perspective on the detection and 

classification problem. 

 

2.7.1. ROC 

A receiver-operating characteristic (ROC) curve is a plot depicting the possible combinations 

of probability of false alarms     and probability of detections    obtainable using the 

classification algorithm. Every point on the ROC curve corresponds to a threshold  ; a 

detection is considered a target if it exceeds  . Hence, false alarms correspond to the case 

when non-targets produce a detection value over   and correct detections correspond to the 

case when targets produce a detection value over  . The innate tradeoff is that, although we 

reduce false alarms by setting the threshold high, we also lose correct detections as well.  
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For our algorithm assessments, the beam is fixed at broadside. Detections are formed using 

the AMF on the Doppler frequency bins that are over the minimum detectable velocity 

(MDV). Targets below the MDV are masked by ground clutter and are assumed to be 

undetectable. Two sets of data are generated for this analysis: clutter-only data and clutter-

plus-target data. The clutter-only data is initially generated using the cell-based clutter model 

(CCM) explained in Section 3.1 and the clutter-plus-target data is generated by injecting a 

Swerling 1 target of power   
  into the frequency bins of interest. The ROC curve is formed 

empirically by averaging over    trials. 

 

2.7.2. Exceedance Plots 

The exceedance plot is a plot of the     versus the detection threshold  . Hence, no 

additional information is needed to generate these plots, given data for the ROC curves. 

However, the tails of the exceedance plot indicate the presence of unsuppressed spiky 

clutter. For example, strong clutter residue requires a larger threshold to mitigate, which 

translates to long tails on the plots. Overall, this allows us to analyze a system's ability to 

remove discrete-like clutter, such as CDs, TSDs, and residue from heterogeneous clutter. 

The exceedance curve obtained from homogeneous clutter gives us a benchmark for 

performance. If the STAP algorithm performs properly, the output clutter is whitened.  
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2.7.3. SINR Loss Plots 

There are several signal-to-interference-plus-noise ratio (SINR) plots that are of interest. The 

standard SINR power for STAP weights   corresponding to the space-time steering vector 

  is 

        
  

       

    
   

          

where   is the clairvoyant null hypothesis covariance matrix and   
  is the target power. We 

refer to this as the optimal SINR, as it requires the knowledge of  . The optimal SINR loss 

     is the optimal SINR normalized by the SNR of the system: 

     
       

   
 

  
       

   
   

     
 

  
 

  
         

where   
  is the background noise power. Essentially,      computes the losses incurred by 

the addition of ground clutter. In the absence of ground clutter,     
     and hence 

      , which is the upper bound of the performance metric. For analysis, we fix the 

space-time steering vector   to be steered towards    elevation and    azimuth while 

varying the Doppler frequency to span the frequency space.  

For this work, we are most interested in the adaptive SINR loss, which is the loss incurred 

due to the STAP weights being calculated with the covariance matrix estimate   . The 

adaptive SINR loss      is calculated as 
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where            with the approximate steering vector   . In the absence of array errors 

and, assuming the received data vectors are independent and identically distributed (i.i.d.), 

the SMI method can achieve an average adaptive SINR loss of 3 dB when       data 

samples are available [7]. Commonly known as the Reed, Mallet, and Brennan (RMB) rule, 

this provides a benchmark for new algorithms. For example, 0 demonstrates that KAPE 

attains a better adaptive SINR loss without assuming i.i.d. data. In general, SMI is performed 

in a reduced-dimension space due to the limited sample size and to lessen the computational 

complexity. Let    be the EFA transformation matrix centered around the     Doppler 

bin. Then the corresponding reduced-dimension STAP weight vector is 

       
      

  
   

     

and the adaptive SINR is calculated as 

           
    

    
     

   
    

        
   

The optimal SINR is calculated similarly. Overall, the adaptive SINR loss      shows us the 

losses incurred using STAP, where a value of 0 dB indicates no loss.  
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Chapter 3  
 
 
 

DETECTION IN HETEROGENEOUS CLUTTER 
 
 
 
Textured clutter refers to background clutter that can be described with an underlying 

distribution model, as described in Section 2.3. In the homogeneous case, the complex 

Gaussian distribution is assumed. We are interested in heterogeneous cases, i.e., cases when 

the Gaussian model no longer suffices.  

Recall that the K-distribution is well suited for sea clutter observed by high-resolution radars, 

since it encapsulates cases of spiky states. The compound model representation of K-

distributed random variable is 

                  
 

 
    , 

where        is the Rayleigh probability density function conditioned on   and      is the 

gamma density function. We have chosen this model for analysis, as it has been shown to 

provide good empirical fits to real data using only two free parameters. Hence, our objective 

is to find a STAP method suitable for K-distributed clutter. The first step in our analysis is 

to accurately simulate the heterogeneous clutter. We introduce our novel cell-based clutter 

model (CCM) for clutter generation, adopting the idea of compound distributions. 
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3.1.  Cell-Based Clutter Model 

The modulating Rayleigh random variable of the K-distribution is generated by taking the 

magnitude of a zero-mean, unit-variance, complex Gaussian random variable. This results in 

a unit-mean, unit-variance Rayleigh process [13]. Following the compound model, this leaves 

two parameters for estimation: the scale and shape of the gamma distribution. For our 

simulations, we adopt the gamma ratio               , which details the spikiness of the 

scene as explained in Section 2.3.1. The mean is kept at a fixed value for intuitive 

performance comparisons.  

The scene of interest is divided into cells with sizes finer than the range resolution of the 

system, capable of delineating disparate clutter regions. A new simulation is initiated by 

assigning each cell a draw from the gamma distribution with a gamma ratio that aptly 

describes the clutter roughness. Recall from Section 2.1 that we model the returns as the 

sum of the contributions from the clutter patches:  

     

  

   
   

The patch reflectivity    corresponding to the     patch is calculated by averaging the 

intersecting scene cells as illustrated in Figure 3. The radar cross section (RCS) per area is 

determined using the constant gamma model [11],[12]: 

            

where   is the grazing angle. Finally, the     patch gain is calculated as 
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where   is the area of the patch and    is the beamformer voltage gain factor. 

 
Figure 3. The clutter patch reflectivity is calculated by summing the individual cells of the CCM. 

 

The resulting gain is also gamma distributed since it is the sum of multiple independent 

gamma random variables with a fixed scale parameter [13]. Hence, the resulting compound 

distribution is K-distributed. 

The CCM can also generate homogeneous clutter by assigning a constant value    to each 

cell, which implies that all patch reflectivity values            
 will be equivalent. 

Referring to the equation for a compound distribution, this reduces the model to a 

multiplication between a Rayleigh distribution and a constant. The resulting distribution is a 

scaled Rayleigh, which describes a homogeneous scene. 

The CCM affords the flexibility to simulate radar returns from various radar systems without 

having to re-estimate the gamma parameters. This is because the gamma parameters describe 

the clutter scene itself, detached from the radar system. Hence, e.g., we may vary the range 
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resolution, pulse frequencies, and the number of array elements for comparative analysis 

over a common scene of interest. If available, terrain databases may be utilized to estimate 

the required gamma parameters, a priori.  

Since the clutter patch size is large for low-resolution radar systems, each patch will intersect 

with more scene cells of the CCM. This implies that the RCS will be an average of many 

independent and identically distributed random variables with common distributions. By the 

central limit theorem, the result will converge to the Gaussian distribution. This is correct in 

a phenomenological sense, since returns from low-resolution radar systems are typically 

described with the homogeneous clutter model, and hence Gaussian returns. Conversely, the 

clutter patches will intersect with few scene cells in high-resolution systems, hence 

maintaining the shape of the original gamma distribution. When the scene is generated with 

a low gamma ratio, corresponding to spiky texture, the radar return will maintain its 

heterogeneity. This also matches with what is phenomenologically observed. Hence, the 

CCM is a simple and intuitive approach to generating clutter that produces returns 

congruent with real clutter. 

 

3.2.  KAPE in Heterogeneous Texture Clutter 

We can now use the CCM model we developed to reliably simulate various samples of 

heterogeneous clutter. The performance of STAP algorithms in spiky scenes should reflect 

desired real world capacity. We first demonstrate losses incurred using SMI in heterogeneous 

texture clutter. Recall that SMI is tailored for homogeneous backgrounds, and does not 

adapt well to spikes in the data. In contrast, we implement the KAPE algorithm, which has 
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the ability to adapt solely using information from the CUT. The nulls of the STAP filter do 

not average out as in the SMI case. 

For the simulations, the MDV is set to include Doppler frequencies with SINR losses above 

-15 dB. We inject 0 dBsm Swerling 1 targets into the clutter-only data to generate clutter-

plus-target data used to form the ROC curves. For the SMI method, the covariance matrix 

estimate is obtained by averaging the available data samples within the range swath. In 

contrast, solely using the CUT, KAPE parameterizes the covariance matrix estimate using 

the steering vectors along the clutter ridge with estimated powers. For both the SMI and 

KAPE methods, we apply the EFA algorithm on the simulated receive data for dimension 

reduction, followed by the AMF to obtain the detection statistic. The detection statistics are 

compared to an array of fixed thresholds   to calculate the performance metrics. 

Homogeneous clutter was generated using the CCM by setting the summed reflectivity 

values to a constant  . The constant   was chosen such that the single-channel, single-pulse 

clutter-to-noise ratio (CNR) power is 25 dB. Heterogeneous K-distributed clutter was also 

generated with the CCM, but with a gamma ratio of 0.1. Recall from Figure 2 that this 

corresponds to a spiky scene. The mean of the gamma distribution was set to maintain an 

average CNR of 25 dB, as in the homogeneous case. We generate      range samples per 

simulation run, including the CUT. Note that      in our case, which calls for a 

dimension reducing algorithm, namely the EFA. 

The radar system we are simulating is a sidelooking airborne radar employing a uniform 

linear array with     elements. It transmits      pulses per coherent processing 

interval (CPI). For the EFA algorithm, we compute a filter bank of outputs with each filter 
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processing     adjacent Doppler bins. The key parameters of the simulation are listed in 

Table 2. 

Table 2. Radar systems parameters used to generate the received data. 

M = 6 channels Radar Frequency = 1 GHz 

N = 32 pulses per CPI PRF = 750 Hz 

K = 3 adjacent Doppler bins Radar Resolution = 5 m 

Swath Center = 30 km Mean CNR = 25 dB 

Aircraft Velocity = 110 m/s Number of Range Samples = 2KM = 36 

 

To better describe the problems with heterogeneous texture clutter that we wish to address, 

this section presents some power spectrum density maps. To calculate the power response 

of the covariance matrix  , we form the space-time steering vectors         , for   

       ,           that uniformly spans the Doppler and azimuth space. The 

power is calculated as 

                       
 
                   

where       is the Hamming window used to suppress sidelobes. Figure 4(a) illustrates the 

power spectrum density (PSD) map for homogeneous clutter using the parameters of Table 

2. Note that the low resolution along the azimuth is attributed to the small number of 

channels in the system. Figure 4(b) illustrates the PSD map for K-distributed clutter with a 

gamma ratio of 0.1. The volatile scene produces a strong reflection centered around the 

Doppler bin corresponding to -0.2. Hz that overpowers the previous ground clutter peak 

centered about    azimuth angle and 0 Hz Doppler frequency. 
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Figure 5(a) is the PSD estimate obtained using the SMI to estimate   . We see that the peak 

point is still centered around 0 Hz Doppler and    azimuth because it is the average of the 

received data vectors. In contrast, Figure 5(b) illustrates the PSD obtained with KAPE, 

which is clearly centered about the dominant clutter of the heterogeneous scene. Since 

KAPE better matches the CUT, we can expect improved performance. 

 
(a)      (b) 

Figure 4. Example power spectrum density maps of clutter. (a) PSD of homogeneous clutter. (b). PSD 
for heterogeneous texture clutter with a gamma ratio of 0.1.  

 

  
(a)      (b) 

Figure 5. Example power spectrum density maps in the presence of heterogeneous texture clutter. (a) 
Power spectrum density estimate obtained using the SMI method. (b). Power spectrum density 
estimate obtained via KAPE.  
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Figure 6 compares the ROC curves of the simulations corresponding to several cases of 

interest. The solid line demonstrates that the SMI performs well in homogeneous clutter, as 

expected. For example, we approximately attain a 0.84 probability of detection    for a 

system that maintains a        probability of false alarm    . However, severe 

degradations are incurred in the presence of K-distributed clutter, shown as the dash-dot 

plot. Since the SMI averages over the entire range interval, the nulls for spiky range cells are 

insufficiently deep. For the same system that maintains           , the probability of 

detection diminishes to approximately 0.64, which is unacceptable in practical cases of 

interest. 

This effect of K-distributed clutter is further demonstrated in the exceedance plots of Figure 

7. The heavy tail is the result of strong clutter residues that the STAP filter did not 

adequately suppress. Specifically, to maintain            in heterogeneous clutter, the 

threshold is increased from 35.21 to 92.72, a difference of 57.51. Figure 8 plots the    

obtained as a function of the fixed threshold used for detection. In the case of SMI, the 

increase in the threshold from 35.21 to 92.72 reduces the    to 0.64, as expected. The red 

dotted lines of Figure 8 delineate the results of this case. 

In contrast, KAPE performs well in K-distributed clutter, as demonstrated by the dashed 

curve of Figure 6, hence demonstrating its effectiveness in suppressing spiky clutter. 

Comparing with our previous examples, KAPE attains a    of 0.92 for a system that 

maintains a        probability of false alarm    . Note that this is better than what is 

attainable with the SMI in homogeneous clutter. Figure 9 plots KAPE ROC curves in 
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homogeneous and heterogeneous clutter to demonstrate minimal losses incurred between 

the cases. 

Figure 7 shows the exceedance plot of KAPE in heterogeneous clutter. The short tails 

indicate that KAPE is able to generate the deep nulls required to suppress clutter residue. In 

fact, the tails are very similar to those found using SMI in homogeneous clutter, which 

explains the minimal    losses observed in Figure 9. Note that the KAPE covariance matrix 

estimates generally have higher power levels than those found with the SMI method, which 

accounts for the offset seen in the exceedance plot of Figure 7. Since this is just a scaling 

factor, it does not affect the performance. Overall, KAPE outperforms SMI in 

homogeneous clutter since it is a model-based parametric technique, unaffected by the SINR 

loss due to averaging.  

 

Figure 6. ROC curves comparing performances of KAPE and SMI in heterogeneous texture clutter. 
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Figure 7. Exceedance plots demonstrating the clutter residue between the KAPE and SMI algorithms. 

  

Figure 8. Plot of attainable probability of detection using SMI in homogeneous and heterogeneous 
clutter. 
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Figure 9. ROC curves demonstrating minimal KAPE performance loss in the presence of 
heterogeneous clutter. 
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Chapter 4  
 
 
 

DETECTION IN THE PRESENCE OF DISCRETE 
INTERFERENCE 

 
 
 
In addition to its capabilities in clutter with heterogeneous clutter, KAPE has been shown to 

perform well in the presence of clutter discretes (CD) and targets in secondary data (TSD) 

[22]. The ability to adapt over a single range bin allows KAPE to create deeper nulls to 

cancel spurious clutter, while avoiding signal cancellation due to off-ridge nulling. 

 

4.1.  KAPE Limitations 

The computational requirements of KAPE are an inherent limitation in real applications. An 

initial step in KAPE requires an estimate of the gains from the    azimuth patches, once for 

each range bin. To ensure a good model fit,    is chosen to be finer than the achievable 

Doppler and beamforming resolution. The overall number of estimates becomes nontrivial. 

However, the biggest burden is the calculation of the inverse covariance matrix      required 

in the formulation of the STAP weights. Even for a modest system with     and   

  , such as the one analyzed in Section 3.2, this equates to         matrix inversions for 

all range bins. This calculation may be infeasible for real-time systems, hence prohibiting the 

implementation of KAPE. In the next subsection, we introduce a new technique we call the 

Gram Schmidt (GS) KAPE, which introduces computationally efficient modifications to 



 

52 
 

KAPE covariance estimation. GS KAPE circumvents the need for direct matrix inversions 

by formulating a parametric model for estimating     . 

Another limitation of KAPE is its sensitivity to model errors. Although array errors 

adversely affect SMI, its impact on KAPE can be severely limiting, since array errors 

translate to incorrect steering vectors in the covariance estimate equation, implying a model 

mismatch. Hence, array calibration techniques are needed in the implementation of KAPE. 

Section 4.3 showcases the improvements attained from known calibration methods. We then 

introduce our power-ridge alignment (PRA) method of array calibration, which 

outperformed the standard methods we tested against. 

 

4.2.  Gram-Schmidt KAPE 

We have developed our Gram-Schmidt (GS) KAPE method as a means to reduce the 

computational burden of the original KAPE algorithm. Given a set of vectors that span   , 

the standard Gram-Schmidt (GS) algorithm iteratively derives a set of orthogonal vectors 

that span the same space [44]. For our purpose, we would like to orthogonalize the set of 

steering vectors            
 that span the clutter ridge, via the GS algorithm, to form the 

orthonormal set           . We see that      since the original set of steering vectors 

oversample the clutter space; i.e., the rank of   is less than   . However, since    is 

typically much larger than  , the elements of   exhibit a high degree of linear dependency. 

This precludes a direct application of GS, because it produces unstable results due to the 

limits of numerical precision.  
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To illustrate this problem, recall that the usual GS procedure obtains the     orthonormal 

vector by computing: 

  
         

      

   

   
  

     
     

     

Since the inputs are presented in an arbitrary order,    may be approximately linearly related 

to the previous vectors          . In that case, we see that    
    , producing unstable 

results. Furthermore, we obtain    that mostly span the non-clutter space.  

In light of the aforementioned problems, we implemented a modified version of GS that 

judiciously orders the input vectors to circumvent numerical instabilities. This requires an 

extra variable, namely a threshold, that defines the stopping criterion of the algorithm and 

determines the number of output vectors  . This presents an inherent tradeoff: we desire a 

small   for computational efficiency, but it also needs to be large enough to sufficiently span 

the clutter space. Our experiments showed that if   is too large, we inadvertently include 

orthogonal vectors that do not span the clutter space, hence only increasing unwanted 

background noise in the covariance estimate. 

To initialize the modified GS, the first input is chosen arbitrarily as the first vector in the list, 

i.e., 
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where      indicates the     sorted input vector. We form    by normalizing      and 

enumerate a list of residue vectors from the remaining inputs: 

        
                       

The index corresponding to the largest residue is then located: 

                    

Hence, the second input is the input vector corresponding to the max index           
, as 

it presents the most information on the clutter space. This process is iterated to obtain 

additional othonormal vectors. 

At the start of the     iteration, we have the orthonormal set           from the sorted 

input vectors              . As before, we enumerate a list of residue vectors using the 

input vectors and all output orthonormal vectors: 

         
   

   

   
                    

Note that in the actual implementation, the cumulative summation can be done iteratively, 

hence reducing the computational load. Also, the residues are only calculated for the unused 

input vectors, although we write it for all          for the simplicity of exposition. As 

before, we locate the index corresponding to the largest residue: 
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At this point, we verify whether the best candidate input exceeds the predefined threshold 

value    : 

      
        

If the criteria is met, we continue the iterative procedure with       . Otherwise, we stop, 

and declare the number of output vectors as       with the orthonormal output set 

         . Judiciously choosing the inputs avoid the problems associated with presenting 

the GS algorithm with completely redundant vectors. 

After obtaining the orthonormal vectors             , we rewrite the original 

KAPE covariance matrix equation: 

       
 

 

   
  

where we have substituted the original steering vector set   with   and its associated power 

estimates            
        

 
 . In this case, only   gains need to be estimated, which 

is an improvement over    and an overall reduction in computations. The estimates are 

obtained using the method explained in Section 2.6. In matrix form, the total interference 

covariance matrix is written as 
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including the white Gaussian background noise of power   
 . The biggest change from the 

original KAPE formulation is the orthonormality of the column vectors of  , enabling us to 

parameterize the inverse covariance matrix as well: 

          
     

 

  
 
            

We introduce the term 

    
        

 

  
    

 
   

 

  
    

 
    

which combines the gain estimates and the background noise. 

This formulation circumvents the need to calculate direct inverses of       matrices 

required in the standard KAPE algorithm. Typically, to bypass this complication, KAPE 

applies dimension reducing algorithms such as EFA to divide the inversion into smaller 

problems. Since this step is unnecessary in GS KAPE, we additionally avert the SINR loss 

associated with dimension-reduction. 

To demonstrate the efficacy of GS-KAPE with the lessened computational load, we 

compare it to the standard KAPE algorithm of Section 2.6. The performance is averaged 

over 1000 trials of simulated homogeneous clutter data with single-channel, single-pulse 

clutter power of 25 dB. The system receives data over a uniform linear array with     

channels and      pulses. We have access to      range bins to estimate the clutter 

covariance matrix. The standard KAPE algorithm requires gain estimates over        

clutter patches, whereas the GS-KAPE condenses this amount to just      orthogonal 
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patches. This is over 17 times in computational savings. For a fair comparison, both the 

standard KAPE and GS-KAPE are filtered with the EFA algorithm to reduce the 

dimension. Note that GS-KAPE does not actually require this step, since we have a 

parametric equation for the inverse covariance matrix. Figure 10 compares the SINR curves 

between the methods, along with the SMI case. The SMI case suffers SINR loss associated 

with averaging over the range bins, where the degree of loss is a function of the number of 

available homogeneous range samples available. Figure 11 shows the ROC curve for the 

same cases, where a 0 dB Swerling 1 target was injected to compute the probabilities of 

detection. The results were averaged over 1000 trials. Overall, we see that GS KAPE suffers 

no significant performance loss. 

 

Figure 10. SINR loss plots demonstrating the efficacy of GS KAPE. 
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Figure 11. ROC curves demonstrating the efficacy of GS KAPE. 

 

Several alternative methods can be employed to obtain orthogonalized steering vectors, such 

as the singular value decomposition (SVD) [45]. However, since they are conceptually 

identical, i.e., the outcome is a set of orthogonal vectors, we can expect performances similar 

to that of GS KAPE. GS KAPE method differs from most other methods in execution, 

since it iteratively operates over a set of vectors until the stopping criterion is met. This is in 

contrast to directly operating on the       matrix of steering vectors. As we have 

demonstrated, the number of iterations in GS KAPE is much less than the number of space-

time steering vectors   , and hence, is computationally efficient. In comparison, the often 

used SVD method is a two-step process that first reduces the input to a bidiagonal matrix. 

The second step is a QR decomposition, which is an iterative process over the       

bidiagonal matrix. Overall, the SVD is an involved process, requiring nontrivial calculations.  
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The SVD allows for a compact representation of the data. The number of significant 

singular values, i.e., singular values with magnitudes greater than some marginal value  , 

indicates the minimal number of orthogonal subspaces required for a good approximation of 

the original matrix  . Since GS KAPE also searches for orthogonal subspaces to represent 

the clutter ridge, we should expect the number of significant singular values to be the same 

as the number of GS KAPE output vectors. Figure 12 plots the magnitude of the singular 

values of   for the test system used to generate the SINR plots of Figure 10. We see that 

there are 37 significant singular values, which is equal to the number of orthogonal vectors 

obtained with GS KAPE. 

 

Figure 12. SVD singular values of a matrix of space-time steering vectors. 
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4.3.  Power-Ridge Aligning Array Calibration 

The SMI method indirectly calibrates complex gain mismatches, since angle-independent 

array errors persist across the range bins. That is, the received data vector for the     range 

bin is 

                   
  

   
        

  

   
  

where   is the actual array error, which is independent of the range bin  . The vectors 

        
 represent the ideal space-time steering vectors. Let            

  and 

           
                 

             , where    
           denotes the power received from the     clutter 

patches, averaged over the available range bins. Then the SMI covariance estimate is  

           

which accounts for array errors. Note that this is a simplified model, as the actual array 

errors can jitter in gain and phase across the range bins. It nonetheless emphasizes the 

adaptability of SMI to array errors. In contrast, KAPE initially models the clutter ridge 

without assuming array errors: 

            

where            
  and    is a diagonal matrix of the power estimates. The angle-

independent error term estimates    are directly factored in upon applying a calibration 

algorithm, resulting in the corrected estimate 
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where               
 =                  

         . This underlies the 

importance of accurate calibration algorithms in the application of KAPE; array errors 

ultimately correspond to model mismatch.  

For simulation, we generate a zero-mean,  -dimensional white Gaussian random variable 

   with standard deviation    that reflects the array gain error. The array phase error is 

represented with a second zero-mean,  -dimensional white Gaussian random variable    

with standard deviation   . The array error   is simulated by combing    and   : 

                   

Hence, the actual steering vectors are 

                             

where    is the space-time steering vector for the     clutter patch and    is the total 

number of clutter patches describing the iso-ring. 

To illustrate the effects of array errors, the dashed line of Figure 13 shows the SINR losses 

incurred by KAPE in the presence of uncalibrated array errors. Array gain errors with 3 dB 

standard deviation and array phase errors with 20 degrees standard deviation are simulated. 

We see that uncalibrated array errors lead to unacceptable performance with losses up to -38 

dB around the 3rd Doppler bin. The dash-dot plot shows the improvement achieved when 

compensating using the adjacent-channel pair (ACP) method, as discussed in Section 2.6.1. 
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However, we still observe losses greater than -5 dB for select Doppler bins, which motivates 

the development of an improved array calibration technique. The result of applying KAPE 

with no array errors is also shown as a benchmark. Figure 14 plots the SINR losses incurred 

by SMI with uncalibrated array errors to demonstrate its adaptability. We see losses up -9.3 

dB without array calibration, which is a vast improvement over KAPE in the same scenario. 

Upon applying the ACP method, the SINR suffers virtually no losses from the case with no 

array errors. 

 

Figure 13. SINR loss plots demonstrating the losses incurred using the KAPE covariance matrix in the 
presence of array errors. Cases for compensated and uncompensated array errors are shown. 
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Figure 14. SINR loss plots demonstrating the losses incurred using the SMI covariance matrix in the 
presence of array errors. Cases for compensated and uncompensated array errors are shown. 

 

We have developed an approach we call the power-ridge aligning (PRA) method, an iterative 

technique that searches for the best error vector    to align the steering vectors to the clutter 

ridge of the data. We can rephrase the     term in the formulation of the clairvoyant clutter 

covariance matrix in terms of the temporal and spatial steering vectors 

                                      
 

  

   

   

where      and      are the     temporal and     spatial steering vectors, respectively, 

for the     clutter patch. We denote      as the power corresponding to the     patch. 

Note that the     clairvoyant array error   only applies to the spatial steering vector. In 
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the case of no array errors,     . Letting    be the ideal space-time steering vector of the 

mainlobe, the calibrated space-time steering vector can be written as: 

              

It is easy to see that  

  
       

      

due to the misalignment. That is, we obtain maximal power response when the space-time 

steering vector is aligned to the primary clutter subspace. This paves the way to define an 

error function to search for the estimate error vector   . Specifically, by forming the vector 

              , we define a simple error function 

         
            

where the covariance matrix is obtained through SMI. By using SMI, we ensure that the 

array errors are present in the estimate. The form of the error function resembles the 

minimum-variance distortionless beamfomer [41], a method to obtain super-resolved 

spectra. 

In cases of interest, we do not have sufficient data to perform the matrix inversion required 

to calculate     , which forces us to use dimension-reducing algorithms. In our simulations, 

we use the EFA algorithm outlined in Section 2.5.1. Denoting   as the dimension-reducing 

transformation matrix, we obtain the revised error function 
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Many minimization algorithms could be tried. Here, we use the Conjugate Gradient Method 

[44], an iterative optimization technique that is able to converge to a solution within   

iterations, where   is the dimension of the problem. Starting with an initial estimate 

       , the gradient vector is estimated in the space defined by the error function. 

The step-size in the direction of the gradient is optimized and the estimate    is updated. The 

conjugate gradient algorithm iteratively calculates subsequent conjugate gradients, which are 

gradients vectors orthogonal in the error space, along with the optimal descent step-sizes to 

further refine   . For an  -dimensional problem, there are exactly   conjugate vectors, and 

hence, the CG algorithm will converge within   steps.  

We now compare the performance of PRA against other popular array calibration methods, 

namely the maximum eigenvector method and the adjacent channel pairing (ACP) method 

of Section 2.6.1. Figure 15 compares the mean-square errors (MSE) of the resulting array 

error estimates over        samples on a uniform linear array. Specifically, we define the 

mean error for the     element to be 

 

 
             

  

   
  

over     elements. We define      and       to be the actual and estimate errors of the     

element and     sample, respectively. We simulated Gaussian array gain errors with a 

standard deviation of 3 dB and Gaussian array phase errors with a standard deviation of 20 

degrees. Figure 15 shows the MSE for each element, where the first element is omitted 

because it is always 0, being the reference in the estimates. We see that PRA outperforms the 

ACP and the eigenvector methods by a significant margin. Unlike the ACP method, the 
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errors estimates do not increase as a function of the element number since it minimizes over 

the entire   dimensional space. The calculations of ACP method are performed in a 

pairwise fashion, sequentially across the linear array. Since the previous elemental estimates 

are used for reference, the errors cascade, explaining the performance loss as a function of 

the element number. 

To better understand PRA's efficacy in clutter cancellation, we calculate the maximum 

eigenvalue of the product      , which gauges the mismatch between the calibrated KAPE 

covariance matrix and the clairvoyant covariance matrix. This measures the residue of the 

estimate, i.e., the power of the clutter that has not been suppressed. Again, we compare the 

PRA against the maximum eigenvector and the ACP methods over 1000 samples over 

varying levels of CNR. The results are shown in Figure 16. We see that PRA demonstrates a 

significant advantage, attaining 30 dB additional clutter cancellation compared to the 

adjacent channel method when the CNR is set to 50 dB. 

 

Figure 15. Mean-square error residue from various array calibration techniques. 
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Figure 16. Plots showing the residue power due to mismatch in covariance matrix estimates. 

 

4.4.  E-KAPE Performance 

We refer to the combination of PRA and GS-KAPE as enhanced KAPE (E-KAPE). This 

section compares the performances of E-KAPE against the standard KAPE and SMI 

methods. We first look at the homogeneous clutter case with the inclusion of array errors to 

verify that E-KAPE is on par with the standard SMI method. SMI performs well, as it is 

designed to perform in homogeneous clutter and naturally compensates for array errors 

through averaging. We then introduce heterogeneities to the data, namely point clutter as 

discussed in Section 2.3.2. The residues of insufficiently nulled clutter discretes (CD) can 

trigger false alarms, while targets in secondary data (TSD) form nulls within the target space, 

leading to missed detections.  

To illustrate the effects of point clutter in the data, example range-Doppler maps are 

generated for various cases of interest. Range-Doppler maps are power responses of the 
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and elevation angles. Specifically, the range-Doppler map value of the     range bin and     

Doppler bin is calculated as 

                  
   

where          is the space time steering vector corresponding to the     Doppler bin at a 

fixed azimuth angle   . The elevation is set to    for the examples. Figure 17 demonstrates 

an example range-Doppler map in homogeneous clutter, illustrating the ground clutter 

centered about the     Doppler bin; this corresponds to the clutter that STAP filters are 

designed to suppress. In Figure 18, a clutter discrete is injected into range bin     . Since 

clutter discretes have zero velocities, it is centered about DC. However, due to their high 

power-to-noise ratio, we see severe spectral leakage across the Doppler bins. If unaccounted 

for, the leaked power can be wrongfully classified as a target. Figure 19 demonstrates the 

effect of TSDs in an example range-Doppler map. In this case, a TSD with radial velocity 

         at azimuth          is injected into range bin     . If the SMI 

covariance estimate is used to calculate the STAP weights, a null will form at the angle-

Doppler location of the prominent TSD, which will consequently filter the corresponding 

targets of interest. Figure 20 plots the resulting SMI covariance matrix, where the 

exemplified TSD is seen to be centered around 0.71 normalized Hertz.  

 



 

69 
 

  

Figure 17. An example of a range-Doppler map in homogeneous clutter. 

 

  

Figure 18. An example of a range-Doppler map in the presence of clutter discretes (CD). 
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Figure 19. An example of a range-Doppler map in the presence of targets in secondary data (TSD). 

 

  

Figure 20. An example of an SMI covariance estimate contaminated with TSD. 
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4.4.1. Homogeneous Clutter 

The simulated, homogeneous clutter environment is characterized by clutter with 25 dB 

single-channel, single-pulse (SCSP) clutter-to-noise ratio (CNR). The radar system is afflicted 

by Gaussian array gain errors with a standard deviation of 3 dB and Gaussian array phase 

errors with a standard deviation of 20 degrees. The receiver consists of     elements and 

transmits      pulses per CPI. We have      range bins available for secondary data. 

The SMI method uses EFA for dimension reduction with 3 sub-pulses; the E-KAPE and 

KAPE methods do not require this step to perform the matrix inversion. SMI and KAPE 

perform array calibration via the adjacent channel pairing (ACP) method, while E-KAPE 

employs our power-ridge aligning (PRA) method. All results are averaged over 1000 trials.  

SINR loss curves in Figure 21 demonstrate that E-KAPE outperforms SMI by about 3 dB 

for most Doppler bins, the amount SMI loses due to averaging. KAPE is hit with large 

losses due to inadequate calibration via the ACP method. In particular, we observe SINR 

losses over -11 dB for Doppler bins around the "direct current" (DC) component. For the 

same set of Doppler bins, we attain a maximum loss of -1 dB with E-KAPE through the use 

of the PRA method, which is a huge improvement. This is expected, as our analysis in Figure 

16 of Section 4.3 shows that the PRA method appears to suppress 18 dB of additional 

eigenvalue residue power in a 25 dB CNR scene. Note that in the absence of array errors, we 

expect E-KAPE and KAPE to perform similarly, both outperforming SMI. This was 

demonstrated in Figure 10 of Section 4.2, where we compared SINR loss plots to 

demonstrate the efficacy of GS KAPE. 
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The ROC curves of Figure 22 reflect what we observed from the SINR loss plots. In 

contrast to Section 3.2, which demonstrated excellent results with KAPE in homogeneous 

clutter, we see that KAPE underperforms SMI because of the insufficiently calibrated array 

errors. E-KAPE employs the PRA method and does not suffer the same losses, as 

effectively shown in Figure 22. For a different perspective on the problem, the exceedance 

plots are shown in Figure 23. We can see the advantage with both KAPE methods: a lower 

threshold is needed to obtain specific probability of false alarms, which generally improves 

the probability of detection. However, the differences in the required thresholds are small, so 

this does not fully explain the gaps in the ROC curves. Figure 24 plots the probability of 

detections obtained with the SMI, KAPE, and E-KAPE methods as a function of the AMF 

threshold used. E-KAPE maintains higher detection probabilities for the thresholds 

compared to the other methods. As an example, to maintain       , E-KAPE requires a 

threshold of approximately       . In contrast, SMI and KAPE needs to lower the 

threshold to       and       , respectively. Lowering the threshold increases the false 

alarm rate, which leads to poor ROC performance. 

 



 

73 
 

 

Figure 21. SINR plots comparing various STAP methods in homogeneous clutter. 

 

 

Figure 22. ROC curves comparing various STAP methods in homogeneous clutter. 
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Figure 23. Exceedance plots comparing various STAP methods in homogeneous clutter. 

 

  

Figure 24. Probability of detection versus the AMF threshold for the SMI, KAPE, and E-KAPE 
methods. 
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4.4.2. Heterogeneous Clutter 

For the heterogeneous case, we seed CDs and TSDs onto the homogeneous background 

with 25 dB SCSP CNR. We inject CDs of 45 dB SCSP power, uniformly distributed between 

4 to 10 degrees from the mainlobe. The number of CDs in each trial is chosen randomly 

based on a Poisson distribution with mean    . We simultaneously inject TSDs of 30 dB 

SCSP power, traveling at 30 m/s and uniformly distributed over -10 to -4 degrees from the 

mainlobe. In addition to the point clutter, we include 3 dB gain and 20 degrees phase 

Gaussian array errors in the system. The same radar system is employed, i.e.,    , 

    , and     , with results averaged over 1000 trials.  

Figure 25 plots the SINR losses of the STAP systems incurred in heterogeneous clutter. As 

expected, compared to the homogeneous case, the introduction of the extra complexities 

reduces the performance of all three STAP methods. In particular, we see an SINR loss of 

approximately -0.2 dB for E-KAPE across the Doppler bins. Overall, E-KAPE comes out 

on top compared to KAPE and the SMI methods. E-KAPE outperforms SMI by about 3 

dB for the Doppler bins away from the     bin. The dip at the     Doppler bin is the 

precise frequency that corresponds to the seeded TSDs. Recall that unsuppressed TSDs 

contaminate the covariance estimate, as discussed in Section 4.4 and illustrated in Figure 20. 

The KAPE methods avert this loss by only parameterizing along the clutter ridge, ignoring 

the TSD residues off the clutter ridge. However, KAPE is plagued with large losses due to 

inadequate array calibration, resulting in losses of almost to -12 dB for Doppler bins around 

the DC component. 
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Figure 26 shows the ROC plots that reflect the relative performances observed from the 

SINR analysis. By employing the PRA method, E-KAPE avoids the additional losses KAPE 

suffers from insufficiently calibrated array errors. A huge dip in ROC performance is seen 

for the SMI case due to the presence of CDs. CDs are essentially strong outliers, requiring 

large AMF thresholds to suppress them. The increase of the thresholds required to suppress 

the discretes significantly diminishes the probability of detection. 

The exceedance plots shown in Figure 27 better demonstrate the effects of clutter discretes. 

The SMI method does not sufficiently suppress the injected CDs, which is evidenced by the 

long tail of the exceedance curve. In contrast, the E-KAPE method does an excellent job 

since only the CUT is required to generate the covariance matrix estimate. It is unaffected by 

adjacent range bins that may not contain CD spikes. Figure 28 offers a zoomed exceedance 

plot, accentuating the AMF thresholds needed to maintain the desired probability of false 

alarms. In particular, to maintain false alarm rate of       , E-KAPE requires a threshold 

of 8.12, whereas SMI requires a threshold of 13.2. The higher threshold needed for the SMI 

method implies a decrease in the probability of detection, as demarcated in Figure 29. For E-

KAPE, an AMF threshold of 8.12 results in        . The threshold of 13.2 required for 

the SMI method results in        , which is a huge loss in performance. 
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Figure 25. SINR plots comparing various STAP methods in heterogeneous clutter. 

 

 

Figure 26. ROC curves comparing various STAP methods in heterogeneous clutter. 
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Figure 27. Exceedance plots comparing various STAP methods in heterogeneous clutter. 

 

  

Figure 28. Exceedance plots comparing various STAP methods in heterogeneous clutter. 
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Figure 29. Plot of attainable probability of detection in the presence of point clutter and array errors 
for SMI, KAPE and E-KAPE methods. 
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ascertain the precise computational requirements. The CG is performed over the reduced 

space, the result of applying EFA with     subpulses. Hence, the complexity for every 

iteration is      . The number of iterations depends on the stopping criteria and the 

conditions of the CUT. In general, PRA is more computationally complex than the ACM. 

Now, we compare the complexities of the covariance matrix parameterizations. E-KAPE 

starts off by calling on the modified Gram Schmidt (GS) algorithm to obtain a reduced, 

orthonormal set of space-time steering vectors. The exact computational requirements for 

the GS procedure depend on the system parameters, namely the input space-time steering 

vectors. It is difficult to calculate this ahead of time since it is an iterative algorithm, looping 

until the stopping criteria is met. In general, it is not an involved step, only requiring vector 

multiplications. For our simulations, the modified GS outputs 37 space-time steering 

vectors, which equates to 38 iterations; the last iteration does not produce an output. Hence, 

for our simulated environments, E-KAPE only requires 37 power estimates to form the 

estimate covariance matrix, versus the 656 estimates required for the oversampled KAPE. 

Although the power estimates are required for each range sample, the GS algorithm only 

needs to be applied once. The largest computational difference is in the calculation of the 

inverse covariance matrix. The standard KAPE algorithm requires the inversion of a 

        matrix, requiring a computational cost of        . This itself can be 

prohibitive for real systems, and hence, KAPE is typically implemented in a reduced-

dimension space. In contrast, E-KAPE employs a parameterized form of the inverse 

covariance matrix, where the crux of the computation stems from the outer products 

between the 37 orthonormal vectors. This difference enables E-KAPE to be used in 

practice. 
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Chapter 5  
 
 
 

CONCLUSION 
 
 
 
We conclude by reviewing the main contributions of this paper, which includes the 

innovation of the cell-based clutter model (CCM), Gram-Schmidt (GS) KAPE, and the 

power ridge aligning (PRA) array calibration algorithm. This is followed by discussing 

directions for further research. 

 

5.1.  Contributions 

STAP techniques operate in the space and time dimensions to effectively suppress ground 

clutter and extract moving targets. Many well-known techniques, such as the SMI, operate 

under the assumption that the clutter is homogeneous. This dissertation introduced various 

forms of heterogeneity, namely heterogeneous texture and point clutter, that invalidates this 

assumption. In the presence of heterogeneous texture clutter, we have demonstrated that a 

0.5 loss in detection probability can be expected for a system that maintains a false alarm rate 

of       . This necessitates the development of specialized algorithms. To further 

validate our case, we have demonstrated a 0.3 loss in detection probability in the presence of 

point clutter for standard STAP. 

The first step in developing improved algorithms is to obtain faithful examples of the clutter 

we aim to suppress. This underlines the importance of building an accurate clutter model in 
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which to simulate our data. We have developed the cell-based clutter model (CCM), which 

has the ability to generate clutter scenes with heterogeneous texture as well as point clutter. 

Remarkably, the CCM is able to generate a gamut of heterogeneous texture scenes with two 

control parameters. This allowed us to test STAP algorithms on scenes ranging from near 

homogeneous to highly volatile, spiky scenes. With this in hand, we have proved the 

effectiveness of KAPE in heterogeneous texture clutter; the efficacy of KAPE did not 

diminish since it is allowed to adapt solely on the cell-under-test. Even in homogeneous 

clutter, we have shown that we actually gain 0.1 improvement in detection probability over 

the SMI algorithm for a system that maintains a false alarm rate of       .  

Two problems hinder KAPE's implementation in real systems: its computational complexity 

and its susceptibility to array errors. The crux of the computational burden lies in the direct 

inversion of       matrices, one for each range bin, which is a requirement in the 

calculation of the STAP weights. For this purpose, we have developed a Gram-Schmidt (GS) 

KAPE that circumvents the need for direct inversions, opting instead for a computationally 

simpler parametric form. Furthermore, GS KAPE reduces the overall number of steering 

vectors describing the clutter ridge, hence reducing the number of required power estimates. 

Through the CCM, we have demonstrated that these modifications do not result in 

significant losses.  

We demonstrated the crippling effects of array errors when applying KAPE; such errors 

correspond to a model mismatch. We showed SINR losses of -35 dB with uncalibrated 

arrays and errors up to -10 dB with current calibration algorithms. To combat this 

shortcoming, we developed the power ridge aligning (PRA) calibration technique, an 
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iterative gradient descent technique, which is a new approach to the problem. Using PRA, 

we were able to maintain a -1 dB SINR loss in the presence of array errors. 

 

5.2.  Suggestions for Future Work 

One problem we have not fully addressed is the compensating of intrinsic clutter motion 

(ICM) in the KAPE covariance estimate. The time correlations in the data cause the clutter 

ridge to spread in Doppler frequency. Since the steering vectors of KAPE lie strictly on the 

ridge, the unsuppressed off-diagonal clutter can lead to target masking. In standard KAPE 

implementation, ICM is compensated for by directly applying a covariance matrix taper 

(CMT) that matches the time correlation. The same approach cannot be used with the GS 

KAPE method, since the inverse covariance matrix is calculated parametrically. 

We simulated ICM using the Gaussian temporal autocorrelation CMT described in Section 

2.6.4 with a decaying parameter  . Figure 30 demonstrates the losses incurred for   

       . To properly compensate for clutter spreading using GS KAPE, we require that 

the steering vectors span Doppler-angle bins slightly away from the clutter ridge. Our 

current approach initially takes    steering vectors equally spaced on the clutter ridge to 

form an       matrix  . An estimate of the spreading is formed using a Gaussian ICM 

CMT      with parameter   that is distinct from   of the actual ICM. Before decomposing 

the steering vectors via the ordered Gram Schmidt algorithm, we directly apply the estimate 

spreading: 
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This gives us extra orthogonal components of the clutter ridge, which are needed for 

parametric inversion. Figure 30 demonstrates preliminary results using the method, where 

the spreading variable   was obtained empirically. Future studies could build on this idea to 

further lessen the SINR losses. 

 

 

Figure 30. Losses incurred using KAPE in the presence of ICM. 
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