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ABSTRACT 

 

 

 To date, electric motors have been rotary and linear with one degree of freedom (DOF) 

motion. Advancements in technology have brought new, complex machines requiring multiple 

degrees of freedom motion; however, this is currently being provided by connecting single-DOF 

motors together, such as in a robotic ankle joint, where three servo motors are combined and 3-

DOF motion are obtained. However, the end-product is heavy, complex, and inefficient in many 

ways. Several researchers have been studying spherical motors in order to obtain a 3-DOF 

motion motor. The first attempt was in 1959 by Williams et al. [1]. Then other researchers began 

investigating 3-DOF motion using a single actuator. Unfortunately, a spherical electric motor 

(SEM) has not been commercialized yet because of some difficulties in realizing 3-DOF with a 

single motor. Position resolution accuracy is very difficult to achieve in an SEM, and the bearing 

system is another challenge. Transfer and magnetic bearings have been introduced as the 

solution; however, under high torque, transfer bearings create high friction, and magnetic 

bearings cannot handle the load. The actuation method remains the biggest challenge in 

developing an SEM. In this research, the goal was to develop an SEM that could be applied to 

industry relatively soon. First, a new actuation method was introduced by concentrating on 

position accuracy. Similar methods have been used in liquid crystal display (LCD) and magnetic 

suspension systems, whereby an array of coils on the stator surface are controlled to create a 

moving stator pole coupled with a rotor pole that moves together, thus realizing 3-DOF. Second, 

an electromagnetic torque model was derived for an SEM. Finally, a dynamic model was 

developed, and a dynamic decoupling control system was designed. Results show that position 

accuracy was achieved reasonably because the torque model is promising for calculating the 

required currents based on torque values calculated by the computed torque model.  
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NOMENCLATURE/SYMBOLS 

 

 

α Alpha, latitude of stator coil, rad 

β Beta, longitude of stator coil, rad 

 Phi, pitch angle (about x axis) of the rotor shaft, rad 

 Theta, yaw angle (about y axis) of the rotor shaft, rad 

 Psi, roll angle (about z axis) of the rotor shaft, rad 

δ Delta, separation angle for stator coil from edge of rotor pole, rad 

 Omegas, angular velocity for pitch, yaw, and roll, rad/s 

 Mu, permeability, kg m /s
2 

A
2 

 Phi, magnetic flux, Weber 

I Current, A 

v Voltage, volt 

N Number of turns in stator coils 

n Number of coils on stator 

B Magnetic flux density, T 

H Magnetic field strength, A/m 
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CHAPTER 1 

 

INTRODUCTION 

 

 

Using electromagnetic force, electric motors convert electrical energy into mechanical 

energy. An electric motor can be either rotary or linear in style. Both of them provide a single 

degree of freedom (DOF). If multiple degrees of freedom are required, then a greater number of 

electric motors should be used.     

Rotary motors are used in those machines that need rotation, such as robots, fans, and 

electric cars. In a robot, for example, an electric motor is used for the joints. As is known, most 

robotic joints are required to have multiple DOF. Therefore, multiple electric motors are installed 

in a single joint. A person sitting in the corner of a room could not request more wind from a 

ceiling fan because the fan would not be able to tilt without an additional motor being used. 

Moreover, one could not steer an electric car by using the same motor that is used for wheel 

rotation; for that, an additional motor is needed.  

Linear motors are used in machines that need straight-line force such as in power door 

lock actuators in cars and magnetic levitation (maglev) trains. A power door lock actuator can 

only lock and unlock a door, not enable or disable child safety mechanisms, for example, without 

an additional actuator. The maglev train cannot be elevated or lowered as it is moving because 

the linear motor has only one DOF.  

In industry, rotary electric motors are used for more than just linear applications. 

Therefore, this research aimed to improve on rotary motors, more specifically, to design a single 

rotary motor with multiple degrees of freedom.  
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1.1 Motivation      

 Can a single special motor have multiple DOF? In this research, the possibility of 

creating an electric motor with multiple DOF was investigated. 

1.1.1 Spherical Electrical Motor 

A motor that operates about all three axes has three DOF: roll, pitch, and yaw. 

Considering a ball joint, which has three DOF, helps one understand the dynamics of multi-DOF 

motion, even though the ball joint is not an actuator. If there is any way to actuate a ball joint, 

then the new device would be called a spherical electric motor (SEM). 

Traditionally, a possible SEM would have a rotor and a stator as its main parts. However, 

both would have to be globular, so the motor could provide multiple degrees of freedom. 

1.1.2 Applications 

 In the design of an ankle joint in a humanoid robot, three servo motors have been used to 

offer three DOF. This was a difficult and inefficient design for several reasons, among them a 

complicated control algorithm, large space requirements, high cost, and reliability problems. A 

new special motor providing three DOF may be used as a joint in humanoid robots. Such 

spherical actuators can also be used in electric car wheels and air vehicle propulsion systems.  

Since motors in use today provide only one degree of freedom, one SEM may replace 

several motors that are used in devices designed to provide multiple DOF.  

1.2. Objective   

 Typically, electric motors provide only a single degree of freedom, so in complex 

machines where more DOF are needed, the number of motors must be increased. Consequently, 

these machines become more complex and inefficient. For example, in many recent applications, 

robots have been used with high efficiency. In many cases, robotic joints have multiple DOF. 
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Instead of using multiple motors in robotic joints, one motor with multiple DOF could be used. 

Actually, a well-design SEM could perform better then multiple motors. 

Several researchers with a similar idea have attempted to build an SEM by using different 

methods, but these have not been applied in industry. One of the goals of this research is to 

develop an SEM that can be industry applicable. Therefore, it is important to consider its 

functionality, simplicity, and reliability. The actuation method, bearing system, and material 

selection are important aspects of this research. 

Unfortunately, there is currently no SEM in use in industry, even though there have been 

different theoretical approaches. More investigation with positive results is needed for industrial 

applications using an SEM. If expected industrial functionality of an SEM is attained, then a 

large portion of the goal can be considered achieved. Simplicity is another important step in 

industrial applications. Naturally, sophisticated yet simple devices are generally attractive to 

societies for many reasons: low cost, user friendliness, and easiness to maintain. Certainly 

reliability should be a reasonable reason for a device to be used in industrial applications. Testing 

should be done in a comprehensive way in order to validate the robust system.  

In this research, the actuation method was the main area of investigation. The method 

proposed herein is a new approach for actuation of a spherical electric motor to use in industrial 

applications. Certainly, other aspects can be investigated in future research. The magnetic 

bearing system is important for an efficient SEM since the rotor is moving in three axes. Material 

investigation is also important due to the wide area of usage and magnetic field properties. An 

SEM can be used anywhere—from food plant robots to space robots, to submarine robots, to 

implant joints—so the material used in an SEM needs to have flexible peculiarities for different 

application areas. The main objective of this research was to design a less-complex, versatile, 
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and inexpensive electric motor with three DOF. In this dissertation, an SEM has been studied, 

considering all aspects of its real application. 

1.3. Contribution 

 The expected contribution of this research is using the SEM in industrial applications to 

develop less-complex, more-versatile, and affordable products for the public. An electric motor 

along with its control system is a major part of most devices. Improvements in electric motors 

and their control systems would make a large impact on societies. 

1.4 Structure of the Dissertation 

 Chapter 2 presents a literature survey, as well as a review of electromagnetism and its 

application in electric motors. Electric motors and their principles will be studied as well. In 

Chapter 3, a spherical electric motor will be studied in detail. The actuation method, working 

principles, and structure of an SEM will be described. In Chapter 4, magnetic field and torque 

modeling will be investigated. In Chapter 5, kinematics and dynamics of the system will be 

presented. In Chapter 6, a closed-loop controller for an SEM will be designed and tested. Finally, 

in Chapter 7, a conclusion will be reached. 
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CHAPTER 2 

 

TECHNICAL BACKGROUND 

 

 

In this chapter, the previous research work for a spherical electric motor and SEM control 

systems will be presented. Then the principles of electric motors will be discussed briefly, 

followed by the types of electric motors.  

2.1 Literature Survey 

 Research on an SEM is an uncommon subject due to its complexity and cost [2]. 

Electromechanical design and control system are the main areas that SEM researchers have 

studied. 

2.1.1 SEM 

According to a Web search, the first SEM was introduced by Williams et al. [1]. 

However, their goal was to adjust the speed by rotating the stator. Both stator and rotor were 

spherical, but the output shaft had only one degree of freedom.  

Spherical Induction Motor 

In 1986, Davey and Vachtsevanos [2] and Davey et al. [3] introduced an SEM with 

multiple DOF. Speed, position, and torque controls of the SEM were their goals. Their induction 

motor, like actuation methodology, was never applied in industry [4].  

Spherical DC Servo Motor 

Kaneko et al. designed a spherical DC servo motor [5]. The rotor was supported by a 

gimbal mechanism with encoders. The stator was spherical and had three windings. The disk-like 

rotor had four permanent magnet poles.    
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Spherical Stepper Motor 

In a spherical stepper motor, the rotor has a permanent magnet or soft iron poles 

embedded at the equator, and a spherical stator that has two layers of poles, one in the south and 

one in the north. Based on the desired position of the shaft, either the upper or lower pole of the 

stator is energized, thus causing the shaft to tilt. If both the south and north layers of the coils are 

energized, then the rotor rotates on its own axis. This method is not in use today. Position 

resolution accuracy is very low in this method, and in robots, for example, this is very important. 

With a closed-loop servo controller, the shaft position error can be minimized; however, most 

likely, oscillation would occur. The mechanical complexity of the spherical stepper motor has 

led researchers to explore different methods.  

Lee and Kwan introduced another actuation method for a spherical electric motor [6]. 

Their method was to use variable reluctance motor principles in an SEM, whereby attraction 

between stator coils and rotor poles would create torque and cause the rotor to rotate. According 

to the published research, this method has not yet been applied in industry. 

Chirikjian and Stein, of Johns Hopkins University, designed a “spherical stepper motor” 

[7]. The varying number of poles in a spherical rotor and spherical stator prevents motion 

singularity. One or more pairs of rotors and stator poles interact, thus causing rotor movement. In 

other words, this method is very similar to that of conventional rotary stepper motors. It has been 

more than a decade since this motor was designed, and it is not in use yet. In this method, it is 

very difficult to achieve position accuracy due to the spherical motion. If the poles are built in a 

smaller size (to increase accuracy by decreasing step angle), then magnetic flux becomes 

insufficient to create enough force.  
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About three decade of spherical motor research in either induction or stepper motor 

developments [8-10] passed before a new method [11] was introduced [12, 13].   

Spherical Ultrasonic Motor 

Toyama et al. introduced a spherical ultrasonic motor consisting of three stators and an 

inner rotor [11]. This team worked on two different methods: stationary wave and traveling 

wave. They have continuously produced several SEMs using similar methods in their laboratory 

at Tokyo University of Agriculture and Technology. Other researchers have worked on the 

spherical ultrasonic motor [14].  

As shown above, methods have been implemented in theoretical and applied research to 

attain some positive results toward multi-DOF motion. The main goal was to have multi-DOF 

motion that could be controlled with reasonable accuracy. During the literature survey, no 

publication about commercialization of the above methods was revealed.       

2.1.2 Control Systems for SEM 

 Conventional motors with one degree of freedom were previously used with heavy, 

costly, and inefficient mechanical transmissions to adjust torque, speed, and position. With 

newer technology has come alternate current (AC) and direct current (DC) motor  drives, which 

are better able to adjust torque, speed, and position. 

 For a spherical electric motor, having a drive makes more sense than the conventional 1-

DOF motor due to the SEM’s complexity. Control system design is the main work in a drive. 

Therefore, a literature survey for the control system is presented in this separate section.  
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Spherical Induction Motor Control System 

 Davey and Vachtsevanos introduced input voltage and stator frequency control for a 

desired rotor speed in their SEM [2]. They also showed that efficient torque production is still 

possible with continuous speed control [3].  

Spherical DC Servo Motor Control System 

Kaneko et al. designed a dynamic controller for a spherical DC servo motor [5].  

Spherical Stepper Motor Control System 

 Qian et al. introduced complete dynamic modeling and a proportional derivative (PD) 

controller design for a spherical stepper motor [15]. They had positive results for prevention of 

motion singularities. Wu et al. presented an open-loop controller for a spherical stepper motor 

[16]. Their torque modeling was based on the Lorentz force law. The linear relationship between 

the Lorentz force law and input current was advantageous. 

Due to the nature of the stepper SEM, a sophisticated control scheme is required [6, 9]. 

Researchers have studied different approaches toward control of the stepper SEM. One of the 

reasons for the complexity of the stepper SEM is the multiple coils. Forward dynamics has 

provided a unique solution, but inverse dynamics has infinite solutions due to multiple coils. 

Therefore, in addition to solving the forward dynamics, the optimization problem for the input 

vector must be solved [9].  

In a stepper SEM, another complexity issue is with the bearing system. Conventional 1-

DOF motors have regular ball bearings on each side of the motor; however, in an SEM, since the 

rotor is moving in three dimensions, the conventional bearing system cannot be applied. Zhou 

and Lee introduced a reaction-free control scheme based on magnetic levitation [10]. Also, 

Ezenekwe and Lee designed an air bearing system for the stepper SEM [13]. 
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Position detection is also complicated in SEMs due to the three-dimensional motions. In 

earlier research, two encoders 90 degrees apart from each other were used [5, 6, and 9]. Later on, 

a machine vision-based method was applied [17, 18]. 

In summary, the stepper SEM control system research was broadly performed for torque 

modeling and a dynamic system for an SEM [19–27].     

Spherical Ultrasonic Motor Control System 

Stationary and traveling waves are the main methods of spherical ultrasonic motors. 

Using the Hall element for position detection and magnetized rotor, Purwanto and Toyama 

introduced a proportional integral derivative (PID) controller for a spherical ultrasonic motor 

[14]. The control was for one degree of freedom only, and noise was ignored. Ishikawa and 

Kinouchi introduced a nonlinear control based on nonholonomic mechanics for a spherical 

ultrasonic motor [28].   

Many different approaches have been explored in control systems research for SEMs. 

Dynamic system simulations have been done using different algorithms like the PD, PD+, and 

dynamic decoupling based on the computed torque model [29–50]. A common goal of all of this 

research was robust torque and dynamic modeling, so desired speed, torque, and position could 

be achieved by the proposed controllers. Some of them had good results toward precise motion 

control; however, according to published research, they have not yet been commercialized. 

Both the SEM and its drive systems have been studied for about half a century. Induction, 

stepper, and ultrasonic actuation methods have also been studied, and varieties of control 

systems have been applied in the SEM. However, according to published research [51–54], none 

of this is ready for industry applications. 
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2.2 Electric Motor Principles 

 This section presents the basic principles of electric motors and related techniques, which 

will lay a good foundation for the remainder of this document. 

2.2.1 Vectors and Fields 

Vectors 

In engineering, the three main steps to studying any system are modeling, design, and 

analysis. During modeling, all parameters must be considered. These parameters could be 

temperature, distance, dimensions, or velocity. For example, an electric motor can have 100 mm 

length and 50 mm outside diameter. This information would be technically enough. However, 

when velocity is considered, magnitude would not be enough to describe it. Direction of the 

velocity is also needed. A quantity like velocity, which is specified by magnitude and direction, 

is called a vector. A quantity like temperature, which is specified by magnitude, is called a 

scalar. 

Fields 

A single vector represents the quantity for a certain time and position. The speed of an 

electric motor might vary based on the time and position. The speed vector is a single quantity, 

whereas the speed vector field is dissemination of the speed vector in time and position.  

2.2.2 Electromagnetism 

 The smallest component of a regular substance is the atom. Protons (positively charged) 

and neutrons are located within the nucleus of an atom, which is surrounded by electrons 

(negatively charged). According to Coulomb’s law, an electric charge is created by protons and 

electrons, and the unit for the charge is Coulomb (C).  



11 

 One Coulomb per second provides the electric current, the unit of which is ampere (C/s = 

A). By the Lorentz force law, the magnetic field (B) is generated by an electric current (I). The 

unit for the magnetic field is tesla (T). The magnetic field direction can be determined by the 

right-hand rule. In a wire with length L, when current (I) is applied, the resultant electromagnetic 

force (F) is given by 

 ⃗   ⃗     ⃗⃗ 

2.2.3 Motion Production 

 In an electric motor, regardless of its type, the general principle is magnetic attraction and 

repulsion. Figure 1 shows the general principle of electric motors. The rotor and stator may have 

multiple poles, and the interaction between the rotor and stator poles causes rotation of the rotor. 

  

 
 

Figure 1: General Principle of Electric Motors 

(taken from HowStuffWorks.com) 
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2.2.4 Torque Production 

 After the rotor starts turning, the shaft will have torque. Different types of motors have 

different methods of torque production. For example, in an induction motor, slip creates the 

torque. Slip occurs since the moving magnetic field in the stator is always faster than the speed 

of the rotor.  

2.2.5 Speed Production 

 As the rotor shaft is turning, it will have some speed. Again, in an induction motor, speed 

can be adjusted by changing the input power frequency. Also, during the design, based on the 

requirements, the number of poles can be decided. A greater number of poles would provide a 

higher speed. 

2.3 Electric Motor Types 

 Based on the operating principle, motors can be divided into three groups: magnetic, 

electrostatic, and piezoelectric. Electric motors can also be AC or DC driven. In general, based 

on motion type, electric motors can be rotating, linear, or spherical. 

2.4 Conclusion 

 The literature survey provides clarity in understanding the current stage of the problem. 

In a spherical electric motor, there are several challenges, such as actuation, bearing, and position 

control. The previous brief information about electric motors and types is helpful and makes the 

investigation for different types of electric motors more efficient. In Chapter 3, a new type of 

electric motor, the spherical electric motor will be introduced. 
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CHAPTER 3 

 

WORKING PRINCIPLES AND STRUCTURE OF SEM 

 

 

3.1 Introduction 

 The spherical electric motor differs from other types of motors mainly in its motion style. 

In today’s world, when the word “motor” is heard, people usually think of a rotating device, 

when in fact, there are both linear and spherical motors. Linear motors are used in different 

applications, as discussed previously. However, spherical motors are not yet in use. Once an 

SEM is in use, it might replace some rotating and linear motors more efficiently.  

Figures 2 and 3 show an SEM in detail. The output shaft of an SEM moves with three 

DOF, whereas the output shafts of rotating and linear motors move with one degree of freedom. 

Naturally, the actuation method of an SEM becomes quite different from rotating and linear 

motors. SEMs designed to date have different methods for actuation, as discussed earlier. 

 

           
 

Figure 2: Bottom Part of SEM Stator in Detail        Figure 3: Low-Speed 2-DOF Joint SEM   

 

Desired Position 

Neutralized Remain Energized 
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In this chapter, first, a new methodology for SEM actuation will be discussed. Then, based on the 

methodology, the structure of the SEM will be presented. 

3.2 Methodology   

Multi-DOF actuation is attained by a “moving magnetic field” in the stator. 

Moving Magnetic Field 

As shown previously, Figure 2 illustrates the bottom part of an SEM stator. 

Electromagnetic coils (not shown) are located in the circular housings all around the stator. The 

diameter of the each housing is 5 mm. A circular group of housings with coils inside create the 

magnetic field. During operation, an estimated diameter of the magnetic field is 30 mm. In 

Figures 2 and 3, the orange areas represent the rotor pole. Figure 4 shows the low-speed 3-DOF 

SEM joint, and Figure 5 shows the interaction of the pole and magnetic field (red circular area 

consists of individual electromagnetic coils).  

    

   Figure 4: Low-Speed 3-DOF Joint SEM           Figure 5: Interaction of Pole and Magnetic Field 

Moving the magnetic field is achieved by energizing and neutralizing the related 

individual coils. To move the magnetic field in the direction of the arrow, the coils need to be 

energized and neutralized, as shown previously in Figure 2. In fact, liquid crystal display (LCD) 

methodology is similar to this method in terms of motion effect [51]. The method used by Shan 

Rotor Pole 

Moving Magnetic Field Created by Individual 

Coils 
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et al. [48] for magnetic suspension is similar to the method here in terms of force effect. Because 

the goal is to move the magnetic field with proper resolution and force effect, each individual 

coil needs to be controlled.  

Rotor   

Located inside the stator, the rotor has a number of poles based on the structure of the 

SEM. However, the common pole, which all structures have, is located on the axis of the upper 

shaft but on the opposite side of the rotor. The pole is embedded in the rotor, and its surface is 

even with the rotor surface. The poles are embedded with a ball bearing in the rotor of the 3-

DOF SEM, as shown in Figure 6. The diameter of each pole is 30 mm. The gap between the 

rotor and the stator is 0.5 mm. The rotor is supported by eight transfer bearings (not shown). 

Structural details will be provided in the next section. 

 
 

Figure 6: Low-Speed 3-DOF Joint SEM with Rotor and Stator Poles 
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Motion of Rotor    

In the 3-DOF SEM, both the moving magnetic fields in the stator are coupled with the 

rotor poles. Figure 6 shows the coupling of both magnetic fields with corresponding rotor poles. 

For a given desired trajectory of rotor shaft, the trajectories of magnetic fields can be calculated.         

3.3 Structure of SEM 

SEM has a different structure than conventional rotary motors due to the multi-DOF 

motion. Based on speed, torque, and motion-DOF requirements, an SEM can be structured in 

three different ways: low-speed 2-DOF joint SEM, low-speed 3-DOF joint SEM, and high-speed 

3-DOF wheel and propeller SEM. Technical structures and working principles of all three 

actuators will be presented. However, the low-speed 3-DOF joint SEM will be studied in detail 

in this research.       

Low-Speed 2-DOF Joint SEM  

In applications in which pitch and yaw DOF are needed, a low-speed 2-DOF joint SEM 

can be used. In this case, as shown in Figures 2 and 3, the orange part represents the rotor pole, 

which is on the axes of the upper shaft. This configuration provides 2-DOF by moving the 

magnetic field. By energizing and neutralizing individual coils, the magnetic field moves around 

the stator. 

 Low-Speed 3-DOF Joint SEM 

 If roll, pitch, and yaw motions are needed together, then adding another pole 90 degrees 

from the previous pole is sufficient. However, this time, both poles need to rotate to prevent 

motion singularity. By using ball bearings, as shown previously in Figure 6, both poles can be 

free to rotate. Therefore, 3-DOF can be attained simultaneously with no motion singularity. In 

the stator, two moving magnetic fields would be observed. They are 90 degrees apart from each 
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other by using the center of the stator as a reference. Figure 4 shows a 3-DOF joint SEM 

(moving magnetic field for the second pole is not shown). As in the previous case, the moving 

magnetic fields on the stator are coupled with rotor poles, and the rotor moves with 3-DOF.  

High-Speed 3-DOF Wheel and Propeller SEM 

When it is necessary to have 3-DOF motion in high speed, an efficient structure can be 

designed. The type of actuation in the previous two cases has some speed-level limitations. The 

common pole in all structures is still providing pitch and yaw motions, but for the high-speed roll 

motion, the rotor must have four additional poles 90 degrees apart from each other on its equator. 

All five poles are free to rotate by using ball bearings to prevent motion singularity. Figure 7 

shows a high-speed 3-DOF wheel and propeller SEM. 

  

Figure 7: High-Speed 3-DOF Wheel and Propeller SEM 

 The rotor pole in the back is not visible. The moving magnetic field is shown for only a 

common pole. The rotor poles on the equator interact with their corresponding moving magnetic 

fields on the stator. However, the interaction between equator poles and moving magnetic fields 
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on the stator is different than in the previous cases. The interaction in this case is repulsion and 

attraction as in a conventional stepper motor. It is possible to generate different directions of 

magnetic force in moving magnetic fields (moving stator pole). 

3.4 Conclusion 

 As shown, the working principles of an SEM are quite different than for conventional 

motors. Based on the requirements, different SEMs can be built. A high-speed SEM uses the 

same method as conventional stepper motors. However, stator arrangement is completely 

different in an SEM. 
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CHAPTER 4 

MAGNETIC FIELD AND TORQUE MODELING OF SEM 

 

4.1 Introduction 

 Magnetic field modeling is an essential step for torque modeling. The actuation method 

described in Chapter 3 mainly depends on the moving magnetic fields on the stator. In this 

chapter, the methodology to generate moving magnetic fields in the stator and resultant torques 

affecting the rotor for a low-speed 3-DOF joint SEM will be presented.   

4.2 Methodology 

In the stator, the moving magnetic field is generated by individual coils. As shown 

previously in Figure 5, the group of coils forms a circular area that coincides with the rotor pole. 

Blue circles represent the tip of an electromagnetic core around which a wire coil is installed. 

The complete electromagnetic illustration of an individual core with coil and rotor pole is shown 

in Figure 8. 

 

Figure 8: Single Electromagnetic Coil and Rotor Pole 
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Magnetic Field 

Assuming that eddy currents are ignored, when electrical energy W is applied to the coil, 

it is converted to magnetic field energy. Therefore, 

   ∫      
 

 
 (1) 

where I is the applied current, and v is the voltage during time t. 

By Faraday’s Law, voltage v is defined by 

    
 

  
 (2) 

where N is the number of turns in the coil, and  is the magnetic flux. Replacing v in equation 

(1) with v in equation (2) yields 

   ∫    


 
 (3) 

Magnetic flux is produced by a magneto motive force (MMF), Fm, which is calculated by 

Ampere’s Law: 

       (4) 

The intensity of the magnetic field is called magnetic field strength, H, and it is given by 

   
  

  
 (5)  

where LC is the length of the magnetic field in the electromagnetic core. Therefore,        

and 

   ∫     


 
  (6) 

Flux density, B, is calculated by dividing flux,  by the cross-sectional area of the core, 

A; therefore, 

   


 
  ⇒         (7) 
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Substituting equation (7) into equation (6) results in   ∫        
 

 
, the magnetic field 

energy in the core. To find the intensity of the energy Wi, W is divided by the volume of the core: 

    
∫        
 
 

   
⇒   ∫     

 

 
 (8) 

As can be seen, Wi has H and B terms, which are evaluated in terms of magnetization curves. In 

real-life applications, magnetization curves are not straight, but they are assumed to be straight 

here. Figure 9 shows the gradient of the magnetization curve, which gives   permeability of the 

core. 

 

Figure 9: Magnetization Curve (assumed to be straight) 

Therefore, 

     ⁄  (9) 

Finally, 

    ∫
 



 

 
   ⇒    

  

 
 (10) 

As shown, the product of the number of turns in the coil N and the current on the wire I 

yields NI, which is the ampere turns. The magnetic field is proportional to NI. The closed-loop 

magnetic fields BL do not have any effect on the exerted force by the magnetic field. As shown 
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previously in Figure 8, La is the length of the magnetic field in the space between the 

electromagnetic core and the rotor pole, and o is the permeability of the space between the 

electromagnetic core and the rotor pole.                                

4.3 Magnetic Field and Exerted Force 

When current flows through the coil, a magnetic field, as shown previously in Figure 8, 

and magnetic force result. Assuming the magnetic field is uniform in the gap, Wi  is multiplied by 

the gap volume to obtain the magnetic field energy W: 

   
  

 
     (11) 

Now, the energy change within the gap between the core and the rotor pole provides the force on 

the rotor applied by the electromagnetic coil as 

   
  

   
 (12) 

Therefore, 

   
   

   
 (13) 

Equations   
  

  
 and     ⁄  are used for the core, but they can also be used for the 

gap in the above assumptions. Therefore, 

   
   

  
 (14) 

The force will be 

   
(
   
  

)
 

 

  
 (15) 

Canceling the same multipliers results in the following force equation: 

   
  
     

   
  (16) 
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Since it is known that      , the force applied by the electromagnetic coil can be 

rewritten as 

   
      

   
  (17) 

It is assumed that the diameter of the electromagnetic core is very small compared to the rotor 

pole, so the interaction between individual coils can be ignored. Therefore, the resultant torque T 

is given by 

   ∑   
 
      (18) 

where n is the number of coils within a moving magnetic field in the stator, and r is the radius of 

the rotor assembly. Since there are two poles in the rotor, Ta and Tb torques are applied to the 

rotor, as shown previously in Figure 6, to yield 

    ∑  
  
   

     
   

   
   (19) 

where na is the number of electromagnetic coils, and Ia is the current amount applied to an 

individual coil within the moving magnetic field, thus creating Ta.  Similarly, 

    ∑  
  
   

     
   

   
   (20) 

where nb is the number of electromagnetic coils, and Ib is the current amount applied to an 

individual coil within the moving magnetic field, thus creating Tb. 

Now, the important question is how individual coils will be energized in each moving 

magnetic field. As shown previously in Figure 2, the large orange piece represents the rotor pole 

and the small red circles represent the energized coils. To move the moving magnetic field to the 

desired position, the coils that are in the same direction as the arrow will remain energized, and 

the coils that are on the opposite side of the arrow will be neutralized. Also, if needed, more coils 

in the arrow direction will be energized. Below, systematic steps are given for the moving 
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magnetic fields on the stator. Torques Ta and Tb cause the rotor to move in 3-DOF. The torques 

created at one time by the coils within two magnetic fields is computed above. Since the 

magnetic fields are moving, any coil around the stator is a candidate to be energized. There are 

two poles to be moved, so two inputs are needed—ua and ub—the sizes of which are (n  1), 

where n is the number of coils within the stator. 

Special Case of Low-Speed 3-DOF Joint SEM Moving Magnetic Field Procedure 

To describe the stator poles (moving magnetic fields) simply, it is assumed that the rotor 

pole, which is on the equator of the rotor, remains stationary (it is coupled with the stator pole 

and remains in the same position), i.e., the SEM will be moving in 2-DOF by the “south rotor 

pole” and its stator pole. Figure 10 shows the south stator pole and its energizing and 

neutralizing certain coils.  It is assumed that coupling is perfect between the stator pole and the 

rotor pole during the low-speed motion.  

 

Figure 10: Bottom Part of Spherical Stator and Its South Pole Motion 

(lower shaft is uninstalled)  
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Steps for South Pole of Stator 

Step 1: 

Set the rotor at the initial conditions, which is zero for all angles. Then, based on initial 

conditions and known mapping of stator coils by their spherical coordinates, the coils energized 

are already identified. Each coil can be located as follows: 

   [
        
        

    

] 

where α indicates latitude, and β indicates longitude.  

Step 2: 

Obtain the desired trajectory, which, for simplicity, is assumed as follows: 

  [




]  [

   
 
 

]  

The desired trajectory is three dimensional; however, only  will be changed. Based on the 

desired trajectory and current location of the rotor pole, the edge point of the rotor pole, which is 

located on the axis of desired trajectory, is identified. Therefore, the desired edge point, current 

edge point, and center of rotor will be on the same axis as shown previously in Figure 10.  

Step 3: 

Search the array of stator coils, and identify the neighbor coils of the current edge point. 

Select the closest neighbor coil and its neighbors within Area 2 to be energized. Select the coils 

within Area 3 to be neutralized. Finally, select the coils within Area 1 to be left energized. 

The above three steps of the algorithm are repeated when the current edge point of the 

rotor reaches the edge point of the desired rotor location. Thus far, a complex stator pole motion 

has been covered. It is worth saying that motion accuracy is guaranteed by the interaction 

between each coil and the rotor pole. The interaction for other coils is shown in Figure 11. 
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Figure 11: Energized Stator Coils, Rotor Pole, and Neighbor Coil with Separation Angle 

 Since the coordinates of each coil and rotor pole are known, the final position vector si of 

the stator coils in the rotor frame can be calculated by using a rotation matrix, which will be 

introduced in Chapter 5. Since the interaction between the stator coils and the rotor pole is 

calculated by utilizing the direction vector, as shown later in equation (24), multiple coils will be 

energized accordingly to satisfy the desired torque input component in each dimension. The 

desired torque input components will be calculated in Chapter 6.  

The above three-step algorithm can be extended for the pole at the equator as well. It is 

straightforward to calculate the desired motion of the pole based on the given trajectories. In 

previous equations (19) and (20), the torque values are at the initial time when the rotor is 

stationary. During the motion, different coils will be energized and neutralized. There will be a 

separation angle δ for each individual coil. Figure 11 shows the SEM coils and rotor pole with 

the separation angle, which is between the axis of the rotor-pole edge and the axis of the nearest 

coil. The torque value is also dependent on the separation angle. In other words, the torque 
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function f(δ) needs to be included in the torque equation. The torque function can be calculated 

either by an experiment or by finite element analysis method. However, Figure 12 gives 

conceptual information about the separation angle and torque function [38].  

 

Figure 12: Expected Relationship f(δ) between Separation Angle and Torque 

Also, the direction of torque d must be included in the torque equation since the desired 

input torque components will be calculated using the computed torque model, as explained in 

Chapter 5. In the previous equations (19) and (20), except for the applied current, the remaining 

terms are constants. With inclusion of the torque function and direction, equations (19) and (20) 

can be rewritten as  

        

  (21) 

        

   (22) 

where G is the torque matrix and includes function and direction of the torque. Therefore, G can 

be written as  
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    ( )   (23) 

where 

   
    

‖    ‖
 (24) 

In equation (24), r is the coordinates of the edge of the rotor pole, and si is the coordinates of a 

stator coil. 

Thus far, for clarification, two different regions in the stator have been studied separately. 

However it is possible to have one torque equation based on equations (21), (22), and (23), as 

follows: 

      
  (25) 

where G is the torque matrix and includes torque function and torque direction of each individual 

coil in the stator. Therefore, 

   [   (  )                   (  )        (  )    ] (26) 

where n is the number of stator coils. Although there are two rotor poles, they interact with 

different individual coils. In equation (26), the term      (  )    has a matrix size of 3 x 1 

since the direction of the torque has components in three axes. Therefore, total torque can be 

computed as 

   [

  
  
  

]      [              ]

[
 
 
 
  
 

  
 

 
  
 ]
 
 
 
 (27) 

Inverse Torque Model 

In order to find the required current to apply to the SEM, an inverse torque model is 

needed. The required torque will be calculated in Chapter 5 by using the computed torque model. 

Therefore, torque and torque matrix are calculated and the current can be derived as follows: 
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[
 
 
 
  
 

  
 

 
  
 ]
 
 
 
      , n=3 (28) 

 

[
 
 
 
  
 

  
 

 
  
 ]
 
 
 
 (   )      , n=1, 2 (29) 

 

[
 
 
 
  
 

  
 

 
  
 ]
 
 
 
   (   )               (30) 

The left inverse of the torque matrix in equation (29) and the right inverse of the torque 

matrix in equation (30) are used to prevent singularities. For the experiments, equations (28) and 

(29) may be used. Under normal conditions, equation (30) is the main inverse torque model to 

apply.                                                

4.4 Conclusion 

 In the described SEM, the stator structure is the major part. It includes a number of coils 

distributed uniformly around it. This circular group of coils creates the moving magnetic field, 

which resembles the methodology in a magnetic suspension system and also a liquid crystal 

display system. The moving magnetic fields are coupled with rotor poles as they are moving, and 

the SEM realizes the three-dimensional motion. In torque modeling, angular distances between 

the coils and rotor poles, and torque functions are the main parameters. Torque functions can be 

calculated by experiments or utilizing finite element analysis. Angular distances between the 

coils and rotor poles are calculated by using rotor pole positions and coil positions. The inverse 

torque model provides the current values for each coil. 
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CHAPTER 5 

 

DYNAMIC MODELING OF SEM 

 

 

5.1 Introduction 

 In this chapter, the methodology for dynamic modeling using Lagrange’s equation will be 

presented, and a mathematical dynamic model will be derived for the system shown previously 

in Figure 12. 

5.2 Methodology 

In a SEM with 2-DOF, deriving the equations of motion is straightforward. First, using 

the Jacobian matrix, the coordinates of the rotor are defined in order to obtain the velocities. 

Second, using a Lagrange model of the system, relations between rotation angles and velocities 

can be determined. 

However, in an SEM with 3-DOF, defining the coordinates is not the same as in an SEM 

with 2-DOF. Instead, two different axes are considered: body axes and reference axes. Then, the 

body orientation can be defined by defining the angles between the body axes and the reference 

axes. These angles are called Euler angles. At initial conditions, body and reference axes may or 

may not align, but for simplicity, it is assumed that they are aligned at initial conditions. As 

shown previously in Figure 6, XB0, YB0, and ZB0 are the body axes of the rotor at the initial time. 

The SEM shaft drawn with dashed lines is in its final position. The rotor is rotated first ( 

degrees) about the Z-axis, second ( degrees) about the new Y-axis, and finally ( degrees) about 

the most recent X-axis. Also in Figure 6, the final condition of the body axes, XBF, YBF, and ZBF, 

are drawn with dashed lines. 

Friedland [53] describes the rotation matrix TBR, which rotates the XB0, YB0, and ZB0 body 

axes to the final condition body axes, XBF, YBF, and ZBF, as follows: 
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     [

                    
                                                
                                                  

] (31)                         

The term TBR is an orthogonal matrix, so (TBR)
-1

 = (TBR)
 T

 = TRB, where TRB is the matrix that 

rotates the body axes back to their initial condition. The term TBR is the product of three rotation 

matrices in the order of rotation about the Z, Y, and X axes. Each multiplier represents the 

rotation about an axis. 

For this SEM, dynamical modeling was done by Lagrange’s equation:  

 
 

  
(
  

 ̇
)  

  

 
   (32) 

where L is the Lagrange multiplier, representing both kinetic and potential energy. Since the 

system consists of a rigid rotor inside a stationary stator, potential energy does not exist. Kinetic 

energy is generated by the motion of the rotor. The angle for each degree of freedom is , and the 

torque for each degree of freedom is T. The rotor is moving with 3-DOF, so there are three 

equations. 

Energy  

In the SEM, naturally, potential energy does not exist. The only countable energy in SEM 

dynamics is kinetic energy, as follows: 

   
 

 
   

  
 

 
   

  
 

 
   

  (33) 

where J is the moment of inertia, and for simplicity, Jx = Jy = Jz = 1 is assumed. From the work 

of Guo and Xia [43] and Friedland [53], the components of angular velocities can be written as 

x, y, and z, which are the projected angular velocities onto the rotating body axes. In the 

stator frame by using Euler angles, components of the angular velocities are described as  

 [

 

 

 

]  [
             
              

      

] [
̇

̇
̇

] (34)                   
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5.3 Dynamic Model 

 By utilizing the Lagrange equation, the system is simplified for modeling. In fact, the 

nature of an SEM assists in a simplified dynamical model since all degrees of freedoms originate 

from the same common center point, which is the center of the rotor ball. Substituting equations 

(33) and (34) into equation (32), the dynamic model of SEM can be found as follows: 

    ̈    ̈         ̇  ̇          (35) 

   ̈   ̇   ̇          (36) 

   ̈     ̈         ̇    ̇         (37) 

In equations (35), (36), and (37), it is worth mentioning that the inertia terms are typed in red, 

and the Coriolis centripetal terms are typed in blue. They can be restructured by using the 

general dynamic matrix form: 

  ( )    ̈   (    ̇ )   ̇    (38) 

where  ( ) is the inertia matrix, and  (    ̇ ) is the Coriolis and centripetal matrix:  

  ( )  [ 
     
   

      
 ]      ;   (    ̇ )  [

  ̇      
  ̇        

  ̇       

] 

where T is the torque control input matrix, and  is the Euler angles (, , ) for the SEM. The 

first and second derivations of Euler angles provide angular speeds and angular accelerations, 

respectively.   

5.4 Conclusion 

 The Lagrange equation provides a clear perspective of the dynamics of the SEM. The 

inertia and Coriolis terms can be simply decoupled to reconstruct the matrix form of the dynamic 

system. This decoupling is expected to be helpful for an efficient control algorithm in Chapter 6. 
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CHAPTER 6 

 

CLOSED-LOOP CONTROLLER FOR SEM 

 

 

6.1 Introduction 

 Control of an SEM is similar to other single-degree-of-freedom motors after certain steps 

are taken [40]. In this research, a control approach is based on a dynamic decoupling computed 

torque model (DDCTM). The decoupling procedure becomes more efficient in an SEM that has 

all degrees of freedoms originating from the same common center point. Nonlinear couplings in 

each axis can be considered as disturbance torque [43]. 

 For simplicity, control torque, load torque, and disturbance torque will be considered 

under one notation T = [Tx, Ty, Tz], where T is the control torque under assumptions of no load 

and no disturbance in the system.   

6.2 Methodology 

 In an SEM, motion is about the center single point. Therefore, highly nonlinear couplings 

are observed in the equation of motion described in equations (35), (36), and (37). Nonlinear 

inter-axis couplings, typed in red and blue, may be considered as disturbance torques. Therefore, 

equations (35), (36), and (37) can be modified as follows 

   ̈       (39) 

    ̈      (40) 

   ̈     (41) 

In equations (39), (40), and (41), the moment of inertia is 1 and no-disturbance and no-load 

assumptions are made. Thus, each degree of freedom motion can be separately controlled by 

utilizing decoupling. Therefore, the control law is introduced as [43, 50, and 52] 

  ( )    (    ̇ )   ̇    (42) 
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where u is the new control input [52]; therefore, 

    ̈    (43)  

Trajectory Tracking 

For continuous accuracy of the position, desired trajectories   are used so that dynamic 

tunings can be performed. Consequently,  ̇ is the desired angular velocity vector, and    ̈ is the 

desired angular acceleration vector. The continuous derivation of   is assumed, so a continuous 

trajectory exists.  

The difference between the desired and actual angles is called error and is represented as  

       (44) 

Error changes as the SEM moves. The changing rate of error can be stated as 

   ̇   ̇    ̇  (45) 

In the next section, a controller will be designed with the goal that error becomes zero. 

Therefore, the actual and desired trajectories match.  

6.3 Design 

 The DDCTM algorithm guaranties exponentially stable closed-loop dynamics. Each 

degree of freedom is controlled separately. Error is controlled to be zero dynamically. Using 

equations (43), (44), and (45), the goal for error is as follows [43]: 

 ( ̈     ̈ )    ( ̇    ̇ )    (    )    (46) 

where    is a positive definite derivative controller, and    is a positive definite proportional 

controller. Both are 3 x 3 diagonal matrices. From equation (46), error equation can be obtained 

as  

  ̈     ̇        (47) 
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Substituting equations (46) and (43) into equation (42), yields the following general control law 

for SEM:  

    (    ̇ )   ̇   ( )( ̈     ̇     ) (48) 

 From equation (47), it can be stated that the error and the error changing rate will be 

driven to zero, and trajectory tracking will be guaranteed. As a result, a globally asymptotically 

stable system is also promised.     

6.4 Simulation 

 The DDCTM algorithm in equation (48) is an efficient algorithm for an SEM for several 

reasons. Dynamic decoupling allows each degree of freedom to be controlled separately. For 

different initial conditions, performance of the system is still high. Also, error handling 

guarantees the stability. 

Simulation with Zero Initial Conditions 

 All initial position angles are set to zero, and the desired trajectory is set as  

   [

    (  )
    (    )
    (    )

] (49) 

The derivative and proportional controllers are set as diagonal matrices: 

    [
   
    
   

] (50) 

    [
    
    
    

]  (51) 

 Dynamic decoupling allows the individual degrees of freedom to be controlled 

separately. Figure 13 shows the angular trajectories of the SEM, and Figure 14 represents the 

angular velocities of each direction. 
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Figure 13: Angular Trajectories with Zero Initial Conditions 

 

 

  
                                   

Figure 14: Angular Velocities with Zero initial Conditions 
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Figure 15 shows trajectory tracking. After several time trials, appropriate derivative and 

proportional constant Kd and Kp can be selected for the best tracking. The DDCTM algorithm 

achieves a good trajectory tracking performance by eliminating the inter-axis coupling and 

controlling each degree of freedom separately. Figure 16 shows the trajectory tracking error, 

which equals zero within third seconds.   Figure 17 shows the input torque variation by time. 

Even though the high torque values present are based on desired trajectory, by adjusting Kd and 

Kp, input torque values can be calculated using the DDCTM algorithm.  

 

 

Figure 15: Trajectory Tracking with Zero Initial Conditions  
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Figure 16: Trajectory Tracking Error with Zero Initial Conditions 

   

 

Figure 17: Input Torques with Zero Initial Conditions 
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Simulation with Non-Zero Initial Conditions 

 Let the initial conditions be as follows: 

   [




]  [

   
   
   

] (52) 

Using the same desired trajectory and controller constants would provide a good comparison 

between zero initial conditions trajectory tracking and non-zero initial conditions trajectory 

tracking: 

   [

    (  )
    (    )
    (    )

]  

The derivative and proportional controllers are set as diagonal matrices: 

    [
   
    
   

]  

    [
    
    
    

]  

 Figure 18 shows the angular trajectories of the SEM, Figure 19 shows the angular 

velocities, and Figure 20 shows the trajectory tracking. As can be seen in Figure 17, the DDCTM 

algorithm is still efficient with non-zero initial conditions. In Figure 21, trajectory tracking error 

is presented. Again, with non-zero initial conditions, the error is still reaching zero in a 

reasonable time. Figure 22 presents torque values by time. 
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Figure 18: Angular Trajectories with Non-Zero Initial Conditions  

 

 
 

Figure 19: Angular Velocities with Non-Zero Initial Conditions 
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Figure 20: Trajectory Tracking with Non-Zero Initial Conditions 

 

 

 
 

Figure 21: Trajectory Tracking Error with Non-Zero Initial Conditions   
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Figure 22: Input Torques with Non-Zero Initial Conditions 

 

6.5. Conclusion 

 Using three-dimensional dynamics about a point, an SEM was modeled and controlled in 

a complex way. Nonlinear inter-axis coupling causes problems during position control. One of 

the most efficient algorithms for SEM control is the dynamic decoupling computed torque 

model. After the equation of motion is divided into inertial torque and Coriolis torque, each 

degree of freedom can be controlled separately. Good trajectory tracking in either the zero initial 

condition or non-zero initial condition proves the efficiency of the DDCTM algorithm.   
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CHAPTER 7 

 

CONCLUSION AND FUTURE WORK 

 

 

 The aim of this research was to find good results for the industrial application of a 

spherical electric motor. Currently, the challenges in SEM research concern actuation, bearing 

system, and position control. In this research, a new actuation method was introduced. Especially 

at low speeds, precise position requirements, as in a robotic joint or electric car steering and 

suspension are satisfied by the new actuation method. This method is similar to that in LCD and 

magnetic suspension system procedures. With higher resolution of the controlled area comes the 

possibility of higher position accuracy, Nonlinear torque modeling was also derived. Finally, a 

nonlinear dynamic model of the proposed SEM was derived, and the DDCTM control algorithm 

was implemented. Simulation results have been shown for both zero initial conditions and non-

zero initial conditions. 

 This research can be extended in many ways. In torque modeling, the torque function f(δ) 

needs to be calculated by either an experiment or finite element analysis for different 

applications. The proposed torque model is in a general form and can be applied in low-speed 2-

DOF applications, like a robotic joint; low-speed 3-DOF applications, like an actuator or a 

robotic joint; and high-speed 3-DOF application, like an electric helicopter or morphing aircraft 

wing mechanisms. However, in high speed 3-DOF applications, the torque model needs a slight 

modification due to hybrid actuation methods. After a certain speed, rolling is generated by four 

moving poles on the stator by repulsion and attraction with four rotor poles (similar to a 

conventional stepper motor) because pitch and yaw are generated by the interaction of a single 

moving pole on the stator and south rotor pole. 
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The proposed SEM has many application areas. This research could also be extended by 

building prototypes for different applications. That would facilitate the procedure of 

commercializing SEM.  Also, interaction with industry members of society about the SEM 

would help in getting it commercialized. 
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APPENDIX 

 

DYNAMICALLY DECOUPLING COMPUTED TORQUE PROGRAM 

 

 

SphericalElectricMotor.m 

% Function of Spherical Electric Motor recieves initial conditions for 

% motion angles,derivative of motion angles,torque,and tracking errors and 

% final time as inputs. The function calls function Sphere to get  

% derivatives of motion angles, speeds, torques, and tracking errors.  

% Spherical Electric Motor returns working trajectories of the  

% spherical motor by time and solution of the differential equations in  

% Xderivative by ode23 

function [t,X] = SphericalElectricMotor(x0,tf) 

t0=0; 

tspan=linspace(t0,tf,1000); 

[t,X]=ode23('Sphere',tspan,x0); 

% SPHERICAL ELECTRIC MOTOR TRAJECTORIES 

% Rotor Shaft Position 

Phi= X(:,1); Theta=X(:,2); Psi=X(:,3);   

% DESIRED SPHERICAL ELECTRIC MOTOR TRAJECTORIES 

% Desired Rotor Position 

Phid = sin(2*t); Thetad = cos(1.7*t); Psid = sin(2.5*t); 

figure(1) 

plot(t,X(:,1),'b',t,X(:,2),'r',t,X(:,3),'g'), grid on 

ylabel('Euler Angles(rad)'),xlabel('time(s)') 

title('Spherical Actuator: \Phi in blue, \Theta in red, \Psi in green') 

hold on 
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APPENDIX (continued) 

 

 

figure(2) 

subplot(3,1,1),plot(t,X(:,4),'b'), grid on 

ylabel('(d/dt)\phi(rad/s)'),xlabel('time(s)') 

title('Angular velocities for the spherical actuator') 

subplot(3,1,2),plot(t,X(:,5),'r'), grid on  

ylabel('(d/dt)\theta(rad/s)'),xlabel('time(s)') 

subplot(3,1,3),plot(t,X(:,6),'g'), grid on  

ylabel('(d/dt)\psi(rad/s)'),xlabel('time(s)') 

hold on 

  

figure(3) 

subplot(3,1,1),plot(t,Phi,'b',t,Phid,'k'), grid on 

title(' Trajectory in blue,desired trajectory in black '),ylabel('\Phi(rad)'),xlabel('time(s)'), 

subplot(3,1,2),plot(t,Theta,'r',t,Thetad,'k'), grid on 

title('Trajectory in red,desired trajectory in black'),ylabel('\Theta(rad)'),xlabel('time(s)') 

subplot(3,1,3),plot(t,Psi,'g',t,Psid,'k'), grid on 

title('Trajectory in green,desired trajectory in black'),ylabel('\Psi(rad)'),xlabel('time(s)') 

hold on 

  

figure(4) 

title('Tracking error ex in blue, ey in red, ez in green') 

xlabel('time(s)'),ylabel('tracking error(rad)'), grid on 
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APPENDIX (continued) 

 

 

figure(5) 

title('Torque Tx in blue, Ty in red,Tz in green') 

xlabel('time(s)'),ylabel('torque(Nm)'),grid on 

 

Sphere.m 

function Xderivative = Sphere(t,X) 

% Controller matrices: 

kp=[10 0 0;0 20 0;0 0 12]; kd=[6 0 0;0 10 0;0 0 7]; 

% DESIRED TRAJECTORY 

Phid = sin(2*t); Thetad = cos(1.7*t); Psid = sin(2.5*t); 

% DESIRED ANGULAR SPEEDS 

dPhid = 2*cos(2*t); dThetad = -1.7*sin(1.7*t); dPsid = 2.5*cos(2.5*t); 

% DESIRED ANGULAR ACCELERATIONS 

ddPhid= -4*sin(2*t); ddThetad= -2.89*cos(1.7*t); ddPsid= -6.25*sin(2.5*t); 

% COMPUTED-TORQUE CONTROLLER  

% TRACKING ANGULAR ERRORS: 

ex = Phid-X(1); ey = Thetad-X(2); ez = Psid-X(3); 

% TRACKING ANGULAR SPEED ERRORS 

dex = dPhid-X(4); dey = dThetad-X(5); dez = dPsid-X(6); 

figure(4) 

hold on 

plot(t,ex,'b',t,ey,'r',t,ez,'g'),grid on 

% M(q,qdot) Moment of inertia matrix 

m11= 1; m12= 0; m13= sin(X(2)); m21= 0; m22= 1; m23= 0; m31= sin(X(2)); m32= 0; m33= 1; 
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APPENDIX (continued) 

 

 

% C(q,qdot) Coriolis matrix 

C=[0,X(6)*cos(X(2)),0;-X(6)*cos(X(2)),0,0;X(5)*cos(X(2)),0,0]; 

% CONTROL TORQUES 

t1 = ddPhid + kd(1,1)*dex + kp(1,1)*ex; 

t2 = ddThetad + kd(2,2)*dey + kp(2,2)*ey; 

t3 = ddPsid + kd(3,3)*dez + kp(3,3)*ez; 

T1 = m11*t1 + m12*t2 + m13*t3 + C(1,1)*X(4)+C(1,2)*X(5)+C(1,3)*X(6); 

T2 = m21*t1 + m22*t2 + m23*t3 + C(2,1)*X(4)+C(2,2)*X(5)+C(2,3)*X(6); 

T3 = m31*t1 + m32*t2 + m33*t3 + C(3,1)*X(4)+C(3,2)*X(5)+C(3,3)*X(6); 

figure(5) 

hold on 

plot(t,T1,'b',t,T2,'r',t,T3,'g'),grid on 

% DYNAMICS OF SPHERICAL ELECTRIC MOTOR: 

M=[m11 m12 m13; m21 m22 m23;m31 m32 m33]; 

IM= inv(M); 

Xderivative=[X(4); 

      X(5); 

      X(6); 

      IM(1,1)*(T1-X(6)*cos(X(2))*X(5))+IM(1,2)*(T2+X(6)*cos(X(2))*X(4))+IM(1,3)*(T3-

X(5)*cos(X(2))*X(4)); 

      IM(2,1)*(T1-X(6)*cos(X(2))*X(5))+IM(2,2)*(T2+X(6)*cos(X(2))*X(4))+IM(2,3)*(T3-

X(5)*cos(X(2))*X(4)); 

      IM(3,1)*(T1-X(6)*cos(X(2))*X(5))+IM(3,2)*(T2+X(6)*cos(X(2))*X(4))+IM(3,3)*(T3-

X(5)*cos(X(2))*X(4)); 
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     (T1-X(7))/(.01); 

     (T2-X(8))/(.01); 

     (T3-X(9))/(.01); 

     (ex-X(10))/(.01); 

     (ey-X(11))/(.01); 

     (ez-X(12))/(.01)]; 


