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CHAPTER I

INTRODUCTION

In this thesis, we consider the problem of synthesizing program inverses for imperative

languages. Specifically, we will build a compiler framework named Backstroke [28]

that can generate a reversible program and an inverse program for a given input

program, by employing several intermediate representations and program analyses.

Our primary motivation comes from optimistic parallel discrete event simulation

(OPDES). There, a simulator must process events while respecting logical temporal

event-ordering constraints; to extract parallelism, an OPDES simulator may spec-

ulatively execute events and only rollback execution when event-ordering violations

occur [18]. In this context, the ability to perform rollback by running time- and

space-efficient reverse programs, rather than saving and restoring large amounts of

state, can make OPDES more practical. Synthesizing inverses also appears in nu-

merous software engineering contexts, such as debugging, synthesizing undo code, or

even generating decompressors automatically given only lossless compression code.

We will give a motivating concrete example of reversible programs in Chapter II.

This dissertation mainly contains three chapters. In Chapter II, we focus on

handling programs with only scalar data and arbitrary control flows. By building a

value search graph (VSG) that represents recoverability relationships between variable

values, we turn the problem of recovering previous values into a graph search problem.

The VSG is built based on Static Single Assignment (SSA) [13]. Forward and reverse

programs are generated according to the search results. For any loop that produces

an output state given a particular input state, our method can synthesize an inverse

loop that reconstructs the input state given the original loop’s output state. The

1



synthesis process consists of two major components: (a) building the inverse loop’s

body, and (b) building the inverse loop’s predicate. Our method works for all natural

loops, including those that take early exits (e.g., via breaks, gotos, returns).

In Chapter III we extend our method to handling programs containing arrays.

Based on Array SSA [25], we develop a modified Array SSA from which we could

easily build equalities between arrays and array elements. Specifically, to represent

the equality between two arrays, we model array subregions explicitly. During the

search those subregions will be calculated to guarantee that all array elements will be

retrieved. We also develop a demand-driven method to retrieve array elements from a

loop, in which each time we only try to retrieve an array element from an iteration if

that element has not been modified in previous iterations. To ensure the correctness

of each retrieval, the boundary conditions are created and checked at the entry and

the exit of the loop.

In Chapter IV, we introduce several techniques of handling high-level constructs

of C++ programs, including virtual functions, copying a C++ object, C++ STL

containers, expressions with several side effects, inter-procedural function calls, etc.

Since C++ is an object-oriented (OO) language, our discussion in this chapter can

also be extended to other OO languages like Java.

1.1 Related work

Most of the work on inverting arbitrary (non-injective) imperative programs has fo-

cused an incremental approach: the imperative program is essentially executed in

reverse, with each modifying operation in the original execution being undone indi-

vidually. For example, if statements s1s2 . . . sn are executed in the forward directions,

the reverse function executes statements s−1n . . . s−12 s−11 . The incremental approach

cannot handle unstructured control flows and is difficult to apply in the presence of

early returns from functions; the approach presented in this thesis suffers from neither
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of these shortcomings. Furthermore, incremental inversion restores the initial state

by restoring every intermediate program state between the final state and the initial

state, even though these states are not needed

Syntax-directed approaches Among the incremental inversion approaches, syntax-

directed approaches apply only statement-level analysis. If an assignment statement

is lossless, its inverse is used: for example, the inverse of an integer increment is an in-

teger decrement. Otherwise, the variable modified in the assignment has to be saved.

It also provides the ability to record the control flows in the original program, so that

in the reverse program the control flows can be reconstructed. An early example of

syntax-directed incremental inversion is Brigg’s Pascal inverter [8]. This approach

was later extended to C and applied both to optimistic discrete event simulation [10]

and reversible debugging [6]. Because this approach does not include any program

analysis, the produced result is far from optimized. It also has many restrictions. For

example, it cannot handle unstructured programs, loops with early exits, and arrays,

among other program constructs.

Consider the specific instance of the Reverse C Compiler (RCC) [10]. In their

method, if a state variable is modified by a constructive operation like ++ or +=, then

in the reverse program that state variable can be recovered without state saving. For

example, if the state variable s is modified by s += t, then it can be recovered by s

-= t. Otherwise, the state saving will be performed to that state variable before it is

modified in the forward program. The RCC requires that all statements in the original

program contain simple expressions, and that the program is structured. Because no

program analysis is involved, the generated result may be far from optimized. For

example, a state variable may be modified several times in the program, in which

case one state saving is enough before its first modification to recover that value.

But RCC may insert several state saving statements that consume more memory
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space. By contrast, in our approach we use program analysis to determine that this

state variable is stored only once. In addition, RCC recovers every variable that is

modified in the original program. This approach may lead to restoring many variables

not actually related to state variables. By contrast, our method considers just the

state variables. Additionally, we improve on RCC in that we can handle arbitrary

control flows whereas RCC can only handle structured programs. This is because

RCC relies on proper shapes of the original program to build the reverse program.

Value graph based approach Akgul and Mooney also previously improved on

RCC and related methods. Their incremental inversion algorithm uses def-use anal-

ysis to invert some assignment statements that are not lossless [2]; we refer to this

approach as regenerative incremental inversion. In order to reverse a lossy assign-

ment to the variable a, such as a = 0, the regenerative algorithm looks for ways to

recompute the previous value of a. One technique to obtain the previous value of

a is to re-execute its definition. For example, suppose that before a is modified, its

previous definition is a = b + c. Then, we may retrieve its old value by redefining

it using the same expression: a = b + c. Note that in OPDES, the variables we

want to retrieve are normally the input of the program that do not have “previous”

definitions. Therefore, this technique only works on those local variables which are

used to retrieved state variables. Another technique is to examine all the uses of a

and see if the value of a can be retrieved from any of its uses. For example, if a is

used to defined another variable b by b = a + c, then we could retrieve a from a =

b - c. Note that this technique only works for naturally invertible operations like

plus and minus. These two techniques are applied recursively whenever a modifying

operation is to be reversed; if they fail to produce a result, the overwritten vari-

able is saved during forward execution. The specific program analysis builds a graph

called modified value graph (MVG), from which the desired value may be retrieved
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by performing a particular search on the graph. In Akgul and Mooney’s technique,

control flows are handled using the φ-functions produced when computing the pro-

gram’s SSA form [12]. However, this approach cannot handle loops. Our approach is

inspired from their method but takes advantage of all the def-use relationships uti-

lized by regenerative inversion, without suffering from the drawbacks of incremental

inversion. In addition to def-use information, our approach also derives equality re-

lationships between variables from the outcome of branching statements that test for

equality or inequality. Furthermore, our method can take care of arbitrary control

flows, including loops.

A related line of work is inverting programs that are injective, without using any

state saving. Such work tends to focus on inverting functional programs [1, 15, 19].

Approaches to inverting imperative programs include translation to a logic language

[24]. By contrast, our method uses no such translation, and is therefore can be applied

on imperative languages.

Template based program synthesis framework The PINS framework for pro-

gram inversion [27] is a template-based program synthesis framework. Rather than

compiler transformations, as in our approach, PINS uses sketching and synthesis. In

PINS, a programmer defines a template of the inverse with holes that a synthesizer

attempts to fill in from a pool of candidates, using the underlying machinery of sat-

isfiability (SMT) solvers. However, the current incarnation of PINS has weaknesses

relative to our work. First, it is restricted to injective programs. Since we permit syn-

thesis of a forward program, we can handle both injective and naturally non-injective

programs. Secondly, it is only semi-automated, requiring both programmer annota-

tions and templates. Our method is fully automated, relative to the limitations on

aliasing alluded to previously. Thirdly, the synthesis time in PINS can be quite long

and hard to predict, even for very small programs. Our method’s transformation time
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is consistent with that of traditional compilation. Lastly, PINS does not guarantee a

correctly synthesized inverse; one must apply a verification tool, such as a bounded

model checker, to check the synthesized result. Our method produces correct inverses

by construction. Collectively, these advantages make Backstroke more practical for

production use than PINS.

1.2 Contributions

This thesis has mainly three contributions:

• In this thesis, we propose a novel automated method to generate forward and

reverse programs for a given program. Most previous research on program

inversion focuses on generating inverses from injective programs, but we can also

handle non-injective programs by generating an injective version of it through

storing necessary informations, which expands the scope of program inversion.

By introducing a cost model to our method, we try to minimize the amount of

information to be stored in the forward program.

• We developed a novel method to handle programs with arrays, with the help of

array subregions and a modified version of Array SSA [25]. And the method we

developed could also be used to handle object accesses by transforming them

into array accesses.

• Our compiler can make use of human knowledge and generate better results.

We feed those programmer-supplied information to our compiler and in practice

the generated result are improved. We believe that based on this concept we

could develop a framework or even a new language for program inversion for

better results.
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1.3 Limitations

Though Backstroke improves on prior work, it is not without limitations. Our method

cannot handle programs with aliasing, and hence excludes some data structures like

linked data structures. We will not apply any inter-procedural analysis in our method.

For any function calls in the programs, we just assume there is no aliasing in the callee.

In the last chapter, we will discuss several strategies to handle function calls. On the

specific language level, in the last chapter we will discuss how to handle some C++

constructs, but Backstroke cannot handle all C++ language features. Those C++

features we cannot handle are listed below.

Aliasing Aliasing commonly exists in almost all imperative languages. In C++,

aliases are brought by pointers and references, where specific data may be referenced

by more than one pointers or references, and at compile time it is usually very diffi-

cult or even impossible to resolve all those aliases. In addition, the inter-procedural

analysis is also heavily depending on aliasing analysis, as procedure calls usually have

parameters passed by references.

Our method heavily depends on an intermediate representation called Static Single

Assignment (SSA) [13], and it is difficult to build it for programs with aliasing. Our

compiler also lacks of well formed aliasing analysis framework. Therefore, we will not

discuss aliasing in this thesis and will assume there is no aliasing in the programs we

handle.

Subset of C++ language We only handle a subset features of C++ language

and those we cannot handle mainly include:

• Dynamic memory allocation and release.

• I/O and system calls.
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• Exception handling.

• Template classes and functions.

• Function pointers.

In Chapter 2 and 3, we will restrict the target language to a subset of C++

language with following features:

• Each program is a C++ function with input and output variables which can be

recognized by Backstroke.

• The type of each variable is either a basic scalar type (e.g. int, float, etc.),

or an array type in which each element has a basic scalar type.

• Each scalar variable can only be modified by assignment operations. An ar-

ray can only be modified by modifying one of its elements at a time also by

assignment operations.

• All arithmetic operations and logical operations can be performed on variables

or expressions.

• All control flow statements (except throw) can be used in the programs, includ-

ing if, else, switch, for, while, do while, goto, return, continue, break.

In Chapter 4, we will discuss more constructs in C++ and extend our target

language to including objects access, function calls, and polymorphism.
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CHAPTER II

SYNTHESIS FOR PROGRAMS WITH ONLY SCALARS

In this chapter we will setup the program we are handling and introduce the frame-

work of our method, which will also be used in the following chapters. As the first

step, we will discuss how to handle programs with only scalars and arbitrary control

flows. Two important intermediate representations will be introduces: a value search

graph represents all equality relations in the program, and a route graph shows the

data dependences in the reverse graph which is built as the search result on a value

search graph. In addition, we will first consider loop-free programs, as its control flow

paths are finite and much easier to represent. For programs with loops, we will treat

each loop body as a subprogram so that we can apply the same approach to handling

loop-free programs.

2.1 Handling loop-free programs

2.1.1 Problem setup

Let the set of target variables be S = {s1 . . . sn} with initial values V = {v1 . . . vn},

where vi is the initial value of si. These variables are modified by a target function1

M , producing V ′ = {v′1 . . . v′n}, the final values of the target variables. Our goal is

generating two new functions, the forward function MS
fwd and the reverse function

MS
rvs, so that MS

fwd transfers V to V ′, and MS
rvs transfers V ′ to V . We define available

values as values which are ready to use at the beginning of MS
rvs. For example, values

in V ′ and constants are available values. We also call values in V target values which

are values we want to restore from MS
rvs.

1The function here is a C/C++ function, not a function in mathematics.
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Figure 1: Overall framework of the inversion algorithm

Note that M and MS
fwd have the same input and output, but MS

fwd is instrumented

to store control flow information and values that are later used in MS
rvs. This intro-

duces two kinds of cost that must be considered when generating the forward-reverse

pair {MS
fwd,M

S
rvs} : extra memory usage and run-time overhead.

2.1.2 Framework overview

We will first treat the inversion of loop-free code with only scalar data types, without

aliasing. When such code is converted to static single assignment (SSA) form [12],

each versioned variable is only defined once and thus there is a one-to-one correspon-

dence between each SSA variable and a single value that it holds. We will also take

advantage of the fact that loop-free code has a finite number of paths.

Given a cost measurement, for each path in the target function there should exist

a best strategy to restore target values. Strategies usually vary among different paths.

Therefore, the reversed function we produce should include the best strategy for each

path; each path in the original function should have a corresponding path in the

reverse function.

To restore target values, we will build a graph which shows equality relationships

between values. We call this graph the value search graph, and it is built based on an

SSA graph [3, 11]. Then a search is performed on the value search graph to recursively

find ways to recover the set of target values given the set of available values. If there

is more that one way to restore a value, we choose the one with the smallest cost.

The search result is a subgraph of the value search graph which we call a route graph.

For any path, a route graph shows a specific way to recover each target value from

10



void foo_forward() {
  int trace = 0;
  if (a == 0) {
    trace |= 1;
    a = 1;
  }
  else {
    store(b);
    b = a + 10;
    a = 0;
  }
  store(trace);
}

void foo_reverse() {
  int trace;
  restore(trace);
  if ((trace & 1) == 1)
    a = 0;
  else {
    a = b - 10;
    restore(b);
  }
}

(b) (c)(a)

int a, b;
void foo() {
  if (a == 0)
    a = 1;
  else {
    b = a + 10;
    a = 0;
  }
}

Figure 2: (a) The original function (b) The forward function (c) The reverse
function

available values. Finally, the forward and reverse functions are built from a route

graph. Figure 1 illustrates this process.

In this section, we will use the example shown in Figure 2 to illustrate our method.

2.1.3 The value search graph (VSG)

We first build an SSA graph for the target function. An SSA graph [3, 11], built

based on SSA form, consists of vertices representing operators, function symbols, or

φ functions, and directed edges connecting uses to definitions of values. It shows data

dependencies between different variables. The full algorithm for building an SSA

graph is presented in [20]. Figure 3(a)(b) show the SSA-transformed CFG and its

SSA graph for the function in Figure 2(a). In this example, a and b are two target

variables with initial values a0 and b0, and final values a3 and b2.

A value search graph enables efficient recovery of values by explicitly representing

equality relationships between values. Unlike an SSA graph, operation nodes are

separated from value nodes in the value search graph, since their treatment is different

for recovering values. An edge connecting two value nodes u and v implies that u and

v have the same value. An edge from value node u to an operation node op means
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Entry

if (a0 == 0)

a1 = 1;
b1 = a0 + 10;

a2 = 0;

a3 = φ(a1, a2);

b2 = φ(b0, b1);

Exit

T F

(a)

1
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0
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φ
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(b)

a0

100
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φ b2SS

−

F T

F

T

F

(c)

Figure 3: (a) The SSA-transformed CFG of the function in Figure 2(a) (b) The
corresponding SSA graph (c) The corresponding value search graph. Nodes with
bold outlines are available nodes; outgoing edges for these nodes are omitted because
available nodes need not be recovered. ‘SS’ is the special state saving node. Edges
are annotated with their CFG path set.
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that u is equal to the result of evaluating op with its operands. To recover the value

associated with node v, we can recursively search the graph starting at v.

More formally, a VSG is a graph containing two kinds of nodes: each value node

represents a distinct value in the program; each operation node represents an operation

and edges are connected with it and other value nodes, showing the equality between

the result and the operation on the operands. For an edge between two value nodes,

it shows those two nodes contain the identical value. Each edge will be attached with

two informations: the condition of that equality and the cost to recover the value

through this equality. We will discuss more details below.

We attach a set of CFG paths to each edge in a value search graph, meaning the

edge is applicable only if one of the CFG paths in that set is selected in the original

function. For operation nodes in the SSA graph, let the set of paths attached to each

outgoing edge be the CFG paths for which the corresponding operation is executed.

Similarly, for φ nodes, each reaching-definition edge should be annotated with all

CFG paths for which the corresponding reaching definition reaches the φ function.

We will describe an implementation of the path set representation later.

During the execution of the forward function, once a variable is assigned with a

new value, its previous value may be destroyed and cannot be retrieved. To guarantee

that a search in the value search graph can always restore a value, we introduce special

state saving edges. The idea behind these edges is that each value may be recovered

by storing it during the forward execution. Whenever a state saving edge appears

in the search results, the forward function is instrumented to save the corresponding

value. The path set associated with a state saving edge for a value node v is the set

of all paths that include v’s definition. All state saving edges point to a unique state

saving node.

We apply the following rules to convert an SSA graph into a value search graph:

• For simple assignment v = w, there is a directed edge from v to w in the SSA
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graph. Since we can retrieve w from v, add another directed edge from w to v

with the same path set.

• A φ node in the SSA graph has several outgoing edges connecting all its possible

definitions. For each of those edges, add an opposite edge with the same path

set.

• For each operation node in the SSA graph, split it into an operation node and a

value node, with an edge from the value node to the new operation node. The

new operation node takes over all outgoing edges, and the value node takes over

all incoming edges.

• If an equality operation (==) is used as a branching predicate and its outcome

is true, we know that the two operands are equal. Therefore, we add edges

from each operand to the other, with a path set for the edge equal to the path

set of the true CFG edge out of the branch. We add the edges analogously

for a not-equal operation (!=), but with the path set from the false side of the

branch.

• For every value that is not available, insert a state saving edge from the corre-

sponding value node to the state saving node.

Lossless operations For certain operations, such as integer addition and exclusive-

or, we can recover the value of an operand given the operation result and the other

operand. For example, if a = b + c, we can recover b given a and c. For each such

lossless operation, insert new operation nodes that connect its result to its operands,

allowing the operands to be recovered from the result. The new nodes are added

according to the following rules:
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Operation name Original operation New operations added

Negation a = -b b = -a

Bitwise not a = ~b b = ~a

Logical not a = !b b = !a

Increment ++a --a

Decrement --a ++a

Integer addition a = b + c b = a - c

c = a - b

Integer subtraction a = b - c b = a + c

c = b - a

Bitwise exclusive-or a = b ^ c b = a ^ c

c = a ^ b

There are two special types of nodes in a value search graph: target nodes are

value nodes containing target values, and available nodes are value nodes containing

available values plus the state saving node. As an optimization, we never create any

outgoing edges for an available node. Figure 3(c) shows the value search graph built

for the code in Figure 2(a). The available nodes are shown with a bold outline. Since

the function only has two paths, we use labels ‘T’ and ‘F’ to represent the CFG paths

passing through the true and false body in the target function, respectively. The ‘–’

operation node connecting a0 to b1 and the constant value ‘10’ is generated from the

‘+’ operation. The edge from a0 to ‘0’ for the path ‘T’ is added based on the fact

that a0 = 0 on that path. The ‘SS’ node in the graph is the state saving node, and all

unavailable nodes are connected to it. From the value search graph, we can find two

valid ways to restore b0 for the path ‘T’: b0 to SS node and b0 to b2. Obviously the

second one is better since it avoids a state saving operation, and this better selection

will be produced from the search algorithm described later.
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2.1.4 The route graph (RG)

A route graph is a subgraph of a value search graph connecting all target nodes to

available nodes. Each route graph represents one way to restore the target values,

and there may exist many valid route graphs for the same set of target values. Edges

in the route graph may have different path sets than the corresponding edges in the

value search graph. For each edge e in a route graph, let P (e) denote the set of CFG

paths that the edge is annotated with. The following properties guarantee that the

route graph properly restores all target values:

I) Let U be the set of all CFG paths. Then, for each target node t,

⋃
out∈OutEdges(t)

P (out) = U

II) For each node n that is neither a target node nor an available node,

⋃
out∈OutEdges(n)

P (out) =
⋃

in∈InEdges(n)

P (in)

III) For each value node n, given any two outgoing edges n → p and n → q,

P (n→ p) ∩ P (n→ q) = ∅

IV) If e is a route graph edge and its corresponding edge in the value search graph

is e′, then P (e) ⊆ P (e′)

V) For each directed cycle with edges e1 . . . en,
⋂n

i=1 P (ei) = ∅

Property I specifies that each target value is recovered for every CFG path. Prop-

erty II means that each value is recovered exactly for the paths for which it is needed.

Property III requires that for each CFG path, there is at most one way to recover

a value. Property IV requires that the set of CFG paths associated with an edge in

the route graph is a subset of the CFG paths originally associated with that edge in
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the value search graph. Finally, property V forbids self-dependence: restoring a value

cannot require that value.

a0

b0
SS

{T,F}

{T,F}

a0

b0
Φ
b2

0

SS

{T}

{F}

{F}

a0

b0

10

b1

Φ
b2

0

-

SS

{T}

{F}

{F}

{T}

{T}

{F}

(a) (b) (c)

Figure 4: Three different route graphs for the target values a0 and b0 given the the
value search graph in Figure 3(c).

Figure 4 shows three valid route graphs for the value search graph in Figure 3.

Route graph 4(a) only includes state saving edges. Route graph 4(b) takes advantage

of the fact that for the ‘T’ path the values of both a0 and b0 are known; it only

uses staving for the ‘F’ path. Route graph 4(c) improves upon route graph 4(b) by

recomputing a0 as b1-10 for the CFG path ‘F’; state saving is only applied to b0 for

path ‘F’.

2.1.5 Searching the value search graph

2.1.5.1 Costs in route graphs

As we have seen in Figure 4, there may be multiple valid route graphs that recover

the target values, but with different overheads. In order to choose the route graph

with the smallest overhead, we must define a cost metric.

Generally, there are two kinds of overhead in forward and reverse functions: exe-

cution speed and additional memory usage; we only consider the storage costs. State

saving contributes the most to the overhead memory usage and it also significantly
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affects the running time of both forward and reverse functions. Storing the path taken

during forward execution is the other factor that contributes to memory usage; this

overhead is bounded and is the same for all route graphs, so we exclude it from our

cost estimate. With each state saving edge in the value search graph, we associate a

cost equal to the size of the value that must be saved; other edges have cost 0. The

cost of a route graph for a specific CFG path is the sum of the cost of those edges

whose annotated path sets include that CFG path.

In Figure 4, suppose the cost to store and restore either a or b is c, the following

table shows the cost of three route graphs for each CFG path. Obviously the third

route graph is the best one.

CFG path route graph (a) route graph (b) route graph (c)

T 2c 0 0

F 2c 2c c

We have defined the cost of a single CFG path; however, a route graph may have

different costs for different CFG paths. When searching the value search graph, we

would like to treat groups of CFG paths that share some edges in the route graph

together, rather than performing a full search for each CFG path. For this reason,

the search algorithm partitions the CFG paths into disjoint sets of paths that have

equal cost and we save the cost for each set of paths independently. In our search

algorithm, we denote the costs of a route graph r as r.costSet.

r.costSet = {〈Pi, ci〉|Pi is a set of CFG paths and ci is the cost}

2.1.5.2 Search algorithm

Our search algorithm should aim to find a route graph that has the minimum cost

for each path. Theoretically, however, searching for a minimal route graph is an NP-

complete problem. To make the problem tractable, we apply the heuristic of finding
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Algorithm 1: Searching for a route graph in a value search graph
Initial input: The search start point target, with paths = ∅, visited = ∅

1 SearchSubRoute(target, paths, visited)
2 begin
3 resultRoute ← ∅, subRoutes ← ∅
4 if target is an operation node then
5 foreach edge ∈ OutEdges(target) do
6 if edge.target ∈ visited then return ∅
7 newRoute ← SearchSubRoute(edge.target, paths, visited)
8 if newRoute = ∅ then return ∅
9 add edge and newRoute to resultRoute

10 return resultRoute

11 if target is available then
12 add target to resultRoute
13 add 〈paths, 0〉 to resultRoute.costSet
14 return resultRoute

15 foreach edge ∈ OutEdges(target) do
16 if edge.target ∈ visited then continue

17 newPaths ← edge.pathSet ∩ paths
18 if newPaths = ∅ then continue

19 newRoute ← SearchSubRoute(edge.target, newPaths, visited ∪ {target})
20 add edge with paths newPaths to newRoute
21 foreach 〈paths, cost〉 in newRoute.costSet do cost += edge.cost
22 foreach route in subRoutes do ChooseMinimalCosts(route, newRoute)
23 add newRoute to subRoutes

24 add target to resultRoute
25 foreach route in subRoutes do
26 if route.pathSet 6= ∅ then add route to resultRoute

27 return resultRoute

28 ChooseMinimalCosts(route1, route2)
29 begin
30 if route1.pathSet ∩ route2.pathSet = ∅ then return
31 foreach 〈paths1, cost1〉 in route1.costSet do
32 foreach 〈paths2, cost2〉 in route2.costSet do
33 if paths1 ∩ paths2 = ∅ then continue
34 if cost1 > cost2 then
35 paths1← paths1− paths2
36 Remove (paths1 ∩ paths2) from all edges of route1

37 else
38 paths2← paths2− paths1
39 Remove (paths1 ∩ paths2) from all edges of route2

40 route1.pathSet =
⋃

〈paths,cost〉∈route1.costSet paths

41 route2.pathSet =
⋃

〈paths,cost〉∈route2.costSet paths
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a route graph for each target value individually; the individual route graphs are then

merged into a route graph that restores all the target values. Similarly, in order to

recover the value of a binary operation node, we recover each of the two operands

independently and then combine the results.

The pseudocode for our heuristic search algorithm is presented in Algorithm 1.

The SearchSubRoute function returns a route graph given a target node, the paths

for which that node must be restored, and the set of value nodes visited so far. The

algorithm explores all ways to recover the current node by calling itself recursively on

all the nodes that are directly reachable from the current node; available nodes are

the base case. Lines 5–10 handle recovering the values of operation nodes. In order

to recover the value of an operation node, each of its operands must be recovered.

Lines 11–14 return a trivial route graph for available nodes, with a cost of 0. The

remaining body of the algorithm (lines 15–27) handles recovering a value node that

is not available. Each of the out-edges of the target node may be used to recover

its value for the CFG paths associated with that edge; these edges are explored in

the for-loop in lines 15–23. The variable newPaths on line 17 represents the set of

paths that we are both interested in and are associated with the current edge. In

line 19, we recursively find a route graph that recovers the target value by recovering

the target of the current outgoing edge. Lines 21–22 update the cost sets of the new

route graph; if it provides a lower cost for some CFG path than the solutions found

so far, the partial results are modified so that each CFG path is restored with the

cheapest route graph. Finally, the route graph from line 19 is added to the list of

partial results (line 23). After all out-edges of the target node have been explored,

the partial results are merged into a single route graph and returned (lines 24–27).

Note that it is unnecessary to check whether the target node has been successfully

recovered, since the state saving edge always provides a valid route graph for the

node. Figure 4(c) shows the route graph produced by the algorithm when searching
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the value search graph from Figure 3(c).

The search algorithm enforces properties I–IV from section 2.1.4 during its exe-

cution. To make sure that the search result does not contain cycles (property V), we

record which value nodes are already in the route using a set visited in Algorithm 1.

This alone is not sufficient to guarantee that the result is acyclic, for there may be two

different paths with identical cost to recover a single value node. If one way is chosen

to recover a value node v during path of the search, and then later v is recovered

differently for the same CFG path, a cycle may form. To prevent this situation from

occurring, we always traverse out-edges in the same order of line 19 of Algorithm 1;

the first route graph with the smallest cost is chosen. In addition, two paths coming

from two different value nodes may also form a cycle when all costs on edges of the

cycle are 0. We eliminate this possibility by replacing 0 by a small cost ε.

2.1.6 Instrumentation and Code generation

2.1.6.1 Representing CFG path sets

Our search algorithm relies on efficiently computing intersection, union, and comple-

ment of CFG path sets, as well as testing whether the set of paths is empty; for this

reason we suggest implementing the set representations as bit vectors. Ball and Larus

[5] present an path profiling method in which each path is given a number from 0 to

m − 1, where m is the count of the CFG paths. We use their algorithm to number

each path, and for each path we associate exactly one bit in the bit vector used to

represent a path set.

2.1.6.2 Recording CFG paths

We need to store path information in a way that allows us to efficiently record the

CFG path taken (for forward execution), and to efficiently check if the path matches

a given set of CFG paths attached to a route graph edge (for reverse execution).

However, if we encode each path using its path number, then examining whether a
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path is a member of a set is inefficient. Instead we use a bit vector to record the

CFG path, in which each bit represents the outcome of a branching statement. Since

this method is similar to bit tracing [4], we call this bit vector a trace. Note that

two branches may share the same bit if they cannot appear in the same path. Thus,

the number of bits required to store the path taken is equal to the largest number

of branches that appear on a single CFG path. Algorithm 2 calculates bit-vector

position for each branch node accordingly.

Algorithm 2: Generating the bit position for each branch node.

foreach CFG node u in reverse topological order do
if u is a leaf node then

position(u) ← -1
else if u is a branch node then

/* u→ v and u→ w are its two out-going edges */

position(u) ← max(position(v), position(w)) + 1

else
/* u→ v is its out-going edge */

position(u) ← position(v)

In the forward function, we use an integer as the bit vector to record all predicate

results2. Let trace be the variable recording a trace, initialized to zero; then the true

edge of each branch node v is instrumented with the statement 3

trace = trace | (1 << position(v));

where position(v) is calculated by Algorithm 2. The variable trace is stored at the

end of the forward function and restored at the beginning of the reverse function.

Note that we can further optimize the instrumentation by moving a trace updating

operations downward through the CFG and merging them.

2Potentially we could omit recording predicates that do not affect the reverse function.
3We use several operators in C/C++ syntax here and below, which includes bitwise OR operator

|, bitwise AND operator &, bitwise left shift operator <<, equal to operator ==, and logical OR
operator || .
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In the reverse function, we must test if trace matches the path sets that appear

on route graph edges. We start with transforming each path in the set into a trace

(the trace for each path can be computed by the same means as recording a trace

in the forward function). Then, checking if a path set contains a path represented

by trace is done by comparing it to each trace. Suppose a path set containing two

paths is transformed into two traces 01101 and 01001. Instead of comparing trace

to each of them as:

if (trace == 01101 || trace == 01001)

we can simplify this predicate by using a mask 11011 on trace:

if ((trace & 11011) == 01001)

The combined trace for 01101 and 01001 is 01×01, where × denotes that the bit

does not matter. Given a set of traces, we can combine pairs repeatedly to reduce

the size of the set. This greatly reduces the complexity of the branching statements

in the reverse code.

Algorithm 3 starts out with all traces corresponding to a set of CFG paths and

merges them into a minimal set of traces that can be used to test membership in the

set. The intuition behind Algorithm 3 is that if the traces are sorted so that bit i

is the least significant bit, the traces that are identical to each other except for bit

i will be adjacent. However, if we are careful we don’t have to pay the full sorting

cost for each bit i. If the traces are sorted when their bits are considered in the

order b1b2 . . . bi−1 bkbk−1 . . . bi and we want to sort them according to the bit order

b1b2 . . . bi−2 bkbk−1 . . . bi−1, we need only sort each sequence of the trace for which

bits 1 through (i− 2) are identical. For each such sequence, there are at most three

sorted subsequences, indexed by bit bi−1; these can be merged in linear time (similarly

to mergesort). If we use a linear-time sort, such as radix sort, for the first iteration,

the overall runtime of Algorithm 3 is O(kn), where n is the size of the path set.
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Algorithm 3: Merging a set of path traces

MergePathTraces(traces)
begin

/* Each trace has k "bits", and each bit is 0, 1, or × */

/* Bits are numbered ascendingly; e.g. m = b1b2 . . . bk */

for i ← k down to 1 do
/* Note: for i = k, the bit ordering is m = b1b2 . . . bk */

Sort traces, where trace bits are ordered b1b2 . . . bi−1 bkbk−1 . . . bi
for j ← 2 to Length(traces) do

if traces[j − 1] and traces[j] match except for bit i then
set bit i to × for traces[j − 1]
delete traces[j]

After the merge, if we have n traces t1, ..., tn for a path set, the resulting predicate

would be:

if ((trace & mask1) == obji || ... || (trace & maskn) == objn)

For each trace ti, maski is obtained by setting all bits which are × in ti to 0 and

others to 1, and obji equals maski & ti.

2.1.6.3 Inserting state saving statements

The other instrumentation in the forward function are state saving statements, which

are inserted according to the state saving edges in the route graph. For each state

saving edge in the route graph, suppose the variable to store is var and the path set

on this edge is P . Our task is finding one or several locations to store var according

to the path set P , ensuring that var is only saved once for each CFG path in P .

To find such locations, we first compute the corresponding path traces T of P

from Algorithm 3. For each trace in T , we traverse the CFG from the entry. When

we reach a branch node, check the corresponding bit in the trace: fall through the

true edge if the bit is 1, false edge if the bit is 0. If the bit is ×, the traversal forks

and that bit is assigned to 0 and 1 respectively forming two new traces; and for each

concretized trace the descent continues. The descent stops immediately when all bits
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which are not checked in the trace are ×. After this process, we obtain one or more

locations where the descent has stopped. In each location we find a point where the

definition of var is reachable and a state saving statement is inserted there. However,

it is possible that the path set containing the paths passing through this location is

larger than the one on which the state saving is needed. In this case, we guard the

state saving statement with a branch whose predicate corresponds to the trace at this

location.

2.1.6.4 Building a CFG for the reverse function

We build the CFG for the reverse function from a route graph; the reverse CFG is

acyclic and each path in it must obey the data dependencies represented in the route

graph. Each outgoing edge from a value node in the route graph will be translated

to a statement in the reverse function.

There could be a large number of correct reverse CFGs for a route graph, resulting

in different control flows and different numbers of branches. We choose to build

a structured CFG to simplify the translation to source code. We also attempt to

minimize the number of predicates in the CFG.

There are three kinds of statements that can be generated from a route graph:

• An operator node with its operands and result induces an operation statement,

such as a = b + c.

• An edge with value nodes as both ends induces an assignment statement.

• An edge pointing to the SS node induces an value restoration statement.

The statements generated from route graph edges retain the path sets attached

to the corresponding edges. We build basic blocks of statements that all share the

same path sets, and insert branches so that each basic block is executed when the

corresponding path is taken in the forward function. While enforcing the path set

25



constraints ensures correct control flow, producing correct data flows depends on the

order in which statements are inserted in the CFG. Note that a route graph corre-

sponds to explicit data dependencies, and for each CFG path in the forward function

it is acyclic due to property V from section 2.1.4. Hence, if we order statements

in the reverse topological order of the route graph edges, dataflow dependencies are

correctly maintained.

Algorithm 4 shows how to build a CFG for the reverse function. We keep a

set of basic blocks, openBlocks, to which new statements can be appended. We

also maintain a set of statements, pendingStmts, whose data dependencies have

been satisfied, but which have not yet been inserted in the CFG. Each basic block

has an associated path set; these are the paths in the forward function for which

the corresponding basic block in the reverse function should execute. Similarly, each

statement has a set of paths from the forward function. If there is a pending statement

and an open basic block whose path sets match, we simply append the statement to

the basic block. When a statement is inserted into the CFG, the data dependencies

of new statements may now be satisfied; we call the function BuildReadyStatements

to generate the statements that are now valid for insertion. If there is no pending

statement whose path set matches the path set of an open basic block, we must insert

or join a branch in the CFG. When a branch is inserted, two new basic blocks are

created and the basic block containing the branch is closed. When a branch is joined,

the joined basic blocks are closed and a new open basic block is created.

Note that it is possible that the instrumentation to the forward function brings

additional implicit data dependencies. For example, if stack is used for state saving

the order of values popped in the reverse function should be opposite of the order

of pushes in the forward function. In this case, we can order those state saving

statements in pendingStmts according to the order in which values are pushed.
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Algorithm 4: Generating a CFG for the reverse function from a route graph.

GenerateReverseCFG(routeGraph)
begin

cfg ← ∅, pendingStmts ← ∅, openBlocks ← ∅, pathSetPairs ← ∅
foreach valNode in routeGraph do valNode.pathSet ← ∅
foreach available node availNode in routeGraph do

BuildReadyStatements(availNode, U , pendingStmts)

cfg.entry ← BuildBasicBlock(U)
while pendingStmts 6= ∅ do

if ∃s ∈ pendingStmts, b ∈ openBlocks, and s.pathSet = b.pathSet then
Append s to b
valNode ← the source node of the edge that generated s
BuildReadyStatements(valNode, s.pathSet, pendingStmts)

else if ∃s ∈ pendingStmts, b ∈ openBlocks, and s.pathSet ⊂ b.pathSet then
Append to b a branch, with the predicate generated from s.pathSet
b1 ← BuildBasicBlock(s.pathSet)
Append s to b1
b2 ← BuildBasicBlock(b.pathSet− s.pathSet)
Insert into cfg edges from b to b1 and b2 with labels true and false
Add 〈b1.pathSet, b2.pathSet〉 to pathSetPairs
openBlocks ← openBlocks− {b}
valNode ← the source node of the edge that generated s
BuildReadyStatements(valNode, s.pathSet, pendingStmts)

else if ∃b1, b2 ∈ openBlocks, and 〈b1.pathSet, b2.pathSet〉 ∈ pathSetPairs then
b ← BuildBasicBlock(b1.pathSet ∪ b2.pathSet)
Insert into cfg two edges, from b1 and b2 to b
pathSetPairs ← pathSetPairs− {〈b1.pathSet, b2.pathSet〉}
openBlocks ← openBlocks− {b1, b2}
if |openBlocks| = 1 then break

return cfg

BuildReadyStatements(valNode, nodeAvailablePaths, pendingStmts)
begin

valNode.pathSet ← valNode.pathSet ∪ nodeAvailablePaths
foreach edge ∈ InEdges(valNode) do

if edge.pathSet ⊆ valNode.pathSet then
if edge.source is an operation node then

Set edge to be a available for edge.source
if all operands of edge.source are available then

Add to pendingStmts the statement for for edge.source, with path set
edge.pathSet

else
Add to pendingStmts the statement for edge, with path set edge.pathSet

BuildBasicBlock(pathSet) begin
Build an empty basic block b and attach path sets pathSet to it.
cfg ← cfg ∪ { b }, openBlocks ← openBlocks ∪ { b }
return b
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2.1.6.5 Generating code

The forward function is generated by copying the target function and adding state

saving and control flow instrumentation (section 2.1.6.2). The reverse function is

translated from the CFG built by Algorithm 4. Translating a structured CFG to

source code is straightforward. Since each variable in the reverse CFG is in SSA

form, we can use the versioned name during code generation. Because our framework

generates source code that is later compiled with another compiler, the redundant

variables will be optimized away; the only drawback of this approach is readability. If

readability is an issue, we can compute data dependencies in the reverse CFG and then

remove versions attached to variables where this does not affect data dependencies.

After version removal, we would also remove self-assignment statements such a = a.

Figures 2(b) and 2(c) show the generated forward and reverse functions from the code

in Figure 2(a).

2.1.7 More examples

Except the example shown in Figures 2, here we show more examples including orig-

inal program and forward & reverse programs.

In the first example, we show that when a variable is modified more than once

on some control flow paths, we only store and restore it once correspondingly. In the

code below, assume s is a state variable. There are two branches in the program, and

s is modified in the true body in each branch:

1 void f oo ( ) {

2 i f ( cond1 )

3 s = 0 ;

4 i f ( cond2 )

5 s = 1 ;

6 }

A possible pair of forward and reverse programs are shown below:
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1 void f oo fo rward ( ) {

2 int t r a c e = 0 ;

3 i f ( cond1 ) {

4 t r a c e |= 1 ;

5 s t o r e ( s ) ;

6 s = 0 ;

7 }

8 i f ( cond2 ) {

9 t r a c e |= 2 ;

10 s t o r e ( s ) ;

11 s = 1 ;

12 }

13 s t o r e ( t r a c e ) ;

14 }

15 void f o o r e v e r s e ( ) {

16 int t r a c e ;

17 r e s t o r e ( t r a c e ) ;

18 i f ( t r a c e & 2)

19 r e s t o r e ( s ) ;

20 i f ( t r a c e & 1)

21 r e s t o r e ( s ) ;

22 }

Note that in the forward program above, s will be stored twice on the control flow

path passing through both true bodies. Backstroke can generate better result that

avoids unnecessary stores, which are shown below.

1 void f oo fo rward ( ) {

2 int t r a c e = 0 ;

3 i f ( cond1 ) {

4 t r a c e |= 1 ;

5 s t o r e ( s ) ;

6 s = 0 ;
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7 }

8 i f ( cond2 ) {

9 t r a c e |= 2 ;

10 i f ( ! ( t r a c e & 1) )

11 s t o r e ( s ) ;

12 s = 1 ;

13 }

14 s t o r e ( t r a c e ) ;

15 }

16 void f o o r e v e r s e ( ) {

17 int t r a c e ;

18 r e s t o r e ( t r a c e ) ;

19 i f ( ( t r a c e & 3) == 2)

20 r e s t o r e ( s ) ;

21 i f ( t r a c e & 1)

22 r e s t o r e ( s ) ;

23 }

In the second example, we show that the reverse program may have a different

shape from that of the original program (RCC [10] always generates reverse programs

with “reverse” shapes as the original programs). The original program is shown below

with the state variables s and t:

1 void f oo ( ) {

2 i f ( cond1 ) {

3 i f ( cond2 )

4 return ;

5 ++s ;

6 }

7 i f ( cond3 )

8 t = 0 ;

9 else

10 t = 1 ;
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11 }

Note that if cond1 and cond2 are both true, there is no side effect. The forward

and reverse programs generated by Backstroke are shown below:

1 void f oo fo rward ( ) {

2 int t r a c e = 0 ;

3 i f ( cond1 ) {

4 t r a c e |= 1 ;

5 i f ( cond2 ) {

6 t r a c e |= 2 ;

7 s t o r e ( t r a c e ) ;

8 return ;

9 }

10 ++s ;

11 }

12 s t o r e ( t ) ;

13 i f ( cond3 ) {

14 t r a c e |= 4 ;

15 t = 0 ;

16 }

17 else

18 t = 1 ;

19 s t o r e ( t r a c e ) ;

20 }

21 void f o o r e v e r s e ( ) {

22 int t r a c e ;

23 r e s t o r e ( t r a c e ) ;

24 i f ( ( t r a c e & 3) != 3) {

25 r e s t o r e ( t ) ;

26 i f ( ( t r a c e & 1) == 1)

27 −−s ;

28 }
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29 }

Note that the recorded control flows should be stored at each exit of the program.

The forward program has four control flow paths with three conditions but the reverse

program only has three control flow paths with two conditions.

2.1.8 Comparison to other methods

We have implemented the framework in our C/C++ source-to-source translator Back-

stroke based on the ROSE compiler. Since this chapter focuses on arbitrary control

flows and basic operations with only scalar data types, instead of trying to reverse

real-world code, which usually includes function calls, non-scalar data types, aliasing,

etc., we employ some representative synthetic benchmarks to illustrate the power of

our algorithm. Those benchmarks are listed below.

• NoBranch: A variable is modified in the function.

• Branches1: There are many CFG paths in the function and only one variable

is modified on one path.

• Branches2: There are many CFG paths in the function and on each path a

distinct variable is modified.

• Branches3: There are many CFG paths in the function and a variable is

modified up to three times on some paths and is not modified on other paths.

• Loop1: A loop in which a variable is modified. The loop is intended to have

many iterations at runtime.

• Loop2: A loop containing a simple branch and two variables are modified in the

true and false body respectively. The loop is intended to have many iterations

at runtime.
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In addition, each benchmark has two versions in which every variable is modified

differently: in the first one, each variable is modified by an assignment; the other one

modifies each variable using an increment operation (++) so that the assignment can

be reversed trivially. We denote those two versions by Assignment and Increment.

We compare our method4 to three other approaches commonly employed in the

OPDES community to implement rollback:

• CSS: Copy state saving. Every target variable is stored at the beginning of the

forward function and restored in the reverse function. Here we only store the

variables that are potentially modified.

• ISS: Incremental state saving. A variable is stored only the first time it is

modified. This technique is traditionally implemented by storing the variable’s

address along with its value, so one can check if the variable is already stored.

• RCC: Reverse C compiler [10] is a syntax-directed incremental inversion trans-

lator (see section 1.1).

We count the maximum and minimum memory used for state saving. The memory

used to record the control flows outside of loops (including the counter recording the

number of iterations in a loop) is ignored because it does not scale with the size

of the program state. Figure 5 shows the experiment results, in which (a) and (b)

are maximum and minimum memory usage for all benchmarks of the Assignment

version, and (c) and (d) are of the Increment version. The height of each column

represents the memory usage.

From the result we can see for most benchmarks Backstroke is the most efficient,

which is because our method integrates the advantages from both incremental reverse

execution and incremental state saving. ISS stores the address of every variable which

4Note that for loops we use the non-loop solution as defined in section ??.
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introduces a large overhead if the address’s size is comparable to that of a value’s (for

scalar data) meanwhile we utilize the CFG path to ensure each variable is stored only

once, with much less overhead. ISS outperforms CSS when there are many variables

which are potentially modified but only a small number of them are modified during

each execution (see Figure 5 Branches2). That is why incremental state saving

performs very well when each event only modifies a small portion of the whole state.

From comparing the results from Figure 5 (a)(b) and (c)(d), it is clear that the

reverse execution approaches can save much memory. But the amount of benefit from

reverse execution is determined by the number of opportunities for reverse compu-

tation. For programs that do not have many lossless operations such as ++ and +=,

state saving still plays an important role in their inversions.

We must be very cautious when reversing a loop. If the loop solution is applied,

we have to determine if storing control flow information is worth it or not. The result

of Loop2 from RCC shows that if the number of iterations is large, storing control

flows is not good idea. Saving state inside a loop normally is not a wise choice, as

the result of Loop1 + Assignment from RCC show.

2.2 Handling programs with loops

Unmodified, the method described above cannot handle loops for two key reasons.

First, a loop results in cyclic paths in the CFG, whereas our prior analysis relies on

paths being acyclic. Acyclic paths make it easy to check that the reverse program

restores any desired input value no matter what path the forward program takes.

Secondly, our prior VSG and RG cannot represent loop control structure. Therefore,

it is simply not possible to synthesize, for example, a loop in the reverse code from

the RG. Nevertheless, we can reuse most of the prior method by decomposing the

problem suitably. In particular, we keep the basic framework of “SSA to VSG to

RG.” Our extension replaces SSA with a loop-enabled variant, and then extends our
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Figure 5: Experiment results (y-axis shows memory usage normalized to CSS).
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VSG and RG representations and algorithms to deal with cycles, thereby addressing

the two aforementioned issues.

Let us first assume that each loop to be reversed is a single-entry, single-exit while

loop (we will explain what is a while loop later). We explain in Section 2.2.2 how

to convert other kinds of loops into this form. We also assume that each loop must

terminates at run-time so that we can always get an output. Given an input while

loop, there are three steps to build a VSG.

1. We temporarily collapse each while loop into a single abstract node in the CFG,

thereby creating a logically loop-free CFG from which we can build a VSG

by directly applying our prior method. This “transformation” is for program

analysis purposes only. We denote this loop-collapsed VSG by GP .

2. Similarly, we directly apply our prior method to build a VSG for each loop

body, which may be treated as another loop-free program. (If the body contains

nested loops, these are similarly collapsed as in Step 1 above.) Note that path

information in these loop body VSGs are local to the loop body. We denote

this VSG for the loop body by GL.

3. At this point, GP and GL are disconnected. Therefore, we introduce new special

edges to connect them, thereby resulting in a single connected VSG. These

connecting edges are a new type of edge and constitute the main extension to

our prior VSG in order to support loops. The new edges connect each input (or

output) of a loop to the input (or output) of the loop’s body. These new edges

serve as markers: when we search the VSG and produce an RG containing these

edges, then we know we need to synthesize a loop.

Since Steps 1 and 2 use our prior VSG construction, we need not discuss them further

here. What changes is the third step, as detailed below, including new VSG searching

rules and new procedures for synthesizing loops from the search result (i.e., the RG).

36



vin

vI
in = μ(vin, vI

out);
while(...)

 vI
out =...;

vout= η(vI
in);

A

B

T

F

(a) (b)

T

F

μ vI
in

vin
μ'
vI

out

η
vout

forward edge
reverse edge
(c)

Figure 6: (a) The diagram of a while loop. (b) The CFG in loop-closed SSA form for
a variable v modified in the loop. (c) Forward and reverse edges.

Because state saving in a loop is very expensive, we won’t consider it in a loop.

Moreover, it suffices for us to deal with a single loop without nested loops, which can

be handled in the same way recursively.

2.2.1 Dealing with while loops

We first consider a while loop with the diagram shown in Figure 6(a). We further

assume that A has no side-effects and that there are no escapes from B. Thus, the

loop only exits from its entry.

Given such a while loop, we transform it into the loop-closed SSA form [26],

illustrated in Figure 6(b). Loop-closed SSA differs from conventional loop-free SSA

as follows. In conventional SSA, a special marker called a φ function is placed in

the CFG at the first program point where two distinct versions (definitions) of a

variable, computed along different program paths, meet. In loop-closed SSA, if a

value is defined inside of a loop and used outside of it, we place a special single

entry φ function at the exit of the loop. To distinguish this type of loop-specific φ

function from a conventional φ function as used in loop-free programs, we denote the

loop-specific form by the term η function, by convention [23]. Additionally, suppose a

definition of a variable from outside the loop and a definition coming from a back-edge

of the loop meet at a program point. Again, we create a φ function marker here, and

to distinguish it, we refer to it as a µ function.
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To see how these markers work, consider a variable v modified by a while loop; we

now describe the corresponding loop-closed SSA form, which Figure 6(b) illustrates.

Let vin denote the input value of v before the loop executes, and vout the output value

of v after the loop executes. Next, let the input to the loop body be vIin and the

output vIout. (The superscript I is intended to remind the reader that these are values

associated with an iteration of the loop, as opposed to the values before and after the

loop.) Then, vIin is defined by a µ function as vIin = µ(vin, v
I
out), and vout is defined by

a η function as vout = η(vIin). That is, vIin = µ(vin, v
I
out) indicates the program point

at which v has either the initial value before the loop executes or the value produced

by some iteration of the loop; and vout = η(vIin) indicates the program point at which

v has the final value once the loop completes.

From this loop-closed SSA form, we wish to build a VSG that will express equality

relations among the four SSA values, vin, vout, v
I
in, and vIout. This VSG result is

shown in Figure 6(c). Recall that nodes in the VSG represent values, and edges

the equality relations. There are four value nodes. The nodes vin and vout are part

of the loop-collapsed GP , and vIin and vIout belong to the loop body’s GL. The µ

and η functions indicate how to connect GP and GL. In particular, the three solid

bold edges are associated with the dependences induced by executing the loop in

the forward direction; we call these the forward edges, and a µ node is incident to

all three. The presence of these edges make it possible to obtain vout by some path

passing through GL, and simultaneously indicate that a loop is present for subsequent

code generation. Similarly, the three dashed edges are reverse edges associated with

dependences induced in the reverse direction. These edges make it possible to obtain

vin by some path through GL. Note that the reverse edges form a symmetry to the

forward edges. From this symmetry, we define the node incident to all three reverse

edges as a µ′ node. Later we will show how the search traverses these edges.

Having built the CFG, the next step is to search it, producing the RG result.
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Recall that we are given a set of target nodes whose values we wish to eventually

compute from a starting set of available nodes. We search for a path from available

nodes to target nodes; the subgraph representing paths is the RG, which is not neces-

sarily unique. Our algorithm is similar to the one we have described previously [17],

but for loops we need three additional search rules:

• During a search for a value, once a forward/reverse edge is selected, all edges

in the other category cannot be chosen. This is because either a forward or a

reverse loop will be built to retrieve the value.

• When the search reaches a µ or µ′ node, it will be split into two sub-searches,

in GP and GL, respectively, through the two outgoing forward or reverse edges.

For example, in Figure 6(c), if the search reaches vIin, the algorithm begins two

sub-searches beginning with vin and vIout.

• During the search, the algorithm may form a directed cycle only in GL; further-

more, such a cycle must contain a forward or reverse edge between a µ and µ′

node. Once a cycle is formed, the search in GL is complete.

We build a while loop as either a forward or a reverse loop. Synthesizing such a while

loop consists of synthesizing its body and predicate.

2.2.1.1 Building the loop body.

The loop body in the reverse program is generated from the search result in GL.

For each variable we remove the edge between the µ and µ′ nodes and hence remove

the cycles, so that we can generate the loop body using our prior code generation

algorithm.

2.2.1.2 Building the loop predicate.

To guarantee that the generated loop has the same iterations at runtime as the

original loop, we need to build a proper loop predicate. We propose three approaches
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to building a correct loop predicate. To illustrate those approaches, we temporarily

introduce the following loop example. We assume that the omitted statements modify

neither A[] nor i.

1 i = 0 ;

2 while (A[ i ] > 0) {

3 /∗ . . . ∗/

4 i = i + 2 ;

5 }

• Approach 1: Building the same loop predicate as that in the original loop.

To build this predicate, we need to retrieve each value in the predicate. A new

search is needed to acquire those values, and the search result will be combined

into the RG generated above. For the example above, we can build a loop

below that has the same number of iterations as the original one. The omitted

statements will be substituted by the loop body built above.

1 i = 0 ;

2 while (A[ i ] > 0) {

3 /∗ . . . ∗/

4 i = i + 2 ;

5 }

• Approach 2: Building the loop predicate from a variable updated in the loop.

Given a variable v and its four definitions: vin, v
I
in, v

I
out, and vout, if vIin 6=vout in

each iteration except the last definition of vIin (which is actually vout), and if we

can retrieve vin and vout before the loop (hence we cannot retrieve them through

the loop), and vIout in the loop, we can use them to build a while loop as:

u := vin;while(u 6= vout) { / ∗ update u ∗ / }

Similarly, if vIout 6=vin in each iteration, and vin and vout can be retrieved before

the loop, and vIin can be retrieved in the loop, we can use them to build a while
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loop as:

u := vout; while(u 6= vin) { / ∗ update u ∗ / }

In general, it is difficult to detect all variables satisfying the properties above.

However, there are some special cases. One case is that of monotonic vari-

ables [29], which are monotonically strictly increasing or decreasing in each

iteration. Another is that of induction variables, which are special monotonic

variables that are relatively easier to recognize. In the above example, i is an

induction variable. Assume its final value after the loop is i1 that is known,

and then we can build the following loop with the predicate using i.

1 i = 0 ;

2 while ( i != i 1 ) {

3 /∗ . . . ∗/

4 i = i + 2 ;

5 }

• Approach 3: Instrumenting the original loop with a counter counting the

number of iterations. The counter has the initial value zero and is incremented

by one on each back edge of the loop. The final value of the counter is stored

in the forward program and restored in the reverse program as the maximum

value of another loop counter. This approach generally works if either of the

above two approaches fail. However, it requires instrumentation (the counter),

and therefore forces generation of a forward program. Below we show the in-

strumented loop in the forward program (first) and the generated loop in the

reverse program (second) for the above example.

1 i = 0 ;

2 count = 0 ;

3 while (A[ i ] > 0) {

4 /∗ . . . ∗/
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5 i = i + 2 ;

6 count = count + 1 ;

7 }

1 while ( count > 0) {

2 /∗ . . . ∗/

3 count = count − 1 ;

4 }

We prioritize these approaches as follows. Applicability and state-saving cost are

our main criteria. We prefer Approach 1 and 2 over 3. When either 1 or 2 apply, if

no state-saving is required, we apply them. Otherwise, we try Approach 3 and choose

the overall approach with the least cost.

As an example, suppose we apply this algorithm to the loop in Figure 7(a). Figure

7(b) shows its CFG in loop-closed SSA. The input is n0 and the output s3. Our goal

is to generate a reverse program that takes s3 as input and produces n0. We build

the VSG shown in Figure 7(c), with forward and reverse edges shown as bold and

dashed edges, respectively. Note that the equality between n3 and 0 is acquired from

solving constraints, a standard compiler technique.5 The search result for value n0 is

shown in Figure 7(d), from which we can build the loop body as { n = n + 1; }.

Next, we build the loop predicate. In our example, because we wish to retrieve

the initial value of n, we cannot use it to build the loop predicate. We can discover

that s is a monotonic variable, and that both the initial and final values of s, which

are 0 and s3, respectively, are available. To get s2, we search its value on the VSG

and the search result is shown in Figure 7(e). As a result, we build the loop predicate

from s and the reverse program is generated as below.

5For clarify, we remove the equality n1 = s2 − s1, as this relation will not be used during the
search.
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s0 = 0;

s1 = μ(s0, s2);
n1 = μ(n0, n2);
while(n1 > 0)

 s2 = s1 + n1;
 n2 = n1 - 1;

s3 = η(s1);
n3 = η(n1);

(b)
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// input: n (n >= 0)

s = 0;
while (n > 0) {
    s = s + n;
    n = n - 1;
}

// output: s

(a)

Available node Target node Forward edge Reverse edge

Figure 7: (a) The program of our example. (b) The CFG in loop-closed SSA form.
(c) The VSG. (d) The RG for retrieving n3. (e) The RG for retrieving n0 and s2.
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1 while ( s != 0) {

2 n = n + 1 ;

3 s = s − n ;

4 }

Above we have built a reverse loop in the reverse program, but it is also possible

that the reverse program contains a forward loop. For instance, if we change our

example into the program shown below:

1 s = 0 ;

2 i = 0 ;

3 while ( i < n) {

4 i = i + 1 ;

5 s = s + i ;

6 }

Without modifying its semantic, its inverse will contain a forward loop which is

shown below:

1 s2 = 0 ;

2 i = 0 ;

3 while ( s2 != s ) {

4 i = i + 1 ;

5 s2 = s2 + i ;

6 }

7 n = i ;

This is because the input of the new program n0 is equal to i’s final value, which

is the output of the loop.

2.2.2 Dealing with loops other than while loops

In practice, the vast majority of loops have a single entry, which are called natural

loops [20]. Loops with more than one entry are quite rare and can in fact be trans-

formed into natural loops [20]. However, it is quite common that a loop has several
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exits. For example, in C/C++ we may exit a loop early through break, return,

or goto statements. Nevertheless, given a non-while natural loop, we can transform

it to separate the last iteration from the loop; then, the remaining iterations form

a new while loop, and the last iteration will not belong to the loop and hence can

considered with the control flows outside of the loop. We then process the new while

loop as previously described. Note that this “transformation” is only applied to the

CFG during the analysis, and not to the original program. As such, in the forward

program P+ the last iteration and other iterations of each loop continue to share the

same code.

Figure 8(a) shows a loop in a CFG, with a header (node 1) and two back edges

(4→1 and 5→1). There are two different exits from this loop, which are nodes 6

and 7. Figure 8(b) shows the CFG of the transformed loop. This transformation is

performed as follows.

In a natural loop, only the last iteration takes the exit, and any other iteration

goes back to the loop header. Therefore, if the last iteration is peeled off from the

loop, this loop will turn into a while loop. To implement this transformation, we

create a new branch node with an unknown predicate that returns true if the next

iteration is not the last one and false otherwise. Note that we will not build this

predicate in the forward program. The new branch node turns over all in-edges of

the loop header. Its true labeled out-edge will point to the loop header of a copy

of the loop (node 1′) with back edges but without exit edges, and all back edges are

redirected to this new branch node making it a new loop header. Note that after

removing exit edges it is possible that a previous branch node becomes a non-branch

node (node 3′, for example), which is fine because the removed branch edge will not

be taken. Then, we can remove the (side effect free) predicates from those nodes.

The edge labeled with false from the new branch node will point to the original loop

header (node 1) and all back edges in the original loop are removed, since the last
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Figure 8: (a) A loop in CFG with two back edges and two exits. (b) The CFG of the
transformed loop.

iteration won’t take the back edge. The nodes from which the exit of the program is

not reachable due to the back edge removal are removed (node 4 and 5, for example).

Again the predicate is removed from a node once it is not a branch node anymore

(node 2 and 3).

After the transformation, all loops in the program become while loops and our

method applies. Since the new generated loop predicate is unknown, to build the loop

predicate in the reverse program, we cannot use the first approach proposed above

any more.

Because those two newly created branch bodies share the same code in the forward

program, any instrumentation will also be shared between them. For example, if a

value defined in the false body above needs a state saving, in the forward program we

can only perform the state saving in the loop, which results in saving a value many

times and then larger time overhead. For this reason, we could forbid state savings

on any variable in the false body. Properly defining the cost of this operation may

help to get the better search result.
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CHAPTER III

SYNTHESIS FOR PROGRAMS WITH ARRAYS

In this chapter, we extend the previous method to handling arrays in both loop-free

programs and those with loops. We will still use the same framework. That is, we

will build a VSG for the program with arrays, then perform a search on it to build a

RG. Then we translate the RG into the source code. To build the VSG for arrays, we

apply a modified Array SSA based on [25], and define several special VSG nodes for

arrays. To represent the equality between two arrays, we employ the array subregion

as the constraint. During the search those subregions will be calculated to guarantee

that all array elements will be retrieved. We also develop a demand-driven method

to retrieve array elements from a loop.

3.1 Handling loop-free programs with arrays

We first consider how to extend the VSG and RG machinery to handle arrays in

loop-free programs. (We treat loops in Section 3.2.) The key idea behind our method

is explicit representation of array subregions (subsets of array elements) combined

with a modified form of Array SSA [25].

3.1.1 Array subregion representations and operations

Given an array a with length a.length, all elements can be represented by their indices

as an interval [0, a.length). We denote this index set, [0, a.length), as the universal

set, U(a). A (strict) subregion of a is a (strict) integer subset of the universal set.

Among all possible subregions of an array, notable cases we will consider include:

• The subregion containing a single index i, denoted {i}, where i is a constant or

an SSA name.

47



• The set of all indices other than i, or {i} = U(a)− {i}.

• The triplet [p : s : q] is the set of all indices starting from p up to (and possibly

including) q with stride s. We use the shorthand [p : q] when s = 1.

We need index set operations so that our analysis algorithm can conclude whether

or not we have restored all elements of the array on all paths. However, our analysis,

being symbolic at compile-time, will also need to be conservative. For example, given

an intersection {i} ∩ {j}, the result of it could be {i} or ∅, depending on whether

i = j or i 6= j, which may be indeterminate at compile-time. As such, key operations

we will use are:

{i} ∩ {j} =

 {i} if i = j

∅ if i 6= j

{i} ∩ {j} =

 {i} if i 6= j

∅ if i = j

{i} ∪ {j} =

 {i} if i = j

{i} ∪ {j} if i 6= j

{i} ∪ {j} =

 U if i = j

{j} if i 6= j

{i} ∩ [p : q] =

 [p : q] if i ≥ p and i ≤ q

∅ if i < p or i > q

Because the VSG reveals equalities between values, we can use it to check if i = j

by starting a path search from i to j. To check inequality, we can use the previously

proposed inequality graph [7]. In this representation, each node is a constant or an

SSA name; each directed edge x
c−→ y represents x − y ≤ c. The inequalities are

obtained from, for instance, branch predicates like if(x > y) and assignments like
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x = y + c, where c is a constant. From the inequality graph, checking whether x 6= y

is equal to checking if x− y ≤ −1 or y − x ≤ −1.

As our analysis manipulates and simplifies set operations, we may need to nor-

malize the operations according to the set operation laws, including identity laws,

domination laws, idempotentency, commutativity, associativity, distributivity, among

others.

3.1.2 Modified δ function in Array SSA

In scalar SSA, the entire array receives a new version number even when just a single

element is modified, i.e., even assigning one element effectively kills all preceding

array definitions. To better support array-based programs, we adapt Array SSA [25].

In Array SSA, defining an array element only kills the previous definition of that

element instead of the whole array. Therefore, it more accurately represent the use-

def relations between array subregions.

Our modified form of Array SSA is simple: after an array element is modified, we

(a) assign a new version to the corresponding array, and also (b) define a δ function (as

in Array SSA) to maintain equality relations between the unmodified array subregions

in the new array and the previous array. Because we only care equality relations

instead of def-use, our modified Array SSA has fewer SSA names and simpler δ

functions compared to the original one. For example, consider the following program.

int a[N ];

a[i] := 0;

a[j] := a[j] + 1;
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The program in our modified array SSA is shown below:

int a0[N ];

a1[i] := 0;

[a1, {i}] := δ([a0, {i}]);

a2[j] := a1[j] + 1;

[a2, {j}] := δ([a1, {j}]);

Note that when a[i] is modified, we give the array a a new version 1 as in original

SSA, and just after this definition, we create a δ function [a1, {i}] := δ([a0, {i}]) that

defines the subregion {i} of a1 by the same subregion of a0. From this δ function,

we know a0 and a1 have identical elements in the subregion {i}. We use the notation

(a0 ≡ a1)@{i} to represent such a relationship; thus, in this example, we also have

(a1 ≡ a2)@{j} from the other δ function, [a2, {j}] := δ([a1, {j}]).

In addition, the φ functions that appear in SSA, when defined for arrays with

several array definitions from different control flow paths as the arguments, have the

same meaning as those for scalars. That is, for a φ function a1 := φ(a2, a3), we

have (a1 ≡ a2)@U(a) and (a1 ≡ a3)@U(a) with different control flow path sets as

conditions.

3.1.3 Arrays in the VSG

Since an array is a collection of values, we would like the VSG to be able to express

equalities between individual values where needed. Here, we describe a technique for

doing so.

Let au be version u of an array definition. We augment the VSG with an array

node to represent it, and refer to this array node by au directly. Any element au[i]

is a scalar value and may still have a scalar value node in the VSG. A δ relation,

[au, {i}] = δ([av, {i}]), expresses the equalities au[j] = av[j], ∀j ∈ {i}. To represent

this relation, we add an array edge in the VSG between the array nodes au and av,
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and attach the subregion {i} to this array edge. For each array access au[i] in the

program, we add a relation between this element and the array au by adding an edge

connecting the corresponding two nodes in the VSG. We call this edge as an array

access edge. Similarly, we attach the subregion {i} to this edge. As before, every edge

in the VSG is also attached with a control flow path set, including array and array

access edges.

Figure 9 shows the VSG built for the above array example above. Each array

node is a square, to differentiate from circular nodes for scalars. Since there is only

one control flow path in this program, the path information on each VSG edge is not

shown here.

a0

0

a1[i]

a1

a1[j]

a2

a2[j]

++

−−

{i}

{i}

{j}

{j}

{j}

Figure 9: The VSG.

For each φ function defined for arrays, in the VSG we build a φ array node and

connect it to all of its arguments. Again, we attach a control flow path set and the

full array region to the edge.

3.1.4 State saving on an array and its elements

Recall that in the forward program we may choose to save state; to enable this

possibility, we create a state saving node in the VSG and connect all value nodes

to it. During the search, selecting such a state saving edge generates a state saving

statement in the forward program. If we wish to regard state saving as expensive, we
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can attaching costs to all edges and penalize state saving by assigning higher weights

to state saving edges. It is possible to formulate the search algorithm to account for

such costs [17].

For each array node au in the VSG, we also connect it to the state saving node

using an edge that we call a state saving array edge. The subregion on this edge

is the full region U(a). For example, Figure 10 shows the VSG with a new added

state saving node and three state saving array edges for the VSG shown in Figure 9.

During the search, the subregion on a state saving array edge will be updated, and

the cost of this edge is calculated based on the size of the updated subregion. Assume

the cost of storing an array element is c, and the size of the subregion on the state

saving edge in the search result is s, then the cost of this edge is s× c.

a0

0

a1[i]

a1

a1[j]

a2

a2[j]

++

−−

SS

{i}

{i}

{j}

{j}

{j}

U(a)

U(a)

U(a)

Figure 10: A state saving node connecting all value nodes.

3.1.5 Search the VSG to retrieve an array

For array programs, we need to modify the scalar VSG search procedure of Section ??

to take the appropriate action when it encounters an array node.
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There are three scenarios in which a search may reach an array node: (a) at the

start of the search, when the whole array a0 needs to be retrieved; (b) when the

search reaches the array node au from an element node au[i], while searching for the

subregion {i}; or (c) when the search reaches the array node au from another array

node av. In any of these cases, there will be a particular subregion that is the search

target. The search needs to explore the incident edges in order to find all values of

the array elements in this target subregion. That is, let Rt be the target subregion

whose values we seek at some point during the search. Suppose the search selects a

particular outgoing edge e with subregion Re. Then, Re ∩ Rt is the subregion of the

array that could be retrieved using this edge. The search may need to continue to

select edges until their union
⋃
Ri = Rt.

Before giving a search algorithm for array-based programs, we first state the de-

sired properties of the search result, i.e., the RG. Similar properties of a RG for scalar

programs appeared in the original work we are using [17]. Here, we generalize these

properties for both scalar and array value nodes. To formalize these properties, let G

be a RG and consider a filtered RG, Gp, under a control flow path p. That is, Gp is

a graph obtained from G by selecting only edges with and their incident nodes if the

control flow path set the edge contains p. The formal properties appear in Table 1

and apply to Gp,∀p. Here, we summarize the key intuition behind each property:

• Property I states that to retrieve a whole array is to retrieve all elements thereof.

• Property II states that every desired array element during the search must be

retrieved.

• Property III states that the value of each array element needs to be retrieved

only once.

• Property IV forbids cyclic data dependence in the RG: given a loop-free pro-

gram, we wish to build loop-free forward and reverse programs, which should
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Table 1: The properties of the RG. The “scalar” column shows the properties as
stated in other work [17]; the “array” column shows our generalizations for array-
based programs.

Scalar node Array node

I For each target scalar
node n, if it is not an
available node, then
OutDegree(n) > 0.

For each target array
node n, if it is not an
available node, then
OutDegree(n) > 0, and⋃

out∈OutEdges(n) = U(a).

II For each scalar node n that
is neither a target node nor
an available node, then if
InDegree(n) > 0, then
OutDegree(n) > 0.

For each array node n
that is neither a target
node nor an available node,
then if InDegree(n) > 0,
then OutDegree(n) > 0,
and

⋃
out∈OutEdges(n)Rout =⋃

in∈InEdges(n)Rin.

III For each scalar node n,
OutDegree(n) ≤ 1.

For each array node n, if
OutDegree(n) > 1, then for
e, f ∈ OutEdges(n), e 6=
f ,Re ∩Rf = ∅.

IV There is no directed cycle
that contains no array node.

For each directed cycle with
array and array access edges
e1 . . . en,

⋂n
i=1Rei = ∅.

not have any cyclic data dependences.

The formal search algorithm for array nodes appears in Algorithm 5. We retrieve

each desired array a0 by starting a search SearchSubregion(a0,U(a), ∅), thereby ful-

filling Property I. In Lines 7-13, the algorithm tries to retrieve a subset of subregion

through each outgoing edge from target, and those search results are sorted in Line

14 by cost. Lines 15-21 pick the best search results while also satisfying Property III.

Note that in Line 20, if a candidate edge in route already exists in resultRoute, we

update the subregion on it in resultRoute to be the union of itself and the subregion

on the same edge in route. Line 22 checks whether Property II is satisfied. Because

of the existence of state saving edges, Property II can always be eventually satisfied.

Property IV is satisfied by the cycle checks in Lines 12 & 18. Finally, the search
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result is returned.

This algorithm works only on array nodes. When the search reaches a scalar value

node, we invoke the earlier version of this algorithm for scalars [17], which is similar

to Algorithm 5 but without the operations related to subregions. In addition, note

that Algorithm 5 is run for each control flow path. We need to perform this algorithm

on all control flow paths in the original program to retrieve any desired value.

This last fact reveals a weakness of the scheme, which was already a weakness of

the scalar case and related path profiling algorithms: the asymptotic cost of search

grows with the number of control flow paths. This cost is exponential in the program

size in the worst case. However, for the vast majority of reasonably structured pro-

grams, the absolute number of such paths per subprogram is not typically very large,

thereby yielding reasonable compile-time costs.

An additional detail is that we must also retrieve all indices that appear in an

array element node and subregions on the edges. To do so, we start another search

to retrieve those index values and then combine the search result to the RG.

3.1.6 Generating code from Route Graph

Recall that a RG shows explicit data dependences in the corresponding reverse pro-

gram, and that we need to translate the edges in the RG, visited in the reverse

topological order, into statements in the reverse program. Our scheme gives a con-

crete translation algorithm as shown in Algorithm 4. The biggest twist in the array

case is the presence of subregions on array edges (including access and state saving

edges). Array edges and array access edges will not be translated into any statements

because they don’t really define any values—array edges come from δ functions which

are pseudo-definitions that will not appear in reverse program. Therefore, the subre-

gion on such an edge does not affect the generated code, as long as it is not an empty

set. If the subregion on an edge is an empty set, this edge should be removed from
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Algorithm 5: Search for a subregion of an array in the VSG.

Input: The search start point target which is an array node, the target
subregion subregion, and the already collected edges in the previous
search currentRoute.

1 SearchSubregion(target, subregion, currentRoute)
2 begin
3 resultRoute ← ∅, subRoutes ← ∅, r ← ∅
4 if target is available then
5 Add target to resultRoute
6 return resultRoute

7 foreach edge ∈ OutEdges(target) do
8 edge.subregion ← edge.subregion ∩ subregion
9 if edge.subregion = ∅ then continue

10 newRoute ← SearchSubRoute(edge.target, newSubregion,
currentRoute + edge)

11 Add edge to newRoute
12 if HasNoCycle( currentRoute + newRoute) then
13 Add newRoute to subRoutes

14 Sort subRoutes according to cost in ascending order
15 foreach route in subRoutes do
16 route.subregion ← route.subregion− r
17 if route.subregion = ∅ then continue
18 if HasNoCycle( resultRoute + route) then
19 r ← r ∪ route.subregion
20 Add route to resultRoute
21 if r = subregion then break

22 if r 6= subregion then return ∅
23 Add target to resultRoute
24 return resultRoute
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the RG. Since a subregion is symbolically represented, as we discussed before it may

be an empty set conditionally. For example, given a subregion {i} ∩ {j} where we

cannot determine if i 6= j at compile time, we also cannot determine if it is an empty

set or not. If we still keep this edge during code generation, and at runtime i 6= j,

then we may retrieve some additional values that are unnecessary to be retrieved.

To avoid such redundant retrievals, in the reverse program we can add a condition

as a runtime check to all code translated from this edge and following edges. This

extra condition guarantees the subregion cannot be empty. For example, the condition

to be added for the subregion {i} ∩ {j} is if (i 6= j).

An alternative method is to avoid adding runtime conditions, which makes the

code generation easier and reduces the number of conditions in the reverse program.

The price is that we may recover some values which are not really needed, or we may

retrieve a value more than once. However, such redundant restores do not affect the

correctness of the reverse program.

Let us now consider the overall scheme for the running example used in this

section. Assume that the input is a0, that the output is a2, and that the indices i

and j are available values. To build a reverse program with input a2 and output a0

from the VSG shown in Figure 10, we will search the for values of all elements of a0

from a2. The search result is shown in Figure 11.
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a0 a1

a1[j] a2[j]

a2

−−

SS

{i} ∩ {j}

{i} {i} ∩ {j}

{i}

Figure 11: The RG built from the search on the VSG shown in Figure 10.

From this RG, the overall algorithm will generate the following forward (first) and

the reverse (second) programs:

1 s t o r e ( a [ i ] ) ;

2 a [ i ] = 0 ;

3 a [ j ] = a [ j ] + 1 ;

1 i f ( i != j )

2 a [ j ] = a [ j ] − 1 ;

3 r e s t o r e ( a [ i ] ) ;

Observe that the condition if(i 6= j) in the reverse program is generated according

to the subregion {i}∩{j} on the edge a1 → ai[j], which is necessary to ensure it is not

empty. If we remove this condition from the reverse program, we still get a correct

result. Moreover, in the case of i = j, the operation a[j] = a[j] − 1 is unnecessary

but it does not have any correctness side effects.
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3.2 Handling programs with loops and arrays

In this section we discuss how to retrieve an array or a subregion of it from a do-

while loop. (Remember that in Section 2.2.2 a method is proposed to transform an

arbitrary loop into a while loop, which can also be further transformed into a do-while

loop.) We will consider two scenarios: the array is modified in the loop, and it is just

used in the loop.

3.2.1 The array being retrieved is modified in the loop

Given a do-while loop l that modifies an array a, in SSA there are at least four

important definitions of a as shown below: the input/output of the loop ainit and

afinal, and the input/output of each iteration ain and aout. Now we consider the

problem how to synthesize a loop in the reverse program to retrieve ainit.

/ ∗ Input : ainit ∗ /

do {

ain := µ(ainit, aout);

...;

aout := ...;

} while (...);

afinal := η(aout);

A simple idea to retrieve ainit is using the method developed for scalars [16]: in

each iteration, we retrieve all elements of ain from aout and/or possibly other values.

We don’t consider to store values in a loop in the forward program, because it always

brings high cost. Consequently, in each iteration it is not guaranteed that all elements

of ain can be retrieved, but possibly only a subregion of it. However, the retrieval of a

subregion in an iteration may require another subregion of the same or another array
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in the next iteration, and it difficult to check the equalities/inequalities between values

defined in different iterations, in order to resolve the set operations during the search.

In addition, because of the data dependences between two successive iterations, the

generated loop will have the opposite iteration order to the original one. Given a

variable v, let vt be its value in the iteration t. Assume this value is needed in the

generated loop. Then we say the generated loop has the the identical or opposite

iteration order to the original loop, if this variable has the same value as vt in the

iteration t or l.len−t−1 of the generated loop respectively, where l.len is the number

of iterations for both original and generated loop. However, not like scalars, there may

not exist any data dependences between two iterations in an array that is updated in

a loop, and then we may be able to choose either identical or opposite iteration order

for the generated loop. In some cases we may need this flexibility (we will see such a

case in Section 3.2.3).

To overcome those two drawbacks, we develop a new searching strategy, which

is based on the fact that each element can be retrieved through the loop only if

it is used inside. Indeed, if that element is not used in the loop, in the VSG we

don’t have any equality information of it. Assume the array a is used in the loop

through the index i. We will try to retrieve the value of ainit[i
t] through ain[it] if

ainit[i
t] = ain[it],∀t ∈ [0, l.len). The successful retrieval of ainit[i

t],∀t ∈ [0, l.len) then

leads to the retrieval of the subregion
⋃

t∈[0,l.len) {it} of ainit. Below we will introduce

how we build the VSG as shown in Figure 12 to enable this approach and how to

search the value of ainit[i] in each iteration.

3.2.1.1 Build the VSG for arrays modified in a loop

In SSA, the input of each iteration ain is defined by a µ function, which is a special

φ function whose arguments contain definitions from both inside and outside of the

loop. Given such a µ function: ain = µ(ainit, aout), let’s consider at the beginning of
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the iteration t, what is the subregion Rt
I such that (ainit ≡ ain)@Rt

I .

Let Ra
def (m,n) define all indices at which the array a is modified from the begin-

ning of the iteration m to the beginning of the iteration n. Also, let Iause and Iadef be

two sets containing all indices of a from which the elements of a are used and defined

in the loop respectively. Since each modification to a is made through an index in

Iadef , we have:

Ra
def (m,n) =

⋃
i∈Iadef

⋃
t∈[m,n)

{it}

And Ra
def (m,m) = ∅. Then Rt

I is a complementary set of Ra
def (0, t):

Rt
I = Ra

def (0, t)

To show (ainit ≡ ain)@Rt
I , we attach Rt

I to the VSG edge ainit ↔ ain as shown in

Figure 12. With the assist of Rt
I , checking if ainit[i

t] = ain[it] becomes checking if

it ∈ Rt
I .

Based on the µ function ain = µ(ainit, aout), we also connect ain and aout with two

directed edges. However, each edge shows an equality across iterations. The edge

ain → aout implies the data dependence from values in the iteration t to the values

in the iteration t − 1. If this edge is selected in the RG, the generated loop must

follow the same iteration order as the original loop. We call this edge a forward edge

as in [16]. Similarly, if the edge aout → ain is selected in the RG, the generated loop

should have the opposite iteration order to the original loop, and we call this edge a

reverse edge. Apparently, the search result of one value (either scalar or array) cannot

contain both forward and reverse edges, since the generated loop can only have one

iteration order. To show this difference, in Figure 12, a forward edge is shown as a

dotted edge, and a reverse edge is shown as a dashed edge.

The output of the loop afinal is the output of the last iteration. At the end of the

iteration t, let Rt
O be a subregion in which the elements of aout will not be modified
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in the following iterations and hence (aout ≡ afinal)@Rt
O. Then we have

Rt
O = Ra

def (t+ 1, l.len)

We add this subregion to the edge aout ↔ afinal. With the help of Rt
O, during the

search if aout[i
t] is required and it ∈ Rt

O, the search can exit the loop through the

edge aout → afinal. Otherwise, the search will pick the reverse edge aout → ain and

enter the next iteration.

Finally, we add a summary edge between ainit and afinal with the subregion RU =

Ra
def (0, l.len), in which all elements remain unchanged after the loop. Theoretically,

each element that is not modified in the loop can be retrieved through this edge.

ainit

µ

ain

aout

η

afinal

RU

Rt
O

Rt
I

Figure 12: The relations between four definitions of an array in a loop. The dashed

edge (reverse edge) implies the data dependence from an iteration to the next one.

The dotted edge (forward edge) implies the data dependence from an iteration to the

prior one.

3.2.1.2 The search algorithm

Now we present an algorithm of retrieving ainit in the VSG as shown in Figure 12.

We denote Search(ainit, {it}) as a search on the node ainit for the index it, where

i ∈ Iause. Also let Aout be a set of all array definitions as the output of the iteration.

We assume there is no nested loops, which we will discuss later.

For each i ∈ Iause, we do Search(ainit, {it}). If it is successful, the retrieved
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Algorithm 6: The algorithm of Search(ainit, {it})

1. If it ∈ RU , ainit[i
t] can be retrieved through ainit

RU−→ afinal.

2. Else, if it ∈ Rt
I , the search continues through the edge ainit

RtI−→ ain and
becomes Search(ain, {it}), which is the same as the search for loop-free
programs (the loop body is treated as a loop-free program), until the following
situations occur.

(a) If the search reaches an array node bout with subregion S, where
bout ∈ Aout, then

i. If S ⊆ Rt
O, the search exits the loop through the edge bout

RtO−→ bfinal,
and becomes Search(bout,S).

ii. Else, the search continues through the edge bout −→ bin and enters
the next iteration (and hence t is incremented by one) and becomes
Search(bin,S).

(b) If the search reaches a scalar value node sout, which is an output of the
iteration, then it continues through the edge sout → sin and enters the
next iteration. Note that the search will then apply the method proposed
to reverse programs with loops for scalar values [16].

(c) If the search reaches a value node defined outside of the loop, then it
continues using the method for loop-free programs.
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subregion of ainit is
⋃

t∈[0,l.len) {it}. The final retrieved subregion is the union of each

retrieved subregion for each index; the elements not in this subregion still need to be

retrieved outside of the loop. If the search result does not contain reverse edges, the

generated loop can have arbitrary iteration order (although we only consider the same

and opposite order as the original loop). If the search reaches the next iteration in

Step 2-(a)-ii as Search(bt+1
in ,S), and it is quite possible that S contains values defined

in the iteration t. However, it is difficult to check the equality/inequality between

two values in two different iterations as required during the search. In Section 3.2.2,

we will propose a solution to this issue.

Once Search(ainit, {it}) is successful, we also need to retrieve it, and the search

result should obey the same iteration order as the generated loop.

3.2.1.3 Induction variables as indices

In the search algorithm above, checking the set membership between an index and a

subregion is essential. This is difficult for an arbitrary index and subregion, but if all

indices in Iause and Iadef are induction variables, their properties can make it possible

to accomplish the membership inspection at compile time.

An induction variable [29] is a variable whose value is systemically incremented

or decremented by a constant value in a loop. Given an induction variable i with an

initial value iinit and the step si. Let itin and itout be the input and output value of the

iteration t, then we have itin = iinit + si × t and itout = iinit + si × (t+ 1) respectively.

Also denote i’s output value of the loop by ifinal, and ifinal = iinit + si × l.len. Then

we have ⋃
t∈[0,l.len)

itin = [iinit : si : ifinal − si]

⋃
t∈[0,l.len)

itout = [iinit + si : si : ifinal]

.
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This triplet representation not only makes it easier to represent the result of set

operations like union on several such subregions, but also makes it possible to check

the set membership at compile time. For example, in the search algorithm we need

to know if it ∈ Rt
I . If all indices in Iadef are induction variables, then we have

Rt
I =

⋃
j∈Iadef

[j0 : sj : jt−1] =
⋃

j∈Iadef

[j0 : sj : jt − sj]

Then it ∈ Rt
I ⇔ it /∈ [j0 : sj : jt − sj], ∀j ∈ Iadef . When sj = 1, we have

it /∈ [j0 : jt − sj] ⇔ it < j0 ∨ it ≥ jt, which could be resolved by checking the

corresponding inequalities. GCD test and Banerjee test can also be used to check the

membership. Due to the space limit, we don’t discuss those methods here.

3.2.2 The array being retrieved is not modified in the loop

If the array is not modified in the loop, we can also retrieve it through the uses of its

elements. Suppose the array to be retrieved is a0, and it is used through the index i

which is a loop variant, then we search the value of a0[i] in each iteration. The search

algorithm is similar to Algorithm 6. The difference is the search will directly enter

the Step 2 without the membership inspection, and continue with the same three

possible results 2-(a),2-(b), and 2-(c).

There is a special case that retrieving an array element requires the values of other

elements in the same array. In this case, the search coming from the array node may

reach the array itself and form a cycle. For example, given a loop with loop condition

while(a0[i]==a0[j]), in the VSG shown in Figure 13, retrieving a0[i
t] needs the value

of a0[j
t], where i and j are both loop variants. If there is no other way to retrieve

a0[j
t], the only way to get its value is through a0[i

s] if is = jt, and s 6= t. If for every

jt there is a is such that is = jt, and assume s < t, then the search for a0[i
t] will

follow the path a0[i
t] → a0[j

t] → a0[i
s] → a0[j

s] → a0[i
r] → a0[j

r] → ..., (t > s > r)

until the iteration number becomes less that 0. Note that the last value in this path

should still be recovered in other ways. This strategy works well when i and j are
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induction variables with the same step, and can also be applied in Algorithm 6 at

Step (a)-ii (note that S is calculated when searching for one element, so that |S| ≤ 1,

and usually S only contains an index).

a0

a0[i]

a0[j]

{it}

{jt}

Figure 13: The VSG of a loop with loop condition while(a0[i]==a0[j]).

3.2.3 A case study

As an example, let’s look at how to reverse a delta encoding program, which is

shown below together with its SSA form. The VSG is built and shown in Fig-

ure 14(a)&15(a). There are three available value nodes: a3, which is the output

of the program; delta0, which is a constant value; and i3, whose value N is calculated

by solving constraints [16]. Their corresponding value nodes are shown in bold in the

VSG. Our goal is searching the VSG for a0.
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a3
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a2[i1]

t0

0

delta0

µ

delta1

delta2

η

delta3

+ −−

[i0 : it1 − 1]

{it1}

[it1 + 1 : i3 − 1]

{it1}

{it1}

[i0, i3 − 1]

(a) The VSG.

a0

µ

a1

a2

η

a3

a1[i1]

a2[i1]

t0

0

delta0

µ

delta1

delta2

+

⋃
{it1}

⋃
{it1}

{it1}

{it1}

(b) The RG for the first search result.

a0

µ

a1

a2

η

a3

a1[i1]

a2[i1]

t0

µ

delta1

delta2

η

delta3

−

⋃
{it1}

⋃
{it1}

{it1}

{it1}

(c) The RG for the second search result.

Figure 14: The VSGs and RGs (Part 1).
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i0

µ

i1

i2

N

i3

++−−

(a) The VSG of i.

0

i0

µ

i1

i2

++

(b) The RG of i for the first
search result.

µ

i1

i2

N

i3

−−

(c) The RG of i for the second
search result.

Figure 15: The VSGs and RGs (Part 2).

Original Program SSA Form

/ ∗ Input : a ∗ /

int delta := 0;

int i := 0;

do {

int t := a[i];

a[i] := t− delta;

delta := t;

i := i+ 1;

} while(i < N);

/ ∗ Output : a ∗ /

/ ∗ Input : a0 ∗ /

int delta0 := 0, i0 := 0;

do {

i1 := µ(i0, i3);

a1 := µ(a0, a2);

delta1 := µ(delta0, delta2);

int t0 := a1[i1];

a2[i1] := t0 − delta1;

[a2, {i1}] := δ([a1, {i1}]);

delta2 := t0;

i2 := i1 + 1;

} while (i2 < N);

i3 := η(i2);

a3 := η(a2);

delta3 := η(delta2);

/ ∗ Output : a3 ∗ /
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There is only one use of the element of a1 in the loop through the index i1. There-

fore, we inquire the value of a1[i1] for all iterations. At the iteration t, from the sub-

region on the edge a0 ↔ a1 as shown in Figure 14(a), we have (a0 ≡ a1)@[i0 : it1 − 1].

Because it1 > it1 − 1, and hence it1 /∈ [i0 : it1 − 1], then we have a0[i
t
1] = a1[i

t
1]. On the

VSG, we can get a1[i
t
1] through t0 from a2[i

t
1] + deltat1, and then the search forks to

two directions: one begins with a2[i
t
1] and one begins with deltat1.

The search for a2[i1] then passes through the edge a2[i
t
1] → a2 and reaches an

output of the iteration a2. According to the searching rule, we inspect if a2[i
t
1] = a3[i

t
1]

by checking if it1 belongs to the subregion on the edge a2 → a3 which is [it1 + 1 : i3 − 1].

Because it1 < it1 + 1, the answer is true. The search then exits the loop and ends

successfully at the available node a3.

The search for delta1 follows the searching rule in [16]. Figure 14(b) shows one

search result. As the value of i1 is required as the index of a1 and a2, we start

another search for it. Note that previously a forward edge delta1 → delta2 is already

selected, forcing the generated loop to have the same iteration order as the original

loop. Therefore, during the search for i1 the reverse edge i2 → i1 cannot be selected.

The search result of i1 is shown in Figure 15(b). In the reverse program we build

the loop body from the bold edges in Figure 14(b)&15(b). The loop condition of the

generated loop is built as the same one in the original loop. The synthesized reverse

program is shown below. Since there is no state saving used, the forward program is

identical to the original one.

1 int d e l t a = 0 ;

2 int i = 0 ;

3 do {

4 int t = a [ i ] + de l t a ;

5 a [ i ] = t ;

6 d e l t a = t ;

7 i = i + 1 ;
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8 } while ( i < N) ;

Figure 14(c)&15(c) show another search result that contains reverse edges. How-

ever, since the value delta3 is unknown, it needs to be stored in the forward program

(there should be an edge connecting delta3 to the state saving node, which is omit-

ted here). The resulted reverse program is shown below. We prefer the first result

because there is no state saving used.

1 int d e l t a ;

2 r e s t o r e ( de l t a ) ;

3 int i = N;

4 do {

5 i = i − 1 ;

6 int t = d e l t a ;

7 d e l t a = t − a [ i ] ;

8 a [ i ] = t ;

9 } while ( i != 0) ;

3.2.4 Handling nested loops

Handling nested loops is similar to handling a single loop. Assume there is an outer

loop lout and an inner loop lin. Given an index i of the array a in the inner loop, let

is,t be the value of i in the iteration s of lout and the iteration t of lin. Then from the

view of lout, in the iteration s we try to retrieve the subregion
⋃

t∈[0,lin.len) {i
s,t} of a.

If we can retrieve such a subregion for every s ∈ S, the final subregion of a retrieved

is
⋃

s∈S
⋃

t∈[0,lin.len) {i
s,t}.

3.3 Handling linked data structures

A linked data structure contains elements which have one or more “links” to other

elements such that each element could reside in separate memory place from oth-

ers, comparing to arrays whose elements are always stored together. Typical linked

70



data structures include linked list, tree, graph, etc.. Since an element can be linked

by several links from other elements, aliasing prevalently exists among linked data

structures. But this is similar to the aliasing brought by indices in arrays.

If we treat the address (normally saved in links) of elements in linked data struc-

ture as indices in arrays, it is possible to handle those linked data structures using

the method we developed for arrays. Let’s take the linked list (we will call it as list

briefly) as an example. Let Node define a node in the list and its definition is shown

below:

1 struct Node {

2 int va l ;

3 Node∗ next ;

4 } ;

Now suppose we have a list and would like to increment the value in each node

by one. The code should look like this:

1 void increment (Node∗ n) {

2 while (n != NULL) {

3 n−>va l++;

4 n = n−>next ;

5 }

6 }

Then we perform a transformation on this code by taking each field of Node as

an array and the address of the node as the index. Here we create two new arrays:

val and next. Whenever we access the field with the same name by an instance of

Node, we transform it into an access to an array. That is, for n→ val we get val[n].

The transformed code is shown below:

1 void increment (Node∗ n) {

2 while (n != NULL) {

3 va l [ n]++;
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4 n = next [ n ] ;

5 }

6 }

However, unlike the index of an arrays that may have regular access patterns,

we usually don’t have enough information of the pointers pointing to linked data

structures. We may use some high-level semantics like during the traversal of a list,

each element only appear at most once (otherwise a cycle will exist in the list which

breaks the definition of it).
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CHAPTER IV

SYNTHESIS FOR C++ PROGRAMS

In prior chapters, we target programs in no specific languages, as our method is general

and can be applied on any imperative language. In this chapter, we introduce some

techniques of handling several high-level constructs of C++ programs. We choose

C++ for three reasons: first, Backstroke is based on ROSE compiler [21], which is a

C++ source-to-source compiler; second, C++ is an object-oriented (OO) language,

and our discussion in this chapter can also be extended to other OO languages like

Java; third, initially Backstroke is used to generate reverse functions for OPDES

events, and our simulation engines (GTNets [22] and ROSS [9]) are writing in C/C++.

4.1 Normalizing C++ programs

Backstroke is a source-to-source translator. It is based on ROSE, which is a C++

source-to-source compiler. The ROSE compiler parses the source code and transform

it into an abstract syntax tree (AST) as the intermediate representation (IR). The

AST preserves almost all syntax informations on source level of the source code, such

that it can reproduce the similar code as the input together with the transformations

as desired. But it is not sufficient for some low level analysis, where other IRs like

three address code, in which each statement only has one operation with at most

three operands, is easier to analyze. As seen in the prior two chapters, our method

heavily depends on SSA form. Building the SSA form on source code is challenging,

as the source may contain complex statements or expressions.

To amortize those problems, given an input program, we will firstly normalize it

into another form without changing the behavior of the original program. We will

break some complex expressions or statements into simpler ones, and try to let each
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statement only have one side effect. Then the data flow analysis including SSA form

can be easily generated. In addition, because the forward program is generated by

instrumenting state saving and path recording statements in the original program,

normalizing the program can make it easier to find those instrumentation locations

in the program.

4.1.1 Forcing a specific execution order of several expressions

In C++, there is a concept called sequence point that is used to indicate the execu-

tion order of several expressions. A sequence point defines any point in a computer

program’s execution at which it is guaranteed that all side effects of previous evalua-

tions will have been performed, and no side effects from subsequent evaluations have

yet been performed. Normally, all expressions in a statement are executed before the

next statement. But in one statement, several expressions with side effects may exist.

In this case, the C++ standard only guarentees the execution order for the following

expressions:

• Comma expression: expr1, expr2. In this expression, expr1 must be executed

before expr2, and the returned value of expr2 is used as the returned value of

this comma expression.

• Logical and/or operator: expr1 && expr2 / expr1 || expr2. In this expression,

expr1 must be executed first, and expr2 is executed only if the returned value

of expr1 is true/false for logical and/or operations. This is called short-circuit

evaluation.

• Conditional operator: expr1 ? expr2 : expr3. In this expression, expr1 will

be executed first, and if the returned value is true, then expr2 is executed;

otherwise, expr3 is executed.
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For other expressions with several side effects, their order is undefined. For ex-

ample, if we have + + a = + + b, the resulted value of a can be either b or b + 1.

Although there is no syntax error in this expression, it may bring some problems

for our data flow analysis. To remove this ambiguity, we transform this kind of ex-

pression into several ones and force an execution order. The new expression will be

+ + a,+ + b, a = b, in which the comma expressions form a specific execution order

of all three side effects.

4.1.2 Facilitating instrumentations

A forward program is always generated by instrumenting the original program with

state saving and path recording statements. We have to find the proper place to make

the instrumentations. However, some C++ constructs make it a little difficult to find

such a place.

Take the logical and operator as an example. The evaluation of a logical and op-

eration follows the short-circuit rule: if the operand on the left hand side is evaluated

as false, then the operand on the right hand side will not be evaluated. Actually,

such an operator implicitly creates additional control flow paths to the program, and

during path recording we also have to count those paths, especially if there exists side

effects in either operand.

Below is an example showing this situation.

1 i f ( a > 0 && b++ > c )

2 /∗ t rue body ∗/

3 else

4 /∗ f a l s e body ∗/

The CFG of it is shown in Figure 16. During the path recording, we may have to

insert a statement on the dashed edge in this CFG, which is a critical edge (an edge

which is neither the only edge leaving its source block, nor the only edge entering

its destination block). However, at the source level it is very difficult to insert a
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statement on this edge.

if (a > 0)

if (b++ > c)

/* true body */ /* false body */

T
F

FT

Figure 16: The CFG for a logical and operation a > 0 && b++ > c as a predicate.

Our solution is first converting such an operator into a conditional operator, which

will be converted into conditional statements later. We convert logical and & or

operations into conditional operation according to the rules as below:

expr1 && expr2 → expr1 ? expr2 : false

expr1 || expr2 → expr1 ? true : expr2

For a conditional operator as a predicate, we will declare a new boolean variable,

then assign the result of the conditional operation to it. Consequently, the code above

becomes:

1 bool f = a > 0 ? b++ > c : fa l se ;

2 i f ( f )

3 /∗ t rue body ∗/

4 else

5 /∗ f a l s e body ∗/

We then go ahead convert the conditional operator into a conditional if statement,

and separate the statement f = b + + > c into two statements such that each

statement only contains one side effect:

1 bool f ;
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2 i f ( a > 0) {

3 f = b > c ;

4 b++;

5 }

6 else

7 f = fa l se ;

8 i f ( f )

9 /∗ t rue body ∗/

10 else

11 /∗ f a l s e body ∗/

Now the code is much cleaner and instrumentations are easier to made to it. Note

that after this conversion, we get one more control flow path which is a infeasible

path (the path passing through the false body of the first branch and the true body

of the second branch). This is fine as the behavior of the program is not changed.

4.2 State savings on C++ variables

In the prior chapters, when we need a state saving, we normally call two functions:

store() and restore(). But what is behind those two function calls? In this section,

we will introduce how and where to store variables in Backstroke. Besides variables

of basic types, we will also discuss how to correctly store a C++ object with class

type, including the case where the object is referenced by a pointer or reference of its

superclass type.

4.2.1 The storage stack

To perform state savings, we need a storage container that provides interfaces to per-

form the storing and restoring operations. Since the state saving made by Backstroke

is incremental, the names and number of variables to be stored and the size of space

needed are unknown at compile time. Therefore, in Backstroke we use a stack that

stores all variables. As stack is a LIFO (last-in-first-out) data structure, a variable
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that is firstly saved and pushed will be popped lastly. And during the OPDES, re-

verse events are also implemented in a LIFO order (the first reverse event is used to

remove the side effects produced by the last forward event in the sequence). Hence

stack is the right container to store variables and we only need one stack for all event

handlers.

To let our stack hold variables of arbitrary types, one way in C++ is that for

each variable we store a pointer of void * type pointing to the copy of the variable,

and during the restoration, the referenced variable should be casted to the proper

type. However, when a great number of variables are stored, the memories possessing

their copies may be scattered, and for each variable an additional size information

is needed in the heap memory and is usually attached to the memory containing

the variable, which can bring significant time and space overhead. To amortize this

overhead, we could use a memory pool that allocates memories to store variables. In

addition, we also observed that most stored variables are of basic types like integers

and floating points. To decrease the memory used to store those variables, we create

several special stacks which are used to store variables of basic types.

The storage stack should also provide an interface to clear the items inside. We

can do this by popping all items and release the memory for each item. However,

in some scenarios, instead of clear all items, we may only want to remove some old

items but keep new ones, when it is more convenient if we can access the stack from

both ends. In Backstroke, our storage stack has the type std::deque<void*>, which

is a double-ended queue that satisfies our needs. The function store() and restore()

are defined as below:

1 std : : deque<void∗> s to rageStack ;

2

3 template<class T>

4 void s t o r e ( const T& obj ) {

5 s to rageStack . push back (new T( obj ) ) ;
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6 }

7

8 template<class T>

9 void r e s t o r e (T& obj ) {

10 T∗ t = static cast<T∗>( s to rageStack . back ( ) ) ;

11 s to rageStack . pop back ( ) ;

12 obj = ∗ t ;

13 delete t ;

14 }

4.2.2 Storing C++ objects

For a variable with basic types or POD (plain old data) types, there are no side effects

when copying it during state savings. However, for a C++ object of class type, its

copy constructor, assignment operator, and destructor (we will call them big three

functions below) are triggered when storing and restoring it. Backstroke requires

that those big three functions should be defined “correctly”. Here we discuss the

correctness of them.

Given an object obj of type class S in the original program, if it is stored and

restored in the forward and reverse programs, we have to make sure the state is

recovered after running the reverse program comparing to that before running the

forward program. We store an object by calling its copy constructor to create a

copy of it which is stored in our storage stack. We don’t use assignment operator

here because the class of the object may not have a default constructor, in which

case creating an object is not that straight forward. When we restore this object,

normally the object is already there, and we can just assign the copy to it by calling

the assignment operator. After the restoration, we delete the stored object that

calls its destructor. We should guarantee that after storing and restoring an object

the simulation state is correctly rolled back. Below are the store() and restore()
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implementations as shown before with comments showing when those three functions

are called.

1 template<class T>

2 void s t o r e ( const T& obj ) {

3 s to rageStack . push back (new T( obj ) ) ; // The copy cons t ruc t o r i s

c a l l e d .

4 }

5

6 template<class T>

7 void r e s t o r e (T& obj ) {

8 T∗ t = static cast<T∗>( s to rageStack . back ( ) ) ;

9 s to rageStack . pop back ( ) ;

10 obj = ∗ t ; // The assignment opera tor i s c a l l e d .

11 delete t ; // The d e s t r u c t o r i s c a l l e d .

12 }

To guarantee the correctness, we require that there is no side effect in the big

three functions. For instance, each of them should not modify a global or static

shared variable that belongs to the simulation state and could affect the simulation

result. In addition, the copy constructor and assignment operator usually should make

a deep copy of the object. This means if this object has a pointer pointing to another

chunk of memory that is managed by this object, this piece of memory should also be

copied in those two functions, and needs to be released in the destructor. An example

is std::vector, whose copy constructor and assignment operator both make a deep

copy of the array inside. However, this requirement may be too strong as sometimes

it could conflict with the behavior of the original program. An apparent situation

is that the copy constructor does not alway make a deep copy of itself when several

instances of this class have links to the same data and any one can update it. If the

copy constructor makes a deep copy, the behavior of the program would be changed.

In the next part we will propose a solution to handle this issue.
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4.2.3 Storing an object referenced by a pointer/reference with its super-
class type

In C++, an object with a pointer or reference type Base may have a concrete type

Sub which is a subclass of Base. However, at compile time, it is impossible to identify

the real type of such an object. As a result, calling the copy constructor of the Base

class will not do the whole copy of that object, but only the part that belongs to the

type Base only. This will lead to the error in state savings as shown below:

1 class Base {

2 int baseVal ;

3 } ;

4

5 class Sub : public Base {

6 int subVal ;

7 } ;

8

9 Base ∗p = new Sub ;

10 s t o r e (∗p) ; // Error ! Only p−>baseVal i s s t o r ed .

Polymorphism is the solution to this problem. What we need is the virtual versions

of the big three functions. However, in C++ only the destructor can be declared as

a virtual function.

To get rid of this restriction, we can define our own virtual versions of the three

big functions. Specifically, we require that the class Base should provide two special

interfaces as virtual functions: a clone function that returns a copy of the object; an

assign function that assigns itself to another object.

1 class T {

2 public :

3 virtual T∗ c lone ( ) ;

4 virtual void a s s i g n (T∗ obj ) ;

5 } ;
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6

7 class S : public T {

8 public :

9 virtual T∗ c lone ( )

10 { return new S(∗ this ) ; }

11 virtual void a s s i g n (T∗ obj )

12 { ∗ this = ∗(dynamic cast<S∗>( obj ) ) ; }

13 } ;

There are two advantages of those two new interfaces: first, they are provided as

the complementary interfaces to the classes in the original program and hence will

not change its behavior, and when the original big three functions cannot fulfill our

requirement, we can always defines those two virtual functions; second, in this way we

could correctly store an object referenced by a pointer or reference of its superclass.

The code below shows the new store and restore functions using the new inter-

faces.

1 template<class T>

2 void s t o r e ( const T& obj ) {

3 s to rageStack . push back ( obj . c l one ( ) ) ; // The v i r t u a l copy

cons t ruc t o r i s c a l l e d .

4 }

5

6 template<class T>

7 void r e s t o r e (T& obj ) {

8 T∗ t = static cast<T∗>( s to rageStack . back ( ) ) ;

9 s to rageStack . pop back ( ) ;

10 obj . a s s i g n (∗ t ) ; // The v i r t u a l assignment opera tor i s c a l l e d .

11 delete t ; // The d e s t r u c t o r i s c a l l e d .

12 }
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Note that it is possible that the original destructor could not release all resources

generated by the clone() function. In this case, the assign() function should release

those resources so that after running assign() and destructor, all resources generated

by clone() will be safely released.

4.3 Handling function calls

In this section, we describe various techniques for extending our program inversion

framework to handle programs with function calls. In addition, we discuss the pros

and cons of these techniques.

4.3.1 Inlining

A nave technique of handling multiple function programs is to inline all the functions

in the program such that program is effectively converted to a single function. The

existing technique can then be applied to such a program to generate the correspond-

ing forward program P+ and inverse program P−. However, there are two major

drawbacks of this approach: 1) In programs with recursive calls, inlining can lead

to a infinitely large program and thus, recursion needs to be handled in a special

manner, 2) Even without recursion, inlining causes a large increase in the program

size. Consequently, the corresponding VSG generated for this program is a very large

graph. Performing the lowest-cost search on this graph for generating the RG then

becomes practically infeasible. However, inlining does ensure that the most optimal

solution compared to the other techniques described later.

4.3.2 State Saving

Another naive but practical approach is to save the incoming state before any function

call. As a result, when generating the program inverse, it is possible to ignore the

function call completely and restore the state saved before the call to the function.

Although this method ensures correct programs and allows the application of the
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existing techniques, it negates the very purpose of generating inverse programs. By

forcing a state save before every function call, this approach incurs a large cost.

4.3.3 Unique VSG and unique RG for each method

In this approach, we generate a unique VSG for each non-virtual method. Further,

considering the input parameters as the input state I and the return value of the

method as the output state O, we generate a RG for this method. Consider a method

foo(). In the VSG of the callee of foo(), there exists a node which represents the

call to foo(). This node is connected to the return value via an incoming edge and

has outgoing edges to the parameters of the called method. Using this approach,

we add a new node in the VSG of the callee representing a call to foo()−. The

parameters of foo() are connected to foo()− via edges incoming into foo()− while

foo()− is connected via an outgoing edge to the return value of foo(). Further, the

cost associated with these edges is as determined by the RG generated for foo().

This method allows a scalable approach to generating forward and reverse programs.

Although the final program generated by inlining carries a lower cost than by this

approach, it is possible to use this approach in a practical setting. However, this

approach suffers from one major drawback. Suppose that a parameter of foo() is

overwritten just before the call to foo(). The value of the parameter needs to be stored

in the forward program P+ since it is can not be recovered by computational methods.

However, if the reverse program use foo()−, it redundantly recovers the parameter

value at the call to foo() only for the recovered parameter value to be replaced by

the stored value. This lack of flexibility in choosing the recovery mechanism for each

parameter individually and being forced to use the same mechanism for all parameters

leads to a sub-optimal solution.
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4.3.4 Unique VSG and multiple RG for each method

This approach resolves the drawback in the previous approach. We still generate a

unique VSG for each method. However, a separate RG is generated for each parameter

with the parameter as the input state I and the return value of the method as the

output state O. The separate RGs are then used to generate multiple inverse versions

of the original method, with each inverse version generating a single parameter as the

return value. Consider a method foo() with parameters a and b and return variable c.

Using this approach, we generate the inverse versions foo()A− and foo()B−. In the

VSG of the callee to foo(), there are edges from c to foo(), from foo() to a and from

foo() to b. We additionally add edges from a to foo()A−, b to foo()B−, foo()A− to

c and foo()B− to c. This allows us to make independent decisions when generating

the reverse code for each parameter of foo().

4.4 Handling STL containers

C++ STL containers are commonly used in the real code, including the simulation

programs. From high level, if we take an STL container instance as a state variable,

and if it is modified in the event function, we have to use state saving technique

that stores and restores this container. From the respect of safety, if the type of the

container elements has a proper copy constructor and a copy assignment operator,

the copy constructor and copy assignment operator of STL container will call it

repeatedly on each element to store and restore the whole container; from the respect

of performance, this method suffers from bad efficiency: even if only one element in

the container is modified, we have to copy the whole container during state saving.

Due to the restrictions of our method, we cannot handle the C++ STL container

from low level (mass aliasing exists in STL container). In this section, we propose a

method to “undo” some modifications on STL containers better than state saving,

with the help of high level information.
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As a basic example, let take a look at the most commonly used STL container:

std::vector. A std::vector behaves like an array, except its size can by adjusted

dynamically at runtime. It has an interface named push back() which adds an ele-

ment to the end of the vector, and hence the size of it is incremented by one. If a

vector as a state variable is changed in this way, it is apparent that we can call its

another interface pop back() to undo this modification - a much more efficient way

than state saving. Now let’s consider how to undo a pop back(). Note that since the

last element of the vector is popped and destroyed, we cannot call push back() to

undo the pop unless we have a copy of the popped element. Here we come back to our

forward-then-reverse function call approach. In the forward function of pop back(),

we make a state saving on the being popped element before popping it, and in the

reverse function of pop back(), we can just restore the saved element and then call

push back() to add it back to the vector. The forward and reverse functions of

push back() and pop back() are generated by hand but can be recognized by Back-

stroke. They are shown below:

1 template <class T>

2 inl ine void bs vec to r push back fo rward ( std : : vector<T>& v , const T& t ) {

3 v . push back ( t ) ;

4 }

5 template <class T>

6 inl ine void b s v e c t o r p u s h b a c k r e v e r s e ( std : : vector<T>& v ) {

7 v . pop back ( ) ;

8 }

9 template <class T>

10 inl ine void bs vec to r pop back fo rward ( std : : vector<T>& v ) {

11 s t o r e ( v . back ( ) ) ;

12 v . pop back ( ) ;

13 }

14 template <class T>

15 inl ine void b s v e c t o r p o p b a c k r e v e r s e ( std : : vector<T>& v ) {
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16 T t ;

17 r e s t o r e ( t ) ;

18 v . push back ( t ) ;

19 }

Now let’s consider std::queue, which is a container adapter that gives the pro-

grammer the functionality of a queue - specifically, a FIFO (first-in, first-out) data

structure. It has two interfaces that modify the internal data: push() and pop().

push() pushes an object to the end of the queue and pop() pops the object at the

front of the queue. However, there is neither an interface that could push an object to

the front, nor an interface that could pop an object from the end. Hence it is impos-

sible to write “cheap” reverse functions for push() and pop(). But an std::queue

actually contains a real container inside, and the default one is a std::deque, which

has more interfaces that we need. Therefore, we can simply change the std::queue

into a std::deque then use the forward/reverse functions of it.

The Table 2 shows how we generate the forward and reverse code for common

STL containers and their interfaces.
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Table 2: The forward and reverse methods for some interfaces of STL containers

STL container &
interface

Forward Code Reverse Code

vector::push back()
deque::push back()
list::push back().

Call push back(). Call pop back().

vector::pop back()
deque::pop back()
list::pop back().

Store the popped element,
and then call pop back()

Restore the saved element
and call push back() to
push it to the container.

vector::insert()
deque::insert()
list::insert()

Store the index/iterator of
the element to be inserted
and call insert().

Remove the element with
the saved index/iterator by
calling erase().

vector::erase()
deque::erase()
list::erase

Store the element to be
erased and its position, then
call erase().

Restored the erased element
and insert it to the saved
position.

set::insert()
map::insert()

Call insert() and store the
iterator of the inserted ele-
ment.

Remove the stored element
by calling erase().

set::erase()
map::erase()

Store the element to be
erased can call erase().

Insert the stored element by
calling insert().

stack::push() Call push(). Call pop().

stack::pop() Store the popped element,
can then call pop().

Restore the saved element
and call push() to push it to
the stack.

queue::push() Use a deque instead
of a queue, and call
deque::push front().

Call deque::pop front() to
pop the element at the end
of the queue.

queue::pop() Use a deque instead of a
queue. Save the popped
element, and then call
deque::pop back().

Call deque::push back() to
push the saved element to
the front of the queue.
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CHAPTER V

CONCLUSION AND FUTURE WORK

In this thesis we presented a compiler framework Backstroke that generates forward

and reverse programs for a given program automatically. Two novel intermediate

representations are critical in Backstroke: a VSG shows equalities between values in

the program, and each equality is constrained by a set of control flow paths; a RG is

the search result of the VSG which shows all data dependences in the reverse program

and the forward and reverse programs are generated from the RG.

After the VSG is built and all target and available nodes are located, we start

a search from target nodes until available nodes are reached. A special state saving

node is added to the VSG such that any value could be retrieved at least using the

state saving method, though normally it is more expensive than other methods. The

search algorithm tries to get the search result with the least cost - that is, minimize the

usage of state savings. It also guarantees each target value is retrieved on all control

flow paths in the program. To deal with arrays, we introduce special array nodes into

the VSG and show equalities between subregions of arrays. An array subregion is a

subset of array elements, and during the search for a specific subregion, we perform set

operations on subregions to make sure the target subregion of the array is retrieved.

To retrieve an array subregion from a loop, we developed a demand-driven algorithm

that retrieves one array element from each iteration of the loop.

To handle loops, we first transform the loop into a single-entry single-exit loop like

a while loop or do-while loop. Given a while loop, the key idea behind retrieving an

input value of the loop from its outputs is to retrieve the corresponding input value

in each iteration. We need to augment the VSG with additional edges that connect
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the loop’s input and output values to the input and output values of the body. We

may then run the search procedure, which yields an RG with cycles. The presence of

cycles indicates that we need to build loops in the reverse program. To construct such

a loop in the reverse program, we also build a correct loop condition that guarantees

the loop in the reverse program has the same number of iterations at runtime as the

loop in the original program.

The Backstroke compiler is implemented based on the open-source ROSE compiler

[21] for C++ programming language. Specifically, Backstroke is a subproject of ROSE

and it can be downloaded from http://www.rosecompiler.org (Backstroke is located

at ROSE/projects/backstroke).

Future work We think there are two directions to the future work: the first one

includes eliminating restrictions in our method; the second one is building a framework

for program inversion cooperating with our compiler.

We could expand the scope of the target language by eliminating restrictions in

our method. One main limitation is that we cannot handle programs with aliasing.

Since our method heavily depends on SSA, we may need an SSA representation to

resolve aliases in the program [14]. In addition, we could also try to handle linked

data structures. We have seen previously that the method to handle arrays can

be applied to linked data structures, but more informations are required from more

sophisticated analyses. For example, from shape analysis, we may detect a pattern

of linked list traversal, and then we know each list node is traversed only once - an

important information that is very useful. Another limitation of our method is that

we lack of ability to solve equations to retrieve some values. For example, assume we

have a = x + y and b = x− y, then by solving equations we could get x and y from

a and b through x = (a+ b)/2 and y = (a− b)/2. How to combine this capability to

our VSG is a potential problem to be solved.
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In Chapter 4, we have seen that some high level informations are helpful for Back-

stroke to generate better result. Also, we have also seen that to properly perform state

savings on C++ objects, we need three new interfaces for us to do the clone, copy and

destroy. This suggests a framework for program inversion, in which some constructs

are provided to implement some necessary functions, or give the compiler some hints

to generate better result (think about how we handle C++ STL containers). From

another aspect, this new framework provides new language features that could be

recognized by Backstroke. We believe that this new framework (or new language)

together with Backstroke can produce much better results for program inversion.
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