

AD HOC DISTRIBUTED SIMULATION:

A METHOD FOR EMBEDDED ONLINE SIMULATIONS

A Dissertation
Presented to

The Academic Faculty

by

Ya-Lin Huang

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computational Science and Engineering, College of Computing

Georgia Institute of Technology
August 2013

Copyright © 2013 by Ya-Lin Huang

AD HOC DISTRIBUTED SIMULATION:

A METHOD FOR EMBEDDED ONLINE SIMULATIONS

Approved by:

Dr. Richard M. Fujimoto, Advisor
School of Computational Science and
Engineering
Georgia Institute of Technology

 Dr. George F. Riley
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Christos Alexopoulos
School of Industrial and Systems
Engineering
Georgia Institute of Technology

 Dr. Richard Vuduc
School of Computational Science and
Engineering
Georgia Institute of Technology

Dr. Michael P. Hunter
School of Civil and Environmental
Engineering
Georgia Institute of Technology

 Date Approved: May 24, 2013

To my Mother and Father

iv

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratefulness to my advisor,

Dr. Richard Fujimoto, for his continuous guidance and support. It is truly my honor to

conduct research under his supervision; I am especially thankful for his flexible

management and timely, patient advice that allow me to pursue my own research interests

without lost in the darkness. Also, he has always provided and encouraged me to

participate in every opportunity to widen my horizon of visions and imagination. Besides

research, his insightful suggestions regarding the career planning and full supports to my

decisions have led me to a bright future that I am looking for. I feel I am one of the luckiest

graduate students as he has made my study in Georgia Tech more than a spectacular

journey that, I believe, everyone would envy me and that I will cherish forever.

Also, I would like to thank Dr. Christos Alexopoulos for assisting me with the

theories in statistics and data analysis, and Dr. Michael Hunter for sharing useful

experiences and constructive opinions. Working with them has broadened my profession

both horizontally and vertically that I have the opportunities to analyze myriad applications

from both the theoretical and the practical aspects. I thank Dr. George Riley and Dr.

Richard Vuduc for serving as my committee members and providing unique

recommendations in improving this thesis.

A special thank goes to my colleagues and friends for their selfless support

professionally and spiritually: Dwayne Henclewood, Hoe Kyoung Kim, Ying Li, Qi Liu,

Robert Pienta, Wonho Suh, and George Vulov. I thank the friends in GT Taiwanese Student

Association, who are warm and kind that make the homesick less severe. In particular, I

must mention the following best buddies, without whom I cannot imagine how to sustain

v

these years: they are Gigi Fan, Hsini Huang, Lillian Liu, and Chunwan Yen. Moreover, I

appreciate all the assistance from the School of Computational Science and Engineering

and the College of Computing; I thank those who also ease my confusions to the new

culture: Lisa Guethlein, Lometa Mitchell, Holly Rush, Michael Terrell, Arlene Washington,

and Carolyn Young.

Finally, I owe a great deal to my parents, my elder brother, sister-in-law, nieces,

aunts, uncles, cousins, and all my family. Thank them for being there unconditionally, for

knowing the least of what I am working on and yet holding the most faith in me. Without

their love, this thesis can never be possible.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS... iv

LIST OF TABLES .. x

LIST OF FIGURES ... xi

SUMMARY .. xv

CHAPTER 1 INTRODUCTION .. 1

1.1 Background ... 1

1.1.1 Online Simulation .. 2

1.1.2 Parallel and Distributed Simulation ... 4

1.1.2.1 Synchronization Mechanism... 6

1.1.2.2 High Level Architecture.. 8

1.1.3 Ad Hoc Distributed Simulation...11

1.2 Problem Statement and Research Challenges... 14

1.2.1 Input Data Analysis.. 15

1.2.2 Experiment Design .. 17

1.2.3 Model Execution and Adaptation .. 18

1.2.4 Output Analysis.. 20

1.3 Research Contributions... 21

CHAPTER 2 PRINCIPLES OF AD HOC DISTRIBUTED SIMULATION 25

2.1 Formalism ... 25

2.2 Accuracy on Modeling Open Queueing Networks ... 34

2.3 Conclusions... 37

CHAPTER 3 AD HOC QUEUEING NETWORK SIMULATIONS............................... 39

vii

3.1 Implementation Architecture .. 40

3.2 An Open-Queueing-Network Model... 43

3.2.1 Partitioning... 45

3.2.2 Information Exchange.. 46

3.2.3 Estimation Aggregation ... 48

3.2.4 Data Resolution Conversion .. 49

3.2.5 Rollback Detection .. 50

3.2.6 Rollback Handling ... 52

3.3 Experiments and Results... 53

3.3.1 Regular Partitioning... 55

3.3.1.1 Scenario 1: Exponential Service Times .. 56

3.3.1.2 Scenario 2: Gamma(2, 0.5) Service Times ... 57

3.3.1.3 Scenario 3: Gamma(0.25, 4) Service Times ... 62

3.3.2 Irregular Partitioning.. 62

3.3.2.1 Center-Weighted Node Coverage ... 62

3.3.2.2 Balanced Node Coverage.. 66

3.3.3 Overestimation... 70

3.4 Buffered-Area Mechanism.. 73

3.4.1 Principles of Method.. 73

3.4.2 Effectiveness Analysis ... 74

3.4.2.1 Case 1: 11-Node Bidirectional Tandem Network 76

3.4.2.2 Case 2: 11 × 11 Grid Network .. 80

3.4.2.3 Case 3: 8 × 8 Grid Network .. 83

3.5 Conclusions... 86

viii

CHAPTER 4 ON THE TRANSIENT RESPONSE OF OPEN QUEUEING NETWORKS

USING AD HOC DISTRIBUTED SIMULATION.. 88

4.1 Delayed Responses in the Original Ad Hoc Queueing Simulation Method 89

4.1.1 Case 1: Partially Bidirectional Tandem Network .. 93

4.1.2 Case 2: Bidirectional Tandem Network ... 95

4.2 Iterative Ad Hoc Queueing Simulation Method ... 97

4.2.1 Partitioning and Local Simulation Model.. 97

4.2.2 Information Sharing ... 98

4.2.3 Information Aggregation.. 100

4.2.4 Optimistic Synchronization and Rollbacks.. 100

4.2.5 Naming—“Iterative” Ad Hoc Queueing Simulation Method........................ 103

4.2.6 Avoidance of Potential Livelocks .. 104

4.2.7 Livelocks from Incorrect Simulation Models .. 106

4.3 Experiments and Results..110

4.3.1 Welch’s t Test ..111

4.3.2 Experiments with 8-Node Tandem Networks...112

4.3.2.1 Experiment 1: Partially Bidirectional Tandem Network..........................112

4.3.2.2 Experiment 2: Bidirectional Tandem Network with Moderate Traffic....115

Experiment 3: Bidirectional Tandem Network with Heavy Traffic.....................117

4.3.3 Experiments with an 8 × 8 Grid Network...118

4.3.3.1 Experiment 4: Exponential Service Times...119

4.3.3.2 Experiment 5: Gamma Service Times with Low Variation 120

4.3.3.3 Experiment 6: Gamma Service Times with High Variation.................... 120

4.4 Conclusions... 124

ix

CHAPTER 5 CONCLUSIONS AND FUTURE WORK ... 125

5.1 Conclusions... 125

5.2 Future Work .. 128

REFERENCES ... 131

x

LIST OF TABLES

Table 1. Queueing Stations Producing Renewal Departure Processes in Steady State 37

Table 2. A Livelock Example of Incorrectly Modeling the Behaviors in Figure 48....... 108

xi

LIST OF FIGURES

Figure 1: Illustration of an Ad Hoc Distributed Simulation ... 12

Figure 2: Pseudo Codes of STM Interface.. 29

Figure 3: Pseudo Codes of Synchronization Service Interface (I).................................... 31

Figure 4: Pseudo Codes of Synchronization Service Interface (II) 33

Figure 5: Primitive Software Architecture for Ad Hoc Distributed Simulation Based on

Discrete-Event Simulation .. 40

Figure 6: Adopted Software Architecture for Ad Hoc Queueing Network Simulations... 43

Figure 7: An 8 × 8 Grid Network.. 44

Figure 8: Routings at Nodes ... 45

Figure 9: Regular Partitioning on 8 × 8 Grid Network... 56

Figure 10: Relative Differences for Utilization Estimates with Regular Partitioning under

Scenario 1.. 58

Figure 11: Relative Differences for Mean Queue-Length Estimates with Regular

Partitioning under Scenario 1.. 58

Figure 12: Point Estimates and 90% CIs for Utilization Estimates with Regular Partitioning

under Scenario 1 ... 59

Figure 13: Point Estimates and 90% CIs for Mean Queue-Length Estimates with Regular

Partitioning under Scenario 1.. 60

Figure 14: Relative Differences for Utilization Estimates with Regular Partitioning 61

Figure 15: Relative Differences for Mean Queue-Length Estimates with Regular

Partitioning.. 61

Figure 16: Irregular Partitioning Layouts on 8 × 8 Grid Network with Center-Weighted

xii

Node Coverage.. 63

Figure 17: Relative Differences for Mean Queue-Length Estimates with Irregular

Partitioning and Center-Weighted Node Coverage under Scenario 1....................... 65

Figure 18: Relative Differences for Mean Queue-Length Estimates with Irregular

Partitioning and Center-Weighted Node Coverage under Scenario 2....................... 65

Figure 19: Relative Differences for Mean Queue-Length Estimates with Irregular

Partitioning and Center-Weighted Node Coverage under Scenario 3....................... 66

Figure 20: An Irregular Partitioning Layout on 8 × 8 Grid Network with Balanced Node

Coverage ... 68

Figure 21: Relative Differences for Mean Queue-Length Estimates with Irregular

Partitioning and Balanced Node Coverage under Scenario 1................................... 69

Figure 22: Relative Differences for Mean Queue-Length Estimates with Irregular

Partitioning and Balanced Node Coverage ... 69

Figure 23: An 8 × 8 Grid Network for Imitation of Ad Hoc Experiments........................ 71

Figure 24: A Bidirectional Tandem Queueing Network ... 73

Figure 25: Open Queueing Networks ... 75

Figure 26: Application of Buffered-Area Mechanism to 11-Node Bidirectional Tandem

Network... 76

Figure 27: Point Estimates and 90% CIs for Mean Queue-Length Estimates of Node 5

under Case 1(a) ... 79

Figure 28: Point Estimates and 90% CIs for Mean Queue-Length Estimates of Node 5

under Case 1(b) ... 79

Figure 29: Point Estimates and 90% CIs for Mean Queue-Length Estimates of Node 5

under Case 1(c) ... 80

xiii

Figure 30: Application of Buffered-area Mechanism to 11 × 11 Grid Network............... 81

Figure 31: Point Estimates and 90% CIs for Mean Queue-Length Estimates of Node 60

under Case 2.. 83

Figure 32: Application of Buffered-area Mechanism to 8 × 8 Grid Network—Top Left

Portion... 84

Figure 33: Application of Buffered-area Mechanism to 8 × 8 Grid Network—Center

Portion... 84

Figure 34: Relative Differences for Mean Queue-Length Estimates under Case 3.......... 85

Figure 35: Information Sharing Mechanism Leading to Delayed Response.................... 90

Figure 36: A Delayed-Response Example .. 90

Figure 37: 8-Node Tandem Queueing Networks .. 92

Figure 38: Estimated Arrival Rates across Link 10 under Case 1 94

Figure 39: Estimated Mean Queue Lengths at Node 4 under Case 1 95

Figure 40: Estimated Arrival Rates across Link 10 under Case 2 96

Figure 41: Estimated Mean Queue Lengths at Node 4 under Case 2 96

Figure 42: Information Sharing in Iterative Ad Hoc Queueing Simulation Method 99

Figure 43: Arrival Scheduling in Rollback Handling ... 101

Figure 44: Inversion Method for Generating Nonstationary Poisson Arrivals 102

Figure 45: A 2-Node Bidirectional Tandem Open Queueing Network........................... 103

Figure 46: A Livelock Example of Modeling the 2-Node Bidirectional Tandem Queueing

Network in Figure 45 .. 105

Figure 47: A 2-Node Bidirectional Tandem Closed Queueing Network 107

Figure 48: Operations of and Interactions between Machines M0 and M1 107

Figure 49: State of Machine M0 during [0, 25)..110

xiv

Figure 50: State of Machine M1 during [0, 25) with Input Value 5110

Figure 51: Estimated Arrival Rates across Link 10 in Experiment 1113

Figure 52: Estimated Mean Queue Lengths at Node 4 in Experiment 1114

Figure 53: P-Values from Welch’s t Tests on Estimated Arrival Rates across Link 10 in

Experiment 1..114

Figure 54: P-Values from Welch’s t Tests on Estimated Mean Queue Lengths at Node 4 in

Experiment 1..115

Figure 55: Estimated Mean Queue Lengths at Node 4 in Experiment 2116

Figure 56: P-Values from Welch’s t Tests on Estimated Mean Queue Lengths at Node 4 in

Experiment 2..116

Figure 57: An 8-Node Bidirectional Tandem Network with Heavy Traffic117

Figure 58: Estimated Mean Queue Lengths at Node 4 in Experiment 3117

Figure 59: A Regularly Partitioned 8 × 8 Grid Network with Dynamic Flow Rates.......119

Figure 60: Estimated Mean Queue Lengths and p-Values from Welch’s t Tests in

Experiment 4... 121

Figure 61: Estimated Mean Queue Lengths and p-Values from Welch’s t Tests in

Experiment 5... 122

Figure 62: Estimated Mean Queue Lengths and p-Values from Welch’s t Tests in

Experiment 6... 123

xv

SUMMARY

The continual growth of computing power in small devices has motivated the

development of novel approaches to optimizing operational systems efficiently and

effectively. These optimization problems are often so complex that solving them

analytically may be difficult, if not prohibited. One method for solving such problems is to

use online simulation. However, challenges in using online simulation include the issues of

responsiveness (e.g., because of communication delays), scalability, and failure resistance.

To tackle these issues, this study proposes embedding online simulations into a network of

sensors that monitors the system under investigation.

This thesis explores an approach termed “ad hoc distributed simulation,” which is

based on embedding online simulations into a sensor network and adding communication

and synchronization among simulators to model operational systems. This approach offers

several potential advantages over existing approaches: (1) it can provide rapid response to

system dynamics as well as efficiency since data exchange is local to the sensor network, (2)

it can achieve better scalability to incorporate more sensors, and (3) it can provide better

robustness to failures because portions of the system are still under local control. This

research addresses several statistical issues in this ad hoc approach: (1) rapid and effective

estimation of the input processes at model boundaries, (2) estimation of system-wide

performance measures from individual simulator outputs, and (3) correction mechanisms

responding to unexpected events or inaccuracies within the model.

This thesis examines ad hoc distributed simulation analytically and experimentally,

mainly focusing on the accuracy of predicting the performance of open queueing networks.

First, the analytical part formalizes the ad hoc approach and evaluates its accuracy at

xvi

modeling certain class of open queueing networks with regard to the steady-state system

performance measures. This work concerning steady-state metrics is extended to a broader

class of networks by an empirical study, which presents evidence to show that the ad hoc

approach can generate predictions comparable to those from sequential simulations.

Furthermore, a “buffered-area” mechanism is proposed to substantially reduce prediction

bias with a moderate increase in execution time.

In addition to those steady-state studies, another empirical study targets the

prediction accuracy of the ad hoc approach at open queueing networks with short-term

system-state transients. This study demonstrates that, with slight modification to the prior

design of the ad hoc queueing simulation method for those steady-state studies, system

dynamics can be well modeled. The results, again, support the conclusion that the ad hoc

approach is competitive to the sequential simulation method in terms of prediction

accuracy.

1

CHAPTER 1

INTRODUCTION

1.1 Background

Many operational problems such as real-time traffic modeling for reducing

congestion are sufficiently complex that they cannot be solved using analytical methods

alone. Simulation offers a potentially more effective way to solve such problems. Online

simulation tackles these problems by creating a model to mimic the underlying physical

system (called the “system under investigation” or SUI in the literature) and driving the

model with real-time field data and problem-specific configurations.

Simulation serves as an economical problem-solving approach in many fields. In

chip design, for example, modeling circuit behavior before fabrication saves time and

money by detecting errors early in the development process [1-3]. Faster-than-real-time

simulation enables the analysis of operational systems and strategies to manage operations

and/or systems. For instance, weather forecasting simulations [4] have been used to

provide early warnings of dangerous weather. Simulation can be applied to other

emergency situations such as the spread of wildfires [5] or oil spills [6], and the evacuation

during natural or man-made disasters [7]. In some cases, simulation may be the only

practical means of analyzing situations because field deployment may be too costly or

hazardous, as in the case of transportation management or the spread of disease [8].

Computer simulation is widely used in virtually all science and engineering

disciplines in academia, industry, and government [9]. The applications typically fit into

one of the following three categories:

2

1. System analysis. Simulation facilitates the analysis, design, and optimization

of systems. It may be performed before building a system in order to reduce

design errors or to optimize the design. It can also be used after deployment to

tune system parameters for better operational performance. Example

applications include weather prediction systems, computer systems, and

logistics, among many others.

2. Training and games. Simulations embedded in a virtual environment mimic

the behavior of the modeled objects or phenomena with which participants

interact. The simulation models respond dynamically based on the input from

participants. In most cases, participants are human beings for the training or

entertainment purposes. Examples of the former category include the military

and emergency training exercises while video games belong to the latter.

3. Testing and evaluation. Simulation is also an approach to testing and

evaluating physical components in a well-controlled and easy-to-measure

environment. Compared to field testing, this approach typically costs less and is

much safer. For example, simulation can be more economical to test and

exercise the launch of missiles as opposed to filed tests.

This thesis focuses exclusively on the simulations used for the system analysis and

management of operational systems.

1.1.1 Online Simulation

An online simulation is a predictive computational model that utilizes the data

pertaining to the current state of a SUI to project future system states. It is typically used to

manage and optimize operational systems in real time. Providing real-world, up-to-date

3

data to an executing simulation enables the model to take into consideration the current

operation conditions of the SUI. In other words, this allows model adaptation so that in

principle the SUI can be modeled more accurately. As a consequence, the accuracy of

predictions is potentially improved, which facilitates system monitoring and control. Note

that a successful online simulation must execute faster than real time to be useful for

predicting future system states.

Online simulation is also referred to as dynamic data-driven application systems

[10], symbiotic simulation [11], and cyber-physical systems [12] in the literature. These

approaches have been widely studied and applied to various science and engineering

disciplines for a myriad of purposes [13]. One typical application is to optimize the

operations of a physical system. For example, in an emergency situation, alternate

evacuation scenarios may be modeled and evaluated in order to minimize evacuation time.

The evacuation plan may need to adapt as the evacuation evolves when unforeseen events

arise. Other online simulation applications include planning path for unmanned aerial

vehicles [14], tuning parameter for computer networks [15], the management of

semiconductor manufacturing systems [16], and the optimization of surface transportation

systems [17, 18]. Furthermore, online simulation helps us better understand and gain

insights into the physical systems that are difficult or impossible to observe. Example

applications include identifying accidents using cell phone data [19, 20] and determining

the boundary conditions of fluid-thermal systems [21, 22].

Many existing approaches to online simulation are centralized: the sensor data are

transmitted to a specific location for simulation, and the simulation results (instructions or

stimuli) are then sent back to the field to optimize the physical system. This centralized

paradigm can cause a number of problems. For one, communication by sensors to a central

4

site can be problematic in so far as it consumes energy and may incur large delays. For

some sensor nodes, the ratio of the power consumption for communication compared to

that for computation can be up to 10,000 to 1 [23]. Also, communication failures may

impact the effectiveness of online simulation; failures must be expected in sensor networks,

especially those operating under harsh environmental conditions (e.g., inclement weather

resulting in radio interference). Another concern is scalability—in the centralized

paradigm, modeling a large physical system may require an excessive amount of

computing resources and communication bandwidth in order to produce results in a timely

fashion. All these problems motivate this thesis work, which will involve replacing the

centralized method with one that embeds online simulations within the sensor network

itself.

1.1.2 Parallel and Distributed Simulation

Parallel and distributed simulation systems carry out a simulation execution using

multiple processors [24]. These processors may be on the same machine (e.g., a multi-core

or multi-processor machine) or on a number of machines connected via a computer

network. Distinguishing a parallel simulation from a distributed one is largely based on the

computer system that executes the simulation. Parallel simulations typically run on a

computer system in which the processors are tightly coupled, such as a computer cluster

composed of homogeneous processors confined to a physically-bounded area (say, a room)

and connected through a fast, customized communication network. By contrast, distributed

simulations are often (but not always) executed on heterogeneous processors, and the

communication takes place via general-purpose networks such as local area networks,

wide area networks, or the Internet. Although the simulation methodology proposed in this

5

thesis focuses on distributed simulations, the fundamental mechanisms can be applied to

parallel simulations; that is, the computer system is of secondary importance.

Parallel and distributed simulation benefits the applications that are difficult or

impossible to be carried out by a single processor (referred to as “sequential simulations”

in the literature). It offers several potential advantages:

1. Reduced execution time. Subdividing a simulation execution into n smaller

computations may speed up the execution by up to a factor of n. Fast execution

enables simulation to be used for the applications where the time to complete

the simulation would otherwise be prohibitive. It is also important in the

situations where real-time response is required, e.g., in virtual environment

applications.

2. Model integration. Parallel and distributed simulation can integrate the small

models that are not co-located on a single computer; each model is executed by

a different simulator and they cooperatively model a larger physical system.

One example where this may arise is when the participating simulators are in

geographically separated locations and the relocation is not practical, e.g., due

to the specialized resources at certain locations. For example, the simulators for

the ships and aircraft involved in a simulated battle may be placed at different

military bases. Another reason to “connect” simulators is that porting software

to a new platform can be costly because it may require extensive code

modification. Moreover, porting may not be possible for commercial

simulation software when the source code is not available.

3. Failure resistance. Distributed computing enables parallel and distributed

simulation to tolerate certain failures. For example, processor failures can be

6

detected so that the affected executions can be transferred to other processors,

given the mechanisms to detect and recover from failures are implemented to

realize this capability.

1.1.2.1 Synchronization Mechanism

A parallel/distributed simulation contains a collection of sequential simulators

(called “logical processes” or LPs in the literature), each modeling a portion of the SUI

over time. The portion of the SUI modeled by an LP is referred to as a “physical process.”

The interactions among physical processes are modeled by exchanging messages among

the corresponding LPs. Each message results in one or more events being scheduled at the

receiving LP at the simulation time(s) specified in the message. Each LP must process all

its events, including those triggered by messages, in the order of the time stamps associated

with the events (or the “time-stamp order”). Failure to comply this order may induce errors,

referred to as “causality errors,” and the challenge to ensure this time-stamp-order event

processing is referred to as the “synchronization problem.”

The solutions to the synchronization problem are typically categorized into

two—conservative and optimistic. In conservative synchronization algorithms, an event

can be processed only if one can guarantee that another event will not be scheduled with a

time stamp prior to the current simulation time (i.e., the time stamp of the event that is

being processed). These algorithms can be further classified as asynchronous or

synchronous, which differ according to whether or not a global synchronization

mechanism is used. Asynchronous algorithms contain no such global synchronization

point. An example is the well-known Chandy/Misra/Bryant method [25, 26], in which null

messages are used to prevent LPs from entering deadlock states. Other examples tackle the

7

deadlock issue by deadlock detection and recovery [27, 28]. By contrast, synchronous

algorithms separate synchronization activities from the simulation computation over time.

That is, LPs process and generate events/messages only in simulation phases, but not

during synchronization phases. A synchronization phase may be defined using barriers [29]

or time windows [30-33], during which a set of events that can be processed in the next

simulation phase is identified. The methods for identifying such events include the

bounded lag algorithm [34] as well as the algorithms taking the advantage of the distance

information regarding the modeled objects [35].

In optimistic synchronization algorithms, LPs process events without concerning

that messages may arrive in the past. If such message-in-the-past incidents occur, a

recovery mechanism is activated. The most influential optimistic synchronization

algorithm is the Time Warp method developed by Jefferson [36]. In this method, the

recovery mechanism relies on rollbacks and, hence, this method is also referred to as a

“rollback-based method.” The Time Warp method contains two parts: local control and

global control. The local control concerns the recovery mechanism, which is performed

independently on each LP, while the global control requires all LPs to participate in some

way to deal with issues such as memory reclamation.

The local control (i.e., the recovery mechanism) in the Time Warp method works as

follows. It is triggered when an LP receives a message in its past, i.e., the message has a

smaller time stamp than the current simulation time of the LP. The LP rolls back to a point

in time equal or prior to the time-stamp value on the receiving message so that the

processing of the events with larger time stamps is revoked. This entails: (1) restoring the

local state of the LP and (2) “un-sending” the messages that were sent by the LP for those

rolled-back events. The state restoration may be based on copy state saving, where a copy

8

of an LP’s state variables is made prior to processing every event, or incremental state

saving, where modifications to state variables are logged so that they can be undone. Also,

the state can be reconstructed by performing the inverse computation for the rolled-back

events [37]. To un-send messages, Time Warp introduces “anti-messages.” An

anti-message is a copy of a previously sent message that differs from the original one only

in a flag bit indicating it is an anti-message. Un-sending a message is accomplished by

sending the corresponding anti-message to cancel the effect of the original message (or

called the “positive message”). When an LP receives an anti-message, it deletes the

corresponding positive message. If this positive message has already been processed, the

LP must roll back the processing of the message. In this case, one rollback may result in

many other LPs rolling back, and this phenomenon is referred to as “cascaded rollbacks.”

The global control of the Time Warp method computes a value known as “global

virtual time” (GVT). GVT is a lower bound on the simulation time of any future rollback.

Hence, the state information pertaining to the simulation prior to GVT can be discarded,

which enables the Time Warp programs to reclaim the memory. Also, GVT serves as the

reference time point regarding the execution of certain computations that cannot be rolled

back, e.g., I/O operations. These operations are committed as GVT advances past the time

points associated with the operations. Computing GVT can be done asynchronously and

the two well-known algorithms are the Samadi’s method, which tags acknowledge

messages to ensure correctness [38], and the Mattern’s method, which relies on two-phase

cuts [39].

1.1.2.2 High Level Architecture

The High Level Architecture (HLA), developed in the 1990’s by the U.S.

9

Department of Defense, is an approach to integrating different simulators (or “federates”)

into a single distributed simulation system (or a “federation”). It aims at simulation

interoperability and reusability. These two properties are beneficial to the construction of

future simulations for new purposes because reusing existing simulators can dramatically

reduce the development cost.

The HLA is not specific to the defense applications. Instead, it has been

standardized [40-42] by the Institute of Electrical and Electronics Engineers (IEEE) with

the objective to encompass simulations of any purpose, in particularly those for system

analysis, virtual environments, and testing and evaluation. To accomplish this, the HLA

provides sufficient freedom to federates regarding their individual simulation tasks while

guards the interactions among them with a general, yet compact, set of rules. Specifically,

federates can be implemented by any software or programming language, and run on any

platform. They interact, e.g., for message exchange or synchronization, by invoking the

services that are implemented by a run-time infrastructure (RTI) software. However, the

specifics of the RTI implementation are not part of the HLA.

The HLA includes three components: rules [40], object model template (OMT) [41],

and interface specification [42].

1. Rules. The rules are ten principles that guide the development of federates and

federations. For example, one rule specifies that a federation must document

the objects shared among the federates by defining a federation object model

(FOM), which must follow the OMT format. Another rule requires that each

federate must document what objects it can share in a simulation object model

(SOM), which also must comply with the OMT format. Furthermore, all

information exchanges are regulated to the services defined in the interface

10

specification. Note that since the services are independent of any simulation

application, the instances of objects reside within federates (which implement

the simulation application), not in the RTI software (which implements the

services).

2. Object model template. All shared objects must be documented, including

their attributes and the interactions/relationships among each other. The HLA

only regulates the format, that is the OMT format, for describing the

information, but nothing regarding the content.

3. Interface specification. The HLA provides a number of services for federates

to interact with each other. These services are defined in the interface

specification and implemented based on the RTI. The services are categorized

into six classes: (1) “federate management” defines how federates create, join,

and leave federations; (2) “declaration management” allows federates to

announce their intentions to publish or subscribe object data; (3) “object

management” concerns the creation, deletion, and modification of object

instances and their attributes; (4) “ownership management” is responsible for

transferring the ownership of object attributes; (5) “time management” controls

the advance of simulation time, or, in other words, provides synchronization

services to federates; and (6) “data distribution management” supports the

routing of data from publishing federates to subscribing federates.

The HLA has been approved as an IEEE standard in 2000. Since then,

modifications have been developed concerning a myriad of aspects such as scalability,

flexibility, supporting new technologies, and fault tolerance. The latest standard (version

2010) is based on the “HLA Evolved,” and the important updates on the standard are

11

summarized in [43].

1.1.3 Ad Hoc Distributed Simulation

Ad hoc distributed simulation is an approach to real-time system monitoring,

analysis, and operation optimization that involves embedding online simulations into the

sensor network covering the physical system of interest. An ad hoc distributed simulation

contains a collection of autonomous LPs, each modeling a partial physical system, referred

to as the “coverage area” or “modeling area.” The LPs select individual modeling areas

based on their own local objectives while they collectively model the entire physical

system. In this way, an ad hoc distributed simulation is regarded as being constructed in a

bottom-up fashion, as opposed to the top-down approach used by traditional distributed

simulations where physical systems are partitioned into non-overlapping segments. As to

the synchronization among LPs, this ad hoc approach adopts an optimistic, rollback-based

approach. The features of the ad hoc approach will be elaborated in the rest of this

subsection along with an illustrative example depicted in Figure 1. In the figure, the grid

represents the physical system; the LPs are co-located with the sensors in the centers of

individual modeling areas, which are shown in rectangular boxes with curved corners.

The designation of the area(s) modeled by each LP can be arbitrary. In some cases,

an LP may select its modeling area in order to perform some local monitoring tasks such as

predicting the travel time for a particular vehicle in a transportation network. The work by

Hunter et al. serves as an example in which the LPs reside in vehicles while the sensors

may be co-located with road-side cabinets or traffic signals [17, 18]. In other cases, an LP

may simply model the area covered by the sensor which the LP co-locates with for

predicting local future states. Figure 1 shows such an example where each LP models the

12

designated rectangular region covered by the corresponding sensor. This configuration

distributes computational load and potentially reduces data transmission costs.

This feature of arbitrarily assigning modeling areas may lead to the situations in

which some parts of a physical system are modeled by multiple LPs (e.g., Va in Figure 1)

while others are left uncovered (e.g., Vb in Figure 1). The former case introduces

redundancy, which offers the potential for greater robustness (or resilience to failures); this

differentiates the ad hoc approach from traditional distributed simulations, in which the

physical system is perfectly partitioned so that each segment is modeled by exactly one LP.

Redundancy may also increase prediction accuracy because multiple LPs can provide state

predictions. Furthermore, widely varying predictions by different LPs may be indicative of

a malfunctioning LP (e.g., caused by incorrect model assumptions or inaccurate sensor data)

or an LP that has detected changes in system behavior in advance of other LPs.

Figure 1: Illustration of an Ad Hoc Distributed Simulation

13

The ad hoc approach allows LPs to change their modeling areas during simulation

execution, as might be the case for the applications involving mobile components. For

example, in an application of monitoring a surface transportation system, an LP deployed

in vehicles or handheld computing devices (e.g., GPS devices or smart phones) may adjust

its modeling area based on vehicle movements and/or driver’s desire for the predictions

concerning the remainder of the planned route.

In an ad hoc distributed simulation, LPs share current and future state predictions

via a construct called “space time memory” (STM); see Figure 1 [44, 45]. The STM holds

time-stamped system state updates from different LPs; the time interval associated with an

update specifies when the update is valid. Hence, to read a system state, LPs specify not

only the name of the desired variable but also a time stamp. Figure 1 depicts several

examples of read/write operations: both LP1 and LP2 update (i.e., write) Va while LP3 reads

Va. This method of information exchange is different from that used in traditional

distributed simulations where the LPs are notified by the events that are exchanged through

messages. Note that since multiple LPs may generate state updates for the same variable,

the STM should aggregate these state updates. In addition, realization of the STM depends

on the physical system in which an ad hoc distributed simulation is embedded. Ideally, the

STM should be distributed over the simulation infrastructure, but could, in principle, be

implemented in a centralized manner.

The optimistic synchronization method in the ad hoc approach allows LPs to

advance individual simulation executions without necessarily waiting for other LPs. An

example situation would be the one in which certain desired state information of an LP is

not available upon request; instead of waiting, the LP may approximate the missing state

information based on the past state information or that of similar variables/objects, and

14

then advance the simulation. Since the approximation could be inaccurate, LPs have to

detect the disagreement between the used data and the predictions later produced by other

LPs or the field data from sensors, and initiate a rollback if necessary. Similarly, if the data

received previously by an LP is determined to be in error, a rollback mechanism should be

used to correct the erroneous data. The rollback mechanism is similar to that in the Time

Warp method. That is, it rewinds the target LP back to the time prior to when it used the

invalid data, restores the previous system state, and restarts the simulation with the

“correct” data according to currently-available updates. Furthermore, the predictions

produced by the LP prior to this rollback might be contaminated by the invalid data; these

predictions should be revoked, which results in re-computing the projections. The

re-computation may further cause other LPs to be rolled back if the revoked predictions

indeed contaminated the data that those LPs have used. As a consequence, cascaded

rollbacks are possible.

1.2 Problem Statement and Research Challenges

Ad hoc distributed simulation introduces a number of analysis issues. This section

organizes the discussion of these issues around the life cycle of a modeling and simulation

study, which includes the following steps: (1) problem formulation, (2) conceptual model

development/validation and data collection, (3) simulation program development,

verification, and validation, (4) experimental design and execution, (5) output analysis, and

(6) result documentation [46]. The following discussion particularly focuses on steps 2, 4,

and 5 where the choice of simulation analysis methodologies influences the design. The

issues pertaining to input data analysis (data collection and data model construction) are

discussed in Section 1.2.1. Section 1.2.2 explores those in experiment design; Section 1.2.3,

15

model execution and adaptation; and Section 1.2.4, output analysis.

1.2.1 Input Data Analysis

Each LP in an ad hoc distributed simulation is essentially a conventional sequential

simulation with the exceptions that its input processes must be estimated using real-time

data and it is subject to rollbacks. Since the input data used to construct appropriate input

process models are generated by LPs or sensors, they may have not only complex

autocorrelation structures but also cross-dependencies owing to the overlapping nature of

LPs’ modeling areas. Hence, a central issue concerns the definitions of these input

processes.

The applications of transportation systems [17, 18, 47] apply an intuitive yet

practical approach to input approximation in ad hoc distributed simulation. In these studies,

the input flow rates at the boundaries of LPs’ modeling areas are estimated based on the

aggregated traffic flow-rate predictions within a fixed-length, rolling time window. In

addition, the studies list three possible data sources for input process estimation: (1) the

projected state information from LPs, (2) the real-time traffic data from sensors, and (3) the

behavioral patterns based on traffic history.

The operations research literature presents several state-of-the-art methods for

estimating dependent input processes [48, 49] as well as the methods for generating sample

paths from such processes [50, 51]. These methods are typically time-consuming and are

not designed for data sets that are generated from statistically dependent simulations.

Therefore, their applicability in the dynamic setting of ad hoc distributed simulations is

challenging, if not prohibitive.

This thesis will explore an input approximation approach to modeling open

16

queueing networks with independent routings. In the approach, the arrival processes of the

links between LPs’ modeling areas are approximated by renewal processes with

gamma-distributed interarrival times; the distribution parameters are estimated based on

the data observed within a fixed-length, rolling time window [52, 53]. This approximation

design is from the paradigm of Whitt [54, 55] and is limited to open queueing networks. Its

applicability to closed queueing systems, queueing networks with state-dependent routings,

and transportation systems is the subject of ongoing research.

Another issue of input approximation relates to the sampling mechanisms and the

sizes of pertinent data sets. If a simulated system is in steady state, extending sampling

periods allows for improving estimation accuracy. However, a longer sampling period

introduces challenges, including (1) higher computational requirements for input data

analysis and (2) slower response to system transitions away from stable conditions. The

latter is a consequence of an LP only modeling a partial physical system; that is, changes to

a specific part of a physical system would not be revealed to other LPs until the

corresponding LPs share the information. This slow transient tracking may be undesirable

and error-prone especially for the applications intended to capture the changes in system

behavior or the anomalous events.

In order to obtain more observations within a fixed-length sampling period,

multiple LPs can be deployed to model the same area, and the estimation of a state variable

is then derived by aggregating the data from these LPs. One advantage of this method is

that the amount of data grows in proportion to the number of LPs. However, the overlaps

between LPs’ modeling areas would potentially result in correlated data streams; such

correlations must be handled with carefulness. A counter example would be aggregating

the data using some simple methods based on the mean or median because they are not

17

suitable in general. In addition, regardless of the aggregation method, predictions from

various LPs may be weighted differently. Greater weight could be given to the LPs

projecting with higher fidelity, which can be affected by sensor capability, computing

power, and modeling details, to mention a few.

Finally, recall that ad hoc distributed simulations are fundamentally online

simulations embedded in sensor networks. That is, to this ad hoc approach, prediction

accuracy is an objective, but speedy (i.e., faster-than-real-time) execution is essential. Both

are important in evaluating an input approximation method. Since execution efficiency is

controlled by, for example, the method complexities and the available computational

resources, the best approximation to the underlying data model is determined by not only

the data quality but also the effectiveness of the input analysis method under such

computational resource constraints.

1.2.2 Experiment Design

The first issue encountered in designing the experiments using the ad hoc approach

concerns the assignment of coverage areas to LPs. This is referred to as the “system

partitioning problem.” One solution is to assign each LP the area where sensor data are

locally available. This is cost effective in terms of communication as sensor data are

consumed locally; long-distance transmission is not required. However, local data alone

may be insufficient for making useful predictions or recommendations. By contrast,

instead of separating a physical system geographically, some applications may benefit

from the methods based on component similarities. One such application is to model the

systems that involve a large number of interactions among the components of the same

category but very few across categories. Examples include modeling the spread of

18

computer viruses in the Internet and the information diffusion in social networks. In

addition, a more general consideration should involve the computational resource

restrictions imposed by the environments in which simulations are executed. The balance

between the resource restrictions, the LP deployment/configuration complexities, and the

desired output measures create a complex dependency among each other, which is not yet

completely understood.

A related issue to the system partitioning problem concerns the choice of shared

information. Ideally, an LP would share as much information as possible. However, this

ideal configuration is impeded by the communication and computational limitations (as the

simulation must execute faster than real time in most applications). The information to be

shared must be sufficient in terms of driving the input processes of individual simulations,

and must allow identifying state changes so that rollbacks, when necessary, may be utilized

efficiently to catch up system dynamics.

An issue pertaining to how many LPs are required to model a segment of a physical

system is referred to as the “system coverage problem.” Solutions to this problem have the

potential to significantly influence the output measure accuracy. Intuitively, a large number

of LPs are preferable as this should increase the rate at which a system transient is

recognized. However, a key to the success of deploying multiple LPs is the ability to

distinguish between the LPs that indicate the changes in system states versus those

“outliers” that do not reflect a true system trend.

1.2.3 Model Execution and Adaptation

Ad hoc distributed simulations are most likely to be carried out in sensor networks.

However, sensor networks are highly constrained environments with significant limitations

19

and deficiencies. For example, the limited battery energy necessitates a balance between

the sensing and simulation tasks as well as a balance between the computation and

communication within each of the tasks. Another impediment comes from the CPU clock

speed and the available memory for they may be less powerful compared to modern

computers, which would then prevent real-time responses. Wireless communication, which

is widely adopted in sensor networks, is also an obstacle owing to the limited bandwidth,

the potential large latencies, and the likelihood of errors. Last but not least, LP failures may

be frequent when simulations are for emergency purposes; the failures can be caused by a

myriad of possible damage arising in the embedded environments, e.g., floods, wildfires,

or earthquakes. Therefore, replicates are important in improving the robustness of the ad

hoc approach.

The rollback-based optimistic synchronization mechanism in the ad hoc approach

allows LPs to advance simulations as fast as possible without being held back by slower

LPs. It helps recover from the usage of incorrect input models by triggering rollbacks.

Recall that if a requested system state (as input to a simulation) is unavailable, the

requesting LP may approximate the input rather than wait. The approximation can be

inferred from the available historical or real-time data. While each approximation method

has different impacts on the accuracy of the interim system state predictions, the final

prediction relies heavily on how the invalid input models are identified and corrected by a

rollback mechanism, or specifically rollback triggering criteria.

An effective rollback triggering criterion must differentiate between the uses of

invalid input data and the normal statistical fluctuations because a rollback is unnecessary

if the distinction between the adopted input model and the corresponding system state

results from pure randomness or expected fluctuations. Therefore, one major issue in

20

deriving such criteria is to quantify the difference and set the bounds of acceptable

differences. A straightforward method is to specify a tolerance range with a fixed width.

However, the appropriate width varies by cases; a general guideline can hardly be

formulated. A more reliable alternative is to set the width in a relative sense (e.g., allowing

a 10% deviation). Another type of methods applies statistical hypothesis tests to

distinguish one model from the other. Without loss of generosity, consider the case in

which the null hypothesis states that the two models in comparison are statistically

identical. Then, increasing the tolerance can be accomplished by choosing a lower

significance level, which is the probability of rejecting the null hypothesis. However, doing

so would raise the probability of the type II errors. That is, it becomes harder to reject the

hypothesis, which is actually false. In addition, regardless of the rollback criterion, it may

be helpful to evaluate the sensitivity of output metrics to the variations in input data, as a

prior step.

Resource constraints (on computation and communication, or more generally

power consumption) add complexities to designing a rollback mechanism. When power is

a limiting factor, it must be considered how to achieve the best mapping of an ad hoc

distributed simulation over the available computing resources. In some cases, restricted

optimism may be applied to sacrifice execution efficiency in order to prevent resources

from being excessively consumed by potential rollbacks.

1.2.4 Output Analysis

Statistical analysis of the output data from ad hoc distributed simulations

introduces several challenges that are not present in conventional simulations. First, the

overall predictions from an ad hoc distributed simulation are tightly coupled with the

21

complex mechanisms involved in the input process approximations and the rollback

mechanism. While the simulation literature contains several methods for adjusting the

point estimates and confidence intervals of the output measures from conventional

simulations in order to account for uncertainties in input parameters [49, 56], these

procedures are not suitable for the dynamic nature of ad hoc distributed simulation.

The rollback mechanism in the ad hoc approach complicates the problem of

removing initial transient effects in steady-state analysis. In conventional simulations, this

problem can be addressed by batching [57]. However, this batch method is not directly

applicable to ad hoc distributed simulations because the output processes can exhibit

temporary departures from the stationary state owing to, e.g., the communication failures

and the incident-driven changes in field data.

Estimating metrics spanning across multiple LPs is another challenge. For example,

estimating the distributions of travel times in an ad hoc traffic/queueing network

simulation involves various complications. Consider estimating the mean travel time of a

unit across a route, which is a relatively straightforward problem for conventional

simulations. In an ad hoc distributed simulation, the route may cross the areas covered by

different and potentially overlapping LPs. If the route is acyclic, the mean travel time may

be estimated by forming an optimal linear combination of the estimators from the

corresponding LPs. On the other hand, if the route contains one or more cycles, as in the

queueing networks with probabilistic routings, this estimation problem becomes even

more difficult.

1.3 Research Contributions

This thesis addresses several issues in designing ad hoc distributed simulations,

22

particularly focusing on the accuracy of predictions regarding the performance of open

queueing networks. The principal contributions are as follows:

1. Formalization of ad hoc distributed simulation. To facilitate the analysis of

ad hoc distributed simulation, I have formalized the approach using the notion

of functions and sets to describe the behavior of the involved components (e.g.,

LPs and STM) and the mechanisms (e.g., rollback criteria). Also, I have

delivered the pseudo codes that help convert the high-level, conceptual

description of the ad hoc approach into an implementation.

2. Theoretical analysis of steady-state prediction accuracy for open queueing

networks. I have proved that the ad hoc approach can yield steady-state results

being statistically equivalent to those from sequential simulations in modeling

the open queueing networks under some conditions. The open queueing

networks that satisfy these conditions are identified and documented using

Kendall’s queueing model notation [58].

3. Experimental analysis of steady-state prediction accuracy for open

queueing networks. Since most open queueing networks do not satisfy the

conditions mentioned in the previous bullet, the ad hoc approach cannot

guarantee the prediction accuracy at modeling them. However, some

applications allow a minor bias in estimation in exchange for other

performance gains such as scalability, flexibility, and fault tolerance. Therefore,

to study the steady-state prediction accuracy of the ad hoc approach at

modeling general open queueing networks, I have constructed experiments

with various network configurations (e.g., the service-time distributions). In the

experiments, overestimation is observed but the estimation biases are tolerable,

23

which supports the conclusion that the ad hoc approach can provide the

steady-state predictions comparable to those from sequential simulations.

Furthermore, I have studied the overestimation issue through another set of

experiments to show that the issue is due to the input approximation method.

Moreover, the results confirm that the issue becomes more apparent when the

service-time coefficient of variation (CV) increases.

4. An accuracy improving mechanism. While the overestimation issue can be

solved directly by an input approximation method that produces the models

with higher fidelity to the underlying data, this method is not computationally

efficient for ad hoc distributed simulations as they are expected to run under

constrained computing resources. Instead, I have proposed a “buffered-area”

mechanism, which builds upon the idea of enlarging the “distance” between

where the imperfect input approximations are made and where the system

performance estimates are measured. The empirical evidence is presented to

show that this mechanism substantially reduces the estimation bias with a

moderate increase in the execution time.

5. Performance evaluation of system partitioning methods. I have explored

the system partitioning problem in the ad hoc approach at modeling open

queueing networks, and have focused on the influence of partitioning methods

over the prediction accuracy. In total 11 partitioning methods are evaluated

experimentally, and the results indicate that these partitioning methods do not

appear to significantly affect the prediction accuracy as long as the entire

modeled queueing network is covered by a sufficient number of LPs.

6. Experimental analysis of prediction accuracy for open queueing networks

24

with short-term system-state transients. I have extended the empirical

studies further to demonstrate the potential of the ad hoc approach regarding

instantly capturing system dynamics. This work starts with examining the ad

hoc queueing simulation method in the aforementioned steady-state study and

identifies a design flaw, which causes a delayed response. I have fixed the issue

and showed the effectiveness of the new design in various conditions: the

experiments evaluate 6 different network configurations with the system

dynamics introduced by both increasing and decreasing the external arrival

rates. Moreover, the ideas behind the new design are elaborated with counter

examples to reveal the possible impacts from the inappropriate usage of the ad

hoc method.

25

CHAPTER 2

PRINCIPLES OF AD HOC DISTRIBUTED SIMULATION

An ad hoc distributed simulation of a physical system is constructed by employing

multiple logical processes (LPs), each modeling a portion of the system, and adding

communication among the LPs via a synchronization service to collectively model the

entire system of interest. Without the synchronization service, these LPs are essentially

independent sequential simulations. That is, they do not coordinate individual modeling

tasks, including the modeling areas, the shared information, as well as the required input

data to the individual simulations. The synchronization service “links” these simulations

together as a comprehensive modeling task, and the design of the involved mechanisms

(e.g., rollback triggering criteria) is important in terms of the effectiveness of the ad hoc

distributed simulation.

In this chapter, I will formalize the ad hoc approach, particularly the

synchronization service, and deliver the pseudo codes for better understanding the service.

Also, I will prove that, in modeling some open queueing networks, the ad hoc approach can

produce high-quality system-performance estimates, which are statistically equivalent to

those from conventional sequential simulations.

2.1 Formalism

A modeled physical system can be represented as a state G, which is a set of M

objects, denoted as G = {G1, G2, …, GM}. Each object Gg (1 ≤ g ≤ M) stands for a portion of

the physical system. These objects are shared among LPs, which implies that an LP can

read or write the value of any object through the synchronization service. To facilitate the

26

following formulation, the number of LPs involved in an ad hoc distributed simulation is

assumed to be N and the LPs are denoted as LP1, LP2, …, LPN. Furthermore, the local state

of LPlp’s modeling area is Llp (1 ≤ lp ≤ N). For clarity, here g is used to index objects and lp

to index LPs.

An LP writes the value of an object with a time value t. Typically, the value is a

prediction of the object at that time. It is derived by invoking a function, which maps the

LP’s local state to an appropriate representation with respect to the object. Hence, the

function, named Local2Global, can be formulated as

Local2Globallp,g: {Llp} × {t} →{vg},

where vg is the value of Gg at time t that LPlp shares with other LPs. The subscripts, lp and

g, next to the function name indicate that the specific functionality depends on the LP and

the object. Similarly, a function Global2Local converts the value of an object to an input

for the simulations that model the object. This function, which is generally triggered after

an LP reads the value of an object, is defined as

Global2Locallp,g: {vg} × {t} → {ing},

where vg is the value of Gg with respect to time t, and ing is the input that is fed into LPlp for

simulating Gg.

The synchronization service of the ad hoc approach allows LPs to read and write

values of objects, and also to “undo” these read/write operations in case errors are detected

in the read or the written values. The synchronization service is supported by a logical

construct called space time memory (STM), which hosts a collection of records. The

records are created through read/write operations and are removed by anti-write (i.e., undo)

operations; I will elaborate on these operations after discussing the capability of the STM.

A record in the STM is a 5-tuple that follows the format:

27

(rw, lp, g, v, t).

The first parameter rw indicates the type of the operation corresponding to this record; it

can be either “R” for read operations or “W” for write operations. The next two parameters,

lp and g, are the indexes of the invoking LP and the requested object, respectively; lp is an

integer between 1 and N while g is between 1 and M, inclusive in both cases. The

read/written value of Gg is v, which is the fourth parameter. The last parameter t is a time

interval that specifies when v takes effects. The time interval is bounded by a closed

starting point ts and an open end point te, denoted as t = [ts, te). The meaning of a record

depends on rw: if rw is R, the record indicates that LPlp reads v as the value of Gg and will

use the value v in its simulation with respect to t; otherwise, if rw is W, the record implies

that LPlp predicts the value of Gg to be v with respect to t.

The STM provides an interface to the synchronization service for accessing records.

Considering data integrity and software modularity, a proper design must not allow

simulation applications to directly manipulate the records in the STM; this STM interface

should be visible to the synchronization service only. The STM interface defines three

functions and their pseudo codes are shown in Figure 2.

1. STM_Add(rw, lp, g, v, t). This function adds to the STM the record with the

corresponding arguments; see lines 01–04 in Figure 2.

2. STM_Erase(rw, lp, g, v, t = [ts, te)). This function removes from the STM the

records with the corresponding arguments; see lines 05–13 in Figure 2. Note

that comparing two time intervals requires special treatment. For example,

considering an existing record r = (rw, lp, g, v, tr = [trs, tre)), the relationship

between the two intervals t and tr belongs to one of the following six cases:

i. tre ≤ ts. In this case, the two time intervals do not overlap. Hence, this record

28

is not deleted.

ii. trs < ts < tre ≤ te. The two time intervals overlap between ts and tre. That is,

one part of the record with respect to the overlapping time interval [ts, tre)

should be removed. However, the other part of the record with respect to the

rest time interval should remain. As a consequence, the time interval of the

record is shortened into [trs, ts).

iii. trs < ts < te < tre. Similar to Case ii, the two time intervals overlap at [ts, te)

and the record with respect to [ts, te) should be deleted. Unlike Case ii, [ts, te)

breaks the time interval of the record into two non-overlapping time

intervals: [trs, ts) and [te, tre). Hence, the time interval of the record is

modified to be [trs, ts) and, in addition, a new record is added with the same

arguments as the original one except that the time interval is set to [te, tre).

iv. ts ≤ trs < tre ≤ te. In this case, the two time intervals overlap between trs and tre,

which results in deleting the entire record.

v. ts ≤ trs < te < tre. The two time intervals overlap at [trs, te), which is similar to

Case ii. As a consequence, the time interval of the record is modified to be

[te, tre).

vi. te ≤ trs. Same as Case i, the two time intervals do not overlap; the record

remains untouched.

For simplicity, a notation t1 = t2 is used in the pseudo code to indicate that the

two time intervals t1 = [t1s, t1e) and t2 = [t2s, t2e) overlap. In other words, t1 = t2

implies t1s ≤ t2s < t1e or t2s ≤ t1s < t2e.

29

01:

02:

03:

04:

05:

06:

07:

08:

09:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

functionfunctionfunctionfunction STM_Add(rw, lp, g, v, t) beginbeginbeginbegin STM ← STM ∪ {(rw, lp, g, v, t)} eeeendndndnd functionfunctionfunctionfunction STM_Erase(rw, lp, g, v, t = [ts, te)) beginbeginbeginbegin ∀ r = (rw, lp, g, v, t ′ = [ts′, te′)): t = t ’ AND ts′ < ts STM ← STM ∪ {(rw, lp, g, v, [ts′, ts))} ∀ r = (rw, lp, g, v, t ′ = [ts′, te′)): t = t ’ AND te < te′ STM ← STM ∪ {(rw, lp, g, v, [te, te′))} ∀ r = (rw, lp, g, v, t ′ = [ts′, te′)): t = t ′ STM ← STM \ {r} endendendend functionfunctionfunctionfunction STM_GetRecords(rw, lp, g, v, t) beginbeginbeginbegin R ← Φ ∀ r = (rw, lp, g, v, t ′): t = t ′ R ← R ∪ {r} Return R endendendend
Figure 2: Pseudo Codes of STM Interface

3. STM_GetRecords(rw, lp, g, v, t). This function returns a set of the records

with the corresponding arguments; see lines 14–20 in Figure 2. Similar to the

last function, the comparison of two time intervals must consider both the start

and end points. In this function, a record is included in the set if its time interval

overlaps t and, of course, all the other four arguments match.

The synchronization service is the core of the ad hoc approach, and provides LPs

with the ability to communicate and share information. This service is realized through an

interface, which defines six functions. Three functions are to be invoked by LPs to perform

30

the read, write, and anti-write (i.e., undo) operations; they are referred to as the

“operational functions.” The remaining three are callback functions—simulation

applications must implement them so that the synchronization service can request for

certain application-dependent decisions or enforce LPs to execute rollbacks. Details of the

operational functions (the pseudo codes of which are in Figures 3 and 4) as well as the

expected behaviors of the callback functions are as follows:

1. Read(lp, g, v, t). LPlp invokes this function to read the value of Gg with respect

to time t. This value v′ is computed based on the currently-available predictions

by invoking the callback function AggregateValues(); see lines 03–04 in Figure

3. In line 03, the asterisks “*” are used to represent the notion of “all.” That is,

line 03 states that the set R is composed of the write records corresponding to

Gg with respect to t, regardless who wrote the value and what value was written.

The notation “*” will be used throughout the whole pseudo codes with this

same meaning. After the value of Gg with respect to time t is computed, the

follow-up operation depends on the parameter v:

i. If v is not specified (or “NULL” by our convention), a read record is created

in the STM with the computed value, i.e., v′, which will be returned via the

function parameter v. In this case, the function returns FALSE to notify the

function caller that a new value may be inserted into v. One special case is

that if the corresponding predictions (i.e., write records in the STM) are not

sufficient for estimating the value of Gg, v may be NULL. In this case, the

read operation is not logged.

ii. If v is not NULL, the next step is to determine if v is acceptable compared

against those currently-available predictions. This is done via the callback

31

function AcceptDifference(), the details of which will be revisited soon. If v

is within tolerance or if the corresponding predictions are insufficient, a

read record with v is created in the STM and the function returns TRUE,

which indicates that v is accepted. Otherwise, the function sets v to the

computed value v′, creates a read record with v′ in the STM, and returns

FALSE.

01:

02:

03:

04:

05:

06:

07:

08:

09:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

functionfunctionfunctionfunction Read(lp, g, v, t) beginbeginbeginbegin R ← STM_GetRecords(W, *, g, *, t) v ′ ← AggregateValues(R) ifififif v = NULL AND v ′ = NULL thenthenthenthen Return FALSE else ifelse ifelse ifelse if v = NULL AND v ′ ≠ NULL thenthenthenthen result ← FALSE else ifelse ifelse ifelse if v ≠ NULL AND v ′ = NULL thenthenthenthen result ← TRUE elseelseelseelse if if if if AcceptDifference(lp, g, v, t, R) thenthenthenthen result ← TRUE elseelseelseelse result ← FALSE endendendend endendendend ifififif result = FALSE thenthenthenthen v ← v ′ endendendend STM_Add(R, lp, g, v, t) Return result endendendend
Figure 3: Pseudo Codes of Synchronization Service Interface (I)

32

2. Write(lp, g, v, t). LPlp calls this function when it predicts that v is the value of

Gg with respect to time t and it wants to share this information with other LPs. A

write record is created in the STM, which is followed by a procedure to check if

rollbacks are necessary to some LPs, or more specifically, to those LPs who had

read the value of Gg with respect to time t. The checking process (lines 16–24 in

Figure 4) is based on individual read records. That is, for a read record

pertaining to Gg with respect to time t, the value in the record is compared

against the currently-available predictions. If the value is unacceptable, the LP

associated to the record needs to be rolled back. The rollback notification

piggybacks a new value (computed via AggregateValues()) for the LP to

replace the invalid one.

3. AntiWrite(lp, t = [ts, ∞)). LPlp invokes this function if it is rolled back to the

time point ts and it needs to remove all the possibly-contaminated read and

write records. Since removing read records does not affect the projection of the

modeled physical system, the read records can be deleted with no further

concern. However, this situation does not apply to removing write records.

Specifically, removing a write record necessitates examining the LPs that had

read the corresponding object; see lines 09–12 and 14 in Figure 4. Hence, the

entire procedure of removing write records involves (1) finding all the read

records that might be affected due to those to-be-deleted write records, and (2)

after those write records are deleted, checking each affected read record with

respect to rollbacks, which is the same as that performed in write operations.

33

01:

02:

03:

04:

05:

06:

07:

08:

09:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

functionfunctionfunctionfunction Write(lp, g, v, t) beginbeginbeginbegin STM_Add(W, lp, g, v, t) RaffectedReads ← STM_GetRecords(R, *, g, *, t) CheckRollbacks(RaffectedReads) endendendend functionfunctionfunctionfunction AntiWrite(lp, t = [ts, ∞)) beginbeginbeginbegin RtoBeDeletedWrites ← STM_GetRecords(W, lp, *, *, t) RaffectedReads ← Φ ∀ r = (W, lp, g, v, tr): r ∈ RtoBeDeletedWrites RaffectedReads ← RaffectedReads ∪ STM_GetRecords(R, *, g, *, tr) STM_Erase(*, lp, *, *, t) CheckRollbacks(RaffectedReads) endendendend function function function function CheckRollbacks(R) beginbeginbeginbegin ∀ r = (R, lp, g, v, t): r ∈ R Rr ← STM_GetRecords(W, *, g, *, t) ifififif NOT AcceptDifference(lp, g, v, t, Rr) thenthenthenthen vr ← AggregateValues(Rr) Rollback(lp, g, v, t, vr) endendendend endendendend
Figure 4: Pseudo Codes of Synchronization Service Interface (II)

4. AggregateValues(R). User applications must implement this callback function

to aggregate the predictions in the parameter R into a value. R is a set of the

write records corresponding to the same object. This function should either

return the aggregated value or NULL if the write records in R are insufficient to

generate an estimate because, for example, the application-defined confidence

34

level is not satisfied.

5. AcceptDifference(lp, g, v, t, R). User applications must implement this

callback function to determine if the value v is within the acceptable range

based on R, which is the set of the currently-available predictions pertaining to

Gg with respect to time t. The decision may take into account the LP who had

used v (i.e., LPlp). This function should return TRUE if v is acceptable,

otherwise FALSE.

6. Rollback(lp, g, vinvalid, t, vnew). User applications must implement this callback

function so that the synchronization service can notify LPlp to rollback. This

rollback request is based on the fact that LPlp had used vinvalid in modeling Gg

with respect to time t. However, as now vinvalid turns out to be in error, LPlp

should use vnew for simulating Gg at t. This function does not have a return

parameter.

2.2 Accuracy on Modeling Open Queueing Networks

This section derives a sufficient condition for the ad hoc distributed simulations of

open queueing networks to produce asymptotic results to be statistically equivalent to those

produced by traditional, replicated sequential simulations. In modeling queueing networks,

a common objective is to derive the estimation accuracy regarding the system performance

measures in steady state. Hence, the following analysis focus on the accuracy of point

estimates and the confidence-interval (CI) coverage of the steady-state system

performance measures at each queueing station. The analysis further assumes that the open

queueing networks under study are stable.

This analysis relies on partitioning a modeled open queueing network into several

35

non-overlapping subnetworks so that each LP models one of them. The internal arrivals for

a subnetwork are the departures from the queueing stations surrounding this subnetwork.

The links along which internal arrivals enter a subnetwork are referred to as the “internal

input links;” these links are also the links along which internal departures leave another

subnetwork, and hence they are also referred to as the “internal output links.” The data

models that capture arrival processes on internal input links are crucial to the accuracy of

system performance measures, which are produced by the corresponding simulations of the

subnetworks. Typically, one cannot know a priori true arrival process on every internal

input link; approximations must be made. As a consequence, to guarantee the desired

accuracy performance of ad hoc open queueing network simulations, the condition is

derived as follows.

Proposition 1. Suppose that (1) the subnetworks modeled by all LPs form a perfect

partition of the entire modeled network; (2) the steady-state flow on every internal output

link forms a renewal process, and the inter-departure times on these links are used to build

and update the corresponding empirical distributions; and (3) the arrivals on internal input

links are generated following those periodically-updated empirical distributions. Then, as

the simulation run length increases, the ad hoc approach yields more accurate point

estimators and confidence intervals (CIs) for the steady-state performance measures at

every queueing station. These point estimators and CIs will be statistically equivalent to

those produced by a sufficiently-long execution of sequential simulations.

Proof: Recall that the external arrivals feeding the modeled network are generated

from the appropriate theoretical data models, which is the same in both the ad hoc approach

and the sequential simulation method. What distinguishes the two simulation

methodologies is the mechanism that models internal arrivals. In the ad hoc approach, the

36

internal arrivals are generated following the periodically-updated empirical distributions.

Since these empirical distributions are constructed based on inter-departure times, they will

converge weakly, with the probability 1, to the respective theoretical distributions after a

sufficiently-long transient phase (according to Section 20 in [59]). Then, given that the

interior of each subnetwork is simulated properly, under some mild continuity assumptions,

point estimates for mean performance measures will converge to the respective

steady-state means [60]. Also, under appropriate mixing or ergodicity conditions [61], one

can establish the asymptotic normality of point estimates and the equality of underlying

variance estimates with those from sequential simulations. ■

The aforementioned assumptions are clearly onerous; the one that requires the

renewal property is one such example. As Table 1 in [62] shows, very few queueing

stations have renewal departure processes. By contrast, stationary arrival and departure

processes at queueing stations in the networks with complex routes are in general

dependent processes with complex multivariate distributions [63-66]. Fitting multivariate

models to such processes and generating realizations from the fitted models is a hard

problem, especially under the expected computational constraints in ad hoc distributed

simulations.

According to Table 1, the two types of networks that meet the above assumptions

are acyclic Jackson networks and the tree-like networks that are composed of GI/D/m

queueing stations along with state-independent, unidirectional routing. In the former case,

departures at each queueing station are routed to a destination with a probability, which is

irrelevant to the network state. That is, this forms several independent Poisson departure

processes at that queueing station. Hence, the steady-state input process at every queueing

station is a superposition of Poisson processes. In the latter case, the routing mechanism at

37

each queueing station results in delayed (albeit dependent) renewal flows. Moreover, the

acyclic nature of both the classes of networks allows the establishment of asymptotic

validity of estimators for additional performance measures, such as the mean travel times

of units across paths.

Table 1. Queueing Stations Producing Renewal Departure Processes in Steady State

Queueing

Station

Departure

Process
Description

M/M/m Poisson
Poisson arrivals, exponential service times, and m

identical servers

M/0/m/L Poisson No service time (0) with system capacity L

M/GI/1/1 Renewal

General independent-and-identically-distributed service

times with no waiting capacity (excluding the one in

service)

M/D/1/1 Renewal Constant service times

M/GI/∞ Poisson Infinite number of servers

M/GI/m with PS

service discipline
Poisson Process-sharing (PS) service discipline

M/GI/m/L with

LCFS-PR service

discipline

Poisson
Last-come-first-serve (LCFS) preemptive-resume (PR)

service discipline

GI/D/m Renewal Renewal arrivals

Note: All systems have infinite system capacity, infinite calling population, and

first-come-first-serve service discipline, unless otherwise specified.

2.3 Conclusions

This chapter focused primarily on the theoretical aspects of the ad hoc approach.

First, this approach was formalized and modularized for software engineering

considerations. The interface between LPs and the synchronization service provided by the

ad hoc approach were defined as simple but also as comprehensive as possible, which

improves flexibility while assures the correctness in synchronization. In addition, the

38

separation of the STM from the synchronization service mainly considers the software

reuse and replacement. This design allows the STM implementation to be arbitrary, such as

reusing existing software or designing specifically for a user application for optimizing

execution performance. Furthermore, modularization makes it possible to replace the old

STM implementation should the advanced data management techniques become available

in the future.

Secondly, this chapter explored the theoretical capability of the ad hoc approach on

modeling open queueing networks. It was proven that the estimates produced by an ad hoc

open queueing network simulation can be as accurate as those generated by the sequential

counterpart for the queueing networks satisfying some conditions. However, in practice the

conditions are rather limiting. Also, it is challenging to further relax these conditions while

hold the theoretical accuracy, not to mention that it might be infeasible if additional

requirements are to be enforced, such as restricting computation resource consumption and

achieving desired execution efficiency. As a consequence, Chapter 3 will address the issue

of prediction accuracy in practical applications by experimenting on various designs of the

ad hoc approach as well as different queueing network configurations.

39

CHAPTER 3

AD HOC QUEUEING NETWORK SIMULATIONS

Although ad hoc distributed simulation is motivated in constructing real-time,

microscopic in-vehicle transportation simulations for urban areas [47], this approach offers

the potential for use in other applications, which motivates the work described next. To

explore the capabilities of this approach, a typical procedure involves applying this

approach to a general, abstract model that can capture a myriad of practical realizations.

Hence, this chapter focuses on applying the ad hoc approach to simulate queueing

networks as they are used to model a variety of industrial systems, ranging from computer

networks, communication systems, to supply chains. In this context, each simulator

(logical process, or LP) in an ad hoc distributed simulation could model potentially

overlapping portions of a global supply chain, which consists of production facilities (e.g.,

semiconductor fabs), warehouses, and transportation systems (e.g., vessels, planes, and

trucks). More specifically, each LP can involve various geographical areas or facilities.

The remainder of this chapter is organized as follows. Section 3.1 describes the

software architecture for the ad hoc queueing network simulations in the following sections.

Section 3.2 elaborates on the mechanisms in these simulations while the experiments for

the performance study are described in Section 3.3. Section 3.3 also includes the

experiment results and analyzes some deficiencies observed in these results. To address

these deficiencies, a buffered-area mechanism is proposed in Section 3.4, along with an

empirical analysis to show its effectiveness. Finally, Section 3.5 concludes this chapter.

40

Figure 5: Primitive Software Architecture for Ad Hoc Distributed Simulation Based on

Discrete-Event Simulation

3.1 Implementation Architecture

Ad hoc distributed simulation is an approach to predicting future states of

operational systems by “connecting” autonomous LPs, so it can be regarded as more a

synchronization mechanism rather than a modeling methodology, such as the time-stepped

simulation approach or the discrete-event simulation approach. In other words, the

modeling method adopted by each LP is in principle irrelevant although the choice of

which would affect the software implementation that “glues” the synchronization

mechanism and the modeling method. Figure 5 depicts a design of the software

architecture for the LPs modeling a system under investigation (SUI) using the

discrete-event simulation approach. That is, the operations of a SUI are modeled by a

sequence of time-ordered events.

An implementation of a discrete-event simulation typically contains two parts: the

41

simulation application and the simulation executive; see Figure 5. This design separates the

SUI-related code from those independent of the SUI. Specifically, the simulation

application models a SUI by maintaining the state variables that represent the SUI’s state

and providing event handler procedures for events to mimic the operations of the SUI

through modifying those state variables as well as scheduling future events if needed. By

contrast, the simulation executive manages the simulation time and future events, which

are stored in a pending-event list; the procedure is common to any SUI. That is, a standard

implementation of the simulation executive repeatedly loops through a block of codes,

within which the event associated with time closest to the current simulation time is

retrieved from the pending-event list, the simulation time is updated accordingly, and the

respective event handler procedure in the simulation application is invoked to process the

event. Moreover, the simulation executive provides an interface for the simulation

application to schedule future events into the pending-event list.

Similar isolation of the components that are independent of the SUI can be adopted

in implementing the ad hoc approach. One implementation is to isolate the space time

memory (STM), as shown in Figure 5. Recall that, as described in Section 2.1, the STM

holds a collection of data and provides an access to these data through the following

function calls: STM_Add(), STM_Erase(), and STM_GetRecords(). Although it is

suggested in Section 1.1.3 that the STM should be implemented as a distributed set of

objects, the implementation and experiments described here use a simple approach where

the STM is implemented centrally as a single LP.

While the STM is separated as an independent component, the rest of the ad hoc

approach needs to be closely coupled with the modeling part (including the simulation

application and the simulation executive) because it might affect the model. For example,

42

when a rollback is triggered, the simulation time must be rewound, the state variables have

to be restored to their previous values, and the pending-event list requires reconstruction.

Hence, as shown in Figure 5, the ad hoc approach is implemented as a component that can

access both the simulation application as well as the simulation executive. The ad hoc

implementation at each LP is further decomposed into the ad hoc operational functions:

Read(), Write(), and AntiWrite(), and the ad hoc callback functions: AggregateValues(),

AcceptDifference(), and Rollback(). Recall from Section 2.1 that applications must

develop their specific callback functions as these functions are invoked by the operational

functions for resolving application dependent issues. In addition, the operational functions

would call the STM services for accessing the records of previous read/write operations. In

this implementation, this is realized via the run-time infrastructure (RTI), which is not

unlike that used in the High Level Architecture (HLA) to interconnect simulations.

The ad hoc implementation in Figure 5 allows for customization of LPs as they can

have their own implementations of the callback functions. An LP may adjust the adopted

mechanisms based on its available resources (i.e., capability), the desired prediction

accuracy or execution efficiency, and other conditions. Regardless, in the following

experiments in this chapter, all LPs employ the same mechanisms for the callback

functions. That is, the functions for the ad hoc operations and the ad hoc callbacks can be

extracted out of LPs, and they are incorporated into the centralized code that drives the

STM; see Figure 6. This implementation strategy is mainly for programming convenience

although it also reduces the communication overhead between the ad hoc operations and

the STM services (the study of which is outside the scope of this chapter). The only part of

the callback functions that is left at each LP is for rollback handling since each LP has

different system states to be reconstructed.

43

Figure 6: Adopted Software Architecture for Ad Hoc Queueing Network Simulations

All the ad hoc queueing network simulations in this chapter are executed in a

computing system with a cluster of tightly-coupled processors. These processors do not

share memory spaces, and instead the underlying communication in the RTI is through the

message passing interface (MPI).

3.2 An Open-Queueing-Network Model

The remainder of this chapter examines the ad hoc approach on modeling open

queueing networks, in which the queueing stations (nodes) are arranged in an m × n

rectangular configuration. The primary focus is the 8 × 8 grid network shown in Figure 7.

Each node in the network contains a single server with an unlimited buffer and the

first-come-first-served (FCFS) service discipline. Service times of all the servers are

independent and identically distributed (IID) with the mean equal to one second, and the

service-time distribution varies by experiments.

Arrivals to a node in the network in Figure 7 are twofold: external (from outside the

network) and internal (from any node in the network). External arrivals to each node form

a Poisson process with the rate 1 / 6 per second. By contrast, internal arrivals to a node are

44

the processed units from the neighboring nodes based on the routing probabilities

illustrated in Figure 8, which differ by node types. Nodes are classified into three types: the

corner nodes (i.e., nodes 0, 7, 56, and 63), the edge nodes, (e.g., nodes 1, 2, and 3), and the

interior nodes (e.g., nodes 9, 10, and 11). Figure 8(a) shows the routing probabilities at a

corner node: a processed unit leaves the network with the probability 0.6 or moves to any

of its neighboring nodes with the equal probability 0.2; similarly, Figures 8(b) and 8(c)

depict the routing probabilities at an edge node and an interior node, respectively. Note that

the processed units are routed independently of each other.

Figure 7: An 8 × 8 Grid Network

45

Figure 8: Routings at Nodes

This 8 × 8 grid network in Figure 7 is quite large and it contains many cycles, which

leads to complex potential routings. Also, the traffic intensity of a node can be up to 0.8;

that is, a server can be heavily loaded. As a consequence, modeling such a network is no

easy task—it has the potential to expose deficiencies of the current, early-stage design of

ad hoc queueing network simulations.

3.2.1 Partitioning

The first set of experiments aims at evaluating the ad hoc queueing network

simulations with a symmetric partition. Specifically, the modeled grid network is evenly

partitioned into portions (subnetworks) while, at the same time, an overlap may exist

between any two adjacent portions. This is referred to as the “regular partitioning.” The

specifics about applying this partitioning method to the modeled network will be discussed

in Section 3.3.1.

Considering the regular partitioning as a baseline, the second set of experiments

focuses on the potential impact of the partitioning methods to the accuracy of system

performance estimates in ad hoc queueing network simulations. The network under

46

investigation is partitioned so that LPs model areas with different sizes and shapes. This

“irregular partitioning” will be elaborated in Section 3.3.2.

Regardless of how the modeled network is partitioned, an LP models the arrivals

and departures of the units circulating in its modeled subnetwork using the discrete-event

simulation approach. This leads to the problem that the processes capturing the units

arriving at the boundary of a subnetwork are unknown at the beginning of a simulation. For

example, an LP does not have prior knowledge of the arrival process from node 4 to node 3

(in the network in Figure 7) if the latter node is in its modeled subnetwork while the former

one is not. Therefore, these processes are preconfigured as Poisson processes with the rate

1 / 6 per second, and they will be adjusted dynamically based on the information

exchanged among LPs during the simulation execution.

As in typical cases, an ad hoc queueing network simulation starts in an empty and

idle state. Then, LPs start exchanging information through the space time memory (STM)

after five minutes in simulation time, which is primarily for preventing the shared data

from being influenced by initial transients. The details pertaining to the information

exchange and other involved mechanisms will be described in the following subsections.

Note that in the remainder of this chapter all time values refer to the simulation time, rather

than the wall-clock time.

3.2.2 Information Exchange

The objects shared among the LPs in an ad hoc queueing network simulation are

the flow states of all links in the modeled network, where a link is a connection between

two nodes with the direction being from the departing network to the arriving one. The

value of a flow state is defined to be a set of the statistics of interdeparture times on a link.

47

The statistics include the number of observed interdeparture times and the first two sample

moments; grouping them together forms a “prediction,” denoted by (nlp, m1,lp, m2,lp) in

which the subscript lp indicates the LP that provides this prediction. The observation

period is set to be the last five minutes; this five-minute rolling window is primarily to

prevent the statistics from becoming overly sensitive to the statistical “fluctuations.”

After the five-minute transient period at the beginning of a simulation, every 30

seconds each LP produces a prediction for every link it models with respect to the

following 30 seconds. Specifically, let tnow be the time point an LP produces a prediction,

say (nlp, m1,lp, m2,lp). The data constitute to this prediction are observed in [tnow − 300, tnow)

while the prediction is regarded as the projection of the corresponding flow state with

respect to [tnow, tnow + 30). Hence, a write record with value v = (nlp, m1,lp, m2,lp) and time t =

[tnow, tnow + 30) will be created in the STM, as the result of a write operation invoked by the

LP. This write operation also involves checking if rollbacks need to be triggered at the LPs

who had requested the corresponding flow state with respect to [tnow, tnow + 30) before this

new prediction is generated. This aspect will be elaborated in Section 3.2.5.

Every 30 seconds, an LP queries the flow state of every link that originates at a

node outside but connects to some node inside its modeled subnetwork. The query

provides a value the LP would like to use for the next 30 seconds; the value is set to the last

statistics the LP has used for the previous 30 seconds. The provided value may be granted

so that this LP keeps using it, or it may be denied while a new value is returned. This LP

then replaces the provided value with the new one. The validity of the provided value is

evaluated according to the same criteria for determining if a rollback is necessary (see

Section 3.2.5). As to the returned new value, it is computed based on the

currently-available predictions; the details are described in Section 3.2.3. It is noted that

48

this approach is somewhat different from the traditional read operations where an LP issues

a request and waits for the value in response.

3.2.3 Estimation Aggregation

Given a set of predictions, denoted {(nlp, m1,lp, m2,lp)}, aggregating them may be

necessary when, for example, an LP queries the respective flow state with which these

predictions are associated. To fit the format of a prediction, the aggregated prediction is

also presented in a 3-tuple: ()21
ˆ,ˆ, mmn ; n is the number of predictions involved in

calculating the aggregated prediction (i.e., n = |{(nlp, m1,lp, m2,lp)}|), and 1m̂ and 2m̂ are

the estimated first and second moments, respectively. The estimated first moment is a

random sample from the predictions while the estimated second moment is calculated from

the pooled variance.

Specifically, the estimated first moment (i.e., 1m̂) and the first moments from the

predictions (i.e., m1,lp’s) are regarded as the samples of an unknown random variable. The

density function of this random variable is estimated using a standard Gaussian kernel [67].

The estimated first moment is generated by randomly picking one of the samples and then

sampling a normal variate centered at the chosen sample. This kernel-density-estimation

method is chosen because it is non-parametric and it requires a very small computational

effort. Given the estimated first moment, the estimated second moment is calculated so that

the estimated variance is equal to the pooled variance of the predictions.

The estimated first moment is expressed in Equation (3.1), in which h is the

bandwidth based on Silverman’s suggestion [67] and ε is a standard normal random variate.

Since the first-moment estimates might form a distribution other than a uni-modal one (e.g.,

a bimodal one), the bandwidth is set to h = 1.06An
−1/5 with A being the minimum between

49

the sample standard deviation (S1 in Equation (3.2)) and the sample inter-quartile range

divided by the value 1.3.

 { }() εRandUniˆ
,11 hmm lp += (3.1)

 ()∑ −
−

=
lp

lp mm
n

S
2

1,11
1

1
 with ∑=

lp

lpm
n

m ,11

1
 (3.2)

The estimated second moment is shown in Equation (3.3), the derivation of which

is based on equating the estimated variance S2 in Equation (3.4) and the pooled variance of

the predictions ()
2

pS in Equation (3.5).

()

()
2

1

2

2
ˆ

1

11

ˆ m
n

Sn

n

n

m

lp

lp

lp

lplp

lp

lp

lp

lp

+
−

−

×

−

=
∑

∑

∑

∑
 (3.3)

 ()2

12

2 ˆˆ
1

mm
n

n

S

lp

lp

lp

lp

−
−

=
∑

∑
 (3.4)

 ()

()

()∑

∑

−

−

=

lp

lp

lp

lplp

p
n

Sn

S
1

1 2

2 with
()

1

2

,1,22

−

−
=

lp

lplplp

lp
n

mmn
S (3.5)

3.2.4 Data Resolution Conversion

Although LPs model unit arrivals and departures, they do not share every

interdeparture time, considering the possible communication overhead. Instead, as

discussed in Section 3.2.2, the first two moments of interdeparture times are published.

This implies that an LP will not obtain the detailed information more than the first two

moments upon requests. Given only the first two moments, arrivals can be generated by

various approaches. Two methods are adopted: the first addresses the cases in which

50

service times follow exponential distributions and the second covers the remaining cases.

In the cases where all service times follow exponential distributions, each LP

approximates the arrival processes on the links across its modeled subnetwork as Poisson

processes. For a specific Poisson arrival process, the mean is set to the given first moment

while the given second moment is discarded; the interarrival times are generated by

random sampling. On the other hand, when the service times are non-exponential, the

arrival processes are modeled as renewal processes with gamma interarrival times. This

approximation is based on Whitt’s methodology [54, 55] where the shape parameter α and

the scale parameter β of a gamma distribution are estimated using the method of moments;

see Equations (3.6) and (3.7). In these equations, m1 and m2 are the first two moments,

respectively.

 2
12

2
1α
mm

m

−
= (3.6)

1

2
12β

m

mm −
= (3.7)

3.2.5 Rollback Detection

Producing or removing a prediction may change the “big-picture view” of the

corresponding flow state that this prediction is associated with. If the change is beyond a

certain range, the previous (old) state is considered invalid. That is, the LPs that had used

the old state need to be notified so that they can roll back and restart their simulations with

a more “update-to-date” value based on the current state. The procedure for determining if

a rollback is necessary is referred to as the “rollback detection mechanism,” which is

mainly about comparing the old state against the currently-available predictions. Note that

a previously-shared prediction may be removed when the sharing LP triggers a rollback to

invalidate the prediction, which will be detailed in Section 3.2.6.

51

The first part of the rollback detection mechanism compares the value an LP once

used for modeling a flow state against the currently-available predictions of the respective

flow state. The comparison is as follows where only the first moments of the predictions

are taken into account. Let 1m and 2

1S be the sample mean and the sample variance of

these first moments, respectively; see Equations (3.8) and (3.9) as a repetition of Equation

(3.2). In these equations, n is the number of the predictions. In the cases with n less than 2,

this rollback detection mechanism aborts since the predictions are insufficient to derive a

meaningful conclusion with regards to the validity of a value. Otherwise, with n ≥ 2, by

following a traditional quality control paradigm, estimates within the range nSqm 2

11 ±

are considered acceptable. (The effect of the potential correlation between the predictions

is ignored for now.) In general, the constant q can be set to 3, which corresponds to a 99%

confidence level. However, this assignment would result in many unnecessary rollbacks,

wasting a substantial amount of computing resources without improving prediction

accuracy. Hence, q is set to 4 based on the intuition that a larger q value leads to fewer

rollbacks but less accurate results. The relationship between the q value, the computational

cost, and the prediction accuracy is another direction for future work.

 ∑=
lp

lpm
n

m ,11

1
 (3.8)

 ()∑ −
−

=
lp

lp mm
n

S
2

1,1

2

1
1

1
 (3.9)

The second part of the rollback detection mechanism is conducted if the value an

LP once used (say v) is outside the range nSqm 2

11 ± . In this case, the LP will be notified

to roll back its simulation back to when it started using v. Also, the notification will carry a

new value of the flow state that v is associated with. This new value is calculated based on

52

the currently-available predictions by invoking the aggregation mechanism described in

Section 3.2.3.

3.2.6 Rollback Handling

A rollback notification to an LP contains an invalid value the LP had used, the time

period associated with the usage (say, t = [ts, te)), and a new value as a suggestion that the

invalid one should be replaced with (say, vnew = (n, m1,0, m2,0)). Upon receipt of such a

notification, an LP first revokes all the read and write operations it had performed with

respect to the time period [ts, ∞) by invoking an anti-write operation with time ts. In other

words, all the read/write records in the STM after time ts and also associated with this LP

are erased. Such a revocation in turn triggers the rollback detection mechanism discussed

in Section 3.2.5.

After the revocation, the LP reconfigures its simulation with the new value. Instead

of rolling back to time ts, the LP rolls back further so that the potential “mismatches” do not

result in abrupt changes in predictions. Specifically, the LP rolls back to five minutes

earlier (i.e., ts − 300 seconds), and the input data within the period [ts − 300, ts) are

interpolated. This period is also referred to as the “coast-forward phase.” The computation

in this period is local to the executing LP. Hence, in this phase, LPs do not share

predictions.

The specifics concerning the input data interpolation are as follows. The first

moments are linearly interpolated. Let the first moment used at time ts − 300 be m1,300.

Since m1,0 should be used at time ts, at time ts − d the LP uses m1,d = m1,0 − d (m1,0 − m1,300)

/ 300 as the first moment. The second moments are not linearly interpolated; instead, the

coefficients of variation (CVs) are linearly interpolated. After then, the second moments

53

are calculated from the CVs and the first moments since the CV at time ts − d can be

represented by the first two moments m1,d and m2,d, respectively; see Equation (3.10).

d

dd

d
m

mm
CV

,1

2

,1,2 −
= (3.10)

3.3 Experiments and Results

The ad hoc queueing network simulations introduced in Section 3.2 are evaluated

under three scenarios. In the first scenario, the service times follow the exponential

distribution with the mean equal to one second. In the second and third scenarios, the

service times follow the gamma distributions with shape parameter α and scale parameter β

or (α, β) = (2, 0.5) and (0.25, 4), respectively; in these two cases, the mean is αβ (which is 1)

and the variance is αβ2 (which are 0.5 and 4, respectively).

The evaluation compares the results from the ad hoc queueing network simulations

against those from the corresponding traditional sequential simulations as well as the

known theoretical results, where available. Since the first scenario induces a Jackson

network, numerous steady-state network performance measures can be calculated by

treating each node as an independent M/M/1 queueing station [68]. Nevertheless, for the

rest two scenarios, deriving the theoretical results requires approximations, and hence the

evaluation only relies on the estimates obtained from sequential runs, which are the runs

where the entire network is modeled by a single simulator.

The evaluation focuses on two steady-state network performance measures: server

utilizations and mean queue lengths. Since the modeled network is symmetric in structure,

only the following nodes are considered: nodes 0, 1, 2, 3, 9, 10, 11, 18, 19, and 27 (see

Figure 7).

54

Since the ad hoc queueing network simulations start in an empty and idle state, the

effect of the initial transient period should be excluded from estimating the steady-state

performance measures. Furthermore, computing estimates with a given (absolute or

relative) precision necessitates a long simulation. An intuitive principle is to increase the

run length of the simulations as the service-time variance grows. Hence, the following

configuration varies by scenarios in order to deal with the above two issues: in the first two

scenarios, in which the service-time CVs are both less than or equal to 1, the data collection

starts after two hours in simulation time and lasts for 10 hours; in the third scenario, with

the service-time CV equal to 2, the data collection starts after 10 hours and lasts for 30

hours. This configuration applies to both the ad hoc experiments and the sequential runs.

The simulation results are averaged over multiple simulation runs using different

random number seeds. For each ad hoc queueing network simulation, 10 independent

replications are performed. The point estimate and the approximately 90% confidence

interval (CI) of a specific performance measure is calculated as follows. Since the ad hoc

approach allows one node to be modeled by several LPs, one replication may generate

multiple (possibly-correlated) predictions for the same performance measure. The

representing estimate of a replication is defined to be the average of all the predictions from

the r-th replication, that is, Xr in Equation (3.11). In the equation, Xr,lp is an estimate

produced by one LP and k is the number of all such estimates (i.e., k = |{Xr,lp}|); the value k

is the same across replications. Following this definition, the point estimate is X in

Equation (3.12) and the 90% CI is derived by considering RVX in Equation (3.13) as the

Student’s t-distribution with 9 degrees of freedom; the parameter µ in the equation

represents the true (unobservable) value of the performance measure. Note that Equation

(3.11) also implies that the current design treats every LP equally.

55

 ∑=
lp

lprr X
k

X ,

1
 (3.11)

 ∑
=

=
10

110

1

r

rXX (3.12)

10

µ

X

X
S

X
RV

−
= with ()∑

=

−=
10

1

2

9

1

r

rX XXS (3.13)

The comparison between the estimates from the ad hoc approach and those from

sequential simulations is based on the condition that every node is modeled by the same

number of LPs/simulators in both approaches. Hence, for a specific performance measure,

if the respective node is simulated by k LPs in one ad hoc replication, the estimate from the

sequential approach requires 10k independent runs (for 10 is the number of the ad hoc

replications). Let Yr be the estimate from the r-th sequential run. Then, the point estimate is

Y in Equation (3.14) and the 90% CI is derived by considering RVY in Equation (3.15) as

the Student’s t-distribution with 10k − 1 degrees of freedom; the parameter µ in the

equation denotes the true value of the performance measure, same as that in Equation

(3.13).

 ∑
=

=
k

r

rY
k

Y
10

110

1
 (3.14)

kS

Y
RV

Y

Y
10

µ−
= with ()∑

=

−
−

=
k

r

rY YY
k

S
10

1

2

110

1
 (3.15)

3.3.1 Regular Partitioning

This subsection focuses on the regular partitioning in ad hoc queueing network

simulations. The modeled 8 × 8 grid network is partitioned into five overlapping portions:

the top left, the top right, the bottom left, the bottom right, and the center portions (Figure

9). Each portion is a 4 × 4 subnetwork and is simulated by eight LPs. Hence, in total 40 LPs

are deployed.

56

Figure 9: Regular Partitioning on 8 × 8 Grid Network

3.3.1.1 Scenario 1: Exponential Service Times

The configuration of exponential service times results in the modeled queueing

network being a Jackson network so that the expected server utilization and the expected

mean queue length of each server can be analytically obtained. Figure 10 depicts the

relative differences between the utilization estimates from both simulation approaches and

the exact values. In the figure, the horizontal axis is labeled with node identifications (IDs)

along with the expected utilizations in parentheses. The relative differences are calculated

57

by following Equation (3.16), in which X is an estimate from either the ad hoc approach

or the sequential approach and µ is the corresponding exact value. This figure demonstrates

that this ad hoc queueing network simulation performs well; it generates the estimates

comparable to those from the respective sequential simulations. The relative differences

for the mean queue-length estimates show similar trends, but rage wider with the

maximum relative queue-length difference being 1.14% (see Figure 11).

 %100
µ

µ
×

−X
 (3.16)

Figures 12 and 13 contain the point estimates and the approximately 90% CIs for

the steady-state server utilizations and mean queue lengths, respectively. In these figures,

squares indicate the point estimates while ×’s mark the exact values. The results from both

simulation approaches are close to each other and the CIs contain most of the exact values.

3.3.1.2 Scenario 2: Gamma(2, 0.5) Service Times

The service times in this scenario follow the gamma distribution with the shape and

scale parameters (α, β) = (2, 0.5), denoted as Gamma(2, 0.5). The service times are less

variable than those in Scenario 1 (with CV equal to 5.0 versus 1). In the absence of the

analytical results, the formula for calculating the relative differences is adjusted to

Equation (3.17), which describes the relative difference between an estimate from the ad

hoc approach (X in the equation) and the respective one from the sequential approach (Y

in the equation).

 %100×
−

Y

YX
 (3.17)

58

Figure 10: Relative Differences for Utilization Estimates with Regular Partitioning under

Scenario 1

Figure 11: Relative Differences for Mean Queue-Length Estimates with Regular

Partitioning under Scenario 1

59

Figure 12: Point Estimates and 90% CIs for Utilization Estimates with Regular Partitioning under Scenario 1

60

Figure 13: Point Estimates and 90% CIs for Mean Queue-Length Estimates with Regular Partitioning under Scenario 1

61

Figure 14: Relative Differences for Utilization Estimates with Regular Partitioning

Figure 15: Relative Differences for Mean Queue-Length Estimates with Regular

Partitioning

62

Figures 14 and 15 plot the relative differences for the utilization and the mean

queue-length estimates, respectively, along with the results from Scenario 1 for

comparison. For both scenarios, the relative differences for the utilization estimates hover

around ±0.2% and are within the range ±0.35%. The relative differences for the mean

queue-length estimates range wider but are typically within ±1%.

3.3.1.3 Scenario 3: Gamma(0.25, 4) Service Times

This scenario sets the service-time distribution to Gamma(0.25, 4), with CV equal

to 2, which implies the service times are more variable than those in both Scenarios 1 and 2.

Figures 14 and 15 also include the results from this scenario. The relative differences for

the utilization estimates maintain a level of closeness similar to the previous results, but are

all positive. This pattern is more pronounced with the mean queue-length estimates,

especially on the nodes with high server utilizations. Specifically, the mean queue-length

estimates from the ad hoc approach can be up to 3% larger than the respective estimates

from the sequential approach. This issue also has surfaced in Scenario 1 but is not apparent

under Scenario 2 with the lower service-time CV. A further study of the issue is detailed in

Section 3.3.3.

3.3.2 Irregular Partitioning

This subsection examines the effect of the irregular partitioning on the estimation

accuracy of ad hoc queueing network simulations.

3.3.2.1 Center-Weighted Node Coverage

The term “node coverage” refers to the pattern of LPs collectively modeling a

queueing network. In the previous experiments in Section 3.3.1, the center part of the

modeled 8 × 8 grid network is covered by twice as many LPs as those modeling the

63

bordering nodes. This is referred to as the “center-weighted node coverage.”

For the sake of comparison, the first set of experiments evaluates the irregular

partitioning along with this center-weighted node coverage. That is, within one replication

that contains 40 LPs, each of the “central” 16 nodes is modeled by 16 LPs while every

other node is covered by 8 LPs. Many partitioning layouts satisfy this requirement and

Figure 16 provides eight of them. For example, Layout 1, depicted in Figure 16(a),

partitions the network into five overlapping portions: each portion is denoted by a rectangle

with a distinguishing line style. The numbers in rectangles are node IDs. All the eight

layouts in Figure 16 involve five portions. Since in total 40 LPs are deployed in one

replication, each portion is modeled by eight LPs. Furthermore, Layout 9 (not depicted) is

constructed by mixing all the portions in Layouts 1–8. As each layout contributes five

portions, Layout 9 contains 40 portions, which leads to each portion being simulated by

exactly one LP in a replication.

Figure 16: Irregular Partitioning Layouts on 8 × 8 Grid Network with Center-Weighted

Node Coverage

64

All the nine layouts are evaluated. The experimental settings are the same as those

in Section 3.3.1, except the partitioning. For brevity, the focus is solely on the mean

queue-length estimates.

The first experiment applies the configuration of Scenario 1; that is, the service

times follow the exponential distribution with the mean equal to one second. Figure 17

shows the relative differences between the mean queue-length estimates from the ad hoc

approach and the corresponding exact values (i.e., the analytical results). The maximum

relative difference is 1.88% from Layout 4. Although this value is slightly larger than the

largest relative difference from Section 3.3.1 (1.14%), it does not seem to indicate that any

specific partitioning layout deteriorates the estimation accuracy.

Moreover, all the nine layouts are evaluated with the configurations in Scenarios 2

and 3, and the results are presented in Figures 18 and 19, respectively. These figures plot

the relative differences between the mean queue-length estimates from the ad hoc approach

and those from the sequential approach. The minor decrease in accuracy suggests that these

partitioning schemes do not appear to be a major issue. Under Scenario 2, the maximum

relative difference is 1.3% from Layout 3 (compared to 0.63% under the regular

partitioning scheme). Under Scenario 3, the maximum relative difference is 3.93% (from

Layout 8) while it is 2.65% under the regular partitioning scheme. In addition, the

overestimation issue observed in the previous experiments resurfaces (see Section 3.3.3 for

further discussion).

65

Figure 17: Relative Differences for Mean Queue-Length Estimates with Irregular

Partitioning and Center-Weighted Node Coverage under Scenario 1

Figure 18: Relative Differences for Mean Queue-Length Estimates with Irregular

Partitioning and Center-Weighted Node Coverage under Scenario 2

66

Figure 19: Relative Differences for Mean Queue-Length Estimates with Irregular

Partitioning and Center-Weighted Node Coverage under Scenario 3

3.3.2.2 Balanced Node Coverage

As opposed to the center-weighted node coverage, the term “balanced node

coverage” refers to the situation in which every node in the modeled network is simulated

by the same number of LPs. In designing the experiments with this balanced node coverage,

a further question arises that concerns how many LPs should be deployed to model each

node. In general, the answer depends on not only the characteristics of a SUI but also the

goals and constraints of a modeling and simulation task. Intuitively, a small number of LPs

should be avoided because insufficient predictions may introduce additional variation,

which would lead to unnecessary rollbacks. Hence, the following experiment borrows the

experience from the previous ones and constructs a layout in which each node is modeled

by eight LPs. The influence of this coverage redundancy on the estimation accuracy and

67

variability requires further exploration.

A layout with the balanced node coverage is shown in Figure 20; each solid

rectangle represents a portion while the dashed squares denote the modeled network for

assisting in positioning the portions. The size of a portion is specified on the top of the

corresponding square. Since each replication deploys 40 LPs and this layout contains 40

portions, each LP models exactly one distinct portion. Same as those layouts in Section

3.3.2.1, this layout is evaluated under all the three scenarios, and the experimental settings

are the same as well, except the partitioning.

Since Scenario 1 can be easily analyzed theoretically, as mentioned earlier, the

relative differences between the mean queue-length estimates from both simulation

approaches and the analytical values are depicted in Figure 21. By contrast, Figure 22 plots

another evaluation metric, the relative differences between the mean queue-length

estimates from the ad hoc approach and the respective values from the sequential approach

for all the three scenarios. All these differences are close to those from the previous

experiments: they are within the same order of magnitude. Although slight increases in

difference are observed, this partitioning method does not appear to significantly affect the

prediction accuracy of the ad hoc approach. In addition, the data support the claim that

once a node is modeled by a sufficient number of LPs, the marginal benefit of additional

coverage is minimal.

68

Figure 20: An Irregular Partitioning Layout on 8 × 8 Grid Network with Balanced Node Coverage

69

Figure 21: Relative Differences for Mean Queue-Length Estimates with Irregular

Partitioning and Balanced Node Coverage under Scenario 1

Figure 22: Relative Differences for Mean Queue-Length Estimates with Irregular

Partitioning and Balanced Node Coverage

70

3.3.3 Overestimation

This subsection explores the overestimation issue observed in the mean

queue-length estimates from the ad hoc approach. It appears that this issue is a result of the

modeling assumptions for the arrival processes across two subnetworks; further, the

overestimation becomes more apparent as the service-time CV increases. Recall that the

arrivals are modeled with the following approximations: (1) the interarrival times on one

link are IID from either an exponential or a gamma distribution (with the parameters

estimated dynamically), and (2) the arrival processes on different links are independent.

The following experiments attempt to verify the conjecture that the overestimation errors

are because of these two assumptions.

This study uses sequential simulations to mimic the behavior of unit arrivals across

two subnetworks in ad hoc queueing network simulations. Specifically, the first half of the

study involves a sequential simulation of the original (unmodified) queueing network;

during the simulation, the interarrival times are collected on a subset of links that represent

the boundary links of potential LPs (see Figure 23). Then in the second half, another

sequential simulation models the modified queueing network in which those boundary

links are removed. The arrivals on the removed links are generated using the collected

interarrival times from the first simulation. In generating unit arrivals, the collected

interarrival times on each of those links are treated as IID samples from an unknown

distribution, so the arrivals are generated based on random sampling with replacement.

Firstly, the experiment described next intends to show that the unmodified and

modified networks are practically the same (e.g., generating numerical results that are

close to each other) when the arrival process at a boundary link is renewal. To achieve this,

71

the external arrival rate to node 28 is set to 0.5 (instead of 1 / 6 for other nodes). This leads

to extremely-high traffic intensity at node 28, which in turn results in the IID interdeparture

times of the processed units moving from node 28 to node 27, given the IID service times

of node 28. In other words, approximating the flow on link 136 (see Figure 23) should not

induce a significant error on the mean queue-length estimate of node 27, which is

confirmed by the results: the relative difference between the point estimate from the

modified network (12.512) and that from the original network (12.427) is −0.68%. Also,

the 90% CIs are (12.312, 12.542) and (12.407, 12.617) for the modified and original

networks, respectively. Note that this experiment servers as a basis for the next one.

Figure 23: An 8 × 8 Grid Network for Imitation of Ad Hoc Experiments

72

Given that similar interdeparture time processes produce similar results, the impact

of the approximated renewal arrival processes against the actual arrival processes can be

quantified based on the relative differences between the estimates from the modified and

original networks. Without loss of generosity, the next experiment focuses on the

overestimation of the mean queue-length estimate for node 27 under Scenario 3, and

attempts to imitate the LPs that model the top left portion in the regular partitioning. That is,

the arrival processes of interest are those on links 80, 81, 82, 83, 115, 122, 129, and 136

(see Figure 23). These links are removed with substituting (approximated) arrival

processes in the modified network.

The results from this experiment confirm the conjecture mentioned at the beginning

of this subsection. The relative difference between the point estimate from the modified

network (8.348) against that from the original network (7.967) is 4.79%, and the 90% CIs

are (8.288, 8.408) and (7.916, 8.018), respectively. This significant relative difference and

the non-overlapping CIs provide a firsthand demonstration of the relationship between the

overestimation issue and the renewal arrival process assumption in the previous ad hoc

queueing network simulations. In addition, it is noted from the three scenarios that as the

service-time CV increases, the overestimation issue becomes more significant. This is

intuitively reasonable since the arrival processes have positive autocorrelation. Also, this

issue is consistent with the findings by Lester [69]. A positive conclusion based on these

results is that the ad hoc approach can perform significantly better if the arrival processes

can be modeled more precisely, without a substantial increase in computational

requirements.

73

3.4 Buffered-Area Mechanism

This section proposes a method to reduce the estimation bias owing to the renewal

approximation in the current design of ad hoc queueing network simulations. This method,

called the “buffered-area mechanism,” is based on “filtering” units before they reach

boundary nodes. The details of the method are in Section 3.4.1, and Section 3.4.2 evaluates

its effectiveness on three queueing networks with various configurations.

3.4.1 Principles of Method

The goal of the buffered-area mechanism is to improve estimation accuracy, which

is achieved based on the fundamental idea to “link” a subnetwork with its neighbors.

Specifically, given an LP modeling a subnetwork, the LP incorporates an extra portion at

the border of this subnetwork into its modeling area. This enhancement is expected to

reduce the impact from the approximations made at boundary input links. Take the

bidirectional tandem queueing network in Figure 24 as an example. Each node in the

network represents a queueing station and the processed units flow via the links connecting

two nodes. Suppose that an LP is interested solely in the performance measures of nodes G,

H, and I. Instead of simulating only these three nodes, this LP enlarges its modeling

subnetwork by adding nodes F and J so that the arrival process approximation is made at

the input links to nodes F and J (the arrows with a filled head). Furthermore, this LP shares

the predictions (i.e., the statistics of departure processes) pertaining to the output links of

nodes G, H, and I (the arrows with a hollow head), but not those of nodes F and J.

Figure 24: A Bidirectional Tandem Queueing Network

74

The effectiveness of the buffered-area mechanism depends on the extent to which

the approximation bias can be “washed away” by increasing the distance between where

output measures are taken and where input approximations are made. The longer the

distance, the larger the buffered area, which in turn implies higher simulation cost.

3.4.2 Effectiveness Analysis

The accuracy gain through the buffered-area mechanism depends on several factors,

including network topologies, connectivity, and unit routing mechanisms. This subsection

studies the accuracy gain with respect to the sizes of buffered areas on three open queueing

networks: an 11-node bidirectional tandem network, an 11 × 11 grid network, and an 8 × 8

grid network (Figure 25). The last one extends the study in Section 3.3.1.3 in order to

illustrate that the buffered-area mechanism lessens the overestimation issue that has arisen

there.

The following ad hoc queueing network simulations adopt the design in Section 3.2

and the same experimental settings as those in Section 3.3, unless otherwise specified.

Some highlights are as follows. Every 30 seconds, LPs update the statistics of

interdeparture times as well as query predictions for generating the arrivals on boundary

input links. Aggregating multiple predictions (because of several LPs modeling the same

area) is based on the kernel-density-estimation approach. On modeling the arrival

processes at boundary input links, at the beginning of a simulation they are configured as

Poisson processes with rate λ, but thereafter are assumed to be renewal processes with

gamma interarrival times. The shape and scale parameters of these gamma distribution (α

and β, respectively) are dynamically adjusted using the data from either

periodically-invoked read operations or rollbacks. The rollback detection mechanism is

75

based on an acceptable range, which is constructed following a quality control paradigm.

Figure 25: Open Queueing Networks

76

3.4.2.1 Case 1: 11-Node Bidirectional Tandem Network

This subsection focuses on the queueing network with 11 nodes in tandem (Figure

25(a)). Each node in the network is a single-server, infinite-capacity queueing station; the

external arrivals follow a Poisson process with the rate λ per second. All service times are

IID from a gamma distribution with the mean equal to 1 second. The served units at

internal nodes may move to one of their neighboring nodes with the equal probability p or

leave the network (with probability 1 – 2p), while those at border nodes (i.e., nodes 0 and

10) would continue to a neighboring node with the probability p or leave the network (with

probability 1 – p).

Figure 26: Application of Buffered-Area Mechanism to 11-Node Bidirectional Tandem

Network

77

To simplify the analysis, the entire queueing network is partitioned into three

portions: (1) nodes 0–4, (2) node 5, and (3) nodes 6–10. Only the LPs modeling the middle

portion (the one with node 5) adopt the buffered-area mechanism. The sizes of buffered

areas differ across scenarios; see Figure 26. These LPs update the statistics of the departure

processes of node 5 (the arrows with a hollow head in Figure 26) while request the arrival

information of different input links varying by scenarios (the arrows with a filled head in

Figure 26).

The steady-state mean queue-length estimate of node 5 is the measure of interest.

To derive both the point estimate and the 90% CI of this measure, multiple independent

replications are needed. The number of replicated runs is set to 10 in the following ad hoc

queueing network simulations. Within one replication, each portion is modeled by 10 LPs.

Hence, as a basis for comparison, the estimate from the corresponding sequential

simulations is based on 100 independent replications in order to equate the number of the

replications that are allocated to node 5. Note that for both the simulation approaches, they

start collecting the data pertinent to the measure after 3 hours in simulation time and the

data collection lasts for 10 hours; this is for alleviating the effect of the initial transient.

Three sets of experiments are performed. The first two involve a heavily-loaded

network with traffic intensity approximating 0.81 at node 5; these two cases intend to show

that the buffered-area mechanism can mitigate severe bias issues. The third experiment

concerns a network with low traffic intensity at node 5 (about 0.28); this configuration is to

demonstrate that the buffered-area mechanism does not deteriorate the prediction accuracy.

Case 1(a). This heavily-loaded queueing network has external Poisson arrivals

with the rate λ = 1 / 6 per second to each node. The routing probability p is 0.4 and the

service times are from Gamma(0.25, 4). The service-time variation is high with the CV

78

equal to 2. The overestimation resulting from the renewal approximation is anticipated

[69].

Figure 27 plots the point estimates and the 90% CIs for the steady-state mean queue

length of node 5. The overestimation is apparent under Scenario A, in which the

buffered-area mechanism is not activated. The relative difference between the point

estimate from Scenario A and that from the sequential approach is 10.71%. This severe

estimation bias is reduced when one or more neighboring nodes on each side of node 5 are

included in the buffered area. For example, in Scenario B the relative difference is 2.92%,

which shows a substantial improvement at a moderate extra cost for modeling two

auxiliary nodes. This estimation accuracy can be considered adequate since the 90% CI

from Scenario B overlaps with that from the sequential approach. Further augmentation of

the buffered area increases the accuracy in a diminishing manner: the relative differences

for Scenarios C through E are 1.79%, 1.92%, and 0.78%, respectively. (The increase from

1.79% to 1.92% is likely owing to random error.)

Case 1(b). This study focuses on the same heavily-loaded queueing network as

Case 1(a) albeit with low-variable service times: Gamma(4, 0.25) with CV = 0.5. The

results are similar to Case 1(a), in which the expected underestimation according to [69]

are observed. The relative differences for Scenarios A through E

are –9.65%, –1.54%, –1.25%, –0.73%, and –0.41%, respectively; see Figure 28. Cases 1(a)

and 1(b) together conclude that the buffered-area mechanism is capable of reducing the

estimation bias with little extra effort.

79

Figure 27: Point Estimates and 90% CIs for Mean Queue-Length Estimates of Node 5

under Case 1(a)

Figure 28: Point Estimates and 90% CIs for Mean Queue-Length Estimates of Node 5

under Case 1(b)

80

Figure 29: Point Estimates and 90% CIs for Mean Queue-Length Estimates of Node 5

under Case 1(c)

Case 1(c). The light network in this study reveals a less explicit overestimation

issue than that in Case 1(a). The network configuration is as follows: λ = 1 / 6, p = 0.2, and

Gamma(0.25, 4) service times. Figure 29 plots the results. The 90% CI from Scenario A

overlaps with that from the sequential approach despite the small, positive relative

difference 0.9%. Although the benefit of applying the buffered-area mechanism is modest,

the mechanism does not cause any significant negative effect.

3.4.2.2 Case 2: 11 × 11 Grid Network

This subsection explores the performance of the buffered-area mechanism on a

more complex open queueing network: an 11 × 11 grid network, which is a

two-dimensional (2D) expansion of the network in Section 3.4.2.1. The nodes in this

network are labeled from 0 to 120 starting at the upper-left corner and going across from

81

left to right; see Figure 25(b). Hence, node 60 is the middle one. Each of these nodes

contains a single-server, infinite-capacity queueing station with the external Poisson

arrivals of the rate λ = 1 / 6 per second; the IID service times follow Gamma(0.25, 4). Since

the served units are configured to move to one neighboring node with the equal probability

p = 0.2 or leave the network, the traffic intensities range from 0.35 to 0.82 (at nodes 0 and

60, respectively). Similar to Case 1, the steady-state mean queue-length estimates of the

middle node (i.e., node 60) is of particular interest as the middle node is expected to have

the highest server utilization, which implies that the steady-state mean queue length is

potentially to be greatly overestimated.

Figure 30: Application of Buffered-area Mechanism to 11 × 11 Grid Network

Given the focus on node 60, the 11 × 11 grid network is partitioned into two

portions: one consisting of the entire network but node 60 and the other with node 60 only.

The buffered-area mechanism is adopted by the LPs modeling the latter portion. The sizes

82

and shapes of buffered areas vary in scenarios as illustrated in Figure 30. Scenario A

includes no buffered area. In Scenario B only two neighboring nodes of node 60 are added

to the buffered area while in Scenario C all the four neighboring nodes are included

(making the buffered area cross-shaped). Scenario D extends the buffered area in Scenario

C into a square buffered area; this design is intended to show that a square modeling area

may be convenient for some simulation implementations despite the little gain in accuracy

and the increase in simulation cost compared against Scenario C. In Scenario E, the square

buffered area is expanded with one more node in every direction.

The experimental settings of the ad hoc queueing network simulations on these five

scenarios are similar to those in Case 1, which are as follows. For the ad hoc approach, ten

independent replications are performed; within every replication, one portion is modeled

by 10 LPs. The results from the ad hoc approach are compared against those from 100

independent runs of the corresponding sequential simulation. Furthermore, since this 11 ×

11 grid network is more complex than the bidirectional tandem network in Case 1, a longer

transient period is expected. Hence, the data collection starts after 10 hours in simulation

time and lasts for 30 hours.

Figure 31 depicts the point estimates and the 90% CIs for the steady-state mean

queue length of node 60. The relative difference between the point estimate from Scenario

A and that from the sequential approach is 10.05%, as expected. The relative difference

drops to 5.14% with partial neighboring nodes included in the buffered area (Scenario B),

and it drops further to 0.93% when all the four neighboring nodes are in the buffered area

(Scenario C). As anticipated, Scenario D reveals the similar estimation accuracy as

Scenario C where the relative difference for Scenario D is 1.14%. (The increase from

0.93% to 1.14% is likely from random error.) Additional evidence to support this claim is

83

that the 90% CIs from both Scenarios C and D overlap. Also, the two CIs both overlap with

that from the sequential approach although some positive bias remains. Further expansion

of the buffered area improves the estimation slightly as the relative difference for Scenario

E is 0.57%. To conclude, based on Cases 1 and 2, it appears that the buffered area should

contain at least all the neighboring nodes of modeled subnetworks.

3.4.2.3 Case 3: 8 × 8 Grid Network

This subsection extends the study in Section 3.3.1.3 to demonstrate the

effectiveness of the buffered-area mechanism in terms of bias reduction on modeling the 8

× 8 grid network with Gamma(0.25, 4) service times. The regular partitioning is adopted in

this case, which ends up five subnetworks with one located in the middle and each of the

other four covering a corner; see Figure 7.

Figure 31: Point Estimates and 90% CIs for Mean Queue-Length Estimates of Node 60

under Case 2

84

Figure 32: Application of Buffered-area Mechanism to 8 × 8 Grid Network—Top Left

Portion

Figure 33: Application of Buffered-area Mechanism to 8 × 8 Grid Network—Center

Portion

85

Figure 34: Relative Differences for Mean Queue-Length Estimates under Case 3

Based on the conclusion in Section 3.4.2.2, the buffered-area mechanism is

implemented by enlarging the five subnetworks to encompass only the nodes immediately

surrounding themselves, as illustrated in Figures 32 and 33. In both figures, the areas in

white are the original modeled subnetworks while those in grey represent the buffered area.

The buffered area of the top-left portion is in Figure 32, which serves as an example of the

four corner portions. The buffered area for the center portion is in Figure 33.

Figure 34 plots the relative differences for the steady-state mean queue-length

estimates with and without the buffered-area mechanism. The accuracy gain is apparent,

especially for the nodes with high traffic intensities (e.g., nodes 18, 19, and 27). For

example, the relative difference for the mean queue length at node 27 drops from 1.92% to

0.83%; at node 19, from 2.74% to 1.12%; and at node 18, from 1.93% to 0.12%. Although

the overestimation issue remains, the bias is reduced substantially—more than 100%

86

improvement is observed in some nodes.

3.5 Conclusions

The performance of ad hoc queueing network simulations is a good indicator of the

capability of the ad hoc approach since queueing networks are a widely-used, abstract

model for a myriad of industrial systems. This chapter explored a preliminary design of ad

hoc queueing network simulations by discussing the software implementation and the

design of the involved mechanisms (e.g., the rollback detection mechanism), and

illustrating some of the underlying statistical issues that come along with the design. The

experiment results showed that the ad hoc queueing network simulations appear to be

competitive to their sequential counterparts with respect to the accuracy of the steady-state

network performance measures, such as server utilizations and mean queue lengths.

However, it was also observed that the mean queue lengths tend to be slightly

over-estimated, especially on the nodes with high traffic intensities.

In addition, this chapter examined the influences of partitioning methods on

prediction accuracy. By employing the symmetric regular partitioning (with a “highlight”

on the center part of the modeled network) as a baseline, nine partitioning layouts based on

the irregular partitioning methodology were evaluated. The results showed that the nine

layouts do not affect the estimation accuracy in any particular way; that is, the

point-estimate biases are of the same order and the expected overestimation is revealed.

Note that all these layouts involve more LPs in modeling the center part of the network

(which happens to have heavier loads than other parts). To study the impact of this

“central-highlight” design, another experiment was conducted on a partitioning layout

where every node in the network receives the same amount of “attention” from LPs. The

87

experiment result was compared to that from the baseline case, and the anticipated

phenomena, as those in the last experiment, were observed. Overall, the simulation is not

affected by partitioning layouts as long as the entire modeled network is modeled by a

sufficient number of LPs.

To solve the overestimation issue, this chapter further analyzed the problem and

proposed a buffered-area mechanism. The analysis concluded that the overestimation is

caused by the imperfect approximations of the arrival processes at nodes on the boundary

of modeled subnetworks. Hence, to reduce the effect of those input approximations, the

proposed mechanism extends modeling areas to include the extra nodes at boundaries. In

such case, execution efficiency is traded for prediction accuracy. The estimation bias is

substantially reduced with a small increase in computational cost. This statement was

supported by the empirical evidence.

88

CHAPTER 4

ON THE TRANSIENT RESPONSE OF OPEN QUEUEING

NETWORKS USING AD HOC DISTRIBUTED SIMULATION

This chapter explores the ability of ad hoc distributed simulation to predict the

transient behavior of physical systems. Capturing system dynamics is crucial to online

simulations, e.g., to trigger modifications to the configuration of physical systems in

response to events. For example, a sudden increase in traffic volume may indicate that

changes in traffic signal plans for the responsive transportation system are necessary to

help reduce congestion.

Transient-state analysis can be complex and computationally expensive, especially

in fulfilling the real-time requirement for online analysis. Transient-state analysis concerns

the system state varying over the span of time; it takes into account not only the system

state at every time point but also the correlations among the prior and posterior system

states. Instead, this study simplifies the analysis in evaluating the ad hoc approach: a

sufficient number of time points are considered and the respective state predictions from

the ad hoc approach are compared against those from the corresponding sequential

simulations. Specifically, the evaluation discretizes the simulation time into small time

intervals, and the output measures of interest (e.g., the queue-length estimate) are

calculated by averaging the numbers within each interval.

The rest of this chapter is organized as follows. First, Section 4.1 examines the

effectiveness of the preliminary ad hoc queueing simulation method introduced in Chapter

3 in the scenario that involves increase in external arrival rates; the method reveals a

89

delayed response in capturing the propagation of the expanded number of arrivals

throughout modeled queueing networks. To resolve this delayed-response issue, Section

4.2 proposes a new method and discusses the possible livelock issue that comes along with

the new design. The new method, termed “iterative ad hoc queueing simulation method,” is

evaluated empirically in Section 4.3 under several network configurations; this includes a

case with a large increase in arrivals over a short period of time, which leads to rapid

increases in queue occupancy. Last, Section 4.4 concludes this study.

4.1 Delayed Responses in the Original Ad Hoc Queueing Simulation Method

The ad hoc queueing simulation method introduced in Chapter 3, which is referred

to as the “original” method in the following context, is prone to delayed response to system

dynamics because LPs share locally observed current state information as predictions of

the future. Specifically, consider the case where a logical process (LP) models an object

and shares state information with other LPs that use the information as input. As shown in

Figure 35, at simulation time t, the LP computes a value based on the behavior of the object

over the time period [t − ∆, t). The value becomes public as a predicted value of the object

with respect to [t, t + δ), rather than [t − ∆, t). As a consequence, observations are not

immediately reflected to the simulation model that requires the information, which results

in a delayed response.

90

Figure 35: Information Sharing Mechanism Leading to Delayed Response

Figure 36: A Delayed-Response Example

91

Consider the previous design in Chapter 3 as an example where δ = 30 and ∆ = 300,

and the shared state values are computed by taking averages; see Figure 36. Assume the

state of an object prior to the simulation time t is vold, but it becomes vnew at t and remains at

the level afterwards. Then, vnew is revealed for the first time in the prediction with respect to

[t + 30, t + 60), which is 0.9vold + 0.1vnew. More generally, the prediction with respect to [t +

30i, t + 30i + 30) is (1 − 0.1i) × vold + 0.1i × vnew where i = 1, 2, …, 9. As a consequence, vnew

is not completely reflected until t + 300, which is 300 seconds beyond when the change

occurred.

The following experiments illustrate the effects of δ and ∆. Three configurations

are evaluated, all with δ = ∆ = 60, 300, and 600. The rest of the simulation model is the

same as that in Chapter 3, and the fundamental mechanisms are as follows. Each LP

models an arbitrary queueing subnetwork using a sequential, discrete-event simulation.

Every ∆ seconds, these LPs update the mean interdeparture times on the links they simulate

and request (or estimate if the data is unavailable upon request) the same information on

the input links entering their modeling networks. The arrivals on those input links are

modeled as Poisson processes. At the beginning of the simulation, the arrival rates are all

set to λ, which is the same as the external arrival rate to every queueing station; thereafter

the rates are dynamically estimated using the data from rollbacks. The rollback detection

function is based on an acceptable range, which is constructed following a quality control

paradigm. Since there may be several predictions from the LPs that model the same link,

the data retuned to the requesting LPs are generated using a kernel-density-estimation

approach.

92

Figure 37: 8-Node Tandem Queueing Networks

Furthermore, the experiments involve two open queueing networks with the

intention of showing various degrees of impact due to the delayed-response issue; see

Figure 37. The network in Figure 37(a) is an 8-node partially bidirectional tandem network.

Each node represents a single-server queueing station with an unlimited buffer,

first-come-first-served service discipline, and independent-and-identically-distributed (IID)

exponential service times with the mean equal to 1 second. Each node has external Poisson

arrivals with the rate λ. The probability of a processed unit moving to another node is p.

Hence, a processed unit leaves the network with the probability 1 − p (at nodes 0, 4, or 7) or

1 − 2p (otherwise). The network in Figure 37(b), which is referred to as a “completely

bidirectional tandem network,” is almost the same to the former one with an exception that

the processed units at node 4 may leave for node 3 with the probability p.

The experiments on both the networks involve 20 LPs in each replicate run: ten LPs

modeling the leftmost 4 nodes and the remaining ten modeling the rightmost 4 nodes. In

the simulations of the partially bidirectional tandem network, the shared information

93

always goes from the left subnetwork to the right subnetwork. The right subnetwork

“learns” the system dynamics in the left one through the changes in the flow rate (or,

equivalently, the mean interdeparture time) of link 10. It is anticipated that the larger the ∆,

the later the dynamics are detected. This phenomenon is expected to be worse in the

simulations of the completely bidirectional tandem network since both the left and right

subnetworks require information from each other.

The evaluation of δ and ∆ considers two metrics over 10 IID ad hoc runs: the arrival

rate across link 10 and the mean queue length at node 4. In one run, since the 10 LPs

modeling node 4 (where link 10 enters) may use different arrival rates with respect to the

same simulation time, these rates are averaged into one value. Then, the mean of the 10

values from 10 IID runs represents the point estimate. A similar calculation is performed to

determine the mean queue length of node 4. Moreover, the mean queue length is estimated

every 60 seconds.

The results from the corresponding traditional sequential simulations serve as

ground truth. These results are based on 100 replicate sequential runs because 10 IID ad

hoc runs deploy a total of 100 LPs to model one node. Note that these sequential

simulations do not model the arrivals on link 10 as a Poisson arrival process with the rate

being dynamically estimated (as is done by ad hoc simulations). Instead, the arrivals are the

departures from node 3 filtered by the probability p. For the output, the rate is estimated by

the corresponding mean interarrival time, which is estimated every 60 seconds based on

the arrivals that appear since the last computation.

4.1.1 Case 1: Partially Bidirectional Tandem Network

The first experiment focuses on the partially bidirectional tandem network with p =

94

0.45 and, for the first 4 hours in simulation time, λ = 1 ⁄ 8 per second; the steady-state traffic

intensities of the nodes range from 0.36 (nodes 1 and 4) to 0.66 (node 6). Afterwards, the

external arrival rate of every node increases to λ = 1 ⁄ 6 per second, which leads to the

steady-state traffic intensities growing to between 0.48 (nodes 1 and 4) and 0.87 (node 6).

Figure 38 plots the arrival rates of link 10 estimated by four different simulations:

traditional sequential simulations and the ad hoc queueing network simulations with δ = ∆

= 60, 300, and 600 seconds. This plot focuses on the transient period and hence the prior

and the later parts are removed for now. The results match the expectation that larger ∆

values give rise to longer delay in incorporating state changes. The length of the delay is

approximately ∆ except in the case where ∆ = 60, when the delay is slightly larger. This is

because the predictions have higher variation as they are based on smaller amount of data.

 Figure 38: Estimated Arrival Rates across Link 10 under Case 1

95

 Figure 39: Estimated Mean Queue Lengths at Node 4 under Case 1

Figure 39 shows the estimated mean queue lengths of node 4 in the same simulation

settings. Although the queue length is partly influenced by the arrivals on link 10, the

discrepancy between the sequential runs and the ad hoc runs is noticeable, albeit less

severe.

4.1.2 Case 2: Bidirectional Tandem Network

This case concerns the bidirectional tandem network with p = 0.4. Similar to the

previous case, the external arrival rate of every node increases from λ = 1 ⁄ 8 to 1 ⁄ 6 per

second after 4 hours in simulation time. Before the transition, the steady-state traffic

intensities range from 0.31 (nodes 1 and 7) to 0.57 (nodes 4 and 5); following the rate

change they range between 0.41 (nodes 1 and 7) and 0.76 (nodes 4 and 5).

96

Figure 40: Estimated Arrival Rates across Link 10 under Case 2

Figure 41: Estimated Mean Queue Lengths at Node 4 under Case 2

97

Figures 40 and 41 show the estimates of the arrival rates across link 10 and the

mean queue lengths at node 4, respectively. Compared to those in Case 1 (Figures 38 and

39), the ad hoc runs in this case take longer to pick up the state change. For example, the ad

hoc runs with ∆ = 600 do not fully reach the expected state until approximately one hour

after the change has occurred. This prolonged delay results from the “mutual dependence”

of the left and the right subnetworks. Specifically, the projected arrival rates of link 3 rely

on those of link 10, and vice versa.

4.2 Iterative Ad Hoc Queueing Simulation Method

This section proposes a solution to the delayed-response problem by reassigning a

new meaning to the values computed during the simulation execution. These values are

considered as representations of the current system state, rather than predictions of the

future as in the original ad hoc method. Details of the proposed solution are described in the

following subsections followed by a discussion of a particular design aimed at avoiding

potential issues such as livelocks. However, this design does not eliminate livelocks in

certain incorrect simulation models as will be illustrated by an example.

The proposed iterative ad hoc queueing simulation method inherits most

components from the original one, including the partitioning, the local simulation models,

the information aggregation, and the rollback-based optimistic synchronization

mechanism. These common parts are briefly summarized in the following corresponding

subsections to provide a comprehensive view of the method without the focuses deviating

from the new design.

4.2.1 Partitioning and Local Simulation Model

As in the original ad hoc method, a queueing network of interest is partitioned into

98

subnetworks of different sizes and shapes with the possibility that these subnetworks may

overlap with each other. Every LP models one subnetwork by adopting the discrete-event

simulation technique for constructing its local simulation model. The simulation input is

the state information of the incoming links to the modeled subnetwork, and the output is

that of all modeled links. The specifics regarding the link state information will be revisited

in Section 4.2.2.

4.2.2 Information Sharing

Similar to the original ad hoc method, the shared link states are represented in a

high level abstraction instead of the exact time points of job arrivals/departures.

Specifically, LPs exchange estimated flow rates every ∆ seconds where an estimated flow

rate of a link is computed by reversing the mean interarrival time over the last ∆ seconds on

that particular link. For example, let t1 ≤ t2 ≤ … denote arrival times and let ti ≤ ti+1 ≤ … ≤

tj−1 be those within the time interval of interest. Then, the estimated flow rate is the

multiplicative inverse of the mean interarrival time, i.e., r̂ in Equation (4.1). However,

generating individual arrival times by reversing the above procedure is not straightforward

because the information of the respective interarrival-time distribution is not maintained;

nor is the correlation relationship among those arrivals. Here, it is assumed that the arrivals

on one link form a Poisson process with rate equal to the corresponding estimated flow

rate.

 ()
11

1

1

1
1ˆ

−−

−

=

−
−

−
=








−

−
÷= ∑

ij

j

ik

kk
tt

ij
tt

ij
r (4.1)

99

Figure 42: Information Sharing in Iterative Ad Hoc Queueing Simulation Method

Unlike the original ad hoc approach, the iterative ad hoc distributed simulation

method aims for LPs sharing link information in a way that state transients are reflected to

others momentarily. This is accomplished by imposing that an estimated flow rate over a

given time period can only be used to reconstruct the link during that particular time

interval. Specifically, consider a value v denoting the flow rate over [t, t + ∆) on some link

l. The LPs that model link l as an incoming link must use v (along with the assumption

about the corresponding arrival process) to generate arrivals within [t, t + ∆); Figure 42

illustrates such design.

This design guarantees that LPs will not progress simulations backwards since the

value based on [t, t + ∆) from one LP affects, at earliest, the simulations of [t, t + ∆) carried

out by other LPs. Or, in the terminology of distributed simulations, the “lookahead” value

is zero. Zero lookahead commonly raises the concern of deadlocks, which can be

100

eliminated by optimistic synchronization. However, in this case, livelocks are possible

because LPs may fall into a loop within which they keep rolling back each other. Avoiding

such livelocks requires careful design of the local simulation models, which will be

discussed in Sections 4.2.6 and 4.2.7.

4.2.3 Information Aggregation

This ad hoc method retains the original information aggregation mechanism—each

state variable (i.e., the estimated flow rate of one link over a certain time interval) is

affiliated with a data model so that aggregating various estimates is equivalent to randomly

generating a sample out of the model. Data models are constructed using the

kernel-density-estimation (KDE) method with the Gaussian kernel.

4.2.4 Optimistic Synchronization and Rollbacks

The optimistic synchronization in this modified ad hoc method builds upon three

ideas: 1) intuitive practices, 2) simple implementation/maintenance, and 3) statistical

validity. While the last one is the fundamental idea to the process of determining the

necessity of a rollback (referred to as the “rollback criterion”), the former two are pervasive

throughout the design. For example, when a desired link flow rate in unattainable, the

requesting LP uses the most current rate of the same link, rather than an arbitrary value, by

assuming that the link state has not changed. Another example concerns the system state

restoration for nonstationary Poisson processes; this will be revisited soon.

The rollback criterion involves a statistical test that evaluates a used value against

the average of all shared, estimated rates. Specifically, the confidence interval of the point

estimate of the mean rate, in Equation (4.2), serves as the acceptance range:

n

S
tr r

n

2

2α1,1 −−± (4.2)

101

In the equation, r , 2

rS , and n are the sample mean, sample variance, and sample size,

respectively. The significance level is α, which is set to 0.005. The critical value 2α1,1 −−nt

is based on a Student’s t distribution with n − 1 degrees of freedom. If the used value falls

outside the range, it is rejected and a rollback is triggered. Compared to the original design

in Section 3.2.5, this method introduces an additional parameter (i.e., the degrees of

freedom) in order to adapt to different variations due to different number of estimates.

Figure 43: Arrival Scheduling in Rollback Handling

In response to rollbacks, LPs perform system state restoration. As input links

involve nonstationary arrival processes, additional state information other than the flow

rates is needed. In typical discrete-event-based queueing simulations, processing the

current arrival event includes scheduling a new arrival event, the time stamp of which

relies on some “future information” (or, in this design, the future flow rates). If any

102

pertaining future rate is later proved incorrect, a rollback is triggered; Figure 43 depicts

such a situation. In the figure, an LP is rolled back for using an underestimated flow rate for

some link during the simulation time period [t, t + ∆). Since resetting the system state also

removes all the arrivals beyond t, an initial arrival has to be generated on every input link.

The generating process must consider the elapsed time from t2 (when the latest arrival

occurred) to t as part of the interarrival time. Note that the new arrival must come after t

because a rollback targeting at [t, t + ∆) cannot affect the system state in prior to t.

The above issue is simplified in ad hoc queueing network simulations where the

arrivals on input links are modeled as nonstationary Poisson processes. Two well-known

methods for generating nonstationary Poisson arrivals are the thinning method [70] and the

inversion method [71]. The thinning method, an acceptance-rejection algorithm, requires

the upper bound on a flow rate function, which is generally unavailable. Furthermore, this

method may be inefficient when the acceptance rate is low. On the other hand, the

inversion method generates the arrivals times {ti} using a sequence of Poisson arrival times

at rate 1 {ti′} and the expectation function of a rate function, as defined in Equation (4.3):

 () ()∫ λ=Λ
t

dyyt
0

 (4.3)

The algorithm is shown in Figure 44. This method is adopted for it being practical and easy

to implement by one additional variable for ti−1′ and an array data structure for Λ−1 (because

the rate functions in ad hoc queueing network simulations are step functions).

01: u ~ U(0, 1)

02: ti′ = ti−1′ − ln(u)

03: ti = Λ−1(ti′)

Figure 44: Inversion Method for Generating Nonstationary Poisson Arrivals

103

Figure 45: A 2-Node Bidirectional Tandem Open Queueing Network

4.2.5 Naming—“Iterative” Ad Hoc Queueing Simulation Method

The term “iterative” comes from the iterative methods in computational

mathematics. These iterative methods solve problems that are formulated into the

fixed-value problem f(x) = x where f is a function. To find a solution of such a problem, the

typical procedure of an iterative method starts with an arbitrary x0, which is used in f to

obtain f(x0); then, the value f(x0) is set to x1. This procedure of xn+1 = f(xn) is repeated until

the sequence {xi} converges. The definition of convergence varies; it can be that the

difference between the last two numbers in the sequence are either zero or within a

designated scale of error.

A similar phenomenon of iteration can be observed in the ad hoc queueing

simulation method. Figure 45 depicts an example where the queueing network is

partitioned into two parts, each containing one node. The LPs modeling node 0 generate

the state information of link B and request that of link A; by contrast, those modeling node

1 use the information of link B to produce that of link A. The relationship between the

desired information and the shared information can be captured by functions: F0 for the

LPs simulating node 0 and F1 for node 1. Considering A[t, t + ∆) as the state of link A with

respect to the time period of [t, t + ∆) and similarly B[t, t + ∆) for link B, the relations can be

104

written down as Equations (4.4) and (4.5). Combining these two yields Equation (4.6),

which has the form f(x) = x where f is F1 ○ F0.

 B[t, t + ∆) = F0(A[t, t + ∆)) (4.4)

 A[t, t + ∆) = F1(B[t, t + ∆)) (4.5)

 A[t, t + ∆) = F1(F0(A[t, t + ∆))) (4.6)

4.2.6 Avoidance of Potential Livelocks

To prevent livelocks that result from the zero-lookahead nature in the ad hoc

method, it is essential to comprehensively understand the physical system before building

the local simulation models and designing those ad hoc components, especially the

rollback criteria. A livelock situation arises when two or more LPs are involved in a loop in

which their shared values keep invalidating each other’s simulation inputs. That is, these

LPs roll back each other successively so that, from the global view, the entire simulation

execution does not show forward progress. Although the zero-lookahead feature allows

LPs to “bring back” others to the same simulation time point, this feature can not be blamed

for livelocks. Instead, the causes of such livelocks include unrealistic rollback criteria and

incorrect simulation models. This subsection will focus on the former one (and the latter in

Section 4.2.7).

A feasible, legitimate rollback criterion must take into account the characteristics of

the corresponding state variable, such as randomness. For example, for a state variable

with possible values ranging across continuous space (i.e., a continuous stochastic

variable), its affiliated rollback criterion needs to be flexible with regard to evaluating the

“correctness” of a value. A value should be considered correct if it is within a certain range.

This idea applies to discrete stochastic variables as well. However, the consequence would

105

be more severe for continuous random variables because the probability of a continuous

random variable being equal to any arbitrary value is zero. This implies that, given an LP

that has used a value v for some input link, another LP that models the link is highly

improbable to generate v as a state measure for the link. Hence, the LP using v is rolled

back. The following example illustrates such a situation based on the queueing network in

Figure 45.

The example concerns a simulation of the queueing network in Figure 45 with LP0

modeling the left part (i.e., node 0 and link B) and LP1 in charge of the right one. LP0

requires the state information of link A as input to its local simulation model, and this

information is shared by LP1. Similarly, LP1 relies on LP0 for link B. The link states are

measured by the flow rates estimated over ∆ seconds, and the LPs must use the exact value

their corresponding LP generates. Considering the time period [t, t + ∆), the process used

by the two LPs to reach an agreement on the rates is depicted in Figure 46; clearly they fail

and fall into a livelock situation. The detailed process is as follows:

Figure 46: A Livelock Example of Modeling the 2-Node Bidirectional Tandem Queueing

Network in Figure 45

106

1. At wall-clock time T0, both LP0 and LP1 have not generated flow rates for their

corresponding links with respect to [t, t + ∆). As a consequence, they utilize

arbitrary values: LP0 applies vA0 for link A and LP1 uses vB0 for link B.

2. At time T1, LP0 produces the estimated flow rate of link B, vB1, which rolls back

LP1.

3. Then at T2, LP1 observes the flow rate of link A being vA1 after using vB1 for link

B. As a consequence, LP0 is rolled back and its shared state information about

link B, vB1, is revoked.

4. At time T3, similar situation occurs: LP0 derives a new value for link B, vB2, due

to the usage of vA1. Rolling back LP1 results in the simulation ending up in a

situation resembling that at T1.

This loop of rollbacks is anticipated to continue because the flow-rate estimates are

continuous stochastic variables; it is highly impossible that vAi = vAi+1 (nor vBi = vBi+1) for

any integer i ≥ 0.

4.2.7 Livelocks from Incorrect Simulation Models

An incorrect local simulation model may cause livelocks as well. This situation is

analogous to the classical livelock problem where the application/model itself is not

appropriately defined. This subsection presents such an example where an ad hoc queueing

network simulation involves inappropriate network partitioning and incorrect assumptions

in designing the local simulation models. This example signifies that it is vital to

understand a physical system (e.g., the interactions among the components in the system)

before applying the ad hoc approach (or any other simulation method) to model it.

107

Figure 47: A 2-Node Bidirectional Tandem Closed Queueing Network

The example concerns a simple procedure with two machines M0 and M1

cooperating on 1) creating jobs, 2) processing them, and then 3) checking their final status;

the first and third tasks are executed by M0 while M1 is in charge of the second one. The

jobs are transmitted between the machines via links L0 and L1 without incurring any

latency, as depicted in Figure 47. The detailed operations of M0 and M1 are as follows. M0

conducts three types of operations, all uninterruptable with deterministic operating

duration: resting takes 1 second; creating a job, 4 seconds; and checking a job’s status, 4

seconds. The checking operation has higher priority than the creating one. That is, if a job

has returned from M1, M0 checks its status, updates corresponding records, and deletes the

job; otherwise, M0 creates a new job. However, M0 must rest right after both the creating

and checking operations. On the other hand, M1 is involved in a more straightforward

scenario: it idles until getting a job from M0 when it would immediately process the job

with 0.5 second and then send the job back to M0. In sum, Figure 48 plots the operations of

and the interactions between M0 and M1 given no job in both machines at time 0.

Figure 48: Operations of and Interactions between Machines M0 and M1

108

Table 2. A Livelock Example of Incorrectly Modeling the Behaviors in Figure 48

LPs modeling M0 LPs modeling M1

Iteration Input L1

(M1 to M0)

Output L0

(M0 to M1)

Input L0

(M0 to M1)

Output L1

(M1 to M0)

1 0 0

 0 5 0 0

2 0 5 5

 0 5 5 5

3 5 5 5

 5 0 5 5

4 5 0 0

 5 0 0 0

5 0 0 0

 0 5 0 0

A failed usage of the ad hoc method on modeling M0 and M1 is as follows. The

partitioning is as shown by the grey boxes in Figure 47 where one set of LPs modeling M0

and the other set for M1. In this case, the procedure does not involve stochastic components

and hence the number of the LPs with the same modeling area is not an important factor.

The two sets of LPs exchange the numbers of jobs sent through link L0 and L1 every 25

seconds in simulation time; the LPs use the value 0 if the desired information is unavailable

upon request. The LPs would roll back when the corresponding LPs generate values that

are different from what they have used. As to generating n arrivals within the respective 25

seconds, the arrivals are evenly distributed. For example, considering the simulation time

interval [0, 25) with n equal to 5, the arrivals occur at simulation time points 0, 5, 10, 15,

and 20.

Table 2 lists the first few iterations within a livelock where the two sets of LPs

attempt to converge to the numbers of jobs on L0 and L1 during some time interval with

length 25 seconds. For the illustration purpose, let the time interval be [0, 25). The detailed

109

iterations are as follows:

1. Iteration 1. At simulation time 0, both the numbers of jobs on L0 and L1 are

assumed to be 0. For machine M0, this implies that it does not need to perform

any checking operation and hence would create 5 jobs, as depicted in Figure

49(a). On the other hand, machine M1 idles during the entire 25 seconds. After

simulating this 25-second interval, the LPs modeling M0 delivers a number 5

since 5 jobs were created and sent through L0. This number invalidates the

value 0 used by the LPs in charge of M1 (see the shaded numbers in Table 2).

2. Iteration 2. The LPs modeling M1 restart the simulation from time 0 with the

input L0 being 5. Five jobs arrive at M1 for processing, and are returned through

L1 (Figure 50). As a consequence, the number 5 goes public to stand for the

state of L1.

3. Iteration 3. The LPs modeling M0 are asked to use 5 as the input for link L1.

Figure 49(b) illustrates the situation, in which M0 spends all applicable time on

the checking operations and does not create any new job to put onto L0.

4. Iteration 4. The usage of 5 for the input L0 is rolled back. Instead, the value 0

should be adopted, which then leads to M1 idling during [0, 25).

5. Iteration 5. This iteration is exactly the same as Iteration 1, indicating that the

simulation runs into a loop.

The livelock issue in the above example is the result of an incorrect simulation

design by ignoring the relationship between the two links. In other words, such partitioning

mechanism and the location simulation models are erroneous.

110

Figure 49: State of Machine M0 during [0, 25)

Figure 50: State of Machine M1 during [0, 25) with Input Value 5

4.3 Experiments and Results

This section evaluates the iterative ad hoc queueing simulation method with six

experiments, which involve two types of open queueing networks under various

111

configurations. The experiments will demonstrate that the method is effective in terms of

identifying system transients. The metrics for evaluation include the flow rates across input

links and the mean queue lengths at nodes. The results are compared against the sequential

counterparts where plots will be delivered to show the differences between the averaged

numbers (similar to those in Sections 4.1.1 and 4.1.2). Moreover, Welch’s t test is adopted

for a more comprehensive assessment.

The following ad hoc queueing network simulations adopt the design of the ad hoc

components described in Section 4.2, and the experiment settings are similar to those in

Sections 4.1.1 and 4.1.2. An additional note regarding the number of IID replicate runs is

that, for a node covered by n LPs in one ad hoc run, the number of the required

sequential-counterpart replications is n × m where m is the number of ad hoc runs; in

particular, m = 10 for all the experiments in this section. Moreover, 10 LPs are deployed to

model each portion of a queueing network. Since one node may reside in one or more (say

k) portions, n can be formulated as 10 × k. Examples of such scenarios with k > 1 are the

experiments in Section 4.3.3 where k = 2 for some nodes.

4.3.1 Welch’s t Test

The following experiments adopt Welch’s t test to statistically access the (null)

hypothesis that the mean values of two samples are equal. This test modifies the

well-known Student’s t-test to consider that two samples may have unequal variances. Its

statistic t is defined by the formula in Equation (4.7) and the degrees of freedom ν is

estimated by Equation (4.8) where
iX , 2

iS , and Ni are the i-th sample mean, sample

variance, and sample size, respectively. Given a significance level α (e.g., 0.01), the

hypothesis is rejected if the derived p-value is below α; the p-value for a two-tailed test

112

based on Student’s t-distribution is 1 − (Fν(|t|) − Fν(−|t|)) where Fν denotes the respective

distribution function.

 ()
2

2

2

1

2

1
21

N

S

N

S
XXt +−= (4.7)

() ()










−
+

−







+=

11
ν

2

2

2

4

2

1

2

1

4

1

2

2

2

2

1

2

1

NN

S

NN

S

N

S

N

S
 (4.8)

The two samples in the subsequent hypothesis tests are 1) the data from the ad hoc

runs and 2) those from the sequential counterparts. Regardless of the metric, the size of the

ad hoc sample (i.e., N1) is always 10, which is the same as the number of ad hoc replication

runs. In other words, the results produced by the LPs in one run are averaged into one value

to stand for that particular run. On the other hand, the size of the sequential sample (i.e., N2)

is 100 × k, that is, the number of the required sequential-counterpart replications.

4.3.2 Experiments with 8-Node Tandem Networks

This subsection focuses on three 8-node tandem networks, all with similar network

topologies as those in Section 4.1. The first two experiments (Sections 4.3.2.1 and 4.3.2.2)

revisit those in Sections 4.1.1 and 4.1.2 but use the new iterative ad hoc method. The third

experiment loads the previous tandem network with heavy traffic to show how the method

is capable of capturing system dynamics when the nodes are under high traffic intensities.

4.3.2.1 Experiment 1: Partially Bidirectional Tandem Network

This experiment concerns the network in Figure 37(a) with all the configurations

from Section 4.1.1. The simulation results based on the iterative ad hoc method are shown

in Figures 51 and 52. Regardless of the ∆ value, the ad hoc simulations perform well on

capturing the estimated flow rates and mean queue lengths. Although the small ∆ (e.g., ∆ =

113

60) may reveal choppiness in estimates, this is expected due to the randomness in the

simulation models. On the other hand, it is anticipated that large ∆ may weaken the

real-time response as the changes are averaged out across the entire update periods.

However such issue is insignificant in this experiment.

Figures 53 and 54 plot the p-values from Welch’s t tests on the same two

measurements of interest. These results reaffirm the good performance of the iterative ad

hoc method because the vast majority of the p-values are above the critical level α = 0.01.

The three exceptions for the mean queue length at node 4 at simulation time 3:54, 4:16, and

4:32 (see Figure 54) are rather insignificant for two reasons: 1) the rejected hypothesis

associates to 3:54, which is in prior to the arrival rate increase at 4:00; and 2) the failed tests

are sparse across the entire simulation.

Figure 51: Estimated Arrival Rates across Link 10 in Experiment 1

114

Figure 52: Estimated Mean Queue Lengths at Node 4 in Experiment 1

Figure 53: P-Values from Welch’s t Tests on Estimated Arrival Rates across Link 10 in

Experiment 1

115

Figure 54: P-Values from Welch’s t Tests on Estimated Mean Queue Lengths at Node 4 in

Experiment 1

4.3.2.2 Experiment 2: Bidirectional Tandem Network with Moderate Traffic

This experiment extends that in Section 4.1.2 by replacing the ad hoc queueing

simulation method with the new one. The network of interest is in Figure 37(b) and the

results are in Figures 55 and 56. Here (and afterwards), the flow-rate metric is skipped as it

leads to the same conclusion as the queue-length metric—the iterative ad hoc method

performs well. Nevertheless, again, sporadic hypothesis rejections occur (see Figure 56)

but they are not major, as those in the previous experiment.

116

Figure 55: Estimated Mean Queue Lengths at Node 4 in Experiment 2

Figure 56: P-Values from Welch’s t Tests on Estimated Mean Queue Lengths at Node 4 in

Experiment 2

117

Experiment 3: Bidirectional Tandem Network with Heavy Traffic

This experiment intends to show that the iterative ad hoc method is capable of

promptly responding to sudden, massive state changes. The network of interest is depicted

in Figure 37(b) and the system transients are introduced by increasing the external arrivals

to each node as depicted in Figure 57. This makes node 3 saturated—an extremely busy

server and its queue building up. Node 4 is also saturated with its steady-state traffic

intensity reaching approximately 0.97. Since the queues grow rapidly, the system transient

period lasts for only 30 minutes. This allows the ad hoc method to demonstrate that it can

also capture state changes in the opposite direction (i.e., decrease in flow rates).

Figure 57: An 8-Node Bidirectional Tandem Network with Heavy Traffic

Figure 58: Estimated Mean Queue Lengths at Node 4 in Experiment 3

118

The simulation results affirm that the ad hoc method is competent in this

heavy-traffic scenario; see Figure 58 for the estimated mean queue length of node 4. For

clarity, ∆ is set to a moderate value (∆ = 300), leaving off the jagged results from small ∆.

Furthermore, the respective t tests indicate insignificant differences between the ad hoc and

sequential simulations (the figure is skipped for space conservation).

4.3.3 Experiments with an 8 × 8 Grid Network

The three experiments in this subsection intend to show that the iterative ad hoc

method can handle the state transients in the networks that involve complex, cyclic unit

routings. The 8 × 8 queueing network under regular partitioning (i.e., the one in Section

3.3.1, as shown in Figure 59) is adopted. Moreover, the experiments vary in the service

processes as well as the respective service-time coefficients of variation (CV), which range

from 0.5 to 2.

The modeled scenario is as follows. Throughout the entire simulation, each node in

the network is associated with an external Poisson arrival process, starting with the rate

equal to 1 / 6 per second. Then, after 4 hours in simulation time, the external arrival

processes of nodes 16 and 24 both increase their rates to 1 / 2 per second (see Figure 59);

this change lasts for 30 minutes and goes back to the starting condition afterwards. During

the 30-minute period, the steady-state traffic intensities of nodes 16 and 24 are anticipated

to go up to 0.98 and 0.99, respectively; these two nodes are then the busiest among all.

119

Figure 59: A Regularly Partitioned 8 × 8 Grid Network with Dynamic Flow Rates

The metrics for evaluation are the mean queue lengths of nodes 26 and 33. Node 26

is covered by 20 LPs, 10 of which also model nodes 16 and 24 (where the system dynamics

are introduced) while the remaining 10 LPs require the information shared by the former

10 LPs. On the other hand, node 33 resides outside the portion where the state changes

initially take off; that is, the 10 LPs modeling node 33 entirely rely on other LPs with

regards to the system transients.

4.3.3.1 Experiment 4: Exponential Service Times

All the service times in this experiment are IID and follow the exponential

distribution with the mean equal to 1 second. The CV is 1 since the variance is 1 second

120

squared. After the system transients occur at 4:00, the steady-state mean queue length of

node 26 is expected to grow from 3.26 to 4.34 and that of node 33, from 2.29 to 3.13.

Figure 60 illustrates the experiment results: the estimated mean queue lengths

averaged over 300-second periods and the p-values from the respective Welch’s t tests.

These results show that the iterative ad hoc method is competitive to the corresponding

sequential runs under this complex 8 × 8 network with the moderate service-time CV.

4.3.3.2 Experiment 5: Gamma Service Times with Low Variation

This experiment employs the gamma service times with the shape and scale

parameters equal to 4 and 0.25, respectively; the resulting CV is 0.5 (since the mean is 1

and the variance is 0.25). The mean queue lengths are expected to be shorter than those in

the last experiment due to this smaller service-time CV. This anticipation is confirmed by

the results in Figure 61, which also support the claim that the ad hoc method is

indistinguishable from the sequential simulation. Unlike the results in Section 4.3.3.1, an

extremely rare number of hypothesis rejections hit the claim. However, these incidents are

minor unless further evident is presented to against it.

4.3.3.3 Experiment 6: Gamma Service Times with High Variation

As opposed to the experiment in Section 4.3.3.2, here the service times follow the

gamma distribution with the shape and scale parameters equal to 0.25 and 4, respectively.

Under this configuration, the mean is 1 second and the variance is 4 second squared. That is,

the service-time CV is 2, which results in longer mean queue lengths compared to those in

Experiment 4 (in Section 4.3.3.1). The experiment results are depicted in Figure 62, and

again these positive results show the potential effectiveness of the iterative ad hoc method.

121

Figure 60: Estimated Mean Queue Lengths and p-Values from Welch’s t Tests in Experiment 4

122

Figure 61: Estimated Mean Queue Lengths and p-Values from Welch’s t Tests in Experiment 5

123

Figure 62: Estimated Mean Queue Lengths and p-Values from Welch’s t Tests in Experiment 6

124

4.4 Conclusions

By extending the study of the accuracy of steady-state metrics in Chapter 3, this

chapter demonstrated the competitiveness of ad hoc distributed simulation on modeling

short-term system dynamics in opening queueing networks. First, two experiments with

flow rates increasing during simulation executions were conducted to argue that the

original ad hoc method in the previous chapter fails in instant reflection of system

transients. The extent of those delayed responses relates to the length of the update period

∆. The failures are due to the fact that the state updates shared by individual LPs are

regarded as predictions of future system states, rather than reflections of the current state.

To address the delayed-response issue, the iterative ad hoc method was proposed

along with detailed discussions on the design of the engaged components as well as the

potential issues owing to flawed simulation models; suggestions and negative examples

were delivered as guidelines for preventing application builders from running into such

issues. The new method was empirically evaluated by six experiments, which

demonstrated the potential capability of the proposed iterative approach in terms of

capturing system dynamics by comparing the results against the sequential counterparts.

The evaluation was based on point estimation, which includes not only the direct

comparison of the averaged numbers but also Welch’s t test to provide more compelling

and comprehensive statistical evidence.

125

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

An ad hoc distributed simulation models an operational system by bringing

together a collection of autonomous online simulations, each responsible for modeling a

portion of the system. These simulators (i.e., LPs, short for logical processes) coordinate

with each other via the ad hoc service (i.e., the synchronization mechanism) along with the

space time memory (STM), which serves as data storage. The ad hoc service involves

several mechanisms, such as the rollback mechanism; a proper design of these mechanisms

with respect to a specific application is essential. This thesis work particularly focuses on

modeling open queueing networks using ad hoc distributed simulation because queueing

models are widely used abstractions for analyzing industrial systems.

First, this thesis mathematically defined the ad hoc approach, primarily for two

reasons: (1) facilitating the performance analysis and (2) standardizing the terminology to,

for example, improve the communication between application designers and simulation

programmers. Furthermore, based upon this formulation this thesis modularized the ad hoc

approach and provided the pseudo codes to help translate the conceptual descriptions to

programs.

The second part of this thesis explored the capability of the ad hoc approach for the

steady-state analysis of open queueing networks. Both analytical and empirical studies

were conducted to address the estimation accuracy. The analytical study concerned in

particular the queueing networks within which the departures of each queueing station (i.e.,

126

node) form a renewal process because renewal processes can be accurately modeled

without a significant computational effort. The study identified such networks and proved

that the ad hoc approach can model these networks and produce the estimates that are

statistically equivalent to those from the sequential counterparts.

On the other hand, three empirical studies were conducted on the queueing

networks that do not satisfy the above condition. The first one focused on the steady-state

server utilization and mean queue lengths of the nodes in an 8 × 8 grid network. The

network was configured with a stochastic unit-routing plan and various service-time

distributions, leading to non-Poisson departures. The experiment results showed that the ad

hoc approach is competitive to the sequential simulation approach despite the observable,

yet mild and tolerable, overestimation in the queue-length estimators. Furthermore, an

extended study revealed that a major cause of such overestimation issue is the input

approximation.

The second empirical study examined the impact of partitioning methods on the

prediction accuracy by extending the last study to evaluate 10 more partitioning layouts

with the same experiment settings. Specifically, every node in the network was modeled by

at least 8 LPs. The results did not show significant discrepancy among those layouts. In

other words, partitioning methods do not appear to be a critical factor in the estimation

accuracy as long as an adequate number of LPs are deployed for each node.

The third empirical study proposed a buffered-area mechanism to improve the

prediction accuracy, which was shown to deteriorate due to the imperfect input

approximation in the first empirical study. Instead of improving the accuracy though a

better, more sophisticated input approximation method (which could be challenging and

expensive to compute), the proposed buffered-area mechanism attempted to ease this

127

overestimation problem by inserting buffers to “calm the shock wave” induced by the input

approximation. The experiment results demonstrated that a small buffer is sufficient to

greatly reduce the estimation biases.

The third part of this thesis broadened the applications of ad hoc distributed

simulation to prove its competence in capturing the short-term state transients in open

queueing networks. This study started with evaluating the capability of the previous ad hoc

queueing simulation method used for the steady-state analysis. This original method

showed itself unable to accurately reflect state changes in terms of when the changes

happen and how long they last. Specifically, the changes were revealed with delay,

positively connecting to the parameter—the length of the update period. To fix this

delayed-response issue, the iterative ad hoc queueing simulation method was proposed by

considering the observations from individual small simulations as the current state, instead

of the future state predictions. The proposed method was discussed in detail, including the

ideas behind the design of the involved components and the guidelines to prevent the

undesirable livelock issue. Also, some instances of violating these guidelines were

delivered to show the possible consequences.

The performance of the iterative ad hoc queueing simulation method with respect to

instantaneous system-state reflection was evaluated empirically under 6 different networks.

Both tandem and grid networks were included in the experiments, as well as various

network conditions such as the server loadings (moderate and heavy) and the service-time

variances (low, medium, and high). The experiment results led to the conclusion that this

ad hoc method has the ability to model system dynamics accurately with the simulation

results being statistically equivalent to those from sequential simulations.

128

5.2 Future Work

Ad hoc distributed simulation, which is motivated by the emerging embedded

online simulations, presents a great number of future directions, for example, with regard

to monitoring and optimizing operational systems. While this thesis has explored the work

primarily focusing on modeling open queueing networks, many areas merit further

investigation. The following lists some possible directions:

1. Embracing data correlation. The data processing in the current ad hoc

queueing network simulations has been assuming that each observed/shared

value is independent. This configuration benefits the implementation simplicity

and the execution efficiency while sacrifices the accuracy performance. For

example, Section 3.3.3 has shown that the renewal assumption regarding the

arrival processes on input links is the cause of the observed estimation biases.

Hence, accommodating correlation information into data models may mitigate

estimation biases. Moreover, several other mechanisms in the ad hoc method

should take data correlation into account as well. The information aggregation

is one instance because the LPs modeling the same area may deliver predictions

with correlation (considering the input data to their individual simulations may

be potentially correlated). Also, the rollback detection mechanism should avoid

possibly correlated estimations from destructing rollback criteria, such as

widening or narrowing acceptable ranges to favor undesirable values or to

reject valid ones.

2. Handling unreliable data. When it comes to data processing, it is always one

of the critical factors that how much data is sufficient to support a claim with a

129

certain statistical significance. This concern impacts the ad hoc approach

directly in determining the LP-coverage requirements for each portion of a

system under investigation. Also, it should be taken into consideration the

reliability of LPs as well as the communication among them because any failure

and error during simulation executions would lead to data loss.

In addition to data loss, data contamination harms data reliability. Inaccurate

data are produced by malfunctioning LPs (resulting from failed computing

devices and invalid simulation models) and other data sources (e.g., sensors).

These data should be excluded from simulations as soon as possible to avoid

further damage. However, identifying such situations can be challenging as a

productive detection mechanism must distinguish the errors due to pollution

from true system dynamics.

3. Balancing tradeoffs. Ad hoc distributed simulation emerges from the issues

that traditional simulation methodologies may run into when serving for

real-time operational systems—the issues are responsiveness, scalability and

failure resistance. In order to tackle these issues, some sacrifices have to be

made, and the estimation accuracy is one of them. While the notion of tradeoffs

has been “embedded” every bit in the ad hoc method, a general model to

quantify the tradeoffs is essential for guiding simulation users throughout all

the possible choices of the ad hoc mechanisms. Moreover, this may help

develop new methods for various current and, most importantly, future

conditions and requirements.

4. Expanding simulation applications. Queueing models are

popularly-accepted benchmarking applications for evaluating the performance

130

of a simulation method. While this thesis work has explored the ad hoc method

on modeling open queueing networks, an apparent next step is to study closed

queueing networks. A closed queueing network, by definition, involves a

constant number of units, getting services and looping inside the network; that

is, no external arrival or departure exists. In practice, closed queueing networks

deserve the same amount of attention as open ones do; particularly, the

computer and communication systems are commonly modeled using closed

queueing networks.

131

REFERENCES

[1] C. Toumazou, F. J. Lidgey, and D. G. Haigh, Analogue IC Design: The

Current-Mode Approach, Repr. with minor corrections June 1990 ed. London:

Peregrinus on behalf of the Institution of Electrical Engineers, 1990.

[2] R. J. Baker, CMOS: Circuit Design, Layout, and Simulation, 3rd ed. Hoboken,

N.J.: IEEE Press/Wiley, 2010.

[3] R. L. Geiger, P. E. Allen, and N. R. Strader, VLSI Design Techniques for Analog

and Digital Circuits. New York: McGraw-Hill Pub. Co., 1990.

[4] P. Lynch, "The Origins of Computer Weather Prediction and Climate Modeling,"

Journal of Computational Physics, vol. 227, pp. 3431–3444, March 2008.

[5] M. A. Finney, FARSITE: Fire Area Simulator—Model Development and

Evaluation. Ogden, UT: US Department of Agriculture, Forest Service, Rocky

Mountain Research Station, 1998.

[6] M. Reed, Ø. Johansen, P. J. Brandvik, P. Daling, A. Lewis, R. Fiocco, et al., "Oil

Spill Modeling towards the Close of the 20th Century: Overview of the State of

the Art," Spill Science & Technology Bulletin, vol. 5, pp. 3–16, April 1999.

[7] D. Helbing, I. J. Farkas, P. Molnár, and T. Vicsek, "Simulation of Pedestrian

Crowds in Normal and Evacuation Situations," in Pedestrian and Evacuation

Dynamics, M. Schreckenberg and S. D. Sharma, Eds., New York: Springer, 2002,

pp. 21–58.

[8] S. Eubank, H. Guclu, V. S. A. Kumar, M. V. Marathe, A. Srinivasan, Z. Toroczkai,

et al., "Modelling Disease Outbreaks in Realistic Urban Social Networks," Nature,

vol. 429, pp. 180–184, May 2004.

[9] L. G. Birta and G. Arbez, Modelling and Simulation: Exploring Dynamic System

Behaviour. London: Springer, 2007.

132

[10] F. Darema, "Dynamic Data Driven Applications Systems: A New Paradigm for

Application Simulations and Measurements," in Computational Science – ICCS

2004, M. Bubak, G. D. v. Albada, P. M. A. Sloot, and J. Dongarra, Eds., Berlin:

Springer Berlin Heidelberg, 2004, pp. 662–669.

[11] R. Fujimoto, D. Lunceford, E. Page, and A. M. Uhrmacher, "Grand Challenges for

Modeling and Simulation," Schloss Dagstuhl, Dagstuhl, Germany Dagstuhl

Seminar Report 350, August 2002.

[12] E. A. Lee, "Cyber Physical Systems: Design Challenges," in Proceedings of the

11th IEEE International Symposium on Object Oriented Real-Time Distributed

Computing, Orlando, FL, 2008, pp. 363–369.

[13] W. J. Davis, "On-Line Simulation: Need and Evolving Research Requirements,"

in Handbook of Simulation: Principles, Methodology, Advances, Applications,

and Practice, J. Banks, Ed., New York: Wiley, 1998, pp. 465–518.

[14] F. Kamrani and R. Ayani, "Using On-Line Simulation for Adaptive Path Planning

of UAVs," in Proceedings of the 11th IEEE International Symposium on

Distributed Simulation and Real-Time Applications, Chania, Greece, 2007, pp.

167–174.

[15] T. Ye, H. T. Kaur, S. Kalyanaraman, and M. Yuksel, "Large-Scale Network

Parameter Configuration Using an On-Line Simulation Framework," IEEE/ACM

Transactions on Networking, vol. 16, pp. 777–790, August 2008.

[16] M. Y. H. Low, K. W. Lye, P. Lendermann, S. J. Turner, R. T. W. Chim, and S. H.

Leo, "An Agent-Based Approach for Managing Symbiotic Simulation of

Semiconductor Assembly and Test Operation," in Proceedings of the 4th

International Joint Conference on Autonomous Agents and Multiagent Systems,

Utrecht, The Netherlands, 2005, pp. 85–92.

[17] M. Hunter, H. K. Kim, W. Suh, R. Fujimoto, J. Sirichoke, and M. Palekar, "Ad

Hoc Distributed Dynamic Data-Driven Simulations of Surface Transportation

Systems," Simulation, vol. 85, pp. 243–255, April 2009.

133

[18] M. Hunter, J. Sirichoke, R. Fujimoto, and Y.-L. Huang, "Embedded Ad Hoc

Distributed Simulation for Transportation System Monitoring and Control," in

Proceedings of the 2009 INFORMS Simulation Society Research Workshop,

Coventry, United Kingdom, 2009, pp. 15–19.

[19] G. R. Madey, G. Szabó, and A.-L. Barabási, "WIPER: The Integrated Wireless

Phone Based Emergency Response System," in Computational Science – ICCS

2006, V. N. Alexandrov, G. D. v. Albada, P. M. A. Sloot, and J. Dongarra, Eds.,

Berlin: Springer Berlin Heidelberg, 2006, pp. 417–424.

[20] G. R. Madey, A.-L. Barabási, N. V. Chawla, M. Gonzalez, D. Hachen, B. Lantz, et

al., "Enhanced Situational Awareness: Application of DDDAS Concepts to

Emergency and Disaster Management," in Computational Science – ICCS 2007, Y.

Shi, G. D. v. Albada, J. Dongarra, and P. M. A. Sloot, Eds., Berlin: Springer Berlin

Heidelberg, 2007, pp. 1090–1097.

[21] D. Knight, T. Rossman, and Y. Jaluria, "Evaluation of Fluid-Thermal Systems by

Dynamic Data Driven Application Systems," in Computational Science – ICCS

2006, V. N. Alexandrov, G. D. v. Albada, P. M. A. Sloot, and J. Dongarra, Eds.,

Berlin: Springer Berlin Heidelberg, 2006, pp. 473–480.

[22] D. Knight, Q. Ma, T. Rossman, and Y. Jaluria, "Evaluation of Fluid-Thermal

Systems by Dynamic Data Driven Application Systems - Part II," in

Computational Science – ICCS 2007, Y. Shi, G. D. v. Albada, J. Dongarra, and P.

M. A. Sloot, Eds., Berlin: Springer Berlin Heidelberg, 2007, pp. 1189–1196.

[23] F. Zhao and L. J. Guibas, Wireless Sensor Networks: An Information Processing

Approach. Amsterdam: Morgan Kaufmann, 2004.

[24] R. M. Fujimoto, Parallel and Distributed Simulation Systems. New York: Wiley,

2000.

[25] K. M. Chandy and J. Misra, "Distributed Simulation: A Case Study in Design and

Verification of Distributed Programs," IEEE Transactions on Software

Engineering, vol. SE-5, pp. 440–452, September 1979.

134

[26] R. E. Bryant, "Simulation of Packet Communication Architecture Computer

Systems," Master's Thesis, Laboratory for Computer Science, Massachusetts

Institute of Technology, Cambridge, MA, 1977.

[27] K. M. Chandy and J. Misra, "Asynchronous Distributed Simulation via a

Sequence of Parallel Computations," Communications of the ACM – Special Issue

on Simulation Modeling and Statistical Computing, vol. 24, pp. 198–206, April

1981.

[28] E. W. Dijkstra and C. S. Scholten, "Termination Detection for Diffusing

Computations," Information Processing Letters, vol. 11, pp. 1–4, August 1980.

[29] D. M. Nicol, "Noncommittal Barrier Synchronization," Parallel Computing, vol.

21, pp. 529–549, April 1995.

[30] D. M. Nicol, C. C. Michael, and P. Inouye, "Efficient Aggregation of Multiple

PLs in Distributed Memory Parallel Simulations," in Proceedings of the 1989

Winter Simulation Conference, Washington, DC, 1989, pp. 680–685.

[31] D. M. Nicol, "The Cost of Conservative Synchronization in Parallel Discrete

Event Simulations," Journal of the ACM, vol. 40, pp. 304–333, April 1993.

[32] J. Steinman, "Multi-Node Testbed: A Distributed Emulation of Space

Communications for the Strategic Defense System," in Proceedings of the 21st

Annual Pittsburgh Conference on Modeling and Simulation, Pittsburgh, PA, 1990,

pp. 1111–1115.

[33] J. Steinman, "SPEEDES: Synchronous Parallel Environment for Emulation and

Discrete Event Simulation," in Proceedings of the SCS Multiconference on

Advances in Parallel and Distributed Simulation, Anaheim, CA, 1991, pp.

95–103.

[34] B. D. Lubachevsky, "Efficient Distributed Event-Driven Simulations of

Multiple-Loop Networks," Communications of the ACM, vol. 32, pp. 111–131,

January 1989.

135

[35] R. Ayani, "A Parallel Simulation Scheme Based on Distance between Objects," in

Proceedings of the SCS Multiconference on Distributed Simulation, Tampa, FL,

1989, pp. 113–118.

[36] D. R. Jefferson, "Virtual Time," ACM Transactions on Programming Languages

and Systems, vol. 7, pp. 404–425, July 1985.

[37] C. D. Carothers, K. S. Perumalla, and R. M. Fujimoto, "Efficient Optimistic

Parallel Simulations Using Reverse Computation," ACM Transactions on

Modeling and Computer Simulation, vol. 9, pp. 224–253, July 1999.

[38] B. Samadi, "Distributed Simulation, Algorithms and Performance Analysis," PhD

Dissertation, Department of Computer Science, University of California, Los

Angeles, Los Angeles, 1985.

[39] F. Mattern, "Efficient Algorithms for Distributed Snapshots and Global Virtual

Time Approximation," Journal of Parallel and Distributed Computing, vol. 18, pp.

423–434, August 1993.

[40] IEEE, "IEEE Standard for Modeling and Simulation (M&S) High Level

Architecture (HLA)—Framework and Rules," New York: IEEE Computer Society,

2010, pp. 1–38.

[41] IEEE, "IEEE Standard for Modeling and Simulation (M&S) High Level

Architecture (HLA)—Object Model Template (OMT) Specification," New York:

IEEE Computer Society, 2010, pp. 1–112.

[42] IEEE, "IEEE Standard for Modeling and Simulation (M&S) High Level

Architecture (HLA)—Federate Interface Specification," New York: IEEE

Computer Society, 2010, pp. 1–378.

[43] B. Möller, K. L. Morse, M. Lightner, R. Little, and R. Lutz, "HLA Evolved—A

Summary of Major Technical Improvements," in 2008 Fall Simulation

Interoperability Workshop, Orlando, FL, 2008.

[44] R. M. Fujimoto, "The Virtual Time Machine," in Proceedings of the 1st Annual

136

ACM Symposium on Parallel Algorithms and Architectures, Santa Fe, NM, 1989,

pp. 199–208.

[45] K. Ghosh and R. M. Fujimoto, "Parallel Discrete Event Simulation Using

Space-Time Memory," in Proceedings of the 1991 International Conference on

Parallel Processing, Austin, TX, 1991, pp. 201–208.

[46] A. M. Law and W. D. Kelton, Simulation Modeling and Analysis, 3rd ed. Boston:

McGraw-Hill, 2000.

[47] R. Fujimoto, M. Hunter, J. Sirichoke, M. Palekar, H. Kim, and W. Suh, "Ad Hoc

Distributed Simulations," in Proceedings of the 21st International Workshop on

Principles of Advanced and Distributed Simulation, San Diego, CA, 2007, pp.

15–24.

[48] B. Biller and S. Ghosh, "Multivariate Input Processes," in Handbooks in

Operations Research and Management Science: Simulation, S. G. Henderson and

B. L. Nelson, Eds., Amsterdam: Elsevier, 2006, pp. 123–153.

[49] S. E. Chick, "Subjective Probability and Bayesian Methodology," in Handbooks

in Operations Research and Management Science: Simulation, S. G. Henderson

and B. L. Nelson, Eds., Amsterdam: Elsevier, 2006, pp. 225–257.

[50] L. Devroye, "Nonuniform Random Variate Generation," in Handbooks in

Operations Research and Management Science: Simulation, S. G. Henderson and

B. L. Nelson, Eds., Amsterdam: Elsevier, 2006, pp. 83–121.

[51] L. M. Leemis, "Arrival Processes, Random Lifetimes and Random Objects," in

Handbooks in Operations Research and Management Science: Simulation, S. G.

Henderson and B. L. Nelson, Eds., Amsterdam: Elsevier, 2006, pp. 155–180.

[52] Y.-L. Huang, C. Alexopoulos, M. Hunter, and R. M. Fujimoto, "Ad Hoc

Distributed Simulation of Queueing Networks," in Proceedings of the 24th

International Workshop on Principles of Advanced and Distributed Simulation,

Atlanta, GA, 2010, pp. 57–64.

137

[53] Y.-L. Huang, C. Alexopoulos, R. Fujimoto, and M. Hunter, "On the Accuracy of

Ad Hoc Distributed Simulations for Open Queueing Network," in Proceedings of

the 25th International Workshop on Principles of Advanced and Distributed

Simulation, Nice, France, 2011, pp. 163–168.

[54] W. Whitt, "Approximating a Point Process by a Renewal Process, I: Two Basic

Methods," Operations Research, vol. 30, pp. 125–147, January–February 1982.

[55] W. Whitt, "The Queueing Network Analyzer," The Bell System Technical Journal,

vol. 62, pp. 2779–2815, November 1983.

[56] F. Zouaoui and J. R. Wilson, "Accounting for Input-Model and Input-Parameter

Uncertainties in Simulation," IIE Transactions, vol. 36, pp. 1135–1151, November

2004.

[57] C. Alexopoulos and D. Goldsman, "To Batch Or Not To Batch?," ACM

Transactions on Modeling and Computer Simulation, vol. 14, pp. 76–114, January

2004.

[58] D. G. Kendall, "Stochastic Processes Occurring in the Theory of Queues and Their

Analysis by the Method of the Imbedded Markov Chain," The Annals of

Mathematical Statistics, vol. 24, pp. 338–354, September 1953.

[59] P. Billingsley, Probability and Measure, 3rd ed. New York: J. Wiley & Sons,

1995.

[60] C. Alexopoulos, "Statistical Estimation in Computer Simulation," in Handbooks

in Operations Research and Management Science: Simulation, S. G. Henderson

and B. L. Nelson, Eds., Amsterdam: Elsevier, 2006, pp. 193–223.

[61] C. Alexopoulos, D. Goldsman, and R. Serfozo, "Stationary Processes: Statistical

Estimation," in Encyclopedia of Statistical Sciences. vol. 12, S. Kotz, C. B. Read,

N. Balakrishnan, and B. Vidakovic, Eds., 2nd ed. New York: Wiley, 2005, pp.

7991–8006.

[62] R. L. Disney and D. Konig, "Queueing Networks: A Survey of Their Random

138

Processes," SIAM Review, vol. 27, pp. 335–403, September 1985.

[63] D. J. Daley, "The Correlation Structure of the Output Process of Some Single

Server Queueing Systems," The Annals of Mathematical Statistics, vol. 39, pp.

1007–1019, June 1968.

[64] D. J. Daley, "Queueing Output Processes," Advances in Applied Probability, vol. 8,

pp. 395–415, June 1976.

[65] J. F. Reynolds, "The Covariance Structure of Queues and Related Processes: A

Survey of Recent Work," Advances in Applied Probability, vol. 7, pp. 383–415,

June 1975.

[66] J. L. Jaina and W. K. Grassmannb, "Numerical Solution for the Departure Process

from the GI/G/1 Queue," Computers & Operations Research, vol. 15, pp.

293–296, May 1988.

[67] B. W. Silverman, Density Estimation for Statistics and Data Analysis. London:

Chapman and Hall, 1986.

[68] R. Serfozo, Introduction to Stochastic Networks. New York: Springer, 1999.

[69] L. N. Lester, "Accuracy of Approximating Queueing Network Departure

Processes with Independent Renewal Processes," Information Processing Letters,

vol. 16, pp. 43–48, January 1983.

[70] P. A. W. Lewis and G. S. Shedler, "Simulation of Nonhomogeneous Poisson

Processes by Thinning," Naval Research Logistics Quarterly, vol. 26, pp.

403–413, September 1979.

[71] E. Çınlar, Introduction to Stochastic Processes. Englewood Cliffs, NJ:

Printice-Hall, 1975.

