
FACILITATING THE PROVISION OF AUXILIARY
SUPPORT SERVICES FOR OVERLAY NETWORKS

A Thesis
Presented to

The Academic Faculty

by

Mehmet Demirci

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology
August 2013

Copyright c© 2013 by Mehmet Demirci

FACILITATING THE PROVISION OF AUXILIARY
SUPPORT SERVICES FOR OVERLAY NETWORKS

Approved by:

Professor Mostafa Ammar, Advisor
School of Computer Science
Georgia Institute of Technology

Professor Umakishore Ramachandran
School of Computer Science
Georgia Institute of Technology

Professor Ehab Al-Shaer
College of Computing and Informatics
The University of North Carolina at
Charlotte

Professor Ellen Zegura
School of Computer Science
Georgia Institute of Technology

Professor Nick Feamster
School of Computer Science
Georgia Institute of Technology

Date Approved: June 26, 2013

ACKNOWLEDGEMENTS

I would like to thank

my advisor Prof. Mostafa Ammar for his enduring patience, guidance, encourage-

ment and support, and my other thesis committee members Prof. Ellen Zegura, Prof.

Nick Feamster, Prof. Ehab Al-Shaer, and Prof. Umakishore Ramachandran for their

valuable time and advice;

my colleagues and lab mates for their support and kind wishes, especially Saman-

tha Lo, Dr. Srinivasan Seetharaman, and Fida Gillani, whom I have had the pleasure

and honor of working with;

past and present members of the College of Computing staff who have helped me

diligently with all kinds of registration, reimbursement and paperwork issues.

Lastly, I would like to thank my mother and my father, and my sister Zeynep, for

their unwavering love and support.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . vii

LIST OF FIGURES . viii

SUMMARY . x

I INTRODUCTION . 1

1.1 Overlay Life Stages . 3

1.2 Thesis Statement and Contributions 4

1.3 A Functional View . 8

1.4 Common Features and Design Priorities 12

1.5 Thesis Outline . 13

II RELATED WORK . 14

2.1 Overlay Assignment . 15

2.2 Fair Resource Allocation . 17

2.3 Overlay Monitoring and Diagnosis 17

2.4 Virtualization in Software Defined Networks 19

III OVERLAY NETWORK PLACEMENT FOR DIAGNOSABILITY 21

3.1 Introduction . 21

3.2 Model and Problem Statement . 23

3.3 Overlay Placement for Diagnosability 27

3.4 Collaborative Diagnosis Using Shared Observation 32

3.5 Evaluation of Overlay Placement Algorithms 35

3.5.1 Metrics . 35

3.5.2 Strategy . 36

3.5.3 Results . 37

3.6 Summary . 43

iv

IV FAIR ALLOCATION OF SUBSTRATE RESOURCES AMONG
MULTIPLE OVERLAY NETWORKS 44

4.1 Introduction . 44

4.2 Model and Problem Statement . 47

4.3 Evaluating Fairness . 49

4.4 Fairness Definitions and Algorithms 54

4.4.1 Max-Min Fairness . 55

4.4.2 Normalized Rate Network Fairness 56

4.4.3 Per-Link Network Fairness 58

4.5 Optimizing Substrate Routing for Improved Rate Allocation 58

4.5.1 Brute Force Method . 60

4.5.2 Heuristic Approach . 61

4.6 Evaluation . 62

4.6.1 Example Allocations with Different Algorithms 62

4.6.2 Evaluating the Route Selection Technique 66

4.7 Summary . 71

V MULTI-LAYER MONITORING OF OVERLAY NETWORKS . 73

5.1 Introduction . 73

5.2 The Multi-Layer Monitoring Problem 75

5.3 Linear Programming Formulation 77

5.4 Examples Using Multi-Layer Monitoring 79

5.5 Experimental Evaluation of Inference Errors 82

5.6 Summary . 85

VI DESIGN AND ANALYSIS OF TECHNIQUES FOR MAPPING
VIRTUAL NETWORKS TO SOFTWARE-DEFINED NETWORK
SUBSTRATES . 87

6.1 Introduction . 87

6.2 Model and Problem Statement . 91

6.2.1 Identifying SDN Resources 91

v

6.2.2 VN Embedding Problem . 92

6.3 VN Embedding Techniques . 95

6.3.1 Stress-Balancing Embedding (SBE) 95

6.3.2 Delay-Minimizing Embedding (DME) 98

6.4 Evaluation . 99

6.4.1 Metrics . 99

6.4.2 Strategy . 101

6.4.3 Results . 103

6.5 Summary . 113

VII CONCLUSIONS AND FUTURE WORK 115

7.1 Research Summary and Contributions 115

7.2 Future Directions . 120

7.2.1 Overlay Reconfiguration Policy Design 120

7.2.2 Dynamic VN Remapping in SDNs 123

7.2.3 Multi-layer Monitoring in SDNs 123

7.2.4 Diagnosing Soft Faults in Overlays 124

REFERENCES . 125

vi

LIST OF TABLES

1 Relationship between priorities and methods 13

2 Two faulty components . 40

3 Paths affected by a potential fault . 43

4 Calculations to obtain the global fairness index for two example allo-
cations . 54

5 Notations used . 55

6 Results of the example allocation to overlays with varying number of
flows . 64

7 Notations used . 76

8 The lowest cost for each strategy when unitNativeCost is the same as
unitOverlayCost . 80

9 Effect of link-level overlap on the lowest total monitoring cost 81

10 Effect of overlay node density on the optimal monitoring solution . . 82

11 Costs and inference errors for different monitoring strategies 84

12 Average and maximum node stress 107

13 Average and maximum link stress . 107

14 Average and maximum node stress with varying numF/numV ratios
for SBE . 111

15 Delays with varying T for DME . 114

16 Delays with varying γ for DME . 114

vii

LIST OF FIGURES

1 Two overlays mapped to a substrate 2

2 Life stages of an overlay . 4

3 Functional architecture of a network virtualization environment . . . 9

4 Sample topology with two possible placements of an overlay 23

5 These placements illustrate how placement may affect diagnosability. 28

6 Interaction between collaborative diagnosis and suspect set generator 33

7 The effect of Γ on |S| and false negatives 38

8 The effect of Γ on diagnosis cost . 39

9 The effect of varying T on diagnosis cost 39

10 The effect of varying coverage on diagnosis cost 42

11 Three flows from two different overlays are competing for link band-
width. Thick lines indicate a flow belonging to Overlay 1, thin lines
are flows from Overlay 2. 46

12 Two overlays sharing . 52

13 Average ratios of rates from the weighted allocation to max-min fair
rates . 65

14 Global fairness index changing with the number of favored overlays . 66

15 Substrate network topologies . 67

16 Total rates for Topology 1 . 68

17 Total rates for Topology 2 . 69

18 Total rates with uneven capacities (Topology 2) 69

19 Using the route selection heuristic can also improve fairness. A global
fairness index closer to zero is more desirable. 70

20 Three PlanetLab topologies we use. (a) represents a general AS topol-
ogy. (b) has a tree-like structure which can be found on some campus-
wide networks such as [23]. (b) can be interpreted as a graph of two
interconnected ASes. Native links are assigned with different OSPF
costs to avoid multiple shortest paths. 83

21 Error rates of inferred overlay links 85

22 Two FlowVisor slices sharing a substrate of OpenFlow-enabled switches 88

viii

23 Average controller-to-switch delays for all VNs: SBE, DME, naive de-
lay minimizing mapping, and pure stress balancing mapping. 105

24 Maximum controller-to-switch delays for all VNs: SBE, DME, naive
delay minimizing mapping, and pure stress balancing mapping. 106

25 Average end-to-end delays for all VNs: SBE, DME, random mapping,
and the naive delay minimizing heuristic. 108

26 Average throughput for all VNs: SBE, DME, random mapping, and
the naive delay minimizing heuristic. 109

27 Average controller-to-switch delays for all VNs: DME with varying
numF/numV ratios . 111

28 Maximum controller-to-switch delays for all VNs: DME with varying
numF/numV ratios . 112

ix

SUMMARY

Network virtualization and overlay networks have emerged as powerful tools

for improving the flexibility of the Internet. Overlays are used to provide a wide

range of useful services in today’s networking environment, and they are also viewed

as important building blocks for an agile and evolvable future Internet. Regardless of

the specific service it provides, an overlay needs assistance in several areas in order

to perform properly throughout its existence.

This dissertation focuses on the mechanisms underlying the provision of auxiliary

support services that perform control and management functions for overlays, such as

overlay assignment, resource allocation, overlay monitoring and diagnosis. The prior-

ities and objectives in the design of such mechanisms depend on network conditions

and the virtualization environment. We identify opportunities for improvements that

can help provide auxiliary services more effectively at different overlay life stages and

under varying assumptions.

The contributions of this dissertation are the following:

1. An overlay assignment algorithm designed to improve an overlay’s diagnosabil-

ity, which is defined as its property to allow accurate and low-cost fault diagnosis.

The main idea is to increase meaningful sharing between overlay links in a controlled

manner in order to help localize faults correctly with less effort.

2. A novel definition of bandwidth allocation fairness in the presence of multiple

resource sharing overlays, and a routing optimization technique to improve fairness

and the satisfaction of overlays. Evaluation analyzes the characteristics of differ-

ent fair allocation algorithms, and suggests that eliminating bottlenecks via custom

routing can be an effective way to improve fairness.

x

3. An optimization solution to minimize the total cost of monitoring an overlay by

determining the optimal mix of overlay and native links to monitor, and an analysis

of the effect of topological properties on monitoring cost and the composition of the

optimal mix of monitored links. We call our approach multi-layer monitoring and

show that it is a flexible approach producing minimal-cost solutions with low errors.

4. A study of virtual network embedding in software defined networks (SDNs),

identifying the challenges and opportunities for embedding in the SDN environment,

and presenting two VN embedding techniques and their evaluation. One objective

is to balance the stress on substrate components, and the other is to minimize the

delays between VN controllers and switches. Each technique optimizes embedding

for one objective while keeping the other within bounds.

xi

CHAPTER I

INTRODUCTION

The Internet has firmly established itself as the cornerstone of information exchange.

As the world continues to use the Internet more heavily, the demands and expec-

tations from it are steadily increasing. Beyond the more traditional uses such as

web browsing and email, people nowadays are widely using the Internet for more

demanding services like video streaming and online gaming. As a result, the Internet

is facing an ever-growing challenge to provide sufficient bandwidth, high reliability,

efficient troubleshooting and strong security. Network virtualization, and more specif-

ically, overlay networks have become an important tool in the last decade to face this

challenge. Overlay networks have been employed as a means to provide a variety

of services in today’s networking environment. These services range from reliable

routing [6, 71] to quality of service [25,55,81] and multicast [19,43].

An overlay network is a virtual network built on top of another network. The

underlying network is called the substrate network. There are two main types of

overlay technology: overlays such as peer-to-peer networks, where users join and

leave an established network; and overlays within a network virtualization environ-

ment, where substrate network providers (infrastructure providers) are decoupled

from overlay network providers (service providers) that deploy and operate the over-

lay networks [29, 86]. In this thesis, we focus on the second type of overlays built in

a network virtualization environment.

This process of mapping an overlay network to a substrate is sometimes referred

to as overlay assignment, overlay placement, or virtual network embedding [31]. In

this thesis, we will use these terms interchangeably. In an overlay assignment, each

1

Substrate

Overlay

A B C D

E F

X

P

Y

Q

Figure 1: Two overlays mapped to a substrate

overlay node is mapped to a node in the substrate, and an overlay link corresponds

to the substrate path between two overlay nodes. Overlay routing determines the

path data packets will follow from a source to a destination in the overlay network. A

portion of the physical resources of the substrate are assigned to an overlay network.

Multiple overlay networks can coexist on the same substrate and share resources. For

instance, in Figure 1, overlay links are mapped to the substrate using minimum-hop

routing. The overlay link XY of the top overlay network is corresponds to the path

ABCD in the substrate. Similarly, the overlay link PQ of the bottom overlay network

is mapped to EBCF in the substrate. These two overlay links share the physical link

BC.

2

1.1 Overlay Life Stages

Regardless of the specific service it provides, an overlay needs assistance in several

areas in order to perform properly in every stage of its existence. We define four such

life stages as follows:

1. Conception: The planning stage for the overlay. In addition to determining

the goal of the overlay and the type of data to be transferred between nodes;

the designer can also establish the overlay topology, pattern of communication

and traffic demands at this stage. The result is an overlay request containing

some or all of these parameters.

2. Inception: The birth of the overlay. The placement of the overlay onto the

substrate, i.e., the mapping between the overlay topology and the native topol-

ogy, takes place at this stage. Overlay nodes and links are mapped to substrate

nodes and paths, and the necessary connections are established. An initial al-

location of substrate resources may happen based on resource demands of the

overlay and the available resources of the substrate.

3. Activity: The actual data transfer happens at this stage. During the activity

phase, nodes may join or leave the overlay, faults and other performance prob-

lems may occur. To facilitate a fast response to such events, the overlay needs

monitoring. The response may include overlay reconfiguration in some capacity.

4. Departure: The end of the overlay lifetime. The overlay gives the resources

back to the substrate, connections are torn down, and the overlay ceases to exist

on the substrate.

Throughout these stages of life, an overlay needs auxiliary services that help it

function effectively. In this context, we define auxiliary services as those services that

are not directly related to the main objective of data transfer between nodes, but

3

Determine goal
& nature of data
transfer

Select overlay
topology &
resource
demands

Overlay
assignment

Initial resource
allocation

Data transfer

Monitoring &
fault diagnosis

Overlay
reconfiguration

Give resources
back to substrate

Tear down
connections

Conception Inception Activity Departure

Figure 2: Life stages of an overlay

providing control and management functions. The auxiliary services we focus on in

this thesis are overlay assignment, resource allocation, monitoring and diagnosis. We

present a visual explanation of how these services fit into the overlay life stages in

Figure 2.

The conception stage is outside the scope of this thesis. There has been a lot of

work in overlay topology design with various objectives [20,44,54,56,88,94], which is an

essential part of this stage. In the pieces of work that constitute this thesis, we assume

that the overlay topology is given. The mapping of the overlay to the substrate, on

the other hand, may be completely undetermined, partially determined, or given.

We restate our assumptions in the problem statement section of each chapter. The

departure stage is also not studied because the actions during the departure are

not complicated enough to warrant a systematic study. Hence, the focus is on the

inception and activity stages.

1.2 Thesis Statement and Contributions

The services written in bold in Figure 2 are within the scope of this thesis, and the

objective is devising techniques to enable the provision of these auxiliary services in

a fast, efficient and cost-effective manner. The thesis statement is as follows:

4

”Mechanisms enabling the provision of auxiliary services are important, their pri-

orities must change depending on network properties, and an extensive arsenal of such

mechanisms must be available to be deployed as necessary in a network virtualization

environment.”

The thesis consists of the pieces listed below. Each of these pieces focuses on

facilitating one or more of the auxiliary services mentioned: overlay assignment, fault

diagnosis, resource allocation and performance monitoring.

Overlay network placement for diagnosability

An important aspect affecting the performance of an overlay is overlay assignment,

which describes the mapping between nodes and links at the overlay layer to those

at the substrate layer. Algorithms that perform overlay assignment have a variety of

objectives. We consider the objective of diagnosability, which we broadly define as

an overlay’s ability to allow accurate diagnosis with low overhead.

We study the question of how to design an overlay to be more accommodating

to monitoring systems, i.e., to allow for easier diagnosis and to keep the overhead

manageable. We define diagnosability formally in terms of diagnosis accuracy and

efficiency. We examine certain properties of the topological mapping between the

overlay and the substrate, particularly those related to the amount and nature of

sharing between overlay components, and develop a placement algorithm to improve

an overlay’s diagnosability. We assume a passive end-to-end measurement structure

and evaluate the placement algorithm by exploring how it affects the performance of

this measurement system.

Fair resource allocation among overlay networks

Many overlay networks offering different services may be placed on the same substrate

and compete for resources such as node CPU time or link bandwidth. As the number

5

of overlays and their resource demands increase, the substrate may not be able to

meet all demands. Thus it is necessary to allocate substrate resources fairly and

efficiently among competing overlays.

One important resource is substrate link bandwidth. The capacity of each sub-

strate link must be divided among overlay flows sharing that link. The fairness of this

division becomes especially important in case of resource scarcity and when overlay

traffic constitutes the majority of the load on the substrate. In this work, we consider

fairness in terms of the treatment toward whole overlays rather than individual flows.

We explore different definitions of fairness, and formulate a fairness evaluation metric

for allocations involving multiple sharing overlays. Moreover, we investigate routing

optimization techniques to improve fairness and the satisfaction of overlays.

Cost-effective multi-layer monitoring of overlay networks

Monitoring all links in overlay networks is necessary to assess the performance ob-

served by users and to detect anomalies. Monitoring must be sufficiently frequent for

fast detection of problems and continue throughout the lifetime of the overlay. A sim-

ple strategy is to monitor all overlay links directly and individually. This approach can

cause significant overhead, particularly when the monitoring is performed via active

measurements. In this work, we adopt a more flexible approach that allows certain

native link measurements in addition to end-to-end overlay measurements. Native

link measurements can be used to infer desired metrics for overlay links by suitable

combinations on native layer metrics. We focus on the latency metric although the

work can be extended to certain other metrics such as loss rate.

Our goal is to minimize monitoring cost by determining the optimal mix of over-

lay and native links to monitor. We formulate an optimization problem to achieve

this goal and implement it as an integer linear program (ILP). Through simulations,

we determine that monitoring a combination of native and overlay links provides a

6

lower cost than overlay-only or native-only monitoring strategies. We also study how

topological properties affect the monitoring cost and the compositions of the optimal

mix. Lastly, we perform an experimental evaluation of inference errors that result

from combining direct measurements to infer the unmeasured end-to-end metrics. We

observe that while errors are manageable, in most cases a few inferred links produce

high errors that increase the average error.

Mapping virtual networks to software defined network substrates

Software-defined networking has emerged in the last few years as a powerful approach

to improve the customizability and flexibility of networks. In this work, we focus on

network virtualization in the realm of software-defined networks (SDNs), and study

how to embed virtual networks in this environment. Virtual network embedding is

an important problem because intelligent embedding can lead to better performance

and a more efficient allocation of network resources compared to random mapping. In

SDNs, the presence of a central controller is a complicating factor, and customizable

routing and differences in resource sharing present new opportunities and challenges.

We identify two aspects of virtual network (VN) embedding in SDNs: virtual

node and link mapping, and controller placement. We tackle these problems together,

developing techniques to perform embedding with two goals: balancing the load on

the substrate network and minimizing controller-to-switch delays. We evaluate our

techniques with simulation and Mininet emulation, and show that they are able to

optimize for one of the above objectives while keeping the other within reasonable

bounds.

NP-hardness and the use of heuristics: The overlay assignment problem with

bandwidth constraints is proven to be NP-hard [7]. In our versions of the assignment

problem, we assume there are stress (a measure of the load on a substrate component)

7

constraints on links, which can be mapped to bandwidth constraints for overlay flows.

In addition, there are stress constraints on nodes as well. Hence, these problems are

also NP-hard and necessitate the use of heuristics, which we develop end evaluate.

Target audience: The parties that can benefit from the ideas and methods in

this thesis are substrate providers (infrastructure providers) and overlay providers

(service providers). For example, an infrastructure provider can employ the overlay

assignment techniques to balance the load on the substrate or make overlays more

diagnosable depending on the priorities, offer multi-layer monitoring to overlays so

that the cost to the network will be minimized, and use the fair resource allocation

metric and algorithms to improve the satisfaction of the overlays. On the other

hand, a service provider can be given the freedom to specify its priorities and choose

an assignment technique from alternatives, or decide whether to take advantage of

multi-layer monitoring after simulating costs for its overlays.

1.3 A Functional View

Figure 3 illustrates the organization of a general network virtualization environment

(NVE) and how the pieces of work in this thesis fit into such an environment. We

briefly describe each of these modules.

• Service Provider (SP): In an NVE, multiple SPs build virtual networks offering

a variety of end-to-end services to end users who can opt-in to different SPs,

i.e., users enter into agreements with SPs as they desire for the end-to-end

services they would like to receive. The SP negotiates with the infrastructure

provider (InP) for the resources needed to deploy the VN. Although only one

SP is shown in Figure 3, multiple SPs can build and run their VNs on the

infrastructure provided by one InP.

• VN Assignment Module (VAM): The VAM handles VN instantiation on the

8

Substrate Resources

Infrastructure Virtualization
Interface

VN Assignment Module

Monitoring Module

Service Provider

Data

Request Response

VN Control
Logic

End User End User

Opt-in Opt-in

Figure 3: Functional architecture of a network virtualization environment

infrastructure. It provides an interface to the service provider (SP) and receives

VN requests through this interface (e.g., NetFinder [97] provides such an inter-

face for PlanetLab). It collects monitoring data from a repository or directly

queries the monitoring module to learn about the state of the substrate. Based

on the VN requests and the information about the substrate, it performs VN

embedding, which may or may not be successful depending on constraints im-

posed by the SP or the infrastructure provider. The VAM can select among

multiple VN embedding methods. Our work on overlay placement for diagnos-

ability, fair resource allocation among overlays, and VN embedding in SDNs all

fit into this module. It can be extended to include a reconfiguration compo-

nent, which would inform the SP or the VN controller (defined below) about

reconfiguration decisions.

9

• Monitoring Module (MM): This module constantly monitors the substrate for

key metrics such as available bandwidth, CPU usage, end-to-end delays and loss

rate. It also detects and localizes faults. Our work on multi-layer monitoring,

which applies to delay and potentially loss rate monitoring, fits here. The MM

can include a separate submodule for each VN and allow the SP to customize

the type, frequency and intensity of the monitoring it desires. For instance,

each SP can tell the MM whether it allows the use of multi-layer monitoring for

its VN.

• Infrastructure Virtualization Interface (IVI): This module acts as a translation

layer between the substrate and the virtual networks. A tool such as FlowVi-

sor [76] is an example of such a layer in SDNs. It regulates the communication

between the substrate and the VAM and VN controllers. In addition, it imple-

ments the VN in the substrate by providing isolation between virtual resources

and scheduling. Problems regarding the IVI are outside the scope of this thesis.

• VN Control Logic: In the SDN environment, each VN is typically controlled

by a separate controller. This controller is delegated as the central logic for

the VN by the SP, and it communicates with the virtual nodes in the VN as

necessary through the IVI. It also receives information about the state of the

substrate from the MM via the IVI. We tackle the placement of these controllers

in tandem with the VNs in our relevant work.

The three pieces VAM, MM, and IVI can be thought of as part of the infrastructure

provider, while the VN controller is closely coupled with the service provider.

The Global Environment for Network Innovations (GENI) [33] project offers a vir-

tual laboratory aiming to provide networking researchers with a platform that enables

and supports a large number of simultaneous experiments on a shared infrastructure.

GENI makes heavy use of virtualization to enable slice-based experimentation for

10

researchers. We present a comparison between our Figure 3 and an architectural

diagram included in a document providing an overview of the GENI suite [64] to

demonstrate that they are similar and our illustration is consistent with what hap-

pens in a real example of a virtualized infrastructure.

As shown in Figure 3 in [64], GENI users (experimenters) contact aggregate man-

agers (AM, represented by FOAM in the figure) to request resources for their ex-

periments. The AM then performs resource assignment and gives a slice of network

resources to the user, who controls the slice via a NOX controller [66]. This controller

communicates with the OpenFlow [63] switches through FlowVisor.

In our Figure 3, the service provider (SP) replaces the experimenter in GENI

because the SP is responsible for constructing and deploying its virtual network (VN)

with the intention of offering end-to-end services to end users. The VAM in our figure

is analogous to the AM in the GENI figure. An instance of the IVI in our figure is

represented in the GENI figure by the FlowVisor controller, which enables slicing

the underlying substrate network. It provides a virtualization interface between the

NOX controller (VN control logic in our Figure 3) and the OpenFlow switches that

constitute the substrate nodes.

The GENI figure shows that an experimenter can receive resources from multiple

networks to add to her slice. Similarly, our Figure 3 can be extended to include

multiple SPs and multiple InPs, with each SP aggregating resources obtained from

multiple InPs to construct its VN. In that case, each SP can talk to the VAMs

from different InPs directly, or to a third party broker in charge of regulating the

relationships between SPs and InPs. Virtual networks assembled from multiple InPs

are outside the scope of this thesis.

11

1.4 Common Features and Design Priorities

A common feature of our approaches in this thesis is that they consist of proactive

methods. We design methods for:

• Overlay placement so that subsequent fault diagnosis will be easier,

• VN embedding in SDNs so that subsequent communication delays will be lower

and the load on the substrate will be more balanced,

• Fair resource allocation and routing modification so that subsequent network

utilization and satisfaction of overlays will be higher,

• Selecting a set of native and overlay links for direct monitoring so that subse-

quent monitoring will have minimal cost.

Priorities in the design of these techniques depend largely on several factors such

as the topological properties and resource availability of the substrate network, the

number and sizes of overlay networks, their demands from the substrate and perfor-

mance expectations. We briefly discuss some factors that influence design choices.

• Substrate resources: When substrate resources are scarce, it makes sense to

prioritize fair allocation of those resources among competing overlays. When

resources are abundant, other objective such as high diagnosability can be given

priority.

• Number and sizes of overlays: We can combine these variables into the

concept of overlay density which can be defined in several ways. For instance,

we can say that overlay density is the ratio of the total number of overlay nodes

to the number of substrate nodes. For networks with high density, a reasonable

priority is load balancing.

12

Table 1: Relationship between priorities and methods

Priority \ Stage Inception Activity

Resource consumption Fair bandwidth allocation Multi-layer monitoring

Fast diagnosis Placement for diagnosability

Low latency Delay-minimizing VN embedding

Load balancing Stress-balancing VN embedding

• Overlay demands: Overlay demands and substrate resource availability af-

fect priorities in opposite ways. High demands improve the importance of fair

resource allocation and load balancing.

• Other requirements: Priorities may depend on the type of network and vir-

tualization environment. For example, one current feature of network virtu-

alization in SDN is the use of a separate controller per virtual network. It is

important to ensure that the delays between the controller of a virtual network

and its virtual nodes are low.

1.5 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 examines the previous

work in the area in relation to this thesis. Chapter 3 discusses the placement of over-

lays for diagnosability. Chapter 4 presents a study on fair resource allocation among

overlays. Chapter 5 explains our work on the multi-layer monitoring of overlay net-

works. Chapter 6 provides techniques for mapping VNs to SDN substrates. Chapter

7 summarizes the thesis and provides future work directions.

13

CHAPTER II

RELATED WORK

This chapter presents an overview of research on overlay networks, particularly in the

topics of overlay assignment, resource allocation, monitoring and diagnosis. Network

virtualization and overlay networks have been utilized for more than a decade to cir-

cumvent certain limitations of the Internet. Researchers have developed numerous

overlays offering valuable functionalities that were otherwise too challenging to in-

corporate into the Internet, and virtualization technology continues to be helpful in

confronting the impasse in terms of network innovation [8, 17].

One of the earliest instances of overlay networking was Mbone [27], an experi-

mental backbone built as an overlay on top of the Internet for IP multicast traffic.

Mbone utilized IP in IP tunneling [78] to connect multicast routers into an overlay

and enable multicasting without requiring every router in the native network to have

multicast capability. Although the number of multicast-capable routers in the Inter-

net backbone has increased substantially over the years, IP multicast has not enjoyed

widespread deployment due to its complexity. Researchers have proposed applica-

tion level overlays [19, 43] for multicast as a low-cost and scalable alternative to IP

multicast.

Other examples of services provided by overlays include content distribution [5,13,

52], peer-to-peer file sharing [12,32,60,80], quality of service [25,55,81], security [48,77,

79] and resilient routing [6, 71]. Recent efforts to enable innovation in the Internet,

such as GENI [33] and Internet2 [39], make use of network virtualization to allow

networking researchers to share the infrastructure simultaneously. One can envision

that overlay networks are likely to be a significant component in the future networking

14

environment [21, 30, 68], where many overlays offering a variety of services may be

placed onto a shared substrate. In fact, testbeds such as X-Bone [85], PlanetLab [69]

and VINI [10] allow numerous virtual networks to coexist on the same substrate.

Multiple coexisting overlays on a shared substrate create a number of interesting

research problems. For instance, overlay networks must be able to route around

problematic nodes and links in the substrate for sustained operation. RON [6] exploits

the existence of multiple substrate paths between two end nodes to avoid problems

and offer resilient routing for overlays. Overlay networks may also prefer avoiding

congested links and route their data over paths with high available bandwidth. To

this end, Zhu et al. proposed a dynamic overlay routing scheme based on available

bandwidth estimation [95]. Another interesting problem is the interaction between

overlay routing and traffic engineering [57,73]. Seetharaman et al. develop strategies

to mitigate the instability resulting from conflicting objectives of protocols at different

layers [74].

The above works concentrate on routing and traffic engineering to improve the

quality of data transfer. Another dimension of overlay networking research can be

classified as creating a healthy operating environment for overlays. There is a necessity

for efficient monitoring without excessive overhead, so that problems can be discovered

and addressed quickly. In addition, substrate resources must be shared in a fair

manner among overlays, and overlay assignment algorithms must be developed to

avoid inefficient performance. We group these efforts under the heading auxiliary

support services for overlays, which are the focus of this thesis, and organize the rest

of the related work by topic accordingly.

2.1 Overlay Assignment

Overlay network assignment (also known as overlay / virtual network mapping /

embedding / placement) with node and link constraints is a complex problem and can

15

be reduced to the NP-hard multi way separator problem [7]. Much of the research in

this area has focused on developing heuristics by shrinking the problem space through

various assumptions [17].

Researchers have studied several aspects of the overlay network assignment prob-

lem and developed overlay assignment algorithms with a number of varying objec-

tives [31]. Zhu and Ammar [96] proposed algorithms to place overlay networks onto

the substrate to balance stress and thus avoid spots where resource contention be-

comes too high. Lu and Turner [59] concentrate on embedding a single overlay in a

cost-efficient manner. Yu et al. [92] also study the problem of embedding virtual net-

works efficiently within resource bounds, but they allow for flexibility in the substrate

with path splitting and path migration (or rerouting) in order to expand the problem

space and find better solutions. Chowdhury et al. [18] used a mixed-integer program

to perform coordinated node and link mapping resulting in increased acceptance ratio

and revenue. Han et al. [35] advocated designing overlay networks to increase path

independence between end nodes and developed overlay node placement heuristics to

improve the robustness of the overlay. Our work on assignment for diagnosability ex-

tends this literature by considering diagnosability as an objective to overlay network

placement.

Overlay design for diagnosability is influenced by the chosen diagnosis technique.

We use the passive diagnosis scheme described in [82] to evaluate the diagnosability

of our placements. A different diagnosis scheme, such as one based on passive mea-

surements supported by selective active probing, may call for a modified approach

to overlay placement. Such a system is described in the work by Tang et al. [83].

That system relies on passive measurements at the initial stage, and subsequently

augments these measurements by systematically selected active probes to improve

the accuracy of diagnosis.

16

2.2 Fair Resource Allocation

Allocating link bandwidth fairly among the flows within a single network has been

widely studied. The max-min fairness definition in [11] is accepted as a good solution

to this problem. Other fairness definitions related to max-min fairness have been

proposed, such as proportional fairness, [62] which is an example of the utility approach

to fairness.

Karbhari et al. [46] studied how these fairness definitions can be modified to deal

with a number of multipoint-to-point sessions. We show that these definitions are

also applicable in the multiple overlay network setting. The authors also worked

on maximizing the throughput of end-to-end data carried on overlay paths using

TCP [45], but they considered a single overlay network rather than multiple overlays

competing for resources, as in the scenario in our resource allocation work.

A commonly used metric to evaluate the fairness of bandwidth allocation is Jain’s

fairness index [42], which defines uniform rates throughout the set of all flows as

perfect fairness. In our work, we are concerned with the fairness of the allocation

to entire overlays rather than single flows, and we calculate a network-wide value for

each overlay representing its satisfaction with the allocation for evaluating fairness.

Allocation of resources to multiple overlay networks is studied in [22]. However,

this work focused on a middleware solution that mediates resources according to

a given proportion or fairness definition. Kleinberg et al. [50] considered tailoring

network routing in order to optimize fairness. They prove that this problem is NP-

complete, and develop approximation algorithms for this optimization, using the max-

min fairness definition.

2.3 Overlay Monitoring and Diagnosis

Network monitoring and fault diagnosis are well-studied problems. Numerous moni-

toring techniques and measurement systems have been developed for overlay systems.

17

These techniques can be mainly grouped into two categories: active methods [1,15,93]

and passive methods [9,38,67,82]. Active monitoring offers flexibility through probing

the network at a desired frequency, but introduces additional overhead which may

become crippling in the presence of multiple independent overlays conducting active

probing. A shared underlay open to queries from overlays was proposed [65] as a

solution to this problem.

Another approach to address the issue of probing overhead is to minimize the

amount of probing traffic through intelligent design of the monitoring structure. An

active monitoring system is presented in the work by Chen et al. [15], where a mini-

mal basis set of overlay paths are monitored to infer the loss rate measurements of all

overlay paths. iPlane [61] predicts end-to-end path performance from the measured

performance of segments that compose the path. In our multi-layer monitoring work,

we generalize these approaches and allow measuring both end-to-end paths and un-

derlying native links. This extra degree of freedom makes it possible to monitor an

even smaller set in most cases, where the information obtained from monitoring this

set is then used to deduce the measurements of paths that are not directly monitored.

A passive monitoring technique that minimizes the number of monitored network

paths in enterprise networks is presented in [2]. Tang and Al-Shaer [82] propose

another passive diagnosis method, an evidence-based fault reasoning scheme based

on belief evaluation that handles uncertainty using Dempster-Shafer theory [75]. We

interface the technique in [82] with our overlay placement and use it as our framework

for overlay diagnosis in our diagnosability work.

The problems of effective monitoring and optimizing monitor placement have been

studied in the realm of optical networks as well. Researchers have utilized monitoring

cycles [90] and paths [3,4] to improve failure localization. Designing monitoring trails

(m-trails) [91] to minimize the total cost on the network was the subject of recent

work [84]. Our work is distinct in two regards: First, our monitoring objective is

18

determining metrics (such as delay) for the set of all overlay links, not localizing

single-link failures in the substrate network. Second, m-trails in optical networks

contain non-simple cycles and paths, whereas overlay links are simple paths that

allow less flexibility than m-trails.

2.4 Virtualization in Software Defined Networks

Software defined networking (SDN) separates the control plane from the physical

switches comprising the data plane and allows tenants to run their own control logic

on their own controllers. SDN is a suitable platform for network virtualization and

researchers have been working on ways to provide virtualization to enable the coex-

istence of multiple virtual networks (VNs) in the SDN environment. FlowVisor [76]

has been proposed as a virtualization solution in SDNs. In our work about VN em-

bedding in SDNs, we assume the availability of a FlowVisor-like virtualization tool

and analyze FlowVisor to identify the network resources to be shared in the presence

of multiple VNs coexisting on an SDN substrate. Our approach is not necessarily

dependent on the exact type of resource sharing or virtualization technology and it

should be able to work with other SDN virtualization solutions, such as FlowN [24].

Various techniques for performing virtual network embedding in traditional net-

works have been proposed by researchers [31]. However, distinctions of the SDN

environment (such as the centrality and the importance of the controller, and differ-

ences in the virtualization technology) necessitate a new approach. We utilize some

definitions and ideas from the stress-balancing VN assignment algorithm presented

in [96] and adapt them to our problem. We define stress in a modified way, and

identify stress-balancing as one of two VN embedding objectives considered in this

work.

The placement of controllers in SDNs has been studied [37] with the goal of min-

imizing the average and maximum delays from the controller to the switches. The

19

authors do not propose a specific method for this placement, but they evaluate how

much controller placement affects said delays by finding the optimal placement via

brute force. The location of the network is specified beforehand except for the place-

ment of the controller, which can be moved around. In our work, we incorporate the

objective of delay minimization into our embedding techniques. However, we consider

a more general situation where there are many VNs whose controllers are either fixed

at a predetermined location or free to be placed anywhere. Furthermore, the topology

of each VN is given, but the mapping of that topology to the SDN substrate is yet

to be determined.

20

CHAPTER III

OVERLAY NETWORK PLACEMENT FOR

DIAGNOSABILITY

3.1 Introduction

Overlay networks must be constantly monitored for performance issues ranging from

increased delay or congestion to node and link failures. It is important to diagnose

network problems quickly and accurately, as well as to keep the overhead caused

by the monitoring structure and incurred by the network to a tolerable amount.

Efficient monitoring of substrate and overlay networks is a well studied problem and

researchers have developed a myriad of monitoring techniques. In this work, we

address the question of how to manipulate the placement of an overlay network to

be more friendly to monitoring systems: to allow for easier diagnosis and to keep the

overhead as low as possible. We specifically consider techniques that use end-to-end

network information to diagnose problems in the network, both at end nodes and

intermediate components. These end-to-end monitoring techniques can be active,

passive or a combination of these two.

We concentrate on an overlay network’s property to allow accurate diagnosis of

potentially many faults with low overhead, and call this property diagnosability, which

we define formally later in the chapter. Overlay network diagnosis is a difficult prob-

lem because overlays are built as virtual networks on top of a substrate. We explore

how the placement of overlays on the substrate influences their diagnosability, and

we develop an overlay placement algorithm where the main goal is maximizing di-

agnosability, but we also strive for placements that do not ignore and degrade other

overlay performance metrics. As for the monitoring, we employ a passive end-to-end

21

measurement system called collaborative diagnosis based on evidence based reason-

ing [82]. We do not propose a new monitoring technique, but rather a method to

map the overlay network onto the substrate so that monitoring performance can be

improved.

Mapping overlays to network substrates, i.e., overlay network placement, has been

the subject of several studies [31]. Researchers have identified and designed for various

objectives, such as balancing the load on the substrate, maximizing the number of

overlays that can be accommodated, or minimizing the total cost of carrying traffic.

We identify diagnosability as a new objective. Regarding diagnosability as a priority

makes sense if the substrate network is well-provisioned and/or the number of overlays

and their resource demands do not put a significant load on the substrate. In such

networks, fast and accurate fault diagnosis can become a primary design goal, and

objectives such as efficient and balanced resource consumption can be relegated to a

secondary status.

Why should we think about overlay placement optimized for diagnosability? A

large part of diagnosability depends on the topology of the substrate network, nonethe-

less, the placement of the overlay upon the substrate also plays a significant role in

determining the overlay’s diagnosability. We present an example to illustrate this

point: Figure 4 shows two placements of the same three-node overlay onto two dif-

ferent parts of a substrate. If the overlay is placed as ABC, a failure of node X could

be observed on path AB through end-to-end monitoring of that path. However, the

fault cannot be pinned down to a single component because there are two substrate

links and a substrate node that can be the source of the fault. If the placement is

ABC’, the failure of node X would be observed on all three end-to-end paths and can

be uniquely identified with a very high probability of being correct.

Other similar examples suggest that increased sharing of substrate components

between overlay nodes and links can help localize faults more successfully, increasing

22

A

B

C C’

X

Figure 4: Sample topology with two possible placements of an overlay

diagnosability. However, there is usually a trade-off between diagnosability and the

amount of stress1 on substrate components, and higher diagnosability comes at the

expense of stressing substrate components.

The rest of the chapter is structured as follows: We describe our model, define

overlay placement and diagnosability formally, and discuss how efficiency and accu-

racy are two key components of diagnosability in Section 3.2. Section 3.3 presents

ideas about overlay placement for diagnosability and an algorithm to perform the

placement designed to improve diagnosability. We describe the passive monitoring-

based diagnosis framework we utilized in Section 3.4. We evaluate the performance of

our placement algorithm in Section 3.5. Finally, we provide a summary of the chapter

in Section 3.6.

3.2 Model and Problem Statement

We model the substrate network as a directed graph G = (V,E), where V is the set

of vertices and E is the set of directed edges connecting these vertices. We model

the overlay network as a directed graph G′ = (V ′, E ′), with V ′ ⊆ V being the set of

1For a substrate node, stress is the number of overlay nodes mapped to it. The stress on a
substrate link is the number of overlay links traversing it [96].

23

overlay nodes and E ′ being the set of overlay links. An overlay node placement is a

mapping from V ′ to V which matches each overlay node to a substrate node. Each

overlay link is then constructed as a series of substrate links starting with the source

node and ending with the destination node. An overlay node placement along with

the overlay links constitute an overlay placement.

We assume the existence of a diagnosis scheme detecting and localizing persistent

faults in substrate components, which manifest themselves as end-to-end problems

that are observable by different end users in a consistent way. Examples of such faults

are component failures that result in loss of connectivity between end nodes. We

assume such faults are rare events, so we do not consider more than two simultaneous

faults. Fault diagnosis relies on end-to-end measurements only, and diagnosis software

runs on all or some overlay nodes.

A fault at a substrate component (node or link) may be observed by one or more

overlay paths depending on network topology and traffic patterns. The diagnosis tech-

nique produces a suspect set S, which contains all substrate components suspected

to be the root cause of the observed end-to-end problem(s). We describe a specific

diagnosis scheme from previous work in Section 3.4, and use it to test our place-

ment technique. However, our placement method is designed to work with different

diagnosis schemes, as long as they are based on end-to-end measurements.

Depending on the diagnosis scheme used, an overlay link may not be able to

produce useful measurements (due to lack of traffic in a passive scheme or reachability

issues in an active scheme). We define covered overlay links as those overlay links that

are able to assist the diagnosis by producing meaningful measurements. If information

as to which overlay links are covered and which are not is known beforehand, this

information can be used in placing the overlay. More details about this are in Section

3.3.

We study methods to place overlays on the substrate in order to increase the ease

24

and efficiency of fault diagnosis. We address the following problem: Given a substrate

topology and an overlay topology, how can we place the overlay on the substrate so

that the overall diagnosability of used substrate components will be maximized, without

putting too much stress on substrate nodes and links? A critical question is how to

define diagnosability in a specific and quantifiable way.

Definition

Diagnosability is the ability to diagnose up to n faults in a network with accuracy

and efficiency.2 As the accuracy and the efficiency improve, so will the diagnosability.

We now define these two concepts in a concrete way.

Accuracy

Let W be the set of faulty components. As long as W ⊆ S, there are no false negatives

in the diagnosis as every faulty component is included in the suspect set S. However,

if W 6⊆ S, false negatives exist. We define accuracy below in terms of the probability

of false negatives. As the probability of false negatives decreases, accuracy increases.

Accuracy = 1− P(falseNegatives) = 1− P(W 6⊆ S) (1)

Efficiency

As the size of S grows, it becomes more difficult to pinpoint the source of the problem

to a specific set of substrate components. If the diagnosis is accurate, |W | has to be

smaller than |S|; but if |S| � |W |, then there will be too many combinations of the

elements in S that can comprise W . If |S| is close to |W |, it will be easier to localize

the source of the problems and determine W precisely. Thus a smaller suspect set

signifies a higher efficiency in diagnosis.

2Accuracy and efficiency are similar to completeness and resolution in fault diagnosis, respectively
[87].

25

Accuracy and efficiency are conflicting goals: If diagnosis focuses on accuracy, it

can produce a large suspect set to avoid false negatives, in which case efficiency will

suffer. If, on the other hand, diagnosis gives priority to efficiency, it risks a greater

probability of false negatives. It is important to find a balance in this tradeoff for an

effective diagnosis. We combine these two objectives into a single metric to evaluate

diagnosability more easily. The idea is to consider the amount of work (represented by

diagnosis cost defined below) left to localize the fault to a precise set of components

after the diagnosis produces the suspect set S. If the diagnosis is accurate, the search

space is limited to S. However, if the diagnosis is not accurate, i.e., there is at least

one faulty component that is not in S, the worst case will require checking every

substrate component in the overlay to determine W .

For a fault scenario where W is the set of faulty components in a network with χ

substrate components and SW is the suspect set produced by the diagnosis method,

let us define a binary variable αW to indicate whether the diagnosis is accurate or

not in this particular fault scenario. The diagnosis cost for this fault scenario can be

defined as follows:

cost(W) = αW |SW |+ (1− αW)χ. (2)

If the diagnosis is accurate, αW = 1 and the cost is only the size of SW ; but it

grows to χ in case of inaccuracy. Note that over many fault scenarios, total cost

is calculated as an average of individual costs. Let us assume that we perform the

diagnosis using a collection of fault scenarios, denoted by Φ.

AvgCost =

∑
W∈Φ[αW |SW |+ (1− αW)χ]

|Φ|
. (3)

We theorize that if accuracy is given priority, suspect sets are going to be larger

and α values are going to be 1 most of the time. An extreme case is where |SW | = χ

26

in all scenarios, which ensures perfect accuracy, but is just as bad as zero accuracy

in terms of diagnosis cost. Similarly, an extreme priority placed on efficiency will in

turn hurt accuracy and have the same detrimental effect on cost. Finding the balance

between these two objectives is crucial to minimize cost, which should be the goal of

the diagnosis scheme.

3.3 Overlay Placement for Diagnosability

In this section, we present our technique for performing overlay network placement

to improve diagnosability. Overlay placement is a difficult problem, and finding op-

timal solutions to this problem is complex [59, 96]. Hence, we resort to the use of a

heuristic approach. Below, we discuss the ideas behind our approach and describe

our placement algorithm in detail.

The amount of sharing among overlay paths is a major variable affecting how pre-

cisely an observed fault can be localized. In general, increased sharing results in faults

being observed by more end nodes and gives more information about the location of

faults. With end-to-end diagnosis schemes, each measurement or observation provides

information about a particular end-to-end path. An observed fault signifies that at

least one component along the corresponding path is faulty. (If we assume faults are

rare, we can say only one component is faulty.) If the fault is observed on multiple

end-to-end paths, then we can narrow down the search for the faulty component(s)

to the places where these paths overlap with each other. Hence, an overlay mapping

with more sharing will provide more information about the states of substrate com-

ponents. On the other hand, too much sharing (such as a single component appearing

in every overlay path) can cause a single point of failure, which is undesirable, as well

as performance issues such as congestion and ineffective bandwidth allocation.

Our overlay placement algorithm makes use of the above idea by making sure

there is significant sharing among overlay paths. However, excessive sharing is not

27

(a) Placement 1 (b) Placement 2 (c) Placement 3

Figure 5: These placements illustrate how placement may affect diagnosability.

only potentially bad for performance but also it can lead to less efficient diagnosis.

We present a simple example in Figure 5 to illustrate this. We assume there are only

two overlay links in this overlay, AB and CD. As we see in Figure 5a, there is no

sharing among the two paths in the first placement. The fault that occurs at node

E can be observed only at overlay nodes C and D. We can deduce that at least one

component along the path CD is faulty, but we have no way of knowing which exact

component is faulty.

In the placement shown in Figure 5b, AB and CD share the intermediate node.

When it fails, this event is observed at all four overlay nodes. Since E is the only

place where AB and CD overlap, we can infer with high confidence that E is the

faulty component. In this case, sharing among end-to-end paths helps the diagnosis.

Consider the placement shown in Figure 5c where A and C are placed on the

same substrate node, and so are B and D. In this extreme case of sharing, AB and

CD overlap completely. In the absence of additional end-to-end data, a fault in E

does not give us any more information than in Figure 5a. This example shows that

while a certain amount of sharing is good for diagnosability, total overlap between

end-to-end paths is undesirable. Therefore, the main ideas behind our placement

algorithm are the following:

i. Increase sharing between overlay paths on average. The more end-to-end paths

28

that share a substrate component, the higher the number of paths observing a fault

at that component. This is helpful in localizing the fault.

ii. Limit the maximum stress on a component. A substrate node/link shared by too

many overlay nodes/links has more risk of congestion and resource exhaustion. We

need an upper limit on the stress on a substrate component.

iii. Limit the number of overlay paths that overlap almost completely. Two overlapping

end-to-end paths observing a fault provide no more valuable information for diagnosis

than one path. Sharing in this way will increase average sharing, but must be avoided

if possible because it is not helpful to the diagnosis.

We want to combine these three ideas into a single metric that represents the

suitability of a placement to our goals. Our heuristic approach to this starts by

defining the quality of the placement, denoted by q, as a function of three individual

parameters that represent the above three ideas.

i. Average paths per link (p): The average number of overlay paths that share a

substrate link. This can be calculated by adding together all overlay path lengths

and then dividing the result by the number of distinct substrate links appearing in

these paths.

ii. Maximum stress on a component (m): The highest stress on a substrate node or

link. We introduce a maximum threshold on m and denote it T . With no threshold,

we may end up with placements that put an intolerable amount of stress on compo-

nents and cause congestion or inefficient resource allocation. We discuss the selection

of a suitable T in Section 3.5.

iii. Number of overlay path pairs that differ from each other by no more than one

substrate link (o): For instance, a pair of 3-hop paths that share at least 2 links

would count toward this number. If they shared just 1 link, they would not count.

A high p is good for diagnosability and we want to maximize it while keeping m

under the threshold T . Conversely, a high m and o are not desirable. We reflect these

29

ideas in the definition of q in terms of p, m, o and T in Equation 4.

q = p− (k1 ·m+ d · δ(m,T) + k2 · o) (4)

δ(m,T) =


1, if m > T,

0, otherwise .

(5)

k1 and k2 are coefficients that determine the amount of weight given to m and

o in the assessment of placement quality. A suitable default value for k1 and k2 is

0.1. d is a detractor, a large number (e.g., 1000) to reduce the quality significantly

if m exceeds the threshold T . When m > T , δ(m,T) is 1, and d is factored into the

calculation of q.

We conducted experiments to understand the relationship between q and the di-

agnosis cost defined in Section 3.2. We placed 5 different overlays on 2 substrate

topologies using both random placement and the optimized placement (described

later in this section), thus ending up with 20 different overlay placements. For each

of these 20 placements, we first calculated q, and then generated 5 random faults and

averaged the diagnosis cost for these 5 faults. The relationship between q and aver-

age diagnosis cost for these 20 distinct networks showed that diagnosis cost decreases

with increasing q, as intended, which suggests that maximizing q in order to reduce

diagnosis cost is a suitable approach.

Diagnosability and robustness

Increased sharing between the paths of an overlay network may appear conflicting

with the robustness of the system. We envision multi-overlay systems where there

will have to be significant sharing between different overlays, and we are organizing

the sharing within each overlay to ensure that it becomes more diagnosable. In many

cases, our approach does not increase the number of paths (across all overlays) affected

30

by a failure in the substrate. We illustrate this point with an example in Section 3.5.

The goal of the placement algorithm is to maximize the placement quality, q.

We start with a random placement of the overlay onto the substrate, and gradually

improve q by taking small steps. At each step, we take one overlay path whose

placement may be diminishing q and move its end nodes to other substrate nodes

randomly. We describe the algorithm in Algorithm 1. Information about which

overlay node pairs are able to provide useful measurements for diagnosis is considered

in the calculation of q and the placement algorithm. Only covered overlay paths (as

defined in Section 3.2) are taken into account in the effort to optimize the placement,

other node pairs are ignored after the initial random placement.

Algorithm 1 Overlay Placement Algorithm

Do a random placement.
Calculate qrandom for this placement.
qmax ← qrandom
BestMapping ← the current mapping of the overlay onto the substrate.
while q has improved within the last stopCounter steps do

Select a path from one of the three groups (described below) and move its end nodes
randomly.
Use the shortest path algorithm to update all overlay links containing these overlay
nodes.
Calculate q for this new placement.
if qcurrent > qmax then
qmax ← qcurrent
BestMapping ← the current mapping of the overlay.

end if
end while
Output qmax and BestTopo.

Doing a random placement has two stages. First, all overlay nodes are mapped

one-to-one randomly to substrate nodes. Then the path between the end nodes in

each overlay link is calculated using a shortest-path algorithm. We compute the initial

quality q for this random placement, and mark this mapping as the best. The main

step of the algorithm is moving paths that decrease q. The three groups of such paths

mentioned in the algorithm description are explained below.

31

Group 1: Paths whose links have an average p below half the overall average p of

the overlay. They reduce the average amount of sharing.

Group 2: Paths containing a component with stress t > T . These paths cause the

component’s stress to exceed T , resulting in unacceptable quality.

Group 3: Paths that share all but one of their substrate links with another path.

These are placed inefficiently and may provide more valuable diagnosis information

if placed elsewhere.

By moving paths in group 1, we aim to increase average sharing, while moving

paths in groups 2 and 3 helps ensure that m stays below the threshold and o stays

low. The combination of these moves improves q toward a maximum, which is our

goal in modifying the placement. If q does not improve in stopCounter consecutive

steps, we stop the algorithm. For stopCounter, we use a value of 10g, where g is the

total number of paths in all 3 groups. This ensures that each of these paths will have

an average of 10 chances to move before the algorithm is allowed to stop for lack of

improvement.

3.4 Collaborative Diagnosis Using Shared Observation

We now describe our method for generating the suspect set S defined in Section 3.2.

There are many possible approaches to this problem, relying on active probing [14,93],

passive monitoring [9, 26] or event-based diagnosis. We use the user-driven collab-

orative diagnosis technique presented in the work by Tang and El-Shaer [82]. Col-

laborative diagnosis is a lightweight approach that requires no monitoring sensors or

active measurements. It is a passive approach relying only on end-to-end observations

called evidences to diagnose network problems. End-user applications share their neg-

ative evidences (bad symptoms such as unreachability or high loss) to identify the

problematic components along a path. In case of low user participation, insufficient

32

Overlay
Placement

Module

Collaborative
Diagnosis
Module

Suspect
Set

Generator Topology
& overlay
placement

Belief
values

Fault
scenario

Suspect
Set (S)

Figure 6: Interaction between collaborative diagnosis and suspect set generator

traffic or misbehaving sources, uncertainty in diagnosis may arise. To handle this is-

sue, the collaborative diagnosis technique utilizes evidential plausible reasoning using

Dempster-Shafer theory [75] to produce belief values. For details about collaborative

diagnosis, readers may refer to the original work [82].

An end-to-end path needs to carry a certain amount of traffic to be able to produce

evidences when faults occur along that path. A covered path is one that has sufficient

traffic from its source to its destination to produce a negative evidence in case of the

failure of a component on that path. The coverage of the overlay is the percentage of

overlay-node pairs that have a covered path between their source and destination.

We provide the collaborative diagnosis system with the substrate topology and the

placement of the overlay on the substrate. In case of faults in the network, overlay

nodes that observe problems report evidences. The diagnosis system collects the

evidences and utilizes them to produce belief values, one for each substrate component,

indicating the belief that the component is faulty. From this set of values, we generate

S, the set of components suspected to be the root causes of the negative end-to-end

evidences. Figure 6 demonstrates how we use the diagnosis system to generate S.

Construction of suspect set S from beliefs

This is a critical step that allows a great deal of flexibility. A computationally in-

expensive way of doing this is to set a minimum belief threshold, and include in S

33

only those components with beliefs equal to or higher than this threshold. We define

this threshold with respect to the maximum belief produced by the diagnosis for any

component. We define Γ ∈ [0, 1] as an auxiliary parameter to determine the thresh-

old. For example, if Γ is set at 0.5, only those components with a belief of at least

half of the maximum belief are placed in S. More formally, if the maximum among

all belief values is belmax, then

S = {c|belief(c) ≥ Γ× belmax}. (6)

The choice of Γ has a significant effect on the amount of priority placed on the ac-

curacy and the efficiency of diagnosis. At one end of the spectrum, a Γ infinitely close

to 0 would put every component with a nonzero belief into S, signifying an extreme

importance given to diagnosis accuracy. As we increase Γ, S gets smaller, increasing

the efficiency of diagnosis, but on the other hand also increasing the probability of

false negatives and the potential for inaccuracy.

Active probing supplement

One issue with purely passive fault diagnosis is that some end-to-end paths may not

have sufficient traffic to indicate potential failures of components along them. More

such paths would mean fewer evidences per faulty component, which could adversely

affect diagnosability. In this case, limited active probing can be used in addition

to passive measurements to reach a better level of diagnosability. We only consider

adding active probes to paths that are not covered. The location and number of these

active probes depend on the target level of diagnosability, i.e., an upper limit on the

diagnosis cost as defined in Section 3.2. More details about active probe placement

are discussed at the end of Section 3.5.

34

3.5 Evaluation of Overlay Placement Algorithms

In this section, we analyze the performance of the overlay placement algorithm pre-

sented in Section 3.3 and understand its effects on diagnosability. We consider diag-

nosability in terms of the cost, accuracy and efficiency definitions we gave in Section

3.2. For the diagnosis, we implement an emulator following the diagnosis framework

given in Section 3.4. The emulator takes as input a substrate topology, an overlay

topology, the mapping between the overlay and the substrate, and a fault structure.

The fault structure tells the emulator to generate faults either randomly or at specific

locations in the network. As output, the emulator produces a table containing the

negative belief of every substrate component in that specific fault scenario. From this

table, we generate the set of components suspected to be faulty, which we defined

earlier as the suspect set S. This set is generated according to the procedure de-

scribed in Section 3.4, by using Γ to tune the priority given to accuracy and efficiency

in diagnosis.

3.5.1 Metrics

We use a combination of metrics to assess the diagnosability of a network after ex-

amining the results produced by the diagnosis emulator.

• Accuracy: Any occurrence where the faulty component set is not placed within

S by the emulator is a false negative, which means at least one faulty com-

ponent effectively escaped diagnosis. The accuracy is defined in Section 3.2 in

terms of the probability of false negatives, and here we use false negative rate

(i.e., fraction of cases where we come across false negatives) as the measure for

accuracy.

• Efficiency: As |S| grows, it becomes more difficult to localize the faults, so a

smaller S is better for the efficiency of diagnosis. We use |S| as a measure of

efficiency.

35

• Potential diagnosis cost: The diagnosis cost metric, a measure of the effort

required for fault localization, as defined in Section 3.2 is a combination of

accuracy (i.e., lack of false negatives) and efficiency (lack of potential false

positives).

3.5.2 Strategy

In the remainder of this section, we compare the performance of our overlay placement

heuristic with random placement, and the stress-balancing placement presented in

[96]. We experiment with two substrate topologies, both real autonomous system

(AS) topologies taken from Rocketfuel data [70]. An overlay topology is constructed

by first setting the number of overlay nodes at about 20% of the number of substrate

nodes, and then connecting each pair of overlay nodes with a 50% probability. Paths

between connected overlay nodes are calculated using the shortest-path algorithm.

Overlay nodes are selected from the substrate randomly in the random placement

algorithm, and we try 10 random placements for each experiment and average the

results of these 10 placements. The quality-driven placement heuristic, on the other

hand, produces a specific placement in each experiment.

Placements are fed into the diagnosis emulator along with the topology and a fault

scenario to generate fault belief values for all substrate components. These values are

then used to construct the suspect set S for this particular fault scenario. The metrics

for evaluation are computed for each fault scenario, and then averaged over all fault

scenarios to find the values for a certain placement. We follow the above strategy

assuming full (100%) coverage at first. Later, we repeat the same steps with varying

degrees of coverage and discuss the results at the end of this section.

36

3.5.3 Results

Choice of Γ

We run the first experiment to assess the effect of Γ (defined in Section 3.4) on the

accuracy and the efficiency of diagnosis. We try out a number of different fault

scenarios in 3 overlay topologies placed over each of the 2 substrate topologies. For

this experiment, each fault scenario contains a single faulty component, and every

substrate component is chosen as faulty once over the course of the experiment. The

set of all valid fault scenarios contains only those where the faulty component lies

within the overlay (since our goal is to maximize the diagnosability of the overlay, we

do not concern ourselves with faults that may occur at other parts of the substrate).

Each (substrate topology, overlay topology, fault scenario) combination is given as

input to the emulator, which then produces results for different values of Γ, which is

varied from 0.5 to 1 with 0.05 increments. Values of Γ below 0.5 are not considered

because we have observed that 0.5 is as good a value for Γ as 0 in terms of avoiding

false negatives, so exploring the lower half of the spectrum is superfluous.

Figure 7 presents the false negative rates in diagnosis and the size of the suspect set

S (|S|) with varying Γ. The solid lines are random placement results, and the dotted

lines are optimized placement results. False negatives do not occur until the 0.9 mark

for the optimized placement, while |S| diminishes consistently as Γ is increased. We

observe that the optimized placement heuristic provides a reduction in both |S| and

the false negative rate compared to the random placement. As Γ gets closer to 1, this

reduction increases percentagewise.

Figure 8 illustrates how the diagnosis cost is affected by Γ. The diagnosis cost dis-

plays a similar behavior to |S| and the false negative rate in that the heuristic achieves

a considerable reduction in cost, and the savings are more pronounced for larger Γ

values. We also consider the performance of a stress-balancing overlay placement

37

 2

 4

 6

 8

 10

 12

 0.5 0.6 0.7 0.8 0.9 1
 0

 0.02

 0.04

 0.06

 0.08

 0.1

si
ze

 o
f S

fa
ls

e
ne

ga
tiv

e
ra

te

Γ

random
heuristic

 2

 4

 6

 8

 10

 12

 0.5 0.6 0.7 0.8 0.9 1
 0

 0.02

 0.04

 0.06

 0.08

 0.1

si
ze

 o
f S

fa
ls

e
ne

ga
tiv

e
ra

te

Γ

Figure 7: The effect of Γ on |S| and false negatives

algorithm [96]: On average, it offers a slight improvement in cost compared to ran-

dom placement, possibly thanks to its ability to avoid highly unbalanced placements

where some paths have good diagnosability but others have terrible diagnosability.

However, stress-balancing placement cannot approach the improvement provided by

the optimized heuristic. For the purposes of this evaluation, we consider 0.9 as the

optimal value for Γ because it provides the minimum cost among all the values we

tried. Hence, instead of evaluating the algorithms with a range of Γ, we use a fixed

Γ of 0.9 in the rest of this evaluation section.

Multiple faults

We present an experiment that considers the case where a fault scenario consists

of two components. The emulator produces belief values for every two-component

combination in the substrate. With Γ fixed at 0.9, we only include in S the pairs

whose beliefs are at least 90% of the maximum observed belief. In Table 2 we list

38

 2

 4

 6

 8

 10

 12

 0.5 0.6 0.7 0.8 0.9 1

C
os

t

Γ

random
stress balancing

heuristic

Figure 8: The effect of Γ on diagnosis cost

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12

C
os

t

Maximum stress T

Figure 9: The effect of varying T on diagnosis cost

39

Table 2: Two faulty components

Random placement Placement for diagnosability

False neg. 0.056 0.013

|S| 6.42 4.08

Diag. Cost 9.1 4.7

the false negative rate, |S| and Cost values for both the random placement and the

heuristic. We observe the same kind of improvement in these metrics as we did with

the single fault scenarios. One difference is that the false negative rate is slightly

higher compared to the single fault case at a Γ value of 0.9. This may be due to a

few extra cases where S failed to contain one of the two faulty components. As we

have more simultaneous faults, false negatives may increase because S has to contain

all faulty components to be considered accurate, and each additional fault introduces

more risk of inaccuracy.

Choice of T

T is the upper limit for the number of paths that can share a component. It is a con-

straint introduced to control the risk of congestion or avoid inefficiency in throughput

that can be achieved along overlay paths. Varying T in different topologies helps us

assess its effect on diagnosability and the performance of the placement algorithm.

We run the algorithm with T values ranging from 2 to 12 and plot the diagnosis

cost against T in Figure 9. We observe that as T increases, the cost decreases almost

steadily until T hits about 8. This is because loosening a constraint extends the

solution space for the algorithm and gives way to more compact overlay placements

that have a higher amount of sharing, which is desirable for diagnosability. After

this point, the decrease in cost slows down and the cost stays nearly constant after a

certain point. While the initial reduction can be attributed to the algorithm acting

more freely and finding more efficient solutions, the subsequent lack of improvement

is interesting. As the control over sharing is removed gradually and the overlay

40

is allowed to become more crammed with p (paths per link) now being the most

important variable in the placement, negative evidences increase not only for the

faulty component, but also for non-faulty components along the same paths as the

faulty one. This makes it harder to distinguish the faulty component from the others,

as many other components are able to exceed the threshold set at 90% of the maximum

belief, and |S| cannot be decreased much further. With no or very few false negatives,

|S| is the determining factor for cost, which follows the behavior of |S|. Hence, it is

important to find the ideal point for the value of T for efficient diagnosis, which is

around 8 for this set of experiments. A good choice of T allows us to reduce the size

of S and cost as much as possible without allowing unreasonably high and crippling

sharing.

Effect of coverage and active probing

The final piece of the evaluation analyzes how varying coverage affects diagnosis cost,

and how addition of active probes can improve diagnosability when coverage is low.

Figure 10 shows how diagnosis cost decreases with increasing coverage. We see that

complete coverage may not be essential for near-optimal diagnosis cost; however, the

cost increases more rapidly after the coverage falls below roughly 60%.

As mentioned in Section 3.4, the deterioration of diagnosability due to decreasing

coverage can be alleviated through the addition of active probes. It is possible to

shrink the size of the suspect set S by placing active probes in a way that will eliminate

elements from S. To this end, we find a non-covered overlay path that contains |S|/2

(or closest to it) components that are in S and add an active probe on that path.

This either solidifies each component’s position in S (if the active probe detects a

fault) or removes it from S (if the probe goes through without a problem). This can

be repeated until lowering the diagnosis cost to the desired level. We have observed

that adding two active probes in this way yields a significant reduction (about 50%)

41

Figure 10: The effect of varying coverage on diagnosis cost

in diagnosis cost for low coverage (20%-30%), while more than three active probes

offer negligible marginal utility.

Diagnosability vs. robustness

Finally, we look at the potential number of overlay paths affected by a fault in the

substrate, when overlays are placed using either our placement heuristic and the

stress-balancing algorithm in [96]. Table 3 shows the average number of overlay paths

per substrate link for both algorithms in a Rocketfuel topology. When there are three

overlays, the placement heuristic causes a higher number of paths per link, though the

average is not very high. When the number of overlays is ten, the numbers come closer

to each other, which shows that there is virtually no difference in the number of end-

to-end paths affected in case of a potential fault for the two algorithms. This result

illustrates that our placement heuristic does not cause any significant disadvantage

in this possible measure of robustness.

42

Table 3: Paths affected by a potential fault

Placement for diagnosability Stress-balancing

3 overlays 2.56 1.92

10 overlays 5.68 5.42

3.6 Summary

In this work, we have leveraged the flexibility inherent in overlay network design into

improved diagnosability. We identified diagnosability as a sensible design goal in well-

provisioned networks, and gave a practical definition of diagnosability by separating

it into accuracy and efficiency of diagnosis. We then presented a method to perform

overlay placement with the goal of maximizing the diagnosability of the overlay by

increasing meaningful sharing among overlay links in a controlled manner. Using a

passive monitoring based fault diagnosis scheme, we show that our placement algo-

rithm improves diagnosability compared to an overlay constructed without regard to

its diagnosability. Furthermore, we studied how diagnosis cost is affected by the lack

of useful end-to-end traffic, and argued that this problem can be alleviated through

the use of limited selective active probing. Finally, we explored whether there is a

significant tradeoff between robustness and placement for diagnosability. We con-

cluded that while this tradeoff may exist for networks where overlay density is low,

it becomes less significant as the number and/or sizes of overlays increase because

highly shared substrate components become less avoidable.

The main takeaway from this chapter is that design for diagnosability is a feasible

goal for overlays and solutions can be provided without significantly deteriorating

the performance and robustness of the network, especially if the network is well-

provisioned.

43

CHAPTER IV

FAIR ALLOCATION OF SUBSTRATE RESOURCES

AMONG MULTIPLE OVERLAY NETWORKS

4.1 Introduction

Many overlay networks offering different services may be placed on the same un-

derlying substrate network and compete for resources like node CPU time or link

bandwidth. As the number of overlay networks placed on the substrate and their re-

source demands increase, the substrate network may not be able to meet the demands

of all overlays. Hence the necessity arises to allocate limited substrate resources fairly

and efficiently among all competing overlays.

One of the primary resources that must be distributed fairly is link bandwidth. We

consider scenarios where the bandwidth demands of the overlay networks constitute a

significant share of the load on the substrate, and substrate links are not able to fully

meet the demands from all overlays simultaneously. This situation may occur if the

amount of available bandwidth in the substrate is low, or if the number of overlays

and/or their bandwidth demands are too high for the substrate to satisfy. Hence,

in such a situation, fair allocation of available bandwidth among overlays must be

treated as a priority in order to avoid starving some overlays while trying to satisfy

others.

Each substrate link in the network has a certain available capacity for the overlay

traffic it can carry, and this capacity must be divided in a fair and efficient manner

among the overlay flows sharing that link. Furthermore, the allocation of bandwidth

throughout the whole substrate network must be balanced among the overlays placed

on it. Fair resource allocation to flows in a network is a classic research question that

44

has been studied extensively in the past. The main distinction of this work is the

consideration of a virtual network or overlay containing multiple flows as the unit

subject to allocation.

A critical question is what constitutes a fair allocation of bandwidth among mul-

tiple overlays. A common fairness definition is max-min fairness. Another simple

definition is Jain’s fairness index [42] which defines uniform rates throughout the set

of all flows as perfect fairness. We explore other possible fairness definitions in Section

4.4.

Another important question is how routing in the substrate network affects fair

allocation among overlay networks. Deviating from simple minimum-hop routing for

overlay networks can facilitate achieving higher rates as well as better fairness in

bandwidth allocation. We also explore this question and describe a heuristic method

to fine-tune routing in Section 4.5.2.

We present a small example to illustrate the effects of the fairness definition and

the routing on rate allocation. Consider the scenario in Figure 11 where three flows

belonging to two different networks arrive at Router A and they are all destined for

Router B. Assume that all flows have a demand of 10 units per second and rate

allocation is performed using max-min fair sharing. Link capacities are 10 units per

second for AC and CB, and 6 units per second for AB.

Flow 1 belongs to overlay network 1, flows 2 and 3 belong to overlay network 2.

If all three flows are routed on AB as seen in Figure 11a, each of them will receive

2 units of bandwidth. This allocation is perfectly fair when we consider the flows

individually. However, if we want to define perfect fairness as equal total rates for all

sharing overlays, then a fairer allocation would be to give 3 units to flow 1, and 1.5

units each to flows 2 and 3. How do we decide which allocation is better? In Section

4.3 we formulate a fairness metric for allocations involving multiple bandwidth-sharing

overlay networks.

45

(a) Three flows from two overlays sharing AB.

(b) Flow 1 is moved to the path AC-CB.

Figure 11: Three flows from two different overlays are competing for link bandwidth.
Thick lines indicate a flow belonging to Overlay 1, thin lines are flows from Overlay
2.

In Figure 11a, the total rate allocated to the three flows is 6 units. However, with

a small routing change a better rate can be achieved. Consider the case shown in

Figure 11b where we route flow 1 over AC-CB instead of AB. This increases the path

length from one hop to two hops, but flow 1 is now able to receive 10 units while flows

2 and 3 both receive 3 units, and the total bandwidth allocated to the flows becomes

16 units. We see that deviating from shortest-path routing in the substrate can lead

to a higher utilization of substrate link bandwidth and a more satisfactory allocation

for the overlays competing for it.

The contributions of this work are:

• A novel fairness definition for scenarios that involve sharing between multiple

overlay networks,

• Recognizing the applicability of multipoint-to-point session fairness definitions

46

and algorithms given in [46] to the multiple overlay setting,

• Substrate routing optimization techniques to improve the satisfaction of over-

lays.

The rest of this chapter is organized as follows: We explain the network model

and problem statement in Section 4.2, and propose a metric to evaluate the fairness

of allocations in the presence of multiple overlays in Section 4.3. Section 4.4 gives

fairness definitions adapted from the literature and algorithms to achieve the proper-

ties specified by these definitions. We examine the issue of routing in relation to fair

resource allocation and propose methods to improve substrate utilization in Section

4.5. We evaluate our methods in Section 4.6. We summarize the chapter in Section

4.7.

4.2 Model and Problem Statement

We consider n overlay networks placed on a substrate network. We model the sub-

strate network as a directed graph G = (V,E), where V is the set of vertices and E is

the set of directed edges connecting these vertices. We model the ith overlay network

as a directed graph Gi = (V i, Ei), with V i ⊆ V being the set of overlay nodes and

Ei being the set of overlay links. Let l =
n∑

i=1

|Ei|. That is, l is the total number of

overlay links from all overlay networks sharing the substrate network.

We assume an environment where multiple overlay networks are competing for

substrate network resources. We are focusing on bandwidth as the contested re-

source. In our model, each overlay link represents a traffic flow from its source to

its destination, and each flow has a certain bandwidth demand from the underlying

substrate network. Let F denote the set of all flows from all overlays placed on the

substrate. For a substrate link e, let Fe be the set of overlay flows that demand

bandwidth from e. Note that |Fe| ≤ l.

The following information is given:

47

• The traffic demand matrix M1, M2, ..., Mn for each of the n overlay networks

• The capacity of each substrate link in the network

• The connectivity information for the network

In addition to the above, one of the following two may be given:

1. Routing information, i.e., the substrate path for all overlay links

2. The algorithm for assigning rates to the overlay flows

If routing is given: In this case the goal is to decide on an allocation algorithm that

will yield a fair assignment of rates to the overlay flows in the system. The allocation

algorithm will then calculate how much bandwidth should be given to each overlay

flow on each of the |E| substrate links in the network. More formally, for each e ∈ E

with capacity Cape, we must decide how to divide Cape among the overlay links in

Fe. Ultimately, the allocation can be represented in a |E| × l matrix where each row

represents the bandwidth allocation for the corresponding substrate link. Note that

the row for substrate link e would contain zero values under columns representing

overlay links that are not in Fe.

In this scenario, the sum of all rates in a feasible bandwidth allocation has an

upper limit that depends on the capacity of the substrate links appearing in the

routes. An allocation is feasible if no link’s capacity is exceeded when it is applied.

The upper limit can be found using the following optimization.

maximize
∑

f∈F ratef

subject to

∀e ∈ E
∑

f∈Fe
ratef ≤ Cape

(7)

In the above optimization, ratef denotes the rate assigned to flow f . Since there is

no fairness constraint on this optimization, we do not expect the resulting allocation to

48

be fair. This optimization may tend to assign high rates to a few flows and completely

starve the others in an effort to maximize the aggregate rate achieved.

To achieve fairness, we must first have a clear definition of what fair sharing means

in the described setting. The method of fair resource allocation will depend on this

definition. Various fairness definitions are discussed in Section 4.4.

If the allocation algorithm is given: Given the ability to select the routes that overlay

flows will follow from their sources to their destinations, and depending on the network

topology and substrate link capacities, we may be able to increase assigned rates and

improve fairness compared to a given routing. In this scenario, our goal is to select

the substrate routes for overlay flows in such a way that will maximize the total

bandwidth allocation. Details of this problem are discussed in Section 4.5.

4.3 Evaluating Fairness

In this section, we propose a new metric for evaluating the fairness of a bandwidth al-

location in a multi-overlay setting. Other fairness metrics have been proposed before,

one commonly used metric is Jain’s fairness index [42]. Jain’s index is an alternative

to metrics like standard deviation or min-to-max ratio for evaluating the amount of

variation among a set of values. In the context of bandwidth allocation, each value

is the ratio of the actual rate of a traffic flow to its fair rate. Knowledge of the

values that represent perfect fairness is assumed. We do not assume knowledge of a

universally fair allocation of rates across all overlays, but we evaluate each overlay

in comparison to other overlays overlapping with it. Furthermore, we do not use

individual flow rates in the evaluation, instead we calculate a network-wide value for

each overlay representing its satisfaction with the allocation.

The basic idea behind our metric is that each overlay network in the system would

be entitled to a certain amount of bandwidth if it was the sole requester of bandwidth,

and it may receive less than this amount in the presence of sharing. In an ideally fair

49

allocation, sharing would cause the total rate of every overlay to be decreased by the

same ratio.

We compute the rate allocated to each flow in the presence of multiple sharing

overlays, and compare these rates to the rates that would be achieved if each overlay

was alone in the system. We then compare the average rate reduction for each over-

lay’s flows with the reduction experienced by other overlays’ flows that are sharing

with that overlay. The result of this comparison gives us an idea about how the

overlay is being treated. A more formal and detailed description is given below.

Let N i denote the ith network in the system and F i denote the set of flows be-

longing to N i. For f ∈ F i, we denote the rate allocated to f by rf . We define the

isolated fair rate for f as the rate it would receive if the network it belongs to (in

this case N i) were the only overlay in the system. The isolated fair rate for f ∈ F i is

denoted by hf and calculated using max-min fair rate allocation assuming N i is the

only overlay placed on the substrate. Hence, hf is the ideal rate for f that is achieved

when f is sharing bandwidth only with flows in its own overlay (N i) and it is used as

a benchmark to evaluate the satisfaction of f in the presence of inter-overlay sharing.

The ratio of rf to hf can constitute a measure of satisfaction for this particular

flow in the presence of sharing with flows from other overlays. A more meaningful

measure for the overlay N i is the average isolated satisfaction (Si) of all its flows.

Si =

∑
f∈F i

min(
rf
hf
, 1)

|F i|
(8)

The above metric by itself cannot describe an overlay network’s satisfaction by

a certain allocation when the overlay is sharing bandwidth with other overlays. We

have to take into account the rates allocated to the flows that belong to other overlays

sharing with this overlay. For N i, we define the unified flow set (F̂ i) as the union of

F i, and the set of flows that

50

• belong to overlay networks other than N i,

• share one or more links with at least one flow in F i,

• are bottlenecked at a link that is shared between the two overlays OR not

bottlenecked at all.

More formally,

F̂ i = F i∪ {g : g ∈ F j s.t. i 6= j, and ∃f ∈ F i s.t. g shares at least one link with

f AND if g has a bottleneck link e, f also traverses e.}

We calculate the average unified satisfaction (Ŝi) for N i as follows:

Ŝi =

∑
f∈F̂ i

min(
rf
hf
, 1)

|F̂ i|
(9)

For an overlay network, we define the network satisfaction (NetSati) for N i as

the ratio of its average isolated satisfaction to its average unified satisfaction.

NetSati =
Si

Ŝi

(10)

The above metric can give us an idea about how an overlay is being treated in

terms of bandwidth allocation. In a system where all flows in all overlays are able

to receive their isolated fair rates, each overlay would have a NetSat of 1. In the

presence of bottlenecks, a higher NetSat would indicate a more favorable treatment

toward the overlay. However, the NetSat value cannot fully assess the fairness of a

rate allocation. We need a metric to evaluate the fairness of an allocation across all

the overlays in the system. NetSat is a rough measure of how an individual overlay

is being treated, and we would like to compare all the NetSat values to evaluate the

amount of variation among the satisfactions of the overlays. To this end, we define

51

Figure 12: Two overlays sharing

the global fairness index (GFI) of a system as the population standard deviation of

the NetSat values of the n overlays in it.

µ =
1

n

n∑
i=1

NetSati (11)

GFI =

√√√√ 1

n

n∑
i=1

(NetSati − µ)2 (12)

A smaller number, i.e., a number closer to zero, for the global fairness index would

indicate a fairer allocation.

We present a numerical example to illustrate the calculation of the metric. Figure

12 shows two overlay networks placed on the substrate: flows 1, 2, and 3 (solid lines)

belong to overlay A; and flows 4, 5, and 6 (dashed lines) belong to overlay B. Assume

each substrate link is bidirectional, and all flow demands are also 1 unit. The leftmost

and rightmost links have a capacity of 2 units each, so they do not play a role in the

allocation as all flows are bottlenecked at the middle links.

Suppose overlay A was the only overlay on this substrate network. In that case,

all of its flows would receive 1 unit. Similarly, all the flows in overlay B would receive

1 unit or bandwidth if B was alone on the substrate. Hence, the isolated fair rates

for all flows are 1.

52

We consider two sample allocations. Allocation 1 gives all flows a rate of 0.5 units.

Allocation 2 gives 0.4 units to flows in overlay A, and 0.6 units to flows in overlay B.

Below, we calculate the average isolated satisfaction for each overlay.

In allocation 1:

SA =
min(0.5/1, 1) +min(0.5/1, 1) +min(0.5/1, 1)

3
= 0.5.

SB =
min(0.5/1, 1) +min(0.5/1, 1) +min(0.5/1, 1)

3
= 0.5.

In allocation 2:

SA =
min(0.4/1, 1) +min(0.4/1, 1) +min(0.4/1, 1)

3
= 0.4.

SB =
min(0.6/1, 1) +min(0.6/1, 1) +min(0.6/1, 1)

3
= 0.6.

Next, we calculate the average unified satisfaction of the overlays. For both net-

works, the unified flow set contains all six flows since all flows are bottlenecked at

shared links.

In allocation 1:

UA =
min(0.5/1, 1)× 6

6
= 0.5.

UB =
min(0.5/1, 1)× 6

6
= 0.5.

In allocation 2:

UA =
min(0.4/1, 1)× 3 +min(0.6/1, 1)× 3

6
= 0.5.

UB =
min(0.6/1, 1)× 3 +min(0.4/1, 1)× 3

6
= 0.5.

We next compute the network satisfaction indexes as follows:

In allocation 1:

53

Table 4: Calculations to obtain the global fairness index for two example allocations

Allocation 1 Allocation 2

SA 0.5 0.4

SB 0.5 0.6

UA 0.5 0.5

UB 0.5 0.5

NetSatA 1 0.8

NetSatB 1 1.2

GFI 0 0.2

NetSatA = SA/UA = 0.5/0.5 = 1

NetSatB = SB/UB = 0.5/0.5 = 1

In allocation 2:

NetSatA = SA/UA = 0.4/0.5 = 0.8

NetSatB = SB/UB = 0.6/0.5 = 1.2

Finally, we calculate the global fairness index for the entire system.

µ1 = (1 + 1)/2 = 1, µ2 = (1.2 + 0.8)/2 = 1.

In allocation 1: GFI =
√

((1− 1)2 + (1− 1)2)/2 = 0

In allocation 2: GFI =
√

((0.8− 1)2 + (1.2− 1)2)/2 = 0.2

We summarize the above calculations in Table 4. The GFI values suggest that

allocation 1 is perfectly fair, and they also capture the slight unfairness in allocation

2.

4.4 Fairness Definitions and Algorithms

In this section, we give fairness definitions and algorithms to achieve the fairness

criteria associated with these definitions. We start with our max-min fairness defi-

nition in the multiple overlay network context, and then present the fairness defini-

tions from [46] in Section 4.4.2 and Section refsection-plnf for completeness. Table 7

demonstrates the notation we used.

54

Table 5: Notations used

E Set of substrate links
Ei Links in the ith overlay network
A Substrate links that are not saturated
Capa Capacity of link a
Capa,x Capacity assigned to overlay x on link a
Ua Used capacity of link a
Ua,x Capacity used by overlay x on link a
N Set of all overlay networks
N i ith overlay network
F Set of all overlay flows
F i Flows in the ith overlay
P Set of flows that are not physically bottlenecked
Pa Flows in P that span link a
Pa,x Flows on link a in P belonging to overlay x
Y Set of flows that are not virtually bottlenecked
demandf The bandwidth demand of flow f
ratef The rate of flow f
rate′f The rate of flow f in alternate allocation

totalWeighti The total weight given to the ith overlay network
weightf The weight assigned to flow f

The definitions and algorithms in [46] can be mapped to our multi-overlay setting:

Multipoint-to-point sessions correspond to the overlay networks, and the connections

in these sessions correspond to the overlay flows. There is one difference between

the two sets of definitions: There is no concept of traffic demand in the multipoint-

to-point fairness algorithms. We assume in the multi-overlay algorithms that each

overlay flow has a traffic demand associated with it and the algorithms ensure that

the assigned rate does not exceed this demand.

4.4.1 Max-Min Fairness

Definition: An allocation of rates is max-min fair if it is feasible and for any other

feasible allocation where rate′f > ratef , there is another flow f ′ such that ratef ≥

ratef ′ > rate′f ′ .

That is, every flow has a bottleneck link where it has the highest rate and its rate

cannot be increased any further without decreasing the rate of some other flow.

55

The algorithm that achieves max-min fairness is given below. In this algorithm,

flows from different overlay networks are not distinguished and all flows are treated

as if they belonged to one network.

Algorithm 2 Max-min Fairness Algorithm

P ← F
A← E
while P 6= ∅ do
na ← number of non-bottlenecked flows that span link a
incr ← min(mina∈A(Capa−Ua

na
),minf∈P (demandf − givenf))

∀f ∈ P ratef+ = incr.
recalculate Ua for all a ∈ A
A← {a|Capa − Ua > 0}
P ← {f |f does not span any saturated link and givenf < demandf}

end while

4.4.2 Normalized Rate Network Fairness

The max-min fairness algorithm does not address the issue of fairness among different

overlay networks. The normalized rate network fairness (NRNF) definition tries to

increase the balance in bandwidth allocation at the overlay network level. We give

the formal definition below.

Definition: The normalized rate of a flow is its actual rate divided by the weight

assigned to it. That is, nratef =
ratef
weightf

.

Definition: An allocation of rates is normalized rate network fair if it is feasible

and for any other feasible allocation where nrate′f > nratef , there is another flow f ′

such that nratef ≥ nratef ′ > nrate′f ′ .

In other words, every flow has a bottleneck link where it has the highest normalized

rate and this rate cannot be increased any further without decreasing the normalized

rate of some other flow.

The NRNF algorithm defined below achieves balance between overlay networks

by assigning weights to all flows so that the sum of weights of flows belonging to

each overlay network will be equal. Each flow receives a rate proportional to its

56

weight at the substrate links. When each overlay has an equal total weight, overlays

with more flows will end up with a lower weight per flow. Hence, flows belonging to

smaller overlays will be favored during allocation at the substrate links. This ensures

that network rates, i.e., the sum of the rates assigned to an overlay’s flows, stay

more balanced among different overlays. Note that when every overlay has the same

number of flows and the same total weight, this allocation is identical to the max-min

fair allocation.

The total weight of an overlay can be assigned to its flows in different ways, the

simplest being assigning equal weight to all flows within an overlay. That is, if the

overlay network N i has |F i| flows in it and it is given a total weight of w, each of

these flows would be given w/|F i| as its weight.

Algorithm 3 Normalized Rate Network Fairness Algorithm

P ← F
A← E
∀f ∈ P weightf ← totalWeighti

|F i| where f belongs to the ith overlay.

while P 6= ∅ do
for all a ∈ A do
Pa ← {f |f ∈ P and f spans substrate link a}

end for
incr ← min(mina∈A(Capa−Ua∑

f∈Pa
weightf

),minf∈P (
demandf−givenf

weightf
))

∀f ∈ P ratef+ = incr × weightf .
recalculate Ua for all a ∈ A
A← {a|Capa − Ua > 0}
P ← {f |f does not span any saturated link and givenf < demandf}

end while

In short, this algorithm makes sure that the rate assigned to each flow at its

bottleneck link will be proportional to its weight. If the sum of flow weights are all

equal for different overlay networks, we expect the total bandwidth given to overlays

to be balanced. However, the weight assignment can be manipulated in order to treat

the overlay networks differently. Assigning a higher weight to an overlay will cause

its flows to receive higher rates. We can control the allocation of rates to an extent

by varying the weight assignment. We illustrate the use of weight manipulation in

57

Section 4.6.1.

4.4.3 Per-Link Network Fairness

The idea behind the per-link network fairness definition is to achieve network-level

fairness at every substrate link by dividing the link capacity equally among all the

networks traversing that link. The capacity assigned to each overlay at a link is then

divided equally among the flows belonging to the overlay and traversing the link.

Definition: An allocation of rates is per-link network fair if it is feasible and for

any other feasible allocation where rate′f > ratef at a certain link e and f belongs to

an overlay network N1, there is another network N2 which has a flow f ′ such that f ′

traverses e and ratef ≥ ratef ′ > rate′f ′ .

This algorithm divides the capacity of the substrate link equally among all the

overlay networks that go over it. A network may not be able to fill up its capacity

on this link because its flows may be bottlenecked elsewhere. In that case, other

networks are allowed to share the remaining capacity. A flow is said to be virtually

bottlenecked if the initial capacity assigned to its network is fully consumed. A flow

is physically bottlenecked when its rate can no longer be increased without decreasing

the rate of some other flow that has a lower rate. The algorithm continues until all

flows are physically bottlenecked.

4.5 Optimizing Substrate Routing for Improved Rate Allo-
cation

In our original setting, routing information for the overlay networks was given and

we were trying to provide fair bandwidth allocation with predetermined paths for all

overlay links in the system. But suppose that the overlay links are specified only with

a pair of end nodes and we are free to select the paths between these pairs.

Selecting the substrate paths corresponding to the overlay links in the system

brings the possibility of achieving higher total rates or better fairness in the allocation

58

Algorithm 4 Per Link Network Fairness Algorithm

P ← F
A← E
while P 6= ∅ do
Y ← F
∀a ∈ A:
Pa ← {f |f ∈ P and f spans a}
nfa ← |Pa|
Na ← {x|x ∈ N and ∃f ∈ Pa s.t. f belongs to x}
nna ← |Na|
∀x ∈ Na Capa,x ← Capa−Ua

nna
, Pa,x ← {f |f ∈ Pa and f belongs to x}

while Y 6= ∅ do
incr ← min(mina∈A,x∈Na(

Capa,x−Ua,x

|Pa,x|),minf∈P (demandf − givenf))

∀f ∈ P ratef+ = incr.
∀a ∈ A:
1. ∀x ∈ Na recalculate Ua,x.
2. recalculate Ua.
A← {a|Capa − Ua > 0}
P ← {f |f does not span any saturated link and givenf < demandf}
Y ← {r|r ∈ P and the network that r belongs to has not used up its capacity on
any link}

end while
end while

of rates, or both, compared to settling for shortest-path routes. By expanding the

set of possible routes for each overlay link, we may be able to avoid situations where

multiple flows are bottlenecked at a low bandwidth link.

In this section, we assume that the rate allocation algorithm is given, and we

would like to optimize the routing in the substrate to satisfy the demands of as many

flows as possible and maximize the total utilization of the substrate bandwidth.

We revisit the concept of isolated fair rates from Section 4.3: Instead of using

the rate achieved in the presence of shortest-path routing, we look all the possible

routings for the flows in a network and select the routing scenario where the highest

total rate for the network is achieved with max-min-fair rate allocation. The rates in

this scenario are the isolated fair rates for the flows in the network.

We consider two ways of finding the optimal routing. One is a brute-force method

that tries to evaluate as many different routings as possible and selects the best one.

59

The other is a heuristic method that approximates the brute-force method. We now

describe these two methods.

4.5.1 Brute Force Method

The brute force method starts by enumerating all paths between every overlay node

pair. It then applies the fair bandwidth allocation algorithm of choice to all the

possible path combinations to find the set of paths that would enable the highest

total rate. Assume there are n overlay networks sharing the substrate network. Ei

is the set of overlay links that belong to the ith overlay network. Each element of

Ei is expressed as a source-destination pair (src, dst). The jth element in Ei can be

written as eij = (srcij, dst
i
j). Let λij be the number of all the possible paths from srcij

to dstij.

Algorithm 5 Brute force routing optimization

for i = 1 to n do
for j = 1 to |Ei| do

Find all possible paths from srcij to dstij.
end for

end for
Enumerate all routing possibilities for the system. There will be numChoice =∏n

i=1

∏|Ei|
j=1 λ

i
j combinations.

for i = 1 to numChoice do
Apply allocation algorithm and evaluate the total rate of the resulting allocation.
Update the best choice if this is the largest total rate so far.

end for

This technique is clearly not scalable because there may be a large number of

possible paths between each source-destination pair, and even for tens of flows the

number of routing possibilities will be too high to evaluate. We can make this tech-

nique more scalable by limiting the number routing possibilities to consider.

4.5.1.1 k shortest paths

Instead of enumerating all paths between a source and a destination, we can put

a limit of k on the number of different paths to examine per source-destination

60

pair. This method also has exponential (O(ku), where u is the number of all source-

destination pairs) complexity, but the number of combinations to consider can be

reduced, depending on the choice of k. This technique also ensures that we do not go

too far sacrificing path length for marginal gains in total rate because it only considers

the k shortest paths for each source-destination pair.

4.5.2 Heuristic Approach

The brute force approach described in the previous section would give the optimal

routing for total rate, but it quickly becomes infeasible as the number and sizes of

overlay networks grow.

Another approach is to start with minimum hop routing for all overlay networks,

run the fair rate allocation algorithm, and then try to improve the total rate step by

step by making changes to the routes that overlay links follow. The heuristic method

is given in the following algorithm definition.

The main idea behind this heuristic is that substrate links that bottleneck a lot

of flows have the biggest effect on the inefficiency of a rate allocation. We find these

links and try moving some flows away from them in order to increase the possibility

of meeting more flow demands.

In the algorithm definition, D represents the set of bottlenecked flows that are

reroutable at any point. (We do not consider rerouting the flows whose demands are

met.) In the beginning, all flows are reroutable. When a flow is rerouted once, it is

removed from D. The reason for is to avoid continuing to reroute a flow many times

in different combinations and to make sure that we zero in on a solution without

wasting too much time. The algorithm stops when no reroutable flow remains, or

when no link bottlenecks any reroutable flow.

In practice, evaluating k|Be| routings at each round of the algorithm may become

too expensive if a lot of flows are being bottlenecked at certain links. For this reason,

61

Algorithm 6 Heuristic for route selection

Do the rate allocation with shortest path routing.
D ← all overlay flows that are bottlenecked
repeat

1. Find the substrate link e that bottlenecks the most overlay flows in D. Let
Be be the set of flows bottlenecked at e.
2. Using the k shortest paths for each flow in Be, evaluate k|Be| routing scenarios.
Remove all flows in Be from D.
3. Select the routing that results in the highest total rate.

until There are no flows left in D.

we implement an upper limit on the number of routings to consider at each iteration.

If k|Be| exceeds that limit, we sample from those k|Be| routings at a frequency that

will place the number of evaluated routing possibilities roughly at our limit. More

specifically, if the limit is lim, we evaluate one routing every k|Be|

lim
possibilities.

We compared the brute force method with the heuristic method using some ex-

amples involving a small number of overlays and flows, and verified that for these ex-

amples the heuristic produced nearly identical results to the brute force method. As

the brute force method quickly becomes infeasible, we use only the heuristic method

for larger systems.

4.6 Evaluation

This evaluation section consists of two parts: In Section 4.6.1, we present example

allocations to demonstrate some properties of the algorithms given is Section 4.4. In

this part, we assume shortest path routing in the substrate. Section 4.6.2 considers

the scenario where the allocation algorithm is given, and evaluates the route selection

heuristic we described in Section 4.5.2.

4.6.1 Example Allocations with Different Algorithms

The algorithms in Section 4.4 achieve fairness according to different definitions. The

max-min fairness algorithm results in a balanced allocation of rates among individual

flows, while the other two algorithms yield allocations whereby the total rates assigned

62

to different overlay networks are more balanced.

We present example rate allocations to illustrate three different scenarios. In the

first example, there are multiple overlay networks with varying numbers of flows, and

we compare the properties of the max-min fair allocation and the normalized rate

network fair (NRNF) allocation algorithms.. In the second example, the number of

flows in each overlay is the same, but we would like to treat each overlay differently

so we assign them varying total weights using the NRNF algorithm and compare the

results with max-min fair allocations. The third example illustrates how the global

fairness index values change between allocations that use different weight structures..

Scenario 1

In this example, we place 12 overlay networks on top of the substrate network seen

in Figure 20a. The first 4 of these overlays have 6 flows, the second 4 overlays have

12 flows, and the third 4 overlays have 20 flows each. We then perform the rate

allocation using both the max-min fair allocation algorithm and the normalized-rate

network-fair (NRNF) algorithm. The capacity of each substrate link is 10 units, and

the bandwidth demand of each flow is 1 unit. The total weights for all overlays are

set to 1 in the NRNF algorithm.

Table 6 presents the results of the example allocations. The first three rows of

data contain the average total rate for each 4-overlay group: small (6-flow) overlays,

medium (12-flow) overlays, and large (20-flow) overlays. We observe that with the

max-min fair allocation, the total rate for networks grow proportionally to the number

of flows in them. On the other hand, the NRNF algorithm keeps aggregate rates closer

to each other and the total rate of an overlay does not increase proportionally to the

number of flows in it.

The fourth and fifth rows of data show the minimum and maximum total rate

among all 12 overlays in the system. The NRNF algorithm yields a higher minimum

63

Table 6: Results of the example allocation to overlays with varying number of flows

Max-min fair NRNF

Avg total rate for 6-flow overlays 4.78 6

Avg total rate for 12-flow overlays 9.65 10.60

Avg total rate for 20-flow overlays 15.20 12.87

Minimum total rate 4.10 6

Maximum total rate 17.64 16.47

and a lower maximum than the max-min fair allocation algorithm when total overlay

rates are considered.

Scenario 2

We now consider a scenario where the number of flows in each overlay is equal. As we

mentioned in Section 4.4.2, when all overlays have an equal number of flows, setting

all overlay weights to 1 in the NRNF allocation will result in an allocation identical

to that given by the max-min fair allocation. However, in this example we would like

to show the effect of assigning different weights to different overlays.

We place 10 overlay networks with 12 flows each on the substrate. We keep the

link capacities at 10 units each, but we increase the demand of each flow to 5 units

in order to form bottlenecks and observe the variations in the allocations more easily.

We perform the weight assignment such that for the ith overlay, the weight is i. Thus

we have 10 different weights, 1 through 10, assigned to the overlays. We then allocate

rates to these overlays using the NRNF algorithm. For comparison, we also do an

allocation using equal weights for each overlay, which is effectively a max-min fair

allocation. The next step is to take the ratio of the total rate given to each overlay

in the NRNF allocation to the total rate given to the same overlay in the max-min

fair allocation. We repeat this procedure with 10 different sets of 10 overlay networks

and average the ratios over these 10 sets.

Figure 13 demonstrates how the ratios of the NRNF rates to the max-min fair rates

change with the weight assignment. We observe that overlays that have low weights

64

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1 2 3 4 5 6 7 8 9 10

T
ot

al
 r

at
e

w
ith

 N
R

N
F

 /
T

ot
al

 r
at

e
w

ith
 m

ax
-m

in
 fa

ir

Weight assigned to overlay

NRNF-to-maxmin ratios

Figure 13: Average ratios of rates from the weighted allocation to max-min fair rates

are treated unfavorably compared to the max-min fair allocation. Conversely, overlays

with the highest weights are receiving favorable treatment and achieving higher total

rates than they would under max-min fair allocation.

Scenario 3

Finally, we would like to demonstrate how different treatment of overlays is reflected

by our global fairness index (GFI) metric from Section 4.3. We use the same substrate

and a set of 16 overlay networks, each with 12 flows demanding 1 unit of bandwidth

each. First, we assign a total weight of 1 to each overlay and use the NRNF algorithm

to perform the rate assignment. Then, at each step, we change the weight of one

overlay from 1 to 2, thus favoring it in terms of rate allocation. We plot the number

of favored overlays against the GFI values resulting from the corresponding allocation.

Figure 14 shows that as we give preferential treatment to more overlays, allocations

become less fair, as illustrated by rising GFI values (Low GFI values are better).

65

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 2 4 6 8 10 12 14 16

G
lo

ba
l f

ai
rn

es
s

in
de

x

Number of favored overlays (out of 16)

GFI

Figure 14: Global fairness index changing with the number of favored overlays

This trend continues until we have doubled the weights of a considerable percentage

(30-40%) of the overlays. Doubling the weights of more than half of the overlays

naturally reduces the advantage gained by a higher weight and diminishes the effect

of favorable treatment for an overlay. Hence, the GFI values start dropping to indicate

fairer allocations after the halfway point.

4.6.2 Evaluating the Route Selection Technique

In this section, we evaluate the performance of our route selection heuristic from

Section 4.5.2 and compare it to default minimum-hop routing in terms of the total

rate achieved and the fairness properties.

We use two different topologies for our evaluation: Topology 1 is a general single-

domain topology, and Topology 2 represents two node clusters connected by two

inter-cluster links. Figure 15 shows the two network topologies we used. We assume

that each substrate link has a capacity of 10 units.

66

(a) Topology 1 (b) Topology 2

Figure 15: Substrate network topologies

We place n overlay networks on these topologies, where n ranges from 2 to 10.

For each value of n, the simulation is repeated three times using different overlays.

The number of overlay nodes is set to roughly 20% of the substrate nodes for every

overlay. These nodes are connected into a full mesh: every possible pair of overlay

nodes represents an overlay link.

We define a traffic flow with a traffic demand of 1 unit from the source to the

destination of every overlay node pair. Hence, for an overlay with z nodes, there are

z(z−1) flows, each with a demand of 1 unit. For the topologies we used, each overlay

network has 4 nodes and 12 flows, one between each node pair.

We first assign a route to each node pair using shortest path routing and perform

the rate assignment using the max-min fair algorithm from Section 4.4.1. (Note that

the NRNF algorithm with equal overlay weights would yield identical results since

every overlay has an equal number of flows.) Then we execute the route improvement

heuristic from Section 4.5.2 to find the routing that maximizes the total rate assigned

to all flows.

We demonstrate the improvement in the total rate in Figure 16 and Figure 17

67

 20

 40

 60

 80

 100

 120

 2 3 4 5 6 7 8 9 10

S
um

 o
f a

ll
ra

te
s

Number of overlays

heuristic
shortest path

Figure 16: Total rates for Topology 1

for the two topologies. As the number of networks is small, substrate links are not

saturated by overlay flows and all flows fully receive what they demand. As we add

more overlays, bottlenecks start to occur and some flows have to settle for rates lower

than their demands. In these cases, using the route selection heuristic to move some

flows to paths different from those suggested by shortest-path routing provides an

improvement, and we are able to accommodate a larger number of overlays on the

substrate without bottlenecking their flows.

The simplistic scenario where every link has equal bandwidth is rarely the case

in real networks. For example, the links that connect the two clusters in Topology

2 may have different capacities. We examine this case by increasing the capacity of

one of these links from 10 units to 20 units. As we see in Figure 18, our heuristic

is able to achieve a more significant improvement in this case compared to when all

capacities are equal. As the variation in link capacities increases, the route selection

heuristic may achieve more improvement over shortest path routing, especially if the

68

 20

 40

 60

 80

 100

 2 3 4 5 6 7 8 9 10

S
um

 o
f a

ll
ra

te
s

Number of overlays

heuristic
shortest path

Figure 17: Total rates for Topology 2

 20

 40

 60

 80

 100

 120

 2 3 4 5 6 7 8 9 10

S
um

 o
f a

ll
ra

te
s

Number of overlays

heuristic
shortest path

Figure 18: Total rates with uneven capacities (Topology 2)

69

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 2 3 4 5 6 7 8 9 10

G
lo

ba
l f

ai
rn

es
s

in
de

x

Number of overlays

heuristic
shortest path

Figure 19: Using the route selection heuristic can also improve fairness. A global
fairness index closer to zero is more desirable.

links excluded from shortest path routes have higher capacities than the links in those

routes.

Moving some flows away from shortest-path routes can help us assign higher rates

to them, but does this modification also have an effect on the fairness of our alloca-

tions? To answer this question, we evaluate each allocation using our fairness metric

from Section 4.3. Figure 19 shows global fairness index values for the allocations over

Topology 1. Recall that a global fairness index (GFI) closer to zero is considered

better. When all overlays are receiving their demands in full, the sharing is perfectly

fair and all GFIs are zero. Fairness issues may start to occur as more overlays are

added, and using the routing heuristic can help more overlays to achieve rates closer

to their isolated fair rates, thus also improving the fairness as evaluated and reflected

by our metric.

70

4.7 Summary

In this work, we have examined the issue of fair bandwidth allocation among overlay

networks competing for the resources of the same substrate network. We have ob-

served that some existing fairness definitions and algorithms for achieving multipoint-

to-point session fairness are applicable to the multiple overlay network scenario. We

described a novel method to evaluate the fairness of an allocation in the presence

of multiple sharing overlays. We also explored the effect of routing decisions on fair

bandwidth allocation, and proposed brute force and heuristic methods to facilitate

finding the routing which enables the optimal bandwidth allocation to flows from

multiple overlay networks. We showed in the evaluation that our global fairness

index metric successfully captures different treatment toward overlays. We also char-

acterized the improvement in rates and fairness achieved by our routing modification

heuristic.

The main takeaways from this chapter are the following:

1. When evaluating the fairness of a rate allocation among multiple overlay net-

works, a simple comparison of bandwidth demands and assigned rates is not

sufficient. Significant differences between rates achieved (relative to demands)

by different overlays do not necessarily stem from unfair treatment by the rate

allocation, but are possibly due to the placement of some overlays in problem-

atic regions of the substrate where link capacities are low and/or sharing is

excessive. This should be taken into account when evaluating the fairness of

rate allocations. Our fairness metrics does this by comparing rates given to

overlay flows against what could be achieved if the same overlay were to exist

in the same place without company. This approach provides the opportunity

to evaluate rate allocations using a practical benchmark.

2. No allocation algorithm can provide perfect fairness in every setting involving

71

complex sharing among multiple overlays. Even though fair bandwidth alloca-

tion algorithms are necessary and useful in situations with high resource con-

tention, eliminating as many bottleneck situations as possible through routing

adjustments (if possible) is a better way to improve overall fairness in bandwidth

allocation.

72

CHAPTER V

MULTI-LAYER MONITORING OF OVERLAY

NETWORKS

5.1 Introduction

Monitoring all links in infrastructure overlay networks with persistent nodes is neces-

sary to assess the overall performance of the users and to detect anomalies. Since an

overlay link is in reality an end-to-end native path spanning one or more native links,

this full monitoring operation can constitute a significant overhead (in terms of band-

width and processing) for large overlays, especially if the monitoring is performed by

active measurements.

In this work, we alleviate the overlay network monitoring problem by adopting

a more flexible approach that allows certain native link measurements in addition

to end-to-end measurements. These native link measurements can be used to infer

desired metrics for overlay links by suitable combinations of native layer metrics. We

call this approach multi-layer monitoring. This framework allows for four different

options:

1. Monitor all overlay links: With this strategy, all overlay links are monitored

directly and individually.

2. Monitor a basis set of overlay links: The work in [16] introduces a method

to select and monitor a minimal subset of overlay links called the basis set. The

characteristics of the remaining overlay links are inferred from the measurements

for the basis set.

3. Monitor all native links: Another option is to monitor all the underlying

73

native links in the network. Afterwards observed native layer metrics are com-

bined to produce the results for all the overlay links.

4. Monitor a mix of native links and overlay links (Multi-layer Moni-

toring): In this option proposed in this work, we monitor some native links

and a subset of the overlay links. We then infer the remaining overlay links by

combining these observations.

Note that while options 2-4 have the potential to reduce the monitoring cost, they

are also prone to inference errors when an overlay link measurement is inferred from

measurements on native and/or other overlay links.

The multi-layer monitoring strategy (option 4) is the most general one and sub-

sumes all others. It also affords significant flexibility in monitoring overlays. Our

objective in this work is to minimize monitoring cost by determining the optimal mix

between overlay and native layer monitoring. To this end, we formulate this as an

optimization problem and discuss some features of its solution.

Previous work has considered overlay network monitoring and developed various

approaches for it. Chen et al. [16] propose an algebraic approach to efficiently monitor

the end-to-end loss rates in an overlay network. They use linear algebraic techniques

to find a minimal basis set of overlay links to monitor and then infer the loss rates

of the remaining ones. iPlane [61] predicts end-to-end path performance from the

measured performance of segments that compose the path. We generalize these tech-

niques and allow measuring both end-to-end paths and underlying segments. Our

approach in this work requires a deep collaboration between the overlay network

operator and the native network, similar to the design goals of the overlay-friendly

native network [72].

The remainder of this chapter is organized as follows: We describe the multi-layer

monitoring problem in Section 5.2. Section 5.3 presents our linear program based

74

solution. We present details from simulating the multi-layer monitoring framework in

general topologies in Section 5.4. Section 5.5 describes PlanetLab experiments that

we conducted to characterize the inference errors that can result from this multi-layer

monitoring solution. We summarize the chapter in Section 5.6.

5.2 The Multi-Layer Monitoring Problem

We model the native network as a directed graph G = (V,E), where V is the set

of vertices and E is the set of directed edges connecting these vertices. Next, we

model the overlay network as a directed graph G′ = (V ′, E ′), with V ′ ⊆ V being the

set of overlay nodes and E ′ being the set of overlay links. In a multi-layer network,

each overlay link spans one or more native links. Thus, the following relation holds:

e′ ∈ E ′ is a set {e1e′ , e2e′ , ..., ene′}, where ei ∈ E and eke′ denotes the kth native edge

in e′.

Link monitoring incurs a certain cost, typically in the form of resource overhead

(e.g., processor utilization, bandwidth), at each layer. We use C(e) and C ′(e′) as the

cost of monitoring a native link and an overlay link respectively. Since C(e) and C ′(e′)

are variables, the cost structure is flexible and can accommodate various scenarios.

For instance, if it is not possible to monitor certain native links directly, the cost

variables for those links can be set to infinity.

Let M = {M1,M2, . . . ,MN} represent the desired set of monitoring operations

we would like to get results for, which in our case is the set of desired overlay link

measurements. Let P = {P1,P2, . . . ,PQ} represent the set of monitoring operations

that are actually performed. This set can contain a mixture of native and overlay link

measurements. Let composition rule F(P ,Mi) represent a function that combines

the results from available native and overlay link measurements to infer the desired

measurement of the overlay linkMi. In this work, we use the composition rule of the

latency metric.

75

Table 7: Notations used

E Edges in the native layer

E′ Edges in the overlay layer

C(e) Cost to monitor native link e

C ′(e′) Cost to monitor overlay link e′

Xm(e) 1 if native link e is monitored, 0 otherwise∗

Xi(e) 1 if native link e is inferred, 0 otherwise∗

Ym(e′) 1 if overlay link e′ is monitored, 0 otherwise∗∗

Yi(e
′) 1 if overlay link e′ is inferred, 0 otherwise∗∗

f(e, e′) 1 if overlay link e′ is routed over native link e, 0 otherwise
xi(e, e

′) 1 if native link e is inferred from overlay link e′, 0 otherwise

li(e) Integer representing the inference dependency between native links to resolve
inference loops

* A native link can be monitored or inferred but never both. Some are neither monitored nor inferred if they are not
needed in inferring overlay link measurements.

** An overlay link is either monitored or inferred, but never both.

We say that a certain M is feasible with respect to P , if all values in M can be

computed from P . Clearly, if M ⊆ P , then the monitoring problem is feasible. In

cases when M * P , feasibility is not always assured.

The optimization problem can thus be stated as, “Given a monitoring objective

M, find the P such thatM is feasible with respect to P and cost(P) =
∑Q

i=1 cost(P i)

is minimal.”

Assumptions and Limitations

In this work, we assume that the best-effort routing at the native layer treats measure-

ment probes in the same manner as other data packets, so as to obtain an accurate

estimate of the user experience. We restrict our work to the metric of latency, al-

though it has been shown that the logarithm of link loss rates are additive metrics that

can be composed in a manner similar to link latencies [16]. Furthermore, the linear

programming formulation in the subsequent section cannot be applied for multi-path

routing at the native layer: The overlay link latency composition rule needs revision

for handling multi-path routing. We reserve these extensions to the model for future

76

study.

5.3 Linear Programming Formulation

Using the notation presented in Table 7, we formulate the optimization problem as

the following Integer Linear Program (ILP):

minimize Total Cost =
∑
e∈E

Xm(e) · C(e) +
∑
e′∈E′

Ym(e′) · C ′(e′) (13)

subject to the following constraints

∀ e′ ∈ E ′, e ∈ e′ : Xm(e) +Xi(e) = 1, if (Ym(e′) + Yi(e
′)) = 0 . (14)

∀ e′∈E ′, e ∈ e′, d ∈ (e′ − e) : xi(e, e
′) ≤ (Xm(d) +Xi(d)) . (15)

∀ e′ ∈ E ′ :
∑
e∈e′

xi(e, e
′) ≤ (Ym(e′) + Yi(e

′)) . (16)

∀ e ∈ E : Xi(e) ≤
∑
e′∈E′

xi(e, e
′) ≤ 1 . (17)

∀ e′ ∈ E ′, e ∈ e′, d ∈ (e′ − e) : xi(e, e
′) =


1, if li(e) > li(d),

0, otherwise .

(18)

∀ e′ ∈ E ′ : Yi(e
′) = 1, if e′ can be inferred from other overlay links in P . (19)

∀ e ∈ E, e′ ∈ E ′ : Xm(e) ∈ {0, 1}, Xi(e) ∈ {0, 1}, xi(e, e′) ∈ {0, 1},

Ym(e) ∈ {0, 1}, Yi(e) ∈ {0, 1} .
(20)

Constraints (14) to (20) assure the feasibility of the solution. These constraints

can be explained as follows:

(2) This constraint, applied to all overlay links, determines the exact layer at which

each overlay link is to be monitored. If the overlay link is not already monitored

or inferred, then monitor, or infer, all native links it spans. Furthermore, this

77

constraint will ensure that we only monitor or infer, and never both. This con-

dition also prevents an overlay link from being monitored, if all its constituent

native link measurements are already known.

(3) We enforce the constraint that a native link e is inferred from an overlay link e′

only if all other native links in that overlay link are already monitored or inferred.

This insures that the inferred native link can be appropriately calculated from

other link measurements.

(4) This constraint insures that a native link e is inferred from an overlay link e′

only if the overlay link latency is already monitored, or inferred, at the overlay

layer (i.e., Ym(e′) + Yi(e
′) = 1) . Furthermore, we place the constraint that no

more than 1 native link can be inferred from each overlay link. This is typically

achieved in an ILP by setting the sum of individual variables xi(e, e
′) to be less

than or equal to 1.

(5) This is a complex constraint which achieves three sub-goals: (a) Mark a native

link as inferred if it is inferred on any of the overlay links that span it, (b) Mark

a native link as not inferred if it is not inferred on any of the overlay links that

span it, and (c) Insure that a native link is inferred only from 1 overlay link, so

as to reduce wasting resources on performing multiple inferences. These three

constraints ensure that we accurately mark a native link as inferred.

(6) This constraint is crucial to remove any circular inference, which can happen if

we infer one native link measurement through an arithmetic operation on the

measurement of another. We achieve this by assigning integer inference levels

(denoted by variable li), such that a native link must be inferred only from other

native links that have a lower inference level.

(7) We use this constraint to implement the basis set computation and infer some

78

overlay link measurements from other known overlay link measurements.

(8) Lastly, we specify the binary constraints for all variables used. This constraint

makes the problem hard.

We apply the described ILP to any given topology and solve it using the GNU

linear programming kit [34], which uses the branch-and-bound approximation tech-

nique. The optimal solution for a given topology identifies the overlay links that can

be inferred from other native and overlay links, and describes how these inferences

should be done. Using this information, we infer the latency of all overlay links (M)

from available measurements (P) in our database.

5.4 Examples Using Multi-Layer Monitoring

In this section, we present various simulation experiments to demonstrate the types

of results obtainable from our optimization approach and how it is affected by various

network features. Although we only simulate intra-domain topologies, our model and

ILP are equally applicable to multi-domain topologies.

Random Placement

In the first experiment we consider five native link topologies derived from Rocketfuel

[70] data. For each network we generate an overlay network using approximately 20%

the number of nodes in the native topology as overlay nodes. These nodes are placed

randomly among the native nodes and fully-connected to form the overlay network.

In this case, we define the cost of monitoring as the total number of native and overlay

measurements needed. We consider the following four monitoring strategies:

• Monitoring all overlay links: The total cost is the cost of monitoring all |V ′| ·

(|V ′| − 1) overlay links, where V ′ is the set of overlay nodes.

• Monitoring all native links: The total cost is the number of distinct native links

spanned by all the overlay links.

79

Table 8: The lowest cost for each strategy when unitNativeCost is the same as
unitOverlayCost

AS # Number of All overlay All native Basis set Combination
overlay (n: native,
nodes o: overlay)

1221 21 420 102 198 98 (66 n, 32 o)

1755 17 272 112 98 92 (42 n, 50 o)

3257 32 992 240 500 222 (142 n, 80 o)

3967 15 210 98 138 78 (46 n, 32 o)

6461 28 756 224 394 210 (146 n, 64 o)

• Monitoring a basis set of overlay links: To obtain this solution, we set the cost

of monitoring a native link very high in our ILP so that the solution selects only

overlay links for monitoring.

• Monitoring a combination of native and overlay links: We set the cost of mon-

itoring a native link equal to the cost of monitoring an overlay link in the ILP.

(From here on, we refer to these costs as unitNativeCost and unitOverlayCost,

respectively.) The ILP then produces a solution that minimizes the total cost,

which is the same as minimizing the number of measurements in this case.

Table 8 demonstrates the lowest total monitoring cost that can be achieved by

the above monitoring strategies for each topology. In addition, the cost that results

from monitoring native links and the cost that results from monitoring overlay links

are reported separately for the multi-layer combination strategy in the last column.

In all topologies, monitoring a combination of native and overlay links provides the

lowest-cost option. On average, this lowest cost is 71% lower than the cost for the

naive all-overlay approach and 11% lower than the all-native solution. This represents

significant saving, while being flexible enough to accommodate other constraints.

Amount of link-level overlap

In this section, we study the effect of overlap between overlay links over the optimal

monitoring solution. As a measure, we use the average number of overlay links that

80

Table 9: Effect of link-level overlap on the lowest total monitoring cost

AS Overlap coefficient Lowest total cost # of overlay links Cost per link

3967 8.59 78 210 0.37

1755 9.21 92 272 0.34

6461 12.80 210 756 0.28

3257 17.08 222 992 0.22

1221 18.33 98 420 0.23

span a native link in the network. We call this value the overlap coefficient. For this

analysis we use the results from the first experiment.

Table 9 demonstrates how the lowest cost solution, as given by our ILP, varies

with the amount of link-level overlap. In the table, Cost per overlay link represents

the total monitoring cost divided by the number of overlay links. The rows are sorted

by increasing overlap coefficient. We observe that in general, the monitoring cost per

overlay link decreases as overlap increases. However, the cost per link value for AS

1221 is slightly higher than that of AS 3257 although the former has a higher overlap

coefficient. This may suggest that increasing overlap can only decrease the cost per

link by a limited amount.

Percentage of overlay nodes

In this experiment, we vary the fraction of overlay nodes among all nodes in the

network. We call this fraction overlay node density. We examine two Rocketfuel

topologies using five different density values from 0.1 to 0.5, and random overlay

node placement. Our ILP gives the results in Table 10 when unitNativeCost =

unitOverlayCost. This result is consistent with the effect of link-level overlap. As

the overlay node density increases, link-level overlap also increases, and the cost per

overlay link decreases.

81

Table 10: Effect of overlay node density on the optimal monitoring solution

Overlay node density Cost per link for AS 1755 Cost per link for AS 3967

0.1 0.75 0.71

0.2 0.34 0.37

0.3 0.25 0.28

0.4 0.15 0.17

0.5 0.12 0.13

5.5 Experimental Evaluation of Inference Errors

Composing an end-to-end measurement from other measurements can introduce an

error in the result. We refer to this as inference error. One source of error may be

packets traversing different sequences of router functions. For example, an end-to-end

latency measurement probe may be forwarded along the fast path of a router, while

probes that measure the latency of native links may be forwarded along the slow

path. This makes the latter probe packets susceptible to processor delays, thereby

introducing additional latency. Furthermore, some native link measurements may

be inferred from overlay link measurements using arithmetic operations. This too

introduces estimation error.

We represent the inference error for overlay links by computing the absolute rela-

tive estimation error. We compute this error value as a percentage:

Abs. Rel. Est. Error Percentage(e′) =
|ρ̃(e′)− ρ(e′)|

ρ(e′)
× 100 (21)

where ρ(e′) is the actual measurement result for e′ and ρ̃(e′) is the inferred result

obtained through combining a different set of measurements.

To assess the extent of inference errors, we conducted experiments on PlanetLab

[69] using three different overlay topologies shown in Figure 20. We implemented

these topologies as virtual networks on PlanetLab using PL-VINI, the VINI [10]

prototype running on PlanetLab. In each experiment, we picked 20 PlanetLab nodes

82

(a) Topology 1 (b) Topology 2 (c) Topology 3

Figure 20: Three PlanetLab topologies we use. (a) represents a general AS topology.
(b) has a tree-like structure which can be found on some campus-wide networks such
as [23]. (b) can be interpreted as a graph of two interconnected ASes. Native links
are assigned with different OSPF costs to avoid multiple shortest paths.

from different ASes as our native network and ran OSPF on this network with PL-

VINI. Note that we cannot control the inter AS routing of these PlanetLab nodes.

We treated the edges between these nodes on the PL-VINI network as native links.

We picked 8 nodes out of the 20 as our overlay nodes, and assumed that these 8 nodes

are fully connected to form an overlay network.

For each topology, we ran 4 rounds of measurements at different times. In each

round, we measured the delay on all native and all overlay links by simultaneously

running 100 pings on every link at a frequency of 1 per second. We calculated the

delay from node a to node b as the average round-trip time over all ping results for

native or overlay link a− b.

In order to find the optimal combination of links to monitor for these topologies,

we ran our ILP on each of them with the objective of minimizing the total number

of measurements. The output of the ILP gave us a set of overlay and native links

to monitor. Using this output and the measurement results for the corresponding

topology, we first inferred the measurements of the links that are not monitored,

and then calculated the errors in these inferences using Equation 21. The errors for

all-native and basis set solutions are calculated in a similar manner.

83

Table 11: Costs and inference errors for different monitoring strategies

(a) Topology 1

Cost Mni Mna Max

All-overlay 56 0 0 0

All-native 34 5.01 5.01 21.18

Basis set 38 2.68 0.86 20.29

Combination 26 3.43 2.70 20.12

(b) Topology 2

Cost Mni Mna Max

All-overlay 56 0 0 0

All-native 24 1.43 1.43 4.30

Basis set 26 0.96 0.51 2.79

Combination 18 1.58 1.35 3.17

(c) Topology 3

Cost Mni Mna Max

All-overlay 56 0 0 0

All-native 30 3.54 3.54 10.75

Basis set 26 1.13 0.61 4.95

Combination 24 2.35 1.68 10.75

Table 11 summarizes the results for all three topologies. The Cost column rep-

resents the lowest possible monitoring cost that can be achieved by each strategy.

Max is the largest inference error observed in a certain strategy. Mni is the inference

error averaged over all inferred overlay links, while Mna is the error averaged over

all the overlay links in the network, with the difference being that direct overlay link

measurements have no errors. Averaging over all overlay links does not reduce the

error in the case of all-native monitoring because in this case all overlay links are

inferred and none are measured directly. However, Mna < Mni in the basis set and

lowest-cost combination strategies because some overlay links are directly measured

and these zero errors bring down Mna.

Among the last three strategies, monitoring a combination of native and overlay

links achieved the lowest cost, and monitoring a basis set of overlay links resulted in

the smallest error. However, we should note that if we use a different cost definition,

such as the total number of native links carrying probe traffic, these results may

change significantly. For instance, in Topology 3, the last strategy uses a combina-

tion of 8 native and 16 overlay links, spanning a total of 42 native links, while the

all-native solution spans 30 links and the basis set solution spans 52 native links. Our

84

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16
 0.18

 0.2
 0.22

 0 5 10 15 20 25 30 35 40 45

E
rr

or

Inferred links

(a) Topology 1

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 5 10 15 20 25 30 35 40 45

E
rr

or

Inferred links

(b) Topology 3

Figure 21: Error rates of inferred overlay links

insight from these experiments suggests that in general, all-native solutions minimize

bandwidth consumption, basis overlay set solutions minimize error, and using a com-

bination of native and overlay links allows reducing the total number of measurements

with comparable errors.

For the two topologies whose maximum errors are above 10%, we examine the

error distribution among the inferred overlay links as shown in Figure 21. We sort

the inference errors from high to low and place them on the graphs from left to right.

It can be seen that in both cases a few inferred links produce high errors that dominate

the rest, increasing the mean error. If the ILP is aware of the overlay links that incur

a high error when they are inferred, it can choose to monitor them directly and avoid

these errors. Thus, adding certain error constraints to the ILP is a plausible step to

improve its performance.

5.6 Summary

In this work we have proposed multi-layer monitoring as a flexible approach for

overlay network measurement. We focused on the specific issue of determining the

optimal mix of native and overlay link monitoring. We show that the overall cost of

monitoring the network is the least when we allow native link measurements, as well

85

as end-to-end measurements. We present a novel ILP formulation that when solved

minimizes the cost of network monitoring with the appropriate combination of end-

to-end and native network measurements. Through simulation studies, we observe

that the optimal monitoring solution, i.e., the set of native and overlay links that

minimizes the total monitoring cost while supplying sufficient information, depends

on unit monitoring costs as well as the selection and placement of overlay nodes.

We also find that the average monitoring cost per overlay link is lower for topologies

where there is a high overlap between overlay links. Furthermore, we evaluate our

approach through PlanetLab experiments with a focus on the question of inference

errors.

The main takeaways from this chapter are the following:

1. If the monitoring framework allows measurements at both the native layer and

the overlay layer, the lowest-cost monitoring solution will usually utilize a bal-

anced mix of direct measurements from both layers. This shows that there is

good value in the multi-layer monitoring approach.

2. Inference of end-to-end metrics from other direct measurements causes a tol-

erable amount of error. The amount of error varies for different paths, and

a few paths with high errors increase the average error. Once these paths are

determined, a hard constraint requiring the monitoring system to monitor them

directly can be introduced and the optimal monitoring mix can be updated as

necessary.

86

CHAPTER VI

DESIGN AND ANALYSIS OF TECHNIQUES FOR

MAPPING VIRTUAL NETWORKS TO

SOFTWARE-DEFINED NETWORK SUBSTRATES

6.1 Introduction

Over the past few years, software-defined networking (SDN) has emerged as a promis-

ing technology. By separating the control plane from the data plane, SDN facilitates

network experimentation and allows for optimizing switching/routing policies. The

forwarding planes in SDNs are managed by remote processes called controllers. Open-

Flow [63] was proposed and has been extensively used as a uniform interface between

the control and data planes in SDNs.

Multiple tenants can share the underlying SDN infrastructure through virtual-

ization. One method of virtualization in SDNs is FlowVisor [76], a special purpose

OpenFlow controller that can create slices of network resources and place each slice

under the control of a different OpenFlow controller. FlowVisor slices the network

along multiple dimensions: topology, bandwidth, switch CPU, and the set of traffic

under the control of the slice, i.e., its flowspace. Each slice has a slice policy defining

its resources and the controller associated with it.

FlowVisor is interjected between multiple OpenFlow slice controllers and Open-

Flow switches acting as the data plane. It intercepts messages between the control

and data planes in both directions, and rewrites them in compliance with the slice

policy of the corresponding slice. FlowVisor uses a variety of mechanisms (details

are in [76]) for different network resources to ensure isolation between slices. Switch

CPU is identified as the most critical resource as it is the most easily exhausted, but

87

Figure 22: Two FlowVisor slices sharing a substrate of OpenFlow-enabled switches

there are methods to divide and isolate link bandwidth and flow entry space as well.

Figure 22 illustrates two slices sharing the same network substrate. Each slice

has its own view of the topology, which we call the virtual topology (VT) of the slice,

depending on the switches it contains: Alice’s VT is ABDE, and Bob’s VT is ABCD.

Switches that are added into both slices (like A, B, and D) need to allocate CPU

power and flow entries between these slices. Similarly, if a link is being shared between

multiple slices (like AB and BD), its bandwidth must be divided to accommodate the

flows belonging to each slice. Note that the dashed lines showing the controller-to-

switch communications constitute a conceptual representation. The exact paths for

control traffic will be determined by the physical locations of the controllers.

Slices of the network can be used for many different purposes depending on what

the owners are trying to accomplish. Services or experiments that run on these slices

may display a wide variety of resource requirements. We can think of a slice along

with its controller as a virtual network (VN) in SDN. As VNs get bigger and the

88

number of VNs increases, resource contention may become a problem.

VN embedding1 within a network virtualization environment, where substrate

network providers are decoupled from VN providers that deploy and operate the

VNs [29, 86], is a well-known problem. It is an important NP-hard problem because

suboptimal mappings can cause bad performance and/or higher operating cost. So-

lutions that strive for well-balanced and resource-efficient VN mappings have been

proposed by researchers [59,92,96].

In this work, we tackle the problem of designing embedding techniques for VNs in

the SDN environment. While some of the previous VN embedding solutions may be

applicable to SDN virtualization, some differences inherent in SDN call for different

definitions and approaches. Firstly, each VN on an SDN-based substrate possesses

its own controller, and there are requirements and considerations that come with the

existence of this controller. The controller is responsible for organizing the operation

of the VN by sending routing updates, traffic engineering policies etc. and needs to

react quickly to faults in the network. Therefore, it must be able to communicate

effectively to all the switches that are part of the VN, so any VN embedding effort

needs to make sure all controller-to-switch channels avoid congestion and high delays.

Furthermore, the ease of customizing packet routes in SDNs presents an additional

degree of freedom in VN embedding. For these reasons, studying VN embedding in

SDNs presents different challenges from other network virtualization environments:

1. The placement of the controller is important for the above stated reasons, so it

should be treated as a special node by the VN embedding method.

2. We have more control over the routes in the substrate, so VN embedding can

take advantage of this flexibility to fine-tune solutions.

3. As we will explain in Section 6.2, differences in SDN resource sharing from that

1VN embedding and VN mapping are being used interchangeably throughout this chapter.

89

in traditional networks call for modifications to previous VN embedding efforts.

The systems that we investigate in this work are those with many tenants running

a number of VNs with varying sizes, functions and requirements. The mapping of the

virtual components to substrate components and the placement of the controllers are

both important variables influencing the performance of the VNs in such a system.

Efficient utilization of networks resources, low risk of congestion, reliability and fast

response are all desirable properties. To this end, we identify two simple goals that

guide our design: balancing the load on substrate nodes and links, and maintaining

low delay between controllers and switches in all VNs.

The contributions of this work can be summarized as follows.

• We identify virtualization properties unique to the SDN environment and dis-

cuss how these properties should affect VN embedding efforts. Specifically, we

argue that the placement of the controller for each VN should be a part of em-

bedding due to the critical mission of the controller and the necessity for the

controller to have a fast communication channel to the switches that it controls.

• We developed two embedding techniques with different priorities: The first

method focuses on balancing the stress on substrate components while keep-

ing the delays between controllers and switches within bounds. The second

method strives to minimize controller-to-switch delays while limiting the stress

on substrate components.

• Our stress-balancing embedding technique is derived from previous work [96],

but we modify the definitions of node and link stress to account for the presence

of control traffic, and make adjustments to treat the controller as a special node.

• We evaluated the impact of both techniques on the objective metrics (stress

and controller-to-switch delays) as well as other metrics such as end-to-end

90

delays and throughput. We also analyzed the effects of changes in the tunable

parameters of our methods and definitions.

The remainder of the chapter is organized as follows. In Section 6.2, we describe

resource sharing in SDNs and formally define the VN embedding problem. Section

6.3 presents our approach and two variations of VN embedding techniques with dif-

ferent priorities. Section 6.4 contains results from evaluation efforts conducted via

simulation and Mininet [53] emulation, and Section 6.5 summarizes the chapter.

6.2 Model and Problem Statement

In this section, we first briefly discuss the nature of resource sharing in SDNs in the

presence of multiple virtual networks, and then describe the VN embedding problem

in the SDN environment.

6.2.1 Identifying SDN Resources

Virtualization in SDNs requires a mechanism to share network resources among multi-

ple slices. A classification of these resources was presented in the FlowVisor work [76].

We summarize these as follows.

Switch CPU: Sharing computational power between slices at switches is orches-

trated considering two main tasks performed for each slice: generating new flow

messages to be sent to the corresponding controller, and handling controller requests

regarding the slice. CPU power demands at a switch increase with the number of

virtual nodes and links at mapped to it / traversing it.

Bandwidth: Isolation of bandwidth is handled via per-slice queues at each port

on OpenFlow switches. Each slice has its own queue at each port, and these queues

are serviced according to the resource allocation policy. In particular, FlowVisor

implementation uses minimum bandwidth queues, whereby a slice is guaranteed a

91

minimum of X% of the bandwidth on a link, and possibly more if the link is not fully

utilized.

In our design, we take into account both the number of virtual links that share a

substrate link and the number of controller-to-switch connections that must go over

this link. Balancing these numbers across the substrate is useful to avoid potential

hot spots and reduce the possibility of congestion.

Flow entry space: The number of flow entries that can be used by each slice is

also limited at each switch. When a controller is over its limit, it is not allowed to

insert any new rules at the switch. This is another reason to consider the number of

virtual links traversing a substrate node as part of the load on that node.

6.2.2 VN Embedding Problem

Network model: We take the underlying SDN infrastructure as the network sub-

strate and model it as a graph (V,E), where V is the set of substrate nodes and E is

the set of substrate links.

We can think of VN-embedding in SDN as a combination of two sub-problems:

1. Deciding which switches to include in a slice,

2. How to configure the routing within the slice.

This problem becomes interesting only when there are many VNs sharing the under-

lying infrastructure. So we are focusing on the problem of embedding multiple VNs

on a substrate of OpenFlow enabled switches using FlowVisor.

We consider controller placement and VN embedding as a joint problem and look

at two flavors: VN embedding with fixed-location controller and VN embedding with

adjustable-location controller, depending on whether the location of the controller

for a VN has been predetermined or can be selected freely. With multiple VNs,

the location of the controller for each VN can be either fixed (as some users may

92

desire the ability to select precise locations for the central controllers of their VNs)

or adjustable. Our objective for VN embedding is twofold: balancing the load on

switches and links while trying to minimize the average controller-to-switch delay for

each VN. As a measure of load, we concentrate on stress from previous work [96] in

the VN embedding literature.

We modify the definition of stress given in [96], where it was defined for a substrate

node as the number of virtual nodes mapped to it, and for a substrate link as the

number of virtual links traversing it. We add two things to these definitions: For

node stress, we take into account the additional CPU power and flow entry space

load that comes from virtual links that traverse a node; and for link stress, we add a

component for the total load due to all the controller-to-switch communications going

over a particular link. The definition of stress in this work is as follows.

• For a substrate node v ∈ V , stress is a weighted combination of the number of

virtual nodes assigned to it (nN(v)), and the number of virtual links traversing

it (nL(v)). More formally, if SN(v) denotes the stress of substrate node v, then

SN(v) = α · nN(v) + β · nL(v),∀v ∈ V (22)

Modifying the positive parameters α and β in the above definition will change

the importance given to each component of node stress. If hosting a virtual

node is considered to cause more stress for a substrate node than being part of

a virtual link, α will be assigned a bigger value relative to β, and vice versa. In

a special case, if (α, β) = (1, 0), the definition reduces to the simpler form given

in [96].

• For a substrate link e ∈ E, total link stress is the sum of data traffic stress and

control traffic stress. Data traffic stress is placed on e by virtual links traversing

it (tr(e) is the number of such virtual links), and each virtual link contributes

93

an amount equal to the ratio of its bandwidth demand and the capacity of

e. Control traffic stress is a weighted contribution for each controller-to-switch

path going over this link. For controller Ci, each controller-to-switch connection

contributes γi to the stress of each link on the path, where 0 ≤ γi ≤ 1. Let ci(e)

denote the number of controller-to-switch connections traversing link e in the

ith VN out of numV total VNs in the system. More formally, if SL(e) denotes

the stress of substrate link e, then

SL(e) =

tr(e)∑
i=1

demandi
cap(e)

+
numV∑
i=1

γi · ci(e),∀e ∈ E (23)

In calculating the link stress, the demand of a virtual link is capped at the lowest

substrate link capacity in the corresponding path since that is an implicit limit

on the highest rate the virtual link can achieve. If bandwidth demands are not

known in advance, we assume they are all equal. γi can be different for each

VN depending on the intensity of its control traffic. A higher γi would signify

that the load caused by control traffic is more important for this VN than that

in a VN with a lower γi value.

The formal problem definition for VN embedding in SDNs is given below.

Let Slicei be the ith slice sharing a network of switches. The virtual topology of

this slice, V Ti, defines the nodes and links included in this slice. V Ti is described as a

graph (V ′i , E
′
i), where V ′i is the set of virtual nodes, and E ′i is the set of virtual links.

This slice, along with its controller Ci, constitute virtual network Ni. Our problem

can then be states as follows:

Given the virtual topology of all numV VNs, and information as to whether the

location of each Ci is fixed or adjustable, organize all VNs in a way that will 1)

minimize the maximum stress on a switch or link while keeping all controller-to-switch

delays under a threshold R, or 2) minimize the average controller-to-switch delay for

94

each Ni while keeping the maximum stress under a threshold T .

6.3 VN Embedding Techniques

We consider two aspects of the VN embedding problem and address them together:

balancing the load and resource usage in the network in the presence of multiple VNs,

and controlling the delay in the communication between controllers and switches in all

VNs. We describe two heuristics to tackle this version of the NP-hard VN embedding

problem, one balancing the load as much as possible while keeping controller-to-

switch delays within certain bounds, the other minimizing these delays while keeping

the maximum stress under a threshold.

6.3.1 Stress-Balancing Embedding (SBE)

The goal of the first heuristic is to produce low and balanced stress on substrate

nodes and links while making sure that the worst controller-to-switch delay does not

exceed a certain threshold. Reducing stress on nodes is important for decreasing

the possibility that resources such as CPU processing power and flow tables will get

exhausted. Keeping stress low on links helps avoid congestion and may result in

a lower percentage of the link’s bandwidth being consumed. For delays, we use a

threshold R to limit the maximum controller-to-switch delay.

We borrow the concept of neighborhood resource availability (NR) for substrate

nodes from [96]:

NR(v) = [SNmax − SN(v)] ·
∑
e∈Lv

[SLmax − SL(e)] (24)

SNmax = maxv∈V SN(v) is the maximum node stress, and SLmax = maxe∈E SL(e) is

the maximum link stress in the substrate. Lv in the set of substrate links adjacent to

v.

A high NR signifies that the node and the links connected to it are lightly loaded.

95

We make use of NR to inform our node selection process. The main idea in this

technique, similar to [96], is to map high-degree virtual nodes to substrate nodes

with high NR, since high-degree virtual nodes are going to set up more connections

and need more resources. We perform this mapping in a controlled way to ensure

that the delay threshold R is not exceeded. The details of the heuristic are shown in

Algorithm 7, and an explanation of the steps of the heuristic is given below.

Step 1.0. Precomputation of pairwise delays: Given the substrate network topol-

ogy (V,E) and the delays between neighboring nodes, find the shortest path between

all |V | · |V − 1| node pairs and populate the pairwise delay matrix for all these pairs.

Step 1.1. Mapping VNs with fixed-location controllers: Assume the heuristic is

given numV VNs, numF of which having fixed controller locations. For each of these

numF VNs, it finds all substrate nodes whose distances from the controller are at

most R to form the set of potential hosts, H, for virtual nodes. Then, it performs

a one-to-one mapping between virtual and substrate nodes such that virtual nodes

with higher degrees are mapped to substrate nodes with higher NRs within the set

H. After that, it maps each virtual link to the shortest path between its source and

destination nodes.

Step 1.2. Mapping VNs with adjustable-location controllers: After the above step,

the heuristic moves on to the VNs with adjustable-location controllers. It orders the

VNs according to their sizes, i.e., VNs with the most virtual links are mapped first.

The controller for the biggest VN is attached to the available substrate node with

the highest NR value, and then, the heuristic maps its nodes one by one, according

to the rules in Step 1.1, and repeats this until all VNs are mapped.

Picking all nodes from H ensures that we never go over the delay threshold R

for any VN. The rest is fixing all controllers to high-NR nodes and performing the

mappings according to the ”high degree to high NR” principle advocated in [96] to

produce low and balanced stress.

96

Algorithm 7 Stress-balancing embedding heuristic (SBE)

1: Input: Substrate network (V,E), numF VNs with fixed-location controllers (N1, ...
, NnumF), numV − numF VNs with adjustable-location controllers (NnumF+1, ... ,
NnumV) where numF ≤ numV , and the maximum delay threshold R,

2: Compute the shortest path for all node pairs (x, y) s.t. x, y ∈ V .
3: Calculate the delay for all such node pairs.

4: for i = 1→ numF do
5: Find the set H of nodes such that the delay from Ci to the node is at most R.
6: Calculate the NR for all members of H.
7: Sort all virtual nodes in Vi in the order of decreasing node degree in the virtual

topology.
8: for j = 1→ |V ′i | do
9: Map v′j to h ∈ H s.t. NR(h) = maxv∈HNR(v).

10: Remove h from H.
11: end for
12: for j = 1→ |E′i| do
13: Set the path for virtual link e′i to the shortest path between its source and desti-

nation.
14: end for
15: end for

16: Order remaining VNs in terms of decreasing number of virtual links.
17: for i = numF + 1→ numV do
18: Calculate NR for all substrate nodes.
19: Attach Ci to the node with the highest NR value.
20: Find the set H of nodes such that the delay from Ci to the node is at most R.
21: Sort all virtual nodes in Vi in the order of decreasing node degree in the virtual

topology.
22: for j = 1→ |V ′i | do
23: Map v′j to h ∈ H s.t. NR(h) = maxv∈HNR(v).
24: Remove h from H.
25: end for
26: for j = 1→ |E′i| do
27: Set the path for virtual link e′i to the shortest path between its source and desti-

nation.
28: end for
29: end for
30: Return the final mapping and quit.

97

6.3.2 Delay-Minimizing Embedding (DME)

The second heuristic primarily aims to minimize average delays between VN con-

trollers and switches used by the VN. Keeping these delays low is crucial for the

timely response of the controller to switch events that require intervention. The max-

imum stress is not minimized but it is controlled by an upper limit T . We define T as

a pair (TN , TL) to be able to impose limits on both maximum node stress and maxi-

mum link stress. These limits can be high or low relative to each other depending on

what we want to prioritize. The main idea is to select nodes that are near their cor-

responding controllers, and then rerouting to avoid exceeding stress thresholds. The

technique is shown in algorithmic form in Algorithm 8, and the operation is described

in detail in the following steps:

Step 2.0. Precomputation of pairwise delays: Given the substrate network topol-

ogy (V,E) and the delays between neighboring nodes, find the shortest path between

all |V | · |V − 1| node pairs and populate the pairwise delay matrix for all these pairs.

Step 2.1. Mapping VNs with fixed-location controllers: Given numV VNs, numF

of which having fixed-location controllers, the heuristic starts by ranking the switches

in the substrate by the delay from the controller of each of these numF VNs. For

each of these numF VNs, it then performs a one-to-one mapping between all virtual

nodes and the substrate nodes that are closest to the controller, such that the stress

on any of the substrate nodes will not exceed TN after this stage. It determines the

shortest path between the pair of nodes in each virtual link and selects that as the

route for the virtual link.

Step 2.2. Mapping VNs with adjustable-location controllers: The heuristic orders

the VNs according to their sizes, i.e., VNs with the highest number of virtual links

are mapped first. For each VN to be mapped, it finds three nodes with the lowest

average distance to all the other substrate nodes and attaches the controller of the

VN to the node with the highest NR out of that three. Then it performs the above

98

described fixed-controller VN mapping procedure.

Step 2.3. Virtual link rerouting: After the initial mapping of all VNs is completed,

the next step is ensuring that the maximum stress threshold T is not exceeded. To

this end, the heuristic takes advantage of the rerouting possibilities presented by the

underlying SDN substrate to move virtual links away from highly stressed substrate

nodes and links that are causing T to be exceeded. It calculates the stress on every

substrate node and link, and then the maximum node stress, SNmax = maxv∈V SN(v),

and the maximum link stress, SLmax = maxe∈E SL(e). If either SNmax exceeds TN or

SLmax exceeds TL, then the heuristic performs rerouting as described at the end of

Algorithm 8 until both SNmax ≤ TN and SLmax ≤ TL.

The delay-minimizing embedding results in low controller-to-switch delays because

it greedily selects switches that have the lowest delay to the controller. Attaching the

central controller to the node with the largest NR helps situate the VN in a relatively

empty area in the substrate, and routing flexibility is exploited to limit maximum

stress.

6.4 Evaluation

In this section, we evaluate our VN embedding techniques with simulation and Mininet

[53] emulation.

6.4.1 Metrics

Below are the metrics that we use to evaluate our VN embedding techniques:

• Controller-to-switch delay: average and maximum (for each VN)

• Node stress: average and maximum (across an entire substrate)

• Link stress: average and maximum (across an entire substrate)

• End-to-end delay: average (for each VN)

99

Algorithm 8 Delay-minimizing embedding heuristic (DME)

1: Input: Substrate network (V,E), numF VNs with fixed-location controllers (N1, ...
, NnumF), numV − numF VNs with adjustable-location controllers (NnumF+1, ... ,
NnumV) where numF ≤ numV , and the maximum stress threshold T = (TN , TL),

2: Compute the shortest path for all node pairs (x, y) s.t. x, y ∈ V .
3: Calculate the delay for all such node pairs.

4: for i = 1→ numF do
5: Sort all nodes in Ni according to delay from Ci.
6: Available nodes ← V
7: for j = 1→ |V ′i | do
8: Map v′j to the available node vj such that vj is the closest to Ci and SN (vj) +α ≤

TN . (α is from Equation 22.)
9: Remove vj from the list of available nodes for Ni.

10: end for
11: for j = 1→ |E′i| do
12: Set the path for virtual link e′i to the shortest path between its source and desti-

nation.
13: end for
14: end for

15: Order remaining VNs in terms of decreasing number of virtual links.
16: for i = numF + 1→ numV do
17: Calculate NR for all substrate nodes.
18: Find the 3 substrate nodes with the lowest average distance to other nodes.
19: Attach Ci to the one with the highest NR among this 3.
20: Available nodes ← V
21: for j = 1→ |V ′i | do
22: Map v′j to the available node vj such that vj is the closest to Ci and SN (vj) +α ≤

TN .
23: Remove vj from the list of available nodes for Ni.
24: end for
25: for j = 1→ |E′i| do
26: Set the path for virtual link e′i to the shortest path between its source and desti-

nation.
27: end for
28: end for

29: Calculate stress for each node in V and each link in E.
30: SNmax ← maxv∈V SN (v), SLmax ← maxe∈E SL(e)
31: vmax ← v ∈ V s.t. SN (v) = SNmax

32: emax ← e ∈ E s.t. SL(e) = SLmax

33: if SNmax > TN or SLmax > TL then
34: Reroute virtual links away from vmax and emax until SN (vmax) ≤ TN and SL(emax) ≤

TL.
35: else
36: Return the final mapping and quit.
37: end if
38: Go to 29.

100

• Throughput: average (for each VN)

As controller-to-switch delay and stress on substrate components are two things

that we are optimizing for, we study how they are affected by different types of

embedding through simulation. In addition, we want to gain insights as to how

these goals are influencing VN performance metrics, such as end-to-end delays and

throughput. To this end, we emulate scenarios on Mininet to understand how end-

to-end delays and throughput are changing with different embedding methods.

6.4.2 Strategy

As substrate networks, we utilize 10 different topologies from the Internet Topology

Zoo [51]. These topologies vary in size and shape, allowing us to evaluate our tech-

niques with different network properties. We construct 20 different virtual topologies,

ranging from 5 nodes to 20 nodes. For each of these virtual topologies, we randomly

select a coefficient in the range [0.3,0.7] as the probability of connection between any

two virtual node pairs. This gives us some variation in graph density. We randomly

assign fixed-location controllers to 5 of these VNs, the rest have adjustable-location

controllers (except for the part of the evaluation where we vary the percentage of

fixed-location controllers, in Section 6.4.3.5).

The parameters in the node stress formula from Section 6.2 are selected as (α, β)

= (1,1), and we assume all virtual link demands and substrate link capacities are

equal. For γi, we pick a random value from the range [0,0.5] for each VN separately.

This provides a variation in the contribution of control traffic toward link stress for

different VNs. We do not let γi go over 0.5 in this experiment because that could

cause control traffic to dominate link stress and lower the number of viable locations

for controllers, thus reducing the flexibility in controller placement (more on this at

the end of this section, in Section 6.4.3.6).

101

We compare SBE (Algorithm 7) and DME (Algorithm 8) against two simpler vari-

ations: pure stress-balancing mapping and naive delay-minimizing mapping. Pure

stress-balancing mapping executes SBE without regard to delays (i.e., with an ex-

tremely high delay thresholdR). Naive delay-minimizing mapping places the adjustable-

location controllers randomly, and then maps virtual nodes to the closest possible

substrate nodes to minimize controller-to-switch delays, similar to DME yet without

any attention to stress. We also consider purely random mapping, which performs

virtual node mapping and controller localization completely randomly over the entire

substrate, but it performs badly enough to disrupt graph scales, so we do not show

it in all graphs and we declare it infeasible for practical use compared to the other

options.

We run evaluations with the following objectives:

• Comparing average and maximum controller-to-switch delays for SBE, DME,

and two simpler variations of these techniques,

• Comparing average and maximum stress for the same four techniques,

• Comparing average end-to-end delays and throughput using Mininet emulation,

• Varying the percentage of VNs with fixed-location controllers to see how this

affects metrics.

• Varying stress threshold T and the contribution of control traffic to link stress,

γi, to measure their effects.

To produce results, we map all 20 VNs together to each of the substrate topologies

using all of the different techniques to be evaluated. For each VN, we average the

resulting metrics over the 10 substrate topologies. SBE uses a controller-to-switch

delay threshold R of 50ms, which is identified as a common target for maximum

latency in [37] because it is the target restoration time of a SONET ring. DME uses

102

a variable stress threshold T = (TN , TL) depending on the stress values achieved by

SBE for the same scenario. By default, TN and TL are set to be 50% more than the

SNmax and SLmax procuded by SBE, respectively, for a given substrate and set of

VNs. However, we evaluate the effect of different T values in Section 6.4.3.6.

6.4.3 Results

6.4.3.1 DME with a small example

Before moving on to larger topologies, let us demonstrate the properties of one of our

heuristics: DME. We consider placing a 3-node VN on a 5-node substrate topology

with link delays ranging from 5ms to 20ms. There are C(5, 3) = 10 possible virtual

node mappings, and 5 possible controller locations, resulting in a total of 50 VN

mappings. Average controller-to-switch delays for these 50 mappings range from 5ms

to almost 17ms. DME produces the mapping with the average controller-to-switch

delay of 5.33ms, the second lowest value among the 50.

The simple 3-node VN topology does not allow much variation in node stress,

but link stress values are more variable. We set γ (control traffic coefficient) to

0.5. If the link stress threshold TL is set to 2.5, DME does not need to perform

any rerouting. However, if TL is reduced to 1.5, DME manages to get under the

threshold by rerouting a virtual link and increasing its expected end-to-end delay

from 16ms to 30ms in the process. Therefore, we conclude that DME is able to

achieve optimal or near-optimal controller-to-switch delays. It may or may not need

to perform rerouting depending on stress thresholds. If rerouting is required, DME

can reduce the maximum stress under the threshold even in a small topology with

very few route options. Controller-to-switch delays are not affected by rerouting

since there is no node remapping, but end-to-end delays for rerouted virtual links

may increase significantly. However, unless stress thresholds are unreasonably low,

DME can get away with rerouting only a small fraction of virtual links.

103

6.4.3.2 Controller-to-switch delays

We look at how different embedding techniques affect the delays between the VN

controller and the switches in the VN. We consider both average and maximum

controller-to-switch delays for each VN: The average is calculated over all of the

switches included in a given VN, and the maximum is the delay from the controller

to the farthest switch in the VN.

Average and maximum controller-to-switch delays for all VNs are shown in Figure

23 and Figure 24 respectively, for SBE, DME, naive delay-minimizing mapping, and

pure stress-balancing mapping. Each data point is these graphs represents the value

for one of 20 VNs, averaged over mappings to 10 substrate topologies. All 20 values

produced by the same technique are sorted in increasing order, and then plotted.

The X-axis is labeled ”Fraction of VNs” because the x-coordinate corresponding to

a y-value signifies the fraction of all VNs that have a delay less than or equal to that

y-value. For example, a data point (0.2, 10) would suggest that 20% of all VNs in

this experiment (i.e., 4 out of 20) have delays of at most 10ms, for the particular

technique that the data point belongs to. We use this X-axis in the other graphs in

the remainder of this evaluation section as well.

In Figure 23, we see that DME produces very close results to (in some case better

than) the naive delay-minimizing mapping, even though the former is also trying

to limit stress. We infer that the stress thresholds TN and TL do not significantly

affect the mapping in most cases, and when they do, the effects are minimal, possibly

because DME utilizes minimally invasive rerouting in Step B.3. instead of remapping

nodes in cases where stress thresholds are exceeded after the previous steps. SBE

and the pure stress-balancing heuristic produce higher delays, but SBE is able to

perform a bit better than pure stress-balancing mostly because it forces itself to keep

controller-to-switch delays under the threshold R as it is doing the mapping.

Maximum delays shown in Figure 24 exhibit a similar pattern: Maximum delays

104

 0

 10

 20

 30

 40

 50

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 c
on

tr
ol

le
r-

to
-s

w
itc

h
de

la
y

(m
s)

Fraction of VNs

pure stress balancing
SBE
DME

naive delay minimizing

Figure 23: Average controller-to-switch delays for all VNs: SBE, DME, naive delay
minimizing mapping, and pure stress balancing mapping.

for DME and naive delay-minimizing mapping are close to each other, and maximum

delays for the other two techniques are higher as expected. We see several instances

where the worst-case delay for SBE is close to the threshold of 50ms, while the worst-

case delays for pure stress-balancing exceed 50ms in those cases. This suggests that

SBE has made an active effort to keep the maximum delay under 50ms.

6.4.3.3 Node and link stress

We now analyze the impact of the heuristics on node and link stresses. For this

experiment, we use the results collected from the simulation in the previous subsection

(Section 6.4.3.2). But instead of reporting stress values per VN, we focus on the overall

average across the entire substrate in all 10 topologies.

Average and maximum node stress values from all runs are shown in Table 12, and

average and maximum link stress values are shown in Table 13 for all four techniques

105

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ax

im
um

 c
on

tr
ol

le
r-

to
-s

w
itc

h
de

la
y

(m
s)

Fraction of VNs

pure stress balancing
SBE
DME

naive delay minimizing

Figure 24: Maximum controller-to-switch delays for all VNs: SBE, DME, naive delay
minimizing mapping, and pure stress balancing mapping.

considered. While these values do not tell much on their own, a comparison among

them yields the following: SBE performs comparably to pure stress balancing, and

it may be preferable since it provides significant savings in maximum controller-to-

switch delays. The naive delay-minimizing heuristic is about twice as bad for stress

as optimal heuristics, and DME performs somewhere in between these ends due to

its stress balancing components.

6.4.3.4 End-to-end delays and throughput

For this part of the evaluation, we use Mininet 2.0 to emulate the operation of an

SDN with multiple VNs placed on it. 10 different VNs are embedded on 3 substrate

networks sliced using FlowVisor. Bandwidth for all substrate links is set to 100Mbps.

We use ping to measure end-to-end delays, and execute file transfer between every

pair of nodes via TCP with Iperf [40].

106

Table 12: Average and maximum node stress

Avg node stress Max node stress

Pure stress balancing 11.4 21.0

SBE 12.1 23.5

DME 16.8 32.4

Naive delay minimizing 19.2 41.1

Table 13: Average and maximum link stress

Avg link stress Max link stress

Pure stress balancing 6.5 9.8

SBE 6.8 10.9

DME 10.3 16.1

Naive delay minimizing 12.7 24.3

Figure 25 demonstrates average end-to-end delays from SBE, DME, random map-

ping, and the naive delay-minimizing mapping. DME is performing considerably bet-

ter than SBE and random mapping, offering an average of 45% reduction compared

to SBE and a 65% reduction compared to random mapping. DME tends to cluster

the virtual nodes of a VN as closely as possible without exceeding stress bounds, so

it is good at minimizing both controller-to-switch delays and end-to-end delays. The

naive delay-minimizing mapping heuristic performs closely to DME, and even better

in some situations due to forced rerouting increasing end-to-end delays in DME. SBE

does better than random mapping, probably because it tries avoid distant low-degree

nodes.

Figure 26 shows average throughput results collected over 20 emulations. DME

achieves slightly higher throughput than random mapping since it actively avoids

nodes with unacceptably high stress, but they are still comparable in terms of aver-

ages. The naive delay-minimizing heuristic performs the worst since it maps the VN

in a confined area without any regard for node and link stress. The stress-balancing

SBE performs considerably better than the other methods. Also, there is less varia-

tion in achieved throughput among different VNs (the highest average is 43% more

107

 0

 10

 20

 30

 40

 50

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 e
nd

-t
o-

en
d

de
la

y
(m

s)

Fraction of VNs

random
SBE
DME

naive delay minimizing

Figure 25: Average end-to-end delays for all VNs: SBE, DME, random mapping, and
the naive delay minimizing heuristic.

than the lowest, as opposed to 57% for DME and 67% for random mapping), indi-

cating a more balanced network. These results suggest that our techniques translate

into improved performance in a realistic network emulation environment.

6.4.3.5 Varying the percentage of fixed-location controllers

In our model, we provide the option of fixing the location of the controller because a

user may want to place the controller for her VN at a certain location, such as her

home PC or a server at a specific data center. Assume there are numV VNs to be

placed, numF with fixed-location controllers and the remaining numV −numF with

adjustable-location controllers. We run simulations with 5 different numF/numV

ratios: 0, 0.25, 0.5, 0.75 and 1. We use the same 20 VNs we have been using through-

out this section and 3 substrate topologies for this experiment. For each topology, we

run the experiment 10 times and average the values for each VN from all mappings.

108

 4

 8

 12

 16

 20

 24

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 th
ro

ug
hp

ut
 (

M
bp

s)

Fraction of VNs

SBE
DME

random
naive delay minimizing

Figure 26: Average throughput for all VNs: SBE, DME, random mapping, and the
naive delay minimizing heuristic.

We evaluate SBE and DME, both at their strong suits: minimizing average stress

for SBE, and minimizing controller-to-switch delays for DME. We present results

regarding four metrics: average and maximum node stress for SBE, and average and

maximum controller-to-switch delay for DME. We do not give results for link stress

separately because node stress results are sufficient in demonstrating the relevant

trends.

Table 14 displays average and maximum node stress across the substrate achieved

by SBE at 5 different values of numF/numV . We observe approximately 30% increase

in average node stress and 85% increase in maximum node stress as the numF/numV

ratio goes from 0 to 1. An increase in stress is expected since some of the fixed-

location controllers can be attached to nodes with low degrees and NR values that

are suboptimal for stress minimization. The maximum stress is affected more because

as the percentage of fixed-location controllers increases, so does the probability of an

109

unlucky combination of fixed controller locations that puts multiple controllers close

to each other, thus making the occurrence of a high-stress node more likely. This

impact becomes lessened for high numF/numV ratios because the damage is already

done by then.

Figure 27 and Figure 28 show average and maximum controller-to-switch delays

for all VNs achieved by DME at 5 different values of numF/numV . For both met-

rics, a higher percentage of fixed-location controllers leads to higher delays due to

decreased flexibility and suboptimal controller locations. However, this effect is more

pronounced with the maximum delay values, and for smaller percentages (as seen

from percentagewise bigger differences toward the bottom in Figure 28). A possible

explanation of this situation is that with the large number of VNs on the substrates,

fixing more of the controllers has a smaller effect on the average since some of the

fixed controller locations may actually end up being suitable by chance. On the other

hand, fixing the location of another controller increases the probability of hitting a

bad controller location (i.e., one that is not suitable for delay minimization), so maxi-

mum delay values rise faster for low numF/numV ratios. But as the ratios get larger,

the probability of having already hit the worst controller location also increases, so

maximum delays do not rise as fast for high numF/numV ratios.

Therefore, the takeaway from this exercise is that

1. The variation in the percentage of VNs with fixed controller locations has a big-

ger effect on maximum values than averages, particularly maximum controller-

to-switch delays,

2. For low percentages, the negative effects that come with fixed-location con-

trollers are mild.

3. For high percentages (75% and up), the flexibility that comes from adjustable-

location controllers has negligible positive impact.

110

Table 14: Average and maximum node stress with varying numF/numV ratios for
SBE

Avg node stress Max node stress

numF/numV = 0 10.8 17.1

numF/numV = 0.25 11.9 21.2

numF/numV = 0.5 12.8 26.7

numF/numV = 0.75 13.6 30.8

numF/numV = 1 14.3 31.6

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 c
on

tr
ol

le
r-

to
-s

w
itc

h
de

la
y

(m
s)

Fraction of VNs

numF/numV = 1
numF/numV = 0.75
numF/numV = 0.5

numF/numV = 0.25
numF/numV = 0

Figure 27: Average controller-to-switch delays for all VNs: DME with varying
numF/numV ratios

111

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ax

im
um

 c
on

tr
ol

le
r-

to
-s

w
itc

h
de

la
y

(m
s)

Fraction of VNs

numF/numV = 1
numF/numV = 0.75
numF/numV = 0.5

numF/numV = 0.25
numF/numV = 0

Figure 28: Maximum controller-to-switch delays for all VNs: DME with varying
numF/numV ratios

6.4.3.6 Varying T and γ

In order to gain insight into how the stress threshold T affects the results produced

by DME, we look at different levels of T . For our previous experiments, we had set

the two components of T , TN and TL, to 50% more than SNmax and SLmax produced

by SBE. Let us define a stress allowance multiplier, denoted by σ, such that TN =

σ · SNmax and TL = σ · SLmax. So far, we have used σ = 1.5, and we now evaluate a

few other values for σ.

Table 15 summarizes our findings. We only look at average and maximum controller-

to-switch delays because stress values are directly dependent on σ so it is not very

interesting to study stress in this case. Values are averaged over 20 VNs placed over 3

substrates, so the maximum delays here are average-maximum delays. When σ = 1,

there is a tight control over stress, which allows less freedom in the effort to minimize

112

delays, which rise by about 50% on average compared to the case when σ = 1.5.

Beyond this, the gains are marginal. For σ = 2 and σ = 3, there is no significant

reduction in delays, except for a few cases where maximum delays can be reduced

thanks to the extra degree of freedom. Therefore, σ = 1.5 appears to be a reasonable

choice for DME, and we use that for every other experiment in this evaluation.

Another parameter that we experiment with is γ in Equation 23 defining link

stress in Section 6.2. The definition of link stress affects both mapping techniques and

potentially all metrics, but we are presenting the effect we found the most interesting.

For this simulation, we assume γ is equal for all VNs, and evaluate 5 different γ values.

Table 16 presents the controller-to-switch delay results, again averaged for 20 VNs

placed over 3 substrates. We see that the delays increase with increasing γ, but a

bit more slowly after γ = 0.5. This effect is probably due to the fact that when

γ increases, control traffic and thus the locations of the controllers (and the links

around it) become more critical in determining link stress. This takes away some of

the ability to move the controllers freely to minimize delays because if a controller is

moved to a low-NR node, it will be difficult to keep link stress within bounds. Hence,

stress becomes the dominant factor in controller placement, causing delays to rise.

But they do not rise too much because even with less flexible controller locations,

DME is still a delay minimizing heuristic and it still has flexibility in virtual node

placement to keep delays as low as possible.

6.5 Summary

In this work, we have studied techniques to perform VN mapping on an SDN sub-

strate. The goals of our techniques were load balancing between switches as well as

delay minimization between controllers and switches. Each technique focuses on op-

timizing for one of these goals while keeping the other one in check. Both techniques

113

Table 15: Delays with varying T for DME

Avg delay (ms) Max delay (ms)

σ = 1 12.37 24.44

σ = 1.5 8.06 15.16

σ = 2 7.72 13.89

σ = 3 7.65 13.89

Table 16: Delays with varying γ for DME

Avg delay (ms) Max delay (ms)

γ = 0 7.49 12.62

γ = 0.25 8.95 16.04

γ = 0.5 10.76 23.12

γ = 0.75 11.82 25.01

γ = 1 11.91 25.47

couple VN controller placement with virtual node and link assignment. Various in-

put parameters in our definitions and techniques determine the extent of flexibility

in embedding efforts and the range of improvements in evaluation metrics.

The main takeaways from this chapter are the following:

1. There is a tradeoff between minimizing controller-to-switch delays and balancing

the load on substrate nodes and links, however, these two goals are not in direct

conflict with each other. While it may not be possible to optimize for both

goals at the same time, it is quite possible to achieve near-optimal results for

one metric while keeping the other metric within reasonable bounds.

2. The presence of the central controllers in SDNs as critical nodes has a significant

impact on VN embedding objectives and the locations of controllers must be

selected carefully in order to better optimize for performance goals.

114

CHAPTER VII

CONCLUSIONS AND FUTURE WORK

7.1 Research Summary and Contributions

This thesis tackles the problem of facilitating the provision of auxiliary support ser-

vices for overlay networks. The focus is on overlay assignment, resource allocation,

monitoring and fault diagnosis. Overlays need these services to continue healthy

operation, and careful design choices need to be made to ensure that they are pro-

vided efficiently and without excessive overhead. The concerns and priorities gov-

erning these design choices change depending on the environment and circumstances.

For example, a substrate with scarce resources populated with resource-hungry over-

lays necessitates effective techniques for fair resource allocation and load balancing,

whereas a well-provisioned network occupied by a few overlays may justify priority

being given to diagnosability.

The contributions of this thesis can be summarized as follows:

Methods for overlay assignment in order to improve the ease and accuracy
of fault diagnosis

Fast and accurate fault diagnosis is an important requirement for networks. The

diagnosis method, the network topology, the likelihood of faults and the amount of

traffic are all factors in determining how diagnosable a network is. For overlays,

the placement of the overlay on the substrate also affects its diagnosability. Thus,

improving diagnosability can be a placement goal, especially if the substrate is rich

in resources and other goals such as load balancing are not of paramount importance.

115

We define diagnosability in terms of two properties of diagnosis: accuracy, rep-

resenting the success rate in identifying the faulty component(s), and efficiency, rep-

resenting the ability to identify faulty component(s) with minimal effort. These two

properties are combined to define diagnosis cost : A lower diagnosis cost signifies

higher diagnosability. We then develop a method for overlay placement to improve

diagnosability by increasing meaningful sharing between overlay links in a controlled

manner. Sharing helps diagnosability because in case of a fault, the number of end-

to-end paths observing the fault is important in determining the exact location of the

fault with high confidence. Our method increases this number through more sharing,

but does this in a controlled fashion: 1) It enforces a maximum stress threshold to

make sure that it balances the increase in sharing across the overlay and does not keep

piling on a few substrate components, which can cause performance and reliability

problems, and 2) it avoids meaningless sharing (such as near-complete overlap) which

does not produce any additional valuable information for fault localization.

We utilize an existing passive diagnosis method based on aggregating end-user

observations and evaluate the parameters of our design. We also analyze situations

where overlay traffic is insufficient to produce useful observations on some links, and

show that additional selective active probing on a few paths can help diagnosis consid-

erably. Furthermore, we investigate the potential effect of our placement method on

the robustness of the overlay. While the method causes more end-to-end paths within

an overlay to be affected by a fault in the substrate, this may not be a disadvantage

when there are many overlays on the substrate. In this case, our method does not

cause a significant increase in the stress of substrate components. In addition, since

it tends to make overlays more compact and separate them from each other, a fault

may affect more paths within a single overlay but fewer overlays in total.

116

A novel framework to evaluate the fairness of resource sharing in the
presence of multiple competing overlays

When substrate resources are unable to satisfy all overlay demands, fair allocation

of resources becomes critical. An important resource that often causes bottlenecks is

substrate link bandwidth. Simplistic fairness metrics such as Jain’s fairness index [42]

can be sufficient for evaluating the fairness of rate allocation between a few flows,

however, evaluating an allocation among multiple overlay networks with varying sizes

and resource demands requires a more refined approach. To this end, we develop a

new fairness metric based on the idea that bandwidth sharing should inconvenience

different overlays to the same extent if the allocation of rates is fair. In short, we

focus on the parts of the substrate where multiple overlays are sharing bandwidth

and calculate a satisfaction score for each overlay by judging how well it is treated

by the allocation relative to the other overlays. Lower deviation among these scores

indicates better fairness.

We adapt a few fairness definitions from the literature to the multi-overlay setting,

and evaluate them with our metric. We demonstrate ways to treat overlays differ-

ently by tweaking certain parameters in fair allocation algorithms, and show that our

fairness metric is able to capture unfair treatment with high sensitivity.

An examination of the effect of routing on the efficiency and fairness of
bandwidth allocation

Fairness depends not only on the rate allocation, but also on the network topology

and routing. We present a heuristic to fine-tune the routing in order to improve sub-

strate bandwidth utilization and help more overlay flows receive rates closer to their

demands. Our method aims to eliminate bottleneck situations if possible, or reduce

the number of flows affected by bottlenecks. Evaluation shows that the heuristic

improves rates, especially in non-homogeneous substrates. In addition, eliminating

some bottleneck situations has a positive effect on the fairness of rate allocation, and

117

is ultimately a more reliable method to improve fairness than tweaking fair allocation

algorithms.

An optimization solution to the problem of multi-layer overlay monitoring

We concentrate on the problem of measuring end-to-end delays for all overlay links

in a given overlay network via active monitoring. The naive method of monitoring

every overlay link directly burdens the network with redundant probing traffic, and

this may cause serious problems if resources such as link bandwidth and CPU power

are at a premium. Thus, we identify alternative solutions: monitoring all native links,

monitoring a basis set [16] of overlay links, and our generalized approach of monitoring

an optimal mix of native and overlay links (multi-layer monitoring). We formulate

an integer linear program (ILP) to determine the optimal multi-layer monitoring

mix, where the objective is to minimize the total cost of monitoring while providing

sufficient monitoring information. This cost can be defined in different ways. Two

simple definitions we consider are: the total number of probes, which represents the

effort required to set up monitors, and the total amount of bandwidth consumed

by probes, which represents the overhead experienced by the substrate for carrying

monitoring traffic.

Evaluation with representative topologies suggests that the optimal mix almost

always contains links from both the native and the overlay layer, justifying the multi-

layer approach. We observe that if the substrate topology or the overlay placement

causes high sharing between overlay links, the average monitoring cost per overlay

link is reduced, but this trend does not continue forever. Similarly, as the fraction

of substrate nodes that are selected as overlay nodes increases (i.e., as the overlay

gets bigger on the substrate), the average cost per overlay link decreases. This is

because the ILP is able to take advantage of the overlap between end-to-end paths

to eliminate redundant measurements. A single measurement becomes more valuable

118

as it can be used in computing more end-to-end values in networks with high sharing

between overlay links.

Inferring some end-to-end measurements from other native and overlay layer mea-

surements may introduce an estimation error. We characterized these errors through

experiments on PL-VINI, the VINI [10] prototype running on PlanetLab. After our

analysis, we conclude that the multi-layer monitoring solution produces the lowest

monitoring cost while introducing a small amount of error. The overlay basis set

solution achieves slightly lower errors at the expense of higher cost, and the all-native

solution minimizes the bandwidth consumed by probes, which is one of the possible

cost definitions, but results in higher inference errors. Another observation is that

in most cases, a large component of the total error is produced by a few inferred

overlay link measurements. Once these links are identified, the multi-layer monitor-

ing system can be instructed to always monitor them directly so that errors will be

reduced significantly. Overall, the multi-layer monitoring approach is very flexible,

and it produces minimal-cost solutions with low errors under different cost models

and explicit constraints.

Design and analysis of techniques for mapping virtual networks to SDN
substrates

Virtualization and SDN is a promising combination to facilitate innovation in net-

working. Each virtual network (VN) on an SDN substrate has its own controller

which must communicate with all the nodes in the VN. This communication must

not be hampered by long delays between the controller and virtual nodes, so it is im-

portant to incorporate delay-minimizing as an objective to VN assignment efforts in

the SDN environment. We consider a stress-balancing and delay-minimizing as joint

objectives. We modify definitions of node and link stress from previous work [96] to

reflect the distinctions of virtualization in the SDN environment.

We develop two VN embedding techniques with different objectives: The goal of

119

the first technique is to balance the stress on the substrate while keeping all controller-

to-node delays under a threshold. The goal of the second technique is to minimize

controller-to-node delays while limiting the maximum stress. Evaluation suggests

that it is possible to achieve good results even with delay and/or stress constraints.

The primary objective can be chosen as low delays or balanced stress depending on

network conditions. There are several decision parameters in our design, both in

the definitions of node and link stress, and in the constraints that are placed on the

techniques. We allow controller locations to be fixed or adjustable, and observe that

the techniques are able to achieve considerably better results when they are allowed

to select controller locations freely for a majority of the VNs.

7.2 Future Directions

7.2.1 Overlay Reconfiguration Policy Design

A multi-overlay system may experience faults and performance issues that prevent

successful operation. It is important to avoid these issues when possible, and react to

them effectively when avoidance proves insufficient. Dynamic overlay reconfiguration

is a tool used to ensure that overlays are in a state facilitating smooth operation as

well as fast detection and recovery from problems. Future work on this topic should

investigate the problem of finding the optimal reconfiguration policy for a system of

multiple overlay networks in the presence of limited resources and possible failures.

Researchers have proposed overlay reconfiguration policies that allow overlays to

adapt to changing conditions. In the DaVinci paper [36], the authors propose a

system where each substrate link periodically reallocates its bandwidth among the

virtual links on it, and each virtual network maximizes its own performance objective,

in order to achieve optimal sharing to maximize aggregate performance. The recon-

figuration we consider involves not only reallocation of bandwidth but also rerouting

and reassignment of overlay network nodes. In another work, Fan and Ammar [28]

120

propose an array of reconfiguration policies where the goal is to minimize the cost of

data delivery. Another possible goal of overlay reconfiguration is to optimize the end-

user experience by reacting to network faults and performance problems in a timely

and inexpensive manner.

The biggest challenge in determining a reconfiguration policy is finding a balance

between quick response to problems and low overhead on the network. Reconfigura-

tion actions such as node and link movements consume CPU resources and network

bandwidth, so an overly frequent or sensitive reconfiguration policy may cause intol-

erable overhead. On the other hand, infrequent reconfiguration may be insufficient

in rectifying observed problems. The goal must be developing techniques to find op-

timal reconfiguration policies that define when reconfiguration will happen and what

it will entail, depending on the relevant information obtained through monitoring of

the system.

There are several aspects of an overlay reconfiguration:

• Type: How often will reconfiguration happen, will it be proactive or reactive?

• Scope: Where will reconfiguration happen, will it involve a subset of overlays

or all of them?

• Actions : What will reconfiguration entail (reassignment of nodes, rerouting,

reallocation of resources)?

• Triggers : If reconfiguration is reactive, what will trigger it?

The collection of answers to such questions forms a reconfiguration policy. The

first decision to be made is about the type of reconfiguration. It is possible to utilize

a strictly periodic or strictly reactive approach, but these approaches can also be

combined into a hybrid policy where periodic reconfiguration is done as a preemptive

step in order to reduce the probability of future problems, and reactive reconfiguration

121

is employed in case of a reconfiguration trigger. Triggers include such events as a node

joining or leaving an overlay, an overlay joining or leaving the system, a faulty node or

link, or performance issues such as high delay or loss rates observed by end users. Each

trigger will lead to an action: resource reallocation, rerouting, node reassignment etc.

It is necessary to prioritize these actions for each trigger to react in the most suitable

way and to avoid superfluous actions. For instance, if a single faulty node can be

avoided by rerouting paths away from it to alternate paths, this action must have

precedence and a complete reassignment of nodes (i.e., moving the entire overlay)

must be avoided if possible.

A possible approach is to sort reconfiguration actions by complexity and determine

an order of precedence for each trigger event. Given a budget for reconfiguration

over a time period, overlay performance can be optimized within this budget by

choosing appropriate actions. It would be useful to employ periodic, reactive and

hybrid approaches and compare these to each other.

There are at least two possible ways to evaluate the performance of a reconfigu-

ration policy:

• Comparing end user experience by considering end-to-end metrics such as delay

and loss rates over a period of time,

• Comparing a specially defined overlay satisfaction metric that depends on the

amount of data an overlay is able to transfer.

The choice will determine the objective of performance optimization. In summary,

potential contributions from this work can be listed as follows:

• Formulating definitive objectives for overlay reconfiguration,

• Classifying reconfiguration triggers and corresponding actions,

122

• Developing a comprehensive reconfiguration policy that matches actions to ob-

jectives and selects a suitable schedule.

7.2.2 Dynamic VN Remapping in SDNs

VN migration [47,58], based on live virtual router migration [89], has been proposed as

a tool to make VNs more adaptable, reduce operating costs and improve security [41].

A systematic approach to determine when and where to move VNs in lacking in the

literature. We touched upon the decision of when to move in the previous section

using the concept of triggers. Once VN migration is triggered, the decision of where

to move must be made carefully. The destination must be one that eliminates the

conditions that led to triggering the migration, but at the same time, it should not

cause a cascade of migrations, and it should be chosen with regard to the cost of

the migration. Studying this problem in the SDN realm is a promising future work

direction.

7.2.3 Multi-layer Monitoring in SDNs

SDN provides new opportunities to improve network monitoring and management

[49]. Applying the multi-layer monitoring approach to SDN is an interesting new

dimension. Our optimization formulation would still apply to the SDN case after

specifying a reasonable cost model for SDN monitoring. Mininet offers a good evalu-

ation environment where one could experiment with a wide variety of custom topolo-

gies to better understand which topologies provide the best opportunities in terms of

cost-saving for multi-layer monitoring.

A useful extension to this work would be to incorporate dynamic cost modeling.

Originally, our multi-layer monitoring scheme works with a predetermined cost struc-

ture. For instance, the cost of monitoring an overlay link directly can be a fixed

value, cost. Alternatively, it could be cost plus the number of substrate links in the

overlay link times a coefficient, to account for the bandwidth overhead on substrate

123

links. Once a cost structure is determined, the optimization works to minimize the

total cost of monitoring the overlay. In dynamic cost modeling, cost definitions can

be modified in response to changing network conditions. For example, in the initial

cost structure, monitoring an overlay link will have a fixed cost. But suppose avail-

able bandwidth diminishes after some time, then the cost definition can be changed

to include a component for the number of links in an overlay link, in order to pun-

ish probes that consume bandwidth on more substrate links. After this change, the

optimization will be executed again to determine the updated monitoring solution.

In short, dynamic cost modeling would give multi-layer monitoring the ability to be

responsive and produce optimal solutions throughout the lifetime of the overlay.

7.2.4 Diagnosing Soft Faults in Overlays

Our work on overlay assignment for diagnosability assumes that the goal of diagnosis

is to detect and localize persistent faults clearly observable by different end users. A

useful extension would be to consider soft degradations and performance problems.

Such problems are not necessarily observable by different users in a consistent manner

because each user might have different expectations from the network in terms of delay

and bandwidth requirements or the levels of tolerable loss rate. Hence, a refined

diagnosis method for dealing with such faults, as well as an analysis of how the

existence of such faults affect the usefulness of our overlay assignment technique and

potential changes to the assignment approach are worth studying.

124

REFERENCES

[1] Adams, A., Bu, T., Caceres, R., Duffield, N., Friedman, T.,
Horowitz, J., Presti, F. L., Moon, S. B., Paxson, V., and Towsley,
D., “The use of end-to-end multicast measurements for characterizing internal
network behavior,” IEEE Communications Magazine, vol. 38, no. 5, pp. 152–159,
2000.

[2] Agrawal, S., Naidu, K., and Rastogi, R., “Diagnosing link-level anomalies
using passive probes,” in INFOCOM, 2007.

[3] Ahuja, S. S., Ramasubramanian, S., and Krunz, M., “Srlg failure localiza-
tion in optical networks,” IEEE/ACM Trans. Netw., vol. 19, pp. 989–999, Aug.
2011.

[4] Ahuja, S. S., Ramasubramanian, S., and Krunz, M. M., “Single-link
failure detection in all-optical networks using monitoring cycles and paths,”
IEEE/ACM Trans. Netw., vol. 17, pp. 1080–1093, Aug. 2009.

[5] “Akamai Technologies, Inc..” http://www.akamai.com.

[6] Andersen, D., Balakrishnan, H., Kaashoek, M. F., and Morris, R.,
“Resilient Overlay Networks,” in Proceedings of 18th ACM SOSP, October 2001.

[7] Andersen, D. G., “Theoretical approaches to node assignment,” Computer
Science Department, p. 86, 2002.

[8] Anderson, T., Peterson, L., Shenker, S., and Turner, J., “Overcoming
the internet impasse through virtualization,” Computer, vol. 38, no. 4, pp. 34–41,
2005.

[9] Batsakis, A., Malik, T., and Terzis, A., “Practical passive lossy link infer-
ence,” in Passive and Active Measurement Workshop (PAM), 2005.

[10] Bavier, A., Feamster, N., Huang, M., Peterson, L., and Rexford, J.,
“In vini veritas: realistic and controlled network experimentation,” in in Proc.
ACM SIGCOMM, pp. 3–14, 2006.

[11] Bertsekas, D. and Gallager, R., Data Networks. Prentice-Hall, 1987.

[12] “BitTorrent.” http://bramcohen.com/BitTorrent.

[13] Byers, J. W., Considine, J., Mitzenmacher, M., and Rost, S., “Informed
content delivery across adaptive overlay networks,” in In Proceedings of ACM
SIGCOMM, pp. 47–60, 2002.

125

[14] Chawathe, Y., “Scattercast: an adaptable broadcast distribution framework,”
Multimedia Systems, pp. 104–118, July 2003.

[15] Chen, Y., Bindel, D., Song, H., and Katz, R., “An Algebraic Approach
to Practical and Scalable Overlay Network Monitoring,” in Proceedings of ACM
SIGCOMM, 2004.

[16] Chen, Y., Bindel, D., Song, H. H., and Katz, R. H., “Algebra-based
scalable overlay network monitoring: algorithms, evaluation, and applications,”
Networking, IEEE/ACM Transactions on, vol. 15, no. 5, pp. 1084–1097, 2007.

[17] Chowdhury, N. and Boutaba, R., “A survey of network virtualization,”
Computer Networks, vol. 54, no. 5, pp. 862–876, 2010.

[18] Chowdhury, N. M. K., Rahman, M. R., and Boutaba, R., “Virtual net-
work embedding with coordinated node and link mapping,” in INFOCOM 2009,
IEEE, pp. 783–791, IEEE, 2009.

[19] Chu, Y., Rao, S., and Zhang, H., “A Case for End System Multicast,” in
Proceedings of ACM SIGMETRICS, June 1999.

[20] Chun, B.-G., Fonseca, R., Stoica, I., and Kubiatowicz, J., “Characteriz-
ing selfishly constructed overlay routing networks,” in INFOCOM 2004. Twenty-
third AnnualJoint Conference of the IEEE Computer and Communications So-
cieties, vol. 2, pp. 1329–1339, IEEE, 2004.

[21] Clark, D., Lehr, B., Bauer, S., Faratin, P., Sami, R., and Wroclawski,
J., “Overlay Networks and the Future of the Internet,” COMMUNICATIONS
& STRATEGIES, no. 63, 2006.

[22] Cooper, B. F., “Trading off resources between overlapping overlays,” in Mid-
dleware ’06: Proceedings of the ACM/IFIP/USENIX 2006 International Confer-
ence on Middleware, (New York, NY, USA), pp. 101–120, Springer-Verlag New
York, Inc., 2006.

[23] “CPR: Campus Wide Network Performance Monitoring and Recovery.” http:

//www.rnoc.gatech.edu/cpr.

[24] Drutskoy, D., Keller, E., and Rexford, J., “Scalable network virtualiza-
tion in software-defined networks,” Internet Computing, IEEE, vol. 17, no. 2,
pp. 20–27, 2013.

[25] Duan, Z., Zhang, Z., and Hou, Y., “Service overlay networks: Slas, qos, and
bandwidth provisioning,” IEEE/ACM Trans. Netw., vol. 11, pp. 870–883, 2003.

[26] Duffield, N., “Network tomography of binary network performance charac-
teristics,” IEEE Transactions of Information Theory, vol. 52, pp. 5373–5388,
2006.

126

[27] Eriksson, H., “Mbone: the multicast backbone,” Commun. ACM, vol. 37,
pp. 54–60, Aug. 1994.

[28] Fan, J. and Ammar, M. H., “Dynamic topology configuration in service overlay
networks: A study of reconfiguration policies,” in In Proc. IEEE INFOCOM,
2006.

[29] Feamster, N., Gao, L., and Rexford, J., “How to lease the internet in your
spare time,” SIGCOMM Comput. Commun. Rev., vol. 37, pp. 61–64, Jan. 2007.

[30] Feldmann, A., “Internet clean-slate design: what and why?,” SIGCOMM
Comput. Commun. Rev., vol. 37, pp. 59–64, July 2007.

[31] Fischer, A., Botero, J., Beck, M., De Meer, H., and Hesselbach, X.,
“Virtual network embedding: A survey,” Communications Surveys Tutorials,
IEEE, vol. PP, no. 99, pp. 1–19, 2013.

[32] “Freenet.” http://freenetproject.org.

[33] “GENI: Global Environment for Network Innovations.” http://www.geni.net.

[34] “GNU Linear Programming Kit (GLPK).” http://www.gnu.org/software/

glpk.

[35] Han, J., Watson, D., and Jahanian, F., “Topology aware overlay networks,”
in INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings IEEE, vol. 4, pp. 2554–2565, IEEE, 2005.

[36] He, J., Zhang-shen, R., Li, Y., yen Lee, C., Rexford, J., and Chiang,
M., “Davinci: Dynamically adaptive virtual networks for a customized internet,”
in in Proc. CoNEXT, 2008.

[37] Heller, B., Sherwood, R., and McKeown, N., “The controller placement
problem,” in Proceedings of the first workshop on Hot topics in software defined
networks, HotSDN ’12, (New York, NY, USA), pp. 7–12, ACM, 2012.

[38] Ho, T., Leong, B., Chang, Y., Wen, Y., and Koetter, R., “Network mon-
itoring in multicast networks using network coding,” in International Symposium
on Information Theory (ISIT), 2005.

[39] “Internet2.” http://www.internet2.edu.

[40] “Iperf - TCP and UDP bandwidth performance measurement tool.” http://

iperf.sourceforge.net/.

[41] Jafarian, J. H., Al-Shaer, E., and Duan, Q., “Openflow random host mu-
tation: Transparent moving target defense using software defined networking,”
in Proceedings of the first workshop on Hot topics in software defined networks,
pp. 127–132, ACM, 2012.

127

[42] Jain, R., The Art of Computer Systems Performance Analysis. John Wiley and
Sons Inc., 1991.

[43] Jannotti, J., Gifford, D., Johnson, K., Kaashoek, F., and O’Toole,
J., “Overcast: Reliable Multicasting with an Overlay Network,” in 4th USENIX
OSDI Symposium, October 2000.

[44] Kamel, M., Scoglio, C., and Easton, T., “Optimal topology design for over-
lay networks,” in NETWORKING 2007. Ad Hoc and Sensor Networks, Wireless
Networks, Next Generation Internet, pp. 714–725, Springer, 2007.

[45] Karbhari, P., Ammar, M., and Zegura, E., “Optimizing End-to-End
Throughput for Data Transfers on an Overlay-TCP Path,” in Proceedings of
Networking 2005, May 2005.

[46] Karbhari, P., Zegura, E., and Ammar, M., “Multipoint-to-point session
fairness in the internet,” in Proceedings of IEEE INFOCOM, 2003.

[47] Keller, E., Ghorbani, S., Caesar, M., and Rexford, J., “Live migration
of an entire network (and its hosts),” in Proceedings of the 11th ACM Workshop
on Hot Topics in Networks, HotNets-XI, (New York, NY, USA), pp. 109–114,
ACM, 2012.

[48] Keromytis, A., Misra, V., and Rubenstein, D., “SOS: Secure Overlay
Services,” in Proceedings of ACM SIGCOMM, 2002.

[49] Kim, H. and Feamster, N., “Improving network management with software
defined networking,” Communications Magazine, IEEE, vol. 51, no. 2, pp. 114–
119, 2013.

[50] Kleinberg, J., Tardos, E., and Rabani, Y., “Fairness in routing and load
balancing,” in FOCS ’99: Proceedings of the 40th Annual Symposium on Foun-
dations of Computer Science, (Washington, DC, USA), p. 568, IEEE Computer
Society, 1999.

[51] Knight, S., Nguyen, H., Falkner, N., Bowden, R., and Roughan, M.,
“The internet topology zoo,” Selected Areas in Communications, IEEE Journal
on, vol. 29, pp. 1765 –1775, October 2011.

[52] Krishnamurthy, B., Wills, C., and Zhang, Y., “On the use and perfor-
mance of content distribution networks,” in Proceedings of the 1st ACM SIG-
COMM Workshop on Internet Measurement, pp. 169–182, ACM, 2001.

[53] Lantz, B., Heller, B., and McKeown, N., “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of the 9th ACM SIG-
COMM Workshop on Hot Topics in Networks, Hotnets-IX, (New York, NY,
USA), pp. 19:1–19:6, ACM, 2010.

128

[54] Li, Z. and Mohapatra, P., “The impact of topology on overlay routing ser-
vice,” in INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE
Computer and Communications Societies, vol. 1, IEEE, 2004.

[55] Li, Z. and Mohapatra, P., “Qron: Qos-aware routing in overlay networks,”
IEEE Journal on Selected Areas in Communications, vol. 22, pp. 29–40, 2004.

[56] Li, Z. and Mohapatra, P., “On investigating overlay service topologies,” Com-
puter Networks, vol. 51, no. 1, pp. 54–68, 2007.

[57] Liu, Y., Zhang, H., Gong, W., and Towsley, D., “On the Interaction
Between Overlay Routing and Traffic Engineering,” in Proceedings of IEEE IN-
FOCOM, 2005.

[58] Lo, S., Ammar, M., and Zegura, E., “Design and analysis of schedules for
virtual network migration,” in Proceedings of IFIP Networking, 2013.

[59] Lu, J. and Turner, J., “Efficient Mapping of Virtual Network onto a Shared
Substrate,” tech. rep., Washington University in St. Louis, June 2006.

[60] Lua, E. K., Crowcroft, J., Pias, M., Sharma, R., and Lim, S., “A
survey and comparison of peer-to-peer overlay network schemes,” IEEE Com-
munications Surveys and Tutorials, vol. 7, no. 2, pp. 72–93, 2005.

[61] Madhyastha, H. V., Isdal, T., Piatek, M., Dixon, C., Anderson, T.,
Krishnamurthy, A., and Venkataramani, A., “iplane: An information
plane for distributed services,” in OSDI, 2006.

[62] Mazumdar, R., Mason, L., , and Douligeris, C., “Fairness in network
optimal flow control: Optimality of product form,” IEEE Transactions on Com-
munication, vol. 39, pp. 775–782, 1991.

[63] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Pe-
terson, L., Rexford, J., Shenker, S., and Turner, J., “Openflow: en-
abling innovation in campus networks,” SIGCOMM Comput. Commun. Rev.,
vol. 38, pp. 69–74, Mar. 2008.

[64] Mussman, H., “Geni: an introduction.” http://groups.geni.net/geni/

attachment/wiki/GeniSysOvrvw/GENI-AnIntroduction-28Feb2012.pdf,
February 2012.

[65] Nakao, A., Peterson, L., and Bavier, A., “A routing underlay for overlay
networks,” in Proceedings of ACM SIGCOMM, August 2003.

[66] “NOX.” http://www.noxrepo.org/.

[67] Padmanabhan, V. N. and Qiu, L., “Network tomography using passive end-
to-end measurements,” in DIMACS Workshop on Internet and WWW Measure-
ment, Mapping and Modeling, Citeseer, 2002.

129

[68] Peterson, L., Culler, D., Anderson, T., and Roscoe, T., “A Blueprint
for Introducing Disruptive Technology into the Internet,” in Proceedings of ACM
HotNets-I, October 2002.

[69] “Planetlab.” http://www.planet-lab.org.

[70] “Rocketfuel: An ISP Topology Mapping Engine.” http://www.cs.washington.

edu/research/networking/rocketfuel/.

[71] Savage, S., Anderson, T., Aggarwal, A., Becker, D., Cardwell, N.,
Collins, A., Hoffman, E., Snell, J., Vahdat, A., Voelker, G., and
Zahorjan, J., “Detour: Informed internet routing and transport,” IEEE Micro,
vol. 19, pp. 50–59, Jan. 1999.

[72] Seetharaman, S. and Ammar, M., “Overlay-friendly Native Network: A
Contradiction in Terms?,” in Proceedings of ACM HotNets-IV, November 2005.

[73] Seetharaman, S. and Ammar, M., “On the Interaction between Dynamic
Routing in the Overlay and Native Layers,” in Proceedings of IEEE INFOCOM,
April 2006.

[74] Seetharaman, S., Hilt, V., Hofmann, M., and Ammar, M., “Resolving
cross-layer conflict between overlay routing and traffic engineering,” IEEE/ACM
Trans. Netw., vol. 17, pp. 1964–1977, December 2009.

[75] Shafer, G., A Mathematical Theory of Evidence. Princeton University Press,
1976.

[76] Sherwood, R., Gibb, G., Yap, K.-K., Appenzeller, G., Casado, M.,
McKeown, N., and Parulkar, G., “Can the production network be the
testbed?,” in Proceedings of the 9th USENIX conference on Operating systems
design and implementation, OSDI’10, (Berkeley, CA, USA), pp. 1–6, USENIX
Association, 2010.

[77] Shi, E., Stoica, I., Andersen, D. G., and Perrig, A., “Overdose: A generic
ddos protection service using an overlay network,” Computer Science Depart-
ment, p. 76, 2006.

[78] Simpson, W., “IP in IP tunneling.” RFC 1853, October 1995.

[79] Stavrou, A., Cook, D. L., Morein, W. G., Keromytis, A. D., Misra,
V., and Rubenstein, D., “Websos: an overlay-based system for protecting
web servers from denial of service attacks,” Computer Networks, vol. 48, no. 5,
pp. 781–807, 2005.

[80] Stoica, I., Morris, R., Liben-nowell, D., Karger, D. R., Kaashoek,
M. F., Dabek, F., and Balakrishnan, H., “Chord: a scalable peer-to-peer
lookup protocol for internet applications,” IEEE/ACM Transactions on Net-
working, vol. 11, pp. 17–32, 2003.

130

[81] Subramanian, L., Stoica, I., Balakrishnan, H., and Katz, R.,
“OverQoS: offering Internet QoS using overlays,” in Proceedings of ACM SIG-
COMM, August 2003.

[82] Tang, Y. and Al-Shaer, E., “Sharing end-user negative symptoms for im-
proving overlay network dependability,” in IEEE IFIP International Conference
on Dependable Systems and Networks (DSN), June 2009.

[83] Tang, Y., Al-Shaer, E., and Boutaba, R., “Efficient fault diagnosis using
incremental alarm correlation and active investigation for internet and overlay
networks,” Network and Service Management, IEEE Transactions on, vol. 5,
no. 1, pp. 36–49, 2008.

[84] Tapolcai, J., Wu, B., and Ho, P. H., “On Monitoring and Failure Localiza-
tion in Mesh All-Optical Networks,” in Proceedings of IEEE INFOCOM, April
2009.

[85] Touch, J., “Dynamic Internet Overlay Deployment and Management Using the
X-Bone,” Computer Networks, pp. 117–135, July 2001.

[86] Turner, J. and Taylor, D., “Diversifying the Internet,” in Proceedings of
IEEE GLOBECOM, 2005.

[87] Venkatasubramanian, V., Rengaswamy, R., and Kavuri, S., “A review
of process fault detection and diagnosis. part i: Quantitative model-based meth-
ods,” Computers and chemical engineering, vol. 27, no. 3, pp. 293–311, 2003.

[88] Vieira, S. L. and Liebeherr, J., “Topology design for service overlay networks
with bandwidth guarantees,” in Quality of Service, 2004. IWQOS 2004. Twelfth
IEEE International Workshop on, pp. 211–220, IEEE, 2004.

[89] Wang, Y., Keller, E., Biskeborn, B., van der Merwe, J., and Rex-
ford, J., “Virtual routers on the move: live router migration as a network-
management primitive,” in ACM SIGCOMM Computer Communication Review,
vol. 38, pp. 231–242, ACM, 2008.

[90] Wu, B., Yeung, K. L., and Ho, P.-H., “Monitoring Cycle Design for Fast
Link Failure Localization in All-Optical Networks,” Journal of Lightwave Tech-
nology, vol. 27, pp. 1392–1401, May 2009.

[91] Wu, B., Ho, P.-H., and Yeung, K. L., “Monitoring trail: on fast link failure
localization in all-optical wdm mesh networks,” Lightwave Technology, Journal
of, vol. 27, no. 18, pp. 4175–4185, 2009.

[92] Yu, M., Yi, Y., Rexford, J., and Chiang, M., “Rethinking virtual network
embedding: substrate support for path splitting and migration,” SIGCOMM
Comput. Commun. Rev., vol. 38, pp. 17–29, March 2008.

131

[93] Zhao, B., Duan, Y., Huang, L., Joseph, A., and Kubiatowicz, J., “Bro-
cade: Landmark routing on overlay networks,” in 1st International Workshop on
Peer-to-Peer Systems (IPTPS), March 2002.

[94] Zhou, L. and Sen, A., “Topology design of service overlay network with a gen-
eralized cost model,” in Global Telecommunications Conference, 2007. GLOBE-
COM’07. IEEE, pp. 75–80, IEEE, 2007.

[95] Zhu, Y., Dovrolis, C., and Ammar, M., “Dynamic Overlay Routing Based
on Available Bandwidth Estimation: A Simulation Study,” Computer Networks
Journal (Elsevier), vol. 50, pp. 742–762, April 2006.

[96] Zhu, Y. and Ammar, M., “Algorithms for Assigning Substrate Network Re-
sources to Virtual Network Components,” in Proceedings of IEEE INFOCOM,
2006.

[97] Zhu, Y. and Ammar, M., “Overlay network assignment in PlanetLab with
NetFinder,” Tech. Rep. GT-CSS-06-11, College of Computing, Georgia Institute
of Technology, August 2006.

132

