
OPTIMAL STOCHASTIC AND DISTRIBUTED ALGORITHMS FOR
MACHINE LEARNING

A Thesis
Presented to

The Academic Faculty

by

Hua Ouyang

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology
August 2013

Copyright c© 2013 by Hua Ouyang

OPTIMAL STOCHASTIC AND DISTRIBUTED ALGORITHMS FOR
MACHINE LEARNING

Approved by:

Dr. Hongyuan Zha, Committee Chair
School of Computational Science and
Engineering
Georgia Institute of Technology

Dr. Arkadi Nemirovski
H. Milton Stewart School of Industrial
and Systems Engineering
Georgia Institute of Technology

Dr. Alexander G. Gray, Advisor
School of Computational Science and
Engineering
Georgia Institute of Technology

Dr. Haesun Park
School of Computational Science and
Engineering
Georgia Institute of Technology

Dr. Maria Balcan
School of Computer Science
Georgia Institute of Technology

Date Approved: June 27, 2013

To my wife Wan Wang.

I love you dearly.

iii

ACKNOWLEDGEMENTS

A lot of people have helped me through this interesting and fruitful journey of Ph.D. study.

Without their help I would never have been able to finish it. I would like to express my

deepest gratitude to them.

First, I would like to express my deepest appreciation to my advisor Dr. Alexander

Gray. He has provided me innumerous support, help and encouragement during the past

few years, and has had a profound influence on my research from various perspectives. He

introduced me to the promising area of large-scale machine learning. I have learnt a lot

of research skills from Alex including scalable algorithm design, basic analysis methods,

scientific writing, and a good taste to find important problems. Dr. Hongyuan Zha served

as my co-advisor and thesis committee member. As an excellent teacher I have learnt from

him numerical linear algebra, iterative methods, data mining and skills like critical thinking

and problem solving. He has also given me invaluable support on my career development.

I would also like to thank the other committee members. Dr. Arkadi Nemirovski helped

me build a solid background in optimization, Dr. Maria Balcan gave me a lot of knowledge

and advices in theoretical machine learning and game theory, and Dr. Haesun Park exposed

me to numerical methods and matrix factorization problems. Special thanks would go to

Dr. Alexander Shapiro. He is the best teacher in my life and helped me build a solid

foundation in statistics. Dr. Le Song also gave me lots of advices and ideas for my research.

During the summer of 2010 I interned at IBM T. J. Watson Research. I would like to

thank Lexing Xie and Paul Natsev in the multimedia research group. They gave me a lot of

advices in industrial research, and provided me strong support on my career development.

Then I would like to thank my fellow labmates in FASTLab, friends and colleagues at

Georgia Tech that I feel so fortunate to meet, to learn from, and to work with in the past

few years. To name a few: Ryan Curtin, Nan Du, Ravi Ganti, Wei Guan, Shuang Hao, Niao

He, Krishna Kumar, Dongryeol Lee, Fuxin Li, Liangda Li, Yi Mao, William March, Nishant

iv

Mehta, Parikshit Ram, Ryan Riegel, Mingxuan Sun, Long Q. Tran, Nikolaos Vasiloglou,

Shuang-Hong Yang and Ke Zhou. I wish them all the best in the future.

Last but not least, I would like to thank my family for their innumerous support. I am

deeply indebted to my wife Wan Wang for her endless love, patience, understanding, and

encouragement. She has brought me such a wonderful life in the past five years that make

everything possible. My parents and parents-in-law have always been supportive on our

decisions, and helped us live a better life in the county that is tens of thousands of miles

away from them.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF FIGURES . x

SUMMARY . xii

I INTRODUCTION . 1

1.1 Scalable Machine Learning and Optimization 2

1.1.1 Some Notations . 4

1.2 Motivations . 4

1.2.1 Detailed Decomposition of Generalization Error 5

1.2.2 Lower Bounds for EEst + EExp-Opt 7

1.2.3 Batch Learning v.s. Stochastic Learning 10

1.2.4 Distributed Learning . 14

1.3 Outline and Main Contributions . 17

II STOCHASTIC SMOOTHING . 20

2.1 Introduction . 20

2.1.1 A Different “Composite Setting” . 21

2.2 Approach . 23

2.2.1 Stochastic Smoothing Method . 23

2.2.2 Accelerated Nonsmooth SGD (ANSGD) 25

2.3 Convergence Analysis . 25

2.3.1 How to Choose Stepsizes ηt . 30

2.3.2 Optimal Rates for Composite Minimizations when µ = 0 31

2.3.3 Nearly Optimal Rates for Strongly Convex Minimizations 33

2.3.4 Batch-to-Online Conversion . 36

2.4 Examples . 38

2.4.1 Hinge Loss SVM Classification . 38

2.4.2 Absolute Loss Robust Regression 39

2.5 Experimental Results . 40

vi

2.5.1 Algorithms for Comparison and Parameters 40

2.5.2 Results . 41

2.6 Conclusions of this Chapter . 44

III STOCHASTIC ALTERNATING DIRECTION METHOD OF MULTI-
PLIERS . 47

3.1 Introduction . 47

3.1.1 Stochastic Setting for ADMM . 48

3.1.2 Motivations . 48

3.1.3 Contributions of this Chapter . 49

3.1.4 Related Work . 50

3.1.5 Notations . 50

3.1.6 Assumptions . 51

3.2 Stochastic ADMM Algorithm . 51

3.3 Main Results of Convergence Rates . 53

3.4 Extensions . 57

3.4.1 Strongly Convex θ1 . 57

3.4.2 Lipschitz Smooth θ1 . 57

3.5 Examples and Numerical Evaluations . 57

3.5.1 Lasso . 57

3.5.2 Graph-Guided SVM . 61

3.6 Conclusions of this Chapter . 65

3.7 Appendix . 66

3.7.1 Proof of Theorem 1 . 66

3.7.2 Proof of Theorem 2 . 69

3.7.3 Proof of Theorem 3 . 69

IV STOCHASTIC KERNEL MACHINES . 71

4.1 Introduction . 71

4.2 The Frank-Wolfe Method . 74

4.3 Stochastic Frank-Wolfe for SVM . 75

4.3.1 Alternative Formulation of SVM . 75

4.3.2 SFW Algorithm . 77

vii

4.3.3 SFW Algorithm with Away Steps 80

4.4 Convergence Analysis . 82

4.5 Experimental Results . 85

4.5.1 Datasets . 85

4.5.2 SVM Solvers for Comparison . 86

4.5.3 Parameters and Implementation Issues 88

4.5.4 Comparisons on Convergence . 88

4.5.5 Comparisons on Batch Learning Tasks 89

4.5.6 Comparisons of Linear and Nonlinear SVMs 94

4.6 Conclusions of this Chapter . 94

V DISTRIBUTED LEARNING VIA CONSENSUS ADMM 97

5.1 Introduction . 97

5.1.1 Related Work . 98

5.2 Problem Settings and Notations . 99

5.3 Distributed Consensus Learning . 101

5.3.1 Three Dimensions of the Problem Space 102

5.4 Iteration Complexities of ADMM . 103

5.4.1 Linear Convergence Rates . 106

5.5 Strategy for Choosing β Adaptively . 107

5.6 Numerical Results . 109

5.6.1 Experimental Settings . 110

5.6.2 Varying β . 111

5.6.3 Comparing Communication Topologies Using Optimal βs 112

5.6.4 Adaptive β using Alg.10 . 113

5.6.5 Changing the Updating Order . 115

5.6.6 Practical β for the Simple Case: x = y 115

5.7 Conclusions of this Chapter . 116

5.8 Appendix . 118

5.8.1 Proof for Theorem 13 . 118

5.8.2 Proof for Theorem 14 . 119

viii

VI DISCUSSION AND FUTURE WORK . 120

Bibliography . 124

VITA . 132

ix

LIST OF FIGURES

1 Relative errors v.s. number of iterations. Solve Lasso (1) by gradient descent
and iterative soft-thresholding. 3

2 Three sources of generalization error. The boxed components (estimation
error and expected optimization error) are of our main focus. 6

3 Testing values v.s. number of data samples (N). Solve least squares linear
regression (noise free) with batch algorithm (gradient descent) and stochastic
algorithm (stochastic gradient descent). 12

4 Testing values v.s. number of data samples (N). Solve noisy least squares
linear regression with batch and stochastic algorithms. Left: σ = 10−3.
Right: σ = 10−1. 13

5 Testing values v.s. number of data samples (N). Solve least squares linear
regression (noise free) with batch and stochastic algorithms. Left: 10 epochs.
Middle: 20 epochs. Right: 50 epochs. 14

6 Testing values v.s. number of data samples (N). Solve noisy (σ = 10−3)
least squares linear regression with batch and stochastic algorithms. Left: 5
epochs. Middle: 10 epochs. Right: 20 epochs. 15

7 Testing values v.s. number of data samples (N). Solve noisy (σ = 10−6)
least squares linear regression with batch and stochastic algorithms. Left: 5
epochs. Middle: 10 epochs. Right: 20 epochs. 16

8 Left: Hinge loss and its smooth approximations. Right: Absolute loss and
its smooth approximations. 39

9 Classification with “svmguide1”. 42

10 Classification with “real-sim”. 42

11 Classification with “rcv1”. 43

12 Classification with “alpha”. 43

13 Regression with “abalone”. 44

14 Classification with “svmguide1”. 45

15 Classification with “real-sim”. 45

16 Classification with “rcv1”. 46

17 Classification with “alpha”. 46

18 Lasso for Abalone Dataset. 60

19 Lasso for E2600-tf-idf Dataset. 61

20 Graph of relations among 100 popular words in 20newsgroups dataset. . . . 64

x

21 Accuracies for multi-class classification. 65

22 FW with Away Steps. 81

23 Dataset: svmguide1 . 90

24 Dataset: w3a . 90

25 Dataset: a9a . 91

26 Dataset: ijcnn1 . 91

27 Dataset: usps01 . 92

28 Dataset: covertype . 92

29 Dataset: svmguide1 . 94

30 Dataset: w3a . 95

31 Dataset: ijcnn1 . 95

32 Dataset: usps01 . 96

33 Dataset: covertype . 96

34 Two ways to formulate bipartite graphs. Left: centralized learning with two
global (central) variables. Right: decentralized learning. 99

35 Consensus constraints expressed in matrix form. 102

36 Values of β significantly affect convergence rates for both primal and dual
residuals. 108

37 Buckyball spanning tree. 111

38 Primal residual as a function of β and number of iterations. Topology: com-
plete bipartite graph. 112

39 Dual residual as a function of β and number of iterations. Topology: complete
bipartite graph. 113

40 Primal and dual residuals using the optimal βs. 114

41 Primal and dual residuals using proposed Alg.10. 115

42 Primal and dual residuals using the method of (He et al. [2000], Wang and
Liao [2001], Boyd et al. [2010]). 116

43 Ridge regression α = 1. 117

44 Ridge regression α = 100. 117

xi

SUMMARY

Stochastic and data-distributed optimization algorithms have received lots of at-

tention from the machine learning community due to the tremendous demand from the

large-scale learning and the big-data related optimization. A lot of stochastic and de-

terministic learning algorithms are proposed recently under various application scenarios.

Nevertheless, many of these algorithms are based on heuristics and their optimality in terms

of the generalization error is not sufficiently justified. In this talk, I will explain the concept

of an optimal learning algorithm, and show that given a time budget and proper hypothesis

space, only those achieving the lower bounds of the estimation error and the optimization

error are optimal.

Guided by this concept, we investigated the stochastic minimization of nonsmooth con-

vex loss functions, a central problem in machine learning. We proposed a novel algorithm

named Accelerated Nonsmooth Stochastic Gradient Descent, which exploits the structure

of common nonsmooth loss functions to achieve optimal convergence rates for a class of

problems including SVMs. It is the first stochastic algorithm that can achieve the opti-

mal O(1/t) rate for minimizing nonsmooth loss functions. The fast rates are confirmed by

empirical comparisons with state-of-the-art algorithms including the averaged SGD.

The Alternating Direction Method of Multipliers (ADMM) is another flexible method

to explore function structures. In the second part we proposed stochastic ADMM that can

be applied to a general class of convex and nonsmooth functions, beyond the smooth and

separable least squares loss used in lasso. We also demonstrate the rates of convergence for

our algorithm under various structural assumptions of the stochastic function: O(1/
√

t) for

convex functions and O(log t/t) for strongly convex functions. A novel application named

Graph-Guided SVM is proposed to demonstrate the usefulness of our algorithm.

We also extend the scalability of stochastic algorithms to nonlinear kernel machines,

where the problem is formulated as a constrained dual quadratic optimization. The simplex

xii

constraint can be handled by the classic Frank-Wolfe method. The proposed stochastic

Frank-Wolfe methods achieve comparable or even better accuracies than state-of-the-art

batch and online kernel SVM solvers, and are significantly faster.

The last part investigates the problem of data-distributed learning. We formulate it as

a consensus-constrained optimization problem and solve it with ADMM. It turns out that

the underlying communication topology is a key factor in achieving a balance between a fast

learning rate and computation resource consumption. We analyze the linear convergence

behavior of consensus ADMM so as to characterize the interplay between the communica-

tion topology and the penalty parameters used in ADMM. We observe that given optimal

parameters, the complete bipartite and the master-slave graphs exhibit the fastest conver-

gence, followed by bi-regular graphs.

xiii

CHAPTER I

INTRODUCTION

The interplay between the high-speed Internet, cheaper data storage and the popularity of

mobile and ubiquitous computation are converging to the recent trend of Big Data. Enor-

mous datasets are becoming available from many areas, such as web search, social media,

security, biology, health and physics. One of the most important venue of data analysis

is the area of Machine Learning, including the important subareas of regression, classi-

fication, density estimation, data modeling, statistical inference, clustering and reduction.

Despite the rapid advances in various aspects of machine learning, the scalability issue has

not received as much consideration as it deserves. This makes many statistically sound

methods less applicable to the real-world large-scale datasets, or not optimally adapted to

the modern distributed infrastructures of computation. In the era of Big Data, massive data

should be viewed as assets other than liabilities. Therefore machine learning researchers must

be prepared for the revolution where efficiently handling large-scale data sources becomes

crucial. This dissertation aims to reveal the fundamental theories, to design, analyze and

apply new algorithms towards bridging the gap between the traditional setting of machine

learning and its capability in the new Big Data environment.

In this dissertation, we introduce a detailed decomposition of the generalization error,

one of the most important quantity to measure the learning capacity of a supervised learning

algorithm. We present a deeper and detailed understanding on the error sources and identify

the possibilities to achieve the lower bounds of each source. The computational cost is also

taken into account to make sure that an algorithm achieves the lowest possible generalization

error within a time budget, which is essential in large-scale machine learning applications.

Several stochastic and distributed algorithms are then proposed to explore the specific

structures in the learning models and data samples.

This introduction provides an overview of the motivations, the proposed stochastic and

1

distributed optimization algorithms for various learning models. The contributions and

outline of this dissertation will also be summarized.

1.1 Scalable Machine Learning and Optimization

Modern machine learning is very closely related to optimization techniques (Sra et al.

[2011]). The learning process of many important statistical formulations can be cast as

solving optimization problems. Actually any learning method that involves finding the op-

timal set of “parameters” of a hypothetical parametric model can be solved by optimization

techniques. Some generic model-based examples are maximum likelihood estimation (MLE),

maximum a posteriori estimation (MAP) and variational inference for Bayesian methods.

The non-model-based examples include support vector machines, neural networks, dictio-

nary learning and matrix factorization methods. Many semi-supervised and unsupervised

learning methods are also solved by optimization methods. Some machine learning models

that were originally proposed with little relevance to optimization methods were eventually

shown to be optimized in certain ways. One example is the AdaBoost algorithm, where

the coordinate descent method is applied on the exponential loss function (Mukherjee et al.

[2011]).

The scalability of machine learning models heavily relies on the selection of novel and

efficient optimization algorithms. Different models might have different functional struc-

tures or data properties. Solving a machine learning problem with generic optimization

techniques without exploring problem structures could lead to suboptimal or inferior per-

formances. Rich structures in machine learning problems provide enormous opportunities

for tailor-made optimization algorithms to succeed beyond the worst case guarantees pro-

vided by generic algorithms. A simple example is illustrated in Fig.1, where the following

Lasso problem (Tibshirani [1996])

min
x∈RD

1
N

N∑
i=1

(xT si − `i)2 + λ‖x‖1 (1)

is solved by two different methods, and the relative errors of this optimization process

are plotted agains the number of iterations. The first method is the generic subgradient

2

0 10 20 30 40 50 60 70 80
10

−20

10
−15

10
−10

10
−5

10
0

10
5

of iterations

(f
(x

t)
−
f
(x

∗
))
/f

(x
∗
)

Iterative Soft−Thresholding
Subgradient Descent

Figure 1: Relative errors v.s. number of iterations. Solve Lasso (1) by gradient descent
and iterative soft-thresholding.

descent, where model (1) is treated as a general unconstrained nonsmooth convex optimiza-

tion problem, and the algorithm only exhibits a sublinear convergence rate. The second

method is the iterative soft-thresholding algorithm (also known as the forward-backward

splitting) proposed by Lions and Mercier [1979] and analyzed by Chen and Rockafellar

[1997], Daubechies et al. [2004]. This algorithm takes advantage of the separability be-

tween the least square function and the simple `1 regularization, and hence a fast linear

convergence rate is attained.

On the other hand, suitable optimization techniques and frameworks can also lead to new

machine learning models, or make existing models more scalable to large-scale applications.

A prominent example is the alternating direction method of multipliers (ADMM) originally

proposed in 1970s’ by Glowinski and Marroco [1975], Gabay and Mercier [1976]. This

algorithm has not attracted many interests from the machine learning community until the

monograph written by Boyd et al. [2010]. Boyd et. al. showed that large scale linear models

can be efficiently solved in a distributed computing environment via ADMM.

3

1.1.1 Some Notations

Before delving into the detailed discussions, we first introduce some notations and assump-

tions used in the following sections. Let f(x, ξ) be the cost function of the learning model,

where x ∈ RD is the optimization variable, and we use the random variable ξ to denote the

examples. We use subscripts xt to denote the solution of an iterative optimization algo-

rithm provided at iteration t. The hypothesis space of our model is denoted by H, while the

hypothesis space that the “true” solution belongs to is denoted by H∗. A learning algorithm

can access the finite N training examples ξ1, . . . , ξN . The averaged cost function over these

N samples is denoted as f̂(x) ≡ 1
N

∑N
i=1 f(x, ξi). The solution x ∈ H that minimize f̂(x)

is denoted as x∗
(N) ≡ arg minx∈H

1
N

∑N
i=1 f(x, ξi)

The following i.i.d. assumption for the examples ξ is made for all the stochastic algo-

rithms:

Assumption 1. Examples ξ are drawn identically and independently (i.i.d.) from a fixed

but unknown distribution P.

1.2 Motivations

In this section we present the main motivations of this thesis work. As we discussed in

Section 1.1, it is very crucial that an optimization process takes advantages of the structural

properties of a machine learning problem. Hence the question of our main concern is: what

are the best algorithms for large-scale machine learning tasks?

This question is definitely hard, and the answers are not simple either. To investigate

this question, we start with the decomposition of the generalization error: the most natural

measurement that should be minimized to get the best performance for a supervised machine

learning algorithm. To investigate the possibilities in reducing this quantity, a deeper

understanding in the sources of the generalization error is desired.

We will show in this section that a detailed decomposition reveals the various possibilities

that can be taken advantages of, and as a consequence it leads to the concept of optimal

learning algorithms. This idea of decomposing the generalization error is inspired by the

work of Bottou and Bousquet [2008].

4

1.2.1 Detailed Decomposition of Generalization Error

The quality of a supervised learning method (or learner) is typically evaluated by the

generalization ability, which can be measured by the generalization error EGen: the mistakes

that a learner makes on the unseen testing samples with its current solution xt:

EGen ≡ Eξ∼Pf(xt, ξ) =
∫

ξ∼H
f(xt, ξ)dP. (2)

A very closely related quantity known as the excess error EExc (Boucheron et al. [2005])

is defined as the deviation between the generalization error and the best possible accuracy

a learner could have achieved given the ideal H∗ and infinite number of training samples.

Given a distribution P, this error can be expressed as the following expectation:

EExc ≡ Eξ∼P
[
f(xt, ξ)− inf

x∈H∗
f(x, ξ)

]
. (3)

Given the “true” hypothesis space H∗, the second term infx∈H∗ f(x, ξ) is a constant, hence

reducing EExc is equivalent to reducing EGen.

Traditionally the machine learning community has been focused on the trade-off between

the estimation error and approximation error (Bartlett [2008]). This is also known as the

bias-variance trade-off in the statistics community. A large part of the statistical learning

theory literature is devoted to the problems of how to make proper model selections in

terms of the complexity of the hypothesis space: |H|, such that the sum of these two errors

is small, or given some fixed error tolerance, the sample complexity requirement is low

(Bishop [1996, 2007], Boucheron et al. [2005]). This decomposition leads to the concept of

structural risk minimization (Vapnik [1998, 2000]).

The traditional error decomposition implicitly assumes that an algorithm can always

find the exact optima of the empirical risk, and the the finite algorithmic accuracy of an

iterative algorithm is not considered in any form. However, this assumption is not realistic,

especially when the number of data samples N is large. In large scale learning problems,

it is hard and not necessary to attain a very high algorithmic accuracy. To fill this gap,

Bottou and Bousquet [2008] proposed an alternative decomposition of the excess error. It

can be considered as an extension of the traditional setting. As illustrated in Fig.2, the

5

Excess Error
Improper

Model

Finite
Samples

Algorithmic
Accuracy

Eξ

[
f (xt , ξ)− infx∈H∗ f (x, ξ)

]

Eξ

[
❳

❳
❳

❳
❳
❳❳

inf
x∈H

f (x, ξ)− inf
x∈H∗

f (x, ξ)
]

︸ ︷︷ ︸

ErrApproximation

Eξ

[

✘
✘

✘
✘

✘
✘

f (x∗

(N), ξ)−
❳

❳
❳
❳

❳
❳❳

inf
x∈H

f (x, ξ)
]

︸ ︷︷ ︸

ErrEstimation

Eξ

[
f (xt , ξ)−

✘
✘

✘
✘

✘
✘

f (x∗

(N), ξ)
]

︸ ︷︷ ︸

ErrExpected-Optimization

Figure 2: Three sources of generalization error. The boxed components (estimation error
and expected optimization error) are of our main focus.

excess error EExc can be decomposed into three sources: the approximation error EApp, the

estimation error EEst, and the expected optimization error EExp-Opt:

EExc = Eξ∼P
[
f(xt, ξ)− inf

x∈H∗
f(x, ξ)

]
= Eξ

[
inf

x∈H
f(x, ξ)− inf

x∈H∗
f(x, ξ)

]
︸ ︷︷ ︸

EApp

+Eξ

[
f(x∗

(N), ξ)− inf
x∈H

f(x, ξ)
]

︸ ︷︷ ︸
EEst

+Eξ

[
f(xt, ξ)− f(x∗

(N), ξ)
]︸ ︷︷ ︸

EExp-Opt

,

(4)

where we use colors to highlight the differences between terms.

In this decomposition, EApp measures the difference between the best x∗ obtained from

H and that from the true hypothesis space H∗, meaning that it is due to the improper

choice of the learning model; EEst reflects the effect of finite samples: the more samples

we have, the smaller estimation error is, when N → ∞, EEst → 0; the last term EExp-Opt

measures the finite algorithmic precision of an iterative optimization algorithm. Various

trade-offs between these three components are needed to achieve a good balance such that

a learner can retain a low excess error (Bottou and Bousquet [2008]).

6

1.2.2 Lower Bounds for EEst + EExp-Opt

We assume that a proper hypothesis class H is already chosen and presented to the learning

algorithm, hence EApp in the decomposition (4) is fixed. We will focus on the problem of

how to minimize the estimation error and optimization error, especially when the number

of training samples N is large. The purpose is to demonstrate that for large scale learning

problems with massive data samples, the large N should be viewed as assets other than

liabilities.

To achieve this goal, we derive in the following a tight worst-case lower bound for

EEst + EExp-Opt. As we will see in the following chapters, this lower bound is met by the

proposed stochastic algorithms.

The sum of the two errors of our main concern can be further decomposed and bounded

as follows.

EEst + EExp-Opt

=Eξ

[
f(x∗

(N), ξ)− inf
x∈H

f(x, ξ)
]

+ Eξ

[
f(xt, ξ)− f(x∗

(N), ξ)
]

=Eξf(xt, ξ)− Eξf(x∗
H, ξ)

=E
[
Eξf(xt, ξ)− f̂(xt)

]
+ E

[
f̂(x∗

(N))− Eξf(x∗
H, ξ)

]
+ E

[
f̂(xt)− f̂(x∗

(N))
]

≥E
[
Eξf(xt, ξ)− f̂(xt)

]
+ E

[
f̂(x∗

(N))− Eξf(x∗
(N), ξ)

]
+ E

[
f̂(xt)− f̂(x∗

(N))
]
,

(5)

where in the last inequality we used the fact that x∗
H is always the minimizer of Eξf(x, ξ)

in H, hence Eξf(x∗
H, ξ) ≤ Eξf(x∗

(N), ξ). We can observe that the first two items in the RHS

of (5) have similar forms: the difference between the expectation and the empirical mean.

To find a worse-case lower bound for these terms, we use the classic results of concentration

inequalities from the literature of empirical process (e.g. van der Vaart and Wellner [1996]).

In particular, we include the following result for the completeness of this dissertation. It

essentially follows Theorem 2.3 of (Bartlett and Mendelson [2006]).

Theorem 1. (Bartlett and Mendelson [2006]) For any interger N ≥ 1
σ2

H
there exists con-

stant c > 0 for which the following holds:

sup
x∈H

E
∣∣Eξf(x, ξ)− f̂(x)

∣∣ ≥ cσH√
N

, (6)

7

where σ2
H ≡ supx∈H Varξ∼P [f(x, ξ)] is the variance of f , and f̂(x) ≡ 1

N

∑N
i=1 f(x, ξi).

This theorem states that the maximum deviation between the expectation Eξf(x, ξ)

and the empirial term 1
N

∑N
i=1 f(x, ξi) cannot approach zero at a rate faster than 1√

N
if no

additional structural assumption is made. Hence the sum of the first two terms on the RHS

of (5) is also lower bounded by cσH√
N

.

The third term on the RHS of (5) is the expected optimization error. If we are given

a fixed dataset ξ1, . . . , ξN , then f̂(xt)− f̂(x∗
(N)) is just the deterministic optimization error

made by the current solution xt. Depends on the class that the optimization problem

belongs to, there are also lower bounds for this term. We give some of these bounds appeared

in the optimization literature. Most of these work is pioneered by Arkadi Nemirovski

(Nemirovski and Yudin [1983]) and Yurii Nesterov (Nesterov [2004]).

The first lower bound of optimization error applies to the most general case where

the least amount of assumptions are made: f is a convex function but not necessarily

differentiable, and an iterative optimization algorithm has only access to the first-order

oracles f ′(xk) that is an arbitrary subgradient of f . In this case,

Theorem 2. For any constants R > 0 and M > 0, there exists a convex function f : RD →

R that is M -Lipschitz continuous on the ball B(x0, R) such that ∀t > 0, ∀x∗ ∈ B(x0, R),

f(xt)− f(x∗) ≥ MR

2(1 +
√

t + 1)
, (7)

for any optimization scheme that generate a sequence {xk}k=1:t satisfying

xk ∈ x0 + Lin{f ′(x0), . . . , f ′(xk−1)}, ∀0 < k ≤ t.

This lower bound is tight, since the subgradient descent method can retain a rate of

convergence upper bounded by this rate, up to a constant factor.

Nonsmooth convex function is the most general class of our interest, but it suffers

from the slow 1/
√

t rate. However, when a convex function is Lipschitz smooth, the lower

bound of the convergence rate can be significantly improved to 1/t2, as stated by the

following theorem. When f is differentiable, the first-order oracle becomes the gradient of

the function. We denote it as ∇f(xk) to distinguish it from the subgradient f ′(xk).

8

Theorem 3. For any x0 ∈ RD there exits an L-Lipschitz smooth convex function f : RD →

R such that ∀t > 0, x∗ ≡ arg minx f(x),

f(xt)− f(x∗) ≥ 3L‖x∗ − x0‖2

32(k + 1)2 (8)

for any optimization scheme that generate a sequence {xk}k=1:t satisfying

xk ∈ x0 + Lin{∇f(x0), . . . ,∇f(xk−1)}, ∀0 < k ≤ t.

The classic gradient descent can only retain an O(1/t) rate. However, the above O(1/t2)

can be achieved by Nesterov’s optimal method (Nesterov [1983]). This method is also known

as the accelerated gradient descent.

When a function is both L-Lipschitz smooth and µ-strongly convex, a first-order method

can enjoy a fast linear convergence rate.

Theorem 4. For any x0 ∈ RD there exits an L-Lipschitz smooth and µ-strongly convex

function f : RD → R such that ∀t > 0, x∗ ≡ arg minx f(x),

f(xt)− f(x∗) ≥
(

1− 2
1 +

√
L/µ

)2t

‖x∗ − x0‖2 (9)

for any optimization scheme that generate a sequence {xk}k=1:t satisfying

xk ∈ x0 + Lin{∇f(x0), . . . ,∇f(xk−1)}, ∀0 < k ≤ t.

Cobmining the lower bounds established for the estimation error EEst (Theorem 1) and

the optimization error EOpt (Theorem 2, 3 and 4), we are ready to present the following

concept of optimal learning algorithms.

Definition 1. Given a fixed distribution P and an objective function f , any supervised

learning algorithm that achieves the lower bounds for the estimation error and the opti-

mization error is statistically optimal.

The above definition only considers the iteration complexity of a learning algorithm.

However, in real-world applications, the time complexity is typically of our major concern.

This is especially important for large-scale problems, where the system cannot afford scan-

ning the dataset for many iterations. In extreme cases, even a single sweep is too expensive.

9

Based on these considerations, we define the computationally optimal learning algorithm

as follows.

Definition 2. Given a fixed distribution P, an objective function f and a time budget

T = N , any supervised learning algorithm that achieves the lowest EEst + EExp-Opt within

time T is computationally optimal.

1.2.3 Batch Learning v.s. Stochastic Learning

It has been shown in e.g. Boucheron et al. [2005], Bartlett and Mendelson [2006] and

Bartlett [2008] that the 1/
√

N lower bound of the estimation error (6) can be achieved by

the principle of the empirical risk minimization (ERM) (Vapnik [1998]). In machine learning

ERM is also known as the batch learning method, expressed by the following deterministic

optimization:

min
x∈X

1
N

N∑
i=1

f(x, ξi). (10)

This scheme is essentially the same as the sample average approximation (SAA), one of

the two major methods for stochastic programming (Shapiro et al. [2009]). According

to Definition 1, if the ERM objective is solve by a deterministic optimization algorithm

that achieves the lower bound for optimization error EOpt, then it is statistically optimal.

However, a statistically optimal algorithm is not necessarily computationally optimal. For

batch learning algorithms (e.g. gradient descent or quasi-Newton methods), typically all the

N training samples are involved in the operations of a single iteration, resulting an O(N)

time complexity. Despite of the potentially fast convergence rates for the optimization

error, the number of iterations that a batch algorithm can run within a fixed time budget

is relatively small if the number of data samples is large. This might results in a very

large optimization error, even higher than the estimation error that has a much slower

convergence rate.

Stochastic learning algorithms typically refer to those where a single data sample (or

a mini-batch samples) is involved in each iteration of the optimization process. In many

stochastic algorithms, the 1/
√

N estimation error can be achieved. However, their op-

timization errors might decrease slowly, comparing with batch optimization algorithms.

10

Even with slow convergence rates of EOpt, the computational cost for each iteration is only

O(1), indicating that given a time budget T = N , stochastic algorithms can be executed

for T iterations, while batch algorithm can only be executed for 1 iteration. Suppose

a statistically optimal batch algorithm achieves the optimal linear convergence rate, since(
1−

√
µ
L

)1
>> 1

T , it is NOT computationally optimal. Theoretically, given N large enough

such that the i.i.d. Assumption 1 holds, stochastic algorithms will almost always yield a

lower generalization error. In the follows we use a simple example to illustrate this phe-

nomenon.

We use the following linear regression problem as our objective:

min
x

Eξi≡{Ai,bi}‖Aix− bi‖22, (11)

and the corresponding ERM is as follows:

min
x

1
N

N∑
i=1
‖Aix− bi‖22, (12)

Each example Ai ∈ RD is sampled from a D dimensional gaussian N (0, I). The “true”

objective x∗ is also generated from N (0, I). For noise-free experiments, the labels are

generated by bi = AT
i x∗, while for noisy cases, we set

bi = AT
i x∗ + ε,

where ε ∼ N (0, σI). The deterministic gradient descent (GD) is used as the batch learning

algorithms, and the stochastic gradient descent (SGD) is used as the stochastic learning

algorithm. To test the generalization error, we use 1/3 of the samples for testing, and the

rest are for training.

In Fig.3, we compare the testing error for GD and SGD using the noise-free dataset.

The dataset sizes are N = 40, 80, 160, 200, 400, 800, 1600, 2000, 4000, 8000 and 10000. To

ensure that the two algorithms are given the same time budget, in this experiment we run 1

iteration for GD, and N iterations for SGD. This figure clearly shows that the testing error

of SGD decreases much faster than that of GD. The larger N is, the larger the difference.

Since the data is noisy free, the estimation error should be 0. The slow convergence of GD

11

10
2

10
3

10
4

10
−30

10
−20

10
−10

10
0

Sample Size (N)

T
es
ti
n
g
f
(x

t)

Linear Regression (noise free)

Gradient Descent
Stochastic Gradient Descent

Figure 3: Testing values v.s. number of data samples (N). Solve least squares linear
regression (noise free) with batch algorithm (gradient descent) and stochastic algorithm
(stochastic gradient descent).

is due to the high optimization error, as discussed above. The fast convergence of SGD

exhibits the optimization error (almost linear rate).

In Fig.4, we compare the performance of GD and SGD with two noisy datasets of

different noise levels: σ = 10−3 (Left) and σ = 10−1 (Right). As in the previous experiment,

we run 1 iteration for GD, and N iterations for SGD. We have several observations. First,

like in the noise-free case, SGD outperforms GD for all situations when N is larger than 500.

Second, the batch algorithm’s performance is almost the same for the two noise levels. This

indicates that the optimization error is indeed very large, and dominates the estimation

error. Third, for both noise levels, SGD converges to the near-optimal errors (although the

errors are different) after running almost the same number of iterations (around 2000). This

indicates that the estimation error is now the dominating factor for SGD, which is different

from the noise-free case.

In the third set of experiments, instead of running only 1 iteration for GD, we run it for

10, 20 and 50 batch iterations. The corresponding number of iterations for SGD are thus

10N , 20N and 50N (i.e. 10, 20 and 50 epochs).

12

10
2

10
3

10
4

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Sample Size (N)

T
es
ti
n
g
f
(x

t)

Linear Regression (noisy, σ=10−3)

10
2

10
3

10
4

10
−2

10
0

10
2

10
4

10
6

Sample Size (N)

T
es
ti
n
g
f
(x

t)

Linear Regression (noisy, σ=10−1)

Gradient Descent
Stochastic Gradient Descent

Figure 4: Testing values v.s. number of data samples (N). Solve noisy least squares linear
regression with batch and stochastic algorithms. Left: σ = 10−3. Right: σ = 10−1.

In all the three experiments shown in Fig.5, the dataset is noise free. Although running

stochastic algorithms for multiple epochs does not strictly satisfy the i.i.d. assumption,

SGD still outperforms GD in all settings. The comparison of these three subfigures also

reveals that when GD’s number of iterations increases, its optimization error decreases, and

are more and more comparable with that of SGD. However, even after 100 iterations, the

generalization capability of GD is still not as good as SGD.

When the dataset’s noise level is σ = 10−3, we compare GD and SGD under three

settings, with 5, 10 and 20 epochs each, and the results are plotted in Fig.6. Unlike the

noise-free cases (Fig.5), the testing errors of GD and SGD are very close when the number

of epochs is larger than 10. This is due to two reasons. First, the optimization error of

GD is much lower after 10 or 20 iterations, hence the estimation error begins to dominate.

Second, the i.i.d. assumption of SGD do not hold. However, when N is large (e.g. 104) and

the noise level is higher than σ = 10−3, a single stochastic sweep over the dataset is already

enough to achieve the best prediction accuracy (Fig.4).

If the noise level decreases from 10−3 to 10−6 (Fig.7), the advantage of SGD becomes

significant even for 10 epochs.

13

10
2

10
4

10
−20

10
−10

10
0

10
10

Sample Size (N)

T
es
ti
n
g
f
(x

t)

Linear Regression (noise free)

10
2

10
4

10
−20

10
0

10
20

Sample Size (N)

T
es
ti
n
g
f
(x

t)

Linear Regression (noise free)

10
2

10
4

10
−20

10
0

10
20

10
40

Sample Size (N)

T
es
ti
n
g
f
(x

t)

Linear Regression (noise free)

Gradient Descent
Stochastic Gradient Descent

Figure 5: Testing values v.s. number of data samples (N). Solve least squares linear
regression (noise free) with batch and stochastic algorithms. Left: 10 epochs. Middle: 20
epochs. Right: 50 epochs.

The above discussions and comparisons clearly demonstrate the trade-off between the

estimation error and the optimization error. The final convergence behavior of the testing

accuracy is dominated by the slower one.

1.2.4 Distributed Learning

In the previous section we analyzed the error sources of batch and stochastic algorithms.

We illustrated by examples that in many situations stochastic algorithms exhibit very com-

petitive generalization capacities with a much lower time complexity. However in many

real-world applications, batch learning is still desired for various reasons. For example,

sometimes a deterministic repeatable training process is preferred to avoid the variations

of stochastic algorithms’ performance. In these scenarios, the data-distributed learning is a

natural way to deal with large-scale problems.

There are generally two classes of methods for the distributed learning in the literature.

The first class includes the gradient-based primal methods: e.g. the distributed subgradient

descent methods (Nedic and Ozdaglar [2009], Dekel et al. [2011]) and the distributed dual

averaging methods (Duchi et al. [2010], Agarwal and Duchi [2011], Duchi et al. [2012]). To

14

10
2

10
4

10
−5

10
0

10
5

Sample Size (N)

T
es
ti
n
g
f
(x

t)

Linear Regression (noisy, σ=10−3)

10
2

10
4

10
−5

10
0

10
5

10
10

10
15

Sample Size (N)

T
es
ti
n
g
f
(x

t)

Linear Regression (noisy, σ=10−3)

10
2

10
4

10
0

10
10

10
20

Sample Size (N)

T
es
ti
n
g
f
(x

t)

Linear Regression (noisy, σ=10−3)

Gradient Descent
Stochastic Gradient Descent

Figure 6: Testing values v.s. number of data samples (N). Solve noisy (σ = 10−3) least
squares linear regression with batch and stochastic algorithms. Left: 5 epochs. Middle: 10
epochs. Right: 20 epochs.

solve the batch ERM problem (the 1/N term is omitted)

min
x∈X

N∑
i=1

f(x, ξi), (13)

the most straightforward method is to distribute the data samples {ξ}Ni=1 evenly to S worker

nodes (slaves):

min
x∈X

S∑
s=1

Ns∑
i=1

f(x, ξi). (14)

At iteration t, each worker calculates its partial (sub)gradients based on the N/S samples

and send the vectors to the master node. The master receives all the S partial results,

aggregate (average and project to X) and broadcast the new solution xt+1 to all the workers

and proceed with the next iteration. If all the operations are synchronous, this simple

parallelization will have the same convergence behavior as the single-node-based gradient

descent, and is S times faster. However, the communication and computation cost on

the master node is the bottleneck of this method. In some applications, this master-slave

communication topology is even not available, and all the workers might be just loosely

connected with each other (Predd et al. [2007]).

The second class are the primal-dual methods based on the augmented Lagrangian

method (Zhu et al. [2009]) or the alternating direction method of multipliers (ADMM)

(Boyd et al. [2010], Mateos et al. [2010], Mota et al. [2012]). In gradient-based methods,

15

10
2

10
4

10
−10

10
−5

10
0

10
5

Sample Size (N)

T
es
ti
n
g
f
(x

t)

Linear Regression (noisy, σ=10−6)

10
2

10
4

10
−10

10
0

10
10

Sample Size (N)

T
es
ti
n
g
f
(x

t)

Linear Regression (noisy, σ=10−6)

10
2

10
4

10
−10

10
0

10
10

10
20

Sample Size (N)

T
es
ti
n
g
f
(x

t)

Linear Regression (noisy, σ=10−6)

Gradient Descent
Stochastic Gradient Descent

Figure 7: Testing values v.s. number of data samples (N). Solve noisy (σ = 10−6) least
squares linear regression with batch and stochastic algorithms. Left: 5 epochs. Middle: 10
epochs. Right: 20 epochs.

the (sub)gradients are transmitted and aggregated in the hope that all workers will asymp-

totically obtain information from all data samples. While for the second class, the consensus

requirements are explicitly encoded as constraints, as given by the following formulation.

min
xs∈X

S∑
s=1

Ns∑
i=1

f(xs, ξi)

s.t. x1 = x2 = . . . = xS ,

(15)

The decentralized learning problem can be easily modeled by the consensus equality con-

straints.

We propose to solve problem (15) by ADMM in parallel. To take advantage of ADMM’s

capacities in dealing with separable functions, we divide the workers into two groups and

design a bipartite graph for communication. Bipartite graphs are general enough to sub-

sume many popular communication topologies. For example the master-slave setting is

an unbalanced bipartite graph where the master is on one part, and the slaves are on the

other. Trees and hypercubes are also bipartite examples that are very popular in general

distributed computation (Bertsekas and Tsitsiklis [1997]).

We focus on the convergence behavior of the proposed consensus ADMM algorithm

and we want to investigate how it will be affected by the various factors of our problem.

One of the central themes in distributed learning is the question “What is the optimal

16

communication topology?” To reach a definitive answer to this question, one still needs to

overcome major hurdles because the convergence behavior of ADMM in this context not

only depends on the communication topology, but also on the penalty parameter β used

in the augmented Lagrangian. The main focus of our work is to characterize the interplay

between these factors.

1.3 Outline and Main Contributions

In this dissertation we investigate the three main sources of the generalization error: the

approximation error, originated from the improper hypothesis space and problem models,

the estimation error, a quantity that depends on the variation and the number of data

examples, and the optimization error that directly depends on the specific optimization

technique being used in the learning process. A deeper study on the lower bounds of the

estimation and optimization errors leads to the concepts of optimal learning algorithms. A

statistically optimal algorithm achieves these lower bounds without considering the com-

putational cost. A computationally optimal algorithm could achieve the lower bounds with

only a single sweep of the data. Guided by these analysis, we are able to derive several scal-

able optimization algorithms for various machine learning problems, where the structures

of these problems are explored.

In Chapter II we first investigate stochastic methods for solving nonsmooth problems

in machine learning. Among these problems the support vector machine is one of the most

important examples that is widely used in many applications. This work is motivated by

the fact that the lower bound of the optimization error for minimizing nonsmooth functions

is O(1/
√

t), which is at least of the same order as the estimation error lower bound. We

therefore propose a stochastic smoothing method to approximate the original nonsmooth

function with a Lipschitz smooth surrogate. By carefully controlling the degree of the

smoothness and the approximation we are able to achieve the lower bounds for both the

estimation and optimization errors. The fast rates are confirmed by empirical comparisons,

in which the derived accelerated nonsmooth stochastic gradient descent (ANSGD) signifi-

cantly outperforms previous subgradient descent algorithms including SGD and averaged

17

SGD in several real-world applications.

In Chapter III we are interested in a common problem structure in machine learning:

the separability of the objective functions. This property subsumes the very general pattern

for the regularized risk minimization problems. We study a family of convex optimization

problems where our objective functions are stochastic and composite. Our starting point is

the classic alternating direction method of multipliers (ADMM) that provides a very flexible

framework in dealing with separabilities. The proposed stochastic ADMM algorithm takes

the advantages of both the scalability and the separability. It applies to a more general

class of convex and nonsmooth objective functions, beyond the smooth and separable least

squares loss used in lasso. A novel model named graph-guided SVM (GGSVM) is proposed

with which one can easily encode complex relations between features as a graph-lasso prior.

GGSVM can be easily solved by the stochastic ADMM, and it exhibits significantly higher

prediction accuracies than the traditional SVM without using the graph-lasso prior.

In Chapter IV we extend the scalability of stochastic algorithms to nonlinear machine

learning models, i.e. the kernelized support vector machine, where the problem is formu-

lated as a constrained dual quadratic optimization. The simplex constraint can be handled

by the classic Frank-Wolfe method (also known as the constrained gradient). The pro-

posed stochastic Frank-Wolfe method maintains a stochastic set of support vectors. In

each iteration the incoming random sample is greedily determined to be included in the

support vector set or not, and the updates on the dual variables are all of closed-forms.

SFW achieves comparable or even better accuracies than state-of-the-art batch and online

algorithms, and are significantly faster.

In Chapter V we consider the data-distributed deterministic learning. This is a very

important problem in many large-scale machine learning systems where data samples are

distributed over hundreds or thousands of general purpose servers. Locally accessing data

is typically faster than the remote access due to the latency of network communication

and limited bandwidth. We formulate the distributed learning problem as a consensus

constrained optimization problem and solve it using the general methodology of Alternat-

ing Direction Method of Multipliers (ADMM) (Glowinski and Marroco [1975], Gabay and

18

Mercier [1976]). We used bipartite communication topologies to take advantage of ADMM’s

capacities in dealing with separable functions. We identify the three degrees of freedom in

implementing this method: communication topology, penalty parameter β and the order for

updating variables. In order to investigate the joint effects of these factors, we provided an

analysis of ADMM’s convergence behavior. The analysis demonstrates that all the primal

and dual variables enjoy a linear rate of convergence. Due to the difficulty in obtaining

a very sharp rate from which the optimal β∗ can be derived, we proposed a strategy for

choosing β adaptively, with an underestimated initial guess β0 that is derived from our

bound. Numerical experiments show that β∗ is achieved at a point where the norms of

primal and dual residuals are close and decrease at the fastest rate. With β∗, the complete

bipartite and the master-slave graphs converge fastest, followed by bi-regular graphs. The

proposed strategy of adaptive β is very efficient.

In Chapter VI we conclude this dissertation and present several promising research

directions that deserve long-term investigations.

19

CHAPTER II

STOCHASTIC SMOOTHING

2.1 Introduction

In this chapter we investigate the nonsmoothness of functions in machine learning. This

property is a central issue in machine learning computations, since many important models

minimize nonsmooth convex functions. For example, using the nonsmooth hinge loss yields

sparse support vector machines; regressors can be made robust to outliers by using the

nonsmooth absolute loss other than the squared loss; the l1-norm is widely used in sparse

reconstructions. In spite of the attractive properties, nonsmooth functions are theoreti-

cally more difficult to optimize than smooth functions (Nemirovski and Yudin [1983]). In

this chapter we focus on minimizing nonsmooth functions where the functions are either

stochastic (stochastic optimization), or learning samples are provided incrementally (online

learning).

Smoothness and strong-convexity are typically certificates of the existence of fast global

solvers. Nesterov’s deterministic smoothing method (Nesterov [2005b]) deals with the diffi-

culty of nonsmooth functions by approximating them with smooth functions, for which op-

timal methods (Nesterov [2004]) can be applied. It converges as f(xt)−minx f(x) ≤ O(1/t)

after t iterations. If a nonsmooth function is strongly convex, this rate can be improved to

O(1/t2) using the excessive gap technique (Nesterov [2005a]).

In this chapter, we extend Nesterov’s smoothing method to the stochastic setting by

proposing a stochastic smoothing method for nonsmooth functions. Combining this with a

stochastic version of the optimal gradient descent method, we introduce and analyze a new

algorithm named Accelerated Nonsmooth Stochastic Gradient Descent (ANSGD), for a class

of functions that include the popular ML methods of interest.

To our knowledge ANSGD is the first stochastic first-order algorithm that can achieve

the optimal O(1/t) rate for minimizing nonsmooth loss functions without Polyak’s averaging

20

(Polyak and Juditsky [1992]). In comparison, the classic SGD converges in O(ln t/t) for non-

smooth strongly convex functions (Shalev-Shwartz et al. [2007]), and is usually not robust

(Nemirovski et al. [2009]). Even with Polyak’s averaging (Bach and Moulines [2011], Xu

[2011]), there are cases where SGD’s convergence rate still can not be faster than O(ln t/t)

(Shamir [2011]). Numerical experiments on real-world datasets also indicate that ANSGD

converges much faster in comparing with these state-of-the-art algorithms.

A perturbation-based smoothing method is recently proposed for stochastic nonsmooth

minimization (Duchi et al. [2011]). This work achieves similar iteration complexities as ours,

in a parallel computation scenario. In serial settings, ANSGD enjoys better and optimal

bounds.

In machine learning, many problems can be cast as minimizing a composition of a loss

function and a regularization term. Before proceeding to the algorithm, we first describe

a different setting of “composite minimizations” that we will pursue in this chapter, along

with our notations and assumptions.

2.1.1 A Different “Composite Setting”

In the classic black-box setting of first-order stochastic algorithms (Nemirovski et al. [2009]),

the structure of the objective function minx{f(x) = Eξf(x, ξ) : ξ ∼ P} is unknown. In

each iteration t, an algorithm can only access the first-order stochastic oracle and obtain a

subgradient f ′(x, ξt). The basic assumption is that f ′(x) = Eξf ′(x, ξ) for any x, where the

random vector ξ is from a fixed distribution P .

The composite setting (also known as splitting (Lions and Mercier [1979])) is an extension

of the black-box model. It was proposed to exploit the structure of objective functions.

Driven by applications of sparse signal reconstruction, it has gained significant interest from

different communities (Daubechies et al. [2004], Beck and Teboulle [2009], Nesterov [2007a]).

Stochastic variants have also been proposed recently (Lan [2010], Lan and Ghadimi [2011],

Duchi and Singer [2009], Hu et al. [2009], Xiao [2010]). A stochastic composite function

Φ(x) ≡ f(x)+g(x) is the sum of a smooth stochastic convex function f(x) = Eξf(x, ξ) and

a nonsmooth (but simple and deterministic) function g(). To minimize Φ, previous work

21

construct the following model iteratively:

〈∇f(xt, ξt), x− xt〉+ 1
ηt

D(x, xt) + g(x), (16)

where ∇f(xt, ξt) is a gradient, D(·, ·) is a proximal function (typically a Bregman diver-

gence) and ηt is a stepsize.

A successful application of the composite idea typically relies on the assumption that

model (16) is easy to minimize. If g() is very simple, e.g. ‖x‖1 or the nuclear norm, it is

straightforward to obtain the minimum in analytic forms. However, this assumption does

not hold for many other applications in machine learning, where many loss functions (not

the regularization term, here the nonsmooth g() becomes the nonsmooth loss function) are

nonsmooth, and do not enjoy separability properties (Wright et al. [2009]). This includes

important examples such as hinge loss, absolute loss, and ε-insensitive loss.

In this chapter, we tackle this problem by studying a new stochastic composite setting:

minx Φ(x) = f(x) + g(x), where loss function f() is convex and nonsmooth, while g() is

convex and Lg-Lipschitz smooth:

g(x) ≤ g(y) + 〈∇g(y), x− y〉+ Lg

2
‖x− y‖2. (17)

For clarity, in this chapter we focus on unconstrained minimizations. Without loss of

generality, we assume that both f() and g() are stochastic: f(x) = Eξf(x, ξ) and g(x) =

Eξg(x, ξ), where ξ has distribution P . If either one is deterministic, its ξ is then dropped.

To make our algorithm and analysis more general, we assume that g() is µ-strongly convex:

∀x, y,

g(x) ≥ g(y) + 〈∇g(y), x− y〉+ µ

2
‖x− y‖2. (18)

If it is not strongly convex, one can simply take µ = 0.

The main idea of our algorithm again stems from exploiting the structures of f() and

g(). In Section 2.2 we propose to form a smooth stochastic approximation of f(), such

that the optimal methods (Nesterov [2004]) can be applied to attain optimal convergence

rates. The convergence of our proposed algorithm is analyzed in Section 3.3, and a batch-

to-online conversion is also proposed. Two popular machine learning problems are chosen

as our examples in Section 2.4, and numerical evaluations are presented in Section 5.6.

22

2.2 Approach

2.2.1 Stochastic Smoothing Method

An important breakthrough in nonsmooth minimization was made by Nesterov in a series

of works (Nesterov [2005b,a, 2007b]). By exploiting function structures, Nesterov shows

that in many applications, minimizing a well-structured nonsmooth function f(x) can be

formulated as an equivalent saddle-point form

min
x∈X

f(x) = min
x∈X

max
u∈U

[
〈Ax, u〉 −Q(u)

]
, (19)

where u ∈ Rm, U ⊆ Rm is a convex set, A is a linear operator mapping RD → Rm and

Q(u) is a continuous convex function. Inserting a non-negative ζ-strongly convex function

ω(u) in (19) one obtains a smooth approximation of the original nonsmooth function

f̂(x, γ) ≡ max
u∈U

[
〈Ax, u〉 −Q(u)− γω(u)

]
, (20)

where γ > 0 is a fixed smoothness parameter which is crucial in the convergence analysis.

The key property of this approximation is:

Lemma 1. (Nesterov [2005b])Function f̂(x, γ) is convex and continuously differentiable,

and its gradient is Lipschitz continuous with constant Lf̂ ≡
‖A‖2

γζ , where

‖A‖ ≡ max
x,u
{〈Ax, u〉 : ‖x‖ = 1, ‖u‖ = 1}. (21)

Nesterov’s smoothing method was originally proposed for deterministic optimization.

A major drawback of this method is that the number of iterations N must be known

beforehand, such that the algorithm can set a proper smoothness parameter γ = O
(2‖A‖

N+1
)

to ensure convergence. This makes it unsuitable for algorithms that runs forever, or whose

number of iterations is not known. Following his work we propose to extend this smoothing

method to stochastic optimization. Our stochastic smoothing differs from the deterministic

one in the operator A and smoothness parameter γ, where both will be time-varying.

We assume that the nonsmooth part f(x, ξ) of the stochastic composite function Φ()

is well structured, i.e. for a specific realization ξt, it has an equivalent form like the max

function in (19):

f(x, ξt) = max
u∈U

[
〈Aξtx, u〉 −Q(u)

]
, (22)

23

where Aξt is a stochastic linear operator associated with ξt. We construct a smooth ap-

proximation of this function as:

f̂(x, ξt, γt) ≡ max
u∈U

[
〈Aξtx, u〉 −Q(u)− γtω(u)

]
, (23)

where γt is a time-varying smoothness parameter only associated with iteration index t, and

is independent of ξt. Function ω() is non-negative and ζ-strongly convex. Due to Lemma

1, f̂(x, ξt, γt) is ‖Aξt
‖2

γtζ -Lipschitz smooth. It follows that

Lemma 2. ∀x, y, t, Eξf̂(x, ξ, γt) ≤ Eξf̂(y, ξ, γt)+Eξ〈∇f̂(y, ξ, γt), x−y〉+ Eξ‖Aξ‖2

γtζ ‖x−y‖2.

We have the following observation about our composite objective Φ(), which relates the

reduction of the original and approximated function values.

Lemma 3. For any x, xt, t,

Φ(xt)− Φ(x) ≤ Eξ

[
f̂(xt, ξ, γt) + g(xt, ξ)

]
− Eξ

[
f̂(x, ξ, γt) + g(x, ξ)

]
+ γtDU , (24)

where DU ≡ maxu∈U ω(u).

Proof.

Φ(xt)− Φ(x)

= [f(xt)− f(x)] + [g(xt)− g(x)]

= Eξ [f(xt, ξ)] + Eξ [−f(x, ξ) + g(xt, ξ)− g(x, ξ)]

= Eξ max
u∈U

{[
〈Aξxt, u〉 −Q(u)− γtω(u)

]
+ γtω(u)

}
+ Eξ [−f(x, ξ) + g(xt, ξ)− g(x, ξ)]

≤ Eξ max
u∈U

[
〈Aξxt, u〉 −Q(u)− γtω(u)

]
+ max

u∈U

[
γtω(u)

]
+ Eξ [−f(x, ξ) + g(xt, ξ)− g(x, ξ)]

= Eξ

[
f̂(xt, ξ, γt)

]
+ γtDU + Eξ [−f(x, ξ) + g(xt, ξ)− g(x, ξ)]

≤ Eξ

[
f̂(xt, ξ, γt)− f̂(x, ξ, γt)

]
+ Eξ [g(xt, ξ)− g(x, ξ)] + γtDU .

(25)

The last inequality is due to the non-negativity of ω() and definitions of f (22) and f̂

(23).

24

2.2.2 Accelerated Nonsmooth SGD (ANSGD)

We are now ready to present our algorithm ANSGD (Algorithm 1). This stochastic algorithm

is obtained by applying Nesterov’s optimal method to our smooth surrogate function, and

thus has a similar form to that of his original deterministic method (Nesterov [2004](p.78)).

However, our convergence analysis is more straightforward, and does not rely on the concept

of estimate sequences. Hence it is easier to identify proper series γt, ηt, αt and θt that are

crucial in achieving fast rates of convergence. These series will be determined in our main

results (Thm.5 and 6).

Algorithm 1 Accelerated Nonsmooth Stochastic Gradient Descent (ANSGD)
INPUT: series γt, ηt, θt ≥ 0 and 0 ≤ αt ≤ 1;
OUTPUT: xt+1;
0. Initialize x0 and v0;
for t = 0, 1, 2, . . . do

1. yt ← (1−αt)(µ+θt)xt+αtθtvt

µ(1−αt)+θt

2. f̂t+1(x)← max
u∈U

[
〈Aξt+1x, u〉 −Q(u)− γt+1ω(u)

]
3. xt+1 ← yt − ηt

[
∇f̂t+1(yt) +∇gt+1(yt)

]
4. vt+1 ←

θtvt+µyt−[∇f̂t+1(yt)+∇gt+1(yt)]
µ+θt

end for

2.3 Convergence Analysis

To clarify our presentation, we use Table 1 to list some notations that will be used through-

out the chapter.

Table 1: Some notations.

Symbol Meaning
f̂t(x), gt(x) f̂(x, ξt, γt), g(x, ξt)
∇f̂t(x), ∇gt(x) ∇f̂(x, ξt, γt), ∇g(x, ξt)

Lt Lg + ‖Aξt
‖2

γtζ

σt(x) [∇f̂t(x) +∇gt(x)]− Eξt [∇f̂t(x) +∇gt(x)]
σ2 Emaxt ‖σt+1(yt)‖2
∆t Eξt

[
f̂t(xt) + gt(xt)

]
− Eξt

[
f̂t(x) + g(x)

]
Γt+1 〈σt+1(yt), αtx + (1− αt)xt − yt〉
D2

t
1
2E‖x− vt‖2

25

Our convergence rates are based on the following main lemma, which bounds the pro-

gressive reduction ∆t of the smoothed function value. Actually Line 1, 3, and 4 of Alg.1

are also derived from the proof of this lemma.

Lemma 4. Let γt be monotonically decreasing. Applying algorithm ANSGD to nonsmooth

composite function Φ(), we have ∀x and ∀t ≥ 0,

∆t+1 ≤ (1− αt)∆t + (1− αt)(γt − γt+1)DU+

Γt+1 + αt

2

[
θt‖x− vt‖2 − (µ + θt)‖x− vt+1‖2

]
+

ηtpq +
[

αt

2(µ + θt)
+ Lt+1

2
η2

t − ηt

]
q2

(26)

where p ≡ ‖σt+1(yt)‖ and q ≡ ‖∇f̂t+1(yt) +∇gt+1(yt)‖.

Before proceeding to the proof of this main lemma, we present two auxiliary results.

For clarity, in the following lemmas and proofs we use the following notations to denote the

smoothly approximated composite function and its expectation:

Ft(x, γt) ≡ f̂t(x) + gt(x) = f̂(x, ξt, γt) + g(x, ξt) (27)

and

F (x, γt) ≡ EξtFt(x, γt). (28)

The first lemma is on the smoothly approximated function and the smoothness parameter

γt.

Lemma 5. If γt is monotonically decreasing with t, for any x and t ≥ 0,

F (x, γt) ≤ F (x, γt+1) ≤ F (x, γt) + (γt − γt+1)DU , (29)

where DU ≡ maxu∈U ω(u).

Proof. The left inequality is obvious, since γt ≥ γt+1 and ω(u) is nonnegative. For the right

26

inequality,

F (x, γt+1)− F (x, γt)

= Eξf̂(x, ξ, γt+1)− Eξf̂(x, ξ, γt)

= max
u∈U

[〈EξAξx, u〉 −Q(u)− γt+1ω(u)]−max
u∈U

[〈EξAξx, u〉 −Q(u)− γtω(u)]

≤ max
u∈U

{[
〈EξAξx, u〉 −Q(u)− γt+1ω(u)

]
−
[
〈EξAξx, u〉 −Q(u)− γtω(u)

]}
= max

u∈U
[(γt − γt+1)ω(u)] .

(30)

The second lemma is about proximal methods using Bregman divergence as prox-

functions, which is a direct result of optimality conditions. It appeared in Lan and Ghadimi

[2011](Lemma 2), and is an extension of the “3-point identity” (Chen and Teboulle [1993](Lemma

3.1)).

Lemma 6. (Lan and Ghadimi [2011]) Let l(x) be a convex function. Let scalars s1, s2 ≥ 0.

For any vectors u and v, denote their Bregman divergence as D(u, v). If ∀x, u, v

x∗ = arg min
x

l(x) + s1D(u, x) + s2D(v, x), (31)

then

l(x) + s1D(u, x) + s2D(v, x) ≥ l(x∗) + s1D(u, x∗) + s2D(v, x∗) + (s1 + s2)D(x∗, x). (32)

We are now ready to prove Lemma 4.

Proof of Lemma 4. Due to Lemma 2 and Lipschitz-smoothness of g(x), F (x, γt+1) has a

27

Lipschitz smooth constant LFt+1 ≡
Eξ‖Aξ‖2

γt+1ζ + Lg. It follows that

F (xt+1, γt+1)

≤ F (yt, γt+1) + 〈∇F (yt, γt+1), xt+1 − yt〉+
LFt+1

2
‖xt+1 − yt‖2

= (1− αt)F (yt, γt+1) + αtF (yt, γt+1) + 〈∇F (yt, γt+1), xt+1 − yt〉+
LFt+1

2
‖xt+1 − yt‖2

= (1− αt)F (yt, γt+1) + 〈∇F (yt, γt+1), (1− αt)(xt − yt)〉+

αtF (yt, γt+1) + 〈∇F (yt, γt+1), xt+1 − yt − (1− αt)(xt − yt)〉+
LFt+1

2
‖xt+1 − yt‖2

≤ (1− αt)F (xt, γt+1) + αtF (yt, γt+1) + 〈∇F (yt, γt+1), xt+1 − yt − (1− αt)(xt − yt)〉+
LFt+1

2
‖xt+1 − yt‖2,

(33)

where the last inequality is due to the convexity of F (). Subtracting F (x, γt+1) from both

sides of the above inequality we have:

F (xt+1, γt+1)− F (x, γt+1) ≤ (1− αt)F (xt, γt+1)− F (x, γt+1)

+ αtF (yt, γt+1) + 〈∇F (yt, γt+1), xt+1 − yt − (1− αt)(xt − yt)〉+
LFt+1

2
‖xt+1 − yt‖2

≤ (1− αt)
[
F (xt, γt) + (γt − γt+1)DU

]
− F (x, γt+1)

+ αtF (yt, γt+1) + 〈∇F (yt, γt+1), xt+1 − yt − (1− αt)(xt − yt)〉+
LFt+1

2
‖xt+1 − yt‖2

≤ (1− αt)
[
F (xt, γt)− F (x, γt)

]
− αtF (x, γt+1) + (1− αt)(γt − γt+1)DU

+ αtF (yt, γt+1) + 〈∇F (yt, γt+1), xt+1 − yt − (1− αt)(xt − yt)〉+
LFt+1

2
‖xt+1 − yt‖2,

(34)

where the last two inequalities are due to Lemma 5.

Denoting ∆t ≡ F (xt, γt)− F (x, γt) and σt(x) ≡ ∇Ft(x, γt)−∇F (x, γt) we can rewrite

28

(34) as:

∆t+1 − (1− αt)∆t − (1− αt)(γt − γt+1)DU

≤ αtF (yt, γt+1)− αtF (x, γt+1) + 〈∇F (yt, γt+1), xt+1 − yt − (1− αt)(xt − yt)〉

+
LFt+1

2
‖xt+1 − yt‖2

(18)
≤ αtF (yt, γt+1)− αt

[
F (yt, γt+1) + 〈∇F (yt, γt+1), x− yt〉+ µ

2
‖x− yt‖2

]
+

〈∇F (yt, γt+1), xt+1 − yt − (1− αt)(xt − yt)〉+
LFt+1

2
‖xt+1 − yt‖2

= −αt

[
〈∇Ft+1(yt, γt+1)− σt+1(yt), x− yt〉+ µ

2
‖x− yt‖2

]
+

〈∇F (yt, γt+1), xt+1 − yt − (1− αt)(xt − yt)〉+
LFt+1

2
‖xt+1 − yt‖2

= −αt

[
〈∇Ft+1(yt, γt+1), x− yt〉+ µ

2
‖x− yt‖2 + θt

2
‖x− vt‖2

]
+ αtθt

2
‖x− vt‖2+

〈∇F (yt, γt+1), xt+1 − yt − (1− αt)(xt − yt)〉+
LFt+1

2
‖xt+1 − yt‖2 + 〈σt+1(yt), αt(x− yt)〉

≤ −αt

[
〈∇Ft+1(yt, γt+1), vt+1 − yt〉+ µ

2
‖vt+1 − yt‖2 + θt

2
‖vt+1 − vt‖2 + µ + θt

2
‖x− vt+1‖2

]
+ αtθt

2
‖x− vt‖2 + 〈∇F (yt, γt+1), xt+1 − yt − (1− αt)(xt − yt)〉+

LFt+1

2
‖xt+1 − yt‖2

+ 〈σt+1(yt), αt(x− yt)〉,

(35)

where the last inequality is due to Lemma 6 (taking D(u, v) = 1
2‖u−v‖2) and the definition

of vt+1:

vt+1 ≡ arg min
x
〈∇Ft+1(yt, γt+1), x− yt〉+ µ

2
‖x− yt‖2 + θt

2
‖x− vt‖2. (36)

Minimizing the above directly leads to Line 4 of Alg.1:

vt+1 = θtvt + µyt −∇Ft+1(yt, γt+1)
µ + θt

. (37)

Base on this updating rule, it is easy to verify the following inequality:

− αt

[
µ

2
‖vt+1 − yt‖2 + θt

2
‖vt+1 − vt‖2

]
≤ −αt

2

[
µθt

µ + θt
‖vt − yt‖2 + 1

µ + θt
‖∇Ft+1(yt, γt+1)‖2

]
≤ −αt

2 (µ + θt)
‖∇Ft+1(yt, γt+1)‖2.

(38)

29

To set xt+1 (Line 3 of Alg.1), we follow the classic stochastic gradient descent, such that

‖xt+1−yt‖2 can be bounded in terms of ‖∇Ft+1(yt, γt+1)‖2: xt+1 = yt−ηt∇Ft+1(yt, γt+1).

Hence

‖xt+1 − yt‖2 = η2
t ‖∇Ft+1(yt, γt+1)‖2, (39)

and

〈∇F (yt, γt+1), xt+1 − yt〉 = 〈∇Ft+1(yt, γt+1)− σt+1(yt), xt+1 − yt〉

≤ −ηt‖∇Ft+1(yt, γt+1)‖2 + ηt‖σt+1(yt)‖ · ‖∇Ft+1(yt, γt+1)‖.
(40)

Inserting (37,38,39 and 40) into (35) we have

∆t+1 ≤ (1− αt)∆t + (1− αt)(γt − γt+1)DU+
αt

2

[
θt‖x− vt‖2 − (µ + θt)‖x− vt+1‖2

]
+ 〈σt+1(yt), αt(x− yt) + (1− αt)(xt − yt)〉+

ηt‖σt+1(yt)‖ · ‖∇Ft+1(yt, γt+1)‖+
[

αt

2(µ + θt)
+ Lt+1

2
η2

t − ηt

]
‖∇Ft+1(yt, γt+1)‖2+〈

∇Ft+1(yt, γt+1), −αtθt(vt − yt)
µ + θt

− (1− αt)(xt − yt)
〉

.

(41)

Taking the last term −αtθt(vt−yt)
µ+θt

− (1 − αt)(xt − yt) = 0 recovers the updating rule of yt

(Line 1 of Alg.1). Hence our result follows.

2.3.1 How to Choose Stepsizes ηt

In the RHS of (26), nonnegative scalars p, q ≥ 0 are data-dependent, and could be arbitrarily

large. Hence we need to set proper stepsizes ηt such that the last two terms in (26) are

non-positive. One might conjecture that: there exist a series ct ≥ 0 such that

ηtpq +
[

αt

2(µ + θt)
+ Lt+1

2
η2

t − ηt

]
q2 ≤ ctp

2. (42)

It is easy to verify that if we take ηt = αt
µ+θt

and any series ct ≥ αt
2(µ+θt−αtLt+1) ≥ 0, then

(42) is satisfied. To retain a tight bound, we take

ct = αt

2(µ + θt − αtLt+1)
. (43)

Taking expectation on both sides of (26) and noticing that Eξt+1|ξ[t]Γt+1 = 0, Eξt+1ct ≤
αt

2(µ+θt−αtEξt+1 Lt+1) due to Jensen’s inequality, we have

30

Lemma 7. ∀x and ∀t ≥ 0,

E∆t+1 ≤ (1− αt)E∆t + αtθtD
2
t − αt(µ + θt)D2

t+1

+ αt

2(µ + θt − αtELt+1)
σ2 + (1− αt)(γt − γt+1)DU ,

(44)

The optimal convergence rates of our algorithm differs according to the fact of µ (positive

or not). They are presented separately in the following two subsections, where the choices

of γt, θt, αt will also be determined.

2.3.2 Optimal Rates for Composite Minimizations when µ = 0

When µ = 0, g() is only convex and Lg-Lipschitz smooth, but not assumed to be strongly

convex.

Theorem 5. Take αt = 2
t+2 , γt+1 = αt, θt = Lgαt + Ω√

αt
+ E‖Aξ‖2

ζ and ηt = αt
θt

in Alg.1,

where Ω is a constant. We have ∀x and ∀t ≥ 0,

E [Φ(xt+1)− Φ(x)] ≤ 4LgD2

(t + 2)2 + 2E‖Aξ‖2D2/ζ + 4DU
t + 2

+
√

2(ΩD2 + σ2/Ω)√
t + 2

, (45)

where D2 ≡ maxi D2
i .

Proof. It is easy to verify that by taking αt = 2
t+2 , γt+1 = αt and θt = Lgαt + E‖Aξ‖2

ζ + Ω√
αt

,

we have ∀t > 1:

(1− αt−1)(γt−1 − γt) ≤ γt − γt+1, (46)

and

(1− αt)
αt−1

2(θt−1 − αt−1ELt)
≤ αt

2(θt − αtELt+1)
. (47)

Next we define and bound weighted sums of D2
t that will be used later.

Ψ(t) := [αtθt − (1− αt)αt−1θt−1] D2
t + (1− αt) [αt−1θt−1 − (1− αt−1)αt−2θt−2] D2

t−1+

(1− αt)(1− αt−1) [αt−2θt−2 − (1− αt−2)αt−3θt−3] D2
t−2 + · · · ,

(48)

where replacing αt and θt by their definitions we have ∀t:

αtθt− (1−αt)αt−1θt−1 = 4Lg

(t + 1)2(t + 2)2 + 2E‖Aξ‖2/ζ

(t + 1)(t + 2)
+
√

2
[
(t + 1)

√
t + 2− t

√
t + 1

]
Ω

(t + 1)(t + 2)
(49)

31

Substituting (49) into (48) and using invoking the definition of D2 we have ∀t:

Ψ(t) ≤ 4LgD2
[1

(t + 1)2(t + 2)2 + t(t + 1)
(t + 1)(t + 2)

1
t2(t + 1)2 + (t− 1)t

(t + 1)(t + 2)
1

(t− 1)2t2 + · · ·
]

+ 2E‖Aξ‖2D2

ζ

[1
(t + 1)(t + 2)

+ t(t + 1)
(t + 1)(t + 2)

1
t(t + 1)

+ (t− 1)t
(t + 1)(t + 2)

1
(t− 1)t

+ · · ·
]

+
√

2ΩD2
[(t + 1)

√
t + 2− t

√
t + 1

(t + 1)(t + 2)
+ t(t + 1)

(t + 1)(t + 2)
t
√

t + 1− (t− 1)
√

t

t(t + 1)
+

(t− 1)t
(t + 1)(t + 2)

(t− 1)
√

t− (t− 2)
√

t− 1
(t− 1)t

+ · · ·
]

= 4LgD2

(t + 1)(t + 2)

[(1
t + 1

− 1
t + 2

)
+
(1

t
− 1

t + 1

)
+
(1

t− 1
− 1

t

)
+ · · ·

]
+ 2E‖Aξ‖2D2

ζ

[1
(t + 1)(t + 2)

+ 1
(t + 1)(t + 2)

+ 1
(t + 1)(t + 2)

+ · · ·
]

+
√

2ΩD2

(t + 1)(t + 2)

[
(t + 1)

√
t + 2− t

√
t + 1 + t

√
t + 1− (t− 1)

√
t + (t− 1)

√
t− (t− 2)

√
t− 1 + · · ·

]
≤ αtθtD

2.

(50)

Since µ = 0, by recursively applying (44) and 1− α0 = 0 we have

E∆t+1 ≤ (1− αt)E∆t + αtθt

(
D2

t −D2
t+1

)
+ αt

2(θt − αtELt+1)
σ2 + (1− αt)(γt − γt+1)DU

≤ (1− αt)(1− αt−1)E∆t−1 + αtθt

(
D2

t −D2
t+1

)
+ (1− αt) αt−1θt−1

(
D2

t−1 −D2
t

)
+

2αt

2(θt − αtELt+1)
σ2 + 2(1− αt)(γt − γt+1)DU

≤ · · ·

(48)
≤

t∏
i=0

(1− αi)∆0 + Ψ(t) + (t + 1)αt

2(θt − αtELt+1)
σ2 + (t + 1)(1− αt)(γt − γt+1)DU

(50)
≤ αtθtD

2 + σ2

θt − αtELt+1
+ 2DU

t + 2

=
[
α2

tELt+1 + Ω
√

αt

]
D2 +

√
αtσ

2

Ω
+ 2DU

t + 2
.

(51)

Combining with Lemma 3 we have ∀x

E [Φ(xt+1)− Φ(x)] ≤
[
α2

tELt+1 + Ω
√

αt

]
D2 +

√
αtσ

2

Ω
+ 2DU

t + 2
+ γt+1DU

≤ α2
t LgD2 +

(
γt+1 + 2

t + 2

)
DU + α2

t

E‖Aξ‖2

γt+1ζ
D2 +

√
αt

(
ΩD2 + σ2

Ω

)
.

(52)

32

Taking γt+1 = αt = 2
t+2 our result follows.

In this result, the variance bound is optimal up to a constant factor (Agarwal et al.

[2012]). The dominating factor is still due to the stochasticity, but not affected by the

nonsmoothness of f(). Taking the parameter Ω = σ/D, this last term becomes 2
√

2Dσ√
t+2 . This

bound is better than that of stochastic gradient descent or stochastic dual averaging (Dekel

et al. [2010]) for minimizing L-Lipschitz smooth functions, whose rate is O
(

LD2
0

t + D2
0+σ2
√

t

)
;

without the smooth function g(), our bound is of the same order as it, keeping in mind

that our rate is for nonsmooth minimizations. This fact underscores the potential of using

stochastic optimal methods for nonsmooth functions. In a time budget t, the optimization

errors for both smooth function g and nonsmooth function f are optimal up to constant

factors, according to Definition 2, Algorithm 1 is computationally optimal.

The diminishing smoothness parameter γt = 2
t+2 indicates that initially a smoother

approximation is preferred, such that the solution does not change wildly due to the non-

smoothness and stochasticity. Eventually the approximated function should be closer and

closer to the original nonsmooth function, such that the optimality can be reached. Some

concrete examples are given in Fig.8.

The E‖Aξ‖2 in our bound is a theoretical constant. In Sec.2.4 we demonstrate a sampling

method, and it turns out to work quite well in estimating E‖Aξ‖2.

2.3.3 Nearly Optimal Rates for Strongly Convex Minimizations

When µ > 0, g() is strongly convex, and the convergence rate of ANSGD can be improved

to O(1/t).

Theorem 6. Take αt = 2
t+1 , γt+1 = αt, θt = Lgαt + µ

2αt
+ E‖Aξ‖2

ζ − µ and ηt = αt
µ+θt

in

Alg.1. Denote

C ≡ max
{

4E‖Aξ‖2

ζµ
, 2
(

Lg

µ

)1/3
}

. (53)

We have ∀x and ∀t ≥ 0,

E [Φ(xt+1)− Φ(x)] ≤ 6.58LgD̃2

t(t + 1)
+ B + 4DU

t + 1
+ σ2

µ(t + 1)
, (54)

33

where

B ≡


2E‖Aξ‖2D̃2/ζ

t+1 if 0 ≤ t < C,

2(C−2)E‖Aξ‖2D̃2/ζ
t(t+1) if t ≥ C,

(55)

and D̃2 ≡ max0≤i≤min{t,C} D2
i .

Proof. It is easy to verify that by taking αt = 2
t+1 , we have ∀t ≥ 1

(1− αt−1)(γt−1 − γt) ≤ γt − γt+1. (56)

and

(1− αt)α2
t−1 ≤ α2

t (57)

Denote

St := αtθt − (1− αt)(αt−1θt−1 + µαt−1). (58)

Taking θt = Lgαt + µ
2αt

+ E‖Aξ‖2

ζ − µ it is easy to verify that ∀t ≥ 1:

St = 4Lg
1

(t + 1)2t2 + 2E‖Aξ‖2

ζ

[1
t
− 1

t + 1

]
− µ

t + 1
. (59)

We want to find the smallest iteration index C such that: when t ≥ C, St ≤ 0. Without

any knowledge about Lg and E‖Aξ‖2, minimizing St w.r.t t does not yield an analytic form

of C. Hence we simply let

4Lg
1

(t + 1)2t2 ≤
µ

2(t + 1)
, (60)

and
2E‖Aξ‖2

ζ

[1
t
− 1

t + 1

]
≤ µ

2(t + 1)
. (61)

Inequality (60) is satisfied when

t ≥ 2
(

Lg

µ

)1/3
, (62)

and (61) is satisfied when

t ≥ 4E‖Aξ‖2

ζµ
. (63)

Combining these two we reach the definition of C in (53). Next we proceed to prove the

bound.

34

As defined in the theorem, we denote D̃2 = max0≤i≤min(t,C) D2
i . By recursively applying

(44) for 0 ≤ i ≤ t and noticing that St ≤ 0 ∀t ≥ C, 1− α1 = 0 we have

E∆t+1
(56)
≤

t∏
i=0

(1− αi)∆0 + (t + 1)(1− αt)(γt − γt+1)DU+

[
(αtθt)D2

t − (αtθt + µαt)D2
t+1

]
+

(1− αt)
[
(αt−1θt−1)D2

t−1 − (αt−1θt−1 + µαt−1)D2
t

]
+

(1− αt)(1− αt−1)
[
(αt−2θt−2)D2

t−2 − (αt−2θt−2 + µαt−2)D2
t−1

]
+

· · ·+
t∏

i=1
(1− αi)

[
(α0θ0)D2

0 − (α0θ0 + µα0)D2
1

]
+

σ2

µ

[
α2

t + (1− αt)α2
t−1 + · · ·+

t∏
i=1

(1− αi)α2
0

]
(57)
≤ 2DU

t + 1
+ D̃2

t∏
i=C−1

(1− αi) [αC−2θC−2 − (1− αC−2)(αC−3θC−3 + µαC−3)] +

D̃2
t∏

i=C−2
(1− αi) [αC−3θC−3 − (1− αC−3)(αC−4θC−4 + µαC−4)] +

· · ·+ D̃2
t∏

i=2
(1− αi) [α1θ1 − (1− α1)(α0θ0 + µα0)] + tα2

t σ2

µ

(64)

Applying (59) by ignoring the − µ
t+1 term to the above inequality we can bound the coeffi-

cients of Lg and E‖Aξ‖2

ζ parts separately as follows.

When t ≥ C, for the Lg part:∏t
i=C−1(1− αi)

(C − 1)2(C − 2)2 +
∏t

i=C−2(1− αi)
(C − 2)2(C − 3)2 +

∏t
i=C−3(1− αi)

(C − 3)2(C − 4)2 + · · ·+
∏t

i=2(1− αi)
22 · 12

= 1
(t + 1)t

[1
(C + 2)(C + 1)

+ 1
(C + 1)C

+ 1
C(C − 1))

+ · · ·+ 1
2 · 1

]

≤ 1
(t + 1)t

C+1∑
i=1

1
i2 ≤

π2

6t(t + 1)

(65)

35

For the E‖Aξ‖2

ζ part:
t∏

i=C−1
(1− αi)

(1
C − 2

− 1
C − 1

)
+

t∏
i=C−2

(1− αi)
(1

C − 3
− 1

C − 2

)
+

· · ·+
t∏

i=2
(1− αi)

(
1− 1

2

)

= C − 1
(t + 1)t

− C − 2
(t + 1)t

+ C − 2
(t + 1)t

− C − 3
(t + 1)t

+ · · ·+ 2
(t + 1)t

− 1
(t + 1)t

= C − 1
(t + 1)t

− 1
(t + 1)t

= C − 2
t(t + 1)

.

(66)

Combining with Lemma 3 and taking γt+1 = αt = 2
t+1 we have ∀x:

E [Φ(xt+1)− Φ(x)] ≤ 2DU
t + 1

+ 2π2LgD̃2

3t(t + 1)
+ 2(C − 2)E‖Aξ‖2D̃2/ζ

t(t + 1)
+ σ2

µ(t + 1)
+ γt+1DU

= 2π2LgD̃2

3t(t + 1)
+ 2(C − 2)E‖Aξ‖2D̃2/ζ

t(t + 1)
+ 4DU

t + 1
+ σ2

µ(t + 1)
.

(67)

When 0 ≤ t ≤ C, one can simply put C = t in the above, and this completes our proof.

Note that C is the smallest iteration index for which one can retain 1/t2 rates for the

E‖Aξ‖2 part (B). Without any knowledge about Lg, µ and E‖Aξ‖2, one can set a parameter

Ω and take θt = Lgαt + µ
2αt

+ E‖Aξ‖2

Ωζ − µ in the algorithm. In our experiments, we observe

that one can take Ω fairly large (of O(E‖Aξ‖2)), meaning that C can be very small (O(1)),

and B is O(1
t2) for all t. In this sense, strongly convex ANSGD is almost parameter-free.

Without the O(1/t) rate of DU , all terms in our bound are optimal. This is why our rate is

called “nearly” optimal. In practice, DU is usually small, and it will be dominated by the

last term σ2

µ(t+1) .

2.3.4 Batch-to-Online Conversion

The performance of an online learning (online convex minimization) algorithm is typically

measured by regret, which can be expressed as

R(t) ≡
t−1∑
i=0

[Φ(xi, ξi+1)− Φ(x∗
t , ξi+1)] , (68)

where x∗
t ≡ arg minx

∑t−1
i=0 [Φ(x, ξi+1)]. In the learning theory literature, many approaches

are proposed which use online learning algorithms for batch learning (stochastic optimiza-

tion), called “online-to-batch” (O-to-B) conversions. For convex functions, many of these

36

approaches employ an “averaged” solution as the final solution.

On the contrary, we show that stochastic optimization algorithms can also be used

directly for online learning. This “batch-to-online” (B-to-O) conversion is almost free of any

additional effort: under i.i.d. assumptions of data, one can use any stochastic optimization

algorithm for online learning.

Proposition 1. For any t ≥ 0,

Eξ[t]R(t) ≤
t−1∑
i=0

Eξ[i] [Φ(xi)− Φ(x∗)] + Eξ[t]

t−1∑
i=0

[Φ(x∗
t)− Φ(x∗

t , ξi+1)] (69)

where x∗ ≡ arg minx Φ(x) and x∗
t ≡ arg minx

∑t−1
i=0 [Φ(x, ξi+1)].

Proof.

Eξ[t]R(t) = Eξ[t]

t−1∑
i=0

[Φ(xi, ξi+1)− Φ(x∗
t , ξi+1)]

= Eξ[t]

t−1∑
i=0

{
[Φ(xi, ξi+1)− Φ(x∗)] + [Φ(x∗)− Φ(x∗

t , ξi+1)]
}

=
t−1∑
i=0

Eξ[i+1] [Φ(xi, ξi+1)− Φ(x∗)] + Eξ[t]

t−1∑
i=0

[Φ(x∗)− Φ(x∗
t)]

+ Eξ[t]

t−1∑
i=0

[Φ(x∗
t)− Φ(x∗

t , ξi+1)]

≤
t−1∑
i=0

Eξ[i+1] [Φ(xi, ξi+1)− Φ(x∗)] + Eξ[t]

t−1∑
i=0

[Φ(x∗
t)− Φ(x∗

t , ξi+1)]

=
t−1∑
i=0

Eξ[i] [Φ(xi)− Φ(x∗)] + Eξ[t]

t−1∑
i=0

[Φ(x∗
t)− Φ(x∗

t , ξi+1)] .

When Φ() is convex, the second term in (69) can be bounded by applying standard

results in uniform convergence (e.g. Boucheron et al. [2005]):
∑t−1

i=1 Φ(x∗
t) − Φ(x∗

t , ξi+1) =

O(
√

t). Together with summing up the RHS of (45), we can obtain an O(
√

t) regret bound.

When Φ() is strongly convex, the second term in (69) can be bounded using (Shalev-Shwartz

et al. [2009]):
∑t−1

i=1 Φ(x∗
t)− Φ(x∗

t , ξi+1) = O(ln t). Together with summing up the RHS of

(54), an O(ln t) regret bound is achieved. The O(
√

t) and O(ln t) regret bounds are known

Using our proposed ANSGD for online learning by B-to-O achieves the same (optimal)

regret bounds as state-of-the-art algorithms designated for online learning. However, using

37

O-to-B, one can only retain an O(ln t/t) rate of convergence for stochastic strongly convex

optimization. From this perspective, O-to-B is inferior to B-to-O. The sub-optimality of

O-to-B is also discussed in Hazan and Kale [2011].

2.4 Examples

In this section, two nonsmooth functions are given as examples. We will show how these

functions can be stochastically approximated, and how to calculate parameters used in our

algorithm.

2.4.1 Hinge Loss SVM Classification

Hinge loss is a convex surrogate of the 0 − 1 loss. Denote a sample-label pair as ξ ≡

{s, l} ∼ P , where s ∈ RD and l ∈ R. Hinge loss can be expressed as fhinge(x) ≡ max{0, 1−

lsT x}. It has been widely used for SVM classifiers where the objective is min Φ(x) =

minEξfhinge(x) + λ
2‖x‖

2. Note that the regularization term g(x) = λ
2‖x‖

2 is λ-strongly

convex, hence according to Thm.6, ANSGD enjoys O(1/(λt)) rates. Taking ω(u) = 1
2‖u‖

2

in (23), it is easy to check that the smooth stochastic approximation of hinge loss is

f̂hinge(x, ξt, γt) = max
0≤u≤1

{
u
(
1− ltsT

t x
)
− γt

u2

2

}
. (70)

This maximization is simple enough such that we can obtain an equivalent smooth repre-

sentation:

f̂hinge(x, ξt, γt) =



0 if ltsT
t x ≥ 1,

(1−ltsT
t x)2

2γt
if 1− γt ≤ ltsT

t x < 1,

1− ltsT
t x− γt

2 if ltsT
t x < 1− γt.

(71)

Several examples of f̂hinge with varying γt are plotted in Fig.8(left) in comparing with the

hinge loss.

Here u is a scalar, hence it is straightforward to calculate E‖Aξ‖2

ζ , which will be used to

generate sequences θt. In binary classification, suppose l ∈ {1,−1}. Using definition (21),

one only needs to calculate E(max‖x‖=1 sT
t x)2. Practically one can take a small subset of k

random samples si (e.g. k = 100), and calculate the sample average of the squared norms
1
k

∑k
i=1 ‖si‖2. This yields 1

k

∑k
i=1(max‖x‖=1 sT

i x)2, an estimate of E‖Aξ‖2.

38

−1 0 1 2
0

0.5

1

1.5

2

lts
T
t x

f

Appx Hinge γ

t
=1

Appx Hinge γ
t
=0.5

Appx Hinge γ
t
=0.2

Hinge Loss

−2 −1 0 1 2
0

0.5

1

1.5

2

2.5

3

3.5

4

lt − s
T
t x

f

Squared

Appx Absolute γ
t
=1

Appx Absolute γ
t
=0.5

Appx Absolute γ
t
=0.2

Absolute

Figure 8: Left: Hinge loss and its smooth approximations. Right: Absolute loss and its
smooth approximations.

2.4.2 Absolute Loss Robust Regression

Absolute loss is an alternative to the popular squared loss for robust regressions (Hastie

et al. [2009]). Using same notations as Sec.2.4.1 it can be expressed as fabs(x) ≡ |l − sT x|.

Taking ω(u) = 1
2‖u‖

2 in (23), its smooth stochastic approximation can be expressed as

f̂abs(x, ξt, γt) = max
−1≤u≤1

{
u(lt − sT

t x)− γt
u2

2

}
. (72)

Solving this maximization wrt u we obtain an equivalent form:

f̂abs(x, ξt, γt) =



lt − sT
t x− γt

2 if lt − sT
t x ≥ γt,

(lt−sT
t x)2

2γt
if − γt ≤ lt − sT

t x < γt,

−(lt − sT
t x)− γt

2 if lt − sT
t x < −γt.

(73)

This approximation looks similar to the well-studied Huber loss (Huber [1964]), though

they are different. Actually they share the same form only when γt = 0.5 (green curve in

Fig.8 Right).

The parameter E‖Aξ‖2 can be estimated in a similar way as discussed in Sec.2.4.1.

39

2.5 Experimental Results

In this section, five publicly available datasets from various application domains will be

used to evaluate the efficiency of ANSGD. Datasets “svmguide1”, “real-sim”, “rcv1” and

“alpha” are for binary classifications, and “abalone” is for robust regressions.1

Following our examples in Sec.2.4, we will evaluate our algorithm using approximated

hinge loss for classifications, and approximated absolute loss for regressions. Exact hinge

and absolute losses will be used for subgradient descent algorithms that we will compare

with, as described in the following section. All losses are squared-l2-norm-regularized. The

regularization parameter λ is shown on each figure. When assuming strong-convexity, we

take µ = λ.

2.5.1 Algorithms for Comparison and Parameters

We compare ANSGD with three state-of-the-art algorithms. Each algorithm has a data-

dependent tuning parameter, denoted by Ω (although they have different physical mean-

ings). The best values of Ω are found based on a tuning subset of samples. Note that when

assuming strong-convexity, our ANSGD is almost parameter-free. As discussed after Thm.6,

our experiments indicate that the optimal Ω is taken such that E‖Aξ‖2

Ωζ ≈ 1, meaning that

one can simply take θt = Lgαt + µ
2αt

+ 1− µ.

SGD. The classic stochastic approximation (Robbins and Monro [1951]) is adopted:

xt+1 ← xt − ηtf
′(xt), where f ′(xt) is the subgradient. When only assuming convexity

(µ = 0), we use stepsize ηt = Ω√
t
. When assuming strong-convexity, we follow the stepsize

used in SGD2 (Bottou): ηt = 1
µ(t+Ω) .

Averaged SGD. This is algorithmically the same as SGD, except that the averaged result

x̄ ≡ 1
t

∑t
i=1 xi is used for testing. We follow the stepsizes suggested by the recent work

on the non-asymptotic analysis of SGD (Bach and Moulines [2011], Xu [2011]), where it is

argued that Polyak’s averaging combining with proper stepsizes yield optimal rates. When

1Dataset “alpha” is obtained from ftp://largescale.ml.tu-berlin.de/largescale/, and the other four
datasets can be accessed via http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools. Dataset “rcv1” comes
with 20, 242 training samples and 677, 399 testing samples. For “svmguide1” and “real-sim”, we randomly
take 60% of the samples for training and 40% for testing. For “alpha” and “abalone”, 80% are used for
training, and the rest 20% are used for testing.

40

only assuming convexity, we use stepsizes ηt = Ω√
t

(Bach and Moulines [2011]). When

assuming strong convexity, the stepsize is taken as ηt = 1
Ω(1+µt/Ω)3/4 (Xu [2011]).

AC-SA. This approach (Lan [2010], Lan and Ghadimi [2011]) is interesting to compare

because like ANSGD, it is another way of obtaining a stochastic algorithm based on Nes-

terov’s optimal method, begging the question of whether it has similar behavior. Theoreti-

cally, according to Prop.8 and 9 in Lan and Ghadimi [2011], the bound for the nonsmooth

part is of O(1/
√

t) for µ = 0 and O(1/t) for µ > 0. In comparison, our nonsmooth part

converges in O(1/t) for µ = 0 and O(1/t2) for µ > 0. Numerically we observe that directly

applying AC-SA to nonsmooth functions results in inferior performances.

2.5.2 Results

Due to the stochasticity of all the algorithms, for each setting of the experiments, we run

the program for 10 times, and plot the mean and standard deviation of the results using

error bars.

In the first set of experiments, we compare ANSGD with two subgradient-based algo-

rithms SGD and Averaged SGD. Classification results are shown in Fig.9, 10, 11 and 12,

and regression results are shown in Fig.13. In each figure, the left column is for algorithms

without strongly convex assumptions, while in the right column the algorithms assume

strong-convexity and take µ = λ. For classification results, we plot function values over the

testing set in the first row, and plot testing accuracies in the second row.

It is clear that in all these experiments, ANSGD’s function values converges consistently

faster than the other two SGD algorithms. In non-strongly convex experiments, it converges

significantly faster than SGD and its averaged version. In strongly convex experiments, it

still out performs, and is more robust than strongly convex SGD. Averaged SGD performs

well in strongly convex settings, in terms of prediction accuracies, although its errors are

still higher than ANSGD in the first three datasets. The only exception is in “alpha”

(Fig.12), where Averaged SGD retains higher function values than ANSGD, but its accuracies

are contradictorily higher in early stages. The reason might be that the inexact solution

serves as an additional regularization factor, which cannot be predicted by the analysis of

41

500 1000 1500 2000

0.15

0.2

0.25

of epochs

1
N

t
e
s
t

∑
i
h
in
g
e
+

λ 2
‖
x
‖
2

svmguide1, λ = 10−2 , µ = 0

SGD
Avg. SGD
ANSGD

500 1000 1500 2000
0.1

0.2

0.3

0.4

of epochs

svmguide1, λ = 10−2 , µ = 10−2

500 1000 1500 2000

88

90

92

94

96

of epochs

T
es
ti
n
g
a
cc
u
ra
cy

%

svmguide1, λ = 10−2 , µ = 0

500 1000 1500 2000

88

90

92

94

96

of epochs

svmguide1, λ = 10−2 , µ = 10−2

Figure 9: Classification with “svmguide1”.

1 2 3
0.05

0.1

0.15

of epochs

1
N

t
e
s
t

∑
i
h
in
g
e
+

λ 2
‖
x
‖
2

real-sim, λ = 10−5 , µ = 0

SGD
Avg. SGD
ANSGD

1 2 3

0.06

0.08

0.1

of epochs

real-sim, λ = 10−5 , µ = 10−5

1 2 3

95.5

96

96.5

97

97.5

98

of epochs

T
es
ti
n
g
a
cc
u
ra
cy

%

real-sim, λ = 10−5 , µ = 0

1 2 3
96.5

97

97.5

98

of epochs

real-sim, λ = 10−5 , µ = 10−5

Figure 10: Classification with “real-sim”.

42

1 2 3
0.1

0.12

0.14

0.16

0.18

of epochs

1
N

t
e
s
t

∑
i
h
in
g
e
+

λ 2
‖
x
‖
2

rcv1, λ = 10−5 , µ = 0

SGD
Avg. SGD
ANSGD

1 2 3

0.1

0.2

0.3

0.4

of epochs

rcv1, λ = 10−5 , µ = 10−5

1 2 3

94

94.5

95

95.5

96

of epochs

T
es
ti
n
g
a
cc
u
ra
cy

%

rcv1, λ = 10−5 , µ = 0

1 2 3
93.5

94

94.5

95

95.5

96

of epochs

rcv1, λ = 10−5 , µ = 10−5

Figure 11: Classification with “rcv1”.

1 2 3

0.55

0.6

0.65

of epochs

1
N

t
e
s
t

∑
i
h
in
g
e
+

λ 2
‖
x
‖
2

alpha, λ = 10−5 , µ = 0

SGD
Avg. SGD
ANSGD

1 2 3

0.55

0.6

0.65

of epochs

alpha, λ = 10−5 , µ = 10−5

1 2 3
73

74

75

76

77

78

79

of epochs

T
es
ti
n
g
a
cc
u
ra
cy

%

alpha, λ = 10−5 , µ = 0

1 2 3
70

72

74

76

78

of epochs

alpha, λ = 10−5 , µ = 10−5

Figure 12: Classification with “alpha”.

43

0 200 400 600 800

1.8

2

2.2

of epochs

1
N

t
e
s
t

∑
i
a
b
s
o
lu
te

+
λ 2
‖
x
‖
2

abalone, λ = 10−2 , µ = 0

SGD
Averaged SGD
ANSGD

0 200 400 600 800

1.8

2

2.2

of epochs

abalone, λ = 10−2 , µ = 10−2

Figure 13: Regression with “abalone”.

convergence rates.

In the second set of experiments, we compare ANSGD with AC-SA and its strongly convex

version. Results are in Fig.14, 15, 16 and 17. In all experiments our ANSGD significantly

outperforms AC-SA, and is much more stable. These experiments confirm the theoretically

better rates discussed in Sec.2.5.1.

2.6 Conclusions of this Chapter

We introduce a different composite setting for nonsmooth functions. Under this setting we

propose a stochastic smoothing method and a novel stochastic algorithm ANSGD. Conver-

gence analysis show that it achieves (nearly) optimal rates under both convex and strongly

convex assumptions. We also propose a “Batch-to-Online” conversion for online learning,

and show that optimal regrets can be obtained.

We will extend our method to constrained minimizations, as well as cases when the

approximated function f̂() is not easily obtained by maximizing u. Nesterov’s excessive

gap technique has the “true” optimal 1/t2 bound, and we will investigate the possibility of

integrating it in our algorithm. Exploiting links with statistical learning theories may also

be promising.

44

500 1000 1500 2000

0.15

0.2

0.25

0.3

0.35

of epochs

1
N

t
e
s
t

∑
i
h
in
g
e
+

λ 2
‖
x
‖
2

svmguide1, λ = 10−2 , µ = 0

AC−SA
ANSGD

500 1000 1500 2000

0.15

0.2

0.25

0.3

0.35

of epochs

svmguide1, λ = 10−2 , µ = 10−2

500 1000 1500 2000

88

90

92

94

96

of epochs

T
es
ti
n
g
a
cc
u
ra
cy

%

svmguide1, λ = 10−2 , µ = 0

500 1000 1500 2000

88

90

92

94

96

of epochs

svmguide1, λ = 10−2 , µ = 10−2

Figure 14: Classification with “svmguide1”.

1 2 3
0.05

0.1

0.15

of epochs

1
N

t
e
s
t

∑
i
h
in
g
e
+

λ 2
‖
x
‖
2

real-sim, λ = 10−5 , µ = 0

AC−SA
ANSGD

1 2 3
0.05

0.1

0.15

of epochs

real-sim, λ = 10−5 , µ = 10−5

1 2 3

95

96

97

98

of epochs

T
es
ti
n
g
a
cc
u
ra
cy

%

real-sim, λ = 10−5 , µ = 0

1 2 3

95

96

97

98

of epochs

real-sim, λ = 10−5 , µ = 10−5

Figure 15: Classification with “real-sim”.

45

1 2 3
0.1

0.12

0.14

0.16

0.18

of epochs

1
N

t
e
s
t

∑
i
h
in
g
e
+

λ 2
‖
x
‖
2

rcv1, λ = 10−5 , µ = 0

AC−SA
ANSGD

1 2 3

0.1

0.2

0.3

0.4

of epochs

rcv1, λ = 10−5 , µ = 10−5

1 2 3

93.5

94

94.5

95

95.5

96

of epochs

T
es
ti
n
g
a
cc
u
ra
cy

%

rcv1, λ = 10−5 , µ = 0

1 2 3
92

93

94

95

96

of epochs

rcv1, λ = 10−5 , µ = 10−5

Figure 16: Classification with “rcv1”.

1 2 3

0.54

0.56

0.58

0.6

0.62

0.64

of epochs

1
N

t
e
s
t

∑
i
h
in
g
e
+

λ 2
‖
x
‖
2

alpha, λ = 10−5 , µ = 0

AC−SA
ANSGD

1 2 3

0.55

0.6

0.65

of epochs

alpha, λ = 10−5 , µ = 10−5

1 2 3

73

74

75

76

77

78

79

of epochs

T
es
ti
n
g
a
cc
u
ra
cy

%

alpha, λ = 10−5 , µ = 0

1 2 3
70

72

74

76

78

of epochs

alpha, λ = 10−5 , µ = 10−5

Figure 17: Classification with “alpha”.

46

CHAPTER III

STOCHASTIC ALTERNATING DIRECTION METHOD OF

MULTIPLIERS

3.1 Introduction

The Alternating Direction Method of Multipliers (ADMM) (Glowinski and Marroco [1975],

Gabay and Mercier [1976]) is a very simple computational method for optimization proposed

in 1970s. It stemmed from the augmented Lagrangian method (also known as the method

of multipliers) dating back to late 1960s. The theoretical aspects of ADMM have been

studied since 1980s, and its global convergence was established in the literature (Gabay

[1983], Glowinski and Tallec [1989], Eckstein and Bertsekas [1992]). As reviewed in the

comprehensive paper (Boyd et al. [2010]), with the ability of dealing with objective func-

tions separately and synchronously, ADMM turned out to be a natural fit in the field of

large-scale data-distributed machine learning and big-data related optimization, and there-

fore received significant amount of attention in the last few years. Considerable work was

conducted thereafter. On the theoretical side, ADMM was shown to have an O(1/N) rate

of convergence for convex problems (Monteiro and Svaiter [2010], He and Yuan [2012a,b],

Wang and Banerjee [2012]), where N stands for the number of iterations. When objective

functions are strongly convex and Lipschitz smooth, linear convergence rates were reported

very recently (Hong and Luo [2012], Deng and Yin [2012]). On the practical side, ADMM

has been applied to a wide range of application domains, such as compressed sensing (Yang

and Zhang [2011]), image restoration (Goldstein and Osher [2009]), video processing and

matrix completion (Goldfarb et al. [2010]). Besides that, many variations of this classical

method have been recently developed, such as linearized (Goldfarb et al. [2010], Zhang et al.

[2011], Yang and Yuan [2012]), accelerated (Goldfarb et al. [2010]) and online (Wang and

Banerjee [2012]) ADMM. However, most of these variants including the classic one implic-

itly assume full accessibilty of true data values, while in reality one can hardly ignore the

47

existence of noise. A more natural way of handling this issue is to consider unbiased or even

biased observations of true data, which leads us to the stochastic setting.

3.1.1 Stochastic Setting for ADMM

In this chapter, we study a family of convex optimization problems where our objective

functions are stochastic and composite. Specifically, we are interested in the following

equality-constrained stochastic optimization:

min
x∈X ,y∈Y

Eξθ1(x, ξ) + θ2(y) s.t. Ax + By = b, (74)

where x ∈ Rd1 , y ∈ Rd2 , A ∈ Rm×d1 , B ∈ Rm×d2 , b ∈ Rm, X is a convex compact set, and Y

is a closed convex set. We use the notation θ1 for both the instance function value θ1(x, ξ)

and its expectation θ1(x) ≡ Eξθ1(x, ξ). We are able to draw a sequence of identical and

independent (i.i.d.) observations from the random vector ξ that obeys a fixed but unknown

distribution P . When ξ is deterministic, we can recover the traditional problem formulation

of ADMM (Boyd et al. [2010]). In our most general setting, real-valued functions θ1(·) and

θ2(·) are convex but not necessarily continuously differentiable. We will make additional

assumptions in Section 3.4, in which we suggest more structural information on θ1.

3.1.2 Motivations

The stochasticity of the proposed setting is inspired by the structural risk minimization

principle (Vapnik [2000]). Under this principle, a statistical learning system’s goal is to

minimize the regularized expected risk function: R(x) ≡ EξL(x, ξ) + Ω(x), where L(x, ξ) is

the loss incurred when applying prediction rule x on a sample ξ, and Ω is a regularizer. In

the batch learning setting, one uses a set of training samples to minimize the regularized

empirical risk function Remp(x) ≡ 1
N

∑N
i=1 L(x, ξi) + Ω(x). With high probability, R and

Remp are close when the number of samples is large (Vapnik [2000]). However, to minimize

Remp one has to handle larger amount of samples which becomes less efficient under time

and resource constraints. In the stochastic setting, in each iteration x is updated based

on one noisy sample drawn from P instead of a finite training set. One obvious advantage

is that the update costs much less time and resources than in the batch setting. Another

48

advantage we will show later in this paper is that, when carefully designed, our algorithm

optimizes the expected risk directly with good rates of convergence.

The proposed stochastic ADMM setting fits perfectly with the regularized expected risk

minimization. Putting it into our canonical form (131): θ1(x, ξ) = L(x, ξ), θ2(y) = Ω(y),

and the constraint becomes x = y. Beyond this simple formulation, the objective separation

of ADMM is so flexible that one can use a more general linear constraint Ax + By = b to

model the complex structural information encoded in the regularizer Ω(x). For example,

if Ω(v1, v2) = |v1 − v2|, we could add a variable v12, a linear constraint v1 − v2 = v12, and

simply minimize Ω(v12) = |v12|, which is easier to handle under our stochastic setting for

ADMM. More examples will be given in Section 3.5.

3.1.3 Contributions of this Chapter

We propose a stochastic setting of the ADMM problem and also design the Stochastic

ADMM algorithm to solve this problem. A key algorithmic feature of our Stochastic ADMM

that distinguishes our method from previous ADMM and its variants is the first-order ap-

proximation of θ1 that we used to modify the augmented Lagrangian. This simple modifi-

cation is not only necessary for the convergence analysis of our stochastic method, but also

makes our method applicable to a more general class of convex objective functions which

might not have a closed-form solution in minimizing the augmented θ1 directly. Moreover,

the linearization makes the updates simpler and faster, as demonstrated by the examples

in Section 3.5.

We establish convergence rates under various structural assumptions of θ1: O(1/
√

t) for

convex functions and O(log t/t) for strongly convex functions in terms of both the objective

value and the feasibility violation. By contrast, recent research (He and Yuan [2012a,b],

Wang and Banerjee [2012]) only show the convergence of ADMM indirectly in terms of the

satisfaction of variational inequalities. We also demonstrate the usefulness of our algorithm

with a novel application in Graph-Guided Support Vector Machine.

49

3.1.4 Related Work

A related setting named online ADMM was proposed in (Wang and Banerjee [2012]). In

this setting, one does not assume ξ to be i.i.d., nor the objective to be stochastic, and the

minimization of regret is concerned:

R(x[1:t]) ≡
t∑

k=1
[θ1(xk, ξk) + θ2(yk)]− inf

Ax+By=b

t∑
k=1

[θ1(x, ξk) + θ2(y)].

Besides that, it also differs from our stochastic ADMM algorithmically: a nonlinearized θ1

is used in online ADMM, while a linearized one is adopted in our algorithm.

In an independent work (Suzuki [2013]), the author also linearized θ1, and proposed dual

averaging and proximal gradient methods for problem (131). The proposed OPG-ADMM

algorithm enjoys the same order of convergence rates as our stochastic ADMM.

3.1.5 Notations

Throughout this paper, we denote a subgradient of a function f as f ′. When f is differen-

tiable, we will use ∇f . We denote by

θ(u) ≡ θ1(x) + θ2(y)

the sum of the stochastic and the deterministic functions. For simplicity and clarity, we

will use the following notations to denote stacked vectors or tuples:

u ≡

x

y

 , w ≡


x

y

λ

 , wk ≡


xk

yk

λk

 , ūk ≡

 1
k

∑k−1
i=0 xi

1
k

∑k
i=1 yi

 ,

w̄k ≡


1
k

∑k
i=1 xi

1
k

∑k
i=1 yi

1
k

∑k
i=1 λi

 , F (w) ≡


−AT λ

−BT λ

Ax + By− b

 ,W ≡


X

Y

Rm

 .

(75)

the For a positive semidefinite matrix G ∈ Rd1×d1 , we define the G-norm of a vector as

‖x‖G := ‖G1/2x‖2 =
√

xT Gx. We use 〈·, ·〉 to denote the inner product in a finite di-

mensional Euclidean space. When there is no ambiguity, we often use ‖ · ‖ to denote the

50

Euclidean norm ‖ · ‖2. For a differentiable function ω(·), Bregman divergence is defined as

D(u, v) ≡ ω(u)− ω(v)− 〈∇ω(v), u− v〉.

We assume that the optimal solution of (131) exists, and is denoted as u∗ ≡ (xT
∗ , yT

∗)T .

The following quantities appear frequently in our convergence analysis.

δk ≡ θ′
1(xk−1, ξk)− θ′

1(xk−1),

DX ≡ sup
xa,xb∈X

‖xa − xb‖, Dy∗,B ≡ ‖B(y0 − y∗)‖.
(76)

3.1.6 Assumptions

Before presenting the algorithm and convergence results, we list the following assumptions

that will be used in our statements. These assumptions provide bounds for the magnitude

and variance of subgradients for the stochastic function.

Assumption 2. For all x ∈ X , E
[
‖θ′

1(x, ξ)‖2
]
≤M2.

Assumption 3. For all x ∈ X ,

E
[

exp
{
‖θ′

1(x, ξ)‖2/M2
}]
≤ exp{1}.

Assumption 4. For all x ∈ X ,

E
[
‖θ′

1(x, ξ)− θ′
1(x)‖2

]
≤ σ2.

3.2 Stochastic ADMM Algorithm

Directly solving problem (131) can be nontrivial, even if ξ is deterministic and the equality

constraint is as simple as x−y = 0. For example, using the augmented Lagrangian method,

one has to minimize the augmented Lagrangian:

min
x∈X ,y∈Y

Lβ(x, y, λ) ≡ min
x∈X ,y∈Y

[
θ1(x) + θ2(y)−

〈λ, Ax + By− b〉+ β

2
‖Ax + By− b‖2

]
,

(77)

where β is a pre-defined penalty parameter. This problem is at least not easier than solving

the original one. The (deterministic) ADMM (Alg.2) solves this problem in a one-sweep

Gauss-Seidel manner: minimizing Lβ w.r.t. x and y alternatively given the other fixed,

followed by a penalty update over the Lagrangian multiplier λ.

51

Algorithm 2 Deterministic ADMM
0. Initialize y0 and λ0 = 0.
for k = 0, 1, 2, . . . do

1. xk+1 ← arg min
x∈X
Lβ(x, yk, λk).

2. yk+1 ← arg min
y∈Y
Lβ(xk+1, y, λk).

3. λk+1 ← λk − β (Axk+1 + Byk+1 − b).
end for

A variant deterministic algorithm named linearized ADMM replaces Line 1 of Alg.2 by

xk+1 ← arg min
x∈X

[
θ1(x) + 1

2
‖x− xk‖2G

+ β

2
‖(Ax + Byk − b)− λk/β‖2

]
,

where G ∈ Rd1×d1 is positive semidefinite. This variant can be regarded as a generalization

of the original ADMM. When G = 0, it is the same as Alg.2. When G = rId1 − βAT A, it

is equivalent to the following linearized proximal point method:

xk+1 ← arg min
x∈X

{
θ1(x) + r

2
‖x− xk‖2+

β(x− xk)T
[
AT (Axk + Byk − b− λk/β)

] }
.

Note that the linearization is only applied to the quadratic function ‖(Ax + Byk − b) −

λk/β‖2, but not to θ1. This approximation helps in some cases when Line 1 of Alg.2 does

not produce a closed-form solution given the quadratic term. For example, let θ1(x) = ‖x‖1

and A not identity.

As given in Alg.3, we propose a Stochastic Alternating Direction Method of Multipliers

(Stochastic ADMM) algorithm. Our algorithm shares some features with the classical and

the linearized ADMM. One can see that Line 2 and 3 are essentially the same as before.

However we have a different updating rule for x as shown in Line 1, where we define an

approximated augmented Lagrangian:

L̂β,k(x, y, λ) ≡ θ1(xk) +
〈
θ′

1(xk, ξk+1), x
〉

+ θ2(y)−

〈λ, Ax + By− b〉+ β

2
‖Ax + By− b‖2 + ‖x− xk‖2

2ηk+1
.

(78)

There are two differences between Lβ (77) and L̂β,k (78). First, we replace θ1(x) with a first-

order approximation of θ1(x, ξk+1) at xk: θ1(xk) + xT θ′
1(xk, ξk+1). This approximation has

52

the same flavour of the stochastic mirror descent (Nemirovski et al. [2009]) used for solving

a one-variable stochastic convex problem. Second, similar to the linearized ADMM, we add

an l2-norm prox-function ‖x−xk‖2 but scale it by a time-varying stepsize ηk+1. As we will

see in Section 3.3, the choice of this stepsize is crucial in guaranteeing a convergence.

Algorithm 3 Stochastic ADMM
0. Initialize x0, y0 and set λ0 = 0.
for k = 0, 1, 2, . . . do

1. xk+1 ← arg min
x∈X
L̂β,k(x, yk, λk).

2. yk+1 ← arg min
y∈Y
L̂β,k(xk+1, y, λk).

3. λk+1 ← λk − β (Axk+1 + Byk+1 − b).
end for

3.3 Main Results of Convergence Rates

In this section, we will show that our Stochastic ADMM given in Alg.3 exhibits a rate

O(1/
√

t) of convergence in terms of both the objective value and the feasibility violation:

E
[
θ(ūt)− θ(u∗) + ρ‖Ax̄t + Bȳt − b‖2

]
= O(1/

√
t).

Before we address the main theorem on convergence rates, we will start with the following

simple lemma, which is a very useful result by implementing Bregman divergence as a prox-

function in proximal methods.

Lemma 8. Let l(x) : X → R be a convex differentiable function with gradient g. Let scalar

s ≥ 0. For any vector u and v, denote their Bregman divergence as D(u, v). If ∀u ∈ X ,

x∗ ≡ arg min
x∈X

l(x) + sD(x, u), (79)

then

〈g(x∗), x∗ − x〉 ≤ s [D(x, u)−D(x, x∗)−D(x∗, u)] .

Proof. Invoking the optimality condition for (135), we have

〈g(x∗) + s∇D(x∗, u), x− x∗〉 ≥ 0, ∀x ∈ X ,

53

which is equivalent to

〈g(x∗), x∗ − x〉 ≤ s 〈∇D(x∗, u), x− x∗〉

= s 〈∇ω(x∗)−∇ω(u), x− x∗〉

= s [D(x, u)−D(x, x∗)−D(x∗, u)] .

Utilizing the above lemma, we are able to obtain an upper bound of the variation of the

Lagrangian function and its first order approximation based on each iteration points.

Lemma 9. ∀w ∈ W, k ≥ 0 we have

θ1(xk) + θ2(yk+1)− θ(u) + (wk+1 −w)T F (wk+1) ≤

ηk+1‖θ′
1(xk, ξk+1)‖2

2
+ ‖xk − x‖2 − ‖xk+1 − x‖2

2ηk+1
+

β

2

(
‖Ax + Byk − b‖2 − ‖Ax + Byk+1 − b‖2

)
+

〈δk+1, x− xk〉+ 1
2β

(
‖λ− λk‖22 − ‖λ− λk+1‖22

)
.

(80)

Proof. Due to the convexity of θ1 and using the definition of δk, we have

θ1(xk)−θ1(x) ≤
〈
θ′

1(xk), xk − x
〉

=
〈
θ′

1(xk, ξk+1), xk+1 − x
〉
+〈δk+1, x− xk〉+

〈
θ′

1(xk, ξk+1), xk − xk+1
〉

.

(81)

Applying Lemma 13 to Line 1 of Alg.3 and taking D(u, v) = 1
2‖v− u‖2, we have

〈
θ′

1(xk, ξk+1) + AT [β(Axk+1 + Byk − b)− λk] , xk+1 − x
〉

≤ 1
2ηk+1

(
‖xk − x‖2 − ‖xk+1 − x‖2 − ‖xk − xk+1‖2

) (82)

54

Combining (81) and (82) we have

θ1(xk)− θ1(x) +
〈
xk+1 − x,−AT λk+1

〉
(81)
≤
〈
θ′

1(xk, ξk+1), xk+1 − x
〉

+ 〈δk+1, x− xk〉+
〈
θ′

1(xk, ξk+1), xk − xk+1
〉

+〈
xk+1 − x, AT [β(Axk+1 + Byk+1 − b)− λk]

〉
=
〈
θ′

1(xk, ξk+1) + AT [β(Axk+1 + Byk − b)− λk] , xk+1 − x
〉

+

〈δk+1, x− xk〉+
〈
x− xk+1, βAT B(yk − yk+1)

〉
+
〈
θ′

1(xk, ξk+1), xk − xk+1
〉

(82)
≤ 1

2ηk+1

(
‖xk − x‖2 − ‖xk+1 − x‖2 − ‖xk+1 − xk‖2

)
+ 〈δk+1, x− xk〉+〈

x− xk+1, βAT B(yk − yk+1)
〉

+
〈
θ′

1(xk, ξk+1), xk − xk+1
〉

(83)

We handle the last two terms separately:〈
x− xk+1, βAT B(yk − yk+1)

〉
= β 〈Ax−Axk+1, Byk −Byk+1〉

= β

2

[(
‖Ax + Byk − b‖2 − ‖Ax + Byk+1 − b‖2

)
+
(
‖Axk+1 + Byk+1 − b‖2 − ‖Axk+1 + Byk − b‖2

)]
≤ β

2

(
‖Ax + Byk − b‖2 − ‖Ax + Byk+1 − b‖2

)
+ 1

2β
‖λk+1 − λk‖2

(84)

and 〈
θ′

1(xk, ξk+1), xk − xk+1
〉
≤ ηk+1‖θ′

1(xk, ξk+1)‖2

2
+ ‖xk − xk+1‖2

2ηk+1
, (85)

where the last step is due to Young’s inequality. Inserting (142) and (85) into (83), we have

θ1(xk)− θ1(x) +
〈
xk+1 − x,−AT λk+1

〉
≤ 1

2ηk+1

(
‖xk − x‖2 − ‖xk+1 − x‖2

)
+ ηk+1‖θ′

1(xk, ξk+1)‖2

2
+ 〈δk+1, x− xk〉

+ β

2

(
‖Ax + Byk − b‖2 − ‖Ax + Byk+1 − b‖2

)
+ 1

2β
‖λk+1 − λk‖2,

(86)

Due to the optimality condition of Line 2 in Alg.3 and the convexity of θ2, we have

θ2(yk+1)− θ2(y) +
〈
yk+1 − y,−BT λk+1

〉
≤ 0. (87)

Using Line 3 in Alg.3, we have

〈λk+1 − λ, Axk+1 + Byk+1 − b〉

= 1
β
〈λk+1 − λ, λk − λk+1〉

= 1
2β

(
‖λ− λk‖2 − ‖λ− λk+1‖2 − ‖λk+1 − λk‖2

) (88)

55

Taking the summation of inequalities (86) (87) and (88), we obtain the result as desired.

In what follows, we will present our main theorem of the convergence in two fashions,

both in terms of expectation and probability satisfication.

Theorem 7. Let ηk = DX
M

√
2k

for all k ≥ 1. Define

M1(t) ≡
√

2DX M√
t

and M2(t) ≡
βD2

y∗,B + ρ2/β

2t
. (89)

Then ∀ρ > 0 and t ≥ 1 we have:

1. Under Assumption 2

E[θ(ūt)− θ(u∗) + ρ‖Ax̄t + Bȳt − b‖] ≤M1(t) + M2(t). (90)

2. Under Assumption 2 and 3, ∀Ω > 0

Prob
{

θ(ūt)− θ(u∗) + ρ‖Ax̄t + Bȳt − b‖ >

(1 + Ω/2 + 2
√

2Ω)M1(t) + M2(t)
}
≤ 2 exp{−Ω}.

(91)

Remark 1. Observe that our proof techniques can also be adapted to the deterministic

case where no noise takes place. We are able to obtain a similar result for the classic

deterministic ADMM:

θ(ūt)− θ(u∗) + ρ‖Ax̄t + Bȳt − b‖2 ≤
βD2

y∗,B

2t
+ ρ2

2βt
.

The positive ρ in the preceding results controls the trade-off between the objective value

reduction and the feasibility satisfaction. For a fixed ρ, one can set an optimal β = ρ/Dy∗,B

such that the upper bound is minimized.

While the resulting O(1/t) rate for the deterministic ADMM is the same as those in the

existing literature, the above finding is an advance in the theoretical aspects of ADMM. Our

convergence rate for general convex functions is proved in terms of both the objective value

and the feasibility violation. By contrast, the existing literature (He and Yuan [2012a,b],

Wang and Banerjee [2012]) only shows the convergence of ADMM in terms of the satisfaction

of variational inequalities, which is not a direct measure of how fast an algorithm reaches

the optimal solution.

56

3.4 Extensions

3.4.1 Strongly Convex θ1

When function θ1(·) is strongly convex, the convergence rate of Stochastic ADMM can be

improved to O
(

log t
t

)
, as shown in the following result.

Theorem 8. When θ1 is µ-strongly convex with respect to ‖ · ‖, taking ηk = 1
kµ in Alg.3,

under Assumption 2 we have ∀ρ > 0, t ≥ 1,

E [θ(ūt)− θ(u∗) + ρ‖Ax̄t + Bȳt − b‖2]

≤ M2 log t

µt
+ µD2

X
2t

+
βD2

y∗,B

2t
+ ρ2

2βt
.

(92)

3.4.2 Lipschitz Smooth θ1

Since the bounds given in Theorem 7 are related to the magnitude of subgradients, they

do not provide any intuition of the performance in low-noise scenarios. With a Lipschitz

smooth function θ1, we are able to obtain convergence rates in terms of the variations of

gradients, as stated in Assumption 4. Besides, under this assumption we are able to replace

the unusual definition of ūk in (75) with the following:

ūk ≡

 1
k

∑k
i=1 xi

1
k

∑k
i=1 yi

 . (93)

Theorem 9. When θ1(·) is L-Lipschitz smooth with respect to ‖·‖, taking ηk = 1
L+σ

√
2k/DX

in Alg.3, under Assumption 4 we have ∀ρ > 0, t ≥ 1,

E [θ(ūt)− θ(u∗) + ρ‖Ax̄t + Bȳt − b‖2]

≤
√

2DX σ√
t

+ LD2
X

2t
+

βD2
y∗,B

2t
+ ρ2

2βt
.

(94)

3.5 Examples and Numerical Evaluations

3.5.1 Lasso

As one of the many motivating examples given in the review of ADMM (Boyd et al. [2010]),

the l1-regularized sparse least squares problem, also known as lasso, fits the general class of

(131) very naturally. The composite functions can be written as:

θ1(x, ξ) = 1
2

(
l − xT s

)2
, θ2(y) = γ‖y‖1, (95)

57

where the training sample ξ contains feature-label pair {s, l} and γ is a regularization

parameter. The constraint simply becomes A = I, B = −I, b = 0. Same as in the

deterministic case, applying stochastic ADMM to l1-regularized problem produces closed-

form updating rules. The three updates for (95) are actually very simple:

xk+1 ←
(lk+1 − sT

k+1xk)sk+1 + λk + βyk + xk/ηk+1

β + 1/ηk+1
,

yk+1 ← S γ
β

(xk+1 − λk/β) ,

λk+1 ← λk − β(xk+1 − yk+1),

(96)

where the soft-thresholding operator Sα(x) is defined in the same way as in Boyd et al.

[2010]:

Sα(x) ≡



xi − α, if xi > α

0, if |xi| ≤ α

xi + α, if xi < −α

, ∀i.

Some vector-scaling operations can be saved by by replacing λk with βζk in (96):

xk+1 ←
(lk+1 − sT

k+1xk)sk+1 + β(ζk + yk) + xk/ηk+1

β + 1/ηk+1
,

yk+1 ← S γ
β

(xk+1 − ζk) ,

ζk+1 ← ζk − (xk+1 − yk+1).

For simple problems like lasso, it is indeed not necessary to formulate it as a two-

variable equality-constrained optimization. Instead, we can directly minimize E(l−xT s)2 +

γ‖x‖1 without any constraint. A popular class of methods for solving this composite-

objective problem is called proximal gradient (Tseng [2008], Nemirovski and Yudin [1983])

or proximal splitting (Combettes and Pesquet [2011]), which was investigated in various

communities (Daubechies et al. [2004], Combettes and Wajs [2005], Beck and Teboulle

[2009], Nesterov [2007a], Wright et al. [2009]). Stochastic and online variants of these

methods have also been developed recently, mainly in the large-scale machine learning and

optimization literature (Langford et al. [2009], Lan [2010], Lan and Ghadimi [2011], Duchi

and Singer [2009], Hu et al. [2009], Xiao [2010]). For comparison purposes, here we take the

online forward-backward splitting method (FOBOS) (Combettes and Pesquet [2011], Duchi

58

and Singer [2009]) as a first example. The FOBOS can be regarded as a proximal method

with linearization of θ1:

xk+1 ← arg min
x∈X

〈
θ′

1(xk, ξk+1), x
〉

+ θ2(x) + ‖x− xk‖2

2ηk+1
. (97)

Comparing this method with our Alg.3, we can see that (97) is actually a special Stochastic

ADMM that enforces xk = yk (hence λk = ζk = 0) in every iteration k. Note that this

constraint feasibility is easy to enforce only because lasso comes with an extremely simple

constraint x = y. One of the most attractive features of (97) is its closed form solution for

lasso in terms of soft-thresholding:

xk+1 ← Sγηk+1

[
xk + ηk+1

(
lk+1 − sT

k+1xk

)
sk+1

]
.

As we will see in our next example (Sec.3.5.2), with complex constraints, applying proximal

splitting methods might not produce closed-form updates.

The second algorithm we are going to compare with is the online ADMM (Wang and

Banerjee [2012]), which was proposed under a related but different setting of online learn-

ing. In this algorithm, the first-order approximation θ1(xk) + 〈θ′
1(xk, ξk+1), x〉 is replaced

by the exact function θ1(x, ξk), which is a very straightforward “stochastization” of the

deterministic ADMM. Applying this algorithm to lasso yields the following update for x:

xk+1 ←
[
sk+1sT

k+1 + (β + 1/ηk+1) I
]−1

u,

while u ≡ lk+1sk+1 +β(ζk +yk)+ xk
ηk+1

, and the updates for y and ζ remain the same as our

stochastic ADMM. Comparing the x updates of online and stochastic ADMM, it is clear

that the linearization of our algorithm results in a much simpler inner product calculation,

while a rank-1 matrix inversion is required for the online ADMM. Even with the Sherman-

Morrison formula, this inversion process is still slower than the stochastic ADMM.

In the following experiments, we investigate two real-world datasets to examine the

efficiency of our algorithm. Table 2 shows the statistics of these datasets and parameters

we used for lasso. The first dataset, Abalone, obtained from the UCI Machine Learning

Repository1, is used to predict the age of abalones from physical measurements. The second

1http://archive.ics.uci.edu/ml/datasets/Abalone

59

dataset, E2006-tf-idf, a part of the 10K-Corpus2, is used to predict the volatility of stock

returns, an empirical measure of the financial risk of a company. The features are tf-idf

of unigrams extracted from the financial reports of companies during the years 1996-2006

(Kogan et al. [2009]).

The prediction results are shown in Fig.18 and 19. One can observe that all algorithms

converge reasonably well, as expected from our discussions above. The stochastic ADMM

performs slightly better than the other two in Abalone. For E2006-tf-idf, an acceptable

accuracy is achieved with a fast sweep of merely 2, 000 samples, less than 25% of the entire

dataset.

Table 2: Two real-world datasets and parameters for lasso.

Name # of Training # of Testing # of
γ β DX

M
√

2Samples Samples Dim. (d)
Abalone 3,342 835 8 0.01 1 1

E2006-tf-idf 16,087 3,308 150,360 0.1 1 1

0 50 100 150 200
2.6

2.8

3

3.2

3.4

3.6

3.8

of epochs

1
N
te
s
t

∑
i
θ
1
(ξ

i
)
+
γ
‖x

‖ 1

Lasso; Dataset: Abalone

Online ADMM
FOBOS
Stochastic ADMM

Figure 18: Lasso for Abalone Dataset.

2http://www.ark.cs.cmu.edu/10K/

60

500 1000 1500 2000 2500 3000
0.17

0.175

0.18

0.185

0.19

0.195

of iterations

1
N
te
s
t

∑
i
θ
1
(ξ

i
)
+
γ
‖x

‖ 1

Lasso; Dataset: E2600

Online ADMM
FOBOS
Stochastic ADMM

Figure 19: Lasso for E2600-tf-idf Dataset.

3.5.2 Graph-Guided SVM

Stochastic ADMM is more powerful for problems with complex equality constraints, for

which proximal splitting methods such as FOBOS are no longer applicable, since there will

be no closed-form for it. An important class of these problems is called the generalized lasso

(Tibshirani and Taylor [2011]):

minEξ

[1
2

(
l − xT s

)2]
+ ‖Fx‖1, (98)

where the linear transformation F ∈ Rf×d1 encodes the structural prior of a specific prob-

lem. When F = I, one recovers lasso. We can write (98) in our canonical form (131)

with

θ1(x, ξ) = 1
2

(
l − xT s

)2
, θ2(y) = ‖y‖1,

A = F, B = −I, b = 0.

(99)

where ξ = {s, l} is a feature-label pair.

As a concrete example of the generalized lasso, we evaluate our algorithm based on the

graph-guided fused lasso (GFlasso) framework (Kim et al. [2009]), a graphical extension of

the well-known fused lasso (Tibshirani et al. [2004]). Denote graph G ≡ {V, E}, in which

61

V = {x1, . . . , xd} is a set of the d variables of x and E is the set of edges among V. Each edge

{i, j} is assigned with a weight wij . The optimization of GFlasso can thus be formulated

as:

minEξ

[1
2

(
l − xT s

)2]
+ γ‖x‖1 + ν

∑
{i,j}∈E

wij |xi − xj |. (100)

The only difference between GFlasso and lasso is the last term, referred as the fusion penalty

(Tibshirani et al. [2004]), which penalizes the differences among variables connected in G. A

carefully designed fusion penalty helps in further reducing the risk of overfitting of our model

over the training data. To implement Alg.3 to this problem, we only need to formulate the

linear transformation F , which is very simple for GFlasso: Fki = wij and Fkj = −wij for

any edge {i, j}k ∈ E .

According to our convergence analysis, the loss θ1 and regularizator θ2 are allowed to

be any convex functions. To meet the goal of classification, we replace the least squares

loss in (100) by a nonsmooth hinge loss L(x, ξ) ≡ max{0, 1− lsT x} and the `1-norm by an

Euclidean norm to enforce the maximum margin. The resulting combination is also known

as support vector machine (SVM). With the additional graph-guided fusion penalty, we

name our formulation Graph-Guided SVM (GGSVM):

minEξL(x, ξ) + γ

2
‖x‖22 + ν‖y‖1

s.t. Fx− y = 0.

(101)

Before presenting the penalty term, we first give an algorithmic solution of (101). Ap-

plying our stochastic ADMM to GGSVM, we obtain the following updates:

xk+1 ← arg min xT L′(xk, ξk+1) + γxT xk+

β

2
‖Fx− yk − λk/β‖22 + ‖x− xk‖22

2ηk+1
,

yk+1 ← arg min ν‖y‖1 + β

2
‖Fxk+1 − y− λk/β‖22,

λk+1 ← λk − β(Fxk+1 − yk+1).

(102)

Without the graph-guided regularization, the stochastic ADMM becomes exactly the same

as the classic stochastic gradient descent (SGD): xk+1 ← arg min xT L′(xk, ξk+1)+ γxT xk +
‖x−xk‖2

2
2ηk+1

.

62

The first two updates of (102) have close-forms:

xk+1 ←
(

I

ηk+1
+ βF T F

)−1 [
F T (βyk + λk)

+ (1/ηk+1 − γ)xk − L′(xk, ξk+1)
]
,

yk+1 ← S ν
β

(
Fxk+1 −

λk

β

)
.

(103)

Note that this simple x-update is exactly the benefit that stochastic ADMM brings. In con-

trast, neither the classic ADMM nor its variants have closed-forms due to the nonseparable

form of the hinge loss.

In each x-update of (103), due to the time-varying ηk+1, one has to solve a symmetric

linear system with a different system matrix. This can be carried out using standard

methods, e.g. conjugate gradient, where the sparsity of F T F can help in reducing the time

complexity. However, for large-scale problems we can remove this computational burden

completely by replacing ηk+1 with a fixed ηt, if we want to run t iterations. This indeed

leads to a convergent algorithm, although the proof is not shown in Section 3.3 due to

limited space. By this means we only need to solve the linear system once, and save the

result for successive iterations.

The data is the publicly available 20newsgroups dataset3, which contains binary occur-

rences of 100 popular words counted from 16, 242 newsgroup postings. On the top level

of these postings are 4 main categories: computer, recreation, science and talks. We are

interested in a multi-class classification task: to predict the category that a posting belongs

to. We split the original data into a training set and a testing set. In each posting category,

80% postings are used for training and the rest 20% for testing. We use the one-vs-rest

scheme for the multi-class classification.

The graphical structures we want to explore are the dependencies among these 100

words. Specifically, if two words i and j are strongly dependent, the difference between

xi and xj in the linear predictor x ∈ R100 should be penalized. In order to obtain F , we

use the sparse inverse covariance selection (Banerjee et al. [2008]) (also known as graphical

lasso (Friedman and Tibshirani [2007], Boyd et al. [2010])) and determine the sparsity

3http://www.cs.nyu.edu/˜roweis/data.html

63

pattern of the inverse covariance matrix Σ−1. By properly thresholding the components of

Σ−1 to 0 and 1, we obtain the affinity matrix of G and plot the relations of these 100 words

accordingly in Fig. 20. For simplicity, we take all the weights in F to be 1 and −1 whenever

there is an edge.

aids
baseball
bible
bmw
cancercarcardcasechildren

ch
ris

tia
n

co
mputer

co
ur

se

da
tade

al
er

di
se

as
e

di
skdi

sp
la

y

do
ct

or

do
s

dr
iv

e

dr
iv

er

ea
rt

h
em

ai
l

en
gi

ne
ev

id
en

ce

fact
fans
files
food

form
atftp

gam
esgod

governm
ent

graphicsgun

healthhelphit
hockeyhondahumanimageinsuranceisraeljesus

jews
launch

law
league

lunar
mac
mars

medicine

memory

mission

moon

msg

nasa
nhl

number
oil

or
bit

pa
tie

nt
s

pc
ph

on
e

pl
ay

er
s

po
w

er
pr

es
id

en
t

pr
ob

le
m

pr
og

ra
m

pu
ck

qu
es

tio
n

re
lig

io
n

research
rights
satellite
science
scsi
season

server
shuttle

softw
are

solar
space

state
studies

system

team

technology

university

version

video

vitamin

war
water

win
windows

won
world

Figure 20: Graph of relations among 100 popular words in 20newsgroups dataset.

We compare the prediction accuracies with and without graphical regularization. Fig.

21 shows the experimental results. The x-axis stands for the number of epochs for stochastic

algorithms. For this dataset, each epoch means 12, 994 iterations. We calculate the mean

and the standard deviation of all the accuracies based on 10 runs of experiments under the

same setting. This figure clearly indicates that GGSVM outperforms the classical SVM

consistently in every setting. After a single epoch, which corresponds to 1 iteration for the

64

deterministic ADMM, the prediction accuracy is already very close to the best. This is a

further evidence for the efficiency of our stochastic ADMM.

0 0.5 1 1.5 2

79

80

81

82

83

84

85

of epochs

T
es
ti
n
g
a
cc
u
ra
cy

%

4-Classes Classification; Dataset: 20newsgroups

SVM
Graph−Guided SVM

Figure 21: Accuracies for multi-class classification.

3.6 Conclusions of this Chapter

In this paper, we have proposed the stochastic setting for ADMM along with our stochastic

linearized ADMM algorithm. As a benefit of the first-order approximation on the stochastic

function, our algorithm is applicable to a very broad class of problems even with functions

that have no closed-form solution to the subproblem of minimizing the augmented θ1. We

have also established convergence rates under various structural assumptions of θ1: O(1/
√

t)

for convex functions and O(log t/t) for strongly convex functions. We are working on in-

tegrating Nesterov’s optimal first-order methods (Nesterov [2004]) to our algorithm, which

will help in achieving optimal convergence rates. More interesting and challenging applica-

tions will be carried out in our future work.

65

3.7 Appendix

3.7.1 Proof of Theorem 1

Proof. (i). Invoking convexity of θ1(·) and θ2(·) and the monotonicity of operator F (·), we

have ∀w ∈ W:

θ(ūt)− θ(u) + (w̄t −w)T F (w̄t)

≤ 1
t

t∑
k=1

[
θ1(xk−1) + θ2(yk)− θ(u) + (wk −w)T F (wk)

]

= 1
t

t−1∑
k=0

[
θ1(xk) + θ2(yk+1)− θ(u) + (wk+1 −w)T F (wk+1)

]
(104)

Applying Lemma 9 at the optimal solution (x, y) = (x∗, y∗), we can derive from (104)

that, ∀λ

θ(ūt)− θ(u∗) + (x̄t − x∗)T (−AT λ̄t) + (ȳt − y∗)T (−BT λ̄t) + (λ̄t − λ)T (Ax̄t + Bȳt − b)

(80)
≤ 1

t

t−1∑
k=0

[
ηk+1‖θ′

1(xk, ξk+1)‖2

2
+ 1

2ηk+1

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
+ 〈δk+1, x∗ − xk〉

]

+ 1
t

(
β

2
‖Ax∗ + By0 − b‖2 + 1

2β
‖λ− λ0‖2

)

≤ 1
t

t−1∑
k=0

[
ηk+1‖θ′

1(xk, ξk+1)‖2

2
+ 〈δk+1, x∗ − xk〉

]
+ 1

t

(
D2

X
2ηt

+ β

2
D2

y∗,B + 1
2β
‖λ− λ0‖22

)

(105)

The above inequality is true for all λ ∈ Rm, hence it also holds in the ball B0 = {λ :

‖λ‖2 ≤ ρ}. Combing with the fact that the optimal solution must also be feasible, it follows

that

max
λ∈B0

{
θ(ūt)− θ(u∗) + (x̄t − x∗)T (−AT λ̄t) + (ȳt − y∗)T (−BT λ̄t) + (λ̄t − λ)T (Ax̄t + Bȳt − b)

}
= max

λ∈B0

{
θ(ūt)− θ(u∗) + λ̄T

t (Ax∗ + By∗ − b)− λT (Ax̄t + Bȳt − b)
}

= max
λ∈B0

{
θ(ūt)− θ(u∗)− λT (Ax̄t + Bȳt − b)

}
= θ(ūt)− θ(u∗) + ρ‖Ax̄t + Bȳt − b‖2

(106)

66

Taking an expectation over (106) and using (105) we have:

E [θ(ūt)− θ(u∗) + ρ‖Ax̄t + Bȳt − b‖2]

≤ E
[

1
t

t−1∑
k=0

(
ηk+1‖θ′

1(xk, ξk+1)‖2

2
+ 〈δk+1, x∗ − xk〉

)
+ 1

t

(
D2

X
2ηt

+ β

2
D2

y∗,B

)]

+ E
[
max
λ∈B0

{ 1
2βt
‖λ− λ0‖22

}]

≤ 1
t

(
M2

2

t∑
k=1

ηk + D2
X

2ηt

)
+

βD2
y∗,B

2t
+ ρ2

2βt
+ 1

t

t−1∑
k=0

E [〈δk+1, x∗ − xk〉]

= 1
t

(
M2

2

t∑
k=1

ηk + D2
X

2ηt

)
+

βD2
y∗,B

2t
+ ρ2

2βt

≤
√

2DX M√
t

+
βD2

y∗,B

2t
+ ρ2

2βt

In the second last step, we use the fact that xk is independent of ξk+1, hence

Eξk+1|ξ[1:k] 〈δk+1, x∗ − xk〉 =
〈
Eξk+1|ξ[1:k]δk+1, x∗ − xk

〉
= 0.

(ii) From the steps in the proof of part (i), it follows that,

θ(ūt)− θ(u∗) + ρ‖Ax̄t + Bȳt − b‖

≤ 1
t

t−1∑
k=0

ηk+1 ‖θ′
1(xk, ξk+1)‖2

2
+ 1

t

t−1∑
k=0
〈δk+1, x∗ − xk〉+ 1

t

(
D2

X
2ηt

+ β

2
D2

y∗,B + ρ2

2β

)

≡ At + Bt + Ct

(107)

Note that random variables At and Bt are dependent on ξ[t].

Claim 1. For Ω1 > 0,

Prob
(

At ≥ (1 + Ω1)M2

2t

t∑
k=1

ηk

)
≤ exp{−Ω1}. (108)

Let αk ≡ ηk∑t

k=1 ηk
∀k = 1, . . . , t, then 0 ≤ αk ≤ 1 and

∑t
k=1 αk = 1. Using the fact that

{δk, ∀k} are independent and applying Assumption 3, one has

E
[
exp

{
t∑

k=1
αk‖θ′

1(xk, ξk+1)‖2/M2
}]

=
t∏

k=1
E
[
exp

{
αk‖θ′

1(xk, ξk+1)‖2/M2
}]

≤
t∏

k=1

(
E
[
exp

{
‖θ′

1(xk, ξk+1)‖2/M2
}])αk

(Jensen’s Inequality)

≤
t∏

k=1
(exp{1})αk = exp

{
t∑

k=1
αk

}
= exp{1}

67

Hence, by Markov’s Inequality, we can get

Prob
(

At ≥ (1 + Ω1)M2

2t

t∑
k=1

ηk

)

≤ exp {−(1 + Ω1)}E
[
exp

{
t∑

k=1
αk‖θ′

1(xk, ξk+1)‖2/M2
}]
≤ exp{−Ω1}.

We have therefore proved Claim 1.

Claim 2. For Ω2 > 0,

Prob
(

Bt > 2Ω2
DX M√

t

)
≤ exp

{
−Ω2

2
4

}
. (109)

In order to prove this claim, we adopt the following facts in Nemirovski’s paper (Ne-

mirovski et al. [2009]).

Lemma 10. Given that for all k = 1, . . . , t, ζk is a deterministic function of ξ[k] with

E
[
ζk|ξ[k−1]

]
= 0 and E

[
exp{ζ2

k/σ2
k}|ξ[k−1]

]
≤ exp{1}, we have

1. For γ ≥ 0, E
[
exp{γζk}|ξ[k−1]

]
≤ exp{γ2σ2

k},∀k = 1, . . . , t

2. Let St =
∑t

k=1 ζk, then Prob{St > Ω
√∑t

k=1 σ2
k} ≤ exp

{
−Ω2

4

}
.

Using this result by setting ζk = 〈δk, x∗ − xk−1〉 , St =
∑t

k=1 ζk, and σk = 2DX M, ∀k,

we can verify that E
[
ζk|ξ[k−1]

]
= 0 and

E
[
exp{ζ2

k/σ2
k}|ξ[k−1]

]
≤ E

[
exp{D2

X ‖δk‖2/σ2
k}|ξ[k−1]

]
≤ exp{1},

since |ζk|2 ≤ ‖x∗ − xk−1‖2‖δk‖2 ≤ D2
X
(
2‖θ′

1(xk, ξk+1)‖2 + 2M2).
Implementing the above results, it follows that

Prob
(
St > 2Ω2DX M

√
t
)
≤ exp

{
−Ω2

2
4

}
.

Since St = tBt, we have

Prob
(

Bt > 2Ω2
DX M√

t

)
≤ exp

{
−Ω2

2
4

}

as desired.

68

Combining (107), (108) and (109), we obtain

Prob
(

Errρ(ūt) > (1 + Ω1)M2

2t

t∑
k=1

ηk + 2Ω2
DX M√

t
+ Ct

)
≤ exp {−Ω1}+ exp

{
−Ω2

4

}
,

where Errρ(ūt) ≡ θ(ūt)− θ(u∗) + ρ‖Ax̄t + Bȳt − b‖2. Substituting Ω1 = Ω, Ω2 = 2
√

Ω and

plugging in ηk = DX
M

√
2k

, we obtain (91) as desired.

3.7.2 Proof of Theorem 2

Proof. By the strong-convexity of θ1 we have ∀x:

θ1(xk)− θ1(x) ≤
〈
θ′

1(xk), xk − x
〉
− µ

2
‖x− xk‖2

=
〈
θ′

1(xk, ξk+1), xk+1 − x
〉

+ 〈δk+1, x− xk〉+
〈
θ′

1(xk, ξk+1), xk − xk+1
〉
− µ

2
‖x− xk‖2.

Following the same derivations as in Lemma 9 and Theorem 7 (i), we have

E [θ(ūt)− θ(u∗) + ρ‖Ax̄t + Bȳt − b‖2]

≤ E
{

1
t

t−1∑
k=0

[
ηk+1‖θ′

1(xk, ξk+1)‖2

2
+
(1

2ηk+1
− µ

2

)
‖xk − x∗‖2 −

‖xk+1 − x∗‖2

2ηk+1

]}

+
βD2

y∗,B

2t
+ E

[
max
λ∈B0

{ 1
2βt
‖λ− λ0‖20

}]
≤ M2

2t

t∑
k=1

1
µk

+ 1
t

t−1∑
k=0

E
[

µk

2
‖xk − x∗‖2 −

µ(k + 1)
2

‖xk+1 − x∗‖2
]

+
βD2

y∗,B

2t
+ ρ2

2βt

≤ M2 log t

µt
+ µD2

X
2t

+
βD2

y∗,B

2t
+ ρ2

2βt
.

3.7.3 Proof of Theorem 3

Proof. The Lipschitz smoothness of θ1 implies that ∀k ≥ 0:

θ1(xk+1) ≤ θ1(xk) + 〈∇θ1(xk), xk+1 − xk〉+ L

2
‖xk+1 − xk‖2

(76)= θ1(xk) + 〈∇θ1(xk, ξk+1), xk+1 − xk〉 − 〈δk+1, xk+1 − xk〉+ L

2
‖xk+1 − xk‖2.

69

It follows that ∀x ∈ X :

θ1(xk+1)− θ1(x) +
〈
xk+1 − x,−AT λk+1

〉
≤ θ1(xk)− θ1(x) + 〈∇θ1(xk, ξk+1), xk+1 − xk〉 − 〈δk+1, xk+1 − xk〉

+ L

2
‖xk+1 − xk‖2 +

〈
xk+1 − x,−AT λk+1

〉
= θ1(xk)− θ1(x) + 〈∇θ1(xk, ξk+1), x− xk〉 − 〈δk+1, xk+1 − xk〉+ L

2
‖xk+1 − xk‖2

+
[
〈∇θ1(xk, ξk+1), xk+1 − x〉+

〈
xk+1 − x,−AT λk+1

〉]
≤ 〈∇θ1(xk), xk − x〉+ 〈∇θ1(xk, ξk+1), x− xk〉 − 〈δk+1, xk+1 − xk〉+ L

2
‖xk+1 − xk‖2

+
[
〈∇θ1(xk, ξk+1), xk+1 − x〉+

〈
xk+1 − x,−AT λk+1

〉]
= 〈δk+1, x− xk+1〉+ L

2
‖xk+1 − xk‖2 +

[
〈∇θ1(xk, ξk+1), xk+1 − x〉+

〈
xk+1 − x,−AT λk+1

〉]
= 〈δk+1, x− xk+1〉+ L

2
‖xk+1 − xk‖2 +

〈
x− xk+1, βAT B(yk − yk+1)

〉
+
〈
∇θ1(xk, ξk+1) + AT [β(Axk+1 + Byk − b)− λk] , xk+1 − x

〉
(82)
≤ 1

2ηk+1

(
‖x− xk‖2 − ‖x− xk+1‖2

)
− 1/ηk+1 − L

2
‖xk+1 − xk‖2

+
〈
x− xk+1, βAT B(yk − yk+1)

〉
+ 〈δk+1, x− xk+1〉 .

The last inner product can be bounded as below using Young’s inequality, given that ηk+1 ≤
1
L :

〈δk+1, x− xk+1〉

= 〈δk+1, x− xk〉+ 〈δk+1, xk − xk+1〉

≤ 〈δk+1, x− xk〉+ 1
2 (1/ηk+1 − L)

‖δk+1‖2 + 1/ηk+1 − L

2
‖xk − xk+1‖2.

Combining this with inequalities (142,87) and (88), we can get a similar statement as that

of Lemma 9:

θ(uk+1)− θ(u) + (wk+1 −w)T F (wk+1) ≤ ‖δk+1‖2

2(1/ηk+1 − L)

+ 1
2ηk+1

(
‖xk − x‖2 − ‖xk+1 − x‖2

)
+ β

2

(
‖Ax + Byk − b‖2 − ‖Ax + Byk+1 − b‖2

)
+ 〈δk+1, x− xk〉+ 1

2β

(
‖λ− λk‖22 − ‖λ− λk+1‖22

)
.

The rest of the proof are essentially the same as Theorem 7 (i), except that we use the new

definition of ūk in (93).

70

CHAPTER IV

STOCHASTIC KERNEL MACHINES

4.1 Introduction

In this chapter we extend the idea of stochastic programming to kernelized support vector

machines (SVM) (Vapnik [1982]), one of the most popular nonlinear discriminative learning

methods that can achieve good generalization. SVM can be used for a variety of learn-

ing problems, such as classification (Vapnik [1982]), ranking (Joachims [2002]), regression

(Smola and Scholkopf [1998]), quantile estimation (Scholkopf et al. [2001]). The focus of

this chapter will be on the computational aspect of SVMs, especially the scalability of non-

linear SVM classifiers to large-scale problems. The proposed algorithms can also be readily

used for ranking, regression and other regularized risk minimization problems.

Training SVM classifiers can be formulated as a minimization

min
w∈H

λ

2
‖w‖2 + 1

N

N∑
i=1

L (w; (xi, yi)) (110)

where L is the loss function and H is a vector space. The parameter λ is used as a trade-off

between the squared 2-norm regularizer and the empirical risk. The training set is denoted

as {(xi, yi)}Ni=1 with samples xi ∈ Rd and corresponding labels yi ∈ {−1, 1}. A popular loss

function often chosen is the hinge loss: L (w, b; (xi, yi)) = max {0, 1− yi (〈w, φ(xi)〉+ b)},

which is a convex surrogate of the 0− 1 loss. Note that there are many alternative convex

loss functions available for classification tasks, such as the squared hinge loss, log-likelihood

loss, Huber loss and its variants. The squared hinge loss is adopted in this chapter.

The prediction function can be expressed as: sign (h(x)) = sign (〈w, φ(x)〉+ b). Here

φ(·) is a mapping from Rd to a feature space H which is often chosen as a kernel-induced

Hilbert space equipped with an inner product 〈·, ·〉. The kernel function is k(xi, xj) =

〈φ (xi) , φ (xj)〉. The N ×N kernel matrix is denoted as K = {Kij}, where Kij = k(xi, xj).

If φ (xi) = xi, h(x) is a linear hyperplane in Rd and it is called a linear SVM, otherwise it

is a nonlinear SVM.

71

Slack variables ξ can be introduced to handle cases where the two classes are not sep-

arable. The soft-margin SVM with pth polynomial hinge loss (Cortes and Vapnik [1995])

can then be expressed as

min
w∈H,b∈R,ξ∈RN

1
2
‖w‖2 + C

N∑
i=1

ξp
i

s.t. yi (〈w, φ(xi)〉+ b) ≥ 1− ξi, ξi ≥ 0, ∀i.

(sP)

(sP) is called the primal problem of SVM. When p = 1, it is often called L1-SVM. When

p = 2 it is called L2-SVM 1 which corresponds to squared hinge loss.

By introducing Lagrangian multipliers α and using Karush-Kuhn-Tucker (KKT) op-

timality conditions, the dual problem of SVM with (squared) hinge loss can be expressed

as:

max
α∈RN

− 1
2

αT
(
K � yyT

)
α + αT 1

s.t. 0 ≤ αi ≤ U, i = 1, . . . , N, yT α = 0,

(sD)

where the Hadamard product K � yyT = {yiyjKij}, and 1 is a vector of all ones. For

L1-SVM, U = C, and U =∞ for L2-SVM.

Historically, a majority of previous SVM solvers deal with (sD), due to the fact that

the nonlinear mapping φ(·) in (sP) is hard to handle and its constraints are complex, while

(sD) is a standard quadratic programming (QP) problem with box and equality constraints.

Nonetheless solving (sD) using general QP solvers has not been widely adopted for large-

scale problems, since no matter how easy or difficult the problem is, the kernel matrix K

is always dense. For instance, the interior point method needs O(dN2) memory to store

K and O(N3) time for matrix inversions, and both are prohibitive even for small problems

like N = 103. The low-rank approximation method (Smola and Scholkopf [2000]) has been

proposed to tackle this problem.

Another vein of solving SVMs are chunking and decomposition methods (Vapnik [1982],

Osuna et al. [1997], Platt [1999]). The main idea is to optimize over a small working set

B where |B| � N and update this set after each iteration, while the αis of the rest of the

1Please notice the difference between L2-SVM (squared hinge loss) and SVM with 2-norm regularization
term (any loss).

72

samples remain unchanged. How to choose B is crucial for this class of methods. Sequential

minimal optimization (SMO) (Platt [1999]) takes |B| = 2. The two samples are chosen as

the pair that violates the complementarity conditions the most. Although there is no rate

of convergence analysis for SMO, yet empirically its worst-case time complexity is at least

O(N2.3) (Platt [1999]). Shrinking and caching techniques have been proposed for further

speed up (Joachims [1999]), and second order information has been used for working set

selection (Fan et al. [2005]).

Linear SVM solvers are adopted for large-scale problems, especially text classifications

(Chang et al. [2008], Hsieh et al. [2008], Joachims [2005], Teo et al. [2007]). Coordinate

descent, cutting-plane and bundle methods are utilized to solve the unconstrained problem

110 directly. Since there are only d variables instead of N in nonlinear SVMs, state-of-the-

art linear SVM solvers can achieve an O(dN) time complexity or even better. However,

generally speaking, the prediction error of a linear classifier could be larger than a nonlinear

one, as shown in our experiments.

Stochastic programming techniques have shown to be very efficient for large-scale learn-

ing problems, both theoretically and empirically (Saad [1998], Kivinen et al. [2004], Zhang

[2004], Shalev-Shwartz et al. [2007]). For large-scale problems, it is often desired to make

a trade-off between computational complexity and the precision of underlying optimization

algorithms (Bottou and Bousquet [2008]). Stochastic methods, despite of its slow rate of

convergence compared with batch methods, can make each iteration very cheap. Hence

if only approximate solutions are desired, as in large-scale learning problems, stochastic

methods can be much faster than batch methods. This is an important motivation of our

work. Among many previous work, stochastic approximation (Kushner and Yin [2003]) is

often used for online/stochastic convex optimizations. The celebrated stochastic gradient

descent (SGD) wt+1 = Π(wt − η∇f(w, (xt, yt))|w=wt) is a most popular example (Bottou

and LeCun [2005]), where η is a learning rate, ∇f(w, (xt, yt)) is a noisy approximation of

the true gradient. In many cases it only involves a single training sample. Π() is a projec-

tion on the feasible set of w. The O(d) memory requirement of SGD makes it perfect for

large-scale online learning scenarios. Second order information is also used in more recent

73

work (Schraudolph et al. [2007]). Note that most of these work solve linear SVMs via the

primal problem (110) since it is an unconstrained problem. Thus there is no need to do the

extra projection Π() which could be even more expensive.

Inspired by the core vector machine (Tsang et al. [2005]) and its relations with sparse

greedy methods (Clarkson [2008]), in this chapter we propose a family of stochastic nonlinear

SVM solvers which solve L2-SVMs in the dual problems. These new algorithms are based

on a simple deterministic constrained optimization method: the Frank-Wolfe method (FW)

(Frank and Wolfe [1956]), hence they are named stochastic Frank-Wolfe algorithms (SFW).

Unlike stochastic approximation algorithms such as SGD and its variants, SFW has the

flavor of sample average approximation (Shapiro et al. [2009]) which is another vein of

stochastic programming.

With a slight modification of the primal problem (sP), an alternative dual problem can

be formulated as a simplex constrained QP problem which can be solved efficiently by SFW

with time complexity O
(
dQ2

ε2

)
, where ε = f(α∗)− f(α), and Q is a constant explained in

Theorem 11. A modified algorithm using SFW with “away steps” (Wolfe [1970]) is used to

improve the performance of SFW.

4.2 The Frank-Wolfe Method

The Frank-Wolfe method (FW), also known as the conditional gradient method (Bertsekas

[1999]), is a simple and classic first order feasible direction method. It was among the

earliest methods that solve convex problems with a continuously differentiable objective

function and linear constraints:

min
x∈X

f(x). (111)

Although in its original form, FW has only a sublinear convergence (Frank and Wolfe

[1956]), a modified version of it can achieve linear convergence (Wolfe [1970]). Besides, the

computations in each iteration can be made cheap provided that the constraints are linear.

FW generates a sequence of feasible vectors {x(k)} using line search: x(k+1) = x(k) +

λkd(k), where stepsize λ(k) ∈ [0, 1], d(k) = x̄− x(k) is a feasible descent direction satisfying

74

x̄ ∈ X and (d(k))T∇f(x(k)) < 0:

x(k+1) = x(k) + λ(k)
(
x̄− x(k)

)
. (112)

To search for a best feasible direction, i.e., the best x̄, FW uses the first order Taylor

expansion of f(x) and solves the optimization problem:

x̄ = arg min
x∈X

(
x− x(k)

)T
∇f

(
x(k)

)
. (113)

The direction search problem (113) needs to be at least no harder than (111) such that

FW can be of practical use. This is the case for continuously differentiable f(x) and linear

constraints, since (113) is then a linear program that can be solved via the simplex method.

A special case is when the feasible set is a unit simplex: 4 :=
{

x |
∑N

i=1 xi = 1, xi ≥ 0, ∀i
}

,

and (113) is simplified as:

min
x∈4

N∑
i=1

∂f
(
x(k)

)
∂xi

(
xi − x

(k)
i

)
. (114)

In this case the solution x̄ of (114) has all coordinates equal to 0 except for a single coordinate

indexed by p∗, corresponding to the smallest partial derivative, for which xp∗ = 1. We denote

this solution by e(p∗).

The sublinear convergence of FW can be stated by the following theorem.

Theorem 10 (Frank and Wolfe [1956]). Let x∗ be optimal for (111) and {x(k)} be a sequence

generated by FW, then there exists an index K, constants B and ζ such that

f(x(k))− f(x∗) ≤ B

k + ζ
, ∀k ≥ K. (115)

4.3 Stochastic Frank-Wolfe for SVM

4.3.1 Alternative Formulation of SVM

It might be possible to solve the dual (sD) using FW with the simplex method. However,

an alternative formulation of SVM’s primal problem can make the dual problem more

suitable for FW. The motivation is that, if we can obtain a dual problem that has only

simplex constraints, then instead of solving (113), we can look for the explicit solution of

the simpler problem (114).

75

The alternative formulation, which was proposed and successfully utilized by core vector

machines (Tsang et al. [2005]), is a variant of L2-SVM. It can be expressed as:

min
w∈H,b∈R,ρ∈R,ξ∈RN

1
2

(
‖w‖2 + b2

)
+ C

N∑
i=1

ξ2
i − νρ

s.t. yi (〈w, φ(xi)〉+ b) ≥ ρ− ξi, ∀i.

(aP)

Comparing with (sP), (aP) adds a regularization term b2 and a margin factor νρ, where

ν > 0 can be removed when we see the dual problem later. By introducing b2 we can remove

the equality constraint yT α = 0, while by νρ and the usage of the squared hinge loss, we

can obtain the simplex constraint.

The dual problem of (aP) can be expressed as:

max
α∈RN

−αT
(
K � yyT + yyT + I/2C

)
α

s.t. αT 1 = ν, αi ≥ 0, ∀i = 1, . . . , N,

(aD)

where I is an identity matrix. We denote

A := K � yyT + yyT + I/2C, (116)

with component Aij = yiyj (Kij + 1) + δij/2C where δpm = 1 if p = m and δpm = 0

otherwise. The objective function of (aD) is homogeneous in α, hence we can simply let

ν = 1. In this setting, when taking ξ = 0, the constraints of (aP) states that the two classes

are separated by the margin 2ρ/‖w‖. This margin can also be calculated from the KKT

complementary slackness conditions.

Since A is positive definite, (aD) is a concave QP problem with unit simplex constraints.

This make it in a good situation that FW method can be readily utilized.

Note that in (aP) we do not impose the nonnegativity of ρ explicitly due to the following

fact:

Proposition 2. Imposing ρ ≥ 0 in (aP) leads to a dual problem that has the same optimal

solution as (aD).

Proof. With ρ ≥ 0, the new dual problem is maxα∈RN −αT Aα s.t. αT 1 ≥ ν, αi ≥

0, i = 1, . . . , N. Suppose that it has an optimal solution α∗ such that α∗T 1 > ν, then

76

0 < ν/(α∗T 1) < 1. Define α̃ = να∗/(α∗T 1). It follows that −α̃T Aα̃ ≤ −α∗T Aα∗ and

−α̃T Aα̃ = −
(
ν/(α∗T 1)

)2
α∗T Aα∗ ≥ −α∗T Aα∗. Hence α̃ = α∗ and α∗T 1 = ν.

It should be mentioned that, compared with conventional formulation of L2-SVM, the

regularized bias term in the alternative formulation does not affect its performance, as

will be observed in our experiments. This has also been shown empirically by many other

previous work.

4.3.2 SFW Algorithm

The stochastic Frank-Wolfe algorithm (SFW) solves the dual problem (aD) stochastically.

Within the kth iteration, SFW solves the following approximation problem

max
α∈Rk

f(α) = −αT Aα

s.t. αT 1 = 1, αi ≥ 0, ∀i = 1, . . . , k,

(aD-k)

for a few FW steps. Then the sample size k is increased and a number of additional steps

are performed for the updated approximation problem. k is then increased again, a few

FW steps are performed. For each iteration, one does not need to solve the approximation

problem with a high precision.

In online learning settings, k can be increased as long as new samples are available. In

stochastic batch learning settings, when all samples are in a working set and no new sample

is available, SFW will proceed along a direction guided by an existed sample in the working

set.

Algorithm 4 shows the proposed Stochastic Frank-Wolfe Algorithm (SFW). The time-

complexities of the most time-consuming steps are given.

77

Algorithm 4 SFW
1: p∗

(0) = rand(), q(1) = Ap∗
(0)p∗

(0)
, λ∗

(0) = 1

2: α(1) = [0, . . . , 0, 1, 0, . . . , 0]T = e(p∗
(0)), update g(1)

3: for k = 1, . . . do

4: Sample {xk, yk} provided. Calculate g
(k)
k . // O(dk)

5: if g
(k)
k ≥ maxp∈S(k−1) g

(k)
p then

6: S(k) ← S(k−1) ∪ {k}

7: else

8: S(k) ← S(k−1)

9: end if

10: TOWARD // O(dk) or O(k)

11: end for

12: b = yT α

Algorithm 5 shows the FW step of Algorithm 4 (line 10). It is named TOWARD since

in the next subsection we will introduce an AWAY step.

Algorithm 5 TOWARD
1: p∗

(k) ← argmaxp∈S(k)g
(k)
p

2: λ∗
(k) ← Clamp

{
1−

gp∗
(k)

/2+Ap∗
(k)p∗

(k)
q(k)+gp∗

(k)
+Ap∗

(k)p∗
(k)

, [0, 1]
}

3: q(k+1) ←
(
1− λ∗

(k)

)2
q(k) − λ∗

(k)

(
1− λ∗

(k)

)
gp∗

(k)
+
(
λ∗

(k)

)2
Ap∗

(k)p∗
(k)

4: for p = 1, . . . , |S(k)| do

5: g
(k+1)
p ←

(
1− λ∗

(k)

)
g

(k)
p − 2λ∗

(k)App∗
(k)

6: end for

7: α(k+1) ←
(
1− λ∗

(k)

)
α(k) + λ∗

(k)e
(
p∗

(k)

)

We denote the objective function of (aD-k) as f(α) := −αT Aα, and the corresponding

78

gradient as g(α) = −2Aα. For p = 1, . . . , k, the pth component of g(α) is calculated as:

gp = −2yp

k∑
m=1

ymαm (Kpm + 1 + ypymδpm/2C)

= −2yp

k∑
m=1

ymαm (Kpm + 1)− αp/C.

(117)

The algorithm maintains a working set S(k). For initialization, a random sample indexed

by p∗
(0) is chosen and we set S(0) = {p∗

(0)}, α(1) = e(p∗
(0)). The gradient is then initialized

using (117).

In the following kth iteration, if the new training sample {xk, yk} can provide a better

feasible direction than any old samples in S(k), this new sample is selected as p∗
(k) and is

included in the new working set S(k+1). Otherwise, the best old sample within S(k) will

be selected as p∗
(k) for updating α and g(α), and S(k+1) will remains the same as S(k).

Therefore the number of indices in the working set |S(k)| ≤ k, and α(k) has at most k

nonzero items.

The search direction d(k) = e(p∗
(k)) − α(k) starts from the current solution α(k) and

points to one of the vertices of the unit simplex. Once this optimal vertex is determined,

we can use the limited minimization rule to determine the stepsize λ∗
(k):

λ∗
(k) = arg max

λ
f
(
α(k) + λ(e(p∗

(k))−α(k))
)

= arg min
λ

λ2
(
e(p∗

(k))−α(k)
)T

A
(
e(p∗

(k))−α(k)
)

+

2λ
(
e(p∗

(k))−α(k)
)T

Aα(k) + α(k)T Aα(k)

= 1 +
eT (p∗

(k))Aα(k) −Ap∗
(k)p∗

(k)

α(k)T Aα(k) − 2eT (p∗
(k))Aα(k) + Ap∗

(k)p∗
(k)

= 1 +
−gp∗

(k)
/2−Ap∗

(k)p∗
(k)

q(k) + gp∗
(k)

+ Ap∗
(k)p∗

(k)

,

(118)

where we denote q(k) := α(k)T Aα(k). Note that q(k+1) can be calculated by updating from

79

q(k) rather than starting from scratch:

q(k+1) =
[
α(k) + λ∗

(k)(e(p∗
(k))−α(k))

]T
A[

α(k) + λ∗
(k)(e(p∗

(k))−α(k))
]

= (1− λ∗
(k))

2q(k) + 2λ∗
(k)(1− λ∗

(k))e
T (p∗

(k))Aα(k)+

(λ∗
(k))

2Ap∗
(k)p∗

(k)
.

(119)

In order to make sure that the new feasible solution remains in the feasible set, we need to

clamp λ∗
(k) in the interval [0, 1]: if λ∗

(k) < 0→ λ∗
(k) = 0, if λ∗

(k) > 1→ λ∗
(k) = 1.

Calculations of g
(k+1)
p can also be done by updating from g

(k)
p in the same manner as

(119), as shown in line 5 of Algorithm 5. A practical method for further accelerating line 7

is that, instead of scaling vector α for every iteration, which take O(k) time, we can simply

maintain a scaler c =
∏

k(1 − λ∗
(k)), and only update the p∗

(k)-th component of α(k+1) by

λ∗
(k)e(p∗

(k))/(1 − λ∗
(k)). This can reduce its time complexity to O(1). Scaler c is multiplied

back when the true values of α are needed.

Calculation of the bias term b = yT α is directly obtained by taking partial derivative

of the Lagrangian of (aP) wrt b to 0.

4.3.3 SFW Algorithm with Away Steps

In addition to “toward steps” as in Eq.(112), “away steps”

x(k+1) = x(k) + λ(k)
(
x(k) − x̄

)
(120)

can also be considered. We denote search directions for toward steps as d(k)
t := x̄ − x(k)

and d(k)
a := x(k) − x̄ for away steps.

Introducing away steps is a method that can boost FW to linear convergence (Wolfe

[1970]). We can illustrate it using a simplex-constrained example shown in Fig.22, where

e0, e1, e2 are vertices of the simplex and the initial solution is x0. If we only use toward

steps, the convergence is pretty slow: x0 → x1 → x2 → x3 → · · · . However, with away

steps, the solution converges in merely 3 steps: x0 → x1 → x2 → x∗, where the last one is

an away step: da = x2 − e0.

80

Figure 22: FW with Away Steps.

Applying this method in our dual SVM problem (aD-k), we can use the following to

decide whether to make a toward or away step in the kth iteration:

Algorithm 6 DECIDESTEP
1: if d(k)T

t ∇f(α(k)) ≥ d(k)T
a ∇f(α(k)) then

2: TOWARD

3: else

4: AWAY

5: end if

The AWAY step is given in Algorithm 7. The stepsize is obtained in a similar way as

(118). In order to keep the new solution feasible, we need (1 + λ)αp∗
(k)
− λ ≥ 0, that is

0 ≤ λ ≤ αp∗
(k)

/(1− αp∗
(k)

).

81

Algorithm 7 AWAY
1: p∗

(k) ← argminp∈S(k)g
(k)
p

2: λ∗
(k) ← Clamp

{
gp∗

(k)
/2+Ap∗

(k)p∗
(k)

q(k)+gp∗
(k)

+Ap∗
(k)p∗

(k)

− 1,

[
0,

αp∗
(k)

1−αp∗
(k)

]}
3: q(k+1) ←

(
1 + λ∗

(k)

)2
q(k) + λ∗

(k)

(
1 + λ∗

(k)

)
gp∗

(k)
+
(
λ∗

(k)

)2
Ap∗

(k)p∗
(k)

4: for p = 1, . . . , |S(k)| do

5: g
(k+1)
p ←

(
1 + λ∗

(k)

)
g

(k)
p + 2λ∗

(k)App∗
(k)

6: end for

7: α(k+1) ←
(
1 + λ∗

(k)

)
α(k) − λ∗

(k)e
(
p∗

(k)

)

Replacing TOWARD in Algorithm 4 (line 10) with DECIDESTEP, we obtain a modified

SFW algorithm with away steps, named MSFW.

4.4 Convergence Analysis

In this section, we give the rate of convergence of SFW and MSFW, where we use some

techniques from (Clarkson [2008]) and (Guelat and Marcotte [1986]). We firstly introduce

the Wolfe dual and its weak duality (Wolfe [1961]).

Definition 3. Let f and gi be concave and continuously differentiable on RN . The primal

problem is

max f(x) s.t. gi(x) ≥ 0, i = 1, . . . , m. (121)

Its Wolfe dual is

min L(x, u) = f(x) +
m∑

i=1
uigi(x)

s.t. ∇f(x) +
∑

i

ui∇gi(x) = 0, u ≥ 0
(122)

The following proposition establishes the weak duality of Wolfe dual.

Proposition 3. Let q∗ = infu≥0 supx L(x, u), f∗ = supx(f(x)). Then q∗ ≥ f∗.

Applying this weak duality to a simplex-constrained concave problem as used in (aD),

we have the following result:

82

Lemma 11. Let α∗ be the optimal solution of (aD). Solving (aD) using SFW algorithm

with toward directions d(k)
t = e(p∗

(k))−α(k), the following holds for every iteration k:

d(k)T
t ∇f(α) ≥ f(α∗)− f(α(k)). (123)

Proof. Consider a general unit simplex-constrained concave problem

max
α

f(α), s.t. α ∈ 4. (124)

Introducing Lagrange multipliers y and zi we obtain its Wolfe dual:

min
α,y,zi

f(α)−αT∇f(α)− y

s.t. y + zi +∇f(α)i = 0, ∀i.

The constraint is equivalent to −y ≥ maxi∇f(α)i. Taking the smallest feasible −y =

maxi∇f(α)i, the above dual problem can be rewritten as:

min
α

(
f(α)−αT∇f(α) + max

i
∇f(α)i

)
.

Using Proposition 3, it follows that

f(α)−αT∇f(α) + max
i
∇f(α)i ≥ f(α∗). (125)

Now replacing the general concave f in (124) with the one in (aD-k), (125) can be

rewritten as:

f(α(k))−α(k)T∇f(α) + max
i∈S(k)

∇f(α)i ≥ f(α∗
(k)) (126)

where α∗
(k) is the optimal solution of (aD-k).

Since matrix A defined in (116) is symmetric positive definite (s.p.d.), and α for non-

working samples are all set to 0, we can decompose the objective function of (aD) as

−αT Aα = −αT Akα−αT (A−Ak)α, where −αT Akα corresponds to the working samples

S(k) used for solving (aD-k). Since Ak is s.p.d., using similar techniques as in (Smola and

Scholkopf [2000]), we can prove that A−Ak is also s.p.d.. It follows that

f(α∗
(k)) = −αT Akα = −αT Aα + αT (A−Ak)α

≥ −αT Aα = f(α∗).
(127)

83

Combining (126) and (127), we have

max
i∈S(k)

∇f(α)i −α(k)T∇f(α) ≥ f(α∗)− f(α(k))

which completes the proof.

We are now ready to present the rate of convergence for SFW.

Theorem 11. Algorithm SFW solves (aD) such that there exist a constant ζ ≥ −1/2, and

for all k = 1, 2, . . .

f(α∗)− f(α(k)) ≤ Q

k + ζ
, (128)

where Q = supk Qk and Qk = d(k)T
t Ad(k)

t .

Proof. Using the updating rule of SFW for α, we have:

f(α∗)− f(α(k+1)) = f(α∗)− f(α(k))−

[
d(k)T

t Aα(k)
]2

Qk
.

Using Lemma 11 we have

f(α∗)− f(α(k+1)) ≤ f(α∗)− f(α(k))−

[
f(α∗)− f(α(k))

]2
Qk

.

Denoting βk = f(α∗)− f(α(k)), it follows that

βk+1 ≤ βk −
β2

k

Qk
≤ βk

1 + βk
Qk

= 1
1

Qk
+ 1

βk

≤ 1
1
Q + 1

βk

.

For k = 1, denote its stepsize λ∗
(1) = η. Then

η = λ∗
(1) = d(1)T

t ∇f(α)
2Q1

≤ 1.

Using Lemma 11, β1 ≤ d(1)T
t ∇f(α) = 2ηQ1 ≤ 2ηQ. By induction we have:

β2 ≤
1

1
Q + 1

2ηQ

= Q

1 + 1/2η
, . . . , βk ≤

Q

k + (1
2η − 1)

.

Since 0 ≤ η ≤ 1, ζ = 1
2η − 1 ≥ −1/2 which completes the proof.

84

Theorem 11 means that, to achieve ε-accuracy on the dual problem, i.e. ε = f(α∗) −

f(α), Algorithm 4 needs t = O(Q
ε) iterations. It follows that the worst-case time complexity

of Algorithm 4 is
∑t

k=1 O(dk) = O(dt2) = O
(
dQ2

ε2

)
.

The convergence analysis for MSFW is more involved. We firstly prove that for k large

enough, all FW steps will be away steps.

Lemma 12. In MSFW, there exist M > 0 such that for all k ≥ M , d(k)T
t ∇f(α(k)) ≤

d(k)T
a ∇f(α(k)).

Proof. See the first part of Theorem 5’s proof in (Guelat and Marcotte [1986]).

The rate of convergence is give below.

Theorem 12. Algorithm MSFW solves (aD) such that there exists 0 < c < 1, and for all

k ≥M ,
f(α∗)− f(α(k+1))
f(α∗)− f(α(k))

≤ c, (129)

where M is defined in Lemma 12.

Proof. (scratch) The objective function f(α) is Lipschitz continuous and strongly convex,

i.e. there exists γ1 and γ2 such that

γ1‖α(k+1) −α(k)‖2

≤
(
α(k+1) −α(k)

)T (
∇f(α(k+1))−∇f(α(k))

)
≤ γ2‖α(k+1) −α(k)‖2.

(130)

The following proof essentially follows the proof of Theorem 2 in (Guelat and Marcotte

[1986]).

4.5 Experimental Results

4.5.1 Datasets

In this section, several real-world datasets from various application domains will be used

to evaluate the efficiency of the proposed stochastic algorithms. The first four datasets are

at http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/. The last two are at

http://www.cse.ust.hk/˜ivor/cvm.html. The sizes of these datasets range from small

85

scale (thousands samples) to mid-large scale (half a million samples). In some datasets,

the number of training samples for each class are fairly unbalanced. Among these datasets,

“w3a” is text data which is of relatively high dimension but very sparse. Table 3 gives the

details of them.

4.5.2 SVM Solvers for Comparison

The proposed algorithms are SFW: stochastic Frank-Wolfe and MSFW: modified stochastic

Frank-Wolfe with away steps. We compare them with several existing methods described

as below.

• SMO-L1: sequential minimal optimization for L1-SVM (Platt [1999]). This is one of

the most popular solver for nonlinear SVM classifications with hinge loss.

• SMO-L2: sequential minimal optimization for L2-SVM. The squared hinge loss is

adopted. The implementation of its training algorithm is essentially the same as

SMO-L1. The only differences are: the box constrains of SMO-L1 is replaced with an

nonnegativity constraint; an additional 1/2C term is added in each kernel calculation.

• SMO-shrink: SMO with shrinking technique (Joachims [1999]). The shrinking tech-

nique is based on the heuristics that some samples that have reached their bounds

tend to remain unchanged in following iterations, thus can be temporarily removed

from the working set. In our implementations, the working set is shrunk after every

1000 iterations.

• SMO-wss2: SMO with shrinking technique and second order information for working

set selection (Fan et al. [2005]). It is the state-of-the-art nonlinear SVM solver used

in LibSVM.

• SGD-linear: stochastic gradient descent for online/stochastic linear SVM with hinge

loss (Zhang [2004]). The learning rate is chosen as 1/k for the kth iteration.

• SGD-kernel: kernelized stochastic gradient descent for online/stochastic nonlinear

SVM with hinge loss, also known as NORMA (Kivinen et al. [2004]). The learn-

ing rate is chosen as 1/k for the kth iteration. The margin parameter ρ is set to 1,

86

Dataset # of # of Training # of Testing # of
Density Comments

Name Classes Samples (N) Samples Dim. (d)

svmguide1 2 3,089 4,000 4 100% real values; class 1: 64.7%

w3a 2 4,912 44,837 300 3.88% integer values; class -1: 97.1%

a9a 2 32,561 16,281 123 11.28% integer values; class -1: 75.9%

ijcnn1 2 35,000 91,701 22 59.09% integer and real values; class -1: 90.2%

usps01 2 266,079 75,383 676 14.95% real values; class 1: 54.3%

covertype 2 522,910 58,102 54 22.00% integer values; class -1: 51.2%

Table 3: Real-world datasets from various application domains.

Dataset σ C for L1-SVM C for L2-SVM

svmguide1 20 1 0.4

w3a 4 18 5

a9a 10 1.5 0.5

ijcnn1 0.61 7 5

usps01 10 10 50

covertype 100 10000 1000

Table 4: Parameters used for L1-SVM and L2-SVM.

which corresponds to hinge loss.

• Pegasos: primal estimated sub-gradient solver for online/stochastic linear SVM with

hinge loss (Shalev-Shwartz et al. [2007]).

4.5.3 Parameters and Implementation Issues

For nonlinear methods, we choose Gaussian radial basis function kernels

k(xi, xj) = exp
(
−‖xi − xj‖2/(2σ2)

)
. The kernel bandwidth σ and the parameter C in (sD) and (aD) are chosen via grid searches,

and the results with best testing accuracies are reported. Note that the C parameters

for L1-SVM and L2-SVM are generally different. Table 4 shows the different parameter

combinations used for our datasets.

For stopping criteria in batch learning tasks, all the above SMO-type algorithms will

stop when the “gap” mini∈Iup yigi −maxi∈Idown yigi is less than 0.001, where Iup = {i|αi <

C if yi = 1, or αi > 0 if yi = −1} and Idown = {i|αi > 0 if yi = 1, or αi < C if yi = −1}.

This tolerance is the same as the default stopping tolerance used in LibSVM. For all the

stochastic algorithms, they will stop after running for 1 or 2 epochs of iterations, where an

epoch stands for N iterations.

We do not include the caching technique in SMO or our SFW implementations for the

purpose of fair comparisons, since its performance varies for different datasets.

All the methods are implemented in C++, and all the data are in double-precision.

The experiments are carried out on a workstation with Xeon 3.00GHz CPU, 8 GB RAM

and 64-bit Linux system. In the following results, all the times shown are training time

measured in CPU time, excluding the time spent for data loading and prediction.

4.5.4 Comparisons on Convergence

In this section, we will compare performances of SFW and MSFW to other nonlinear SVM

solvers, namely SMO-L1, SMO-L2, SMO-shrink, SMO-wss2 and SGD-kernel. The primal/dual

values are expensive to calculate, so instead of evaluating the convergence on objective

88

values, we show the convergence history in testing accuracy, which is indeed what we care

about in practice.

For each dataset and solver, we run several trials with different number of iterations.

After each trial we use the testing sets to calculate testing accuracies. Fig.23∼28 show the

convergence histories of testing accuracies, against training time.

In our implementations of stochastic algorithms, in order to mimic online learning sce-

narios, each dataset is randomly permuted before feeding to the solvers. Hence these plots

can also be used to evaluate the performance of SFW and MSFW in online learning tasks.

Note that SGD-kernel is not shown in Fig. 24 and 26, since our experiments show that

the method’s testing accuracy is always the portion of the major class for datasets “w3a”

and “ijcnn1”, in which the two classes are high unbalanced.

It can be observed that stochastic Frank-Wolfe methods can quickly reach acceptable

accuracies in the very early iterations. Although this is a general benefit of stochastic

algorithms, SFW and MSFW still converge much faster than the stochastic SGD-kernel.

Although MSFW is proved to have a faster convergence rate than SFW, this theoretical

advantage is not very prominent in our experiments. This deserves further investigation.

4.5.5 Comparisons on Batch Learning Tasks

In this section, we will compare the performances of nonlinear solvers for batch learning. In

batch learning tasks, normally a pre-defined stopping criterion should be set to terminate

the optimization process.

As we will shown in Table 5, running SFW or MSFW for 1 or 2 epochs is enough to

obtain very good testing accuracies. As a comparison, for SMO-type algorithms, we use the

stopping criterion as discussed in section 4.5.3. This criterion is widely adopted by many

software packages, e.g. LibSVM and SVMLight.

The testing accuracies in the left half of Table 5 show that all the proposed stochastic

Frank-Wolfe algorithms achieve comparable or even higher accuracies than the rest of the

L1/L2-SVM solvers. The right half shows that the proposed algorithms are consistently

faster than SMO-type methods. Table 6 shows the number of iterations and number of

89

Figure 23: Dataset: svmguide1

Figure 24: Dataset: w3a

support vectors. We can see that the Frank-Wolfe methods have generally larger amount

of support vectors than L1-SVM solvers. This is due to the difference between hinge loss

90

Figure 25: Dataset: a9a

Figure 26: Dataset: ijcnn1

91

Figure 27: Dataset: usps01

Figure 28: Dataset: covertype

92

Dataset

Best Testing Accuracy (%) CPU Time for Training (in seconds)

SFW SFW MSFW MSFW SMO- SMO- SMO- SMO- SFW SFW MSFW MSFW SMO- SMO- SMO- SMO-

1 epo. 2 epo. 1 epo. 2 epo. L2 L1 shrink wss2 1 epo. 2 epo. 1 epo. 2 epo. L2 L1 shrink wss2

svmguide1 96.85 96.98 97.00 97.00 97.00 97.00 97.00 97.00 0.30 0.86 0.30 0.89 2.12 2.16 1.28 1.53

w3a 98.13 98.29 98.06 98.33 98.32 98.30 98.30 98.30 2.94 9.74 2.79 10.19 32.61 72.47 31.93 34.38

a9a 85.24 84.69 84.87 85.13 85.21 84.92 84.92 84.92 362.35 1178.7 375.75 1257.0 872.45 222.55 404.96 533.72

ijcnn1 98.07 98.58 98.17 98.55 98.61 98.61 98.61 98.61 24.08 75.73 23.67 78.51 637.32 808.32 134.12 76.83

usps01 99.54 99.53 99.54 99.53 99.54 99.54 99.54 99.54 3262.8 7228.7 2534.2 6242.1 19208 23226 3470.7 4421.0

covertype 96.68 98.23 97.23 98.23 98.23 98.24 98.24 98.24 23549 1.33e5 22167 1.13e5 2.46e5 2.13e5 2.06e5 2.33e5

Table 5: Experimental results for nonlinear SVM solvers. Best results are bolded and underscored.

Dataset

Number of Epochs/Iterations Number of Support Vectors

SFW SFW MSFW MSFW SMO- SMO- SMO- SMO- SFW SFW MSFW MSFW SMO- SMO- SMO- SMO-

1 epo. 2 epo. 1 epo. 2 epo. L2 L1 shrink wss2 1 epo. 2 epo. 1 epo. 2 epo. L2 L1 shrink wss2

svmguide1 1 2 1 2 2929 3010 3058 1250 693 971 672 942 1487 515 518 510

w3a 1 2 1 2 4178 9285 9360 4034 570 797 529 779 1273 562 572 564

a9a 1 2 1 2 34408 8829 8801 8110 12804 16743 13131 17267 20436 11980 11984 11981

ijcnn1 1 2 1 2 56139 69725 71003 10880 2772 3779 2706 3724 5286 2897 2899 2897

usps01 1 2 1 2 19394 23398 23398 11692 2509 2736 1382 1692 1959 1893 1893 1885

covertype 1 2 1 2 1.00e6 9.97e5 9.25e5 8.64e5 38004 1.10e5 29060 1.10e5 1.10e5 1.07e5 1.07e5 1.07e5

Table 6: Experimental results for nonlinear SVM solvers, continued.

and squared hinge loss.

4.5.6 Comparisons of Linear and Nonlinear SVMs

In this section, we use Figure 29∼33 to demonstrate the performance of SFW algorithms

against two linear SVM solvers, namely SGD-linear and Pegasos. The result is very interest-

ing. In most datasets, the linear solvers have a much lower testing accuracy than nonlinear

ones. While in some datasets, e.g. “w3a”, linear SVM solvers can be much faster than non-

linear solvers, with almost comparable testing accuracy on convergence. The reason might

be the sparseness of this webpage data. In such datasets, a linear hyperplane is already

enough to separate the two classes.

Figure 29: Dataset: svmguide1

4.6 Conclusions of this Chapter

We propose two stochastic Frank-Wolfe algorithms for nonlinear SVMs. These algorithms

are very simple and efficient for both batch and online tasks. They achieve comparable or

even better accuracies than state-of-the-art batch and online algorithms, and are signifi-

cantly faster. SFW has a provable time complexity O
(
dQ2

ε2

)
.

94

Figure 30: Dataset: w3a

Figure 31: Dataset: ijcnn1

On-going work includes adopting shrinking and caching techniques. We will extend

SFW to regression, ranking and semi-supervised learning problems. Sparse matrix storage

95

Figure 32: Dataset: usps01

Figure 33: Dataset: covertype

and computation will be implemented for further speed up. The gap between the theoretical

linear convergence of MSFW and its practical performance will also be investigated.

96

CHAPTER V

DISTRIBUTED LEARNING VIA CONSENSUS ADMM

5.1 Introduction

In this chapter we investigate the problem of data-distributed learning. This is a important

problem that arises in many real-world machine learning applications. For example, in

many large-scale machine learning systems, data samples are distributed over hundreds or

thousands of general purpose servers. Locally accessing data is typically faster than the

remote access due to the latency of network communication and limited bandwidth. The

same problem can happen in wireless sensor networks where the data is collected locally by

each sensor node and the resource constraints preclude any learning algorithm that demands

high volumes of inter-sensor communications. In both these realistic scenarios, there is no

pragmatic or desirable way to move data to a central node or move large amount of data

between nodes. Despite long-standing efforts to federate data in various ways, in reality for

large-scale problems, data will always be distributed for various reasons.

We formulate the distributed learning problem as a consensus constrained optimization

problem and solve it using the general methodology of Alternating Direction Method of

Multipliers (ADMM) (Glowinski and Marroco [1975], Gabay and Mercier [1976]). As sur-

veyed in the monograph (Boyd et al. [2010]), ADMM is a flexible algorithmic framework for

solving constrained problems. Its unique characteristic of “separability” can be utilized to

explore various structures of the learning problems. For our distributed consensus learning

problem, the main structure of concern is the underlying communication topology, which

can be easily modeled as equality constraints in ADMM. Topology is one of the most crit-

ical issues in implementing consensus learning for two reasons: First, different topologies

might lead to different iteration complexities for the algorithms. Second, the distribution

and number of edges in the communication graph will result in different communication

overloads. A practical system should always make a proper balance between these factors.

97

One of the central themes in distributed learning is the question “What is the best

communication topology?” To reach a definitive answer to this question, one still needs to

overcome major hurdles because the convergence behavior of ADMM in this context not

only depends on the communication topology, but also on the penalty parameter β used in

the augmented Lagrangian. The main focus of this chapter is to characterize the interplay

between these factors, and to this end we present a new convergence analysis for ADMM

with Lipschitz smooth and strongly convex functions (Section 5.4). Based on the derived

convergence rates, we design an adaptive scheme to choose β (Section 5.5). In Section 5.6

we use several sets of numerical examples to show: a) to what extent does β affect the

convergence rates; b) given the “optimal” β, which topology achieves faster convergence

rates; c) the effectiveness of the proposed adaptive β strategy; and d) a practical selection

for β for simple ADMM cases.

5.1.1 Related Work

There are generally two classes of methods for the distributed learning in the literature.

The first class includes the gradient-based primal methods: e.g. the distributed subgradient

descent methods (Nedic and Ozdaglar [2009], Dekel et al. [2011]) and the distributed dual

averaging methods (Duchi et al. [2010], Agarwal and Duchi [2011], Duchi et al. [2012]). The

second class are primal-dual methods based on the augmented Lagrangian method (Zhu

et al. [2009]) or ADMM (Boyd et al. [2010], Mateos et al. [2010], Mota et al. [2012]). In

gradient-based methods, the (sub)gradients are transmitted and aggregated in the hope

that all workers will asymptotically obtain information from all data samples. While for

the second class, the consensus requirements are explicitly encoded as constraints, and all

data samples are kept local. The starting point for our work is the D-ADMM algorithm

(Mota et al. [2012]) which belongs to the second class. However in this chapter we focus on

the convergence behavior of the algorithm and we want to investigate how it will be affected

by the various factors of our problem.

98

X1

X2

X12

..
.

X13

X24

X14

..
.

X1

X2

X24

..
.

Z1

Z2

Centralized Decentralized

Figure 34: Two ways to formulate bipartite graphs. Left: centralized learning with two
global (central) variables. Right: decentralized learning.

5.2 Problem Settings and Notations

We are interested in the following distributed consensus learning problem:

minf(x) ≡
N∑

i=1
fi(xi),

s.t. x1 = x2 = . . . = xN ,

(131)

where xi ∈ RD and each worker i is associated with an individual function fi(xi) and

its corresponding subset of data. The N distributed workers are connected via a graph

G = {V, E}, where V = {v1, . . . , vN} is the set of N indexed vertices and E is the set of

edges of the network. Each vertex vi is associated with a local variable xi. Information can

be transferred between vi and vj in either direction as long as they are connected by edge

eij . Note that despite the connectivity via eij , vi and vj have the freedom to choose whether

they want to exchange information or not. In other words, G only reflects the connectivity,

but not communications.

We propose to solve problem (131) by ADMM in parallel. To take advantage of ADMM’s

capacities in dealing with separable functions, we have at least the following two structural

options, as illustrated in Fig.34, where we use a case with 24 workers as an example.

1. Centralized Learning. We use axillary global (central) variables z ≡ {zj} such

that every xi are connected to some zj . In this way we can reproduce equivalent

99

connectivities represented by the original graph G. When |z| = 1, this is called

master-slave consensus optimization, where the global variable z is hosted by the

master node, and all xi variables are updated at slaves nodes. When |z| > 1, the

paradigm is called general form consensus optimization (Boyd et al. [2010]).

2. Decentralized Learning. Global variables are not necessary in this paradigm, hence

there is no master node. The N local functions fi are simply divided into groups,

where communication only happens between different groups, but not within each

group. For simplicity, we divide them into 2 groups. Following the work of (Mota

et al. [2012]) we design a bipartite graph for communication.

In this chapter we focus on the second paradigm since the centralized learning can be

regarded as a special case of the decentralized learning where the master nodes do not have

their own data samples.

Both the above two distributed learning paradigms can be conveniently formulated as

the following problem that can be solved by ADMM:

min
x∈X ,y∈Y

θ1(x) + θ2(y),

s.t. Ax + By = b,

(132)

where θ1 and θ2 are convex functions, X and Y are closed convex sets. In this chapter,

instead of using the classic ADMM (Boyd et al. [2010]), we follow the scheme of generalized

ADMM (Alg.8) as discussed in (He and Yuan [2012b]). The only difference is the additional

term for the proximity function 1
2‖x − xk‖2G, where the G−norm is defined as ‖x‖G =

√
xT Gx. Variations of ADMM can be derived from different G, e.g. the linearized ADMM

(Goldfarb et al. [2010], Zhang et al. [2011]). We use ‖ · ‖ to denote the l2 norm. The

augmented Lagrangian in Alg.8 is defined as:

Lβ(x, y, λ) ≡ θ1(x) + θ2(y)− 〈λ, Ax + By− b〉+ β

2
‖Ax + By− b‖2, (133)

where β is a pre-defined penalty parameter that is crucial in achieving faster rates of con-

vergence. We make the following assumptions for the rest of this chapter.

100

Algorithm 8 Generalized ADMM (G � 0)
[0.] Initialize y0 and λ0.
for k = 0, 1, 2, . . . do

[1.] xk+1 ← arg min
x∈X
Lβ(x, yk, λk) + 1

2‖x− xk‖2G.

[2.] yk+1 ← arg min
y∈Y
Lβ(xk+1, y, λk).

[3.] λk+1 ← λk − β
(
Axk+1 + Byk+1 − b

)
.

end for

Assumption 5. Functions θ1 and θ2 are L1 and L2 Lipschitz smooth, and are µ1 and µ2

strongly convex.

5.3 Distributed Consensus Learning

As discussed in Section 5.2, we are interested in the decentralized learning paradigm where

the N workers constitute a bipartite graph B ≡ {VL,VR, C} with left part VL and right part

VR. The communication edge set C ⊆ E represents the communication scheme: if there is

an edge cpn, then worker vp and vn will exchange information in each iteration of ADMM.

Note that even if vp and vn is connected by the network edge epn ∈ E , no communication

will be carried out if they are not connected by cpn.

The distributed consensus learning can thus be formulated as an optimization problem

with |C| equality constraints {xp = yn : ∀cnp ∈ C}. Writing these constraints in ADMM’s

matrix form Ax + By = 0, we can see that A ∈ RD|C|×D|VL| is a matrix of |C| block-rows,

with each block row containing only one identity matrix I and 0 for others. Matrix B is

defined similarly, with each block-row containing only one −I. The positions of I and −I

in each block-row of A and B indicates the consensus between two specific workers. An

example is illustrated in Fig.35. Since there are |C| consensus constraints, we introduce

|C| Lagrangian multipliers λpn for each edge cpn. The ADMM based distributed consensus

learning is given in Alg.9, where the augmented Lagrangians are

Lβ(xi, yk, λk) = fi(xi)−
Ni∑

n=1
〈λk

in, xi〉+ β

2

Ni∑
n=1
‖xi − yk

n‖2

Lβ(xk+1, yi, λk) = fi(yi) +
Pi∑

p=1
〈λk

pi, yi〉+ β

2

Pi∑
p=1
‖xk+1

p − yi‖2.

(134)

Here Ni represents the number of right workers (in VR) connected to the left worker i, and

101

Pi represents the number of left workers (in VL) connected to the right worker i.

I 0 0...

0 0 I...

A

x1

x2

x12

...

X

I 0 0...

I 0 0...

B

X13

X14

X24
...

Y+ = 0

+ = 0

... ...

0 I 0...0 I 0...

Figure 35: Consensus constraints expressed in matrix form.

In Alg.9, all xi are updated in parallel by the left workers, followed by the parallel

updates of yi by the right workers. In practice, all the updates of λ are computed in

parallel by the right workers, since they have access to the latest copies of yk+1 and xk+1

in each iteration k, while the left workers only have xk+1 and the old copy of yk.

Algorithm 9 Distributed Consensus Learning
[0.] Initialize y0 and λ0.
for k = 0, 1, 2, . . . do

[1.] ∀i (parallel) xk+1
i ← arg min

xi
Lβ(xi, yk, λk).

[2.] ∀i (parallel) yk+1
i ← arg min

yi
Lβ(xk+1, yi, λk).

[3.] ∀p, n (parallel) λk+1
pn ← λk

pn − β
(
xk+1

p − yk+1
n

)
.

end for

5.3.1 Three Dimensions of the Problem Space

Taking a closer look at Alg.9 we can find that there are actually three factors for the

implementation of this algorithm. Firstly, we can choose any communication topology that

is encoded in matrices A and B. Secondly, the penalty parameter β can be any positive

number. Thirdly, it is free to change the updating order for x and y (the update of λ should

also be modified accordingly). In order to investigate the interactions among these factors,

we use both theoretical analysis (Section 5.4, 5.5) and numerical examples (Section 5.6) to

102

study the convergence of Alg.9.

5.4 Iteration Complexities of ADMM

The global convergence of ADMM was established in the literature (Gabay [1983], Glowin-

ski and Tallec [1989], Eckstein and Bertsekas [1992]). The O(1/k) convergence rate was

established by (He and Yuan [2012a,b]) where the authors only assume that θ1 and θ2 are

convex. When these functions are both Lipschitz smooth and strongly convex, linear con-

vergence rates are reported very recently. In (Hong and Luo [2012]), the authors derived

R-linear rates for the sum of primal and dual gaps for a setting that is more general than

(132). However, the constants in the bound is not directly applicable to our setting. In

(Deng and Yin [2012]), the authors present linear rates only for the case when G = 0, and

as a consequence no rate is given for x. In the following we present explicit formulas of

linear rates for all the primal variables x, y and dual variable λ.

Lemma 13. Let l(x) : X → R be a convex differentiable function with gradient g. Let

scalar s ≥ 0. For any vector u and v, denote their Bregman divergence as D(u, v). If

∀u ∈ X , x∗ ≡ arg minx∈X l(x) + sD(x, u), then with Θ ≡ 〈g(x∗), x∗ − x〉, we have

Θ ≤ s [D(x, u)−D(x∗, u)−D(x, x∗)] . (135)

Proof. Invoking the optimality condition we have

〈g(x∗) + s∇D(x∗, u), x− x∗〉 ≥ 0, ∀x ∈ X ,

which is equivalent to

〈g(x∗), x∗ − x〉 ≤ s 〈∇D(x∗, u), x− x∗〉

= s 〈∇ω(x∗)−∇ω(u), x− x∗〉

= s [D(x, u)−D(x, x∗)−D(x∗, u)] .

The following key lemma states that ‖wk −w∗‖M is monotonically non-increasing, and

the reduction of wk − w∗ is faster than wk − wk+1. Variations of this lemma have been

103

presented several times in the literature under different settings and assumptions (He et al.

[2000], Boyd et al. [2010], He and Yuan [2012b], Deng and Yin [2012]). Our result is more

general in the sense that this lemma is applicable to convex feasible sets X and Y, not just

Rx and Ry. The proof is pretty simple and only relies on the optimality conditions.

Lemma 14. Under Assumption 5 we have

‖wk −w∗‖2M − ‖wk+1 −w∗‖2M ≥ ‖wk −wk+1‖2M

+ 2µ1‖xk+1 − x∗‖2 + 2µ2‖yk+1 − y∗‖2,

(136)

where wk ≡ (xk, yk, λk)T , w∗ ≡ (x∗, y∗, λ∗)T is the optimal solution of (132), and

M ≡ Diag
(

G, βBT B,
I

β

)
. (137)

Proof. By the strong convexity of θ1 and θ2 we have ∀x ∈ X and ∀y ∈ Y:

θ1(xk+1)− θ1(x) ≤
〈
θ′

1(xk+1), xk+1 − x
〉
− µ1

2
‖xk+1 − x‖2. (138)

θ2(yk+1)− θ2(y) ≤
〈
θ′

2(yk+1), yk+1 − y
〉
− µ2

2
‖yk+1 − y‖2. (139)

Invoking the optimality condition of Line 2 of Alg. 8 we have ∀y ∈ Y:

〈θ′
2(yk+1) + BT

[
β(Axk+1 + Byk+1 − b)− λk

]
, yk+1 − y〉 ≤ 0. (140)

Using Lemma 13 by taking the Bregman divergence D(·, ·) as ‖‖2G (G � 0) we have ∀x ∈ X :

θ1(xk+1)− θ1(x) +
〈
xk+1 − x,−AT λk+1

〉
(138)
≤

〈
θ′

1(xk+1)−AT λk+1, xk+1 − x
〉
− µ1

2
‖xk+1 − x‖2

=
〈
θ′

1(xk+1) + AT
[
β(Axk+1 + Byk − b)− λk

]
, xk+1 − x

〉
− µ1

2
‖xk+1 − x‖2 +

〈
βAT B(yk+1 − yk), xk+1 − x

〉
(135)
≤ 1

2

(
‖x− xk‖2G − ‖x− xk+1‖2G

)
− 1

2
‖xk − xk+1‖2G

− µ1
2
‖xk+1 − x‖2 +

〈
βAT B(yk+1 − yk), xk+1 − x

〉

(141)

104

The last term can be further bounded as〈
βAT B(yk+1 − yk), xk+1 − x

〉
= β

2

(
‖Ax + Byk − b‖2 − ‖Ax + Byk+1 − b‖2

)
+ β

2

(
‖Axk+1 + Byk+1 − b‖2 − ‖Axk+1 + Byk − b‖2

)
= β

2

(
‖Ax + Byk − b‖2 − ‖Ax + Byk+1 − b‖2

)
− β

2
‖yk − yk+1‖2BT B − (yk − yk+1)T BT (λk − λk+1)

≤ β

2

(
‖Ax + Byk − b‖2 − ‖Ax + Byk+1 − b‖2

)
− β

2
‖yk − yk+1‖2BT B,

(142)

where in the last step we used Lemma 3.1 of (He and Yuan [2012b]). Combining (139) and

(140) we have

θ2(yk+1)− θ2(y) +
〈
yk+1 − y,−BT λk+1

〉
≤ −µ2

2
‖yk+1 − y‖2. (143)

We also have the following equality from the updating rule of λ in Line 3:〈
λk+1 − λ, Axk+1 + Byk+1 − b

〉
= 1

β

〈
λk+1 − λ, λk − λk+1

〉
= 1

2β

(
‖λ− λk‖2 − ‖λ− λk+1‖2

)
− 1

2β
‖λk+1 − λk‖2.

(144)

Summing (141), (142), (143) and (144), taking x = x∗, y = y∗, λ = λ∗ and using the fact

105

that Ax∗ + By∗ − b = 0 we get

1
2

(
‖xk − x∗‖2G − ‖xk+1 − x∗‖2G

)
+ β

2

(
‖yk − y∗‖2BT B − ‖y

k+1 − y∗‖2BT B

)
+ 1

2β

(
‖λk − λ∗‖2 − ‖λk+1 − λ∗‖2

)
≥ µ1

2
‖xk+1 − x∗‖2 + µ2

2
‖yk+1 − y∗‖2

+ 1
2
‖xk − xk+1‖2G + β

2
‖yk − yk+1‖2BT B + 1

2β
‖λk+1 − λk‖2

+
[
θ1(xk+1)− θ1(x∗) + θ2(yk+1)− θ2(y∗)

]
+ (xk+1 − x∗)T (−AT λk+1) + (yk+1 − y∗)T (−BT λk+1)

+ (λk+1 − λ∗)T (Axk+1 + Byk+1 − b)

≥ µ1‖xk+1 − x∗‖2 + µ2‖yk+1 − y∗‖2 + 1
2
‖wk −wk+1‖2M ,

(145)

where the last inequality is due to the strong convexity of θ1 and θ2.

Remark 2. For the general convex cases, i.e. µ1 = µ2 = 0, the O(1/k) convergence rate

of ADMM can be easily derived from Lemma 14 (He and Yuan [2012b]).

5.4.1 Linear Convergence Rates

For strongly convex (µ1, µ2 > 0) and Lipschitz smooth functions, linear convergence rates

can also be obtained from Lemma 14. Note that all the results in this section rely on

the assumption that X = Rx and Y = Ry. In the following results we use Λmax(M) and

Λmin(M) to denote the maximum and minimum eigenvalues of a matrix M .

We are interested in the following two cases that will be presented separately: G = 0

for the classic ADMM and G � 0 for the generalized ADMM.

Theorem 13. When G = 0, X = Rx and Y = Ry, x, y and λ converge linearly:

‖wk+1 − w̃∗‖2P ≤
(1

1 + τ

)k

‖w0 −w∗‖2M , (146)

where

P ≡
(

2µ1 + µ2
1

2βΛmax(AAT)
, 2µ2 + βΛmin(BT B), 1

β

)
I,

w̃∗ ≡ (x∗, y∗, λk)T , and

106

τ ≡ 2µ2
L2

2
βc + βΛmax(BT B)

. (147)

Here c > 0 is the largest positive constant that satisfies

‖BT (λk+1 − λ∗)‖2 ≥ c‖λk+1 − λ∗‖2 ∀k. (148)

Theorem 14. When G � 0, X = Rx and Y = Ry, x, y and λ converge linearly:

‖wk+1 −w∗‖2M ≤
(1

1 + τG

)k

‖w0 −w∗‖2M , (149)

where

τG ≡ min
{ 2µ1

Λmax(G)
, τ

}
,

M is defined in (137) and τ is defined in (147).

5.5 Strategy for Choosing β Adaptively

Despite of many efforts towards finding a good penalty parameter β (He et al. [2000], Wang

and Liao [2001], Cands et al. [2011]), it still remains a serious issue in implementing any

instance of ADMM. This parameter controls the balance between the reductions of the dual

residual sk+1 ≡ βAT B(yk+1 − yk) and the primal residual rk+1 ≡ Axk+1 + Byk+1 − b as

defined in (Boyd et al. [2010]). A large β enforces more the primal feasibility Axk−Byk = b,

but results in a larger violation in the dual feasibility. A small β tends to reduce the

difference between yk+1 and yk, leading to a faster satisfaction of the dual feasibility, at

the expense of a larger violation of the primal feasibility.

Moreover, a bad choice of β might lead to very slow convergence rates for both the primal

and dual feasibilities. A numerical example for consensus least squares is shown in Fig.36,

where the bipartite graph consists of only two workers and the consensus constraint is simply

x = y. Increasing β from the optimal value 0.47 to 3 not only results in a significantly higher

dual residual than the primal residual, but also slows down both residuals from 10−6 to 10−3

(primal) and 10−2 (dual), all measured at iteration 20. Decreasing β to 0.1 makes the primal

residual higher than the dual residual, but both are around 10−4 at iteration 20, which are

still much higher than those using the optimal β.

107

2 4 6 8 10 12 14 16 18 20

10
−6

10
−4

10
−2

10
0

Number of iterations

Two−Workers Consensus Least Squares

||yk−y*|| (β=0.47)

||yk−xk|| (β=0.47)

||yk−y*|| (β=3)

||yk−xk|| (β=3)

||yk−y*|| (β=0.1)

||yk−xk|| (β=0.1)

Figure 36: Values of β significantly affect convergence rates for both primal and dual
residuals.

Since the optimal parameter β is essentially data-dependent, a natural idea is to search

it adaptively during the iterations of ADMM. However we still need to answer two questions:

1. What is a good initial value β0 that we shall start with? 2. What updating rule shall we

adopt?

Towards the first question, we can use our convergence results that are presented in

Theorem 13 and 14. For simplicity, we assume that in Theorem 14 (G � 0), we always

choose a G such that 2µ1
Λmax(G) > τ . Then in both cases the linear convergence rate is upper

bounded by
(

1
1+τ

)k
where τ ≡ 2µ2

L2
2

βc
+βΛmax(BT B)

. Here c > 0 is the largest positive constant

that satisfies ‖BT (λk+1 − λ∗)‖2 ≥ c‖λk+1 − λ∗‖2. Since a large τ results in a faster rate,

we can let L2
2

βc = βΛmax(BT B) and take the “optimal” β∗ = L2
cΛmax(BT B) . Although BBT is

positive semidefinite, yet B is not always of full row-rank. Hence in the worst case BBT

could be singular and c = Λmin(BBT) can as small as 0, resulting in a β∗ = ∞. However,

in practice a very large β is rarely a good choice, implying that c = Λmin(BBT) might be

too pessimistic. It is very hard to estimate c, since we do not know λ∗, nor the relation

between B and λk+1−λ∗. Our proposed strategy is to find an underestimated β by taking

the most optimistic ĉ = Λmax(BBT) > c and the initial guess

β0 = L2/(Λmax(BT B) ∗ Λmax(BBT)). (150)

108

We can see that this underestimated β0 is always smaller than β∗.

Towards the updating rule, we proposed a multiplicative method (Alg.10) that is inspired

by (He et al. [2000], Wang and Liao [2001]). In these two papers, the authors proposed to

choose β adaptively by βk+1 ← βk∗m if qk = ‖Axk+1+Byk+1−b‖
‖AT B(yk+1−yk)‖ is larger than some threshold

qth, where m > 1 is a fixed and predefined constant. Typical choices might be qth = 10

and m = 2 (Boyd et al. [2010]). In comparison, we propose to update βk by multiplying an

adaptive number
√

qk ≡
√

‖Axk+1+Byk+1−b‖
‖B(yk+1−yk)‖ . This simple method is motivated by the idea

of balancing the convergence rates of the primal residual rk+1 ≡ Axk+1 + Byk+1 − b and

the dual residual sk+1 ≡ βAT B(yk+1−yk). Intuitively, the more qk is deviated from 1, the

further βk is from β∗, hence deserving a larger scaling. Concrete examples that support

this intuition are given in Sec. 5.6.

Algorithm 10 Adaptive β for ADMM
INPUT: qth > 1
Initialize β0 = L2/(Λmax(BT B) ∗ Λmax(BBT)).
for k = 0, 1, 2, . . . do

qk = ‖Axk+1+Byk+1−b‖
‖AT B(yk+1−yk)‖

if qk ≥ qth or qk ≤ 1
qth then

βk+1 ← βk ∗
√

qk

end if
end for

Additionally, for our distributed consensus learning (Alg.9), it is extremely easy to obtain

Λmax(BT B) and Λmax(BBT). They are simply the maximum degree of the right nodes of

the bipartite graph, as summarized in the following result.

Proposition 4. Let matrix B ∈ RD|C|×D|VR| be of |C| block-rows and |VR| block-columns,

with each row block having only one −I, and 0 for others (Figure 35). Then Λmax(BT B) =

Λmax(BBT) = max{Degree(v ∈ VR)}.

5.6 Numerical Results

In this section, several sets of numerical examples will be used to: a) empirically demonstrate

how ADMM’s three degrees of freedom affect our proposed consensus learning algorithm;

b) illustrate how well the proposed adaptive β updating strategy works. In addition, we

109

proposed a practical β that works quite well for simple ADMM instances where A = I and

B = −I.

5.6.1 Experimental Settings

In all examples presented in this section, we generate a dataset for the following distributed

regression task:

min
x

f(x) ≡
N∑

i=1
(ST

i xi − li)2,

s.t. x1 = x2 = . . . = xN ,

(151)

We assume that the total 48, 000 data samples are evenly distributed among N = 24 workers.

Each worker i has 2, 000 samples of D = 50 dimensions. Components of the data matrix

Si of each worker are generated from the normal distribution N (0, 1). The real regression

coefficients x1 = x2 = . . . = xtrue ∈ RD have 10% zeros, and each non-zero dimension is

draw from the normal distribution N (0, 1). The dependent variables (labels) are perturbed

by Gaussian white noise N (0, 10−4).

For comparison purposes, we consider the following communication topologies:

• Complete bipartite graph. The 24 workers are divided into two groups: 12 are on the

left VL and 12 on the right VR. Each worker communicates with all the other 12

workers on the other partition. It is (12, 12)-biregular.

• Master-salve. The 24 workers are divided into two groups of 1 and 23 workers each.

The master communicates with all the 23 slaves on the other partition. It is (23, 1)-

or (1, 23)-biregular.

• (3, 3)-Biregular graph. The bipartition of workers is the same as the complete bipartite.

Each worker has the same degree 3.

• Bucky spanning tree. The 24 workers form a spanning tree, where is taken from a

buckyball, as shown in Fig.37, where the red ones are on the left, and the yellow ones

are on the right.

• Ring. A ring is also a (2, 2)-biregular graph.

• Ring+1edge. An additional edge of the longest chord is added to the ring, making it

not biregular.

110

• Chain. A chain is the spanning tree with the largest diameter.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1

3

11

14

17

20

2123

19

7

10

8

2

12

15 13

16

22 4

24

18

5

6

9

Figure 37: Buckyball spanning tree.

5.6.2 Varying β

We have already presented a very simple example in Section 5.5 showing that a bad choice of

β can significantly slow down the convergence of ADMM. Now we use the complete bipartite

communication topology to show that β is still a crucial parameter for the distributed

consensus learning with more than 2 workers.

The primal residual ‖rk‖ and dual residual ‖sk‖ are plotted in Fig.38 and 39 as functions

of both the number of iterations and β. We have several observations. First, both residuals

converge linearly for any β values we tried from 10−2 ∼ 102, although some β converge

faster than the others. This is expected, since our linear convergence rates in Theorem 13

and 14 are simple functions of β, no matter how large or small it is. Second, for small β,

the primal residual ‖rk‖ is larger than the dual ‖sk‖, and for large β the reverse holds.

Third, the “optimal” β∗ = 0.4467 is neither too large nor too small. It is the parameter

that achieves the lowest values for both ‖rk‖ and ‖sk‖, and these two lowest values are very

close to each other. This observation provides some evidences for the effectiveness of our

proposed strategy of adaptive β (Alg.9).

111

0

10

20

30
10

−2 10
−1 10

0 10
1 10

2

10
−8

10
−6

10
−4

10
−2

10
0

10
2

βNumber of Iterations

P
rim

al
 R

es
id

ua
l |

|r
||=

||A
xk +

B
yk ||

Figure 38: Primal residual as a function of β and number of iterations. Topology: complete
bipartite graph.

5.6.3 Comparing Communication Topologies Using Optimal βs

As we discussed in Section 5.3.1, the three degrees of freedom of ADMM all contribute to

the convergence speed of the algorithm. Their interplay is so complex that it is not easy to

draw a clear conclusion of which communication topology is the “best”. Here we simplify

this problem by fixing the other two degrees and only explore the effects of communication

topologies. For each topology, we seek the “optimal” β from a set of 1, 000 candidates

ranging from β0/10 to 100β0, where the formula for the underestimated β0 is given in (150)

and Proposition 4 can be used to calculate the maximum eigenvalues.

The fastest possible primal and dual convergences for each topology are plotted in

Fig.40. Again we can observe that all residuals converge linearly, and the values of ‖rk‖

and ‖sk‖ are very close at the same iteration given the optimal β of each topology. It is

also very clear that the complete bipartite and master-slave topologies converge at almost

the same rate, and they are both faster than the others. This is an interesting observation,

since the complete bipartite graph has 144 edges, which is higher than the master-slave’s 23,

112

0

10

20

30 10
−2 10

−1 10
0 10

1 10
2

10
−10

10
−5

10
0

10
5

βNumber of Iterations

D
ua

l R
es

id
ua

l |
|s

||=
β|

|A
T
B

(y
k+

1 −
yk)|

|

Figure 39: Dual residual as a function of β and number of iterations. Topology: complete
bipartite graph.

however the master-slave have a higher bandwidth requirement for the master node than the

complete bipartite where the bandwidth requirement is balanced for all workers. The (3, 3)-

biregular graph is much faster than the bucky spanning tree, although they have the same

maximum degree 3 for each bipartition. This might due to the fact that the spanning tree

taken from the buckyball graph has a minimum degree 1 for some workers. The spanning

tree is even slower than the (2, 2)-biregular ring, implying that a biregular graph might

be preferred for the faster convergence rates of consensus learning. This preference can be

also observed from the comparison between the ring and the ring+one edge, where more

edges do not necessarily lead to faster rates. The chain topology is the slowest one, which

is expected, since it has the smallest number of edges and the smallest minimum (1) and

maximum (2) degrees.

5.6.4 Adaptive β using Alg.10

The above observations verify that an effective implementation of our consensus learning

(Alg.9) heavily relies on a good β. Hence in the follows we use the distributed consensus

113

0 50 100
10

−15

10
−10

10
−5

10
0

10
5

Number of iterations

Primal Residual ||r||=||Axk+Byk||

0 50 100
10

−15

10
−10

10
−5

10
0

10
5

Number of iterations

Dual Residual ||s||=β||ATB(yk+1−yk)||

Bucky Spanning Tree
Master−Slave
Chain
Ring
Ring+1 Edge
(3,3) Biregular
Complete Bipartite

Figure 40: Primal and dual residuals using the optimal βs.

learning task as a testbed for our proposed adaptive β strategy (Alg.10). Note that this

method is very general and can be used as a plug-in for other ADMM instances.

All the experimental settings are the same as Subsection 5.6.3, except that we replace

the fixed “optimal” β with the adaptive strategy. As a comparison, we implemented He’s

adaptive β proposed in (He et al. [2000], Wang and Liao [2001]) using the parameters

suggested in (Boyd et al. [2010]), and take the initial β0 = 1 for all topologies. We plot the

convergence history of the primal and dual residuals in Fig.41 and 42.

Comparing Fig.41 with Fig.40 one can observe that the proposed strategy for β works

very well. The convergence rates are very close to those with “optimal” βs. Residuals for

the master-slave topology are not monotonically decreasing, but the overall rates are still

comparable with the optimal case, if not any faster. He’s method (Fig.42) works reasonably

well for some topologies, but is still much slower than our proposed method, except for the

master-slave. One reason might be that the uninformative initial guess β0 = 1 is improper,

and it should be both data- and topology-dependent as we suggested in Alg.10.

114

0 50 100
10

−15

10
−10

10
−5

10
0

10
5

Number of iterations

Primal Residual ||r||=||Axk+Byk||

0 50 100
10

−15

10
−10

10
−5

10
0

10
5

Number of iterations

Dual Residual ||s||=β||ATB(yk+1−yk)||

Bucky Spanning Tree
Master−Slave
Chain
Ring
Ring+1 Edge
(3,3) Biregular
Complete Bipartite

Figure 41: Primal and dual residuals using proposed Alg.10.

5.6.5 Changing the Updating Order

The third degree of freedom for ADMM is the order with which x and y are updated.

Although we have no pointers coming directly from our theoretical results, empirically it is

the weakest factor comparing with the communication topology and the value of β. We test

it using the same settings as in Subsection 5.6.3. We observe that for all topologies except

the master-slave, after changing the updating order, the changes of convergence rates are

tiny, and the optimal β∗ are essentially the same as before. For the master-slave topology,

similar convergence rates can also be obtained, although we have to reduce the optimal β∗

from 4.71 to 4.33.

5.6.6 Practical β for the Simple Case: x = y

In this last set of experiments, we present a practical β for the case where the constraint

of ADMM is simply x = y, i.e. A = I, B = −I and b = 0. We found that taking the fixed

penalty parameter

β =
√

µ1L2 (152)

115

0 50 100
10

−15

10
−10

10
−5

10
0

10
5

Number of iterations

Primal Residual ||r||=||Axk+Byk||

0 50 100
10

−15

10
−10

10
−5

10
0

10
5

Number of iterations

Dual Residual ||s||=β||ATB(yk+1−yk)||

Bucky Spanning Tree
Master−Slave
Chain
Ring
Ring+1 Edge
(3,3) Biregular
Complete Bipartite

Figure 42: Primal and dual residuals using the method of (He et al. [2000], Wang and Liao
[2001], Boyd et al. [2010]).

works quite well in practice although currently we do not have any theoretical evidence to

support its effectiveness. To satisfy the smoothness and strongly-convex assumptions, we

use the ridge regression minx
∑N

i=1(xT si− li)2 + α
2 ‖x‖

2 as our objective function. Putting it

in ADMM’s canonical form (132) we have θ1(x) =
∑N

i=1(xT si− li)2 and θ2(y) = α
2 ‖y‖

2. We

test (152) using 2, 000 samples of dimension 50. In this simulated dataset, µ1 = 1, 436.5.

Results for α = 1 and α = 100 are plotted in Fig.43 and 44. When α = L2 = 1,
√

µ1L2 =

37.90, and the optimal β∗ shown in Fig.43 is 39.64. When α = L2 = 100,
√

µ1L2 = 379.02,

and the optimal β∗ shown in Fig.44 is 384.42.

5.7 Conclusions of this Chapter

In this chapter, we presented an ADMM-based consensus learning method for training

distributed data samples in parallel. We used bipartite communication topologies to take

advantage of ADMM’s capacities in dealing with separable functions. We identify the

three degrees of freedom in implementing this method: communication topology, penalty

parameter β and the order for updating variables. In order to investigate the joint effects

116

0

10

20 10
0 10

1 10
2 10

3

10
−10

10
0

β

Primal Residual

0
10

20 10
0 10

1 10
2 10

3

10
−10

10
−5

10
0

β

Dual Residual

Figure 43: Ridge regression α = 1.

0

10

20 10
2 10

3 10
4

10
−10

10
0

β

Primal Residual

0

10

20 10
2 10

3 10
4

10
−10

10
0

β

Dual Residual

Figure 44: Ridge regression α = 100.

of these factors, we provided an analysis of ADMM’s convergence behavior. The analysis

demonstrates that all the primal and dual variables enjoy a linear rate of convergence. Due

to the difficulty in obtaining a very sharp rate from which the optimal β∗ can be derived,

we proposed a strategy for choosing β adaptively, with an underestimated initial guess β0

that is derived from our bound. Numerical experiments show that β∗ is achieved at a point

where the norms of primal and dual residuals are close and decrease at the fastest rate.

With β∗, the complete bipartite and the master-slave graphs converge fastest, followed by

bi-regular graphs. The proposed strategy of adaptive β is very efficient.

There are several interesting directions that remain to be explored. A tighter and more

117

instructive bound is deserved. It is possible to extend our method to asynchronous variants.

It is also promising to investigate the possibilities with assumptions weaker than Assumption

5. A potential application is the distributed consensus Lasso.

5.8 Appendix

5.8.1 Proof for Theorem 13

Proof. Invoking the KKT optimality conditions for (132),

θ′
1(x∗)−AT λ∗ = 0, θ′

2(y∗)−BT λ∗ = 0. (153)

Invoking the optimality conditions for Line 1 and 2 of Alg.8,

θ′
1(xk+1)−AT λk + βAT (Axk+1 + Byk − b) = 0 (154)

and

θ′
2(yk+1)−BT λk + βBT (Axk+1 + Byk+1 − b) = 0. (155)

By the Lipshitz smoothness of θ2 and (153,155) we have

‖θ′
2(yk+1)− θ′

2(y∗)‖ = ‖BT (λk+1 − λ∗)‖ ≤ L2‖yk+1 − y∗‖, (156)

hence by the definition of c (148) we have:

‖λk+1 − λ∗‖2 ≤ L2
2

c
‖yk+1 − y∗‖2. (157)

By (153) and (154) we have

‖θ′
1(xk+1)− θ′

1(x∗)‖ = ‖AT (λk+1 − λ∗) + βAT B(yk+1 − yk))‖ (158)

Combing (158) and the fact of strong-convexity

‖θ′
1(xk+1)− θ′

1(x∗)‖ ≥ µ1‖xk+1 − x∗‖

we have

‖xk+1 − x∗‖2 ≤ 1
µ2

1
‖AT (λk+1 − λ∗) + βAT B(yk+1 − yk))‖2

= 1
µ2

1
‖(λk+1 − λ∗) + βB(yk+1 − yk)‖2AAT

≤ 2Λmax(AAT)
µ2

1

[
‖λk+1 − λ∗‖2 + β2‖yk+1 − yk‖2BT B

]
(159)

118

Invoking Lemma 14 with G = 0 we have

µ2
1

2βΛmax(AAT)
‖xk+1 − x∗‖2

≤ 1
β
‖λk+1 − λ∗‖2 + β‖yk+1 − yk‖2BT B

(136)
≤ β‖yk − y∗‖2BT B + 1

β
‖λk − λ∗‖2

− β‖yk+1 − y∗‖2BT B − 2µ2‖yk+1 − y∗‖2

− 1
β
‖λk+1 − λk‖2 − 2µ1‖xk+1 − x∗‖2

(160)

Rearranging the items of the above inequality we have

µ1

(
2 + µ1

2βΛmax(AAT)

)
‖xk+1 − x∗‖2 + β‖yk+1 − y∗‖2BT B + 2µ2‖yk+1 − y∗‖2

+ 1
β
‖λk+1 − λk‖2 ≤ β‖yk − y∗‖2BT B + 1

β
‖λk − λ∗‖2 = ‖wk −w∗‖2M .

(161)

Next we bound the right hand side of the above inequality. Denote τ > 0 such that

τ‖wk −w∗‖2M
(157)
≤ τ

[
L2

2
βc

+ βΛmax(BT B)
]
‖yk+1 − y∗‖2 = 2µ2‖yk+1 − y∗‖2, (162)

and the formula of τ (147) follows. Combing Lemma 14 and (162) we have

‖wk −w∗‖2M − ‖wk+1 −w∗‖2M ≥ τ‖wk+1 −w∗‖2M , (163)

and together with (161) the linear rate follows.

5.8.2 Proof for Theorem 14

Proof. This result simply follows Lemma 14 and (162).

119

CHAPTER VI

DISCUSSION AND FUTURE WORK

In this dissertation we investigate the design and analysis of scalable algorithms for machine

learning. From the computational point of view, stochastic and distributed algorithms have

been the main focuses of this work.

The main idea behind all of our algorithm design is to achieve low error rates for both

the estimation and optimization errors. This idea stems from a deeper understanding

on the main sources of the generalization error of a learning algorithm. We identify the

lower bounds for each of these components and introduce the concept of statistically and

computationally optimal learning algorithms.

The error decomposition is illustrated by some simple examples. We observe that when

using the same basis optimization method e.g. gradient descent, the stochastic algorithm is

almost always faster than its batch counterpart, given that the sample size is large enough

and the samples are scanned for only one pass. When multiple epochs are allowed in the

training process, the stochastic algorithm still outperforms when the noise level is low or

moderate, even if the i.i.d. assumption does not hold anymore.

Since the slow O(1/
√

t) worst-case convergence rate for minimizing nonsmooth func-

tions is of the same order as that of the estimation error (for general convex functions),

we propose a stochastic smoothing method to alleviate the effect of this dominating fac-

tor. Our convergence analysis show that the proposed accelerated nonsmooth stochastic

gradient descent algorithm achieves optimal rates under both convex and strongly convex

assumptions, and they are also computationally optimal due to the one pass computational

cost of stochastic algorithms. We also propose a “Batch-to-Online” conversion for online

learning, and show that optimal regrets can be obtained. We will extend our method to

constrained minimizations, as well as cases when the approximated function f̂() is not easily

obtained by maximizing u. Nesterov’s excessive gap technique has the “true” optimal 1/t2

120

bound, and we will investigate the possibility of integrating it in our algorithm.

To take advantages of both the separable structures in machine learning problems and

the scalability of the stochastic algorithms, we propose a stochastic alternating direction

method of multipliers. It is applicable to nonsmooth loss functions, which is more general

than the classic ADMM. We also demonstrate the rates of convergence for our algorithm un-

der various structural assumptions of the stochastic function: O(1/
√

t) for convex functions

and O(log t/t) for strongly convex functions. Compared to previous literature, we establish

the convergence rate of ADMM, for the first time, in terms of both the objective value

and the feasibility violation. A novel application named Graph-Guided SVM is proposed

to demonstrate the usefulness of our algorithm. Stochastic ADMM is general enough to be

extend to many other applications if the graphical-lasso prior can be introduced and the

inter-feature relations can be explored.

The stochastic Frank-Wolfe algorithms proposed for nonlinear kernel machines can be

regarded as a stochastic greedy algorithm. Extensive experiments show that they are much

faster than the (batch) sequential minimal optimization and the online kernel SVM. Com-

paring with fast linear SVM solvers, kernel SFW still outperforms for only a small number

of iterations. Future work is to further reduce the number of support vectors such that the

per-iteration cost can be reduced.

Our convergence analysis indicates that the consensus ADMM based data-distributed

learning method exhibits fast linear convergence rates for strongly convex problems. To

make it optimal we identify the three degrees of freedom in implementing this method:

communication topology, penalty parameter β and the order for updating variables. We

proposed a strategy for choosing the penalty parameter β adaptively, with an underesti-

mated initial guess β0 that is derived from our bound. Numerical experiments show that the

optimal β∗ is achieved at a point where the norms of primal and dual residuals are close and

decrease at the fastest rate. With β∗, the complete bipartite and the master-slave graphs

converge fastest, followed by bi-regular graphs. Extending our method to asynchronous up-

dates is very important for real-world applications. How to relax the smoothness assump-

tion is another important direction to explore. A potential application is the distributed

121

consensus Lasso.

A few topics are listed below for future investigation.

1. This dissertation is mainly about the exploration of problem/function structures. An-

other rich source of structural information comes from the dataset itself. For

example, in first-order methods, the Lipschitz constant of gradients or the modulus of

strong convexity are very important in choosing stepsizes. How to estimate these con-

stants onlinely and efficiently is an open question. Our recent work on noise-adaptive

stepsizes is my first attempt along this direction (Ouyang and Gray [2012a]).

2. The outputs of stochastic algorithms are typically not as stable as deterministic ones,

despite of their low cost for computation. This is not surprising, since the convergence

guarantees of stochastic algorithms are always in expectations. Stabilizing stochas-

tic algorithms by reducing the variance of results is preferred in many applications

where robustness is a crucial consideration. Using more data samples is the most triv-

ial way in achieving this goal. However, the question whether the stochastic results

can be stabilized algorithmically still remains open. Empirically, an ergodic averaging

on SGD can significant reduce the variance (Ouyang and Gray [2012b]), hence more

theoretical analysis is deserved.

3. Most results in my thesis depend on the convex formulation of a problem. However,

important nonconvex problems are almost everywhere in machine learning espe-

cially when latent models are involved. Examples are matrix factorization, neural

networks, deep learning and variational inference for Bayesian statistics. Migrating

stochastic/online algorithms and the corresponding analysis to these problems are

extremely important and promising. As a starting point, simple nonconvex formula-

tions such as alternating minimization for matrix factorizations will be analyzed as

an canonical example, since our empirical observations show that the local optimality

issues are only minor or moderate in these problems.

122

4. Replacing random sampling in Monte-Carlo methods by importance-based sam-

pling is another idea to explore data information. An analogy is the difference be-

tween stochastic algorithms and greedy algorithms where the most important path is

taken in each iteration. A naive greedy search for the best data sample take O(N)

time for N samples, while a smarter search algorithm might speed it up to o(log N) if

approximate results are acceptable. The concept of importance here is defined broadly.

In additional to the statistical importance of data samples, the capacities and reliabil-

ities of distributed workers and communication networks can be also modeled under

this concept.

5. The field of robust optimization (Nemirovski [2012]) pioneered by Dr. Nemirovski

(collaborator and member of my thesis committee) has been successfully applied to

many areas beyond the operations research, such as finance, manufacturing engineer-

ing, chemical engineering and medicine. Little attention has been attracted from the

machine learning community until very recently (Caramanis et al. [2012]). In addi-

tional to the stochastic programming setting, robust optimization is the other promis-

ing computational framework that can handle the uncertainties of machine learning,

where data samples are almost always corrupted by noises of unknown distributions.

One of its most appealing benefits is its deterministic setting, i.e. no i.i.d. assump-

tions are made upon the data distribution, and instead an uncertain-but-bounded data

model is made. Under this framework, one can obtain results with probabilistic guar-

antees like “the solution has the max probability δ of making a loss lager than ε”, as

opposed to the a good-in-expectation result.

123

Bibliography

Alekh Agarwal and John Duchi. Distributed delayed stochastic optimization. In Advances
in Neural Information Processing Systems 24, pages 873–881. 2011.

Alekh Agarwal, Peter L. Bartlett, P. Ravikumar, and Martin J. Wainwright. Information-
theoretic lower bounds on the oracle complexity of stochastic convex optimization. In-
formation Theory, IEEE Trans., 2012.

Francis Bach and Eric Moulines. Non-asymptotic analysis of stochastic approximation
algorithms for machine learning. In NIPS, 2011.

O. Banerjee, L. E. Ghaoui, and A. d’Aspremont. Model selection through sparse maxi-
mum likelihood estimation for multivariate gaussian or binary data. Journal of Machine
Learning Research, 9:485–516, 2008.

Peter L. Bartlett. Fast rates for estimation error and oracle inequalities for model selection.
Econometric Theory, 24(2):545–552, 2008.

Peter L. Bartlett and Shahar Mendelson. Empirical minimization. Probability Theory and
Related Fields, 135(3):311–334, 2006.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM J. Imaging Sci., 2(1):193–202, 2009.

Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, 2nd edition, 1999.

Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Computation: Numer-
ical Methods. Athena Scientific, 1997.

Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,
1996.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2007.

Leon Bottou. Stochastic gradient descent 2.0. URL http://leon.bottou.org/projects/
sgd.

Leon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In Proceedings of
NIPS, 2008.

Leon Bottou and Yann LeCun. On-line learning for very large datasets. Applied Stochastic
Models in Business and Industry, 2005.

Stéphane Boucheron, Olivier Bousquet, and Gábor Lugosi. Theory of classification: A
survey of some recent advances. ESAIM: Probability and Statistics, 9:323–375, 2005.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations and
Trends in Machine Learning, 3(1), 2010.

Emmanuel J. Cands, Xiaodong Li, Yi Ma, and John Wright. Robust principal component
analysis? J. ACM, 58(3):11:1–11:37, June 2011.

124

C. Caramanis, S. Mannor, and H. Xu. Robust optimization in machine learning. In Su-
vrit Sra, Sebastian Nowozin, and Stephen J. Wright, editors, Optimization for Machine
Learning. The MIT Press, 2012.

K. W. Chang, C. J. Hsieh, and Lin C. J. Coordinate descent method for large-scale l2-loss
linear support vector machines. Journal of Machine Learning Research, 9:1369–1398,
2008.

George H-G. Chen and R. T. Rockafellar. Convergence rates in forward-backward splitting.
SIAM Journal on Optimization, 7(2):421–444, 1997.

Gong Chen and Marc Teboulle. Convergence analysis of a proximal-like minimization algo-
rithm using bregman functions. SIAM J. on Optimization, 3(3), 1993.

K. L. Clarkson. Coresets, sparse greedy approximation, and the frank-wolfe algorithm. In
Proc. 9th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2008.

P. L. Combettes and J. Pesquet. Proximal splitting methods in signal processing. In H. H.
et. al. Bauschke, editor, Fixed-Point Algorithms for Inverse Problems in Science and
Engineering, chapter 10, pages 185–212. Springer, New York, 2011.

P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward splitting.
Multiscale Model. Simul., 4(4):1168–1200, 2005.

Corinna Cortes and Vladimir N. Vapnik. Support vector networks. Machine Learning, 20
(3):273–297, 1995.

I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for lin-
ear inverse problems with a sparsity constraint. Communications on Pure and Applied
Mathematics, 57(11):1413Ű1457, 2004.

Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal distributed online
prediction using mini-batches. arXiv, 2010. URL http://arxiv.org/abs/1012.1367.

Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal distributed online
prediction. In Proceedings of the 28th International Conference on Machine Learning,
pages 713–720, June 2011.

W. Deng and W. Yin. On the global and linear convergence of the generalized alternating
direction method of multipliers. Technical Report TR12-14, Rice University CAAM
Technical Report, 2012.

John Duchi and Yoram Singer. Efficient online and batch learning using forward backward
splitting. JMLR, (10):2899–2934, 2009.

John Duchi, Alekh Agarwal, and Martin Wainwright. Distributed dual averaging in net-
works. In Advances in Neural Information Processing Systems 23, pages 550–558. 2010.

John Duchi, Peter L. Bartlett, and Martin J. Wainwright. Randomized smoothing for
stochastic optimization. arXiv, 2011. URL http://arxiv.org/abs/1103.4296.

John Duchi, Alekh Agarwal, and Martin J. Wainwright. Dual averaging for distributed
optimization: Convergence analysis and network scaling. IEEE Trans on Automatic
Control, 57(3):592–606, 2012.

125

J. Eckstein and D. P. Bertsekas. On the douglas-rachford splitting method and the proximal
point algorithm for maximal monotone operators. Mathematical Programming, 55(1-3):
293–318, 1992.

R. E. Fan, P. H. Chen, and Lin C. J. Working set selection using second order information for
training support vector machines. Journal of Machine Learning Research, 6:1889–1918,
2005.

M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research Logistics
Quarterly, 3(1-2):95–110, 1956.

J. Friedman and R. Tibshirani. Sparse inverse covariance estimation with the graphical
lasso. Biostatistics, 9(3):432–441, 2007.

D. Gabay. Applications of the method of multipliers to variational inequalities. In M. Fortin
and R. Glowinski, editors, Augmented Lagrangian Methods: Applications to the Solution
of Boundary-Value Problems. North-Holland: Amsterdam, 1983.

D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational problems
via finite element approximation. Computers & Mathematics with Applications, 2(1),
1976.

R. Glowinski and A. Marroco. Sur l’approximation, par elements finis d’ordre un, et la
resolution, par penalisation-dualite, d’une classe de problems de dirichlet non lineares.
Revue Francaise d’Automatique, Informatique, et Recherche Operationelle, 9(2), 1975.

R. Glowinski and P. L. Tallec. Augmented Lagrangian and Operator-Splitting Methods in
Nonlinear Mechanics. Studies in Applied and Numerical Mathematics. SIAM, 1989.

D. Goldfarb, S. Ma, and K. Scheinberg. Fast alternating linearization methods for minimiz-
ing the sum of two convex functions, 2010. URL http://arxiv.org/abs/0912.4571.

T. Goldstein and S. Osher. The split bregman method for l1-regularized problems. SIAM
J. Imaging Sci., 2(2):323–343, 2009.

Jacques Guelat and Patrice Marcotte. Some comments on wolfe’s ‘away step’. Mathematical
Programming, 35:110–119, 1986.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learn-
ing: Data Mining, Inference, and Prediction. Springer, 2nd edition, 2009.

Elad Hazan and Satyen Kale. Beyond the regret minimization barrier: an optimal algorithm
for stochastic strongly-convex optimization. In COLT, 2011.

B. He and X. Yuan. On the o(1/n) convergence rate of the douglas-rachford alternating
direction method. SIAM J. Numer. Anal., 50(2):700–709, 2012a.

B. He and X. Yuan. On non-ergodic convergence rate of douglas-rachford alternating direc-
tion method of multipliers. 2012b.

B. S. He, H. Yang, and S. L. Wang. Alternating direction method with self-adaptive penalty
parameters for monotone variational inequalities. Journal of Optimization Theory and
Applications, 106(2):337–356, 2000.

126

Mingyi Hong and Zhi-Quan Luo. On the linear convergence of the alternating direction
method of multipliers. http://arxiv.org/abs/1208.3922, 2012.

C. J. Hsieh, K. W. Chang, and C. J. Lin. A dual coordinate descent method for large-scale
linear svm. In Proc. 25th Intl. Conf. on Machine Learning (ICML), 2008.

Chonghai Hu, James T. Kwok, and Weike Pan. Accelerated gradient methods for stochastic
optimization and online learning. In NIPS 22, 2009.

Peter J. Huber. Robust estimation of a location parameter. Annals of Mathematical Statis-
tics, 35(1):73–101, 1964.

Thorsten Joachims. Making large-scale svm learning practical. In Advances in Kernel
Methods: Support Vector Learning. The MIT Press, 1999.

Thorsten Joachims. Optimizing search engines using clickthrough data. In Proc. ACM
Conf. on Knowledge Discovery and Data Mining (KDD), 2002.

Thorsten Joachims. Training linear svms in linear time. In Proc. ACM Conf. on Knowledge
Discovery and Data Mining (KDD), 2005.

S. Kim, K. Sohn, and E. P. Xing. A multivariate regression approach to association analysis
of a quantitative trait network. Bioinformatics, 25(12):204–212, 2009.

J. Kivinen, A. J. Smola, and R. C. Williamson. Online learning with kernels. IEEE Trans.
on Signal Processing, 52(8):2165–2176, 2004.

S. Kogan, D. Levin, B. R. Routledge, J. S. Sagi, and N. A. Smith. Predicting risk from
financial reports with regression. In NAACL-HLT 2009, Boulder, CO, 2009.

Harold J. Kushner and G. George Yin. Stochastic Approximation and Recursive Algorithms
and Applications. Springer, 2nd edition, 2003.

G. Lan and S. Ghadimi. Optimal stochastic approximation algorithms for strongly convex
stochastic composite optimization, i: a generic algorithmic framework. SIAM J. on
Optimization, 2011.

Guanghui Lan. An optimal method for stochastic composite optimization. Mathematical
Programming, 2010. doi: DOI10.1007/s10107-010-0434-y.

J. Langford, L. Li, and T. Zhang. Sparse online learning via truncated gradient. Journal
of Machine Learning Research, pages 777–801, 2009.

P. L. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear operators.
SIAM J. on Numerical Analysis, 16(6):964–979, 1979.

G. Mateos, J. A. Bazerque, and G. B. Giannakis. Distributed sparse linear regression. IEEE
Trans on Signal Processing, 58(10):5262 –5276, oct. 2010.

Renato D. C. Monteiro and B. F. Svaiter. Iteration-complexity of block-decomposition
algorithms and the alternating minimization augmented lagrangian method. Technical
report, Georgia Institute of Technology, 2010.

127

Joao F. C. Mota, Joao M. F. Xavier, Pedro M. Q. Aguiar, and Markus Puschel. D-
admm: A communication-efficient distributed algorithm for separable optimization.
arXiv:1202.2805, 2012.

Indraneel Mukherjee, Cynthia Rudin, and Robert E. Schapire. The rate of convergence of
adaboost. In Proceedings of the 24th Annual Conference on Learning Theory, JMLR:
Workshop and Conference Proceedings 19 (2011), pages 537–557, 2011.

Angelia Nedic and Asuman Ozdaglar. Distributed subgradient methods for multi-agent
optimization. IEEE Trans on Automatic Control, 54(1):48–61, 2009.

A. Nemirovski. Lectures on Robust Convex Optimization. ISYE, Georgia Institute of Tech-
nology, 2012. URL http://www2.isye.gatech.edu/˜nemirovs/RO_LN.pdf.

A. Nemirovski and D. Yudin. Problem Complexity and Method Efficiency in Optimization.
John Wiley and Sons, 1983.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation
approach to stochastic programming. SIAM J. on Optimization, 19(4):1574–1609, 2009.

Yurii Nesterov. A method for solving a convex programming problem with rate of conver-
gence o(1/k2). Soviet Math. Doklady, 269(3):543–547, 1983.

Yurii Nesterov. Introductory Lectures on Convex Optimization, A Basic Course. Kluwer
Academic Publishers, 2004.

Yurii Nesterov. Excessive gap technique in nonsmooth convex minimization. SIAM J.
Optim., 16(1):235–249, 2005a.

Yurii Nesterov. Smooth minimization of non-smooth functions. Math. Program., Ser. A,
103:127–152, 2005b.

Yurii Nesterov. Gradient methods for minimizing composite objective function. Technical
Report CORE DISCUSSION PAPER 2007/76, 2007a.

Yurii Nesterov. Smoothing technique and its applications in semidefinite optimization.
Mathematical Programming, 110(2):245–259, 2007b.

E. Osuna, R. Freund, and F. Girosi. Support vector machines: Training and applications.
Technical Report AIM-1602, MIT Artificial Intelligence Laboratory, 1997.

Hua Ouyang and Alexander Gray. Nasa: Achieving lower regrets and faster rates via
adaptive stepsizes. In Proceedings of ACM Conference on Knowledge Discovery and Data
Mining (KDD 2012), August 2012a.

Hua Ouyang and Alexander Gray. Stochastic smoothing for nonsmooth minimizations:
Accelerating sgd by exploiting structure. In John Langford and Joelle Pineau, editors,
Proceedings of the the 29th International Conference on Machine Learning (ICML 2012),
July 2012b.

J. C. Platt. Fast training of support vector machines using sequential minimal optimization.
In Advances in Kernel Methods: Support Vector Learning. The MIT Press, 1999.

128

Boris T. Polyak and Anatoli B. Juditsky. Acceleration of stochastic approximation by
averaging. SIAM J. on Control and Optimization, 30(4):838–855, 1992.

Joel B. Predd, Sanjeev R. Kulkarni, and H. Vincent Poor. Distributed learning in wireless
sensor networks. In Ananthram Swami, Qing Zhao, Yao-Win Hong, and Lang Tong,
editors, Wireless Sensor Networks: Signal Processing and Communications Perspectives.
Wiley, 2007.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of
Mathematical Statistics, 22(3):400–407, 1951.

David Saad. On-Line Learning in Neural Networks. Cambridge University Press, 1998.

B. Scholkopf, J. C. Platt, J. Shawe-Taylor, and A. J. Smola. Estimating the support of a
high-dimensional distribution. Neural Computation, (13):1443–1471, 2001.

Nicol N. Schraudolph, Jin Yu, and Simon Gunter. A stochastic quasi-newton method for
online convex optimization. In Proceedings of AISTATS, 2007.

Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasos: Primal estimated sub-
gradient solver for svm. In ICML, 2007.

Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Stochastic
convex optimization. In COLT, 2009.

Ohad Shamir. Making gradient descent optimal for strongly convex stochastic optimization.
In OPT 2011, 2011. URL http://arxiv.org/abs/1109.5647.

Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczynski. Lectures on Stochastic
Programming: Modeling and Theory. SIAM, Philadelphia, 2009.

A. J. Smola and B. Scholkopf. A tutorial on support vector regression. Technical Report
NC2-TR-1998-030, NeuroCOLT2 Technical Report Series, 1998.

A. J. Smola and B. Scholkopf. Sparse greedy matrix approximation for machine learning.
In Proc. 17th Intl. Conf. on Machine Learning (ICML), 2000.

Suvrit Sra, Sebastian Nowozin, and Stephen J. Wright, editors. Optimization for Machine
Learning. Neural Information Processing series. The MIT Press, 2011.

Taiji Suzuki. Dual averaging and proximal gradient descent for online alternating direction
multiplier method. In Proceedings of ICML, 2013.

C. H. Teo, Q. Le, A. J. Smola, and S. V. N. Vishwanathan. A scalable modular convex
solver for regularized risk minimization. In Proc. ACM Conf. on Knowledge Discovery
and Data Mining (KDD), 2007.

R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and smoothness via
the fused lasso. Journal of the Royal Statistical Society: Series B, 67(1):91–108, 2004.

R. J. Tibshirani and J. Taylor. The solution path of the generalized lasso. Annals of
Statistics, 39(3):1335–1371, 2011.

129

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), 58(1):267–288, 1996.

I. W. Tsang, J. T. Kwok, and P. M. Cheung. Core vector machines: Fast svm training on
very large data sets. Journal of Machine Learning Research, 6:363–392, 2005.

P. Tseng. On accelerated proximal gradient methods for convex-concave optimization. SIAM
J. Optim., 2008.

Aad van der Vaart and Jon Wellner. Weak Convergence and Empirical Processes: With
Applications to Statistics. Springer, 1996.

V. N. Vapnik. The nature of statistical learning theory. Springer-Verlag New York Incor-
porated, 2000.

Vladimir N. Vapnik. Estimation of Dependences Based on Empirical Data. Springer-Verlag,
1982.

Vladimir N. Vapnik. Statistical Learning Theory. John Wiley & Sons, Inc., 1998.

H. Wang and A. Banerjee. Online alternating direction method. In Proceedings of ICML,
2012.

S. L. Wang and L. Z. Liao. Decomposition method with a variable parameter for a class of
monotone variational inequality problems. Journal of Optimization Theory and Applica-
tions, 109(2):415–429, 2001.

P. Wolfe. A duality theorem for non-linear programming. Quarterly of Applied Mathematics,
19:239–244, 1961.

P. Wolfe. Convergence theory in nonlinear programming. In Integer and Nonlinear Pro-
gramming. North-Holland Publishing Company, 1970.

S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo. Sparse reconstruction by separable
approximation. IEEE Transactions on Signal Processing, 57(7):2479–2493, 2009.

Lin Xiao. Dual averaging methods for regularized stochastic learning and online optimiza-
tion. JMLR, 11:2543–2596, 2010.

Wei Xu. Towards optimal one pass large scale learning with averaged stochastic gradient
descent. arXiv, 2011. URL http://arxiv.org/abs/1107.2490.

J. Yang and X. Yuan. Linearized augmented lagrangian and alternating direction methods
for nuclear norm minimization. Mathematics of Computation, 2012. doi: http://dx.doi.
org/10.1090/S0025-5718-2012-02598-1.

J. Yang and Y. Zhang. Alternating direction algorithms for `1-problems in compressive
sensing. SIAM J. on Scientific Computing, 33(1):250–278, 2011.

Tong Zhang. Solving large scale linear prediction problems using stochastic gradient descent
algorithms. In Proc. 21st Intl. Conf. on Machine Learning (ICML), 2004.

X. Zhang, M. Burger, and S. Osher. A unified primal-dual algorithm framework based on
bregman iteration. J. of Scientific Computing, 46(1):20–46, 2011.

130

Hao Zhu, G. B. Giannakis, and A. Cano. Distributed in-network channel decoding. IEEE
Trans on Signal Processing, 57(10):3970 –3983, 2009.

131

VITA

Hua Ouyang is a Ph.D. candidate in the School of Computational Science and Engineering,

College of Computing, Georgia Tech. He received his M.Phil. from the Chinese University

of Hong Kong in 2007, and B.Eng. from Huazhong University of Science and Technology,

China, in 2003. He worked as an intern at IBM T. J. Watson Research Center, Hawthorne,

NY in 2010. He was the recipient of the 2010 best student paper award from the Statis-

tical Computing Section, American Statistical Association. His primary research interests

include large scale machine learning, optimization, computational geometry, information

retrieval and computer vision.

132

