
AN AUTOMATED APPROACH TO CREATE, MANAGE AND
ANALYZE LARGE- SCALE EXPERIMENTS FOR ELASTIC

N-TIER APPLICATION IN CLOUDS

A Dissertation
Presented to

The Academic Faculty

by

Indika Deepal Jayasinghe

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology
August 2013

Copyright© 2013 by Indika Deepal Jayasinghe



AN AUTOMATED APPROACH TO CREATE, MANAGE AND
ANALYZE LARGE- SCALE EXPERIMENTS FOR ELASTIC

N-TIER APPLICATION IN CLOUDS

Approved by:

Dr. Calton Pu, Advisor
School of Computer Science
Georgia Institute of Technology

Dr. Shamkant B. Navathe
School of Computer Science
Georgia Institute of Technology

Dr. Ling Liu
School of Computer Science
Georgia Institute of Technology

Dr. João E. Ferreira
Institute of Mathematics and Statistics
University of São Paulo

Dr. Ed Omiecinski
School of Computer Science
Georgia Institute of Technology

Date Approved: June 21st, 2013



To My Wife and Parents

iii



ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest thanks to my advisor Dr. Calton Pu

who tirelessly guided me throughout my entire graduate school career as (academic) advisor.

I could not imagine achieving so much when I first came to him five years ago. Calton

always quickly grasped my thinking and proposed interesting ideas even if I myself was

still unclear and hesitant. Most importantly, Calton never failed to provide the resources and

opportunities for me to succeed.

I would like to thank all my fellow members of ELBA for their continuous comments

and support on my work. Especially, Simon J. Malkowski, Qingyang Wang, Junhee Park,

Jack Li, Pengcheng Xiong, Danesh Irani, Yasuhiko Kanemasa, Tao Zhu, Chien An Lai, Josh

Kimball and Chien-An Cho directly contributed to this dissertation by co-authoring my

research papers. I feel so lucky to have them as my companions all the way.

I would like to give special thanks to, Dr. Ling Liu, Dr. Shamkant B. Navathe, Dr. Ed

Omiecinski, and Dr. João E. Ferreira for serving on my dissertation committee and approving

this work in its entirety.

My highest appreciation to my wife and parents. Thanks to my wife Krishani for

supporting me by sharing happiness as well as my tears and motivating me all the way. My

parents, too, were invaluable in their support; I thank them for their guidance and motivation

to move down the path to the higher education.

Finally, in recognition of the funding without which this work could not have oc-

curred: this research has been partially funded by National Science Foundation by IUCR-

C/FRP (1127904), CISE/CNS (1138666), RAPID (1138666), CISE/CRI (0855180), NetSE

(0905493) programs, and gifts, grants, or contracts from DARPA/I2O, Singapore Govern-

ment, Fujitsu Labs, Wipro Applied Research, and Georgia Tech Foundation through the John

iv



P. Imlay, Jr. Chair endowment. Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the author(s) and do not necessarily reflect the views

of the National Science Foundation or other funding agencies and companies mentioned

above.

Thanks to all of the others whose stories are too long to be included in the limited space.

v



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF SYMBOLS OR ABBREVIATIONS . . . . . . . . . . . . . . . . . . . xvi

GLOSSARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xviii

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Automating Large-Scale Experiment Measurements . . . . . . . . . . . . 13

2.2 Experimental Analysis for System Scalability and Performance in Clouds . 14

III LARGE-SCALE EXPERIMENT AUTOMATION . . . . . . . . . . . . . . 18

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Terms and Definitions . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 Distributed Testing and Challenges . . . . . . . . . . . . . . . . . 24

3.3 Automated Experiment Management Infrastructure . . . . . . . . . . . . 25

3.3.1 Experiment Automation Process . . . . . . . . . . . . . . . . . . 29

3.4 Expertus - Code Generator . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Flexibility and Extensibility through XML and XSLT . . . . . . . 34

3.4.2 Multi-Stage Code Generation . . . . . . . . . . . . . . . . . . . . 34

3.5 Automated Generation of Heterogeneous Experimental Data . . . . . . . 39

3.6 Experstore - A Flexible Data Warehouse . . . . . . . . . . . . . . . . . . 41

3.7 Expertract - Automated Data Extractor . . . . . . . . . . . . . . . . . . . 44

3.8 Experlyis - Web Portal for Data Analysis . . . . . . . . . . . . . . . . . . 47

vi



3.8.1 Fixed vs. Customizable Data Values . . . . . . . . . . . . . . . . 50

3.8.2 Multiple Graphs vs. Multiple Series . . . . . . . . . . . . . . . . 50

3.8.3 Result Migration . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.8.4 Advanced Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.8.5 Interactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.9 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.9.1 Active Use of the Tool . . . . . . . . . . . . . . . . . . . . . . . 52

3.9.2 Usability of the Tool . . . . . . . . . . . . . . . . . . . . . . . . 52

3.9.3 Generated Script Types and Magnitude . . . . . . . . . . . . . . . 54

3.9.4 Richness of the Tool . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.9.5 Extensibility and Flexibility . . . . . . . . . . . . . . . . . . . . . 57

3.9.6 Testing for Heterogeneous Data Formats . . . . . . . . . . . . . . 60

3.10 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

IV FAULT TOLERANT DEPLOYMENT RUNTIME . . . . . . . . . . . . . . 64

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 Composite Creation and Activation . . . . . . . . . . . . . . . . . 66

4.2.2 Definitions and Terms . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 AESON - Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.2 Normal Activation . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.3 Fault Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.4 Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 System States and Properties . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.1 System Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.2 Claim 1: Eventual Activation Completeness . . . . . . . . . . . . 80

4.4.3 Claim 2: Correctness . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.4 Claim 3: Eventual Single-Recovery Completeness . . . . . . . . . 80

vii



4.4.5 Claim 4: Eventual Multiple-Recovery Completeness . . . . . . . 81

4.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

V VARIATIONS IN APPLICATION PERFORMANCE AND SCALABILITY
IN CLOUDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Overview of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 Browse-Only Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.1 Performance on Reference Platforms . . . . . . . . . . . . . . . . 91

5.3.2 Amazon EC2 Performance . . . . . . . . . . . . . . . . . . . . . 96

5.4 Read-Write Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4.1 Performance on Reference Platform . . . . . . . . . . . . . . . . 100

5.4.2 Amazon EC2 - Horizontal Scalability . . . . . . . . . . . . . . . 102

5.4.3 Amazon EC2 - Vertical Scalability . . . . . . . . . . . . . . . . . 102

5.4.4 Concurrent-threading Costs in EC2 . . . . . . . . . . . . . . . . . 104

5.4.5 Network Driver Overhead . . . . . . . . . . . . . . . . . . . . . . 107

5.5 Profit Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

VI VARIATIONS IN APPLICATION PERFORMANCE AND SCALABILITY
IN MODERN HYPERVISORS . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2.1 Kernel-based Virtual Machine (KVM) . . . . . . . . . . . . . . . 118

6.2.2 XEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2.3 CVM - Commercial Virtual Machine Monitor . . . . . . . . . . . 119

6.2.4 Overview of Experiments . . . . . . . . . . . . . . . . . . . . . . 119

viii



6.3 Study with n-Tier workloads . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3.1 RUBBoS - Read Only . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3.2 RUBBoS - Read Write . . . . . . . . . . . . . . . . . . . . . . . 123

6.3.3 Comparison with Cloudstone . . . . . . . . . . . . . . . . . . . . 126

6.3.4 Cloudstone Performance Issues in XEN . . . . . . . . . . . . . . 126

6.4 Processor Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.4.1 Individual Core Analysis . . . . . . . . . . . . . . . . . . . . . . 128

6.4.2 Analysis of CPU Breakdowns . . . . . . . . . . . . . . . . . . . 131

6.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

VII PERFORMANCE AWARE VIRTUAL MACHINE PLACEMENT . . . . . 137

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.2.1 Datacenter Modeling . . . . . . . . . . . . . . . . . . . . . . . . 141

7.2.2 Application Modeling . . . . . . . . . . . . . . . . . . . . . . . . 142

7.3 Placement Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.4 Algorithms and Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.4.1 Constraint-aware VM Grouping (bottom-up) . . . . . . . . . . . . 146

7.4.2 VMGs to Server Racks Assignment (top-down) . . . . . . . . . . 150

7.4.3 VM to PM Mapping (bin-packing) . . . . . . . . . . . . . . . . . 152

7.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.5.1 Evaluation on Large datacenter . . . . . . . . . . . . . . . . . . . 154

7.5.2 Evaluation for Small datacenter . . . . . . . . . . . . . . . . . . . 157

7.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

VIIICONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

APPENDIX A — BENCHMARKS AND DATABASE MIDDLEWARE . . . . 165

APPENDIX B — TUTORIAL - AUTOMATED DATA EXTRACTION . . . . 168

ix



APPENDIX C — TUTORIAL - DATA VISUALIZATION . . . . . . . . . . . 175

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

x



LIST OF TABLES

1 Supported Software packages, Clouds and Applications . . . . . . . . . . . 56

2 Number of Test Scenarios Performed with Expertus . . . . . . . . . . . . . 57

3 Evaluation Summary of Supported File Formats . . . . . . . . . . . . . . . 61

4 Hardware Configurations in Three Clouds. . . . . . . . . . . . . . . . . . . 89

5 Number of Different Experiments used for the Study . . . . . . . . . . . . 91

6 Profit Analysis: SLA Model . . . . . . . . . . . . . . . . . . . . . . . . . 112

7 Profit Analysis: Configuration Cost vs. Profit/Loss . . . . . . . . . . . . . 112

8 Hardware and VM Configuration. . . . . . . . . . . . . . . . . . . . . . . 119

xi



LIST OF FIGURES

1 Our Approach to Large-scale Experiment Measurements . . . . . . . . . . 8

2 Typical Workflow for Experiments with Expertus . . . . . . . . . . . . . . 9

3 Overview of Core Dissertation Research in the Area of Automated Perfor-
mance Management for Elastic n-tier Applications in Computing Clouds. . 11

4 Research Overview: Building Blocks . . . . . . . . . . . . . . . . . . . . . 12

5 A High-level view of Automated Infrastructure . . . . . . . . . . . . . . . 28

6 Automated Testing Process with Expertus . . . . . . . . . . . . . . . . . . 31

7 Multi-Stage Code Generation Process . . . . . . . . . . . . . . . . . . . . 36

8 Transformations Steps within a Single Stage . . . . . . . . . . . . . . . . . 36

9 Generating Output/Intermediate XML with XSLT Transformation . . . . . 37

10 Handling Cloud Variances through Aspect weaving . . . . . . . . . . . . . 38

11 Code Generation with Aspect (an Example for Bob’s case) . . . . . . . . . 39

12 Code Generation with Aspect (an Example for Alice’s case) . . . . . . . . 40

13 Experstore - Static and Dynamic Tables and their Relationships (tables
which are marked as dynamic tables are created on-the-fly, and the remaining
are static tables to store experiment meta-data) . . . . . . . . . . . . . . . . 43

14 Experstore - Sequence Diagram for Automated Data Extractor . . . . . . . 47

15 Experstore - Web Portal for Data Analysis . . . . . . . . . . . . . . . . . . 49

16 Architecture - Data Analysis Web Portal . . . . . . . . . . . . . . . . . . . 50

17 Number of Experiment Generated During April-2013 . . . . . . . . . . . . 52

18 (a) # Lines changed in Experiment Specification vs. Generated Code, when
Changing Cloud, Database, Application and # APP Servers; (b) Magnitude
of Generated Code when Increasing the # Nodes in the Experiment; (c)
#Lines (template) Changed for Adding a new Application(RUBBoS to RUBiS) 53

19 Template Line Changes: (a) Moving from Emulab to EC2 and Open Cirrus
(figure shows total # lines for Emulab); (b) Supporting CloudStone from
RUBBoS; (c) Moving from C-JDBC to MySQL cluster . . . . . . . . . . . 54

20 Changes to Generated Code: (a) Emulab to EC2 and OpenCirrus; (b) RUB-
BoS and CloudStone; (c) C-JDBC and MySQL Cluster . . . . . . . . . . . 55

21 The Process of Creating Images and Modeling a Composite Service. . . . . 68

xii



22 A Snippet of the Configuration File for the Composite’s Tomcat Server. . . 69

23 AESON: Monitoring and Failure Recovery. . . . . . . . . . . . . . . . . . 70

24 AESON Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

25 State Transition Diagram for Global and Local States. . . . . . . . . . . . . 79

26 Performance Overhead of AESON (Throughput and Response Time Com-
parison). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

27 Performance Overhead of AESON (Comparison of CPU Utilization and
Network Traffic). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

28 Horizontal Scalability: Read Only Throughput Analysis for three Clouds
[Higher the better]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

29 Horizontal Scalability: Read Only Response Time Analysis for three Clouds
[Lower the better]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

30 Average CPU Utilization for 1-2-2-2 and 1-2-2-4 Configurations for
Emulab and EC2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

31 CPU Bottleneck Map for Emulab:(Each cell represents average CPU utiliza-
tion when system is saturated and highlighted cells represent bottlenecked
tier for the configuration specified in x-axis) . . . . . . . . . . . . . . . . . 95

32 CPU Utilization for 4-4 Configuration. . . . . . . . . . . . . . . . . . . . . 97

33 Throughput: EC2 Vertical Scalability . . . . . . . . . . . . . . . . . . . . 98

34 Throughput: Read-Write Scalability Analysis [Higher the better] . . . . . . 99

35 Average Response Time: Read-Write Scalability Analysis [Lower the better]100

36 Emulab: Read-Write Average CPU Utilization. . . . . . . . . . . . . . . . 101

37 Amazon EC2: Read-Write Average CPU Utilization. . . . . . . . . . . . . 103

38 Analysis for Multi-Threading Issues: (a) RUBBoS Request Path; (b) RTT
comparison at Apache and Client; (c) Throughput—before and after reduc-
ing thread overhead. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

39 Comparative Context Switching Analysis for Emulab and EC2. . . . . . . . 106

40 Comparison of Network Driver Overhead. . . . . . . . . . . . . . . . . . . 108

41 Analysis of Network Driver Overhead and Characteristics for Emulab and
EC2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

42 Performance Comparison C-JDBC vs. MySQL Cluster. . . . . . . . . . . . 111

43 Illustration of Tomcat Deployment: Virtual Machine vs. Native Hardware. . 120

xiii



44 Throughput Comparison for RUBBoS Read-only, RUBBoS Read-write and
Cloudstone. Among Hypervisors, XEN Outperforms while KVM is the
Lowest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

45 Response Time Comparison for RUBBoS Read-only, RUBBoS Read-write
and Cloudstone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

46 CPU Utilization - Read Only. . . . . . . . . . . . . . . . . . . . . . . . . . 124

47 CPU Utilization - Read Write. . . . . . . . . . . . . . . . . . . . . . . . . 125

48 CloudStone issue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

49 Number of VCPUs vs. Average Throughput. . . . . . . . . . . . . . . . . . 129

50 Number of VCPUs vs. Average Response Time. . . . . . . . . . . . . . . . 130

51 Individual CPU Utilization for Apache (for 2 VCPUs). . . . . . . . . . . . 131

52 Individual CPU Utilization for Apache (for 4 VCPUs). . . . . . . . . . . . 132

53 Individual CPU Utilization for Apache (for 8 VCPUs). . . . . . . . . . . . 133

54 CPU Densities (for 8 VCPUs) [At each second maximum utilization from
among all the eight core is taken]. . . . . . . . . . . . . . . . . . . . . . . 134

55 CPU Utilization Breakdowns for Apache . . . . . . . . . . . . . . . . . . . 135

56 System Architecture - Structural Constraint-aware VM Placement . . . . . 140

57 Intra and Inter Communication Cost for a VM V1 . . . . . . . . . . . . . . 150

58 Comparison of Time Complexity and Efficiency of Created Placement Plan 154

59 Percentage Demand Satisfaction on Large Datacenter (Requested resource
demand/ Allocated resources) . . . . . . . . . . . . . . . . . . . . . . . . . 155

60 a), b) Time Complexity with Allocation Constraints; c) Average Demand
Satisfaction (%) for Four Application Types on Small Datacenter . . . . . . 156

61 RUBBoS Deployment Topology with MySQL Cluster . . . . . . . . . . . . 166

62 Cloudstone Deployment Topology . . . . . . . . . . . . . . . . . . . . . . 167

63 Utilization Line Graph for CPU vs. Customized Graph with f(x) = x + 10176

64 Utilization Line Graph for CPU1 . . . . . . . . . . . . . . . . . . . . . . . 176

65 Utilization Bucketed Graph with Step as 10 . . . . . . . . . . . . . . . . . 177

66 Utilization Line Graph for CPU1 . . . . . . . . . . . . . . . . . . . . . . . 177

67 Frequency Analysis Graph with Step as 10 . . . . . . . . . . . . . . . . . . 178

68 Utilization Line Graph for CPU0 . . . . . . . . . . . . . . . . . . . . . . . 179

xiv



69 Utilization Line Graph for CPU1 . . . . . . . . . . . . . . . . . . . . . . . 179

70 Correlative Graph with Series CPU0 and CPU1 . . . . . . . . . . . . . . . 180

71 2-Dimensional Graph for Series CPU0 . . . . . . . . . . . . . . . . . . . . 180

72 3-Dimensional Graph for Series CPU0 . . . . . . . . . . . . . . . . . . . . 181

73 Utilization Line Graph for Series CPU0 . . . . . . . . . . . . . . . . . . . 181

74 Cumulative Graph for Series CPU0 . . . . . . . . . . . . . . . . . . . . . . 182

xv



LIST OF SYMBOLS OR ABBREVIATIONS

AJP Apache JServ Protocol.

API Application Programming Interface.

BLR Business Logic Request.

CPU Central Processing Unit.

DB Database.

DBMS Database Management System.

EJB Enterprise Java Beans.

EM Empirical Model.

FT Fourier Transformation.

HSM Horizontal Scale Model.

HTTP Hypertext Transfer Protocol.

IaaS Infrastructure as a Service.

IAE Integrative Adaptation Engine.

IP Internet Protocol.

IT Information Technology.

JDBC Java Database Connectivity.

JVM Java Virtual Machine.

KPI Key Performance Indicators.

LAMP Linux, Apache, MySQL, and PHP.

ODS Operational Data Store.

QoS Quality of Service.

RMS Resource Management System.

SLA Service Level Agreement.

SLM Service Level Management.

SLO Service Level Objective.

xvi



SQL Structured Query Language.

TPC Transaction Processing Performance Council.

URL Uniform Resource Locator.

VM Virtual Machine.

WAL Write Ahead Log.

WFM Workload Forecast Model.

xvii



GLOSSARY

Apache An open-source HTTP server that provides extensible hypertext
services according to the current HTTP standards.

C-JDBC Clustered Java Database Connectivity, an open source database
cluster middleware that allows Java applications to transparently
access a cluster of databases.

CloudXplor A research prototype of a novel tool for configuration planning in
clouds based on an iterative and interactive refinement process of
empirical data.

EC2 Amazon Elastic Compute Cloud, Amazon.com’s cloud computing
offering that provides highly scalable computing capacity in the
cloud and allows web-users to flexibly rent virtual hardware based
on a commodity-pricing model.

Elba A research project at the Center for Experimental Research in Com-
puter Systems (CERCS) at Georgia Tech, addressing the challenges
in the automation of large application system management. In par-
ticular, this research encompasses design through deployment to
production and capture of application monitoring, evaluation, and
evolution.

Emulab A network testbed that provides a wide range of computing environ-
ments for development and evaluation of computer systems.

Linux A Unix-like computer operating system, distributed and developed
as open source software.

MySQL An open source relational database management system that runs as
a server providing multi-user access to a number of databases.

MySQL Cluster An open source real-time transactional relational database with high
availability, “shared-nothing” distributed architecture with no single
point of failure.

PostgreSQL An open source object-relational database management system tar-
geting enterprise class database environments.

RUBBoS Rice University Bulletin Board System, an open source n-tier ap-
plication benchmark modeled after the website http://slashdot.
org/.

RUBiS Rice University Bidding System, an open source n-tier application
benchmark modeled after the website http://www.ebay.com/.
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SysViz A trace analysis tool, developed at the Fujitsu Laboratories, able to
reconstruct entire traces of executed transactions in n-tier application
systems.

Tomcat Apache Tomcat is an open source application server based on an
implementation of Java Servlet and JavaServer Pages technologies.
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SUMMARY

Cloud computing has revolutionized the computing landscape by providing on-

demand, pay-as-you-go access to elastically scalable resources. Many applications are now

being migrated from on-premises data centers to public clouds; yet, the transition to the

cloud is not always straightforward and smooth. An application that performed well in an

on-premise data center may not perform identically on public computing clouds because

many variables, including virtualization impact the performance. A natural and presumably

unbiased approach to reveal the cloud’s complexity is to collect significant performance

data by conducting more experimental studies. However, conducting large-scale system

experiments is particularly challenging because of the practical difficulties that arise during

experimental deployment, configuration, execution and data processing. In spite of these

associated complexities, we argue that a promising approach for addressing these challenges

is to use exhaustive measurements of large-scale experiments through automation.

Automation removes the error prone and cumbersome involvement of human testers,

reduces the burden of configuring and running large-scale experiments associated with

distributed applications, and accelerates the process of reliable applications testing. In our

approach, we have automated three activities of the key experiment measurement processes:

create, manage and analyze. During create, we prepare the platform, deploy, and configure

the application. In manage, we start the application components in the correct order, execute

workloads, collect resource monitoring and other performance data, and parse and upload

the results to the data warehouse. In analyze, we process the collected data using various

statistical and visualization techniques to understand and explain performance phenomena.

In our approach, a user provides the experiment configuration file and framework does

everything so that at the end user sees the results. We enable the automation through

xx



code generation. From an architectural viewpoint, our code generator adopts the compiler

approach of multiple serial transformation stages; the hallmarks of this approach are that

stages typically operate on an XML document that is the intermediate representation, and

XSLT performs the code generation. Our automated approach for large-scale experiments

has enabled cloud experiments to scale well beyond what have been possible through

manual experimentation, and it has enabled us to identify several non-trivial performance

phenomena that would not have been possible otherwise.
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CHAPTER I

INTRODUCTION

One of the most significant distributed computing models to revolutionize the computing

landscape is cloud computing. Clouds enable service-oriented, on-demand, and pay-as-you-

go network access to elastically scalable resources. These resources include services in the

forms of infrastructure, platform, and software. In the cloud paradigm, clients do not own

these resources but are given universal access to them through standard APIs and protocols.

As companies migrate applications from traditional data centers to private and public

cloud infrastructures, companies must ensure that their applications are afforded a safe

and smooth transition from their existing (and likely stable) environments to the cloud.

An application that performs one way in the data center may not perform identically in

computing clouds [174], which runs counter to companies needing to maintain a high-level

of confidence that their applications will scale and deliver an expected level of performance,

regardless of the current technological deployment strategy. Neglecting the performance

impacts of cloud platforms can lead to unforeseen performance problems. Companies who

are negligent (or simply ignorant) of this possibility could experience lower user satisfaction,

missed SLAs, and even, lower operating income. For instance, a study by Amazon reported

that an extra delay of just 100 milliseconds could result in roughly 1% loss in sales [207].

Similarly, Google found that a 500ms additional delay in returning search results could

reduce revenues by up to 20% [194].

The current trend of running applications on top of cloud platforms poses significant

challenges to anticipating and predicting an application’s performance, because many
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variables impact an application’s performance in the cloud. These variables include user-

controlled variables (e.g., software configuration, hardware layout/configuration) and non-

user-controlled variables (e.g., virtualization parameters and server load). As an example,

the performance of large-scale applications (e.g., e-commerce applications implemented

as n-tier systems) becomes less predictable as node utilization increases. Because of these

challenges, cloud users and service providers face a dilemma in which the low utilization

of nodes leads to stable (read: more predictable) performance but higher costs. In contrast,

utilizing a larger number of nodes reduces up-front costs but also leads to unpredictable

performance (manifested as varying response times), which could ultimately result in

penalties from missed SLAs and worse, lost business.

The effects of virtualization on response times, throughputs, and resource utilization, as

well as the large number of resources provided, obfuscate predicting the performance of a

virtualized service. Additional complexities come from the fact that cloud environments may

combine multiple virtualization platforms that differ with regards to implementation and

performance properties. The major challenges of predicting the performance of applications

running in clouds are as follows:

• Applications deployed in cloud platforms lead to a complex technology stack that

influences the performance of applications. To enable reasonable performance analy-

ses, the key performance-relevant properties of virtualization environments have to be

identified; for example a detailed understanding of virtualization techniques and their

effects on software performance is necessary.

• Overhead associated with virtualization and the implications of resource sharing

have to be taken into account. Furthermore, the resource demands and the inherent

characteristics of accessing software in the cloud networks significantly differ from

those in a “non-virtualized” service, leading to a difference in performance.

• Heterogeneity and the dynamic nature of applications and workload running in a cloud
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introduce unpredictable resource usage and access patterns (e.g., network traffic, disk

I/O).

• Cloud computing environments hide the servers and networking structure in which the

application runs on. In addition, cloud providers assign virtual machines to different

sets of servers even for two consecutive uses of the cloud. Even more, after deploying

an application in the cloud, it may be migrated dynamically to a different server with

different performance properties.

• Additional issues arise when taking the experimental measurements. For example,

additional load might disturb the measurement data resulting from unpredictable noisy

neighbors.

In general, performance prediction is one of the most active fields in systems’ research.

Consequently, many different performance prediction approaches have been proposed [68,

74, 214, 224, 225]. Those proposed approaches can be divided into two broad categorizes:

analytical (model based) approaches and experimental approaches. The goal of analytical

is to use modeling, simulation, or pre-existing data to predict the performance for a new

configuration. In contrast, experimental approaches (e.g., Elba approach) focus on finding

performance data and performance phenomena by conducting measurement studies with

actual or representative applications on real hardware platforms. Furthermore, hybrid

approaches have also been proposed to leverage the respective benefits of both analytical

and experimental approaches [214].

For accurate performance predictions, the performance-relevant properties of cloud

environments have to be reflected by the prediction models; however, current approaches

provide limited or no support for the performance properties of cloud computing. For

instance, properties like resource sharing (multi-tenancy), virtualization overhead (highly

variable and load dependence), noise from neighbors, and fluctuations in resource utilization

are largely unaccounted for in current prediction models. The prediction process needs
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experts, who have detailed knowledge about virtualization techniques and their effects on

software performance. In many cases, performance-relevant properties of virtualization

platforms have to be retrieved by inspecting system documentation. Such documentation

may not be available in all cases, may be outdated, or may not provide enough information

to understand the effect specific implementation details have on performance.

The performance unpredictability problem is challenging, because many variables have

a significant impact on performance based on different configurations. Practical experience

and research both show that the performance of an n-tier application is a complex function

of many variables, including software and hardware resource availability and tuning knobs.

Since these variables are too complex for analytical models, determining the performance of

an n-tier application in a cloud through large-scale experiment measurements is incredibly

important. In fact, exhaustive measurements of large-scale experiments for elastic n-tier

application configuration in computing clouds is motivated by three key observations. First,

and perhaps least surprising, the performance of two identical software configurations can

be vastly different in two different hardware platforms [174]. In fact, we have observed that

a particular best practice (i.e., best performance) software configuration can become the

worst-performing configuration by only changing the platform (e.g., migrating the RUBBoS

application from Emulab [21] to Amazon EC2 [20]). Second, the same applications can

exhibit nontrivial performance characteristics resulting from a combination of complicating

factors even in a single platform [334]. Third, the performance of an application can vary

unexpectedly with changes to a relatively small set of factors. Such factors may include

garbage collection, network driver overhead, and context switching overhead that are often

subtle and not directly controllable by users.

We believe that despite the challenges in performance unpredictability under both analytical

approaches and experimental measurements, a utilization threshold exists below which

the performance remains predictable. We already know that such a threshold would vary
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depending on software and hardware configuration settings, so to determine this value for all

the configuration settings of interest would require large-scale experimental measurements.

Running large-scale experiments to find performance and scalability characteristics in

cloud environments introduces a set of new and challenging research issues. These come

from following three key activities associated with the experiment measurement process:

• Create: preparing the experiment testbed (e.g., cloud) and deploying and configuring

the application.

• Mange: starting the application components in the correct order, executing workloads,

collecting resource monitoring and other performance data, and parsing and uploading

the results to the data warehouse.

• Analyze: activities associated with the post-processing of measurement data under

which the collected data is analyzed using various statistical and visualization tech-

niques to understand and explain performance phenomena.

In general, the above three activities could become trivial for experimental studies with

fewer nodes; however, these types of experiments may not represent actual enterprise scale

deployments. Hence, the correspondent findings will not be particularly germane. In contrast,

applications with a large number of nodes provide good insight into realistic application

deployments, and may produce interesting performance phenomena. Unfortunately, this

also introduces significant challenges for each and every phase of the experiment cycle, as

described above. Experiments at large-scale introduce the following challenges:

1. Configuration Space: Performance measurements for enterprise applications con-

sist of multiple, closely related scenarios, which differ by a few (preferably one)

configuration parameters. In fact, two different software or hardware configurations

may produce the same performance (e.g., throughput) [174, 334], thus increasing

the testable configuration space. Also, components of a distributed application can
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interact in complex ways, yielding a virtually infinite number of possible states. The

key challenge is to maximize the amount of configurations space that can be evaluated

with limited time and human resource constraints.

2. Deployment and Runtime Dependencies: In distributed software testing, the appli-

cations being tested should start efficiently and in a provably correct order by simul-

taneously enforcing serialization constraints and leveraging the distributed system’s

inherent parallelism. This process may be trivial for applications with a small number

of nodes; in contrast, for applications with many nodes and multiple application

components (e.g., multi-tier applications), the process becomes challenging mainly

due to complex dependencies among various system components (e.g., database URL,

load balancers).

3. Data Processing, Storing and Analyzing: Performance measurement of enterprise

applications often results in generating massive amounts of heterogeneous data. The

amount and structure of the produced data vary based on the application, deployment

platform (clouds), hardware configuration, and monitoring tools and strategies. The

heterogeneous nature of the data introduces many challenges for data processing,

storing, and analyzing since the structure of the data may change from one experiment

to another. More specifically, storing this data becomes a challenge, because finding

a universal schema is practically infeasible. The dynamic nature of the data (and

by extension, the underlying schema) prevents using static tools to analyze the data,

hence any successful approach must have inherently flexible and extensible.

4. Cloud Heterogeneity: Large-scale experiment measurements in modern cloud envi-

ronments introduce many new challenges; first, selecting the most appropriate cloud

from many cloud offerings is a non-trivial task; second, migrating an application be-

tween two clouds is a complex, time consuming, and error-prone task; third, there are
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many challenges associated with communication, coordination, synchronization, mon-

itoring, and complete management; lastly, the dynamic nature of the cloud introduces

extra complexity.

In this thesis, I argue that a promising approach for addressing the non-trivial complexities

of large-scale experiment measurement is the use of an automated approach despite the

fact that manual and ad hoc (e.g., partially scripted) approaches are being heavily used for

experimental measurements in traditional data centers. Automation removes the error-prone

and cumbersome involvement of human testers, reduces the burden of configuring and

running large-scale experiments for distributed applications, and accelerates the process of

reliable performance measurement and data analysis. More concretely, my thesis statement

can be formulated as follows.

Thesis Statement: An automated infrastructure which enables cloud experiments at a

scale that is beyond manual execution, by systematically reducing deployment and data

processing complexity of large-scale performance measurement studies arising from their

scale and heterogeneity.

My proposed research is to facilitate large-scale performance measurement studies

(application size and number of experiments) for n-tier applications (not limited to n-tier)

in computing cloud infrastructures while minimizing human involvement. More precisely,

this research enables cloud experiments in modern clouds (e.g., Amazon EC2, Open Cirrus,

Emulab) at a scale that is well beyond the capacity of manual experimentation. This requires

implementing the core of the Elba approach for large-scale experiment management, which

is shown in Figure 1. The overall process consists of multiple building blocks. Some of

which have already been addressed [178, 211, 345].

• Experiment Design is the process of creating a set of experiments that are necessary

to evaluate a given application in given target clouds.
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• Expertus is a code generator which converts experiment design specifications into

deployment, configuration, execution, data collection, and parsing scripts that are

essential ingredients for automating the experiment preparation and execution process.

• Automation is the process of using generated scripts to automate platform preparation,

application deployment and configuration, to run the experiment, and to collect and

process the generated.

• Experiment is executing a workload for a given hardware, software configuration

while collecting monitoring and other data, in fact, most of the Elba publications to

date belong to this category.

• Experstore is a flexible data warehouse that stores and analyzes resource monitoring

and performance data collected through experimentation. These data are in fact het-

erogeneous and vary significantly, based on the experiments and monitoring strategy

employed.

• Performance Map is a logical view of experiment results, for example, an applica-

tion’s performance across different cloud platforms.

• Online/Offline Configuration is the process of using performance data to make

configuration decisions at runtime as well as finding appropriate software settings for

new configurations.

Figure 1: Our Approach to Large-scale Experiment Measurements
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• Telescoping is the process of using collected data to drive more experiments to deeply

understand observed phenomena.

• Experiment Redesign is the process of creating new experiments or modifying

existing experiments either to validate online/offline configurations or to prove (or

disprove) performance hypothesis.

Figure 2: Typical Workflow for Experiments with Expertus

The proposed works automate the performance measurement process by systematically

addressing the challenges associated with the highlighted areas in the Figure 1. We have

automated the complete workflow (see Figure 2) from experiment specification to data

analysis, and the framework generates necessary resources to automate complete process.

The framework consists of a code generator, an experiment driver, an automated data parser,

a flexible data warehouse, and a web portal for data analysis. The cornerstone of the

automation is the code generator; yet, building a flexible and extensible code generator for

distributed systems remains a significant research challenge. Environmental and design

changes pressure the input language to change and evolve. Similarly, the generated code

(output) often needs customization so it can be used for a range of software, cloud, and

operating systems. This constant evolutionary pressure of input and output formats has so

far limited the practical life span of code generators that have been developed for distributed

system software.
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My proposed thesis research can be arranged according to two main building blocks

(extracted from Figure 1), which are shown in Figure 4. More specifically, my research in

this area can be categorized in an infrastructure for automating large-scale performance

studies and demonstrating the success of the approach through large-scale experiments.

Code generation and experiment automation [175] is the process of generating all the

necessary resources to automatically manage the experiment execution process. This helps

to reduce the difficulties of application configuration and dependency handling. More

specifically, this enables researchers to conduct multiple different experiments in parallel

with minimal involvement. My research in this area covers the process of building a

flexible code generation framework that enables automation of large-scale experiment

studies of n-tier applications in modern clouds. This includes generating code (scripts

and other resources) for application deployment and configuration, experiment execution,

data collection and parsing, storing data in the data warehouse, and data analysis. Our

code generator capable of generating all the necessary resources to automate the complete

process. We have a experiment driver that uses the generated resources to drive the complete

experiment. We have created a adaptive data processor to support different monitoring

formats, a flexible data warehouse to efficiently store and process measurements data, and

a web portal to quickly and thoroughly analyze the data to find interesting performance

phenomena. As unexpected failures in distributed systems (e.g., AWS outage on April

2011 [1] and December 2012 [2]) have become commonplace, we thought working on a

fault-tolerant deployment at runtime [125] to make the deployment and execution failure

resilient was another worthwhile exercise.

To demonstrate the success of our approach, we have used the automated infrastructure

for large-scale experiment studies to explore and understand the complex system state

space without rigid a priori assumptions. My research in this area includes: evaluating

performance and scalability variations of different clouds, comparing the performance of

different virtualization technologies, evaluating database scalability across different database
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CHAPTERS I & II:
Expertus: A Generator Approach to Automate Performance Testing in IaaS Clouds, Cloud 2011.

AESON: A Model-Driven and Fault Tolerant Composite Deployment Runtime for IaaS Clouds, SCC 2013.

An Automated Approach to Create, Store, and Analyze Large-scale Experimental Data, IRI 2013.

Demonstrating Success of Automation

Large-scale Experiment Automation

Variations in Performance and Scalability when Migrating n-Tier Applications to Different Clouds, Jayasinghe, D., 

Malkowski, S., Wang, Q., Li, J., Xiong, P., and Pu, C, Cloud 2011.

Variations in Performance and Scalability: An Experimental Study in IaaS Clouds using Multi-Tier Workloads, 

Jayasinghe,D., Malkowski, S., Li, J., Wang, Q., Wang, Z., Pu., C, submitted to IEEE TSC.

Improving Service Performance and Availability on Clouds with Structural Constraint-aware Virtual Machine 

Placement, Jayasinghe, D., Eilam, T., Steinder, M., Whally, I., Snible,E., and Pu, C., SCC 2011.

Empirical analysis of database server scalability using an n-tier benchmark with read-intensive workload, Malkowski, 

S., Jayasinghe, D., Hedwig, M., Park, J., Kanemasa, Y., and Pu, C. ACM SAC 2010.

The Impact of Soft Resource Allocation on n-Tier Application Scalability, Wang, Q., Malkowski, S., Kanemasa, Y., 

Jayasinghe,D., Xiong, P., Pu,C., Kawaba,M., Harada, L., IEEE IPDPS 2011.

Challenges and Opportunities in Consolidation at High Resource Utilization: Non-monotonic Response Time 

Variations in n-Tier Applications, Malkowski, S.,Kanemasay, Y., Chen,H., Yamamotoz, M., Wang, Q.,Jayasinghe,D., 

Pu,C., and Kawaba, M., IEEE Cloud 2012.

Profit-Based Experimental Analysis of IaaS Cloud Performance: Impact of Software Resource Allocation, Li,J., Wang, 

Q., Kanemasa, Y.  Jayasinghe, D., Malkowski,S., Xiong, P., Kawaba. M., and Pu. C., IEEE SCC 2012.

When Average is Not Average: Large Response Time Fluctuations in n-Tier Systems, Wang, Q., Kanemasa, Y., Kawaba, 

M., Pu,C., ICAC 2012.

Detecting Transient Bottlenecks in n-Tier Applications through Fine-Grained Analysis, Wang, Q.,  Kanemasa, Y., Li, J., 

Jayasinghe, D., Shimizu, T., Matsubara, M., Kawaba,M., Pu,C.,  ICDCS 2013

CHAPTERS I & II:More measurements data is needed to revel the cloud’s complexity and to boost application performance, 

yet, conducting large-scale system experiments is particularly challenging because of the practical 

difficulties that arise during experimental deployment, configuration, execution and data processing.

Problem Statement

Figure 3: Overview of Core Dissertation Research in the Area of Automated Performance
Management for Elastic n-tier Applications in Computing Clouds.
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Figure 4: Research Overview: Building Blocks

technologies [174, 218], and studying the challenges and opportunities associated with

consolidation at high resource utilization levels [220]. I have also investigated related topics

such as comparing the similarities and differences between software and hardware resource

allocation [334] and analyzing the performance and scalability of n-tier systems when they

are migrated to different clouds [174]. In addition, I have also focused on ways in which we

can use to improve application performance in cloud environments through performance

and application semantic aware virtual machine placement [173].

The description of my core thesis research follows the aforementioned building blocks in

Figure 4. Concretely, in this thesis proposal document, I have divided my work to focus

on large-scale experiment automation, presented in Chapter 3, and the fault fault-tolerant

approach to recovery from failure during deployment and runtime, presented in Chapter 4.

The success of this approach is demonstrated in Chapter 5 (comparison of different clouds),

Chapter 6 (comparison of modern virtualized technologies), and in Chapter 7, which

evaluates performance and virtual machine placement. In Chapter 8, we conclude the

proposal with a summary, an outlook and immediate future works.
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CHAPTER II

RELATED WORK

This chapter presents an initial overview of related work. Section 2.1 discusses related

work from the area of experiment automation and code generation. Section 2.2 provides

related approaches for detection of non-trivial performance phenomena in elastic systems,

including clouds and virtualization technologies. While these sections serve as a good

starting point for contextualizing the contributions made in this dissertation, all subsequent

chapters (that detail technical contributions) feature comprehensive related work sections

that are dedicated to each specific technical topic.

2.1 Automating Large-Scale Experiment Measurements

Experimentation is an essential approach used in both academia and industry to gain an

understanding of system behavior, formation and testing of hypotheses, system configuration

and tuning, solution information formation, and performance bottleneck resolution. There

are many open source and commercial tools for configuration management and small scale

application deployment [7,14,16,17]. Yet, researchers have undertaken relatively few efforts

to build software tools to reduce complexity associated with large-scale testing of distributed

applications [65, 170, 185, 259, 260, 335].

Steafan et al. [92] introduced Cloud9 –a platform for automated software testing that

uses scalable parallelization of symbolic execution on clusters of commodity hardware – to

help cope with path explosion. Some authors extended their work and introduced the concept

of testing as a service (TaaS) [98]. The authors claimed that the combination of recent

advances in test automation and the availability of compute clouds offer unprecedented

levels of testing quality. DART [114], an automated regression testing framework built on

top of Emulab, provided a set of primitives for writing tests for distributed systems and a
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run-time mechanism to execute the tests in a fast and efficient manner. However, extending

these tools to other platforms has remained a challenging problem. In our approach, we

tried to develop a generic framework to facilitate large-scale experiment through automation.

Compared to other existing approaches, our tool has proven to be extensible, flexible and

modular by smartly combining the most commonly used technologies.

Our project parallels several others using XML and XSLT for code generation. For

example, the SoftArch/MTE and Argo/MTE teams have also had favorable experiences using

XML + XSLT generators to ”glue” off-the-shelf applications together [95, 154]. Apache

Axis2 [296] uses an XSLT-based code generator for generating multi-language stubs and

skeletons from WSDL. One of the most similar approaches to ours is Weevil [336], which

also focuses on workload generation and script creation. In fact, later on, the Weevil team

observed some of the limitations with their approach, and they proposed four enhancements

to explore richer scenarios to obtain results with greater confidence [335]. To our knowledge,

these efforts have not explored the issues of extensibility, flexibility, and modularity that are

presented here, in this document.

2.2 Experimental Analysis for System Scalability and Performance in
Clouds

A central problem with enterprise system studies is that scalability evaluations traditionally

address only scaled load scenarios to determine the best achievable performance (e.g., [104]).

Concretely, experimentation methodologies, which feature parallel scaling of load and

resources, mask system overhead in realistic production system conditions, which are

typically over-provisioned. Consequently, a reliable body of knowledge on the aspects of

management, capacity planning, and availability is one of the limiting factors for estimating

the impact of potential real world solutions [102]. Moreover, the research community broadly

understands that transactional replication can exhibit unstable scale-up behavior [152];

therefore, peak performance cannot be sufficiently represented by peak throughput [102].
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While the increasing popularity of cloud computing has spawned very interesting re-

search on private and public clouds, to the best of our knowledge, no previous work has

evaluated IaaS clouds using complex n-tier (also known as multi-tier) systems to find per-

formance and scalability issues across all possible tiers. Jim et al. presented a method

for achieving optimization in clouds by using performance models in the development,

deployment, and operation of applications that run in the cloud [202]. They illustrated the

architecture of the cloud, the services offered by the cloud to support optimization, and the

methodology used by developers to enable runtime optimization of the clouds. Thomas et al.

analyzed the cloud for fundamental risks that might arise from sharing physical infrastruc-

ture among mutually distrustful users, even when their actions are isolated through machine

virtualization [267]. Ward et al. discussed the issues and risk associated with migrating

workloads to clouds, and the authors also proposed an automated framework for facilitating

a “smooth” migration to cloud [338]. In this thesis, we instead have provided experimental

results related to potential scalability and performance issues after migration.

Mayur et al. evaluated Amazon S3 as a black box and formulated recommendations for

integrating S3 with science applications and for designing future storage utilities targeting

this class of applications [249]. They discussed how costs can be reduced by exploiting

data usage and application characteristics to improve performance and more importantly,

by introducing user managed collaborative caching in the system. Despite the apparent

differences, this work has some important similarities to our work: first, both approaches

evaluated commercial clouds; second, both papers used real applications and not simulations;

third, both approaches derived recommendations to address the uncovered issues. Guohui et

al. have deeply analyzed the network overhead on EC2, and they presented a quantitative

study on end-to-end network performance across different EC2 instances [332]. Furthermore,

Walker has presented a performance analysis and shown that a performance gap exists

between performing HPC computations on a traditional scientific cluster and on an EC2

provisioned scientific clusters [331]. Similar to our findings, his experiments also revealed
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the network as one of the key sources of system overhead.

As a way of showing the success of automated experiment measurement, we have

extended performance analysis to show the significance of virtualization and associated

network overhead. Padma et al. have also looked at both the transmission and recipient

aspects of this workload. Concretely, they analyzed virtualization overhead and found that

in both cases (i.e., transmit and receive) the limitations of VM scaling are due to dom0

bottlenecks for servicing interrupts [58]. Koh et al. also analyzed the I/O overhead caused

by virtualization and proposed an outsourcing approach to improve the performance [193].

Additionally, Barham et al. [70] benchmark Xen against VMware Workstation and

User-Mode Linux. They show that Xen outperforms these alternatives based on a range

of micro-benchmarks and system-wide tests. Clark et al. [115] repeat this performance

analysis of Xen in [70] and confirm the high performance of Xen claimed in [70]. Also,

they compare Xen on x86 with IBM zServer and find that the former has better performance

than the latter. In an another study, Padala et al. [48] concentrate on comparing Xen’s and

OpenVZ’s performance when multi-tiered applications are consolidated. Their experimental

results show that Xen, as compared to OpenVZ, incurs higher overhead and a higher average

response time increase by over 400% as the number of application instances grows from

one to four. This can be explained by looking at L2 cache misses; Xen has more L2 cache

misses than OpenVZ.

In another study, Deshane et al. [96] focus on three aspects Xen and KVM benchmarking:

overall performance, performance isolation, and scalability. They illustrate that Xen has

excellent scalability while KVM encounters substantial problems as guests crash when

their hosts have more than 4 guests. KVM outperforms Xen in isolation. Using a kernel

compile test , Xen has better performance than KVM while KVM outperforms Xen based

on I/O-intensive tests. Camargos et al. [197] analyze the performance and scalability of six

virtualization technologies (KQEMU, KVM, Linux-VServer, OpenVZ, VirtualBox and Xen)

for Linux. They find Linux-Server delivers little to no overhead according to all of their
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tests. In all these experiments, Xen, KVM and VirtualBox perform well. Their OpenVZ

experimental result is disappointing, and they suggest that KQEUM should be avoided

in production systems. The model in [197] evaluates a queuing network with fair share

scheduling using trace-driven simulation. Yet, our experiences with performing large-scale

studies suggest that the challenges associated with performance prediction occur; because,

these existing approaches have been unable to accommodate complex system characteristics

(e.g., garbage collection, context switching).
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CHAPTER III

LARGE-SCALE EXPERIMENT AUTOMATION

The flexibility and scalability of computing clouds make them an attractive application

migration target; yet, cloud is still a black-box for the most part. This opacity impedes

running new applications in the cloud efficiently. The natural and presumably unbiased

approach to reveal the cloud’s complexity is to conduct more experimental studies. However,

conducting large-scale system experiments is particularly challenging because of the practi-

cal difficulties that arise during experimental deployment, configuration, execution and data

processing. We address these challenges through Expertus — a flexible automation frame-

work to create, manage and analyze large-scale experiments [175]. Expertus combines

template-driven code generation techniques with aspect-oriented programming concepts to

generate necessary resources to fully automate the experiment measurement process. The

system is composed of a code generator, a data warehouse, a web portal for data analysis,

and a set of command line and web-based tools to provide the complete workflow for

automated measurements. In Expertus, a researcher provides only the high-level description

about the experiment, the framework does everything else, and at the end, the researcher

receives the results in the web portal.

To date, Expertus has been used with over 100,000 different experimental scenarios

(500 different hardware configurations, seven IaaS clouds, and over 10 benchmarks); in fact,

our experience shows that new clouds, benchmarks, and software packages can easily be

incorporated.
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3.1 Introduction

One of the most reliable approaches to better understand the cloud is to collect more data

through experimental studies. By using the experimental measurement data, we can un-

derstand what has happened, explain why it happened, and more importantly predict what

will happen in the future. Yet, conducting large-scale performance measurement studies

introduce many challenges due to the associated complexity of application deployment,

configuration, workload execution, monitoring, data collection, data processing, and data

storage and analysis. In addition, due to the nature of the experiments, each experiment

produces a huge amount of heterogeneous data, exacerbating the already formidable data

processing challenge. Heterogeneity comes from the use of various benchmarking applica-

tions, software packages, test platform (cloud), logging strategies, and monitoring tools and

strategies. Moreover, large-scale experiments often result in failures; hence, storing incom-

plete or faulty data in the database is a waste of resources and may impact the performance

of data processing.

As mentioned, conducting large-scale experiments in distributed platforms such as cloud

environments introduces a set of new and challenging research issues, and these can be

categorized into three main types: create, manage and analyze. Create is the process of

preparing the platform, deploying and configuring the application. Manage refers to starting

the application components in the correct order, executing workloads, collecting resource

monitoring and other performance data and parsing and uploading the results to the data

warehouse. In Analyze, we mean the process of analyzing the collected data using various

statistical and visualization techniques to understand and explain performance phenomena.

Nevertheless, the most challenging step of an experiment is to deploy and configure the

application being tested on the target platform. According to industry analysts, IT operating

expenses account for 70-80% of IT spending, and half of this is attributed to application

deployment and deployment-related tasks [5].

In Expertus, we have created tools to fully automate the experiment measurement process.
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In our approach, a user provides a description about the experiment (i.e., application, cloud,

configurations, workloads, and etc. . . ) through a domain specific language (or through

the web portal), and then Expertus generates all of the resources that are necessary to

automate the measurement process (i.e., create, manage and analyze). Methodologically,

we achieve this by combining multiple automation steps. First, we have created a web-

based workflow management portal to create the experiments that involves mixing and

matching different application components, clouds and configurations (Alternatively, a user

can manually create the experiment configuration file). Second, the code generator takes the

experiment configuration file (either produced through the web portal or by other means) as

an input and generates automated resources (e.g., shell scripts, property files, and etc. . . ).

Third, the experiment driver deploys and configures the application, executes workloads

and monitors and collects measurement data. Fourth, an automated data extractor processes

the measurement data and uploads the data to a warehouse. In fact, these data extractors

come with the web portal to help the user to filter data during data extraction. Fifth, for

each experiment, a fresh set of tables is created on-the-fly, and our data extraction tools use

information describing the data format to parse the files. Finally, we have automated the

data analysis, which consists of a web-based graphical user interface as well as integration

scripts for statistical packages like R and Matlab.

In large-scale experiments, activities associated with data introduce many challenges. To

address the data processing and parsing challenges, we have used ETL (extract, transform,

and load) tools and approaches [73, 327] to build a generic parser (Expertract) to process

the performance measurement data. Our parser can process more than 98% of the most

commonly used file formats in our experimental domain (e.g., dstat logs, sar logs, Apache

logs, Tomcat logs). To address the storage challenge, we have designed a special data

warehouse called Experstore to store the corresponding performance measurement data.

The tables are created and populated on-the-fly based on the experimental data. This is

possible, because our data warehouse is fully dynamic. More specifically, at the end of
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each experiment, we create a set of tables to store the data, and the underlying schema is

solely based on the structure of the data (e.g., how many columns and tables). Finally, to

address the challenges associated with navigating and analyzing an enormous amount of

performance measurement data, we have built a web portal, which helps users to: navigate

the data warehouse, visualize the data, statistically analyze the data, and identify interesting

performance phenomena from it.

Expertus makes significant strides towards realizing flexible and scalable benchmarking

for today’s complex cloud environments. For example, we have used Expertus in over 500

different hardware configurations (i.e., varying node number and type) and over 100,000

different software configurations (i.e., varying software and software settings). Our exper-

iments have used over 100,000 computing nodes in various cloud environments such as

Emulab [21], Amazon EC2 [20], Open Cirrus [24], and Wipro [29] using different bench-

marks such as RUBBoS [25], RUBiS [26], and Cloudstone [294]. As more computing and

storage cloud offerings become available, we expect the number and variety of experiments

to increase by another order of magnitude with our current Expertus version.

Expertus is very efficient when one needs to carry out many different experiment sce-

narios. From one experiment to another, users can quickly change configuration settings,

platform settings, software settings and cloud platform deployment settings with minimal

effort. For example, by changing only one line (i.e., <param name=“platform” value=“EC2”/> ) and

changing the IP address of Emulab’s experiment configuration, new scripts are automati-

cally generated to run the same Emulab experiment on EC2. Similarly, automated scripts

can be generated for a new RUBiS experiment from a preexisting RuBBoS experiment

configuration with less than 20 line modifications.

Expertus is designed for flexibility and extensibility. For example, a developer can

extend Expertus to support new clouds, new benchmarks and new software packages with

only a few template changes. For example, by changing only 8.21% of the lines in a template,

we were able to support Amazon EC2 once we had support for the Emulab testbed. This
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8.21% caused a 25.35% change in the generated code for an application scenario with 18

nodes. Similarly, by changing 9.33% of a template, we were able to support the Open Cirrus

cloud, and these changes resulted in 26.91% of the generated code changing. To switch

from the RUBBoS to the RUBiS benchmark, the template only changed 5.66%.

Expertus automates and optimizes experiment scheduling in addition to collecting high

quality and consistent experimental data across multiple trials of the same experiment (i.e.

sequences of actions in exactly the same order). Scientific experimentation requires the

ability to produce and reproduce high quality data. Repeatability requires resetting the

experiment after each run to the same initial state and then re-deploying and re-configuring

the application. For example, the deployment and configuration of the RUBBoS n-tier

benchmark (with 24 nodes) on Amazon EC2 needs roughly 216 computing-node-hours

when using manual approaches, because all of the nodes have to be up and running while

the others are configured. In contrast, Expertus reduces the required deployment and

configuration time to 48 computing-node-hours through increased parallelism, resulting in

savings of about 80%.

The remainder of this chapter is structured as follows. In Section 3.2, we define some

of the terms used in the chapter and discuss associated challenges in experimentation. We

present the automated experiment management infrastructure in Section 3.3. The core of the

automated infrastructure i.e., the code generator is discussed in Section 3.4, and automated

performance measurement data generation is presented in Section 3.5. Section 3.6 presents

the challenges of data and our solution to store the data. Processing and parsing the data

is presented in Section 3.7, and the data visualization approach is discussed in Section 3.8.

Finally, we provide a discussion of related state of the art approaches in Section 3.10, and

we summarize the chapter in Section 3.11.
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3.2 Background

The performance unpredictability problem is challenging, because many variables can

significantly impact performance depending on specific configuration parameters. Practical

experience and research both show that the performance of an n-tier application is a complex

function of many variables, including software and hardware resource availability and

tuning knobs. In this section, we first formally define experiment, hardware and software

configuration (section 3.2.1), and detail some of the challenges in experimentation due to

complex dependences, heterogeneity and scalability (section 3.2.2).

3.2.1 Terms and Definitions

Experiment is a comprehensive, controlled analysis of a system (e.g., RUBBoS on Amazon

EC2) with single or multiple objectives. Objectives may include finding the resource

bottlenecks, finding appropriate values for tuning knobs (e.g., size of a thread pool), or

finding the maximum sustainable workload.

Hardware configuration is a set of connected nodes (either physical or virtual), where each

node is represented with a set of resources
∑

Ri, (e.g., CPU speed, memory, architecture,

OS, virtualized, # cores).

We say that two hardware configurations are different if: 1) the number of nodes in the

two configurations differs; 2) two configurations with the same number of nodes, but at least

one node has a different Ri value.

Software configuration is the combination of application components, their types and

configurable parameters (e.g., thread pool size, database pool size, connection timeout, #

concurrent client requests).

We say two software configurations are different when: 1) at least one configuration

parameter differs from one configuration to another; 2) use different software types (e.g.,

MySQL vs. Oracle); or 3) different application components (e.g., 2-tier vs. 3-tier).
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3.2.2 Distributed Testing and Challenges

Measurement challenges: Performance testing for enterprise applications consists of mul-

tiple closely related scenarios by varying a few configurable (preferably one) parameters

at a time. As an example, to find the maximum achievable throughput for an e-commerce

application on EC2 may consist of multiple experiments where the difference between

any two would be the number of concurrent client workloads (e.g., 1000 users vs. 2000

users). In fact, two different software or hardware configurations may produce the same

throughput [174,334], thus increasing the testable configuration space. Also, components of

a distributed application can interact in complex ways, yielding a virtually infinite number

of possible states. In reality, evaluating all possible configurations is practically infeasible

for a vast majority of systems. Thus, the key challenge is to maximize the amount of

configurations that can be tested with limited time and human resource constraints.

Application challenges: In distributed software testing the applications should start effi-

ciently and in a provably correct order by simultaneously enforcing serialization constraints

and leveraging the distributed system’s inherent parallelism. This process may be trivial

for applications with a few nodes; however, for applications with many nodes and multiple

application components (e.g., multi-tier applications), the process becomes challenging

mainly due to complex dependencies (e.g., database URL, load balancers). For example,

a web application with Apache as the load balancer and Tomcat as the application server

requires modification to the Apache configuration whenever application servers are added

or removed. Similarly, changing the DBMS causes the application server configuration

parameters (e.g., JDBC, URL) to change.

Data challenges: Measuring the performance of enterprise applications often results

in massive amounts of heterogeneous data being generated. The amount and structure of

the produced data varies based on the application, deployment platform (clouds), hardware

configuration, and monitoring tools and strategies. The heterogeneous nature of the data

introduces many challenges for data processing, storing, and analyzing, since its structure
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may change from one experiment to another. More specifically, storing becomes a challenge,

because finding a universal schema is practically infeasible. The dynamic nature of the

database schema inhibits the use of static tools to analyze the data. Hence, a successful

approach to storage must provide flexibility and extensibility to accommodate the dynamic

nature of the data.

Cloud challenges: Testing software systems in today’s cloud environments introduces

many new challenges. First, selecting the most appropriate cloud from many cloud offerings

is a non-trivial task. Second, migrating an application between two clouds is a complex,

time consuming and error prone task. Third, communication, coordination, synchronization,

and monitoring only add to testing’s general management challenges. Lastly, the dynamic

nature of the cloud introduces extra complexity. For example in a traditional data center,

the IP address of a given server is assumed to be constant, indefinitely; therefore, once an

application is deployed with pre-configured IP addresses then that configuration can be used

for multiple test cases. Conversely, in computing clouds, whenever we rent new computing

instances, they come with a fresh set of IP addresses. So, if we want to run multiple test

cases, we would need to modify the configuration scripts after each test case to account for

the new IPs, which is a non-trivial task for large applications.

3.3 Automated Experiment Management Infrastructure

Experiment measurement is a tedious process that consists of multiple activities; each of

which can be accomplished by using different tools and approaches. A typical experiment

consists of the following four activities: design, create, manage and analyze.

• Design: creating a set of experiments that are necessary to evaluate a given application

in given target platform, which can be further classified into: initial design and redesign

(change the design based on observed results).

• Create: preparing the experiment testbed (i.e., cloud) and deploying and configuring

the application.
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• Manage: starting the application components in the correct order, executing workloads,

collecting resource monitoring and other performance data, and parsing and uploading

the results into the data warehouse.

• Analyze: activities associated with analyzing the collected measurement data using

various statistical and visualization techniques to understand and explain performance

phenomena.

We have designed our automated experiment measurement infrastructure to fully auto-

mate the four activities listed above. In fact, some of these activities encapsulate multiple

smaller activities. A high level view of our approach, which details these activities and some

of the tools used in the process, appears in Figure 1. As shown in the figure, the process

consists of eight activities, a brief description of these follows:

• Experiment Design is the process of creating a set of experiments that are necessary

to evaluate a given application in given target clouds.

• Expertus is a code generator, which converts experiment design specifications into

deployment, configuration, execution, data collection, and parsing scripts that are

essential ingredients to automate the experiment preparation and execution processes.

• Automation is the process of using generated scripts to automate platform preparation,

application deployment and configuration, experimental execution, data collection,

and data processing.

• Experiments is the actual execution of workloads and data collection, in fact, most of

the Elba publications belong to this category.

• Experstore is a flexible data warehouse that stores and analyzes resource monitor-

ing and performance data collected through experiment measurements. These data

are in fact heterogeneous and vary significantly depending on the experiments and

monitoring strategy in use.
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• Performance Map is a logical view of experiment results, for example, an application’s

performance across different clouds.

• Online/Offline Configuration is the process of using performance data to make config-

uration decisions at runtime as well as finding appropriate software settings for new

configurations.

• Telescoping is the process of using collected data to drive more experiments to deeply

understand observed phenomena.

• Experiment Redesign is the process of creating new experiments or modifying existing

experiments either to validate online/offline configurations or to prove (or disprove)

performance hypotheses.

We designed the automation framework by combining multiple modules and built-in

flexibility to accommodate new modules. We employed modular architecture, because

of its distinct advantage of enabling us to change one component without affecting other

components. Our framework is designed to support both command line (CLI) users and

graphical users. We accomplish this by providing a SOAP interface for each module. The

different modules in the system are illustrated in Figure 5, and a brief description of each is

given below:

1. Code generator: is the heart of the automation where it generates all the necessary

resources to automate the experiment management process. In a nutshell, code

generator takes experiment configuration files as the input and generates all the

required files (e.g., scripts and other resources).

2. Expertus Service: Automation framework consists of multiple components; some of

which are connected using SOAP and REST APIs. We created an Axis2 [296] based

Web service that supports APIs for code generation, data extraction, status update,

and information listing. We used the code generation API to create a command line
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Figure 5: A High-level view of Automated Infrastructure

tool (CMI) for code generation. A user can pass an experiment configuration file

and execute the code generation script, which calls the remote web service using

the SOAP API to generate and download the code. Similarly, during experiment

execution, the experiment driver reports a given experiment’s status using the REST

API. The Web service is designed to store all the information in the database. The

REST API provides an easy way for any application to update the status without

worrying about the database

3. Experiment Driver: We use a centralized approach for experiment execution, and the

component called, the experiment driver, is responsible for this task. Code generator

generates all the scripts, and a special script, called run.sh, maintains the sequence

for script execution. Experiment driver uses run.sh to find the order of execution.

It connects to all the nodes through SSH/SCP, and it executes the scripts on the

corresponding nodes. In addition, experiment driver is configured to collect and report

information about the user, time, workload start time and end time, and the platform

to the Expertus service through the REST API.

4. Data Extraction: Each experiment produces gigabytes of heterogeneous data for

resource monitors (e.g., CPU, Memory, thread pool usage, and etc. . . ), response
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time and throughput, and application logs. The structure and amount of collected

data vary based on system architecture (64-bits vs 32-bit, 2-core vs. 4-core),

monitoring strategy and monitoring tools (e.g., sar, iostat, dstat, oprofile),

logging strategy (e.g., Apache access logs), and number of nodes and workloads. Data

extractor is written to help users easily export experiment data to the data warehouse.

5. Filestore: At the end of each experiment, experiment driver uploads experiment data

to a file server to store the data in raw format. Some data analysis tools and approaches

need to have access to the original data files, so these raw data files need to be retained.

In addition, there are temporal files and error logs files, which we do not want to put

into the database. Data extractor runs on the file store to export data from the file store

into the data warehouse.

6. Experstore: Is the flexible, extensible and dynamic data warehouse we have created

specifically to store heterogeneous experiment data collected through our experiments.

However, our approach is general enough to use for other applications as well.

7. Web Portal: Is the user friendly web interface we have developed to aid in experiment

creation, code generation, data extraction and data analysis. Our web portal is

composed of multiple web applications to support a rich user experience and an

efficient way to analyze the collected data.

3.3.1 Experiment Automation Process

Here we provide a brief overview of experiment automation with Expertus. The automation

process is illustrated in Figure 6, and brief description about each item is given below:

1. Create experiment specification for the application, software packages, cloud and

experiments. This includes complex system dependencies and semantics of the

application (components, # of nodes, parameters), cloud (e.g., URLs, user name,
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password, key-pair, node types), software (e.g., thread pool, maxClients), and

experiments (e.g., type, load configurations).

2. Use Expertus and generate scripts. To start the experiments, the user remotely connects

via (SSH) to the control node and executes the run.sh script (also known as the main

script). The Main script uses other scripts and drives the complete automation, which

in fact consists of multiple stages.

3. Platform configuration sets up the target cloud. This may include starting and con-

figuring computing instances, mounting the file systems, creating users, setting user

permissions and installing the operating system libraries.

4. Application deployment is for deploying the target application on the configured cloud

(e.g., downloading/copying the installation packages).

5. Enterprise systems are inherently complex due to component dependencies, so appli-

cation configuration is needed to correctly configure the systems.

6. run.sh script runs the test plan (6), which in fact consists of multiple iterations. In

order to produce consistent and reproducible results, all of the dirty data from previous

test cases needs to be removed before starting a new one.

7. Upload the resource monitoring and performance data to the data warehouse (i.e.,

Experstore).

3.4 Expertus - Code Generator

Expertus is a flexible and extensible code generation framework, which is designed for

generating resources that are needed to automate large-scale experiments on distributed

systems. We created Expertus by extending the Clearwater approach [299], which we

originally developed for generating code for infopipes. The framework can be easily and

quickly extended to support new clouds, benchmark applications and software packages. It
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Figure 6: Automated Testing Process with Expertus

achieves this flexibility and extensibility by leveraging the advantages of XML (e.g., extensi-

bility, flexibility) and XSLT-based (eXtensible Stylesheet Language (XSL) Transformation)

transformations (e.g., extensibility, flexibility, modularity).

Building a code generator to automate large-scale experiments for n-tier applications

is a significant research challenge. Environmental and design changes pressure the input

language to change and evolve. Similarly, the generated code (output) often needs customiza-

tion for a range of software, clouds, and operating systems. This constant evolutionary

pressure of input and output formats has so far, limited the practical life span of code

generators developed for distributed system software. More precisely, a code generator at

this scale should address the following three challenges:

• Abstraction mapping: Code generator should translate from high-level design spec-

ifications such as XML into a general purpose language and communication layer

appropriate to each target participating in the system (e.g., shell scripts).

• Heterogeneity: Because of the heterogeneity in the system, a practical solution must

accommodate inputs from multiple specification regimes and outputs to multiple

target platforms.
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• Flexible Customization: Provide a mechanism whereby each application developer

can augment scripts created by the code generator and introduces his own application-

specific properties irrespective of the target platform.

Expertus is architected to operate on XML and XSLT. Use of XML helps us to mitigate

the abstract mapping issues in which new tags and elements can be easily added to the

XML document without affecting the existing business logic. This also helps us to design

a human friendly XML-based specification that can easily adopt to new requirements and

changes. Use of XSL helps us to transform a single specification into multiple different

output formats by simply changing the XSL template(s). In addition, making changes to an

XSL template is much easier than changing the application source code (and then compiling

and rebuilding). We use aspect oriented programming (AOP) [188] concepts to provide

flexible customization. We allow a user to add pointcuts to the template as well as provide

aspects advices at different levels (e.g., application, cloud, operating system and user).

The code generator adopts multi-pass and template-driven generation techniques. To

generate the code, we identify the parts of the application components (source and scripts)

which are repetitive and dynamic (or parameterizable), next we create XSL template by

specifying those parameters, and finally generate the code through XSL transformation by

providing values for those parameters. From an architectural viewpoint, our code generator

adopts a compiler approach of multiple, serial transformative stages - a code generation

pipeline. The hallmarks of code generator are stages that typically operate on an XML

document, which is the intermediate representation, and XSLT actually performs the code

generation. The code generator uses multiple transformation stages and finally generates

source code for the file system. (Readers who are interested in learning more about our code

generator can refer to Clearwater [299]).

Expertus and the experiment specification language are designed to support the following

four key entities during the experiment deployment, configuration and execution.

• Artifacts includes software packages, servers, nodes, and clouds, for example httpd.tar.gz
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• Constraints are used to provide the precondition for deployment, for example, Apache

Tomcat needs JDK 1.6 or above, or an experiment needs to be executed on a 64-bit

operating system

• Dependencies specify the relationship between different entities, for example the

database URL for the application server, or JDBC library.

• Deployment and Start order are used to make certain we execute the actions in the

right order, for example, before configuring the application server, we need to deploy

it. Similarly, in a 3-tier system, we need to make sure we start the database server

before the application server.

Fully automating the experiment management process requires having all the resources

(e.g., scripts, source code, and property file) necessary for deploying, configuring and

executing the experiment. To handle the complexity of this process, Expertus divides it into

four distinct stages and generates scripts for each stage:

1. Platform configuration: setting up the target testbed (e.g., Emulab, EC2) - starting

instances (e.g., in Amazon EC2), setting up the file systems (e.g., in Emulab), creating

users and groups.

2. Application configuration: deploying and configuring application components - soft-

ware packages (e.g., Tomcat), benchmark (e.g., RUBBoS), workload generators,

resource monitors (e.g., dstat).

3. Runtime configuration: resetting the environment from one trial of an experiment to

another - removing logs, removing temporary files, restoring the database.

4. Execution and monitoring: starting application components, workload generators and

resource monitors.
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3.4.1 Flexibility and Extensibility through XML and XSLT

Expertus is designed to operate on top of XML and XSLT. The use of XML provides the

code generator with a high degree of extensibility. This stems from XML’s simple, well-

defined syntax requirement and its ability to accept arbitrary new tags, thereby bypassing

the overhead encountered when managing both XSLT templates and AOP. For example,

a template can add an arbitrary element to the intermediate XML; however, unless the

processing code is written to process the new tag, the newly added tag remains untouched.

XSL transformation is the process of converting an XML document into another docu-

ment using XSL. Typically, XSLT converts an XML document into another XML document

(e.g., HTML) or any other type of document. Expertus consists of two types of templates,

namely Base templates and Aspect templates. The former is used to generate appli-

cation/platform independent parts of a resource, and the latter is used to modify (weave) the

generated resource for the target application/platform (e.g., Emulab vs. EC2).

3.4.2 Multi-Stage Code Generation

The code generator adopts a compiler-based approach through its implementation of multiple

serial transformation stages. The intuition for this type of approach is straightforward-by

dividing the large problem into smaller pieces and processing them one at a time, better

extensibility and flexibility can be provided. For example, it processes the application-related

transformations at one stage and cloud-related transformations at another stage. As shown

in Figure 7, at each stage, Expertus takes an XML document and produces another XML

document through XSLT transformation. Expertus treats the first and last stage differently

compared to the rest of the workflow. During the first stage, the process takes the experiment

specification as the input, and in the final stage, it generates automation resources specific to

the file system (instead of an intermediate XML).

At each stage, Expertus uses the intermediate XML document created from the previous

stage as the input to the current stage. The current stage uses the intermediate XML
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file to retrieve the names of the templates that are needed and then generates another

intermediate XML document, which creates another XML document (Transformed XML

in Figure 8). If needed, AOP pointcuts is added to the intermediate XML during the

transformation phase. Consequently, Aspect Weaver is used to weave such pointcuts.

Aspect Weaver processes the pointcuts through Aspect templates and creates the

woven XML (Figure 8). Finally, the woven file is written to the file system through the file

writer. More precisely, the automation scripts are written to the file system during the final

stage of the pipeline. At each of the other stages in the worflow, an intermediate XML is

generated, and the next stage in the pipeline is called. The complete process for a single

stage is shown in Figure 8.

Figure 9 illustrates how code generation works in practice, and this figure shows code

snippets from an XSLT template, an intermediate XML and a generated script. The high-

lighted lines in the XSLT template indicate the parameter names that it should use from the

XML document to create the output. The XML file is highlighted with the corresponding

parameter values, and those parameters can either come from user inputs (specification) or

generated from a previous stage by another XSLT template. Finally, the generated script

is highlighted with parameter values. As illustrated in the figure, the XSLT template has

extracted the values from intermediate XML, and it has created the output XML file. We

use this simple logic to generate resources to automate complex test scenarios.

One of the key challenges in experiment automation is to handle the variance and

continuous evolution of applications, software packages, operating systems, and clouds. For

example, in Emulab, a user can communicate between two nodes by typing SSH node2;

in EC2, an equivalent command is SSH -i gsg-keypair node2. Similarly, for older

Apache versions, mod_jk has to be placed in jk/native2; however, newer versions require

it to be in jk/. Likewise, when doing performance testing, crosscutting features like

monitoring and logging are important factors, and they might need to change from one

experiment to another. To handle variances and crosscutting features, Expertus itself has to
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be modular. Expertus achieves this modularization by leveraging AOP techniques.

The Resource templates are created by identifying output variances (e.g., SSH com-

munication) and crosscutting features. Each identified variance is embedded into Resource

templates as pointcuts (namespace qualified XML elements). Aspect templates are

created by embedding the advices (code that is run at the joint points), which are needed

to support the pointcuts. During the transformation phase, Resource templates add

joint points (well defined points in the execution flow) to the intermediate XML, and

during the weaving phase, Aspect templates transform intermediate XML into woven

XML by applying correct advices. If new pointcuts are needed, we can easily modify

the Resource templates and add (or change) the Aspect templates to include the

corresponding logic to process the new crosscutting features.

Figure 7: Multi-Stage Code Generation Process

Figure 8: Transformations Steps within a Single Stage
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A simple aspect weaving scenario is illustrated in Figure 10, where a cloud-specific

aspect template is used to generate a script to have different SSH communication for EC2

and Emulab. In the figure, the XSLT template is highlighted with the pointcuts. The

intermediate XML is highlighted to illustrate the joint points, and the woven code with

applied advice is highlighted for EC2 and Emulab.

A concrete example for the complete code generation process with Expertus is shown

Figure 11 and Figure 12. As shown in Figure 11 (or Figure 12), the first task is to fine what

XSLT Template 
..... 

cd <xsl:value-of select="//params/env/param[@name='OUTPUT_HOME']/@value"/> 

source set_elba_env.sh 

echo "  INSTALLING RUBBOS on $HOSTNAME" 

 

mkdir -p <xsl:value-of 

select="//params/env/param[@name='RUBBOS_TOP']/@value"/> 

# install RUBBoS 

tar xzf <xsl:value-of 

select="//params/env/param[@name='SOFTWARE_HOME']/@value"/>/<xsl:value-of 

select="//params/env/param[@name='RUBBOS_TARBALL']/@value"/> --

directory=<xsl:value-of 

select="//params/env/param[@name='RUBBOS_TOP']/@value"/> 

 

..... 

make 

sudo make install 

echo "  DONE INSTALLING RUBBOS on $HOSTNAME" 

Intermediate XML 

<xtbl name="Rubbos" version="0.1"> 

 <instances><params><env> 

  <param name="OUTPUT_HOME" value="/opt/rubbos/output"/> 

  <param name="SOFTWARE_HOME" value="/opt/softwares"/> 

  <param name="RUBBOS_TOP" value="/mnt/rubbos"/> 

  <param name="RUBBOS_TARBALL " value="RUBBoS-servlets.tar.gz"/> 

  <param name="MYSQL_PORT" value="3313"/> 

  ..... 

<env><params> 

<tomcat-conf> 

  <param name="maxThreads" value="330"/> 

  ..... 

</tomcat-conf> 

 

<instance name="BENCHMARK" type="benchmark_server"> 

   ..... 

</instance> 

Generated Script 
..... 

cd /opt/rubbos/output  

source set_elba_env.sh 

echo "  INSTALLING RUBBOS on $HOSTNAME" 

 

mkdir -p /mnt/rubbos  

# install RUBBoS 

tar xzf /opt/softwares/RUBBoS-servlets.tar.gz --directory=/mnt/rubbos  

..... 

make 

sudo make install 

echo "  DONE INSTALLING RUBBOS on $HOSTNAME" 

 

Figure 9: Generating Output/Intermediate XML with XSLT Transformation
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user needs to generate, for the scenario shown in figure, Bob needs to generate a shell script.

As highlighted in the figure, he needs to execute make install with sudo privileges, in

contrast Alice does not need to have sudo keyword to execute the same command.

1. Create the XSL template by parameterizing the target resource that user wants to

generate. As an illustration, the corresponding XSL template for Bob’s and Alice’s

case is shown in the figure. As shown, the template is created with adding <axpect

id=“addsudo”/> before the make install command. This represents the aspect

which helps to achieve Bob’s and Alice’s requirements.

2. To generate the code, user need to provide the values for parameter shown in the

template using the experiment configuration file.

3. At the code generation, it combines the template and the experiment configuration file

to create the intermediate XML file.

4. Next, it goes through aspect weaving process. As shown in Figure 11, Bob’s template

has implemented sudo for the aspect addsudo whereas Alice’s has not provided

anything for her aspect.

XSLT Template 
..... 

tar xzf <xsl:value-of 

select="//params/env/param[@name='SOFTWARE_HOME']/@value"/>/<xsl:value-of 

select="//params/env/param[@name='JAVA_TARBALL']/@value"/> --

directory=<xsl:value-of select="//params/env/param[@name=' RUBBOS_TOP 

']/@value"/> 

<esl:add-aspect name="ssh" xmlns:esl="http://expertus.cc.gatech.edu" /> 

Intermediate XML 

.... 

tar xvf /opt/software/jdk1.5.tar.gz –directory=/mnt/rubbos 

<esl:add-aspect name="ssh" xmlns:esl="http://expertus.cc.gatech.edu" /> 

Woven XML For EC2 
..... 

tar xvf /opt/software/jdk1.5.tar.gz –directory=/mnt/rubbos 

ssh –i gsg-keypair ec2-184-73-86-137.compute-1.amazonaws.com 

Woven XML For Emulab 

..... 

tar xvf /opt/software/jdk1.5.tar.gz –directory=/mnt/rubbos 

ssh node2.expertus.emulab.net 

 

Figure 10: Handling Cloud Variances through Aspect weaving
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5. When the intermediate XML is transformed thorough the Aspect templates, those

templates create the correct output meet user’s requirements.

Experiment Configuration

<xtbl name="Rubbos" version="0.1"> 

<params name="OUTPUT_HOME" value="/opt/rubbos/output"/> 

<params name="SOFTWARE_HOME" value="/opt/softwares"/> 

<params name="RUBBOS_TOP" value="/mnt/rubbos"/> 

<params name="RUBBOS_TARBALL " value="RUBBoS.tar.gz"/> 

<params name="MYSQL_PORT" value="3313"/> 

..... 

</xtbl>

Template

cd <xsl:value-of select="//params[@name='OUTPUT_HOME']/@value"/> 

source set_elba_env.sh 

mkdir -p <xsl:value-of select="//params[@name='RUBBOS_TOP']/@value"/> 

# install RUBBoS 

tar xzf <xsl:value-of select="//params@name='SOFTWARE_HOME']/@value"/>/

<xsl:value-of select="//params@name='RUBBOS_TARBALL']/@value"/>

make 

<axpect id="addsudo"/> make install

Script

cd /opt/rubbos/output 

source set_elba_env.sh 

mkdir -p /mnt/rubbos 

# install RUBBoS 

tar xzf /opt/softwares/RUBBoS.tar.gz

..... 

make 

sudo make install

Intermediate XML

<file> 

<name id="Tomcat_deploy.sh" loc="/home/scripts"/> 

<content> 

cd /opt/rubbos/output 

source set_elba_env.sh 

mkdir -p /mnt/rubbos 

# install RUBBoS 

tar xzf /opt/softwares/RUBBoS.tar.gz

..... 

make 

<axpect id="addsudo"/> make install 

</content>

</file>

Aspect Template

<xsl:template match="//axpect[@id=‘addsudo']">sudo </xsl:template>

1

2

3

4

5

Figure 11: Code Generation with Aspect (an Example for Bob’s case)

3.5 Automated Generation of Heterogeneous Experimental Data

In our approach to large-scale experimental measurements, we deploy actual or representa-

tive applications (e.g., benchmarks like RUBBoS [25], RUBiS [26], and Cloudstone [293])

on actual or representative deployment platforms (e.g., Amazon EC2 [20]) and execute

workloads. Through the large-scale experiments, we produce a huge amount of heteroge-

neous performance data. The heterogeneous nature of the data arises from the nature of the

applications, clouds, monitoring tools, and monitoring strategies. We conduct large-scale

experiments and collect data by fully automating the process, and as explained before, the

code generator generates all the necessary resources to automate the process.
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Once the system is deployed, we execute the workload against the deployed system. In

this step, we run the planned experiments according to the availability of hardware resources.

For example, we usually run the experiments by increasing the workload. For each workload,

we run the easily scalable (browse only) scenario first followed by read/write scenarios. To

minimize cache inter-dependencies across experiments, after each batch of experiments, we

finish the data collection, ramp-down the system, stop all of the servers, and start the next

batch with sufficient ramp-up time. The iterations continue until all the experiments are

finished.

During the experiment execution, the automated infrastructure collects information

about system resources (e.g., CPU, memory), application specific data (e.g., thread pool

usage), application logs (e.g., Apache logs), high level data like throughput and response

time, and any other data that the user wants to collect. This process continues for each and

Experiment Configuration

<xtbl name="Rubbos" version="0.1"> 

<params name="OUTPUT_HOME" value="/opt/rubbos/output"/> 

<params name="SOFTWARE_HOME" value="/opt/softwares"/> 

<params name="RUBBOS_TOP" value="/mnt/rubbos"/> 

<params name="RUBBOS_TARBALL " value="RUBBoS.tar.gz"/> 

<params name="MYSQL_PORT" value="3313"/> 

..... 

</xtbl>

Template

cd <xsl:value-of select="//params[@name='OUTPUT_HOME']/@value"/> 

source set_elba_env.sh 

mkdir -p <xsl:value-of select="//params[@name='RUBBOS_TOP']/@value"/> 

# install RUBBoS 

tar xzf <xsl:value-of select="//params@name='SOFTWARE_HOME']/@value"/>/

<xsl:value-of select="//params@name='RUBBOS_TARBALL']/@value"/>

make 

<axpect id="addsudo"/> make install

Script

cd /opt/rubbos/output 

source set_elba_env.sh 

mkdir -p /mnt/rubbos 

# install RUBBoS 

tar xzf /opt/softwares/RUBBoS.tar.gz

..... 

make 

make install

Intermediate XML

<file> 

<name id="Tomcat_deploy.sh" loc="/home/scripts"/> 

<content> 

cd /opt/rubbos/output 

source set_elba_env.sh 

mkdir -p /mnt/rubbos 

# install RUBBoS 

tar xzf /opt/softwares/RUBBoS.tar.gz

..... 

make 

<axpect id="addsudo"/> make install 

</content>

</file>

Aspect Template

<xsl:template match="//axpect[@id=‘addsudo']"></xsl:template>

1
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5

Figure 12: Code Generation with Aspect (an Example for Alice’s case)
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every workload. In fact, experiments in our domain consist of 50 to 60 workloads, and

each workload runs for approximately 30 minutes. The framework is capable of collecting,

managing and storing data without any help from the user. The data extractor, as the name

implies, extracts this myriad data and stores it in the data warehouse after the experiment is

completed.

3.6 Experstore - A Flexible Data Warehouse

The performance and scalability measurement of enterprise applications is a tedious process.

In most cases, researchers are initially unaware of what resources need to be monitored,

whether it be high-level data (e.g., response time or throughputs) or low-level resource

monitoring data (e.g., CPU, memory, cache miss, application logs). Monitoring all the

potential resources is not necessary the best approach, because of the performance overhead.

As such, a researcher (or a performance engineer) typically starts with a selected set of

resources and gradually changes the monitoring set based on the observed results. For

example, if the issue is caused by CPU, then the researcher might look into additional

data like context switches or interrupts. Moreover, an experiment can be deployed on

heterogeneous platforms (e.g., XEN vs. KVM, 2-core vs. 4-core), thus the structure of

monitoring data may differ from one experiment to another. Frequently, the user changes the

monitoring strategy, which results in new data formats, not to mention new monitoring data.

The user may also choose to monitor new resources (possibly using new monitoring tools)

based on the observed results. As a consequence of all of these issues, the experimental data

cannot be feasibly stored on a set of static tables.

In addition, large-scale experiments often result in failures; hence, storing incomplete or

faulty data in the database is a waste of resources and may impact the performance of data

processing. Most OLAP (Online Analytical Processing) applications such as experimental

data analysis require joining multiple tables or performing self-joins. When the tables

are huge, processing becomes very time consuming, and the processing time increases
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significantly unless the tables can be loaded into main memory.

We address these problem through Experstore —a special data warehouse solution to

store performance measurement data. Our data warehouse is fully dynamic; tables are

created and populated on-the-fly based on the experimental data. More specifically, at

the end of each experiment, we create a set of tables to store the data, and the schema

is based solely on the structure of the data (e.g., how many columns and tables). Tables

names are created dynamically by combining the experiment ID and the timestamp, and

the names of the tables are stored in a mapping table called ‘Resource Mapping Table’.

In this approach, if an experiment fails, we can simply drop all the tables corresponding

to the failed experiment. Since a new set of tables are created for each experiment, data

processing efficiency increases dramatically, because the small tables (corresponding to each

experiment) can be easily joined in memory.

Data to Table Mapping: As mentioned before, the tables are created dynamically, based

on the structure of the data. In fact, we achieve this by creating an intermediate representation

of the data, where we describe for each resource monitoring file how to process the file

and which parser to use. One file might contain data for more than one resource type, for

example, CPU, memory and network I/O. For each resource type, we create a ’profile’,

which maps a file’s structure to an applicable schema. As an example, the profile identifies

which columns of a CSV file correspond to a particular database table. Next, we have

a mapping, where we specify which profiles are applicable to a given node. A mapping

contains node name, file name and corresponding profile. A sample profile and a mapping

file is shown below:

Listing 3.1: Code Listening for Profile and Mapping

< p r o f i l e >

< s e p a r a t o r > ,< / s e p a r a t o r >

< r e s o u r c e −name>CPU0< / r e s o u r c e −name>

<p r o c e s s o r − c l a s s > d a t a i m p o r t . f i l t e r . C S V F i l e P r o c e s s o r
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Figure 13: Experstore - Static and Dynamic Tables and their Relationships (tables which
are marked as dynamic tables are created on-the-fly, and the remaining are static tables to
store experiment meta-data)

< / p r o c e s s o r − c l a s s >

<column i n d e x = ‘ ‘0 ’ ’ colname = ‘ ‘ u s e r ’ ’ d a t a t y p e = ‘ ‘ d ou b l e ’ ’ / >

<column i n d e x = ‘ ‘1 ’ ’ colname = ‘ ‘ sys tem ’ ’ d a t a t y p e = ‘ ‘ d ou b l e ’ ’ / >

< s t a r t − i n d e x>10< / s t a r t − i n d e x>

<end− i n d e x>0< / end− i n d e x>

< / p r o f i l e >

<mapping nodename = ‘ ‘ Apache ’ ’ f i l n a m e = ‘ ‘ 1 6 9 . 2 5 4 . 1 0 0 . 3 . csv ’ ’

s t a r t w i t h = ‘ ‘ f a l s e ’ ’ endwi th = ‘ ‘ f a l s e ’ ’

p r o f i l e s = ‘ ‘CPU0 , DISK , CPU1 ,NETWORK,SYSTEM ’ ’ / >

The structure of the data warehouse is shown in Figure 13. As shown in the figure, it

consists of four tables to store experiment meta-data (e.g., experiment name, platforms, node

and workload information), which are typically fixed across experiments. The highlighted

tables are the tables that are created on-the-fly, as shown in the figure. ‘Resource Mapping

43



Table’ (also known as Dictionary) stores the names of the dynamically created tables along

with the resource names. For example, it has a record for CPU utilization for experiment ID

(EXP_ID), and the value is EXP_ID_CPU. Likewise, all the monitoring data for a given

experiment is stored. In fact, it has a record for each unique node, workload, and resource.

3.7 Expertract - Automated Data Extractor

The large-scale experiment measurements with Expertus generate an enormous amount of

metadata in the form of log files, i.e., structured and semi-structured text files. This data

needs to be extracted and stored in the environmental data warehouse for later analysis. The

primary challenge with this activity is the fact that different tools and software packages

produce the data of interest, differently. Thus, the goal of an automated data extractor is to

build a generalized parsing approach for experimental data to support both the known and

unknown data formats. To begin developing an approach, we explored the more recent and

foundational research in the Extract, Transform and Load (ETL) domain. Next, we built a

system bound by the existing data files known in the environment, and more specifically, we

focused on parsing ‘fixed width’ flat files. (Based on our research, this problem reduces to

other challenging formats like delimited-based files.)

Generally speaking, the log files that comprise our ETL domain have significant vari-

ability. The following categories are just a few of the points of difference:

• Structure - semi-structured [flat files, delimited files, HTML] and structured [XML].

• Data Record Structure - what arrangement or construction within the file represents

one data record and how do the data fields relate - either explicitly or implicitly -

ontologically.

• Data Type - numeric, string and other ASCII characters.

• Data Variability - how consistent the data is within a specific - either explicit or

implicit - data field and among the fields within a file.
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• Data Validity - similar to Data Variability but specifically related to identifying error

conditions within a specific - either explicit or implicit - data field.

These observations suggest perhaps an alternative view of the original problem. That

is any log file of interest contains data and an inherent presentation. This presentation is a

mixture of inherent data ontology and human readability factors. Any successful approach

must disambiguate these two concerns. Specifically, an approach needs to be able to handle

three aspects of any given log file:

• Data - this concerns aspects of data quality and validation.

• Ontology - that is the logical relationship among the data elements in the file.

• Presentation / Layout - this concerns how the data is expressed in the file.

During the course of our system design, we concentrated on four primary monitoring

file data patterns, and these cover more than 98% of the monitoring data collected through

our experiments. These patterns are:

1. One header: The most basic case, a given file has one header. This header could

contain a row describing records, but at a minimum it must contain a row describing

fields.

2. Multiple headers with sequentially corresponding data: This pattern is basically (1)

except that another header appears later in the file.

3. Multiple headers with non-sequential corresponding data: This pattern differs from

(2) in that data later in the file matches the first header in the file at some random

position later in the file.

4. Multiple headers appear randomly in the file and data is entirely non-sequential, i.e.,

randomly distributed throughout the file.
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We developed the tool to be user interactive, so a domain expert can help the tool to

correctly interpret the data format. At the end of this process, we build an ontology for the

file, and then we use the created ontology to process the file during data extraction. We

leverage this for unknown or unseen file formats, and we use existing ontologies to describe

the file format for the known files. The actual header-to-row-of-data matching algorithm

that we delivered followed a Greedy algorithmic approach–detailed below. We augmented

this core matching functionality with the following surrounding functionality:

• Simple command line user interface to capture user instructions for parsing header

rows.

• Object-oriented design that supports separating file contents from file format and

layout.

• Row-Encoding Algorithm: Only prompts the user when the system “thinks” the row is

a header row. Headers have two distinct characteristics: more alphabetic and special

characters relative to the total length of the string. “Noise” rows, i.e., rows that

should be ignored for later processing, have one of two properties but not both, which

differentiates them from header rows.

1. Uses length-weighted character frequency to do first pass encoding.

2. Then checks for the prevalence of special characters.

• Header-to-Data Row Matching Algorithm, this algorithm leverages multiple heuristics

to achieve its objective:

– Generate a byte-array representation of the string.

– Compute character frequencies and scale weights based on character frequency.

For example, if a tab appears once in a string, this character receives significantly

more weight than spaces that occur in over half of the string, for example.

Alphanumeric characters receive 0 weight.
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Figure 14: Experstore - Sequence Diagram for Automated Data Extractor

– If more than one header appears in a document, do a byte-wise comparison of

the header row to the row of data of interest. Whichever header-row-of-data

comparison results in the lowest absolute difference is the header selected to

process the row-of-data.

The sequence diagram shown in Figure 14 represents the primary instruction flow for

the parser. It shows the flow of events for: initially loading a data structure to hold the

file contents; encoding rows of the data structure to perform matching later on; and finally,

matching rows that are classified as a row-of-data to the corresponding header.

3.8 Experlyis - Web Portal for Data Analysis

Experlyis is an attempt on our part to aid in the analysis of a large amount of data collected

from sundry sources. It equips the user with the capability to identify patterns, trends and

relations, which generally gets obscured by the massive quantities of data. Also, it equips

the user with capabilities to control the way in which data is represented, which further

enhances his productivity and analytical capabilities. The application provides a simple

interface that facilitates the comparison of data from seemingly unrelated sources, thereby
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enhancing the user’s ability to see and detect potentially interesting, latent relations that were

previously unknown. As an illustration, two examples for graphs generated with Experstore

are shown in Figure 15.

We believe the application can be really helpful for any system where components have

dependencies, hence impact each other. Moreover, the high degree of customization for both

graphs and data makes the application highly unique. For example, let’s assume we have a

process that when it is scheduled, it is mostly followed by processes, which require heavy

disk activity. Such trends are very hard to identify, but our application makes this trivial to

pinpoint.

We have tried to keep the design of the application very simple and clean. The core

of the application is a Node.js server that runs as a webserver. The whole application is

written using Node.js libraries. On the interface end, the application uses the HighCharts

framework to plot 2-dimensional graphs and 3D WebGL-surface-plot for 3-dimensional

graphs. The server and the front-end communicate using jQuery and JSON calls. From

the server, we connect to the MySQL database using the Node.js module, which acts as a

connector. The high level architecture is shown in Figure 16.

In order to develop this application, we have used the following technologies:

• Highcharts is a charting library written in pure JavaScript, which offered us an

easy way of adding interactive charts to our application. This was our major graph

generation framework and was central to our work. The library was chosen, because

it has decent capabilities to handle interactive and dynamic graph generation, which

happen to be the prime requirements for our application.

• WebGL-surface-plot library is a 3D surface plotting tool in JavaScript that uses WebGL.

The 3D surface plotting library itself allows one to plot 3D surfaces, and WebGL takes

advantage of hardware accelerated graphics to provide smooth interaction and visuals

such as shading and lighting. The need for a secondary library arose to incorporate

3-dimensional graphs into the application, as Highcharts lacks support for 3D charts
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(a) # 2D Graphs

(b) 3D Graphs

Figure 15: Experstore - Web Portal for Data Analysis

• Node.js is a software system designed for writing highly scalable internet applications,

notably web servers. We selected Node.js as the backend for our application, as the

web server in our case was quite simple. Moreover, Node.js uses event driven, asyn-

chronous I/O to minimize overhead and maximize scalability, which were desirable

qualities.

Approach and Features: Throughout the development, we focused on delivering as many

customization capabilities in the graphs as possible. Adhering to this principle helped us

to greatly enhance the utility of the application. Factors such as the variety of graph types,

the variance of graphing scales, and changing the values associated with graph ranges were
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Figure 16: Architecture - Data Analysis Web Portal

some of the major challenges that we faced. In order to achieve the desired results, we

experimented with different approaches for handling the data.

3.8.1 Fixed vs. Customizable Data Values

Initially, we designed the application to directly utilize the data that we obtained from the

database for graph generation. But later, we realized that this makes comparison among

values with significant range differences extremely difficult. Imagine comparing something

that varies in thousands to something that has variations in the range of hundreds. We

alleviated this condition by allowing mathematical transformations on values before they

were plotted on graphs. Using the previous example, we could now multiply the values on

the second series by a value, 10 in this case, making direct comparison with the first series

possible.

3.8.2 Multiple Graphs vs. Multiple Series

One of the prime concerns while designing the application was supporting the comparison

among multiple datasets (many series in the same graph?). This needed to be weighed

against the amount of information the user would need (how many graphs?). We decided

later to pursue a hybrid approach by allowing the user to have multiple graphs, each of
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which could have multiple series.

3.8.3 Result Migration

Another prime concern while designing the application was facilitating the sharing of

analytical data among users, so collaborative efforts could prove fruitful. In order to deliver

this feasibly, we had to choose between building printing or export capabilities. Once again,

we adopted a hybrid approach, and we facilitated both printing and export capabilities. The

application can currently export graphs as a PNG image, a JPEG image, a PDF document or

an SVG vector image.

3.8.4 Advanced Graphs

In order to enhance the capabilities of the application, we modularized and integrated

advanced features like frequency distribution graphs, bucketed graphs, dynamic graphs,

correlation and cumulative graphs and 3-dimensional graphs. This helped us model the

application in such a way that future enhancements could be incorporated easily.

3.8.5 Interactivity

Another point of concern was user interactivity, as most of the utility of the application

depended on this characteristic. We took the approach of providing intuitive interaction

capabilities to the user. Some of these capabilities included: auto-customizable axes, mouse

drag- based zooming, multiple graph types, graph modification, series addition, series or

graph-based deletion, automated range generation for selected datasets, etc. . .

3.9 Evaluation

We have been using Expertus extensively and actively to perform a large number of experi-

ments with various configurations. Through these, we have thoroughly tested our framework

and improved it to have better usability, extensibility and flexibility. In this section, we

demonstrate our experiences of using Expertus for experiment automation by varying the
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Figure 17: Number of Experiment Generated During April-2013

support for new clouds, new applications and new software packages.

3.9.1 Active Use of the Tool

Expertus is actively being used for large experimental studies. As an illustration, we have

collected data from a number of experiments during April 2013. This is illustrated in 17,

and as shown in the figure, we run on average, over 10 parallel experiments daily. In some

instances, we run over 50 concurrent experiments.

3.9.2 Usability of the Tool

Here, we consider how quickly a user can change an existing specification to run the same

experiment with different settings (e.g., MySQL Cluster [23] vs. C-JDBC [105]), the same

experiment on different clouds (e.g., Emulab vs. EC2), the same experiment with different

numbers of nodes (e.g., two vs. four app servers), or an entirely different set of applications

(e.g., RUBBoS vs. Cloudstone).

For our analysis, we created a specification (say a.xml) to run the RUBBoS application

on Emulab with a total of 16 nodes and generated automated resources through Expertus.

We then changed a.xml to generate automated scripts for EC2, which required only a

single line change (i.e., <param name=“platform” value=“EC2”/> ) in a.xml and a

52



modification to the IP address. Even though the number of lines changed in the configuration

file is small, the changes to the generated code are non-trivial and significantly larger. Our

results are illustrated in Figure 18(a). We followed the same procedure and modified a.xml

to change the database middleware from C-JDBC to MySQL Cluster. This change required

only 36 lines (mostly MySQL Cluster specific settings), but, as shown in Figure 18(a) the

differences in generated code were substantial. Similarly, with 4 lines changes to a.xml, we

were able to move from 2 to 8 Application servers. Furthermore, with only 52 template line

changes, we were able to extend the support from RUBBoS to Cloudstone.

(a) # Changes: Specification vs. Gener-
ated

(b) #Nodes vs. # Lines generated

(c) RUBBoS To RUBiS

Figure 18: (a) # Lines changed in Experiment Specification vs. Generated Code, when
Changing Cloud, Database, Application and # APP Servers; (b) Magnitude of Generated
Code when Increasing the # Nodes in the Experiment; (c) #Lines (template) Changed for
Adding a new Application(RUBBoS to RUBiS)
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3.9.3 Generated Script Types and Magnitude

The biggest advantage of our approach becomes visible when automating experiments for

complex applications. The quantity of resources being generated depends on the application

(e.g., RUBBoS, RuBiS), software packages (e.g., Tomcat, JBOSS), deployment platform

(e.g., Emulab, EC2), number of experiments, number of servers, and number of configu-

ration parameters. To show the significance of the generated code, six different hardware

configurations (on Emulab) were selected, and we counted the number of lines generated for

each configuration. Our results are shown in Figure 18(b); as shown in the figure, when the

number of nodes increases, the size of the generated code grows significant. The magnitude

of generated code implies two factors: first, it shows the effectiveness of our approach,

(a) Adding New Clouds (b) Adding New Applications

(c) Adding New Database

Figure 19: Template Line Changes: (a) Moving from Emulab to EC2 and Open Cirrus
(figure shows total # lines for Emulab); (b) Supporting CloudStone from RUBBoS; (c)
Moving from C-JDBC to MySQL cluster
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and second, it shows the challenges that accompany manual approaches. For example, to

perform an experiment with 43 nodes requires around 15K lines of shell scripts and writing

all of those manually is a non-trivial task.

3.9.4 Richness of the Tool

Richness is considered in two dimensions: 1) magnitude of completed experiments; 2)

the number of different software packages, clouds, and applications it supports. Expertus

has been used over three years to conduct a large number of experiments spanning five

clouds (Emulab, EC2, Open Cirrus, Wipro, and Elba), three applications (RUBBoS, RUBiS,

and Cloudstone), five database management systems (C-JDBC, MySQL Cluster, MySQL,

PostgreSQL, Oracle), various resource monitoring tools (dstat, sar, vmstat), and different

(a) Adding New Clouds (b) Adding New Applications

(c) Adding New Database

Figure 20: Changes to Generated Code: (a) Emulab to EC2 and OpenCirrus; (b) RUBBoS
and CloudStone; (c) C-JDBC and MySQL Cluster
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types and numbers of nodes. A high level summary of supported software packages,

platforms, and applications are shown in Table 1 with the number of template lines indicated

for each item.

Table 1: Supported Software packages, Clouds and Applications
Platform Application

Type E
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Apache HTTPd √ √ √ √ √ √ √ √

Tomcat √ √ √ √ √ √ √ √

MySQL √ √ - √ - √ √ √

MySQL Cluster √ √ √ - √ √ - √

C-JDBC √ √ - √ - √ √ -
Postgres - √ - √ - √ √ -
Sequoia - √ - √ - √ - -
PHP √ √ √ √ √ - - √

JOnAS - √ - - - - √ -
Core √ √ √ √ √ √ √ √

Table 2 provides a high level summary (only the results we used for our publications)

of different experiments performed using RUBBoS, RUBiS, and Cloudstone applications.

An experiment refers to an execution of a particular workload against a combination of

hardware and software configurations. In the table, nodes refer to the total number of

machines that we had used during our experiments. We calculated the number of nodes

by multiplying the number of experiments by the number of nodes for each experiment.

Configurations mean the number of different software and hardware configurations that were

studied. Experiments-per-week gives an idea of the average number of experiments executed

in one week. Typically, an experiment’s execution takes one hour, which is the aggregate

duration of: reset time, start time, sleeping time, ramp-up time, running time, ramp-down

time, stop time, and data copy time. As an example in Eumlab we, conducted approximately

132 hours of experiments per week. Finally, human effort refers to the actual human time
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spent on experiment configuration (i.e., creating or modifying experiment configuration file).

As presented in the table, our approach significantly reduced the human effort required to

explore the configuration space quickly.

Table 2: Number of Test Scenarios Performed with Expertus

Type Emulab EC2 Open Cirrus Elba Wipro
Experiments 9215 1436 480 3567 120
Nodes 102687 25848 4987 9863 430
Configurations 392 86 28 163 8
Experiments Per Week 132 34 120 77 14
Human Effort (in minutes) 87 110 44 47 51

3.9.5 Extensibility and Flexibility

3.9.5.1 Supporting New Clouds

Our approach is fully realized when trying to support new clouds; we can use existing

templates and only implement the absolutely necessary pieces, which is usually a quick and

easy process. Traditionally, using manual approaches to support new clouds meant writing a

set of scripts to deploy, configure, execute the test cases, and finally collect the data, which

can be a cumbersome and tedious task. Here, we show the extensibility of Expertus by

counting the number of changes we made to support the RUBBoS application on EC2 and

Open Cirrus, once the tool had already supported RUBBoS on Emulab. Not surprisingly, we

observed many differences among the three clouds that make migrating applications from

one to another a non-trivial task.

To get a good understanding of how easy it is to extend Expertus to support new clouds

and the significance of the generated code, we show our own experiences on migrating the

RUBBoS application from Emulab to EC2 and then to OpenCirrus. Initially, we developed

XSLT templates for the Emulab cloud and then used the same templates to extend the

applications to new clouds. To begin, we calculated the total number of template lines for

the Emulab configuration, and then we counted the total number of template lines that were

modified (i.e., added, removed, and updated) to support the target cloud environment. Our
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results are shown in Figure 19(a). As illustrated in the figure, once we have implemented

templates for Emulab, the amount of change required to support EC2 was very small (less

than 10% of the template needed to change). To better understand these differences, we have

divided the changes into five categories: 1) Changes to core templates (cloud independent

resources), 2) Web server (e.g., Apache HTTPd), 3) Application server, 4) Database server

and, 5) RUBBoS specific templates. As shown in the figure, we made very few changes

to HTTPd and Apache Tomcat; in contrast, we changed 10% of the total lines in the core

templates, which was mainly due to the differences in EC2. Likewise, moving from Emulab

to Open Cirrus involved a similar number of change, and our results are shown in the same

figure (Figure 19(a)).

To show the significance of the template changes on generated code, we created an ex-

periment specification (say a.xml) with 16 nodes and generated code for Emulab. Next, we

modified this base configuration for EC2, generated the code, and calculated the differences

between the two sets of code. To highlight these differences, we divided the generated code

into the same five categories as before. Our results are illustrated in Figure 20(a). As shown

in the figure, a small change in the template makes a huge difference in the generated code.

Likewise, we modified the a.xml to support Open Cirrus, generated the code, and compared

this set of generated code. As shown in Figure 20(a), the difference between Emulab and

Open Cirrus is similar to that of EC2.

3.9.5.2 Supporting New Applications

Here we show the number of template changes required to support two different applications,

(RUBiS and Cloudstone) once we have support for RUBBoS. Both RUBBoS and RUBiS

follow the same application architecture and deployment procedure whereas Cloudstone

requires a slightly different deployment topology.

Supporting RUBiS necessitated making the following modifications to the templates:

1) changed the web server load balancing URL, 2) built the RUBiS web application (in
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lieu of RUBBoS), 3) specified the dataset location, and 4) changed the workload executor.

Supporting RUBiS required creating three new templates for the client side. The number of

changes to the template to support three different clouds (Emulab, EC2 and Open Cirrus)

is shown in Figure 18(c). As shown in the figure, we made only a 30% change to the core

template (the original RUBBoS template) to integrate RuBiS into Expertus.

Supporting Cloudstone required more changes compared to that of RUBiS. In Cloud-

stone, the Web server became the key entity whereas in RUBBoS/RUBiS, this functioned

solely as a load balancer. Importantly, we were able to reuse most of the templates for

the application and database tier. Figure 19(b) provides detail on the number of template

lines we changed for this task. To facilitate analysis, we divided the template changes

into five categories to highlight the aforementioned changes. Due to the major difference

between RUBBoS and CloudStone, we had to create a set of new CloudStone templates,

which aggregate around 1600 templates lines. Nevertheless, more than 95% of those lines

originated from new XML and PHP configurations necessary for supporting CloudStone,

and the remainder were reused from existing templates. To show the significance of the

templates changes on the generated code, we created a specification with the same number

of nodes for both RUBBoS and CloudStone. We generated the resources for Emulab, and

we measured the differences, as shown in Figure 20(b). We observed a significant difference

in Web, App and Database tiers.

3.9.5.3 Supporting a New DB Middleware

To illustrate the flexibility of Expertus, we showed how much the template would need to

change to support the MySQL Cluster [23] database given that Expertus already had support

for C-JDBC [105] (with MySQL). Concretely, we calculated the number of template lines

that changed during the migration from C-JDBC to MySQL Cluster. This involved a few

template changes, and the creation of a few new templates to handle three node types for

MySQL Cluster.
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MySQL Cluster is implemented with a combination of three types of nodes (Manage-

ment, SQL and Data nodes) as compared to a single type in C-JDBC. In addition, C-JDBC

is easy to scale-out (i.e., to add more database nodes). To do so, one only needs to deploy

a new database server and copy the data dump. In contrast, scaling-out MySQL Cluster

requires a completely different procedure (i.e., database partitioning), and the database needs

to be repopulated using SQL statements. Additionally, C-JDBC has only one database

URL (i.e., the URL for C-JDBC), but MySQL Cluster contains multiple SQL nodes, which

requires each application server to be configured to communicate with each SQL node. As

a result of all these changes, moving from C-JDBC to MySQL Cluster involved changing

about 24% of the database templates. However, once the template is created, we can easily

scale up MySQL Cluster to any level with simple configuration changes.

Figure 19(c) illustrates the total number of template lines, the number of lines changed,

and the number of lines that changed in the generated code. To obtain additional insight, we

categorized the changes into four types: DB install, DB-configure, DB-other (start, stop,

reset), and core changes. We then changed the specification for C-JDBC (with 8 database

servers) to generate resources for Emulab cloud (using the same number of database servers).

We analyzed the generated code in the same four categories mentioned previously. Next, we

modified the experiment specification for MySQL Cluster and generated code for Emulab.

As expected, we observed huge differences in the generated code, and this difference became

non-trivial when we increased the number of nodes. Our results appear in Figure 20(c). As

shown in Figure 19(c) and Figure 20(c), a small template change created a huge difference

in the generated code.

3.9.6 Testing for Heterogeneous Data Formats

For the purpose of evaluating the robustness of the parser, the following file patterns were

tested: 1) one header, 2) multiple header rows with sequentially corresponding data, 3)

multiple header rows with non-sequential corresponding data, and 4) multiple header rows
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appearing randomly in the file (with data occurring non-sequentially). We used the collected

data, which matched these aforementioned patterns, and Table 3 outlines the observed

results. We varied the file patterns varied and the structure of the header. Based on the

selected sample, headers contained either one row or two rows. A header with one row, Only

Field Row Header, only contained data fields. Alternatively, a header with two rows, Record

& Field Row Header contained a row, which enumerated the data records, and another row,

which listed the corresponding data fields for each record. For this latter case, the numbers

of records and fields were varied from 1 to the original maximum values found in the sample:

8 and 16 respectively. If the headers were correctly matched to the applicable row of data,

the specified test received a PASS grade; otherwise, it received a FAIL grade.

Table 3: Evaluation Summary of Supported File Formats

Pattern Only Field Record & Field
Row Header Row Header

One header PASS PASS
Multiple header (sequentially data) PASS PASS
Multiple header (non-sequential data) PASS PASS
Multiple header (randomly headers) N/A FAIL

3.10 Related Work

Benchmarking is an essential approach used in both academia and industry to gain an under-

standing of system behavior, formulating and testing of hypotheses, configuring and tuning

systems, obtaining solution information, and resolving performance bottlenecks. However,

few efforts have been undertaken with the explicit purpose of building software tools for

large-scale testing of distributed applications to reduce the complexity of benchmarking

tasks and activities [65, 170, 185, 259, 260, 335]. The ZOO [259] has been designed to

support scientific experiments by providing an experiment management language and by

supporting automatic experiment execution and data exploration. Zenturio [260] on the

other hand, is an experiment management system for parameter-based studies, performance
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analysis and software testing for cluster and grid architectures.

DART [114] is an automated regression testing framework built on Emulab. It provides

a set of primitives for writing tests for distributed systems, and it also provides a run-time

mechanism to execute the tests in a fast and efficient manner. However, extending these tools

to other platforms is still a challenging problem. In our approach, we try to develop a generic

framework to facilitate large-scale experiment through automation. Compared to other

existing approaches, our solution provides good extensibility, flexibility and modularity by

smartly combining the most commonly used technologies.

Our project parallels several others using XML and XSLT for code generation. For

example, the SoftArch/MTE and Argo/MTE teams have also had favorable experiences using

XML + XSLT generators to ”glue” off-the-shelf applications together [95, 154]. Apache

Axis2 [296] uses an XSLT-based code generator for producing multi-language stubs and

skeletons from WSDL. The effort that most resembles our approach is Weevil [336], which

also focuses on workload generation and script creation. The creators of Weevil observed

some of the limitations with their approach, and they proposed four enhancements to explore

richer scenarios to obtain results with higher degrees of confidence [335]. To our knowledge,

these efforts have not explored the issues of extensibility, flexibility, or modularity that are

presented here in this chapter.

3.11 Summary

Expertus, our automated experiment management framework, has been developed to min-

imize human errors and maximize efficiency when evaluating computing infrastructures

experimentally. We have continuously used our experiences and research work to improve

the quality of the framework. In this chapter, we illustrate how our approach can be used

to employ several traditional benchmark applications to evaluate heterogeneous cloud plat-

forms. Our evaluation results, presented in this chapter, show the feasibility and usefulness

of our approach for cloud benchmarking. We have also identified several limitations of our
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tools and continue our research work to address them. Nonetheless, we believe our frame-

work and results clearly document the need for a novel, large-scale approach to experimental

analysis, like Expertus, because of cloud applications’ novel characteristics. Our tool can

significantly reduce the deployment and configuration cost of running n-tier benchmark

experiments in today’s production cloud environments, which indicates great promise for

the future.
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CHAPTER IV

FAULT TOLERANT DEPLOYMENT RUNTIME

Infrastructure-as-a-Service (IaaS) cloud environments provide users with the infrastructure

of a data center while relieving them of the burden and costs associated with its management

and maintenance. IaaS clouds provide an interface, so users can create, configure, and

control a set of virtual machines that typically host a composite of software services.

In the previous chapter, we presented an automated approach to large-scale experiment

management that helps to better understand the cloud prior to moving applications to cloud.

This work is concerned with the runtime state of composite services during and after their

deployment. We propose Activation Engine on Service Overlay Network (AESON)— a

deployment runtime, which uses information describing the relationships among the service

components, that automatically detects node (virtual machine) failures and eventually brings

the composite service to the desired deployment state. The deployment runtime uses the

generated scripts during both activation and recovery. We have designed AESON as a

decentralized peer-to-peer publish/subscribe system leveraging IBM’s Bulletin Board (BB),

a topic-based distributed shared memory service built on top of an overlay network.

4.1 Introduction

The emergence of cloud computing has enabled a new model of deployment and management

of applications and services. In particular, with the advent of Infrastructure-as-a-Service

(IaaS), many companies started relying on external cloud providers to host some of their

Web and enterprise applications. One of the motivations for the adoption of IaaS clouds is

to shift the burden of IT management to the cloud provider so that companies can focus on

their own core businesses.
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Typical applications deployed to IaaS clouds require complex software stacks compris-

ing a multitude of distributed, cross-dependent components such as load balancers, Web,

application, and database servers. At deployment time, all required software components

and middleware must be cross-configured to ensure the application works correctly, and

the entire infrastructure must also be configured to support non-functional requirements

such as performance, availability, and security. Not surprisingly, deploying and correctly

configuring such applications is a non-trivial, error-prone proposition. In order to mitigate

this problem, previous work has focused on modeling such applications to automate their

deployment and configuration in IaaS clouds ( [133, 169, 244]).

Given the massive scale of the data centers of IaaS providers, which comprise a large

number of heterogeneous hardware components, it comes as no surprise that hardware

failures happen often in these environments, not to mention human mistakes made during

data center operation, aggravating this problem. Failures in the IaaS data centers can translate

into partial or complete outages of the hosted applications, potentially causing the affected

companies to suffer revenue losses. Unfortunately, since the cloud provider lacks semantic

knowledge of the hosted applications and their topologies, it cannot be trusted to recover

them from failures, which may entail application-specific actions including restarting some

of its components and reconfiguring others. Hence, part of the management burden still lies

on the hosted application owners.

We advocate that the deployment of an application in an IaaS cloud must encompass a

self-contained solution to properly recover the application from failures should the hosting

cloud misbehave. Therefore, we advance the state-of-the-art by going beyond mere automa-

tion of the initial deployment and configuration; we propose AESON (Activation Engine on

Service Overlay Network), a deployment runtime that automatically detects node (virtual

machine) failures and eventually brings the application to the desired state by using a model

describing the relationships between the application components. AESON relies on the

application model to deploy the application as well as to recover it from failures that may
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happen during and after deployment. At AESON’s core is a decentralized peer-to-peer pub-

lish/subscribe system leveraging IBM’s Bulletin Board (BB) [85], a topic-based distributed

shared memory service built on top of an overlay network.

AESON is a lightweight and flexible runtime with negligible performance overhead,

capable of tolerating simultaneous failures. It can handle three types of failures: node crash,

node hang, and application component failures. AESON guarantees correctness (execute

actions in correct order) and eventual completeness (execute all actions) of the application

deployment and recovery. We have experimentally verified AESON’s completeness, correct-

ness, and single and multiple concurrent recoveries, as well as evaluated its performance

overhead.

The remainder of this chapter is structured as follows. We introduce key concepts and

formal definitions used throughout the chapter in Section 4.2, describe AESON’s approach

and architecture in Section 4.3, discuss key properties of AESON in Section 4.4, evaluate

its performance overhead in Section 4.5, summarize the related work in Section 4.6, and

provide a chapter summary in Section 4.7.

4.2 Background
4.2.1 Composite Creation and Activation

We define a composite as a collection of inter-dependent virtual machines (VMs) on which

a distributed application runs to provide a service. E.g., a composite for a Bulletin Board

application, such as RUBBoS [25], could comprise one Apache server, two Tomcat servers,

and one MySQL server.

A composite can be modeled through a virtual image construction tool [244] as follows

(see Figure 21). First, the user chooses a base virtual image and customizes it by adding the

software packages required by the application (we describe image creation in detail in [244]).

In Figure 21, three virtual images (Apache, Tomcat, and MySQL) are created. The next step

is to model the composite by specifying the images to use, the number of instances of each
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image, and the connections between the instances. In our sample, we depict a four-node

composite model using the previously created images. The resulting composite model can

later be used to deploy the composite, i.e., to instantiate and configure the VMs.

A composite model created by the above process contains operations (in the form

of scripts) to be run at deployment time to configure and cross-configure the software

components, as well as operations to be executed during failure recovery. The composite

model captures all cross-dependencies between the defined operations, as exemplified in

Figure 22.

We define activation as the fully automated process of starting the VMs for a given

composite and running the deploy-time operations to configure the application components

on those VMs so that the application can function properly. During the deployment of the

composite modeled in Figure 21, one Apache VM, two Tomcat VMs, and one MySQL VM

will be started. Next, the deploy-time operations executing on the VMs take care of, for

instance: configuring Apache to act as the load balancer for the two Tomcat VMs; deploying

the application logic to Tomcat; and configuring Tomcat to access the application database

on the MySQL VM. In the chapter, we refer to each individual operation performed on

deployment as an activation action, and to each operation performed during recovery (when

a failure occurs) as a recovery action.

4.2.2 Definitions and Terms

In this section we formally define some of the terms that are used in rest of the chapter.

Definition 1 Execution of an activation (or recovery) action is an atomic event that is either

completed successfully in time tmax or fails in one of two ways: a system error cause it to

terminate before tmax, or it is marked as a faulty execution after tmax (the user-specified value

for the maximum execution time) has elapsed.

Definition 2 Dependency d = {a1, V M1, a2, V M2} is a quadruple, where action a1 on V M1

should be executed only after action a2 on V M2 is completed.
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Figure 21: The Process of Creating Images and Modeling a Composite Service.

Definition 3 Sensitivity s = {r1, V M1, r2, V M2, l} is a quintuple, where recovery action r1

on V M1 should be executed if recovery action r2 on V M2 has been executed and local state

of V M1 has reached the level l.

Definition 4 Parameter propagation p = {a1, V M1, p1, a2, V M2, p2} is given by a sextuple,

where action a1 on V M1 takes a set of input parameters p1 from the set of output parameters

p2 produced by executing a2 on V M2.

Definition 5 Main recovery refers to recovering a failed node by either restarting or recre-

ating a virtual machine.

Definition 6 Secondary recovery refers to the execution of recovery actions on non-failed
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nodes, which is driven by the specified sensitivity of the nodes.

To illustrate the concepts discussed above, Figure 22 shows a snippet of the configuration

file of our sample composite’s Tomcat server. It defines two activation actions, namely

deploy and configure. The deploy action does not depend on any other activation actions;

it deploys the RUBBoS Web application to the Tomcat container. In contrast, Tomcat’s

configure action depends on MySQL’s configure, since the former consumes as an input

parameter the output parameter (MySQL URL) produced by the latter. Finally, the con-

figuration file defines a secondary recovery action reconfigure, stating that the Tomcat

server is sensitive to MySQL’s restart recovery action after Tomcat has reached the level

configure. In other words, on failure, if the MySQL VM is restarted, the Tomcat VMs will

run reconfigure, provided they have already run the configure operation.

<Activation> 

    <VirtualSystem id="rubbos_tomcat"> 

         

        <ProductActivation class="deploy"> 

            <Program cmdLine="true"  href="AS/deploy.sh"/> 

        </ProductActivation> 

 

        <ProductActivation class="configure"> 

            <Properties> 

                <Property key="mysqlurl"/> 

            </Properties> 

            <Program cmdLine="true"  href="AS/configure.sh"/> 

             <ProductDependency class="configure" vsId="rubbos_mysql"> 

                 <PropertyMapping sourceKey="mysqlurl" targetKey=" mysqlurl "/> 

            </ProductDependency> 

        </ProductActivation> 

 

        <ProductActivation class="reconfigure"> 

             <Sensitivity sensitivity="restart" vsId="rubbos_mysql" level=" configure "/> 

            <Program cmdLine="true" href="AS/configure.sh"/> 

        </ProductActivation> 

    </VirtualSystem> 

</Activation> 

Figure 22: A Snippet of the Configuration File for the Composite’s Tomcat Server.
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Figure 23: AESON: Monitoring and Failure Recovery.

4.3 AESON - Approach

AESON performs three key activities for a composite service: activation, monitoring, and

recovery.

It constantly monitors the status of the composite service during and after deployment.

In the event of a node failure, AESON detects the failure, determines an appropriate recovery

plan (a subset of the defined recovery actions), and executes the plan to bring the service

back to normal operation. This is illustrated in Figure 23, where the RUBBoS application

is (being) deployed and a failure occurred in the MySQL server (1). The monitor detects

the failure and notifies the recovery module; subsequently, the recovery module talks to the

cloud API to execute the required main recovery action (restart or recreate the failed VM) (2).

Next, by using the composite model, appropriate recovery actions are executed on non-failed

nodes (in the RUBBoS case, Tomcat1 and Tomcat2 are reconfigured) (3). As we will discuss

later in the chapter, the executed recovery plan is created in a distributed manner by using

the specified sensitivities (definition 3). After the recovery plan execution, the service will

be back to normal operation (if failed after deployment), or to a clean state (if failed during

deployment) from which AESON can take the service to the desired deployment state.
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4.3.1 System Architecture

Our primary goal when designing AESON was to embed in a composite a management

middleware responsible for recovering it from failures. To realize such self-contained

management, we designed AESON as a peer-to-peer (P2P) system. In this design, the

role of orchestrating deployment and recovery is distributed to all nodes; we leverage the

multi-node nature of composites to make AESON itself fault-tolerant: it runs on each node,

avoiding a single point of failure (see Figure 21). In contrast, a self-contained centralized

orchestration approach would exhibit a single point of failure.

For AESON, each composite node is a management peer. This P2P design naturally

captures the dynamic nature of cloud applications, where nodes (peers) can fail and join at

any time. AESON leverages the publish/subscribe communication mechanism implemented

by IBM’s BBSON [85], which offers an abstraction that further facilitates our design. Since

a publisher can publish even with no subscribers, the separation between communication

and execution of activation/recovery actions is clean and elegant.

As shown in Figure 24, AESON consists of four main components:

Configuration

Every action that AESON takes is based upon the composite model, which dictates

what to do during both normal activation and recovery.

Communication

Each peer communicates using the BBSON APIs for publishing and subscribing to

topics. AESON maintains one topic per node for activation and recovery orchestration,

plus two topics used for leader election, as explained later.

Failure and Recovery

Constant status monitoring is needed to detect failures and recover from them. AESON

uses a monitoring utility provided by BBSON.

71



Figure 24: AESON Architecture.

VM Control

Interactions with cloud APIs are needed to start, stop, create, re-create, and restart

VMs.

AESON comprises activation, recovery, and logging modules. The activation module

is responsible for tasks related to normal activation, such as: checking, validating, and en-

forcing dependencies; and execution of activation scripts and related parameter propagation.

The recovery module is used during failure recovery. It checks the sensitivity of nodes and

executes appropriate recovery actions, propagating parameters when recovery actions so

require. The logging module logs all local ongoing activities and their statuses, so that each

node that is restarted can know which of its actions it has completed and which ones it has

yet to perform.

4.3.2 Normal Activation

Normal activation refers to the process of deploying and configuring a composite service

in the absence of failures. For example, in the RUBBoS application case, at the end of

the normal activation an end-user should be able to access the Web portal, view and write

comments. At start-up, each node first joins the AESON group of the composite; only after

all nodes have joined the group does normal activation start. It ends after all activation
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actions are completed successfully, at which point the composite will have reached the

desired deployment state as specified by the composite model. In Section 4.4.1 we highlight

how normal activation eventually ends in AESON.

During normal activation, the nodes collaborate and coordinate with each other to reach

the desired state. Each node performs the following activities when it executes a normal

activation action. (1) It checks whether all dependencies are fulfilled; if not, it asks the status

of the missing dependencies by posting on its own topic and waits until all dependencies are

satisfied. (2) If all dependencies are satisfied, the node publishes on its topic indicating that

it is going to start the action. (3) The node executes the script associated with the action

by passing all the required input parameters. Those parameters may come from the model

or from another script on which this action depends (e.g., database URL may come from

database-config.sh). Next, the node extracts any output parameters (output produced by

the script), and publishes the status of the execution along with the output parameters. If

the execution completed as a failure, then it informs the group, which will terminate the

activation process across all nodes.

AESON checks the cross-dependencies of actions to guarantee a correct execution

order. If a dependency of an action to be run has not been satisfied yet, the dependent node

publishes on its topic a status request. Once the affected node sees such a request, it updates

the status of the requested action on its topic. Upon seeing a positive update, the node

waiting for it can then run the dependent action.

4.3.3 Fault Model

AESON is designed to support three types of failures: node crash, i.e., it cannot be accessed

through ICMP (ping) or through the cloud API; node hang, i.e., it cannot be accessed through

ICMP but can be accessed through the cloud API; and application component failure, i.e.,

the node can be accessed through both ICMP and Cloud API, but an application component

running on the node has either crashed or hung. Node crashes and hangs can be addressed by
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using two levels of application-independent monitoring; in contrast, to identify application

component failures we need application-specific monitoring. The current prototype is

implemented to monitor node crashes and hangs only; application-specific monitoring will

be addressed in future work.

We have leveraged BBSON to realize our fault model. Each node constantly keeps

sending and receiving heartbeats. In this model, a node is assumed to be failed if other nodes

do not receive heartbeats for a specified time period. Thus, when a VM hangs or crashes,

AESON detects it through BBSON. Subsequently, AESON waits for the specified time to

see whether the failure is intermittent or permanent; if it is permanent, AESON uses the

cloud API to take the required main recovery action and trigger the recovery plan. In our

fault model we use two types of operations (main recovery) to recover a failed VM: restart

and create. If the VM cannot be accessed through ICMP but can be accessed through the

cloud API, then the resolution is to restart it; otherwise, AESON creates a new VM. Also, if

the restart resolution does not solve the problem, AESON creates a new VM.

In a restarted VM, the recovery module runs only the activation actions that have not

been completed. It uses the logging module to find the completed actions. In contrast, in a

newly created VM, all normal activation actions will run. Notably, doing either restart or

create on the failed node has consequences on non-failed nodes as well. For example, if a

VM that runs the database is recreated, then the application server may need to restablish its

database connection. Hence, non-failed nodes may also need to perform some actions as

part of the recovery. In the next subsection we will detail the recovery process on non-failed

nodes.

4.3.4 Recovery

The recovery process is divided into two stages: main recovery (recovering the failed node,

e.g., MySQL server in Fig 23) and secondary recovery (recovering the non-failed nodes,

e.g., Tomcat1 and Tomcat2 in Fig 23). In main recovery, AESON decides the appropriate
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recovery action (i.e., restart or create) by retrieving the status of the failed node via the

cloud API. In contrast, secondary recovery is solely driven by the composite model. Given

the model and the failure, the nodes will be able to coordinate to execute the underlying

recovery plan.

The execution of secondary recovery takes place in a distributed and dynamic manner.

Concretely, each node decides the next needed recovery action based on the actions per-

formed by other nodes, its current local state, and its sensitivities defined in the model. In

our example of Figure 23, assume a recovery action is “restart the MySQL server.” If the

application server has not deployed the Web application yet, then no recovery action is

needed. However, if the application server has already created database connections, then it

needs to restablish them. In other words, the application server needs to perform a recovery

action due to the database failure.

When a node failure is detected during deployment, normal activation is paused on all

nodes until the recovery process is completed. However, if a node is in the middle of a

normal activation action, it completes the ongoing action and then abstains from executing

any further activation actions until the recovery has been completed.

During recovery, AESON has the notion of an elected “leader” (see Algorithm 1). A

leader is needed mainly to prevent two nodes from initiating the main recovery action (i.e.,

restarting or recreating the failed VM). The leader eventually finds the node failure and

initiates the main recovery action. Once the newly created or restarted VM is active, it

automatically joins the AESON group. If the VM is restarted, it already has the IP address

of all other nodes; thus, it uses one of those as the bootstrap node1. In contrast, if the VM is

recreated then a bootstrap node IP address is passed as a parameter to the VM.

When the failed node rejoins, the leader informs the group indicating that it has suc-

cessfully completed the main recovery. Consequently, if a node has sensitivity to the main

recovery action, then it will run the recovery action on that node, which drives recovery

1If a new node wants to join a P2P system, then it is required to know the address of at least one peer.
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action(s) on other nodes based on their sensitivities. The leader notifies the group when all

sensitivity-driven recovery actions have been executed. Once the recovery is completed,

normal activation is resumed (if the failure happened during deployment). One should note

that the newly rejoined node performs normal activation actions and does not perform any

recovery actions.

At any given time AESON can handle two types of recoveries: single recovery (i.e, only

one ongoing recovery) and multiple recoveries due to multiple failures, including failures

that happen during ongoing recoveries.

4.3.4.1 Single Recovery

In this case, the leader eventually finds the node failure and initiates the main recovery

action. Importantly, if the leader happens to be the failed node, then another member of the

group is elected the new leader; the newly elected leader initiates the main recovery action.

Once the main recovery action is completed, a chain reaction starts, where the execution

of one recovery action may trigger recovery actions on other nodes. Once all secondary

recovery actions are completed, the leader marks recovery as finished and notifies the group.

Upon receiving the recovery-completed notification, each node resumes normal activation,

if the failure happened during deployment, or else the system is ready.

4.3.4.2 Multiple Recoveries

It is conceivable that more than one node can fail simultaneously, or that a node can fail

during the recovery of another failure. Regardless of the way in which nodes fail, in AESON,

secondary recovery is performed only when all nodes are connected in the group. Hence,

the first task is to initiate the main recovery actions for the failed nodes. Once all nodes are

recovered (rejoined the group), AESON resumes/starts the secondary recoveries, from the

latest sequence to the first. In effect, multiple failures become a series of single recoveries,

where each single recovery corresponds to a separate recovery plan.

A major challenge in handling multiple recoveries is the leader failure in the middle of
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• Step1: Subscribe to the Election topic and publish process ID to the Election topic.

• Step2: Subscribe to the LeaderInfo topic.

• Step3: Wait until the membership of the leader is posted in LeaderInfo by a single process,
or a timeout expires.

• Step4: If the timeout expires before the leader info is available in LeaderInfo, elect a new
leader using the Election topic:

– Select the preferred process with minimum ID among the publishers to the Election
topic as the current leader.

– If not selected as a leader, go to Step3.

• Step5: When there are more than one leader published in the LeaderInfo and I am not the
leader with the minimal ID, then unpublished myself from LeaderInfo.

• Step6: When the leader process fails (its record disappears from the LeaderInfo topic):

– If I am the node with the preferred node with the minimal ID published in the
Election topic and post myself in the LeaderInfo.

– If not selected as a leader, go to Step3

Algorithm 1: Sketch of AESON’s Leader Election

ongoing recoveries. For example, assume multiple nodes failed and for some (not all) of

them the leader called the cloud API to start the main recovery; later, the leader crashes. As

mentioned earlier, in the event of the leader failure, a new leader will be elected using the

leader election algorithm (see Algorithm 1); however, the new leader needs to start from

where the previous leader has left off. This is possible with our approach because each peer

in the system has the same view on the current system state. Thus, when the leader fails, the

new leader can take over and guide the recovery of the system.

4.4 System States and Properties

In this section, we briefly outline AESON’s state transitions that happen during both normal

activation and recovery. We also present key properties that AESON supports.

Figures 25(a) and (b) represent, respectively, AESON’s global state transitions and local

state transitions. The global state is an aggregated view of the local states of all nodes. For
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the reader to better understand the figures, we define below some of the terms used:

• Initial: For the global case, it means that all nodes in the composite have joined the

group of peers but none has started normal activation. For the local case, the node in

question has joined the group.

• Desired: It refers to the completion of normal activation and/or recovery.

• Intermediate: It is a global state between initial and desired.

• Terminated: It is the state resulting from AESON’s aborting its operation due to an

unrecoverable failure or a permanent execution error exhibited by an activation or

recovery action.

• Dirty: It refers to the time during which an activation or recovery action is being

executed.

• Failed: AESON has detected a failure, but the corresponding recovery plan has not

started yet.

• Recovering: AESON is in the middle of a recovery plan execution.

In a nutshell, the local state transition graph shows the states each node can be in while

AESON performs its activities for activation and recovery, whereas the global state transition

graph summarizes the holistic view of the system, based on all local states.

4.4.1 System Properties

We now outline important properties supported by AESON, some of which are directly

inherited from BBSON [85].

Dependency Preservation: Let X and Y be activation actions on two VMs, V M1 and

V M2, respectively. If Y depends on X, then X finishes on V M1 before Y starts running on
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(a) Global State Transitions

(b) Local State Transitions

Figure 25: State Transition Diagram for Global and Local States.

V M2. AESON supports this because of two BBSON properties: eventual inclusion and

correctness.

Timeout Enforcement: Let the user-specified maximum time for an activation or

recovery action X be tmax. X’s execution will be either successfully completed in time t

(where t ≤ tmax), or marked as faulty otherwise.

Sensitivity Enforcement: Let P and Q be two recovery actions on two different VMs.

If P is sensitive to Q, then if Q is executed, P will be executed. P’s execution will start after

Q’s is completed.
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State-Change Enforcement: Let V M1 and V M2 be two different VMs. Suppose that

V M1 performs an action P; as a result, it will publish P’s execution completion notification

on its own topic. This notification will eventually reach V M2, since all VMs subscribe to the

each other’s topics and BBSON guarantees eventual consistency. Furthermore, in the case

of recovery, AESON implements a two-phase protocol to ensure that no state change is lost

(see Algorithm 2). With BBSON, given two consecutive posts to a topic, the subscribers may

only see the last one. During the execution of recovery plans, AESON’s implementation

relies on not missing any posts.

Based on the above properties and those guaranteed by BBSON, we can make the

following claims.

4.4.2 Claim 1: Eventual Activation Completeness

Under the assumption that each provided activation action behaves normally and finishes its

execution within time tmax, AESON guarantees that all activation actions of the composite

will complete.

Eventual activation completeness, as herein defined, comes as a corollary of state-change

enforcement. Since all nodes will be eventually notified of the execution progress of each

activation action, all actions will eventually complete, even the ones that depend on the

execution of others.

4.4.3 Claim 2: Correctness

As a corollary of dependency preservation and sensitivity enforcement, AESON guarantees

that activation and recovery actions will be executed in a correct order, as defined in the

composite model.

4.4.4 Claim 3: Eventual Single-Recovery Completeness

In the case of a single-node failure, AESON guarantees that the composite will be restored

to the desired state, under the following assumptions: (1) each provided recovery action
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• Step1: When a node Ni wants to enforce the state transition for action ai Ni posts a state
update message on Ni’s topic.

• Step2: All the connected nodes respond by posting ACKs on their topics.

• Step3: If Ni unable to receives ACKs from all the connected node, then it waits time t and
reposts the state update.

Algorithm 2: Two Phase Protocol for State Enforcement

behaves normally and finishes its execution within time tmax; and (2) the main recovery

action (VM restart or create) fixes the observed node failure.

Given BBSON’s eventual exclusion property, i.e., when a peer leaves the group all

nodes eventually notice it, all nodes will eventually perceive the node failure. Because of

state-change enforcement, all nodes will be notified of the initiation and completion of the

main recovery action. Similarly, all nodes will be notified of the execution progress of

each secondary recovery action. Therefore, all recovery actions will eventually complete,

regardless of their sensitivities (dependencies).

4.4.5 Claim 4: Eventual Multiple-Recovery Completeness

When facing simultaneous failures, or failures that happen during an ongoing recovery

plan, AESON guarantees that the composite will be restored to the desired state under the

following assumptions: (1) each provided recovery action behaves normally and finishes

its execution within time tmax; (2) the main recovery action (VM restart or create) fixes the

observed node failure; and (3) at least one of the nodes does not fail.

Each failure is eventually perceived due to BBSON’s eventual exclusion property. Be-

cause of state-change enforcement, all nodes will be notified of the initiation and completion

of each main recovery action. Similarly, all nodes will be notified of the execution progress

of each secondary recovery action, of all recovery plans. Therefore, all recovery actions will

eventually complete, regardless of their sensitivities (dependencies).
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(a) Throughput (b) Response Time

Figure 26: Performance Overhead of AESON (Throughput and Response Time Compari-
son).

4.5 Performance Evaluation

We have experimentally verified AESON’s completeness, correctness, and fault toler-

ance.However, due to the associated complexity of graphical representation, we have limited

our discussion only to the performance overhead of AESON, which follows.

In order to assess AESON’s performance overhead, we modeled and deployed a compos-

ite for the RUBBoS Bulletin Board benchmark application [25]. Our composite comprises

one Apache server, two Tomcat servers, and one MySQL server. Each individual application

component is assigned to a dedicated host and each host has a running instance of AESON.

As a baseline for comparison, we also manually deployed the RUBBoS composite, running

it without AESON. We varied the RUBBoS workload intensity by generating requests origi-

nating from 100 to 1000 users. We measured the client-perceived performance overhead

(response time and throughput) as well as the resource utilization at each server.

Each data point shown in the graphs of Figures 26 and 27 represents the average of 3

experiment runs. The observed average throughput and response time values are shown

in Figure 26(a) and Figure 26(b) respectively. As shown in Figure 26, AESON shows a

performance similar to the baseline case up to 700 users. From that point on, AESON shows

an average of 6% performance drop.
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We also analyzed the CPU utilization in the deployed servers (see Figure 27(a)) and

found that the observed performance degradation (for both baseline and AESON) is caused

by a high CPU utilization at the Tomcat servers. For low CPU utilization, both AESON and

the baseline have a negligible difference in throughput and response time; when the system

is highly utilized, AESON causes a small performance overhead (6%).

AESON is designed as a P2P system and at runtime each peer communicates by sending

application messages, which causes network overhead. Thus, to understand the overhead we

measured he number of network bytes sent and received at each server. The measured results

for network are shown in Figure 27(b) and Figure 27(c). The network overhead introduced

by AESON is negligible. Notably, after 800 users, the baseline approach exhibits higher

network traffic than AESON. This is due to the throughput drop we observed in Figure 26(a).

Since the throughput is higher for the baseline case, it processes more requests; hence, more

data packets.

In summary, in our experiments, AESON showed a small performance overhead.

4.6 Related Work

The issue of detecting failures and doing something to fix them has been around as computers,

for instance, this was first discussed in the concept of system diagnosis [257]. Some

approaches have focused on automatic restarting of components before or after they have

failed [91, 97]. There have also been some works in applying techniques from Markov

decision theory to dependability problems [124]. Yet, most studies try to recover a service

after deployment and focus on the mechanisms by which recovery can be automated and

made more efficient, rather than determining when and where the recovery actions should

be applied.

Yuanshun et al. studied the self-healing function from the consequence-oriented point

of view [121]. To fulfill the self healing requirements of efficiency, accuracy, and learning

ability, a hybrid tool that takes advantages from Multivariate Decision Diagram and Naïve
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(a) CPU Utilization (b) Network Traffic (Send)

(c) Network Traffic (Receive)

Figure 27: Performance Overhead of AESON (Comparison of CPU Utilization and Network
Traffic).

Bayes Classifier is proposed. Kaustubh et al. combined monitoring and recovery to realize

the benefits that cloud not have been obtained by using them in isolation, they also presented

two algorithms and evaluated those using fault injections [177]. A fine-grained technique

for surgically recovering faulty application components, without disturbing the rest of the

application is presented in [99]. Arun et al. proposed operating system virtualization

techniques to provide automatic and transparent mechanism for proactive FT for arbitrary

MPI applications [240].

A failure during a failure recovery process poses a tough problem because of the

complexities involved, importantly, AESON is designed to address this problem. Previously,

Naveed et al have also proposed an approach using the dependency model of the system to

address a similar problem [63]. One of the biggest advantages of ours compared to most of
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the approaches discussed above is we have designed AESON as a decenterlized P2P system

to prevent the single point of failure. In addition, AESON does not make any assumptions

about the application; second, it supports three types of faults; and third, AESON supports

fault detection and recovery during both deployment and after deployment.

4.7 Summary

We presented AESON, a model driven fault tolerant composite service activation runtime

to address dependability issues of enterprise applications that are deployed (and being

deployed) in IaaS clouds. AESON uses a composite model to automatically heal from

virtual machine failures during both deployment time and after deployment. To prevent the

single point of failure, AESON is designed as a P2P pub/sub system by leveraging IBM

Bulletin Board (a topic-based distributed shared memory service built on top of an overlay

network). We experimentally evaluated the correctness, completeness, and ability to recover

from single and multiple virtual machine failures. We analyzed AESON’s performance

overhead showing a negligible impact.
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CHAPTER V

VARIATIONS IN APPLICATION PERFORMANCE AND

SCALABILITY IN CLOUDS

Cloud computing is an emerging technology paradigm which provides the on-demand

delivering of software, platforms, and infrastructure as services. The increasing popularity

of clouds has driven the research community to find answers to a large variety of new

and challenging questions. We aim to answer some of these questions by experimentally

evaluating variances in performance and scalability when a multi-tier application is migrated

from a traditional datacenter environment to an Infrastructure-as-a-Service cloud (IaaS). For

our study, we used the automated infrastructure to automate the experiments for comparing

the performance and scalability of three different clouds: Amazon EC2, Open Cirrus, and

Emulab. We evaluated these three clouds using a representative multi-tier macro-benchmark

(RUBBoS) with two different types of client workloads–a mixture of browse only and

read/write. Interestingly, our experiment results show that a best-performing configuration

in one cloud can become the worst-performing configuration in another cloud. Subsequently,

we identified the bottleneck components, high context switch overhead and network driver

processing overhead, actually occurred at the system level. These overhead problems

were confirmed with finer granularity through micro-benchmark experiments that measure

component performance directly. We contextualize our empirical findings on the basis of

a profit model that illustrates their economical impact. Finally, we experimentally assess

practical solutions to address these problems by evaluating a few concrete, alternative

approaches.
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5.1 Introduction

The flexibility and scalability of commercial clouds make them an attractive application

migration target; yet, due to clouds associated complexity, running newly migrated appli-

cations efficiently in them is a difficult undertaking. For example, while clouds are good

candidates for acting as supplementary system platforms for occasional Internet applica-

tion (e.g., electronic commerce) overload, reports on modern clouds (e.g., Amazon EC2)

consistently mention how virtualization and network latency can affect overall system per-

formance [331, 332, 351]. Such issues are compounded by dependencies among system

components as requests are passed among the tiers, which are characteristic of real, multi-tier

applications. Despite some published best-practices for the popular cloud environments

(e.g., [130]), the tradeoff between guaranteed performance (e.g., bounded response time) and

economic efficiency (e.g., high utilization for sustained loads) remains a serious challenge

for mission-critical applications. The goal of this chapter is to highlight some of these

challenges as an intermediate step toward addressing them.

Here we analyze the performance and scalability characteristics when a multi-tier

application is migrated from a traditional datacenter (on premises datacenter) to a shared

Infrastructure-as-a-Service (IaaS) cloud. In our analysis, we use a representative multi-tier

macro-benchmark application (RUBBoS [25]) and perform a large-scale experimental study

on three testbeds. We use Emulab [21] (a more traditional compute cluster environment) as

our reference testbed and compare the performance and scalability characteristics to Open

Cirrus (a scientific research cloud with better isolation) and to Amazon EC2 [20] (a popular

commercial cloud).

Our experiments cover scale-out scenarios under varying hardware and software config-

urations. We use two different types of multi-tier workloads for our experiments, namely

a mixture of browse-only and read-write. These RUBBoS experiments are generated and

executed automatically using the automated framework discussed in Chapter 3. Concretely,

we use automated experiment management tools, which setup, execute, monitor, and analyze
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large-scale application deployment scenarios. To compare three different clouds fairly, we

looked at scalability characteristics (i.e., going up or down) rather than performance numbers

(e.g., throughput). In fact, we looked at both “horizontal scalability” (increasing the number

of compute nodes in the application) and “vertical scalability” (using different types of

compute nodes e.g., small, large). For the detailed analysis of non-trivial performance issues

and system bottlenecks, we use micro-benchmarks (both standard and custom) to zoom into

individual system components and confirm our initial hypotheses under a higher degree of

magnification.

In the course of our analysis, we found that configurations that work well in one cloud

may cause significant performance problems when deployed in a different cloud. In fact,

we found that the best-performing RUBBoS configuration in Emulab became the worst-

performing configuration in EC2 due to a combination of factors. These factors such as

network driver overhead and thread context-switching overhead were often subtle and not

directly controllable by users.

We contextualize our experimental results on the basis of a profit model that illustrates

their economic impacts. Furthermore, we provide a set of candidate solutions to overcome

the observed performance problems. Our solutions are bound by only making application

level modifications to overcome the issues induced by cloud platforms. In our study, we

focus on a very small fraction of the problem; yet, we observe a set of interesting phenomena.

More generally, this study shows that clouds are a relatively immature technology, and more

significant experimental analysis is needed before public clouds can become truly suitable

for mission-critical applications.

The remainder of this chapter is structured as follows. Section 5.2 provides an overview

of the benchmark application, the experimental setup, and the tools used during the exper-

iments. In Section 5.3 we analyze browse-only performance and scalability for the three

platforms, and Section 5.4 presents read-write mix results. In Section 5.4.4, we discuss

the performance impact associated with multi-threading. Section 5.4.5 provides results on
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Table 4: Hardware Configurations in Three Clouds.
Platform Type Processor Memory Arch

Amazon EC2 Small 1 EC2 Unit 1.7 GB 32-bit
Large 4 EC2 Units 7.5 GB 64-bit
Ex Large 8 EC2 Units 15 GB 64-bit
Cluster 33.5 EC2 Units 23 GB 64-bit

Emulab PC3000 3GHz 2 GB 64-bit
Open Cirrus X3210 3.00GHz (Quad) 4 GB 64-bit

network overhead, and in Section 5.5 we analyze the economic benefits of different hardware

configurations. Related work is summarized in Section 5.6, and Section 5.7 summaries the

chapter.

5.2 Overview of Experiments

The experiments discussed in this chapter were run in three testbeds (i.e., Emulab, EC2 and

Open Cirrus). Table 4 shows the server types we used in three platforms (EC2 Compute Unit

provides the equivalent CPU capacity of a 1.0–1.2 GHz 2007 Xeon processor). We used

RUBBoS benchmark application (see Appendix A.1) for our study and we used MySQL

Cluster as the database clustering middleware (see Appendix A.3). We evaluated both

horizontal and vertical scalability on EC2, in contrast we limited our analysis only to

horizontal scalability in Emulab and Open Cirrus. By horizontal scalability we mean the

increase of the number of nodes in the application (e.g., from 12 large instances to 16

large instances), and by vertical scalability we mean the same number of nodes but with

better hardware settings (e.g., from 12 large instances to 12 ex-large instances). The nodes

were connected over 1GB Ethernet in Emulab, Infiniband in Open Cirrus, and for EC2 the

connection types were not exposed. To focus this study on the differences among three

platforms, we allocated each server to a dedicated node (either to a virtual or physical).

Specifically, the sharing of physical resources (e.g., CPU) in a node is among the threads

within each server, not between servers. For each concrete hardware configuration we
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observed the most appropriate software configuration (e.g., number of threads and thread

pool sizes) by using the approach mentioned in our previous work [334].

Each of our macro-benchmark experiment trials consisted of three periods: 8-minute

ramp-up, a 12-minute run period, and a 30-second ramp-down. Performance measurements

(e.g., CPU or network bandwidth utilization) were taken during the Run period using

lightweight system monitoring utilities (e.g., dstat and sar) with a granularity of one

second.

While the macro-benchmark data gave us the interesting bottleneck phenomena described

here, we often need more detailed data to confirm concrete hypotheses on the non-trivial

causes of such phenomena. We have used both existing tools and custom tools to obtain

such micro scale data. We employed a number of hardware monitoring and soft resource

monitoring tools such as LMBench [28] and NetPipe [18].

Table 5 provides a high level summary of a subset of different experiments performed

using RUBBoS application in three cloud platforms. In the table, experiment refer to an exe-

cution of particular workload against a combination of hardware and software configurations.

Typically, an execution in our domain takes one hour which is the aggregated duration of:

reset time, start time, sleeping time, ramp-up time, running time, ramp-down time, stop time,

and data copy time. Hence, as an example in Eumlab we have conducted approximately

8,000 hours of experiments, however, amount of engineering hours spent is significantly

less due to test automation. In the table, nodes refer to the total number of machines we

have used during our experiments. We calculated the number of nodes by multiplying

number of experiments by the number of nodes for each experiment. Configurations mean

the number of different software and hardware configurations that have been used by our

experiments. Finally, the number of data points collected gives an illustration of the amount

of configuration we have evaluated and amount of data we have collected.
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Table 5: Number of Different Experiments used for the Study

Type Emulab EC2 Open Cirrus
Experiments 8124 1436 430
Nodes 95682 25848 4480
Configurations 342 86 23
Data points 3,210.6M 672.2M 2.3M

5.2.1 Notation

We use a notation #A-#T-#M-#D-ppp to represent each concrete configuration. #A denotes

the no. of Web servers, #T for no. of Tomcat servers, #M for no. of SQL nodes and #D for

no. of Data nodes in the experiment. A short string (ppp) denotes the platform (ec2 for EC2,

em for Emulab, and oc for Open Cirrus). For example, Figure 61 shows a 1-2-2-4-em

configuration with 1 Web server, 2 Tomcat servers, 2 SQL nodes and 4 data nodes in Emulab.

In EC2 we add the instance (node) type at the end (small, large, exlarge, or cluster).

5.3 Browse-Only Comparison

In this section we present our experimental results using browse-only workload on three

cloud platforms with various hardware configurations. In Section 5.3.1 we present perfor-

mance and scalability characteristics on reference platforms (i.e., Emulab) and compare it

with Open Cirrus, and Section 5.3.2 provides scalability characteristics and performance

issues on EC2.

5.3.1 Performance on Reference Platforms

To compare and contrast the performance complications of commercial clouds against other

alternative platforms it is essential to have a good reference, Emulab and Open Cirrus were

used for this purpose. Methodically, we start with the smallest possible configuration and

then gradually scale up based on the observed results.

More precisely, we started on Emulab with 1-2-2-2-em configuration (the smallest

91



(a) Emulab (b) Open Cirrus

(c) Amazon EC2

Figure 28: Horizontal Scalability: Read Only Throughput Analysis for three Clouds [Higher
the better].

hardware configuration which can withstand 1000 workload); the configuration consists

of two SQL nodes and two Data nodes, and we performed experiments from 1000 to

10,000 workloads (i.e., concurrent clients) with 1000 workload increments. As shown

in Figure 28(a), for 1-2-2-2-em configuration, throughput saturated at 3000 workloads.

Detailed analysis of monitoring data shows that SQL node CPU utilization had become

the bottleneck (see Figure 30(a)). To resolve it, we scale-out our experiment and introduce

two additional Data nodes (1-2-2-4-em configuration) by partitioning the database into

two groups. Running experiments with 4 Data nodes and 2 SQL nodes, we observed

that knee point (i.e., throughput saturation point) shifted from workload of 3000 to 5000.

Next, we increased the number of SQL nodes to 4 to get 1-2-4-4-em configuration,

likewise we continued this horizontal scalability process until we resolved the hardware
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(a) Emulab (b) Open Currus

(c) Amazon EC2

Figure 29: Horizontal Scalability: Read Only Response Time Analysis for three Clouds
[Lower the better].

bottlenecks. Through our analysis we found 1-4-16-16-em as the smallest configuration

which can sustain our workload without system hardware resources being bottlenecked. Yet,

1-4-16-16-em configuration shows software resource saturation, readers who are more

interested in reading about software resource saturation refer to our previous work [334].

In summary, as shown in Figure 28(a) representative benchmark application scales well in

Emulab.

In a web facing application, throughput is a simple indicator on how much workload that

the application can handle. However, to understand actual user experiences it is necessary to

analyze the response time characteristics (i.e., latency). Here we present end-to-end average

response time values and our results are illustrated in Figure 29(a). As shown in the figure,

1-4-16-16-em configuration has the lowest response time among all the configurations. It
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(a) Tomcat CPU (b) SQL CPU

(c) Data node CPU

Figure 30: Average CPU Utilization for 1-2-2-2 and 1-2-2-4 Configurations for Emulab
and EC2.

gives very low average response time until the workload of 6000 and then started to increase,

this behavior coincide with the observed throughput values (see Figure 28(a)). As shown in

the figure other two configurations show sudden response time increase after workload of

2000 and 3000 respectively.

To better explain the observed performance characteristics on Emulab we have provided

CPU utilizations for 1-2-2-2-em and 1-2-2-4-em configurations, Figure 30(a), 30(b)

and 30(c) illustrate the CPU utilization in the Tomcat Server, the SQL nodes and the Data

nodes respectively. As shown in the Figure 30(b), for both configurations SQL node CPU

has become the bottleneck, and as a result we have a flat curve for throughput values (see

Figure 28(a)). We extended bottlenecks analysis to other configurations and a high level

summary of our results are shown in Figure 31(a). The figure shows each configuration and
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observed average CPU utilization when system is saturated. The highlighted cells represent

the bottlenecked servers for the configuration shown in x-axis.

We used the same procedures as in Emulab and performed a similar set of experiments

on Open Cirrus cloud. As shown in Table 4 we used much powerful machine in Open

Cirrus, thus as expected, we achieved comparatively higher throughput values, and more

importantly, Open Cirrus also shows a good scalability. The observed throughput and

response time values are illustrated in Figure 28(b) and Figure 29(b) respectively. As shown

in the figure Open Cirrus also shows a good scalability and in fact it shows very low average

response time values. It was mainly due to the better hardware we used for Open Cirrus and

the Ethernet connectivity. In summary, both Emulab and Open Cirrus show good scalability

characteristics, where observed average throughputs go up as number of nodes increase.

Notably, in Open Cirrus we observed very low resource utilization (e.g., less than 30% CPU

utilization), thus, we have omitted utilization graphs.

DataNode 80 70 94 85 80 94 88

MySQL 95 100 95 80 95 87 60

Tomcat 75 60 92 100 50 65 70

1-2-2-2 1-2-2-4 1-2-4-4 1-2-8-8 1-4-4-8 1-4-8-8 1-4-16-16

(a) Read Only

DataNode 98 95 96 88 94 82 60

MySQL 80 88 75 50 70 40 32

Tomcat 40 50 45 40 25 25 25

1-2-2-2 1-2-2-4 1-2-4-4 1-2-8-8 1-4-4-8 1-4-8-8 1-4-16-16

(b) Read Write

Figure 31: CPU Bottleneck Map for Emulab:(Each cell represents average CPU utiliza-
tion when system is saturated and highlighted cells represent bottlenecked tier for the
configuration specified in x-axis)
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5.3.2 Amazon EC2 Performance

5.3.2.1 Horizontal Scale-Out (same nodes)

We used the same methodology as in Section 5.3.1, and performed a similar set of exper-

iments in EC2. We kept as many experimental parameters untouched as possible (except

platform specific parameters). Our initial expectation was to achieve better or similar results

to those from Emulab since we used better hardware in EC2. Surprisingly, our assumptions

were shown to be wrong when we observed quite different behavior in EC2. As shown in

Figure 28(a) and (b) benchmark application scales well on both Emulab and Open Cirrus,

increasing the number of Data nodes gives better performance; however, in EC2 increasing

the number of Data nodes reduces the performance. As shown in Figure 28(c) scaling from

1-2-2-2-large to 1-2-2-4-large significantly reduced the throughput and moving from

1-2-2-4-large to 1-2-2-8-large further reduces the throughput. More specifically, the

scalable application on Emulab and Open Cirrus shows poor scalability on EC2.

The observed response time values are shown in Figure 29(b), as shown in the figure after

workload of 2000 users response time increase significantly. In addition, 1-2-2-2-large

configuration shows the lowest response time values and 1-2-2-8-large shows highest

response time values amongst three configurations. These response time values and their

behavior support the observed throughout characteristics where 1-2-2-2-large shows

the best performance among the three. In fact, as compared to Emulab’s response time

values (Figure 29(a)) EC2 shows much higher response times(around two times higher). As

mentioned below, Emulab’s response time behavior was able to explain using the obvious

resource monitoring data (e.g., CPU), in contrast, EC2 shows very low resource utilizations

(far below saturation), yet considerably less average throughput values.

Our analysis of system monitoring data in EC2 shows interesting results. Figure 30(a), 30(b)

and 30(c) illustrate CPU utilization for both Emulab and EC2. As we have already discussed,

in Emulab the key limiting factor was CPU consumption (mostly saturated). As shown in

Figure 31, horizontal scalability (both up and down) causes a CPU bottleneck shift from
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one tier to another or a concurrent bottleneck [217] phenomenon in several tiers (see Fig-

ure 31(a)), however in EC2 we observed a completely different utilization pattern and found

that all the server types have very low CPU utilization, yet significantly less performance

compared to other two clouds.

(a) Emulab’s Tomcat (b) Emulab’s SQL (c) Emulab’s Data Node

(d) EC2’s Tomcat (e) EC2’s SQL (f) EC2’s Data Node

Figure 32: CPU Utilization for 4-4 Configuration.

In general, multi-tier workloads are bursty, hence, average value analysis could possibly

hide important information. Our own experiences show the significance of time series analy-

sis to better understand such complex systems and to observe any abnormal characteristics.

As an illustration, we have presented kernel density analysis for resource utilization data in

Figure 32. When drawing density graphs, we looked at the utilization distribution for each

individual workload and then combined all the workloads to get the 3D figure. As shown in

the figure, for Emulab experiments, most servers show high saturation near 90-95%, thus, it

confirms for Emulab CPU saturation caused the observed performance issues. In contrast,

kernel density analysis for EC2 shows similar distribution but with mean CPU saturation as

30%.
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5.3.2.2 Vertical Scalability (different nodes)

Here we present our analysis results for vertical scalability on EC2. We started our analysis

with 1-2-2-2-small on small instances (similar hardware configurations as the PC3000s

on Emulab) and observed comparatively low performance (as compared to Emulab’s hori-

zontal scalability), our results are shown in Figure 33. Node level data analysis revealed

that for small instances, the Data node showed a large number disk access compared to

that of large instances. There are two main reasons causing this issue: first, as Guohui

et al. [332] described, in EC2 small instances always get 40% to 50% of the physical

CPU sharing (i.e., they get only 40-50% CPU cycles from what they supposed to get), and

second, the differences in memory configurations (Table 4). According to MySQL cluster

documentation [23], small instances does not have sufficent memory to keep the complete

RUBBoS database in memory, thus, it needs to use virtual memory a lot while processing

the request.

Figure 33: Throughput: EC2 Vertical Scalability

As a piratical solution to the above problem, we moved our experiments to large instances

and followed the same procedure; likewise, we continued our process for the other EC2

instance types. As shown in Figure 33, EC2 shows good vertical scalability as compared

to its horizontal scalability. As illustrated in the figure we achieved the highest throughput

with cluster instances (cluster instances are the most powerful instances available at the time
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we perform our experiments). Though, the figure shows better vertical scalability our profit

analysis gives a different perspective(see section 5.5).

5.4 Read-Write Comparison

In this section we present our experiment results on read-write mix workload. In our analysis

we use the same set of hardware configurations with the same software configuration settings.

The main difference is the interaction types, in browse only scenarios we had 100% reads

(with zero writes), in contrast, here we use 10% writes with 90% reads. In addition, browse

only scanario uses only half of the interation types and read-write uses all the 24 interation

types. As compared to browse only scenarios, a write request adds less work on application

server and consists of at least one database update operation.

(a) Emulab (b) EC2-Horizontal

(c) EC2-Vertical

Figure 34: Throughput: Read-Write Scalability Analysis [Higher the better]
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(a) Emulab (b) EC2-Horizontal

(c) EC2-Vertical

Figure 35: Average Response Time: Read-Write Scalability Analysis [Lower the better]

5.4.1 Performance on Reference Platform

We used the same approach as in browse-only scenario (Section 5.3.1) and started with the

smallest configuration and gradually increase the number of nodes in the configurations. As

compared to browse-only, we observed relatively high average throughput values; in fact this

is expected since we have mixture of reads and writes. Our results show that 1-2-2-2-em

and 1-2-2-4-em configurations started to saturate at the workload of 4000. The observed

throughput results are shown in Figure 34(a), in addition, calculated CPU utilization data

for those configurations are shown in Figure 36. As sown in CPU utilization data, those two

configurations have saturated mainly due to the Data node CPU saturation.

As in Section 5.3.1 we increased the number of Data nodes and executed a same set

of experiments, and observed results are shown in Figure 34(a). As shown in the figure
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(a) Tomcat CPU (b) SQL CPU

(c) Data node CPU

Figure 36: Emulab: Read-Write Average CPU Utilization.

1-2-4-4-em configuration gave the best performance among all the configurations, yet it

saturated at workload of 7000. Resource utilization data analysis shows that it was mainly

due to CPU saturation in Data node. We added more nodes and got the 1-2-2-8-em, yet

it shows relatively low performance, in fact we observed SQL server to be the bottleneck

for 1-2-2-8-em configuration. Likewise, we evaluated many different configurations and

observed throughput and response time values are shown in Figure 34(a) and Figure 35(a)

respectively. The observed CPU utilization data are shown in Figure 36, and a high level

view of bottlenecks and their shifting patterns are shown in Figure 31(b).

We also extended our analysis to average response time (at the client) for all the configu-

rations discussed above. As we expected we observed relatively low average response time

values as compared to that of browse only scenarios. The observed response time values

are shown in Figure 35(a), as shown in the figure 1-2-4-4-em gave the best response time
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values among all the configurations. In fact, our browse only data analysis shows that the

exact same configuration to have better performance.

In summary, if the application consists of browse-only workload, then having many data

nodes gives better performance, however, in read-write mix workload having more data

nodes gives poor performance. Thus, to get better performance in average cases i.e., mixture

of reads and writes one can use less number of data nodes.

5.4.2 Amazon EC2 - Horizontal Scalability

We used the same approach and extended our analysis to Amazon EC2, first we evalu-

ated horizontal scalability. As compared to browse-only workloads, here we observed

different behavior for 1-2-2-4-large and 1-2-2-2-large where both showed similar

performance. In the case of browse only scenario, increasing number of Data nodes from 2

to 4 caused to reduce throughput significantly; however for read-write mix the behavior was

different. Yet, increasing Data nodes further more causes to have a performance degradation.

The observed throughput values are shown in Figure 34(b) and corresponding response

time values are shown in Figure 35(b). As we discussed in browse-only scenarios, obvious

resource utilization data (e.g., CPU) analysis failed to provide any useful information to find

the performance issues, we observed the same phenomena in read-write workloads as well.

The observed CPU utilization data for Tomcat, SQL and Data nodes are shown in Figure 37.

5.4.3 Amazon EC2 - Vertical Scalability

In the vertical scalability analysis we used similar configuration which we used for browse-

only analysis and evaluated the scalability characteristics for different node types. The

observed results are shown in Figure 34(c), as illustrated in the figure, maximum average

throughput increased when moving from small instances to cluster instances. In particularly,

we observed huge improvements from ex-large instances to cluster instances. Which is in

fact two times higher than the values we observed for ex-large. The observed response time

values are shown in Figure 35(c), as illustrated in the figure small instances shows higher
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(a) Tomcat CPU (b) SQL CPU

(c) Data node CPU

Figure 37: Amazon EC2: Read-Write Average CPU Utilization.

response time while cluster instances show very low response time. In fact, with cluster

instances we were able to meet Emulab’s performance numbers.

In summary, the RUBBoS benchmark shows better horizontal scalability on Emulab and

Open Cirrus, better vertical scalability on EC2, and poor horizontal scalability on EC2. As

illustrated in Figure 30(a), (b) and (c), the EC2 performance degradation was not caused by

CPU utilization. For our experiments, we collected over 24 types of monitoring data (e.g.,

CPU, Memory, Disk read/write, network read/write, context switches, interrupts), and thus,

we extended our analysis on other monitoring data and micro-benchmarks. We observed

two key issues: overhead associated with concurrent threads (e.g., context switching and

scheduling overhead) and network driver overhead (e.g., latency and queuing delays).
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5.4.4 Concurrent-threading Costs in EC2

In this section, we provide the related analysis for EC2 by using the RUBBoS workload

generator (a multi-thread workload driver) as a case study. Section 5.4.4.1 quantifies the

context switching overhead, and Section 5.4.4.2 shows how to redesign the application to

guard against the multi-threading issue.

(a) Request-Response Flow (b) RTT Comparison

(c) Throughput Comparison

Figure 38: Analysis for Multi-Threading Issues: (a) RUBBoS Request Path; (b) RTT com-
parison at Apache and Client; (c) Throughput—before and after reducing thread overhead.

Complex dependencies of multi-tier applications complicate the performance analysis

process. As previously discussed (Section 5.3.2), the RUBBoS application saturated in

EC2 due to effects of initially hidden resources utilization. Consequently, we extended

our systematic analysis with micro benchmarks. Subsequently, we observed an interesting

phenomenon when using multi-threading applications on EC2. To illustrate, we selected

a RUBBoS client workload generator and measured the round trip time (RTT) for each
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request for different workloads. We observed a sudden increase in RTT when the workload

increases. Typically, these types of observations lead to assumptions of back-end server

saturation; despite this, we observed the issue to be at the workload generator.

A typical request-response flow for a RUBBoS is shown in Figure 38(a). For each

request, the client sees
∑6

i=1 ti (say RTT1) as the RTT, where as RTT at Apache is
∑5

i=2 ti (say

RTT2). We recorded RTT for each individual request at the workload generator (i.e., RTT1)

and the Apache server (i.e., RTT2). Next, we used two log files and calculated average

RTT separately. The results are shown in Figure 38(b). In the figure, the original client

represents the response time recorded at client and web server represents the response time

recorded at Apache. As shown in the figure, for higher workloads, the calculated RTT at the

client differs significantly from that of Apache. In contrast, for lower workloads, the RTT

difference is negligible (e.g., workloads less than 3000). Figure 38(b) illustrates how the

increase of workloads causes the recording of larger RTTs at the client.

5.4.4.1 Context Switching Overhead

To further analyze the observed phenomenon we used LMbench [28]. We started with the

default settings and performed all supported tests on Emulab and EC2. We found surprising

results for context switching overhead. It recorded the overhead in EC2 to be twice as high

as in Emulab. Figure 39(a) shows the time for a single switch when varying the number

of threads. As generally accepted, measuring context switching time with high accuracy

is a difficult task. Nevertheless, analysis shows that for a few number of threads (< 40)

EC2 takes less time for a switch compared to Emulab; in contrast, with a greater number of

threads, EC2 takes considerably longer time.

In RUBBoS, each client gets a large number of threads which is in fact equal to the

workload; therefore, context switching becomes a key issue. To illustrate the significance,

we calculated the average number of context switches when running the benchmark. Fig-

ure 39(b) shows the calculated averages for both EC2 and Emulab. As shown in the figure,
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(a) Time per switch (LMBench) (b) Context switches per second

(c) Fraction of CPU spent on switching

Figure 39: Comparative Context Switching Analysis for Emulab and EC2.

Emulab has a significantly higher number of context switches compared to that of EC2.

Moreover, combining Figure 26(a), Figure 26(c) and Figure 39(b) we can observe a positive

correlation between the throughput and the number of context switches.

To analyze context switching overhead from the resource perspective, we calculated the

overhead as CPU percentages. In our experiments we measured the number of switches at 1s

granularity (see Figure 39(b)), using LMBench we approximated the time for a single context

switch (against no. of threads), and finally combining the two values we estimated the

context switching overhead for an experiment cycle. Figure 39(c) illustrates the calculated

overhead. As shown in the figure, for the workloads which are higher than 3000, context

switching uses 10% of the CPU resources for both Emulab and EC2. Note that the overhead

is much more significant in EC2 because the number of context switches and the throughput

are significantly lower while having similar overhead.
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5.4.4.2 Proposed Candidate Approach

The most trivial solution in commercial clouds is to rent more nodes so that each gets

less users (threads). This helps to reduce the overhead caused by concurrent threads (see

Section 5.4.4.1). While this solution is acceptable for occasional users that run an application

only a few times, for long term users who run their applications often or continuously, this

may not be the most economical.

On the other hand, it is possible to redesign the application to mitigate complexities

associated with clouds. For example, we can reduce the number of threads and increase the

amount of work done by a single thread. We in fact followed this approach and modified the

RUBBoS workload generator to generate 7 times more messages (with the same number of

threads) by reducing the average client think time (e.g., reducing think time from 7s to 1s).

This solution could deviate from the actual user behavior, yet it helps us to overcome the

multi-threading issues.

Our solution shows a significant improvement, both in RTT (Figure 38(b)) and through-

put (Figure 38(c)). As shown in the figure, with our solution we were able to bring RTT1

much closer to RTT2. In addition, as shown in Figure 38(c) our solution produces a signif-

icantly higher throughput. We confirmed our hypothesis by calculating the average RTT

using Apache logs and the client logs. With the thread reduction, the recorded response time

at client is much closer to that of the Apache. The remaining difference can be explained

with the queuing effects that naturally take place between the two tiers. While this solution

is practical in many cases, it depends on the nature of the application whether the desired

concurrency level can still be reached in this manner.

5.4.5 Network Driver Overhead

We increased the number of client nodes to 10 and resolved the client issue, and subsequently

shifted the bottleneck to the back-end. Section 5.4.5.1 shows the network traffic increase

through database partitioning and subsequent network transmission overhead on EC2. In
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Section 5.4.5.2 we provide our solutions to achieve higher performance in public clouds.

(a) Network Traffic Recored
at the Data Node

(b) Data Node Sending Queue Length

Figure 40: Comparison of Network Driver Overhead.

(a) Ping RTT without load
(EC2 is lower)

(b) Ping RTT with load (Em-
ulab is lower)

Figure 41: Analysis of Network Driver Overhead and Characteristics for Emulab and EC2.

5.4.5.1 Analysis of Network Driver Overhead

We extended our analysis to the network layer, and our results revealed two important

findings. First, increasing the number of Data nodes (partitioning the database) caused a

significant increase in the network traffic generated at the Data nodes (see Figure 40 (a)).

Moving from 2 Data nodes to 4 Data nodes doubles the network traffic. Second, transmission

108



queue sizes for EC2 were significantly higher compared to that of Emulab (see Figure 40

(b)). Nevertheless, for the 1-2-2-2 configuration, both Emulab and EC2 shows similar

network traffic patterns and also somewhat similar throughput values; however, 1-2-2-4

shows different behaviors both in network traffic and throughput (Figure 26(a) and (c)).

We selected 1-2-2-4-em and 1-2-2-4-ec2 and used a number of network analysis

tools to observe network behavior. Through our data, we observed a interesting behavior

in the Data nodes. As shown in Figure 40(b), we observed that the sending queue size (at

the network layer) of the Data node in EC2 is much higher than in Emulab. In contrast,

the receiving sides of both EC2 and Emulab show similar characteristic, and both have

negligible queue sizes.

In a RUBBoS application with MySQL Cluster, the Data node is the first server which

generates a large amount of data in the request propagation pipeline. As shown in Fig-

ure 38(a), initially, users send an HTTP request to Apache HTTPd, and then Apache forwards

the request to Tomcat. Tomcat processes the request and generates SQL statements that are

sent to the SQL servers. The SQL servers send the query to the Data nodes, which then

processes these queries and generates results. In this process, especially in the read-only

scenario, the message sizes of the generated output are significantly higher than the incoming

message (SQL query vs. a result set). Therefore, when the message rate is high, the Data

node generates more data; however, when there is a problem at the transmitting side, the

Data node cannot send the data as required, which then results in a long queue at the network

buffers. Next, in the other tiers (e.g., Tomcat and Apache HTTPd), the connections start

to wait as well. Therefore, the overall message transmission rate reduces. Eventually this

behavior affects the entire system performance.

To further analyze observed hypothesis, we used NetPIPE [18] and measured the achiev-

able bandwidth. NetPIPE is a protocol-independent performance tool that visually represents

the network performance under a variety of conditions. Our results show that the two sys-

tems have similar bandwidth, thus, confirming that the sending buffer issue is not caused
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by network bandwidth. We then used the Unix Ping (ICMP) program and measured the

RTT between the two Data nodes. First, we evaluated ping RTT without generating any

application load (i.e., without generating any RUBBoS client requests), thus, making ping

program the only process running on both the nodes. Second, we evaluated RTT while gen-

erating a representative application load (i.e., while running RUBBoS). We observed a very

interesting behavior. When there is no load on the node, EC2 shows significantly less RTT

compared (approximately 20 times less) to Emulab (see Figure 41(a)). In contrast, when

running with the RUBBoS workload, EC2 shows very large RTT that varies between 0.4 ms

to 30ms (see Figure 41(b)), but Emulab shows similar results for both cases (average of 0.2

ms). The first scenario simply means that the two nodes have good network connectivity as

compared to that of Emulab; however, in EC2 when the load on the network driver increases,

RTT goes up significantly whereas Emulab maintains the same RTT regardless of the load.

This provides additional evidence to confirm network driver overhead in EC2 and potential

performance degradation.

5.4.5.2 Proposed Candidate Approach

As we discussed in Section 5.4.5, due to this network overhead, the scalable software system

is unable to scale in EC2. In general, MySQL Cluster is a sophisticated but heavily used

database middleware in industry. It has a number of advantages including availability, relia-

bility, and scalability compared to other alternatives. Unfortunately, due to higher network

traffic generation of MySQL cluster, the complete application shows poor scalability.

To illustrate the significance and to provide an alternate solution, we used the C-

JDBC [105] middleware and performed the same set of experiments as in Section 5.3.1 on

EC2. The observed throughput values are shown in Figure 42(a). As shown in the figure

C-JDBC shows very good scalability and achieves very high throughput. Next, we measured

the amount of data generated at the database tier by the two approaches, and our results are

shown in Figure 42(b). As demonstrated in the figure, C-JDBC generates a significantly
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smaller amount of data compared to MySQL Cluster. Consequently, the middleware results

in lower pressure on the network, which causes better performance. In contrast, MySQL

Cluster produced a large network traffic and higher pressure on the network driver.

(a) Throughput improvement (b) Database tier—total traffic

Figure 42: Performance Comparison C-JDBC vs. MySQL Cluster.

5.5 Profit Analysis

We inserted the experimental data into a simple profit model to analyze the economical

implications of observed findings. More precisely, we used a previously developed profit

model by combining the application provider’s revenue and the infrastructure cost [213].

Profit can be defined as provider revenue minus the infrastructure cost for providing the

service. In commercial clouds it is straightforward to define the cost model for infrastructure

since commercial clouds provide such a charging model per definition. In this case study,

we used the EC2 pricing scheme to calculate the running cost of the application. In contrast,

finding a realistic provider’s revenue model is a much more complex task. We assume the

the SLA document contains information of the the provider’s revenue model, which helps to

determine the earnings of the provider for SLA compliance as well as the penalties in case

of agreement violations.

We have previously defined the provider’s revenue as a function of average response

time [213]. Here we simply apply our model to the configurations discussed in the chapter
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Table 6: Profit Analysis: SLA Model
Response Time Interval Revenue/Penalty
[0s, 1s] 0.0033 cent
(1s, 2s] 0.0027 cent
(2s, 3s] 0.0020 cent
(3s, 4s] 0.0013 cent
(4s, 5s] 0.0007 cent
≥ 5s -0.0033 cent

to get an economical perspective. In our model we calculated the service provides rev-

enue/penalty for browse-only and read-write separately. Concretely, for each hardware

configuration we run the experiments for 10 hours with different workloads (1000 to 8000)

and then categorized each individual request based on the end-to-end response time. We

used six categories as shown in Table 6 and then we calculated number of requests in each

category. Finally, we used the associated SLA model to calculated the revenue/penalty

values for each category and our results are shown in Table 7. We used Amazon EC2 pricing

scheme for on demand instances to calculate infrastructure cost, where we simply used the

number and types of nodes and then multiply by the EC2 hourly charge. As mentioned

before we executed our experiments for 10 hours, so infrastructure cost shown in Table 7

represent the infrastructure cost for complete experiment cycle.

Table 7: Profit Analysis: Configuration Cost vs. Profit/Loss

Infra Browse-Only Read-Write
Configuration Cost Revenue Profit Revenue Profit

($) /Penalty /Loss ($) /Penalty /Loss
1-2-2-2-cluster 40.40 127.89 87.49 168.02 127.62
1-2-2-4-exlarge 68 72.80 4.80 136.32 68.32
1-2-2-2-exlarge 54.40 56.24 1.84 66.90 12.50
1-2-2-2-large 27.20 53.96 26.76 76.32 49.12
1-2-2-4-large 34 32.34 -1.66 68.28 34.28
1-2-2-2-small 6.80 5.35 -1.45 20.11 13.30
1-2-2-4-small 8.50 2.46 -6.04 28.00 19.50

The calculated revenue/penalty and profit/loss values are shown in Table 7. As shown
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in the table for browse-only workloads use of small instance results in huge lost (in a

long run). In addition, as we previously discussed when using large instances to deploy

the application, it is much profitable to use less number of Data nodes, as shown in the

table 1-2-2-4-large results in $1.66 loss while 1-2-2-2-large gives $26.76 profit.

More importantly, 1-2-2-2-large is much profitable than both 1-2-2-2-exlarge and

1-2-2-4-exlarge, so it is necessary to understand application well before choosing the

instance type. Among all the configurations, 1-2-2-2-cluster configuration gives highest

profit. We observed somewhat different results for read-write scenarios, as shown in the table

each hardware configuration seems to be profitable and 1-2-2-2-cluster gave the highest

profit. Even with read-write 1-2-2-2-large is much profitable than 1-2-2-2-exlarge.

As shown in the table, selecting the instance types and number of nodes are greatly affected

by the application and its transaction types. Nevertheless, 1-2-2-2-cluster gives highest

profit regardless of the invocation model.

5.6 Related Work

Traditionally, performance analysis in IT systems builds models based on expert knowledge

and uses a small set of experimental data to parameterize them [172, 204, 344]. The most

popular representative of such models is queuing theory. Queuing networks have been

widely applied in many performance prediction methodologies [298,310]. These approaches

are often constrained because of their rigid assumptions when handling multi-tier systems

due to the complex dependencies. As an illustration of significant characteristics that are

hard to capture with traditional analysis, consider the significance of context switching—

as shown in our work—towards system performance when a large number of threads is

involved.

While the increasing popularity of cloud computing has spawned very interesting re-

search on modern clouds, to the best of our knowledge, no previous work has evaluated IaaS

clouds using complex multi-tier systems to find performance and scalability issues. Jim et
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al. presented a method for achieving optimization in clouds by using performance models

in the development, deployment, and operation of applications that run in the cloud [202].

They illustrated the architecture of the cloud, the services offered by the cloud to support

optimization, and the methodology used by developers to enable runtime optimization of

the clouds. Thomas et al. analyzed the cloud for fundamental risks that may arise from

sharing physical infrastructure between mutually distrustful users, even when their actions

are isolated through machine virtualization [267]. Ward et al. discussed the issues and risk

associated with migrating workloads to clouds, and the authors also proposed an automated

framework for “smooth” migration to cloud [338]. In contrast, we studied the potential

scalability and performance issues after migration.

Mayur et al. evaluated Amazon S3 as a black box and formulated recommendations for

integrating S3 with science applications and for designing future storage utilities targeting

this class of applications [249]. They discussed how costs can be reduced by exploiting

data usage and application characteristics to improve performance and, more importantly,

by introducing user managed collaborative caching in the system. Despite the apparent

differences, this work has some important similarities to our work: first, both approaches

evaluate commercial clouds; second, both papers use real applications and not simulations;

third, both approaches derive recommendations to address the uncovered issues.

Guohui et al. have deeply analyzed the network overhead on EC2 and presented a

quantitative study on end-to-end network performance among different EC2 instances [332].

Furthermore, Walker has presented a performance analysis and shown that a performance

gap exists between performing HPC computations on a traditional scientific cluster and on

an EC2 provisioned scientific clusters [331]. Similar to our findings, his experiments also

revealed the network as one of the key overhead sources.

As part of our analysis, we have shown the significance of virtualization and associated

network overhead. Padma et al. have looked at both the transmit and receive aspects of this

workload. Concretely, they analyzed virtualization overheads and found that in both cases
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(i.e., transmit and receive) the limitations of VM scaling are due to dom0 bottlenecks for

servicing interrupts [58]. Koh et al. also analyzed the I/O overhead caused by virtualization

and proposed an outsourcing approach to improve the performance [193].

5.7 Summary

In this chapter we presented an experimental analysis of performance and scalability when

multi-tier applications are migrated to IaaS clouds. We employed the RUBBoS benchmark

to measure the performance on Emulab, Open Cirus, and EC2. Especially the comparison of

EC2 and Emulab yielded some surprising results. In fact, the best-performing configuration

in Emulab became the worst-performing configuration in EC2 due to a combination of

several factors. Moreover, in EC2 the network sending buffers limited the overall system

performance. For computation of intransitive workloads, a higher number of concurrent

threads performed better in EC2 while for network based workloads, high threading numbers

in EC2 showed a significantly lower performance. Our data also exemplified the significance

of context switching overheads. We provided a set of suitable candidate solutions to

overcome the observed performance problems.

More generally, this work enhances the understanding of the risks and rewards when

migrating multi-tier application workloads into clouds and shows that clouds will require

a variety of further experimental analysis to be fully understood and accepted as a mature

technological alternative. In addition, experiment results show the neediness of refactoring

multi-tier applications before they are deployed on commercial clouds especially when one

has to satisfy SLAs.
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CHAPTER VI

VARIATIONS IN APPLICATION PERFORMANCE AND

SCALABILITY IN MODERN HYPERVISORS

Through large-scale experimental analysis with the Expertus automated experiment man-

agement infrastructure, we aim to show the impact different hypervisors have on two types

multi-tier workloads. Concretely, we use a commercial hypervisor, Xen, and KVM to

run two representative n-tier macro-benchmarks (Cloudstone and RUBBoS). We observe

significant performance variations among the three hypervisors. For instance, Xen outper-

forms the commercial hypervisor by 75% on the read-write RUBBoS workload, and the

commercial hypervisor outperforms Xen by over 10% on the Cloudstone workload. The

benefits of hypervisors are profound, and as shown in this chapter, not all hypervisors are

equal. Our experiments have shown that Xen is a good deployment choice for RUBBoS

workloads, which consume a lot of CPU and disk; whereas, the commercial workload is

better for Cloudstone workloads. The workload performance differences shown among the

hypervisors suggest that further analysis and consideration of hypervisors is needed before

deploying applications into cloud environments.

6.1 Introduction

Cloud computing has become possible due to a large number of underlying technologies,

services, infrastructures and business models. Among them, virtualization is the key enabler

i.e., the process of abstracting computing resources such that multiple operating system and

application images can share a single physical server (hardware and system resources). This

is typically achieved through a hypervisor or a Virtual Machine Monitor (VMM), which

lies in between the hardware and the operating system allowing multiple operating systems,
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which are termed as “guests”, to run concurrently on a host computer. The hypervisor

presents a virtual operating platform to the guest operating systems, and it manages the

execution of the guest operating systems. Many different hypervisors (both open source and

commercial) exist today, each with their own advantages and disadvantages. Regardless of

which one, they introduce a large number of new and challenging research questions.

In this chapter, we use a distinct set of representative workloads to try to provide an

in-depth performance and scalability analysis of two commonly used open source hypervi-

sors (i.e., XEN and KVM) and a commercial hypervisor (referred to as CVM). Concretely,

we selected two representative n-tier macro benchmark applications (RUBBoS [25] and

Cloudstone [294]). These experiments are generated and executed automatically using

the automated framework discussed in Chapter 3. We use automated experiment manage-

ment tools, which setup, execute, monitor, and analyze large-scale application deployment

scenarios. Through our experiments, we aim to answer following questions:

• How different hypervisors respond to different workloads?

• How well different hypervisors respond to increasing workload?

Relying on large-scale experiment measurements, we observed significant performance

variations among three hypervisors. More precisely, Xen outperforms the commercial

hypervisor by 75% on the read-write RUBBoS workload and the commercial hypervisor

outperforms Xen by over 10% on the Cloudstone workload. Obviously, the results reported

in this chapter are just a snapshot of the current state-of-the-art. The contribution is to

establish a framework that allows vendors to gradually improve their service and allows

users to compare products. More generally, this study shows that virtualization technologies

are a relatively immature technology, and a significant amount of additional experimental

analysis is necessary in order to establish their suitability for mission-critical applications.

The remainder of this chapter is structured as follows. Section 6.2 provides an overview
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of the benchmark application, the experimental setup, and the tools used during the experi-

ments. In Section 6.3 we study the performance difference for three hypervisors using n-tier

workloads and in Section 6.4 we study how performance varies when increasing the number

of virtual cores given to the virtual machines. Related work is summarized in Section 6.5,

and Section 6.6 summarizes the chapter.

6.2 Background

This section provides a brief introduction to three types of hypervisor we used for our

experiments. Introduce benchmark applications and reason for selecting them. Experiment

platform, software stack, versions. How we run the experiments - automated framework,

data collection and analysis. The benchmarks applications we used for the study are detailed

in Appendix A.1 and Appendix A.2 respectively, and a brief description to the database

middleware is given in Appendix A.3.

6.2.1 Kernel-based Virtual Machine (KVM)

KVM is a full virtualization solution for Linux on x86 hardware containing virtualiza-

tion extensions (Intel VT or AMD-V). It consists of a loadable kernel module, kvm.ko,

which provides the core virtualization infrastructure, and a processor specific module,

kvm-intel.ko or kvm-amd.ko. KVM requires a modified version of qemu, a well-known

virtualization software. KVM supports a large number of x86 and x86_64 architecture guest

operating systems, including Windows, Linux and FreeBSD.

6.2.2 XEN

Xen is an open source virtual machine monitor which is structured with the Xen hypervisor as

the lowest and most privileged layer. Above this layer are located one or more guest operating

systems, which the hypervisor schedules across the physical CPUs. Xen can work both in

para-virtualized or HVM mode; in the first the guest operating system must be modified

to be executed. Through paravirtualization, Xen can achieve very high performance. The

118



HVM mode offers new instructions to support direct calls by a para-virtualized guest/driver

into the hypervisor, typically used for I/O or other so-called hyper calls.

6.2.3 CVM - Commercial Virtual Machine Monitor

There are many different commercial virtualization technologies each of which aiming to

provide similar or better performance and features as open source hypervisors. However,

most of them have licensing and copy rights issues which prevent publications of perfor-

mance and comparison data. Thus, in our study we selected one of the commonly used

commercial hypervisor (hereafter CVM) and compare the performance with both XEN and

KVM.

Table 8: Hardware and VM Configuration.
Physical Machine

Processor 2 X Intel(R) Xeon(R) @ 2.27GHz (Quad)
Memory 16GB
Cache 2 X 8MB
Operating System Debian Linux/Fedora 16

Virtual Machine
Virtual CPUs [Vary from 1 to 8]
Memory 4GB
Operating System Fedora 16

6.2.4 Overview of Experiments

The experiments discussed in this chapter were run in three hypervisors and native hard-

ware using number of different macro and micro benchmarks. To focus this study on the

differences among three platforms, we allocated each server to a dedicated physical node.

Specifically, the sharing of physical resources (e.g., CPU) in a node is among the threads

within each server, not between servers. For each concrete hardware configuration we

observed the most appropriate software configuration (e.g., number of threads and thread

pool sizes) by using the approach mentioned in our previous work [334]. Table 8 provides
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an overview of physical and virtual configurations we use for our experiments. To have

a fair judgment, we selected exact same virtual machine configurations across all three

hypervisors (e.g., OS, Memory, disk). A typical application deployment in a virtual machine

and in a physical machine is shown in Figure 43.

(a) VM Deployment (b) Native Deployment

Figure 43: Illustration of Tomcat Deployment: Virtual Machine vs. Native Hardware.

Each of our macro-benchmark experiment trials consisted of three periods: 8-minute

ramp-up, a 12-minute run period, and a 30-second ramp-down. Performance measurements

(e.g., CPU or network bandwidth utilization) were taken during the Run period using

lightweight system monitoring utilities (e.g., dstat and sar) with a granularity of one

second. While the macro-benchmark data gave us the interesting bottleneck phenomena

described in this chapter, we often need more detailed data to confirm concrete hypotheses

on the non-trivial causes of such phenomena.

6.3 Study with n-Tier workloads

In this section we discuss and compare the observed performance results on three hypervisors

and on native hardware by using two n-tier benchmark applications. First, we discuss

performance using RUBBoS benchmark, and then performance with CloudStone. We also

explain observed performance phenomena through detailed resource utilization data.

The goal of our study is to obtain a fair performance comparison among three hyperviosrs

and to validate the results with native hardware. Hence, for all our experiments (regardless of

the hypervisor) we selected an identical virtual machine configuration (i.e., CPU, Memory,
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(a) RUBBOS - Read Only (b) RUBBOS - Read Write

(c) CloudStone

Figure 44: Throughput Comparison for RUBBoS Read-only, RUBBoS Read-write and
Cloudstone. Among Hypervisors, XEN Outperforms while KVM is the Lowest.

Disk and Operating System) and subjected to an identical workload. More specifically, for

all the hypervisor studies we generate workloads from a fixed set of physical machines. Each

of our experiments, we have used dedicated deployment i.e., only one VM per physical host.

We used that approach to reduce the interference from other virtual machines. In addition,

to observe the performance characteristics on native hardware, we disable six cores and

brought it to similar configuration as virtual machines, and then repeated the same procedure

on native hardware as well.

6.3.1 RUBBoS - Read Only

In our study we first deployed RUBBoS application with MySQL cluster database middle-

ware and executed workload from 1000 concurrent users to 7000 concurrent users (with step
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(a) RUBBOS - Read Only (b) RUBBOS - Read Write

(c) CloudStone

Figure 45: Response Time Comparison for RUBBoS Read-only, RUBBoS Read-write and
Cloudstone.

of 1000 users) on all the three hypervisors. The observed throughput results and response

time values are shown in Figure 44(a) and Figure 45(a), respectively.

As illustrated in two figures (Figure 44(a) and Figure 45(a)), native hardware gave the

best performance, which is in fact the expected behavior. Among three hypervisors, XEN

and CVM show similar performance characteristics (both response time and throughput), in

contrast, KVM shows significantly less throughput and comparatively high response time.

As shown in the Figure 44(a), throughput on KVM remains constant against increasing

workload; this is a clear indication of system saturation. Additionally, both XEN and CVM

started to saturate at the workload of 3000 concurrent users while native hardware continued

to perform better.
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6.3.2 RUBBoS - Read Write

We then used the same approach as in read-only scenario and extended our experiments

to read-write mix workload, the goal was to introduce significant amount of disk writes.

Due to the nature of transactions types in RUBBoS, we expected to see relatively higher

throughputs values compared to that of read-only. The observed results (i.e., throughput

and response time values) are shown Figure 44(b) and Figure 45(b), respectively. We

observed a noticeable difference for CVM, where for read-only workloads both CVM and

XEN show similar results (throughput and response time), in contrast, with read-write XEN

shows much better performance compared to CVM. For example, the throughput difference

between CVM and XEN for 6000 workload was 78%, and the same workload CVM show

200% higher response time than XEN. KVM behavior reamins unchaned when moving

from read-only to read-write mix workloads, and in fact both the cases it shows very poor

performance.

To explain the observed performance differences in read-only and read-write scenarios,

we extended our analysis to 24 different resource utilization data (e.g., CPU, Memory, IO,

interrupts, context switches) on all the servers. Due to the space constraints, we have selected

one with most interesting results for our discussion. In RUBBoS deployment (see Figure 61),

data node is the last component in the request pipeline and does most disk/network read and

writes. Hence, its resource utilization determines overall system performance. Thus, we

looked at CPU utilization, in particularly CPU breakdowns (i.e., usr, sys, wait, siq and

hiq) from which we were able to explain the observed performance difference.

The observed CPU utilization for KVM, CVM and XEN for read-only workloads are

illustrated in Figure 46 (a), (b) and (c), respectively. As shown in the figure, both CVM and

XEN has their highest utilization for usr component, while KVM has its highest for sys. In

addition, KVM spends more CPU cycles for software interrupts (siq), hardware interrupts

(hiq) and IO waits, and CVM spends similar amount of CPU cycles for software interrupts.

Noticeably, XEN spends less CPU cycles on software interrupts while (as expected) it

123



(a) KVM (b) CVM

(c) XEN

Figure 46: CPU Utilization - Read Only.

spends zero CPU cycles on hardware interrupts. Among all three hypervisors, KVM has

considerably higher CPU wait, while XEN has lowest aggregated CPU utilization. As

shown in Figure 44(a), both XEN and CVM gave similar throughput values, yet, CVM

spends more CPU cycles to achieve the same throughput as compared to XEN.

We then extended our analysis to read-write data, our results for KVM, CVM and XEN

are shown in Figure 47 (a), (b) and (c), respectively. There we observed three noticeable

differences 1) CPU wait changes for KVM, 2) CPU usr behavior changes for CVM and

3) increase of utilization difference between usr and sys for both XEN and CVM. For

read-only workloads KVM shows around 3% utilization for CPU wait, in contrast that value

went to 8% for read-write workloads. The difference for XEN and CVM were negligiable.

As shown in Figure 44(b), XEN gave much better perormance as compared to CVM, yet

CPU utilization data for usr shows the opposite. Where both XEN and CVM showed
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(a) KVM (b) CVM

(c) XEN

Figure 47: CPU Utilization - Read Write.

increase of usr component, while CVM has around 25% when XEN as only 20%. As

shown in Figure 46(b), CVM has very small gap bwteen its usr and sys component for

read-only workloads, however as shown in As shown in Figure 47(b) the difference become

significantly large. Interestingly, we obsrved somewhat similar results for XEN as well.

In summary, we observed relatively less performance in KVM due to more CPU cycles

have been spend for sys and very less CPU cycles for usr (i.e., to run user application),

while XEN does a much better job on CPU handling. As throughput values shows, CVM

behave moderately. Further analysis on interrupts handling data shows that XEN has the

highest interrupts handling rate (interrupts per second) while CVM has the lowest.
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6.3.3 Comparison with Cloudstone

In previous two studies we used the same benchmark application and changed only the

database middleware. However, cloud platforms (a.k.a hypervisors) are used to deploy vast

variety of applications. Hence, to better understand the behavior we selected CloudStone, a

new benchmark with completely different workload characteristics and interaction patterns.

We used the same set of virtual machines and follow similar procedures as previous cases

i.e., measure the performance while increasing the workload.

One of the noticeable difference between RUBBoS and Cloudstone is their workload

generators, where RUUBoS uses a closed system while Cloudstone (Rain) uses an open sys-

tem. Thus, in Cloudstone it records the number of effective request (completed successfully)

vs. offered workload. The observed value for effective load when increasing number of

thread is shown in Figure 44(c) and observed response time values are shown in Figure 45(c).

As we observed in two previous scenarios, XEN and CVM out performed KVM, yet we

observed an interesting phenomenon with XEN which we will discuss later in this chapter.

6.3.4 Cloudstone Performance Issues in XEN

As we discussed, in Figure 44(c) we observed an interesting effective load characteristics

in XEN. As shown in the figure, KVM and CVM show more stable curve for the effective

load. To explain the observed phenomenon we extended our analysis to different resource

monitoring data (i.e., disk IO, network IO, CPU, memory, interrupts and context switches).

Notably, through our analysis we observed a matching pattern in the CPU utilization, which

is illustrated in Figure 48(a). Nevertheless, average CPU utilization graph alone does not

provide better insight to the problem, thus, we analyzed individual CPU utilization (i.e.,

sys, user, idle etc. . . ).

Through our analysis we observed a surprising results, where while both KVM and

CVM has almost zero CPU utilization for wait, XEN shows higher utilizations for some

workloads. We then use effective load and CPU wait distribution and inserted both into
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a correlation model. Through the model we observed a complete negative correlation

between CPU wait and effective load. The observed results for the correlation is shown in

Figure 48(c), while Figure 48 illustrates CPU wait for three hypervisors.

In summary, performance comparison results on three hypervisors using n-tier workloads

shows interesting results. More precisely, the observed performance on three hypervisors

were highly sensitive to the application workloads. Nevertheless, both the open source

hypervisor (i.e., XEN) and the commercial hypervisor (i.e., CVM) show similar results and

outperformed KVM.

(a) CPU Utilization (b) CPU wait Time

(c) Negative Correlation with Load

Figure 48: CloudStone issue.

6.4 Processor Scalability

One of the biggest advantages of today’s cloud is its infinite scalability; in fact there are two

types of scalabilities namely vertical and horizontal scalability. In vertical scalability,
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user moves from a lower configuration (e.g., 2GB) to a higher configuration (e.g., 4GB),

and in contrast with horizontal scalability users moves from a less number of nodes to

a large number of nodes. In our previous studies, we have experimentally evaluated the

performance variations in public clouds [174]. Here we study, how three hypervisors respond

to vertical scalability (i.e., increasing number of virtual cores given to the virtual machine).

More concretely, in our study we used RUBBoS benchmark, and analyze its performance

characteristics by changing number of VCPUs given to each virtual machine.

In our approach, we used identical VMs for all the servers (e.g., Tomcat, Apache,

MySQL) and started with the smallest CPU configuration i.e., one virtual CPU and increase

up to eight VCPUs (maximum number of physical cores) and measure the application

performance. As shown in Figure 49 all the three hypervisors show similar characteristics

when moving from 1 VCPU to 2 VCPUs, where we observed performance improvements.

However, as shown in Figure 49, three hypervisors show different behavior when moving

from 2 VCPUs to 4 VCPUs and then to 8 VCPUs.

As illustrated in Figure 49(a), KVM shows performance improvement when moving

from 2 VCPUs to 4 VCPUs, in contrast we observed performance degradation in both XEN

and CVM (see Figure 49(b) and (c)). We observed a noticeable performance characteristics

in KVM when moving from 4 VCPUs to 8 VCPUs, however XEN and CVM were shown

to behave same for both 4 VCPUs and 8 VCPUs. The observed response time values are

shown in Figure 50, and in fact response time values also show the same phenomenon. To

better explain the observed phenomenon, we extended our analysis to individual CPU and

CPU breakdowns (i.e., sys, user, wait).

6.4.1 Individual Core Analysis

To better explain the observed behavior when increasing the number of VCPUs (i.e., vertical

scalability) we extended our analysis to individual CPU for each hypervisor. More specifi-

cally, we calculated the average CPU utilization for each individual VCPU and compare
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(a) KVM (b) XEN

(c) CVM

Figure 49: Number of VCPUs vs. Average Throughput.

them with each other hypervisor. We first started with 2 VCPUs and extended up to 8

VCPUs i.e., to cover all the three scenarios discussed in previous section. The observed

CPU utilization values for Apache server with 2 VCPUs case for KVM, XEN and CVM

are shown in Figure 51(a), (b) and (c), respectively. As shown in the figures KVM shows

highest utilization and both the VCPUs have some degree of utilization. In contrast, XEN

and CVM shows utilization for only one VCPU and other one remain almost zero.

The utilization pattern remain unchanged even when moving from 2 VCPUs to 4 VCPUs,

more specifically both XEN and CVM had used only one CPU while KVM used all the

four VCPUs, but only one reported to have a significantly higher utilization. The observed

results are for KVM, XEN, CVM are illustrated in Figure 52(a), (b) and (c), respectively.

We observed interesting results when moving from 4 VCPUs to 8 VCPUs, where KVM

behavior unchanged, yet, XEN and CVM show considerably different utilization patterns.
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(a) KVM (b) XEN

(c) CVM

Figure 50: Number of VCPUs vs. Average Response Time.

The observed results are shown in Figure 53(a), (b) and (c). As shown in two latter figures all

the cores show some degree of utilization (and high degree of fluctuation), more importantly

non-uniform pattern across different workloads. These types of utilization patterns lead to

have higher scheduling cost and which then results in lower performance.

Our previous studies have shown how average cannot be the average for large-scale

systems [333], thus we inserted observed utilization data to a kernel density model. In our

model, for each second (i.e., one second granularity) we chose maximum utilization from

all the 8 CPUs as the utilization for that given second. Then we calculate max utilization for

whole experiment and draw the kernel density graphs for each workload. We applied the

same technique to all the three hypervisors and observed results are shown in Figure 54(a),

(b) and (c). As shown in Figure 54 (a) KVM shown a uni-model distribution while both

XEN and CVM show a bi-model distribution. The interesting observation is that both XEN
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(a) KVM (b) XEN

(c) CVM

Figure 51: Individual CPU Utilization for Apache (for 2 VCPUs).

and CVM seem to have at least one CPU at higher utilization level (i.e., bottlenecked) and

causing whole system to have lower throughputs.

6.4.2 Analysis of CPU Breakdowns

In general, most resource monitoring tools (e.g., sar, vmstat, dstat, top) provide a way

to monitor individual CPU utilization in multi-core environment as well as CPU utilization

breakdown for each individual CPU. CPU breakdowns typically consists of user, system,

idle, software interrupts, hardware interrupts, wait and nice, each of which

have significant impact on different applications. In a typical experiment, CPU utilization

means (100 - idle), which is in fact provides a good indicator to understand the system.

However, our results show that to explain performance impact of hypervisors it is required

to look at the CPU at finer granularity.
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(a) KVM (b) XEN

(c) CVM

Figure 52: Individual CPU Utilization for Apache (for 4 VCPUs).

We used our monitoring data and analyzed the CPU utilization data for Apache server at

individual components level. Our results show interesting results for hardware interrupts,

software interrupts and system. The observed results for three hypervisors are shown in

Figure 55. As shown in the figure KVM shows the highest utilization for all three (yet

having significantly fewer throughputs), more concretely regardless of the workload KVM

has over 80% utilization for these three CPU components. As expected XEN shows zero

utilization for hardware interrupts. As a summary, KVM spends significant amount of CPU

cycles for hardware and software interrupts which is considerably higher than other two

hypervisors, and that is said be a one of the contibuotor to poor performance in KVM.
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(a) KVM (b) XEN

(c) CVM

Figure 53: Individual CPU Utilization for Apache (for 8 VCPUs).

6.5 Related Work

Traditionally, performance analysis in IT systems builds models based on expert knowledge

and uses a small set of experimental data to parameterize them [172, 204, 344]. The most

popular representative of such models is queuing theory. Queuing networks have been

widely applied in many performance prediction methodologies [298,310]. These approaches

are often constrained because of their rigid assumptions when handling n-tier systems due

to the complex dependencies. As an illustration of significant characteristics that are hard

to capture with traditional analysis, consider the significance of context switching towards

system performance when a large number of threads is involved [174].

While the increasing popularity of virtualization and cloud computing has spawned very

interesting research on private and public clouds. Barham et al. [70] benchmark Xen against
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(a) KVM (b) XEN

(c) CVM

Figure 54: CPU Densities (for 8 VCPUs) [At each second maximum utilization from among
all the eight core is taken].

VMware Workstation and User-Mode Linux, they show that Xen outperform them on a

range of microbenchmarks and system-wide tests. Clark et al. [115] repeat this performance

analysis of Xen in [70] and confirm the high performance of Xen claimed in [70]. Also they

compare Xen on x86 with IBM zServer and find that the former has a better performance

than the latter. Interestingly, in our study we observed complex results, where different

hypervisor show different performance characteristics for varying workloads.

In an another study, Padala et al. [48] concentrate on comparing Xen’s and OpenVZ’s

performance when used for consolidating multi-tiered applications. Their experimental

results show that Xen incurs higher overhead than OpenVZ does and average response time

can increase by over 400% in Xen and only 100% in OpenVZ as the number of application

instances grows from one to four. This can be explained by looking at L2 cache misses; Xen
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(a) Hardware Interrupts (b) Software Interrupts

(c) System

Figure 55: CPU Utilization Breakdowns for Apache

has higher L2 cache misses than OpenVZ.

Deshane et al. [96] focus on three aspects of benchmarking Xen and KVM: overall

performance, performance isolation, and scalability. They illustrate that Xen has excellent

scalability while KVM has substantial problems with guests crashing when hosts more than

4 guests. KVM outperforms Xen in isolation. In overall performance test, Xen has a better

performance than KVM on a kernel compile test while KVM KVM outperforms Xen on

I/O-intensive tests. Camargos et al. [197] analyze the performance and scalability of six

virtualization technologies (KQEMU, KVM, Linux-VServer, OpenVZ, VirtualBox and Xen)

for Linux. They find Linux-Server delivers little or even no overhead in all test. In all these

experiments, Xen, KVM and virtualBox perform well. The experimental result of OpenVZ

is disappointing and they suggest that KQEUM should be avoided in production systems.

Several studies focus on building models to predict the I/O performance of the VMs in
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consolidation [197]. Based on parameters such as mean queue-length of requests, proposes

three classes of linear prediction models for request throughputs, mix of read/write requests,

and response times in consolidation. The model in [197] evaluates a queuing network with

fair share scheduling using trace-driven simulation. Yet, our experiences on performing

large-scale studies suggested the challenges associated with performance prediction using

those approaches, mainly because those approaches unable to accommodate complex system

characteristics (e.g., garbage collection, context switching).

6.6 Summary

In this chapter we presented an experimental analysis of performance and scalability when

n-tier applications are migrated to IaaS clouds. We employed the RUBBoS benchmark to

measure the performance on Emulab, Open Cirus, and EC2. Especially the comparison of

EC2 and Emulab yielded some surprising results. In fact, the best-performing configuration

in Emulab became the worst-performing configuration in EC2 due to a combination of

several factors. Moreover, in EC2 the network sending buffers limited the overall system

performance. For computation of intransitive workloads, a higher number of concurrent

threads performed better in EC2 while for network based workloads, high threading numbers

in EC2 showed a significantly lower performance. Our data also exemplified the significance

of context switching overheads. We provided a set of suitable candidate solutions to

overcome the observed performance problems.

More generally, this work enhances the understanding of the risks and rewards when

migrating n-tier application workloads into clouds and shows that clouds will require a

variety of further experimental analysis to be fully understood and accepted as a mature

technological alternative. In addition, experiment results show the neediness of refactoring

n-tier applications before they are deployed on commercial clouds especially when one has

to satisfy production SLAs.
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CHAPTER VII

PERFORMANCE AWARE VIRTUAL MACHINE PLACEMENT

The increasing popularity of modern virtualization-based datacenters continues to motivate

both industry and academia to provide answers to a large variety of new and challenging

questions. In this chapter, we focus on and aim to answer one such question: how to improve

performance and availability of services hosted on IaaS clouds. Our system, Structural

Constraint-Aware Virtual machine Placement (SCAVP), supports three types of constraints:

demand, communication and availability. We formulate SCAVP as an optimization problem

and show its hardness. We design a hierarchical placement approach with four approximation

algorithms to efficiently solve the SCAVP problem for large problem sizes. We provide

a formal model for the application (to better understand structural constraints) and the

datacenter (to effectively capture capabilities), and use the two models as inputs to the

placement problem. We evaluate SCAVP in a simulated environment to illustrate the

efficiency and importance of the proposed approach. In our approach, we deploy the

application and measure the performance using the automated performance management

infrastructure. Finally, we use the collected performance data to build the application model,

which we then use during VM placement.

7.1 Introduction

Virtual machine (VM) placement has become a crucial issue in modern virtualization-based

datacenters, and it has attracted significant attention recently [9, 12, 30, 79, 94, 106, 131, 153,

201, 278, 285, 302]. However, due to the associated complexity, most existing techniques

focus on the placement of individual VMs and ignore the structural information of the

application [9,12,30]. Yet, many services deployed in a cloud consist of several VMs, which

may be clustered for availability or used for different tiers of a multi-tier application. The
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performance and availability of such applications greatly depend on how its components

(that is to say, the VMs) are placed relative to one another in the datacenter.

In this chapter, we present structural constraint-aware VM placement (SCAVP) to

improve the performance and availability of services deployed in Infrastructure as a Service

(IaaS) clouds. The proposed approach focuses primarily on the initial VM placement, and it

uses the automated performance measurement data to understand the communication and

performance characteristics of the application. In SCAVP, we consider an application (we

use ‘application’ and ‘service’ interchangeably) as a cluster of related VMs, rather than a set

of individual VMs. By augmenting the placement system with awareness of the availability

and communication requirements (such systems are typically already aware of demand

requirements), we can improve the overall performance and availability of the application.

When deploying an application, SCAVP attempts to satisfy three types of constraints:

demand, availability, and communication. Demand satisfaction means providing sufficient

resources (e.g., CPU, # of CPU cores, memory) to the service for it to meet its service level

agreement (SLA). Observing availability constraints increase the overall availability of the

application, perhaps by deploying VMs across different isolation levels of the datacenter.

Finally, communication constraints permit us to minimize overall communication costs by

assigning VMs with large, mutual communication costs to VMs in close proximity to one

another. Minimizing communication cost has significant economic benefits for modern

commercial clouds. For example, in Amazon EC2, the cost of data transfer to and from the

Internet is $0.08-$0.15 per GB, whereas data transfer within the region costs only $0.01 per

GB. Thus, placing VMs intelligently so as to reduce communication costs not only enhances

performance but also the pecuniary cost of running the system.

We formulate SCAVP as an optimization problem and show hardness; more concretely,

we show that SCAVP consists of four sub-optimization problems. We propose a hierarchical

placement approach that efficiently solves the VM placement problem for large problem sizes.

Methodologically, we use Vespa [302]—an existing conventional placement approach—and
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extend it to support an application’s structural information. To better analyze this structural

information, we formally model the application, and to effectively capture capabilities we

provide a formal model for the datacenter. We then use the two models as inputs to the

placement problem. Finally, we evaluate SCAVP in a simulated environment to illustrate

the efficiency and importance of the proposed approach.

The remainder of this chapter is structured as follows. In Section 7.2, we formally model

the datacenter and application, and we formalize the placement problem. Our hierarchical

placement approach is discussed in Section 7.3, and in Section 7.4 we present our algorithms

and discuss the complexity. Section 7.5 provides our experimental results. Related work is

summarized in Section 7.6, and finally, we provide a chapter summary in Section 7.7.

7.2 Problem Formulation

The core of the VM placement problem is to create a placement plan which dictates where

VMs should be deployed (that is to say, to which physical machines (PMs)) in order to

satisfy various constraints. For brevity, we simply refer to “VM placement” as “placement”

in the rest of the chapter. The inputs to a placement problem are an application (i.e., a set of

related VMs) and a datacenter (i.e., a set of PMs).

Placement can be further subdivided into ‘initial VM placement’ and ‘runtime VM

placement’. The initial VM placement problem is to find the most suitable PMs to deploy

the application (i.e., VMs) for the very first time; in contrast, the runtime VM placement

problem is to manage the system after initial deployment, including migrating VMs from

one PM to another in order to adjust system utilization, improve performance, and reduce

the power cost (amongst other possible goals). Without loss of generality, in this chapter

we focus on creating an efficient initial placement plan by satisfying the following three

structural constraints:

Demand constraint

is defined as the lower bound of resource allocations that each VM requires for the
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(a) Hierarchical datacenter model

(b) Hierarchical placement process

Figure 56: System Architecture - Structural Constraint-aware VM Placement

service to meet its SLA. Each VM is given a set of projected resource demands (e.g.,

CPU, memory, #cores); the placement plan should provide the requested demands.

Availability constraint

is to improve the overall availability of the service. The availability of a service is

expressed as a combination of anti-collocation/collocation constraints; the placement

plan MUST respect these constraints and produce a plan with maximum service

availability.
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Communication constraint

is a user-assigned value that represents the communication requirement between two

VMs such that the application functions. The value is higher when the communication

between the pair of VMs requires more bandwidth or lower latency. Moreover, full

constraint satisfaction requires also minimizing the overall communication cost.

7.2.1 Datacenter Modeling

We model the datacenter as a tree structure with arbitrary depth, and we use both physical

network topology (e.g., switches, routers) and logical groupings of the datacenter (e.g.,

power zones, security zones, user defined zones) as key parameters. A typical datacenter

can be modeled using three or four levels—an example is shown in Fig 56(a).

The bottom-most level in the tree is the Server racks (e.g., SR1, SR2); we then group

a set of server racks into a Zone. A zone can be a security zone, a power zone or a zone

defined through some other means. The communication cost between two PMs in different

zones is non-zero, and can vary from one PM pair to another. Similarly we group a set

of zones to a Region; regions may, for example, be geographically distributed and more

isolated from one another and therefore incur significantly higher communication costs.

We assume that the communication cost between any two PMs in the same rack is

zero, and that communication costs increase as we move up the hierarchy (i.e., 0 < C2 <

C3 < C4 for Fig 56(a)). The communication cost between two PMs in two server racks

can be calculated either by counting the switches between the racks or by measuring the

end-to-end communication cost (e.g., latency or bandwidth) between the racks. For example,

in Fig 56(a) the communication cost between P1 and P4 becomes C2 + C9.

Next, we formalize different entities in the datacenter model:

Definition 7 A physical machine (PM) exists only at the base of the datacenter hierarchy

and is given by P = (N, ~PC, SR), where N is the name (an arbitrary value unique within

SR), ~PC is a capability vector, and SR is the parent server rack.
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Definition 8 A capability is a property of a PM and is given by PC = (N, V), where N is

the name (e.g., CPU speed, memory) and V is the value (e.g., 1.7 GHz, 4GB).

Definition 9 Slot size S of an entity E is defined as the maximum number of VMs that can be

placed on E, furthermore, S is calculated using the aggregated capabilities of E’s children.

Definition 10 Server Rack is given by SR = (N, S, {P}, C), where N is the name, S is the

slot size, {P} is the set of all PMs in SR, and C is the communication cost to the parent node.

Moreover, ∀p ∈ {P} is homogeneous with respect to P’s type (e.g., operating system) and

communication cost between any two PMs in SR is zero.

Definition 11 The ith intermediate level of a datacenter is given by Li = (N, Ci, Li+1, S),

where N is the name, Ci is the communication cost to parent node, Li+1 is the set of children

nodes, and S is the slot size at level i. If i = 0, then Li represents the complete datacenter D.

7.2.2 Application Modeling

The main objectives of application modeling are to effectively convert domain specific

concepts (e.g., high available cluster, primary-backup cluster) into structural constraints

among application components and to permit a better understanding of resource demands. A

typical application consists of sets of servers (e.g., Web servers, Application Servers), each

of which has constraints and demands. In our model, each individual server is represented

as a separate VM, for example, an application with two Web servers and three Application

servers is represented as five VMs. More concretely, the dependency, constraints, and

resource requirements of servers are transformed to corresponding VMs. Next we formally

define different entities used in the application model.

Definition 12 A virtual machine (VM) is given by V = (N, ~R), where N is the name and ~R is

the set of projected resource demands. Furthermore, ~R MUST be a subset of the capability

vector PC.
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Definition 13 A structural constraint SC is a link between a pair of VMs: each link MUST be

associated with at least one constraint. A structural constraint can be either an availability

constraint or a communication constraint.

Definition 14 A communication constraint is given by CC = (S, T, C), where C is the

communication cost between VM S and VM T. Notice that when cost is zero, the VMs are

considered as non-communicating.

Definition 15 Availability constraints are a tuple A = (S, T, L, B), where S is the source

VM, T is the target VM, L is a level in the datacenter hierarchy (L ∈ ∪Li), and B is the

constraint type. Constraint type (i.e., B) becomes anti-collocation if S and T cannot to be

placed on the same intermediate at level L, else it becomes a collocation. Note, collocation

and anti-collocation have the following properties:

• Collocation is transitive: if A→ B, and B→ C, then A→ C

• Anti-collocation is not transitive: if A→ B, and B→ C, this does not imply A→ C

Definition 16 An application is given by an un-directed graph A = ({V}, {SC}), where {V}

is a set of VMs and {SC} is set of structural constraints that connects VMs with each other.

Problem Statement: For a given arbitrary application A=({V}, {SC}) and a datacenter

D, find A’s VM placement plan on D whereby the VMs in {V} are assigned to PMs in D. The

created placement plan should provide projected resource demands (
∑ ~R), satisfy structural

constraints (
∑

S C), and minimize the total communication cost (
∑

CC).

7.3 Placement Process

We have designed a hierarchical placement approach to find the placement plan for a given

application on a given datacenter, and our approach is illustrated in Fig 56(b). Firstly, we

model both the datacenter and the application, as described above. Secondly, the application

model is transformed into a VM graph and the datacenter specification is transformed to a
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datacenter graph. Finally, these two graphs are provided to the placement engine as input

parameters.

The placement engine is the core of SCAVP and consists of two key sub-planners: the

Structure-Aware Planner (SAP), and the Demands-Aware Planner (DAP)—the SAP handles

the structural constraints of the application and the DAP handles the resource constraints.

The SAP uses the structural constraints of the application and produces a candidate

placement plan, which the DAP then refines. Methodologically, SCAVP uses a divide-and-

conquer approach to create the placement plan. In the divide stage, the application graph is

split into a set of smaller VM groups, and the group size is determined by the slot size at

the server rack level. In this process, only the structural constraints are used: the demand

constraints are ignored. Next, for each VM group, the SAP finds a candidate server rack and

refines it using the DAP. In this process the DAP only uses demand constraints and ignores

the other two constraints.

The DAP is a conventional bin-packing placement engine [302]. It uses individual and

aggregated demand constraints of VMs and capabilities of PMs and determines whether the

given sets of VMs can be placed on the given sets of PMs to provide the projected demands.

The SAP is notified when the set of PMs cannot provide the projected demand. This causes

the SAP to find another candidate server rack (i.e., new sets of PMs) and refine it with the

DAP. This process continues until it finds a suitable server rack for each VM group.

Finally, in the conquer stage, the SAP combines each VM group to server rack mapping

and produces a complete plan. Deployment toolkits can use the produced plan to deploy

VMs to the actual datacenter. The overall process of our approach is outlined below and

illustrated in Fig 56(b).

1. Divide the complex VM graph into a set of smaller VM groups. The created groups

should maximize intra-communication cost and minimize inter-communication cost.

Moreover, groups should satisfy the availability and group’s constraints (e.g., slot size

of the group).
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2. Find the suitable server rack for each VM group, such that the mapping guarantees

the satisfaction of anti-collocation and collocation constraints at each level of the

datacenter hierarchy.

3. Refine the VM groups to server rack assignment using the DAP, and find the most

suitable PM for each VM.

Our placement problem can be classified as an optimization problem, which in fact

consists of four NP-class problems. For example, finding the problem solvability is also an

NP-hard problem. We find the solvability of the problem using availability constraints, more

specifically by using anti-collocation.

The anti-collocation constraint provides a lower bound to the resource requirements; for

example, having an anti-collocation constraint between two VMs at the server rack level

requires having at least two server racks, one for each VM, to respect the constraints. Thus,

solvability is evaluating number of servers required to support the availability constraints.

We can show the complexity of the problem by converting it to a graph coloring problem.

In graph coloring the intuition is to color each vertex so that no two adjacent vertices have

the same color: the minimum number of colors required to color such a graph is called

a chromatic number. In anti-collocation the requirement is not to put two VMs, which

have the anti-collocation constraint, into the same VM group. Thus, the minimum number

of server racks to support the anti-collocation constraints at the server rack level can be

considered as a chromatic number. If the number of available server racks is less than the

chromatic number, then we cannot solve the problem.

7.4 Algorithms and Complexity

The algorithms presented here can be used for a datacenter with an arbitrary number of

levels; however, for simplicity we discuss our algorithms by using the example datacenter

model shown in Fig 56(a).
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7.4.1 Constraint-aware VM Grouping (bottom-up)

The intuition of constraint-aware grouping is to respect the structural constraints of the

application and to create a set of small groups both to minimize the overall communication

cost and to enforce availability constraints. SCAVP employs a bottom-up approach, in which

it uses the VM graph to build a logical hierarchy similar to that of datacenter: for example,

if the datacenter has three intermediate levels then the created VM hierarchy also has three

levels.

SCAVP uses the MinMaxVMGrouping algorithm to create the VM hierarchy. It starts

with the VM level and creates a set of VM groups (VMGs) to enforce the structural

constraints at bottom-most level (i.e., server rack). Then, it uses previously created VMGs

and creates a new set of VMGs for the next level in the hierarchy (i.e., zone according to

Fig 56(a)). Likewise it recursively uses the algorithm and continues the process until it

creates a hierarchy similar to the input datacenter.

For each level (including VM) it transforms communication aware grouping to a K-Min-

Max-cut problem [283]. In K-Min-Max-cut, the requirement is to cut the graph into a set of

K cluster so that the inter-cluster cost is minimized and intra-cluster cost is maximized. In

SCAVP, the requirement is also to create a set of VM groups (no constraints on K) so that

communication cost between any two groups is minimized. Moreover, K-Min-Max-cut is

an NP-hard problem; hence, only approximate algorithms are possible. We use a greedy

algorithm with a heuristic: the heuristic is to merge two VMs with highest communication

cost together to form a group (unless constraints are violated).

7.4.1.1 Formal Problem

Assume V={v1, v2, · · · , vn} is a set of VMs, and let l(u, v) denote the communication cost

between VM v and VM u, and assume s as the slot size. If the number of groups created is

k, then,

dn/se ≤ k < n
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Total communication cost within a group (where ∪ is the set of all VMs in the group)

l(v,∪) =
∑
u∈∪

l(v, u)

Total com cost (when k = n) =
∑
i< j

l(vi, u j)

Total com cost (when k , n) =
∑
i< j

l(vi, u j) −
k∑

j=0

l(v j,U j)

∪U j = V and ui ∩ u j = ∅ ∀i , j. The minimum communication cost is achieved when there is

only one group and the cost is maximized when there are n groups. Thus, the problem is to

find the correct balance while satisfying the constraints.

7.4.1.2 Algorithm

Here we discuss the MinMaxVMGrouping algorithm for a single step (say level l) (SCAVP

recursively uses the algorithm for all the levels in the hierarchy). Firstly, SCAVP checks the

collocation constraints for level l and creates a new set of VMGs to satisfy the constraints.

For example, if two VMs (VMGs) are needed to collocate at the server rack level, then

a new VMG is created for the two VMs and any others that have transitive collocation

requirements with them. This process continues until it processes the collocation constraints

of all the VMs.

Secondly, SCAVP creates an n ∗ n communication matrix (n = # VMG at level l) to

represent the communication requirement between different VMGs. Next, it picks the

element with the highest value from the matrix and merges the two corresponding VMGs

together (unless constraints are violated). Then, it updates the communication matrix to

reflect the changes and picks new element with the highest value and continues the process

until it merges all the possible VMGs. Our algorithm is illustrated in MinMaxVMGrouping.

7.4.1.3 Optimization

MinMaxVMGrouping is a greedy algorithm and produces locally optimized results. Thus,

further optimization can be used to reduce the total communication cost. We have designed
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Input: V = (V1,V2, · · · ,Vn), #S
Output: G = [Gi,G2 · · ·Gk], where k ≤ n
begin

G = doCollocationAwareGrouping(V)
G = [G1,G2, · · · ,Gm], where

⋃
Gi = V , Gi ⊆ V & Gi ∩G j = ∅ ∀i , j

|C|nn = buildCommunicationMatrix(G)
Let current = 0;
while true do

e = pickTheNextMaxEdge(C, current)
current ← e.getValue
if current = 0 then

break
end
Let Gi,G j are the two corresponding vertexes of e.
if Gi.size + G j.size < #S then

Gi ← Gi + G j

G ← G \G j

C = updateCommunicationMatrix(G)
end

end
end

Algorithm: MinMaxVMGrouping

another greedy algorithm OptimizeTotalComcost which further minimizes the communica-

tion cost of produced results. We use a simple heuristic: a VM is chosen from a VMG, and

the total communication cost for that VM to and from other VMGs is calculated. If we find

a VM that has a larger inter-communication cost (say VMG1) than intra-communication

cost, then we move the VM to VMG1 only if the future total cost is less than the current

total cost. For example, as shown in Fig 57, value Z represents the communication cost

to V2 from all the VMs in G1, X represents the total cost from G3, and Y represent the

total cost from G2. If Z is less than X, it means there is a higher communication cost for

V2 from G3 than G1; hence, our algorithm tries to move V2 into G3 if the projected total

communication cost is less than the current communication cost. The algorithm is outlined

in OptimizeTotalComcost.
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Input: B = [V MGi · · ·V MGk], V = (V1,V2, · · · ,Vn)
Output: B = [V MGi · · ·V MGk] where k < n
begin

while change do
change = FALSE
currentTolCost = calcualteCurrentComCost()
for each vi in V do

Let vi resides in V MGc

Ci = CalCostForEachGroup(vi)
Ci = {c1, c2 · · · , ck}, where c j = cost(vi,V MG j)|1 ≤ j ≤ k
Let c_intra as the communication cost from V MGc

cmax = max{ci|1 ≤ i ≤ k}
Let V MGmax is the group with cmax

if c_intra < cmax then
f utureCost = costA f terMove()
if futureCost < currentTolCost then

if satisfy_group_constraints then
Move vi to V MGmax

change = TRUE break
end

end
end

end
end

end
Algorithm: OptimizeTotalComcost
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Figure 57: Intra and Inter Communication Cost for a VM V1

7.4.2 VMGs to Server Racks Assignment (top-down)

The process of assigning VMGs to racks proceeds in a top-down fashion: it starts with the

top-most level and tries to find the most suitable node from the datacenter (‘region’, in the

terminology of Fig 56(a)) to place the largest node at (0th) level from the VM hierarchy.

Next, it moves one level down, and tries to find the most appropriate zone (from the selected

region) to place the largest zone from the VM group hierarchy. If the datacenter hierarchy

has more levels, then this process continues until it reaches the server rack level.

At the server rack level, the problem is to assign a small set of VMGs to a small set of

server racks. Here, SCAVP creates a VMG graph (VG) by using aggregated communication

requirements. In VG, VMGs are represented as vertices and communication requirements

are represented as weighted edges. Similarly by using server racks data, it produces a server

rack graph (RG) to represent the communication cost among all the server racks in the

selected set. In RG, each vertex represents a server rack and edges represent communication

costs. This converts the assignment problem into a graph matching problem, which is said

to be a NP-complete.

We have designed an approximation algorithm AssignRacks with a heuristic to solve

the assignment problem. More concretely, we extended [253] to capture the complexity

of our problem (e.g., structural constraints). In our heuristic, a VMG pair with largest

communication requirement be assigned to a server rack pair with the lowest communication

cost.

The AssignRacks algorithm finds VMG to server rack mappings. It works as follows: for

each VMG, it finds a candidate server rack and then refines it using DAP. If DAP can place
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the VMs on the candidate server rack to meet the requested demands, then algorithm moves

to then next VMG, otherwise it tries to find another candidate and refines it with DAP. Once

each VMG is assigned to a server rack the algorithm moves to the next zone. Failure to find

an assignment to at least one VMG causes it to try another zone from the same region and

repeat the above procedure. Unless it finds a suitable zone from the selected region, it tries

another region from the datacenter and refines the assignment using AssignRacks.

Input: VG = {G1, · · · ,Gk}, RG = {R1, · · · ,Rr} where k ≤ r
Output: |P|kr

begin
Let M is completed set of VMGs, and R is completed set of racks.
M ← ∅, R← ∅
while |M| < n do

emax = pickMaxEdge(VG\)
{E} = picMinEdges(RG \ R)
er = pickAnEdge(E)
Let emax as the cost between Gi and G j

Let er as the cost between Rx and Ry

if Gi and G j can be placed on Rx and Ry then
Let TV ← {Gi,G j}, and TR← {Rx,Ry}

while hasmore do
emax = getMaxEdge(TV → VG \ (M ∪ TV))
if emax = NULL then

hasmore = FALSE
end
else

er = pickAMaxEdge(TR→ RG \ (R ∪ TR))
N(emax) = (v, vk), where v ∈ TV
N(er) = (r, rk), where r ∈ TR
addMapping(vk → rk, P)
M ← M ∪ vk, R← R ∪ rk

TV ← TV ∪ vk, TR← TR ∪ rk
end

end
end

end
end

Algorithm: AssignRacks
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7.4.3 VM to PM Mapping (bin-packing)

In our system, we use Vespa [302] as the Demands-Aware Planner. For the purposes of

this work, we can regard Vespa as a conventional placement engine which considers VM

placement as a bin-packing problem and provides a placement plan that maximizes the

demand satisfaction. Hence, the refining process is also an NP-complete problem. SCAVP

uses Vespa to process the demand constraints and finds the VM to PM mapping. More

concretely, AssignRacks finds candidate server racks for a VM group and refines it with

Vespa. In that process, Vespa tries to place the set of VMs onto PMs in the given so that

PMs can provide the projected demand. If the server rack can provide the projected demand

then it produces the VM to PM mapping, else it returns false causing our algorithm to

find another candidate server rack. When Vespa returns true, it also provides detailed a

description with V M → PM mappings and individual demand satisfactions (e.g., CPU,

Memory, #cores).

7.5 Evaluation

We have created a SCAVP prototype in Java, there we have implemented all the mentioned

algorithms and integrated with Vespa. In this sections we analyze SCAVP in a simulated

environment and provide experiment results to illustrate the efficiency of our approach. To

the best of our knowledge no other existing tools handle the structural constraints supported

in SCAVP. Thus, our comparative analysis is focused on finding the improvements of SCAVP

with conventional placement approach Vespa.

We simulated four different application architectures each having different resource,

communication, and availability requirements. We selected these four types to cover a broad

range of commercial applications. For each application type we evaluated the placement

efficiency by varying the application size from 20 VMs to 100 VMs (e.g., 20, 30, . . . ,100),

and for each configuration, we performed 400 experiments and present here the averaged

results.
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• 3-tier: Modeled after the traditional three tier web serving architecture, wherein an

initial web tier serves static content, an application tier serves dynamic content, and a

database tier holds persistent data for the application tier. We assume all the servers

in a given tier communicate with all the other servers in the same tier with similar

communication costs. The communication cost between the web tier and application

tier is less than that of the cost between the application and database tier. All the

servers in any given tier are assumed to be homogeneous.

• 4-tier: The difference between 3-tier and 4-tier is the existence of a cache tier. We as-

sume higher communication requirements among the serves in the cache tier compared

to other tiers.

• Map-reduce architecture: All servers communicate with all the other servers with

same communication requirements. All the servers are assumed to be homogeneous.

• Server mesh: An arbitrary application, where a set of heterogeneous application

components are connected using heterogeneous communication requirements.

We simulated two types of datacenters: a small datacenter consisting of up to 60 PMs

and a large datacenter consisting of over 200 PMs. Furthermore, we simulated each server

rack to have at most 16 PMs, and each PM in a given server rack is homogeneous with

respect to its types. The datacenter was simulated to have heterogeneous communication

cost among different server pairs. To represent the running status of an actual datacenter

each PM was simulated with different capabilities (resource utilization levels). Moreover,

we simulated two and tree regions for the small and larger datacenter respectively.

Notation: We use a notation #A-#T to represent each concrete configuration. #A

denotes the application architecture (3T for 3-tier, 4T for 4-tiers, M for server mesh, and

H for map-reduce). #T denotes the placement engine N for SCAVP and V for Vespa. For

example 3T-N represents 3-tier application evaluated using SCAVP.
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(a) Time complexity on large datacenter (b) Com-cost improvement on large dat-
acenter

(c) Time complexity on small datacenter

Figure 58: Comparison of Time Complexity and Efficiency of Created Placement Plan

7.5.1 Evaluation on Large datacenter

First, we evaluated the time complexity of two approaches by analyzing the time taken

to produce the placement plan. Our results showed that SCAVP performed much better

when compared to Vespa alone. More importantly, as the size of the application increases,

Vespa takes significantly longer than SCAVP. This is expected: as Vespa uses a bin-packing

approach, when the problem size increases, the complexity increases exponentially. With

SCAVP, the problem is subdivided, and overall complexity is reduced. Our experiment

results are illustrated in Fig 58(a).

We then measured the improvement in communication cost when SCAVP is used

instead of Vespa alone. Of course, Vespa does not consider communication cost, and so
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(a) 3-tier system (b) Server mesh system

(c) Map-reduce system

Figure 59: Percentage Demand Satisfaction on Large Datacenter (Requested resource
demand/ Allocated resources)

an improvement is expected: Vespa tries to find the most suitable PMs that can provide

the requested resources without considering their location. As a result, the PMs that are

chosen can be spread across the datacenter. In contrast, SCAVP focuses on communication

cost minimization; thus, it produces a placement with less communication cost. For each

application size, we calculated the total communication cost produced by the two approaches.

Then we calculated the ratio to find the improvements (Vespa’s cost/SCAVP’s cost), and

our results are shown in Fig 58(b). As shown in the figure, by confirming our assumptions

SCAVP produces a placement plan with significantly less total communication cost. More

specifically, the plan produced by SCAVP has 20 times less communication cost to Vespa.

Next, we measured the demand satisfaction when SCAVP is used and compared it
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(a) 3-tier systems on large datacenter (b) 4-tier systems on large datacenter

(c) Demand satisfaction (%)

Figure 60: a), b) Time Complexity with Allocation Constraints; c) Average Demand
Satisfaction (%) for Four Application Types on Small Datacenter

with Vespa alone. Here we expect Vespa alone to achieve a higher demand satisfaction

(at the cost of no network consideration and greater runtime). Vespa finds the placement

plan to maximize demand satisfaction across all the VMs; in contrast, SCAVP tries to

maximize demand within a small group (datacenter vs. a server rack). Our experiment

results justified our assumptions, where Vespa performed better compared to SCAVP. Our

results are illustrated in Fig 59(a), (b) and (c). As shown in the figure Vespa provides average

of 90% demand satisfaction while SCAVP gives 80%.

We then evaluated the effect of availability constraints by measuring the time complexity.

We analyzed it in four different ways: 1) collocation only, 2) anti-collocation only, 3) both

collocation and anti-collocation, and 4) no collocation nor anti-collocation. Existence of

structural constraints helps to reduce search speech significantly (e.g., collocation between
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two VM enforces to consider two VMs as one VM), hence application with availability

constraints produced the placement plan much faster compared to that of with no constraints.

Our experiment results are shown in Fig 60(a) and (b), and as illustrated in the figure, when

the application has either type of constraints, then time complexity reduces by around 30%

(30%—50%).

7.5.2 Evaluation for Small datacenter

We extended our analysis to smaller datacenters with the intuition of finding the significance

of SCAVP when the problem size is smaller. We first measured the time complexity for the

two approaches and our results are illustrated in Fig 58(c). As shown in the figure, even for

smaller problem sizes SCAVP performs better compared than Vespa alone. As shown in

the figure, for smaller datacenters, the difference in time complexities not that significant:

Vespa can find a placement plan very quickly. Nevertheless, the generated plan has similar

communication gains compared to that of large datacenters. We also measured the demand

satisfaction, due to the negligible variances we have given the average demand satisfaction

in Fig 60(c).

7.6 Related Work

In modern virtualization-based datacenters, the problem of VM placement has become a

crucial issue and attracted significant attention recently [9, 12, 30, 79, 94, 106, 182, 210, 228,

242, 302]. To achieve high levels of efficiency in cloud computing requires robust strategies

for VM placement. We have previously presented a bin-packing based approach [302] which

maximizes the resource satisfaction on a given datacenter. A static heuristic-based vector

bin-packing algorithm to minimize the number of required servers is discussed in [285].

Grit et al. has presented a broker-based scheme architecture and algorithm for assigning

VMs to physical machines [153]. Kimbrel et al. proposed an approach to minimize the

number of VM migrations while reallocating resources [190]. The approach presented here

supports both resource and structural constraints of the application.
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Power optimization has also become a crucial factor in VM placement and greatly

motivated the research community. For example, the authors of [201] focus mainly on

power optimization. [131] proposes a linear power model for full-system power analysis and

modeling, while [329] presents a power-aware placement algorithm based on a power model

and a migration cost model. A similar approach is proposed in [165], which discussed how

to maximize the revenues of cloud providers by trimming down their electricity costs.

Placement approaches focus on profit maximization have received significant attention

too, for example in [106], the authors describe how to place VMs across a number of

datacenters to increase profit, and [109] presents an example of an economic model of

a datacenter. [278] proposes a graph based solution for semi-automated service creation,

which expresses the mapping between a business support system and an operations support

system.

Duong et al. present a placement approach to improve the performance on highly

interactive distributed virtual environments, which has some similarities with our communi-

cation optimization approach [300]. The closest approach to ours is [228], which discusses

network-aware placement; however, we go beyond and also present a hierarchical approach

to support structural information of the application.

7.7 Summary

We proposed a structural constraint-aware virtual machine placement as an effective way

to improve the performance and availability of services hosted on modern datacenters,

particularly on IaaS clouds. Careful VM placement can reduce communication costs

significantly and improve overall system availability. We formalized the datacenter and

application, and used two models as inputs to the placement problem. We formulated VM

placement as an optimization problem and show NP hardness, and we propose a hierarchical

approach composed of four approximation algorithms to solve the placement problem

for larger problem sizes. Finally, we illustrated the significance of proposed system on a
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simulated environment.
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CHAPTER VIII

CONCLUSION

In this dissertation, I argued that the challenges associated with large-scale experiment

measurements can be successfully addressed by automating this process’s key activities.

First, I formulated the problem by showing the importance and challenges associated with

large-scale performance studies in modern clouds. These were both management challenges

(such as deployment, configuration and execution) and data challenges (i.e., collection,

process, parse, store and analyze). Second, I developed an automated infrastructure to reduce

the complexity of the performance measurement process that included a code generator,

experiment driver, data extractor, data warehouse, and data analysis portal (Chapter 3). Next,

I proposed an approach to provide a resilient deployment runtime to deploy and configure

applications as well as recover from both deployment and runtime failures (Chapter 4).

Finally, I demonstrated the success of our automated approach by using the infrastructure to

conduct large-scale performance measurement studies (Chapter 5, Chpater 6, and Chapter 7).

The main technical contributions of my dissertation work can be arranged: first, building

an infrastructure to automate experiment measurements; second, demonstrating the success

of the approach through large-scale performance studies (see Figure 4). To present strong

evidence in support of my thesis, the technical contributions for those to categories are listed

below.

An Automated Infrastructure for Large-scale Performance Studies:

F In Chapter 3, I discussed the challenges associated with large-scale experiments and in

particularly challenges of building an automated infrastructure to aid the performance

measurement process. We addressed the challenges by building a multi-stage code

generator which uses XML, XSLT and AOP to provide the required level flexibility,
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extensibility and heterogeneity.

F We discussed the key components of the automated infrastructure we have developed

to handle the unique challenges of the measurement process (create, manage and

analyze): Code generator, Data Extractor, Data warehouse, and Data analyzer in

Chapter 3.

F Failures are common in modern clouds, yet recovery models provided by the cloud

providers unaware of the application semantics. Hence, to provide a better recovery

capability we built a model driven, peer-to-peer fault tolerant runtime to recover from

cloud failures both during deployment time and after deployment (Chapter 4).

Demonstrating the Success of Automated Approach:

F In Chapter 5, I demonstrate the success of automated experiment management infras-

tructure by using it to find the significance of performance difference when an n-tier

application is migrated from a traditional data center (Emulab) to a public cloud (EC2).

Through our study we observed non-trivial performance phenomena and discussed

candidate solutions to mitigate those issues.

F To demonstrate the success in different perspective, we evaluated performance differ-

ences in six clouds using two types of n-tier benchmark applications (RUBBoS and

Cloudstone) and our results are presented in Chpater 6.

F My study on the use of performance data for placing virtual machines within infras-

tructure functioning as service clouds (Chapter 7).

F The same automated framework is used for many other performance studies by other

group members [212–215, 219, 220, 333, 334, 348].

The main contribution made by this dissertation research can be considered as a first

step toward building a comprehensive automated framework for enabling large-scale perfor-

mance studies in modern cloud environments. Among the many potential future directions,
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Super staying and Modular Benchmarking can be considered as immediate next-steps for

the work.

Super Staging: Cloud brings new opportunities by enabling anyone to leverage massive

computing capabilities. This helps users go beyond traditional prototype-based staging by

enabling them to experiment with real, prospective workloads. By doing this, a user can tune

their application to support future workloads. We call this approach “super-staging.” Our

software tools will automatically generate benchmark execution scripts that superficially

resemble traditional staging (simulating a production run). The major difference is that our

tools and scripts go much further than traditional staging, since we can generate and run

benchmark executions with configurations that may far exceed the size and scope of the

application’s typical production runs. Thus, super-staging supports not only the validation of

execution scripts but also the performance prediction and validation of future workloads and

planned configurations. A super-staged benchmark execution script is a self-contained and

complete execution environment, including all the components required for the execution

such as the operating system, middleware, services and servers, the benchmark application

itself plus its input databases and files. Using our tools, such super-staged scripts can

authenticate themselves and auto-launch in clouds with sufficient resources.

Modular Benchmarks: The cloud is designed to run heterogeneous applications and work-

loads; hence, the traditional approach for evaluation with a single representative benchmark

does not provide enough insight into the performance of clouds. Clouds need new bench-

marks and benchmarking approaches [77]. In our approach, we adopt and develop modular

benchmarks that can be divided into components, forming a benchmark kit. As examples,

these benchmarks include n-tier applications (e.g., electronic commerce), embarrassingly

parallel applications amenable to parallel execution through MapReduce, and micro bench-

marks. The main challenge of the benchmark kit is a principled design of interactions
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between application logic and back-end data store, since dependencies often arise, making

the decomposition of mutually dependent interactions difficult.

The heterogeneity of clouds and diversity of applications we used for performance

measurements have introduced many non-trivial challenges to the automated infrastructure

discussed here. We have addressed most of those challenges and designed and developed

our framework to be robust and reliable. Nevertheless, the framework itself has its own

limitation as well. First, validation of generated code is not trivial but an important factor.

In the current approach, we validate generated code by running them on the actual cloud,

but as part of the future work we are planning to use a standard domain specific language

(e.g., SmartFrog [16], OMG DEPL [6]). Second, visibility of meta-data, all the meta-data

are stored/embedded into the templates themselves, and the framework can understand

pre-defined sets of meta-data. Adding new tags or meta-data may not be visible to the

end-user and may result in invalid codes. Third, dependency management, in particularly

handling of deployment and start order is complex for applications like n-tier applications.

We handle that using a sequence numbering scheme, our approach work well for small and

medium size applications, however, applications with hundred of components introduce

new challenges. To solve that, we plan to use Petri-net or similar dependency management

approaches.

Most cloud users are interested in moving their application workload to a cloud to simplify

their application management and reduce the cost of sophisticated IT expertise; however,

the technical problem outlined in this document presents a steep learning curve for moving

serious workloads into a cloud. In practice, most native cloud users are challenged to develop

a robust hardware and software configuration to support their application’s performance

in the cloud, because they are challenged with acquiring the expertise to design and run

experiments that test such configurations. As result, they confront the more substantive

business problem stated earlier–choosing between constant and uniform costs with low

163



resource utilization or occasional but high costs (due to unpredictable response times) when

workloads peak (i.e. high resource utilization).

Experimental measurements to predict performance thresholds for representative ap-

plications through standard benchmarks would provide significant value for cloud users

and service providers. For cloud users, a performance predictability threshold would lower

the barrier of entry, since they could focus on confirming the “safe” configurations, or

those operating below the threshold, for their applications. For cloud service providers,

a performance predictability threshold would lower operational costs and increase return

on investment. By eliminating the uncertainty caused by the current (lack of) knowledge

on performance unpredictability, service provides could run consolidated VMs at higher

utilization levels than are otherwise currently feasible.
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APPENDIX A

BENCHMARKS AND DATABASE MIDDLEWARE

A.1 RUBBoS Benchmark Application

RUBBoS [25] is an n-tier electronic commerce system modeled on bulletin board news

sites such as Slashdot, and it is widely used in large-scale experiment studies. We modified

the benchmark to suite for our experiment workloads and to collect various statistics. The

workload consists of 24 different interactions such as register user, view story and post

comments i.e., combination of read-only and read-write workloads. The benchmark can be

deployed as a three-tier or four-tier system and places a high load on the database tier. Also,

benchmark includes two kinds of workload modes: browse-only and read/write interaction

mixes. A typical RUBBoS deployment with MySQL Cluster is shown in Figure 61.

Workload Generator: RUBBoS comes with a workload generator which can be used

to generate requests from multiple computing nodes. Workload generator creates HTTP

connections and access different URLs in the applications, as mentioned before RUBBoS

has 24 different truncation types and each has a unique URL. Workload generator consists

of multiple clients and each simply emulates a typical client behavior (like accessing a web

page), the distribution of different transaction types can be easily configurable. Each client

runs as a separate thread and generates HTTP requests using an exponential distribution

with average think time of 7s between two subsequent requests. A workload generator

can have many clients, for example workload of 1000 means 1000 concurrent clients (i.e.,

1000 threads). In our approach, we use multiple workload generators and each has equal

number of clients. As an example, when generating workloads of 1000 with five workload

generators, each generates 200 users.
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Figure 61: RUBBoS Deployment Topology with MySQL Cluster

A.2 Cloudstone Benchmark Application

CloudStone [294] is a Web 2.0 benchmark, which includes a Web 2.0 social-events ap-

plication (Olio) and can be considered as a multi-platform, multi-language performance

measurement tool for Web 2.0 and Cloud Computing. Cloudstone spun out of a research

project at UC Berkeley. More than a benchmarking service itself, it has created an open-

source framework for testing cloud performance. The research team built a selection of

tools for generating various load levels and testing the performance under those loads across

various cloud providers. Its workload generator is implemented using Faban, however, in

our study we used Rain workload generator toolkit. Rain is a statistics-based workload

generation toolkit that uses parameterized or empirical distributions to characterize different

classes of workload variations. A typical Cloudstone deployment is shown in Figure 62.

A.3 MySQL Cluster

MySQL Cluster [11] is an open source transactional database designed for scalable high

performance access to data through both data partitioning and data replication. MySQL

Cluster is implemented by a combination of three types of nodes (Management nodes, SQL

nodes and Data nodes). A Management node maintains the configuration of SQL nodes

and Data nodes, plus starting and stopping of those nodes. A Data node stores cluster data,
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Figure 62: Cloudstone Deployment Topology

and an SQL node is the clustering middleware that handles the internal data routing for

partitioning, and consistency among replicas for replication. Figure 61 illustrates three types

of nodes and how they are connected. The total number of Data nodes is the product of the

replication factor and the number of partitions. For example, with replication factor of 2 and

database divided into 2 partitions, the resulting MySQL Cluster will have four Data nodes.

Notice, all the experiments described in this document were run with replication factor as 2.
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APPENDIX B

TUTORIAL - AUTOMATED DATA EXTRACTION

This tutorial explains how to export performance measurement (raw) data collected by

running large-scale experiments to the the data warehouse (i.e., Exprestore). Automated

data extractor comes with a number of data processors and parsers to aid the data extraction

process, here we discuss how to use the data extractors and relevant configuration files. The

main input to the data extractor is a mapping file which tells how to map log (i.e., response

time, throughput and resource monitoring data) files to dynamically created tables. One can

create the mapping file manually, generated automatically or customize an auto generated

file. Regardless of the way the user creates the file, the user can use the automated script to

upload/export experimental data to Experstore.

Notice, that a user needs to have a separate mapping file for each individual experiment,

nevertheless the user can reuse most of the contents and might need to change only the

directory to workload mapping.

B.1 Information about Mapping File

This section provides an overview about the different elements in the mapping file and how

to use them to customize the data extraction process.

B.1.1 Experiment Metadata

In general, when analyzing performance measurement data, it is good to know additional

information (i.e., meta-data) about the experiments such as date, time, user, cloud, and

application. As a result, during the data extraction process, data extraction tools collect a set

of parameters and a code snippet of the mapping file with such parameters are shown below:

168



Listing B.1: Code Listening for Experiment Metadata

<name>rubbos −1−2−2−2−2vcps−vmware< / name>

< d e s c r i p t i o n >RUBBoS Exper imen t wi th VMware (2 VCPUs)< / d e s c r i p t i o n >

< u s e r>d e e p a l< / u s e r>

< d a t e>2012−03−27< / d a t e>

<c l o u d> S i g i r i C l u s t e r < / c l o u d>

<nodecoun t>8< / nodecoun t>

<rampupt ime>480000< / rampupt ime>

< r u n n i n g t i m e>720000< / r u n n i n g t i m e>

<downramptime>30000< / downramptime>

< a p p l i c a t i o n >RUBBoS Benchmark< / a p p l i c a t i o n >

B.1.2 Profile

One of the key elements in the mapping file is the profile; profile tells the structure of the

database table (i.e., database schema), the corresponding parser to process the file, data

types and their formats, and what data to read and not to read. Two samples profiles are

shown below, one is configured for dstat monitor based data and other is for sar monitor

based data.

Listing B.2: A Sample Profile for Dstat Monitoring Data

< p r o f i l e >

< s e p a r a t o r > ,< / s e p a r a t o r >

< r e s o u r c e −name>CPU0< / r e s o u r c e −name>

<p r o c e s s o r − c l a s s > d a t a i m p o r t . f i l t e r . C S V F i l e P r o c e s s o r< / p r o c e s s o r − c l a s s >

< !−−Column i n d e x s t a r t w i t h 0 , i . e . , f i r s t column i s z e r o −−>

<column i n d e x=" ’0 " colname=" u s e r " d a t a t y p e =" d ou b l e " / >

<column i n d e x=" ’1 " colname=" sys tem " d a t a t y p e =" d ou b l e " / >

<column i n d e x=" ’2 " colname=" i d l e " d a t a t y p e =" d ou b l e " / >

<column i n d e x=" 3 " colname=" w a i t " d a t a t y p e =" d ou b l e " / >

<column i n d e x=" 4 " colname=" h i " d a t a t y p e =" d ou b l e " / >

<column i n d e x=" 5 " colname=" s i " d a t a t y p e =" d ou b l e " / >

< s t a r t − i n d e x>10< / s t a r t − i n d e x>

<end− i n d e x>0< / end− i n d e x>

< / p r o f i l e >

Listing B.3: A Sample Profile for SAR Monitoring Data

< p r o f i l e >
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< s e p a r a t o r > < / s e p a r a t o r >

< r e s o u r c e −name>CPU0−SAR< / r e s o u r c e −name>

<p r o c e s s o r − c l a s s > d a t a i m p o r t . f i l t e r . S a r L o g P a r s e r< / p r o c e s s o r − c l a s s >

< !−−Column i n d e x s t a r t w i t h 0 , i . e . , f i r s t column i s z e r o −−>

<column i n d e x=" 0 " colname=" t imes t amp " d a t a t y p e =" t imes t amp " f o r m a t=" hh:mm:ss " / >

<column i n d e x=" 3 " colname=" u s e r " d a t a t y p e =" d ou b l e " / >

<column i n d e x=" 4 " colname=" n i c e " d a t a t y p e =" d ou b l e " / >

<column i n d e x=" 5 " colname=" sys tem " d a t a t y p e =" d ou b l e " / >

<column i n d e x=" 6 " colname=" i o w a i t " d a t a t y p e =" d ou b l e " / >

<column i n d e x=" 7 " colname=" s t e a l " d a t a t y p e =" d ou b l e " / >

<column i n d e x=" 8 " colname=" i d l e " d a t a t y p e =" d ou b l e " / >

< !−−Which row need t o read , s t a r t w i t h 1 −−>

<row i n d e x=" 0 " rowname=" name−of−row ">< / row>

< s t a r t − i n d e x>2< / s t a r t − i n d e x>

<end− i n d e x>0< / end− i n d e x>

< / p r o f i l e >

Following list provides a detailed description about all the elements:

• separator: The data will be in a some sort of a file either a CSV file or some of other

format, and each file might contain multiple types of data (e.g., user, sys, wait etc,

network send, receive) and each of which might be separated by a delimiter (e.g., ’,’,

’:’, ’ ’). So separator is used to specify the delimiter.

• resource-name: Name of the resources, this becomes the name of the profile as well

as a part of the name of dynamically created table.

• processor-class: is the Java class which knows how to process the resource file e.g., a

CSV file for a given resource.

• column: Each file might contain monitoring data for different resources (e.g., CPU,

Memory), and each of which possibly becomes a column in the created table. This

provides a way to specify that mapping i.e., which data column corresponds to which

column in the table.

– index: Index of the column (always start with ’0’).
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– colname: Name of the column used in the database table.

– datatype: Data type for the database.

– format: How to format the data, for example if the data is Datetime, then what

should be the format.

– size: What is the data size, default is set to 15 (for varchar).

• row: Some monitoring tools record monitoring data as a series of rows, for example

sar collects data in this manner, similarly RUBBoS collect its client response time

data in a similar manner. So, this variable is used to specify which row to read.

index: There are instances where we need to ignore some rows, so this is to

specify what to include and what to exclude.

rowname: Name of the row you need to read.

• start-index: There are instances where you do not need to read from a beginning of a

log file (i.e., ignore first few rows), this will help to achieve that.

• end-index: Similar to start index (0 means read all).

A profile can refer to another profile, and the intuition of doing that is to share a same

Database table across multiple profiles. A user can refer a profile as shown below:

Listing B.4: Code Listening for Refereed Profile

< p r o f i l e r e f ="CPU1">

B.1.3 Mapping

For each node in the experiment, we monitor several resources (e.g., CPU, memory, I/O)

and depending on the node we might have different sets of resources. In the profile section

we create all the potential resources that we monitor during the experiment, rather all the

types of data we would like to upload to the database. Here we specify which node has what

data and what log file corresponding to what node. A sample mapping file is shown below:
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Listing B.5: Code Listening for Mapping

<mapping nodename=" Apache " f i l n a m e=" 1 6 9 . 2 5 4 . 1 0 0 . 3 . csv " s t a r t w i t h =" f a l s e " endwi th=" f a l s e "

p r o f i l e s ="CPU0 , DISK , CPU1 ,NETWORK, SYSTEM" / >

• nodename: Name of the node, this is simply referring to the name that a user specified

under Nodes.

• filename: The name of the file, for this we can have three scenarios:

1. complete file name: If the user knows the full file name across all the workloads

for example 169.254.100.3.csv (in this case the user can set both startwith and

endwith to false).

2. startwith: The user does not know the complete file path, but he/she knows the

file prefix for example 169.254.100.3-*. In this case the user can set the startwith

flag to be true and set the file name as the file prefix.

3. endwith: similar to startwith.

• profiles: What the type of profile that a user can retrieve from this file. For most files

a user will have one profile, but for some a user can have many.

B.1.4 Experiment Node

Each experiment consists of multiple nodes, and we need to specify all the nodes we would

like consider for the data analysis. The way of specifying the node information is as follows:

Listing B.6: Code Listening for Experiment Node

<node>

<name>MySQL2< / name>

< i p> 1 6 9 . 2 5 4 . 1 0 0 . 7< / i p>

< p r o f i l e >pc3000< / p r o f i l e >

<h o s t n o d e>PH1< / h o s t n o d e>

< s o f t w a r e>mysql− c l u s t e r −gpl −6 . 2 . 1 5< / s o f t w a r e>

< / node>
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• name: Name of the node (This refers to same value you used under mapping).

• ip: IP address.

• profile: hardware profile name (assuming you have a way to map this to something

you know).

• hostnode: if this is a VM, then where you have hosted this (an IP address of the

physical machine).

• software: What kind of software do you run on this server.

B.1.5 Workloads of the Experiment

Each experiment consists of multiple workloads, and in RUBBoS each workload results in

a separate directory. So when parsing the data, there should be a way to map a directory

to the workload. This section helps you to do that (you need to add the mapping for each

workload).

Listing B.7: Code Listening for Workload

<workload name=" 1000 " r e a d o n l y=" t r u e " d i r e c t o r y =" 2012−03−02@16−48−03 " / >

• name: Name of the workload 1000, 2000 etc. . .

• readonly - Indicating whether the workload is read only or read-write

• directory - File name of the directory

B.1.6 Database Information

Most of the time you will be using the same database, but in case you need to use a separate

database, then user can use following procedure to change the database settings.

Listing B.8: Code Listening for Workload

<d b i n f o>

<username>dbuername< / username>
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<passowrd>dbpassword< / passowrd>

< u r l > d b u r l / e l b a< / u r l >

< d b c l a s s >com . mysql . j d b c . D r i v e r< / d b c l a s s >

< / d b i n f o>

B.2 Steps of Using the Tool

The experiments which have completed with Dstat as the monitor and modified RUBBoS

client workload generator, then you can use the following command to auto generate the

mapping file:

1. Login to the script host (bonn or elbafs.cc.gatech.edu)

2. Go to your result directory

3. Execute /mnt/sdb/elbadata-store/scripts/generateMapping.sh . full-path-to-XTBL-file

The above script generates a valid mapping file for the results, but you might need to

modify it to suite for your requirements (i.e., structure of the results directory and format of

measurement data). In most cases it might not have the workload mappings (i.e., a result

directory to a workload), so you need to create that manually (above script also support

for other scenarios e.g., sar, but you need to generate and modify the file to make sure it

correctly map your experiment).

You can manually create the complete mapping file, once you create the mapping file use

the following command to upload the data to the database. First, go to the results directory

and then run:

/mnt/sdb/elbadata-store/dbscripts/dataimport.sh . path-to-mapping-file

The process might take few hours depending on the size of the data, so it is recommend

running in the data extraction as a background process.
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APPENDIX C

TUTORIAL - DATA VISUALIZATION

Experstore is an attempt to aid the analysis of large amount of data collected from experiment

measurements. It equips the user with the capability to identify patterns, trends and relations

which generally gets obscured by the massive quantities of data. Also, it equips the user

with capabilities to control the way in which data is represented which further enhances his

productivity and analytical capabilities. The application provides a simple interface using

which data from seemingly unrelated sources could be easily compared against each other

and in this way various latent, potentially interesting, relations can be identified. We have

implemented the data visualization tool as a Web portal and it provides following features:

C.1 Graphs as a Function of Original Values

Besides the standard graph, Experstore supports customized graph, that is representing

graphs as a function of original values. It is implemented by offset based modifications and

complex mathematical function that can be used to compute the customized value based on

the input values. Figure 63 below illustrates the customized graphs feature. The blue line is

the original graph, and the red line is the customized graph computed after function f(x) =

x + 10 to specify the offset.

The user function is taken as a string and the character ‘x’ is replaced with the value that

we obtain from the database. The graph is plotted by evaluating the arithmetic expression in

the resultant string.

C.2 Bucketed Graph for Correlation Analysis

Experstore supports the grouping of ranges of data values based on input parameter. The

user can specify a step size and we use it as a range, and the application will group the values
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Figure 63: Utilization Line Graph for CPU vs. Customized Graph with f(x) = x + 10

in the requested series to make trend analysis easier. Figure 64 and Figure 65 illustrate the

bucketed graph feature. Figure 64 shows the original graph for series CPU1, ranging from 0

to 75. Figure 65 shows the grouped bucketed graph after the user specifying the step as 10

and select “Stepwise Plot” in the operations field. The whole range is divided into 8 sub

ranges and the data in each range is grouped.

Figure 64: Utilization Line Graph for CPU1
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Figure 65: Utilization Bucketed Graph with Step as 10

C.3 Range based Frequency Analysis

Besides bucketed graphs, Experstore provides frequency data about number of points based

on data ranges. The user can specify an arbitrary step for the range. Figure 66 and Figure 67

illustrate the frequency analysis feature. Figure 66 shows the original graph for series CPU1,

ranging from 0 to 75. Figure 67 shows the frequency analysis graph after the user specifying

the step as 10 and select ”Stepwise Frequency” in the operations field. The whole range is

divided into 8 sub ranges and the data of how many points in each range is displayed.

Figure 66: Utilization Line Graph for CPU1
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Figure 67: Frequency Analysis Graph with Step as 10

C.4 Correlation Analysis

Besides the analysis for individual series, Experstore also provides mutual correlation and

disparity between multiple graphs so that trends can be identified easily. The user can select

any two series and draw a correlative graph to view the correlations. Figure 68, Figure 69

and Figure 70 illustrate the correlation feature. Figure 68 shows the original graph for series

CPU0, and Figure 69 shows the original graph for series CPU1. And Figure 70 shows the

correlative graph between CPU0 and CPU1 with function f(x) = x/y, where x stands for

data of CPU1, whereas y stands for data of CPU0.

Instead of using just one set of series, we ask user to input two series and then for

all value of time we get data for both the series and then use the equation substitution

mechanism, this time for x for first series, y for second series. Then we calculate the result

and use it instead to plot the graph.

C.5 3-Dimensional graphs

Besides 2-Dimensional graphs, Experstore support 3-Dimensional graphs that can improve

visualization power of the tool. Figure 71 and Figure 72 show the 3D graph feature.
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Figure 68: Utilization Line Graph for CPU0

Figure 69: Utilization Line Graph for CPU1

C.6 Cumulative Graphs

As to the data analysis capabilities, Experstore supports the customized cumulative graphs

for trend analysis with support for threshold based analysis. Comparing to standard graph,

for each point in the graph, this feature will display the cumulative values based on all

previous data instead of original value. Figure 73 and Figure 74 illustrate the cumulative

graphs feature.
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Figure 70: Correlative Graph with Series CPU0 and CPU1

Figure 71: 2-Dimensional Graph for Series CPU0

C.7 Additional Features

The application has support for multiple graph types like line, spline, area, column, bar,

scatter, pie and there many different variants. Most of these are compatible with each other in

the fact that they require the same format of data input that is utilized for plotting the values.

The application gives the capability to the user so that user can switch between different

graph types without the need for providing the input data again. This greatly enhances the
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Figure 72: 3-Dimensional Graph for Series CPU0

Figure 73: Utilization Line Graph for Series CPU0

usability of the application. It also provides the user with the option of having multiple

different types of graphs at the same time so that the comparison can be made as desired. In

addition to the specific features discussed above, Experstore web portal supports many other

features and some of them are listed below:

• Support for multiple graphs: A user has the option to have many different graphs of

potentially different type on the same page so that he can compare the results between
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Figure 74: Cumulative Graph for Series CPU0

the experiments in the desired manner. This feature is especially useful when complex

analysis tasks are performed.

• Simultaneous graphs: Even on the same graphs, the application permits the plot for

different values simultaneously which aids in detailed relative comparisons to be done

on the values from different sources.

• Zooming capability in graphs: Whenever a large amount of data is analyzed, there is

always the scenario where one wishes to pick a part of the data and analyze if further.

The application facilitates this task by giving the option to the user to zoom into a

particular region of the graph and then view it in detailed. This could turn out to be

really useful in case of studying an anomaly in the behavior of the system.

• Graph export support: The application provides user the option to export the current

graph in form of an image file. Currently the graph support the option of export in

JPEG, PNG and PDF formats.

• Graph printing support: For effective sharing, printing and then analyzing the graph

could turn out to be very useful.

182



• Dynamic graphs: The use of dynamic graphs for understanding and monitoring the

data in real time could be very useful. This is particularly useful when an ongoing

experiment is to be monitored.

• Customizable features: Various features like axes labels, titles and range of the dis-

played data is fully customizable. Which helps the user in differentiating between

graphs easily can could be very helpful for sharing of the information. It also incor-

porates the feature of modifying an existing graph and also removing any particular

graph if the user wishes to do so.

• Auto-adjustable axes: The use of auto adjustable axes gives user the ability to fully

utilize the visible space. The axes expand and shrink based on the maximum value

that to be plotted by the graph.
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Cloud computing has revolutionized the computing landscape by providing on-

demand, pay-as-you-go access to elastically scalable resources. Many applications are

now being migrated from on-premises data centers to public clouds; yet, the transition

to the cloud is not always straightforward and smooth. An application that performed

well in an on-premise data center may not perform identically in public computing clouds,

because many variables like virtualization can impact the application’s performance. By

collecting significant performance data through experimental study, the cloud’s complexity

particularly as it relates to performance can be revealed. However, conducting large-scale

system experiments is particularly challenging because of the practical difficulties that arise

during experimental deployment, configuration, execution and data processing. In spite

of these associated complexities, we argue that a promising approach for addressing these

challenges is to leverage automation to facilitate the exhaustive measurement of large-scale

experiments.

Automation provides numerous benefits: removes the error prone and cumbersome

involvement of human testers, reduces the burden of configuring and running large-scale

experiments for distributed applications, and accelerates the process of reliable applications

testing. In our approach, we have automated three key activities associated with the experi-

ment measurement process: create, manage and analyze. In create, we prepare the platform

and deploy and configure applications. In manage, we initialize the application components

(in a reproducible and verifiable order), execute workloads, collect resource monitoring

and other performance data, and parse and upload the results to the data warehouse. In

analyze, we process the collected data using various statistical and visualization techniques



to understand and explain performance phenomena. In our approach, a user provides the

experiment configuration file, so at the end, the user merely receives the results while the

framework does everything else. We enable the automation through code generation. From

an architectural viewpoint, our code generator adopts the compiler approach of multiple,

serial transformative stages; the hallmarks of this approach are that stages typically operate

on an XML document that is the intermediate representation, and XSLT performs the code

generation. Our automated approach to large-scale experiments has enabled cloud experi-

ments to scale well beyond the limits of manual experimentation, and it has enabled us to

identify non-trivial performance phenomena that would not have been possible otherwise.
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