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SUMMARY

With the increasing amount of collected data, large-scale high-dimensional data

analysis is becoming essential in many areas. These data can be analyzed either by

using fully computational methods or by leveraging human capabilities via interactive

visualization. However, each method has its drawbacks. While a fully computational

method can deal with large amounts of data, it lacks depth in its understanding of

the data, which is critical to the analysis. With the interactive visualization method,

the user can give a deeper insight on the data but suffers when large amounts of data

need to be analyzed.

Even with an apparent need for these two approaches to be integrated, little

progress has been made. As ways to tackle this problem, computational methods

have to be re-designed both theoretically and algorithmically, and the visual ana-

lytics system has to expose these computational methods to users so that they can

choose the proper algorithms and settings. To achieve an appropriate integration

between computational methods and visual analytics, the thesis focuses on essential

computational methods for visualization, such as dimension reduction and clustering,

and it presents fundamental development of computational methods as well as visual

analytic systems involving newly developed methods.

The contributions of the thesis include (1) the two-stage dimension reduction

framework that better handles significant information loss in visualization of high-

dimensional data, (2) efficient parametric updating of computational methods for

fast and smooth user interactions, and (3) an iteration-wise integration framework of

computational methods in real-time visual analytics. The latter parts of the thesis

xv



focus on the development of visual analytics systems involving the presented compu-

tational methods, such as (1) Testbed: an interactive visual testbed system for various

dimension reduction and clustering methods, (2) iVisClassifier: an interactive visual

classification system using supervised dimension reduction, and (3) VisIRR: an inter-

active visual information retrieval and recommender system for large-scale document

data.

xvi



CHAPTER I

INTRODUCTION

1.1 Motivation

In these days, an increasing amount of data is being generated in various forms

such as documents, images, etc. To analyze these data, the raw data are encoded

as high-dimensional vectors and then computational methods are typically applied

in the context of statistical machine learning and data mining. For instance, in

order to perform the facial recognition given a set of facial image data, the image

data are first encoded as a bag-of-feature-points scheme [91], and then a certain

classification technique, such as support vector machines [118], is applied. In many

cases, however, these computational methods are done in a fully automated manner,

and such approaches bear many limitations as follows:

1. Difficulty in choosing the encoding scheme and algorithm against the

data at hand. For certain types of tasks, e.g., classification, countless algo-

rithms exist, and users may not know which one to apply. Furthermore, each

method imposes its own assumptions on the data and involves a set of parame-

ters to be carefully determined. However, these issues are by no means straight-

forward to solve. For instance, the characteristics of the data do not meet the

underlying assumption in the algorithms. Recent manifold learning algorithms

[125, 111, 17] assume the low-dimensional curvi-linear manifold structure, but

there is no guarantee that the data at hand have such a structure. As an-

other example, even though the recent nonlinear kernel-based methods sound

appealing, how to determine the optimal kernel parameters, e.g., a bandwidth

parameter in Gaussian kernels, is also dependent on the data.
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2. Discrepancy between the algorithm criteria/performance and humans’

task objective. Many algorithm criteria of computational modules do not nec-

essarily reflect humans’ semantics and intuition. Instead, the algorithm criteria

are often driven by other aspects such as computational efficiency, tractabil-

ity, closed-form solutions, etc. For example, a squared loss function employed

in many computational modules is widely used due to its simple optimization

processes, but it may not always give the best results in practical data analysis

scenarios in that, say, the squared loss is generally prone to outliers. Even if

the algorithm criteria suit humans’ needs well, the performance may not be

sufficient. To be specific, many carefully-designed criteria often make it hard

to achieve the satisfactory criteria value due to their intensive computation and

existence of multiple local minima.

3. Ambiguity in task formulation. Large-scale data make it hard to explore

and understand them, and sometimes they even obscure what to solve and what

to be able to do with our data. In this situation, people may seek for some

insight about the data as to which data items may behave differently from the

rest. In addition, even if people have a clear goal in mind, it is often the case

that the mathematical formulation required to apply computational methods is

not straightforward. For instance, suppose one wants to analyze social network

data to identify which person or group has caused a certain movement. This

task may not be simply interpreted as a mathematical objective function or fit

to the existing formulation of computational methods.

In contrast to the fully automated computational approaches that lack deep under-

standing and careful treatment of the data, the area of visual analytics [127, 78], which

is defined as the science of analytical reasoning facilitated by interactive visual inter-

faces, has gained increasing interest. Visual analytics has fascinating characteristics

that leverage humans’ ability of quick visual insight in the data analysis and decision
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processes, and compared with the well-established literature of information visual-

ization, visual analytics typically focuses on reasoning and decision-making processes

rather than just understanding the data visually. Unfortunately, however, most of the

state-of-the-art visual analytics techniques or systems do not properly accommodate

large-scale data. One of the reasons is that although humans are good at quick visual

insight, such an ability deteriorates when the number of visualized objects, either

data items or features, is large. Furthermore, the limited screen space tends to create

visual clutter when visualizing large-scale high-dimensional data. For instance, paral-

lel coordinates, a widely-used visualization technique for multi-dimensional data, do

not scale when the dimension exceeds several tens or hundreds.

To improve the scalability issue, computational methods can support visual ana-

lytics by transforming the raw data into more compact and meaningful information.

For instance, dimension reduction and clustering can reduce the numbers of features

and data items into manageable sizes for both visualization and human perception.

Beyond such reduction aspects, computational methods can provide more intelligent

information about the data via their formulations based on long-studied statistical or

probabilistic theories in the context of machine learning and data mining. Examples

of such tasks include facial/speech recognition [16], document topic modeling [20],

sentiment analysis [99], and recommender systems [3].

Such appealing capabilities of computational methods motivated people towards

the tight integration of them with visual analytics for large-scale data. For example,

Seo et al. [117] have provided an interactive visualization system to explore the

clustering results obtained by the widely-used hierarchical clustering method. A

recently proposed method, latent Dirichlet allocation, has been utilized in visual

analytics tools for text documents [134, 50, 38, 37]. Even though various efforts

have been made for utilizing computational methods in visual analytics, there is still

significant room to improve such utility. That is, even though numerous advanced
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computational methods are currently being proposed and some of them claim that

they can be easily adopted in visualization applications, practical visual analytics

systems do not seem to currently take full advantage of these advanced methods. As

a result, people still tend to only use a few of the basic computational methods, e.g.,

principal component analysis (PCA) [74] for dimension reduction and k-means[19]

for clustering in many real-world analysis tasks. In addition, the above-mentioned

intelligent information could be useful in interactive visualization approaches, but

its usage in this direction is still limited. In this thesis, I address several hurdles in

achieving an appropriate integration as follows:

1. The computational module and its output are difficult to understand.

Without deep knowledge about the computational methods and the data, the

output generated by the computational methods is often more difficult to un-

derstand than the original raw data. Many modern computational algorithms

are complex, and often for the sake of algorithm flexibility, they involve pa-

rameters that have to be carefully determined. However, domain experts may

improperly set the parameters values due to their lack of understanding the

function of the parameters. Consequently, many visual analytic systems choose

specific computational methods and treat them as a black box while focusing

on the subsequent analysis of their output. Without a proper understanding of

the algorithm and its parameters, the performance of the computational module

may not be satisfactory enough to start an analysis with.

2. Computational methods require a significant amount of time. Most

computational methods involve heavy computations. In fact, as most meth-

ods become more advanced and capable, they tend to require more intensive

computations, which usually have a squared or cubic order of computational

complexity in terms of the number of data items and/or features. Therefore,

when dealing with large-scale data, the significant amount of computational
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time required hinders real-time visualization and subsequent interaction with

these computational modules.

This thesis aims to overcome these hurdles and achieve the tight integration between

computational methods and visual analytics in modern data analysis scenarios. I

claim that to this end, the computational methods have to be customized and even

be re-invented for use in visual analytics, and at the same time, the visual analytics

systems have to expose them to users out of a black box via interactive capabilities of

choosing the right methods and the best parameters. Based on this claim, the thesis

provides (1) several novel approaches for customizing computational methods and

(2) the visual analytics systems integrating such customization in various application

domains.

1.2 Objective

In summary, the thesis statement can be described as follows:

The theoretical and algorithmic customization of computational

methods will enable their appropriate integration with visual

analytics for analyses of complex large-scale high-dimensional

data. Visual analytics systems equipped with interactive capa-

bilities with various computational methods will help analysts

better understand the data at hand and solve complicated anal-

ysis tasks.

Under this statement, the thesis aims at achieving the true visual analytics where

the computational analyses and the user-driven interactive visual exploration are

tightly integrated. More specifically, the thesis mainly focuses on two key categories

of computational methods: dimension reduction and clustering. Dimension reduction

and clustering play an essential role in dealing with large-scale high-dimensional data
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in visual analytics by reducing the data dimension and the number of data items.

In other words, dimension reduction can reveal meaningful dimensions or features

out of numerous original dimensions as well as provide a means of visualizing high-

dimensional data in visual 2D/3D spaces so that analysts can obtain the insight about

data relationships with respect to geometric locations of data.

On the other hand, clustering provides an overview of large-scale data in terms

of a manageable number of groups based on their semantic coherences. Such cluster

information can then guide analysts to a proper data group of interest on which they

can further focus their analysis.

To be specific, the thesis addresses the following research questions in regards to

integration of dimension reduction and clustering to visual analytics.

1. Which characteristics in terms of data, algorithms, and humans, should be

exploited in order to make computational methods better support visual ana-

lytics? Based on these characteristics, how can the computational methods be

re-designed in visual analytics?

2. How can visual analytics systems utilizing these improved computational meth-

ods be realized and what analytic benefits can we claim from such systems?

1.3 Contributions

I present as the main contributions of the thesis various ways to tackle each of the

two addressed research questions. Basically, in response to the first question, the

thesis discusses several theoretical and algorithmic improvements of computational

methods when they support visual analytics, as follows:

1. Two-stage dimension reduction framework that better handles significant infor-

mation loss in visualization of high-dimensional data [35].

6



2. Efficient parametric updating of computational methods for fast and smooth

user interactions [34].

3. Iteration-wise integration framework of computational methods in real-time vi-

sual analytics [31].

On the other hand, the latter part of the thesis contribution lies mainly in the devel-

opment of visual analytics systems involving the presented improvements as follows:

1. Testbed: an interactive visual testbed system providing users with an easy

access to various dimension reduction and clustering methods for their own

data sets [32].

2. iVisClassifier: an interactive visual classification system via a supervised di-

mension reduction for improving classification models in a user-driven way [36].

3. VisIRR: an interactive visual information retrieval and recommender system for

large-scale document data that expands the documents of interest based on user

preferences [33].

1.4 Organization

The rest of the thesis presents each of the above-listed contributions in more detail.

Chapter 2 presents a novel framework of two-stage dimension reduction for visu-

alization of high-dimensional data. It is inevitable that significant information will be

lost when reducing the original high dimension of data into 2D/3D in visualization.

By using the formulations in terms of cluster-wise measures, the two-stage dimension

reduction framework, which separates the criteria of the original dimension reduction

methods and the further information loss, are presented. The thesis presents the de-

tailed criteria using widely-used dimension reduction methods and their visualization

examples on real-world data.
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Chapter 3 focuses on improving basic interactions with compuational methods,

i.e., changing their parameters in visual analytics. When dealing with real-world data,

it is not trivial to determine the parameter values of used computational methods.

Thus, users could naturally change the parameters and see what aspects of data

the computational methods may reveal. In order to accelerate such interactions, the

thesis presents efficient parametric updating algorithms and their uses.

Chapter 4 presents another novel approach called PIVE (Per-IterationVisualization

Environment for supporting real-time interactive visualization with computational

methods) to make computational methods significantly efficient in visual analytics.

In this chapter, the presented approach exploits the fact that most computational

methods are built upon iterative algorithms. Rather than waiting for the entire it-

eration to finish, the iteration-wise framework visualizes the intermediate results of

computational methods and enables users to interact with them in real time during it-

erations. The details of the proposed framework and its applications using well-known

visual analytics systems are presented.

Chapter 5 describes the fundamental visual analytics system called the Testbed

system, which makes various traditional and advanced dimension reduction and clus-

tering algorithms readily available in visual analytics scenarios. In addition to the

basic but crucial capabilities of selecting different methods and their parameters, ex-

ploring raw data, and brushing-and-linking, the system features a novel capability of

alignment between multiple visualization results for easy comparisons. The system

details and several usage scenarios are discussed.

Chapter 6 presents iVisClassifier, another visual analytics system developed based

on the Testbed system. iVisClassifier is a customized system for classification appli-

cations, which mainly utilizes a specific dimension reduction among those available in

the Testbed system. iVisClassifier supports ample features in order to help users un-

derstand data, which are, for example, what classes are confusing against each other,
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which data items are easy/difficult to classify, as well as enables users to intervene in

the classification processes. The system details and the usage scenarios in the facial

recognition context are described.

Chapter 6 presents VisIRR, an interactive visual information retrieval and recom-

mender system based on the Testbed system. This system directly tackles the large

scale of data by starting with more than 400,000 data items. Besides the basic capa-

bilities of clustering and visualizing the retrieved documents based on users’ queries,

the system has the capability to provide recommendations based on users’ prefer-

ence information. The details of the computational methods used and visualization

processes are presented along with several usage scenarios.

Finally, Chapter 8 concludes the thesis and presents interesting future research

topics.
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CHAPTER II

TWO-STAGE FRAMEWORK FOR VISUALIZATION OF

CLUSTERED HIGH-DIMENSIONAL DATA

In this chapter, we will discuss dimension reduction methods for 2D visualization of

high dimensional clustered data. We propose a two-stage framework for visualizing

such data based on dimension reduction methods. In the first stage, we obtain the

reduced dimensional data by applying a supervised dimension reduction method such

as linear discriminant analysis which preserves the original cluster structure in terms

of its criteria. The resulting optimal reduced dimension depends on the optimization

criteria and is often larger than two. In the second stage, the dimension is further

reduced to two for visualization purposes by another dimension reduction method

such as principal component analysis. The role of the second stage is to minimize

the loss of information due to reducing the dimension all the way to two. Using

this framework, we propose several two-stage methods, and present their theoretical

characteristics as well as experimental comparisons on both artificial and real-world

text data sets.

2.1 Introduction

Within the visual analytics community, various types of information content are rep-

resented using high dimensional signatures. To make these signatures useful they

often need to be transformed into a lower dimension (i.e., 2D or 3D) for a variety

of visual representations such as scatter plots. Many researchers in this community

have used a wide assortment of dimension reduction techniques, e.g., self-organizing

map (SOM) [83], principal component analysis (PCA) [75], multidimensional scaling
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(MDS) [45], etc. However, it is not always clear why a certain technique has been

chosen over another, especially to the end user. Typically, the goal of dimension

reduction techniques can be viewed in terms of two aspects: efficiency and accuracy.

Efficiency as defined here is the time to compute the reduction, but accuracy may

not be as simple to quantify. Many would amiably agree to quantify accuracy as a

measure of the relationship preservation in the high dimensional space to the reduced

dimensional space. Note that most techniques either directly or indirectly work on

this principle.

There are other properties that are important to those interpreting the semantics

of the reduced space. Specifically, we note that while local neighbor preservation

is important it depends upon the analysis task. No single reduction technique will

provide the complete view as various properties of the space are obscured or lost.

We have mentioned that typically the primary objective is relationship preservation.

However, there are at least two others: outlier and macro structure visualization.

Outliers are conceptually easy (i.e., a variance beyond some threshold), but more

difficult to quantify, as we do not necessarily know which set of outliers are important

to accentuate to the user. Certain techniques (e.g., PCA) tend to show outliers more

readily, however tend to compress the reduced space at the expense of showcasing the

outliers. Other techniques (e.g., SOM) maximize space usage well, but do so at the

expense of masking or even hiding those outliers. Likewise, macro structures of the

high dimensional space may be masked or massively distorted during the reduction.

Macro structures are those larger order groupings (e.g., clusters) that exist in the

original dimensional space. We recognize they are important in dimension reduction

research and to those in the visual analytics community. However, few of them focus

on data representation especially for visualization of the clustered data [147, 84, 49].

We propose theoretical measures for these properties and efficient algorithms

which will aid not only the researchers but ultimately the users/analysts to better
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understand which balance of properties are important and for which analytic tasks.

2.2 Motivation

The focus of this chapter is the fundamental characteristics of dimension reduction

techniques for visualizing high dimensional data in the form of a 2D scatter plot

when the data has cluster structure. The role of dimension reduction here is to give

a 2-dimensional representation of data while preserving cluster structure as much

as possible. To this end, supervised dimension reduction methods that incorporate

cluster information such as linear discriminant analysis (LDA) [60] or orthogonal

centroid method (OCM) [71] can be naturally considered.

However, one of the issues is that with many dimension reduction methods de-

signed to preserve the cluster structure in the data, the theoretically optimal reduced

dimension, which is the smallest dimension that is acceptable with respect to the

optimization criteria of the dimension reduction method, is usually larger than 2. For

example, in LDA, the minimum reduced dimension that preserves the cluster struc-

ture quality measure defined as a trace maximization problem is one less than the

number of clusters in the data in general [68, 67].

In this case, one may simply choose the two dimensions that contribute most to

such a measure. However, with only two dimensions, such a measure may become

significantly smaller than the original quantity after dimension reduction. This results

in loss of information that hinders visualization in properly reflecting the true cluster

relationship of the data. A similar situation may occur when using PCA for visualizing

the data not having a cluster structure. Even though PCA finds the principal axes

that maximally capture the variance of the data, when the resulting 2-dimensional

representation of the data maintains only a small fraction of the total variance, the

relationships of the data in 2 dimension are likely to be highly inconsistent with those

in the original dimension.
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Such loss of information is inevitable in that the dimension has to be reduced to

2. Our main motivation is to deal with such loss more carefully by separating the

loss-introducing stage from the original dimension reduction methods. Based on this

idea, we propose the two-stage framework of dimension reduction for visualization.

In this framework, a supervised dimension reduction method is applied in the first

stage so that the original dimension is reduced to the minimum dimension achievable

while preserving the quality of cluster measure as defined in a dimension reduction

method. The reduced dimension achieved in the first stage is often larger than 2.

Thus in the second stage, we find another dimension reducing transformation that

minimizes the loss introduced in further reducing the dimension all the way to 2.

This two-stage framework provides us with a means to flexibly apply different types

of dimension reduction techniques in each stage and to systematically analyze their

effects, which provides understanding the effects of the overall dimension reduction

methods for visualization of clustered data. The issues then are the design of the most

appropriate dimension reduction methods, the modeling of optimization criteria, and

the corresponding solution methods.

In this chapter, we present both theoretical and empirical answers to these is-

sues. Specifically, we propose several two-stage methods utilizing linear dimension

reduction methods such as LDA, orthogonal centroid method (OCM), and principal

component analysis (PCA), and we present their theoretical justifications by mod-

eling the optimization criteria for which each method provides the optimal solution.

Also, we illustrate and compare the effectiveness of the proposed methods by show-

ing empirical visualization on synthetic and real-world data sets.Although nonlinear

dimension reduction methods such as MDS or other manifold learning methods such

as isometric feature mapping [125] and locally linear embedding [111] may also be

utilized for the effective 2D visualization of high dimensional data, our focus in this

chapter is on linear methods. The linear methods are computationally more efficient
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in general, and unlike most of the manifold learning methods, they also provide di-

mension reducing transformations that can be applied to map and visualize unseen

data points in the same space where the existing data are visualized.

Our approach to successively apply two dimension reduction methods should be

discerned from the previous work [144, 145, 150] in that they usually aim for improving

computational efficiency, scalability, or applicability of a certain dimension reduction

method, e.g., LDA.

The rest of this chapter is organized as follows. In Section 2.3, LDA, OCM, and

PCA are described based on a unified framework of the scatter matrices and their trace

optimization problems. In Section 2.4, we formulate two-stage dimension reduction

methods, and in Section 2.5, several two-stage methods for visualization are proposed

and compared along with their criteria. Experimental comparisons are given using

artificial and real-world data sets in Section 2.6, and conclusions are drawn in Section

2.7.

2.3 Dimension Reduction as Trace Optimization Problem

In this section, we introduce the notions of scatter matrices used in defining cluster

quality and optimization criteria for dimension reduction.

Suppose a dimension reducing linear transformation GT ∈ R
l×m maps an m-

dimensional data vector x to a vector z in an l-dimensional space (m > l):

GT : x ∈ R
m×1 → z = GTx ∈ R

l×1. (1)

Suppose also that a data matrix A = [a1 a2 · · · an] ∈ R
m×n is given where the columns

aj , j = 1, . . . , n, of A represent n data items in an m-dimensional space, and they

are partitioned into k clusters. Without loss of generality, for simplicity of notations,

we further assume that A is partitioned as

A = [A1 A2 · · · Ak], where Ai ∈ R
m×ni and

k
∑

i=1

ni = n.
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Let Ni denote the set of column indices that belong to cluster i, and ni the size of

Ni. The i-th cluster centroid c(i) and the global centroid c are defined, respectively,

as

c(i) =
1

ni

∑

j∈Ni

aj and c =
1

n

n
∑

j=1

aj .

The scatter matrix within the i-th cluster S
(i)
w , the within-cluster scatter matrix Sw,

the between-cluster scatter matrix Sb, and the total (or mixture) scatter matrix St

are defined [70, 122], respectively, as

S(i)
w =

∑

j∈Ni

(aj − c(i))(aj − c(i))T ,

Sw =
k

∑

i=1

S(i)
w =

k
∑

i=1

∑

j∈Ni

(aj − c(i))(aj − c(i))T , (2)

Sb =

k
∑

i=1

∑

j∈Ni

(c(i) − c)(c(i) − c)T =

k
∑

i=1

ni(c
(i) − c)(c(i) − c)T (3)

=
1

n

k−1
∑

i=1

k
∑

j=i+1

ninj(c
(i) − c(j))(c(i) − c(j))T , and (4)

St =

n
∑

j=1

(aj − c)(aj − c)T . (5)

Note that the total scatter matrix St is related to Sw and Sb as [70]

St = Sw + Sb. (6)

When GT in Eq. (1) is applied to the matrix A, the scatter matrices Sw, Sb, and St

in the original dimensional space are reduced to the l × l matrices

GTSwG, GTSbG, and GTStG,
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respectively. By computing the trace of the scatter matrices as

trace(Sw) =
k

∑

i=1

∑

j∈Ni

(aj − c(i))T (aj − c(i))

=

k
∑

i=1

∑

j∈Ni

‖aj − c(i)‖22, (7)

trace(Sb) =
k

∑

i=1

∑

j∈Ni

(c(i) − c)T (c(i) − c)

=

k
∑

i=1

ni‖c(i) − c‖22 (8)

=
1

n

k−1
∑

i=1

k
∑

j=i+1

ninj‖c(i) − c(j)‖22, and (9)

trace(St) =

n
∑

j=1

(aj − c)T (aj − c) =

n
∑

j=1

‖aj − c‖22, (10)

we obtain values that can be used to measure the cluster quality. Note that from Eqs.

(8) and (9), trace(Sb) can be viewed as the squared sum of the pairwise distances

between cluster centroids as well as that of the distances between each centroid and

the global centroid.

The cluster structure quality can be defined by analyzing how well each clus-

ter can be discriminated from each other. High quality clusters usually have small

trace(Sw) and large trace(Sb), relating to the small variance within each cluster and

the large distances between clusters. Subsequently, dimension reduction methods may

be intended to maximize trace(GTSbG) and minimize trace(GTSwG) in the reduced

dimensional space. This simultaneous optimization can be approximated to a single

criterion as

Jb/w(G) = max trace((GTSwG)−1(GTSbG)), (11)

which is the criterion of LDA. In addition, one may focus on maximizing the distances

between clusters, which can be represented as the criterion of OCM, i.e.,

Jb(G) = max
GTG=I

trace(GTSbG). (12)
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On the other hand, regardless of cluster dependent terms, Sw and Sb, the trace of the

total scatter matrix St can be maximized as

Jt(G) = max
GTG=I

trace(GTStG), (13)

which turns out to be the criterion of PCA. In Eqs. (12) and (13), without the

constraint, GTG = I, Jb(G) and Jt(G) can become arbitrarily large.

In what follows, LDA, OCM, and PCA are discussed based on such maximization

criteria, and their properties relevant to visualization are identified.

2.3.1 Linear Discriminant Analysis (LDA)

Conceptually, in LDA, we are looking for a dimension reducing transformation that

keeps the between-cluster relationship as remote as possible by maximizing trace(GTSbG)

while keeping the within cluster relationship as compact as possible by minimizing

trace(GTSwG). As shown in Eq. (11), the criterion of LDA can be written as

Jb/w(G) = max trace((GTSwG)−1(GTSbG)). (14)

It can be shown that for any G ∈ R
m×l where m > l ,

trace((GTSwG)−1(GTSbG)) ≤ trace(S−1
w Sb), (15)

meaning that the cluster structure quality measured by trace(S−1
w Sb) cannot be in-

creased after dimension reduction [60]. By setting the derivative of Eq. (14) with

respect to G to zero, which gives the first order optimality condition, it can be shown

that the solution of LDA, where we denote it as GLDA, has the columns which are

the leading generalized eigenvectors u of the generalized eigenvalue problem,

Sbu = λSwu. (16)

Since the rank of Sb is at most k−1, LDA achieves the upper bound of trace((GTSwG)−1
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Table 1: Comparison of dimension reduction methods. It is assumed Sb and St are
full rank.

Optimization criterion
Algorithm

Smallest dimension achieving

(x ∈ R
m×1 GT

→ y ∈ R
l×1) the criterion upper bound

LDA
Jb/w(G) = generalized

k − 1
max trace((GTSwG)−1(GTSbG)) eig. decomp.

OCM
Jb(G) = QR

k
max

GT G=I
trace(GT SbG) decomp.

PCA
Jt(G) = symmetric

min(m, n)
max

GT G=I
trace(GTStG) eig. decomp.

(GTSbG)) in Eq. (15) for any l such that l ≥ k − 1, i.e.,

trace((GT
LDASwGLDA)

−1(GT
LDASbGLDA))

= trace(S−1
w Sb) for l ≥ k − 1, (17)

which indicates trace(S−1
w Sb) is preserved between the original space and the reduced

dimensional space obtained by GLDA.

2.3.2 Orthogonal Centroid Method (OCM)

Orthogonal centroid method (OCM) [71] focuses only on maximizing trace(GTSbG)

under the constraint of GTG = I. The criterion of OCM is shown as

Jb(G) = max
GTG=I

trace(GTSbG). (18)

It is known that for any G ∈ R
m×l where m > l such that GTG = I,

trace(GTSbG) ≤ trace(Sb), (19)

which means the cluster structure quality measured by trace(Sb) cannot be increased

after dimension reduction. The solution of Eq. (18) can be obtained by setting the

columns of G as the leading eigenvectors of Sb. Since Sb has at most k − 1 nonzero

eigenvalues, the upper bound of trace(GTSbG) in Eq. (19) can be achieved for any l

such that l ≥ k − 1, i.e.,

trace(GTSbG) = trace(Sb) for l ≥ k − 1. (20)
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Eq. (20) indicates trace(Sb) is preserved between the original and the reduced dimen-

sional spaces.

An advantage of OCM is that it achieves an upper bound of trace(GTSbG) more

efficiently by using QR decomposition, avoiding the eigendecomposition. The algo-

rithm of OCM is as follows. First the centroid matrix C is formed so that each column

of C is composed of each cluster’s centroid vector, i.e., C =

[

c1 c2 · · · ck

]

. Then

the reduced QR decomposition [61] of C is computed for C = QkR where Qk ∈ R
m×k

with QT
kQk = I and R ∈ R

k×k is upper triangular. The solution of OCM, GOCM , is

found as

GOCM = Qk.

Note that the columns of GOCM are composed of the orthogonal bases for the subspace

spanned by the centroids, and l = k in this case. Finally, OCM achieves

trace(GT
OCMSbGOCM) = trace(Sb), where l = k.

By using the equivalence between Eqs. (3) and (4), one can prove that each pair-

wise distance between cluster centroids is also preserved in the reduced dimensional

space obtained by OCM.

Another important property of OCM is that by projecting data into the subspace

spanned by the centroids, the order of similarities between any particular point and

centroids are preserved in terms of Euclidean norm and cosine similarity measure

[71, 67]. In other words, for any vector q ∈ R
m×1 and cluster centroids c(i) and c(j),

we have

‖q − c(i)‖2 < ‖q − c(j)‖2 ⇒

‖GT
OCMq −GT

OCMc(i)‖2 < ‖GT
OCMq −GT

OCMc(j)‖2, and

qT c(i)

‖q‖2‖c(i)‖2
<

qT c(j)

‖q‖2‖c(j)‖2
⇒

(

GT
OCMq

)T
GT

OCMc(i)

‖GT
OCMq‖2‖GT

OCMc(i)‖2
<

(

GT
OCMq

)T
GT

OCMc(j)

‖GT
OCMq‖2‖GT

OCMc(j)‖2
.
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2.3.3 Principal Component Analysis (PCA)

PCA is a well-known dimension reduction method that captures the maximal variance

in the data. The criterion of PCA can be written as

Jt(G) = max
GTG=I

trace(GTStG). (21)

For any G ∈ R
m×l where m > l such that GTG = I, we have

trace(GTStG) ≤ trace(St), (22)

which means trace(St) cannot be increased after dimension reduction. The solution

of Eq. (21), where we denote it as GPCA, can be obtained by setting the columns

of G as the leading eigenvectors of St. Since the rank of St is at most min(m, n),

PCA achieves the upper bound of trace(GTStG) in Eq. (22) for any l such that

l ≥ min(m, n), i.e.,

trace(GT
PCAStGPCA) = trace(St) for l ≥ min(m, n).

In many applications of PCA, however, l is usually chosen as a fixed value less than

the ranke of St for the purpose of dimension reduction or noise reduction. This noisy

subspace corresponds to the smallest eigenvectors of St, and they are removed by

PCA for better representation of the data.

Although St is related to Sb and Sw as in Eq. (6), St as it is does not contain

any information on cluster labels. That is, unlike LDA and OCM, PCA ignores the

cluster structure represented by Sb and/or Sw, which is why PCA is considered as an

unsupervised dimension reduction method.

Usually, PCA assumes that the global centroid is zero by subtracting the empirical

mean of the data from each data vector. The centered data can be represented as

A− ceT , where e is n-dimensional vector whose components are all 1’s.

PCA has a unique property that, given a fixed l, it produces the best reduced

dimensional representation that minimizes the difference between the centered matrix
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A− ceT and its projection to the reduced dimensional space GGT (A− ceT ) where G

has orthonormal columns, i.e.,

GPCA = arg min
G,GTG=Il

‖GGT (A− ceT )− (A− ceT )‖,

where the matrix norm ‖ · ‖ is either a Frobenius norm or a Euclidean norm.

The three discussed methods are summarized in Table 1.

2.4 Formulation of Two-stage Framework for Visualiza-
tion

Suppose we want to find a dimension reducing linear transformation V T ∈ R
2×m that

maps an m-dimensional data vector x to a vector z in a 2-dimensional space (m≫ 2):

V T : x ∈ R
m×1 → z = V Tx ∈ R

2×1. (23)

Further assume that it is composed of two stages of dimension reductions as follows.

In the first stage, a dimension reducing linear transformation GT ∈ R
l×m maps an

m-dimensional data vector x to a vector y in the l-dimensional space (l ≪ m):

GT : x ∈ R
m×1 → y = GTx ∈ R

l×1, (24)

where l is fixed as its minimum optimal dimension by the first-stage criterion. When

l ≤ 2, we have no further dimension reduction to do after the first step. However, an

optimal l in many methods and for many data sets is larger than 2, and so we assume

that l > 2.

In the second stage, another dimension reducing linear transformation HT ∈ R
2×l

maps an l-dimensional data vector y to a vector z in the 2-dimensional space(l > 2):

HT : y ∈ R
l×1 → z = HTy ∈ R

2×1. (25)

Such consecutive dimension reductions performed by GT followed by HT can be

combined, resulting in a single dimension reducing transformation V T as

V T = HTGT . (26)

21



In the next section, discussion will be focused on various ways for choosing the first

stage dimension reducing transformation G and the second stage dimension transfor-

mation H with a purpose to construct combined dimension reducing transformation

V T = HTGT for 2-dimensional visualization according to various optimization crite-

ria.

2.5 Two-stage Methods for 2D Visualization

All the proposed two-stage methods start from one of the supervised dimension re-

duction methods such as LDA or OCM that are designed for clustered data. In the

first stage (by GT ∈ R
l×m in Eq. (24)), the dimension is reduced by LDA or OCM to

the smallest dimension that satisfies Eq. (17) or (20), respectively. Therefore in the

first stage, the cluster structure quality measured either by trace(S−1
w Sb) or trace(Sb)

is preserved. Then we perform the second-stage dimension reduction (by HT ∈ R
2×l

in Eq. (25)) that minimizes the loss of information either by applying the same cri-

terion used in the first stage or by using Jt in Eq. (21), i.e., that of PCA. As seen

in Section 3.3, Eq. (21) gives the best approximation of the first-stage results that

minimize the difference in terms of Frobenius/Euclidean norm.

In what follows, we describe each of the two-stage methods in detail, and derive

their equivalent single-stage methods (by V T ∈ R
2×m in Eq. (23)) in case they exist.

2.5.1 Rank-2 LDA

In this method, LDA is applied in the first stage, and trace(S−1
w Sb) is preserved in the

l-dimensional space where l = k− 1. In the second stage, the same criterion Jb/w(H)

is used to reduce the l-dimensional first-stage results to 2-dimensional data.

The criterion of the second-stage dimension reducing matrix H can be formulated
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Table 2: Summary of the optimization criteria of the two-stage dimension reduction
methods.

Rank-2 LDA LDA + PCA

Stage 1: Preservation trace((GTSwG)−1(GTSbG)) =

(x ∈ R
m×1 GT

→ y ∈ R
l×1) trace(S−1

w Sb)
Stage 2: Maximization trace((HT (GTSwG)H)−1

trace
HTH=I

(HT (GTStG)H)
(y ∈ R

l×1 HT

→ z ∈ R
2×1) (HT (GTSbG)H))

OCM+PCA Rank-2 PCA on Sb

Stage 1: Preservation trace(GTSbG) =

(x ∈ R
m×1 GT

→ y ∈ R
l×1) trace(Sb)

Stage 2: Maximization trace
HTH=I

(HT (GTStG)H) trace
HTH=I

(HT (GTSbG)H)
(y ∈ R

l×1 HT

→ z ∈ R
2×1)

as

Hb/w = max
H∈Rl×2

trace((HT (GT
LDASwGLDA)H)−1

(HT (GT
LDASbGLDA)H)). (27)

Assuming the columns of GLDA, which are generalized eigenvectors of Eq. (16),

are in decreasing order of their corresponding generalized eigenvalues, i.e., GLDA =
[

u1 u2 · · · uk−1

]

where λ1 ≥ λ2 ≥ · · · ≥ λk−1, the solution of Eq. (27) is

Hb/w =

[

e1 e2

]

,

where e1 and e2 are the first and the second standard unit vectors, i.e., e1 =

[

1 0 · · · 0

]T

∈

R
l×1 and e2 =

[

0 1 0 · · · 0

]T

∈ R
l×1. This solution is equivalent to choosing

two dimensions with the most leading generalized eigenvalues from the first stage

result, and the resulting two-stage method can be represented as a single-stage di-

mension reduction method by V ∈ R
m×2 which directly maximize Jb/w, i.e.,

Vb/w = arg max
V ∈Rm×2

Jb/w(V )

= arg max
V ∈Rm×2

trace((V TSwV )−1(V TSbV )). (28)

The solution of Eq. (28) becomes

Vb/w = GLDAHb/w =

[

u1 u2

]

,
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where u1and u2 are the leading generalized eigenvectors of Eq. (16). This solution is

also known as reduced-rank linear discriminant analysis [66].

2.5.2 LDA followed by PCA

In this method, LDA is applied in the first stage, and trace(S−1
w Sb) is preserved in

the l-dimensional space where l = k−1. In the second stage, PCA is applied in order

to obtain the best approximation of the l-dimensional first-stage results in terms of

Frobenius/Euclidean norm.

The second-stage dimension reducing matrix H is obtained by solving

Ht = arg max
H∈Rl×2,HTH=I

trace(HT (GT
LDAStGLDA)H), (29)

where the solution is the two leading eigenvectors of the total scatter matrix of the

first-stage result, GT
LDAStGLDA.

From Eq. (6), we have

GT
LDAStGLDA = GT

LDA(Sb + Sw)GLDA. (30)

Since LDA conceptually maximizes trace(GTSbG) and minimizes trace(GTSwG), the

result is expected to satisfy

trace(GT
LDASbGLDA)≫ trace(GT

LDASwGLDA)),

which means that GT
LDAStGLDA is dominated by GT

LDASbGLDA, i.e.,

GT
LDA(Sb + Sw)GLDA ≃ GT

LDASbGLDA.

In this case, the principal axes that PCA gives in the second stage better reflect those

of the between-cluster matrix of the first-stage result, GT
LDASbGLDA, and they may in

turn discriminate the clusters clearly in the 2-dimensional space. In this sense, LDA

followed by PCA achieves a clear cluster structure as well as a good approximation

of the first-stage result.
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Table 3: Description of data sets.

GAUSSIAN MEDLINE NEWSGROUPS REUTERS

Original dimension, m 1100 22095 16702 3907

Number of data items, n 1000 500 770 800

Number of clusters, k 10 5 11 10

2.5.3 OCM followed by PCA

In this method, OCM is applied in the first stage, and trace(Sb) is preserved in the

l-dimensional space where l = k. In the second stage, PCA is applied in order to

obtain the best approximation of the l-dimensional first-stage results in terms of

Frobenius/Euclidean norm.

As in Section 5.2, the second-stage dimension reducing matrix H is obtained by

solving

Ht = arg max
H∈Rl×2,HTH=I

trace(HT (GT
OCMStGOCM)H), (31)

where the solution is the two leading eigenvectors of the total scatter matrix of the

first-stage result, GT
OCMStGOCM .

From Eq. (6), we have

GT
OCMStGOCM = GT

OCM(Sb + Sw)GOCM . (32)

Unlike LDA, OCM does not minimize trace(GTSwG) as shown in Eq. (18). Therefore

the following may not be the case:

trace(GT
OCMSbGOCM)≫ trace(GT

OCMSwGOCM),

which means that GT
OCMSbGOCM does not necessarily dominate GT

OCMStGOCM . Then

the two principal axes of GT
OCMStGOCM obtained by PCA in the second stage tend

to fail to reflect those of GT
OCMSbGOCM , which may rather scatter the data points

within each cluster, eventually preventing the visualization results from showing a

clear cluster structure.
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2.5.4 Rank-2 PCA on Sb

In this method, OCM is applied in the first stage, and trace(Sb) is preserved in the

l-dimensional space where l = k. In the second stage, the same criterion Jb(H) is

used to reduce the l-dimensional first-stage results to 2-dimensional data.

The second-stage dimension reducing matrix H is obtained by solving

Hb = arg max
H∈Rl×2,HTH=I

trace(HT (GT
OCMSbGOCM)H), (33)

where the solution is the two leading eigenvectors of the between-scatter matrix of the

first-stage result, GT
OCMSbGOCM . The columns of GOCM form the subspace spanned

by centroids, and this subspace includes the range space of Sb. Accordingly, one can

easily show that the eigenvector uY
i ∈ R

l×1 of GT
OCMSbGOCM is related to eigenvectors

ui ∈ R
m×1 of Sb as

uY
i = GT

OCMui

with their corresponding eigenvalues matched as well, i.e., λY
i = λi. Hence, the

solution of Eq. (33) can be written as

Hb =

[

uY
1 uY

2

]

= GT
OCM

[

u1 u2

]

. (34)

Using Eq. (34) and the relationship shown in Eq. (26), the single-stage dimension

reducing transformation Vb can be built as

V T
b = HT

b G
T
OCM =







uT
1

uT
2






GOCMGT

OCM

=







uT
1

uT
2






(35)

= arg max
V ∈Rm×2

Jb(V )

= arg max
V ∈Rm×2

trace(V TSbV ). (36)
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Eq. (35) holds since the eigenvectors of Sb, u1 and u2, are in the range space of GOCM .

The criterion of Eq. (36) has been used in one of the successful visual analytic systems,

IN-SPIRE, for 2D representation of document data [138].

The discussed two-stage methods are summarized in Table 2.

2.6 Experiments

In this section, we present visualization results using the proposed methods for several

data sets, especially focusing on undersampled text data visualization where the data

item is represented in m-dimensional space and the number of the data items n is

less than m (m > n).

2.6.1 Regularization on LDA for undersampled data

In undersampled cases, the LDA criterion shown in Eq. (14) cannot be applied di-

rectly because Sw is singular. In order to overcome this singularity problem, Howland

et al. proposed a universal algorithmic framework of LDA using the generalized sin-

gular value decomposition (LDA/GSVD) [68, 67]. Specifically, for the case when

m ≫ n ≫ k, which is usual for most undersampled problems, LDA/GSVD gives

the solution for G such that GTSwG = 0 while maintaining the maximum value of

trace(GTSbG). This solution makes sense since LDA criterion is formulated to min-

imize trace(GTSwG). However, it means that all of the data points belonging to a

specific cluster are represented as a single point in the reduced dimensional space,

which lessens the generalization ability for classification as well as for visualizing the

individual data relationship within each cluster.

On the contrary, the fact that LDA makes GTSwG = 0 can be viewed as an

advantage for visualization purposes since LDA has the capability to fully minimize

trace(GTSwG). By means of regularization on Sw one can control trace(GTSwG),

which determines the scatter of the data points within each cluster. In regularized

LDA which was originally proposed to avoid the singularity of Sw in classification
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context, Sw is replaced by a nonsingular matrix Sw + γI where I is an identity

matrix, and γ is a control parameter. In general, as γ is increased, the within-

cluster distance, trace(GTSwG), also becomes larger with data points being more

scattered around their corresponding centroids. As γ is decreased, the within-cluster

distance becomes smaller, and the data points gather closer around their centroids.

Such manipulation of γ can be exploited in a visualization context because one can

choose an appropriate value of γ so that the second-stage method such as PCA,

which maximizes trace(GTStG) = trace(GTSbG+GTSwG), does not focus too much

on trace(GTSwG). The results that follow are based on such choices of γ.

2.6.2 Data Sets

The data sets tested are composed of one artificially-generated Gaussian-mixture

dataset (GAUSSIAN) and three real-world text data sets (MEDLINE, NEWSGROUPS,

and REUTERS) that are clustered based on their topics. All the text documents are

encoded as term-document matrices where each dimension corresponds to a particular

word, and the value of a certain dimension represents the frequency of the correspond-

ing word shown in the document. Each data set is set to have an equal number of

data per cluster, and have a mean of zero which is attained by subtracting the global

mean. (See Section 6.3.)

The descriptions of data sets, which are also summarized in Table 3, are as follows.

The GAUSSIAN data set is a randomly generated Gaussian mixture with 10

clusters. Each cluster is made up of 100 data vectors, which add up to 1000 in total,

and the dimension is set to 1100, which is slightly more than the number of the data

items. In its visualization shown in Fig. (1), the clusters are labeled using letters as

• ’a’, ’b’, . . . , and ’j’.

The MEDLINE data set is a document corpus related to medical science from the
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National Institutes of Health1. The original dimension is 22095, and the number of

clusters is 5, where each cluster has 100 documents. The cluster labels that correspond

to the document topics are shown as

• heart attack (’h’), colon cancer (’c’), diabetes (’d’), oral cancer (’o’), and tooth

decay (’t’),

where the letters in parentheses are used in the visualization shown in Fig. (2).

The NEWSGROUPS data set [11] is a collection of newsgroup documents, and

originally composed of 20 topics. However, we have chosen 11 topics for visualization,

and each cluster is set to have 70 documents. The original dimension is 16702, and

the cluster labels are shown as

• comp.sys.ibm.pc.hardware (’p’), comp.sys.mac.hardware (’a’), misc.forsale (’f’), rec.sport.baseball

(’b), sci crypt (’y’), sci.electronics (’e’), sci.med (’d’), soc.religion.christian (’c’), talk.politics.guns

(’g’), talk.politics.misc (’p’), and talk.religion.misc (’r’),

where the letters in parentheses are used in the visualization shown in Fig. (3).

The REUTERS data set [11] is the document collection that appeared in the

Reuters newswire in 1987, and originally composed of hundreds of topics. Among

them, 10 topics related to economic subjects are chosen for visualization, and each

cluster has 80 documents. The original dimension is 3907, and the cluster labels are

shown as

• earn (’e’), acquisitions (’a’), money-fx (’m’), grain (’g’), crude (’r’), trade (’t’), interest (’i’),

ship (’s’), wheat (’w’), and corn (’c’),

where the letters in parentheses are used in the visualization shown in Fig. (4).

2.6.3 Effects of Data Centering

Fig. 5 is the example of applying OCM+PCA to the MEDLINE data set with and

without data centering. Once the MEDLINE data set is encoded as a term-document

1http://www.cc.gatech.edu/˜hpark/data.html
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matrix, every component has a non-negative value, which results in the global centroid

that is significantly far from the origin. Then performing PCA without data centering

might give the first principal axis as the one reflecting the global centroid rather than

that discriminating clusters. If we consider projecting the data onto each of the

horizontal and the vertical axes in Fig. 5, the former, which corresponds to the first

principal axis, does not help in showing the cluster structure clearly, and only the

vertical axis, which corresponds to the second principal axis from PCA, discriminates

clusters. We have found that such undesirable behavior is common in many cases

without data centering, which is why we assume that data is centered throughout

this chapter. Accordingly, all the results shown in Figs 1-4 are obtained after data

centering.

2.6.4 Comparison of Visualization Results

The results of four two-stage methods for the tested data sets are shown in Figs.1-42.

In all cases, LDA-based methods show cluster structures more clearly than OCM-

based methods. This proves the effectiveness of LDA that considers both within- and

between-cluster measures while OCM only takes into account the latter. Due to this

difference, OCM generally produces a widely-scattered data representation within

each cluster. As a result, in the NEWSGROUPS dataset, such a wide within-cluster

variance significantly deteriorates the cluster structure visualization even if OCM still

attempts to maximize the between-cluster distance.

In the MEDLINE and the REUTERS data sets, all of the four methods produce

relatively similar results. However, we have controlled the within-cluster variance in

LDA-based methods using the regularization term γI. In addition, the fact that rank-

2 LDA and LDA+PCA produce almost identical results indicates that GT
LDAStGLDA

is dominated by GT
LDASbGLDA after LDA is applied in the first stage as we expected.

2Those figures can be arbitrarily magnified without losing the resolution in the electronic version
of this chapter.
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Rank-2 LDA represents each cluster most compactly by minimizing the within-

cluster radii both in the first and the second stage. However, it may reduce the

between-cluster distances as well because Jb/w maximizes the conceptual ratio of two

scatter measures. As can be seen in the two LDA-based methods applied to the

NEWGROUPS data set, while rank-2 LDA minimizes the within-cluster radii, it also

places the centroids closer to each other as compared to those in LDA+PCA. Due to

this effect, which one is preferable between rank-2 LDA and LDA+PCA depends on

the data set to be visualized.

Overall, OCM+PCA and Rank-2 PCA on Sb show similar results. It means

GTSbG ≃ GTStG in that the difference between two methods lies in whether PCA is

applied to GTSbG or GTStG in the second stage. Since performing PCA on GTSbG

is computationally more efficient than PCA on GTStG, Rank-2 PCA on Sb can be a

good alternative to OCM+PCA in case efficient computation is important.

Finally, these visualization results reveal the interesting cluster relationships un-

derlying in the data. In Fig. (2), the clusters for colon cancer (’c’) and oral cancer (’o’)

are shown close to each other. In Fig. (3), the clusters of soc.religion.christian (’c’)

and talk.religion.misc (’r’), those of comp.sys.ibm.pc.hardware (’p’) and comp.sys.mac.hardware

(’a’), and those of sci.crypt (’y’) and sci.med (’d’) are closely located respectively in

LDA-based methods. In addition, the two clusters, misc.forsale (’f’) and rec.sport.baseball

(’b’), are shown to be the most distinctive, which makes sense because those topics

are quite irrelevant to the others. In Fig. (4), the clusters of grain (’g’), wheat (’w’),

and corn (’c’) as well as those of money-fx (’m’) and interest (’i’) are visualized very

close.

2.7 Conclusions

According to our results, LDA-based methods are shown to be superior to OCM-based

methods since both within- and between-cluster relationships are taken into account
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in LDA. Especially, combined with PCA in the second stage, LDA+PCA achieves a

clear discrimination between clusters as well as the best approximation of the results

of LDA when the distance between data is measured in terms of Frobenius/Euclidean

norm.

However, many classes except for few of them that are clearly unrelated tend

to be overlapped especially when dealing with large numbers of data points and

clusters. This is inherently due to the nature of the second-stage dimension reduction

in which only the two axes are chosen so that the classes which contribute most to

the second stage criteria can be well-discriminated. Such behavior can exaggerate

the distances between particular clusters, and more elaboration towards new criteria

that fits in visualization is required. In the MEDLINE and the REUTERS datasets,

visualization results seem to have a tail-shape along specific directions. We often

found this phenomenon to occur in many other data sets. It is still unclear as to what

causes this and how it affects the visualization, e.g. characteristics of information loss

in the second stage. Finally, in order to determine how much loss of information is

introduced by each method, more rigorous analysis based on various quantitative

measures such as pairwise between-cluster distance and within-cluster radii should

be conducted.
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Figure 1: Comparison of the two-stage methods in the GAUSS data set.

(a) Rank-2 LDA
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(c) OCM+PCA
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(d) Rank-2 PCA on Sb
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Figure 2: Comparison of the two-stage methods in the MEDLINE data set.

(a) Rank-2 LDA

−0.05 0 0.05 0.1

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

h

h
hhh

h

h

h

h

h

h
h

h

h

h

h
h

h

h

hh hh h
h

h

h
h h
h
h

h

hh
h

h

hh

h h

h

h
h

h
h

h

h

h
h

h

h

hh
h
h

h

h
h

h

h

h
h

h

h

h
h

h

h

h

h
h

h

h
h
h

h

hh
h h

h

h

hhh hh
h

h
hhhh h

h
h

h h
h
h

c

c
cc

c
c c

c c

c
c

cc
c

c

c
c

cc
c

cc
c

c

c

c

c
c

c
c

c

c
c c

c

c
cc c

c

c

c
c cc c c

c

c

c
c

c
c

c

c

c
c

c
c

c

c
c

c

cc

c

c
c

c
c

c
c

ccc
c

cc

c

c

c

c

c

c
c

c
c

c
c

c

cc

c

c

cc

cc

c
c

ddd d
d
d d

d
d

d
d

d
dd d

d d d
d

d

d

d
d

d

d
d

d

d
d d

dd
d

d

d

d

d d
d

d

d
d

d
d

d

d
dd d

d

d

d

d
dd

d
d

d d

dd

d

d
d

d
d

d
d

d
d d

d
d

d

d

ddd d
d

d

d
d
d dd

d

dd d
d

d

dd
d

d

d

d

d

d

o
o

o
o

oo o

o

o

o
o

oo

o

o

oo

o

o

o

o
o

o o
o
oo o

o
o

o
o o

o

o

o

o

o

o

o

o
o

o

o

o

oo
o

o

o

o
oo

o

o

o

o
o

o

oo

o

o

o
oo

o

o
oo
o

o

o
o

oo

o

o

o

o
o

o o
o

oo

o

o

oo

o
o

o

o
o
o

o

o

o

t

t

t t

t
t

t t

t t

t

t

t
t

t

t

t

t

tt

t t

t
tt

t

t

t

t

t

t
tt

t
t

t

ttt
tt

t

t
t

t
t

t

t

t

t t

tt t
t

t
t

t

t

t

t

t

tt

t

tt t

t
t

t

t

t
t

t
t

t

t
t

t

t

t

t
t

t
t

tt

ttt

t

tt

t

t

t
t

t

t

h

c

do

t

(b) LDA+PCA
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(c) OCM+PCA
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(d) Rank-2 PCA on Sb
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Figure 3: Comparison of the two-stage methods in the NEWSGROUPS data set.

(a) Rank-2 LDA
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(b) LDA+PCA
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(c) OCM+PCA
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(d) Rank-2 PCA on Sb
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Figure 4: Comparison of the two-stage methods in the REUTERS data set.

(a) Rank-2 LDA
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(b) LDA+PCA
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(c) OCM+PCA
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(d) Rank-2 PCA on Sb
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Figure 5: Example of effects of data centering in the MEDLINE data set.

(a) OCM+PCA with data centering
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(b) OCM+PCA without data centering
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CHAPTER III

EFFICIENT UPDATING OF COMPUTATIONAL

METHODS DUE TO PARAMETER CHANGES

One of the most widely-used nonlinear data embedding methods is ISOMAP. Based

on a manifold learning framework, ISOMAP has a parameter k or ǫ that controls

how many edges a neighborhood graph has. However, a suitable parameter value is

often difficult to determine because of a time-consuming optimization process based

on certain criteria, which may not be clearly justified. When ISOMAP is used to

visualize data, users might want to test different parameter values in order to gain

various insights about data, but such interaction between humans and such visual-

izations requires reasonably efficient updating, even for large-scale data. To tackle

these problems, we propose an efficient updating algorithm for ISOMAP with pa-

rameter changes, called p-ISOMAP. We present not only a complexity analysis but

also an empirical running time comparison, which show the advantage of p-ISOMAP.

We also show interesting visualization applications of p-ISOMAP and demonstrate

how to discover various characteristics of data through visualizations using different

parameter values.

3.1 Motivation

One of the most widely-used data mining techniques that reduce noise in data and im-

prove efficiency in terms of computation time and memory usage is dimension reduc-

tion. Recently, nonlinear dimension reduction techniques, which have been actively

investigated, revealed the underlying nonlinear structure in data. Such nonlinearity

is often considered as a curvilinear manifold with a much lower dimension than that
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in the original high-dimensional space. Among the most recent nonlinear dimension

reduction methods, isometric feature mapping (ISOMAP) has shown its effectiveness

in capturing the underlying manifold structure in the reduced dimensional space by

being successfully applied to synthetic data such as “Swiss roll” data and real-world

data such as facial image data [125].

ISOMAP shares the basic idea with a traditional technique, classical multidimen-

sional scaling (MDS). Classical MDS first constructs the pairwise similarity matrix,

which is usually measured by the Euclidean distance, and computes the reduced

dimensional mapping that maximally preserves such a similarity matrix in a given

reduced dimension. ISOMAP differs from classical MDS in that it constructs the

pairwise similarity matrix based on the geodesic distance estimated by the short-

est path in the neighborhood graph of data. The neighborhood graph is formed by

having vertices as data points and setting each edge weight between the nodes as

their Euclidean distance only if at least one node is one of the k-nearest neighbors

(k-NN) of the other node (k-ISOMAP) or if their Euclidean distance is smaller than

ǫ (ǫ-ISOMAP). Hence, ISOMAP has an either parameter k or ǫ to construct the

neighborhood graph.

This chapter focuses on the algorithm and applications of the dynamic updating

of ISOMAP when the value of k or ǫ varies. It is generally known that in ISOMAP, if

k or ǫ is too small, the graph becomes sparse, resulting in infinite geodesic distances

between some pairs of data points, and if k or ǫ is too large, it is prone to “short

circuit” the true geometry of the manifold. However, it is not always easy to figure

out which value of k or ǫ is appropriate for the data at hand. One way of optimizing

these parameters is using certain quantitative measures such as residual variance

[12, 125, 112] and finding the “elbow” point at which the residual variance curve stops

decreasing significantly as the parameter value changes. However, running ISOMAP

repeatedly using different parameter values for k or ǫ may be time-consuming since
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it involves computationally intensive processes such as the all-pairs shortest path

computation and the eigendecomposition, whose complexity is usually O(n3) in which

n is the number of data points.1

In practice, there is also often no guarantee of the existence of the underlying

well-defined manifold structure in data, and thus, one may not be sure if manifold

learning methods such as ISOMAP are suitable for the data at hand. Even so, one

may still want to try ISOMAP or another manifold learning method in order to see

if it serves one’s purpose. In this case, however, it may not be a good idea to rely

on a particular value of k or ǫ to achieve a reasonable dimension reduction since the

optimal value tends to be indistinct in terms of a certain measure. When it comes to

the visualization of high-dimensional data in two- or three-dimensional space, we can

acquire different insights on the data by using various dimension reduction techniques

[35]. This statement also holds true even when we use just a single dimension reduc-

tion method, e.g., ISOMAP, while we test its various parameter values. In short,

visualizations using ISOMAP with different parameter values for k or ǫ can provide

us with various aspects of our data. In instances of the “Swiss roll” and toroidal helix

data sets shown in Fig. 6, one may want to visualize them based on the unfolded

version of its manifold, as shown in Figs. 6(b) and 6(f), but sometimes one may also

want to see how the underlying manifold is curved in the original space, i.e., the

curvature of the manifold itself, as shown in Figs. 6(d) and 6(h).2 It is also possible

that visualizations of the transition between these two cases, shown in Figs. 6(c) and

6(g), imply different insight about data. In this sense, it is worthwhile for users to

test different parameter values in ISOMAP to visualize data in various ways.

1The complexity of the (all-pairs) shortest path computation depends on the algorithm. Floyd-
Warshall algorithm requires O(n3) computations while Dijkstra’s algorithm does O(|e|n logn) com-
putations [13] in which |e| is the number of edges.

2It may not be possible to visualize the manifold curvature perfectly without using the original
dimension, but at least we can obtain some insights about it from a lower dimensional visualization.
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Such visualizations, however, should provide users with smooth and prompt in-

teraction that requires fast and efficient computations of the results. In other words,

when users change the parameter value, if they have to wait for a significant amount

of time, then such interaction would not be practical. Motivated by the above men-

tioned cases, we propose p-ISOMAP, an efficient dynamic updating algorithm for

ISOMAP when the parameter value changes. Given the ISOMAP result from a par-

ticular parameter value, our proposed algorithm updates the previous result to obtain

another ISOMAP result of the same data with a new parameter value instead of re-

computing ISOMAP for different parameter values from scratch. We present the

complexity analysis of our algorithms as well as the experimental comparison of their

computation times. In addition, we demonstrate several visualization examples by

varying the parameters in ISOMAP, which not only show the interesting aspects of

the tested data but also help us thoroughly understand the behavior of ISOMAP in

terms of parameter values.

The rest of this chapter is organized as follows. Section 3.2 briefly introduces

ISOMAP and its algorithm, and Section 3.3 discusses previous work related to p-

ISOMAP. Section 3.4 describes the algorithmic details and the complexity analysis of

p-ISOMAP, and Section 3.5 presents not only the experimental results that compare

the computation times of ISOMAP and p-ISOMAP but also interesting visualization

examples of real-world data using p-ISOMAP. Finally, Section 3.6 concludes our work.

3.2 ISOMAP

Given a set of data points represented as M-dimensional vectors xi ∈ R
M for i =

1, . . . , n, ISOMAP assumes a lower dimensional manifold structure in which the data

are embedded. It yields the m-dimensional representation of xi as yi ∈ R
m (m ≪

M) such that the Euclidean distance between yi and yj approximates their geodesic

distance along the underlying manifold as much as possible. Such an approximation
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builds on the classical MDS framework, but unlike MDS, ISOMAP has the capability

of handling nonlinearity existing in the original space since a geodesic distance reflects

an arbitrary curvilinear shape of the manifold. On input, ISOMAP takes a data

matrix X =

[

x1 x2 · · · xn

]

∈ R
M×n, a reduced dimension m, and a parameter

k or ǫ. The algorithm is composed of three steps:

1. Neighborhood graph construction. ISOMAP first computes the pairwise Eu-

clidean distance matrix, DX ∈ R
n×n, in which DX(i, j) is the Euclidean dis-

tance between xi and xj . Then it determines the set of neighbors for each

point either by k-nearest neighbors or by those within a fixed radius ǫ. Be-

tween a point xi and each of its neighbors xj , an edge e(i, j) is assigned with a

weight equivalent to their Euclidean distance, and in this way, ISOMAP forms

a weighted undirected neighborhood graph G = (V, E), where the vertices in

V correspond to the data points xi’s.

2. Geodesic distance estimation. In the second step, ISOMAP estimates the pair-

wise geodesic distance based on the shortest path length for every vertex pair

along the neighborhood graph G, which is represented as a matrix DG ∈ R
n×n

in which DG(i, j) is the shortest path length between xi and xj in G.

3. Lower dimensional embedding. The final step performs classical MDS on DG,

producing m-dimensional data embedding, Y =

[

y1 y2 · · · yn

]

∈ R
m×n.

First, the pairwise geodesic distance matrix DG is converted to an inner product

matrix BG as

BG = −
(

I − 1

n
11T

)

DG.
2

(

I − 1

n
11T

)

/2, (37)

in which I ∈ R
n×n is an identity matrix, 1 ∈ R

n×1 is a vector whose elements

are all 1’s, and DG.
2 is an element-wise squared DG. Classical MDS solves

Y such that it minimizes E = ‖BG − Y TY ‖, where the matrix norm ‖ · ‖ is
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Table 4: Notations used in this Chapter

Notation Description

n Number of data points
M Original dimension
m Reduced dimension
xi Input data vector, i = 1, . . . , n
yi Reduced dimensional vector of xi

DX Euclidean distance matrix of xi’s−→
G Directed neighborhood graph
G (Undirected) neighborhood graph
q Maximum degree of the vertices in G
DG Shortest path length matrix in G
BG Inner product matrix obtained from DG

A Set of edges to be inserted in G
D Set of edges to be removed in G
∆ei Set of inserted/removed edges of xi

F Set of affected vertex pairs by A or D
P Predecessor matrix
H Hop number matrix

k and knew Previous and new parameter values

either a Frobenius or Euclidean norm. Such a solution of Y is obtained by the

eigendecomposition of BG as

Y =

[

√
λ1v1

√
λ2v2 · · ·

√
λmvm

]T

, (38)

where λ1, . . . , λm are the m largest eigenvalues of BG, with corresponding

eigenvectors v1, . . . , vm.

3.3 Related Work

Based on the algorithmic details of ISOMAP described in Section 2, if the parameter

k or ǫ varies, it would change the topology of the neighborhood graph in the first

step. Such a change can be interpreted as either an insertion of new edges or a re-

moval of existing edges in the neighborhood graph. The inserted or removed edges

would in turn influence the shortest path length matrix DG. Solving the updated DG

can be viewed as a dynamic shortest path problem in which we need to update the
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existing shortest path and its corresponding length due to graph changes. Generally,

a dynamic shortest path problem includes all the various situations that involve not

only vertex insertion/removal but also real-valued edge weight changes rather than

just edge insertion/removal, and depending on what types of changes in the graph are

assumed in the algorithm, it maintains a variety of additional information such as the

candidates of the future shortest paths for an efficient shortest path update [25, 47, 59].

In the context of manifold learning methods, several approaches have tried to dynam-

ically update ISOMAP embedding for incremental data input such as a data stream

[86, 87]. Similar to the parameter changes in p-ISOMAP, incremental data cause

topology changes in the neighborhood graph, which can be fully expressed by edge

insertion/removal, so previous studies[86, 149] have discussed the dynamic shortest

path updating algorithms that can deal with such types of graph changes. However,

the characteristic in terms of graph changes differs greatly between p-ISOMAP and

incremental ISOMAP. First, each parameter change in p-ISOMAP involves only the

form of either edge insertion or removal in p-ISOMAP while a new data point causes

both at once in incremental ISOMAP. In this sense, one may regard the shortest

path updating in p-ISOMAP as simpler than that in incremental ISOMAP. However,

graph changes in incremental ISOMAP primarily result from a new data item, and

thus, an inserted edge in incremental ISOMAP is always connected to the new data

point once an edge of a certain vertex is deleted. Furthermore, when the parameter k

is used, the number of inserted or removed edges in p-ISOMAP is roughly O(n|∆k|),

where n is the number of data points and ∆k = knew−k, whereas that in incremental

ISOMAP is roughly O(k), which is much smaller than that in p-ISOMAP. This differ-

ence implies that even a small change in parameter values in p-IOSMAP can lead to

a significant change in the neighborhood graph and its all-pairs shortest path results.

However, the graph change in incremental ISOMAP is still minor compared to the

entire graph size. Considering such different behaviors, we present our own shortest
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path updating algorithm that is appropriate for p-ISOMAP in Section 4. After the

shortest path update, one needs to update the eigendecomposition results on a new

matrix BG, shown in Eq. (37). In general, the eigendecomposition update is done

by formulating the change in BG in a certain form, e.g., a rank-1 update [26]. In

incremental ISOMAP, [86] applied an approximation technique called the Rayleigh-

Ritz method [61, 48] based on a variant of the Krylov subspace in computing the

eigendecomposition. However, this method is limited to the case when the reduced

dimension m is fairly large and the eigendecomposition does not change significantly.

However, when p-ISOMAP is used in a visual analytics system, which is one of our

main motivations, it requires m to be a small value such as two or three. Further-

more, such approximation methods perform poorly in p-ISOMAP since it involves

O(n) graph changes and the corresponding large amount of the shortest path update.

Hence, we focus on the exact solution for p-ISOMAP. In the next section, we present

a novel algorithmic framework for p-ISOMAP.

3.4 p-ISOMAP

p-ISOMAP assumes the original ISOMAP result is available for a particular param-

eter value. Given a new parameter value, the algorithm performs three steps: the

neighborhood graph update, the shortest path update, and the eigenvalue/vector

update.

3.4.1 Neighborhood Graph Update

In this step, p-ISOMAP computes the set of edges to insert or remove from the

previous neighborhood graph and update the neighborhood graph by applying such

changes. In order to compute these edges efficiently, each data point maintains the

sorted order of the other points in terms of its Euclidean distances to them. In this

way, p-ISOMAP identifies which neighbor points of a particular point are to be added

or deleted in O(1) time. If a neighborhood graph is constructed by the parameter ǫ,
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Algorithm 1 neighborhood graph update for a new k

Input: the new value of k , the directed neighborhood graph
−→
G , and the undirected

one G Output: the set of inserted edges A or that of removed ones D in G, updated−→
G and G

1: for all data point xi do
2: for all newly added/deleted neighbor xj do

3: Assign/Remove an edge e(i, j) from xi to xj in
−→
G .

4: end for
5: end for
6: Initialize A := ∅ / D := ∅.
7: for all inserted/removed edge e(i, j) in

−→
G do

8: if e(i, j) is an inserted edge then
9: if e(i, j) is not in G then
10: A ← A∪ {e(min(i, j), max(i, j))}
11: Assign the edge e(i, j) in G.
12: end if
13: else {e(i, j) is a removed edge}
14: if e(j, i) is not in

−→
G then

15: D ← D ∪ {e(min(i, j), max(i, j))}
16: Remove the edge e(i, j) in G.
17: end if
18: end if
19: end for

the neighborhood relationship is symmetric, i.e., if and only if xi is a neighbor of xj ,

xj is also a neighbor of xi for a particular ǫ. Thus the added or deleted neighborhood

pairs are equivalent to the inserted or removed edges in a neighborhood graph, and

the algorithm is straightforward. On the other hand, if a neighborhood graph is

constructed by k-NN, the situation becomes complex since it is possible that xi is a

neighbor of xj , but xj is not a neighbor of xi, which we call a one-sided neighborhood.

By considering such a one-sided relationship, a directed neighborhood graph
−→
G is

initially made, and ISOMAP obtains its undirected one G by an OR operation, i.e.,

for xi and xj , if at least either one is a neighbor of the other, then ISOMAP assigns an

edge with the weight equal to their Euclidean distance. In p-ISOMAP, both directed

and undirected graphs are maintained and updated in an orderly manner so as to
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avoid ambiguity about which changes of neighbors in a directed graph cause actual

edge changes in an undirected one in which we have to actually compute the shortest

paths. The detailed procedure of the neighborhood graph update are described in

Algorithm 1. As an output, it produces the set of effectively inserted/removed edges,

which is, in turn, used in the shortest path update stage.

3.4.1.1 Time Complexity

In ISOMAP, the time complexity in constructing a neighborhood graph is as fol-

lows. It starts with a sort operation for a given data set whose time complexity is

O(n2 log n). Then obtaining
−→
G and G requires O(nq), in which q is the maximum

degree of vertices in the graph G. In p-ISOMAP, the time complexity required in the

neighborhood graph update is bounded by O(n · maxi |∆ei|), in which |∆ei| is the

number of inserted/removed edges associated with xi.

3.4.2 Shortest Path Update

The shortest path update stage, which is one of the most computationally inten-

sive steps in p-ISOMAP, takes the input as either A or D and updates the shortest

path length matrix DG. In order to facilitate this process, p-ISOMAP maintains

and updates the information about the shortest path itself with a minimal memory

requirement in the form of a predecessor matrix P ∈ R
n×n, in which P (i, j) stores

the node index immediately preceding xj in the shortest path from xi to xj .
3 For

instance, if the shortest path from x1 to x2 is composed of x1 → x4 → x3 → x2, then

we set P (1, 2) = 3. For the shortest path update, p-ISOMAP performs two steps:

1. It identifies the set, F , of the “affected” vertex pairs, whose shortest paths need

to be recomputed due to the inserted edges in A or the removed edges in D.

3Here we assume the shortest path is unique for every vertex pair, which is almost always the
case in ISOMAP.
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Algorithm 2 Shortest path update for A
Input: the updated neighborhood graph G, the shortest path length matrix DG, the
predecessor matrix P , and the set of inserted edges A Output: updated DG and
P

1: for all inserted edge e(a, b) in A do
2: for all data point xi do
3: Unmark all the other nodes except for xi.
4: if DG(i, b) +G(a, b) < DG(i, a) then
5: DG(i, a)← DG(i, b) +G(a, b)
6: P (i, a)← b
7: DG(a, i)← DG(i, a)
8: if b = i then
9: P (a, i)← a
10: else
11: P (a, i)← P (b, i)
12: end if
13: end if{Traverse T (i, a)}
14: Initialize an empty queue Q.
15: Q.enqueue(a)
16: while Q is not empty do
17: t := Q.pop
18: Mark xt.
19: for all unmarked node xj adjacent to xt do
20: if DG(i, t) +G(t, j) < DG(i, j) then
21: DG(i, j)← DG(i, t) +G(t, j)
22: P (i, j)← t
23: DG(j, i)← DG(i, j)
24: P (j, i)← P (t, i)
25: Q.enqueue(j)
26: else
27: Mark xj .
28: end if
29: end for
30: end while
31: end for
32: end for

2. Then it computes their shortest paths based on the information of the rest

of the vertex pairs and the newly updated neighborhood graph, which usually

performs significantly faster than the original shortest path computation from

scratch.
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3.4.2.1 Shortest Path Update with Inserted Edges due to an Increasing Parameter

The main idea in the shortest path update due to an inserted edge e(a, b) is that if

DG(i, a)+e(a, b)+DG(b, j) or DG(i, b)+e(a, b)+DG(a, j) is shorter than DG(i, j),

then DG(i, j) is to be replaced by the smaller one between the two new path lengths

along with the corresponding update of P . Performing this comparison for all pairs of

vertices would require the time complexity of O(n2|A|), in which |A| is the number of

edges in A. Unlike incremental ISOMAP or other situations in which |A| is relatively

small and constant, p-ISOMAP has |A| ≃ O(n) due to an increasing parameter, which

makes the complexity of the above computation roughly equal to O(n3). Such com-

plexity is no better than the Floyd-Warshall algorithm used in the original ISOMAP.

Thus, the algorithm has to find the computational gain while identifying the subset,

F , of the entire vertex pair set and applying the above comparison only in this set.

For construction of F , the shortest path can conveniently be interpreted as a form

of a tree in which T (i) is the shortest path tree that has xi as its root. The subtree

T (i; a) of T (i) can then be defined as one with a root at xa. Using a well-known

property that any subpaths of the shortest path are also the shortest path, once a

new shortest path from a particular vertex xi to xa is found using e(a, b), one can

traverse T (i; a) in various ways such as a breath-first-search or a depth-first-search

method and correspondingly update the shortest paths from xi to the nodes in T (i; a).

In p-ISOMAP, we have used the breath-first-search, the detailed algorithm of which

is summarized in Algorithm 2. In fact, such approaches using subtree traversal for

inserted edges were applied in many applications [100, 149]. However, the algorithm

presented here was found simpler and faster since it deals with both directional paths

at once when updating DG and P .
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Algorithm 3 Identification of F due to D
Input: the removed edge set D, the predecessor matrix P , and the hop number matrix
H Output: the set of the affected vertex pairs F

1: α := maxi, j Hij

2: Initialize a linked list l[h] for h = 1, . . . , α
3: Unmark all vertex pairs (xi, xj) such that i < j
4: for all vertex pair (xi, xj) such that i < j do
5: Insert (xi, xj) to l[H(i, j)].
6: end for
7: for h := α to 1 do
8: for all Unmarked vertex pair (xi, xj) in l[h] do
9: Set p[k] for k = 1, , . . . , h as k-th node found in the shortest path from xj

to xi

10: for k := 1 to h do
11: m[k] := maxk≤l≤h(l) such that a vertex pair (p[k], p[l]) is marked.
12: Mark vertex pairs (p[k], p[v]) and (p[v], p[k]) for all v such that m[k]+1 ≤

v ≤ h
13: end for
14: q := 1
15: for k := h− 1 to 1 do
16: if (p[k], p[k + 1]) ∈ D then
17: Insert vertex pairs (p[u], p[v]), for all u and v such that q ≤ u ≤ k and

max(k + 1, m[u] + 1) ≤ k ≤ h, to F .
18: q ← k + 1
19: end if
20: end for
21: end for
22: end for

3.4.2.2 Shortest Path Update with Deleted Edges due to a Decreasing Parameter

When edges are deleted, the vertex pairs in F are those whose shortest paths include

any of these deleted edges. The set F can be identified by considering deleted edges

one by one and then by performing union operation on such vertex pair sets. This

approach is reasonable when |D| is small and thus little overlap occurs between such

vertex pair sets for each deleted edge, which is the case in incremental settings [86,

149]. In contrast, p-ISOMAP has |D| = O(n), which possibly leads to a large amount

of overlap in the affected vertex pairs among different deleted edges; therefore, the

above approach results in a significantly redundant computation. For this reason, we
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Algorithm 4 Recomputation of the shortest paths for F for a decreasing parameter

Input: the updated graph G, the shortest path length matrix DG, the predecessor
matrix P , the hop number matrix H , and the set of the affected vertex pairs F
Output: updated DG, P , and H

1: Sort vertices in terms of how frequently they appear in F in an increasing order
2: for all xi in the above sorted order do
3: Initialize an empty heap Q
4: C := {xj|(xi, xj) ∈ F}
5: for all xj ∈ C do
6: d :=∞
7: for all adjacent node xt of xj such that xt /∈ C do
8: if d > DG(i, t) +G(t, j) then
9: d← DG(i, t) +G(t, j)
10: P (i, j)← t
11: H(i, j)← H(i, t) + 1; H(j, i)← H(i, j)
12: end if
13: end for
14: Insert an entry (d, j) with a key d and an index j to Q
15: end for
16: while Q is not empty do
17: (d, j) :=ExtractMin from Q
18: DG(i, j)← d; DG(j, i)← d
19: Remove (xi, xj) from C and F
20: pred := j
21: while P (i, pred) 6= i do
22: pred← P (i, pred)
23: end while
24: P (j, i)← pred
25: for all adjacent node xt of xj such that xt ∈ C do
26: d := a key of an entry with an index t in Q
27: if d > DG(i, j) +G(j, t) then
28: DecreaseKey (DG(i, j) +G(j, t), t) in Q
29: H(i, t)← H(i, j) + 1; H(j, i)← H(i, t)
30: end if
31: end for
32: end while
33: end for

propose a new algorithm for p-ISOMAP that identifies the affected vertex pairs by

handling all the deleted edges at once. The key idea is that for the shortest path

between a particular vertex pair, we partition it into multiple subpaths separated

by any deleted edges, and then we form Cartesian products between any two such
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subpaths and place them in F . For example, when the shortest path is x1 → x3 →

x2 → x4, if e(x3, x2) is deleted, we add {(xi, xj)|i ∈ {1, 3}, j ∈ {2, 4}} to F .

Furthermore, we enhance the efficiency in this process in the following way. We first

consider the vertex pair whose shortest path has the largest number of hops and check

all of its subpaths, which are also the shortest paths between their hopping nodes.

Then, the checked vertex pairs are not considered again. In other words, by first

dealing with the shortest paths that cover as many other shortest paths as possible,

we can handle the maximum number of vertex pairs regarding whether they are to

be added to F or not. To implement this idea, we maintain a hop number matrix H

in which H(i, j) contains the number of hops in the shortest path from vertex i to

j, which enables us to prioritize the vertex pair according to its number of hops. In

addition, our algorithm takes into account overlapping subpaths between the shortest

paths of different vertex pairs. That is, if any subpaths of the shortest path of a certain

vertex pair are also those of another vertex pair that has been previously taken care

of, the algorithm stops checking such subpaths. In this way, we completely exclude

redundant computations in an efficient manner. The detailed algorithm to solve for

the set F is described in Algorithm 3. Once F is obtained, the shortest paths are

recomputed selectively. This process can be expedited using the available information

about the unaffected vertex pairs whose shortest paths remain unchanged. We choose

Dijkstra’s algorithm as the main algorithm for the shortest path computation since

it is suitable for a sparse graph. How to incorporate the above available information

in Dijkstra’s algorithm is straightforward as described in Algorithm 4. In addition,

since Dijkstra’s algorithm is a single-source shortest path algorithm, it needs to run

n times for each source vertex. In terms of the order of the source vertices on which

to run Dijkstra’s algorithm, those that have the least number of destination nodes

to update are processed first, and the updated vertex pairs are then removed from

F . Algorithm 4, which also includes additional functionalities for updating P and H ,
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summarizes the shortest path update process based on F .

3.4.2.3 Time Complexity

When a parameter increases, Algorithm 2 requires the time complexity of O(|A|nq ·

maxi,a |T (i; a)|) in which maxi,a |T (i; a)| is the maximum number of nodes in sub-

tree T (i; a) over all xi’s and inserted edge e(a, b)’s. This complexity can be loosely

bounded by O(|A|q|F |) where |F | is the number of affected vertex pairs due to the

inserted edges in A. For a decreasing parameter, the time complexity of Algorithm 3

requires O(n2) computations since it visits every vertex pair exactly once. Now, let

us partition the entire vertices into two disjoint sets Vd(i) and V c
d (i) such that Vd(i) =

{xj |(xi, xj) ∈ F} for a certain xi. Then, the complexity of Algorithm 4 is represented

as O(n · maxi(|E ′

i| log |Vd(i)| + (|E ′′

i |)) in which E
′

i = {e(xa, xb) ∈ G|xa, xb ∈ Vd(i)}

and E
′′

i = {e(xa, xb) ∈ G|xa ∈ Vd(i), xb /∈ Vd(i)}. In both cases, for small changes

in the neighborhood graph, |F | is expected to be much smaller than n2, which is the

maximum possible value of |F |.

3.4.3 Eigenvalue/vector Update

Let us denote the updated DG after the shortest path update described in Section 4.2

as Dnew
G . In this step, Dnew

G is first converted into the pairwise inner product matrix

Bnew
G by Eq. (37). To get a lower dimensional embedding as shown in Eq. (38),

we need to obtain m eigenvalue/vector pairs (λnew
1 , vnew1 ), . . . , (λnew

m , vnewm ) for Bnew
G .

In this computation, the available information that we can exploit is the previous m

eigenvalue/vector pairs (λ1, v1), . . . , (λm, vm) of BG. In fact, they can be good initial

guesses for m eigenvalue/vector pairs for Bnew
G , assuming the two matrices BG and

Bnew
G are not much different in any sense. The original ISOMAP uses the Lanczos

algorithm [61], which is an iterative method that is appropriate for solving the first

few leading eigenvalue/vector pairs. The Lanczos algorithm iteratively refines the

solution in the Krylov subspace that grows from an initial vector by multiplying it
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Table 5: Computation time in seconds between ISOMAP and p-ISOMAP. In paren-
theses next to the data set name, the three numbers are the number of data n, the
original dimension M , and the reduced dimension m, respectively. The number in the
other parentheses next to k value changes indicates the ratio of vertex pairs whose
shortest paths need to be updated. For each case, the average computing times of 10
trials were presented.

Synthetic data Rand (3500, 5000→ 50) Swiss roll (4000, 3→ 2)

ISOMAP p-ISOMAP ISOMAP p-ISOMAP
k → knew

28 32
30→ 28 30→ 32

14 16
15→ 14 15→ 16

(|F |/n2) (15%) (13%) (77%) (73%)

Neighborhood
1.6 1.6 0.1 0.1 1.8 1.8 0.2 0.2

graph
Shortest path 12.3 12.6 5.1 4.7 16.4 17.1 17.3 15.6
Eigendecomp. 7.8 7.7 6.9 6.8 1.9 1.7 1.6 1.5

Real-world data Pendigits (3000, 16→ 5) Medline (2500, 22095→ 200)
ISOMAP p-ISOMAP ISOMAP p-ISOMAP

k → knew

46 54
50→ 46 50→ 54

37 43
40→ 37 40→ 43

(|F |/n2) (39%) (36%) (21%) (19%)

Neighborhood
1.3 1.2 0.1 0.1 1.1 1.1 0.1 0.1

graph
Shortest path 9.3 9.8 7.1 8.3 6.8 7.0 2.8 3.3
Eigendecomp. 2.3 2.3 2.0 2.1 16.3 16.4 15.1 15.1
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Table 6: Computation time in seconds required to determine the optimal k value by
minimizing residual variances.

Rand Swiss roll Pendigits Medline

Range of k [5, 50] [5, 50] [7, 60] [9, 70]
ISOMAP 580 635 692 776
p-ISOMAP 142 403 305 314

with the matrix, i.e., span(b, Bnew
G b, (Bnew

G )2b, . . . ). The performance of the Lanczos

algorithm largely depends on how quickly such a Krylov subspace covers that spanned

by the eigenvectors. Another characteristic of the Lanczos algorithm is that the

least leading eigenvalue/vector pair converges slowest within a particular tolerance.

In other words, when the Krylov subspace becomes k dimensions, the first leading

eigenvalue is refined k times, the second one (k−1) times, the third one (k−2) times,

and so on. In this sense, we suggest using an initial vector from which the Krylov

subspace grows as vm, i.e., span(vm, B
new
G vm, (B

new
G )2vm, . . . ), which possibly best

recovers (λnew
m , vnewm ). As a result, we can expect the Lanczos algorithm to terminate

in less number of iterations than in any other cases.

3.5 Experiments and Applications

In this section, we present an empirical comparison between the computation times

of ISOMAP and those of p-ISOMAP using both synthetic and real-world data sets.

In addition, we show visualization applications of p-ISOMAP for real-world data sets.

In our experiments, we used the code of ISOMAP provided by the original author.4

However, the original code does not take advantage of sparse graphs, so we compared

p-ISOMAP with an improved version of ISOMAP that runs Dijkstra’s algorithm

in C++ with a sparse representation of the graph. p-ISOMAP was implemented

mainly in MATLAB except for the shortest path update part, which runs in C++. In

both ISOMAP and p-ISOMAP, the eigendecomposition was done by MATLAB built-

in function “eigs,” which performs the Lanczos algorithm by using Fortran library

4http://waldron.stanford.edu/~isomap/IsomapR1.tar
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ARPACK [89]. Throughout all experiments, we used the ISOMAP parameter as k,

where the neighborhood graph is constructed by k-NN, since we can easily bound |A|

or |D| by O(n∆k) in which ∆k = knew − k. All the experiments were done using

MATLAB 7.7.0 on Windows Vista 64bit with 3.0GHz CPU with a 4.0GB memory.

3.5.1 Computation Time

To compare the computation times between ISOMAP and p-ISOMAP, we tested two

synthetic data sets (Rand and Swiss roll) and two real-world data sets (Pendigits and

Medline). Rand data set was made by sampling a uniform distribution in a 5,000-

dimensional hypercube, [0, 1]5000, where the number of data is 3,500. “Swiss roll”

data set has 4,000 data points in three-dimensional space. Pendigits data set5 contains

10,992 handwritten digit data in a form of pen traces in 16-dimensional space [11], but

we selected 3,000 data with an equal number of data per cluster because of memory

constraints. Finally, Medline data set6 is a document corpus related to medical science

from the National Institutes of Health, and it has 2,500 documents encoded in 22,095-

dimensional space. Table 5 compares computation times of ISOMAP with those of

p-ISOMAP for each data set. In most cases, p-ISOMAP runs significantly faster

than ISOMAP. However, as the number of vertex pairs whose shortest paths need

to be updated increases, the computational advantage of p-ISOMAP over ISOMAP

gradually vanishes. Nonetheless, except for “Swiss roll” data set, which involves

a large number of the shortest path update even with a slight parameter change,

most data sets require only about 10-40% the shortest path update for a reasonable

parameter change, e.g., within 5. Fig. 7 shows the behaviors of p-ISOMAP depending

on the number of data, ∆k, and an initial k value. We selected Rand data since it was

the most suitable one to clearly observe its behaviors. Fig. 7(a) shows the computation

5http://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+

Digits
6http://www.cc.gatech.edu/~hpark/data.html
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time in terms of the number of data. As we can see, p-ISOMAP scales well in terms

of the number of data compared to ISOMAP. In Fig. 7(b), as the parameter change

∆k gets bigger, the running time of p-ISOMAP increases linearly, which tells that

|A| or |D|, which is proportional to ∆k, has a dominant influence on the performance

of p-ISOMAP. Finally, Fig. 7(c) shows an increasing performance gap between two

methods as an initial k value grows. This is mainly because the original Dijkstra’s

algorithm used in ISOMAP needs more computations as the graph gets denser while

p-ISOMAP depends only on |A|, |D|, or correspondingly |F |, which probably does

not increase over different initial k values. Finally, for each data set, we measured the

computation times to take to determine the optimal k value that minimizes residual

variances [12]. As shown in Table 6, we could significantly reduce the computation

times by utilizing the dynamic update of p-ISOMAP.

3.5.2 Knowledge Discovery via Visualization using p-ISOMAP

In this section, we present interesting visualization examples of real-world data sets

using p-ISOMAP. To be specific, we show how ISOMAP with different parameters

can discover various knowledge about data and how the information acquired through

visualization can facilitate traditional data mining problems such as a classification

task. p-ISOMAP was used to efficiently update ISOMAP results throughout all the

visualization experiments. To begin with, we have chosen three real-world data sets

(Weizmann, Medline, and Pendigits) that have cluster structures in order to make

it easy to analyze their visualization. Weizmann data set is a facial image data set7

that has 28 persons’ images with various angles, illuminations, and facial expressions.

To obtain an understandable visualization, we have chosen three particular persons’

images with three different viewing angles as shown in Fig. 8(a), in which each com-

bination of a particular person and a viewing angle contains multiple images that

7ftp://ftp.wisdom.weizmann.ac.il/pub/facebase
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vary based on other factors such as illuminations and facial expressions. In their

visualizations shown in Figs. 8(b)-(d), each of these images is represented as a letter

that corresponds to its cluster from Fig. 8(a). Medline data set, which is a document

collection, has 5 topic clusters, heart attack (‘h’), colon cancer (‘c’), diabetes (‘d’),

oral cancer (‘o’), and tooth decay (‘t’), in which the letters in parentheses are used

in its visualization in Fig. 9. Pendigits data set, which is described in Section 5.1,

has 10 clusters in terms of which digit each data item corresponds to, i.e., ‘0’, ‘1’,

. . . , ‘9’. Several interesting visualization examples of these data based on p-ISOMAP

are shown in Figs. 8-108 where cluster centroids and neighborhood connections are

also shown in the form of letters in rectangles and grey lines in the background, re-

spectively. Among visualization examples of Weizmann data set, Fig. 8(c), which

well resembles the layout of clusters in Fig. 8(a), successfully straightens its intrinsic

manifold defined by the two factors, a person and an angle. This is mainly because of

the neighborhood graph constructed by a proper k value that forms its edges either

within a particular person or within a particular angle, which is why we mostly see

horizonal and vertical neighborhood connections as well as gaps between grid-shaped

cluster centroids in Fig. 8(c). Regarding a comparison between Figs. 8(b) and 8(d),

fewer neighbors in Fig. 8(b) bring connections only within images with the same angle,

which in turn results in a clustered form of visualization based on angles. This indi-

cates that even if we prefer the similarity in terms of a person to that in terms of an

angle, the actual distances in the vector space into which the images are transformed

are dominated by an angle. On the other hand, Fig. 8(d) connects almost all the data

points between each other, which would reflect the Euclidean distances in the original

space just like MDS does. In addition, we can consider the layout of cluster structure

shown in Fig. 8(d) as a curved version of manifold as it appears in the original space,

8These figures can be arbitrarily magnified without losing the resolution in the electronic version
of this thesis.
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which is analogous to what we discussed in Fig. 6. Medline data shown in Fig. 9 is

not visualized in a well-clustered form by ISOMAP because it is usually difficult to

find a well-defined manifold structure with few meaningful dimensions for document

data. However, by manipulating k values, we can at least obtain various visualization

results that possibly reveal different aspects of the data. For example, when k = 30 in

Fig. 8(b), the topic cluster, tooth decay (‘t’), is shown distinct from the other clusters

while so does the cluster, diabetes (‘d’), in the other cases. In this situation, if one

wants to focus on a certain cluster separately from the others, it would be necessary

to change k values for a suitable visualization result. Visualizations of Pendigits data

set shown in Fig. 10 give numerous interesting characteristics. First of all, as the

parameter k increases, the overall transition from Fig. 10(a) to 10(f) is shown similar

to that of “Swiss roll” data set from Fig. 6(c) to 6(d). In other words, a larger k

value places more data in a curved shape, which reflects the underlying curvature in

the original space, while a smaller k value does more data in a linear shape, which

corresponds to a straightened manifold. To be specific, starting from Fig. 10(b), the

cluster ‘8’ gradually gets scattered and curved with an increasing k. Similarly, the

cluster ‘0’ maintains a linear shape before k = 50, and finally it becomes scattered

in Fig. 10(f). In short, ISOMAP with a small parameter value tends to unroll the

curved manifold due to geodesic paths, but that with a large parameter better shows

its curvature itself. In view of clustering, Fig. 10(a) well separates the clusters ‘2’ and

‘7’ whereas the other visualizations gradually overlap them with increasing k values.

In addition, the clusters ‘3’ and ‘6’ appears to overlap for a certain range of k between

9 and 11 as shown in Figs. 10(b)-(d). Now let us discuss about subcluster/outlier

discovery through various visualization examples. In most examples in Fig. 10, the

cluster ‘5’ is shown to have two subclusters, one of which is near the cluster ‘8’, and

the other between the clusters ‘3’ and ‘9’. Based on this observation, we examined

some sample data from each cluster and found out such subclusters are due to the
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different way to write ‘5’.9 From the examples in these two subclusters shown in

Figs. 11(a)-(b), we can see that some people write ‘5’ starting from the hat, which

is the top horizontal line in ‘5’, while others write the hat after finishing the bottom

part. Similarly, the cluster ‘7’ has a majority of data near the cluster ‘2’, but it also

has two minor groups of data near the cluster ‘1’ and the cluster ‘6’, respectively. (See,

for example, the coordinates around (−100, 50) and (50, −150) in Fig. 10(c).) After

looking at the actual data samples from these groups, we found that most people

write ‘7’ in a way shown in Fig. 11(c). However, some people first write an additional

small vertical line in the top-left part but by omitting the small horizontal line in the

middle part as shown in Fig. 11(d), which corresponds to the minor data near the

cluster ‘1’, but some others just reverse the direction to write the small horizontal line

in the middle part of ‘7’ as shown in Fig. 11(e), which corresponds to those near the

cluster ‘6’. In addition, their different traces and shapes impose similarities to those

of the clusters ‘1’ and ‘6’, respectively. Finally, in Fig. 10(d), some data in the cluster

‘0’ seems to deviate from its major line-shaped data in Figs. 10(a)-(c). Figs. 11(f)

and 11(g) represent the latter and the former data, respectively. We can see that

such deviated ones shown in Fig. 11(g) start from the top-right corner rather than

from the top-middle part when writing ‘0’, which causes their connections to the clus-

ter ‘5’ that also starts from the top-right corner. Finally, we have incorporated the

above findings in a handwritten digit recognition, which is a classification problem,

using Pendigits data set. Based on the information that the cluster ‘5’ has two clear

subclusters, we modified the training data labels in the cluster ‘5’ into two different

labels and classified the test data that are assigned either label to the cluster ‘5.’

As a classification method, we have chosen the linear discriminant analysis combined

with k-nearest neighbor classification, which is a common setting in classification.

9Note that Pendigits data set we used here is not just static image data but the traces of the
pen, which is why the order matters in the feature space.
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As a result, the classification accuracy increased from 89% to 93%. In fact, this is

a promising example of human-aided data mining processes through visualizations

with intelligent interaction. The computational efficiency of p-ISOMAP makes such

processes smooth and prompt.

3.6 Conclusions

In this chapter, we proposed p-ISOMAP, an efficient algorithmic framework to dynam-

ically update ISOMAP embedding for varying parameter values. The experiments

using both synthetic and real-world data with various settings validate its efficiency.

This advantage of p-ISOMAP can not only speed up the parameter optimization pro-

cesses but also enable users to interact with visual analytics systems more smoothly.

Such interaction provides us with deep understanding about data, which can improve

even the computational data mining problems such as classification.
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Figure 6: ISOMAP examples with different k values. The first and second rows of
figures correspond to the “Swiss roll” and the toroidal data sets, respectively.
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Figure 7: Behavior of p-ISOMAP depending on the number of data, ∆k , and initial
k on Rand data set. Other than the varied one, the rest of variables were fixed in
each figure.
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Figure 8: Visualization of Weizmann data set using p-ISOMAP
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Figure 9: Visualization of Medline data set using p-ISOMAP
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Figure 10: Visualization of Pendigits data set using p-ISOMAP
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(a) A subcluster in cluster ‘5’ (b) Another subcluster in cluster ‘5’

(c) Major data in cluster ‘7’ (d) A minor group in cluster ‘7’ (e) Another minor group in clus-
ter ‘7’

(f) Major data in cluster ‘0’ (g) Minor data in cluster ‘0’

Figure 11: Subclusters/outliers in ‘0’, ‘5’, and ‘7’. Pen traces start from red and end
at blue.
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CHAPTER IV

ITERATION-WISE INTEGRATION FRAMEWORK OF

COMPUTATIONAL METHODS

Visual analytics has been gaining increasing interest due to its fascinating charac-

teristic that leverages both humans’ visual perception and the power of computing.

Although various computational methods are being proposed, they do not properly

support visual analytics. One of the biggest obstacles towards their real-time vi-

sual analytic integration is their high computational complexity. As a way to tackle

this problem, this chapter presents PIVE, a Per-Iteration Visualization Environment

for supporting real-time interactive visualization with computational methods. The

main idea behind PIVE is that most advanced computational methods work by re-

fining the solution iteratively. By visually delivering the result from each iteration

to users, the proposed framework enables users to quickly acquire the information

that the computational method provides as well as the ability to perform continuous

interactions with them in real time. We show the effectiveness of PIVE in terms of

real-time visualization and interaction capabilities by customizing various dimension

reduction methods such as principal component analysis, multidimensional scaling,

and t-distributed stochastic neighborhood embedding, and clustering methods such

as k-means and latent Dirichlet allocation.

4.1 Introduction

The innate ability of humans to quickly perceive insight through visual analysis and

decision processes has been a key factor in the growth of visual analytic research

[78, 127]. One of the most significant efforts made by visual analytics researchers
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is the integration of various computational methods from data mining and machine

learning areas with visual analytics so that users can benefit from intelligent mean-

ingful information generated by these techniques. For example, dimension reduction

and clustering methods have been commonly used in high-dimensional data visual

analytics [23, 117]. More recently, latent Dirichlet allocation (LDA) [20], a popular

method for document topic modeling, has been adopted in a wide variety of visual

analytics systems for document analysis [134, 50, 88].

However, a critical hurdle in the integration of computational methods into visual

analytics is the significant amount of computational time required by these meth-

ods. As computational methods become more advanced and capable, they usually

run much slower, making it almost impossible to visualize and interact with them

smoothly in real-time visual analytics. Due to this significant running time, even

though numerous computational methods are currently being developed and some

methods such as t-distributed stochastic neighbor embedding (t-SNE) [130] even

claim their suitability directly in visualization applications, the state-of-the-art in

visual analytics does not seem to fully utilize the advancements in computational

methods. Consequently, in many domain areas, people still resort to only a few basic

computational methods such as principal component analysis (PCA) [74] and multi-

dimensional scaling (MDS) [45] for dimension reduction, hierarchical clustering and

k-means [19] for clustering, etc.

However, we believe that various important aspects have been largely ignored

when integrating (advanced) computational methods into visual analytics. In a sense

that such an integration essentially involves both humans and computational meth-

ods, exploiting the characteristics of each side simultaneously may bring a synergetic

effect for their tight integration that would not be possible otherwise. Motivated

by this general idea, this chapter focuses on the following aspects from each side:

(1) humans’ perceptual precision and (2) the iteration-wise behavior of computational
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methods.

For humans’ perceptual precision, we highlight that when perceiving numbers, hu-

mans do not require a high precision such as a double or a single precisions typically

used in modern computers. For example, when perceiving the value of π, most people

know its approximate value, e.g., 3.14. In practice, perceiving it as a more accurate

value, e.g., 3.1415926, does not make much difference. In a more analytic context,

suppose the topic modeling has given a topic-wise representation of a particular doc-

ument as (55.5852%, 38.8615%, 5.533%) with respect to three topics, e.g., science,

sports, and economics. People may perceive its topic contribution at a tenth value

at most, which is approximately (55.6%, 38.9%, 5.5%), but it would not change their

perception significantly even if more accurate numbers were considered.

This substantially low perceptual precision compared to that of computational

methods opens up a variety of possibilities to reduce the intensive computational

time taken in running a computational method in a visual analytics environment. As

a complementary characteristics of the computational methods to achieve this goal,

we focus on their iteration-wise behavior. These days, many modern computational

methods are performed through an iterative refinement process until reaching the

final converged solution. An important observation found in most methods is that

throughout the iterations, a major refinement of the solution typically occurs in early

iterations while only minor changes occur in the later iterations. It indicates that

the low-precision outputs of computational methods are dominated by their major

refinement made during early iterations. In this respect, humans may be able to

obtain most information from the computational method outputs in a much shorter

amount of time than the full iterations until convergence.

However, apart from well-principled convergence criteria studied in most com-

putational methods, it is not straightforward to determine when to terminate the

iteration at which the result is reasonably accurate from the perspective of humans’
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perceptual precision. Instead, we propose an alternative approach called PIVE (Per-

IterationVisualization Environment for supporting real-time interactive visualization

with computational methods), which visualizes the intermediate result per iteration as

soon as they become available. Unlike the previous approaches, which typically treat a

particular computational method as a black box, the main novelty of PIVE lies in the

idea to break computational methods down to the iteration level and tightly integrate

it with the interactive visualization so that users can check the result of computational

methods without any delays and interact with them in real-time.

Such real-time interaction capabilities based on this tight integration of compu-

tational methods at an iteration level makes significant differences in terms of the

approaches for handling how we interact with a computational method. That is,

from a perspective of viewing it as a black box, the turn-around time required for a

particular interaction is usually equivalent to the time taken in running the entire set

of iterations until its convergence. Therefore, previous efforts in adding an interaction

capability to a computational method interactive have mainly focused on the sophis-

ticated algorithmic modifications that can maximally reflect the users’ intention from

a single interaction. Accordingly, during a single interaction, it was generally recom-

mended that users give the computational method a substantial amount of changes

that are carefully made. Otherwise, users would be frustrated if the result due to a

user interaction does not properly reflect their intention after a long time of waiting

for the computational method to converge. On the contrary, in PIVE, a turn-around

time for a single user interaction drastically decreases to the time taken in running a

single or a small number of iterations at most instead of an entire set of iterations.

In this respect, PIVE enables users to perform multiple small interactions contin-

uously by quickly adjusting their interactions based on the real-time response of the

computational method.

Motivated by these ideas, this chapter discusses about PIVE in detail and present
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the example realizations of various well-known computational methods under PIVE.

The main contributions of this chapter is summarized as follows:

• Presentation of PIVE as a general idea to tightly integrate computational meth-

ods in visual analytics at an iteration level.

• In-depth discussion about the potential issues and their solutions in PIVE

• Realizations of PIVE with various well-known computational methods (PCA,

MDS, t-SNE, k-means, and LDA) in established visual analytics systems

• Customizations of the above methods for real-time user interaction capabilities

under PIVE

• Use cases of the customized methods with real-time user interaction examples

The rest of this chapter is organized as follows. Section 4.2 discusses related work.

Section 4.3 describes PIVE in more detail and discuss its potential issues and their

solutions. Section 4.4 presents various customized computational methods with their

supported interactions in PIVE. Using these customized methods, Section 4.5 de-

scribes the quantitative analyses about the iteration-wise behavior of computational

methods and provide several use cases of the customized methods with their real-

time interactions under PIVE in several well-known visual analytics systems. nally,

Section 4.6 concludes the chapter.

4.2 Related Work

In this section, we briefly discuss various previous studies from the two main per-

spectives: those aiming at efficient interactive visualization and those trying to make

computational method user-interactive in visualization applications.
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4.2.1 Efficient Interactive Visualization

Not surprisingly, numerous studies have focus on the visualization applications of

large-scale data. Among various approaches, one of the straightforward but reason-

able approaches is by using a subset of data by sampling. For example, Fisher et al.

[57] has proposed an efficient way of dealing with large-scale data visualization by

initially using only a small portion of data and then perform an incremental update

on the visualization. Ellis et al. [54] has also taken a random sampling-based visual-

ization approach mainly for avoiding the visualization clutter due to a large number

of visualized objects while considering the efficiency issues during visualization.

As another popular approach for improve the efficiency in visualizing large-scale

data, numerous studies have been based on multi-threading techniques. In this con-

text, the main role of multi-threading is to separate the data processing/computation

module and the visualization/rendering modules as multi-threads, allowing their ef-

ficient concurrent running. A notable line of research is called ‘in situ’ visualization

[92, 146]. The main idea of it is, given large-scale data, to alleviate some post-

processing overheads that had to be taken care of by the visualization module and let

these overheads handled in the phase of the data processing/computation in which

the powerful computing resource is readily available. In this manner, even though

the visualization module does not have a computing power, which is often the case,

the visualization can fluidly be performed. Although similar to the ‘in situ’ visual-

ization approach, Tu et at. [128] has utilized the data sharing aspects in a parallel

supercomputing environment. On the other hand, there have been approaches that

have utilized multi-threading mainly for the purpose of providing a efficient respon-

sive user interactions [104] by separating an application and a visualization threads

into multiple concurrent threads.

As will described in detail in Section 4.3, PIVE adopts a similar multi-threading

idea in order to reduce the overhead of the visualization module that has to go through
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a constant updating as the iterations of the computation method go. However, none

of these multi-threading-based approaches hardly exploited the nature of the iterative

refinement processes found in most computational methods, which makes a clear dis-

tinction of PIVE to the previous work.

Furthermore, efficient interactive visualization has been a main concern in the

context of dynamic/streaming data. When visualizing dynamic/streaming data, the

overall theme found in various approaches is to update the visualization efficiently

given incremental changes in a data set. In this context, Cottam et al. [44] has

recently discussed about a taxonomy for dynamic data visualization. Although the

detailed approaches may differ, several prior studies [139, 140] have started from a

relatively similar idea that the visualization update is carried out only when significant

changes/events have been detected. Additionally, Alsakran et al. [5] has visualized

the streaming documents using a GPU-accelerated force-directed layout technique.

Various interesting ideas from dynamic data visualization could be applied to fur-

ther improve the updating process of visualization in PIVE. Nevertheless, the primary

problem that PIVE tackles arises from the intensive amount of computations in the

computational methods, and thus an efficient updating of the visualization module is

not a concern in general.

4.2.2 User Interaction with Computational Methods

There have been numerous efforts to make computational methods, which are mostly

automated, user-interactive in visualization applications. One of the most represen-

tative work is based on MDS [136] that has added MDS a capability of incorporating

user feedback based on a user-specified visual region. A more recent work called

observation-level interaction [55] has provided a general framework in which the user

interaction from a scatter plot is incorporated in a Bayesian probabilistic framework.
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Figure 12: An overall diagram of PIVE (b) in contrast to the standard (non-iteration-
wise) one (a). In the standard framework (a), a computional method is treated as
a black box, as depicted by a gray rectangle. On the other hand, PIVE (b) breaks
down the computational method at its iteration level, allowing it to be visualized at
each iteration while taking into account any user iteractions. The blue line separates
the overall procedure into two separate threads with their message queues, as shown
in the blue rectangle, to remove potential computational overheads.

These user interaction capabilities have long been emphasized in terms of cluster-

ing since clustering is generally a difficult problem. Seo et al. [117] has improved a

traditional clustering method called hierarchical clustering so that it can have flexible

interactive capability with the clustering result in a bioinformatics domain. More

recently, iVisClustering [88] has tried to make a more recent method LDA interactive

by supporting cluster merging/splitting, cluster keyword refinement, etc.

However, most methods have treated the computational method as a black box,

and thus the interactions they support are inherently far from being real-time be-

cause the entire set of iterations for a new run of the computational method is re-

quired for each iteration. Nonetheless, a variety of work has addressed the impor-

tance of the capability for supporting a continuous set of real-time interactions with

computational methods due to the highly exploratory nature of human interactions
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[56, 104, 120]. In this sense, PIVE, which leverages both humans’ perceptual precision

and the iteration-wise behavior of computational methods, bears a potentially great

impact in achieving this goal.

4.3 Per-Iteration Visualization Environment (PIVE)

First, we describe an overall flow of PIVE (Fig. 12(a)), by highlighting its differences

from the standard (non-iteration-wise) approach (Fig. 12(b)).

Let us begin with a general procedure when an iterative computational method is

integrated in visual analytics. As shown in Fig. 12(a), input data, which are usually

represented as multidimensional vectors, are given to the computational module along

with its required parameter values. The computational module pre-processes the data,

if necessary, and runs through iterations, which are usually divided into multiple

sub-routines, until it converges. Upon convergence, the output goes through a post-

processing step.

The final output of the computational module is then passed to the visualization

module, which encodes it in a visual space and finally delivers its visualization to

users. For example, the output of a dimension reduction method, e.g., PCA, can map

data items onto the coordinates of the screen space, and the output of clustering can

be used to color-code each group of data clusters.

Users can then better explore the visually represented data with the help of the

information provided by the computational method and often interact with compu-

tational methods by adjusting their input data as well as their parameters. These

interactions trigger another run of the computational method. For example, given the

cluster summary for a set of text documents, if a user finds an interesting cluster, the

user may perform another iteration of clustering on the particular subset to obtain

more details about the chosen subset. On the other hand, users might want to ad-

just the number of clusters, which is usually a user-specified parameter in clustering
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methods, to find the best clustering result for the data.

In most of the described visualizations and interactions, the standard framework

generally treats the computational module as a black box, which the visualization

module has no control over, depicted by a gray rectangle in Fig. 12(a). In other

words, once the computational module has been initiated, visual analytic systems

must wait for it to finish its iterations before it outputs the visualization to users.

On the contrary, PIVE takes the results of intermediate iterations out of the com-

putational module and delivers them to the visualization module whenever they are

available. More specifically, as highlighted with the red horizontal line in Fig. 12(b),

the result from each iteration is always passed to the post-processing step, the out-

put of which, in turn, reaches all the way to the visualization module, regardless of

whether it has converged or not. Consequently, these intermediate results are visual-

ized to users much more quickly than having to wait for the converged solutions.

In addition, PIVE enables the above-discussed interactions to be instantly re-

flected by directly interacting with the process for each iteration of the computational

module, as highlighted with the red vertical line in Fig. 12(b). For instance, given

the result of a particular iteration, one could exclude certain data items from the fol-

lowing iterations, which accelerate the later iterations due to the reduced data size.

Furthermore, users could change the number of clusters while a clustering method is

running, which immediately affects the following iterations.

4.3.1 Issues and Solutions

4.3.1.1 Computational Overhead and Multi-threading

Computational overheads are one of the issues that can be potentially introduced by

this framework. As can be seen in the red-lined stacked rectangle blocks in Fig. 12(b),

visual analytics systems have to process the output for each iteration repetitively while

the standard approach needs to process only the final output once. These additional

computations could undermine the effectiveness of the proposed framework. Let
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us suppose that a particular computational method, which requires 50 iterations to

converge, converges in a minute. If the proposed framework runs only 4-5 iterations

within the same amount of time, then users might prefer the standard approach

instead of being able to check the intermediate results since the results from such

early iterations may not be satisfactory.

However, we claim that this issue can be easily overcome by applying a multi-

threaded approach to the proposed framework. As shown by the blue ellipses in

Fig. 12(b), the entire process can be separated into two concurrent processes/threads.

The first thread shown to the left is responsible only for the sub-routines inside the

iteration while the second thread on the right handles actions from the post-processing

block to the visualization block. These two threads communicate with each other via

a message queue, as shown by the blue rectangle on top in Fig. 12(b), where the

outputs for each iteration for post-processing are to be stored.

Modern computers are usually equipped with at least two or more cores on the

CPU. These two threads can be executed virtually in parallel, which hardly slow

down the computational methods compared to the standard approach. Although not

included in this chapter, for the computational methods we customized, we compared

the total computing time between PIVE and the standard frameworks, but with

multi-threading implemented, there were essentially no differences in their running

times.

Even in this multi-threading framework, the following case may still be problem-

atic. Suppose the second thread involves more intensive computations than the first

thread because, for example, the post-processing block takes more time than the pro-

cesses at each iteration. As a result, the second thread would act as a bottleneck in

the overall flow of the proposed framework, resulting in the message queue increasing.

One way to handle this issue is to store the results of each iteration periodically rather

than storing every one of them in the first thread. Alternatively, the second thread
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could take the most recent iteration-level results and discard the remaining older ones

from the message queue. Under this situation, the visualization of the intermediate

results may be somewhat discontinuous, but users would always be given the most

recent result, which should be the most accurate solution up to the current iteration.

Finally, the other overhead comes from copying results from each iteration to the

message queue, which results in a memory write operation. In the standard approach,

these results for each iteration are usually written to the same memory space over

iterations since the results from previous iterations do not need to be maintained.

However, memory write operations are generally very fast. Furthermore, the out-

puts from each iteration of computational methods take up a much smaller memory

compared to input data. For example, even if the data is a very high-dimensional,

say, in the hundreds of thousands of dimensions, such as is the case in text data, the

dimension reduction outputs would only be two-dimensional representations assum-

ing they are visualized in a 2D space. Since the amount of additional computational

time and memory that is required by our approach is minimal, we do not see memory

overheads being a critical issue.

4.3.1.2 Visual Inconsistency and User Control

The second issue in the proposed framework is the visual inconsistency, which occurs

during visualization updates, due to dynamic results changing each iteration. The

most severe case occurs when the visualization changes too frequently. Although the

amount of change generally diminishes as the iterations proceed, frequently changing

visualizations may prevent users from obtaining a consistent picture of the data.

To address these issues with visual inconsistencies, we’ve come up with several

possible controls. The first most basic option would be a stop and resume control

which would stop and resume updates of the visualization. Secondly, a time period

control would manage the length of the visualization. Additionally, we could pair this
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time controller with two choices - the option to visualize the most up-to-date result

or to visualize the result of the next item in the queue, which would provide the

user with smoother visual transitions. Similar to the ’stop/resume’ interaction, since

our approach maintains each of the intermediate results, we could simply expand

the controls to also add both the ’play backwards’ and ’jump to. . . ’ options. These

interactions would help users understand the overall trajectory of the results through

each iteration. Through the use of these controls, it is very possible that the user

may uncover an interesting insight into the data at a particular iteration or a series

of iterations.

4.4 Customized Methods under PIVE

In this section, following the proposed framework, we present several customized com-

putational methods in visual analytics systems. To begin with, we have chosen three

visual analytics systems, FodavaTestbed,1 Jigsaw,2 and iVisClustering [88], which

involve computational methods.3

FodavaTestbed is a visual analytics system for high-dimensional data, where users

can apply various dimension reduction and clustering methods for exploratory anal-

ysis. Among various methods supported, we have chosen three dimension reduction

methods, 1. MDS, 2. PCA, and 3. t-SNE. Jigsaw is a well-known system for docu-

ment analysis, and we have chosen 4. k-means, which is used to provide a summary in

terms of a compact set of clusters. Finally, iVisClustering is an interactive document

clustering system which uses 5. LDA, a popular topic modeling method.

In the following, we describe how each method is customized along with the ad-

ditional interactions we implemented in the proposed framework.

1http://fodava.gatech.edu/fodava-testbed-software
2http://www.cc.gatech.edu/gvu/ii/jigsaw/
3We obtained the code from the original authors of the systems.
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4.4.1 Principal Component Analysis (PCA)

PCA [75] is a well-known dimension reduction method that captures the maximal

variance in the data via a linear projection. PCA is mainly based on the method

called eigendecomposition, the algorithms of which are categorized into two different

methods, the QR algorithm and the Lanczos algorithm [61].

Basically, the Lanczos algorithm approximates a given data matrix by a much

smaller one in the Krylov subspace [61], the dimension of which iteratively expands,

and efficiently solves the eigendecomposition on the latter matrix. Due to the nature

that this matrix well-approximates the largest eigenvectors of the original one, the

Lanczos algorithm performs much faster than the QR algorithm in visual analytics

in which only a few dimensions are needed.

We customize the Lanczos-based PCA implementation of FodavaTestbed so that

the results for each iteration are dynamically visualized.

4.4.2 Multidimensional Scaling (MDS)

MDS [45] is a traditional dimension reduction method that attempts to preserve given

distances/relationships of data items in a lower-dimensional space. Given the ideal

distance δij between xi and xj , MDS solves

min
x1, ..., xn

∑

1≤i<j≤n

(dij − δij)
2 , (39)

where dij is the distance between the reduced dimensional vectors xi and xj . A

Euclidean distance ‖xi − xj‖2 is usually used for dij. Solving Eq. (39) iteratively

refines xi’s based on various optimization techniques [46]. We customize MDS in

FodavaTestbed by extracting the xi’s at each iteration from the MDS implementation.
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4.4.2.1 User Interaction Capabilities

Additionally, while the results for each iteration of MDS are visualized in a scatter

plot, we support the interaction capability that enables users to move the data points

by mouse via drag-and-drop, similar to the Prefuse force-directed layout. Then,

during the MDS iterations, their new positions in the screen space are translated back

to the MDS output coordinates, xi’s. The changes in xi’s at a particular iteration

then affect the following iterations by generating different dij’s. In terms of how

MDS behaves due to these changes, we provide two different capabilities: ‘soft’ vs.

‘hard’ placement. The soft placement continues iterations without any changes in

MDS behaviors. It is equivalent to restarting MDS with the intermediate result at

the particular iteration as the initial values for xi’s.

The hard placement capability fixes the values of xi’s for points moved by the user.

This can be easily achieved by skipping the update step of these xi’s in the following

iterations. Note that, however, even though their values do not change, other data

points are still influenced by these fixed points, and in this sense, our approach is a

semi-supervised MDS that reflects user interventions.

When using the semi-supervised MDS, an important advantage of the proposed

framework is that users can immediately check the effects of these interactions via

the iteration-wise visualization. Our modifications in FodavaTestbed support both

types of interactions.

4.4.3 t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE [130] is a relatively new dimension reduction method. It interprets pairwise

distances as probabilities both in high-dimensional and lower-dimensional spaces and

tries to minimize their Kullback–Leibler divergence, a distance measure between prob-

ability distributions. Unlike the previous methods discussed, it focuses on preserving

neighborhood relationships instead of global ones, and it has shown its outstanding
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capabilities in visualizations.4

Although we skip the detailed formulations because of the scope of the visual an-

alytics community, the algorithm works iteratively by refining the lower-dimensional

coordinates based on a gradient descent-based framework. In practice, however, t-

SNE does not provide a clear stopping criterion, and thus it typically iterates several

hundred times by default for any data set, which usually takes a significant amount

of time. We customize the t-SNE in FodavaTestbed in a similar manner to the way

we altered MDS.

4.4.3.1 User Interaction Capabilities

Likewise, we provide both the soft and hard placement interactions for t-SNE, as

discussed in MDS. Although the algorithm details are different, the overall iterative

procedure turns out to be quite similar to MDS. Thus, for the soft placement, we

restart t-SNE with the intermediate results immediately during iterations. For the

hard one, we skip the update step for data items moved by the user in the following

iterations while they still influence other points in the t-SNE iterations. Therefore,

our altered method can be viewed as a semi-supervised t-SNE.

4.4.4 k-means

k-means, which is a widely-used clustering method, performs the following steps iter-

atively: 1. computing the centroid of each cluster by averaging the data vectors in the

corresponding cluster and 2. updating the cluster assignment of each data item based

on its closest cluster centroid. The iteration terminates when there are no cluster

membership changes.

Although Jigsaw provides a cluster view based on k-means, it currently visualizes

only the pre-computed results since k-means is usually very slow to converge. We

customize it so that users can run k-means in real-time and the intermediate cluster

4http://homepage.tudelft.nl/19j49/t-SNE.html
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(a) PCA criteria values and out-
put changes

(b) The scatter plot at the first
iteration

(c) The scatter plot at the third
iteration

(d) The scatter plot at the 80th
iteration

Figure 13: The behavior for each iteration of PCA and its visualization snapshots.
In (a), the red lines represent the PCA criteria value, the lower-dimensional variance
in PCA. The blue lines are the Euclidean distances of the lower-dimensional outputs
between the current and the previous iterations, and the black lines are the Euclidean
distances of the lower-dimensional outputs between the current and the final itera-
tions. In (a), the black and the blue lines almost coincide. 1,420 facial image data
representing pixel values in 2,048 dimensions have been used.

memberships are dynamically visualized.

4.4.4.1 User Interaction Capabilities

Additionally, we add several interaction capabilities in the proposed framework. One

is to split/merge clusters during iterations. On a split/merge interaction, similar

to the soft placement in MDS and t-SNE, k-means restarts with the intermediate

cluster memberships that reflect split/merged clusters, involving dynamic changes in

a k-means parameter which represents the number of clusters.

Similar to the hard placement in MDS and t-SNE, another capability we provide

is the option to fix the cluster assignments of the data in a particular cluster. To

accomplish this, we skip the updating step of the cluster assignment for these data
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put changes
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iteration
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(d) The scatter plot at the 156th
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Figure 14: The behavior for each iteration of MDS and its visualization snapshots.
In (a), the red lines represent the MDS criteria values, which is the stress value, i.e.,
Eq. (39) in MDS. The blue lines are the Euclidean distances of the lower-dimensional
outputs between the current and the previous iterations, and the black lines are the
Euclidean distances of the lower-dimensional outputs between the current and the
final iterations. 500 handwritten digit data representing pen traces in 16 dimensions
have been used.

in the following iterations. However, they still contribute to the centroid computing

step. A similar semi-supervised way of k-means was previously proposed [15], but

our framework significantly accelerates such interactions with k-means.

4.4.5 Latent Dirichlet Allocation (LDA)

LDA [20] is a popular topic modeling method for documents based on a generative

probabilistic model. Given a number of topics, it gives two outputs: the term-wise

distribution of each topic and the topic-wise distribution of each document. The

iterations of LDA basically update these two outputs alternately. From a clustering

viewpoint, the former corresponds to a centroid vector of each topic cluster, and the

latter to a soft-clustering coefficient. By taking the topic index that has the maximum
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Figure 15: The computing times of the example in Fig. 13.

value in the latter, a document is clustered to a particular topic.

iVisClustering uses one of the fastest LDA libraries called Mallet [94], which imple-

ments LDA based on a Gibbs sampling [110]. Although this sampling-based approach

does not guarantee a convergence, it is being widely used because of its simplicity

and robustness against overfitting, compared to the variational approximation method

proposed in [20]. Due to this convergence issue, LDA usually iterates a pre-defined

number of iterations and usually requires a significant amount of time. We customize

the Mallet library so that it can give the outputs from each iteration to iVisClustering,

allowing iVisClustering to dynamically update its visualization.

4.4.5.1 User Interaction Capabilities

In addition to the original iVisClustering interaction capabilities being available dur-

ing iterations, we also add several interactions with LDA in iVisClustering, similar to

those in Jigsaw: splitting/merging clusters and fixing the cluster assignments of par-

ticular data items during iterations. The customization of LDA for such interactions

is similar to k-means, and thus we skip the details due to the page limit.

4.5 Experiments

In this section, we present behaviors within each iteration for computational methods

as well as their interactive aspects in the proposed framework.
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Table 7: The keyword summaries of the sampled clusters with/without fixing inter-
actions of k-means performed in Fig. 19.

Cluster 1 Cluster 6 Cluster 7 Cluster 8

Fig. 19(c) process,trying,latency turing,100,budget quasimonte,unbalanced,choice concern,rich,solvable

Fig. 19(d) schur,process,trying turing,budget,100 quasimonte,unbalanced,choice concern,rich,solvable

Table 8: The keyword summaries of the selected clusters during splitting and merging
interactions of k-means performed in Fig. 20.

Cluster 1

1-a 1-b 1-c 1-d

Fig. 20(a)
analysts,cdc, weird,contents, fundraising, chromosomes,100fold,

earliest oneyearold 11,7bd may605375rossignol

Fig. 20(b)
enjoy,contents,weird

Fig. 20(c)
enjoy,contents,weird

Cluster 2 Cluster 3

1-a 1-b 1-a 1-b

Fig. 20(a)
warm,rhythms, 37,symptoms, social,cause,symptoms

pretend said

Fig. 20(b)
warm,37,rhythms social,causes, social,causes,

people cerebellum

Fig. 20(c)
warm,37,symptoms 1000,social, incredible,symptoms,

causes cerebellum
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(a) The 333th-iteration result (b) The 333th-iteration result after mov-
ing points

(c) The 344th-iteration result (d) The 362th-iteration result

Figure 16: A point-moving interaction example using t-SNE. The two overlapping
clusters,‘l’ and ’o,’ are separated due to a user interaction of moving apart a few
points from each cluster. 1,558 spoken letter data represented in 618 dimensions have
been used.

4.5.1 Iteration-wise Behaviors and Visualization

Fig. 13 shows the behaviors of each iteration for the customized PCA and MDS

along with their computing times shown in Fig. 15. In PCA, the criteria value, i.e.,

the lower-dimensional variance, as well as the lower-dimensional outputs (Fig. 13(a))

converge within a few iterations, indicating that only a few iterations of the Lanczos

algorithm are needed in visual analytics applications (Figs. 13(b)-(d)). Nonetheless,

each iteration takes roughly the same amount of computation time except for the first

iteration which includes the pre-processing time. (Fig. 15(a)). Instead of having to
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Figure 17: The behaviors for each iteration of k-means with and without the inter-
action made in Fig. 19(b). In (a), the decreasing lines are the cluster membership
changes between the current and the previous iterations while the increasing ones
are the correct cluster memberships with respect to the final solutions without the
interaction. The black vertical line represents the iteration point of the interaction
made.

perform a fairly large number of iterations, as most PCA algorithms do, the iteration-

wise visualization enables users to obtain an equivalent visualization much quickly.

A similar argument applies to MDS as well. Although its convergence is relatively

slow compared to PCA (Fig. 13(e)), we obtain the results similar to the final one

achieved at the 10th iteration (Figs. 13(f)-(h)). We do not present the quantitative

analyses for t-SNE, but we found tendencies similar to MDS, and we will focus on its

interactive aspects in the following section.

In clustering, the behavior of each iteration of k-means is presented in Fig. 17 as

well as their snapshots in Jigsaw in Fig. 19. In Jigsaw, in order to best assist users

in easily identifying the location and the number of changes that occur while the

visualization is dynamically updated, we draw arrows to represent where a particular

data item has moved relative to the previous iteration, and color-code each data

item to represent which cluster index it previously belonged to. As shown in Fig. 19

and in the redlines in Fig. 17, although significant change occurs in early iterations

(Fig. 19(a)), they diminishes quickly, as seen in the sixth iteration (Fig. 19(b)), which

is not much different from the final result (Fig. 19(d)). However, the time each
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Figure 18: The iteration-wise behaviors of LDA. In (a), the black line represents
cluster membership changes between the current and the previous iterations while the
red line represents the correct cluster memberships with respect to the final solutions.

iteration takes is almost the same (Fig. 17(d)).

Finally, LDA, which is a sampling-based approach, shows a significantly different

behavior from the previous methods (Fig. 18). Although cluster membership changes

between iterations generally decrease and the solution narrows to the final solutions

(Fig. 18(a)), cluster memberships change significantly even after many iterations, in

this case after 1,200 iterations. In iVisClustering, we could see the top keywords of

each topic become somewhat stable after several hundreds of iterations (Fig. 18(a)),

but the randomness of the sampling-based algorithms might make it harder to give

consistent visualizations when compared to deterministic methods in PIVE.

4.5.2 Real-time User Interactions

Basically, in all three systems, we provide basic interactions that control the visu-

alization for each iteration, as discussed in Section 4.3.1. In the following, we show

several use cases of the interactions discussed in Section 4.4.
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(a) The second-iteration result (b) The sixth-iteration result

(c) The converged (25th-iteration) result after fix-
ing clusters

(d) The converged (26th-iteration) result without
any interaction

Figure 19: The results of the PIVE integration of k-means in Jigsaw. At the sixth
iteration, the interaction of fixing the yellow-colored clusters is made (b). The final
result with and without this interaction is shown in (c) and (d), respectively. The
NSF-awarded abstract data have been used. The detailed keyword summary is shown
in Table 7

4.5.2.1 Moving data points in t-SNE

Fig. 16 shows an interesting interaction which involves moving a data point in t-

SNE. Given some overlapping clusters in a particular visualization generated by t-

SNE (Fig. 16(a)), users place several points from different clusters far apart (Fig.

16(b)), and then t-SNE reflects these changes in the following iterations, resulting in

tje separation of most points in two clusters from each other (Figs. 16(c)(d)). This

simple, yet powerful example clearly illustrates the advantage of providing users with
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(a) The third-iteration result (b) The fourth-iteration result after split/merge
interactions

(c) The final (15th-iteration) result with
split/merge interactions

(d) The final (7th-iteration) result without
split/merge interactions

Figure 20: An example of split/merge interactions. The yellow and green ones in (a)
are merged to the same-colored ones, respectively, in (b), and the white one in (a) is
split to the-same colored ones in (b). Webpages about autism have been used as an
input data set. The detailed keyword summary is shown in Table 8

the ability to interact with computational methods in our framework in real-time

visual analytics.

4.5.2.2 Fixing cluster assignments in k-means

For our k-means method, we provide users with another interaction that allows them

to fix cluster assignments for particular data items at a certain iteration. This inter-

action becomes especially useful when users feel that particular clusters are adequate

and want to prevent them from changing much. In addition, fixing some clusters that

89



(a) The third-iteration result

(b) The 300th-iteration result

(c) The 700th-iteration result

Figure 21: An example of filtering documents whose cluster memberships are unclear.
This interaction is done in the 300th iteration, and the topics become clearer in the
later iterations. 20 newsgroups data have been used.

are already stable in early iterations can accelerate the later iterations by excluding

them from the cluster assignment step.

Fig. 17 shows the effects of such interactions. First, we start with the same exam-

ple shown in Fig. 19, but we fix the clustering assignments of the cluster highlighted

in yellow rectangles, which amounts to 44% of the total data items, at the sixth it-

eration (Fig. 19(b)). Once this interaction is performed, the computing times for the

following iterations of k-means drops significantly (Fig. 17(b)). However, only less

than 10% of the final cluster memberships differ from the final results without this

interaction, as shown in the increasing red line in Fig. 17(a). The final outputs of the

cluster view in Jigsaw of the two cases can also be compared in Figs. 19(c) and (d),

both of which are similar in terms of cluster sizes as well as keyword descriptions.

4.5.2.3 Split/merge clusters in k-means

Our customization of k-means enables users to merge multiple small or semantically

related clusters or split large or unclear clusters. Fig. 20 shows its example in Jigsaw.

In the third iteration, we merge yellow and green clusters and split a white cluster

(Fig. 20(a)). The resulting is shown in Fig. 20(b). We obtain a much more balanced
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set of clusters (Fig. 20(c)) compared to the final result in which no splitting/merging

was performed (Fig. 20(d)). Furthermore, after analyzing the documents in two split

clusters, we found that one of the clusters primarily contained documents about the

causes of autism while the other about the symptoms, as seen in the keyword summary

in Fig. 20(c). Without the interaction, one will notice in Fig. 20(d) that these clusters

are not easily separated.

4.5.2.4 Filtering noisy documents to improve topics in LDA

The ability to filter noisy documents has been an appealing interaction for LDA in

iVisClustering. To be specific, given parallel coordinate representations of topic-wise

distributions of documents, users can interactively filter out documents that are not

strongly related to a single topic, i.e., documents that have a very small maximum

value in the topic-wise distribution. By removing them and re-running LDA, iVis-

Cluster generally obtains significantly clearer topics. In PIVE, we performed this

interaction near the 300th iteration (Fig. 21(b)), which is an early iteration when

compared to the total number of iterations performed by LDA. However, such an

interaction successfully generates clearer topics (Fig. 21(c)) over the standard ap-

proach where users have to wait for the algorithm to finish its full iterations in order

to perform the same interaction.

4.6 Conclusions

We have presented PIVE (Per-Iteration Visualization Environment for supporting

real-time interactive visualization with computational methods). One of its apparent

advantages is its ability to present users with the intermediate results during the inter-

actions, which could reveal a significant amount of information immediately in visual

analytics. Another important advantage is that it indeed opens up the possibility of

performing small multiple interactions, which in the past have been considered to be

too inefficient, and allows the real-time control over computational methods in visual
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analytics. In fact, the interactions we proposed in this chapter are relatively simple,

which do not involve any major algorithmic modifications, but after a sequence of

interactions, the results reflects the intention of users sufficiently well in real-time. In

this sense, PIVE makes them significantly useful by enabling users to perform these

interactions easily and efficiently.

However, the advantage of our framework can be limited when the changes be-

tween iterations remain nontrivial, resulting in inconsistent visualizations. We have

seen this kinds of limitations when using LDA under PIVE due to the random nature

of the used LDA algorithm. As a future work, we plan to tackle this problem more

actively by, for example, post-processing the results or even imposing additional con-

straints in computational methods so that the results from the following iterations do

not change much from the current ones. Finally, another interesting research direction

we will pursue is to extend PIVE to various parallelized computational algorithms for

the large-scale data visual analytics.
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CHAPTER V

TESTBED: AN INTERACTIVE VISUAL TESTBED

SYSTEM FOR VARIOUS DIMENSION REDUCTION

AND CLUSTERING METHODS

Many of the modern data sets such as text and image data can be represented in high-

dimensional vector spaces and have benefited from computational methods that uti-

lize advanced computational methods. Visual analytics approaches have contributed

greatly to data understanding and analysis due to their capability of leveraging hu-

mans’ ability for quick visual perception. However, visual analytics targeting large-

scale data such as text and image data has been challenging due to the limited screen

space in terms of both the numbers of data points and features to represent. Among

various computational methods supporting visual analytics, dimension reduction and

clustering have played essential roles by reducing these numbers in an intelligent way

to visually manageable sizes. Given numerous dimension reduction and clustering

methods available, however, the decision on the choice of algorithms and their pa-

rameters becomes difficult. In this chapter, we present an interactive visual testbed

system for dimension reduction and clustering in a large-scale high-dimensional data

analysis. The Testbed system enables users to apply various dimension reduction and

clustering methods with different settings, visually compare the results from different

algorithmic methods to obtain rich knowledge for the data and tasks at hand, and

eventually choose the most appropriate path for a collection of algorithms and param-

eters. Using various data sets such as documents, images, and others that are already

encoded in vectors, we demonstrate how the Testbed system can support these tasks.
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5.1 Introduction

The volume of available data has been increasing at an exponential speed in recent

years. Many of the modern data are generated in various forms such as documents and

images of which the raw data can be represented in a high-dimensional vector space,

allowing various computational methods to be applied. For instance, text documents

can be encoded using a bag-of-words model, and images are represented using their

feature point descriptors [91], resulting in hundreds of thousands of dimensions.

Given high-dimensional data, understanding and analyzing these data become

more challenging. Visual analytics [78, 127] has gained increasing interest due to

its capability of leveraging humans’ ability of quick visual insight in data analyses

and decision processes. However, many state-of-the-art visual analytics techniques or

systems are not equipped for high-dimensional large-scale data. One of the reasons

is that although humans are good at visually grasping an overall structure, when the

number of visualized objects becomes large, it is often difficult to extract meaningful

information from visualization. Another factor is the limited dimension of a screen

space where high-dimensional data have to be visualized. For instance, parallel co-

ordinates, a widely-used visualization technique for multi-dimensional data, do not

scale well even when the dimension reaches several tens.

To improve this scalability issue, computational methods can support visual ana-

lytics by transforming the original data into a more compact and meaningful represen-

tation. Among various methods, two main ones, dimension reduction and clustering,

play an essential role in visual analytics of large-scale high-dimensional data owing to

their nature to reduce the numbers of features and data items into manageable sizes,

respectively. Dimension reduction methods can reveal meaningful information by al-

lowing the visual representation of high-dimensional data in a much lower-dimensional

space. In addition, it allows visualization of high-dimensional data in the form of a

2D/3D scatter plot in which one can obtain insight about data relationships with

94



respect to the geometric locations of data. On the other hand, clustering provides

an overview of large-scale data in terms of a small number of groups based on their

semantic coherences. Such cluster information can then guide us to a proper data

group of interest on which we can further focus our analysis.

Given a wide variety of computational methods including dimension reduction and

clustering methods, it is not easy to determine which method to choose and how to

use it properly for a certain data set and a certain task. Sometimes, when a specific

method is used for a certain data set, its performance may be dependent on how the

data is pre-processed beforehand. In addition, many modern computational methods

often require decisions on multiple parameters. Yet there is no theoretical guideline

for an optimal set of parameters for a given problem, and we have to go through

multiple trials only to obtain some initial understanding of parameter values. As the

algorithm gets more complicated, it becomes more difficult for users to understand

what these parameters mean and how to select them properly. Consequently, many

visual analytics systems choose a certain computational method, which is often basic

and/or generic, and treat it as a black box with fixed parameter values while focusing

on the subsequent analysis after obtaining the output from it. However, without

an appropriate choice of algorithms and their parameters, the performance of these

methods may not be satisfactory enough to start an analysis with.

Due to these difficulties, the current state of the art in visual analytics has not

taken full advantage of the recent advancements of computational methods. To tackle

this problem, we claim that users have to be provided with the capability of interac-

tively trying out various computational methods and their parameters and reviewing

their results at a visual level without having to know the details of algorithms. As a

cornerstone to achieve this claim, this chapter presents an interactive visual testbed

system for dimension reduction and clustering, the two essential computational meth-

ods for the visual analytics of large-scale high-dimensional data.
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The main contributions of the proposed Testbed system are as follows. First of all,

given various types of input data such as text documents, images, and vector-encoded

data, the testbed system provides extensive capabilities to interactively select data

pre-processing options and choose a wide variety of clustering and dimension reduc-

tion methods along with their parameters. The output of these processes are then

visualized in several forms, e.g., parallel coordinates and a scatter plot, equipped with

various interaction capabilities, e.g., accessing the original data items and brushing

and linking between multiple views. Additionally, the Testbed system facilitates easy

comparisons between different dimension reduction and clustering results by com-

putationally aligning them. Finally, the Testbed system is implemented in a highly

modular way so that new data types and dimension reduction/clustering methods

can be easily integrated to the current system.

Note that even though the Testbed system can be used by anyone who wants to

apply various methods to their own data, some background knowledge about machine

learning and data mining would be of great help in fully utilizing the Testbed system

via understanding the data and the applied methods simultaneously. For example,

machine learning researchers/developers, who wish to easily plug in and visually

evaluate their own methods in practical data analysis scenarios, would be able to

receive significant benefit from the Testbed system.

The rest of this chapter is organized as follows. In Section 5.2, we review the

relevant literature in terms of dimension reduction and clustering methods as well as

the visual analytics systems adopting them. Section 5.3 describes the details of the

Testbed system as well as several main computational methods used in the system.

Section 5.4 shows various usage scenarios of the Testbed system, and finally Section

5.5 presents conclusions along with future work.
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Figure 22: 2D Scatter plots obtained by two dimension reduction methods, MDS
(left) and LDA (right), for a facial image data set. A different color corresponds to a
different cluster.

5.2 Related Work

In this Section, various dimension reduction and clustering methods applicable to

visualization are first reviewed. Afterwards, we discuss some of the currently available

visual analytics systems that adopt these computational methods.

5.2.1 Dimension Reduction and Clustering for Visualization

Dimension reduction has long been one of the main research topics in data mining

and statistical machine learning areas. Numerous dimension reduction methods have

been proposed, among which the most commonly used dimension reduction methods

include principal component analysis (PCA) [75], multidimensional scaling (MDS)

[45], and linear discriminant analysis (LDA) [60, 68].

In addition to traditional data analysis problems, they have also been widely

utilized in visualization due to their capability of representing high-dimensional data

as a form of scatter plots in 2D/3D space. In a scatter plot, each data item is

represented as a point and its 2D/3D coordinate is determined from the dimension-

reduced representation. In general, the relative locations among data points reflect

the pairwise relationships or proximities among data items.
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Each dimension reduction method has its own optimization criteria and behaviors,

which result in different visualizations. For instance, the recently proposed man-

ifold learning algorithms, e.g., isometric feature mapping (ISOMAP) [125], locally

linear embedding (LLE) [111], and Laplacian Eigenmaps (LE) [17], try to preserve

the relationships between the local neighborhood rather than global relationships.

These methods have been successfully applied to the data that originally have a low-

dimensional manifold structure, and often they demonstrated their capability to reveal

such a manifold structure in 2D/3D visualizations. However, most of these methods

present just several visualization snapshots of limited data sets with no interaction

abilities.

Another aspect to consider when applying dimension reduction in visualization

applications is the cluster structure of data. A majority of dimension reduction

methods take into account only the pairwise relationships between data items. In

practice, however, it is not easy to obtain much insight from the 2D/3D scatter plot

generated by them for a large number of data items. The left figure in Fig. 22 is a

visualization example of such a dimension reduction method, MDS, for a facial image

data set. Let us, for now, ignore the colors, which indicate the cluster labels. This

visualization shows most of the data as a single chunk with a few outliers placed

outside. Although these points may give some interesting insight about why they

appear to be outliers, one cannot get much more information from this visualization.

Another type of dimension reduction methods incorporates additional information

about the cluster structure of data in addition to individual data items. Since these

dimension reduction methods require the assigned cluster label associated with each

data item as an input, they are called supervised dimension reduction methods while

the previous methods are called unsupervised dimension reduction methods. Some

representative supervised methods include LDA [60] and orthogonal centroid method

(OCM) [102]. The right figure in Fig. 22 is an example of LDA visualization. This
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figure visualizes the data as groups of items computed by LDA based on the given

cluster labels, and one can obtain better insight about the overall data structure at

the cluster level over the individual data level.

Representing the cluster structure has been one of the main concerns in many

studies on dimension reduction and 2D/3D scatter plot visualizations even when

unsupervised dimension reduction methods are used. Many methods have been eval-

uated regarding their ability to visualize cluster structures, which are hidden at the

time of computing dimension reduction. For instance, a recently proposed dimension

reduction method, t-distributed stochastic neighborhood embedding (t-SNE) [130],

shows its capability of grouping data and revealing the true cluster structure in 2D

scatter plot visualizations.

Given the importance of the cluster structure in large-scale data visualization,

clustering methods can add a significant value to visual analytics approaches by en-

abling visual understanding of the overview of data. Clustering partitions the entire

data into groups or clusters so that the data items in the same cluster are more similar

to each other than to those in different clusters. The resulting grouping information

is in a form of cluster labels, which act as an additional categorical variable associ-

ated with data items. Such cluster information can be color-coded in visualization,

as shown in Fig. 22, and help us understand the cluster structure in the data clearly

in visualization.

Clustering, along with dimension reduction, has also been one of the well-studied

research topics in data mining and machine learning areas. Widely-used methods

include k-means clustering, spectral clustering [96], and Gaussian mixture models.

Recently, more advanced methods such as non-negative matrix factorization (NMF)

[79] and latent Dirichlet allocation [20] have shown their successful applications in

image segmentation and document topic modeling, etc. These methods are usually

evaluated using the data set whose cluster label information is already known and by
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comparing between the true cluster labels with those obtained by the computational

method. However, given the data set that may not have a clear cluster structure,

clustering is typically a very challenging task, and thus it is often the case that

the resulting cluster quality is unsatisfactory. From a visual analytics perspective,

unsatisfactory clustering makes it difficult to understand the coherent meaning of

each cluster and how one cluster contrasts with another. For instance, in recent

applications of latent Dirichlet allocation for document topic modeling, while several

coherent topic clusters have been successfully revealed for the document data, many

other topics often seem unclear to understand.

Even with the obvious needs of computational methods such as dimension reduc-

tion and clustering in visual analytics, various issues such as data noise and improper

algorithm and parameter choices, as described in Section 1, prevent their initial re-

sults from being practically useful enough to support the subsequent visual analysis.

Nonetheless, among data mining and machine learning communities, which supply

supposedly better computational methods, the efforts of interactively improving these

initial results in real-world data analysis seem to be overlooked.

5.2.2 Visual Analytic Systems using Dimension Reduction and Cluster-
ing

In information visualization and visual analytics communities, various visual analyt-

ics systems incorporating computational methods such as dimension reduction and

clustering have been proposed to deal with large-scale high-dimensional data. In this

section, several systems such as IN-SPIRE [138], Jigsaw [121], GGobi [43], iPCA [72],

and WEKA [65] are discussed.

IN-SPIRE [138] is one of the well-known visual analytics systems for document

data in which dimension reduction and clustering play main roles. Given a set of

documents, IN-SPIRE first encodes them as high-dimensional vectors using a bag-

of-words model. Then it applies k-means clustering with a pre-defined number of
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clusters. PCA is computed on cluster centroids and applied to the entire data, which

gives 2D coordinates of document data. Based on these 2D coordinates, a galaxy

view similar to a scatter plot is shown to users with a keyword summary for each

cluster placed at the cluster centroid. Owing to the simple algorithms adopted such

as PCA and k-means, IN-SPIRE can deal with a fairly large amount of data, but it

provides only a limited number of interaction capabilities to change the algorithms

and their settings.

Jigsaw [121] is another well-known visual analytics system for document analysis.

The main information that Jigsaw utilizes for visualization is named entities such as

person name and location and their co-occurrences between documents. Automatic

named-entity extraction is one of the key computational components in the analysis

in Jigsaw. The named-entity extraction can be viewed as dimension reduction that

reduces the number of keywords out of the entire vocabulary. Users can modify the

list of named-entities by manually adding/removing them. Jigsaw also provides a

cluster view by using the k-means algorithm and visualizes the resulting clusters as

groups of documents as well as their keyword summary. Jigsaw also supports basic

interactions with clustering such as changing the number of clusters and providing

seed documents.

GGobi [43] is an interactive visualization system for high-dimensional data that

are already encoded. It mainly uses a 2D scatter plot, where the two dimensions

are generated by grand tour [10]. The difference of grand tour from other dimension

reduction methods is that it provides an interaction to explore the high-dimensional

space by continuously changing the basis vectors that data items are projected into.

However, the grand tour method is applicable only when the data dimension is not

significantly high, and thus its application is limited when dealing with hundreds or

thousands of dimensions, which is often the case in many data types such as text

documents, images, and bio data.

101



Another system, iPCA [72], which also takes high-dimensional data as an input,

utilizes PCA as the main visualization technique. One of the main advantages of

iPCA is that beyond 2D/3D scatter plots, it visualizes the reduced-dimensional data

in a higher dimension than 2D or 3D via parallel coordinates. In general, dimension

reduction from the original high-dimensional space to 2D/3D space introduces signif-

icant information loss. In iPCA, it follows a useful idea to reduce the data dimension

to an intermediate one that can be visualized without much clutter via parallel coor-

dinates and then to interact with these intermediate dimensions to obtain particular

scatter plots. Another aspect of iPCA is that it visualizes the PCA basis vectors in

addition to the data items. In doing so, users can understand the role of the reduced

dimensions in their visualizations, which leads to a better understanding about the

data set as well. Even with these advantages, however, iPCA cannot handle very

high-dimensional data since iPCA visualizes each of the original dimensions.

Finally, WEKA [65] is mainly a library of various machine learning algorithms for

high-dimensional data with several interaction capabilities. Various algorithms can be

applied to data, and their performances can be evaluated based on various measures.

In addition, WEKA provides simple types of visualizations such as histograms, scatter

plots, etc. Although WEKA is similar to our Testbed system in that it provides

flexible algorithm choices and settings, most of its visualizations and interactions are

focused on the used methods rather than data exploration. For example, WEKA

does not support any interactions from its visualizations such as filtering operations

and raw data access.

As discussed above, most of the current visual analytics systems do not fully utilize

a wide variety of computational methods. They adopt generic traditional methods

for a broad applicability to various data sets and/or treat computational methods as

a black box with little options to control them, which would hamper the interactive

visual analysis. In this respect, the Testbed system provides the unique capability of

102



bringing a variety of algorithms along with full control to practical visual analytics

scenarios.

5.3 Testbed System

In this Section, we describe the Testbed system1 in detail. First, in Section 5.3.1,

we introduce the modules in the system and explain how the overall system works.

Next, we describe the details of each module from both the computational and the

interactive visualization points of view in Sections 5.3.2 and 5.3.3, respectively. Fi-

nally, in Section 5.3.4, we discuss implementation details of the system and how the

current system can be extended to adopt new data types and clustering/dimension

reduction methods.

5.3.1 Basic Workflow

As shown in Fig. 23, the Testbed system mainly has two parts: the computational and

the interactive visualization parts. At the computational part, the Testbed system

is composed of 1. vector encoding, 2. pre-processing, 3. clustering, and 4. dimension

reduction. At the interactive visualization part, the Testbed provides the following

interactive visualization modules: 1. parallel coordinates, 2. the scatter plot, 3. the

cluster label view, and 4. the original data viewer.

The basic workflow of the Testbed system is as follows. Once a data set is loaded,

data items are represented as high-dimensional vectors via a default encoding scheme.

Then, users can interactively change the options for pre-processing, clustering, and

dimension reduction methods. Each specification of these three components instan-

tiates a particular visualization set composed of the parallel coordinates view, the

scatter plot view, and the cluster label view. To generate these views, the output

1An introductory video can be downloaded at http://fodava.gatech.edu/files/

testbed-software/testbed.mp4, and the executable files with the used data sets are avail-
able at http://fodava.gatech.edu/fodava-testbed-software.
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of dimension reduction, i.e., reduced-dimensional representation, acts as the coordi-

nates of data items in the parallel coordinates view, and two user-selected dimensions

of this view are visualized in the scatter plot view. In all three views, the output

of clustering, i.e., grouping information of data items, is color-coded along with the

cluster name/summary provided in the cluster label view.

The Testbed system can generate as many visualization sets as needed depending

on different specifications of dimension reduction and clustering, and users can ex-

plore a certain visualization set and compare between different visualization sets. To

facilitate an easy comparison between different visualization results, the Testbed sys-

tem offers the capability of aligning the different clustering and dimension reduction

outputs. In addition, users can highlight and/or filter out certain clusters/data items

and look into the details of the selected data items in the original data viewer. Users

can also apply another set of clustering and/or dimension reduction to the selected

data items to create new visualization sets.

5.3.2 Computational Modules

5.3.2.1 Vector Encoding

The Testbed system can take various types of data such as text documents, images,

and pre-encoded vectors in a comma-separated-values (CSV) file format. For docu-

ment and image data, the Testbed system provides built-in vector encoding modules.

For instance, the Testbed system supports bag-of-words encoding for document data

in a sparse matrix form with stop word removal and stemming. Image data are

converted into vectors of rasterized gray-scale pixel values. The high-dimensional

vectors obtained in this stage act as initial default vectors on which the following

pre-processing is performed.
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5.3.2.2 Pre-processing

Once the default vectors are generated, the system shows pre-processing options de-

pending on the data type (Fig. 23A). The following options are provided in common

for all data types: 1. normalization, which scales data vectors so that their norms

equal to one, and 2. centering, which translates data vectors so that their empirical

mean is zero.

In addition, for text documents, we provide options of 1. removing the terms

appearing in less than a user-specified number and 2. applying the term-frequency-

inverse-document-frequency (TF-IDF) weighting scheme. For images, available are

the following options: 1. reducing image sizes to a user-specified ratio to enhance

the computational efficiency and 2. applying contrast limited adaptive histogram

equalization [107].

The Testbed system maintains multiple instances of different pre-processed vector

sets, and users can interactively generate and/or choose one of them and proceed to

perform its clustering and dimension reduction.

5.3.2.3 Clustering

Given the default or pre-processed set of high-dimensional vectors, the clustering

module performs a user-selected clustering method with specified options (Fig. 23B),

which assigns each data item a cluster label. The Testbed system currently provides

the following clustering methods: 1. k-means, 2. agglomerative hierarchical clustering

[66], 3. Gaussian mixture models, and 4. NMF. Once a specific method is selected in

the system, user interfaces to specify the number of clusters as well as method-specific

parameters are dynamically shown with their suggested default values (Fig. 23B).

Additionally, when a data set has pre-given labels, the clustering method list

includes an additional item called ‘Use original labels’ so that users can explore data

with respect to the pre-given labels.
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5.3.2.4 Dimension Reduction

Given the high-dimensional vector representations of data items, the dimension re-

duction module reduces the data dimension from possibly hundreds of thousands to

a visually manageable size, which makes it possible to visualize the data in forms of

parallel coordinates and/or a scatter plot. The Testbed system provides both super-

vised and unsupervised dimension reduction methods, as discussed in Section 5.2.1.

In cases of supervised methods, the cluster label, which is an additional required

input to run dimension reduction, is taken from the output of the clustering module.

The currently available dimension reduction methods in the system include su-

pervised ones such as 1. LDA, 2. OCM, 3. centroid method (CM) [102], 4. two-stage

methods (TSTG) [35], 5. discriminative neighborhood metric learning (DNML) [133],

and 6. kernel LDA [101], and unsupervised ones such as 7. PCA, 8. metric and non-

metric MDS, 9. Sammon mapping [113], 10. ISOMAP, 11. LLE, 12. local tangent

space alignment (LTSA) [148], 13. maximum variance unfolding (MVU) [135], 14. LE,

15. diffusion maps (DM) [42], 16. t-SNE, and 17. Kernel PCA [115]. Similar to the

clustering module, once a specific method is selected in the system, user interfaces to

specify the number of reduced dimensions as well as method-specific parameters are

dynamically shown along with their suggested default values (Fig. 23C).

5.3.3 Interactive Visualization Modules

5.3.3.1 Parallel Coordinates View

Given an output from the computational part, i.e., lower-dimensional representations

of data items and their cluster labels, the Testbed system takes a natural way to

visualize the lower-dimensional data in parallel coordinates with a color coding based

on the cluster labels (Fig. 23E). In this view, the Testbed system supports zoom-

in/out via mouse wheel scroll and data selection via mouse drag-and-drop.
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5.3.3.2 Scatter Plot View

Although parallel coordinates can fully visualize an output from the computational

part, this view is often ineffective for humans to perceive the relationships between

data items, and it does not scale well in terms of the number of data items and

dimensions since each line representing a single data item occupies numerous pixels

in a screen space. Due to these limitations, the Testbed system visualizes data in

a 2D scatter plot (Fig. 23F) by selecting two of the parallel coordinates dimensions

with the same color encoding as in the parallel coordinates view.

In the scatter plot view, users can interactively change these dimensions corre-

sponding to horizontal and vertical axes via combo boxes shown in the lower left part

of the view. In addition, the Testbed system shows cluster centroids and ellipses,

which summarize how the data within each class are distributed, and these features

can be turned on/off via check boxes shown in the upper left part of the view. Similar

to the parallel coordinates view, supported are zoom-in/out via mouse wheel scroll

and data selection via mouse drag-and-drop. Once a subset of data is selected, users

can apply another clustering/dimension reduction only on the selected data items.

5.3.3.3 Cluster Label View

The cluster label view (Fig. 23G) shows the cluster index, color, and summary in

a simple list form. Currently, the cluster summary is provided only for the text

documents type, which is the most frequent keywords in each cluster. Upon clicking

a certain cluster index or summary, the corresponding data items are highlighted with

thicker lines/points in the parallel coordinates and the scatter plot views. Unchecking

the checkboxes, which are shown in the left side of the view, hides the corresponding

data items in the two views

107



5.3.3.4 Accessing Original Data

Both in the parallel coordinates and the scatter plot view, users can access the original

form of data for user-selected data items/clusters in the original data viewer. Cur-

rently, the Testbed system provides three different original data viewers depending

on the data type, e.g., text documents, images, and pre-encoded vectors (Fig. 23H).

In all the original data viewers, selected data items are shown as a list with their

cluster colors on the left, and users can multi-select items in the original data viewer

to see the original data items. These selected items are then highlighted with dark

yellow marks in the scatter plot view (Fig. 23H). For text documents, adopting the

idea in [88], we color-code a user-specified number of representative keywords per

each cluster with the corresponding cluster color, which helps in understanding why

a document belongs to a certain cluster. For pre-encoded vectors, if these vectors are

associated with another type of data, these data can also be accessed as shown in the

third viewer in Fig. 23H.

5.3.3.5 Supporting Multi-view Exploration

Once the ‘visualize’ button is clicked (Fig. 23C) after specifying computational meth-

ods, i.e., pre-processing, clustering, and dimension reduction, a new set of the parallel

coordinates, the scatter plot, and the cluster label views are instantiated. Each of

these three views is created as an individual tab in its corresponding location, and

multiple views are maintained flexibly in the Testbed system, as shown in Fig. 23(a).

For example, any view can be popped out as an independent window and/or split

horizontally/vertically in order to make it easy to compare between different sets of

views due to different computational methods. When a certain view is activated by

a mouse click, all the options of pre-processing, clustering, and dimension reduction

used to generate the view are shown in the left in Fig. 23(a).

Between different views with such a flexible layout, the Testbed system supports
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a brushing-and-linking capability. In the current Testbed system, if certain data

items/custers are selected in one view, the corresponding data items in all the other

views are highlighted as well. We use different colors for highlighting depending on

whether the highlighted data items are due to the same view or a different view,

which helps identifying the source view in which the data selection was made.

5.3.3.6 Aligning Different Views

In addition to the above-described multi-view management and brushing-and-linking

capability, the Testbed system provides a more active means to facilitate easy com-

parison between visualization sets composed of different clustering and dimension

reduction results. To be specific, for a user-selected pair of visualization sets, users

can align the clustering and/or dimension reduction outputs (Fig. 23D), which are

then reflected to visualization sets.

To align the two different clustering results, the Testbed system performs the

Hungarian algorithm [85]. Given two different cluster assignments of the same data

items, the Hungarian algorithm finds the best pairwise matchings between their clus-

ter indices so that the number of common data items within matching cluster pairs is

maximized. Once the Hungarian algorithm finishes, the Testbed system changes the

cluster indices and colors of the second visualization set according to the matching

clusters of the first visualization set. As a result, users can maintain the consistent

cluster indices/colors when comparing the two given visualization sets.

On the other hand, the Testbed system handles the alignment of dimension re-

duction results via Procrustes analysis [69, 53]. Although there exist many advanced

methods to align the two sets of vectors [30], we chose Procrustes analysis due to its

computational efficiency. Procrustes analysis transforms the second set of vectors via

a rigid transformation, which allows only translation, rotation, and reflection, so that

109



their Euclidean distances to the corresponding data vectors in the first set are mini-

mized. Currently, instead of aligning the entire dimensions, the Testbed aligns only

the two dimensions selected in the scatter plot view so that the alignment between

the two scatter plot views are maximized. These alignment functionalities help users

understand how differently the corresponding data items/clusters are placed between

the two scatter plot views.

5.3.4 Implementation and Extensibility

The current Testbed system is mainly implemented in JAVA to achieve various GUI

and interaction capabilities. In order to support flexible window management, Net-

Beans Rich Client Platform and IDE2 are used.

Most of the internal computational methods are, however, written in MATLAB.

There are several reasons of using MATLAB codes instead of porting them to JAVA.

First of all, in many cases, the source codes of advanced computational methods

are readily available in MATLAB due to its simplicity for matrix computations. In

this respect, it would be burdensome to re-implement each of these methods in a

different programming language in order to make them visual and interactive, and it

will eventually become difficult to keep up with the pace of new technologies.

Furthermore, MATLAB provides highly optimized matrix computations. For in-

stance, MATLAB, by default, auto-identifies the parallelizable subroutines in the

code and runs full CPU cores even in a single PC. There also exist many efficient ma-

ture core computational methods. For example, the k-means function in MATLAB

provides various options for a distance metric to be used (Euclidean, city block, co-

sine, and correlation), and a seed initialization (random, uniform, pilot-clustered, and

user-selected seeds). Due to these reasons, the current Testbed system interface with

the computational methods via a custom JAVA library file created by MATLAB.3

2http://netbeans.org/features/platform/index.html
3http://www.mathworks.com/products/javabuilder/
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In terms of the extensibility of the Testbed system, we designed it in a completely

modular way so that it can easily accept new data types and clustering/dimension

reduction methods. For instance, if one wants to use the Testbed system for a

speech data type, one needs to implement only the encoding module, the possible

pre-processing options specific to the speech data type, and the original data viewer

that can play audio data. Otherwise, by performing vector encoding separately and

putting the encoded vectors as an input to the system, one can easily utilize the full

capability of the Testbed.

Adding new dimension reduction/clustering methods is also a simple process. Cur-

rently, the implementation of each computational method is composed of two source

code files. One file performs the computation by taking an input and generating an

output as a primitive two-dimensional double array type, and the other is for user

interfaces to change the method-specific options. Therefore, whether the implemen-

tation of a new method is written in MATLAB or JAVA, as long as it deals with

two-dimensional double array type as an input and an output, it can be easily inte-

grated into the current Testbed system without having to modify the entire system.

5.4 Usage Scenarios

5.4.1 Data Sets

To show how the Testbed system can be utilized in various visual analytics scenarios,

we use three different data sets: 1. Pendigits (pre-encoded vectors), 2. Weizmann

(images), and 3. InfoVisVAST (text documents).

The Pendigits data set4 is composed of 10,992 handwritten digit data items, each

of which is a 16-dimensional vector representing pen trace coordinates [11]. The data

set has 10 clusters in terms of which digit each data item corresponds to, i.e., ‘0’,

‘1’, . . . , and ‘9.’ For our experiments, 50 data items have been chosen from each

4http://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
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cluster, resulting in 500 items in total. The Weizmann data set5 contains 28 persons’

facial images with various angles, illuminations, and facial expressions. Excluding

unclear images, we have chosen 52 images from each of 15 persons, resulting in 780

data items of 15 clusters. The size of each facial image is 88×128, resulting in a

11,264 dimensional vector. The InfoVisVAST data set6 is a document corpus of

paper abstracts in IEEE Infovis (1995-2010) and VAST (2006-2010) conferences. It

includes 515 documents encoded in 4,185 dimensions via a bag-of-words encoding

after stemming and stop word removal.

5.4.2 Parallel Coordinates: Guiding beyond Two Leading Dimensions

When using dimension reduction in high-dimensional data visualization, the leading

two dimensions of a dimension reduction method have been usually used to gener-

ate a single scatter plot while ignoring the other dimensions. Unlike these previous

approaches, the Testbed system first visualizes the reduced-dimensional data in the

parallel coordinates view, and then two of these dimensions are interactively selected

for the scatter plot view.

Although it is difficult to visually analyze data relationships in the parallel coor-

dinates view, it can guide users in various ways. First of all, as shown in Fig. 23(a),

TSTG, e.g., LDA in this case, tends to separate different clusters into different di-

mensions. For instance, although the clusters ‘2’ and ‘3’ are not well separated in the

scatter plot view with (1, 2)-dimensions selected, they seem to be separated from the

other clusters in dimensions 7 and 4, respectively, based on the parallel coordinates

view.

As another example, as shown in Fig. 24, given the 10-dimensional results of

PCA, the scatter plot view of (1, 2)-dimensions mixes up all the clusters together.

However, hinted by the parallel coordinates view showing the peaks of the cluster ‘12’

5http://www.wisdom.weizmann.ac.il/˜vision/FaceBase
6http://www.cc.gatech.edu/gvu/ii/jigsaw/datafiles.html
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and ‘14’ at dimensions 3 and 4, respectively, the scatter plot view of these dimensions

turns out to give a well-clustered view. Such an observation is surprising because

PCA is an unsupervised method, which does not take into account label information.

This indicates that the leading two dimensions may not give enough information for

high-dimensional data in visual analytics.

5.4.3 Effects of Alignment: Helping Comparisons between Visualizations

Trying various methods/settings on a given data set and comparing between different

visualizations is in the heart of the Testbed system, and the alignment functionality

of the system supports this process. Fig. 25 shows the effects of the alignment for

clustering and dimension reduction.

In Fig. 25(a), which shows the former, the three scatter plot views have identical

coordinates of data items. With the different assignment of cluster labels, it is difficult

to compare the cluster membership between the first and the third plots since the

clusters have no correspondences in terms of the cluster colors and indices. After

aligning the clustering, however, two different clustering results become much easier

to compare between the first and the second view. For instance, compared to the

original cluster labels shown in the first view, the original cluster ‘8’ is shown to be

merged to the original cluster ‘3.’ The two subclusters of the original cluster ‘6,’

which are shown in the bottom left and the top right in the first figure, are now split

into two clusters in k-means clustering, and the former is shown to be merged to the

clusters ‘4’ and ‘10.’

On the other hand, Fig. 25(b) shows the example of aligning dimension reduction.

In this example, the cluster labels are unchanged for all data items in the three fig-

ures, but two different dimension reduction methods, TSTG and ISOMAP, are used.

When comparing between the first and the third figures, which show the different
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coordinates generated by these two methods, it is difficult to recognize the correspon-

dences between data items/clusters. Between the first and the second figures, whose

dimension reduction results are aligned, one can perceive the correspondences in a

much easier way. For example, the cluster ‘4’ is shown to be close to the cluster

‘8’ in TSTG, which is not the case in ISOMAP. Any data items in the cluster ‘6’

are not located close to the cluster ‘7’ in ISOMAP, but some data items between

the two clusters overlap in TSTG. Such analyses cannot be easily made without the

alignment.

5.4.4 Dimension Reduction: Supporting Multiple Perspectives

Different dimension reduction methods can reveal different aspects of data. To show

an example, we now look into the first two figures in Fig. 25(b) from the perspective

of supervised vs. unsupervised methods. Given a certain assignment of cluster labels,

a supervised method, TSTG, gives a clear overview in terms of cluster relationships

since most of the clusters are shown relatively compact, as shown in the first figure.

On the contrary, an unsupervised method, ISOMAP, may reveal different aspects

of data. For example, the second figure indicates that the cluster ‘6’ is composed

of two distinct subclusters shown at the top left and the bottom right. However,

when the data do not have a clear cluster structure, e.g., most of the text document

corpora, unsupervised dimension reduction methods give the results similar to the

second figure in Fig. 24, which significantly reduces the utility of the scatter plot. In

this case, supervised dimension reduction would be the only choice to start with in

visual analytics.

Even with a single dimension reduction method with different parameter values,

different aspects of data can be obtained. In Fig. 26(a), one can see that the cluster

‘5’ (the digit ‘4’) of the Pendigits data set moves from the top left near the cluster

‘10’ (the digit ‘9’) towards the cluster ‘7’ (the digit ‘6’) as the ISOMAP parameter
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k increases. In general, ISOMAP with a smaller k value focuses more on preserving

the local neighborhood relationships by making non-neighborhood distances longer.

Based on the sample data of each digit shown in 26(b), it can be inferred that the

digit ‘4’ is represented much closer to the digit ‘9,’ which forms their neighborhood

relationships with small k values, than to the digit ‘6.’ As the k value increases, the

neighborhood relationship between the digits ‘4’ and ‘6’ starts to be formed, which is

why they become closer at a bigger k value. In this way, varying the parameter values

with the same method can further reveal different interesting insight about data.

5.4.5 Clustering: Combining Knowledge from Different Clustering

Clustering is a challenging task, and any single clustering method tends not to give

fully satisfactory results. The Testbed system can remedy this problem by enabling

users to perform different clustering methods and obtain more meaningful clusters

by comparing between them. Fig. 27 shows the scatter plot views of TSTG with

the cluster labels obtained by two different clustering methods, k-means and NMF.

The InfoVisVAST data set are used, and the keyword summaries of clusters for each

method are as follows:

k-means

1. graph, trees, node, layout, edge, draw, clusters

2. querying, interface, multiple, databases, expressive, temporal, magnification

3. document, text, collections, words, sequential, searches, information

4. multivariate, variable, data, aggregate, coordinates, multidimensional, flow

5. 3d, spatial, labelling, animation, map, coloring, display, information

6. treemaps, hierarchy, hierarchical, layout, focuscontext, spacefilling, algorithms

7. clusters, dimensions, image, visualization, measures, number, reduction

8. analytics, model, systems, video, decisions, information, framework

9. networks, traffic, arcs, diagram, social, internet, duplicate

10. collaboration, designed, histories, wikipedia, information, supports, story

NMF

1. graph, clusters, algorithms, methods, data, state, structured
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2. querying, interface, databases, searches, temporal, multiple, data

3. document, text, image, content, information, collections, searches

4. dimensions, parallelize, coordinates, multivariate, multidimensional, datasets, scatterplots

5. 3d, spatial, landscapes, information, display, animation, spaces, encoded

6. treemaps, hierarchical, layout, ratio, algorithms, spacefilling, aspects

7. trees, hierarchy, node, genealogical, decisions, draw, layout

8. designed, model, information, analytics, framework, systems, data

9. networks, traffic, social, querying, analysis, data, flow

10. collaboration, analytics, wikipedia, analysts, supports, knowledge, shared

Among these clusters, the cluster ‘1’ of the k-means clustering has a clear meaning of

graph-related visualization, e.g., graph drawing, graph layout, and graph clustering.

This cluster is also shown to be clearly separated from the other clusters in the

left figure. As we perform brushing-and-linking on this cluster, it turns out that

this cluster mainly corresponds partially to the clusters ‘1,’ ‘6,’ and ‘7’ of the NMF

clustering. Considering that these clusters contain the keywords, ‘graph’ and ‘layout’

and their separations from the other clusters in the right figure are not as clear as

that of the cluster ‘1’ in the left figure, one can regard the cluster ‘1’ of k-means as

a cluster with better quality.

On the other hand, in the NMF clustering, the cluster ‘4’ seems to be clearly re-

lated to multi-variate/multi-dimensional data visualization. By brushing-and-linking

on this cluster, we found it corresponds mostly to the clusters ‘4’ and ‘7’ of the k-

means clustering, which makes sense based on their keyword summaries although

they are relatively more ambiguous than the cluster ‘4’ of the NMF clustering. This

observation is also supported by their cluster separations in Fig. 27 , which indicates

a clearer separation of the cluster ‘4’ in the right figure than that of the clusters ‘4’

and ‘7’ in the left figure.

As shown in these cases, one can apply different clustering methods and take full

advantage of them by visually analyzing them in the Testbed system.
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5.5 Conclusions

In this chapter, we have presented the visual testbed system for dimension reduction

and clustering in high-dimensional data visual analytics. The main contribution of

our system is to bring a wide variety of traditional and state-of-the-art dimension

reduction and clustering methods to visual analytics. The Testbed system provides

full control of these methods with interactive visual access to their results. In addition,

our system offers a flexible extensibility for new data types and methods.

As future work, we plan to tackle a scalability issue. As the size of data gets

bigger, their computational time takes even longer, which hinders real-time interactive

visualizations. Another scalability problem is due to the limited amount of screen

space. Even if the computational methods maintain efficiency, a large number of

data items cause a clutter in visualization. These issues will be handled using various

approaches, e.g., sampling, online learning algorithms, etc.

In addition, we plan to enhance the alignment capability by incorporating other

advanced algorithms and user interfaces. To be specific, the currently used algorithms

do not change anything in the reference view, and the Procrustes analysis does not

change internal relationships within each visualization at all. This may limit the

performance of alignment for easy comparison between visualizations when they are

significantly different. To deal with this problem, we plan to utilize other advanced

methods such as graph-embedding-based methods [30].
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(a) The system overview.

(b) The general workflow. Hexagonal blocks correspond to operations/interactions,
and rectangular ones to operation inputs/outputs or visualization modules. Stacked
rectangles indicate their multiple instantiations, which are dynamically maintained
by the system.

Figure 23: The overview and the workflow of the system. User interfaces for pre-
processing (A), clustering (B), dimension reduction (C), and alignment (D) are avail-
able. Lower-dimensional data from dimension reduction are visualized as parallel
coordinates (E), and the two selected dimensions are shown in the scatter plot (F).
Cluster indices/summaries (G) are shown, and the original data can be accessed (H).
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Figure 24: The 10-dimensional results of PCA for the Weizmann facial image data
set. The pre-given person ID was used as a color label. The first figure is the parallel
coordinates of the entire 10-dimensional representations, and the second and the third
are the scatter plots of (1, 2)- and (3, 4)-dimensions, respectively.

(a) The alignment of clustering. For the Pendigits data set, the first figure uses the original cluster
labels, and the other two uses the same cluster labels generated by k-means. In all three figures,
ISOMAP is used with the same parameter values.

(b) The alignment of dimension reduction. For the Pendigits data set, the first figure uses TSTG
and the other two use ISOMAP with the same parameter values. In all three figures, the original
cluster labels are used.

Figure 25: The effects of alignment. In both (a) and (b), the first is the reference
scatter plot view for alignment, and the second is the aligned plot of the third while
the third is an un-aligned one.
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(a) The scatter plots for the Pendigits data set generated by ISOMAP with different parameter
values, k =12, 20, 30, and 50, respectively. The cluster labels represent the digits of data items, as
shown on the left. The three figures on the right are aligned plots with respect to the first. As the
parameter increases, the cluster ‘5’ (the digit ‘4’), moves from the top left near the cluster ‘10’ (the
digit ‘9’) towards the cluster ‘7’ (the digit ‘6’).

(b) The sample data for the digits ‘4’, ‘9’, and ‘6.’ Note that the vector representation of the Pendigit
data set encodes the pen trace coordinates, which start at the red color and end at the blue in these
samples.

Figure 26: The effects of a parameter change in ISOMAP.

Figure 27: The scatter plot view of two different clustering, k-means and NMF, using
TSTG for the InfoVisVAST data set. The right figure is aligned with respect to the
left one for both clustering and dimension reduction.
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CHAPTER VI

IVISCLASSIFIER: AN INTERACTIVE VISUAL

CLASSIFICATION SYSTEM USING SUPERVISED

DIMENSION REDUCTION

We present an interactive visual analytics system for classification, iVisClassifier,

based on a supervised dimension reduction method, linear discriminant analysis (LDA).

Given high-dimensional data and associated cluster labels, LDA gives their reduced

dimensional representation, which provides a good overview about the cluster struc-

ture. Instead of a single two- or three-dimensional scatter plot, iVisClassifier fully

interacts with all the reduced dimensions obtained by LDA through parallel coor-

dinates and a scatter plot. Furthermore, it significantly improves the interactivity

and interpretability of LDA. LDA enables users to understand each of the reduced

dimensions and how they influence the data by reconstructing the basis vector into

the original data domain. By using heat maps, iVisClassifier gives an overview about

the cluster relationship in terms of pairwise distances between cluster centroids both

in the original space and in the reduced dimensional space. Equipped with these

functionalities, iVisClassifier supports users’ classification tasks in an efficient way.

Using several facial image data, we show how the above analysis is performed.

6.1 Introduction

Classification is a widely-used data analysis technique across many areas such as

computer vision, bioinformatics, text mining, etc. Given a set of data with known

cluster labels, i.e., under a supervised setting, it builds a classifier (a training phase)

to predict the label of new data (a test phase). Examples of classification tasks include
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(a) LDA (b) PCA

Figure 28: 2D Scatter plots obtained by two dimension reduction methods, LDA and
PCA, for artificial Gaussian mixture data with 7 clusters and 1000 original dimen-
sions. A different color corresponds to a different cluster.

facial recognition, document categorization, spam filtering, and disease detection.

Numerous classification algorithms such as an artificial neural network, decision

trees, and support vector machines have been developed so far, and each method has

advantages and disadvantages making it more suitable in certain domains. Even with

its broad applicability, however, most of the classification algorithms are often per-

formed in a fully automated manner that prevents users from not only understanding

how the algorithm works on their data but also reflecting their domain knowledge

into the classification process. Ironically, as classification algorithms become more

sophisticated and advanced, they tend to be less interpretable to users due to their

complicated internal procedure. These limitations may cause unsatisfactory classifi-

cation results in real-world applications such as biometrics in which the reliability of

the system is critical [137]. In some cases, there may be no option other than using

the manual classification process without being supported by automated techniques.

This chapter addresses how visual analytics systems support automated classi-

fication for a real-world problem. As in other analytical tasks, the first step is to

understand the data. From a classification perspective, users need to gain insight in
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terms of clusters such as how much the data within each cluster varies, which clusters

are close to or distinct from each other, and which data are the most representative

ones or outliers for each cluster. The next step is to understand both the charac-

teristics of the chosen classifier itself and how they work on the data at hand. For

instance, decision trees give a set of rules for classification, which are simple to inter-

pret, and users can see which features in the data play an important role. In addition,

analysis of misclassified data provides a better understanding of which types of clus-

ters and/or data are difficult to classify. Such insight can then be fed back to the

classification process in both the training and the test phases. In the training phase,

users can refine the training data or modify the automated classification process for

better performance in the long run. In the test phase, users can actively participate

in determining the label of a new data by verifying each result that the automated

process suggests and by performing further classification based on the interaction

with a visual analytic system. The latter case ensures nearly perfect classification

accuracy while maintaining much better efficiency than in the case of purely manual

classification.

Not all classification algorithms are suitable for interactive visualization of how

they work. Moreover, when the data is high dimensional such as image, text, and

gene expression data, the problem becomes more challenging. To resolve this issue, we

choose the classification method based on linear discriminant analysis (LDA) [60], one

of the supervised dimension reduction methods. Unlike other unsupervised methods

such as multidimensional scaling (MDS) and principal component analysis (PCA),

which only use data, supervised ones also involve additional information such as

cluster labels associated in the data. In case of LDA, it maximally discriminates

different clusters while keeping the relationship among data within each cluster tight

in the reduced dimensional space. This behavior of LDA has two advantages for

interactive classification systems. The first advantage is that LDA is able to visualize
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the data so that their cluster structure can be well exposed. For example, as seen

in Fig. 28, LDA reveals the cluster structure better than PCA, and through LDA,

users can easily find the cluster relationship and explore the data based on it. The

other advantage is that the reduced dimensional representation of the data by LDA

does not require a sophisticated classification algorithm in general since the data is

already transformed to a well-clustered form, and such a transformation would map

an unseen data item to a nearby area of its true cluster. Thus, after applying LDA,

a simple classification algorithm such as k-nearest neighbors [51] can be performed,

which has been successfully applied to many areas [16, 123]. Owing to this simplicity,

users can get an idea about how the new data would be classified by looking at a

nearby region based on visualization through LDA.

Inspired by the above ideas, we have developed a system called iVisClassifier, in

which users can visually explore and classify data based on LDA. The first contribu-

tion of iVisClassifier lies in its emphasis on interpretation of and interaction with LDA

for data understanding. Then, iVisClassifier features the ability to let users cooperate

with the LDA visualization for the classification process. To show the usefulness of

iVisClassifier, we present facial recognition examples, where LDA-based classification

works well.

The rest of this chapter is organized as follows. Section 6.2 discusses previous

work related to interactive data mining systems and dimension reduction methods.

Section 6.3 briefly introduces LDA and its use of the regularization in visualization,

and Section 6.4 describes the details of iVisClassifier. Section 6.5 shows case studies,

and Section 6.6 concludes our work.

6.2 Related Work

Supporting data mining tasks with interactive systems is an active area of study.

As for clustering, an interactive system for hierarchical clustering was presented in
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[117], and a visualization-based clustering framework was proposed in [29], where

users can analyze the clustering results and impose their domain knowledge into the

next-stage clustering. In addition, various research has been conducted to make the

dimension reduction process interactive. Yang et al. [143, 142] proposed a visual

hierarchical dimension reduction method, which groups dimensions and visualizes

data by using the subset of dimensions obtained from each group. Novel user-defined

quality metrics was introduced for effective visualization of high-dimensional data in

[73]. A user-driven visualization approach using MDS was proposed in [136].

However, in spite of the increasing demand from real-world applications, support-

ing classification tasks with an interactive visual system has not been studied exten-

sively. Some studies [8, 9, 126] have tried to make a decision tree more interactive

through visualization using circle segments [7] and star coordinates [77]. However,

other classification methods have not been deeply integrated into interactive systems.

With respect to dimension reduction methods, a myriad of methods are still being

proposed, and some of them claim their advantages on two or three-dimensional vi-

sualization. The recently proposed nonlinear manifold learning methods have shown

the interesting ability to match the reduced dimensions to some semantic meanings

such as the rotation of objects in image data [111, 125]. Another nonlinear method

called t-SNE [130] has successfully revealed a hidden cluster structure in the reduced

dimensional space for handwritten digit image and facial image data through com-

putationally intensive iterations. While all the above-mentioned methods are unsu-

pervised dimension reduction methods that do not consider cluster label information,

supervised dimension reduction methods [60, 71], which explicitly utilize them in their

computations, typically attempt to preserve the cluster structures by grouping the

data with given labels.

Even with such technical advances, people still prefer traditional methods such as

PCA, MDS, and self-organizing maps (SOM) because the state-of-the-art methods
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tend not to work universally for various types of data and they often lack inter-

pretability. Motivated by this, a recently proposed system called iPCA [72] enables

users to interact with PCA and its visualization results in the form of scatter plots

and parallel coordinates. Our system shares a lot in common with iPCA in that

users can play with LDA via scatter plots and parallel coordinates. Other than data

understanding, our system aims further to support classification tasks utilizing the

supervised dimension reduction.

6.3 Linear Discriminant Analysis

In this section, we briefly introduce LDA and skip rigorous mathematical derivations

due to a page limit. For more technical details about LDA and its use in visualization,

refer to our previous work [35].

6.3.1 Concepts

LDA is a linear dimension reduction method that represents each of the reduced

dimensions as a linear combination of the original dimensions. By projecting the

data onto such a linear subspace, LDA puts cluster centroids as remote to each other

as possible (by maximizing the weighted sum, B, of squared distances between cluster

centroids, as shown in Fig. 29(a)), while keeping each cluster as compact as possible

(by minimizing the squared sum, W , of the disances between each data item in the

cluster and its cluster centroid, as shown in Fig. 29(b)), in the reduced dimensional

space. Due to this characteristic, LDA can highlight the cluster relationship as shown

in Fig. 28(a), as opposed to other dimension reduction methods such as PCA. In LDA,

this simultaneous optimization is formulated as a generalized eigenvalue problem that

maximizes B while keeping its minimum value of W . Theoretically, the objective

function value of LDA cannot exceed that in the original space, and such an upper

bound is achieved as long as at least k − 1 dimensions are allowed in LDA, where k

is the number of clusters. Due to this characteristic, LDA usually reduces the data
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(a) Maximization of distances be-
tween cluster centroids

(b) Minimization of approximate
cluster radii

Figure 29: Conceptual description of LDA. A different color corresponds to a different
cluster, and c1 and c2 are the cluster centroids.

dimension to k − 1.

Although LDA can reduce the data dimension down to k − 1 dimensions without

compromising its maximum objective function value, it is often not enough to use

for 2D or 3D visualization purposes. In this case, users can either select a few of

the most significant dimensions or perform an additional dimension reduction step

to further reduce the dimension to two or three [35]. In iVisClassifier, we adopt the

former strategy so that we can easily interpret the dimension reduction step while

interacting with all the LDA reduced dimensions.

6.3.2 Regularization to Control the Cluster Radius

In regularized LDA, a scalar multiple of an identity matrix γI is added to the within-

scatter matrix Sw, the trace of which represents W .1 It was applied to LDA [58] in

order to circumvent a singularity problem when the data matrix has more dimensions

than the number of data items, i.e., an undersampled case. In addition, regularization

also has an advantage against overfitting in the classification context.

On the other hand, a unified algorithmic framework of LDA using the generalized

1Instead of W , the LDA formulation uses Sw, which is then replaced with Sw + γI by regular-
ization. For more details, refer to [35].
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(a) γ = 102 (b) γ = 105

Figure 30: Effects of a regularization parameter γ in Sw + γI. It can control how
scattered each cluster is in the visualization. The data is one of the facial image data
called SCface, and we chose the first six persons’ images.

singular value decomposition (LDA/GSVD) was proposed [68], which broadens the

applicability of LDA regardless of the singularity. For undersampled data, e.g., text

and image data, LDA/GSVD can fully minimize the cluster radii, making them all

equal to zero. However, making the cluster radii zero results in representing all the

data points in each cluster as a single point. Although it makes sense in terms of the

LDA criteria, it does not keep any information to visualize at an individual data level.

Thus, we utilize regularization to control the radius or scatteredness of clusters in the

visualization to either focus on the data relationship or the cluster relationship, as

shown in Fig. 30. In an extreme case, when we sufficiently increase the regularization

parameter γ, Sw is almost ignored in the minimization term, i.e., Sw + γI ≃ γI, so

that LDA focuses only on maximizing B without minimizing W . Mathematically,

this case is equivalent to applying PCA on the cluster centroids [35].

6.3.3 Algorithms

To ensure real-time interactions, it is important to design an efficient algorithm for

LDA. Therefore, we reduce the data matrix size by applying either QR decomposition

for undersampled cases or Cholesky decomposition for the other cases before running

LDA. The main idea here is to transform a rectangular data matrix of size m × n
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into a square matrix of size min(m, n)×min(m, n) without losing any information.

Then, the GSVD-based LDA algorithm is performed on this reduced matrix much

efficiently. For more details, refer to [103].

6.4 System Description

6.4.1 Data Encoding

Given a data set along with its labels, iVisClassifier first encodes the data into high-

dimensional vectors. In its current implementation, iVisClassifier takes text docu-

ments, images, and generic numerical vectors with comma-separated values. When

dealing with image data, the pixel values in each image are rasterized to form a single

column vector, and text data are encoded using the bag-of-words model. Such encod-

ing schemes determine the dimensions of image and text data as the total number of

pixels in a single image and the total number of different words, respectively, which

can be up to the hundreds of thousands.

Along with numerical encoding, iVisClassifier has several optional pre-processing

steps such as data centering and normalization that makes the norm of every vector

equal. In addition, other domain-specific pre-processing steps are also provided, such

as contrast limited adaptive histogram equalization [107] for image data and stemming

and stop-word removal for text data.

6.4.2 Visualization Modules

Once the data matrix whose columns represent data items is obtained, LDA is per-

formed on this matrix with its associated labels. Users can recompute LDA with

different regularization parameter values γ through a horizontal slide bar interface

until the data within each cluster are adequately scattered. As described in Section

3, LDA reduces the data dimension to k−1 where k is the number of clusters. Just as

the reduced dimensions in PCA are in an order to preserve the most variance, those

in LDA are also in an order of preserving the most value of the LDA criterion. That
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is, the first reduced dimension represents each cluster most compactly while keeping

different clusters most distinctly. With this in mind, we visualize LDA results in four

different ways: parallel coordinates (Fig. 31A), the basis view (Fig. 31B), heat maps

(Fig. 31C), and 2D scatter plots (Fig. 31F).

6.4.2.1 Parallel coordinates

Parallel coordinates is a common way to visualize multi-dimensional data. In parallel

coordinates, the dimension axes are placed side by side as a set of parallel lines, and

the data item is represented as a polyline whose vertices on these axes indicate the

values in the corresponding dimensions. The main problem of parallel coordinates is

that it does not scale well in terms of both the number of data items and the number

of dimensions. However, LDA can deal with both problems effectively in the following

ways. First, with a manageable number of clusters, k, LDA reduces the number of

dimensions to k − 1, without losing any information on the cluster structure based

on the LDA criterion. In addition, in terms of the number of data items, LDA plays

the role of data reduction for undersampled cases since it can represent all the data

items within each cluster as a single point by setting γ = 0, which in turn visualizes

the entire data as k items. The dimension-reduced data by LDA may suffer the same

scalability problem when the number of clusters and/or the regularization parameter

γ increases. Nonetheless, in most cases, LDA significantly alleviates the clutter in

parallel coordinates in that dealing with a large number of clusters is not practical

and that users can always start their analysis with γ = 0.

Our implementation of parallel coordinates has several interactions including a

basic zoom-in/out function. First, users can control the transparency of the polylines

to see how densely the lines go through a particular region. To this end, users can

switch all the colors indicating cluster labels to a single one, e.g. black. In addition,

iVisClassifier has several shifting and scaling options. One is to align the minimum
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value of each dimension at the bottom horizontal line in the view, and the other

is to align both the minimum and the maximum values at the top and bottom line,

respectively. iVisClassifier is also able to filter the data by selecting particular clusters

and/or data points in a certain range specified by a mouse pointer, and brushing and

linking is implemented between parallel coordinates and scatter plots.

6.4.2.2 Basis view

When data go through any kind of computational algorithms, it is crucial to have a

better understanding of what happens in the process. For instance, even though the

dimension reduction result is given by LDA, users may need to know the meaning

behind each dimension and the reasons why those dimensions maximize the LDA cri-

terion. Without such information, users cannot readily understand why certain data

points look like outliers or certain clusters are prominent in the LDA result. Follow-

ing this motivation, we provide users with the meaning of each reduced dimension of

LDA in the following way.

First of all, LDA is a linear method where each reduced dimension is represented as

a linear combination of those in the original space. Thus, we have a linear combination

coefficient for each reduced dimension, which we call a basis vector, and the dimension

of this basis vector is the same as the original dimension. For image data in which

the original dimension is the number of pixels in the image, each coefficient value in

this basis vector corresponds to each of the pixels. Based on this idea, we reconstruct

the LDA basis in the original data domain, e.g., an image in our case. However, it is

not always straightforward to convert the basis back to the original data domain. For

example, pixel values in an image have a certain specification that they have to be

all integers between 0 and 255 while the LDA basis is real-valued with positive and

negative signs mixed. In the past, several heuristics to handle this issue were used in

the context of PCA by mapping basis vectors to grayscale images [129, 131] by taking
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either its absolute value or adding the minimum value. However, these heuristic

methods lose or distort the information contained in the basis vectors. Therefore, we

map positive and negative numbers in the basis vector into two color channels, red

and blue, respectively. In this way, we obtain the reconstructed images of LDA basis

vectors as shown in Fig. 31B.

6.4.2.3 Heat maps

With heat maps, we visualize the pairwise distances between cluster centroids, where

each heat map has k × k elements. The leftmost heat map in Fig. 31C represents

such information in the original high-dimensional space, and the following ones on

the right side are computed within each reduced dimension of LDA. Through this

visualization, we can get the information about which particular cluster is distinct

from the other clusters and which cluster pairs are close or remote in each dimension.

Furthermore, comparisons between heat maps of the original space and each of the

reduced dimension show which cluster distances are preserved or ignored.

By clicking the (i, j)-th square in the enlarged heat map (Fig. 31D), users can

compare the data items in the i-th and j-th clusters as shown in Fig. 31E. In addition,

the slide bar at the bottom in Fig. 31E enables users to overlap the data image with its

corresponding basis image, which tells us how the pixels in these images are weighted

in its corresponding dimension and why the data of the selected two clusters are

closely or remotely related in this dimension, as shown in Fig. 36.

6.4.2.4 Scatter plots

The scatter plot visualizes data points in the two user-selected reduced dimensions

of LDA with a zoom-in/out functionality. In this view, a data item is represented as

a point with an initial letter and a different color of its corresponding cluster label.

Additionally, the first and the second order statistics per cluster, which are the mean

and the covariance ellipse, give the effective information about clusters.
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Our scatter plot view given by LDA allows users to interactively explore the data

in view of the overall cluster structure in the following senses: 1. which data points are

outliers or representative points in their corresponding clusters, 2. which data points

are outliers or representative points in their corresponding clusters, 3. how widely

the data points within a cluster are distributed and accordingly, which clusters have

potential subclusters, and 4. which data points overlap between different clusters.

In addition, brushing and linking with parallel coordinates overcome the limitation

that the scatter plot can only show two or three dimensions at a time. In this way,

users can see how the selected data or clusters in the scatter plot behave in the other

dimensions.

6.4.3 Classification Modules

After obtaining insight from exploring the data with known cluster labels, users can

now interactively perform classification on the new data whose labels are to be de-

termined. This process works as follows. First, a new data item is mapped onto

the reduced dimensional space formed by the previous data. It is then visualized

in parallel coordinates and in the scatter plot view. Such visualization significantly

increases the efficiency of users’ classification tasks by visually reducing the search

space. Within this reduced visual search space, users can easily compare the new

data item with the existing data or clusters nearby. When the new data point falls

into a cluttered region where many different clusters overlap, users can select or filter

out some data or clusters and recompute LDA with this subset of data including the

new point, which we call a computational zoom-in process. In other words, LDA

takes into account the selected clusters and/or those corresponding to the selected

data, which requires a much smaller number of dimensions than k − 1 for LDA to

fully discriminate the selected clusters. Based on the new visualization generated in

this way, users can better identify which clusters the new point belongs to.
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On completing the visually-supported classification process, users can assign a

label to the new data item and optionally include the newly labeled data in future

LDA computations, which is initiated only when users want to recompute them. The

reason we do not force users to include every new data in LDA computations is that

users’ confidence level of the assigned label may not be high enough for some reason

such as noise.

6.5 Case Studies

In this section, we present an interactive analysis using two sets of facial image data,

Weizmann database2 and SCface database [64], for facial recognition. Weizmann is

composed of 28 persons’ frontal images in a constant background, in which each person

has 52 images. The variations within each person’s images exist regarding viewing

angles, illuminations, and facial expressions. We resized the original 512 × 352 pixel

images to 64 × 44 pixel images, resulting in 2816 dimensional vectors. SCface is an

image collection taken in an uncontrolled indoor environment using multiple video

surveillance cameras with various image qualities. It is composed of 4160 static images

of 130 subjects, of which we randomly selected 30 persons’ images for our study, where

each person has 32 images. Since the images in SCface generally contain parts other

than a face, such as the upper body of a person and a different background, we have

cropped a facial part using an affine transformation that aligns the images based on

the eye coordinates. The image samples of two data sets are shown in Fig. 32.

In the following, we present an exploratory analysis towards better understanding

of both the data and the computational method we have used, i.e., LDA. Next, we

describe how users interactively perform classification supported by iVisClassifier.

2http://www.wisdom.weizmann.ac.il/˜vision/databases.html
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6.5.1 Exploratory Data Analysis

In general, understanding the data at the cluster level is essential to deriving an initial

idea about the overall structure in a large-scale data set. In this sense, we can begin

with the heat map view of the pairwise distances in the original space to look at how

the clusters are related. From the heat maps shown in Fig. 33(a) and 34(a), we can

see that pairwise cluster distances vary more in Weizmann than in SCface. This view

also reveals the clusters that look distinct from the other clusters, e.g., person 14 in

Weizmann and person 7 in SCface. Element-wise comparisons reveal that persons 11

and 14 look quite distinct, which makes sense due to baldness and shirt colors, but

persons 2 and 10 look similar in Fig. 33(a). Similarly, persons 1 and 7 look different

while persons 2 and 26 are indistinguishable in Fig. 34(a).

Next, let us look at the heat maps of the LDA dimensions shown in Figs. 33-34.

The first dimension turns out to reflect the most distinct clusters in the original space.

In addition, the heat maps in the LDA dimensions have mostly blue-colored elements,

i.e., almost zero, except for a few rows and columns, which indicates that each of the

LDA dimensions tends to discriminate only a few clusters.

Next, Fig. 35 shows the image reconstruction of the first six LDA bases for both

data sets. It is interesting to see that in both cases, the forehead part is heavily

weighted in the first dimension,3 and then in the second dimension, the forehead part

is differentiated into upper and lower parts. This indicates that the forehead part is

the most prominent factor for facial recognition based on LDA in our data.

Basis images can be overlapped with the original images to highlight the region

in the images that is heavily weighted in a specific reduced dimension. The example

shown in Fig. 36 was obtained by selecting one of the most remote cluster pairs (red-

colored one in Fig. 33(b)) in the first dimension. In the region covered by a blue color,

3Negative weighting coefficients represented as blue colors are equivalent to positive ones by
negating the basis and the corresponding coordinate values of the data.
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we can see that the pixel values are quite different, i.e., light in the first cluster and

dark in the second cluster, which puts them far apart in the corresponding reduced

dimension.

6.5.2 Interactive Classification

As described in Section 4.3, the main benefit of iVisClassifier for classification is that

it visually guides users to the correct clusters for unseen data while allowing users to

have control over the classification process. In general, most of the new data would be

closely placed to their corresponding clusters in the scatter plot. If only a few clusters

are found nearby, e.g., when a point to classify is placed near the cluster 7, which

is almost isolated from the other clusters at the leftmost part in Fig. 37(a), then by

checking some of the nearby data in the cluster 7, users can quickly classify them

into their corresponding clusters. However, a problem arises when the new point is

visualized near a cluttered region as shown in Fig. 37(a). With this visualization, we

have a less clear idea as to which clusters to look at because numerous clusters exist

near the point of interest. In this case, we can select a subset of data points around

it and then recompute the dimension reduction only with this subset. Fig. 37 shows

that this process guides the new point to its true cluster.

Another scenario for interactive classification in iVisClassifier is cooperative fil-

tering between parallel coordinates and the scatter plot. Fig. 38(a) shows a case

where the new point is placed in an ambiguous region to classify. As we find that

the new point (shown in a gray color in parallel coordinates) goes through the top

region in dimension 7, we can filter the data in this dimension, and accordingly, the

selected data are also highlighted in the scatter plot with a black circle, as shown in

Fig. 38(b). Additional filtering in the scatter plot by selecting either nearby clusters

or data items ends up with only one possible cluster, as shown in Fig. 38(c).

Once some of the new data are assigned their labels, users can recompute LDA
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by taking into account the newly labeled data. Fig. 39 shows the distributions of the

new data whose label is ‘0’ before and after LDA recomputation with a newly labeled

data item. As we can see, the rest of the unseen data in cluster 0 becomes closer to its

centroid after LDA recomputation, which indicates that the updated LDA dimensions

potentially better discriminates the unseen data.

6.6 Conclusions

In this study, we have presented iVisClassifier, a visual analytics system for clustered

data and classification. Our system enables users to explore high-dimensional data

through LDA, which is a supervised dimension reduction method. We interpret the

effect of regularization in visualization and provide an effective user-interface in which

users can control the cluster radii depending on whether they focus on the cluster- or

the data-level relationships. In addition, iVisClassifier facilitates the interpretability

of the computational model applied to their data. Various views such as parallel

coordinates, the scatter plot, and heat maps interactively show rich aspects of the

data. Finally, we showed that iVisClassifier can efficiently support a user-driven

classification process by reducing humans’ search space, e.g., recomputing LDA with

a user-selected subset of data and mutual filtering in parallel coordinates and the

scatter plot.

As our future work, we plan to improve our system to better handle other types

of high-dimensional data and their classification tasks. Although our system can

currently load and visualize other types of high-dimensional data such as text data,

how we accommodate the basis view and blend the data item with the basis in the

original data domain, as shown in Fig. 36, would be the main issues.

In addition, although our tool works well when there is a reasonable number of

clusters, it may not scale well when we have many clusters, e.g., hundreds of people

in facial recognition. To handle this problem, we are considering the hierarchical
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approaches that group the clusters based on their relative similarities to keep the

number of clusters manageable in an initial analysis.

Finally, the computation of LDA can be burdensome for user interactions when

we have a large-scale data. Novel interactions with LDA provided by iVisClassifier

motivate the new types of dynamic updating algorithms based on the previous LDA

results in various situations. For instance, updating the LDA results when changing

the regularization parameter value has not been studied before. Thus, we are currently

exploring for various situations and their corresponding updating algorithms when

computational algorithms are integrated into user-interactive systems.
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Figure 31: The overview of the system. SCface data with 30 randomly chosen persons’
images were used, and different colors correspond to different clusters, e.g., persons.
The arrow indicates a clicking operation. (A) Parallel coordinates view. The LDA
results are represented in 29 dimensions. (B) Basis view. The LDA basis vectors
are reconstructed in the original data domain, which in this case is an image. (C)
Heat map view. The pairwise distances between cluster centroids are visualized. The
leftmost one is computed from the original space, and the rest from each of the LDA
dimensions. Upon clicking, the full-size of a heat map is shown (D), and clicking each
square shows the existing data in the corresponding pair of clusters (E). (F) Scatter
plot view. A 2D scatter plot is visualized using two user-selected dimensions. When
clicking a particular data point, its original data item is shown (G). (H) Control
interfaces. Users can change the transparency and the colors in parallel coordinates.
Data can be filtered at the data level as well as at the cluster level. The interfaces for
unseen data visualize them one by one, interactively classify them, and finally update
the LDA model. A horizontal slide bar for the regularization parameter value in LDA
controls the scattering of each cluster. (I) shows the legend about cluster labels in
terms of their assigned colors and enumerations.
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(a) Weizmann

(b) SCface

Figure 32: A single person’s image samples in two data sets.

(a) The original space (b) The first dimension (c) The fifth dimension

Figure 33: Heat map view of the pairwise cluster distances of the Weizmann data set.
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(a) The original space (b) The first dimension (c) The sixth dimension

Figure 34: Heat map view of the pairwise cluster distances of the SCface data set.

(a) Weizmann

(b) SCface

Figure 35: Reconstructed images of the first six LDA bases.
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Figure 36: The effect of overlapping a basis image over the original data. Users can
see which part of images are weighted by a basis vector.

(a) The initial filtering (b) The second filtering (c) The final visualization result

Figure 37: Interactive classification by computational zoom-in. Recursive visualiza-
tion by recomputing LDA for interactively selected subsets of data guides a new point
into its corresponding cluster. The thick arrow indicates the new point position.

(a) The initial visualization (b) The filtering in parallel coor-
dinates

(c) The filtering in the scatter plot

Figure 38: Interactive classification by mutual filtering. Filtering both in parallel
coordinates and the scatter plot leads to a single cluster. The thick arrow indicates
the new point position.
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(a) Before labelling the test point (b) After labelling the new point

Figure 39: Effects of LDA recomputation when including a newly labeled point in
the existing data. The arrow indicates the newly labeled point, and the red circles
represent the distribution of the remaining unseen data in cluster 0.
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CHAPTER VII

VISIRR: AN INTERACTIVE VISUAL INFORMATION

RETRIEVAL AND RECOMMENDER SYSTEM FOR

LARGE-SCALE DOCUMENT DATA

We present a visual analytics system called VisIRR, which is an interactive visual

information retrieval and recommendation system for document discovery. VisIRR

effectively combines both the paradigms of passive pull through a query processes

for retrieval and active push that recommends the items of potential interest based

on the user preferences. Equipped with efficient dynamic query interfaces for a large

corpus of document data, VisIRR visualizes the retrieved documents in a scatter plot

form with their overall topic clusters. At the same time, based on interactive person-

alized preference feedback on documents, VisIRR provides recommended documents

reaching out to the entire corpus beyond the retrieved sets. Such recommended doc-

uments are represented in the same scatter space of the retrieved documents so that

users can perform integrated analyses of both retrieved and recommended documents

seamlessly. We describe the state-of-the-art computational methods that make these

integrated and informative representations as well as real time interaction possible.

We illustrate the way the system works by using detailed usage scenarios. In addition,

we present a preliminary user study that evaluates the effectiveness of the system.

7.1 Introduction

These days, researchers are faced with a deluge of new papers appearing each day,

any of which might potentially contain a new development which could be critical

to one of the questions he or she is investigating. The challenge is similar to that of
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Figure 40: An overview of the VisIRR system. Given about half a million academic
papers in the system, the user can start by issuing a query (A), which in this case
is a keyword ‘disease’. By performing clustering and dimension reduction, VisIRR
visualizes the retrieved documents in a scatter plot and a table view (B) along with
a topic cluster summary (B)(E). In the scatter plot view, a circular node represents
a query-retrieved item, and a rectangular one denotes a recommended item. Their
node size encodes the number of citations. After identifying a few documents of
interest, the user can assign them his/her preference in a 5-star rating scale both in
a scatter plot and in a table view. Based on this preference feedback, the system
now provides a list of recommended items in another table view (C), and furthermore
they are projected back to the existing scatter plot view (B) so that the consistent
topical perspective can be maintained. To better understand the recommended items,
the user can apply ‘computational zoom-in’ on this set, which gives a clearer scatter
plot with a more semantically meaningful summary (D). Finally, the system provides
the option to choose different recommendation schemes based on contents, a citation
network, and a co-authorship network.
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finding an available needle in a haystack each day, with limited attention and time

resources.

This problem regime is highly under-explored, compared to the billions that have

been invested in the related paradigm of web search. Instead, the researcher or

analyst is solving a subtle investigative problem for which each of several documents

provides clues. By seeing this as an information retrieval (IR) problem, the focus in

this chapter is on the long tail, or recall (making sure that few relevant documents

are missed), while in web search the focus is generally on the quicker gratification of

precision (making sure the first page of hits or so contain very relevant documents).

In general, search is a form of “pull” technology, in which the user takes actions

by forming and issuing queries. However, in the former case where a high recall is

concerned, what queries to issue, e.g., proper keywords, becomes crucial in order for

users to obtain the documents of their interest. As a way to compensate this issue,

a recommendation, or a “push” technology, with which the system finds things

of interest to suggest to the individual user, has recently been popular in various

domains. Whereas a search engine is more or less stateless and the same for all users,

a recommendation system involves personalization, remembering aspects of the state

of the user’s interests and investigations so far.

In the context of visual analytics, document analyses have long been one of the

main areas studied. Visual analytics systems for document data, such as IN-SPIRE

[138] and JIGSAW [121], can help to give an overall understanding about a set of

documents as well as revealing their intra-set relationships that would have been

difficult and time-consuming without the help of interactive visualization. However,

despite the fact that personalized recommendations seem to be a natural fit with

interactive visualization in that it directly utilizes the history of user interactions,

there are few instances of such work in the visual analytic community.
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As one of the milestones to fill this gap, we present a novel document visual an-

alytics system called VisIRR, an interactive “Vis”ual “I”nformation “R”etrieval and

“R”ecommendation for document data, which effectively combines traditional query-

based information retrieval and personalized recommendation. Basically, as seen in

Fig. 40, VisIRR adopts a scatter plot as a main visualization form similar to IN-

SPIRE. In other words, the documents to be visualized are first clustered into several

groups via a clustering algorithm and then projected to a 2D space via a dimension

reduction algorithm. However, VisIRR features various novel aspects compared to

existing systems, as follows.

• Efficient large scale data processing : VisIRR currently handles about half a

million documents and scales linearly with respect to newly added documents

in terms of the amount of the required computation and memory size.

• Advanced clustering and dimension reduction techniques : As core computational

modules, VisIRR adopts state-of-the-art techniques such as nonnegative matrix

factorization (NMF) for clustering and linear discriminant analysis (LDA) for

dimension reduction. These techniques give the results with a much better

quality as well as with a faster computational time than traditional methods

including k-means, principal component analysis (PCA), and multidimensional

scaling. Additionally, VisIRR provides an alignment capability for both clus-

tering and dimension reduction to facilitate easy comparisons between different

visualization snapshots.

• Preference-based personalized recommendation: In addition to exploratory anal-

ysis of query-retrieved results, VisIRR supports recommendation of potentially

interesting documents to users based on the preferences users assign to docu-

ments. This recommendation enables users to discover those documents users’

query processes cannot reveal easily. The back-end recommendation module,
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which is based on PageRank-style graph diffusion algorithm [98], performs effi-

ciently with large-scale data.

To integrate all these capabilities into a mature visual analytics system, we incor-

porate various building blocks for front-end GUI’s and back-end computational al-

gorithms. This chapter mainly presents these building blocks in more detail with

detailed usage scenarios. The rest of this chapter is organized as follows. Section

7.2 discusses related work. Section 7.3 explains the front-end GUI modules and

comprehensive usage scenarios that highlight the key capabilities of the system. Af-

terwards, Section 7.4 mainly discusses how we efficiently handle all the necessary

information from a large-scale data corpus with a scalable expansion, and Section 7.5

describes computational methods used in the back-end of the system. Section 7.6

briefly presents the user study we conducted to evaluate the system. Finally, Section

7.7 concludes the chapter and discusses about the future work.

7.2 Related Work

Information seeking behavior is a complex human activity, and one that varies dramat-

ically with system capabilities and user’s model of those capabilities [93]. Ill-defined

document search tasks such as literature searches are often termed ’exploratory search’

tasks, in contrast with well-defined tasks such as finding a known, specific item from

among a set. In the past, traditional information retrieval has focused much more on

the latter than the former.

In the context of exploratory interfaces, information foraging [106] and scent the-

ory [105] suggest making clusters of related data clear and facilitating the process of

finding new clusters of interest. To that end, many search result visualization sys-

tems also work in concert with automated clustering algorithms, especially when the

information space is extremely large or unstructured. The Pacific Northwest National

Lab’s SPIRE system (and IN-SPIRE follow-on) uses clustering to extract common
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themes, and includes several visualization components [138]. Its Themescape compo-

nent is an abstract 3D landscape depiction of a document space, with arrangements

of hills and valleys representing the relatively strength of various themes in the docu-

ment corpus and how those themes interrelate. Other systems have used this general

clusters-in-landscapes (both 2D and 3D) as well [116, 21, 6]. iVisClustering [88] is an

interactive document clustering system focused on the user interactions to improve

cluster quality based on an advanced technique called latent Dirichlet allocation [20].

On the other hand, rather than providing user interactions customized to a partic-

ular clustering technique, the Testbed system [32] offers a wide variety of clustering

algorithms and easy comparisons between them via an alignment process VisIRR has

adopted.

Using visualization for exploring text data is an active research area within and

among many fields. Here, we highlight only a sample of relevant work from different

areas and refer the reader to a recent survey of visual text analytics [4] for a more

comprehensive treatment.

Unsurprisingly, visualization of document collections has been explored for some

time in library science. A relatively early example is the Envision digital library,

which includes a visualization system that places documents in a 2D grid according

to user-selectable attributes [97]. Systems have used various information visualization

techniques such as hyperbolic trees [76, 119] and treemaps [62, 41] to visualize results.

Curated collections such as those found in digital libraries more often have pre-formed

hierarchies to leverage in visual analytics applications, but simple clustering methods

have been implemented as well [119].

When document categories and groupings are not already extant, automated

methods of clustering and classifying collections are key to exploratory tools, includ-

ing those supporting visual analysis. A recent survey [4, 63] distinguishes between the

visualization of a single document (e.g., tag clouds) and a document collection and
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between time- (e.g., TIARA [134]) and network-oriented collection systems. Because

VisIRR’s clustering system implicitly creates relationships among members (and its

graph diffusion-based recommendation system explicitly uses such data), examples

of the last category are most relevant. Jigsaw [121] visualizes network relationships

between documents and various entities, e.g., actors, events, etc., automatically ex-

tracted from them.

A recently proposed Apolo system [27] uses a mixed-initiative approach that boot-

straps initial user-specified categories and classifications into more comprehensive

system-suggested categorization of new documents. However, Apolo is exemplar-

based method where the user is assumed to clearly have a few of documents of their

interest. In this sense, Apolo mainly supports a bottom-up style of analyses. On the

contrary, VisIRR initially takes a top-down approach in that it initially starts from an

overview visualization of a potentially fairly large amount of documents retrieved by

user queries. Once the documents of the user’s interest is identified, however, VisIRR

also supports a bottom-up style approach via recommendation processes based on

the user preferences on particular documents, thereby gradually expanding the user’s

scope beyond the query-retrieved set.

There has been significant commercial and academic interest in the topic of ex-

ploratory search for scientific literature for some time. Several commercial tools are

targeted to this problem, with a variety of automated and visual features. Google

Scholar [1] automatically extracts research works and their citation networks, but has

few visual or recommendation features. The Microsoft Academic Search system from

Microsoft Research [2] is a similar offering that also includes more advanced network-

style visualization of authorship connections as well as various ways of examining

topical, institutional, and venue trends and rankings.

Direct introspection of the academic research process has been a common topic

in academia as well. One variation is automated recommender/matching systems,
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often applied to the problem of matching individual papers from a corpus to indi-

viduals from a slate of candidate reviewers [14, 132]. More relevant to VisIRR are

those systems that are more exploratory or analytical in nature. The Action Science

Explorer (ASE) [52] focuses on co-citation network visualization, with document clus-

ters created manually or by heuristics [95]. It also includes full-text citation context

features not available on VisIRR. The FacetAtlas system [24] automatically clusters

document collections using a Kernel density estimation algorithm and provides multi-

faceted links between document nodes (rather than just keyword or author searches

as in VisIRR). CiteSpace II [28] is a visual tool for identifying new or old research

trends in a given set of documents (assumed to be a relatively coherent set produced

by a keyword query on a large corpus).

However, none of these systems include one of VisIRR’s key contributions: a

user-driven recommendation system that explicitly includes relevant documents from

the larger search space vs. a dramatically reduced one from an initial search query.

7.3 VisIRR Design and Function

In this section, we briefly introduce the user interfaces of VisIRR and describe example

analysis scenarios to demonstrate how VisIRR works in detail.1

7.3.1 User Interface

The user interface of VisIRR is mainly composed of four parts. The Query Bar at the

top (Fig. 40(A)) enables users to issue queries dynamically using various fields such

as a keyword, an author name, a publication year, and a citation count. The Scatter

Plot view (with document details shown in the lower table) (Fig. 40(B)) visualizes

the retrieved documents (as well as any recommended documents) with their cluster

summary labels. The color and the size of each node in a scatter plot represent the

1A high-quality video introducing VisIRR is available at http://www.cc.gatech.edu/~joyfull/
vast13/visirr/visirr_final.html
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cluster it belongs to and its citation count, respectively. Such a view can also be gen-

erated from any user-selected subset of data (Fig. 40(D)). The Recommendation view

on the top left (Fig. 40(C)) provides tabular representations of the documents whose

ratings have been assigned by users (Fig. 40(C) upper table) as well as the resulting

recommended documents (Fig. 40(C) lower table). These recommended documents

are also visualized in the Scatter Plot view as rectangles while the query-retrieved

documents are shown as circles. Finally, the Label panel provides additional controls

such as highlighting and/or hiding particular clusters, changing how cluster summary

labels are chosen, and showing direct edge relationships from rated documents to

their system-derived recommended documents (Fig. 40(E)).

7.3.2 Usage Scenarios

VisIRR has been implemented using a modified version of the ArnetMiner dataset,

which contains approximately 430,000 academic research articles from a variety of

disciplines and venues (primarily conferences, journals and books), as will be described

in detail in Section 7.4. The following scenarios illustrate the utility of VisIRR for

tasks related to this dataset.

7.3.2.1 A Visual Overview of Query-Retrieved Documents

The user starts by issuing queries from the Query Toolbar. Suppose the user issues a

query of keyword “disease” from a title field. Once documents are retrieved due to

this query, the clustering and dimension reduction steps are performed to generate

the Scatter plot view (Fig. 40(A)). Since most clusters contain the keyword “disease”,

the user can adjust a slider in the Label panel in order to obtain more distinctive

cluster summaries, as shown in Fig. 41. From the Scatter plot view, the user can drill

down to a cluster of interest, e.g., the clusters about gene expression data (the top

right), and image analysis (the top left). By moving a mouse pointer to a data point,

the user can check the document details via a tooltip text and also skim through
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(a) Default cluster summary (b) Distinct cluster summary

Figure 41: A Comparison between default and distinct cluster summaries. Since all
the documents include the query word “disease”, most clusters contain this word as
one of the most frequent keywords (a). By adjusting the slider of common-vs-unique
words in the Label panel, the cluster summary shows much clearer meanings (b).

the document list in the lower table, which is by default sorted by the number of

citations. The user can also pan and zoom to enlarge a particular cluster or area of

interest.

7.3.2.2 Drilling Down via Computational Zoom-in

Now, the user can drill down a particular cluster via an interaction we call compu-

tational zoom-in. The computational zoom-in enables the user to select an arbitrary

subset of documents by visualizing them as a separate view with their own cluster-

ing and dimension reduction results. These subsets can be, for example, particular

clusters when their semantic meanings are not clear involving multiple topics. On

the other hand, the user can select a cluttered region where many points are mixed

together.

Fig. 42 shows an example of the computational zoom-in interaction. After per-

forming computational zoom-in on a highly cluttered area in an original view (black
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Figure 42: An example of computational zoom-in interaction. For a user-selected
region (black rectangle on the top left), this interaction provides a separate view by
involving only these points to compute their own cluster summary and dimension
reduction coordinates. The resulting view now shows a clear overview about these
cluttered data, revealing detailed clusters about ‘support vector machines’ and ‘de-
cision trees’ that are typically applied in medical image analyses (black rectangle on
the bottom right).

rectangle on the top left), the resulting view successfully reveals several clear clus-

ters e.g., the one about ‘support vector machines’ and another about ‘decision trees’

typically applied in medical image analyses (black rectangle on the bottom right).

7.3.2.3 Dynamic Queries and Multi-view Alignment

In addition to exploring visualized clusters, the user can apply additional queries to

further narrow down the retrieved document set. Suppose the user wanted to focus on

those recently published in 2008 or later and thus created another filter from the Query

Toolbar in conjunction with the previous keyword query “disease.” Given such a new

set of documents, VisIRR creates another visualization with its own clustering and

dimension reduction. The user could then compare between the new and the previous

visualization results, as shown in Figs. 43(a) and (b), respectively, by brushing-and-

linking in order to identify, for example, which topic clusters were more/less popular
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(a) An unaligned view (b) A reference view (c) An aligned view

Figure 43: Effects of clustering and dimension reduction alignments. A reference
view (b) shows the documents with a query word “disease” while the other two views
(a)(c) contain the subset of them published from year 2008 with their own clustering
and dimension reduction steps applied. For an unaligned view (a), it is difficult to
compare against the reference view since there is no correspondence in terms of the
coordinates of data points and clusters. However, in an aligned view (c), the clusters
match those in the reference, and their spatial correspondences in the scatter plot are
maintained.

from 2008. However, since the cluster colors and the dimension reduction results

have been computed independently, it is not straightforward to easily compare these

differences based on the visualization results.

To solve this problem, once a new visualization is created, VisIRR performs an

alignment step on the new clustering and dimension reduction results with respect to

the previous visualization result so that the visual coherences in terms of the cluster

colors and the spatial coordinates of data points can be maintained. The algorithm

details are discussed in Section 7.5.3. For instance, as opposed to an unaligned

visualization in Fig 43(a), an aligned one in Fig 43(c) is shown to be much easier

to compare against the previous visualization shown in (Fig 43(b). From the aligned

visualization, the user can easily see that the cluster about outbreak detection, shown

as a green cluster in the middle of Figs. 43(b)(c), was not actively studied from 2008.
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7.3.2.4 Content-based Recommendation

Throughout analyses, the user can assign ratings to the documents he/she likes or

dislikes. Among the retrieved documents, suppose the user found a document “Au-

tomatic tool for Alzheimer’s disease diagnosis using PCA and Bayesian classification

rules” interesting and assigned the document a 5-star rating(highly-like) by right-

clicking the corresponding data point in the Scatter Plot View. Based on this user

preference information, VisIRR identifies the recommended documents based on the

content similarity. These rated and the recommended documents are displayed in a

tabular form in the Recommendation view (Fig. 40(C)).

From the list of recommended documents shown in the lower table, the user could

obtain an idea that the research about Alzheimer’s disease mainly involves an image

analysis, clustering, classification, etc. Notice that without such a recommendation

capability of VisIRR, the user would not be able to obtain these documents since

these documents were not included in the retrieved set by user queries. In the Scatter

Plot view, the user can see these recommended documents at the upper left corner

around the rated document and its nearby clusters. To obtain a better idea about

the recommended documents, the user can create another visualization by only using

this subset with a new clustering and dimension reduction (Fig. 40(D)). From its own

cluster summary and visualization, the user could see that the documents directly

related to Alzheimer’s disease are mainly shown in the bottom half while the upper

half in the Scatter Plot view, shows documents mainly related to image analysis such

as content-based image retrieval, clustering, etc.

7.3.2.5 Citation- and Co-authorship-based Recommendation

Now, among the recommended documents, the user chose another document “Auto-

matic Classification System for the Diagnosis of Alzheimer Disease Using Component-

Based SVM Aggregations” and assigned it a 5-star rating. This time, the user changes
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(a) The top-ranked recommended document list

(b) A visualization of recommended doc-
uments

Figure 44: Citation-based recommendation results obtained by assigning a 5-star
rating to the paper, “Automatic Classification System for the Diagnosis of Alzheimer
Disease Using Component-Based SVM Aggregations.” VisIRR recommends various
papers mostly with high citation counts, which are relevant to the rated paper.
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(a) A visualization of retrieved and rec-
ommended documents

(b) A visualization of only the recom-
mended documents

Figure 45: Co-authorship-based recommendation results based on the paper, “Auto-
matic Classification System for the Diagnosis of Alzheimer Disease Using Component-
Based SVM Aggregations.” Edges show direct co-authorship relations from the rated
document.
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its recommendation type to a citation-based one from the Recommendation panel in

order to obtain highly-cited documents relevant to this document. As expected,

VisIRR’s top-ranked recommended documents are relatively highly cited papers, as

shown in Fig. 44(a). After generating another visualization only using these recom-

mended items, the user can obtain a summary about them, the clusters of which

are composed of image retrieval, object detection/recognition, face recognition, and

texture analyses (Fig. 44(b)). Notice that these types of recommendation results

would not be easily obtained by a simple keyword search since these recommended

documents do not contain specific keywords in common. Instead, they are only im-

plicitly related with each other via a citation network on which VisIRR can perform

a recommendation based.

In addition, the user also wanted to know what other topics or areas the authors

of this paper are involved in. To this end, the user changed the recommendation

type to a co-authorship-based one from the Recommendation view. In addition, to

better show the direct co-authorship relationships from the rated paper, the user

turned on the “Edges” checkbox by selecting the edge type as “Co-authorship” in the

Label panel. The existing visualization of the retrieved documents now includes the

recommended documents as well as the direct co-authorship relations from the rated

document, as shown in Fig. 45(a). Similar to the previous case, the user can generate

another visualization of only the recommended items to have a better idea about

the recommended documents. After varying the number of clusters, the user obtains

a new visualization as shown in Fig. 45(b). From this visualization, the user could

gain an insight that the authors of the rated paper have written the papers, other

than Alzheimer’s disease-related papers (the green cluster on the right), in the four

areas corresponding to blind source separation, gene expression, speech processing,

and neural networks. This potentially indicates that the user, who was originally

interested in Alzheimer’s disease diagnosis, could expand his/her research by following
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the ways the authors of the rated paper have published in other domains.

7.4 Data Collection / Ingestion

7.4.1 Initial Data Collection

VisIRR is intended to efficiently handle a large-scale document corpus with a rich

set of features. To this end, VisIRR begins with the ArnetMiner data set, which

is composed of about half a million academic papers, books, etc. [124].2 Although

the data set is mainly used in citation network analyses, it includes a variety of

both structured and unstructured information such as a title, keywords, an abstract,

authors, a publication year, a venue, a document type such as a book, a paper, etc.,

papers in the reference list, papers citing this document, the number of references,

and the number of citations.

However, the original data set has numerous missing values and inconsistencies

such as different expressions of an author’s name, a publication venue, etc. To clean

up the data, we utilized the Microsoft Academic Search API’s.3 Specifically, we used

a title of each document as a query in order to obtain the full information about the

document from the Microsoft Academic Search API, which fills the missing values

and rectifies the inconsistencies. Finally, VisIRR builds upon 432,605 documents

spanning from year 1825 to 2011.

7.4.2 Data Ingestion

Now we describe how we make these large-scale data readily available for real-time

interactive analyses in VisIRR. Basically, VisIRR maintains the information about

data in three different forms, (1) original fields of data, (2) a vector representation,

and (3) graph representations, in an efficient and scalable way. In order to efficiently

2The used data is available as ‘DBLP-Citation-network V5’ at http://arnetminer.org/

citation.
3http://academic.research.microsoft.com/About/Help.htm.
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manage the large-scale data in all these various forms, we carefully optimized vari-

ous data processing/storage techniques via database construction, pre-computation of

frequently used information, and balanced storage between disk and memory. Even-

tually, the system is easily and widely deployable in typical commodity PC’s instead

of requiring high-performance parallel machines.

7.4.2.1 Original Field of Data

For efficient and flexible query support, we have encoded the original data as a SQL

database including full-text search capabilities on a title, keywords, an abstract, and

a venue fields. For clustering and dimension reduction steps, we have pre-computed

the sparse vector representations of individual documents based on a title, keywords,

and an abstract fields together via a bag-of-words encoding scheme. Each vector

representation is stored as a single file in a disk, the file name of which is the document

ID. In this way, VisIRR can retrieve the vector representations of documents using

their document ID’s in the time complexity of O(1).

7.4.2.2 Vector Representation

Once the vector representations of documents are loaded into a memory, VisIRR

manages them in a similar way to cache replacement algorithms. That is, the vector

representations already loaded into the memory is referenced from the memory when-

ever needed. When the total memory-loaded vectors exceed a pre-defined maximum

memory size, the least recently used vectors are removed from the memory. When

needed later, they are loaded from a disk once again. This way, VisIRR does not need

to load the vector representations of all the documents from the beginning, which will

take significant time and memory at the system startup. At the same time, VisIRR

prevents the required memory size from blowing up due to a long-term usage of the

system.
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7.4.2.3 Graph Representation

The recommendation module, which will be described in Section 7.5, requires an

input graph where the nodes correspond to documents and the edges represent their

pairwise similarities/relationships. We have pre-computed three such graphs for the

entire data set using contents, a citation network, and co-authorship, respectively, in

order to support various recommendation capabilities. For content-based graph, we

initially computed the pairwise cosine similarities between all the pairs of documents

using their vector representations. Since maintaining all the pairwise information

requires O(n2) storage where n is the total number of documents, we identified the

fixed number (10 in our case) of the most similar documents for each document and

kept only the edges between them. For the citation graph, we formed edges between

a pair of documents if either cites the other. For the co-authorship graph, edges

are created if two documents share the common author(s). Since citation and co-

authorship graphs are typically sparse, we stored all these edge information. For each

graph, VisIRR maintains the mappings from an individual document to a list of edges

in terms of the destination document and its edge value so that it can retrieve the

edge information for particular documents in the time complexity of O(1).

7.4.3 Scalable Update for New Data

Even though VisIRR already contains a large-scale data of about half a million doc-

uments, it is crucial to have a capability to efficiently update the above-described

information including newly added documents. An updating process is composed

of two parts: updating the information about existing documents and obtaining the

representations of new documents. First, in the case of the original fields of data,

the information about new documents can be easily added to the database with-

out affecting the existing data. Second, In the case of updating bag-of-words vector

representations, new documents generally causes newly appearing keywords to be

162



(a) Maximization of dis-
tances between cluster
centroids

(b) Minimization of ap-
proximate cluster radii

(c) LDA (d) PCA

Figure 46: A high-level idea of LDA and a comparison example betwee LDA and
PCA. A different color corresponds to a different cluster, and c1 and c2 are the cluster
centroids. LDA tries to find a reduced-dimensional representation of data by putting
different clusters as far as possible (a) and representing each cluster as compact as
possible (b). (c) and (d) show an example 2D scatter plots obtained by PCA and
LDA, respectively, for artificial Gaussian mixture data with 7 clusters and 1,000
original dimensions. From a comparison between them, LDA is shown to reveal a
much clearer cluster structure than PCA in a 2D space.

indexed as additional dimensions. However, sparse vector representations of exist-

ing documents would still remain the same, and thus we only need to compute the

representation of new documents, which can also be easily done.

Finally, in the case of updating graph representations, the only tricky part is to

update the content similarity graph, where the top 10 most similar documents and

their cosine similarity values are maintained. Specifically, we have to compute the

pairwise similarity between all the existing documents and all the new documents,

and then compare these similarity values against the current top 10 similarity values.

If any of the former similarity values are greater than the latter similarity values, the

corresponding edges are replaced with those to the new documents. The computa-

tional complexity of this process is O(n × nnew) where n and nnew are the numbers

of the existing and the new documents, respectively.
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7.5 Computational Methods

The key computational methods in VisIRR are clustering, dimension reduction, align-

ment, and graph-based recommendation. In this section, we describe each module in

detail.

7.5.1 Clustering

Clustering plays a crucial role in providing a summary of a given set of documents

as a manageable number of groups based on their semantic meanings. The resulting

cluster indices are used to color-code documents in a scatter plot with their cluster

summaries in terms of the most frequently shown keywords (Fig. 40(B)(E)). VisIRR

adopts a state-of-the-art technique called nonnegative matrix factorization (NMF)

[80], which have shown superior performances in document clustering over traditional

methods such as k-means [81, 141].

Given a nonnegative matrix X ∈ R
m×n, and an integer k ≪ min (m, n), NMF

finds a lower-rank approximation given by

X ≈WH, (40)

where W ∈ R
m×k and H ∈ R

k×n are nonnegative factors. NMF can be formulated

using the Frobenius norm as

min
W,H≥0

‖X −WH‖2F . (41)

In the context of document clustering, each column vector xi ∈ R
m×1 of X repre-

sents each document as an m-dimensional vector via a bag-of-words encoding, with

some additional pre-processing steps such as inverse-document frequency weighting

and vector norm normalization. The value of k represents the number of clusters. For

clustering, one can utilize H as a soft clustering vector representation of documents.

That is, the column vector hi ∈ R
k×1 of H represents such a soft clustering vector
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for the i-th document, and by taking the index the value of which is the largest, the

cluster index of the document can be obtained.

The specific NMF algorithm we have used is based on a recently proposed block

principal pivoting algorithm [82],4 which is found to be one of the fastest and reliable

algorithms. Although not reported, we have conducted an extensive amount of com-

parison of NMF against traditional clustering techniques such as k-means, and we

found that NMF mostly gives semantically more meaningful clusters than any other

methods while requiring a significantly faster computational time.

7.5.2 Dimension Reduction

Given high-dimensional vector representations of documents, dimension reduction

computes their 2D representations so that they can be visualized in a scatter plot

(Fig. 40(B)). From the scatter plot, users can get an idea about how clusters/documents

are related with each other. VisIRR adopts an advanced dimension reduction method

called linear discriminant analysis (LDA) [68].

Unlike traditional methods such as principal component analysis and multidi-

mensional scaling, LDA explicitly utilizes additional cluster label information, which

are taken from the clustering module, associated with the input high-dimensional

vectors. Using this information, LDA tries to preserve the cluster structure in the

low-dimensional space such that the dimension-reduced result can clearly reveal the

underlying cluster structure in the input data. In this manner, as shown in Fig. 46,

LDA has an advantage over most traditional methods such as PCA and MDS in that

it can provide a clear cluster structure in the data when the cluster label information

is given.

Furthermore, VisIRR provides a slider interface for controlling how compactly

each cluster is represented by using regularization on LDA, which enables users to

4The source code is available at http://www.cc.gatech.edu/~hpark/nmfsoftware.php.
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focus their analyses at either a cluster level or an individual document level. For more

details, refer to [35, 36].

7.5.3 Alignment

In VisIRR, users can create multiple scatter plots for (1) new parameter values, e.g.,

the number of clusters in NMF, a regularization value in LDA, and (2) a new set of

data from different queries or arbitrary selection by users. In order to maintain con-

sistency between different scatter plots and facilitate their easy comparisons, VisIRR

provides alignment capabilities on different clustering and dimension reduction re-

sults. By aligning clustering results, users can expect that the same cluster index

and color indicate semantically similar meanings. On the other hand, by aligning

dimension reduction results, users can expect that the same data point is located in

a similar position in the 2D space between different scatter plots.

To align different clustering results, VisIRR utilizes the Hungarian algorithm [85].

Given two sets of cluster assignments for the same set of documents, the Hungarian

algorithm finds the optimal pairwise matching of cluster indices between the two

sets so that the number of common data items within matching cluster pairs can be

maximized. Based on the resulting matching, VisIRR changes the cluster indices and

the colors of the newly created scatter plot with respect to those of the used reference

scatter plot. In this manner, VisIRR maintains the cluster indices/colors with their

consistent semantic meanings throughout multiple visualization results.

The alignment of different dimension reduction results is based on Procrustes

analysis [69, 53], which best maps one result to the other with only a rotation matrix.

In addition, VisIRR extends the original Procrustes analysis by incorporating trans-

lation and isotropic scaling factors as well. That is, given two reduced-dimensional

matrices X , Y∈ R
m×n, where m is the number of dimensions and n is the number of
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data points, VisIRR solves

min
Q,µX , µY , k

∥

∥

(

X − µX1
T
n

)

− kQ
(

Y − µY 1
T
n

)
∥

∥

F
, (42)

where Q ∈ R
m×m is an orthogonal matrix (for rotation), µX and µY arem-dimensional

column vectors (for translation), k is a scalar (for isotropic scaling), and 1n is an n-

dimensional column vector whose elements are all 1’s. Eq. (42) is efficiently solved

by using eigendecomposition. These alignment functionalities help users understand

how similarly/differently the corresponding data items/clusters are placed between

different views.

7.5.4 Recommendation

The main input to the recommendation algorithm is the personalized preference to

particular documents, which are interactively assigned by users in a 5-star rating

scale, as shown in the bottom-right in Fig. 40(B). By default, all the documents

are assumed to have a 3-star rating, which is converted to a zero preference value,

but users can interactively assign ratings to particular documents, where a 1-star

corresponds to a preference value of -2, and 5-star to +2, etc.

Given these user preference information, VisIRR identifies the recommended doc-

uments by performing a PageRank-style graph diffusion algorithm on a weighted

graph of the entire document set. As briefly discussed in Section 7.4, such a graph

can be based on either contents, a citation network, or co-authorship depending on

users’ choice. Particularly, VisIRR has adopted a heat-kernel-based algorithm [40],

which gives a much faster convergence than the other traditional algorithms. In de-

tail, given an input graph W ∈ R
N×N between N documents, where each column

of W is normalized such that its sum is equal to one, and a user preference vector

p ∈ R
N×1, where the i-th component pi is the preference value, VisIRR computes the
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recommendation score vector r ∈ R
N×1 of N documents

r = α

n
∑

k=0

(1− α)k W kp, (43)

where α and n are user-specified parameters, e.g., by default, α = 0.7 and n = 3.

An intuitive explanation of this formulation is that the preference value piof node i

is propagated to its neighbor nodes with the corresponding weights specified in the

graph W at the first iteration, and then the resulting values are then propagated

again with the same graph W with the scale factor (1− α) at the next iteration, and

so on. Finally, those values computed from each iteration is added up, forming a final

recommendation score vector r. Once the computation is done, VisIRR presents the

documents with the biggest scores in r as the recommended ones.

One may think that Eq. (43) is computationally intensive because our input graph

W is very large-scale. However, all the computations, which are basically matrix-

vector multiplications, are performed based on sparse representations. Therefore, as

long as W and p have few non-zero entries, the computation is typically done fast.

Furthermore, VisIRR supports the capabilities of interactively adding/removing the

rated documents as well as changing the ratings of the existing documents. Such

computations are performed dynamically per their individual interactions, which es-

sentially makes p have only one non-zero entry. In this way, VisIRR maintains the

real-time efficiency of computations during users’ frequent interactions.

7.5.5 Implementation

The system is mainly implemented in JAVA for front-end UI and rendering modules,

which are partly based on the FODAVA Testbed system [32]. NetBeans Rich Client

Platform and IDE5 have been used for flexible window management. The back-end

computational modules NMF and LDA are originally written in MATLAB but we

have wrapped them into a JAVA library by using a Matlab built-in functionality

5http://netbeans.org/features/platform/index.html
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called ‘Javabuilder.’6 Since the library made in this manner is self-contained, VisIRR

does not require an actual Matlab to be installed. For querying and accessing with

the database, we have used H2 library.7

7.6 Confirmatory User Study

The evaluation of information visualization and visual analytic systems has been an

acknowledged challenge [108]. Insight-based evaluation [114, 109] has gained pop-

ularity recently as an alternative to traditional time-and-accuracy measures. As a

preliminary gauge of how well our usage scenarios match real user behaviors, we have

conducted an evaluation of VisIRR with end users, which consisted of an informal,

non-experimental insight-based protocol.

The design of this study is evidence-by-existence. That is, our goal is to provide

some support of our implicit VisIRR design claims. For example, we seek to show

that recommendations outside the initial query set are useful to some people and

they can find useful documents with VisIRR. It is not an experimental design as it

includes no control condition, so we cannot and do not make any relative claims about

VisIRR’s effectiveness compared to other research or commercial alternatives (e.g.,

Google Scholar). Instead, our purpose is modest: demonstrate VisIRR can meet its

intended purpose for real users (providing evidence that our imagined user scenarios

above are valid), and provide direction for a future, comprehensive experimental or

quasi-experimental design.

7.6.1 Method and Limitations

Participants in the study used VisIRR implemented with the same ArnetMiner-based

set of academic articles described in the usage scenarios above. After completing a

consent form and a brief demographics questionnaire, they were provided a live demo

6http://www.mathworks.com/products/javabuilder/
7http://www.h2database.com/html/main.html
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Table 9: The study UI action counts across all participants and tasks.

Action Description Count

Tooltip
A tooltip showing document details triggered

38897
by hovering over a table row or scatter plot node

Rating
The user picks a non-default 1-5 star rating

80
from table entires or scatterplot nodes

Details
The user shows the details dialog box

146
for one or more documents

Copy The user copies document information to the clipboard 35

Filter
The user performs a filter (by keyword, year, citation

24
count or author’s name) on the current results

of the system usage scenario (lasting 5-10 minutes, depending on questions). Partici-

pants then used the system to conduct searches of their own choosing and to complete

a set of pre-defined tasks concerning either ubiquitous computing or information visu-

alization (e.g., “Describe any apparent subfields or application areas of information

visualization.”). Finally, we deployed a version of the IBM Computer System Usabil-

ity Questionnaire (CSUQ) [90] along with a few other subjective assessment questions

specific to VisIRR.

The system was installed on a workstation with dual 2.5GHz Intel Xeon processors

and 128GB RAM running 64-bit Windows 7, though the Java VM memory limit was

set to only 8 GB. It was connected to both a 30” monitor (1920x1200) and a 19”

monitor (1280x1024); users were free to arrange windows on either monitor, but most

chose to use the majority of the 30” screen for the VisIRR windows and dialogs with

the task response window on the 19” screen.

We recruited 7 male Ph.D. students between the ages of 24-40 enrolled in various

technical degree programs (engineering, computer science, robotics). As such, they

all had experience doing academic literature searches using online resources such as

Google, Google Scholar, the IEEE/ACM digital libraries, etc. We asked participants

to self-rate their familiarity with information visualization and ubiquitous computing

literature; all self-rated 4 or less on a 7-point Likert scale for information visualization
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and 6 of the 7 did so for ubiquitous computing. Participants completed tasks for the

area with which they were less familiar. The VisIRR system was instrumented to

log the UI actions shown in Table 9. We non-intrusively observed users while they

completed the tasks.

We present only a few quantitative measures in our results and no mean values

as the limited sample and non-experimental nature of the study would render them

specious. The tooltip counts in Table 9 are somewhat exaggerated because the VisIRR

tooltips have a very short timeout triggering their appearance, meaning many tooltips

could be triggered just from panning over one of the document lists or through the

scatterplot.

7.6.2 Results and Discussion

Table 9 shows the raw action counts across all 7 users and all tasks. Those counts

match our subjective impressions of watching users complete tasks: they consistently

made use of the major VisIRR features (visualization, ratings and recommendations

and details-on-demand). Since one of our most basic questions was whether users

would actually make use of the more novel features like ratings and recommendations,

this preliminary result was encouraging.

All users made at least 9 distinct document ratings (again, across all tasks), and

interestingly did so relatively evenly from different portions of the UI (the recom-

mended, rating and query lists, and the scatterplot). Document details were dispro-

portionately triggered from the visualization (112/146), indicating both that partici-

pants interacted with the visualization and drilled down into document details from

there. This matches both our subjective observations and post-test user comments

like “It’s good to have that first clustering result ... It’s easy to go deeper down from

one or two clusters.” Unfortunately, the logging does not distinguish between regular

and recommended document nodes in the scatter plot.
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On the subjective CSUQ, scores were generally 5 or higher, with the lowest rated

scores coming on the questions “The system has all the functions and capabilities I

expect it to have”; “The system gives error messages that clearly tell me how to fix

problems”; and “Whenever I make a mistake using the system, I recover easily and

quickly.” We suspect these ratings reflect occasional software bugs and crashes that

occurred during some of the participant sessions.

Our results also suggest a potential interesting contrast in user behavior with

more traditional keyword-based search algorithms: one might expect in exploratory

tasks with keyword engines to see multiple iterations of keyword refinement and result

inspection for a given task or user. However, our users performed relatively few filter

actions (all keyword refinements rather than by author, time or citation). However,

because VisIRR recommendations expand the search query outside its original bounds

(and highlight those nodes which are outside those bounds), iterating keyword terms

is less necessary, though future work is necessary to confirm this idea, or to gauge

whether this approach is more or less effective than keyword refinement.

Of course, we would hypothesize that rating-based refinement is more productive

since it does require less user expertise at generating useful keyword sequences; at

least one user agreed, saying that VisIRR “... is definitely much better than blindly

searching Google Scholar or basic search engines using just a few keywords.”

7.7 Conclusions

In this chapter, we have presented a visual analytics system called VisIRR, an inter-

active visual information retrieval and recommendation system for document discov-

ery. One of the primary contributions of VisIRR is that it has effectively combined

both paradigms of passive query process and active recommendation by reflecting

the user preference feedback. In addition, VisIRR directly tackles a large-scale docu-

ment corpus via efficient data management and new data updating as well as a suite
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of state-of-the-art computational methods such as NMF, LDA, and graph diffusion-

based recommendation.

Our future work includes the following.

• Collaborative filtering-based recommendation: In addition to the preference-

based recommendation we have taken, it would be more effective if VisIRR

could support collaborative filtering-based approach [22] by using multiple other

users’ preference information. However, collecting this preference information

from various users is not easy. In this respect, VisIRR could conversely be used

as an easy visual interactive tool to collect these preference information after

deployed to many users, just as we have collected various information about the

user interaction history in Section (7.6).

• Fast interactive clustering and layout : We found that many users often com-

plained about visualization not coming up immediately, which is due to high

computation time. When hundreds or thousands of documents are involved,

the clustering and the dimension reduction computation typically takes from a

few seconds to a minute. In addition, the user sometimes wanted to move doc-

uments/clusters to see what other documents/clusters move correspondingly.

The fast and interactive clustering and layout algorithms incorporating this

user feedback would help VisIRR substantially.
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CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

8.1 Summary of Contributions

In this thesis, we have discussed how to tightly integrate automated computational

approaches and interactive visualization approaches for large-scale high-dimensional

data analysis such as images and text documents. Even with a clear motivation of the

integration between them, there exist several hurdles such as significant computational

time and interpretation difficulties. To handle these problems, the thesis presents

several ways to customize the computational techniques in terms of the theoretical

re-formulation and algorithmic re-design. Such improved algorithms make it possible

for complicated and computationally intensive techniques to be easily integrated into

visual analytics scenarios. Based on the redesigned techniques, the thesis includes

development of an actual visual analytics system that tightly integrates the advanced

computational techniques and enables users to take advantage of them in practical

data analysis scenarios.

In summary, the contributions of the thesis are summarized as follows:

1. A theoretical framework of visualizing clustered high-dimensional data via di-

mension reduction. The proposed two-stage framework enables various com-

binations and their interpretations of several well-known supervised and unsu-

pervised dimension reduction methods to obtain appropriate 2D/3D represen-

tations of high-dimensional data. [35].

2. An algorithmic redesign of computational modules to enable real-time visualiza-

tion and interaction with computationally intensive algorithms and large-scale

data. The presented parametric updating algorithms will support one of the
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most essential interactions, changing the parameters, and the iteration-level in-

tegration of computational modules with interactive visualization will help users

quickly explore the results visually [34].

3. Iteration-wise integration framework of computational methods for real-time

visualization and interaction. The presented framework and several applications

of this idea in existing visual analytics systems, such as Jigsaw, iVisClustering,

and the Testbed system, shows the effectiveness of the proposed framework

using widely-used computational methods such as PCA, MDS, t-SNE, k-means,

and latent Dirichlet allocation [31].

In terms of the developed visual analytics systems, the thesis has presented

1. Testbed: an interactive visual testbed system for various dimension reduction

and clustering methods. The Testbed system brings a wide variety of tradi-

tional and state-of-the-art dimension reduction and clustering methods to vi-

sual analytics. The Testbed system provides full control of these methods with

interactive visual access to their results. In addition, our system offers a flexible

extensibility for new data types and methods [32].

2. iVisClassifier: an interactive visual classification system that uses supervised

dimension reduction. iVisClassifier enables users to explore high-dimensional

data through a supervised dimension reduction method, LDA. We interpret the

effect of regularization in visualization and provide an effective user-interface in

which users can control the cluster radii depending on whether they focus on the

cluster- or the data-level relationships. In addition, iVisClassifier facilitates the

interpretability of the computational model applied to their data. Various views

such as parallel coordinates, scatter plots, and heat maps interactively show

rich aspects of the data. Finally, we showed that iVisClassifier can efficiently

support a user-driven classification process by reducing humans’ search space,
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Figure 47: Hierarchical precision refinement of PCA computational results. 1,420
facial image data represented as 11,264-dimensional vectors have been visualized with
their person ID color-coded.

e.g., recomputing LDA with a user-selected subset of data and mutual filtering

in parallel coordinates and the scatter plot[36].

3. VisIRR: an interactive visual information retrieval and recommender system for

large-scale document data. VisIRR integrates two main notions of information

retrieval and personalized recommendation into a single visual analytics system.

VisIRR is well-engineered to handle large-scale data and streaming data and

utilizes the state-of-the-art clustering and dimension reduction methods such

as NMF and LDA. The recommendation module works on an efficient graph

diffusion algorithm on large-scale sparse graphs based on various criteria such

as content, co-authorhship, and citation network. [33].

8.2 Future Directions

This thesis opens up various future research directions when truly integrating com-

putational methods with human-in-the-loop visual analytics approaches. In order for

computational methods to be fully utilized in visual analytics, computational meth-

ods have to provide users with real-time interactivity and output trustworthiness for
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users’ own tasks as detailed in the following subsections. Based on such improve-

ments in various ways, users should be able to focus more on their own tasks and

goals instead of worrying much about computational methods themselves. In this

manner, the visual analytics with computational methods would be able to find more

real-world values in practical application domains.

8.2.1 Real-time Interactivity

For the former, this thesis already presented one approach called PIVE, described

in Chapter 4, where we have exploited the existing characteristics of most modern

algorithms that they are mainly based on algorithmic iterations. However, rather

revolutionary paradigm changes of computational methods could be considered when

designing the algorithms of computational methods for visual analytics applications.

One such approach would be to re-design the algorithms by hierarchically refining

the precision of the solutions of computational methods. Fig. 47 shows an example in

which the precision of the computational results are iteratively refined with respect

to the increasing screen resolution. During this precision refinement process, the next

step of refinement could utilize the results of the previous step, which makes each

refinement step efficient. More specifically, to find out the new position of a specific

data item in a higher resolution, the refinement process may only need to examine

the nearby areas from the previous position. Although we do not provide detailed

algorithms on how to realize this approach, one could find relevant literature from

other domains. Such literature includes adaptive mesh refinement [18]1 in numerical

analysis and wavelet transform [39]2 in image coding/compression. Applying these

ideas to the context of integrating computational methods in visual analytics would

be a promising research direction.

Another potential idea to achieve real-time interactivity is to confine the data

1http://en.wikipedia.org/wiki/Adaptive_mesh_refinement
2http://en.wikipedia.org/wiki/Wavelet_transform
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scale. As clearly seen in Fig. 47(a), the finite resolution in the screen space introduces

the limitation in the number of data items that can be visualized. Suppose there are

much more data items than the total number of pixels available. In this case, it does

not make sense to compute algorithms on the entire set of data items even though

there is no possible way to visualize all of them. This approach is particularly useful

when it comes to the computational complexity of algorithms. In principle, as the

number of data items increases, the algorithm complexity cannot be more efficient

than O(n), which assumes that every data item is processed at least once. Even with

such an ideal complexity, a computational bottleneck can exist in real-time visual

analytics. The notion of a fixed number of available pixels can turn the algorithm

complexity into O(1) in the sense that we can visualize only a specific number of

data items at most. One of the easiest ways to select this subset of data is random

sampling, although one could adopt other more carefully designed sampling methods

that better represent the entire data set.

However, some user interactions such as zoom-in/out may require the computa-

tional results on the rest of the data items whose results have yet to be computed.

However in this case, one can handle the situation via different efficient computa-

tions. For example, suppose one wants to perform clustering on a large-scale data

set, and the computations have been performed only on a certain subset of data.

Then, to obtain the cluster labels of the other data items, one could apply a simple

classification method based on already computed clusters. In addition, in the case of

dimension reduction, suppose PCA has been computed on a subset of data. Then,

the rest of the data can be projected onto the same space via a linear transformation

matrix given by PCA, which is a much more efficient process than computing PCA on

the entire data set. Although these approximated approaches cannot give the exact

same results as the ones generated by using the entire data from the beginning, it is

a viable approach to ensure real-time visual analytics for large-scale data.
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Figure 48: The degradation of pairwise distances of classical MDS depending on
the target dimension. The original data are 500 synthetically generated data items
in a 10-dimensional space. All their pairwise distance values computed in the 10-
dimensional space are sorted in a decreasing order and are depicted as a blue line
on the top. After computing MDS results with a particular target dimension, their
corresponding distances are aligned along a vertical axis and depicted as a separate
line.

8.2.2 Output Trustworthiness

Other than the real-time interactive capability, the overall quality of computational

results should be reasonably trustworthy enough in practice for users’ own tasks. Even

though a particular computational method gives the best result from the perspective

of its own criteria, it may not be a faithfully good quality of results to users.

For example in dimension reduction, MDS gives the reduced-dimensional re-

sult that best preserves the original pairwise dimension reduction under the low-

dimensional space within a given dimension. Fig. 48 shows how these pairwise

distances in the lower-dimensional space are degraded compared to those in the

original high-dimensional space as the target dimension decreases. Each depicted
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line in Fig. 48 represents the pairwise distances as their original values in the high-

dimensional space decrease along with a horizontal axis. Fig. 48 indicates that MDS

significantly distorts the original data relationships by severely decreasing particular

pairwise distances while some others are almost preserved. Even though MDS sup-

posedly gives the best result in preserving the pairwise distances, one would not be

able to trust the result considering such a significant distortion.

There are two ways to tackle these problems. The first one would be to de-

sign a new computational method based on improved criteria that perceptually make

more sense. For instance, one could come up with a new criterion for an alternative

method to MDS so that distance losses can be evenly distributed throughout all the

pairwise distances. However, such perception-friendly criteria may cause additional

computational complexities. Therefore, as another way to tackle the trustworthiness

problem, visual analytics could at least provide users with the information about

how trustworthy the computational results are by showing the perceptual quality

measures. Studying these new computational methods as well as corresponding per-

ceptual quality measures would be another promising research direction.
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