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SUMMARY

This work addresses the advanced probabilistic modeling of the stochastic nature of
microgrinding in the machining of high-aspect ratio, ceramic micro-features. The
heightened sensitivity of such high-fidelity workpieces to excessive grit cutting force
drives a need for improved stochastic modeling. Statistical propagation is used to
generate a comprehensive analytic probabilistic model for static wheel topography.
Numerical simulation and measurement of microgrinding wheels show the model
accurately predicts the stochastic nature of the topography when exact wheel
specifications are known. Investigation into the statistical scale affects associated
microgrinding wheels shows that the decreasing number of abrasives in the wheel
increases the relative statistical variability in the wheel topography although variability in
the wheel concentration number dominates the source of variance. An in situ
microgrinding wheel measurement technique is developed to aid in the calibration of the
process model to improve on the inaccuracy caused by wheel specification error. A
probabilistic model is generated for straight traverse and infeed microgrinding dynamic
wheel topography. Infeed microgrinding was shown to provide a method of measuring
individual grit cutting forces with constant undeformed chip thickness within the grind
zone. Measurements of the dynamic wheel topography in infeed microgrinding verified

the accuracy of the probabilistic model.
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CHAPTER 1 - INTRODUCTION

1.1 MOTIVATION

Many advanced industries having growing needs for micro-scaled components. These
components allow product manufacturers to reduce system size, increase function
density, and interact between the nano and macro-worlds. Micro-components constructed
of ceramics are increasing in popularity due to the unique material properties they
provide. These properties include high hardness, high strength, increased chemical
compatibility, and high corrosion resistance. Various industries value different properties
depending on the application. For example, the medical industry has a large need for
micro-devices with materials that have high bio-compatibility. Ceramics, such as
zirconia, provide this with increased material stiffness over currently used plastics and
stainless steel. The fuel cell industry also has need for ceramic components that provide
high corrosion and chemical compatibility. The micro-fluidics industry utilizes the high
hardness of ceramics to reduce frictional wear in micro-valves. The high thermal stability
of ceramics is highly sought in many industries such as in micro-thermal systems.

Example products from these industries are shown in Figure 1.1.

®) ©)
Figure 1.1 — Industrial micro-components utilize ceramics for various material
properties such as (a) micro-neural probes in the medical industry [3], (b) micro-
channeling in fuel cells [4], and (c¢) micro-valving in micro-fluidics [5]



The micro-tooling industry also utilizes ceramics because of the benefits of high
stiffness, surface hardness, and hot-hardness. Tungsten carbide milling cutters, such as
the one seen in Figure 1.2, provide one of cheapest and most productive methods of

manufacturing components at the micro-scale.

./

Figure 1.2 — 10 pm diameter, 2-flute WC micro-éndmill next to a human hair[6]

The manufacturing of these complex micro-features in ceramics has traditionally used
either machining, defined as discrete material removal from a bulk workpiece blank, or
near-net shape molding. Grinding is a widely used method of machining ceramic
components as it provides high material removal rates for increased productivity, high
dimensional accuracy, and ultra-fine surface finishes. In addition, it provides a method of
creating complex 3-D structures from ceramics that are not achievable with other
manufacturing methods such as lithography. However, the use of conventional grinding
for the manufacturing of micro-components is limited due to constraints imposed by the
large tool size. The challenge of tool-size has not been addressed. Consequently,
alternative processes have been developed to shape these micro-scale ceramic features

including micro-laser machining, micro-electric discharge machining and micromilling



processes. Micromolding processes have been successfully developed to replicate the
shape into ceramic work pieces, using metal molds, or tools, that have been shaped with
the above micro-scale machining processes.

These new manufacturing technologies are effective in creating 3-D ceramic micro-
components but each has limitations. Laser micro-machining offers benefits of having no
contact force and high precision. However, the process utilizes vaporization of the
removed ceramic material which can lead to thermal cracking and the re-deposition of
waste material. Therefore, high quality surfaces are difficult to laser machine at the
micro-scale without having to limit material removal rates [7].

Micro-molding is utilized for the high-productivity generation of bulky ceramic
micro-components such as the micro-valves seen in Figure 1.1. However, issues of
shrinkage deformation over the large temperature range of the process limits feature
shapes and sizes without resorting to post-process shaping of the features [8]. In addition,
the need to consolidate porosity in the part requires complex techniques such as hot
isostatic pressing.

Micromilling offers benefits of high material removal rate and 3-dimensional
flexibility. Strict micromilling of brittle ceramics requires precise modeling and control to
operate in the realm of ductile-mode machining. Tooling for this operation utilizes
polycrystalline diamond coatings to improve tool hardness and facilitate the ductile
cutting regime. Advanced methods in this process include ultrasonic vibration to increase
material removal rates and workpiece thermal softening through laser pre-heating [9, 10].

However, vibration-assisted milling produces micro-cracking which leads to low quality



surface finishes while laser-assisted micro-machining suffers from the limitations of laser
spot sizes on micro-features.

Recently, the use of miniature microgrinding wheels has become popular as a method
to machine brittle micro-components. High spindle speeds on the order of 200 krpm are
utilized to maintain high material removal rates with low undeformed chip thicknesses.
This results in the ability to create 3-D surfaces in ceramics with mirror finishes. One
example is the grinding of micro-lens molds in tungsten carbide by Chen et al. as seen in
Figure 1.3 [11]. Superabrasive microgrinding tools have simple structures consisting of
cylindrical cores which have abrasives either electroplated or sintered onto its surface.
Figure 1.4 shows an SEM image of a Imm microgrinding wheel, or grinding pin, with the
abrasive abrasives electroplated to the core. The simplistic wheel structures and limited
volume of abrasive utilized in microgrinding wheels make the process highly cost
effective. In addition, microgrinding wheels can be used effectively in standard micro-
milling machine tools to easily jig-grind complex structures without the need for separate

equipment.

Micro Wheel

Micro Insert

Imm

Figure 1.3 — Tungsten carbide mold insert microgrinding [11]



Figure 1.4 - SEM imageof lm OD, electroplated, #220 diamond microgrinding
wheel

1.2 LIMITATIONS IN MICROGRINDING AND THE ABILITY TO

MACHINE HIGH ASPECT RATIO MICRO-FEATURES

The process strengths of microgrinding include superior surface finishes and residual
surface compressive stresses that can resist crack formation and improve surface
hardness. These part characteristics are highly beneficial in ceramic components such as
process molds [12], micro-optics [13] and various forms of micro-machining tooling [14,
15]. Machining tooling in this category includes micro-drills, micro-endmills, and micro-
EDM forms [15-17]. The processing of these brittle materials requires operation in the
realm of ductile-mode machining in which high compressive force allows for discrete
material removal without brittle fracture of the workpiece. Microgrinding is characterized
by cutting edges with large cutting-edge-radius to depth-of-cut ratios which is the
defining characteristic of the ductile-mode machining regime [18].

The most difficult micro-part components to machine through mechanical material
removal are high-aspect ratio (HAR) part features characterized by small cross-sections
and extended lengths. Parts with these HAR micro-features include miniature biomedical

probes, micro-heat exchanger, micro-sensors, and micro-machining tools. HAR features



present unique challenges for mechanical material removal due to increased workpiece
receptance and increased dynamic vibrations.

A schematic of a system creating a HAR feature is shown in Figure 1.5a. Typical
microgrinding wheels have 1/8” steel shanks and 0.5~5 mm wheel cores. They operate on
high-speed micro-machining spindles in overhung machine tool structures. This system is
characterized by significant compliance due to decreased bearing stiffness in high-speed
spindles, decreased tool stiffness in HAR grinding wheels, and decreased structural
stiffness in small, overhung machine tools. Additionally, a HAR workpiece further
decreases the stiffness of such a system. Figure 1.5b depicts the lumped parameter
dynamic model of that system. The dynamics of the individual structures are linked in
series. The grinding action dynamics are a local interaction of the grind wheel and
workpiece. The interaction dynamics are a function of the local wheel bond stiffness, grit

stiffness, local damping caused by coolant and the effects of grind swarf in the grind

zone.
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Figure 1.5 — HAR microgrinding (a) process schematic and (b) vibrational lumped
parameter model



The compliance in such a system leads to static deflection being an issue in grinding
accuracy. A consequence of this static deflection is decreased depth of cut leading to
inaccurate final part geometries as shown in Figure 1.6 where a micrograph of a high-
aspect ratio pin shows a larger final diameter at the end of the part. Current technologies
address the difficulties in workpiece flexibility and vibration in HAR workpiece fixtures
through complicated and time-consuming fixturing such as that used by micro-tooling
manufacturers as seen in Figure 1.7. Fixturing methods such increase process cost and

limit feature arrangements on the part due to accessibility issues.
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Figure 1.6 — Geometric inaccuracy effect due to static deflection on HAR workpieces
[17]

Figure 1.7 — Difficulties in machining HAR micro-features ar currently addressed
using complicated fixturing techniques to support the workpiece [19]

An alternative method of addressing compliance issues in HAR microgrinding is

advanced process modeling and control. Simple compensation techniques, various novel



grinding methods, and complex workpiece fixturing can compensate for static deflection.
However, this requires accurate modeling of the system driving force Firing. In addition,
static compensation requires that the grinding operation proceed in a region outside of
dynamic chatter and in a regime of limited dynamic excitation. This requires more
advanced process modeling and control techniques.

Many advanced intelligent control techniques have been used to address issues
grinding dynamics and its compensation. The 1994 key note paper of CIRP, presented by
Rowe, compiled a comprehensive survey of the state of the art in the application of
intelligent control in conventional grinding [20]. However, these techniques have not
been extended to microgrinding and require lengthy learning and system identification
procedures to tune. Control techniques that utilize advanced process modeling provide
the benefit of simplistic control algorithms and limited up-front tuning. In 2006,
Brinksmeier presented a CIRP keynote paper which provides a thorough survey of the
state-of-the-art in conventional grinding process modeling and simulation while a similar
endeavor in 2010, led by the same group of authors, investigated modeling in the domain
of ultra-precision grinding which includes microgrinding [21, 22].

The predominance of research to date focuses on mechanistic modeling of
conventional grinding. The number of microgrinding studies is limited and those that are
available focus on the mechanics of chip formation as it pertains to microgrinding.
However, a review of grinding literature by Inasaki shows that proper characterization of
grinding wheel topography is crucial to the improved accuracy of a grinding model [23].
Studies have shown that the superabrasive wheels used in microgrinding have tougher

grits and do not wear as much over time as conventional wheels so initial topography



modeling is usually sufficient for good grinding model accuracy [2, 24]. The following
section introduces challenges unique to microgrinding and expands on the shortcomings

of existing modeling of wheel topography.

1.3 NEED FOR ADVANCED STOCHASTIC MODEL OF

MICROGRINDING WHEEL TOPOGRAPHY

The definition of microgrinding differs among various authors. The earliest
definitions specified the process utilize micron or sub-micron sized abrasives [25, 26].
However, Brinksmeier points out that this definition overlaps with many others including
ultra-precision grinding, ductile-regime grinding, ductile-regime finish machining, semi-
ductile machining, semi-ductile mode machining, ductile-regime removal and ELID
grinding[22]. Many authors consider microgrinding the utilization of micron-sized
abrasives on meso-scaled wheels less than 3mm in diameter which represent miniature
versions of conventional wheels [27]. Park set forth a definition of microgrinding as
being characterized by wheels that have small wheel-to-abrasive diameter ratios [18].
This definition continues to hold to the terminology used in current research [28]. This
study will take microgrinding to specify wheels with a meso-scaled outer diameter 1.5
mm or less with abrasives between 1um and 100um in size.

The current microgrinding modeling knowledge accurately captures the mechanics of
material removal by individual abrasive grits. Current models can also characterize the
global grinding wheel attributes that capture the average number of abrasives that
participate in the grinding action along with the averaged pertinent material removal

characteristics such as individual cutting edge radii and undeformed chip thickness.



However, unique attributes of microgrinding wheels requires improvements to these
models. Specifically, there is a need for models that are less reliant on single-value
estimators, typically averages.

Grinding wheels are characterized by a surface topography that consists of abrasive
grits of various shapes and sizes that are randomly located on the surface of the wheel.
Figure 1.8 shows the end-view of a milling cutter which has distinct, well-established
cutting edges while a schematic of a conventional grind wheel shows abrasive grits
distributed on the wheel surface in a stochastic manner. In comparison, a microgrinding
wheel has a defining difference in the relative grit size.

Modeling of the grinding process is fundamentally based on the description of the
surface topography of the wheel. In milling, the cutter surface topography has distinct,
well defined cutting edges which in turn yield single, repetitive cutting forces.
Conventional grinding wheels have grits that number on the hundreds of thousands. The
surface topography descriptions used for the force modeling of such wheels are sufficient
in capturing the average grinding force. In addition, the very large surface grinding
speeds result in very high frequency, broadband individual grit force signals that have
limited effects on workpieces. Microgrinding wheels, however, have a limited number of
abrasives. Such a small abrasive population size could lead to large variability in the
wheel surface topography. In addition, individual grit force signals can have more distinct
cutting frequencies as only a limited number of abrasives contribute to the grinding
action. A statistical description of microgrinding wheel surface topography is needed to

build a probabilistic model of the complete grinding process.

10
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Figure 1.8 — End-views of a (a) 4-flute endmill, (b) conventional grinding wheel, and

(¢) microgrinding wheel

The stochastic nature of the grit attributes and locations makes it impractical to
measure and model fully the exact surface profile of every wheel before its use. Instead,
gross statistical descriptions of the topography allows for modeling to capture the
probabilities of different attributes. Early works investigated this by measuring the
stochastic nature of conventional grind wheels. One of the first studies was conducted by
Hasegawa in 1974 where profilometry was used to measure the probability distribution of
the spacings between grits along the circumference of a static conventional grind wheel
[29]. The measured spacings, seen in Figure 1.9, showed that a definite distribution
profile exists for the wheel. Another early study, conducted by Konig in 1975, used
grinding force pulses to populate distributions for the spacings between grits and their
undeformed chip thickness on a conventional wheel during dynamic grinding [30]. The
measured probability distributions are seen in Figure 1.10 using the upper histogram for
the dynamic grit spacing and the right-side histogram for the dynamic undeformed chip
thickness. Examination of the distributions shows again that discernible profiles exist for
the stochastic attributes. Once measured, these dynamic cutting attributes of a particular
wheel can be used to model the grinding action stochastically as a convolution of the

probability of individual grit forces with the probability of the time spacings between the

11



individual forces. However, these probability distributions were generated by thorough

wheel measurement.
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Figure 1.9 — Measured probability distribution of static cutting edge spacing along
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Figure 1.10 — Measured probability distributions of the dynamic cutting edge
spacing and undeformed chip thickness of a conventional grind wheel [30]

Stochastic descriptions such as these are not thoroughly investigated for

superabrasive microgrinding wheels. A numerical simulation study by Koshy in the
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1990s aimed at generating such probability profiles through stochastic generation of grit
sizes and locations on virtual superabrasive grind wheels. The simulated distributions of
static grit spacing, shown in Figure 1.11, showed similar probability profiles as measured
in other studies. They also showed that variations in either the grit size or concentration
number, which is a ratio of total volume of abrasive to total wheel volume, within the
simulated wheel have a definite impact on the shape of the profile. The numerical
simulation was also used to calculate the average number of grits per unit area, or static
grit density, on the surface of the wheel. The impact of grit size and concentration
number on the static grit density was also investigated with the results shown in Figure
1.12. A key conclusion of this result is that for wheels with the same geometry and
concentration number, larger grits caused the average static grit density to decrease but
there was an increase in the variance of the static grit density across individual simulation
iterations. A key question exists on how this increased variance would impact

microgrinding wheels where the grits are very large in comparison to the wheel diameter.
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Figure 1.11 — Simulated probability distribution of static cutting edge spacing on a
conventional superabrasive grind wheel (291
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1.4 RESEARCH OBJECTIVES

This work aims to develop a probabilistic model for the wheel topography of
superabrasive microgrinding wheels for the purpose of improving understanding and
process control capabilities. The model generated will seek to maintain an analytic model
form by utilizing base stochastic descriptions of the wheel composition and propagating
the analytic representation of the statistics into final stochastic descriptions without
resorting to costly simulation or intermediate measurement techniques.

It is hypothesized that the large relative size of the grits in microgrinding wheels
causes increased variance in the wheel topography characteristics. This can lead to large
variability in the performance of identical microgrinding wheels under identical process
conditions. Advanced stochastic modeling of microgrinding wheel topography is needed
to understand the impact of this variability on the process mechanics. In particular, the
variability in the attributes of cutting edge spacing and undeformed chip thickness are the
most important when grinding HAR micro-features. The model needs to capture the

nature of the variability on the static wheel surface and then extend into the dynamic
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microgrinding wheel topography in order to fully describe the variability associated with
the process forces. Such a model can be used in advanced process control of
microgrinding in order to increase material removal rate while maintaining workpiece
surface integrity and geometric accuracy in manufacturing of challenging component
features such as high-aspect ratio ceramic micro-features.

The high-sensitivity of the ceramic microgrinding process to undeformed chip
thickness and cutting speed requires accurate modeling and prediction of microgrinding
wheel surface topography. Inherent stochastic variability in microgrinding wheels limits
the ability to accurately predict the important cutting characteristics. Some metrology
needs to be conducted on each wheel in order to narrow the distribution of possible
grinding force attributes. A metrology method for quickly and easily characterizing the
static wheel topography of microgrinding wheels needs to be developed to limit the
predicted force variability by eliminating uncertainties in microgrinding wheel
specifications and combating variability associated with the few number of abrasives in

each microgrinding wheel.

1.5 THESIS ORGANIZATION

The structure of this thesis is outlined as follows. CHAPTER 2 details the
development of the probabilistic model for the static wheel topography while CHAPTER
3 details the verification and limitations of the analytics. CHAPTER 4 details the
development of a fast in sifu metrology tool to measure static wheel topography of
microgrinding wheels which is then used to experimentally verify the analytic static

model and investigate the effect of the uncertainties associated with the manufacturing of
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microgrinding wheels. CHAPTER 5 investigates scaling effects associated with the
topography of microgrinding wheels. CHAPTER 6 details the development of a
probabilistic model of dynamic microgrinding wheel topography for traverse grinding,
following the analytic statistical technique pursued in the static wheel topography model.
CHAPTER 7 details the development of a dynamic model of a unique microgrinding
technique that facilitates easy measurement of dynamic topography in microgrinding
wheels which is used then used for experimental validation. The conclusions,
contributions, and recommendations for future work are presented in CHAPTER 8. Each

chapter includes a detailed review of the relevant salient literature.
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CHAPTER 2 - ANALYTIC MODELING OF STATIC WHEEL
TOPOGRAPHY

2.1 INTRODUCTION

This chapter details with the development of a probabilistic model for the static wheel
topography of superabrasive grinding wheels using analytical stochastic propagation
techniques. High-fidelity control of HAR microgrinding requires accurate prediction of
the probability distributions of individual grit cutting forces and frequencies due to the
high sensitivity to excessive cutting force and dynamic excitation. The prediction of these
distributions requires an accurate stochastic model of the static wheel topography. This
model needs to provide the stochastic description without relying on time-consuming
methods such as exhaustive numerical simulation, such as Monte Carlo techniques, and
complete wheel measurement. Rather, the model should be based on simple assumptions
about the statistical distribution of abrasive sizes and locations in a general 3-D space
based on the nature of wheel manufacturing. Statistical propagation can then be used to
convert these distributions into a final stochastic description of pertinent static wheel
topography characteristics via appropriate distributions. The development of the model is
statistically rigorous in order maintain analytic formulation for the purpose of fast
computation while limiting the number of assumptions and simplifications that are

required.

2.2 REVIEW OF SALIENT LITERATURE

Several simplistic analytic models of conventional grinding wheels have been

developed using basic assumptions about the nature of the grits in wheel. Most
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superabrasive grinding wheel models assume that the grits can be represented as spheres
with radii » and undetermined orientation, following a generally accepted methodology
established in the literature [18, 31, 32]. The implications of the spherical grit
assumption, having been reviewed in literature at length, on the wheel model presented in
this work discussed in the discussion section of this chapter. This is based on information
provided by abrasives interest groups such as the Federation of European Producers of
Abrasives and the Unified Abrasives Manufacturers’ Association. It has been shown that
for a grinding wheel with a given standard superabrasive grit size classification, the
probability of encountering a given grit diameter can be modeled by a Gaussian
distribution [31-33]. The Gaussian model fits the incidence of grit diameters between the
two sift-hole diameters that bound the sorting process for the particular grit set. Equation
2.1 and Equation 2.2 are used to determine the upper and lower bounds of the grit
diameters respectively. Here, S, and S are the upper and lower sift numbers respectively
that determine the upper and lower grit diameters .d, and d, respectively. Notice that the
terms upper and lower refer to the grit dimensional diameter such that larger physical
grits are the upper bound. Therefore, the upper sieve number is smaller than the lower

sieve number.

0.6
udg = —25.4 [mm] Equation 2.1
u
0.6 .
dg = 3-25.4 [mm] Equation 2.2

The grits in the wheel have diameters that fit between these two sizes. Equation 2.3
determines the mean diameter for the Gaussian distribution while Equation 2.4

determines the standard deviation for the distribution.
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udg+ ldg
2

lip = Equation 2.3

g ydg
op= —————

6
A representation of the resulting Gaussian distribution is shown in Figure 2.1a for a

Equation 2.4

#220 superabrasive microgrinding wheel where the mean grit diameter is 71.6 pm and the
standard deviation is 4.34 um.

Grinding wheels are also characterized by their concentration number, C, which
describes the ratio of net abrasive volume in a particular wheel to the total wheel volume.
Koshy et al used this to numerically simulate a grind wheel by adding abrasives with
diameters that fit the Gaussian PDF to a virtual wheel until the volumetric ratio meets the
concentration number specification [31]. This method was reproduced to simulate 1,000
microgrinding wheels with #220 grits with Figure 2.1b showing the distribution of the
number of grits needed to fill the wheels in the simulation. Notice the distinct but
unknown distribution of how many grits are in a single wheel. There are subtle
manufacturing variations, however, which limit the ability to predict the topography of
superabrasive grinding wheels accurately using only the manufacturer’s specifications.
For example, grit concentration numbers vary in the way that they are computed between

companies [2].
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Figure 2.1 — (a) PDF for individual grit diameters and (b) histogram of the number
of grits in a Imm OD, 10mm width, single-layered #220 grind wheel

Stochastic descriptions of conventional static wheel topography has been measured
and modeled in many ways in the past few decades. A summary of the results of these
modeling efforts are summarized in Table 2.1. Most of these grit spacing and location
distributions have been measured using either profilometry or simulation techniques
which are time consuming and have limited extension to other wheels. The analytical
models generated using statistics provide a faster, more thorough model for obtaining the
characteristic distributions but they fail to result in distributions that are consistent in

shape to those that have been measured on actual wheels.

The static cutting edge density Cs is the standard representation of the number of
cutting edges per unit area that are observed on the surface of a stationary grind wheel
Pandit modeled conventional wheels using a single surface grit density G with a
superimposed cutting edge density Cs which accounts for multiple cutting edges per grit
[34]. However, superabrasive grits usually have only one cutting edge per grit so G and
C; are assumed identical [2]. These representations of cutting edge spacing occur at a set
radial position on the wheel of which the default is at the average bond surface. It is

known that the mean of Cj scales with the radial depth according to a power law [2].
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Two investigations have specifically characterized conventional diamond grit wheels
which are needed for the grinding of hard brittle ceramics such as tungsten carbide [35,
36]. A mathematical model is presented by Koshy et al to “estimate the planar grit
density, the percentage area due to the abrasives on the wheel surface, and the abrasive
protrusion height distribution of a freshly dressed resin/metal bonded diamond grinding
wheel” [31]. The model by Koshy is unique to diamond wheels due to the methods of the

wheel manufacturing process which result in minimal grit and bond porosity.
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Table 2.1 — Stochastic Models for Static Grind Wheel Topography Characteristics

Characteristic

Model Distribution

Measurement
Method

Study

Negative Exponential

Postulated from
uniform 6 pos.

Law, 1973 [37]

Chip formation

Ay ! A Stylus Profile | Orioka, 1961 [38]
HAY)=Zexp(=Ay'/2) Markov Chain McAdams,
o ' Fitting 1964[39]
Static Clrcumferentlal Gamma Monte Carlo Law and W,
Grit Spacings : Simulation 1973[37]
:O Tl : O 0015}
O, O o [ ﬂ samer | Monte Carlo |y 9971397
P oo Simulation
K{*}l © 1o 5 !
A{ 010l o] !
oo asegawa,
I ~10 1 S Profilomet
@1}_9_; - % 50 100 L150 : 200 39 Y 1974[29]
Kq X
Rayleigh
(47 \ L Oscillating Stylus | Younis and Alawi,
f’(/z)z{.(/o‘} e 7201 Profilometry 1984[40]
0 h<0
Triangular
fo(p)
Static Axial Grit 2/Lf p=iwl Analytics from
Spacings Uniform Axial |Basuray, 1981[41]
Positions
B g ot . p
, = I‘ . Parabolic Analytics from
a—— _ h— Uniform Axial Agarwal and Rao,
So(¥) =2 7z . 2005[42]
1 Positions
Rayleigh Distribution
Static Grit Protrusion § /\ Oscillating Stylus|Younis and Alawi,
Spacings § i Profilometry 1984[40]

25 3 35 4 45 5
Chip thickeness (um)




Table 2.1 - continued

Characteristic

Model Distribution

Measurement
Method

Study

Uniform for Macro-Wheels,
Gaussian for Micro-Wheels

Monte Carlo

Koshy, 1993[31]

Simulation
Static Grit Protrusion
Height
L Bond Surface
T_ . .
i I Gaussian Differential |Hwang, Evans and
i lr 2 Optical Focusing | Malkin, 2000[36]
o Optical Shi and Malkin,
.0 Microscopy 2003[43]
1 | White Light
prosion raameom | Interferometry Huo, 2009[35]
Static Grit Density Parabolic Knife-Edge 1L ka, 1961[38]
Tracing

2.3 WHEEL MODEL

The grinding wheels considered in this study are single-layered, electroplated

diamond grit wheels. These wheels are of a grind pin architecture utilizing a 1/8” shank

with wheel diameters ranging from 0.5mm to 15mm. Figure 2.2 shows a model of such a

wheel with a Imm bond OD. The grits are assumed to be spherical with a bounded

diameter and inconsequential orientation [18, 31, 32, 44]. They are positioned above the

surface of a wheel core while suspended in an electroplated nickel bond. Figure 2.2 also

shows a side view and end view of a Imm, #220 grit wheel after the end has been diced

off with a diamond grinding wheel and then sanded with CBN sandpaper. The end view
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show the thin layer of diamond grits, and the approximate measurement can be made of
the base core diameter and outer wheel diameter at the bond layer. The core diameter is

consistent with the diameter of the wheel shank.

(a) (b) ©
Figure 2.2 — (a) Model of single-layered, spherical grit microgrinding wheel with a

low concentration number, (b) diced microgrinding wheel with clean edge, and (c)
end view of the diced wheel

24 ANALYTIC ABRASIVE MODEL

The abrasive grits in a diamond wheel have diameters governed by the two sieves
used to sort them for wheel production. The upper and lower bounds of the grit diameters
are known to be 60% of the linear spacing between the sieve wires as governed by the
sieve numbers as detailed in Equation 2.1 and Equation 2.2 [2]. The grits in the wheel
have diameters that fit in between these two sizes. It has been shown that the distribution
of grit diameters between the two sizes can be modeled using a Gaussian distribution [2].
The mean for this distribution is known to be the average of the upper and lower grit
diameter bounds while the standard deviation allows for 6c of the grit diameters to occur
between the bounds as detailed in Equation 2.3 and Equation 2.4. A single grit i has a

diameter D; that is a continuous random variable. The probability density function (PDF)

24



of a single diameter is governed by a Gaussian distribution as defined in Equation 2.5.
The cumulative density function (CDF), shown in Equation 2.6, represents the probability
that the value of the diameter falls below a certain value. The expected value for random
variable D; is defined by Equation 2.7 where it is calculated to be equivalent to the

Gaussian mean.

1 1 di — Up 2 .
fo,(d) = O_Dmexp _E( o ) ] Equation 2.5
d;
Fp(di) = Pr(D; < d;) = f fp,(x) dx Equation 2.6
E[D;] = fwxfd(x) dx = foo Lexp _l(x —_ MD)Z] dx = up Equation 2.7
o —0 OpV2T 2\ op

Table 2.2 shows the calculated grit size numbers for two grit sizes: #220 and #1200
which bound the range of standard sizes available for grinding pins. Figure 2.3(a) shows
the probability density function and expected value for grit diameters in the #220 grit

wheel, and Figure 2.3(b) shows the same for a #1200 grit wheel.

Table 2.2 — Grit size distribution data for sample grits

Grit Number G# 220 1200
Upper Sift Number Su 180 1000
Lower Sift Number SL 260 1400

Upper Grit Diameter dy 84.6 pm 15.2 pm
Lower Grit Diameter dy 58.6 um 10.9 um
Grit Diameter Mean Mp 71.6 um 13.1 pum
Grit Diameter Standard | =5, 434 um 0.73 pm
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Figure 2.3 — PDF for the grit diameters in (a) #220 and (b) #1200 wheels

2.5 ANALYTIC CALCULATION OF THE NUMBER OF GRITS IN

THE WHEEL

For a single-layered wheel, the volume available for grit occupation is determined by
the wheel outer diameter, the core diameter, and the wheel width. The wheel
concentration represents the expected ratio of abrasive volume to total available volume.
The total volume of abrasive in a given wheel, V,, is a random variable. The expectation
of this random variable is the total available volume multiplied by the volumetric ratio.
This computation is shown as Equation 2.9 where d,, and d,. are the diameters of the
wheel and the core respectively, w is the axial width of the wheel, C is the wheel

concentration number, and the denominator constant is a scaling factor for the
concentration number.

2 _ g2
E[Clwr (%)
400

The volume V; of an individual grit is a function of the grit diameter D; as calculated

Equation 2.8

E[Vo] =

in Equation 2.9. It is therefore another continuous random variable. It is known that since

Vi is a measurable function of D;, the cumulative density function (CDF) of V; can be
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calculated from that of D; using Equation 2.10[45]. The PDF of the grit volume V; can
then be calculated by utilizing the Fundamental Theorem of Calculus and definition of
CDF as Equation 2.11[45]. These equations can then be combined as shown by the
derivation in Equation 2.12 yielding the final PDF of an individual grit volume shown in

Equation 2.13.

Vi =h(D;) = %Df‘ Equation 2.9
Fy,(v) = Pr(h(D;) < v;) = Pr(D; < h™'(vy)) = Fp,(h™*(v)) Equation 2.10
d .
fr.(v) =—F, (v;) Equation 2.11
i d'l?i i
d d dd; d dd;
) = =1(15.))  — = “1(717.))  —— . L “107,.)) . —. !
fVi (vl) FDi(h (vl.)) dvi FDi(h (vl.)) dvi ddl FDi(h (vl.)) ddl dvi

4’18 Equation 2.12
-1 ddl 3 6171' T
= fp,(A7*(vY) To = Py — | " "am.

(-]
fr,(w) = - \ o / | oy Equation 2.13
The PDF in Equation 2.13 cannot be rearranged to obtain a normal distribution for the
grit volume with a unique distribution mean and variance. The expectation and variance
of the random variable V; can be calculated from the PDF of the individual volume using

the Law of the Unconscious Statistician as shown in Equation 2.14 and Equation 2.15

respectively[46].
3 2 l[ /3 6vl. u Z-I
* * 9y, ? 1 T Hp T .
E[V.] = £ (v:) dv; = I Bt — | ldv; == 2 4+ 30,2) Equation2.14
Vil f_mvlfvl(vl) v; f_mvl PG exp[ 2\ o / | v 6#D(HD +30p°) Eq



3 L [ 3 6'l7i
v | 7 Hp

varlv] = | Z(vi ~ EDfy v v = [ Z(vi ~ B’ (,m e [‘%<a—>

‘]

I
dvi
Equation 2.15

T[ZJDZ 4 2.2 4
=1 Bup* + 12pp°0p” + 505)

Figure 2.4 shows the calculated PDF obtained using Equation 2.13 along with the
expected value of the grit volume as calculated using Equation 2.14. Notice how the

expected value is not the peak of the PDF due to the skewness of the distribution.

1.2E-05
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6.0E-06 - I
4.0E-06 - I
2.0E-06 - !
0.0E+00 :

0 100 200 300 ™ 400d
Grit Volume, V; [pm?] ousands
Figure 2.4 — Individual grit volume probability density distribution for #220 grits

Probability Density f{(}V))

Suppose that the given volume has random variable number of grits N, where each
grit has volume V;. The sum of volumes of the individual grits is equal to the expected
total abrasive volume V,. This is the summation of independent random variables V;

where i = 1,2,..., N, which is shown in Equation 2.16.
N
Vo=gWW) = Z Vi Equation 2.16
i=1

First, the Law of the Unconscious Statistician is applied to the expected value for a

function of independent random variables as shown in Equation 2.17 [45]. However,
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since each independent random variable V; has the same PDF and expected value, this can
be further simplified in Equation 2.18 which can be rearranged to find the expected value

for the number of grits in the wheel as seen in Equation 2.19.

E[V,] = E[g(VD1 = E[Vy + V, + - + V| = E[V1] + E[V5] + - + E[ V] Equation 2.17
E[V,] = E[V;] + E[Vi] + - + E[Vy,] = E[N,]E[V}] Equation 2.18
E[N,] = E%ﬂ Equation 2.19

Similarly, the same can be done with the variable variances as shown in Equation

2.20 and Equation 2.21 [45].

Ny

N

i=1

Var[V,] = Var = E[N,]Var[V;] + (E[V;])?Var[N,] Equation 2.20

Var[V,] + E[N,]Var[V;]
(E[V;D?

Var[N,] = Equation 2.21

It is seen that the variance in the total volume of abrasives in the wheel originates
from the variance in the measured total volume of abrasive that will be put into the
wheel, Var[V,]. However, conventional grind wheel specification only provides the
expected value of the volume of abrasive in the wheel and not its variance. A summary of
the necessary steps for calculating the distribution for the number of grits in a grind

wheel is shown in Figure 2.5.
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Figure 2.5 — Summary of method for analytical calculation of number of grits in a
grinding wheel

2.6 NUMERICAL SIMULATION OF THE NUMBER OF GRITS IN

THE WHEEL

A statistical simulation was conducted to investigate the probability distribution of
the number of grits needed to occupy the wheel volume since an explicit solution was not
obtained. This was achieved by creating a set of grits whose diameters are governed by
Equation 2.5. Grits were added to the dataset until the total volume of abrasive in the
wheel was greater than the expected value shown in Equation 2.8. The number of grits in
the dataset required to meet the constraint are the number of grits present in the simulated

wheel. The simulation algorithm is outlined in Figure 2.6.
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Figure 2.6 — Numerical simulation algorithm to verify number of grits in wheel
model

Table 2.2 presents the parameters used for the simulation. The wheel width for the
#1200 grit simulation was chosen to be much smaller than that for the #220 simulation
since the smaller grits will have a much larger population size in the same space. This

was needed to decrease computation time for the #1200 simulation.

Table 2.3 — Data for simulation of number of grits in a #220 and #1200 wheel

Grit Number G# #220 #1200
Number of Simulations n 1,000
Core Diameter D, 0.85 mm
Outer Diameter D, 1.00 mm
Concentration C 50
Wheel Width Wy 10.00 mm 0.1 mm

Figure 2.7 presents the normal probability plot for the simulation along with the linear

correlation line. The fitted correlation has a coefficient of determination, Rz, of 0.9989
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and the largest deviations occur at the outliers. This leads to the conclusion that the
distribution is Gaussian. A histogram of the simulated number of grits across all of the

simulations along with the Gaussian PDF is shown in Figure 2.8.
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Figure 2.7 — Normal probability plot of the simulated number of grits required to
fill a #1200 wheel
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Figure 2.8 - Simulation PDF of the number of grits required to fill a #220 wheel

Table 2.4 shows the distribution characteristics for the #220 and #1200 grit wheels as
calculated using the analytic model and the numerical simulation. It is seen that the
simulated number of grits required varied slightly from the expected values calculated
analytically using Equation 2.19. Also, note that the simulated values of the mean number

of grits were both greater than the expected values. This is caused by the simulation
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requiring that the total volume of the abrasive always be greater than the expected values.
This is merely an artifact of the simulation algorithm in which the termination condition
for adding grits to the wheel is that the total abrasive volume requirement is exceeded.

The simulation values, although always slightly higher than the analytical ones, still agree

strongly.
Table 2.4 — Number of grits distribution data for simulations
Analytic | Simulation | Analytic | Simulation
Prediction Result Prediction Result
Grit Number G# #220 #1200
Number of Grits Mean By 1,394 1,400 2,306 2,313
Number of Grits Variance aﬁ 45.58 45.83 63.47 64.37

2.7 ANALYTICAL CALCULATION OF GRIT LOCATION IN

THE WHEEL

It is assumed that the placement of abrasives within the bond zone is a completely
random process as has been shown to be true for narrow grit size bands [47]. As a result,
the volumetric distribution of the grits within the wheel has a Cartesian uniform
distribution [32]. However, the location of a grit within the bond zone is subject to certain
boundary conditions. First, it is assumed that grit retainment is maintained for grits
imbedded by at least 10% of their diameter as shown in Figure 2.9. This assumption is
adopted from prior numerical simulation studies conducted by Koshy in order to allow
for direct comparison to the results of those studies [32]. Next, the location of a single
grit cannot allow its outer boundary to extend into the wheel core. The grind wheel can

be assigned a cylindrical coordinate system as shown in Figure 2.10.
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Figure 2.9 — Boundary condition for grit retainment on wheel surface

Figure 2.10 - Grit position coordinate systems

An arbitrary individual grit, g, then has a centroid location which can be any
continuous value in a sample space S. The centroid can be described by three
independent random variables: its radial distance from the axis of rotation R;, its angular
position @;, and its axial position Z;. These variables belong within individual sample

spaces Sy, Sg, and Syrespectively which are defined in Equation 2.22.

DC Di DW 4Dl}
Se=ir| =+ w T
R {r2+2<r<2+10
Se = {610 < 6 < 21}
S;={zI0 <z < w,}

The assumption of a random grit placement process results in the Cartesian

Equation 2.22

coordinates of a given grit being random variables having independent uniform
distributions within the acceptable sample space boundaries. Figure 2.11 shows the

boundaries of the Cartesian coordinate system that encompass all possible grit locations.
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The PDF for the uniformly distributed grit position variables in Cartesian coordinates are

shown in Equation 2.23, Equation 2.24, and Equation 2.25.

Y _ (LL)

Figure 2.11 — Grind wheel Cartesian coordinate system boundaries

1 1 .
fr,(xi) = m =51 Equation 2.23
1 1 .
in(Yi) = m =57 Equation 2.24
1 1 ]
fZi(Zi) =T~ Equation 2.25

wy) = (0)  wy,

These must be mapped into the cylindrical coordinate space. First, the z; coordinate is
identical between the two coordinate systems so its PDF is identical in both. The planar
transformation from Cartesian to polar coordinates requires analysis of the bivariate joint
probability of x; and y;. The independence of the two variables results in the joint PDF
being the product of the two independent PDFs. The joint PDF is shown as Equation
2.26. The individual transformations of the Cartesian variables into polar variables are
shown in Equation 2.27. Now the joint probability can be computed in terms of the polar

coordinates as shown in Equation 2.28[45].

1 .
fxiv; (x,y:) = 2 Equation 2.26
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x; = 1;cos(6;) ; y; = r;sin(6;) Equation 2.27

0x; 0x;
! ari l/(?@i 1

Y, y; T4z
yl/ari yl/agi

cos(8;) —r;sin(6;)
sin(6;)  ricos(0) | Equation 2.28

frio; (10, 00) = fxy,(ri cos(0;) , 7y sin(6;))
=
4172
The individual PDF for each polar variable can then be computed by taking the
integral of the joint PDF with respect to the opposite variable. Care must be taken,
however, to integrate across the variable range as mapped from the original Cartesian
coordinate system. This is shown for the radial position in Equation 2.29 and the angular

position in Equation 2.30.

_ g 0.)do. = g T; do. = nr;
fr,(ry) = f__-,-[fRiei(ri’ i) db; = f__nﬁ 1= 412 Equation 2.29
2 2
V2L V2L o4, 1 .
fo;(6) = fri0,(T:,0,) dry = f ﬁdrz =7 Equation 2.30
0 0

The individual distributions for the radial and angular variables are not complete
since the newly defined domains of the polar variables do not match those for the actual
grits as shown in Equation 2.22. The PDF for each variable must be scaled to satisfy the
definition of the PDF functions set in Equation 2.31 and Equation 2.32. The final scaled
versions of the PDF and CDF for the radial and angular position variables are shown in

Equation 2.33 and Equation 2.34 along with their domains.

Dg ,4d;

2110 _
ﬁ)c 4 fr,(r)dry =1 Equation 2.31
2tz
21
f fo,(0:)d0; =1 Equation 2.32
0
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fryp,(Tild;) = > ; Frp,(rild;) = > ;
R D, = 4d, D, d\* o D, ad, D,  di\* :
29 4 24 _ (Ze 4 Yi 29 4 i) _ (Ze 4 Gi Equation 2.33
2+1) (F+%) (2+1) F+5) Fau
D, d, D, 4d;
PRI T}
1 0, .
fo,(0)) = o Fo,(6)) = o 0<6;<2m Equation 2.34

Notice in Equation 2.33 that the distribution of the radial position of a grit is a
function of the grit diameter. The PDF shown is actually a conditional PDF of a joint
probability given a known diameter. The relationship between the conditional PDF and
the joint PDF is shown in Equation 2.35. It is desired, however, to know the probability
distribution of the radial position of a grit regardless of its diameter. This can be
calculated by integrating the joint PDF across the domain of the grit diameters as shown

in Equation 2.36 [48].

p.(17,d; D d; D 4d;
le'Dl(L l) ( ¢ t l) Equation 2.35

1, (i]dy) = Zpten<Ey 2
le|Dl(rL| l) fDi(di) 2 + 2 < 2 + 10

°° ® D, d D, 4d; _
fr;(r) = f fryp,(ridi) dd; = f fryp,(rildi) fp,(d)) dd; ¥ (7+ S <n<o+ E) Equation 2.36

The PDF of a particular radial position is still subject to the boundary conditions of
that particular grit, which is also shown in Equation 2.36. It is desired to acquire the PDF
of the radial position of any grit so the probability of a grit meeting the boundary
conditions must be addressed. It is first assumed that the probability of a grit meeting
either boundary condition is independent of the probability of the radial position of the
grit within its valid boundary condition. Therefore, the total probability is the product of
the probability of each boundary condition being met and the probability of the radial
position of a grit as shown in Equation 2.37. The individual probabilities of the boundary

conditions being met by any grit are calculated from the probability of the grit diameters
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as shown in Equation 2.38 and Equation 2.39. The final probability density function for

any grit having a radial position r is compiled into Equation 2.40.

D, D D, 4D
faW (=0 <D < ) = fy (IPr (5545 <r)pr(r <2+ 27) Equation 2.37
D, D
Pr(—+5<7)=Pr(-e0 <D < 2r=D,) = Fp,(2r = D) Equation 2.38
P( <Dg+4D) P(lOr 10Dg<D< ) 1 P( <D<1Or 10Dg)
— —_) = [ 0| = —_ —00 [
S22 710/ 7" s r 4 8
10r 10D Equation 2.39
=1-Fp (— - g)
i\2 8
/ *© 2r 10r 10D, )
fol) = | f > . > fo (@) dd | (Fp(2r = D)) (1= By, (T -— ) Equation 2.40
_Oo(_g+ﬂ> _(&4_2)
2 t10 2 T2

The indefinite integral in Equation 2.40 does not have a closed form solution. Rather
than using numerical integration, a faster method is to approximate the integration by
evaluating the conditional probability at the mean of the grit diameters. This
approximation results in the simplified probability density function for the radial position

of any grit shown in Equation 2.41.

fr(@) = frua(rlua) (FDi(zr - Dc)) (1 — Py, (% B 108%))
B - 2 (FDi(Zr - Dc)) <1 — Fp, (& _ 10Dg)> Equation 2.41

D, 4u,\> (D 4 8
29 *a\ _ (Pc, Ha
(2+10) (2*2)

The accuracy of these distributions is investigated by simulating a set of 50,000 grits

from a #220 wheel. Their locations are generated in the Cartesian coordinates and are
then converted to cylindrical coordinates. The positions of the grits in cylindrical
coordinates are then plotted as occurrence frequencies. The cumulative distribution
results are shown in Figure 2.12a for the radial position and Figure 2.12b for the angular

position. The probability density results are shown in Figure 2.12c and Figure 2.12d for
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and 6 respectively. The analytically calculated distributions for the grit locations closely

match that from the simulations.
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Figure 2.12 — Simulation of 50,000 grits yielded the CDF for the (a) radial and (b)
angular grit positions along with the PDF for the (c¢) radial and (d) position

2.8 ANALYTICAL CALCULATION OF STATIC GRIT DENSITY

IN THE WHEEL

The static grit density for the wheel is a measurement of how many grits intersect a
wheel surface per unit area. The outer cylindrical surface of the wheel contains the grits
that could participate in grinding so the calculation of the static grit density will consider
the intersection of grits with a cylindrical surface, event C. The intersection event C is a
discrete event which is either true or false and is described by a Bernoulli distribution. An

individual grit either intersects the surface or does not intersect it. The surface containing
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grits that could participate in a grinding operation would form a full cylinder that spans
the full space of the angle variable @. In addition, the surface will only occur at a single
radius R.. The intersection event C is composed of individual variable events C,, Cy, and
C,. Event C can then be defined as a set composed of the union of the set of individual

coordinate events shown in Equation 2.42.

C=C.UCgUC, Equation 2.42
By definition, the cylindrical surface intersection event C is selected such that it is
always a subset of the sample space S. This sample space is the group of all possible

surfaces that the grits could intersect which can be rewritten as Equation 2.43.

CES ~ CRESRCo ESy;Cr ES, Equation 2.43

Each individual coordinate variable event has a range of grit and surface parameters
that must be satisfied for the individual event to be true. This parameter range, shown in
Equation 2.44, is merely the condition that must be met in order for the grit to intersect

the surface along that particular coordinate vector.

d; d;
Cg E{T‘RC—7<T<RC+?}
Co =1{0]10 <6 < 21} Equation 2.44

d; d;
Za—?<Z<Zb+?}

CZE{Z

2.8.1 Probability of a Grit Intersecting in the Angular and Axial Domains
The probability of a particular grit i intersecting the angular position range of the
surface is a certain occurrence since the range of the surface covers the entire domain of

the angular position. This probability is shown in Equation 2.45.

2 0 .
Pr(Cy, = true) = fep (true) = Fg (0 < 6 < 2m) = o o = 1 Equation 2.45
L i 13 s T
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The probability of a particular grit i intersecting the axial position range of the surface
can be obtained by finding the valid domain of the grit center point position z; that would
cause the grit to intersect the axial position range. The probability of the location of the
axial position of the grit can then be integrated across this domain. This results in the
probability of the grit intersecting the axial component of the surface which is shown in
Equation 2.46. This probability, however, is based on the diameter of a particular grit. It
can be generalized to any grit by utilizing the definition of a conditional and joint
probability. Then the joint probability can be integrated across the full domain of grit
diameters to obtain the probability of any grit intersecting in the z domain independent of

its diameter as shown in Equation 2.47.

d; dy (P2
Pr(C; = true|d;) = f@ziwi(trueldi) =Pr (Za + EL <z <Zp— ?l) = f 0 fz,(z)) dz;
Zatz Equation 2.46

(%-9)-(*9) _2-2-a

Wy Wy

Pr(C; = true) = fo, (true) = f fo. o, (true,dp) dd; = f for oy (trueldy) fo,(dp) dd,

_foozb_za_di (d,) dd
- ~ w fDi i i

[ee] w

2.8.2 Probability of a Grit Intersecting in the Radial Domain

Equation 2.47

The calculation of the probability of the radial position 7; of arbitrary grit g; is more
complicated. Consider the diameter D; of grit g;. The radial position of the centroid of this
grit must be between the boundary conditions and must follow the probability distribution
set forth in Equation 2.33. A sampling of some of the possible locations of this grit is
shown in Figure 2.13. Notice how the areas where the grits overlap appear darker in the
center of the figure since the likelihood of a grit intersecting a particular radial surface is

lower at the edges of the domain than at the center.
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Figure 2.13 — Sampling of possible locations of grit i with known diameter D;

This visualization can be further simplified by reducing the circular grit
representations in Figure 2.13 to the bar representation in the top of Figure 2.14 where
each bar has a width of D;. The bottom half of Figure 2.14 shows a plot of how many
grits are intersecting at a given radius. Notice that there are ramp regions on the edges of
the domain and a constant region in the center. These regions are labeled Region 1, 2, and

3.
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Figure 2.14 — Bar representation of the intersection of grit i with a cylindrical
surface

The boundary conditions that define the three distinct regions are shown in Equation
2.48, Equation 2.49, and Equation 2.50.
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D D
Region 1: (—C <R, <=+ di> Equation 2.48

2 2
D D d;
Region 2: (—C . —g——l> Equation 2.49
g S Hdi <R <l -7 q
D d D 9d
Region 3: (—g——‘ <R <4 ‘) Equation 2.50
g 2 " 10°%<2 "1 a

Knowledge of the probability of a grit intersecting a particular surface at radius R,
can be obtained from the knowledge of the radial position 7; of the grit centroid. Each
region identified has a unique range of r; that would cause an individual grit to intersect
the surface. These ranges are shown in Equation 2.51, Equation 2.52, and Equation 2.53

for Region 1, 2, and 3 respectively.

D d; d;
Region 1: (76 + ?L <1, <R+ é) Equation 2.51
d; d;
Region 2: (RC — ?L <1, <R.+ é) Equation 2.52
d; D 4d;
Region 3: (R e <cHd —L> Equation 2.53
g T 1< > + 10 q

It is noticed, however, that this scenario only holds if the inner-most grits and outer-
most grits in Figure 2.13 and Figure 2.14 do not overlap. The condition for this to be true
for a particular grit diameter is shown in Equation 2.54. The condition can be extended to
cover 99.7% of all grit diameters using the distribution parameters for grit diameters,
shown in Equation 2.55, defining a wheel in which a grit located at its outermost possible

position would not overlap a grit at its innermost position.

D, D, dn\ (11d; D,—D, .
—_< e 9 ) = Equation 2.54
(2+d‘<2 10) (10< 2 ) q

Equation 2.55

11(,le + 30'(1) < Dg - DC
10 2

However, the possibility of the inner-most grit overlapping the outer-most grit arises

when the grit diameters are large in comparison to the thickness of the bond layer. This
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occurs in single-layered superabrasive microgrinding wheels. Therefore, Equation 2.55
can be considered the threshold between single-layered and multi-layered grind wheels.
The exact inequality in Equation 2.55 indicates true for a multi-layered wheel. A
schematic of this scenario is shown in Figure 2.15.

The single-layered wheel scenario has three distinct regions like the conventional
wheel scenario. However, the boundary conditions that define these regions are slightly
different. The boundary conditions for Regions 1, 2, and 3 in a single-layered wheel are

shown in Equation 2.56, Equation 2.57, and Equation 2.58 respectively.

D D, d;
Region 1: (76 <R.< 79 — ﬁ) Equation 2.56
. D d; D .
Region 2: (79 - ﬁ <R.< 76 + di) Equation 2.57
. D D 9d; .
Region 3: (76 +d; <R, < 79 + 10‘) Equation 2.58
< Di —>
: i - >
0 Icore irODi r
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Figure 2.15 — Bar representation of the intersection of grit i with a cylindrical
surface in a single-layered wheel
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The single-layered wheel scenario regions also have unique ranges of the radial
position 7; of the grit centroid that would result in a grit intersecting the surface of
interest. These ranges are shown in Equation 2.59, Equation 2.60, and Equation 2.61 for

the three regions of a large-grit wheel.

D d; d;
Region 1: <7C + ?l <1, <R.+ ?l) Equation 2.59
D d; D 4d;
Region 2: L P —l) Equation 2.60
g ( 5 + 5 <n< 2 + 10 q
d; D 4d;
Region 3: ( e <cXd —l) Equation 2.61
g R, > <r< > + 10 q

The probability of a grit interesting the radial component of the cylindrical surface
can be found by integrating the probability of the radial position of the grit centroid
across the range that would cause some part of the grit to intersect the radius of the
surface. This has to be calculated for each region individually since they have different
integration limits. In addition, the probability of a grit intersection the surface within each
region must convolved with the probability of the radius R, of the surface falling within
the boundaries of that region. The probability of the surface being within a region is
independent of the probability of a grit intersecting the surface within that region so this
convolution is merely a product of the two probabilities as summarized in Equation 2.62

[48]. Analytically this is shown in Equation 2.63 for an arbitrary region j with region

R, and ; R, respectively and integration limit

lower and upper boundaries i
upper

jlovver

lower and upper bounds ;, = 7y and ; 7 .

Pr(Cg = true|R,)
B p (grit intersecting the surface ) (the surface radius occuring

radius within the region within the region ) Equation 2.62

over
all regions
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Pr(Cg = true|R,) = iPr (jlowerr <r< jupperr) Pr (ilowerRC <Re < jpperRe ) Equation 2.63
j=1

The first term in Equation 2.63, the probability of a particular grit with a given
diameter d; intersecting within a particular region, is calculated using the conditional
probability in Equation 2.64. A generalization of this to any grit within the wheel can be
generated by accounting for the probability of the occurrence of the grit diameters. The
joint probability of a grit intersecting the surface and of the grit diameter is calculated
using Equation 2.65. The independent probability of any grit intersecting with the region
can then be calculated by integrating the joint probability across the full domain of the

grit diameters as shown in Equation 2.66.

Pr (riintersectingldi) = fRiintersectinngi (riintersectingldi) = Pr ((jlowerri <r< jupperri ) |dl)

[ e a
= r\r)ar;
jlowerri Equation 2.64
Jjupper'i 2r 10r 10D
=f o _ (Fo2r = D) (1 Fy, (—— ") dr,
. - (D, 4 D A i\ 4 8
Jlower i -9 4 THa) _ (_C 4+ ”_d)
2 10 2 2
. A7 -, d;
fi (r~ |d~) = leimerseC““g'Dl( lintersecting l) Equation 2.65
RiintersectingIDi lintersecting ! ! fD(d)

Pr (jlowerr <r< jupperr) = f_oofRiintersectinngi (riintersectingldi) fDl(d)dd
Equation 2.66
*® Jjupper'i
[ [ meran | fo@ad

jlowerri
Similar to the calculation of the position of a grit, the integration of the joint
probability across all grit diameters is approximated by evaluating the conditional

probability at the mean of the grit diameters. This approximation results in the simplified
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probability density function for the radial position intersection of any grit shown in

Equation 2.67.

Pr (j]owerr <r< jupperr) = fRiintersectinngi (riintersectinglud) Equatlon 2.67

The second term in Equation 2.63 calculates the probability of a cylindrical surface of
interest falling within one of the specified three regions. First, it is assumed that the
probability of the surface radius meeting the lower bound criteria is independent of its
probability of meeting the upper bound criteria. This leads to the joint probability of both
satisfying criteria being the product of the two individual criteria which is shown in

Equation 2.68.

Pr (o werRe < Re < jupserRe ) = Pr(joRe <R)Pr(Re < R.) Equation 2.68

The boundaries for the surface radius criteria are functions of the diameter of a
particular grit. Therefore, the probability of a criteria being met is the probability that the
grit diameter meets the inverse of this function imparted on the surface radius. This
probability can be calculated using the CDF for any grit diameter which is shown in
Equation 2.69. Similarly, the upper bound probability can be calculated using the grit

diameter CDF. However, since the inequality is inverted, the remainder of the CDF is

needed so it is subtracted from 1 as shown in Equation 2.70.
Pr(j, . ..Re <R;)=Pr(h(d) <R, =Pr(d; <h*(R)) = Fp,(h"*(R,)) Equation 2.69
Pr(Re < jyppeRe ) = Pr(R. < 9(d)) = Pr(g™"(R) < dp) = 1 = Fp, (A7 (R.)) Equation 2.70

The complete algorithm for calculating the grit intersection probability in the radial

direction is shown in Figure 2.16 with the boundaries.

47



Is the wheel multi-layered?

(11(#D+30D)
10

No

Dg—DC)
2

v v
4 N\( . . . . )
Single-Layered Radial Intersection Region Multi-Layered Radial Intersection Region
Boundaries Boundaries
D D, d; D D
Region j=1 : = —g——‘) Region j=1 : (—C <R, <= d.)
son/ (F<r<3-15 sons 2 Sfesp T
D, d; D . D D, d;
Regionj=2: (=2£_-—2 = ) Region j=2 : <—C d, <R _g__L)
egion j (2 10<RC<2+dl glon 2+ i < c<2 10
D D, 9d; . D, d; D, 9d;
Region j=3 : (—C , -4 ‘) Region j=3 : (_g__‘<R <_g+_‘)
L gonj 2+dl<RC<2+10 gionj 2 " 10 c<%5 7
4 Y ™ v
Single-Layered Radial Intersection Criteria Multi-Layered Radial Intersection Criteria
Lo D.  d; i Region j=1: Dc , 4 R d
Region /=1 : <7+?<TL<RC+2) gonj=1: 7+?<Ti< C+?
o =) - D.  d; Dy  4d Region j=2 : (R —ﬁ <1 <R +ﬂ>
Regionj2: (G435 <n<F+g) || eEen AR
. d; D 4d; s q. _ % Yg i
Region j=3 : (RC _?l <r < 79 1_01) Region j=3 : (Rc > <7< 2 + 10)
\- J J
v v
( Probability of a Particular Grit Intersecting the Surface Radius within a Region
10D
o (Fper-p))(1-Fp (&— g)
(i) = [ /o
Riintersectinngi iintersecting i) = - D 4 2 2 i
owert D9 Mg\ _(De | ta
N (2+1o) (F+5)
- J

A 4

Probability of Grit g; Intersecting the Surface
Radius within a Region

Pr(jlowerr <r< jupperr)

= fRiintersecting ID; (riintersecting |‘le)

v

Probability of the Surface Radius
Meeting Region Boundary Conditions

R (Re)
Pr(jlowerRC < RC) = J-oo fDi(d) dd

R R
Pr(R, < jupperRC) = f fo,(d) dd

o)

-

Probability of Grit g; Intersecting in the Radial Domain
3

Pr(Cg = true|R,) = Z Pr (jlowerr <r<; r) Pr (jlowerRC <R.< jupperRC)

i=1

upper

Figure 2.16 — Method for analytical calculation of a the probability of a grit
intersecting a surface with radius R,
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2.8.3 Combined Probability of a Single Grit Intersecting the Surface

The independence of the occurrences of the grit location coordinates results in the
total probability of all three parameters falling within the examined region being the
product of the individual probabilities. Again, this is the discrete probability that any
single grit intersects the surface in event C as shown in Equation 2.42. Since the three
individual coordinate events are independent, the probability of their intersection is the
product of their individual probabilities as shown in Equation 2.71. The probability of a
grit intersecting has an outcome of either success or failure. Therefore, the intersection of
a grit with a cylindrical surface is a Bernoulli trial. The expectation and variance of the
probability of a grit intersecting are given by the known properties of a Bernoulli

distribution which are shown in Equation 2.72 and Equation 2.73 respectively.

Pr(C|R,) = Pr(C’R|RC)Pr(C’9)Pr(C’Z)~Bern(Pr(C’R|RC)Pr(C’9)Pr(C’Z)) Equation 2.71
E(C) = Pr(Cg|R,)Pr(Cy)Pr(C,) Equation 2.72
Var(C) = (Pr(C’R|RC)Pr(C’9)Pr(C’Z))(1 - Pr(C’R|Rc)Pr(C’9)Pr(C’Z)) Equation 2.73

2.8.4 Static Grit Density using the Probability of a Particular Grit Intersecting the
Surface

The static grit density is defined as the number of grits that intersect the surface

divided by the surface area. The area of this cylindrical surface is given by Equation 2.74.

This static grit density is defined in Equation 2.75.

Ae, = 2nR (Zy — Z4) Equation 2.74
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N, #ofgritsinC _ g(C)

Ny _
A Ac Ac,

Cs = Equation 2.75

r

The random variable event C of any individual grit intersecting the cylindrical surface
is a Bernoulli trial in this model since each trial has either a success or failure outcome
and the outcome for each grit is independent of the outcome of the other grits. The
number of grits that reside in the wheel that have a success in random variable C can be
represented by another random variable N. The static grit density can therefore be

represented as a function of this new random variable as shown in Equation 2.76.

Pr(N =n)

Pr(Cs =¢) = A
c

Equation 2.76

T

The random variable N can be described as the sum of independent, identical
Bernoulli trials. This distribution is therefore an ordinary Binomial Distribution [48]. The
probability mass function for this variable is shown as Equation 2.77. Here, each Pr(C)
within the summation is the probability that a particular grit g; with a particular diameter
D; intersects the surface. Notice that this distribution is contingent on the condition of a
known number of abrasives in the wheel. The expectation and variance are given by

Equation 2.78 and Equation 2.79.

Nq

, )Pr(C’)"(l —pr(e)" " =

N,! ) .
— ! E@"(1- E(C’))Na Equation 2.77

Pr(N = nIN) = f(nINy) = ( TN

E[N|N,] = N,E(C) Equation 2.78

Var[N|N,] = N,E(C)(1 — E(C)) Equation 2.79
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The distribution of the number of grits intersected regardless of the number of grits in
the wheel is obtained by utilizing the definition of the conditional probability as shown in

Equation 2.80.

Pr(N =n) = f(n) = fwf(n, Ng)dN, = fwf(nlNa)f(Na)dNa Equation 2.80

The expectation of the number of grits that intersect independent of the exact number

of grits in the wheel can be calculated by the double expectation as shown in Equation
2.81. Similarly, the variance in the number of abrasives intersecting the surface is given

by Equation 2.82.

BIN] = B[EVING] = | EININGFNdN, = | NGECE) f(No)dN,

o Equation 2.81
—E(C) f Nq f(N)dN, = E(C)EN,]

Var[N] = E[N, ]Var[€] + (E[C])?Var[N,] Equation 2.82
The mean and variance in the static grit density can now be calculated using Equation

2.83 and Equation 2.84.

E|IN
E[C,] = A[ ] Equation 2.83
er
Var[N]
Var[Cs] = —— Equation 2.84
(4c,)

A final summary of the algorithm for calculating the probability of the static grit

density in a grind wheel is presented in Figure 2.17.
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Figure 2.17 - Summary of method for analytical calculation of a microgrinding
wheel static grit density

2.9 ANALYTIC STATIC GRIT DENSITY MODEL RESULTS

The analytic model for the probability of static grit densities in grinding wheels
provides a method to quickly predict not only mean static grit densities but also its
variance in any wheel. Appendix A details a more complete solution of the calculation of
the static grits density by substituting and solving the equations presented in the
algorithm. The analytical solution of the static grit density distribution parameters was

calculated for a #220 and #1200 grinding wheel as shown in Figure 2.18.
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Figure 2.18 — Static grit density distribution parameters from analytic model for (a)
#220 and (b) #1200 microgrinding wheels

The mean and variance of the static grit density can be used to analytically generate
boundaries of the range of possible static grit densities as a function of a surface’s
distance from the core of the grind wheel as shown in Figure 2.19 for a #220 and #1200

grit wheel.
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Figure 2.19 - Boundary range of 95% of the possible static grit densities of in (a)
#220 and (b) #1200 microgrinding wheels

2.10 DISCUSSION

The analytic model for the wheel consists of complex statistical descriptions. Some of
the model parameters have distinct probability density functions while others require
numerically integration. This requires some costly computation time. Other parameters
can only be analytically modeled by calculating their distribution parameter estimators.
For example, the number of grits in the wheel is only analytically modeled by their
expected mean and variance. A full description of the PDF and CDF are not obtainable.
However, use of numerical simulation showed that the probability of the number of grits
in the wheel can be modeled using a Gaussian distribution governed by the analytically
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generated estimators. This allows a much faster method of calculating the probability of
how many grits are in a wheel.

The accuracy of the model to predict the topography of actual grinding wheels stems
from the accuracy of the initial assumptions in the simplification of the wheel. The
assumed shape of the abrasive particles can have a significant effect on the outcomes of
the model. This was investigated by Kramer and Wagenheim in 2008 by using different
abrasive shapes in a model of wheel topography that located the abrasives uniformly in a
simple cubic lattice structure [49]. The shapes compared were spheres, twin cones, twin

pyramids, and twin pyramidal frustrums as shown in Figure 2.20.

«J . ,
x/l Sphere Twin cone Twin pyramid  Twin pyramidal frustum

z A

d
2% odg

Figure 2.20 — Abrasive shapes investigated by Kramer and Wagenheimml

The results of the study on the impact of grit size are shown in Figure 2.21 where the
ratio between abrasive and bond area is displayed as a function of the radial depth of the
analyzed surface into the wheel. It is seen that none of the model results computed using
the simple cubic packing structure matched that of the measured wheel. However, it is
observed that the sphere and twin pyramidal assumptions provide the most accurate
model results. In addition, it is observed that the spherical grit model represents an

average result within the set assumed abrasive shapes.
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Figure 2.21 — Impact of modeled abrasive shapes[49]

It is noted that the spherical grit assumption also does not require additional model
dimensionality to capture the grit orientation. The spherical grit assumption therefore
simplifies the complexity of the probabilistic model leading to faster computation times
using both the analytic formulation and current numerical simulation techniques. The

results acquired with this simplification come with minimal loss of model accuracy.

2.11 SUMMARY

The analytic wheel modeling technique developed in this chapter provides a method
to model key aspects of superabrasive grinding wheel static topography such as the
distribution of grit radial positions and the expectation and variance of the static grit
density. Derivation and simulation showed that the number of grits residing in a wheel
can be modeled as having a Gaussian probability with parameters calculated analytically

from the wheel specifications and manufacturing variances. The locations of the grits
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within the wheel were shown to have distinct regions of different probability functions
based on the boundary conditions of grit placement within a wheel. A mathematical
description of the difference between single-layered and multi-layered grind wheels was
defined. Finally, the analytic model for the static grit density allows the quick calculation
of the mean and variance of the number of grits available to participate in grinding.

The large grit sizes relative to the grind wheel sizes at the micro scale presents unique
challenges in the ability to accurately predict wheel topographies. The limited number of
grits that exist in such wheels has a significant impact on the variances in the static
topography from wheel to wheel. The analytic model generated here can be used to
bound these uncertainties in order to provide more accurate predictions of wheel
topographies and microgrinding behavior. The stochastic distributions of the grit
locations can be used in dynamic grinding simulations and analytics to acquire
distributions of the process forces. This model, however, is expected to have some
limitations in its ability to accurately predict real grind wheel topography due to
differences in manufacturing methods and accuracy. The accuracy of the model is limited
by the basis on uniform grit position distributions in Cartesian space which relies on the
ability of the manufacturing process to un-biasedly place grits within the wheel bond

The accuracy of the statistics used in the analytic model will be verified in
CHAPTER 3 using numerical simulation while its ability to accurately model real
microgrinding wheels will be validated in CHAPTER 4. This probabilistic model will be

used to perform a scaling study on microgrinding wheel topographies in CHAPTER 5.
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CHAPTER 3 - NUMERICAL VALIDATION OF ANALYTIC
MODEL

3.1 INTRODUCTION

Numerical simulation of grit size and placement within a microgrinding wheel allows
for an analysis of the accuracy of the statistical propagation used in the analytical
stochastic model generated in CHAPTER 2. Numerical simulation is a widely accepted
technique for modeling grinding wheel topography and has been shown to provide results
that closely predict real wheel topography. In order to establish the verification of the
statistical propagation, initial numerical simulations were constrained to match the
assumptions and boundary conditions of the analytic model. Further simulation
techniques were subsequently established that improve the efficacy of the numerical
simulation by utilizing more realistic assumptions about grit location. Particularly, the
more realistic simulation will limit the ability of grits to overlap in the simulated wheel
bond. This will allow for an investigation into the possible deviation of the analytic

model from real grind wheel topography.

3.2 REVIEW OF SALIENT LITERATURE

Numerical simulation has been used for many years to model grinding action along
with static wheel topography. An early review of the different techniques used was
present by Tonshoff as a keynote paper of CIRP in 1992[50]. Stochastic representations
of several aspects of static wheel topography have been generated using this technique as
is outlined in Table 2.1. These simulations use varying techniques to generate the static

wheel topography. Most techniques for simulating grit locations within a wheel define
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the volume space of a wheel and populate it one-grit-at-a-time [31, 32, 37].One of the
earliest simulations, conducted by Law in 1972, randomly assigned each simulated grit a
uniformly distributed position in the axial and radial direction of the grind wheel along
with a uniformly distributed circumferential spacing between each grit [51]. Any grit
locations that caused overlapping were reassigned new random locations until the
overlapping was resolved[32]. Others place grits in a defined lattice space and then
shifted them slightly from that position using a random displacement distance. The
random displacement for each grit was re-generated if that grit overlapped another grit.
This was repeated until zero grits overlapped each other [44, 52]. Both of these methods
of alleviating grit overlap are time consuming as they rely on blind location reassignment

to eliminate the overlaps.

3.3 NUMERICAL SIMULATION OF STATIC WHEEL

TOPOGRAPHY WITHOUT CONSIDERING GRIT OVERLAP

The simulation of the grind wheels will model the abrasive grits as perfect spheres
whose diameters follow a Gaussian occurrence distribution as outlined in CHAPTER 2.
The locations of the grits within the wheel will follow the same boundary conditions
setup for the analytical model in Equation 2.22. The numerical simulation used here first
assigns each grit a random, independent position in a Cartesian space that includes the
desired wheel geometry. The grit locations are then converted to cylindrical space so that
the static grit density at different radial positions can be calculated. Each grit is then
checked for a violation of the boundary conditions in Equation 2.22. Grits that violate the

boundary condition are then assigned a new random position. Note, however, that this

59



method allows for grits to overlap. A summary of the algorithm used to simulate each

grind wheel is shown in Figure 3.1.

Input wheel and
abrasive parameters

i=1 v
Add a Grit with
D;~Norm(up, op)

v

Add grit volume to
total abrasive volume

v

Assign the grit centroid a new random x, y, z
coordinate which follow uniform distibutions

within the assumed boundaries:

DC_+_DL~< <Dw+4Di

2 T SIS T
0<z <wy

v

Convert the centroid position to cylindrical i=i+l
coordinates:

Is the grit within
the wheel bond?

Total volume
met?

Figure 3.1 — Numerical simulation algorithm to model grits within a grind wheel
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The simulated grind wheel is then examined for information about the number of grits
within the wheel, the static grit density, the grit protrusion height, etc. This is achieved by
merely examining each grit and performing a check on its diameter and position to
measure the desired wheel attribute.

It has already been shown in Section 2.6 that the number of grits that reside in a
wheel can be modeled using a normal distribution. It was also shown that the analytic
model for the distribution parameters for the number of grits in the wheel accurately
describes wheels governed by the assumed behavior.

A subjective evaluation of the grit placement within a wheel generated using the
simulation algorithm can be conducted by plotting the simulated wheel surface. This is
shown in Figure 3.2 for four separate simulation incidences. Notice the significant grit
overlay caused by the algorithm not accounting for previous grit locations when adding a

new grit.
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Figure 3.2 — Plots of simulated wheel surfaces for #220 wheel with grit overlap

The simulation was executed for 1,000 wheels. Figure 3.3 shows the static grit
density at the wheel surface for the simulated #220 and #1200 grit wheels. This is
calculated by counting the number of grits that break the surface of the wheel and
dividing that by the outer surface area of the wheel. It is seen that the distribution of static
grit densities closely matches that of a Gaussian distribution. Note these results do not

address the issue of grits randomly overlapping one another.
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Figure 3.3 - Static grit density distribution on the wheel surface simulated with grit
overlap for (a) #220 and (b) #1200 wheels

Figure 3.4 show the calculated static grit density at different radial distances from the
wheel core for the #220 and #1200 grit simulations. The distinct regions of static grit
density dependence on the radius of the examined surface resemble those identified in
Section 2.8.2. There is evidence also of variation between simulations. The dotted lines in
the plots represent the wheel bond surface.

Here, the static grit density is calculated by counting the number of grits that are
intersected between their maximum protrusion point and their minimal retainment depth
by the cylindrical surface generated using the radius of interest. The surface area used for

the calculation utilizes the radius of interest as well.
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Figure 3.4 - Static grit density as a function of the distance from the wheel core
simulated with grit overlap in (a) #220 and (b) #1220 grit wheels

The variations along the plots of the static grit density versus radial position can be
quantified by fitting a normal distribution to the static grit density at each radius. Figure
3.5 shows the calculated sample mean and standard deviation of the static grit density for
the #220 and #1200 grit wheels. It is interesting to note how the location of the middle
region for the #220 grit wheel forms a point where the variance between simulations

decreases.
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Figure 3.5 - Static grit density normal distribution parameters as a function of
distance from the wheel core simulated with grit overlap in (a) #220 and (b) #1200
grit wheels

3.4 PLACING THE GRITS IN THE WHEEL CONSIDERING

GRIT OVERLAP

In an actual grind wheel, however, the location of grit g; is subject to positional
limitations imposed by the other grits placed in the simulation since no two grits can

occupy the same space and overlap one another. This phenomenon is not accounted for in
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the current simulation algorithm. This constraint is shown as Equation 3.1 for two
spherical grits 7 and j. A second numerical simulation that limits the number of grits that
violate this constraint can show how this impacts the simulated wheel topography.
However, current techniques of enforcing the grit overlap constraint merely regenerate a
grit location. Instead, the method used here will linearly relocate the overlapping grits to

the closest position in which the grits are merely in contact with one another.

d; + d;
2

d;= \/riz + 12 — 2n1 cos(6;, — 6;) + (z — zj)z > ;j=1toi—1 Equation 3.1
3.4.1 Algorithm of Grit Relocation to Minimize Grit Overlap

This method is essentially a particle packing simulation which is a large area of active
research. The loose packing nature of this problem lends it to need less computationally
heavy algorithms. The proposed technique, which uses Monte Carlo simulation, will
utilize collective rearrangement as the method of relocating the grits to positions that
minimize or eliminate grit overlap [53]. Figure 3.6 shows two grits i and j in a Cartesian
plane with grit j overlapping grit i. This overlap is removed by moving particle 7 in the

direction that is governed by the line between the two grit centers.

N\,
mR i Al
m-IRi

m-IRj

Figure 3.6 — Calculation for the separation between particles i and j
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The m™ new grit i position, ,R;, is calculated using the previous positions ,,.;R; and .

1R; . This is shown in vector form in Equation 3.2. The cylindrical coordinate component

version to calculate the new position in Cartesian coordinates is shown in Equation 3.3,

Equation 3.4, and Equation 3.5. The conversion to cylindrical coordinates is shown in

Equation 3.6 and Equation 3.7.

R, — ,._.R;
-1 -1
mRi = m-1R; + (%) (T',- + = m—ldi/')

m—-1%j

m-1T;COS m—16i - m—lrj COS -1

mXi = m-17;COS m—16i + ( d
m—-14i

m-17;S1N m—lei — m-17;S1n m—lej

mYi = m—lriSin m—16i + (
m—ld

i

0.
]> (ri+ 75— mo1dy)

) (ri+ 75— mo1dy)

m—-1%4; — m-1%j
mZi = m—1Zi+ ( (7”1-+ T'] - m—ldij)

m—1d1'/'

_ 2 2
mli = | mXi +myi

_ Vi
mB; =tan™?! (m l>
mXi

Equation 3.2

Equation 3.3

Equation 3.4

Equation 3.5

Equation 3.6

Equation 3.7

Multiple overlaps of one grit requires a method of combining the displacement

vectors into a single vector for grit i. Figure 3.7 shows the desired relocation of a grit that

is overlapped by three other grits.

m-IRi
mRi

Figure 3.7 — Visualization of the repositioning of an overlapping particle
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The new position vector for grit i is generated by summing up the relocation vectors
generated by each overlapping grit which is governed by Equation 3.8.

_1Ri — m_1R;
R, = Z (m—lRi + (’"11—;111> (Ti+ - m—ldij)> Equation 3.8

m—-14i

However, it is noted moving the grits could result in some grits no longer satisfying
the boundary conditions of the grind wheel set forth in Equation 2.22. It is also noted that
a single implementation of the algorithm does not necessarily relocate a grit from all of
its overlapping neighbors. In addition, moving a grit from one overlap situation may
introduce a new overlap situation. Therefore, the process must be repeated until there are
no instances of grit overlap within the wheel. This could be computationally burdensome
so a limiting criterion is implemented that relocates grits until less that 5% of the grits
overlap one another. The selection of which overlapped grit is moved in each iteration is
selected randomly in order to minimize the repeated boundary condition violations.

A summary of the final grit relocation algorithm is shown in Figure 3.8 which
accounts for the boundary conditions by not allowing any relocation that would introduce
a violation. The algorithm repeats until the number of grits that are overlapping is
reduced below a specified threshold. A simulated surface plot of a grind wheel after the
implementation of the final algorithm is shown in Figure 3.9 for a wheel with less than

5% overlapping grits.
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Move the appropriate grits using Equation 3.8

!

Find which grits violate
the boundary conditions.
Reset them to their
previous positions.

v .,

|

Figure 3.8 — Grit relocation algorithm to minimize grit overlap within a grind wheel
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Figure 3.9 - Plots of simulated wheel surfaces for #220 wheel with no grit overlap
without verifying BC

3.4.2 Effect of Grit Overlap Reduction on Grit Position Probabilities

The grit location algorithm modifies the locations of the individual grits and therefore

the occurrence frequencies of the coordinate locations of the grit centroids. The

cumulative probability plots for the grit radial and angular positions are shown in Figure

3.10 along with the CDF provided by the analytic model which does not account for grit

relocation. Figure 3.10 also show the probability density plots for the coordinates.

It is seen that the grit relocation does not affect the occurrence probability of the

angular position coordinates. However, relocation does slightly modify the radial position

probability by shifting more grits towards the edges of the range as seen by the deviation
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peaks around 470 and 530 um. The analytic model does still approximate the occurrence
probability of the grit radial position well in that the locations of the slopes at the edges

of the wheel are still accurate.
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3.4.3 Effect of Grit Overlap Reduction on Static Grit Density

Table 3.1 presents the tabulated results for static grit density distribution with and
without the overlay adjustment algorithms. The results are based on #220 and #1200 grits
governed by the abrasive parameters in Table 2.2 and wheel parameters outlined in Table

2.3. The width of the grind wheels and the number of iterations computed were reduced
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in order decrease computation time. The static grit density is seen to be reduced once the
grits are relocated. This is attributed to the grits moving outside of the valid wheel

boundary conditions.

Table 3.1 — Simulation results for the static grit density at the wheel Surface

Grit Number G# 220 1200
. Reduced Reduced
Grit Overlap Allowed (< 5%) Allowed (< 5%)
Number of Simulations n 1,000 1,000 1,000 1,000
Wheel Width w 0.5 mm 0.5 mm 0.05 mm 0.05 mm
Number of Grits Mean Un 70.45 70.48 1,157.4 1,156.9

Static Grit Density
Mean at Bond Surface

Static Grit Density STD
at Bond Surface

™ 41.84 40.53 1146.35 1150.24

on 1.44 1.59 78.43 72.86

Solve Time with 4-Core

. t 4.67 sec 7.48 sec 99.97 sec 1341.04 sec
Parallel Processing

The static grit densities for the #220 and #1200 grit wheel with grit relocation are
shown in Figure 3.11 where it is seen that profiles differ slightly from that observed in

the overlapping-grit scenarios.
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Figure 3.11 - Static grit density normal distribution parameters as a function of
radial distance from the core simulated with grit overlap reduced to 5% in (a) #220
and (b) #1200 grit wheels

3.5 COMPARISON BETWEEN THE ANALYTIC MODEL AND

NUMERICAL SIMULATION

A comparison of the expectation of the static grit density at different radii within a

#220, Imm OD single-layered grind wheel as predicted by the analytic model and as
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calculated from the numerical simulation with and without grit relocation is shown in
Figure 3.12. The coefficients of determination were calculated by comparing the
individual numerical simulation outputs to the analytic model prediction. It is seen that
the analytic model predicts the expected mean static grit density well for both cases and
that the overlapping of grits does not have a significant impact on the static grit density
mean. A more detailed view of how well the analytic model agrees with the numerical
simulations can be seen in Figure 3.13 where the deviation between model prediction and
the output of the two simulations is plotted for each radial surface in the wheel. Notice
that the model maintains an accuracy of 2 grits/mm’ for both with and without

overlapping grits.

Simulation with Grit Relocation Simulation without Grit Relocation
Analytic Model — = — Wheel Surface
= = = Wheel Core
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Figure 3.12 - Static grit density expectation for #220 wheel from analytic and
simulation models
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Figure 3.13 - Static grit density expectation deviation from analytic model for #220
wheel
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A comparison between the predicted standard deviation of the static grit density in the
analytic model and that calculated by the two numerical simulation methods is shown in
Figure 3.14. The coefficient of determination is worse in the case of the standard
deviation than it was in the expectation. Also, the effect of overlapping grits is more
significant in the prediction of the static grit density standard deviation. The numerical
difference between the predicted and simulated std. dev. are shown in Figure 3.15. It is

observed that the analytic model does maintain a prediction accuracy of 0.6 grits/mm?®.
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Figure 3.14 - Static grit density std. dev. for #220 wheel from analytic and
simulation models
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Figure 3.15 - Static grit density std. dev. deviation from analytic model for #220
wheel

Similar comparisons were made for a multi-layered #1200 wheel as seen in Figure

3.16 and Figure 3.17 for the static grit density mean and standard deviation respectively.
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Figure 3.16 — Static grit density mean from analytic and simulation models for a
#1200, 1mm OD multi-layered grinding wheel
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Figure 3.17 — Static grit density std. dev. from analytic and simulation models for a
#1200, Imm OD multi-layered grinding wheel

3.6 STATISTICAL DISTRIBUTION OF STATIC GRIT DENSITY

The analytic model for grind wheels presented in CHAPTER 2 yields a method for
calculating the expected mean and variance of the static grit density on any cylindrical
surface of a wheel with a known geometry and abrasive size. However, the model does

not produce a distribution of the static grit density as a random variable. It is
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hypothesized that the random nature of the process produces a final static grit density that
follows a standard distribution such as a normal Gaussian. The appropriate distribution
can be selected by examining the results from the numerical simulation of the grind
wheels.

The Chi-Squared Goodness of Fit test is used on the static grit density distributions
for the #220 and #1200 grit wheels generated using the two numerical simulation
methods. The test tries to reject the null hypothesis that the static grit density at a
specified wheel radius can be represented by a normal distribution. The significance level
for these tests will be set at a = 5%. The test statistic for the Chi-Squared Goodness of Fit

test is shown in Equation 3.9.

x:= Zn: % Equation 3.9
k=1

The test involves separating the simulated wheel static grit densities into occurrence
frequency bins such as in a histogram. Each bin has an index & with n bins in the data set
to be tested. Oy, is the frequency of observed outcomes within the dataset bin while E}, is
the theoretical frequency of outcomes from an identical bin in the test distribution. The
distribution being tested is the Gaussian distribution with a mean and standard deviation
estimated from the sample mean and variance of the simulated wheels in the radius bin.
These tests utilized a large sampling of 5000 wheels to provide a better estimate of the

distribution parameters.
The chi squared goodness of fit test rejected the hypothesis that a Gaussian
distribution describes the static grit density for both grind wheels. This is due to the large
number of simulated samples available to evaluate the test. However, a more qualitative

assessment of the actual distribution can be examined using the skewness and kurtosis
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values for the dataset. Figure 3.18 shows this for the #220 simulated grinding wheels
while Figure 3.19 shows it for the #1200 wheel. It is seen that the distribution of static
grit density is mostly symmetrical and has a kurtosis shape that is similar to that of a

Gaussian distribution, zero.
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Figure 3.18 - Skewness and kurtosis for the distribution of static grit density at various
radii in #220 wheels
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Figure 3.19 — Skewness and kurtosis for the distribution of static grit density at
various radii in #1200 wheels
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Another subjective method of testing the hypothesis of Gaussian distributed static grit
densities is to visualize the simulated occurrence frequencies against what a Gaussian
distribution would yield. This is done in a normal probability plot in Figure 3.20. It is
seen that the correspondence between the simulated static grit densities and what would
be expected from a normal distribution are very similar since both the measured slope of
a linear fit and its fit correlation are very close to 1. This was repeated across the various
wheel radii and also for the simulated #220 grit wheel. The results consistently showed

that a normal distribution is very similar to the actual static grit density distribution.
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Figure 3.20 — Normal probability plot for static grit density at the bond surface of a
#1200 wheel

3.7 DISCUSSION

The analytic model for the wheel consists of complex statistical descriptions. Some of

the model parameters have distinct probability density functions but the cumulative
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density functions must be numerically integrated. This requires some costly computation
time. Other parameters can only be analytically modeled by calculating their distribution
estimators. For example, the number of grits in the wheel is only analytically modeled by
their expected mean and variance. A full description of the PDF and CDF are not
obtainable. However, use of numerical simulation showed that the probability of the
number of grits in the wheel can modeled using a Gaussian distribution governed by the
analytically generated estimators. This allows a much faster method of calculating the
probability of how many grits are in a wheel.

Comparison between the analytical stochastic model and the numerical simulations
show that the analytic model accurately captures the behavior of the grinding wheels
given the assumptions made. However, the assumptions of allowing the abrasives to
overlap one another would not hold in actual grinding. The new numerical simulation
technique accounts for this by limiting abrasive overlap. Comparison between the
analytic model and the relocated grit positions showed that the relocation did radially
shift grits from the center of the bond layer to its edges while it did not affect the angular
positions of the grits. The analytic model was seen, however, to provide an adequate
method to estimate grit positions.

A comparison between the analytic model, simple simulation with grit overlap, and
new simulation with reduced grit overlap is shown in Table 3.2. It is seen that the analytic
model closely arrives at similar estimations for the static grit density distribution
parameters as those provided by the Monte Carlo simulation. The analytic method,

however, did consistently over-predict the static grit density expectation and variance. It
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is suspected that this arises from the method of simulating how many grits are in the

wheel since this was consistently over predicted in the simulation.

Table 3.2 - Comparison of analytical and simulated wheel topography models

Grit Number G# #220 #1200
Numerical Simulation Numerical Simulation
. Reduced . Reduced
Method Analytic : : Analytic : :
YUce | with Grit Overlap y With Grit | o, erlap
Overlap Overlap
(<5%) (<5%)
Number of Simulations n 1,000 1,000
Wheel Width w 0.5 mm 0.05 mm
Number of Grits Mean Un 69.98 70.45 70.48 1,156.4 1,157.4 1,156.9
Static Grit Density Mean at
Bond Surface Un 42.31 41.83 40.52 1239.6 1146.3 1150.2
Static Grit Density STD at | - |y 491 | 1441 | 1586 | 8123 | 7843 | 7285
Bond Surface
. . ¢
Solve Time with 4-Core 1.71 5.01 9.47 0.72 99.97 | 1341.04

Parallel Processing

[sec]

It is noticed, however, that the analytic method is significantly faster than the

simulation methods. For wheels with many grits in them such as the #1200 wheels, the

analytical model is over 2 orders of magnitude faster. The real strength in the model is

that a large number of wheels do not have to be simulated to estimate the static grit

density parameters. One calculation provides the information for any wheel of the same

geometry and abrasive characteristics. Improvements to the analytic calculation time

could be made through refinement of the techniques used to calculate the necessary

integrals in the stochastic propagation.
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3.8 SUMMARY

Numerical simulation techniques were used to validate the behavior and accuracy of
the analytical model. The two major outcomes of this investigation are the new
vectorized displacement method of grit relocation to minimize overlap in the simulation
and the verification of the probabilistic model developed in CHAPTER 2. The statistical
propagation in the analytic model was shown to accurately capture the stochastic nature
of the wheel topography based on the assumptions made. The new technique of
numerical simulation using grit relocation utilizes the knowledge of the amount of
overlap that is occurring to displace the grits to the closest location that eliminates the
interference. The new technique of grit relocation showed that grit overlap has a minor
but definite impact on the predicted wheel topography distributions.

The static grit density of a cylindrical surface within the wheel was shown to have a
Gaussian distribution. The static grit density can modeled using the mean and variance
predicted by the analytic model. The analytic model was shown to calculate the statistical
parameters for the static grit density distribution over 3 times faster than the numerical
simulation for wheels with small grit populations and 2 orders of magnitude faster for
large population wheels. This makes the analytic model better suited for the prediction of
stochastic wheel topography in advanced process control with the greatest benefits
occurring for multi-layered wheels with large numbers of grits. The ability of the analytic
model and numerical simulation technique to predict the static topography of actual
microgrinding wheels will be reviewed in CHAPTER 4 through comparison to measured

wheel surface topography.

83



CHAPTER 4 — STATIC MEASUREMENT OF MICROGRINDING
WHEELS

4.1 INTRODUCTION

The ability of the probabilistic model to accurately predict real grinding wheel
topography needs to be verified using experimental measurement. The surface
topography of microgrinding wheels needs to be measured for the distribution of static
grit density across multiple wheels of the same specification. The analytic model and
numerical simulations have shown that there is variance in static topography between
different wheels, and it is hypothesized that this variance is exacerbated in microgrinding
because there are so few grits in each wheel. Therefore, it is desired for the measurement
technique to provide a quick estimate of the distribution of the static topography
characteristics for each microgrinding wheel before it is used in a grinding operation. A
technique that can be easily implemented on the grinding machine tool for in situ
measurement will fill this need.

This chapter presents a machine vision approach for simple, non-contact
measurement in situ of microgrinding wheels. The measurements recorded using the
measurement technique are used to verify the accuracy of the topography models. In
addition, the wvariance in microgrinding wheel specifications is investigated to
characterize manufacturing variability as a source to topography variance. Finally, the
scaling effect that the limited number of abrasives in each microgrinding wheel has on

the topography variance is measured.
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4.2 REVIEW OF SALIENT LITERATURE

Many methods of measuring grinding wheel topography have been developed and
documented. Due to difficulties in the measurement of individual grit cutting forces in a
grinding operation, the preferred method of generating models for the dynamic cutting
action of individual abrasives is to measure the static wheel topography and empirically
relate the two [2, 54, 55]. The traditional technique for measuring grind wheel surface
topography is time-consuming measurement with a scanning electron microscope. An
overview of the other methods used to measure conventional grinding wheel
topographies including the source studies is provided by Malkin and Guo and are listed in
Table 4.1 [2]. The analysis of static topography data for wheel characterization has
included discrete autoregressive moving average of profiles [34], fast Fourier transform

[54], and power spectral density [56].

Table 4.1 — Methods for characterizing conventional grind wheel topographies

1-D Profilometry methods [54]
Imprint Methods [18, 24, 57]
Scratch Methods[44, 58, 59]

Measurement of reflected surfaces of wear-flats as wheel is
rotated [60]

Angled and Vertical Microscopy Differential Focusing [36, 43]

Recently reported literature shows attempts at specifically characterizing
microgrinding wheels. Many of these studies have tried to use conventional techniques
[18]. These have limited applicability though because they are slow and not conducive to
repetitive in situ measurement. In 2008, Park [18] used a machine vision approach that

viewed the end of a grinding pin and traced the outline of the wheel. This outline was
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then analyzed for grit spacing content. However, this method limited the measurements to
one data sample per wheel. Also, the technique analyzed only the projected image of the
peripheral grits closest to the end of the wheel. This provides no information about the
axial spacing of these grits. Grits observed from the end of the wheel could appear to be
inline circumferentially but could actually have axial offsets.

Profilometers are a popular method for measuring the surface topography of
conventional grinding wheels and could be implemented in a machine tool for in situ
microgrinding wheel measurement. However, conventional profilometers are not well
suited for small diameter wheels. Figure 4.1 shows an image of a conventional 2um
diamond profilometer probe in contact with a #220 microgrinding wheel with an outer
diameter of Imm. The large grits relative to the probe size requires that the probe travel
up and down large distances along steep surfaces of the wheel grits. However, the probe
tip tends to deflect out of the plane of measurement since the profilometer probe is less
stiff in that direction. The case of a rotary profilometer as seen in Figure 4.1 rotates the
grind wheel as the measurement of the probe along the major axis of its tip is measured.
However, the probe arm has little lateral stiffness so the probe deflects in a direction
tangential to the grind wheel surface rather than normal to the surface. This results in
false readings of grit heights. This same scenario arises when a conventional linear
profilometer is used such as the one shown in Figure 4.1. The probe is translated along
the grind wheel axis while the vertical deflection of the probe is measured. However, the
probe again deflects laterally as it encounters steep grit surfaces rather than deflecting

upwards. This results in similar false readings.
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(@) (b)

Figure 4.1 - Imm OD microgrinding wheel profilometry with (a) a conventional 2
pum diamond probed, (b) conventional rotary profilometer and (c) conventional
linear profilometer

Sample traces of the #220, Imm microgrinding wheel were taken to examine the
nature of the profiles produced using rotary profilometry. The traces, shown in Figure
4.2, were taken at different axial positions on the wheel and measured the grit heights at
the wheel was rotated. The lateral deflection of the probe tip was observed to cause the
probe to roll of the surface of the wheel creating large decreases in the measured profile
as seen in trace 1 and trace 2.

In addition, these profilometer methods provide information about grit protrusion
height along a single line of travel around the grind wheel. Many time-consuming
readings would need to be implemented to get an accurate depiction of the properties of

the wheel topography.
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A white light interferometer is another possible method of measuring the surface
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Figure 4.2 — Rotary profilometry profiles for a #220, Imm wheel using trace paths at

3 different axial positions (a), (b), and (c) on the wheel
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topography of microgrinding wheels. Sample 3-D profiles of the surface of the same
#220, Imm wheel were taken using such a measurement tool made by Zygo. The
measurements showed highly incomplete profile information as can be seen in the
example shown in Figure 4.3. The large difference in the reflectivity of the dark industrial
diamonds and the shiny metallic bond resulted large holes of missing information. The

imprint method attempts to overcome this by transferring the surface profile to a soft



material which then has uniform reflectivity. However, similar results were seen when
this was attempted using lead as the impression material. It is though that the sharply
faceted angles on the diamond abrasive make it difficult for the measurement device to

interpret the reflection of the white light.

~10.00 pm

Figure 4.3 — Surface of #220, Imm wheel measured using white light interferometer

A faster method of measuring the layout of the grits on the surface of microgrinding
wheels is needed. In addition, the exact static wheel topography characteristic
distributions needs to measured specifically for microgrinding wheels. Many studies have
presented varying distributions measured from the topography of conventional grind
wheels, as reviewed in Table 2.1, but there is limited information on the topography of

microgrinding wheels.
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4.3 MACHINE VISION INSPECTION AND MEASUREMENT OF

MICROGRINDING WHEELS

A machine vision method for measurement of the static grit density is a preferred
solution, because it offers the easiest and cheapest solution for a system that could be
integrated directly onto a microgrinding machine tool. A proposed structure for such a
system is shown in Figure 4.4. This solution is non-intrusive, non-contact and can easily
be incorporated in an existing system. It also allows for rapid, accurate in-situ surface

measurement while broadening the capabilities of the machine tool as a whole.

Air Spindle

¥

Microscope
Capacitance Lenses CCD Camera

Sensor / /
\ / )
F i : 1
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Ac eleromete

XY Table * T
*\‘ AE Sensor

l Force Sensor |
Figure 4.4 — Potential setup for an m-situ microgrinding wheel topography
measurement tool [61]

4.3.1 Imaging of the Wheel Surface

A test of the feasibility and accuracy of such a system was conducted by measuring
microgrinding wheels on a microscope which has specifications that could easily be
implemented in an in-situ vision system. The images for the machine vision
measurements were taken on a Leica Type 301-371.01 microscope with a 10x optic.
Medium intensity front-lighting conditions were used, and the light polarity was adjusted
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to highlight the reflectivity of the metal bonding and limit reflectance from the grits. The
setup for testing the approach is shown in Figure 4.5 while a resulting image of the

microgrinding wheel is shown in Figure 4.6.

Rotary

Stepper \ Microscope Optic

Motor —1— with Front Lighting
1/8” Shank | Microgrinding
Tool Holder

Wheel

Figure 4.5 — Setup for test Approach for in-situ machine vision measurement of
microgrinding wheel topography

e
25 um . &

Figure 4.6 - Image of a Imm OD, #220 it diamond microgrinding wheel in a
microscope at 10x magnification

The end-goal modeling of grinding force frequency requires measurement of the
static grit density along with the circumferential grit spacing along the grind path.
However, due to the small diameter of the grind wheel, the projected 2-D image contains
significant distortion of the apparent distance between grits in the circumferential
direction. This effect is illustrated in Figure 4.7 where the partitions on the cylindrical
wheel are spaced equally along the circumference of the wheel but are distorted on the

projected image plane. Therefore, there would be significant inaccuracy if the image was
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processed by measuring grit spacing in the radial direction on a single image. Instead, a
full image of the wheel was obtained by taken sequential images as the wheel was rotated
under the microscope. The images were digitally stitched utilizing the commercial image
stitching software AutoPano© by Kolor. The software utilizes a search algorithm to
identify control points at the junctions of regions of contrasting pixels. Matching control
points in adjacent images are identified allowing for automated stitching to occur. A
resulting full surface image is shown in Figure 4.8 comprised of a single row of 61
stitched images. Wheels with large axial widths required multiple rows of images to be
stitched together. The use of simplistic optics and a commercial stitching package was
chosen to facilitate simple in situ measurement of a full wheel surface without the need

for sophisticated metrology equipment.

0
‘ 0 -0.5

X

Figure 4.7 - Illustration of space distortion in projected image due to grind wheel
curvature
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Figure 4.8 - Stitched surface image of 0.5Smm OD, #200 grit diamond grinding wheel
composed from 61 individual images

The grind wheels were also optically measured on the microscope for accuracy in
specified diameter and length while the unknown specification of the bond thickness was

measured. The repeatability of the optical measurement method was measured to be 0.9

um by repeated measurement of a gauge pin.

4.3.2 Machine Vision Analysis of Fully Imaged Wheels

Image analysis was conducted in a grayscale format because of the lack of color
variation in the original image. Figure 4.9 shows a sample raw image region after manual
cropping. The surface shows dark grits scattered on a bright background. The labeled Z-
direction is along the axis of rotation of the grind wheel while the X-direction is

tangential to the wheel surface in the circumferential direction.
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Figure 4.9 - Raw grayscale image of #220 grit diamond wheel used for machine
vision analysis

Figure 4.10 shows the machine vision algorithm used to isolate individual grits and
locate their centroids while Figure 4.11 presents sample results after each step in the
algorithm. The algorithm begins with the conversion of the grayscale image into a binary
black-and-white image using an automated threshold. Next, stray background pixels that
are surrounded by white foreground pixels are eliminated. The white areas are then
eroded using a structuring element that approximates a disk with a 26 um diameter. This
separates white areas that are connected with thin bridges resulting in the isolation of
individual grits. The boundaries of the isolated grits are then located using the Moore-
Neighbor tracing algorithm [62]. Grit centroids are then calculated by averaging the

coordinate locations of all of the pixels contained within each boundary separately.
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Figure 4.10 - Machine vision algorithm for locating individual grits
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Figure 4.11 - Effects of machine vision algorithm steps on select region of a #220
microgrinding wheel
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4.3.3 Measurement of Wheel Specifications

The visual inspect of the wheels also provides a method to measure the geometric
specifications of the wheel. Images of the wheel shank and plated grits, such as that
shown in Figure 4.12, allow for the wheel shank diameter and bond layer thickness to be
measured. The width of the wheels was too large to measure in a single image so it was
instead measured from the stitched image of the complete wheel surface as can be seen in
the sample image in Figure 4.14. Calibration of the uncertainty in the accuracy of the
measurements using the images was conducted by repeated measurement of the diameter
of a known 1.0000 mm gauge pin. The technique was found to have an uncertainty of 0.9

pm.

47.5+£0.9 um

326.0+0.9 uym

Figure 4.12 — Inspection measurement of #200, 508um wheel
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1545.0+0.9 pum

Figure 4.13 - Inspection measurement of #200, S08um wheel stitched surface image

The machine vision algorithm was used to count the number of abrasives that resided
in each wheel. It had to be assumed that all of the grits embedded into the wheel bond
protruded the outer surface allowing them to be counted. The analytic modeling in
CHAPTER 2 developed a relationship between the number of abrasives in the grind
wheel to the concentration number by using the analytically expected individual grit
volume. This analytic relationship, shown in Equation 4.1, was used to calculate the
actual wheel concentration number based on the measured number of grits. Here, E[N,] is
the expected number of abrasives, w is the wheel axial width, d,, is the wheel bond

diameter, d. is the wheel core diameter, My is the mean of the grit diameters, and oy is the

standard deviation of the grit diameters.

dZ — d?
sow (7 2)

_ Equation 4.1
200pup (up? + 30p?)

E[N,]

The uncertainty in the calculated concentration numbers was determined using Kline-

Mclintock error propagation with the dimensional errors set as the +0.9 um repeatability
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of the measurement system. The uncertainty in the measured concentration numbers was

calculated to be an average of 1.08 across all measured wheels.

44 COMPARISON OF MACHINE VISION ALGORITHM TO

MANUAL INSPECTION

A comparison of the ability of the vision algorithm to locate grit centroids was
conducted by manually identifying centroids. This involved a user viewing the original
image and placing identifying dots on what appeared to be the grit centroids. The
differences between the machine vision centroids and the manually observed centroids
highlight the ability of the vision method to separate grits effectively without eroding
smaller grits from the image. The microgrinding wheels were specified to be #220
diamond grit with a 1.0 mm OD and concentration of 50.

Statistics of the axial grit spacings identified using the two methods were compared.
A total of 33 non-stitched images were used from 3 different wheels for a total of 99
images. The spacings between adjacent grits within the same axial strip of the wheel were
calculated for comparison. The width of the axial strip was mean grit diameter, 75 pm.
Table 4.2 presents the results from the analysis of the axial grit spacing using both the

machine vision and manual inspection approaches.
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Table 4.2 - Results from machine vision and manual inspection of #220 grit, 50
concentration diamond microgrinding wheels

Total Axial Spacing | Axial Spacing C
Method | Number Mean STD s 2
of Grits [km] [km] [grits/mm~]
Manual 512 91.6 52.8 13.9
Inspection
Machine 513 100.0 63.7 132
Vision

The numbers of grits found in total were almost identical. However, the mean grit
spacing and its standard deviation within each strip varied slightly between the methods.
Comparison between the mean measured static grit density Cs for the two methods also

showed close agreement and is similar to that measured by other studies [32].

4.5 MEASUREMENT OF MICROGRINDING WHEEL

SPECIFICATION ACCURACY

A thorough investigation of microgrinding wheel topography was conducted through
the measurement of wheels of differing diameters, axial widths, and grit sizes as shown in
the experimental plan in Table 4.3. The single manufacturer provided the target
specifications for the wheel geometry along with the expected concentration number C

achieved by the electroplating process.

99



Table 4.3 — Experimental plan of inspected wheels

Wheel Set # | # of replicates G# (OD [pm]|w [pm]| C
1 3 #200 508 1588 140
2 3 #400 508 3175 140
3 15 #400 1016 1588 140
4 6 #800 1016 1588 140
5 3 #400 1016 3175 140
6 3 #800 1016 3175 140
7 3 #400 1524 1588 140
8 3 #200 1524 3175 140

The complete results of the measured wheel specifications are shown in Table 4.4.
The most influential discrepancy between manufacturing specification and measured
specification occurred with wheel sets 4 and 6 which were specified to be #800 grit.
However, measurements showed them to have #400 grit. The manufacturer explained
that it was not possible to electroplate finer than #400 grit so the ordered #800 wheels
were merely #400 wheels that had been diamond trued in order to fracture abrasive tips
so that the wheel machined surface finishes as fine as #800 wheels. This is indicated with

the abrasive size #400* in the results in Table 4.4.
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Table 4.4 — Experimentally measured specifications of microgrinding wheels

Manufacturer Measured Specifications Measured
Specifications Characteristics [K-S Test|
Wheel#| G# | D | w C | Dyank | thona w C N, C; | P-value
[mm] |[pum] [pm] | [pm] | [pm] [#/mm’]
1.1 326.0 | 47.5 | 1545 |160.39| 182 89.49 | 0.392
1.2 #200| 508 |1588| 140 | 291.5 | 48.7 | 1789 |140.08| 172 79.28 | 0.642
1.3 332.2 | 50.8 | 1260 [141.90| 144 85.47 | 0911
2.1 399.5 | 41.3 | 2830 |177.22| 989 | 228.51 | 0.127
2.2 #400| 508 |3175] 140 | 388.1 | 47.0 | 3024 |149.34| 1000 | 217.47 | 0.264
2.3 396.8 | 45.2 | 2986 |155.31| 1005 | 219.92 | 0.866
3.1 903.4 | 433 | 1317 |136.28| 798 | 194.78 | 0.142
3.2 907.2 | 50.1 | 1419 |127.74| 943 | 209.92 | 0.237
3.3 895.4 | 46.6 | 1459 |115.93| 805 | 177.69 | 0.275
34 921.8 | 40.1 | 1309 |141.30| 774 | 187.75 | 0.263
3.5 906.0 | 42.2 | 1406 |130.15| 794 | 181.50 | 0.807
3.6 903.4 | 44.8 | 1384 |122.50| 781 | 180.88 | 0.047
3.7 895.5 | 444 | 1581 |133.42| 953 | 195.04 | 0.316
3.8 #400| 1016 |1588] 140 | 900.6 | 42.6 | 1496 |128.42| 836 | 180.47 | 0.304
3.9 918.4 | 48.3 | 1406 |105.32| 749 | 167.07 | 0.146
3.10 893.4 | 434 | 1478 |110.68| 720 | 158.28 | 0.248
3.11 909.6 | 42.6 | 1432 |125.59| 790 | 176.57 | 0.646
3.12 912.2 | 43.9 | 1459 |134.20| 891 | 194.42 | 0.020
3.13 900.8 | 48.3 | 1442 |106.99| 767 | 169.74 | 0.136
3.14 909.6 | 42.4 | 1451 |127.22| 807 | 178.05 | 0.511
3.15 910.0 | 43.0 | 1454 |136.09| 878 | 193.06 | 0.005
4.1 954.6 | 42.9 | 1518 |139.26| 981 | 195.18 | 0.183
42 961.8 | 45.0 | 1585 |110.71| 862 | 166.94 | 0.640
4.3 9522 | 454 | 1454 |135.54| 969 | 203.50 | 0.891
4.4 #4007 1016 11588 140 940.2 | 46.6 | 1731 |105.28| 908 | 154.74 | 0.069
4.5 940.9 | 48.9 | 1679 |116.34| 1025 | 180.49 | 0.083
4.6 938.6 | 43.9 | 1461 |109.91| 750 | 160.10 | 0.201
5.1 897.2 | 40.2 | 2863 |135.63| 1587 | 180.53 | 0.657
5.2 #400| 1016 |3175] 140 | 909.6 | 37.3 | 2881 |152.33| 1678 | 188.48 | 0.486
53 899.4 | 38.8 | 2798 |152.11| 1678 | 186.92 | 0.250
6.1 932.8 | 44.6 | 2817 |119.71| 1592 | 173.43 | 0.776
6.2 |#400* 1016 |3175| 140 | 947.3 | 36.7 | 3042 |145.26| 1728 | 174.14 | 0.173
6.3 942.9 | 33.0 | 2956 |163.00| 1680 | 175.36 | 0.549
7.1 1417.0] 41.3 | 1227 |138.18| 1107 | 191.24 | 0.044
7.2 #4001 1524" |1588] 140 |[1422.3] 42.2 | 1326 | 114.50| 1016 | 161.31 | 0.057
7.3 1420.5] 40.9 | 1128 |116.71| 853 | 165.22 | 0.089
8.1 1361.7| 45.2 | 2727 |136.57| 981 79.25 | 0.244
8.2 #200| 1524 |3175] 140 |[1337.5| 52.6 | 2604 |122.81| 968 83.16 | 0.254
8.3 1346.9| 454 | 2844 |140.42| 1046 | 81.84 | 0.593

101



An ANOVA analysis of the measured microgrinding wheel specifications examined
the relationships between the specifications set by the manufacturer, or the input factors,
and the measured specification errors, or responses. An example of a single relationship
analysis is the impact of the nominal wheel diameter on the bond thickness as shown in
Figure 4.14. The 95% confidence intervals of the estimated mean bond thickness for each
group are seen to overlap one another indicating that no conclusion can be made that the
mean bond thickness is different for wheels of different diameters. A Tukey-Kramer test
showed that the actual probability of the mean bond thickness being different for
different wheel diameters (a Type I error has occurred) is 1.9% [63]. The chosen family
error rate limit for this study is chosen to be 5% so it is concluded that the bond thickness
does not differ between wheels of different diameters. Similar results were seen with
respect to wheel axial widths and grit size as seen in Figure 4.15 and Figure 4.16
respectively. It is concluded that the bond thickness is not definitively affected by the

wheel or grit size within the range of the wheels studied.
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Figure 4.14 - Bond thickness measurements showing no definite variation across
different wheel diameters
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Figure 4.15 - Bond thickness measurements showed no definite variation across
different wheel widths
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Figure 4.16 - Bond thickness measurements showed no definite variation across
different grit sizes

The ANOVA analysis was executed to determine the impact of each factor on the
wheel specification responses. The results are summarized in Table 4.5 where the
response directions of the measured wheel specifications for increasing input factors are
shown. Only four out of twelve interactions were seen to have significant impact
according to the Tukey-Kramer test criteria. It was observed that the axial width error of
the wheels decreased for larger wheels. The concentration number error also decreased

for larger diameter wheels but increased for larger width wheels.
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Table 4.5 — Measured specification interactions and distribution parameters

Manufacturer
Specification
Grit| op |width
i c
Gt | D1 | W
Shank OD gshank
. error [um]| ~ - - -5.2 ]10.1
© .2 | Axial Width |Evigm
o = ) i
5 S error [um] ! ! 189.6(160.6
g £ Bond t
Y O
= 2| Thickness Jlum)] ~ | ~ | ~ 43.8 | 3.7
Concentration
# error éc ) I ) 7.7 (171

The mean and standard deviation were also calculated for each wheel specification
across the entire set of wheels. An Anderson-Darling statistical test for each measured
specification showed that they could each be described by a Gaussian distribution despite
the four significant factor effects. An example of one of the tests is shown in Figure 4.17a
with all of the measured concentration numbers falling within the envelope of error on
the normal probability plot. The Anderson-Darling statistic for this particular test was
0.28 while the probability value (p-value) for the test was 63%, well above the chosen
5% threshold, indicating that the Gaussian distribution cannot be rejected as the
underlying distribution of this population. Tests of the other measured wheel
specifications returned similar results as seen in Figure 4.17 for the bond thickness, wheel
shank diameter error, and wheel width error respectively. This allows each of them to be
modeled with Gaussian distributions independent of the input factors. A summary of the
mean and standard deviation of each measured wheel specification is presented in Table

4.5.
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Figure 4.17 - Normal probability plots for the measured wheel (a) concentration
number, (b) bond thickness, (¢) shank diameter error, and (d) wheel width error
across all wheels

4.6 STATIC GRIT DENSITY MODEL ACCURACY

The static grit density Cs was calculated for each measured wheel using the number of
abrasives identified by the machine vision algorithm along with the measured wheel
geometry specifications as shown in Equation 4.2. Here, t is the measured bond
thickness. The measured number of grits and static grit density for each wheel are

included in Table 4.4.

Na

C.=—< Equation 4.2
S (D, + 2t)w quation

The accuracy of the analytic and numerical simulation models for the static wheel

topography was measured by calculating the residual &, between the measured values and
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the values from both the numerical simulation and analytic stochastic propagation

models. This is shown in Equation 4.3 where [i¢_; is the modeled mean static grit density

for wheel i and Ye, ;1s the measured value.

g = ﬁcs,i ~ Yo Equation 4.3

The analytic and numerical simulation models show that for identical wheel
geometries with identical concentration numbers, the static grit density for the separate
wheels has a Gaussian distribution. The distribution of static grit densities is caused by
the stochastic nature of the grit sizes and locations. The modeled value used in Equation
4.3 is the mean of the modeled static grit density distribution.

The calculated residual for each wheel for the numerical simulation and analytic
models are shown in Table 4.6. The histogram of the numerical simulation residual is
shown in Figure 4.18a while that for the analytic model is shown in Figure 4.18b. It is

observed that both residual sets are distributed around zero but in general the numerical

simulation over-estimates the static grit density while the analytic model under-estimates

it.
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Figure 4.18 - Histogram of static grit density residual error between experimental
measurement and (a) numerical simulation model and (b) probabilistic model
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Table 4.6 — Static Grit Density Model Residuals and Experimentally Measured
Circumferential Static Grit Spacing Distribution Parameters

Measured Static Grit Grit Spacing Loglogistic Distribution
Density Residuals Parameters
~ Numerical Probabilistic Location Scale
Wheel #| G# | Simulation Location | Scale | Standard | Standard

Model Model Error Error

1.1 -0.22 -1.38 5.107 0.335 0.049 0.021
1.2 #200 -0.37 -1.65 5.163 0.345 0.054 0.023
1.3 -1.35 -3.14 5.127 0.349 0.060 0.026
2.1 2.91 -1.61 4.310 0.340 0.020 0.009
2.2 #400 0.87 -2.06 4.335 0.342 0.020 0.009
2.3 2.14 -2.22 4.337 0.321 0.019 0.009
3.1 -1.41 -3.94 4.495 0.319 0.020 0.009
3.2 -0.94 -3.00 4416 0.346 0.021 0.010
3.3 2.65 -1.71 4.544 0.335 0.021 0.010
34 -2.06 -2.83 4.500 0.359 0.023 0.011
3.5 -0.96 -2.32 4.514 0.333 0.021 0.010
3.6 2.43 -2.46 4.509 0.365 0.023 0.011
3.7 -0.74 -2.98 4.449 0.333 0.020 0.009
3.8 #400 -2.76 -2.08 4.504 0.365 0.022 0.010
3.9 1.45 -2.44 4.568 0.354 0.023 0.011
3.10 0.35 -2.66 4.622 0.349 0.023 0.011
3.11 -0.25 -2.39 4.538 0.341 0.022 0.010
3.12 -1.30 -3.09 4.477 0.328 0.020 0.009
3.13 -1.73 -2.11 4.589 0.325 0.021 0.010
3.14 1.09 -2.49 4.500 0.343 0.022 0.010
3.15 -0.04 -2.55 4.458 0.344 0.021 0.010
4.1 3.42 -1.03 4.434 0.354 0.020 0.010
4.2 -1.20 -5.24 4.612 0.329 0.020 0.009
43 4400* 1.83 -2.26 4.383 0.334 0.019 0.009
4.4 5.22 4.68 4.635 0.352 0.021 0.010
4.5 6.35 4.39 4.495 0.348 0.020 0.009
4.6 -0.26 -3.41 4.610 0.363 0.024 0.011
5.1 -1.25 -3.65 4.498 0.356 0.016 0.007
5.2 #400 -3.90 -3.86 4.458 0.342 0.015 0.007
5.3 7.12 5.88 4.475 0.339 0.015 0.007
6.1 1.93 0.61 4.530 0.357 0.016 0.007
6.2 |#400%* 2.10 -1.02 4.535 0.342 0.015 0.007
6.3 4.90 0.51 4.508 0.383 0.017 0.008
7.1 1.52 -2.44 4.473 0.327 0.018 0.008
7.2 #400 1.25 -1.04 4.629 0.345 0.020 0.009
7.3 -3.23 -7.31 4.598 0.336 0.021 0.010
8.1 -0.32 -1.73 5.269 0.380 0.022 0.010
8.2 #200 -1.20 -1.96 5.204 0.386 0.023 0.010
8.3 -0.37 -1.98 5.222 0.386 0.022 0.010
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The numerical simulation and analytic model provide distributions of the static grit
density caused by the stochastic nature of the grit size and locations. The deviation of the
measured static grit density values from the means of these distributions could still lie
within the range predicted by the model standard deviations. An investigation of this was
conducted by calculating the probability that the residual between the models and
measured value (or a more extreme residual) could come from the distributions provided
by the models. The Gaussian distribution of the predicted static grit densities allows the
use of the complimentary error function to compute the two-sided tail probability as

shown in Equation 4.4. Here, G¢_; is the standard deviation of the distribution of the static

grit density as predicted by the models, and P is the p-value for the two-tail test.

Hegi — Ve

Gc,iV2

P = erfc Equation 4.4

The significance level selected for the test p-value test is 5%. If the value calculated
using Equation 4.4 is less than 5%, then it is determined that the distribution provided by
the model did not accurately predict the measured static grit density. Results showed that
the numerical simulation predicted the static grit density in only 12 of the 39 wheels
measured with significance greater than chance. The analytic model only predicted the
value in 6 of the 39. However, there is uncertainty in the measured values of the wheel
actual specifications of the concentration number, bond thickness, wheel width, and core
diameter. Utilization of the uncertainties in the wheel numerical simulation and analytic
models broadens the Gaussian distribution estimate of the static grit density.
Incorporating this uncertainty into the models showed that static grit density was

correctly predicted in all 39 wheels using both models.
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4.7 STATIC GRIT DENSITY VARIANCE SCALE EFFECT

It is proposed that small number of abrasive grits that reside in microgrinding wheels
can lead to scale effects in which there is larger wheel-to-wheel variation in the wheel
topography due purely to statistical sampling. This scale effect is investigated by
examining the relationship between the static grit density relative standard deviation
across each wheel-set to the average number of grits in the wheels within the set. This is
plotted in Figure 4.19 where it is seen that there is a definite trend towards more variation
in wheels with fewer grits. The small number of wheels sampled limits the possibility of
quantifying the scale effect, but it is observed that the static grit density standard
deviation approaches as high as 3.6% of its mean. Analysis of the wheel specifications
showed no definite dependence of the manufacturing specification errors on the number
of grits in the wheel. Therefore, the dependence of the static grit density variation must
be attributed to statistical effects associated with nature of small wheels with larger grit

sizes.
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Figure 4.19 — Potential scale effect of higher static grit density relative standard
deviation in microgrinding wheels due to the few number of grits in the wheel
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4.8 STATIC GRIT POSITIONS

The machine vision algorithm identified individual grits and calculated their centroid
locations within each image. The occurrence frequency of the grit locations was analyzed
in order to validate the underlying model assumption that the grits are position
probabilities are uniformly distributed in Cartesian space. The analytic model in
CHAPTER 2 was based on this assumption and calculates uniformly distributed grit
position in the angular and axial directions of the cylindrical coordinate system of the
wheel. Therefore, the grit positions in these two cylindrical coordinates were analyzed for
the 15 identical wheels comprising wheel set 3. The domain of possible locations of grit
positions in the angular direction is 0 to 2m while in the axial direction it is 0 to

1.5875mm. The occurrence frequency for the angular grit positions is shown in Figure

4.20 while that for the axial positions is shown in Figure 4.21.
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Figure 4.20 — Occurrence frequency of angular grit position in wheel set 3
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Figure 4.21 - Occurrence frequency of axial grit position in wheel set 3

It is observed that the occurrence frequencies are approximately uniform in both
directions although there is slight divergence in the lowest axial positions. These
occurrence frequencies are taken to verify the underlying assumption of uniform

probability of grit positions in Cartesian space.

4.9 STATIC GRIT SPACINGS

The machine vision algorithm was used to measure the spacings between the grits in
both the axial direction and the circumferential direction of the wheel. These two strip
directions are shown in Figure 4.22. The spacings measured are between grits that would
remove material along the same line of action in the specified direction. Therefore, the
wheel surface was divided into strips in each direction with the strip widths equal to the
mean grit diameter for the wheel. The spacings between sequential grits within the same
strip were then calculated using the identified grit centroids from the machine vision
analysis. Wheel 6.2 has the largest number of grits and grit spacings which lends it to the
best visualization of the static grit spacings. A sample histogram of the measured

circumferential spacings in wheel 6.2 is shown in Figure 4.23.
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Figure 4.22 — Measurement strips used to verify that static grit density is
independent of the strip direction
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Figure 4.23 — Histogram of the circumferential grit spacings in wheel 6.2

Measurement of a wheel with the machine vision method facilitates grit spacing in

the axial direction more easily than in the circumferential direction as there is no need for

image stitching. If the spacings in the two directions, which are independent, belong to

the same probability distribution, then axial spacing measurement can serve as a more

efficient way to estimate the distribution in the circumferential direction which is of most

interest in the modeling of grinding action. The distributions of the spacings in the two

directions were tested against each other using the Kolmorgorov-Smirnov test to

determine if they were identical [64]. The probability-value from the test is required to be
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above the 5% threshold to conclude that the samples could come from the same
continuous distribution. The results of the test are shown in Table 4.4 where it is seen that
35 of the 39 wheels measured passed the test.

The distribution of the spacings was also investigated as current knowledge proposes
three different distributions: exponential, gamma, and Rayleigh with the latter being the
most popular as outlined in Table 2.1. The goodness-of-fit of these distributions to the
measured spacings was evaluated along with two additional distributions, lognormal and
loglogistic, as these exhibit similar shapes to the established distributions. The governing
parameters for each distribution were estimated for the grit spacings in both directions for
all of the measured wheels. Again, wheel 6.2 provides the best visualization of the
distribution fitting due to its large number of grit spacings. Comparisons of the fitted
distributions for wheel 6.2 are shown in Figure 4.24a for the Rayleigh and lognormal

distributions and in Figure 4.24b for the Rayleigh and loglogistic distributions.
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Figure 4.24 — Frequency PDF of measured circumferential grit spacings in wheel 6.2
with fitted distribution comparison between the currently used Rayleigh
distribution and proposed (a) lognormal distribution and (b) loglogistic distribution

113



It is seen that both of the newly proposed distributions are improvements over the
Rayleigh distribution with the loglogistic distribution marginally fitting the dataset better
than the lognormal distribution graphically. The goodness-of-fit for each distribution was
evaluated by calculating the p-value and Anderson-Darling statistic each fit. The
Anderson-Darling statistic measures the area between the fitted distribution and
cumulative data step function. The areas near the tails of the distribution are weighted
more heavily providing better differentiation between similar distributions [65]. Lower
Anderson-Darling statistics indicate a better goodness-of-fit evaluation for a given
distribution.

The results of the distribution evaluation are shown in Table 4.7 where it is seen that
of the established distributions, the gamma distribution has the best average Anderson-
Darling statistic. However, the newly proposed lognormal and loglogistic distributions
are seen to better describe the data with both better Anderson-Darling and p-value
statistics. The two new distributions show similar potential to describe the distribution
best as they split superiority between the two metrics. A third statistic, the correlation
coefficient (Rz), was calculated to differentiate the two distributions. The correlation
coefficient is calculated based on the error between data and the one-to-one line of the
corresponding probability plot for each distribution. It is seen that the loglogistic
distribution provides better results in two of the three test statistics showing that it best
describes the grit spacing probability out of the distributions examined. The estimated
loglogistic distribution parameters and the associated standard errors of the parameters

are tabulated for each wheel in Table 4.6.
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Table 4.7 — Grit spacing distribution results

e e . Mean Anderson- | Mean Mean.
Distribution Darling Statistic | P-value Correlatlon2
Coefficient R
Exponential 75.23 0.003 -
Gamma 7.40 0.005 -
Rayleigh 34.12 0.003 -
Lognormal 2.41 0.009 0.982
Loglogistic 2.50 0.014 0.985

4.10 DISCUSSION

The analysis of the microgrinding wheel specifications showed that there is
significant error between the target values specified by the manufacturer and the values
measured in the final products. The shank diameter errors can be attributed to variations
in the turning process used to create the steel shanks of the grinding wheels. This source
of overall uncertainty can be easily reduced by tightening the tolerances used to machine
the shank. The bond thickness variation arises from the nature of the plating process
governed mostly by electroplating time. The wheel width and concentration error come
from the method in which the grits are adhered to the shank before the wheel is
submerged for electroplating.

The comparison between the model and the measured static grit density showed that
when using only the mean static grit density reported by the models, the measured static
grit density residuals are as high as 7.31 grits/mm”. However, utilizing the expanded
stochastic considerations in the analytic and numerical simulation models allows for a
predicted distribution of values for the static grit density while accounting for the
uncertainty in the measurement of the wheel specifications. The probability analysis

showed that when accounting for the measurement uncertainty of the exact wheel
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specifications, both the numerical simulation and probabilistic model accurately predicted
the static grit density in all 39 wheels with a significance level of 5%.

The ability to use the models to predict the static grit density of microgrinding wheels
can be explored by utilizing only the manufacturer-provided wheel specifications as a
priori information. The numerical simulation model showed that the average residual
between the mean static grit density predicted by the simulation and the measured values
was only 0.81 grits/mm”. However, the worst a priori estimate was 25.3% larger than the
measured value. This demonstrates that microgrinding wheel topography modeling needs
metrology inspection of the wheel geometry to have any confidence in the modeled static
grit density. Manufacturer specifications have errors that compound to yield a final
product that deviates too significantly. Instead, distributions for the predicted errors in
each manufacturer specification can be generated by a set of metrology experiments. This
study showed that these distributions can be modeled as Gaussian for the manufacturer
chosen.

The investigation into the statistical scale effects associated with small numbers of
grits in microgrinding wheels showed that such wheels possess inherently more variation
in wheel topography than larger grit population wheels. This demonstrates the need for
microgrinding modeling to include stochastic descriptions to bound potential process
characteristics as mere average-value do not fully capture the potential process outcomes.

The best solution for acquiring accurate static wheel topography information is in situ
wheel measurement. The machine vision technique used in this study is easily adaptable
to be performed using an inexpensive camera system in the actual microgrinding machine

tool. The algorithm can quickly and autonomously provide full wheel surface
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characterization or, by utilizing sampling statistics, measure only a small portion of the
wheel and predict the topography characteristics. The measurement of the grit spacings in
axial and circumferential directions of the grinding wheels showed that they can be
modeled with the same distributions. This allows the machine vision technique to only
need to measure the axial grit spacings without needing to stitch together full images of
the wheel surface.

The examination of the grit spacing distributions led to the conclusion that the
loglogistic distribution describes the superabrasive grit spacings better than the currently
used distributions. However, examination of the statistics of the fitted loglogistic
distributions showed that only 7% of the measured spacing sets had p-values large
enough for 95% confidence in the distribution. Therefore the loglogistic distribution does
not fully explain or capture the distribution of the grit spacings. More complex analytic
modeling of the grit spacing probabilities or fitting of more complex distributions is

needed to improve the model.

4.11 SUMMARY

A machine vision measurement technique has been established as a method of
quickly measuring the static wheel topography on the surface of the microgrinding
wheels in situ. The probabilistic and numerical simulation models developed in
CHAPTER 2 and CHAPTER 3 provide probability distributions for the static grit density
of a particular microgrinding wheel. Analysis of the static grit density values measured
on the microgrinding wheels showed that the distributions provided by both the analytic

and numerical simulation models accurately predicted the static grit density within a
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significance level of 5%. It is important to understand that the comparison of a single
measured value to a distribution of probable values can only yield the probability that the
measurement did in fact come from the distribution.

The use of the models to predict the static grit density using only a priori
manufacturer specifications was seen to have predicted static grit density errors of as
much as 25.3% of the measured static grit density. This demonstrates that the accurate
prediction of the distributions of the static wheel topography characteristics cannot rely
on manufacturer specifications of the grind wheel geometry.

The grit spacings on the wheel surfaces were shown to be identical in the axial and
circumferential directions lending the machine vision measurement method for easy
implementation as in sifu measurement of the wheel surface without the need for image
stitching. The grit spacing probabilities were shown to be better described by a loglogistic
distribution than the currently used Rayleigh distribution. In addition, it was shown that
microgrinding wheels suffer from increased wheel topography variation due to statistical
population size effects associated with the small number of abrasives involved. Future

work is required to develop a comprehensive description of grit spacing probabilities.
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CHAPTER 5 - STATIC WHEEL TOOPOGRAPHY SCALE

EFFECTS

5.1 INTRODUCTION

The limited number of abrasives in microgrinding wheels is hypothesized to increase
the variance in the distributions of wheel topography characteristics thereby increasing
the variability in process force attributes. Results from the measurement of microgrinding
wheels in CHAPTER 4 have already showed that the variability in the static grit density
increases in wheels with fewer grits. This potential scale effect could be detrimental to
the integrity of the microgrinding of HAR ceramic micro-features. Improved
understanding of the nature of grind wheel topography at the micro-scale is needed to
mitigate the possibilities of excessive depth of cut of individual grits and cutting
frequencies that could dynamically excite the receptive micro-features.

The nature of increased variance in microgrinding wheels will be investigated using
the analytic topography model to calculate distribution parameters in various size wheels.
The scaling parameter which most impacts the topography variance is identified.
Microgrinding topography measurements in CHAPTER 4 showed that microgrinding
wheel specifications have large wvariability and deviation from manufacturer
specifications. The impact of this on wheel topography distributions is explored. Finally,
the ability to use in situ measurement of microgrinding wheels to acquire a more accurate

prediction of the wheel topography is investigated.
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5.2 REVIEW OF SALIENT LITERATURE

Limited research has been conducted on the scale effects associated with
microgrinding wheels. There are multiple definitions of microgrinding but the most
robust definition, put forth by Park, involves both the wheel size and process parameters.
Microgrinding wheels are typically two or more orders of magnitude smaller than
conventional grinding wheels as is illustrated in Figure 5.1. The microgrinding definition
extends to the grinding process parameters as there are distinct workpiece interaction

characteristics as is outlined in Table 5.1 [18].

Conventional- Micro-grinding
grinding wheel e  wheel

-~ J

Same part

Figure 5.1 — Microgrihding as defined by the size of the grinding wheel[18]

Table 5.1 — Microgrinding as defined by distinct process characteristics|[18]

Conventional Grinding Microgrinding
Depth-of-Cut to .Grit Diameter 50-100 0.1-1
Ratio
Ploughing Effect Not Significant = 0% Significant = 10-30%
Interfacial Friction U= U U = U (depth of cut) + i,
Chip Formation Rake Angle Constant Negative Vairable Negative
Material Removal Rate 10" ~ 10" mm® / mm-sec 10" ~ 107 mm’ / mm-sec
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5.3 INVESTIGATION OF SCALE EFFECT ASSOCIATED WITH
STOCHASITIC DISTRIBUTIONS USING ANALYTIC

TOPOGRAPHY MODEL

The characterization of the scale effects in microgrinding wheel topography requires
an investigation of the nature of static grit density as grind wheels decrease in size to the
micro-scale. This can be conducted by utilizing the analytic model for the static grit
density in superabrasive grinding wheels developed in CHAPTER 2. The definition of
microgrinding wheel structure requires the investigation to merely vary the wheel
diameter and observe the effect on the static grit density distribution. Several
simplifications and assumptions must be made, however, to facilitate the study. These are

summarized in Table 5.2.

Table 5.2 — Parameters for scaling study of static grit density

Conventional Grind Wheel Microgrinding Wheel
Wheel Bond Diameter 100 mm - Dy —» 0 mm
Grit Mesh Size #100, #220, #440
Wheel Width 30mm - Dy - 0.1 mm
Fully Sampled Wheel Width (Zg,Zp)=(0,w)
. . Dg - Dc
Single-Layered Grits — = Up
Static Grit Density Measured at R = D,
Wheel Surface cT
No Variance in the Total Volume
of Abrasive in the Wheels Var[V,] =0
(Perfect Manufacturing)

The results of the analytic study for #220 wheels with a fixed axial width of 10mm

are shown in Figure 5.2a where the expected static grit density and standard deviation of
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Static Grit Density

the static grit density are shown as the outer wheel diameter is decreased. It is noticed
that the expected mean static grit density decreases at the micro scale while the variation
in the static grit density increases. The decrease in expected static grit density is
attributed to the effects of decreasing surface area of the wheel while the increase in static
grit density variance is attributed to the statistical effects.

The opposing trends in the static grit density expected mean and standard deviation
can be better captured by utilizing the relative standard deviation (RSD) of the
distribution as defined in Equation 5.1. The relationship between the wheel outer bond
diameter and the RSD of the static grit density are shown in Figure 5.2b. Notice how
microgrinding wheels have static grit density standard deviations that are up to 3% of

their expected mean values.

RSD; =-——— Equation 5.1
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Figure 5.2 —Variation of static grit density in #220 single-layered grind wheels as a
function of the outer bond diameter formed as the (a) expectations and standard
deviation and (b) as the relative standard deviation
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Another investigation into the effects of the size of the grind wheel on the static grit
density can be conducted by using a constant wheel diameter but a varying grind wheel
width. Figure 5.3a shows that the expected mean and standard deviation of the static grit
density of a single-layered grind wheel with a fixed outer diameter of 1.0 mm and a
wheel width that varies from 0.1 to 30 mm. It is seen that although the expected static grit
density remains constant, the standard deviation in its distribution increases significantly
as the wheel size decreases. Figure 5.3b shows that the RSD significantly increases in

thin wheels as well.
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Figure 5.3 —Variation of static grit density in #220 single-layered grind wheels as a
function of the wheel width formed as the (a) expectations and standard deviation
and (b) as the relative standard deviation

It is hypothesized that the increase in the relative variation of the static grit density
can be attributed to the size of the grits relative to the wheel. Figure 5.4 shows the RSD
for three single-layered wheels with a 10 mm width and varying outer diameter and grit
size. It is seen that both have an effect on the RSD. Increasing the grit size and decreasing

the wheel diameter has a net effect of increasing the RSD. Here, the core diameter of the
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wheel is adjusted for each grit size and outer diameter to maintain the single-layered

wheel structure by requiring the bond thickness to be equal to the average grit diameter.
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Figure 5.4 - Variation of static grit density in single-layered grind wheels as a
function of the outer bond diameter and grit size

The RSD can also be investigated as a function of the wheel outer diameter
normalized by the mean grit diameter as seen in Figure 5.5. The normalization to the
mean grit diameter provides better correspondence between the wheels, but it does not

completely capture the micro-scale trend.
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Figure 5.5- Variation of static grit density in single-layered grind wheels as a
function of the outer bond diameter divided by the mean grit diameter
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The expected number of abrasives in the wheel can also be used to normalize the
RSD between different wheels as shown in Figure 5.6. It is seen that the expected number
of abrasives in the wheels normalizes the RSD so that there is no dependence on abrasive
size or wheel size. Therefore, this is taken to be a better scaling parameter than the
standard wheel outer diameter when the scale effect of interest is the variance in the

location and number of abrasives within microgrinding wheels.
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Figure 5.6- Variation of static grit density in single-layered grind wheels as a
function of the outer bond diameter divided by the mean grit diameter

5.4 EFFECT OF MANUFACTURING VARIANCE AT THE

MICROSCALE

The measurement of the microgrinding wheel specifications presented in CHAPTER
4 showed that wheels that are manufactured to be identical in fact have large variability
in geometry and concentration number. It is desired to know how this variability impacts
the wheel topography distributions. It is hypothesized that wheel specification variability

exacerbates the statistical variation in wheel topography at the micro-scale.
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The scaling study has shown that the relative standard deviation of microgrinding
wheel static grit density increases significantly when the expected number of abrasives in
a single-layered wheel drops below 2000. However, the wheel topography has a large
dependence on the expected mean and variance in the number of abrasives that are in a
wheel. The manufacturer specifies a wheel concentration number which is a
representation of the expected mean number of grits. However, the variance in the
number of grits is not stated as a representation of how closely the manufacturing process
meets the targeted concentration number.

An investigation of the effect of manufacturing variance in the concentration number
can be conducted by first defining a relative standard deviation in the concentration
number as shown in Equation 5.2. Combining the definition of the expected
concentration number in Equation 2.8 and the analytic expectation of the number of
abrasives in the grind wheel shown in Equation 2.19 yields a condensed form of the

expected number of abrasives as shown in Equation 5.3.

Var|C .
RSD_ = E[Cg | Equation 5.2
d2 — d?
E[N,] = E[C]Wn< 4 ) Equation 5.3
¢ 400E[V;]

The variance in the number of abrasives in a grind wheel is a function of both the
expectation and variance in the number of abrasives in the wheel. This was derived in
Equation 2.21 and is duplicated in Equation 5.4 for convenience. It is seen that a variance
in the total volume of abrasive in the wheel needs to be derived. This can be calculated

from the definition of the concentration number as shown in Equation 5.5.
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Var[V,] + E[N,]Var[V;]

Var[N,] = Equation 5.4
¢ (E[ViD)?
2
wr (B %)
Var[V,] = Var[C] 200 Equation 5.5

This can be rearranged in terms of the RSD of the concentration number using

Equation 5.2 as shown in Equation 5.6.

2 2

Wn(d@;dcz)
Var[V,] = ( RSD:E[C])? — 200 | = RSD

E[Clwn (
400 Equation 5.6

dy — d?)
4

= (RSDE[N,]E[V;])?
The equations can now be combined to produce a final variance in the number of grits

within a wheel as shown in Equation 5.7. It is seen that the number of grits in the wheel
has a variance which is the sum of the contribution from the variance in the concentration

number (1st term) and from the variance in abrasive sizes (2nd term).

(RSDE[N,]E[V;D)? + E[N,]Var([V{]
(E[ViD?

E[N,]Var[V;]
= (RSDE[N,D? + BV

The relative standard deviation of the number of abrasives in a grind wheel can be

Var[N,] =

Equation 5.7

formed using Equation 5.7 and Equation 5.4 as shown in Equation 5.8.

E[N,]Var[V;]
Var[N,] (RSDCE[N,])* + (E[v;D? Var([V;] Equation 5.8

BN BTN, - J S TATGIAIE

RSDNa =

It is desired to know the impact of the variability of the static grit density as a
function of the variability in the concentration number. The analytic wheel topography
model calculates the expectation and variance in the static grit density as shown in
Equation 5.9 and Equation 5.10 using the wheel surface area Ac_ and the expectation and

variance in the number of grits that intersect the surface, N.
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E[N]

E[C,] = 1 Equation 5.9
er
Var[N]
Var[Cs] = —— Equation 5.10
(4c,)

The relative standard deviation of the static grit density can now be defined and
calculated using the analytic model and relationships derived in this section. The final

form of the relative standard deviation in the static grit density is shown in Equation 5.11.

RSD,, = \/Var[C;] _ Var[N] B JVEIN IVar[€] + (E[C])2Var[N,]

E[C,] E[N] E(C)E[N,]
B E[N,]|Var[C] + (E[C])?*Var[N,] B Var[C] Var[N,]
- E(C)?E[N,]? ~ JE(©)?E[N,] * | E[N,]?

Equation 5.11

_ BSDe | psp, = BSPe . |gsp, 4 VarlVil
E[N,] N JEIN ¢ TEINI(EWD?
RSD. + RSDy,

VEI[N,]

It is seen that the RSD in the static grit density is equivalent to the RSD in the

= RSDC +

concentration number at the conventional scale where there is a large number of
abrasives in the wheel. However, as the number of grits in the wheel decreases, the RSD
in the volume of an individual grit and the RSD of the probability of a grit intersecting
the surface of the grinding wheel have more effect.

The calculated impact of the concentration number variability on the variability in the
static grit density is difficult to visualize in Equation 5.11. Figure 5.7 shows the effect of
the concentration number RSD on the static grit density RSD in #220 grinding wheels. It
is seen that the RSD of the concentration number dominates the static grit density
variability in conventional grind wheels. The grit density variability is not impacted by

scaling effects until the expected number of abrasives reaches a very small value. Re-
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examination of Equation 5.11 shows that this is caused by square root of the expected

number of abrasives in the denominator of the second term.
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Figure 5.7 — Effect of concentration number relative standard deviation on static
grit density variance

5.5 STATIC GRIT DENSITY MEASUREMENT AT THE

MICROSCALE

The in-situ measurement of surface topography in microgrinding wheels can allow
for the tuning and calibration of the probabilistic model of the wheel topography. The
machine vision measurement technique presented in CHAPTER 4 samples images of
individual axial segments of the microgrinding wheel. Sampling of the entire wheel
surface is not necessary to obtain an accurate prediction of the surface topography and
calculation of the minimum number of samples that are needed will reduce the amount

time needed for measurement.
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5.5.1 Static Grit Density Sample Measurement to Estimate Static Grit Density of a
Single Wheel

Suppose that a grind wheel has a total surface area of A¢, over which the total number

of contained grits Y needs to be estimated. The maximum area sample size of a given

measurement method can be designated as Agampre- The total population of independent

samples that reside in the wheel can be designated as N and can be determined by

Equation 5.12. For simplicity, it is assumed that the sample area is altered such that the

total sample population is an integer.

N = L Equation 5.12
Agample
The most efficient sampling method requires that each sample taken from the wheel
be independent and non-overlapping. The number of samples used to estimate the total
number of grits on the surface can be designated as n. Therefore, there will be samples i =
1, 2, 3,...,n, each of which will yield an individual count of the number of grits yi, >,
V3,...,¥, Within its sample area. This process is designated as a “simple random sampling
scheme without replacement” in that the actual sample areas used for the estimation are
randomly chosen from the available population and no sample is used more than once. It
is has been shown through numerical simulation that the static grit density on a wheel is
normally distributed. As the static grit density is proportional to the number of surface
grits on a wheel by the total surface area, the total number of surface grits on the wheel is
also normally distributed [45].
This process is well described in literature, and statistical descriptions of the

estimation of the total number of grits ¥ are common knowledge [66]. The unbiased,

consistent estimator of the total number of grits, ¥, is the arithmetic mean of the sample
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outcomes, y, multiplied by the population size N which is shown in Equation 5.13. This

estimator is consistent in that if the total population was sampled, i.e. n =N, then Y =Y.

Y=Ny=—)>y Equation 5.13

This provides the estimate of the total number of grits. However, the variance of this
estimation is also needed in order to choose the number of samples needed to reach
certain accuracy in the estimation. First, the mean squared error (MSE) of the population
measures the average of the square of the difference between the number of grits counted
in a sample and the average of the number of grits in all samples. The MSE is designated

as S and is shown as Equation 5.14.

1 < 1 < 1<)
S2 ZHZ(% —-7)2 zmz (3’i _NZyL) Equation 5.14
i=1 i=1 i=1

However, the actual MSE of the population is not available unless the entire
population is sampled. Therefore, $% can be estimated using the unbiased estimator s
which can be calculated according to Equation 5.15.

1 n 1 n 1n 2
2 _ )2 — R . Equation 5.15
R EOXCEREE)Y (RN :
i= i=

i=1

This unbiased estimate of the population MSE can now be used to estimate the
variance in the predicted total number of grits. This variance in the predicted total

number of grits is shown in Equation 5.16.

2
~ N .
Var[V] = N(N —n) - Equation 5.16
The expectation and variance in the estimated total number of grits on a wheel surface

assume that the prediction can be described by a normal distribution. Therefore, a

confidence interval can be generated for the estimation based on a desired accuracy
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probability 1-a. It is chosen by convention that that the confidence interval CI of the
estimate needs to be within 95%. This confidence interval can be generated using a
student ¢-distribution as shown in Equation 5.17. Here, t,_1 4/, denotes the 1-a quantile
of the ¢-distribution with n-1 degrees of freedom. Values for this quantile can be found in

tabulations in most statistical references.

P [? — tnovap2 |Var[Y] SY <V 4ty o [Var[¥]

Here, the actual total number of grits lies within a confidence half-width of the

=1—-a«a Equation 5.17

estimated total number of grits with a probability of 1-a. This confidence half-width H is

shown in Equation 5.18.

- s2 .
H=ty 10/ /Var[y] = ty-1,a/2S ,N(N - n); Equation 5.18

5.5.2 Sample Size to Estimate Static Grit Density of a Single Wheel

The calculation of the number of wheel surface measurement samples needed to
predict the total number of abrasives requires that an accuracy half-width first be chosen.
Here, it is selected that the tolerable range needs to be approximately 5% of the actual

number of grits as is shown in Equation 5.19.

H < 0.05Y Equation 5.19

However, the actual number of grits in the wheel is unknown as it is the goal of the
estimation. Standard techniques involve a pre-sampling of the population in order to
estimate the actual number of grits for this calculation of the number of samples needed
in future sampling [67]. However, this study will utilize the numerical simulation for
static grit density to investigate the effects of sampling on the estimation of the total

number of grits on a wheel surface.
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The numerical simulation provides an estimated number of grits on a wheel surface,
?analytic. In the case of a single-layered, #220 grit wheel with a surface diameter of
1.0mm and a width of 10 mm, the predicted static grit density is 42.31 grits/mm” and
therefore ?analytic is 1,329 grits. The half-width of for 5% accuracy needs to therefore be
less than 66 grits.

The confidence interval half-width is dependent on the #-distribution value with n-1
degrees of freedom, the number of samples n, the population size N, and the sample
variance s°. An estimate for the sample variance can be obtained by analyzing the
probability of grits on the wheel surface being located within a sample area. If the total
population of i.i.d. sample areas on the wheel surface is &V, then the probability of a single
grit i being located within the area is 1/N with the assumption that the grits are uniformly
distributed across the surface as shown in Equation 5.20. The number of grits actually
residing in a sample area ysample 1S @ random variable with a distribution equal to the sum
of the probabilities of each grit on the wheel surface being located within the sample area.
Therefore, the number of grits located in the sample is Binomially Distributed with Y

total number of grits being the number of Bernoulli trails and a probability occurrence of

1/N as shown in Equation 5.21.

1 .
P[i € sample area] = 5 Equation 5.20

Y
1 .
Vsample ™~ Z P[i € sample area] = B (Y, ﬁ) Equation 5.21
i=1
The mean and variance in the number of grits residing in a sample are given by

Equation 5.22 and Equation 5.23 respectively. The ratio between the variance and the

mean is given by Equation 5.24.
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MYSample = ﬁ Equation 5.22
Y 1
2 I _ .
Tysample — N (1 N) Equation 5.23
o? 1
TP = (1 - N) Equation 5.24

MYSample

It is seen that for large values of A, the variance is approximately equal to the mean.
This relationship will be used to approximate the sample variance when selecting the
sample size needed to estimate the total number of grits in a wheel to within 5%
accuracy.

The machine vision approach used to measure the surface topography of the
microgrinding wheels has a limited field-of-view due to resolution, magnification, and
distortion. It was determined that this view is size is approximately 0.175 mm in the
circumferential direction and 0.833 mm in the axial direction. This sample area will be
used in a study to determine the number of samples that need to be taken of a grinding
wheel to predict its static grit density to within 5% accuracy with 95% confidence. This
study will vary the wheel and grit size in order to investigate if there are any micro-scale
effects associated with the sampling.

Figure 5.8 shows the estimated number of samples needed to estimate the total
number of grits on a wheel surface to within 5% with 95% confidence. Each wheel is 10
mm wide and is single-layered. It is observed that number of samples needed increases as
the wheel diameter increases. This effect asymptotically decreases as the outer diameter,

and therefore total number of samples available in each wheel, increase.
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Figure 5.8 — Total sample population and number of samples needed to estimate the
total number of surface grits on single-layered grind wheels

It is observed that the total population size increases as the wheel size increases but
the total number of samples does not. A useful parameter for analyzing this effect is the
sampling ratio f ' which is defined in Equation 5.25. The sampling ratio needed can then be
used to analyze the scale effects in wheel measurement sampling. It is seen in Figure 5.9
that as the wheel diameter decreases, the sampling ratio increases. It is also observed that

larger grits require a larger sampling ratio as well.

n
f= N Equation 5.25
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Figure 5.9 — Sampling ratio required on varying OD single-layered grind wheels to
estimate the total number of surface grits and static grit density to within 5% with
95% confidence
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A better descriptor of the scaling effect is the expected total number of grits in the
wheel. This parameter captures both the wheel size and grit size. It is seen in Figure 5.10
that the sampling ratios of the three grit sizes are equalized by plotting it against the

expected total number of grits in the wheels.
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Figure 5.10 — Sampling ratio required to estimate the total number of surface grits
and static grit density to within 5% with 95% confidence

The total number of surface grits on a grind wheel is proportional to its static grit
density by the surface area. Therefore, the sampling ratio needed to maintain a 5%
accuracy estimation on the static grit density is identical to that needed for total number

of surface grits.

5.5.3 Static Grit Density Sample Measurement to Estimate Static Grit Densities
across a Set of Wheels from the Same Manufacturer
Manufacturers do not provide the variance in the concentration number causing
inaccuracy in analytic prediction of the variance in the static grit density. The
concentration number variance needs to be estimated from measurements in order to
bound the distribution of static grit densities to a confidence interval that allows for

accurate process prediction.
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In this case of measuring wheels to calculate the variance in the concentration number
for a given manufacturer, it is assumed that each sample is taken of an entire wheel which
comes from an infinitely large population of wheels. All of the wheels in the population
have the same nominal dimensions and were produced similarly from a single batch
process. The sampling process under consideration will involve the full measurement of
each wheel used as a sample i. Each sample i will yield a single static grit density value
csi for the entire wheel. The goal of the sampling is to estimate the true mean and variance
of the static grit density across separate wheels within the population. Given n wheel
samples, the estimated mean static grit density and the variance of that estimate are given

by Equation 5.26 and Equation 5.27 respectively.

n

Z Cs; Equation 5.26

i=1

Cs=¢=

S|

2
Var[Cy] = > Equation 5.27
n
The estimated static grit density variance and the variance of that estimate are given

by Equation 5.28 and Equation 5.29 respectively.

Var[C,] = s? Equation 5.28

2s*

n—1

Var[VzTr[\Cs]] = Equation 5.29
The confidence interval half-width for the estimated static grit density mean is given

by a student #-distribution as shown in Equation 5.30.

, ~ s? .
He = tyovap Var[CS =ty 1072 - Equation 5.30

The confidence interval half-width can be used to calculate the number of wheels that
need to be sampled in order to estimate the mean static grit density for identical wheels
from the same manufacturing process. Figure 5.11 shows that the variance in static grit
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density from the expected number of grits in a wheel does not affect the number of
samples needed to accurately predict static grit density across different wheels. Figure
5.12 shows that the actual manufacturing variance does have a significant impact on the
number of samples needed. It is seen that in general, the number of samples needed is

proportional to the concentration number variance.
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Figure 5.11 — Effect of the number of grits in a wheel on the number of wheel
measurements needed to estimate static grit density to within 5%
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Figure 5.12 — Effect of manufacturing variance on the number of wheel
measurements needed to estimate static grit density to within 5%
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5.6 SUMMARY

The scale effect study identified that the wheel specification that has the most impact
on wheel topography variance is the number of grits that reside in the wheel. It was seen
that both static grit density mean and variance are functions of the wheel size. However,
the variance in the manufactured concentration number of the wheel was seen to have a
more significant impact on the topography distribution than that caused by purely
statistical effects alone. Analytic calculation showed that the impact of the concentration
number variance does not significantly increase in microgrinding wheels. The
measurements conducted in CHAPTER 4  of the manufacturing variance in
microgrinding wheels showed that wheels specified by the manufacturer to be the same
have large variances in the wheel specifications. Therefore, accurate a priori prediction
of the wheel topography distributions is not feasible without measurement of the actual
wheel concentration number or at least a statistical description of its variance between
wheels. The ability to use the machine vision technique of CHAPTER 4 to conduct in situ
measurement of each grinding wheel to predict the static grit density and concentration
number was investigated. It was shown that only limited sampling of the grind wheel is
needed to accurately capture the pertinent parameters. However, it was shown that the
proportion of the surface area of the wheel that needs to be measured to accurately
predict the global static grit density and concentration number increases exponentially at

the micro scale.
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CHAPTER 6 -DYNAMIC TOPOGRAPHY IN STRAIGHT
TRAVERSE GRINDING

6.1 INTRODUCTION

Process control in the HAR microgrinding of ceramics requires accurate modeling of
the probabilities of grit cutting forces and frequencies. A probabilistic model of the
grinding force as a probability of its occurrence based on the statistical description of the
grind wheel topography, generated using either direct measurement or advanced models,
is proposed. The convolution method of Chang can be used to create a probability of the
grinding force by convolving the probability of the dynamic grit density and the

probability of the cutting force of an individual grit as shown in Equation 6.1 [48].

()
Px( )} Equation 6.1

Pr(f(@)) = Pr(Cq(@))  Pr {py((p)

The key link between static grits on the wheel surface and the dynamically active
grits that remove material is the grit shadowing phenomenon [53]. This shadowing occurs
when the path of a grit through the grind zone follows a previous grit that removed all the
interfering material resulting in no interaction with the workpiece. This chapter presents a
probabilistic model of the dynamic grit density in straight traverse microgrinding. This
grinding approach is the one most commonly used for jig grinding arrays of micro-
features. Numerical simulation is used to verify the accuracy of the probabilistic model
constructed using the analytical statistical propagation technique first introduced in
CHAPTER 2. An investigation into the dominant force frequencies in a microgrinding

process is conducted on a micro-machining tool.
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6.2 REVIEW OF SALIENT LITERATURE

Modeling of actual grinding forces requires knowledge of the frequency of individual
cutting edges of the grind wheel as they move through the grind zone. The pioneering
work of Verkerk identified that grit cutting frequency is caused by the dynamic cutting
edge density, Cy, on the wheel [54]. The Cq4 represents the number of active cutting edges
per unit area of the grind wheel that participate in material removal during a given
process. The Cy is related to the static cutting edge density C; which represents the
number of cutting edges per unit area that are observed on the surface of a stationary
grind wheel. The difference between the static and dynamic densities is caused by grit
shadowing phenomena where one grit will kinematically shadow out the effects of the
cutting edges of a subsequent grit [54].

The basic analysis of grind wheel geometry and theoretical cutting parameters of
topographically uniform wheels can be found in Malkin’s book as a summary of
conventional grind wheel modeling [2]. The analysis addresses a surface grinding
operation using the geometric and process parameters shown in Figure 6.1 where the

region of detailed analysis is in the grind zone along the zone length /..

Figure 6.1 — Grinding process geometry and parameters B
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The detailed analysis models the geometry of a removed chip when grinding with a
wheel that has uniform grit diameter, protrusion height, and circumferential spacing on
the wheel as seen in Figure 6.2. The model calculates the average maximum undeformed
chip thickness, &y, given the constant protrusion height of the grit from the wheel center,
dy/2, and the constant axial displacement of the wheel from the point of initial grit

contact, O, and the point of exiting the grind zone, O’
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Figure 6.2 — Single cutting chip geometry in a topographically uniform wheel &l

The small number of grits in microgrinding wheels requires a force model that
accounts for variations in grit size, protrusion height, and spacing since the law of large
numbers does not apply and the average characteristics cannot be used exclusively.
Malkin presents a method for calculating the maximum undeformed chip thickness for a
particular grit given its protrusion height along with the protrusion height and spacing to
the next grit on the wheel. A sketch of the geometry in this calculation is shown in Figure

6.3. The sketch shows the cutting path of three consecutive grits. It is seen that the three
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grits have different protrusion heights, a,, a,, and a,, in addition to different wheel

advancement distances, s, and s,.

th
A
a
N, \

Figure 6.3 — Maximum undeformed chip thickness of grits in a wheel with varying
grit protrusion height and linear spacing 2]

The cutting paths of the grits are modeled in a quasi-static state. The grind wheel is
assumed to be fixed at a central location Oy at which the first grit, 0, would be located at
the bottom of the wheel. The wheel then rotates to move the grit along a circular path to
remove a chip with maximum undeformed thickness #%,,. The wheel then displaces
linearly to the next central location at which the next grit would be at the bottom of the
wheel. The displacement between the two central locations is designated S; and is
calculated from the wheel speed, feedrate, and angle between the consecutive grits on the
wheel. A circular cutting path is then generated for grit 1 at this location. It is seen in the
sketch that the variations in the grit spacing and protrusion height cause a variation
between the penetration depths of each grit into the wheel designated as J. These
parameters are all then used to calculate the maximum undeformed chip thickness for
each grit, Ay,. This model also allows accounting for grit shadowing since any grit with a

calculated negative chip thickness is in fact removing no material.
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The limitation of Malkin’s grit cutting model is its limitation to the approximation of
the average undeformed chip thickness as the goal of the model is to calculate the
average dynamic grit density. Approximations of the variations in the wheel are made by
first assuming an average value for the grit protrusion height. A statistical model for the
dynamic grit density at a certain protrusion depth is then used to calculate the average
number of grits along a circumferential path on the wheel that has a width equal to the
average measured chip width. The average spacing between the grits is then calculated
from the number of grits along the circumferential path and the path length itself [2].

The ability to model the total grinding force of a process requires the modeling of two
distinct phenomena: the nature of the cutting parameters of the wheel on a grit-by-grit
basis and the actual interaction of individual grits with material deformation and removal
in the workpiece. It was reasoned by Chang that the nature of the grinding allows for the
combining of the individual grit force model with the model for the number of grits
cutting through the use of a convolution of the two functions over time as shown in
Equation 6.1 [48]. The modeled used for each were dependent only on the position of the
grind wheel in space. This is shown in Equation 6.2 where the force of an individual grit
cutting is decomposed into Cartesian directions in the workpiece reference frame. The
angle @ is the rotation angle of the wheel as it spins while 8 is the angle of an arbitrary
grit within the grind zone. The rotation angle of the wheel can be transformed to a time

variable by using the known wheel speed.

= [ate-o {5l -cao- (o)

Chang used a stationary model for the force of a single grit as a function of its

Equation 6.2

position in the grind zone. This force function was calculated using an average value of
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the maximum undeformed chip thickness, a circular cutting path, and a fixed value of
specific cutting energy. This stationary model allowed Chang to measure grinding forces
and convert both the stable grind signal and model into a power spectrum density. The
dynamic grit density could then be obtained by comparison of the two.

A methodology of linking static grit position distributions with dynamic grit density
distributions is needed to complete a single stochastic description of grinding from wheel
manufacturing to workpiece material removal. Such a statistical model would allow the
input of arbitrary grit size, height, and placement distributions and yield a corresponding
dynamic grit distribution that is not merely a fit to a fixed distribution model. The
technique would enable fast computation of wheel topography without needing numerous
iterations to eliminate sampling effects. The fast modeling method would allow for rapid
bounding of cutting force frequencies and magnitudes based on a priori information.
Such a fast and robust model would facilitate improved process control techniques to
address the challenges of emerging specialty grinding methods such as microgrinding.

The aim of this chapter is to generate an analytic dynamic wheel topography model
for the undeformed chip thickness and dynamic grit density. This model will be based on
stochastic models of the static wheel topography that are generated from a priori
manufacturer specifications. The stochastic analytics will be verified utilizing Monte
Carlo simulation that is based on the same set of fundamental specifications and static

topography distributions. The grinding process modeled is straight in-feed grinding.
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6.3 ANALYTIC MODEL OF DYNAMIC WHEEL TOPOGRAPHY

The probability of the dynamic grit density in a grinding process can be derived from
the static wheel topography model by accounting grit shadowing phenomena. It is first
noted that the wheel model assumes that the grits are uniformly distributed
circumferentially on the wheel. Therefore, the probability of a dynamic grit density is
independent of the angular position of the wheel with respect to the workpiece. The
wheel model statistically predicts the number of grits in a given wheel. The probability of
the number of grits in the wheel must be augmented, however, by the probability of any
single grit actually participating in the grinding action by not being overshadowed by the
previous grit. The dynamic grit density is therefore shown as a function % of the not-

being-overshadowed probabilities as seen in Equation 6.3.

Equation 6.3

Pr(Cy|d,) = h (Pr ( any single grit not being )>

overshadowed by the previous grit

The condition necessary for a grit not to be overshadowed is presented by Malkin in

the form shown in Equation 6.4. Here, the variables correspond to those in Figure 6.3.

( any single grit not being ) ( any single grit having )
overshadowed by another grit a positive undeformed chip thickness

5 a Equation 6.4
=Pr| - <2 |+
s d,

The displacement s of the grind wheel between consecutive grits can be obtained
from the wheel speed V;, feedrate V,,, and circumferential distance between the grits on

the wheel L. This is shown in Equation 6.5.

any single grit not being ) _ é V_W a .
Pr( overshadowed by another grit/ — Pr L <2 V. |d, Equation 6.5

The condition for a grit not to be overshadowed can be obtained from the cumulative

. . 5 . .
density function of the parameter 7 as seen in Equation 6.6.

146



any single grit not being ) _ V_W a .
Pr ( overshadowed by another grit/ — F% 2 V. |d, Equation 6.6

Individual probability distributions for the penetration depth difference § and the

spacing between grits on the wheel surface L need to be obtained.

6.3.1 Probability of the Penetration Depth Difference between Two Grits

The penetration depth difference is the difference of the penetration depths a of two
grits. Each grit in the wheel has contact radius 7. which designates its outermost point of
contact as is depicted in Figure 6.4.

The contact radius is a random variable whose probability function can be calculated

from the probability of the radial position and diameter of a grit is shown in Equation 6.7

=1+ g Equation 6.7

The sum of such two random variables is solved through the known convolution
method in which a variable transformation is made to eliminate one of the domain
random variables inside the joint probability of the grit radial position and spherical

radius as shown in Equation 6.8.

w d dy d _
fr. () = f fRQ(T‘c - E'E) dz Equation 6.8
—oo 2
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Outermost
Grit

Workpiece }_ }

Figure 6.4 — Grit penetration depth as defined from the radial depth of cut and
position of the outermost grit

First, the individual PDF for the spherical radius of a grit is obtained by transforming

the PDF of the grit diameter as seen in Equation 6.9.

2

d Hp d Up
f ﬁ — 1 _1 2 2 __ -8 2 2 Equation 6.9
% )= % 2nexp > 2 _O’D 27Texp o qu .
4" 4

The joint PDF of the radial position and spherical radius of a grit can then be

calculated using the conditional probability of the radial position which is given in
Equation 2.33. The resulting joint PDF is shown in Equation 6.10. The probability of the

contact radius of any grit can now be calculated using Equation 6.11.

d d
fn(r3) = 1o (3) =
d 2 ,
2r (Fuczr - Do) (1-F <10r lODg> 4 . Z—£2\ | Equation6.10
e — Ue —Ip\— — exp|—
(&+%)2‘(&+“_d)2 ! AT P o
2 710 272
® dy  (dy ,d
ch(rc)=f fr (rc——)f2<—)d— Equation 6.11
—oo 2)73\2) "2

The penetration depth difference § between two grits is the difference between their

outer contact radii as given in Equation 6.12 for random grits 7 and ;.

§=r1,— T Equation 6.12
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The PDF of the penetration depth difference can be obtained by again performing a
convolution method of the joint probability along with a variable transformation. Here, it
is noted that the contact radii of two grits are independent of one another so their joint
probability is the product of their individual probabilities. This is shown in Equation 6.13

as the final form of the PDF of the difference in penetration depth of two grits.

fa(6) = f fror (8 + 1,1 )dr, = f fr (6 + 1) fr (r)dr, Equation 6.13

6.3.2 Probability of the Arc Length between Two Grits

The circumferential spacing between two grits on the wheel surface L needs to be
obtained in order to complete an expression for Equation 6.6. The circumferential
distance between two grits is only of interest in the grind zone. Since the grind wheel
rotates much faster than it progresses across the workpiece, the grind zone is modeled as
a circular cutting path. The radius of this cutting path is taken to be the contact radius of
the outermost grit. This is shown in Equation 6.14 where the contact radius is simplified
to be from a grit with an upper 95% diameter located at its minimal retainment depth in

the wheel.

dw

e putermost grit — 2

9
+ o (up + 30p) Equation 6.14

The spacing along the grinding zone arc of two individual grits i and j can be
calculated using Equation 6.15. Here, Ag is used to represent the angular difference

between two grits.

d, 9 ,
Lij = (6i - Hf)rcoutermost grit Aercoutermost grit Ao <7 + E (up + 30D)> Equation 6.15
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The PDF of the grit spacing can be generated from Equation 6.15. First, the PDF of
the difference between two grit angular positions can be calculated in Equation 6.16. It is
assumed that the angular position of two grits is independent so the PDF of their
positions is merely the product of the two individual PDFs. It is seen that the probability
of the angular difference between two grits is uniform with the same probability of the

angular position of the individual grit.

fuae0) = [ foolaa+0,00a0 = [ foaa+0)pe(@as = [ (5-)(5-) a0
- fo n%d@ =%

The PDF of the arc length between two grits along the contact radius of the grind

Equation 6.16

wheel can now be generated using variable transformation as shown in Equation 6.17.

d d d, 9 d
i) = FL(l)a =Pr{lL < l}a = PI‘{AQ <—+E(MD + 30'D)> < l}a

2
( \
—Pr#A < : }d F, |/ l \|d
=Prifo < ai= oo a
L (dTW‘Flg—O(IlD + 3UD)>} \(d7w+19_0(”D + 300))/

I Equation 6.17

L d, 9
d (T 10 (up + 3UD)> d

d 9
<TW+E(#D+3UD)>
= dx — = el
fo fao(C)dx g 2 dl
1

d, , 9
2n (T +10 (up + 30D)>

6.3.3 Probability of a Grit Not Being Overshadowed

An expression can now be generated for the probability of a grit not being
overshadowed by another in the wheel as needed for Equation 6.6. First, the CDF of the
ratio between the difference of penetration depths and arc length between any two grits in

the wheel can be calculated from its PDF as shown in Equation 6.18.

5
Fa (g) ~ | fa(x)dx Equation 6.18
L —o L
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Next, the PDF of the ratio is calculated using the individual PDFs of the difference of

penetration depths and arc length between any two grits in the wheel which is shown in

. N 5. T
Equation 6.19. Here, the substitution z = s made for simplicity.

5 [ee] [oe] [ee]
£a(7)=ra = @i = [ Wi = [ ifaenow

1 ® )
= d 9 f If 4(zD)dl Equation 6.19
2m (Tw +15 (up + 30D)> -

The probability of a grit not being overshadowed is again shown in Equation 6.20.

The inequality must now be evaluated using an evaluation parameter that is a function of
the wheel geometry, process parameters, and grit penetration depth a which is a random
variable. This evaluation parameter will be simplified into a new random variable a’

which is defined in Equation 6.21.

overshadowed by the previous grit

’—2V‘” a Equation 6.21
a = v |a, quation 6.

The definition of this penetration depth a is shown in Figure 6.4 and its calculation is

. . . 5 V a
Pr ( any single grit not being ) = Pr ( —<2¥ —) Equation 6.20

shown in Equation 6.22. The evaluation parameter a’ can now be written in terms of the

random variable 7. which has a known PDF calculated in Equation 6.11.

d 9 .
a=d - (rcoutermost grit T'C) =d, - (7‘” + 10 (up + 30p) — rc) Equation 6.22
d 9
" _ _ W dr — (TW +1g (o +30p) — rc) Equation 6.23
a' =g(a) = 27 7
S w

The CDF of a’ can now be calculated using Equation 6.24, and its PDF can be

calculated using Equation 6.25.

, oy va'\’ d, 9 .
Fp,(a’) = FRc(g (a )) = Fp | dw v~ d, + > + 10 (up + 30p) Equation 6.24
w
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d .
fa(@) = Fp, (@) — Equation 6.25
da
The probability of a grit not being overshadowed can now be calculated using

Equation 6.26. The random variable 4, is introduced to represent this probability of a grit

being active.

any single grit not being ) _ _ (é ,) _ fm , N .
Pr ( overshadowed by the previous grit) ~ Pr(Ag) = Pr <%= » F%(a )fa(a’)da’ Equation 6.26
The distribution of the probability of a grit being active is a Bernoulli trial whose

expectation and variance are given by Equation 6.27 and Equation 6.28 respectively.
E(Ag) = Pr(Ay) Equation 6.27

Var(Ay) = Pr(,) (1 - Pr(a,)) Equation 6.28

6.3.4 Dynamic Grit Density using the Probability of a Positive Chip Thickness
This dynamic grit density is defined in Equation 6.29 as the number of dynamically

active grits Ny divided by the wheel surface area A, .

_ Ny #ofactive grits h(Ag)

= Equation 6.29
¢ 4, Ac 4c, a

r

The probability of any individual grit intersecting the cylindrical surface is a
Bernoulli trial in this model since each trial has either a success or failure outcome and
the outcome for each grit is independent of the outcome of the other grits. The number of
grits that reside in the wheel that have a success in not being overshadowed can be
represented by another random variable N;. The dynamic grit density can therefore be

represented as a function of this new random variable as shown in Equation 6.30.

Pr(N; =n
Pr(C; =c4) = % Equation 6.30
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The random variable N; can be described as the sum of independent, identical
Bernoulli trials. This distribution is therefore an ordinary Binomial Distribution [48]. The
probability mass function for this variable is shown as Equation 6.31. Here, each Pr(Ag)
within the summation is the probability that a particular grit i actively removes material.
Notice that this distribution is contingent on the condition of a known number of

abrasives in the wheel. The expectation and variance are given by Equation 6.32 and

Equation 6.33.

N Ng—n
Pr(Ng = ng|Ny) = f(ng|N,) = (na) Pr(Ag)n (1 - Pr(Ag)) ’
N,! n dzva—n a Equation 6.31
= E(4)" (1 - E(4g))
E[N4|N,] = N,E(4y) Equation 6.32
VarNy|No] = NoE(4g) (1 - E(4,)) Equation 6.33

The distribution of the number of grits participating regardless of the number of grits
in the wheel is obtained by utilizing the definition of the conditional probability as shown

in Equation 6.34.

PrNe = no) = fn) = | fnaNoddN = [ FnalNDF NN, Equation 6.34
The expectation of the number of active grits independent of the exact number of grits
in the wheel can be calculated by the double expectation. This is shown in Equation 6.35.

Similarly, the variance in the number of active grits is given by Equation 6.36.

E[N,] = E[E[N4IN,]] = f E[N4|N,]f (Ng)dN, = f N.E(Ag) f(Ng)dN,

o Equation 6.35
= E(4y) f_ N, f(Ny)dN, = E(Ag)E[N,]

Var[N,] = E[Na]Var[Ag] + (E[Ag])ZVar[Na] Equation 6.36
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The expectation and variance in the dynamic grit density can now be calculated using

Equation 6.37 and Equation 6.38.

E[C,] = E[Zd] Equation 6.37
Var[C,] = Val;l[ivd] Equation 6.38

6.4 ANALYTIC DYNAMIC GRIT DENSITY MODEL RESULTS

The analytic model for the probability of dynamic grit densities in grinding wheels
provides a method to quickly predict not only mean dynamic grit densities but also its
variance for a given traverse grinding process. The expectation and variance in the
number of grits in a grinding wheel are needed in the calculation of the dynamic grit
density. A summary of the necessary steps for calculating this is shown in Figure 2.5. A
summary of the necessary steps for calculating the probability of the dynamic grit density

of a grinding process is presented in Figure 2.16.

154



PDF of Grit Radial Input Number of Grits in Wheel
Position Dlstrlbutlon Parameters
fr() , Var[N,]

PDF, CDF of the Contact Radius R,
*© d dy d *©
= [ fi(n-5)(3)d5 o b= [ fabdx
—o00 2 —o0

PDF of the Penetration Depth Difference § between Grits

£4(6) = f fio (6 + 1) fu ()

CDF of2
L

e e v WA

T+E(MD + 30p)

PDF of a’

n 2
, V.a d,,
fa(@") =FRC dw <_> —dr +—- > +_(ﬂD+3UD)

2V,
|

Probability of any Particular Grit being Active
Pr(Ag) = f F a(a") fa(a)da’
—oo L
|

Probability of any Particular Grit being Active Distribution Parameters
E(Ag) = Pr(Ag)
var(4g) = Pr(4g) (1 - Pr(4y))
I

—— - Number of Active Grits Distribution Parameters
Static Grit Density Surface Area E[N,] = E( Ag)E[ N,]

A =2nR.(Z, — Z,)

Var[N,] = E[N,]Var[4,] + (E[4,])*Var[N,]

Dynamic Grit Density Distribution Parameters

E[Ng4] Var[Ng]
E[Cal = 5% Var[C,] = 2534

Figure 6.5 — Summary of analytical calculation of number of grits in a grinding
wheel
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A sampling of the expected dynamic grit density for a #220 grit microgrinding wheel

with a Imm OD is shown in Figure 6.6a while the variance is shown in Figure 6.6b.

Here, the spindle speed is 10 krpm while the feedrate is varied. Figure 6.7 shows the

same setup except the feedrate is fixed at 40 mm/sec and the spindle speed is varied.
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Figure 6.6 —Analytically calculated C4 (a) expectation and (b) variance for a #220,
1mm OD wheel operating at 10 krpm (feedrate in mm/sec)
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Figure 6.7 — Analytically calculated Cq4 (2) expectation and (b) variance for a #220,
1mm OD wheel operating at a 40 mm/sec feedrate
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6.5 NUMERICAL SIMULATION OF STRAIGHT TRAVERSE

GRINDING

Numerical simulation will be used to verify the accuracy of the analytic statistics in
the model of the dynamic grit density distribution parameters in straight traverse
grinding. The numerical simulation presented is designed to first replicate the
assumptions made to construct the analytic grinding force model. This will begin with a
simulated wheel that is created using the algorithm presented in CHAPTER 3 where grits
are allowed to overlap which matches the analytic model assumptions. Simulation will
also be conducted using the grit relocation technique to allow investigation of the impact

of the assumption of uniform grit distribution independent of other grits.

6.5.1 Simulation Algorithm
The algorithm used to simulate the grinding action of a single wheel is shown in

Figure 6.8.
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Input a simulated wheel with grits locations
that obey the boundary conditions

Utilize grit relocation to minimize grit overlap
without violating grit boundary conditions

v

Divide the axial section of the wheel that will engage the workpiece into
circumferential strips'”. Use widths equal to the mean grit diameter.

v

Assume that any grit whose centroid is axially located within the strip will remove a
rectangular chip with the width defined to be the full width of the strip.

v

Utilize the angular position of each grit, the wheel speed, and the feedrate to calculate
the wheel’s linear displacement between the start of each grit’s engagement

v

Utlize the grit diameters, grit radial positions, linear wheel displacement between grits, and wheel
diameter to calculate the maximum undeformed chip thickness of each grit accounting for grit
shadowing 1.

.2

Identify the active cutting grits as those with positive maximum undeformed
chip thickness as their cut paths are not in the shadow of any previous grit

v

For each moment in time, calculate each
grit’s position relative to the grind zone

v

Assume the instantaneous chip thickness of each grit progresses sinusoidally from zero
to the maximum undeformed chip thickness as it moves through the grind zone

v

Calculate the instantaneous cutting force of each grit via specific cutting energy and
instantaneous chip thicness

Figure 6.8 — Algorithm to simulating the grind action of a single wheel

6.5.2 Dynamic Grit Density Distribution Statistics
The numerical simulation first provides a validation of the analytic statistics for the
prediction of the dynamic grit density distribution parameters. Figure 6.9a shows the

comparison between the dynamic grit density predicted by the analytic model and that
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from 1,000 simulations of a #220 grit, Imm OD microgrinding wheel without the grit
relocation algorithm. The selected spindle speed is 10 krpm and the feedrate is 40
mm/sec. It is observed that the analytic model predicts the dynamic grit density mean and

variance very accurately.
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Figure 6.9 — Comparison of the dynamic grit density mean and Std. Dev. as
predicted by the analytic model and (a) numerical simulation with overlapping grits
and (b) numerical simulation with grit relocation

The simulation algorithm was also executed using the grit relocation technique to

reduce overlap. The result of the dynamic grit density calculation is shown in Figure 6.9b
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with a comparison to the analytic model prediction. It is observed that the relocation of
the grits did alter the dynamic grit density mean and variance. The relocation of the grits
served to slightly increase the mean and variance overall. This can be attributed to the
algorithm moving more grits to outer surface of the wheel. Also, evidence is seen of

statistical sampling effects in the non-smooth nature of the simulated profiles.

6.5.3 Dynamic Grit Density Probability Distribution

The probabilistic model provides a method to estimate the distribution parameters of
the dynamic grit density. However, the model does not provide any information as to the
form of the distribution itself. However, the Monte Carlo numerical simulation presented
here does provide an occurrence frequency profile which can be used to determine an
appropriate distribution. Figure 6.10 shows the cumulative occurrence frequency of the
dynamic grit density in the numerical simulation at the wheel surface. The Gaussian fit
was generated using the estimated mean and standard deviation from the data set. The
Gaussian distribution appears to describe the dynamic grit density well which mirrors

what was found for the static grit density.

10 O
. " an g =<

¢ Simulation Data

Gaussian Fit
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Probabitility

Dynamic Grit Density C, [grits/mm?|

Figure 6.10 - #220 wheel dynamic grit density distribution at wheel surface without
grit overlap
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6.5.4 Cutting Force Simulation

HAR microgrinding of ceramic micro-features needs to avoid modes of dynamic
excitation of the receptive workpiece. Therefore, the nature of the grinding force
frequencies for a microgrinding process needs to be investigated. The numerical
simulation of straight traverse grinding was used to conduct this investigation. Figure
6.11 shows a simulation of a single #220 grind wheel with a 150 um grind width, which
is equivalent to the twice the average diameter of a grit, a 40 pm radial grind depth, a
feedrate of 40 mm/sec and a spindle speed of 10 krpm. The individual forces of each grit
is shown with grits 1-3 cutting within the first grind strip and grits 4-6 cutting in the
second grind strip over one rotation of the grind wheel. The cutting force of each grit is
simply modeled as having a force equal to the depth of cut times the specific grinding
energy of 0.32 N/mm?. This model of the cutting force of each grit is selected because of
its simplicity as it is this should have no impact on the frequency content of the force
signal.

Figure 6.12 shows the cumulative grind force calculated by adding up the
instantaneous forces of each grit over time. Notice that although 6 grits are participating,

the final grind force signal has only 4 distinct force peaks.
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Figure 6.11 — Simulated cutting force by individual grits in a #220 wheel with a 150
um grind width, 40 um radial depth of cut, 40mm/s feedrate, and 10krpm spindle
speed
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Figure 6.12 — Total simulated cutting force as the sum of the force of each active grit

The frequency content of the grinding force can be analyzed by taking the FFT of the
grind signal as shown in Figure 6.13. The single rotation grind signal was repeated 10
times in order to match the periodic repetition of the grind force as the wheel rotates.
Notice that the largest peak is at twice the fundamental spindle frequency while the

second peak occurs at 4 times the speed of the spindle. All other peaks manifest at
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harmonics of the spindle frequency but at magnitudes that can only be attributed to the

spacings between the cutting force peaks.
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Figure 6.13 — FFT of the total grinding force

Figure 6.14, Figure 6.15, and Figure 6.16 show the same outcomes for a second

simulation. Here, however, the 6 active grits created 6 distinct cutting force peaks.
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Figure 6.14 — Simulated cutting force of individual grits in a #220 wheel with a 75
um grind width, 40 um radial depth of cut, 40mm/s feedrate, and 10krpm spindle

speed
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Figure 6.15 — Total simulated cutting force as the sum of the force of each active grit
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Figure 6.16 — FFT of the total grinding force

The frequency content from each simulation differs only in the relative magnitudes of
the peaks. The frequency locations of the peaks are dependent only on the fundamental
spindle frequency. All peaks occur at harmonic multiples of this frequency. There
appears to be no discernible relationship, however, between the number of force peaks or
the spacing between them that can explain the relative magnitudes of the frequency

peaks.
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A total of 1000 wheels were simulated in order to provide a general force frequency
profile for the simulated grinding operations. Figure 6.17 shows the mean force
contribution at each frequency over the 1000 simulations while Figure 6.18 shows the
standard deviation of the peak magnitudes at the frequencies. It is observed that all of the
signal power arises from the harmonics of the spindle speed as a result of the grind force

signal repeating at that frequency.
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Figure 6.17 — Mean FFT magnitude for 1,000 simulations of the grinding process
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Figure 6.18 — Standard deviation of FFT magnitude for 1,000 simulations of the
grinding process
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A comparison can be made between the simulated grind signature of stochastic
cutting points and that of the signature of a deterministic 5-flute cutting tool. Figure 6.19
shows the simulated force signal form one cutting rotation of a 5-flute, straight-toothed
cutter. The simulation included sinusoidal tool runout resulting in varying depths of cut

for each tooth.
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Figure 6.19 — Simulation of a cutting force of a 5-flute cutting tool with tool-tip
runout at 10 krpm

The FFT of the cutting force repeated over 10 rotations is shown in Figure 6.20. It is
observed that the fundamental spindle frequency is evident but not significant while most
power comes from the tooth-passing frequency and the exponentially-decaying

harmonics. This is similar to the grinding force simulation results.
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Figure 6.20 — FFT of the 5-flute tool simulated cutting force
6.6 EXPERIMENTAL MEASUREMENT OF MICROGRINDING

FORCES

6.6.1 Setup for Straight Traverse Razorblade Grinding

The nature of microgrinding force frequencies in straight traverse microgrinding was
investigated using a razorblade as a workpiece as has been done in other studies [2]. It is
desired to know the major source of the dynamic forcing frequencies in the process in
order understand the impact of the process on the vibrational response of the receptive
workpieces in HAR microgrinding The experimental setup, shown in Figure 6.21, is
designed to closely imitate that of what would be used in profile jig grinding of HAR
micro-features. An 80,000 rpm electric spindle is mounted on a vertical z-axis column in
a micromachining tool. The x-y table holds a Kistler 5091 A dynamometer, which has a
4.9 kHz natural frequency, onto which a workpiece fixture is mounted. The fixture holds
a standard consumer steel razorblade such that the sharp edge of the blade lies close to
perpendicular to the x-axis of travel. Two accelerometers, PCB 353B33 and PCB 352C68

with 2% linear measurement ranges of 0-4 kHz and 0-10 kHz and natural frequencies of
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12 kHz and 20 kHz respectively, are mounted onto the workpiece fixture in order to

measure the cross-feed movement of the grinding action.

80 krpm Spindle

Fixturing Tie-
downs and

Blocks Microgrinding Wheel

12 kHz

Accelerometer Razorblade

25 kHz
Accelerometer

Figure 6.21 — Setup for straight traverse microgrinding on a razorblade

6.6.2 Characteristics of the System Free-Response

The ability to measure forces and movements using both accelerometers and the
dynamometer was investigated by comparing the responses simultaneously to an impact
force. Figure 6.22 shows the output response of the sensors to 95 N impact force. The
results show a distinct free-response after the impact load has been removed. The damped
natural frequency of the system was determined to be 2.14 kHz by utilizing the fast
accelerometer and dynamometer responses. The response of the fast accelerometer and
dynamometer were also used to calculate a system mass of 0.121 kg that relates the two

in the free response of the system. This is an average over three individual tests.
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Figure 6.22 — Impact response of the workpiece-fixture system measured with
hammer load cell, 2 accelerometers, and dynamometer

6.6.3 Characteristics of the System Forced-Response

The system consisting of the workpiece, fixture, dynamometer, and accelerometers
has complex system dynamics which include not only significant response correlation
between the X, y, and z directions, as seen by the response in Figure 6.22 which is not a
strictly decaying sinusoid, but also forced responses whose magnitudes and phases are
dependent on the excitation frequency. The frequency-dependency of the magnitude of
the system response is of great interest since it will result in distortion of the measured
forces in microgrinding experiments.

The forced response of the system was investigated by using an engraving tool in the
spindle to exert a periodic rubbing frictional force onto the razorblade workpiece. Using
the engraving tool adds the benefit of its increased stiffness over other cutting tools which
will limit its deflection under the frictional force. The test was conducted by first slowly
moving the cutting tool into contact with the workpiece as the spindle rotates at a slow
1,000 rpm. Initial contact is determined by a measured electrical continuity between the

rotating tool and stationary workpiece. Then the spindle speed was increased stepwise to
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81krpm as the FFT of the dynamometer and accelerometer outputs were measured over 2
second windows after the spindle speed was held stationary for 5 seconds at intervals of
3000 rpm.

Samples of the FFT data at 30 krpm are shown for the dynamometer and
accelerometer respectively in Figure 6.23 and Figure 6.24 respectively. Notice the
dominant peak at the spindle speed of 505 Hz along with the presence of the 2", 3™, and
4™ positive harmonics in both the data sets. Also, it is seen that the contribution of the
harmonics decays exponentially as would be expected in a system with relatively low

damping and many vibrationally-reflective surfaces.
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Figure 6.23 — FFT of dynamometer signal of engraving tool rubbing at 30 krpm
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Figure 6.24 - FFT of accelerometer signal of engraving tool rubbing at 30 krpm

The resulting dominant peak frequencies from the tests at all spindle speeds are

shown in Figure 6.25. It is observed that the dominant response corresponds to the
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spindle speed. The magnitude of the dominant frequency peak at each forcing frequency
is shown in Figure 6.26. The dynamometer and accelerometer responses were seen to

match well in each test.
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Figure 6.25 — Dominant response peak frequency versus spindle drive frequency
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Figure 6.26 — Dominant peak magnitude versus response frequency

The magnitudes of the dominant response frequency were seen increase as the spindle
speed increased. The response of the system is measured in the normal force direction of
the rubbing action. The normal force can be represented as a linear elastic deformation of
the workpiece therefore having a magnitude proportional to the interference depth of the
tool-workpiece interaction. This model only holds, however, for small interference

depths. The bearings of the spindle can also be simply modeled as having a linear elastic
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stiffness. Therefore, the interference depth and corresponding rubbing normal force are

proportional to the whirl force of the rotor system of the spindle. This relationship is

shown in Equation 6.39.

Fn = kwpBx= KwpKpearingsFwhirl = kwpkbearings"n‘r(‘)2 Equation 6.39
The responses of the dynamometer and accelerometer can be adjusted to account for

the increasing whirl force by dividing the square of the drive frequency as shown in

Equation 6.40.

% = kwpKbearingsMm" Equation 6.40

The normalized response forces shown in Figure 6.27 therefore show the excitation
frequencies that result in resonating forced responses. It is observed that there is
increased response with in the ranges of 500-650 Hz and 800-950 Hz. In addition, the

calibration mass of the system which correlates the measured acceleration to the

measured force was found to be 0.122 kg which agrees with the result of the free-

response test.
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Figure 6.27 - Dominant peak magnitude divided by spindle speed squared versus
response frequency
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The frequency content of the system response also provides a qualitative method to
evaluate the relative magnitudes of the harmonics of the forcing response. Figure 6.28
shows the magnitudes of the fundamental, 2nd, 3rd, and 4™ harmonics at the driving
spindle frequencies of the tests. It is observed that the magnitudes of the harmonic
contributions remain consistently below half that of the fundamental frequency peak.
This is further characterized in Figure 6.29 where the magnitude of each harmonic peak
relative to the fundamental frequency peak is plotted for each driving spindle frequency.
It is observed that the magnitudes of the harmonics do not decay exponentially in any
consistent manner. In fact, there appears to not be dominance of any of the harmonics in
relative contribution. This neglects the suggestive results of the single test at 30 krpm or
500 hz which show an exponential harmonic magnitude decay in Figure 6.23 and Figure

6.24. Notice that the harmonic magnitudes also appear to be independent of frequency.
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Figure 6.28 - Dynamometer peak magnitudes divided by spindle speed squared
versus driving spindle frequency
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Figure 6.29 — Harmonic peak magnitudes relative to fundamental peak as a function
of driving spindle frequency

6.6.4 Measured Dynamic Cutting Forces

Preliminary grind tests were conducted to investigate the characteristics of micro-
grinding force signatures. The tests utilized #220 diamond grit, Imm OD microgrinding
wheels on the razorblade workpiece. A preliminary test for system noise was conducted
by measuring the dynamometer output when the grind wheel was rotating at 5 krpm but
was not actually in contact with the workpiece. The FFT of the dynamometer signal,
shown in Figure 6.30, showed that the signal amplifier failed to remove 60 Hz electrical

noise and that the system possessed operational vibration peaks around 800, 3200, 4000,

and 4800 Hz.
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Figure 6.30 — FFT of dynamometer output before grinding contact
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Several grinding tests were performed by slowly moving the grind wheel into contact
with the workpiece until the accelerometer registered initial contact. The wheel then
radially plunged into the workpiece to a depth of 15um before traversing at a feedrate of
10 mm/sec. The frequency content of the force signals measured at spindle speeds of
4000, 5000, and 7000 rpm are shown in Figure 6.31, Figure 6.32, and Figure 6.33
respectively.

It was observed that the fundamental spindle frequency was not dominant in FFT
signatures. The plots show that there was large signal contribution at approximately 50
times the spindle speed in all three tests. It is noticed, however, that these peaks have
spacings that are consistently equal to twice the spindle speed suggesting that they are
harmonics of the periodic repetition of the grinding force signal. The data plots also show
that there is significant increase in the signal power in the fixed-frequency regions around
2800 and 5300 Hz as the spindle speed is increased. This can be explained as the

excitation of natural system dynamics of the structure.
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Figure 6.31 — FFT of grinding force at 4krpm (66Hz) from dynamometer
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Figure 6.32 — FFT of grinding force at Skrpm (83 Hz) from dynamometer
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Figure 6.33 - FFT of grinding force at 7krpm (117 Hz) from dynamometer

The output from the accelerometer for the grind test showed similar measurements
although the accelerometer did provide information at frequencies above the cutoff

frequency of the dynamometer of approximately 9 kHz which is seen in Figure 6.34.
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Figure 6.34 — FFT of grinding workpiece acceleration at 7krpm from 20kHz
accelerometer
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More grinding tests were conducted by increasing the spindle speed in a slow, step-
wise manner as the wheel traversed the workpiece. A time-frequency plot of the FFT
over time shows increasing peak frequencies as the spindle speed is increased. Figure
6.35 and Figure 6.36 show this for the dynamometer and accelerometer outputs
respectively as the spindle speed is increased from 1,000-2,000 rpm. Notice the stationary

natural dynamic response bands at 2,800 and 5,300 Hz.
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Figure 6.35 — Time-frequency plot of force during microgrinding with a #220 grit
wheel as it is accelerated from 1-2 krpm
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Figure 6.36 — Time-frequency plot of acceleration during microgrinding with a #220
grit wheel as it is accelerated from 1-2 krpm

The fixed response bands can be removed from the time-frequency plot by
subtracting the time-averaged power at each frequency. This is shown in Figure 6.37 and
Figure 6.38 for the dynamometer and accelerometer respectively. Notice that the
frequency signatures of the grinding action are now more readily evident. It is observed
that as the spindle speed increases over time the gap between the harmonic frequencies
increase as expected. It is also seen that the second band contains the most power in each

instrument.
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Figure 6.37 — Time-frequency plot of force during microgrinding with a #220 grit
wheel as it is accelerated from 1-2 krpm with mean power removed by frequency
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Figure 6.38 — Time-frequency plot of acceleration during microgrinding with a #220

grit wheel as it is accelerated from 1-2 krpm with mean power removed by
frequency
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6.7 DISCUSSION

The microgrinding forces measured using the straight traverse grinding on a
razorblade yielded complicated force signatures that contained significant noise due to
the high receptance and complicated dynamics in the micromachining tool. The varying
undeformed chip thickness and dynamic grit density through the grind zone further
complicated force profile. Therefore, the time-force signature could not be interpreted for
analysis of individual grit cutting forces. The analytic model developed could therefore
not be verified using experimental data.

Analysis of the frequency content of numerical simulation of straight traverse
microgrinding predicted that the spindle speed and its harmonics would be the dominant
driving frequencies in HAR microgrinding of ceramic micro-features. Tests conducted on
the micromachining tool verified this to be the case. Simplified tool rubbing tests of the
experimental setup showed that compensating for tool runout in the rubbing force yielded
identification of a definite system dynamic natural frequency at 0.6 kHz although the
only natural frequency identified through impact test occurred at 2.14 kHz. The rubbing
force frequency peaks were analyzed at the dominant spindle harmonic frequencies to
observe the nature of the decay in relative harmonic magnitude. However, it was
observed none of the first 4 harmonics had a consistent magnitude relationship. This
observation also held true for the frequency contact in the grinding tests. It is also
interesting to note that the harmonic frequencies failed to excite either of the natural

frequencies identified by the impact test and peak forcing frequency response.
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6.8 SUMMARY

The probabilistic model presented for straight traverse microgrinding was seen to
predict the dynamic grit density mean and variance under varying grinding spindle
speeds, feedrates, and depths of cut. Numerical simulation showed that the analytic
model was significantly faster while yielding the same results. The nature of the force
signature of traverse microgrinding in a micromachining tool was investigated using
razorblade grinding. It was observed that even under slow spindle speeds and shallow
infeed angles, the grit cutting pulses were not discernible in the force profile due to
varying chip thickness through the grind zone and complicated dynamic response of the
machine tool.

The grinding force frequency profile was investigated using both numerical
simulation and razorblade grinding. Simulation showed that the dominant force
frequency power occurred at the spindle frequency and its harmonics despite the presence
of only a few grits participating in the grinding action. The variability in the force
frequencies only arose in the relative magnitudes of the spindle harmonic frequencies.

Simple testing of the force contributions at harmonics of the spindle speed was
conducted using a single-toothed engraving tool. Results showed that harmonic
magnitudes do not consistently decay at increasing multiples of the spindle frequency and
fail to excite the identified natural frequencies of the system. Experimental grinding
forces on the razorblade edge showed that microgrinding force frequencies are similarly

dominated by the spindle speed and varying magnitudes of its harmonics.
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CHAPTER 7-DYNAMIC TOPOGRAPHY IN INFEED GRINDING

7.1 INTRODUCTION

The distributions of the parameters that govern the grinding force contribution of each
cutting abrasive is needed to develop full understanding of the impact of statistical
variation in the microgrinding process. In addition, HAR microgrinding of ceramic
micro-features requires process control that can limit the probability of extreme
undeformed chip thicknesses while not sacrificing material removal rates. This requires
statistical models that can predict the probabilities of the abrasive cutting characteristics.

A probabilistic model was developed in CHAPTER 6 for the widely used straight
traverse microgrinding, but the process has a varying infeed angle through the grind zone
which results in more grits participating near the end of the grind zone than at the start.
This makes it difficult to measure the dynamic grit density since it constantly varies. In
addition, the ability to identify and measure the force contributions of individual grits is
difficult as the force signal contains too few discernible peaks. A method of measuring
dynamic grit interactions at specific infeed angles is needed for microgrinding in order to
study the nature of the distributions of the material removal parameters. This will allow
for the identification and measurement of the force contributions of individual grits. Such
a technique will facilitate the validation of the probabilistic modeling of the distribution
of dynamic grit density. This chapter presents a grinding approach that maintains a
constant infeed angle through the grind. A probabilistic model of the dynamic grit density
for this grinding approach is generated and validated using numerical simulation.
Experimental validation of the model is conducted, and the distributions of grit cutting

force attributes are investigated using this approach.
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7.2  REVIEW OF SALIENT LITERATURE

Current techniques for the characterization of the dynamic wheel topography
distributions have utilized numerical simulation and empirical modeling based on various
measurement techniques. Measurements and analysis of the dynamic grit interaction of
conventional grind wheels have yielded many distribution models for various attributes
of grit engagement with the workpiece. A summary of these distributions is presented in
Table 7.1.

Measurement of the interaction of individual grits with workpiece in microgrinding
has been limited. The most noteworthy study by Park utilized grinding on a micro-
thermocouple to measure grit force pulses through the heat pulse generated [18].
However, this does not provide direct information on the undeformed chip thickness
distribution for the process. Instead, this modeling effort will investigate infeed grinding
on a thin workpiece as shown Figure 7.1 following the work of Tigerstrom where the
wheel is fed radially into a workpiece creating a small grinding zone angle @ [68]. This
grinding approach provides a method to evaluate dynamic topography characteristics
without variation over time. Tigerstrom showed that the infeed angle through the grind
zone is nearly constant for this geometry and is governed by the feedrate and wheel

surface speed as shown in Equation 7.1 [68].

'l7f .
tana = — Equation 7.1
N
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Grind Wheel

Figure 7.1 — Schematic of in-feed grinding approach: straight infeed grinding with a
small grind zone angle

Table 7.1 — Stochastic models for dynamic grind wheel characteristics
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Table 7.1 (continued)
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7.3 ANALYTIC MODEL OF DYNAMIC WHEEL TOPOGRAPHY

7.3.1 Analysis of the Cutting Action of Individual Grits

The engagement depth 4;; of a grit 7, as caused by the shadowing from a previous grit
J, 1s constant across the grinding zone. The relationship between the two arbitrary grits is
illustrated in Figure 7.2 where L; is circumferential spacing between the grits in question.
The protrusion height difference between the grits J;; is positive for a grit that protrudes
more than the previous one and is a function of the protrusion height of each grit from the
wheel center, R.. The engagement depth can be calculated for a given grit using the
kinematic relationship shown in Equation 7.2 where s;; is the linear advancement of the
grind wheel during the time interval between the engagements of grit 7 and ;.

However, the grit engagement calculation only applies to grits that are in close
proximity in the axial direction of the wheel. A grit can only be overshadowed by other

grits that cut along the same circumferential line of action on the wheel surface.

hij = (sij) = (6;j) = (Lyj tana) — (Rc]' - Rci) Equation 7.2

8ii= - -
Workpiece :

Figure 7.2 - Kinematically active grits overshadowing multiple inactive grits
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7.3.2 Probabilistic Model of the Dynamic Grit Density

A probabilistic model of the dynamic grit density is generated by propagating the
fundamental grit size and location distributions to a final stochastic description of the
number of grits that are engaging the workpiece. This is achieved by calculating the
general probability that any single grit i in the wheel has an overall positive engagement
depth as caused by its relationship with each of the other grits j that could possibly
overshadow it. This must account for the probability of the number of grits that cut along
the same circumferential line of action on the wheel.

The possible grits j that could overshadow grit i are identified by axially dividing the
grind wheel into cylindrical segments with widths equal to the mean grit diameter u,
defined in Figure 7.1. It is assumed that each grit j with a centroid located in a given
segment removes a rectangular chip that has a width equal to the segment width. All of
the grits j identified within the same segment as grit i must then be checked for causing
overshadowing based on a positive engagement depth of grit i with respect to grit /.

In addition, the relationships between grit i and the other grits that could overshadow
it must utilize constant properties of grit i but random properties of the other grits. The
probability of grit i having an overall positive engagement depth can then be calculated as
the probability that its engagement depth with respect to each other grit j are all

individually positive.

7.3.3 Probability of the Dynamic Grit Density
The dynamic grit density in a grind wheel is a measurement of the number of active

grits that participate in the grinding action per unit area on the wheel surface. The
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stochastic nature of a grind wheel requires that this dynamic grit density C4 be a random
variable with an unknown probability, Pr(Cy). It can be formed as the probability of the
number of dynamically active grits N4 divided by the participating surface area S, of the

grind wheel as shown in Equation 7.3.

Pr(Ng)

Pr(Cy) = S
a

Equation 7.3

The expectation and variance of the dynamic grit density can be calculated from the
expectation and variance of the number of active grits as shown in Equation 7.4 and

Equation 7.5 respectively.

E[N,
E[C4] = [S al Equation 7.4
a
Var|N,
Var[Cq4] = S[z al Equation 7.5

a

The random variable N; can be described as the sum of independent, identical
Bernoulli trials in which each trial is a test of whether or not a specific grit is active. The
distribution of the number of active grits N, is therefore a binomial Distribution [45]. The
probability mass function for this variable is shown as Equation 7.6. Here, each Pr(4;)
within the summation is the probability that a particular grit i actively removes material.
Notice that this distribution is contingent on the condition of a known number of
abrasives in the wheel N,. The expectation and variance given the exact number of static

grits available for grinding are given by Equation 7.7 and Equation 7.8.

Ng—-ng

Pr(Ng = nglNo) = Fnalig) = () Pr(ap™(1 - Pr(a)

N,! ;
= R, g A" (1 EAD)

Equation 7.6

Ng—ng

E[N4|Ng] = N,E(4;) Equation 7.7
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Var[N4|N,] = N,E(4)(1 - E(4)) Equation 7.8

The number of trials in a given wheel is equal to the number of grits that reside in the
grind zone portion of the wheel. This study assumes for simplicity that the full width of
the grind wheel is used for grinding resulting in the number of trials being equal to the
total number of grits within the wheel. This number of abrasive grits in a wheel is a
random variable N, since each wheel has a different number of grits. The distribution of
the number of grits participating regardless of the number of grits in the wheel is obtained

by utilizing the definition of the conditional probability as shown in Equation 7.9.

PrNe = no) = fn) = | g NoddN = [ FnalNDF NN, Equation 7.9
The expectation of the number of active grits independent of the exact number of grits
in the wheel can be calculated by the double expectation which is shown in Equation

7.10. Similarly, the variance in the number of active grits is given by Equation 7.11.

BING] = E[EINGING]] = | EINGINGIF (VNG = [ NoBCAD F(No)dN,

o Equation 7.10
= E(4) f Nq f(N)dN, = ECADEIN,]

Var[N,] = E[N,]Var[4,] + (E[4;])?Var[N,] Equation 7.11

Each Bernoulli trial has a probability of being successful as each grit i has a specific
probability of being active, Pr(4;). The expectation and variance of each Bernoulli trial is
shown in Equation 7.12 and Equation 7.13 respectively as calculated from the probability

of a single grit being active.
E[A;] = Pr[4;] Equation 7.12

Var[A;] = Pr[A4;]1(1 — Pr[4;]) Equation 7.13
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Combining the results yields the final expectation and variance of the dynamic grit
density based on the probability of any arbitrary grit i being active. The results are shown

in Equation 7.14 and Equation 7.15.

Pr[A;]E[N,
E[Cq4] =—r[ g [N Equation 7.14
a

E[N,]Pr[A;](1 — Pr[A;]) + (Pr[A;])*Var[N,]

Var[C,;] = 52
a

Equation 7.15

7.3.4 Probability of Griti being Active

The probability of random grit i being active, Pr(4;), is equivalent to the probability
that it would not be overshadowed by any of the other grits that reside in the same axial
segment. The probability of a grit being active can be written as the marginal distribution
of the joint PDF f. y(a; n)between a random variable instance of a grit being active a;
and the random variable instance of the number of grits n within a single axial segment
of the wheel as shown in Equation 7.16. This joint PDF can determined using the
definition of the conditional PDF of an active grit given the number of grits that reside

within a particular segment f,y(a;| n) and the independent PDF of this number of grits

occurring, fy(n).

Pr(4;) = f fa,n(a,n)dn = f fagn (@il M) fy(m) dn Equation 7.16

The condition needed for a grit to be active requires that its engagement caused by all
the other grits within the same wheel segment be greater than zero. The conditional PDF

of a grit being active fy,|y(a;| n) is therefore also a function of the protrusion height of
the grit in question, ;. Therefore, the conditional PDF needs to be derived from the joint
PDF with the random variable contact radius R.; of grit i as shown in Equation 7.17.
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Again, this joint PDF fAdN'RCi(ailn, rcl.) can be calculated from the definition of a

conditional PDF. The PDF of a single grit i being active is now written as a double
conditional probability in which it is dependent on a given number of grits within the

same axial segment and the protrusion height of grit i from the wheel center.

fagnlaid m) = f fagr, (@l re) dre, = f Famirg, (@IDITe) £y (reg) dre, Equation 7.17

The probability of this particular grit being active can now be derived from the
condition that its engagement resulting from the shadowing caused by each of the other
grits in the axial segment be greater than zero. It is assumed that the engagement caused
by the other grits are independent of one another since the circumferential distance to
each other grit j and the protrusion height of that grit is independent of the others. The
total probability of the grit engagement being greater than zero when measured against all
the other grits is merely the product of the individual engagement probabilities being
greater than zero as shown in Equation 7.18 where 7 is the random variable instance of

the number of grits within the axial segment.

Faamorm, (@l re,) = [Pr(hy > 0re)]" Equation 7.18

7.3.5 Probability of Grit i not being Overshadowed by Grit j

The probability of the engagement of grit i created by the relationship with random
grit j being greater than zero is the cumulative probability of all positive engagement
values from zero to infinity as shown in Equation 7.19. The cumulative probability is

defined by the integral of the PDF across the chosen range.
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Pr(hi]- > O|rcl.) = f inj|Rci(hij|rCi) dhy|r, Equation 7.19
0

The PDF of the engagement of grit i created by the relationship with random grit j can
be calculated using the known relationship shown in Equation 7.2. The grit engagement

is a function of both the random variable linear wheel advancement between the grits S;;
and the protrusion height of the random grit ch. Therefore, the grit engagement PDF

must be defined by the joint PDF of these two random variables as shown in Equation
7.20. A manipulation of Equation 7.2 allows for a variable transformation to take the
place of the random grit protrusion height. The independence of the linear wheel
advancement between the two grits and the protrusion height of the second grit allows for

the joint PDF to be rewritten as the product of the two individual PDFs.

f ity e, Chitlre) = j fsyme (Sirsy = hy) dsyy = j fs, () g, (s = ) dsy Equation 7.20

The analytic static wheel model developed in CHAPTER 2 showed that grit location
along the circumference of a wheel is random with a uniform distribution [69]. Therefore,
the circumferential distance L;; between grit i and ;j also has a uniform distribution as
shown in Equation 7.21. Here the circumferential distance is equally likely to be any
value between zero and the maximum possible distance, L5z, which is the
circumference of the wheel.

The infeed angle for a given operation is a constant, and therefore the linear wheel

advancement between the grits also has a uniform distribution as derived in Equation
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7.22 using a standard PDF transformation [45]. Here, Q is the spindle speed in

revolutions per minute.

(1) = — = — Equation 7.21
le.]. §) =L —=na quation 7.
2m\d
&t 4w
3= Sif)ﬂ_l(")_ ! —(60)2—” Equation 7.22
szj(S”)_fLij <tana (dSij " L \tana _(ndw) (ﬂ)_ (nd,)ve ~ 60V quation 7.
vS

The probability distribution of the protrusion height of a random static grit has been
measured to be a Gaussian distribution and simulated to be Rayleigh distribution [36, 40,
70]. Here, the distribution chosen is stochastically derived from the original uniform
distributions of the grit Cartesian location and the Gaussian distribution of the grit
diameter [69]. A sample of this analytic PDF is shown in Figure 7.3 for a #400 wheel

with a Imm OD and 0.9mm core.

0.030
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0.015 A
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Static Grit Protrusion Height [um]

Probability Density

TTTT T LI B i et B

Figure 7.3 - Probability density of grit radial protrusion height above the bond
surface in the simulations of a #400, 1mm single-layered wheel

The numerical calculations of the PDF integrals were the main source of computation
time in the dynamic grinding calculation. The algorithm was executed using Matlab

7.12.0 on an Intel 17 Dual Core microprocessor. The simulation setup for the static wheel
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grit protrusion height PDF took an average of 6.23 seconds. This same function could
then be used for different dynamic scenarios. The calculation of the dynamic grit density
characteristics for any given spindle speed and feedrate took an average of 16.3

additional seconds.

74 NUMERICAL SIMULATION OF DYNAMIC WHEEL

TOPOGRAPHY

The numerical simulation is designed to replicate the assumptions made to construct
the analytic infeed grinding force model. This will serve to verify the accuracy of the
analytic model. The simulation begins with a simulated wheel that is created using the
algorithm presented in CHAPTER 3. The algorithm for simulating the cutting action of
the wheel is identical that used in CHAPTER 6 for straight traverse grinding with only
slight modifications to account for the change in grinding approach. The simulations will

use overlapping grits which matches the analytic model assumptions.

7.5 COMPARISON BETWEEN ANALYTIC MODEL AND

NUMERICAL SIMULATION

The analysis was conducted for a #400, single-layered microgrinding wheels with a
Imm outer diameter. The thickness of the workpiece was selected to be 135 um which

creates a grind zone angle 6 of approximately 15°.
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7.5.1 Probability of the Engagement of a Single Grit Caused by the Shadowing of
another Grit

The foundation of the analytic formulation of the probability of a grit being active

rests on the condition that needs to be met in order for a single grit not to be

overshadowed by another individual grit, hy > 0. Figure 7.4 shows a comparison

between the probability density function of the engagement depth of grit i after the

shadowing caused by grit j as calculated by the analytic model and the numerical

simulation.

0.025
0.020
0.015
0.010
0.005
0.000

Analytic Calculation
O Numerical Simulation

Proability Denisty

CERRBES . =20
50 25 0 25 50 75 100
Possible Engagement of Grit i caused by
Grit j, h;; [pm]
Figure 7.4 - Probability density of the engagement of a single grit caused by the
possible overshadowing by another individual grit fy, (h;;) shows a Gaussian

distribution, 2 = 30krpm , v¢ = 30m/s.

It is seen that the profile is approximately Gaussian with a positive mean. The
analytic solution is seen to closely capture the stochastic properties observed by the
numerical simulation technique. The probability of overshadowing not being caused by

this single other grit is the area beneath the curve above zero engagement.

7.5.2 Probability of a Single Grit being Active
The probability of a grit being active was derived to be the product of the
probabilities that it is not overshadowed by each of the other grits that act along the same
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circumferential grind path. Figure 7.5 shows that the probability of grit i not being
overshadowed by grit j is always greater than 50%. However, the final analytic
probability that the grit is not overshadowed any other grit and is active is much smaller.
The analytic probability of a grit being active is compared to the mean probability
observed in 1,000 iterations of numerical simulation at each infeed angle operating
condition. The plot shows that the probability of a grit being active increases significantly

at higher infeed angles.

— Analytic Pr[4,] ____. Analytic
x  Simulated Pr[A4,] Prlhy; > 0|r,]
1.0

Probability
=
()]

0.0 T T

0.0001 0.001 0.01 0.1
tan a

Figure 7.5 -Analytic calculations of the probability of a grit being active matching
well with numerical simulation results

7.5.3 Dynamic Grit Density

The analytic model was used to predict the dynamic grit density mean and standard
deviation under different grinding infeed angles. Figure 7.6 shows that the analytic model
accurately captures the behavior seen in the numerical simulation. The dynamic grit
density mean is seen to increase with larger infeed angles which agrees with measured
dynamic wheel topographies in literature [71, 72]. The standard deviation is observed to

be significantly large ranging to a maximum of 45% of the mean.
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Figure 7.6 - Statistical nature of expectation and mean of the dynamic grit density
are seen to be well modeled by the analytic solution

An examination of the ability of the analytic model to predict the behavior of actual
wheels in which grits cannot overlap can be conducted by comparison to the unmodified
numerical simulation that implements grit relocation to remove overlap. The results from
that comparison, seen in Figure 7.7, indicate that the numerical simulations that eliminate
grit overlap are still consistently predicted by the analytic model. However, the results do
diverge slightly at high infeed angles. This is expected to be caused by the deviation of
the grit protrusion height PDF between the two simulations having more effect when

such a large number of grits are active.

x  Simulated pcq ——  Analytic pgqy
°  Simulated oy = Analytic oy
150 — 15
- 100 A =
5 5
ec]
=50 A Z
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0.0001 0.001 0.01 0.1

tan o
Figure 7.7 - Results from the numerical simulation technique that eliminates
overlapping grits shows that the approximations made by the analytic model allow
it to accurately predict the more realistic dynamic grit density characteristics.
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7.6 MEASUREMENT OF DYNAMIC MICROGRINDING WHEEL

TOPOGRAPHY USING IN-FEED GRINDING

7.6.1 Setup

The in-feed grinding technique was chosen to help facilitate the ability to measure
and detect the individual grit force pulses during microgrinding. A diagram of the
experimental setup used to measure the individual grit force pulses is shown in Figure
7.8. The WC workpiece is rigidly fixtured to a 22 kHz force transducer with a 25 kHz
accelerometer attached for supplemental grit pulse measurement. The forces are
measured in the cutting force direction. The fixture was designed to provide maximum
stiffness with minimal moving mass in order to maximize the system natural frequency to
that of the sensors themselves. The horizontally-configured spindle is mounted on a 3-

axis high precision linear actuator stage by Aerotech.

25 kHz PCB 80. krpm
Accelerometer El.ectrlc Spindle
with TTL speed

feedback

WC Workpiece
with Micro-Pin Diamond
Features Microgrinding
Wheel
22 kHz PCB 3-Axis Aerotech
Quartz Force High-Precision
Transducer Stages

Figure 7.8 — Experimental setup for measuring microgrinding forces using the in-
feed technique

The WC workpiece consists of a bulk substrate with micro-pins machined on an
exposed surface. The micro-pins were machined using WEDM in order to achieve high
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dimensional accuracy and minimal residual stress in the micro-pin surface. An example
of one of the micro-pins is shown in Figure 7.9 along with the dimensional specifications.
The workpiece width of 150 um provides a grind zone angle of 17° on a Imm grind
wheel. The thickness of the workpiece is 50 um which corresponds to the mean grit
diameter for the wheels used for the experimentation. This allows for only a single line-
of-action segment along the grind wheel width to participate in grinding at once. A 125
um radius filet is machined into the rectangular pin base in order to minimize the

likelihood of complete pin fracture.

(a) End-View of Workpiece (b) Top-View of Workpiece
Figure 7.9 — Micrographs of WC workpiece micro-pin features with a 150pm
engagement width in the circumferential direction (a) and a S0um engagement
width in the axial direction (b) of the grind wheel

The natural response of the grinding setup was measured using impact testing with
the resulting response shown in Figure 7.10. It is seen that the responses of the measured
force and acceleration are similar. The system natural frequency is measured to be 18

kHz.
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Figure 7.10 — Impact response of in-feed experimental measurement system to force
ping on workpiece without grind wheel interaction with 30 kHz lowpass filtering

7.6.2 Details of Experimentation

The experimentation needs to measure the distributions of dynamic grit density,
dynamic grit spacing, and grit cutting force magnitudes across different grinding infeed
angles. Many repetitious measurements of these attributes need to be conducted in order
to capture these distributions. Therefore, wheel set A was created from a selection of 5
grind wheels from wheel set 3 presented in Table 4.4. The wheels chosen were the ones
with the most similar measured concentration numbers. They are summarized in Table
7.2. The grinding infeed angles chosen were selected from the middle of the range
investigated by the analytic model and numerical simulation presented earlier in this
chapter. Four duplicate measurements were taken for each wheel at each infeed angle for

a total of 80 grinding tests.
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Table 7.2 — Wheel set A chosen for measurement of dynamic topography

distributions

Manufacturer . . Measured
Specifications Measured Specifications Characteristics

Wheel #| G# | D w C | Dyank | toona w Cc N, C,
[pm] |[pm] [wm] | [wm] | [pwm] [#/mm’]
3.1 903.4 | 43.3 | 1317 |136.28| 798 | 194.78
34 921.8 | 40.1 | 1309 [141.30| 774 | 187.75
3.7 |#400| 1016 |1588| 140 | 895.5 | 44.4 | 1581 |133.42] 953 | 195.04
3.12 912.2 | 439 1459 1134.20| 891 194.42
3.15 910.0 | 43.0 | 1454 |136.09| 878 | 193.06

A summary of the experimental plan and test naming convention is outlined in Table
7.3. The execution order of the tests was randomized to mitigate systematic errors. The
micro-pin workpieces were machine from 2 different stocks of fine-grained WC. The
source stock for each test sample was also randomized. The feedrate for each test was
fixed to the values in the experimental plan. The spindle speeds required to achieve the
desired infeed angle for each test was calculated using the measured bond diameter for

each specific wheel.
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Table 7.3 — Outline of experimental test plan with measured dynamic grit density.
Test execution order was randomized.

Infeed-rate | Approximate Measured
Test # Wheel # Tan a [mm/s] Spindle Speed | Duplicate # | Dynamic Grit

[krpm] Density
1 1 38.08
2 2 35.70
3 0.003 1 6.4 3 47 60
4 4 40.80
5 1 61.73
6 2 68.59
7 0.008 2 4.8 3 56.12
8 31 4 51.44
9 ' 1 85.74
10 2 73.49
1 0.020 4 3.9 3 92.60
12 4 92.46
13 1 120.04
14 2 108.03
5 0.050 4 1.5 3 132.28
16 4 84.18

Test blocks continue to wheels 3.4, 3.7, 3.12, and 3.15 sequentially

A sample of the measured force and acceleration profiles is shown in Figure 7.11 for

test 26 on wheel 3.4 with an infeed angle of 0.020, feedrate of 4 mm/sec, and a spindle

speed of 3.864 krpm. The electric spindle is driven by a synchronous PM electrical

machine allowing for feedback from the spindle drive voltage profile to provide TTL

logical signal of the wheel position. The square wave logic signal discretized each spindle

revolution into 24 segments allowing for accurate measurement of the spindle speed and

interpolation of the spindle angular position over time.
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Figure 7.11 — Characteristic experimental force data, from test 26, showing
discernible force pulses and entry-zone of initial wheel contact

The grind force signature for test 26 shows initial wheel contact followed by wheel
clearance caused by initial micro-pin fracturing. The following force signatures began a
period of repetitious force profiles created by stable cutting action. The accelerometer
was able to capture force pulses of very small grit engagements that were lost in the noise
of the force transducer as can be seen in Figure 7.11. However, the acceleration signal
contained excessive dynamics that saturated the signal at times and provided little
information for the significant force pulses. The low frequency modulation observed in
the acceleration profile is attributed to electromagnetic noise.

The force profile for one revolution of the grind wheel in the stable cutting period in

test 23 is shown in Figure 7.12. Lowpass filtering was implemented to remove
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frequencies above 12 kHz. The measurement of the cutting forces induced by the cutting
action of individual abrasives involves the identification of the force peaks that have a
sudden increase of force at the cutting entry and a sharp decrease of force at the cutting
exit on the workpiece. Appropriately identified cutting force peaks have a sharp force rise
followed by corresponding fall at the appropriate time spacing required for the grit to
move through the 150um grind zone. The example calculation for test 23 is shown in
Equation 7.23 where it is determined that a force pulse that results from a grit interacting
across the full length of the workpiece should be 0.593 milliseconds long. Here, L is the

length of the workpiece.

L L 0.150 mm
= 0.593 msec

Leur = Vewr ZHéV (Dbﬁ“d) ~ 2m (3358 rpm) (1.4377 mm) Equation 7.23
6 60 2

The measured force profile for test 23 shows 5 grits identified using this criterion.
The magnitude of the force pulse was measured at the entrance of the grits from the grind
zone where the force change is most drastic. It is observed that grits 2 and 5 show more
sloping of the force decrease at the grind zone exit. It is suspected that this is caused
fracturing of the workpiece at the end of the cut where there is less resistive strength on

the edge of the workpiece.
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Figure 7.12 - Detailed examination of the lowpass-filtered cutting force signal for
test 23 after process stabilization

The force profile for one revolution of the grind wheel in the stable cutting period in
test 26 is shown in Figure 7.13 as a representation of some of the less clear force
signatures experienced at larger infeed angles. It is observed that this cutting force profile
has significantly more noise than that shown for test 23. The more aggressive cutting
action occurring at the larger infeed angle causes larger forces and larger residual
vibration in the workpiece and fixture. In addition, the penetration depth of the workpiece
material into the grind wheel could be causing a number of grits that do not lie on the
direct cutting action line along the wheel periphery to contact the workpiece. These othe