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SUMMARY

In the last half century, the aerospace industry has seen a dramatic paradigm shift

from a focus on performance-at-any-cost to product economics and value. The steady

increase in product requirements, complexity and global competition has driven aircraft

manufacturers to seek broad portfolios of advanced technologies. The development costs

and cycle times of these technologies vary widely, and the resulting design environment is one

where decisions must be made under substantial uncertainty. Major sources of frustration,

capital loss, and schedule slippage in aerospace development projects can be traced back to

the understanding or handling of uncertainty and the consequences of the decisions made

under that uncertainty.

Modeling and simulation have recently become the standard practice for addressing these

issues; detailed simulations and explorations of candidate future states of these systems help

reduce a complex design problem into a comprehensible, manageable form where decision

factors are prioritized. There have been several important advancements in system design

methods that have leveraged modeling and simulation to carry out structured analyses.

Nevertheless, the field is still growing quickly–especially in the domain of probabilistic

methods that treat uncertainty quantification and mitigation. These analyses attempt to

reduce overall uncertainty in cost, performance and schedule by delivering holistic analyses

with the ability to examine the key engineering and programmatic trades: Should I risk

making the product in-house or outsource the manufacturing? What is the best technology

portfolio and how do I optimize and adapt it to my risk tolerance constraints? While there

are still fundamental criticisms about using modeling and simulation approaches (pertaining

to fidelity, model form, applicability of assumptions and scalability, etc.), the emerging

challenge becomes How do you best configure uncertainty analyses and the information they

produce to address real world problems?

One such analysis methodology was developed in this thesis by structuring the input,
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models, and output to answer questions about the risk and economic impact of technology

decisions in future aircraft programs. Unlike other methods, this method placed emphasis

on the uncertainty in the cumulative cashflow space as the integrator of economic viability.

From this perspective, it then focused on exploration of the design and technology space to

tailor the business case and its associated risk in the cash flow dimension. The methodology

is called CASSANDRA and is intended to be executed by a program manager (or executive)

of a manufacturer working of the development of future concepts. The program manager

has the ability to control design elements as well as the new technology allocation on that

aircraft. She is also responsible for the elicitation of the uncertainty in those dimensions

within control as well as the external scenarios (that are out of program control).

The methodology was applied on a future single-aisle 150-passenger aircraft design so

as to evaluate the cost and schedule implications of a composite materials technology. The

problem was scoped away from searching for highly improbable or unforeseeable failure

modes and focused on a broader impact of design, technology and scenario uncertainty.

The research contributions resulting from the proposed methodology may be considered

at two levels. The overall methodology is compared to existing approaches and is shown to

identify more economically robust design decisions under a set of at-risk program scenarios.

Additionally, a set of metrics in the uncertain cumulative cashflow space were developed

to assist the methodology user in the identification, evaluation, and selection of design and

technology. These metrics are compared to alternate approaches and are shown to better

identify risk efficient design and technology selections.

At the modeling level, an approach is given to estimate the production quantity based on

an enhanced Overall Evaluation Criterion method that captures the competitive advantage

of the aircraft design. This model was needed as the assumption of production quantity is

highly influential to the business case risk.

Finally, the research explored the capacity to generate risk mitigation strategies into

two analysis configurations: when available data and simulation capacity are abundant, and

when they are sparse or incomplete. The first configuration leverages structured filtration

of Monte Carlo simulation results. The allocation of design and technology risk is then
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identified on the Pareto Frontier. The second configuration identifies the direction of robust

risk mitigation based on the available data and limited simulation ability. It leverages a

linearized approximation of the cashflow metrics and identifies the direction of allocation

using the Jacobian matrix and its inversion.

The result of the dissertation was a methodology that enabled early design and technol-

ogy awareness of the multidisciplinary risk of the economic viability of an aircraft program

in conceptual development.

xxiii



CHAPTER I

MOTIVATION

Take calculated risks. That is quite different from being rash.

General George S. Patton

As modern aircraft systems continuously grow in complexity and development cost,

the burden on product development managers to develop successful aircraft programs is

increased. Consequently, there is a clear and present need for the continuous development

of formalized methods to augment the decision information available during the design

of aerospace vehicles [107]. Unfortunately, with the rise in system complexity comes a

rise in net uncertainty of the system itself, particularly when the implementation of new

technologies, materials and processes are critical to the expected product success. In new

aircraft development programs, the decisions regarding the investment of billions of dollars

in research, development, manufacturing and assembly infrastructure must be made very

early on and in the presence of sparse data and abundant uncertainty. In the lack of

competition, this may not pose a significant challenge, but modern commercial and military

aircraft industries experience aggressive competition between a small number of key players.

Failure in this context is unacceptable, and as the adage goes for aircraft developers, ‘every

new aircraft bets the company ’ [35].

The ultimate decision to launch the project will depend on a judgment about the quality

of the assumptions and the treatment of the uncertainty in the analysis presented. Share-

holders in the project are likely to ask How sure are you about the results presented?

As the decision to include technologies is often made before they are fully mature, the

resulting uncertainty and risk must therefore be managed. From the technical perspective,

this typically translates into managing the cost and time line of the technology develop-

ment, its application on the aircraft, and the manufacturing setup. From the programmatic

perspective, the investment and profitability aspects must also exhibit favorable qualities
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of risk and reward. The fundamental need for its management stems from this simple per-

spective: If I do nothing, there are consequences; but if I do something, the consequences

may be improved. The risk management problem can then be reduced to the four questions:

1. What happens if I do nothing? - answered through risk analysis and other technical

studies

2. What happens if I do something? - answered through assessment of alternatives and

their integration in the system

3. What is the penalty/payoff for trying to reduce/confirm a given risk level? - answered

through exploration of the risk mitigation power and the costs of the identified miti-

gation strategies

4. What should I do? - answered through alignment of the decision to core program or

enterprise strategy and selection

Forecasting the effects of uncertainty on complex systems follows a similar logical se-

quence: uncertainty elicitation (or identification and description of uncertain parameters),

propagation of that uncertainty through a system to achieve distributed responses (via mod-

eling and simulation), and uncertainty mitigation (alternative selection and execution). The

end result of risk management is an explorative measurement of the implications of uncer-

tainty entry and their combined effect on the decisions and trade-offs between alternatives.

Many authors believe that risk is an integral part of successful product development

management [50]. The challenge lies in how uncertainty information is developed and

treated in complex system design environments such that the quality of the risky decision

is maximized by the specific, in-depth information about the risk. Decision-making in this

context is often considered as much an art as it is a science: a blend of the objective and

physical with the subjective and psychological. In its most basic form, design activities and

the body of decision making processes can be viewed as the ongoing balance between risk

and reward.
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1.1 Forecasting and Risk

An appreciation of the feasible scope of research is pertinent here–before delving deeper into

the topic. A technical decision has the following attributes: an uncertainty about the result,

the consequential effects of such result and a lead time before those effects are realized. As

methods and processes improve the ability to deal with the uncertainty and risk, Twiss

states that with forecasting technology there are:

...too many unknowns surrounding the future for us to ever hope to forecast it

with certainty. These forecasts will inevitably contain errors, but this cannot be

avoided. Our decisions must be made in the present using the best information

available at the time, but it behooves us to use it in the most effective way...

although [forecasting] cannot eliminate uncertainty, it can assist in reducing it;

thereby a better view of the future and its evolution can be obtained, leading

to better decisions. More than this cannot be expected [132].

Risk is manifested in many forms, most often described in the performance, schedule,

and cost risk of the proposed product. At the enterprise level, a new product risks are

correlated with the market, the competitive position, and the short term to long term

investment balance of the company strategy.

C.W. Miller produced a cartoon illustration showing the differences in disciplinary per-

spectives of aircraft design. In the drawing shown in Figure 1, it depicts each of the candi-

date aircraft concepts if that discipline were not required to compromise and could design

the rest of the aircraft in isolation. While exaggerated and amusing, it begs the question

to the author as to what that aircraft might look like to the Risk discipline. Following

the earlier quotation by Twiss, it is estimated that risk-in-isolation aircraft design might

look like what already exists, as the uncertainty in that configuration is essentially zero.

However, when additional dimensions of risk are introduced in the problem, such as the risk

of more stringent requirements, new competitors, and continuously developing technology,

the risk in isolation design now begins to evolve.
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Risk

Figure 1: Cartoons illustrating the design in isolation effect of contributing disciplinary
perspectives of the airplane by C.W. Miller [93]. Note that the likely risk averse design
would be as little deviation from the existing paradigm as possible.

1.2 Changing Times

The civil air transportation industry is arguably one of the largest and most economically

sensitive industries today. In recent events, a volcanic crisis over Europe hampered air

traffic for weeks, causing billions of dollars of damages and loss to both airlines and the

businesses that rely on commercial air travel and transport.

The emergence of a fierce duopoly in major commercial aircraft developers between

Airbus and Boeing has changed the face the market and the way the game is played [128]. In

the presence of competition, new social and political pressures have tightened requirements

and the manufacturers are driven to seek higher risk technologies to gain market share

and competitive edge. In this modern business, the voice of the customer is tied to sales

performance, and recently that voice has shifted to an acute awareness of the total life-cycle

cost. Simply put, airlines demand new aircraft that can achieve the same performance at a
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lower operational, maintenance and disposal cost.

In response to this customer demand, Boeing, Airbus and others continuously seek

new technology to improve performance and decrease operating cost while maintaining a

profitable business for their shareholders. An important contributing technology is the

use of new materials such as carbon-epoxy composites for aircraft structure; however, this

has not come without difficulties, as several major programs have gone over cost, under

performance and past schedule as the the inherent risks to the industry have been realized.

1.3 Why is Risk on the Rise?

The information revolution has enabled widespread dissemination of knowledge across the

world, and the aerospace industry is no different. The continual globalization of the design

and production of commercial aircraft has slowly transformed what was once a privately

guarded industry into an economy of learning. This learning poses long term competitive

risk. A lucid report on commercial aircraft cycle time by NASA in 2001 describes the

implications to aircraft developers of incremental business risk due to learning economies:

The new economics literature on learning economies suggests that the risk in-

herent in new aircraft development may be even larger than originally posited.

While commercial aircraft production is subject to significant learning economies,

companies can benefit from these economies to a much greater extent if they are

able to maintain or increase their annual production rates. When there are wide

variations in production rates, there will be a significant depreciation in learning

benefits, and the realized economics of the program may be disappointing.[118]

The major driving reasons for increased risk to aircraft developers are summarized in

the following:

1. Rise in development or acquisition costs driven by technology and process investment

needed

2. Rise in development cycle time (program launch to first delivery) - interrelated disci-

plines must converge on synthesized solutions taking time as the underlying technology
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development network is mixed mode (serial and parallel development)

3. Rise in aircraft systems and subsystems complexity - supply network, disciplinarian

interactions, produce and service expansion

4. Rise in stakeholder expectations and societal usage - development of a duopoly raises

customer (airline) leverage

Aircraft development cost and cycle times have steadily increased in the last 40 years.

Table 1 displays a selection of the major commercial aircraft, showing a steady increase in

the development time and inflation-adjusted development costs of the program. This rise

in costs places increasingly heavy reliance on program success.

1.4 Industries of Risk

There has been substantial research risk management methods that try to bring results

about risk analyses of various systems and subsystems development analyses to the decision-

maker’s attention. However, a comprehensive review of program risk management by the

Rand Corporation report in 2004 [40] describes:

”a striking lack of literature on the use of the (risk management) techniques”

(and ) “that virtually all of the evidence for its utility was anecdotal.”

In addition, there is a lack of consensus on how those risk analyses are combined,

weighed, evaluated, and translated into a holistic view of the net risk-reward of competing

alternatives.

This is a challenging task because the different disciplines involved with aircraft de-

sign view uncertainty (and thus risk) in different ways. Some of the uncertainty is purely

subjective (qualitative), others are data-driven and bear quantitative uncertainty that is

not always explicitly expressed in the design environment. Another part of the net un-

certainty lies in the unidentified possible system states not considered (or ”unknown un-

knowns”). For these reasons and others, a defensible, traceable, rigorous approach to com-

bining the information sources into traceable knowledge structure is difficult and therefore
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challenging (not to mention stressful) to the decision maker. The decision process begins

as technically-driven (where the decision maker examines a large partially disconnected set

of data and analyses from the contributing areas) and these results feed an internal, human

and judgment-based process. It is for this reason high-level decision making is traditionally

left to experienced people within the field; they draw on a large wealth of human knowl-

edge and experienced-based perception to crystallize the ultimate decision. The growing

complexity of aircraft systems, in addition to the increasing societal implications of making

design mistakes, threaten this classical decision model. It is clear that given the stakes

involved in today’s projects, such intuitive measures, based solely on experience, are no

longer sufficient [47].

Of all aerospace-related organizations, NASA is one of the most risk-aware and prolific

on the subject of technical risk management. Their missions continually present new and

unique technical and safety risks; much of their research has been to minimize risk. Stud-

ies conducted on low-volume, high cost missions have laid the ground work for aerospace

systems risk research. Their focus has covered areas such as risk and uncertainty analysis,

reliability, decision-based design, and robust design [130].

There is a conspicuous need for more advanced risk-informed methods to char-

acterize, balance and minimize risk in the uncertain and ambiguous stages of

conceptual design. Such methods will treat risk as a trade-able resource that

can be used to make robust and reliable design decisions [130].

NASA has also used the term risk-informed design instead of risk-based design, empha-

sizing that risk analysis tools and methods cannot be the sole basis for decision making in

design processes [28]. This thesis adopts a similarly balanced view of incorporating risk into

existing design paradigms.

1.4.1 Rise in Aircraft System Complexity

Browning gives a detailed description of the ramifications of schedule risk as a function of

complexity rise, stating that complex system product development inevitably involves risk
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Table 1: Duration of major commercial transport aircraft development programs.

Launch Year Aircraft Development Time Development Cost ($B 2010 )

1965 Boeing 747 9 years 11.8
1986 Airbus A330/340 11 years 11
1990 Boeing 777 11 years 7.3
1994 Airbus A380 13 years 15
2003 Boeing 787 14+ years 17

[17]. As systems grow in complexity, the possible risk entry points grow in kind, given that

the integration risk is also a function of system interactions.

Masten provides a detailed description of the business-economic effects arising from the

increase in overall aircraft complexity, stating:

The greater the complexity of the transaction and the level of uncertainty as-

sociated with it, the greater the likelihood of being bound to an inappropriate

action, and hence the greater the implicit costs of contractual organization [83].

The long-term risks associated with an extended supply chain, design out-sourcing, and

particularly outsourcing the design of key components (such as the wing) is described in

great detail in Pritchard’s critique of Boeing and Airbus’s risk-sharing enterprise strategy

[104]. These risks are complex to quantify and are considered outside the scope of this

thesis.

The rising stakeholder and airline operator impact is described in the 2011 Federal Avi-

ation Administration (FAA) air traffic forecast, projecting a steady increase in commercial

airline traffic for the next 30 years [36], shown in Figure 2 and in Boeing’s 2012 forecast

shown in Figure 3.

These elements contribute to a increased culture of awareness and detailed, knowledge-

driven risk management techniques among managers at many levels of the new aircraft

development process. The next section will focus on the influence advanced materials on

1In billions of USD, corrected to Fiscal Year 2010. Amounts are approximates, as development aid and
subsidies shroud actual development cost.
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Figure 2: The FAA’s projected increase in U.S. Commercial Traffic for 2010-2031 [36].

the risk temperature of development programs.

Research Observation I

New aircraft development programs are increasingly challenged by the rise in advanced

technology, multidisciplinary complexity growth and implications of program failure. These

changes open new, never before seen opportunities for risk entry and therefore, the risk

assessment methods used by program managers must advance in kind which incorporate

the increased merging of these aspects.

1.5 Aerospace Perspectives of Risk

The aerospace industry has long been claimed as a technology development leader. This

is partly due to the fact that it takes a substantial degree of technology working together

in harmony to fly (the combination of the gravity of Earth and the viscosity of air have
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Figure 3: Boeing’s 2012 30-year market outlook, broken down by aircraft type, growth
factor, and region [13].

contributed to the technical challenge). The safety of hundreds of passengers per flight de-

pends on the continual performance of these technologies. It therefore demands considerable

investment, time, attention to detail and effort to design and build a safe airplane.

Fifty years ago, the technical know-how and immediate market was held within small,

distributed business groups, often clustered in the United States and Western Europe.

Today, most developed nations manufacture aircraft elements and the list of countries pro-

ducing their own aircraft has grown to include Brazil, China, Japan, Korea, Canada, and

many more.

Aerospace risks have fluctuated amidst the Industrial Revolution and Modern Era. In

early human aviation history, the physics of flight were poorly understood, leading to a

high probability of failure and this risk. For example, before the Wright Brothers’ success

at Kitty Hawk, countless extreme-risk level and often catastrophic attempts at flight are

fully documented in the history books. However as knowledge and technology about flight

developed, the aggregate risk of manned flight was reduced.
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Over time though, the net risk began to be transform into programmatic challenges.

New prototype designs in the early part of the 20th century were characterized by dra-

matic entrepreneurial exuberance, success and disaster. As war became an accelerator

for technology development, or rather, as the impact associated with failing at war grew

wildly, the concept of balancing risk, whether programmatically or of human life, was barely

a consideration. Gradually, as the Cold War subsided and economic belts tightened, both

commercial and military aviation corporations were forced to evaluate and carefully balance

the impact decision quality. Eventually enough competition was created and programmatic

considerations and product alignment to enterprise strategic vision took hold.

In the military maritime sector, high development costs and low production quantities

caused program managers to develop some of the first product risk management methods.

Among them was PERT, a schedule risk management tool which arranged anticipated

project tasks into a linked network and assigned probabilities: most optimistic, most likely

(often interpreted as the average) and most pessimistic duration for each of the activities.

According to Lionel Galway’s review in 2004,

PERT was a great success from a public relations point of view, although only a

relatively small portion of the [Navy’s] Polaris program was ever managed using

the technique. And this success led to adaptations of PERT such as PERT/cost

that attempted to address cost issues as well. While PERT was widely ac-

claimed by the business and defense communities in the 1960’s, later studies

raised doubts about whether PERT contributed much to the management suc-

cess of the Polaris project [40].

As life becomes driven by increasingly intelligent systems, the uncertainty about even the

nearest moment in the future still remains constant. It is a simple fact: we cannot predict

the future with perfect certainty. Risk versus reward is a boiled-down decision device that

combines the utility of a reward (for example, we really want to go to the moon), with

the associated risk in life (astronauts might die), money (costs too much), time (takes too

long). This is a core metric in any investor’s mind: what is my exposure to bad events, and
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is it worth the perceived benefit I will receive?

1.5.1 The Rise of Composites in Aircraft Structures

Composite materials have become crucial to the development of new aircraft designs for

their increasingly important role in aircraft design, cost estimation, and manufacturing.

Including more composite materials in an aircraft design generally reduces the weight and

occasionally maintenance costs. There is an uncertainty caused by the rapid technological

development of the use of the material, as well as the continuously changing design and

manufacturing processes. Therefore, much of the cost data either does not exist, or it is

difficult to obtain accurately. There is also a continuing improvement in the manufacturing

process that will be challenging to include within the scope of this project.

Figure 4: Use of composite structures in aircraft components and regressed forecasts [51].

Structural design and loads analyses, among other disciplines, are continuously bur-

dened with uncertainty quantification and mitigation during design. Engineers face this

challenge at every point of the design process, especially during the conceptual and pre-

liminary phases where the trade studies between the performance of alternative designs

rely on heavy assumptions. However, uncertainty quantification of the data substantiating

the analyses for design alternatives is often simply estimated after the fact by subjective
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experience-based expert input. Automating these qualitative processes so as to develop

rigorous and evaluative studies of the existing uncertainty is clearly valuable to a decision

maker, specifically the uncertainty in the requirements, inputs and potential interactions

within the system model. This is true for new technology insertion across disciplines within

the aircraft architecture.

1.5.2 Examples of Realized Risks with Composite Aircraft

Recent major aircraft development programs such as the Boeing 787 Dreamliner and the

Airbus A380 have experienced a variety of delays and technical setbacks in the development

process. It is not the aim of this thesis to criticize these programs, or their management

of the difficulties presented. Rather, it is to illustrate that the risks associated with new,

high technology complex systems are indeed real, and to present a candidate approach to

exploring the exposure specific to each new product. Looking at the schedule risks realized

by the 787 Dreamliner program, there have been an assortment of manifestations. Most are

associated with the risk-sharing approach Boeing has taken in the the use of a global supply

network, as shown in Figure 2. Several authors have criticized the approach of exchanging

unit cost risk for program schedule risk, and a complete view of this risk trade space will

be discussed later through the use of Risk Interrelationship Matrices in Section 2.3.2. The

result of these delays is the potential for cancellation of pre-orders from airlines as well as

several billion dollars in customer contract penalties.

One example of recent schedule risk was related to a new materials technology applied in

the 787 Dreamliner, and contributed to the motivation for this thesis. The unprecedented

proliferation of the use of composites in this all-new aircraft experienced growing pains,

particularly in the joint between the wing and the fuselage. During a ground test late in the

development cycle, it was found that the upper skin and stringers had slight delamination

from locally exceeding limit load (operating limit) in upward bending.

The damage occurred below the required load level needed for certification. It was

expected that this type of failure would occur at ultimate load, and not limit load, thus

causing the need for a repair or re-design. The resulting re-design called for installing
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Table 2: History of change in the Estimated dates for the First Flight and First Delivery
of the Boeing 787 program. Data collected from [46]

.

Date First Flight First Delivery Reason Given at Announcement

Launch 8/1/2007 5/1/2008
10/1/2007 3/1/2008 12/1/2008 Gap where the left side of the nose-and-

cockpit section is out of alignment with
the fuselage, shortage of fasteners

1/1/2008 6/1/2008 Program Manager replaced, supply chain
problems

4/1/2008 12/1/2008 9/1/2009 Labor dispute, machinist strike. Union
members maintain that if more of the key
production had been in-house instead of
by subcontractors, the 787 would have
been completed on time.

12/1/2008 6/1/2009 3/1/2010 The design and installation of reinforce-
ments along the upper part of the place
where the wings join the fuselage

12/1/2009 (completed) First flight completed
7/1/2010 (completed) 2/1/2011 Explosion of engine during testbed
11/1/2010 (completed) 9/1/2011 Electrical fire in cockpit

additional fasteners and a re-shaping of the stringers at the wing box. Figure 5 illustrates

the cross section of the wing box and location of stress point.

Another example of the complexities of realizing returns with plastic-composite materials

in aircraft is explained by McLellan [90], describing the loss of performance margin by

adapting the new material extensively in their design of the new Adams A500 aircraft:

Adam Aircraft is another worrisome example of composites gone wrong. The

center-line thrust piston twin A500 also came out heavier than expected and was

more costly to build. It was eventually certified but its payload and performance

restrictions dried up what had been a promising market [90].

The next section will address the core perspective of business case risk measurement by

assessment of the cumulative cashflow.
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Figure 5: Location of the stress point arising from joining advanced composites on the
Boeing 787 [46].

1.5.3 Break Even Analysis of Aircraft Programs

Cost models have been applied to generate forecasting models for cash flows as a treatment

and abatement of cashflow risk concerns [100]. From a high-level business perspective, these

risks can be transformed directly into measures of uncertainty on a manufacturer’s Cash

Flow chart given in Figure 6.

Products with a positive expected return on investment (or positive Net Present Value)

are green-lighted, but the assumptions substantiating the product performance, cost, market

availability and future presence of competition are subject to sizable uncertainty. This

uncertainty ultimately translates to a possible shift in the expected cash flow chart, shown

with the dashed lines above and below the mean expected return in Figure 79. Note that

the uncertainty around the expected line increases with time, following general assumptions
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Figure 6: New product development profits and their key product life cycle milestones [110].
.

of stochastic diffusion processes.

Figure 7 shows the estimated annual cash flows for a modern commercial transport

aircraft program. Note the sharp ramp up in magnitude of both costs and revenues as

production begins, as well as the exponential decrease in production costs over time. Also

note that there are typically some payments early in the development phase. These inflows

are typically a result of purchase agreements with customers, as many sales incorporate a

down-payment of approximately 10-50 percent of the aircraft. This down-payment varies

between customers as a function of the other purchase agreement details. In this example

a discount rate (similar to inflation rate adjustment) of 10 percent was used. The effect

of this is that as the value of money now is greater than money in the future, the large

capital returns in the future may not balance with large expenditures in early phases of the

program [91].
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Figure 7: Cash flow diagram, showing the annual and cumulative cash flows for a typical
commercial transport aircraft. Also note the discount factor and its effect on the present
value of future payments (in the darker shading) [91]. .

1.6 The Uncertain Cumulative Cashflow Concept

Literature review of the uncertainty described in the cumulative cashflow of aerospace ve-

hicle programs has separated two fundamental contributing areas: Technical Uncertainty

(related to costs and schedule in research, development, testing and evaluation (RDT&E),

and Market Uncertainty (related to the manufacturing rate/costs, sales price and market

capacity). Provided that the product, vehicle, or technology is valuable, these two uncer-

tainty projections combine to form the programmatic uncertainty, or uncertain cumulative

cash flow (as referred to in this thesis). This is shown in Figure 8. This dissertation research

views this projection of uncertainty as a potential approach for forecasting business case

dimensions, and ultimately, success and profitability.
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Figure 8: Cumulative cash flow for complex engineered systems is highly dependent on
technical and market uncertainty [110]. .

1.7 Envisioning the strategic mitigation effect on the business case

The uncertain cash flow diagrams give insight into the business case in terms of both risk

and reward (or more specifically: break even year, sunk cost, ROI and their associated

risk dimensions) in an aggregated way. Understanding the impact of a strategic mitigation

plan on a perturbed scenario then becomes clear: design and strategy alternatives can be

compared simultaneously.

Figure 9 shows a notional example of two alternatives possible. The first example has

a much steeper capital expenditure curve, but also has a larger expected overall return on

investment. The potential for upside is also lower, however it comes at the expense of the

possibility that the program may never break even (note the lower dashed line bound). The

lower diagram has less total sunk cost, a longer expected break-even date, and a low return

on investment, yet the uncertainty around those dimensions is much lower. Note that both

of these aircraft design alternatives have the approximately same risk-to-reward ratio, so it

follows that evaluating this ratio alone is insufficient in positioning the program manager’s

strategy.
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Figure 9: Alternatives compared by uncertainty and risk propagated to the cash flow chart,
allowing balance between cost schedule and performance trades to be evaluated holistically.

The program manager’s attitude towards risk (as well as the higher level manufacturer’s

economic situation and product placement) then come into play to the already crowded

decision space. By being able to reduce these decisions to the single business perspective

gives an increasingly transparent feedback to the program manager, and ultimately enable

better, more informed decisions. This is the CASSANDRA methodologies core deliverable.

The methodology also enables studies to be made in evaluating the robustness of the

business case. By introducing scenario perturbations to the uncertain cash flow curve and

then examining the program manager’s control power to return the program back to the

desired state, an assessment of the business robustness can be made.

This aspect is the risk mitigation and strategy development section which is the final

step of the methodology. Not only is the program manager able to evaluate the total busi-

ness case of design and technology decisions, but she is also able to examine what control

power is available at that specific design point. Ideally the program manager should be able
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to find a design that meets the cash flow and risk perspectives desired, and also meet the

robustness requirement of that business case. When the modeling and simulation environ-

ments are setup, the business case can be torture-tested by various scenario, economic, and

technological perturbations. In this thesis, three case studies are evaluated and carried out,

and are found in the Results chapter.

1.8 Research Objective

The end goal for fusing the paradigms of financial risk management, psychological percep-

tion of risk, and modern preliminary aircraft design is summarized in the following research

objective:

Research Objective

In order to contribute to the present techniques for integrating risk management practices

into the design process, the objective of this research is to deliver three things:

1. A methodology that a program manager can use to measure and allocate the risk

arising from technology and manufacturing uncertainty onto the business case of a

new aircraft development project.

2. Development of metrics in the uncertain cumulative cashflow space which better ex-

press the extent and usefulness of the risk being assumed.

3. A process for identifying robust risk mitigation strategies in the presence of either

large or small available data sets.

The goal of this research is to propose and evaluate a method designed to alleviate the

process between information collection and decision execution by providing a risk-integrated

framework in the context of preliminary level aircraft design. It is hoped that aircraft devel-

opment decision makers can then simultaneously view and interpret competing alternatives
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and their associated aggregated risk and make the best documented, risk-aware decision

possible.

This methodology produces a strategic recommendation to program manager of such an

aircraft program facing simultaneous risks in multiple dimensions and disciplines. If success-

ful, it will improve the quality of decision making at the preliminary level in technology of

commercial aircraft structures by developing traceable, interrelated and knowledge-driven

aggregated risk formulations that are translated directly into the modern aircraft design

environment.

1.8.1 Summary of the Problem Motivation

In this chapter, the fundamental motivation for incorporating risk analyses within the air-

craft design program agenda has been explored. Three primary reasons illustrate why the

proposed research is valuable.

1. The informed handling of risk, regardless of the form in which it is manifested, is

vital to program success and therefore is a core responsibility and concern of aircraft

product development programs

2. Risk is steadily increasing with the rise in cycle time, development costs, advanced

technology (specifically materials), and globalization of supply and competition.

3. Critical review and publication of the successes and failures of the risk management

methods executed by development programs is limited or non-existent, either due to

the uniqueness of their approach or by proprietary protection.

4. Decision making methods in design must incorporate risk information to improve

decision quality and program success robustness.

1.8.2 Key Research Questions and Hypothesis

The basic themes of risk measurement, risk mitigation, and robust strategy selection of this

dissertation are captured by the following driving Research Questions:
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Research Question I

How can the present design methods be improved to measure the multidisciplinary risk

presented when using advanced technologies in vehicle development?

Research Question II

How can risk analysis and mitigation methods be improved to generate mitigation strate-

gies amid the multidisciplinary risk presented when using advanced technologies in vehicle

development?

Research Question III

How can risk analysis and mitigation methods be improved to select the robust mitigation

strategies for addressing multidisciplinary risk presented when using advanced technologies

in vehicle development?

These questions led to the development of a methdology called CASSANDRA which

structures an analysis that answers the Research Questions. CASSANDRA stands for

Computational Aircraft Sub-System ANalysis of Design Risk Alternatives. The funda-

mental hypothesis of the methodology is:

Methodology Hypothesis

The CASSANDRA methodology improved design awareness by forecasting the cost and

time risks caused by uncertainty in the technology and manufacturing decisions during the

conceptual design phase.
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1.8.3 Declaration of the Research Scope

Risk management in aerospace vehicle design is a broad and complex field, with many

technical, quantitative and qualitative methods. Many, if not most of the methods focus

on flight safety and technical performance risks. This research has instead scoped the

motivating problem away from safety and performance aspects, and assumes those are

addressed separately and held constant. This research focuses only on the cost and schedule

impacts and their risks to an aircraft manufacturer/integrator who is incorporating still-

developing technologies into its design.

There exist several fields of research on the flexibility of program control as well as the

adaptability and timing of design decisions (such as the fields of Real Options and agile

manufacturing). The design phase in consideration of this research does not encompass

those, and focuses a fixed time of the program during the conceptual design phase.

With these research constraints in place, the problem and methodology may be struc-

tured to evaluate the Research Questions in sufficient depth.

1.9 Organization of Thesis

In the following chapters, a comprehensive review of risk concepts, risk-informed decision

methods, and aircraft-specific design processes are presented. Its purpose is to examine

existing methods to explore how those approaches may be combined and adapted to form

a new way of addressing the problem presented in this chapter.

Chapter 2 covers the fundamentals in risk literature and measurement methods applica-

ble to aircraft programs, beginning with the definitions and existing taxonomies of risk and

uncertainty. Risk is a commonly misunderstood and mis-communicated term, and a key

anchor of this thesis is the selection and formalization of a risk definition and vocabulary.

The industry standards for risk measurement and mitigation are given, and the concept of

cumulative cashflow is introduced in detail.

Chapter 3 evaluates the experimental apparatus used to build and test the CASSAN-

DRA methodology. Here, the thought processes are given leading to the high-speed sizing,

synthesis, and cost estimation modeling framework (called BASUCA). An evaluation of the
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relationship between experimental run count and risk bounds are also addressed.

Chapters 4 and 5 break apart and address the two aspects of the uncertain cumula-

tive cashflow given in Figure 8. Chapter 4 addresses the Technical Uncertainty aspect

pertaining to managing cost and schedule of design processes and specifically technology

development. The elicitation and propagation of uncertainty is addressed in this Chap-

ter and the approaches for modeling and simulation of Technology Readiness are explored.

The research contributes a networked approach to mixing Technology Readiness Levels with

Manufacturing Readiness Levels to give a combined cost and schedule distribution.

Chapter 5 addresses the second aspect of the uncertain cumulative cashflow diagram: the

market (and manufacturing) uncertainty. Here the economics of manufacturing and selling

aircraft are addressed. This research contributes an approach to modeling the market

capacity or likely program production quantity, which is shown to have a strong affect

on both aircraft price and overall profitability. The total program risk and profitability is

addressed by contributing a set of metrics that measure the risk-to-reward and risk efficiency

aspects. These metrics are called the Risk Aversion angle and Risk-Benefit ratio.

Chapter 6 reviews the ability to use the uncertain cumulative cashflows of individual de-

signs and their metrics to generate risk reduction or mitigation strategies. Two approaches

are addressed, one with the availability of large data sets and inexpensive models, and one

with small data sets or expensive models. The first uses a filtered Monte-Carlo approach,

and the second uses a first order linearization of the modeling framework using the Jacobian

matrix.

Chapter 7 reviews the problem formulation and details the individual steps of the CAS-

SANDRA methodology. An in-depth look is taken to the objective function of the method-

ology user, and a case study is given where the manufacturing assumptions in costs are

perturbed.

Chapter 8 reviews the thesis contributions, Research Objectives, and offers suggestions

for future work.
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CHAPTER II

AIRCRAFT PROGRAM RISK ESTIMATION

There are known knowns; there are things we know we know. We also know

there are known unknowns; that is to say we know there are some things we do

not know. But there are also unknown unknowns: the ones we don’t know that

we don’t know.

Donald Rumsfeld, Former Secretary of Defense

Many aspects of life have changed dramatically, even exponentially in the last 50 years.

The list is long and familiar: population, communication, transportation, information, glob-

alization, cultural balances, etc. There are certain things which have not changed in this

time such as human need for survival, safety and quest for success and happiness. So, with

the static traits of human life amidst an ever-changing world comes the inevitable pressure

to keep up and moving forward so as to better ensure our survival, safety and happiness.

2.1 Definitions of Risk

2.1.1 Classical Definition of Risk

Frank Knight, in his seminal paper of 1921, distinguished risk and uncertainty in the fol-

lowing way:

The essential fact is that risk means a quantity susceptible of measurement [...] It will

appear that a measurable uncertainty, or risk proper [...] is so far different from an immea-

surable one that it is not in effect an uncertainty at all. We [...] accordingly restrict the

term uncertainty to cases of the non-quantitative type [68].

This perspective implies a measurement criterion to the likely state. If the measurement
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of the probability is known, or even measurable, then the term risk describes such a state.

However, if no measurement or distribution of the state is known, then uncertainty fully

describes the knowledge about the state.

This definition has been greatly contested over the course of the century; the main

criticisms are that the implication of measurement is independent of concepts of risk and

uncertainty alone.

2.1.2 Hubbardian Definitions of Risk and Uncertainty

Hubbard, among other authors, did not taken the same perspective of the measurement

criterion. Rather, Hubbard separates the measurement of risk and uncertainty and defines

them individually, as follows: [58]

Uncertainty : The lack of complete certainty, that is, the existence of more than one possi-

bility. The true outcome/state/result/value is not known.

Measurement of uncertainty : A set of probabilities assigned to a set of candidate future

states.

This approach to defining uncertainty is precise and originates from Probability Theory.

It is also time independent, as there could potentially be uncertainty about the future,

present and past. The measurement of uncertainty, in a strict mathematical sense, is a value

or set of values ranging from 0 to 1, with 0 representing impossibility and 1 representing

total certainty about a state. For example, there is a 60% chance this market will increase

this year.

Risk: A state of uncertainty where some of the possibilities involve a loss, catastrophe, or

other undesirable outcome.

Measurement of Risk: A set of possibilities each with quantified probabilities and quantified

losses.
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In the Hubbardian perspective, risk is derived from uncertainty, or rather is a superset

to uncertainty, as a natural development of the implication of consequence to the associated

future uncertain states. However it makes no specification on what defines the boundary

between loss and gain. This definition is widely accepted for general use (especially in safety

and hazard risk assessment), but it often lacks completeness when implemented in formal

programmatic risk methods.

2.1.3 Risk Definition Standards

As the definition of risk is easily misunderstood and often the source of communication

difficulties, several major organizations have sought to develop standards formalizing the

definition and management processes. The first standard presented here is that of the

United States Department of Defense (DoD), which publishes and maintains a Risk Man-

agement guide for the DoD Acquisition processes. This definition is especially relevant to

aircraft design programs, as many of the aircraft developers synchronize their communica-

tion standards for the ease of integrating their products in government acquisition processes.

The latest revision of this document describes the definitions and component of risk in the

following way:
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Risk is a measure of future uncertainties in achieving program performance goals and ob-

jectives within defined cost, schedule and performance constraints. Risk can be associated

with all aspects of a program (e.g., threat, technology maturity, supplier capability, design

maturation, performance against plan,) as these aspects relate across the Work Breakdown

Structure (WBS) and Integrated Master Schedule (IMS). Risk addresses the potential vari-

ation in the planned approach and its expected outcome.

Risks have three components:

1. A future root cause (yet to happen), which, if eliminated or corrected, would prevent

a potential consequence from occurring,

2. A probability (or likelihood) assessed at the present time of that future root cause

occurring, and

3. The consequence (or effect) of that future occurrence.

A future root cause is the most basic reason for the presence of a risk. Accordingly, risks

should be tied to future root causes and their effects [22].

Figure 10 illustrates the separation between risk and uncertainty that will be taken in

this research. Risk is considered in the presence of uncertain system responses (results or

metrics) given by the probability density function shown, in conjunction with the presence

of a target or objective. These objectives may be defined at the system (aircraft) level or at

the subsystem level (wing, propulsion, flight controls, etc).

A number of non-military organizations have sought to standardize a modern, functional

definition of risk. The general form is not unlike the Hubbardian and DoD definitions;

there is a description of the uncertain element and some form of impact or consequence

on objectives. The most recent and widely accepted definitions though still debated [55])

is that of the ISO31000:2009, which describes risk as simply the effect of uncertainty on

objectives.
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Loss 

Region

Gain

Region

System Response (or Metric)

Uncertainty Analysis

Studies variance on system results, 

including bounds and distribution shape 

but without definition of a target

System Response (or Metric)

Risk Analysis

Studies variance on system results, but 

with respect to an objective or target in 

that metric

Indifference point or Target

Figure 10: Distinction between risk and uncertainty on system results due to the existence
of a target and associated loss and gain regions.

Note the range of definitions and how certain risk definition standards describe the

impact portion of the definition. In most, an objective is described, and in others a con-

sequence is alluded to. This consequence aspect is of particular relevance to real-world

business prospects, as the consequence of a failed objective may range from negligible re-

duction in schedule, cost or performance all the way to permanent failure of the business

enterprise. New commercial or military aircraft programs are not immune to this effect;

recall the adage, every new airplane bets the entire company. On a smaller scale, the con-

sequence may manifest itself in an incremental delay or cost to a program element, which

then propagates to the other program elements and ultimately contributes to the overall

economic and business outlook. A key problem this dissertation aims to address is the

discovery and quantification of the incremental cost and performance risks from adjustment

of either the internal aspects of the program (such as design or technology selection) and

external aspects (such as market changes or supply chain disruption).
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Standard Description of Uncertainty Description of Impact

British Standard BS6079-3:2000 (2000) 
“Uncertainty inherent in plans and the possibility of 

something happening (i.e. a contingency) ...” 

“... that can affect the prospects of achieving business 

or project goals.”

British Standard BS IEC 62198:2001 

(2001) 

“Combination of the probability of an event 

occurring ...” 
“... and its consequences on project objectives.”

A Risk Management Standard 

(Institute of Risk Management et al, 

2002) 

“The combination of the probability of an event ...” “... and its consequences.”

Australian/New Zealand Standard 

AS/NZS 4360:2004 (2004) 
“The chance of something happening ...” “... that will have an impact on objectives.”

Risk Analysis & Management for 

Projects [RAMP] (Institution of Civil 

Engineers et al, 2005) 

“A possible occurrence ...” 
“... which could affect (positively or negatively) the 

achievement of the objectives for the investment.”

APM Body of Knowledge (Association 

for Project Management, 2006) 
“An uncertain event or set of circumstances ...” 

“... that should it or they occur would have an effect 

on achievement of one or more project objectives.”

Management of Risk [M_o_R]: 

Guidance for Practitioners (Office of 

Government Commerce, 2007) 

“An uncertain event or set of events ...” 
“... that should it occur will have an effect on the 

achievement of objectives.”

A Guide to the Project Management 

Body of Knowledge [PMBoK® Guide] 

(Project Management Institute, 2008) 

“An uncertain event or condition ...” 
“... that if it occurs has a positive or negative effect on 

a project’s objectives.”

British Standard BS31100:2008 (2008) “Effect of uncertainty ...” “... on objectives.”

ISO31000:2009 (2009) “Effect of uncertainty ...” “... on objectives.”

Figure 11: A summary of standardized risk definitions, organized by descriptor of uncertain
element and impact.

It is then appropriate to select the definition relevant to aircraft design programs, and

hold this definition constant in the language describing risk within this research. Common

practices for new development aircraft programs include very specific design goals (or objec-

tives), and the consequence of failure in meeting those objectives has quantifiable impact.

The existence of an objective and a consequence is a fundamental departure point for the

approach to handle risk in this thesis. This thesis will hereforth use this definition of risk

as the effect of uncertainty on objectives and its consequence in its vocabulary.
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2.1.4 Epistemic and Aleatory Uncertainty

Helton [53] distinguishes an important separation between two views of uncertainty, aleatory

and epistemic, in the following way: ‘ aleatory uncertainty derives from an inherent random-

ness in the behavior of the system under study and epistemic uncertainty derives from a lack

of knowledge about the appropriate values to use for quantities that are assumed to have

fixed but–poorly known–values in the context of a specific study. Aleatory uncertainty is

usually represented with probability and leads to cumulative distribution functions (CDFs)

or complementary CDFs (CCDFs) for analysis results of interest. In the presence of epis-

temic uncertainty, there is not a single CDF or CCDF for a given analysis result. Rather,

there is a family of CDFs and a corresponding family of CCDFs that derive from epistemic

uncertainty and have an uncertainty structure that derives from the particular uncertainty

structure (e.g. interval analysis, possibility theory, evidence theory or probability theory)

used to represent epistemic uncertainty [53].

KNOWN-UNKNOWNS

UNKNOWN-UNKNOWNS

KNOWNS

CONCEPT VALIDATION FULL

SCALE

DEVELOPMENT

PRODUCTION DEVELOPMENT

TOTAL 

DESIGN

KNOWLEDGE

DESIGN PHASE

Figure 12: Progression between knowns, known unknowns, and unknown unknowns through
a new product development [110]/
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Figure 12 illustrates the programmatic shift in the three categories of variables through-

out a new product development program. In the beginning of the program, there is max-

imum uncertainty, of which is split between known unknowns (such as the physical shape

or weight of the final product) and unknown unknowns, which are the uncertain variables

and factors of which the program management is not even aware. An example of unknown

unknowns are unforeseen, damaging system behaviors arising from the complexity of the un-

developed system. As the program moves forward through the design phases, the unknowns

(both known and unknown) decrease, typically monotonically as the product becomes al-

most completely understood. The unknown unknowns are never eliminated completely in

practice and in theory. The program may experience non-monotonic decrease in unknowns

as external factors or conditions change the system requirements or possible uses of the

product. An example here is a transport aircraft program that acquires a launch customer

who plans on using the aircraft in Antarctica, where the new flight and landing conditions

suddenly increase the manufacturer’s uncertainty in how the product will perform in that

environment. That new uncertainty is reduced in this example with testing or re-design,

and the program returns to its steady path towards complete certainty.

2.2 Theoretical Approaches to Risk Measurement

2.2.1 Frequentist Risk Estimation

The frequentist inference approach is a mathematical perspective on risk measurement. It

is what is meant when simplistic explanations of risk are given (risk is probability of failure

times the cost of that failure). Its formulation:

R(θ, φ) = EθL(θ, φ(X)) =

∫
X
L(θ, φ(X))dPθ(X) (1)

Where

• θ is a fixed possible state

• X is the vector of observations drawn from the population

• Eθ is the expectation for all X
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• dPθ(X) is the probability measure of the event space X

While brutally objective in its formulation, the frequentist approach has limited use in

novel risk management approaches, as the risk rarely is perceived linearly in real projects.

That is, a $1,000,000 potential loss, occurring at a rate of 1 in a million, has the same

expected loss in the frequentist approach as a 100% probability of losing a single dollar.

The Expected Utility and Prospect Theory (described in subsequent sections) approaches

correct for this effect by creating adjusted payoff functions that are sensitive to risk attitude.

2.2.2 Robust Design Methods

Taguchi introduced a quality improvement process that was an important contribution in

the way of system variance (and thus risk) minimization. He argued that any decrease in

the quality of a system leads to customer dissatisfaction, which he represents as a loss [122].

Originally applied to the automotive industry, the principle concept is that it is possible to

set the parameters of a system to be insensitive to uncontrollable noise effects, while still

retaining proximity to an optimum. This process was called robust design. An excerpt from

SAS Institute documentation gives a succinct overview of the Taguchi method:

The Taguchi method defines two types of factors: control factors and noise factors. An

inner design constructed over the control factors finds optimum settings. An outer design

over the noise factors looks at how the response behaves for a wide range of noise conditions.

The experiment is performed on all combinations of the inner and outer design runs. A

performance statistic is calculated across the outer runs for each inner run. This becomes

the response for a fit across the inner design runs [108].

Figure 13 shows the relationship between transmission of variance. On the section of

the curve where the slope is large, there is a great sensitivity on the output to the input

variables. Further towards the right, the curves becomes more insensitive to changes in the

inputs, and more robust. This effect, carried out across several simultaneous dimensions, is

the core goal of the robust design approach.
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Figure 13: The relationship between input and output variables for sensitive design and in-
sensitive design, Robust design approaches try to shift design variables (X ) towards settings
where there is less sensitivity to the input variables, especially if some of those variables are
outside of control [124].

Chen gives a description of Taguchi’s famous quality and process improvement work,

citing two broad categories for minimization of performance variations and bringing the

mean to a target: [21]

1. Type I - minimizing variations in performance caused by variations in noise factors

(uncontrollable parameters).

2. Type II - minimizing variations in performance caused by variations in control fac-

tor(design variables).

Taguchi’s quality methods and robust design approaches have been applied to many

non-automotive applications in aerospace. A particularly good example is from a study in

2009, where Dodson and Parks applied a robust design approach combined with polynomial

chaos theory to reduce sensitivity of the lift to drag ratio to leading edge thickness [29].
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The results demonstrated that the robust designs were significantly less sensitive to input

variation in leading edge thickness, compared with non-robustly optimized airfoils. The

non-robust, optimal design degraded 20 percent from slight variation in the inputs. One

drawback of robust design is that it can be computationally expensive to carry out the

variance study on large multidisciplinary systems; several approaches have been taken to

reduce computational time by creating efficient variance estimation algorithms that improve

the rate of convergence when compared to Monte Carlo [33].

2.2.3 The Loss Function and Signal to Noise Ratios

Taguchi advocated understanding the cost of quality in a variety of manufacturing and

business scenarios. Instead of limiting the cost estimation to the cost of products that were

outside of specification, he introduced the concept that there were costs associated with the

larger perspective of the society, and that those costs would eventually return to impact

the corporation itself. Other statisticians, such as Donald Wheeler, claimed that variance

within the specification caused no loss to the corporation or society [137], [136]. As the

specification limit is somewhat arbitrarily drawn, Taguchi instead argued for an approach

that minimized the societal cost or loss. The minimization of this measure improved quality

for the corporation and reduced loss for society at large.

The formulation of the loss function L for minimization in terms of probability is:

min

∫
θ∈Θ

L(θ, δ)p(θ)dθ (2)

where θ is the index or parameter over probability space Θ.

He identified three types of situations [122]:

1. Larger the better (for example, agricultural yield);

2. Smaller the better (for example, carbon dioxide emissions); and

3. On-target, minimum-variation (for example, a mating part in an assembly).

For practicioners, Taguchi suggested a direct approach for maximizing quality. The
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relationship to a target or utility space could be aggregated in the formation of a signal-

to-noise (S/N) ratio which was to be maximized. Taguchi offered these formulations of the

S/N ratio for each of the situations given in Equations 3 to 5.

Smaller the better:

SNsmaller = −10 log

∑n
i=1 y

2
i

n
(3)

Larger the better:

SNlarger = −10 log

∑n
i=1

1
y2i

n
(4)

Nominal the best:

SNnominal = 10 log
y−2

σ2
n−1

(5)

where yi are the n data points and σ is the variance of the set.

These formulations were part of the foundation of what became the 6-Sigma quality

movement.

2.2.4 Design for 6-Sigma

A noteworthy variance minimization design process is Design for 6-Sigma (DFSS) which is

a business management approach for the development of process guidelines so as to produce

fewer than 6σ ‘rejected’ products as possible [114]. Rejection is determined by deviation

outside the lower and upper specification limits, for which 6-Sigma processes are si standard

deviations, accounting for a shift in the mean, or 3.4 rejections per million. DFSS is an

excellent quality improvement guideline, especially for products produced in substantial

quantities.

2.2.5 Expected Utility Theory

Expected utility is a method of evaluating decision alternatives that present risky or uncer-

tain outcomes by comparing the product of the utility values and their respective probability

of occurrence. It was first proposed by Nicholas and Daniel Bernoulli as a method to solve
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Figure 14: Six-Sigma approach to minimization of process variance [114].

the Saint Petersburg Paradox. This paradox deals with naive decision criterion that only

takes into account expected value [3]. The solution to the paradox, published in 1738, was

to create a parallel concept to the outcome called utility which describes a subject-relevant

measure of value. Bernoulli states:

The determination of the value of an item must not be based on the price, but

rather on the utility it yields. There is no doubt that a gain of one thousand

ducats is more significant to the pauper than to a rich man though both gain

the same amount.

The suggested model of the utility function was a logarithmic S -curve, known as log

utility. Figure 15 illustrates a normalized, notional utility for risk adverse, risk neutral, and

risk seeking functions.

2.2.6 Application of Expected Utility Theory to Choice

Expected utility theory states that the overall utility is the statistical expectation of the

outcomes [63]. This is given as

U(x1, p1; ...;xn, pn) = p1u(x1) + ...+ pnu(xn) (6)
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Figure 15: Notional utility functions for various risk attitudes.

Where U is the utility of a prospect, xn is the value of the nth outcome, and p its

respective probability. One can easily see the resemblance to the expected value of a set of

probabilities and outcomes.

The choice model describes as favorable if the utility of the prospect, when integrated

with one’s existing assets, exceeds the utility of those assets alone [63]. The context of the

utility function is then given as the final state of one’s assets instead of as a gain or a loss.

If w is the asset position, then

U(w + x1, p1; . . . ;w + xn, pn) > u(w) (7)

Expected utility theory reigned for several decades as the dominant normative

and descriptive model of decision making under uncertainty, but it has come

under serious question in recent years. There is now general agreement that

the theory does not provide an adequate description of individual choice: a

substantial body of evidence shows that decision makers systematically violate

its basic tenets [131].
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2.2.7 Prospect Theory

In the late 1970’s, two psychologists named Daniel Kahneman and Amos Tversky observed

that individuals make decisions involving risk differently than that prescribed by the widely-

accepted model called Expected Utility theory [63] . They published an alternative to

Expected Utility Theory in a paper published in 1979 that became the most cited paper

in Econometrica [112]. Subsequent research and refinement created an entire field of study

called Behavioral Economics, for which ultimately Kahneman was awarded the Nobel Prize

in Economics.

Kahneman and Tversky (1979) “Prospect Theory: An analysis of decision under

risk” is the second most cited paper in economics during the period, 1975-2000

[112].

The revised descriptive model of decision making under risk was called Prospect Theory

(prospect in reference to a lottery) that improved the empirically observed discrepancy.

The new model bears the fundamental differences with Expected Utility Theory that the

value function is non-linear with the probabilities, and value is relative to a reference point.

Below the reference point, the value is perceived as a loss, and above which is considered a

gain. In addition, the functions for value are asymmetric, meaning that the value is steeper

for losses than gains.

Prospect theory deals with the way we frame decisions, the different ways we

label (or code) outcomes, and how they affect our attitude toward risk [7].

These changes, while seemingly minute, have made a profound impact on the decision

making models involving uncertainty. The body of literature on this topic and the subse-

quent ideas are vast:

Rather, in assessing such gambles, people look not at the levels of final wealth

they can attain but at gains and losses relative to some reference point, which

may vary from situation to situation, and display loss aversion – a loss function

that is steeper than a gain function [115].
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Hasite and Dawes [52] give a summary of the major contributions of Prospect Theory

has enabled, stating three key characteristics:

Prospect Theory Characteristics

1. Reference level dependence: An individual views consequences (monetary or

other) in terms of changes from the reference level, which is usually that individual’s

status quo.

2. Gain and loss satiation: The values of the outcomes for both positive and negative

consequences of the choice have the diminishing returns characteristic. The α term in

the value function equation captures the marginally decreasing aspect of the function.

Empirical studies estimate that α is typically equal to approximately .88 and always

less than 1.00. When the exponent α < 1.00, the curve will accelerate negatively (if α

= 1.00, the function would be linear; and if α > 1.00, it would accelerate positively).

3. Loss aversion: The resulting value function is steeper for losses than for gains;

losing 100 dollars produces more pain than gaining 100 dollars produces pleasure.

The coefficient λ indexes the difference in slopes of the positive and negative arms

of the value function. A typical estimate of λ is 2.25, indicating that losses are

approximately twice as painful and gains are pleasurable. (If λ = 1.00, the gains

and losses would have equal slopes; if λ < 1.00, gains would weigh more heavily than

losses) [52].

2.2.7.1 Mathematical Formulation

The decision weight scale is denoted as π(p) which reflects the impact of p on the overall

value of the prospect [63]. Note that π is not a probability measure, and it is generally

found that π(p)+π(1−p) ≤ 1. The subjective value of the each outcome x is given as v(x).

In simple prospects of the form (x, p; y, q), one earns x with probability p and y with

probability q, and nothing with the probability 1 − p − q where p + q ≥ 1. The overall
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prospect value is given as:

V (x, p; y, q) = π(p)v(x) + π(q)v(y) (8)

The value function reduces to Equation (6) when the π(p) = p and v(x) = U(x). A

typical value function is given in Figure 16, showing the asymmetrical value functions v−(x)

and v+(x).

Xo is defined as the reference point (the boundary between gains and losses), empirical

studies have shown that the value function v(x) is uniquely defined as v+(x) over the range

x > x0 and v−(x) over the range x < x0.

Figure 16: Notional value function curve for Prospect Theory, showing the asymmetry
around the reference point (origin) [112].

The model form of Prospect theory is a generalized version of expected utility. The

probability and value curves can be permuted (and calibrated) to suit the descriptive or

prescriptive approach. When the probability curves are linear, the value curve reduces to

that of expected utility. Ultimately, prospect theory gives a mathematical formulation for

calibrating the probability and value scales, and a concrete measure of a risky prospect.
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Figure 17: Weighting functions for gains (w+) and losses (w-) based on median estimates
of parameters [112].

2.2.7.2 Cumulative Prospect Theory

After the initial release of the theory in 1979, several economists criticized prospect theory

and presented improvements. In the original version of the theory the cumulative proba-

bilities were transformed by π(p), leading to a dominance of extreme events occurring with

small probability [131] [70]. One of the main criticisms was in regard to continuously dis-

tributed risky propositions. That is, the available options were not individual and discrete,

but instead infinitely distributed along some dimension. It is given as Equation 9:

U(p) =

∫ 0

−∞
v(x)

d

dx
(w(F (x))) dx+

∫ +∞

0
v(x)

d

dx
(−w(1− F (x))) dx, (9)

where the cumulative probability is given as

F (x) =

∫ x

−∞
dp (10)
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2.2.7.3 Prospect Theory as a Prescriptive Model

Prospect theory was developed as a descriptive model for empirically observed phenomena.

Its model form was created to be immediately useful for gaining insight into psychological

decision-making routines and other studies on human systems. It was not initially developed

as a prescriptive model for a basis upon which to make future decisions. Expected utility

does not distort the probability curves, and presents a more readily suitable prescriptive tool.

The difficulty with expected utility theory is that there is no principled way of measuring

risk [111].

In 2009 Sewell took a hybrid approach to Prospect Theory and Expected Utility the-

ory. He used the linear probability scales of Expected Utility functions and the grounded

(reference point) approach for establishing value functions in terms of gains and losses from

Prospect Theory. The resulting methodology was a general prescriptive model for decision-

making under risk.

2.3 Business Perspectives of Risk

The most general measure of risk within an operational business is cost uncertainty. How-

ever, although cost is today recognized as the ultimate discriminator of risk [139], it is

notoriously difficult and labor-intensive to estimate accurately in aircraft design, even with

an extensive cost database [107].

Manufacturing-based businesses such as commercial aircraft manufacturers, have ad-

vanced uncertainty and risk approaches, but typically in regards to product quality. Re-

cently methods have emerged that integrate both the design and manufacturing related

risks into the design team analyses [127].

2.3.1 Insurance Methods and the Law of Large Numbers

However, the insurance and finance communities have much to offer in the way of sheer

business experience, methods/tools, and profit-oriented perspective of risk. For an insur-

ance company, risk is a transferable commodity to be collected from consumers, adjusting

premiums to outweigh aggregated risk exposure on a daily basis. Therefore it is appropriate
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for our review risk methodology to investigate how their paradigms might be applicable to

aircraft design processes. It was found that these communities leverage the following key

concepts:

1. The Law of Large Numbers - Enough data exists to accurately fit high fidelity models.

2. Access to near real-time data - The data is continuously generated and updated.

3. Liquid and/or readily convertible expressions of risk - All forms of risk are expressed

in few dimensions: money and time.

The first is likely the most important: the bulk of insurance organizations use finely

correlated information from vast claims databases to build models of similarly-exposed

individuals, relying on the Law of Large numbers as shown in Figure 18 to generate precise

calculations of the risk they assume. For an insurance company, it does not matter if the first

fifty clients file expensive insurance claims, because the Law of Large Numbers asserts that

eventually there is convergence to a mean. More detail on the particularly mathematical

approach taken by these companies is given in this dissertation’s review of Expected Utility

Theory.

In contrast, modern advanced design methodologies considered in this thesis develop

their analytical foundation from physics-based models and other high fidelity codes instead

of from large sets of empirical data. This is done out of necessity in advanced design projects

as data substantiating the analyses needed do not usually exist. However, many aircraft

programs are evolutionary, not revolutionary, and the argument can be made to use past

similar data. Still, even with aircraft with a long history of derivatives such as the Boeing

747, the total design count is on the order of a dozen, and certainly less than 100. The

law of Large numbers and the risk mitigation methods that leverage it tend to be more

applicable to lower-level (and high quantity) aspects of aircraft design and manufacturing.

This generally precludes the application of The Law of Large Numbers, where thousands

of cases are often needed to obtain sufficient model resolution.

44



Research Observation II

New aircraft development programs are increasingly challenged by the rise in advanced

technology, multidisciplinary complexity growth and implications of program failure. Un-

like financial and insurance industries that leverage the Law of Large numbers, the aircraft

design and manufacturing business must seek program risk assessment and mitigation meth-

ods using small or non-existent empirical data sets.

The second advantage of an insurance business is related to the validity of the first. The

regressed premium calculation models have access to a continually updated claims, loss

and additional other databases (for example: a driving record in the context of automotive

insurance) which is often shared across insurance companies. This allows a rapid reaction

time to changes in exposure, situation and environmental effects. This luxury is rarely en-

joyed by aircraft manufacturers, where technology, market, and other environmental effects

are matched at discordant and delayed rates.

Thirdly, insurance and other financial risk institutions monitor and exchange directly in

a small set of units, generally money and time. Risk exposure is calculated and sold over

a period. While this shares some similarities to the perspective of the function an aircraft

provides over its service life, the aircraft manufacturer is faced with risk across several

fronts in addition to money and time. Performance, market and competition risks must

be estimated and managed throughout a product development cycle and the conversion

between each of the dimensions is specific to the particular exchange of concern. This issue

is discussed and presented in greater detail in the form of risk interrelationship matrices.

Businesses place bets, staking everything (including the well-being of their employees,

and to an larger extent society) investing considerable sums of money and time, when the

outcomes are largely dependent on factors sensitive to random events or variables. So why

do some businesses continually succeed as if immune to this risk, and some fail? Part of the

answer lies in their ability to correctly manage a risky future, or more precisely, correctly
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Figure 18: The Law of Large Numbers indicates gradual and certain stabilization towards
the mean as the number of samples approaches the net population.

assess and prepare for the possible future states, likelihood and their consequence.

In the project management and financial management communities, a variety of specific

methods for assessing investment opportunities are used. In general, the decision methods

can be categorized into two groups, organized by fundamental architecture:

1. Technical Analysis: those that are empirical and employ rigorous analysis of past data

sets, searching for patterns and indicators of likely future states.

2. Judgmental: which rely on personal selection of core parameters, and rely on the law

of averages to carry the portfolio success.

Indeed, both approaches include elements of the other; judgmental processes emphasize

intuition, personal compass and weighting assignment of influential attributes. Technical

processes focus only on the mathematical effect of the factors considered and patterns

recognized therein, and bear little influence on factors not explicitly and quantitatively

defined.
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2.3.2 Risk Taxonomy and Trades

Consider an aircraft manufacturer whose CEO is faced with the decision to launch a new

aircraft program. Like any other CEO, she must weigh risk versus the potential for gain.

From the aircraft sales strategy, the supply network, the marketing forecasting, the tech-

nology investments, the international political lobbying, the partnerships, alliances, and the

development of the product itself, the concept of developing a strategy and executing it is

performed in a risk versus reward mindset. Risk management processes are fundamental

to design activities. This thesis will stay within the realm of the latter, focusing on the

product development/definition and more specifically the preliminary design of aircraft as

a central bet-placing environment.

The goal of any product development program is essentially the same: produce a product

or service that sustains a profit or value beyond which it took to build. This is no different

for commercial transport aircraft; like any other product, they must be economically viable,

competitive, revenue-generating endeavors. The fact of life is that there are clearly certain

aircraft that fail, and others that succeed. The causes of failure to meet objectives are

diverse and program-specific, but they generally fall into one of the following 6 categories:

Program Level

1. Performance - ability to meet the technical performance objectives

2. Cost - ability to meet the cost objectives

3. Schedule - ability to meet deadlines and pre-determined milestones

Enterprise Level

4. Time - The balance between long-term and short-term enterprise level objectives

5. Market - The ability to meet the voice of the customer and realize sales targets

6. Competition – The ability to maintain market share or competitive edge

47



These categories for failure to meet objectives outline a multidimensional space in which

the aircraft program must manage consistently during the program. Based on the previously

described definition of risk (that risk is the effect of uncertainty on target objectives), these

6 categories translate directly into Performance Risk, Cost Risk, Schedule Risk, Time Risk,

Market Risk and Competitive Risk.

Not all are at the forefront of concern during each phase life cycle of the aircraft or at

each level of the design hierarchy. For example, the development group in charge of the

landing gear may bear no competitive risk because they do not compete externally to the

aircraft manufacturer. Browning states that:

Without a systems view, however, many risk management actions serve only

to push schedule risk into another category – such as cost or performance risk

– rather than truly reducing overall risk [17].

This overarching perspective of system-level risk can be represented in a Risk Interre-

lationship Matrix (RIM) to demonstrate the risk trade space between the six previously

identified high level dimensions. A notional example is given under each block of risk

exchange in Figure 19.
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Figure 19: Risk Interrelationship Matrix demonstrating trades between program and enterprise level risks.
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What is critically important is that these risk areas are interrelated: time is money

(Schedule versus Cost), Market is related to competition, etc. Inherently, the decisions

made during the course of the development program make trades within this space so as

to minimize the exposure to the failure modes. The risk interrelationship matrix provides

a complete view of these relationships. This perspective is appropriate for defining the

program strategy and weighing the high-level preferences and aversion to risks. Figure

20 shows the the relationship between the cost impact per decision made and the time

at which the decision is made. It also describes notional aircraft product milestones and

regions specific to design-to-cost and manufacturing-to-cost activities.

Figure 20: Cost impact per decision during product development, with relative milestones
and design-to-cost and manufacture-to-cost considerations [31].

For example, it has been well documented that the risk-sharing strategy of Boeing’s

787 program with its supply partners is an effort to reduce the cost risk of the program by
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distributing its advanced design and composite manufacturing to foreign suppliers (notably

Japan) [104]. This in turn presents an exchange of cost-risk with both competitive and time

risk, as the distribution of traditional core-competencies of Boeing to first and second tier

suppliers potentially enables them to compete as an airframe manufacturer or supplier to

their existing competition [113, 37].

2.3.3 Handling of Uncertainty with Safety Factors

The use of safety factors has been the traditional approach to designing for the uncertainty

in the load experienced by systems. Safety factors are most often employed in directly

measurable load-bearing systems, such as aerodynamic loads (structural load such as wing

or fuselage design), or aircraft electrical loads (power and thermal load management). The

safety factor approach is a practical and rudimentary approach that captures the cumulative

uncertainty in the system, accounting for factors such as the future vehicle loads experienced

by the structure, errors in the load and stress calculation, accumulated structural damage,

and variation in material properties and standards. Safety factors also mitigate potential

errors or quality issues arising from manufacturing variance. This functional approach is

historically successful at capturing risk where margin is allowed for the known unknowns

and a degree of unknown unknowns. There are two categorized approaches to handling the

uncertainty in design with safety factors:

Explicit: The safety factor is 1.5 times the maximum design load.

Implicit: Design decisions, at every scale, are made conservatively, with the implication

that the system on the whole will exhibit tolerance to states exceeding original design

specification.

There exist difficulties with each approach. The explicit safety factor approach, while

precisely defined, leaves little or no room to adjust for particularities of subsystem interac-

tions and is often therefore over designed (excessively expensive, heavy or powerful). The
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implicit approach, however allows the safety factor to be distributed as needed, yet suffers

from imprecise and unknown metrics and a lack of a formalized method.

2.4 Chapter Summary

In this chapter, an overview of the concepts, definitions, and perspectives of risk and un-

certainty is presented. Of the many definitions reviewed across industries, the definition of

risk as the effect of uncertainty on objectives was selected as the most relevant and perti-

nent. The concept of the objective is later exploited to assign a reference point on the value

function of system responses.

A distinction between financial risk-transferring (insurance) industries and aircraft de-

velopers is argued: the majority of financial methods of risk assessment leverage the Law

of Large Numbers to develop precise risk exposure estimations. This information is typ-

ically unavailable to new, technology-driven, competitive aircraft development programs

that instead must rely on technical, exploratory forecasting methods for risk analysis.
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CHAPTER III

EXPERIMENTAL APPARATUS AND INVESTIGATION

This Chapter evaluates the two experimental apparatuses used to build and test the CAS-

SANDRA methodology. An evaluation of the relationship between experimental run count

and risk bounds are also addressed.

The two apparatuses evaluated are as follows:

1. Apparatus 1 - A ModelCenter-based execution and parsing of the lifecycle cost code

network. This apparatus was used to first explore the cumulative cashflow space with

few samples and few factors of interest as the execution time was relatively lengthy.

2. Apparatus 2 - A high speed queuing, execution, and parsing tool for the lifecycle cost

code called BASUCA. This apparatus was used to explore the need for resolution and

breadth of contributing factors to the risk measurement and mitigation frontier.

3.1 Initial Investigation of Cumulative Cash Flow Drivers

The MInD study and previous publication by the author [23] of the experimentation con-

cluded with the observation that uncertainty alone provided value to the program manager,

but that the conversion of uncertainty into risk required additional mapping onto a utility

space. Since then, the author reviewed several candidate approaches and selected the cash-

flow diagram as a potential aggregate measure of the business case risk of a new aircraft

development program.

3.1.1 Selection of the Life Cycle Cost Estimating Code

On the surface, the calculation of cumulative cashflow diagrams alone is simple, however

the level of fidelity in the constituent cost estimations must be sufficiently high to develop

a worthwhile trade space [121]. For this reason, it was selected to use and existing cost

estimation and aggregation code (or software). There were several candidate codes evaluated
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(such as SEER-MFG, a CLIPS knowledge-based code, or process and activity based cost

estimation codes) , but the author selected the code set FLOPS and ALCCA as the core

lifecycle cost code for three reasons: 1) it was readily available and open for use in the

disseration, 2) the software has been updated continuously over the last twenty-five years

and is of acceptable fidelity for commercial transports, and 2) it incorporates the cost

estimates directly with aircraft sizing and synthesis processes.

Annual and cumulative cash flows are direct outputs from ALCCA in the form of tables,

broken down by RDTE (Research, development, testing and evaluation) costs, manufactur-

ing costs, sustaining costs, and income. This level of resolution was not captured int he

MInD study framework on a cash flow basis, so it was decided to use FLOPS and ALCCA

directly, instead of within the MInD framework.

3.1.2 Experimental Setup

FLOPS and ALCCA were setup as an independent executable within a ModelCenter code-

stitching environment. This was done to facilitate varying the input parameters and cap-

turing the output parameters from the text-based output files. Figure 21 shows the setup

of FLOPS and ALCCA from within the ModelCenter environment.

Experimental Apparatus

FLOPS / ALCCA simulations were executed from Model center to capture cumulative

cashflow results.

3.1.3 Initial results with the the ModelCenter apparatus

The background documentation on ALCCA [43] indicated that the main drivers of the

cost estimation results were learning curves (LC), annual percentage inflation (API) and

production quantity.

Therefore, the initial experiment sought to evaluate the resulting uncertainty introduced
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Figure 21: Flowpath of ModelCenter, FLOPS ALCCA, and JMP codes used for cashflow
analysis of design alternatives.
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Table 3: Input variables and their ranges for Experiment 1 of the ModelCenter FLOPS and
ALCCA apparatus.

Description FLOPS Variable Mean Minimum Maximum

Manufacturer’s Rate of Return RTRTN 10 8 12
Learning Curve (Block 1) LEARN1 80 70 90
Learning Curve (Block 1) LEARN2 80 70 90

Learning Curve, Assembly (Block 1) LEARNAS1 80 70 90
Learning Curve, Assembly (Block 1) LEARNAS2 80 70 90

by varying those parameters as well as a small set of basic design variables. The complete

list of variables, and their ranges in this experiment are given in Table 3:

Figure 23 shows a cumulative cash flow of an initial study from the FLOPS and ALCCA

Model center example. In this study there were X input variables that were varied according

to a design of experiments with n runs. This was done to gain an initial appreciation of the

overall scale of the output and magnitude of the impact these input variables caused. It was

also to investigate the presupposition about their impact on the cash flow diagram. The

study revealed several subtleties about the inputs of the model that were not previously

understood, such as the manufacturer’s target return on investment and the aircraft price. It

was found that FLOPS and ALCCA treat these calculations separately; the code will solve

for either the aircraft price required to meet the return on investment, or evaluate several

different aircraft pricing strategies and subsequently calculate the return on investment.

For the purposes of this dissertation, the latter approach was found to be most useful.

This is because the sales price of the aircraft varies in practice due to market forces and

unique negotiations with customers. Secondly, aircraft price is a strategically controlled

variable that strongly affects the dynamics of the business case of the manufacturer. It was

selected to keep it independent rather than the return on investment.

A few observations should be noted looking at this figure: first is the sheer magnitude

of the sunk cost maximum, and the variance in the cumulative cash flow at the end of the

program. Of the sunk cost and the peak profitability of the program or in excess of $200

billion. Figures of these magnitudes were initially unexpected, but it became apparent why
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Figure 23: Manufacturer’s cumulative cashflow from FLOPS/ALCCA output, showing all
cases from the design of experiment.

they reached such heights when filtering the results by inflation rate.

Figure 24 shows the same data colored by inflation rate and it shows the effect of

vertically stretching the cumulative cashflow results. Near break even (when the cumulative

cashflow reaches zero), the variance in the overall set of cash flows is very tight relative to the

rest of the plots. This is because the inflation stretching factor decreases linearly towards

zero as the program reached break-even.

3.1.4 Statistical Methods and Prediction from Sparse Data Sets

Following the observation from the previous Chapter regarding the applicability of the Law

of Large Numbers to aircraft design problems, it is of utility to provide a brief overview of

the statistical methods available for small data sets. Fundamentally, the challenges of small

data sets is that the sample of available data provides an unclear view of the underlying

drivers for variance. Data may be missing and it becomes difficult to assume how the missing

data may affect the conclusions drawn from the sparse set. Little states that a common

concern when faced with multivariate data with missing values is whether the missing data
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Figure 24: Manufacturer’s cumulative cashflow grouping based on average inflation rate
throughout the program. Red indicates an inflation rate of 12 percent, blue a rate of 4
percent .
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Figure 25: Manufacturer’s cumulative cashflow from FLOPS/ALCCA output, for a single
inflation rate, showing the effect of split learning rates .
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are missing completely at random (MCAR); that is, whether missingness depends on the

variables in the data set [74]. Anscombe gives an example of the errors possible from

summary statistics, showing graphs from four sets of data with identical summary statistics

in Figure 26 [2].

Figure 26: Each of the above data sets exhibit identical summary statistics, showing the
importance of graphing results when dealing with sparse or missing data [2].

Here, it is evident that the summary statistics alone do not provide a complete picture

of the underlying population. Or, if indeed the statistical summary is valid, there appears

to be a substantial segment of data missing. In many circumstances, an aircraft design

decision involving new materials, processes, and technologies has never been done before

(at least not under the particular circumstances and conditions) and the data with which to

build an empirical model is either sparse or nonexistent. The typical solution to addressing

the lack or sparse data is to develop regression models, as detailed in the next section.
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3.1.5 Creating Models for Cumulative Cashflow Uncertainty

The need for creating a surrogate model for the cumulative cashflow diagrams arose from

a desire by the author to explore uncertain cumulative cash flows instantaneously, thus

enabling parametrized exploration of the business case space without having to execute the

experiment repeatedly. This additional understanding and clarity can be developed using

models. This approach was taken in developing the knowledge-based framework by Marx

in 1996 [81].

There are two approaches evaluated in this thesis; the direct and the indirect. In the

direct approach, the simulation results are analyzed with statistical analysis software such

as JMP or MINItab. These are referred to as direct in this thesis because the uncertainty

is represented by statistical metrics that are directly measured from the data, and nothing

else. Metrics such as the moments of the data set (mean, variance, skew and kurtosis), as

well as the quantiles from the cumulative distribution function can be used to describe the

resultant uncertainty.

The first approach is to model the statistical moments of the distributions in cash flows

by year. There were three indirect approaches considered in developing models for the

year-wise uncertainty, and they are listed below:

1. Neural Networks - Originally considered to be the most suitable approach, Neural

networks offer a great deal of capability in addressing non-linear effects found in review

of uncertain cumulative cash flows, yet must be trained and can introduce spurious

side effects.

2. Year-wise fitment of continuous distributions - This approach applies a con-

tinuous distribution that is regressed in by the Least Squares Method. A variety of

models can be tested, but they should generally be applied on a year-wise basis for

uncertain cumulative cash flows.

3. Response surface methodology - Using a second order RSE approach is better

suited for smoother surfaces with less compound curvatures. The cumulative cashflow

model generally has two inflection points (one positive one at the maximum sunk cost
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point, and one negative one after break-even is reach and production rate begins to

decline), therefore it was considered to be less suitable than other approaches. An

alternate approach would be to use RSM on a year-wise basis, but this approach is

much more complicated and less effective than year-wise continuous distribution.

Neural networks were found to have generally acceptable fit when modeled for the cash-

flow means, but not the associated surrounding uncertainty. Moreover, the effects of tech-

nology and scenario factors were evident on the cashflow curve, but they did not predict the

uncertainty in those effects nearly as well. The R-Squared parameter for the means occa-

sionally was 0.9 or better for the means, but rarely was it better than 0.4 for the associated

uncertainty.

Figure 27 gives an example of the model fit and associated drivers from the initial results.

The second approach is to introduce an additional modeling layer to represent the con-

tinuous probability density function underlying the simulation results. This allows the

knowledge of the relationship between the design resulting uncertainty to be estimated

with a single function. When analytical continuous distribution functions (like the Normal

or Weibull) are fit to the data, that knowledge may be called upon without executing new

simulations and in any of the density function moments.

Table 4: Comparison of the available continuous distribution surrogate models in JMP and
their applicability for modeling uncertain cashflows.

Distribution Number of Parameters Suitability for Cash flows

Normal 2 Poor, no asymmetry
Normal 2 Mixture 5 Fair, requires dispersion
Normal 3 Mixture 8 Good, but too many parameters
Johnson Su 4 Excellent, both fit and bounds
Johnson SI 3 Good but under-damped
Beta 4 Fair, too thin in tails, thick else-

where
Weibull 3 Fair, requires threshold term
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Figure 27: Neural network model demonstrating fit for an uncertain cumulative cashflow.
Shown here is the fit for the Net Cash Flow Mean.
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Figure 28: Comparison of the different fits reviewed of continuous distributions to typical
cumulative cashflow probability distribution function, (in this case year 15 of the program).
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3.1.6 Formulation of the Cost Estimating Relationships in ALCCA

FLOPS and ALCCA use cost estimating relationships for the most of the constituent cost

breakdown structure. These are calculated on a per-component basis [42], and then summed

appropriately based on the cost structure. The n component cost estimating relationships

(CERs) are given generally as:

Cost(x1, x2)n,estimated = AxBn
1 ∗ xCn

2 (11)

where A,B,and C are solutions from a linear regression of the component cost against

empirical data. The x1 and x2 variables are traditionally weight-based cost predictors. In

this dissertation based on FLOPS and ALCCA output, the B and C regression coefficients

are denoted as complexity and efficiency factors. Using weights as the independent variables

have traditionally been the best available predictors for aluminum aircraft structures. Air-

craft manufacturers have thus become keenly aware of the relationship between weight of

the aircraft structure and the business case and economic viability of the aircraft program.

Several manufacturers have even reportedly offered cash bonuses to engineers as a function

of the pounds of weight saved from an engineering or system configuration improvement

[64].

However, the emergence of new composite materials has challenged the historical validity

of the weight-based estimator. These materials tend to be both lighter and more expensive

(in raw material and tooling costs). Therefore, the traditional CER model form relationship

has suffered poorer fit error as composites become a more prevalent structural material. The

MInD study was launched in part because of this observation.

Experimental Result

Cumulative cashflows indeed provide an aggregated wealth of programmatic insight, show-

ing wild swings as a function of scenario and design variables.
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3.1.7 Dimensionality, Risk and the Need for Speed

The CASSANDRA methodology, like other uncertainty propagation approaches, is based

around exhaustive sampling of a multidisciplinary sizing and cost estimation code. For the

selected design problem with dozens of control and noise variables, thousands of executions

of the design code are necessary for basic risk analysis and millions of executions are desired.

This leads to the observation that a key challenge in this thesis is therefore to establish a

balance between analytical fidelity and computational speed. This issue has been addressed

in various ways and in multiple publications and theses, and is covered in great detail by

Stults in 2009 [121]. His work focused on the selection of appropriate modeling fidelity

in the context of the problem being solved under finite available resources. His approach

included a methodology for unifying the level of uncertainty expressed in the system in

order to achieve minimized computational time. This is a characteristic inherent to the

baseline problem of aircraft design, as the multidisciplinary nature forces the number of

factors required for holistic analysis.

3.1.8 Exhaustive Nature of Risk Analyses

As with almost any analysis, the adage of garbage in, garbage out applies with risk analyses

as well. In most analyses though, this applies in two ways: primarily to the quality of the

data and model/analysis structure, and secondarily to the number of analyses performed.

The probabilistic nature of risk analyses suggests that the number of simulations or cases

evaluated plays a larger role. To illustrate this with an analogy, consider again the thought

experiment of asking the question, Is it warm outside? The quality of the data from a

single temperature and humidity measurement will likely matter more than how many of

those measurements were made outside. The temperature is not likely to vary with position,

direction, or within the near future. Now consider the question, Is it safe outside? In this

case, the associated measurements of safety are exhaustive in nature. Safety, or danger,

would need to be measured in all directions, or along an entire perimeter. A small breach

in a perimeter may be enough for safety to be compromised, and so the analysis measures

at a resolution finer than the smallest expected danger.
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This effect is recognized in many standardized risk analysis approaches, typically in steps

such as Enumerate the Risk Factors / Danger Modes. The weakness of these approaches

is that they rely on the analyst to identify all of the adverse states. In a deterministic

or discretized space this is possible; but in an aleatory, continuous space (such as the real

world), this is essentially impossible. Guassian approaches are often satisfied with the 95

percent solution, however the highly unlikely can have great impact. This notion was studied

at great length by Nassim Taleb [123] in The Black Swan. In his research, he illustrated

several examples where the most improbable events caused dramatic shifts in systems not

bounded by gravity such as markets, ideas, monetary value, policy, sales volume, etc.

There is also little to suggest that safety is stable over the near future, as threats

could appear suddenly. The system has no mass or momentum effect, as in the case of

temperature and humidity. Thus the combinatorial aspect of the problem is also introduced:

if safety is measured to be true in all directions, does it hold true over time? As more and

more dimensions are included in the analysis, the number of runs required to reach the

same statistical clarity increases exponentially (see equation 57 for a two-level experiment).

Therefore, the quality of a risk analysis is typically more dependent on the exhaustive nature

of exploring possibilities than the quality of a single measurement. In the probabilistic

domain, this results in a high number of simulations as the bulk addresses both resolution

and the combinatorial aspects of the problem.

In the case of financial (or cashflow) risk analysis of aircraft programs, the problem

resembles that of Is it safe outside?, rather than Is it warm outside?. The main reason for

this is that the danger from a cashflow perspective may come from any number of variables

or settings and cause sudden economic infeasibility states. This fragility is analogous to the

dimensional problem of safety in which all directions, at all times, must be measured.

Appendix A addresses this exhaustive risk simulation and risk factor dimensionality by

examining the growth of the boundary extrema as a function of the number of simulations.

Here it the width of the simulation maximum and minimum grows by approximately 1-σ

with every additional order of magnitude of simulation trials.
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New Research Observation III

Execution time in ModelCenter was slow and limited the number and resolution of factors

in the uncertainty analysis.

This examines the effect of boundary analysis and the likely effect of risk resolution

under the central limit theorem. For the purpose of the CASSANDRA methodology, it is

also worthwhile to examine how many executions are needed to resolve the same design

and strategy mitigation results? This subsequent question leads to the following Research

Question:

Research Question IV

How many executions are enough to propagate the uncertainty to the cumulative cash flow

space and draw the same design conclusions?

To answer this question, a high-speed apparatus was developed so that this question

could be explored without experimental constraints.

3.2 Development of the High-Speed Apparatus

As described in the previous section, it was observed that tens of thousands if not hundreds

of thousands of executions were possibly required to capture multi-dimensional risk analysis

problems in sufficient detail to draw design conclusions. This causes the total experimental

time to be unacceptably large for slow experiments, reaching tens of several hours or possibly

days per experiment. The new experimental apparatus could improve the speed concern by

an order of magnitude, and thus enable key trades arising from the fidelity and capability

of multi-disciplinary risk analysis.

With this in mind, the author considered several approaches to solving the speed and
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fidelity issue:

1. Develop an additional surrogate model layer around the FLOPS/ALCCA

Environment. This solves the speed problem easily as response surface equations

and neural networks enable near-instantaneous rates; however the additional layer of

modeling may introduce artifacts and force the user to make even more assumptions

regarding the drivers for risk and uncertainty. The FLOPS and ALCCA cost models

are already a layer of modeling which introduce loss of fidelity, as they are developed

from empirical data from heterogeneous sources.

2. Develop a queuing, executing, and parsing tool that could leverage ad-

vancements in multi-core processors. This approach suffers no loss of fidelity

from the FLOPS and ALCCA outputs, yet it may not be able to accelerate the

analyses sufficiently as it was initially unclear how much of the execution time was

processor-based, software-based, and read+write-based.

3. Execute experiments over a distributed or cloud-computing. environment

This approach also suffers no loss of fidelity from the FLOPS and ALCCA cost mod-

els, and the execution time for the analyses increases with the number of computers

available. However, the setup and reliability, and availability of a distributed network

may prove to be challenging.

4. Develop an all-new cost model (process or activity-based). This alterna-

tive was considered as well since it has been done previously by Marx [81], Lee [72],

Madachy [76] and many others studying cost model research. However the result-

ing speed is not necessarily guaranteed, and the fidelity of the resulting models, the

availability of cost information and the programming time needed to be taken into

consideration.

In order to select which apparatus would be used to capture the program economics, the

following criteria were identified and are given in order of importance to the CASSANDRA

methodology:

68



1. Fidelity: The cash flow model must be at an industry-accepted level of cost estima-

tion fidelity and incorporate aircraft design trades, technology trades, scenario trades.

Additionally, the risk sensitivities to fidelity are preferred to be taken as late as pos-

sible, if at all in the methodology. This gives less opportunity for spurious artifacts

to enter the decision space.

2. Speed: As argued previously, the speed is directly proportional to the fidelity given

a fixed experimental period.

3. Availability of experimentation: Due to the iterative nature of the methodology,

it is preferred that the apparatus be as available as possible to the author.

4. Ease of setup: While ease was the least of the concerns to the author for the

methodology development, programming experience and software development were

also considered in the apparatus decision.

From the above concerns to the author, it was clear that Approaches 1 and 4 were to

be eliminated. The fidelity issue is a principle concern to risk analyses and an additional

modeling layer may mask those effects. For Approach 4, the ground-up development of a new

cost model suffers from fidelity issues as well due to the availability of cost data. It should

be noted that SEER-MFG, the industry approved cost and labor estimation tool used in the

MInD project, was considered as a source of information for Approach 4. However, this tool

provides excellent detailed cost information for part and assembly manufacturing, and much

less detailed information on non-structure-related costs that are present and substantial in

aircraft development (such as avionics, programming, and research and development).

This leaves approaches 2 and 3: the development of a queuing, executing, and parsing

tool or evaluating the experiments in a distributed or cloud computing environment. In

considering approach three, the reliability and availability of a distributed network was a

major concern. The author looked into several approaches for doing this, such as acquiring a

cloud computing account with a large Internet cloud computing retailer; but, it was found

to be unnecessarily complicated and expensive. The other alternatives were distributed
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computing over the Aerospace Systems Design Laboratory (ASDL) computing network, or

on a clustered array. The availability of this network and computing array was found to be

unsatisfactory to the author, as it imposed experimental setup constraints and scheduling

difficulties with other researchers.

In evaluating Approach 2, it was necessary to review how much improvement could be

achieved using multiple core processing. As mentioned above it was unclear how much

execution time was devoted during the FLOPS and ALCCA cycle towards core processing,

hard drive access, and software constraints within ModelCenter.

Hypothesis

Queuing, executing and parsing FLOPS / ALCCA data would be substantially faster on a

stand-alone software that enables multiple CPU core technology.

A single execution of FLOPS / ALCCA from within ModelCenter was metered using

performance measuring software in Windows. The results are plotted and shown in Figure

29 and demonstrate the excessive time spent not operating FLOPS.exe. The hard drive

read and write time was negligible, yet the ModelCenter time was substantial. There was

also an unexpected segment of time where nothing was happening. It was discovered that

ModelCenter was waiting for read+write access from the input and output files. It was later

found that FLOPS.exe requires that the input and output files be locked during a single

execution. This process slows down the batch execution because ModelCenter must wait

for FLOPS.exe to release the files.

After observing these CPU effects and their relation to time management of ModelCen-

ter, it became clear that there were gains to be had by writing a customized multi-core batch

software. Before committing to writing about software, further investigation was done in

how Model Center could be adapted to use multiple cores. Certain versions of ModelCenter

are multi-core enabled, however when this feature was activated there were marginal to no
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Figure 29: Activity log for a single execution of FLOPS / ALCCA from within ModelCenter,
showing the hard drive read+write access, FLOPS.exe and ModelCenter process loads.

gains observed. This is potentially due to the fact that Flops.exe was preventing read or

write to the input and output files.

With these considerations in mind the Batch Accelerated Sequencer of Uncertain Cash

Flow Alternatives was written in C++ to accelerate parsing execution, and queuing of

FLOPS and ALCCA.

3.2.1 FLOPS/ALCCA accelerated sequencer and parsing method

The batch accelerated sequencer uncertain cash flow alternatives, or BASUCA was written

to automate and sequence the vertical simulations of sizing synthesis and cost estimation

tool. It was found that running these cost and sizing tools in an integrated environment

(such as Model Center) the total execution time was approximately 0.5 to 1.5 seconds per

execution. This included the preparation of the input file and parsing of the output file.
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Table 5: Improvement to FLOPS/ALCCA execution rate by the BASUCA queu-
ing/executing/parsing code which leverages multi-core processing of experiments.

Metric Model Center BASUCA Change

Straight executions per second (eps) 1.25 150 120X
Converged executions per second 0.5 55 110X

Time to 1 million runs 277 hours (11 days) 2hr 15min 120X

Experimental Apparatus

BASUCA (Batch Accelerated Sequencing of Uncertain Cashflow Analyses) was written in

C++ to reduce the total experimental time by accelerating the preparation, execution, and

parsing of data.

BASUCA was coded in C++ by Karl Janus, using modern libraries that enable and make

the most use of multiple core processors available and most computers today. The software

also addresses the problematic file lock on the input and output files. It achieves this by

creating all of the input files for the entire experiment before executing a single instance

of FLOPS. It also creates copies of all of the supporting files needed for each execution,

such as the engine deck. Then, BASUCA is able to queue jobs (whether executing flops,

or parsing output files) for all of the processor cores such that no core remains idle during

the experiment. This approach proved to be successful in reducing the overall experimental

run time. It was found that on certain computers, typically with more recent processors,

BASUCA was able to reduce the run time to approximately 100th of a second. A table of

results is given in Table 5 comparing the execution speed (for both converged solutions in

FLOPS / ALCCA and straight through), showing the approximate 2 orders of magnitude

improvement.
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Experimental Result

One to ten orders of magnitude reduction in total execution time, enabling exhaustive

analysis of candidate factors and their contribution to the uncertain cumulative cashflow.

Note that there was a slight decrease in the factor of improvement when converged

cases of FLOPS were executed instead of straight-through cases. This reduction in benefit

of BASUCA over ModelCenter is likely due to the fact that in the converged cases the

duration of FLOPS.exe is longer in proportion to the total execution time because of the time

devoted towards converging the cruise fuel segment. As BASUCA increases the efficiency

of execution by minimizing waste CPU idle time, this effect was not unexpected.

Similar to the Taguchi method of using an inner and an outer array within a design of

experiments for quality improvement, BASUCA allows inputs in the form of two separate

comma separated value (CSV) spreadsheets: a control file and a noise file. This input format

that allows for independent runs over a set of designs within the control space, where each

of the designs are exposed to the possible instances described by the noise set. This same

approach was used in the MInD study. The goal is to analyze the design-specific reaction

to the set of possible future instances (given as distributions of variables out of the user’s

control).

This inner and outer array format is flexible for screening tests as well as uncertainty

analysis. When no noise states are identified, BASUCA functions as simply a batch queuing

tool, and can execute screening tests with many control variables. Similarly, reverse noise

and control experiments can be executed to observe what impact the control space has when

the noise space becomes the independent set.

To further facilitate the uncertainty analysis, BASUCA calculates statistics from the

noise set on each of the outputs, for each of the control runs. The statistics include the four

fundamental statistical moments of sets: mean, variance, kurtosis, and skew. BASUCA

also calculates the values at a given set of quantiles in the cumulative distribution function.
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Typically, the author specified 0th, 5th, 95th and 100th quantiles. These statistical results

are given in the output file which is arranged by row for the control runs, and by column

for the parsed outputs and their statistical results. This process is shown in Figure 30.

1. Input Template 

$CONFIN
DESRNG=2040.0,
VCMN=0.787,1,0.7,0.9,1
CH=41000.0,1,38000,45000,1
OFF=0.6,
OFG=0.4,
OFC=0.0,
TR=0.2012,
SWEEP=25.0,
TCA=0.1338,
AR=9.4,
TWR= 0.265,
SW=1364.79,1,1100,1500,1
$END

2. Apply Control

Changes

3. Apply Noise

Changes

$CONFIN
DESRNG=2040.0,
VCMN=0.787,1,0.7,0.9,1
CH=41000.0,1,38000,45000,1
OFF=0.6,
OFG=0.4,
OFC=0.0,
TR=0.2012,
SWEEP=25.0,
TCA=0.1338,
AR=9.4,
TWR= 0.265,
SW=1364.79,1,1100,1500,1
$END

NOISE.csvCONTROL.csv

$CONFIN
DESRNG=2040.0,
VCMN=0.787,1,0.7,0.9,1
CH=41000.0,1,38000,45000,1
OFF=0.6,
OFG=0.4,
OFC=0.0,
TR=0.2012,
SWEEP=25.0,
TCA=0.1338,
AR=9.4,
TWR= 0.265,
SW=1364.79,1,1100,1500,1
$END

4. Parse Output

7121.2 7243.8 7208.7 
7114.9 7412.9 7201.7 
7478.5 7322.3 7312.4 
7009.7 7520.1 7327.1
7121.2 7243.8 7208.7 
7114.9 7412.9 7201.7 
7478.5 7322.3 7312.4 
7009.7 7520.1 7327.1 
7121.2 7243.8 7208.7 
7114.9 7412.9 7201.7 
7478.5 7322.3 7312.4 
7009.7 7520.1 7327.1 
7121.2 7243.8 7208.7 
7114.9 7412.9 7201.7 
7478.5 7322.3 7312.4 
7009.7 7520.1 7327.1 

Execute 

FLOPS / 

ALCCA

DATA.csv

For every noise instance

For every control run 
Calculate statistics

When complete:

When 

complete

Figure 30: Process flowchart of BASUCA showing the application of control and noise
parameter changes to the template. Note that statistics on the total noise set is calculated
per control run as the method used for evaluating design-specific risk.

3.2.2 Results with the BASUCA apparatus

After verifying that the BASUCA apparatus was functioning properly, the first step in

addressing the cash flow risk problem with BASUCA was to identify the factors most likely

to affect the cash flow in greater detail than before. Recall that it was hypothesized that

there may be a substantial number of variables that affect the risk of the aircraft program.

With BASUCA, thorough exploration of these variables is now possible. This was done

by a large screening test similar to other experimental methodologies with large degrees of

freedom.
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3.2.2.1 Effect of Aircraft Price on Cashflow Uncertainty

ALCCA computes cumulative cashflows two separate ways and both approaches are eval-

uated in the CASSANDRA methodology. The aircraft price, the return on investment are

co-dependent variables; one may fix one and solve for the other. The following bullets

segment the rationale behind each pricing and return-on-investment approach.

• Price fixed, solve for ROI - in this approach, ALCCA takes a target aircraft

price and computes the return on investment over a input production quantity. This

approach is useful when the market is extremely price sensitive and known a priori.

• ROI fixed, solve for Price - This approach actually computes the ROI for 5 different

aircraft prices, then linearly interpolates to solve for the price that meets the target

ROI. This approach is useful when considering that the manufacturer has a fixed

internal rate of return that must be guaranteed by its creditors.

This dissertation takes a neutral perspective to price versus ROI fixation. This is because

the reality of pricing and sales of aircraft exhibits the fixation of neither specifically [66],

rather that the price of the aircraft is driven by the market and what the customer is willing

to pay. Forces such as private negotiations, governmental and manufacturing agreements,

order size and program maturity affect the actual sales prices substantially [48] [125].

Similarly, the manufacturer’s return on investment is not held constant. They may enjoy

handsome return on investment when the products continue to sell past their accounting

life or when the demand exceeds supply, typically from lengthy competitive advantage [4].

The approach taken in this thesis then is to consider both simultaneously. The execution

of ALCCA occurred in the second approach where a Desired ROI was specified; then five

candidate aircraft prices were explored, with the sixth being the price which meets the ROI

requirement. This allows a healthy variance in the uncertain cumulative cashflow space

and gives the program manager (and associated marketing and sales forces of the aircraft

manufacturer) further insight on the pricing and ROI effects.

Figure 31 illustrates the view of the cash flow uncertainty broken down by expectation

(represented as quantiles). Note the mean of the distribution is represented as numerically
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as the Quantile -2. Looking at the quartiles from zero to 100, it is evident that there is a

shift in the variance of the cashflows toward the end of the program. This is likely due to

the compounding effect of the reduction in manufacturing costs due to learning, the steady

3% increase in aircraft price per year, and the growth of inflation. On a lighter note, the

quantile perspective of the uncertain cumulative cashflow clouds resembles a bird landing,

with the developmental and investment phases representing the head, and the wings and

feathers of the cashflows the different aircraft prices used by ALCAA.
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Figure 31: Aggregation of cumulative cashflow diagrams, arranged by quantile (Note: -2 refers to the mean).
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In addition to exploring the aircraft pricing effects on cashflow, a full factorial design of

experiments was executed, permuting the allocation of composites materials to the wing,

body, empennage and engine nacelles. All other variables were held constant. The resulting

variance is shown in Figure 32. It was observed that the composites perturbation exhibited

substantial uncertainty in the cashflow space, especially on the cost side where Aircraft

Prices 1 and 2 were extremely negative and never broke even.

Figure 32: Experimental results showing the mean, variance, 0th and 100th quantiles from
an experiment where only variables related to composites manufacturing were evaluated.

The effect of aircraft price was also evaluated against the break-even date. Figure 33

illustrates the strong trend and the range of breakeven dates possible. Note that for prices

1,2 and 6, the aircraft never broke even.

3.2.2.2 Screening tests

For the screening test, 73 variables were identified within the design, technology, and sce-

nario variables sets available within FLOPS and ALCCA. These were selected largely based

on prior experience with FLOPS and ALCCA and the software’s documentation on the
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Average Slope: 

$370,000 ACPrice Per BreakEvenMonth

Figure 33: Average break-even month versus price, showing overall trend as well as aircraft
price bucket deviation.

drivers of cash flow economics. For each of the variables identified, it was necessary to es-

timate ranges of experimentation that were likely possible in the single aisle 150-passenger

aircraft design problem identified in Chapter 7. The variables, their taxonomy type, and

their associated ranges are given in Tables 6, 7 and 8.
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Table 6: Control variables and their associated ranges used in the Screening Test.

Design Type Taxonomy Category Description Variable Handle Min Max Units

Control Design Aspect Ratio (Wing) AR 7 9 -
Control Design Aspect Ratio (Horizontal Tail) ARHT 5.13 6.33 -
Control Design Aspect Ratio (Horizontal Tail) ARVT 1.12 1.38 -
Control Design Design Range DESRNG 2200 2800 Miles
Control Technology Percentage of Composites (Body) PWBODYCO 0 1 Percent
Control Technology Percentage of Titanium (Body) PWBODYTI 0 0.5 Percent
Control Technology Percentage of Composites (Empennage) PWEMPCO 0 1 Percent
Control Technology Percentage of Titanium (Empennage) PWEMPTI 0 0.5 Percent
Control Technology Percentage of Composites (Wing) PWINGCO 0 1 Percent
Control Technology Percentage of Titanium (Wing) PWINGTI 0 0.5 Percent
Control Technology Percentage of Composites (Nacelle) PWNACCO 0 1 Percent
Control Technology Percentage of Titanium (Nacelle) PWNACTI 0 0.5 Percent
Control Design Area (Horizontal Tail) SHT 300 400 ft2

Control Design Area (Vertical Tail) SVT 270 300 ft2

Control Design Area (Wing) SW 1250 1350 ft2

Control Design Sweep (Wing) SWEEP 22 30 Degrees
Control Design Thickness at Chord TCA 0.12 0.14 -
Control Design Taper Ratio TR 0.18 0.22 -
Control Design Taper Ratio (Horizontal Tail) TRHT 0.25 0.31 -
Control Design Taper Ratio (Vertical Tail) TRVT 0.35 0.43 -
Control Design Thrust to weight Ratio TWR 0.24 0.29 -

Control + Noise Scenario Number of Vehicles Produced/Sold NV 600 1000 Aircraft
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The complexity factors and efficiency factors were selected near their default values. It

was found that if these complexity and efficiency factors deviated too much from the default

values, then FLOPS and ALCCA returned failed values for aircraft weight and subsequently

aircraft cost.

Figure 34: Aggregate cumulative cash flow diagram for the effects screening set, divided by
aircraft price range.

3.2.2.3 Visualizing Uncertain Cumulative Cashflows

Figure 36 shows the year-wise approach to dissection of the drivers for cumulative cashflow

uncertainty. The distributions were then fitted to the Johnson-Su continuous distribution

function, then the 4 distribution parameters were modeled using the control, scenario,

and technology variables. The result is a parametric uncertain cumulative cashflow trade

environment, allowing the program manager to explore risk trades to tailor the business

case and risk-aversion profile of the program.
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Table 7: Scenario (Noise) variables and their associated ranges used in the Screening Test.
(1 of 2)

Description Variable Handle Min Max Units

Complexity Factor CFBODYAL 0.9 1.11 -
Complexity Factor CFBODYCO 0.31356 0.39 -
Complexity Factor CFBODYTI 1.2744 1.57 -
Complexity Factor CFEMPAL 0.9 1.11 -
Complexity Factor CFEMPCO 0.4518 0.56 -
Complexity Factor CFEMPTI 1.3617 1.68 -
Complexity Factor CFLGAL 0.9 1.11 -
Complexity Factor CFLGCO 0.9 1.11 -
Complexity Factor CFLGTI 0.9 1.11 -
Complexity Factor CFNACAL 0.9 1.11 -
Complexity Factor CFNACCO 0.9 1.11 -
Complexity Factor CFNACTI 0.9 1.11 -
Complexity Factor CFWINGAL 0.9 1.11 -
Complexity Factor CFWINGCO 0.4518 0.56 -
Complexity Factor CFWINGTI 1.3617 1.68 -
Efficiency Factor EFBODYAL 0.9 1.11 -
Efficiency Factor EFBODYCO 1.17945 1.46 -
Efficiency Factor EFBODYTI 0.90315 1.12 -
Efficiency Factor EFEMPAL 0.9 1.11 -
Efficiency Factor EFEMPCO 1.1034 1.36 -
Efficiency Factor EFEMPTI 0.89604 1.11 -
Efficiency Factor EFLGAL 0.9 1.11 -
Efficiency Factor EFLGCO 0.9 1.11 -
Efficiency Factor EFLGTI 0.9 1.11 -
Efficiency Factor EFNACAL 0.9 1.11 -
Efficiency Factor EFNACCO 0.9 1.11 -
Efficiency Factor EFNACTI 0.9 1.11 -
Efficiency Factor EFWINGAL 0.9 1.11 -
Efficiency Factor EFWINGCO 1.1034 1.36 -
Efficiency Factor EFWINGTI 0.89604 1.11 -

High-Value Material Cost (Buy-to-fly) HIMAT 0.7875 1.40 Percent
Learning Curve (Block 1) LEARN1 75 85.00 Percent
Learning Curve (Block 2) LEARN2 75 85.00 Percent

Learning Curve, Avionics (Block 1) LEARNA1 75 85.00 Percent
Learning Curve, Avionics (Block 2) LEARNA2 75 85.00 Percent
Learning Curve, Assembly (Block 1) LEARNAS1 75 85.00 Percent
Learning Curve, Assembly (Block 2) LEARNAS2 75 85.00 Percent

Learning Curve, Fixed-Equipment (Block 1) LEARNFE1 75 85.00 Percent
Learning Curve, Fixed-Equipment (Block 2) LEARNFE2 75 85.00 Percent

Learning Curve, Engine (Block 1) LEARNP1 75 85.00 Percent
Learning Curve, Engine (Block 2) LEARNP2 75 85.00 Percent

Other Direct Cost Factor ODC 0.03 0.05 Percent
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Table 8: Scenario (Noise) variables and their associated ranges used in the Screening Test.
(2 of 2)

Description Variable Handle Min Max Units

RDTE Labor Rate RDEVPMHR 38 68 Dollars
Engineering Labor Rate RE 60 80 Dollars

Markup for Other Direct Cost RGA 0.82 1.45 Dollars
Manufacturing Support Labor Rate RMANSUP 41 73 Dollars

Manufacturing Labor Rate RMANUMHR 38 68 Dollars
Rate for Manufacturing Material Cost RMFGMAT 0.78 1.39 Percent

Quality Assurance Labor Rate RQA 43 77 Dollars
Tooling Labor Rate RT 35 55 Dollars

Test Engineering Labor Rate RTENGMHR 65 115 Dollars

New Research Observation IVa

Price and volume produced trends emerge, and seem uncorrelated to the performance and

likely value to the end customer.

New Research Observation IVb

Quantity produced is equal to the quantity consumed and is treated as an input in the

FLOPS/ALCCA model. There was no consideration for the level of value to the customer

in a competitive environment.

3.2.3 Input Variance and Simulation Count Study

Essential to providing insight into the use of the CASSANDRA methodology is an awareness

of what affect the inputs and operational setting have on the dispersion of the results. The

width of the input ranges on the noise variables is of particular concern, as the resulting

cumulative cashflows are capable of enormous variance. Similarly, there exists the possibility

that the simulation exhaustiveness itself interacts with the estimates, particularly when

evaluating the bounds as discussed in the previous section.
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Table 9: Effects screening study on Cumulative Cash Flow (Year 2024) showing the average
factor rank from two experiments. Tabulated are the top 25 of 73 factors evaluated. Number
of Runs=5,000., Experimental configuration: Experiment 1: Monte Carlo, Experiment 2:
D-Optimal Design

Factor Rank in Exp. 1 Rank in Exp. 2 Average Rank Rank Difference

RE 6 4 5 2
ARHT 9 1 5 8

RT 1 10 5.5 -9
CFWINGTI 8 11 9.5 -3

SVT 10 14 12 -4
EFLGAL 12 15 13.5 -3
LEARN2 25 5 15 20

EFNACAL 5 26 15.5 -21
ARVT 26 7 16.5 19

RMANUMHR 4 33 18.5 -29
RGA 7 30 18.5 -23

PWINGTI 15 22 18.5 -7
LEARNA2 35 3 19 32
PWNACTI 17 24 20.5 -7

TRHT 16 28 22 -12
HIMAT 3 46 24.5 -43

LEARNAS1 30 20 25 10
CFNACAL 51 2 26.5 49
EFNACTI 37 23 30 14

CFBODYTI 46 16 31 30
PWNACCO 2 61 31.5 -59
PWEMPCO 29 34 31.5 -5
EFEMPTI 32 31 31.5 1

EFBODYTI 20 45 32.5 -25
RMANSUP 61 6 33.5 55
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Table 10: Effects screening study on Break Even Month showing the average factor rank
from two experiments. Tabulated are the top 25 of 73 factors evaluated. Number of
Runs=5,000., Experimental configuration: Experiment 1: Monte Carlo, Experiment 2: D-
Optimal Design

Factor Rank in Exp. 1 Rank in Exp. 2 Average Rank Rank Difference

RT 5 3 4 -2
HIMAT 6 9 7.5 3

EFNACAL 10 6 8 -4
ARHT 13 4 8.5 -9

RMANSUP 17 2 9.5 -15
ARVT 20 1 10.5 -19

PWEMPTI 21 7 14 -14
EFLGCO 19 15 17 -4

CFBODYTI 25 10 17.5 -15
LEARNA2 24 13 18.5 -11

EFWINGAL 30 8 19 -22
PWINGTI 4 35 19.5 31

RQA 23 18 20.5 -5
CFNACTI 14 31 22.5 17
EFLGAL 16 33 24.5 17
CFLGAL 22 28 25 6
DESRNG 12 40 26 28
EFEMPTI 8 47 27.5 39

RMANUMHR 9 48 28.5 39
EFLGTI 7 50 28.5 43

CFWINGTI 39 21 30 -18
LEARNAS1 46 16 31 -30

RDEVPMHR 40 22 31 -18
CFWINGAL 2 61 31.5 59

RE 1 62 31.5 61
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Figure 35: Aggregate cumulative cash flow diagram for the effects screening set, divided
by the FLOPS / ALCCA aircraft price number (not aircraft price). Note that aircraft
price number 6 refers to the converged aircraft price to reach a manufacturer’s return on
investment goal.

To capture this effect, a 4-level, full factorial experiment was executed on a single control

setting for the design. The baseline setting was that of the Screening Test, as given by the

centerpoints of the distributions given in Table 6.

The noise variable ranges were expanded by setting the input distribution types to

Normal/Gaussian and setting the variance to be a fixed percentage of the mean. This

percentage ranged from 3% to 12%.

The simulation run count was varied from 10 to 1000 runs in the noise array. As

mentioned previously, the BASUCA apparatus was designed to handle millions of total

executions of FLOPS and ALCCA. Setting the noise (outer) array length to 1000 would

result in 1 million total executions if the control array were of the same length.

The results described the mean, variance, skew, and bounds are given in Table 11.
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Program Year

Figure 36: Continuous distributions fitted to cumulative cashflow drivers, then regressed as
a function of design, scenario and technology variables.
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Figure 37: Overview of the information and data flow of the experimental apparatus (BA-
SUCA) that used to accelerate FLOPS and ALCCA cumulative cashflow analysis. Note
the three steps : the Effects screening, the Surrogate Model construction, and the Inverse
Design.
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Table 11: Results from the BASUCA noise array variance and simulation run count study.

Input Variance (%) Simulation Run Count Mean Variance 0th Quantile 100th Quantile Skew

3 10 20084 150 19765 20508 -0.49
3 25 20311 164 19233 21430 0.37
3 100 20043 104 18456 22399 0.52
3 250 20043 63 17938 22399 0.28
3 1000 20055 32 17439 22991 0.16

7 10 22386 1090 19451 23475 0.57
7 25 20722 589 17421 23475 0.92
7 100 20751 273 16366 27230 0.58
7 250 20867 169 16203 28487 0.66
7 1000 20675 84 15148 29973 0.64

10 10 20657 1897 16614 21804 1.63
10 25 21242 1213 16120 26676 1.98
10 100 21323 508 14115 34967 1.30
10 250 21143 283 13862 36407 1.14
10 1000 21218 162 11935 47381 1.74

12 10 23750 1973 18986 27675 0.84
12 25 21995 1068 16466 30208 0.96
12 100 21964 584 14235 37836 1.16
12 250 22005 401 12806 44254 1.54
12 1000 21834 198 12280 58812 2.14
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Figure 38 shows the effect of stabilizing mean estimate in the cumulative cash flow as a

function of increasing run count and input variance. For each of the input variances, this

effect is evident. Of particular interest is noting that between 50 and 100 executions, the

mean has already stabilized. This effect was expected. As the input variance grew from 3

to 12%, a steady but slight increase in the cumulative cash flow was observed. This was

likely due to the slight asymmetry of the learning curve effect input distribution.

Figure 39 shows the effect of the output variance in the cumulative cash flow as a function

of increasing run count and input variance. Here, two trends are evident. The first was

that as the simulation count was increased, the variance estimate decreased substantially

in each case. At first glance this was surprising, however examining the other results made

this effect more clear. As the number runs increased in the noise array, the estimate of

the variance in the output decreased exponentially. More specifically, the estimate for

variance on the set decreased with increasing simulation run count as the peakedness of

the distribution, or kurtosis, was found to decrease with simulation run count. The second

trend was expected: increasing the input variance also increased the output variance, and

this effect was approximately linear.

Figure 40 shows the effect of simulation run count and input variance on output kurtosis

in the cumulative cash flow. Recall that the kurtosis describes the peakedness of a distri-

bution. Here the sample excess kurtosis K (kurtosis value minus 3) was largely invariant

with the input variance, and like the mean estimate tended to settle down as the simula-

tion count increased towards a slightly less kurtotic distribution than the perfect normal

distribution (in which excess kurtosis = 3). For reference, the sample kurtosis of a set of n

samples follows Equation 12:

K =
m4

m2
2

− 3 =
1
n

∑n
i=1(xi − x)4(

1
n

∑n
i=1(xi − x)2

)2 − 3 (12)

where m4 is the fourth sample moment about the mean, m2 is the second sample moment

about the mean (that is, the sample variance), xi is the ith value, and x is the sample mean.

Figure 41 shows the effect of the increasing run count and input variance on output skew

in the cumulative cash flow. It was found that the skew increased as both the input variance
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Figure 38: The relationship of noise array input variance and simulation results on the
mean of the cumulative cashflow space.

Figure 39: The relationship of noise array input variance and simulation results on the
variance of the cumulative cashflow space.
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Figure 40: The relationship of noise array input variance and simulation results on the
excess kurtosis of the cumulative cashflow space.

Figure 41: The relationship of noise array input variance and simulation results on the
skew of the cumulative cashflow space.
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Figure 42: The relationship of noise array input variance and simulation results on the 0th

and 100th Quantiles of the cumulative cashflow space.

increased and settled slightly as the simulation run count increased. The simulation run

count had a weaker impact on skew and was found to settle to usable value by approximately

100 runs. The input variance showed a strong impact on skew, likely due to the inflation

rate distortion effect by cumulative cashflow values that were further and further from zero.

Here, as the input variance increased, the ending program cash flow skew was increased.

This effect is also shown in Figure 42, demonstrates the effect of the increasing run count

and input variance on output bounds in the cumulative cash flow.

Here the results from the Monte Carlo simulation evaluating growth in normal distri-

bution bounds as a function of samples is repeated. The spread between the 0th and 100th

Quantiles increases dramatically with input variance, as well as simulation count. The effect

is stronger with input variance than with simulation run count.

3.3 Chapter Summary

This chapter reviewed the experimental apparatus and explored two different setups for eval-

uation. The first apparatus evaluated the sizing and simulation software from an embedded
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code stitching environment. This gave the initial exploration and sensitivity confirmation

of the uncertain cumulative cashflow concept. The execution time was approximately 1.5

seconds per run, and it was originally assumed that a million executions might be neces-

sary when using the control-by-noise array structure. The reason for this assumption was

due to the desire to capture all of the interactions possible for generating design risk. A

full-factorial experiment of the control and noise variables to the risk space led to an unac-

ceptable total experiment time of approximately 11 days. Note that the full factorial design

of experiments could be reduced to a fractional factorial or Latin Hypersquare design, but

both of these approaches concede interactions which were not desired to be assumed.

Therefore, a high-speed apparatus was built called BASUCA to reduce the CPU idle

time of the experimental process. From here, it was then possible to evaluate the validity of

the full factorial assumption, which was found to be false. The initial hypothesis of needing

1000 executions in the noise array turned out to be invalid: approximately 75-150 executions

captured the majority of the cumulative cashflow statistical estimates sufficiently.
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CHAPTER IV

ALLOCATING RISK TO MANAGE SCHEDULE AND COST

4.1 Introductory Remarks

As described in the previous chapter, the aircraft designer’s management problem is to

balance the consequences of design decisions in the dimensions of performance, cost, and

schedule to higher-level goals of generating sustainable, profitable products. The program

manager’s values place risk constraints on the level of acceptable risk in each of those

dimensions. To meet those constraints, only a few parameters can be controlled: capital

allocation and investment, technology selection, and time resources.

This allocation problem poses a unique challenge to the designer or program manager,

and in order to succeed in the aircraft program, measures are needed to identify the gaps

and the excesses in risk allocation.

Developing a methodology that identifies the relationship between technology risk and

overall economic impact could meet this challenge, however it must address the investment

variations as well of the production variations in order to make the recommendations useful.

The goal of this chapter is to address the allocation problem of technology risk and iden-

tify methods in which the consequence to program schedule and cost may be measured. In

addition, it will present a brief summary of the literature relevant to identifying, measuring,

and interpreting uncertainty and risk in the context of aircraft development programs.

4.2 Literature Review of Relevant Background

The literature review begins with the assessment of uncertainty methods into the aircraft

product development process, and it begins on the ground floor with an engineer. One of

the first publications revealing the use of engineer-level uncertainty elicitation was given by

Batson, et al. in 1988 in their report of uncertainty analysis of new aircraft development

at Lockheed Martin [5]. This is illustrated in Figure 43. They used a Monte Carlo process
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to map the input uncertainty to payload-range outputs of various conceptual design alter-

natives. The risk was identified by the overlap of the maximum payload at critical range

and the frequency of loads carried [5]. This approach to calculating risk by load-stress

probability overlap is common in reliability and structural safety analyses [6, 26, 129, 138].

This is illustrated in Figure 44.

Risk assessment in aircraft design is a broad, comprehensive field, and there have been

several trends and methods to address system design risk. In 2009, Curran used stochastic

modeling to capture uncertainty and sensitivity analysis for the minimization of operating

costs by permuting structural design variables. They found that the minimum weight system

did not correspond to the lowest direct operating cost [26].

Real Options is another trend for studying the variance and managerial adaptability of

large, complex system design. Real options uses financial valuation models to capture ’pay-

offs’ of possible future states of real-world problems, then uses the stochastic Black-Scholes

options pricing model to evaluate and compare the value of non-permanent alternatives

[32, 20].

Peoples and Wilcox looked at an alternative design technique by comparing performance-

optimized and value-optimized designs. They showed that there existed a trade off between

aerodynamic efficiency and manufacturing costs when value was used as a design metric, and

that the stochastic methodology indicated an advantage in strategy of spending up-front

capital to improve long term profitability [101].

Lessard [73] provides a broad distinction between risk management approaches that is

appropriate at this time:

1. Type I : Decision theoretic approaches that by and large assume that risks

are exogenous.

2. Type II : Managerial approaches that recognize that risk depends on the

interaction among exogenous risk drivers, managerial choices during the

front end, and the shaping of risk drivers throughout the process.

A relevant example of an exogenous variable is manufacturing labor rate. In Lessard’s
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Figure 43: Uncertainty elicitation questionnaire released in 1988 [75].

Type 1 approach to risk management, the risk on cost and schedule objectives arising from

labor rate is considered as something that comes from outside the model and is unexplained

by the model. Risk management approaches in this case are static: the labor rate is assumed

to be fixed, and the risk mitigation process aims to reduce sensitivity to the exogenous

variable. In the Type II approach, there is an active interaction between the fluctuating

labor rate and the subsequent development processes: the risk can be continuously managed

assuming sufficient managerial flexibility. The field of Real Options has emerged to model

the time-variant strategic adaptability of decision alternatives in the same way as financial

options pricing mechanisms [14].

For the sake of simplicity, the scope of the proposed research is kept to time-invariant

analyses (similar to Lessard’s Type I approach), although Real Options is certainly a promis-

ing area of research.

Classical venture valuations methods apply the Discounted Cash Flow method, where

a decision maker makes future cash flow estimates and discounts them to present day, then

considers the investment cost associated with creating the cash flows. Typical research

and development efforts display a high amount of uncertainty, rendering the deterministic
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Figure 44: Uncertainty propagation to Payload-Range diagrams, illustrating the probabilis-
tic load and ultimate stress overlapping perspective of structural risk [5].

discounted cash flow method difficult to apply [92].

4.2.1 Uncertainty Elicitation and Mitigation Processes

Risk management processes are as diverse as definitions and interpretations of risk. A

simple literature search will reveal hundreds upon hundreds of various risk management

processes, of varying degrees of fidelity and utility. There is an evident trend that appears,

as with the definition of risk, and the generalized steps are summarized below.

1. Step I : Identification of uncertainty

2. Step II : Representation or elicitation of uncertainty

3. Step III : Propagation of the uncertainty through the system

4. Step IV : Analysis and interpretation

5. Step V : Mitigation of resulting risk
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There has been extensive research in each of these broad steps. A more detailed, refereed

example from the ISO31000:2009 [60] is given.

Figure 45: The ISO31000 risk management process [60].

Long and Narciso [75] used probabilistic design methods to evaluate sensitivities of de-

sign variables to evaluate risk of composite systems for the Federal Aviation Administration

(FAA). NASA published an iterative risk management process [97] that identifies a system

hierarchy as well as a risk management processes executor. This identification is given in

the form of a pyramid, with the hierarchy broken down into agency, directorate, program,

project, and element in Figure 46. The risk management process itself is similar to that

given in ISO31000:2009 shown before.

4.2.2 Identification of Uncertainty

As with any transfer analysis, the quality of the results is only as good as the quality of the

inputs and model itself. Risk analysis is particularly sensitive to this effect as measurement

of the error, variance and bounds of the results is the primary goal. Because of this effect,

careful attention must be paid as to how uncertainty about the system is described. Without
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Figure 46: NASA Agency Risk Management approach, breaking down the user and system
level iterative processes [97].

a clear understanding of the assumptions going in to the elicitation, the resulting analysis

is either difficult or meaningless to interpret.

As described in Section 2.1.4 aleatory and epistemic uncertainty are used to describe un-

certainty in fundamentally different ways. For risk analyses measuring the inherent variabil-

ity of the system, such as the price of oil in future states, or the dimensions of manufactured

parts, aleatory uncertainty elicitations and subsequent treatment theory are appropriate.

Probability Theory is widely accepted in the reliability engineering community as the most

suitable approach [121].

In contrast, epistemic uncertainty exists when there is a cognitive lack of knowledge

about the system. Several representations and model theories exist for capturing epistemic

uncertainty, such as Bayesian Theory, Possibility Theory, and Dempster-Shafer’s Evidence

Theory. Discussion of the various advantages and relative performances for aerospace prob-

lems is well documented in Stult’s thesis [121].
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When surrogate models are used, a new source of epistemic uncertainty may exist re-

lated to the Model Fit Error (MFE) and Model Representation Error (MRE). Delaurentis

describes uncertainty in regards to modeling and simulation as the “...the incompleteness in

knowledge (either in information or context), that causes model-based predictions to differ

from reality in a manner described by some distribution function.” [27].

For the scope of this thesis, epistemic uncertainty is considered in Probability theory

and Bayesian theory alone.

Interdependencies 
from design 

decomposition and 
parameterization

Interdependencies 
from multiple 

descriptions of 
parameters

Uncertainties from 
process of 

developing design 
descriptions and 

models

Figure 47: Three-level decomposition of the entry points and interdependencies of uncer-
tainty during the design process [49].

4.3 Uncertainty Propagation

There are two general approaches to propagating uncertainty throughout a system: Approx-

imation and Sampling Method. In the approximation approach to propagating uncertainty,
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the uncertainty of the output is directly computed through the linearized function describ-

ing the system using statistical propagation theory, and provides limited information on the

resulting output: mean and variance. This is useful when the mathematical representation

of the system is linear and when the propagated uncertainty is sufficiently described by the

variance alone. This approach is rare in aircraft design methods as the restrictions imposed

on the function are often undesirable and additional information is needed regarding the

shape of the output distribution. There have been notable improvements in central dis-

persion approximation methods, including Quadratic Combination and Perturbation, but

discussion on those methods is out of the scope of the research.

The second method to propagating uncertainty is sampling. In sampling, no linearization

or preparation of the system functions is needed. Instead, the propagated uncertainty

arises simply from mass collection of independent samples from the function. Monte Carlo

Sampling is an example of such a technique and is widely used in system design problems.

4.3.1 Monte Carlo Sampling

A standard technique for the exploration of a design space as well as analyzing uncertainty

through a system is Monte Carlo (MC) simulation [10]. In this technique, the subjects

(often deterministic analysis codes or surrogate models) are stochastically sampled to pro-

duce correctly scaled dispersion of results. Depending on which variables are selected in

the sampling set, the Monte Carlo process can be used for design space exploration (from a

Design of Experiments on the design variables) or a uncertainty propagation, or both simul-

taneously. This subtle distinction is often the source of confusion in interpretation of the

results. Design space exploration by itself is a deterministic activity ; the assumptions and

scenario variables are held constant and the resulting variance in responses is due to static

design permutation. When the distributions are instead applied to scenario variables (or

as future-path influences on design variables), the resulting distributions describe possible

outcomes of frozen design due to variance in the assumptions. Both approaches are useful

in the Risk Management process.
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Monte Carlo Sampling may require a substantial number of samples in order to pop-

ulate and resolve output probability density distributions (PDFs); sample set sizes in the

thousands and millions are not uncommon [121]. If the individual clock time of the subject

is lengthy, this computational expense can quickly exceed reasonable limits. It is for this

reason that surrogate models are used to accelerate net analysis time. Though there are

a variety of Monte Carlo (MC) sampling algorithms such as Stratified Monte Carlo sam-

pling, Importance Sampling and Quasi Monte Carlo sampling, this thesis aims to default

the uncertainty propagation method to Monte Carlo sampling of surrogate models.

4.3.2 Fast Probability Integration

An alternative approach in uncertainty propagation to full sampling techniques was devel-

oped by Southwest Research Institute for NASA. In this method the cumulative probability

functions (CDFs) are approximated by creating a linearized form of the system response,

then calibrated the CDF with additional samples [138] [86].

The three approaches to propagating uncertainty through a system are illustrated in

Figure 48.
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Figure 48: Illustration of various probabilistic design methods [67].
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4.3.3 Response Surface Methodology

The Response Surface Methodology (RSM) is one of the multi-variate reduced-form mod-

eling approaches used in this study. The acceleration enabled Monte Carlo simulations

with high run count, and thus thorough explorations of the uncertain permutations. The

formulation of response surface methodology is given below in Equation 13.

R = b0 +

k∑
i=1

bixi +

k∑
i=1

biix
2
i +

k−1∑
i=1

k∑
j=i+1

bijxixj + ε (13)

The b coefficients result from linear regression of the empirical outputs (R) with respect

to the inputs (xi and xj). The response surface equation is suitable for smooth outputs

with few non-linearities within the range of interest. It was found that the majority of the

responses in the MInD could be modeled with response surfaces of an acceptable R2 fit.

4.3.4 Multi-disciplinary System Interactions

In multi-disciplinary design of systems, the individual components (or sub-systems) must

be designed to work in concert to serve the greater system. This simple fact introduces an

opportunity for risk entry in the integration of the hierarchical linkages between the systems.

A common measure of systemic risk is the maximization of the component hierarchy; that

is to say, the risk of the entire system is equal to that of the component with the greatest

risk. In this squeaky wheel approach, managerial resources are then allocated to mitigating

risks of that particular component– whether in reduction of uncertainty contributing to the

risk or in hedging the consequential impact.

This hierarchy also provides a structure with which to exchange risk parameters, specif-

ically in regards to objectives. During the Preliminary design and Detailed Design phases,

contributing disciplines are exchanging information in cycles as the design is refined. The

system level design is also re-evaluated using the latest estimates, and component level ob-

jectives are re-distributed to the various disciplines. A prime example of this is the structural

load sizing. As the aircraft control systems, propulsion systems and various other systems

are designed in greater detail, the weight estimate of the overall aircraft evolves. This weight
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Figure 49: Hierarchal system risk evolution over time as a function of maximum risk

estimate (often Empty Weight) is redistributed to the wing aerodynamics and structural de-

sign disciplines–which may then need to be re-sized. Following the definition of risk selected

in Section 2.1.3 of effect of uncertainty on objectives, this shifting in the component-level

objective causes a subsequent possible shift in that discipline’s component-level risk.

4.4 Risk Matrices

Risk matrices are a common approach to mapping likelihood and impact in one visual

matrix, usually color according to the product of the axes. Several private organizations

and governmental standards have adopted the use of risk matrices as a generalized method

of evaluation and visualization of risk thresholds.

However, much like overall validation of risk methods mentioned earlier by Galway [40].

Cox argues that there has been little research that risk matrices validates the performance

in actually improving risk management decisions [24]. The criticism of their use was broken

into four reasons:

1. Poor resolution - Unambiguous differentiation between hazards can only be done for

a small fraction of the alternatives.

2. Errors - Risk matrices can mistakenly assign higher qualitative ratings to quantita-

tively smaller risks. For risks with negatively correlated frequencies and severity, they
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Figure 50: Risk reporting diagram [22].

can be worse than useless, leading to worse-than-random decisions.

3. Sub-optimal Resource Allocation - Effective allocation of resources to risk-reducing

countermeasures cannot be based on the categories provided by risk matrices.

4. Ambiguous inputs and outputs - Categorizations of severity cannot be made objectively

for uncertain consequences.

4.4.0.1 Example Uncertainty Analysis using FLOPS

NASA Langley and the National Institute of Aerospace conducted an uncertainty study

on a multi-disciplinary, multi-objective subsonic mission using FLOPS design analyses to

determine the reduction in design space due to uncertainty [25]. They varied the take-

off weights, aerodynamic coefficients, technology readiness levels, and uncertain future fuel

prices for cost analysis. Their research illustrated the difference between the probabilistic

design space boundary and the deterministic design space boundary. Figure 51 illustrates

the relative shift in the boundaries in two response dimensions.

4.4.1 Value-Based Aircraft Risk Management

Markish and Wilcox evaluated a method that augments the net present value method to

include considerations of market uncertainty and managerial decision flexibility using three
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Response 1

Response 2

Figure 51: Reduction of the actual design space due to uncertainty [25].

separate models: cost, revenue and performance [79]. The result was a quantification of

value to make program level trades.

4.5 Technology and Manufacturing Risk

As previously described, the total program risk is sensitive to the uncertainty around the

development and success of technologies that are critical to the overall program. The

example described in the motivation was the advanced materials technology associated with

the fastening of the upper wing joint to the airframe. The upper wing joint issue–if found

earlier–would have allowed time for re-design to correct the problem before certification

testing. The original joint passed sub-component testing. Had the issue been identified

during an earlier phase of development, the impact to the risk frontier would have been

much smaller.

As manufacturers have become increasingly aware of the relationship between technol-

ogy maturation and program schedule, quantification approaches to the risk have been

introduced. Metrics such as technology readiness level (TRL), manufacturing readiness

level (MRL), and systems readiness level (SRL) have entered the development paradigm.

107



These readiness levels help gauge the progress and integration of program aspects. New

technologies programs are often measured by their TRL Level. In 1995, NASA released

their widely accepted definitions for Technology Readiness Levels, a measure by which to

gauge the development of new technologies [77]. The definitions are given in Figure 52.

New technologies are developed and integrated in a just-in-time basis with new aircraft

design. This is done to maintain competitive advantage because technology factors are

often the deciding factor for customer procurement. Therefore, the technology, and its

integration are typically managed simultaneously. This simultaneous integration means

that if certain elements are behind schedule or development then it increases the schedule

risk and therefore overall program risk. An example of this relationship is given in Figure

53. In this figure, the technology maturity (described by TRL) is plotted clearly against

program phase, showing the gradual increasing risk as supporting technologies fail to reach

maturity milestones.

Much research has been done to succinctly define and correlate the TRL and MRL lev-

els to program phases. The relationship between the two is also a source for risk entry.

Figure 54 relates technology readiness levels, manufacturing readiness levels, and the de-

fense acquisition lifecycle framework. While the defense acquisition framework is somewhat

comparable to the program phases of commercial development, the key relationship shown

here is there exists risk entry opportunity based on the timing of the program milestones

and the technology transfer into manufacturing and product application.
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Definition Of Technology Readiness Levels 

 
TRL 1 Basic principles observed and reported: Transition from scientific research to applied 

research. Essential characteristics and behaviors of systems and architectures.  Descriptive tools 

are mathematical formulations or algorithms. 

 

TRL 2 Technology concept and/or application formulated: Applied research.  Theory and 

scientific principles are focused on specific application area to define the concept. Characteristics 

of the application are described.  Analytical tools are developed for simulation or analysis of the 

application. 

 

TRL 3 Analytical and experimental critical function and/or characteristic proof-of-

concept: Proof of concept validation. Active Research and Development (R&D) is initiated with 

analytical and laboratory studies.  Demonstration of technical feasibility using breadboard or 

brassboard implementations that are exercised with representative data. 

 

TRL 4 Component/subsystem validation in laboratory environment: Standalone prototyping 

implementation and test.  Integration of technology elements.  Experiments with full-scale 

problems or data sets. 

 

TRL 5 System/subsystem/component validation in relevant environment: Thorough testing 

of prototyping in representative environment.  Basic technology elements integrated with 

reasonably realistic supporting elements. Prototyping implementations conform to target 

environment and interfaces.  

 

TRL 6 System/subsystem model or prototyping demonstration in a relevant end-to-end 

environment (ground or space): Prototyping implementations on full-scale realistic problems.  

Partially integrated with existing systems. Limited documentation available.  Engineering 

feasibility fully demonstrated in actual system application.  

 

TRL 7 System prototyping demonstration in an operational environment  

(ground or space): System prototyping demonstration in operational environment. System is at 

or near scale of the operational system, with most functions available for demonstration and test.  

Well integrated with collateral and ancillary systems.  Limited documentation available. 

 

TRL 8 Actual system completed and "mission qualified" through test and demonstration in 

an operational environment (ground or space): End of system development.  Fully integrated 

with operational hardware and software systems.  Most user documentation, training 

documentation, and maintenance documentation completed.  All functionality tested in simulated 

and operational scenarios. Verification and Validation (V&V) completed. 

 

TRL 9 Actual system "mission proven" through successful mission operations (ground or 

space): Fully integrated with operational hardware/software systems.  Actual system has been 

thoroughly demonstrated and tested in its operational environment.  All documentation 

completed.  Successful operational experience.  Sustaining engineering support in place. 

 

Figure 52: Definitions of NASA’s Technology Readiness Levels [77].
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Figure 53: Technology maturity risk matrix overlaid on the product development phase
timeline [110].
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Figure 55: Risk entry due to the differing view of technology readiness with system (appli-
cation) readiness levels [110].

The uncertainties associated with technology development and integration are often

estimated using modeling and simulation. These models help organize and schedule as well

as estimate the impact of technology integration.

However, models introduce additional errors to the ones already existing due to lack of

knowledge, inability to represent physics with mathematical expressions, incomplete infor-

mation, numerical arithmetic errors, uncertainty, and its propagation, as illustrated in the

Equation 14: [69]

R = f(x) + ePhysics + eModel + eMetamodel + eData + eNumerics + eUncert. + eUncert.Prop. (14)

4.5.1 Modeling Technology Schedule and Cost

Technology costs and duration have been notoriously difficult to estimate accurately, due

to the largely aleatory nature of the steps involved. They may not reach desired readiness

levels on time and on budget due to physical, technological, human or management causes.

There are empirical models which can be used to estimate deterministically. An example

breakdown of the technology development and personnel costs per TRL step is given in

Figure 56. Note the peak in cost and personnel during TRL Phase 5, precisely when inte-

gration between the technology development team and the manufacturing and application

of the technologies are typically applied.
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Figure 56: Chart showing the approximate cost per step of TRL as well as the breakdown
in personnel for each phase of the technology maturation [110].

In addition to the cost and schedule uncertainty, the performance impact is also un-

certain during the technology development phases. To model this approach, Kirby gives a

probabilistic depiction of TRL versus desired capability in Figure 57, showing the transfor-

mation of uncertainty throughout the development process.

As identified in the previous sections, the interaction between the technology develop-

ment process and its application causes uncertainty in cost and schedule for the technology

development processes. This uncertainty causes schedule and cost slippage when individual

elements do not meet their estimated schedule. Some of the development aspects cannot

be done concurrently, causing later steps (or development goals) to be pushed further back

in time.

To address the serial development aspect of technology and manufacturing (or alterna-

tively application) readiness, the interaction between technology readiness and manufactur-

ing readiness, was modeled using a networked approach for the implementation and total

RDT&E cost and duration scheduling. This led to the conceptual exploration of what was
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Figure 57: Probabilistic illustration of Technology Readiness Levels [67].

called a Technology Network Model (TNM).

Figure 58 shows the flow of uncertainty elements into the technology network matrix

model. Here the cost and time elements are combined together, producing a single distri-

bution for the total development cost and time for the technologies in consideration. These

distributions then serve to map to input variables in the experimentation framework.

Looking inside the model, the core functionality of the TNM is to enable stop-gap

requirements for the readiness levels of technologies and their manufacturing readiness.

These stops trigger delays and increments in cost when the condition is not met. It then

functions similar to a FIFO queuing model with multiple servers and a processing condition

imposed.

To illustrate this effect with the technology and manufacturing example, consider the

composites technology Stitched Resin Film Infusion (S/RFI, detailed in the next section):

the TNM could specify what TRL level this technology must reach (for example, TRL

7) before the applications development team may reach MRL readiness level (MRL 5).
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Figure 58: Illustration of the uncertainty flow into the Technology Network Matrix (TNM).

Deterministically, this constraint may not cause any issue as the MRL and TRL of the

S/RFI have already been scheduled; but, due to the probabilistic nature of the duration

and costs of those steps, it is possible for the technology to be delayed in reaching TRL 7,

thus forcing the development of the application to idle at MRL 4 until TRL 7 is reached.

This is illustrated in Figure 59.

This was demonstrated and was explored in a MATLAB code called TekNET. This

code takes a set of Technologies, their mean development times per TRL, and symmetric

triangular uncertainty and produces a time-based portfolio growth model. The code is then

expanded to handle enabling technologies (by TRL) that often exist within the technology

network. Each of the lines in Figure 60 is a different technology as it progresses through the

development stages. At launch, the technologies are at different stages; but, the sequenced

requirement of manufacturing readiness levels means that once the requirement is imposed,

the MRL development must idle until the required TRL of the technology is reached.
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technology readiness levels to be reach goals before manufacturing levels may be reached.
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Figure 60: Demonstration of the Technology Network Matrix (TNM) which requires pre-set technology readiness levels to reach goals
before manufacturing levels may be reached.
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4.5.2 Demonstration Technology and Calibration

NASA released an AST report in 2001 [65] that verified the manufacturing and implemen-

tation of a new low-cost composite technology in primary wing structures of civil transport

aircraft while maintaining a strength-to-weight performance advantage over aluminum. The

technology, called stitched resin film infusion or S/RFI, enables cost savings by assembling

the dry composite preforms with a computer-controlled stitching machine, then infusing the

epoxy resin and curing the assembly as a whole. This approach has several procedural ad-

vantages in the manufacturing of complex parts and assemblies, as mechanical fasteners are

replaced. The report focused around a composite redesign of the aging McDonnell Douglas

MD-80 (also a single aisle transport with approximately 150 passenger capacity and 2000+

nautical mile range), and included several new manufacturing technologies and detailed

cost estimations. This report provided a detailed reference for technological and fiscal cost

methodology calibration. The unique availability of this report, and the detail provided in

the cost estimation and manufacturing technology proof-of-concept were therefore ideal for

use as a baseline to evaluate the methodology.

Figure 61 gives a detailed overview of the trade study between aluminum wing weight

and the S/RFI technology. It shows the weight savings over the aluminum structures broken

down by the wing components. The baseline trade study shows approximately 30 percent

improvement in part weight at both room temperature and with environmental effects taken

into account. Only a single component, the rib and spar shear clip, actually increased in

weight with S/RFI technology. The NASA AST report verifies the economics associated

with this new technology by actually building a full-scale wing box. Figure 62 shows the

full-scale wing box design with the stitched cover panel design.

Figure 63 shows a close-up photograph of the computer-controlled stitching machine

assembling the drive preforms of a rib clip to the skin. This technology made it “possible

to incorporate various elements of the wing box into interval structure that eliminates the

requirement for thousands of mechanical fasteners” [65]. The challenge with this technol-

ogy which introduced risk and uncertainty into both the economics and performance, was

whether or not the resin could be reliably infused into the drive preform assembly. Failure
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Figure 61: Weight comparison for aluminum and Stitched/Resin film infusion (S/RFI)
composite wing structures [65].

to penetrate the entire drive preform structure could introduce mechanical weaknesses and

therefore safety concerns at this was for use in primary aircraft structure. The final part of

the AST report verifies the structural integrity by measuring ultimate load of the proof of

concept part. It was shown that the assembly failed within acceptable limits.

The economic results of the technology demonstration are given in Figure 64. The

cost data are given for the cumulative average of 300 aircraft, and show an average of 20

percent cost improvement over the baseline aluminum structure for the wing box, the wing

cover, and wing assembly. The wing substructure achieved its goal of approximately 7

percent. These results provide valuable calibration key points to testing the CASSANDRA

methodology, as detailed cost and weight information of composite structures relative to

equivalent aluminum structures provide.

4.6 Summary

This chapter reviewed the technology and development factors that drive cost and uncer-

tainty during the RDTE phase of the design process. Recalling the figure illustrating the
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Figure 62: Detail view of the MD-90 wingbox and sections of the S/RFI joining processes
[65].

Technical Uncertainty on the cumulative cash flow space and its relationship to the Mar-

ket Uncertainty, this chapter addressed the factors driving the manifestation of cost and

schedule. The human resources, materials, technology development, manufacturing setup,

testing, and certification processes all contribute during this phase. The core management

problem of addressing how and where uncertainty could be allocated in this phase was ad-

dressed through the use of risk management processes and modeling and simulation. Several

analysis techniques were identified, specifically Monte Carlos simulation and the associated

sampling techniques (fast probability integration, response surface modeling, etc). The en-

try points of uncertainty during these phases were discussed, and the consequence of that

uncertainty were mapped to several risk measurement methods. First, the use of risk ma-

trices was reviewed, especially in relationship to the technology modeling approaches with

readiness levels. The author also addressed how the readiness of a technology and man-

ufacturing were interrelated, and could be probabilistically modeled using the Technology

Network Model, giving the total networked cost and schedule density distributions as a
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Figure 63: Photograph of the stitching of a rib clip the skin prior to resin infusion [65].

function of the elicited inputs for each technology level.

Finally, a technology called Stitched Resin Film Infusion for improving the weight and

cost of the primary structure was detailed following a NASA report. The cost models and

schedule models used in this dissertation were able to be iteratively calibrated thanks to

the detailed report of the technology demonstrator.

This modeling and simulation framework sets up the CASSANDRA methodology to

evaluate how the uncertainty in technology affects not only the cost and schedule impacts

of the development, but then prepares the estimation for the market and production effects.

In this way, the payback and profitability of the technology infused aircraft can be addressed.
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Figure 64: Aggregated cost comparison of the aluminum wing to the S/RFI wing, over 300
sets of wing boxes [65].
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CHAPTER V

MANUFACTURING RISK AND MARKET ESTIMATION

5.1 Introductory Remarks

Recalling the Figure 65, the program uncertainty arose from two fundamentally different

sources that were illustrated on the cumulative cashflow diagram. The technical uncertainty

was covered in the previous chapter, focusing heavily on the costs and time to develop and

integrate new technology. The result was a modeling approach that identified the uncer-

tainty between development costs and program sunk cost, as well as the development time

and the production launch year. These characterize the Technical uncertainty described by

Figure 65, shown here again for convenience.

This chapter addresses instead the drivers for the second element shown on this figure:

the Market uncertainty. Identification of design risk and technology implementation risk

is one thing, propagating their impacts to the revenue, production costs, and program

profitability are another.

This chapter reviews the manufacturing cost drivers and revenue capability. The learn-

ing effect and discount factor theory is reviewed and demonstrated through modeling and

simulation on the baseline problem.

The cost structure of the new aircraft development and operation lifecycle is shown in

Figure 66. This diagram gives an overview of the cost structure experienced during the

lifecycle, organized by acquisition and sustaining costs.

5.2 Aircraft Program Economics

As with almost any new product development, there is an initial investment required to

explore the feasibility and viability of the product. The cost can be generalized by the

point of maximum sunk cost (sometimes referred to as acquisition cost) which usually

occurs at the point of delivery of the first example of the new product. The schedule can be

considered as the mean time expected to reach first delivery (or as time to break even, but
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Figure 65: Life cycle cost tree hierarchy for both acquisition and sustaining costs, broken
down by branch [110].

that assumes more information related to performance). The performance, or desirability of

the product by the market, is related to the slope at which products are generating revenue

from sales. Products with poor relative performance (or high variable manufacturing costs)

tend to have shallow payback slopes and may never reach break even. There are many

other convoluted factors at play during this period, such as in the sales or production rate,

and unit sale price (which tends to vary based on order size, partnership agreements, and

program maturity level).

Recall in Chapter 1, where it was stated that products with a positive expected return on

investment (or positive Net Present Value) are green-lighted, but the assumptions substanti-

ating the product performance, cost, market availability and future presence of competition

are subject to sizable uncertainty. This uncertainty ultimately can be translated to a pos-

sible shift in the expected cash flow chart, shown with the lines above and below the mean

expected return in Figure 65. Note that the uncertainty around the expected line increases

with time, following general assumptions of stochastic diffusion processes.

Figure 68 shows the estimated annual cash flows for a modern commercial transport

124



Figure 66: Total uncertainty in cumulative cash flow for complex engineered systems broken
down by technical and market uncertainty [110].
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Figure 67: New product development profits and their key product life cycle milestones
[110]. .

126



C
a
sh

 F
lo

w
 

($
M

)

Figure 68: Cumulative cash flow for a typical commercial transport aircraft, without cor-
rection for discount factor [91]. .

aircraft program. Note the sharp ramp up in magnitude of both costs and revenues as

production begins, as well as the exponential decrease in production costs over time. Also

note that there are typically some payments early in the development phase. These inflows

are typically a result of purchase agreements with customers, as many sales incorporate a

down-payment of approximately 10-50 percent of the aircraft. This down-payment varies

between customers as a function of the other purchase agreement details.

Figure 69 shows annual cash flows similarly, but this time with the discount factor

demonstrated. In this example a discount rate (similar to inflation rate adjustment) of 10

percent was used. The effect of this is that as the value of money now is greater than money

in the future, the large capital returns in the future may not balance with large expenditures

in early phases of the program [91].
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Figure 69: Cash flow diagram, showing the annual and cumulative cash flows for a typical
commercial transport aircraft. Also note the discount factor and its effect on the present
value of future payments (in the darker shading) [91]. .
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Figure 70: Program costs by category and time spent on a unit basis, reaching the cost-time
frontier [110].

5.2.1 Development of Unit Cost Versus Time

Another approach of visualizing the constituent parts of the cash flow data is to look at the

cost-time frontier, as shown in Figure 70. This view of the development and setup costs

illustrates essentially the same information as the cashflow diagram: both time and cost

dimensions are decoupled. However, in this representation the cost is normalized by unit.

This representation is useful for estimating the relationship between desired production rate

and unit production cost attribution. The key points of this graph are the point at which

the first aircraft can be produced and the placement of the theoretical first unit cost curve.

The production run then drives the cost per unit up or down along the curve as a function

of the run quantity.

As more new technology is introduced, the location of the first unit key point tends to

become higher and to the right, reflecting schedule slippage and cost overrun. The pro-

grammatic value of this effect can be restored either by increasing the production quantity

(and thus lowering the unit cost) or by increasing the product price.
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Figure 71: Program costs by category versus number of aircraft planned in amortization
schedule.

5.2.2 Production Quantity and Program Cost Amortization

On the customer or airline operator side, Figure 75 gives a visual description of the operating

cost metrics relationships between the direct operating costs (DOC), indirect operating cost

(IOC) and total operating costs( TAROC). In FLOPS and ALCCA, these are given by flight

hour, by flight (over two different trip lengths) and by year. These metrics heavily influence

the airliner acquisition decision making [135].

5.2.3 Inflation Rate Effect

Inflation is a fundamental concept of economics that describes how the value of money

changes over time in conjunction with two things: 1) the available supply of money and

2) the generation of valuable goods and services. The principle measure of inflation is the

inflation rate, typically as a percentage per year, which is based off a price index such as

the Consumer Price Index. Changes in the inflation rate have a direct effect on the viability

and general attitude toward investment [78]. As future uncertainty in the inflation rate
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Figure 72: Cumulative cash flow diagram for baseline aircraft, showing both the cumulative
costs and incomes for the aircraft price of 104 Million.
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Figure 73: Annual cash flow diagram for baseline aircraft, showing both the cumulative
costs and income for the aircraft price of 104 Million.
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Figure 75: Visual descriptions of the relationship between Direct Operating Costs (DOC),
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Figure 76: Historical percent inflation rate (API) in the United States through 2009 [45].

increases, it has an adverse effect on likelihood for a person or enterprise to undertake a

risky prospect. This effect is found to exist in the uncertain cumulative cashflow profiles as

well. Figure 76 shows the historical inflation rate for the US dollar over the last century.

5.2.4 Learning Effects on Manufacturing Cost

As mass production of aircraft (and vehicles in general) was continuously improved, a

cost-savings effect was discovered. It was found that as the number of produced vehicles

increased, the costs of each subsequent vehicle tended to drop. This was called the learning

curve effect, and it has historically played a strong role in the overall lifecycle cost of the

program. A feature of the learning curve effect is that it diminishes as the most efficient

tasks for each of the elements of the work breakdown structure are discovered.

The learning curve exhibits an exponential decay in cost as a function of vehicles pro-

duced. Figure 77 shows the learning curve effect on production cost as the quantity of

vehicles produced is increased. Note the two differing learning curves: one with LC = 0.8

and the other with LC = 0.7, and note how their magnitude affects the long-term unit

production cost, and the location of the first unit cost point.

The general approach is to calculate the first unit cost (FUC), then amortize that costs
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Figure 77: Effect of the learning curve on long term production costs per vehicle produced.

over the entire estimated production run. The production effort P (expressed as either cost

per unit or labor hours per unit) is given as:

Punit = P0 ∗ xLCrate (15)

where x is the number of units since the first unit and P0 is the first unit production

effort. The LCrate is given as:

LCrate =
log(PercentLearning)

log(2)
(16)

An alternative view of the risks associated with the amount of technology infusion is

given in Figure 78. In this graphic, the net, aggregate measure of system risk is given

as a function of the amount of technologies applied to the product. With little to no

additional technologies, the main driver of product risk arises from the Performance Risk as

requirements and the voice of the customer continually demand better performance. The

lack of new technology to meet those demands thus creates a substantial probability of

failure.

However, when many or all available technologies are assigned to the future product, the

integration complexity and development effort required drives the cost and schedule risk, as

134



Expected Risk 

Measure

Percentage of Advanced Technologies Applied0 100%

Performance Risk

Cost and Schedule 

Risk

Conservative Design

Few to no new technologies, 

maximum use of OTS solutions

Aggressive Design

Many technologies across 

disciplines to achieve best-

possible performance

Minimum Risk Design

Mixed

Aggregate Program Risk

Figure 78: Notional aggregate risk versus the amount of technologies applied to an aircraft
design, with the risk driver types illustrated below the aggregate line.

limited resources reduce the probability of successfully incorporating the maximum set of

technologies. The minimum aggregate risk design lies somewhere in the middle, considering

the costs and schedule risks associated with integration difficulty and the ability to meet

customer requirements.

Traditionally, this minimum risk point could be collapsed to a single variable: aircraft

weight. Before the rise in advanced materials, weight has been empirically shown to be well

correlated with performance and cost. Advanced materials technologies have broken this

heuristic, as the costs and development time associated with composite materials does not

follow the same trend.

Research Observation V

There exists a trade- off in systemic risk between aircraft design parameters, scenario vari-

ables, and technologies.
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The subsequent Research Question:

Research Question V

How should risks associated with portfolios of advanced technologies be optimized for a

given aircraft design and scenario description? How does this change as a function of

the system-level objectives? Which is preferred: a normative approach (what risks must be

assumed to reach target) or an explorative approach (What is achievable within the tolerable

level of risk? )?

The performance, cost and schedule risks can be interpreted from this probabilistic

representation of the cash flow chart. If the expected return is held as the target objective

(keeping with the established definition of risk), then the variance around the expected

line is the risk. In the schedule dimension the horizontal uncertainty in time, before and

after the first delivery (sunk cost) point is the schedule risk. The variance in cost (vertical

dimension) around that same point is a description of the cost risk by the same token.

The performance risk, however, can be simplistically illustrated by the longevity of aircraft

production and sales, under the rationale that better performing aircraft deliver customer

value longer into the future. Put a different way, a higher performance aircraft buys the

manufacturer a longer period of time to maintain a competitive edge, thus staving off the

threat of substitute products and competitive rivalry for a greater time period.

The risks in performance, cost and schedule are given notionally by the shift in these

lines shown in Figure 79.

The result is a region of uncertainty around the resultant positive net cash flow region

(known as in the money by financial traders). Unfortunately, history has several examples of

real aircraft programs that never reached this region; a noteworthy example is the Lockheed

L-1011 Tri-Star, which produced roughly half the aircraft needed to break even, ultimately

losing approximately one billion dollars [51].

136



P
ro

d
u
ct

io
n
 B

eg
in

s

F
ir

st
 D

el
iv

er
y

B
re

ak
-E

v
en

 

T
er

m
in

at
io

n

Cost Risk

Schedule Risk

Time

Development Production and Delivery Market Saturation

C
u

m
u

la
ti

v
e
 C

a
sh

 F
lo

w

Schedule

Cost

Performance Risk

Figure 79: Notional cumulative cash flow chart illustrating the performance, cost and sched-
ule risk in each dimension for a typical product development program.

137



From this depiction of the cash flow and related risks, one can see that there are several

possible paths to end up with positive net cash flow. If the acquisition costs are reduced,

the required time to break-even is shortened, or the required sales rate (performance) is

relaxed. Therefore, it follows that a key concept is that they must all be managed simul-

taneously and that there exists a trade-frontier between risk types. Making these trades,

or exchanges between types of risk exposure, is a central task of the risk mitigation and

strategic alignment of the program.

In the previous phase, price and volume trends were observed to have large impact

on the cash flow response. This result was not unexpected, however, it became obvious

that there existed a need for connecting the value of the aircraft product to the number of

aircraft produced. This phase addresses the need for a model to connect those two metrics

in a traceable manner. It begins with a review of the observations from the software

economics discovered in the results from the previous phase. Next, a set of alternative

routes is identified and an approach is selected, then developed to meet the market and

manufacturing requirement. Finally, the section ends with a demonstration of the model,

an expert-based calibration process, and the filtration process of results.

5.3 Market Share Modeling

Following the Observations in previous sections, the preliminary results from the FLOPS/ALCCA

exploration indicated that the parameter Number of Vehicles (NV) greatly affected the re-

sulting cash flow trajectory due to its connection to aircraft price and the amortization

of the development costs. It was particularly important with regard to the likelihood of

profitability by the end of the program duration. This result is expected, as with most

manufacturing problems, the break-even (and consequently profit) is a function of costs per

unit, revenue per unit, and volume. The volume of goods sold scales the revenue linearly.

Flops and ALCCA treat the number of vehicles and the production rate as inputs, and

therefore treat the market capacity independently from the value (or saleability) of the

aircraft design itself.

A brief review of Porter’s famous publication in the Harvard Business review about
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the Five Forces of business [103] is perhaps useful in preparing the experimentation and

development of the Market model for this phase. Porter argues that there are the Five

Forces at the core of successful business practices. They are given here with commentary

about their relationship to the commercial transport market:

1. Bargaining power of suppliers - commercial transport integration is extremely sensitive

to the supply chain. A typical commercial airliner contain hundreds of thousands of

parts sourced outside the airframe manufacturer/integrator. The risks associated with

the fragility and schedule of these supply networks were covered briefly in Chapter 1.

2. Bargaining power of customers - The trade space between volume and sales price

generally changes during the life of the aircraft program as the manufacturer recovers

more and more of their investment in the program [59] [39]. The list price typically

increases 3-5% annually to account for inflation and the reduction in program risk by

the manufacturer [9].

3. Threat of new entrants - The development and growth of alternatives have recently

occurred that threaten the stability of the recent duopoly between Airbus and Boeing,

particularly from Asian and South American manufacturers [117] [19].

4. Threat of substitute products - Substitutes for air travel, such as high-speed train

systems and high-efficiency automobiles have increased in the last 20 years, slowly

threatening the commercial air transport market [59].

5. Competitive rivalry within an industry - The 150 passenger commercial transport

aircraft is captured principally by Airbus and Boeing, but other alternatives exist

such as Bombardier and Comac [98] [61]. Appendix F gives a selection of figures

showing the struggle between the two manufacturers over the last twenty years.

The interaction of the Five Forces is given in Figure 80, showing the four satellite forces

feeding into the competitive rivalry at the business challenge core.

Reviewing this literature, it became apparent to the author that each of the Five Force

areas represent possible risk entry points. Recall Figure 19 showing the interrelationship
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Figure 80: Porter’s Five Forces illustrates a complete dissection of business challenges to
economic success [103] [120].
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between the risk dimensions typically discussed in business practices. In Chapter 1, a

short discussion was introduced about the rivalry between Boeing and Airbus, as well as

the impact of the sensitivity to the supply chain and risk-sharing approach and subsequent

schedule risks realized during the Boeing 787. For the focus of this phase of experimentation,

it was determined that the core of the Five Forces, the Competitive Rivalry, was the area

most capable of delivering the relationship between product value to the customer and the

market capacity assumable as a function of aircraft specifications. It should be noted though

that each of these areas is fertile for risk investigation and could provide a rewarding depth

of research. Olson [99], Romli [106], and Thomas [126] have addressed some of these areas

in similar contexts.

Moving forward then with the issue of competition, several approaches were considered in

how to develop a relationship between the market capacity achievable and the performance

and value to the customer:

1. An empirical regression model - Based on previous aircraft sales and their rela-

tive performance. This approach requires an in-depth exploration, a large historical

dataset, and thorough decomposition of the competitive alternatives and scenario

variables.

2. Real Options and Game Theoretics model - This approach is excellent for

quantitative analysis of competitive and decision alternatives as a program or project

moves forward in time, addressing the value of decisions and the lead time a competitor

might face. Several researchers have conducted Real Options approaches to design

and situational selection [16] [15] [102]; however, it is not as effective in addressing the

customer value of the product based on product metrics, nor how to aggregate those

metrics based on customer preferences. Rather, Real Options measures the value of

the availability of the decision itself.

3. Overall Evaluation Criterion - This approach is relatively simple compared to

the other alternatives, and is excellent at quantitatively capturing the (sometimes

qualitative) preferences of the customer. The drawbacks are reliance on a subject
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matter expert to deliver weightings and the lack of a direct competitive function in

the model. However, this formulation could be modified to include competitive effects

directly and the subject matter expert opinion input kept to a minimum.

The historical approach was attractive due to its simplicity and basis on real-world

purchasing decisions, however those decisions may have been confounded with other situ-

ational and internal factors that are not easily resolved or included a posteri. In addition,

the availability of the data may have proven to be challenging and of varying fidelity. For

this reason, Approach 1 was eliminated.

The problem of aggregation of metrics was previously discussed, which was solved by

including cumulative cash flows as an approach for capturing total program risk. While

a Game Theoretics and Real Options approach could be adapted to capture the value of

the option to the customer as a function of the aircraft value, it was likely a poor fit for

solving the market capacity and a costly approach to develop the model. It was preferred to

implement an approach which will aggregate the customer value easily and in an traceable

manner. For this reason, Approach 2 was eliminated.

Consequently, it was therefore determined that using a modified Overall Evaluation

Criterion to include competitive effects directly was the most promising.

Hypothesis

A modified OEC can relate the aggregate measure of design value to consumption quantity

amidst competition.

5.3.1 Overall Evaluation Criterion

In 1995, Mavris and Delaurentis [88] published a formulation for scoring alternatives based

on a non-dimensionalized metrics of interest and so-called importance coefficients. The

method arose from a need to measure weapon system effectiveness, an objective that com-

prised many diverse disciplines, namely affordability, survivability, readiness, capability and

142



safety. These disciplines were reduced to quantifiable attributes of the design and grouped

into life-cycle cost (LCC), mission capability index (MCI), engine related attrition (ERI),

survivability and availability. Because the score comprised multiple disciplines, it was called

the Overall Evaluation Criterion (OEC). The original formulation is given in Equation 17.

BL represents the baseline value in each dimension. Also note the reversal of the numerator

and denominator when the metric is smaller-the-better.

OEC = α(
LCCBL
LCC

) + β(
MCI

MCIBL
) + γ(

EAI

EAIBL
) + δ(

Psurv
PsurvBL

) + ε(
Ai
AiBL

) (17)

The vector of importance coefficients scaling each individual effectiveness metric is deter-

mined by subject matter expert opinion (SME) or customer voice. To position the resulting

OEC magnitude in relation to the baseline, the sum of the importance coefficients is scaled

to 1.

α+ β + γ + δ + ε = 1 (18)

The overall evaluation score of competing designs can thus be compared apples to apples

in relation to the design effectiveness of the baseline (whose score is 1). The comparative

assessment is comprehensive, definable and traceable [88].

Equation 19 gives the generalized form of the OEC definition, with the taxonomy of

disciplines relaxed and a variable introduced to handle the switching between larger-the-

better and smaller-the-better.
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OEC =
n∑
i=1

αi(
Fi

Fbaselinei
)ji (19)

and

n∑
i=1

αi = 1 (20)

where:

• F is the individual metric

• n is the number of metrics

• j is -1 for metrics that are smaller-the-better and 1 otherwise

5.3.2 Connecting Aircraft Value to Sales/Production Quantity

It was determined that there was a strong need to connect the number of vehicles produced

(or sold) to a quantifiable value assessment of the individual aircraft design. This was

discovered when conducting the original analysis with BASUCA: outlier designs in the

cumulative cash flow, upon close inspection, were found to have attributes that were not

congruent with the feed-forward variable setting of NV (number of vehicles). These outliers

effectively distort or dilute the design space with nonsensical results (a basic example being

an aircraft design whose performance is measurably worse than existing alternatives and yet

still captures a large percentage of the available market). This is a result of the permission

of NV input to vary in the screening test phase of the methodology.

As this parameter is strongly coupled with the terminal cumulative cash flow (or manu-

facturer ROI), the decision was made to increase the fidelity of the model to accommodate

this effect and reduce the potential of these nonsensical points to affect the design space.
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Table 12: Aircraft Criteria for Customer Buying Practices.

Customer Criteria Units

Delivery Date Years from now
Aircraft Purchase Price Millions of Dollars

Base Passenger Configuration Number (1-class)
Dollars per RPM Dollars

Range Nautical miles
Specific Fuel Consumption Dimensionless

Gross Takeoff Weight Pounds
Direct Operating Cost Dollars per flight

Indirect Operating Cost Dollars per flight
Takeoff Field Length Feet
Landing Field Length Feet

5.3.2.1 Incorporating value-driven estimation into market filtration schema

In order to develop a model for estimating the number of aircraft saleable by a commer-

cial transport manufacturer, customer buying practices were evaluated. This subject was

addressed in detail by references [101] [79] [18].

This resulted in the creation of an adapted OEC-based formulation for estimating the

aircraft sales volume as a function of aircraft design responses.
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OEC =
n∑
i=1

αi(
Fi

Fbaselinei
)ji ∗ (1 + β)

ji(Fi−Fcompetitor)

Fbaselinei (21)

and

n∑
i=1

αi = 1 (22)

where:

• F is the individual criterion with subscripts for Baseline, Design (i), and Competitor

• n is the number of metrics

• j is -1 for metrics that are smaller-the-better and 1 otherwise

• β is the scale factor for competitive effect

5.3.2.2 Assumptions for the OEC+ competitive valuation

The following assumptions must be declared about the competitive-enabled OEC+ model

for determining market share:

• The customer is rational.

• Old customers are just as hard to keep as new customers are to get. If something

performs better or costs less, the customer always favors those attributes. Put another

way, the customer is not brand-loyal.

• All of the planes are produced and delivered on time. Note that this enables study of

how production slippage could affect the incoming order rate.

• An identical aircraft in terms of the metrics will capture exactly 50 percent of the

market segment.

• A categorically better product will capture 100 percent of the market segment.
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• A categorically worse product will capture 0 percent of the market segment.

• There is only one competitor (as in the duopoly between Airbus and Boeing). This

assumption could be argued as invalid because at the time of this dissertation there

exists several other manufacturers in the 150-passenger aircraft market. However,

expansion of the OEC+ model to include non-duopolies is left for discussion in a later

section.

With these assumptions identified, it is now possible to establish the three calibration

points needed to bound the OEC+ competitive market model. In practice, the boundary

constraints were found to be too idealistic, so a slight change was made to the center

and upper boundary points. In reality, a pure duopoly does not exist, so a correction

factor ∆Mshare = 10% was introduced to shift the center point (equivalent product to the

competitor. This factor shifts the center calibration point down from 50% to 40%, and the

upper boundary (Categorically better) down by 2×∆Mshare = 20% to 80%. Thus the three

calibration bounding points become:

1. Lower Bound - This results from Assumptions 1 and 6: a categorically worse product

captures zero percent of the available market.

2. Upper Bound - This results from Assumptions 1 and 5: a categorically better

product captures 80 percent of the available market. This bound might be a little

aggressive as in practice even the best possible product does not always reach this

goal for reasons external to the ability of the OEC+ to capture. For this calibration

though, this bound still suffices.

3. Even Market - In considering the commercial aircraft market as a duopoly, we can

assume that an equally valuable product achieves 50% minus ∆Mshare = 40% of the

available market. Therefore, a competitive OEC+ score of 1 (equally valuable) should

yield exactly 40 percent of the market.

There now remains only 3 sets of inputs for a subject matter expert (SME) to populate.

They are
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1. The αi Weightings for each of the metrics-of-interest.

2. The β weighting for the level of competitive intensity.

3. The shape factors for the market penetration rate versus the OEC+ score.

5.3.3 OEC+ market modeling environment

Experimental Apparatus

A dashboard in EXCEL was developed to elicit customer value functions as well as com-

petitive offering, enabling the quantification of market penetration estimates.
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Figure 81: The dashboard in Excel used to elicit the Subject Matter Expert opinion and calculate the competition-enabled OEC+
scoring.
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1. Lower bound calibration point 2. Upper bound calibration point

Figure 82: The OEC+ dashboard during two states of the calibration process. On the left the lower bound of the market capacity model
is set as categorically worse than the competitive offering, and vice versa for the right figure.
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5.3.3.1 Results from the market modeling

The market model proved to be a success. It identified the range of production quantities

as a function of the performance and value to the end customer, allowing filtration of non-

sensical design points. The filtration step is shown in Figure 83 in the form of a scatterplot

matrix relating the overall evaluation criterion to the number of vehicles produced.

Beginning with the upper left box, the data points reveal a uniform distribution over

both the OEC and the number of vehicles. This reiterates the feed-forward dilemma of

production quantity, as they are independent of customer value, represented by OEC. The

areas shaded in red which represent the candidate aircraft designs predicted to sell in large

quantities, yet having insufficient overall design value. This set of points is the most impor-

tant to filter because they potentially mislead the Program Manager using the methodology

to design points of unrealistic economic success.

The areas shaded in blue suffer reverse problem (although less potentially damaging):

designs which score well in customer value yet are predicted to sell poorly.

Using the market model and the OEC+ approach, the design space is reduced to the

arc shown in the lower two plots. Here, a relationship between the customer value and the

production run quantity is correlated.

Experimental Result

The OEC+ score was used to calibrate design performance in relation to customer value

functions and competitive offering. This enabled filtration of nonsensical results from BA-

SUCA.
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New Research Observation VIa

A posteri filtration using the OEC+ technique reduces the design space significantly, there

may be improvement in efficiency by generating the designs a priori using response surface

equations.

New Research Observation VIb

The apparatus is now ready to explore and test strategic risk mitigation techniques.

Also note the difference between the OEC and OEC+ versions when plotted against the

same data. OEC+ value metric shows a narrower variance versus the number of vehicles

than the OEC. This is likely due to the low impact of competitive differentiation for the

example problem. In the penultimate chapter, a case study is reviewed in detail further

exploring this effect.

5.3.4 Expansion of the Market Model to Non-Duopoly Markets

An additional concern is the evaluation of the OEC+ formulation when the duopoly as-

sumption no longer holds. In practice, duopoly markets tend to be more present in larger

passenger-count where the aircraft programs are more capitally and technologically inten-

sive. As the passenger capacity and capital requirement shrink, the number of manufacturers

competing increases. This is especially evident in the regional transport category market,

where there are over a dozen manufacturers offering competent aircraft.

Therefore, the OEC plus formulation needs to be modified slightly to accommodate

non-duopoly markets. This is done by adjusting calibration bounds of the OEC+ setup.

Here Assumption 3 must be modified, such that the manufacturer captures an equal share

to all of the other competitors, instead of an achieving 50% of the total market. If there are

n competitors, which all have equally valuable and performing products, then the market

share percentage would instead be 1/n. This formulation is essentially the same as in the
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Figure 83: Scatterplot matrix of the Monte-Carlo aircraft design set, before and after
filtration using the Value and Market model.
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Figure 84: The trend of the telecommunications market share versus the number of com-
petitors in a market, shown for new entrants and incumbents [56].

duopolies, only that the total number of competitors is two and thus captured 1/2 or 50%

of the total market.

This proportional effect of the number of competitors and average market share has

been examined by researchers. Hoernig [56] conducted a study on telecommunications and

cable providers, and found the similar 1/n relationship shown in Figure 84.

The bounds for categorically worse, and categorically better, theoretically remain the

same; however, the curve calibration between mounting points will be much sharper. This

is due to the overall effect that as the number of competitors increase in the market, it

takes a substantially better product to achieve disproportionate percentage of the market

share. The cell phone market is an example of this. There are a large number of cell phone

manufacturers, however a product such as the Apple iPhone enjoys a large market share

due to its high performance appeal.

5.4 Risk Measurement of Uncertain Cumulative Cashflows

In this phase of the CASSANDRA methodology development, an approach was developed

to aggregate the uncertainty of cash flows into a sparse set of metrics that capture the

value of those cash flows to a program manager. The need for these metrics arose from
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Figure 85: Overview of the information and data flow of the experimental apparatus used
to capture the market and number of vehicles sold.

155



difficulty in capturing the economic value of the program by singular metrics taken from

the uncertain cumulative cash flow charts. It was found that when considering these metrics

alone it became difficult to fit models and predict program value. Additionally, it was found

that the reduced set of metrics proved to be useful in filtration of candidate designs.

Several approaches were investigated, and are enumerated below:

1. Algebraic Distance to Ideal - This approach requires the program manager to elicit

an ideal uncertain cashflow, and then calculates a distance based on the similarity

between the candidate cashflow and the ideal. Several methods are possible for the

distance estimation, most notably being the Hausdorf Distance. The shorter the

distance, the more similar the cashflow regimes are.

2. Least Squares Distance to ideal - Similar to the Algebraic Distance to ideal in that

it requires an ideal uncertain cashflow input, this approach calculates the cumulative

square error between the candidate cashflow and the ideal. Also similar to the distance

approach, the lower the summed squares of the error, the better the cashflow regime.

3. Geometric relationships - More abstract than the other approaches, this approach

looks at the fields in the uncertain cumulative cashflow space and develops parameters

describing the placement of the cashflows relative to the profit and loss zones.

At the onset of the CASSANDRA methodology development, a similarity approach

using an ideal elicitation Program Manager was explored. This approach required the expert

opinion to be polled and inserted into a worksheet. That data would then be compared

to the expressed uncertainty in the candidate aircraft design. Figure 86 shows the input

worksheet originally considered, showing the elicitation of the expected (mean) and the

upper and lower bounds.

The approach defines two metrics in particular: a risk-benefit ratio and a risk aversion

angle. These metrics are based off of a geometric analysis of the uncertain cumulative cash

flow. The theoretical approach is given in the next section.

Upon reviewing the uncertain cumulative cashflows from both effects screening and the

composites materials study, it was observed that the spread of uncertainty was expressed
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Figure 86: Executive input worksheet for eliciting ideal uncertain cumulative cashflow.

in both of the time and cash domains, and the value of those cashflows to the program

manager could not be explicitly defined by one or two dimensions alone. The positive

return on investment and its uncertainty were coupled with the maximum sunk cost and the

break-even dates and their uncertainties. If each of these three basic metrics are considered

important to the program manager (the end net cash flow, the break-even date, and the

maximum sunk cost), and they are measured by mean, variance, upper and lower bounds (or

100th and 0th quantiles), then there are 12 simultaneous dimensions to consider. However,

it was found that an experienced eye could just look at the uncertain cashflow and gather

a judgment of the associated program quality. This led to the hypothesis that there exists

a geometric, spatial or visual quality metric to the cashflow quality. This hypothesis led

to the original development of a geometric approach that could connect these 12 uncertain

cashflow dimensions into a small set of comprehensible metrics. Formally declared:
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Hypothesis

Uncertain cumulative cashflows can be aggregated into two core metrics: the Risk aversion

angle and the Risk benefit ratio, which provide better measures of project risk than cost or

schedule risk alone.

5.4.1 Geometric aggregation theory development

The theory given here is the original development of two uncertain cumulative cashflow

metrics, known here forth as the risk benefit ratio and the risk aversion angle. They are

defined as:

• Risk Benefit Ratio, ΓRB - This metric describes the ratio of the cashflow region

that sits in the profit region of the cumulative cashflow chart, and therefore a measure

of the likelihood (not scale) of the resulting cashflow to end up in the profitability

region. It is called the risk benefit ratio as it is similar in mathematical form to a cost

benefit ratio. A large risk benefit ratio does not guarantee that the ending cashflow

expectation will be large, rather that it be positive.

• Risk Aversion Angle, θRA - This metric describes how narrow the cone of un-

certainty is over the manufacturing phase of the cumulative cashflow diagram. Risk

aversion typically describes an individual’s preference for taking risks (see Chapter 2).

The risk aversion angle describes a risk-averse cashflow space when narrow, and a risk-

seeking cashflow when the angle is large. The risk aversion angle tends to scale both

upside and downside losses in the same way that a financial derivative is leveraged in

both potential returns and cost.

A graphical representation of the two metrics is given in Figures 88 to 89.

The risk-benefit ratio can be simplified to just the fundamental triangular area, as shown

in Figure 88. This simplification allows the calculation of the denominator area (ACOST ) to
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Figure 87: High-fidelity definition of the hypothesized uncertain cumulative cashflow metric
(the Risk benefit ratio Γrisk) which uses a geometric ratio measurement assess to uncertain
program value.

be calculated using the same triangles as the risk aversion angle. It was found in separate

tests that the ratio increased substantially with the simplification, yet the sorted ordering

of designs did not change. The simplification therefore gives a more optimistic nominal

value, yet provides the same value to the designer using the metric for selection and risk

evaluation.

The theoretical derivation of the two metrics begins by evaluating the metrics available

that capture the cashflow space. A table of the cashflow metrics available and required by

the geometric approach to calculate the risk benefit ratio and risk aversion angles are given

in Table 13.

The required key points are then positioned as shown in Figure 90 to form an extended

triangle over the production phase of the uncertain cumulative cashflow. The triangle is

then bisected across the x-axis to from a right triangle in the upper profitability section,

then a quadrilateral in the loss region. The beginning production date is typically year 5 of

the program as in the baseline aircraft design).
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aversion angle θi) using a geometric approach to program value aggregation.
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Table 13: The uncertain cashflow metrics available and required by the geometric approach
to calculate the risk benefit ratio and risk aversion angle.

Variable Available Statistics Method Requirement Handle

Maximum Negative Cost Mean µ
Variance σ
0th Quantile Required E
100th Quantile

Break Even Date Mean µ
Variance σ
0th Quantile Optional F
100th Quantile

Final Net Cash Flow Mean µ
Variance σ
0th Quantile Required B
100th Quantile Required D

Production Date Mean µ Required A
Variance σ
0th Quantile
100th Quantile
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Figure 90: Graphical definitions of the components required to model the risk benefit ratio
and the risk aversion angle.
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Beginning with the risk aversion angle derivation, the first step is to calculate the

interior angles of the triangle. This is done by calculating the vectors ~BF and ~DE. From

these vectors the angles θ2 and θ3 can be calculated respectively using the line from BD as

the basis.

With these angles known, the risk aversion angle θRA can be calculated from the triangle

identity regarding interior angle sums, given in Equation 23:

θRA = θ1 = π − θ2 − θ3 (23)

Note that the origin of the triangle vertex to the lower left is constrained by the beginning

production date and later. This eliminates the possibility that the vectors ~BF and ~DE are

parallel or divergent, leading to an invalid angle calculation. In this case, the break-even

date (Point F) no longer is necessary for the calculation, as it would over-constrain the

drawing of the triangle.

The next step is to calculate the total area of the triangle. This is most direct using the

identity:

Area =
b2

2(cot θ + cotφ)
(24)

Where b is the length of the side between θ and φ. Using the length of the side L2 from

Figure 90, this gives the total area ATotal

ATotal =
L2

2

2(cot θ2 + cot θ3)
(25)

And subsequently the area of the upper triangle by the same theorem (although it could

be calculated other ways as it is a right triangle):

AROI =
L2

1

2 cot θ2
(26)

The final area can be calculated by remainder from the total area ATotal:

ACOST = ATotal −AROI (27)
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The risk benefit ratio can then be defined as:

ΓRB =
AROI
ACOST

(28)

Combining terms

5.4.2 Exploring the metrics and their implications on different uncertain cash-
flows

In this section, the risk-benefit ratio and risk aversion angles is evaluated for their relative

representation of the uncertain cumulative cashflow. Three scenarios are presented here,

with a further comment on the risk efficiency and how it relates to the two metrics.

Experimental Apparatus

The geometric measurements for uncertain cumulative cashflow were calculated in a MAT-

LAB environment from results from the BASUCA apparatus.

Figure 92 gives three scenarios taken from notional uncertain cashflow data. In the

first Example A, ΓRB = 0.4 and θRA = 40. In this case, the proportion of positive return

on investment to negative cumulative investment is roughly balanced and is notionally

representative of a new aircraft development. Looking next at example B, the effect of

reducing the risk aversion angle at constant risk-benefit ratio is shown. Here, the program

experiences much smaller variance in the cashflows during production phases (given by

the low risk aversion angle), yet has the same proportion of AROI to ACOST . The peak

positive and negative net cash flows are both lower, meaning that the opportunity for large

returns as well as the opportunity for extreme failure are both lower. This uncertainty

cumulative cashflow diagram may represent something similar to a derivative aircraft or

military aircraft program.
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Figure 91: Development of the two uncertain cumulative cashflow metrics (Risk aversion
angle θRA and the Risk benefit ratio ΓRB) using a geometric approach to program value
aggregation.
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5.4.3 Limits of the Risk Aversion Angle and Risk Benefit Ratio

It is perhaps worthwhile to offer the limitations or numerical constraints of the risk aversion

angle and risk benefit ratio. There are two types of limitations on these metrics: the

geometric and the representative. The geometric limitations result from the mathematical

definition of the metrics, and the representative limitations result from the definition of the

metrics on the uncertain cumulative cashflow chart. They are given here:

0 ≤ θRA > π (29)

0 ≤ ΓRB >∞ (30)

ACOST > 0 (31)

The first constraint results from the definition of a triangle, and is that the risk aversion

angle must be greater than or equal to zero and less than π. The second constraint is on

the risk benefit ratio, and results from the cashflow representation and calculation of area.

Here the numerator AROI may be zero (no positive return) but less than infinity, which

relates to the third constraint: that ACOST must be greater than zero for the risk-benefit

ratio to exist as it is the denominator of the ratio.

In practice, the mathematical approaches have resulted in numbers less than zero for

both risk aversion angle and risk-benefit ratio, but these were indicative of failed cases in

the analysis.

5.4.4 Suggested Relationship to Efficiency of Risk Allocation

In Part C of Figure 92, the risk aversion angle is held the same as in Part A, but the

risk-benefit ratio is now ΓRB = 0.1. This illustrates the need for the combination of both

metrics to grasp the cumulative cashflow uncertainty. In this case, the low risk-benefit ratio,

when combined with a higher risk aversion angle, leads to an unfavorable and uncertain
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relation to a conjecture about risk efficiency.

.

cumulative cashflow response. Here, the opportunity for positive return on investment is

relatively low, and comes at great expense in likelihood for extreme failure.

Next, a further observation is made about the efficiency of the uncertain cumulative

cashflow metrics: the combination is important to risk efficiency. When programs experience

higher Risk-benefit Ratios, and low Risk Aversion angles, they experience a higher risk

efficiency, and the inverse is true: a program with low risk-benefit ratio and high risk

aversion angles is inefficient (and potentially disastrous). This relationship is given in Figure

93.

5.4.5 Risk Aversion Angle and the Width of Uncertainty Analyses

The risk aversion angle describes the conical spread in cumulative cashflow results conclud-

ing from a risk analysis. It should be noted that its nominal score is proportional to the

completeness of both the ranges of uncertain noise variables and the exhaustiveness of the
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noise variable set. A reduction in either the ranges or the noise variable set will generally

result in a smaller risk aversion angle. Another element of consideration in this research

was the combination of two partial and mutually exclusive risk analyses. In this case, the

risk aversion angle resulting from one uncertainty analysis (studying effects of inflation rate

alone for example) may be combined under certain conditions with another uncertainty

analysis (uncertainty in the labor rate alone, for example), provided there is some a priori

knowledge of the interaction between the two. Following the summation of variance from

two correlated variables:

V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X,Y ) (32)

Using the same formulation, it is hypothesized that the summation of two risk aversion

angles from two separate yet correlated analyses is

Total[θRA] = θRA,1 + θRA,2 + 2Cov(θRA,1, θRA,2) (33)

Capturing the covariance term 2Cov(θRA,1, θRA,2) may prove difficult in practice, yet

if the term can be identified in a separate study, the summation of risk angles may prove

to follow the hypothesis given in Equation 33. Testing of this hypothesis is left for future

research.

5.4.5.1 Risk Aversion angle and Risk Benefit Ratio results

The Risk metrics defined in this dissertation were evaluated over a representative set of

control and noise variables of the baseline aircraft. The control and noise variables and

their ranges are those used as shown in Table 6.

The first review of the results evaluated the correlation between the risk-impact ratio

and the risk aversion angle. These parameters are mildly coupled through the geometry of

their definitions, yet it was unexpected to see the correlation shown in Figure 94.

In this scatterplot comparison, the correlation from the results is shown. The author

identifies two boundaries, the upper and lower boundary. As these are shown for candidate

designs, these two bounds form a frontier. On the upper frontier, this represents the edge
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of designs whose risk-benefit ratio was low yet the risk aversion angle was high. This

represents cases where the efficiency of the risk exposure is lower overall: more variance

in the results by year is taken on in exchange for a lower ratio of risk benefit. Similarly,

the lower boundary in green identifies the frontier of more risk-efficient designs. Here, the

cumulative cashflows experienced a higher return on their risk exposure as the risk angle

was lower yet the benefit stemming from that risk was higher. These designs are presumed

to be more favorable to the program manager.

Next, the metrics were evaluated against the degree of composites introduced into the

aircraft program. This is represented by as a single parameter, given as the average of the

percentage of composite structures in the aircraft program. The data is given in Figure 95,

and shows an unexpected result: as the risk-benefit ratio increases, the mass-weighted risk

aversion angle effect decreases with average composites. This indicates that as more and

more composite structures are introduced, the efficiency of the risk increases. This does not

necessarily mean that the overall risk does not increase, but instead that the return on the

risk you are assuming increases.

Experimental Result

The Risk aversion angle and Risk benefit ratio provided better uncertain cumulative cash-

flow metrics than breakeven date, maximum negative cashflow, and total cashflow metrics

alone.

5.4.6 Criticisms and areas of future development

The risk aversion angle and the risk-benefit ratio are metrics that describe the overall risk

perspective of uncertain cashflows. However, in retrospect, it may prove beneficial to use

the areas defined for the risk-benefit ratios as zones, and accumulate the uncertain cashflows

within those zones. This alternative approach eliminates the possibility that the Black Swan

result could heavily affect the area scores. By mass-weighting or expected utility weighting
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Figure 95: Review of the effect of average percentage of composite technologies to the
relationship between risk aversion angle θRA versus the risk-benefit ratio ΓRB. It is shown
that as the risk-benefit ratio increases, the risk aversion angle decreases as more composites
are introduced. This indicates an increase in risk efficiency as more of the aircraft is made
of composite structures.
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the histograms of candidate cashflows within the AROI and ACOST regions, Black Swan (of

either success or failure) could be accounted for appropriately.

The second criticism is that the risk aversion angle and risk-benefit ratio captures effects

primarily in the production phase, not in the research, development and production set-up

phases. Therefore, factors such as the First Unit costs are directly rather than indirectly

addressed. In the present approach, the First Unit Cost (or alternatively the Maximum

Sunk Cost) are accounted for in the risk-benefit ratios as the ratio is defined by the overlap

across the break-even line.

5.5 Summary

This phase of the Methodology development generated a scoring approach for uncertain

cumulative cashflows, by generating two new metrics: risk-benefit factor and risk aversion

angle that are geometrically defined on the cashflow space.

New Research Observation VIIa

The combination of risk aversion angle and the risk benefit ratio are needed to describe how

efficiently the risk and cost has been allocated in the program.

New Research Observation VIIb

Designs with lower risk aversion angle and higher risk-benefit ratio are more risk efficient

and form a Pareto risk frontier.
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CHAPTER VI

GENERATION OF RISK MITIGATION STRATEGIES

Recalling the objective of this dissertation, the strategic challenge addresses the core deliv-

erable of the methodology: an exploration of possible what-if scenarios and an approach for

how those scenarios might be mitigated. This last step aimed to bring substantial value to

the program manager, as clarification of the difficulty and cost of the candidate mitigation

alternatives gives further insight into the value and robustness associated with the current

design.

6.1 Overview of the Strategic Mitigation Challenge

In approaching the strategy development problem, two distinct methods are considered.

Recall the identification of two design paradigms: normative and explorative, as described in

Figure 97. Recapitulating, the explorative approach looks outward using available controls

to see what states are possible, and the normative looks from the perspective of the target

state and identifies what is required to reach it.

Similarly, the risk mitigation strategy development method follows the same schema

with two approaches: one from the perspective of the target state looking backward, and

the second from the perspective of current state. Instead of considering the mitigation

strategy as a design change, it is considered a program change in state.

It was not clear at the onset of the strategic mitigation development whether the nor-

mative or explorative approaches were preferable. Therefore, the author explored both

approaches and the results are given in detail.

6.1.0.1 Strategic Mitigation by Exploration

The first approach that was reviewed is to evaluate the explorative paradigm. In this ap-

proach, the methodology begins with a program state that is initially considered acceptable

to the program manager. The driving experimental question becomes What range of states
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are possible while remaining within the current locus of control? Of all of the possible ways

to answer this question, the most direct way was to evaluate the program space by Monte

Carlo simulation over the set of input variables. Other approaches include a structured

Design of Experiments (DOE) over the input space. Typically a fractional factorial de-

sign, a central composite design, or a Latin Hypercube design are applied to similar design

methodologies [10] [14] [107] [99] [67]. However this presents two problems: a balanced

and orthogonal design itself may be difficult to construct for the large number of input

variables, and secondly the number of runs may be too few or two many for the desired

experimental evaluation time. Monte Carlo simulation is advantageous in these regards,

because each sequential run generates a random variable for each input from an elicited

distribution (thus averaging out in the whole to be semi-orthogonal and semi-balanced),

and the user may execute as many simulations as desired. The DOE however benefits from

efficiency on an information extracted about the design space on a per-run basis. However,

the earlier phases of the CASSANDRA methodology development have treated the execu-

tion time per experiment, and the experimental cost of Monte Carlo simulation is already

generally acceptable.

The setup of the Monte Carlo simulation is comprised of three separate steps:

1. Identify candidate input variables.

2. Set ranges on those variables that are acceptable.

3. Elicit the distributions and their shape controls around those variables.

The first element was to identify which inputs were candidates for exploration. This

step is initially troubling, as there are quite a large number of possible or available inputs.

FLOPS / ALCCA alone offer 200-300 inputs to the user, and in real programs the available

inputs or controls to a program manager may be innumerable. In addition, it was not known

what specific combinations of inputs may generate high-risk results. Therefore, a sensitivity

analysis was performed to capture the variables that were likely to have the most impact.

The experimental apparati in Chapter 3 were used to execute the sensitivity analysis and

pare down the list from 73 variables to 15-20.
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6.1.1 Strategic Mitigation Analogy of CASSANDRA

Consider the analogy of the pilot of an airplane which is in level cruise. The pilot’s objective

is to maintain the aircraft in level flight. The pilot has several controls available at his

disposition: the up/down and side/side of the flight yoke, the throttle, the trim tabs, the

spoilers and rudder pedals. In cruise, level flight is maintained with relative ease to the

pilot.

Now imagine that an external perturbation is introduced which forces the pilot to react

in order to maintain the objective of level flight: the landing gear accidentally is lowered, and

is mechanically unable to be brought back up. The drag from the landing gear causes the

nose of the aircraft to pitch downwards, and thus lower the altitude. The pilot must mitigate

this perturbation using the controls available. There are several possible combinations of

the controls which could return the aircraft to level flight, however, to the well-trained pilot

some are more efficient than others.

One alternative might be to pull back on the flight yoke to counteract the pitch-down

moment and return the aircraft to level flight. She may also use trim tabs, or throttle

up the under-hung engines. Each of these accomplish the objective independently and are

independently selectable, however there is a preferred method or (path of least resistance). If

the pitch down moment is small enough, the trim tabs may likely be the preferred approach

as they do not require a constant manual input from the pilot. If the moment is large, the

trim tabs alone may not be sufficient; the flight yoke or engine throttle setting, or both,

are required to meet the objective. Additionally, if the nose down moment is extremely

large, then it is possible that no combinations of control inputs meet the pilot’s objective.

Lastly, the absolute altitude of the airplane may be different in the new equilibrium, but

the objective of level flight is met.

Now we relate this example to the focus problem of the thesis: the pilot in this case

is the program manager, whose task is to maintain the program at a constant profit and

risk level. The pilot’s situation where steady, level flight is returned once the state is

perturbed– yet at a different altitude– is analogous to the program manager who returns the

program to an equivalent but not identical risk exposure and profit expectation state. The
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principle objective of the CASSANDRA methodology is the automation and discovery of

these equivalent state alternatives to the program manager. However, some of the strategic

mitigation vectors may be impossible, unreasonable or are subject to uneven difficulty

levels of implementation. Therefore, the CASSANDRA methodology aims to also take

these considerations into account. This approach follows the normative design problem of

What is required to get where I want? and then evaluate how reasonable those requirements

are.

This example highlights four aspects of the scenario mitigation problem faced by a

program manager of a new aircraft development program:

1. There may be multiple, or no combinations of the control inputs to meet the objective.

2. Control inputs are likely to have ranges of effectiveness limiting their use.

3. Among many successful combinations of control settings, there is a ranking or prefer-

ence to the controller.

4. The objective may be met, but other state variables may change as a new equilibrium

is achieved.

This closely resembles the general properties of a linear system of equations, whereby a

linear system may function in three ways:

1. The system has an infinite number of solutions. This usually occurs when there are

fewer equations than unknowns (known as under-determined).

2. The system has a single solution, known as a unique solution. This usually occurs

when there are exactly as many equations as unknowns.

3. The system has no solution. This usually exists when the system has more equations

than unknowns (Known as overdetermined).

The above general behavior of linear systems of equations is also given in Figure 96.

Note that this is the general behavior for linear systems of equations. If the systems

are not linearly independent, then it is possible for the equations to have no intersection
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Figure 96: Diagram illustrating the relationship between number of solutions (intersections)
and number of equations (lines) for general linear system of equation behavior [44].

(visualize parallel lines in the above diagram). This holds true regardless of the number of

equations given as they could theoretically all be parallel.

6.1.1.1 Normative versus Explorative Design Approaches

There are two fundamental development approaches to design involving technology and

scenario considerations. The explorative approach looks forward to evaluate what might

be possible to achieve given two things: 1) a clearly described baseline, and 2) a set of

sufficiently known perturbations to that baseline. These perturbations can be a set of

mature technologies that are already available, such as a newly developed engine design

[67]; or known future conditions such as implementation of a new concurrent design practice.

This is a combinatorial problem, where many possible states looking forward are explored

by different combinations of the available controls. Exhaustive analysis of the combinatorial

problem will locate the possible reach of the baseline outward toward many states, but those

states may not be unique.

The normative approach instead evaluates the set of changes required to reach a desired

level. Here, the end state is known, but the changes required to reach that state are

possibly non-existent, non-unique, impossible or unreasonable. This instead becomes a

minimization problem, where the designer may look among the possible set of paths or
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Figure 97: The two fundamental differences in design approaches involving technology and
scenario considerations [132] [85].

changes and attempt to minimize cost, time, risk, or some combination of those and other

factors to identify a minimum or best approach.

6.1.2 Development of the Program Value Model

It was hypothesized and demonstrated that the cashflow presented additional dimensions

of utility to describing the business case of the aircraft program. Those dimensions were

represented in a curve that is augmented by an uncertainty zone with regard to the future

expectation of the cumulative cashflow. It is at this point that the development of the

methodology faced two alternatives: 1) develop an approach for evaluating the utility of

this uncertain cashflow using qualitative metrics, or 2) develop an approach for the program

utility using quantitative metrics. As it was assumed that the strategy development would

result from a quantitative approach to mitigating program risk, it follows that a quantitative

approach towards capturing the program utility be employed.

There are several candidate approaches to interpreting value from a two-dimensional

178



(Y1,X1)

1

2

3

(Y2 ,X1 )

(Y3 ,X2)

Scenario 

Perturbation 

(∆Y,p )

Strategic 

Mitigation

(∆X,m )

Perturbed state at constant X1

• Y2= Y1+∆Y,p

Legend

• Y System Response or State

• X Design / Control Vector

Mitigated Y2 state by X2

• X2= X1+∆X,m 

• Y3= Y2 (X2 )

Variance in Maximum Sunk Cost ($)

M
a

x
im

u
m

 S
u

n
k

 C
o

st
 (

$
)

Lines of constant 

state value to 

controller

Figure 98: Pictorial describing the strategic mitigation of a design whose scenario expec-
tation is perturbed. Note the strategically mitigated state (Point 3 ) is not necessarily
identical to the original state, but a state of equivalent value.

31

32
33

(Y1,X1)

1

2

(Y2 ,X1 )

Scenario 

Perturbation 

(∆Y,p )

Possible Strategic 

Mitigations

(∆X,i )

Variance in Maximum Sunk Cost ($)

M
a

x
im

u
m

 S
u

n
k

 C
o

st
 (

$
)

Lines of constant 

state value to 

controller

Legend

• Y System Response or State

• X Design / Control Vector Multiple possible mitigation 

strategies

• (X2,1, X2,2, X2,3) 

lead to equivalent-value 

alternative system states 

• (Y2,1, Y2,2, Y2,3) 

These states have an 

ordered preference by 

the controller

Figure 99: Pictorial describing the strategic mitigation of a design whose scenario expec-
tation is perturbed, this time with multiple candidate mitigation strategies of equivalent
overall value.

179



curve, with the additional dimension of uncertainty. This effectively creates a three-

dimensional surface from which the program manager interprets value. Several approaches

were considered and are compared in this section and given below.

1. Weighted Sum - Similar to the Overall Evaluation Criterion (OEC), this approach

aggregates various measures from the BASUCA outputs, or from the 3D surface itself.

This bears the advantages of reducing the dimensionality of the problem and directly

incorporating a program manager’s preference or weighting to the outputs.

2. Boundary Analysis - This approach makes strong assumptions about the program

manager’s preference to the moments of the uncertain distribution of cumulative cash-

flow data: essentially that the decision tipping point lies in the bounds of the space,

and that the information once inside is essentially ignored. This approach is useful

for disaster and catastrophic risk analysis, but may not be the desired approach for

an explorative risk and strategy mitigation study. It does however lend itself well to

constraint-based valuation.

3. Bottom Line - This approach looks only at the distribution of the cumulative cashflow

at the perceived end of the program (20 year outlook). While this benefits from

simplicity and a reduced set of variables to analyze, it ignores the cost and temporal

aspect of the program economics.

4. Risk-versus-Reward - This approach uses a method similar to the cost-benefit-analysis

approach, whereby the positive economic characteristics of the program are normalized

by the cost and uncertainty simultaneously.

5. Least Squares from Ideal - This approach takes an executive input of the desired cash-

flow, at every point in the program, and performs a least-squares regression between

the desired and actual cashflows. This has the benefit of capturing all of the cost and

time aspects; however, it requires foresight from the executive to be able to correctly

input a realistic cashflow, and to identify the distribution shapes at each point in
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the program. This level of information may be difficult to extract from the execu-

tive, and it may setup a Pareto frontier in the results space that is actually spurious.

This occurs when points that have low value to the executive (such as early on) weigh

equally to points later in the program (which may have more value). The least squares

algorithm, unmodified, treats these points identically.

6. Aggregated score - This approach uses an Overall Evaluation Criterion (OEC) method

of combining individual responses into a weighted sum of the constituent metrics of

interest. Using an OEC method, the responses can be grouped to generate scores for

different value categories, such as performance, schedule, cost risk and cost.

Hypothesis

Inversion of the linearized Jacobian around a target uncertain design allows the generation of

independent strategic mitigation alternatives that are robust to perturbation of the expected

scenario.

6.2 Strategy Generation in Large Data Sets

This section covers the analysis situation where data and simulation capacity to generate

new data is readily available. The situation applies when modeling and simulation codes are

inexpensive to execute or when large databases exist with applicable empirical data with

which to draw conclusions.

When simulation capacity or existing data are readily available, the core analyst chal-

lenge becomes selection and identification of the particular strategic mitigation that will

bring about the desired programmatic risk effect. This section focuses on a particular ap-

proach for the selection process that is expanded to include not only the mean statistic of

the output responses, but those describing the propagation of uncertainty and its charac-

teristics. It is known as Filtered Monte Carlo when simulation capacity is abundant.
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6.2.1 Filtered Monte Carlo approach to risk mitigation

Filtration of response metrics from Monte Carlo simulation provides an approximated inver-

sion of the modeling framework directly. In this approach, the response metrics are filtered

simultaneously across all of the simulations. This reduces the design space substantially to

a set of designs which represent the population meeting the constraints. Ideally, in looking

at the input variables, a trend or correlation can be identified, this gives the user insight

into the variables and their associated ranges which tend to produce the responses meeting

the filtration.

Figure 100 shows the results from the apparatus before and after filtration. In this

filtration step, the maximum sunk cost was limited by year to the values shown in the data

filter. It is clear that the space has been reduced substantially, and the main drivers for

meeting this constraint became identified: annual inflation rate (API) and aircraft price.

6.2.2 Results from Previous Research

This research leverages an existing state of the art design trade method called Manufacturing-

Influenced Design methodology (MInD) that captures manufacturing influences on concep-

tual and preliminary design and applies the proposed risk-influenced design approach. This

approach was opportune because the trade study produced an extensible set of models in

the form of Response Surface Equations (RSEs) that were built from multiple high-fidelity

codes at the manufacturing level.

6.2.3 MInD Analysis Overview

The goal of the MInD was to bring key manufacturing-level aspects into conceptual and

preliminary design before the majority of product cost is committed. It defines system level

parameters and tool sets that permit conceptual and preliminary design trades that include

manufacturing information. The methodology was a preliminary design level decision trade

to compare manual versus automated manufacturing processes on an F-86F Sabre fighter-

interceptor wing. To accomplish this, it approximated industry-supported high fidelity
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Figure 100: Before and after Monte Carlo filtration of designs in the cumulative cashflow
space from the Model Center apparatus used in the methodology development.
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codes (SEER-MFG, FLOPS and MALCCA) with the speed and space-complete, range-

specific attributes of response surface methodology.

Hypothesis

Mean and Variance are simultaneously valuable to the design environment, and to ignore the

variance around a design metric leaves the opportunity for high-risk, low-reward alternatives

to go unnoticed.

6.2.4 MInD Baseline Aircraft and Target Specification

The MInD study used the baseline aircraft to explore how manufacturing details affect

conceptual design level concerns. The wing was selected as the primary design element and

was decomposed into 6 primary components: Spars, Spar Assemblies, Ribs, Rib Assemblies,

Stringers and Skin. The manufacturing setup, fabrication and assembly processes were

modeled in SEER.

6.2.4.1 Response Surface Methodology

The MInD study assembled several detailed codes to capture the desired system behavior

of the F-86F design problem. In particular, SEER-MFG was used for estimating costs and

labor associated manufacturing parts for the primary wing structure. The combine modeling

network took several minutes to complete one design, so the behavior in the ranges of interest

were captured and converted into a reduced polynomial form without substantial statistical

loss of accuracy. The Response Surface Methodology (RSM) is the multi-variate reduced-

form used in this study. The acceleration enabled Monte Carlo simulations with high run

count, and thus thorough explorations of the uncertain permutations. The formulation of

response surface methodology is given below in Equation 34.

R = b0 +
k∑
i=1

bixi +
k∑
i=1

biix
2
i +

k−1∑
i=1

k∑
j=i+1

bijxixj + ε (34)
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The b coefficients result from linear regression of the empirical outputs (R) with respect

to the inputs (xi and xj). The response surface equation is suitable for smooth outputs

with few non-linearities within the range of interest. It was found that the majority of the

responses in the MInD could be modeled with response surfaces with an acceptable R2 fit.

Experimental Apparatus

Response surface equations derived from the Excel-based MiND study for the F-86F alu-

minum wing re-design. Based in MATLAB alone.

The uncertainty in the outputs was calculated from Monte-Carlo simulation on the

inputs by generating random variables from a previously elicited distribution. This caused

the propagated uncertainty in the response metrics to scale smoothly with the local slopes of

the response surfaces. This is a heavy assumption made by the MInD study, as uncertainty

and particular risk are not physically bound to smoothness constraints.

The following Risk taxonomy was used in the presentation of the MInD Risk analysis

project, and serves as an example mapping of aircraft level metrics to cost, performance,

and schedule risks.

The Table 15 illustrates the high-level performance and economic aircraft metrics for

the baseline F-86F Sabre and the associated targets for the new aircraft wing design. The

risk-influenced design methodology only evaluates aircraft designs that meet or exceed the

target specifications. The process used to evaluate the manufacturing influenced risk is

given in Figure 101.

Experimental Result

Confirmation of improvement of design robustness by simultaneous filtered Monte Carlo of

both mean and variance of design metrics.
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Table 14: Risk Taxonomy developed for F-86F study.

Category Engineering Response Metric Single Risk Descriptor

Performance Operating Empty Weight (OEW, lbs) Std. Dev. OEW
Performance Maximum Climb Rate (CR, m/s) Std. Dev. CR
Performance Minimum Turn Radius (TR, m ) Std. Dev. TR
Performance Wing Loading (WS, lb/ft2) Std. Dev. WS
Performance Thrust Loading (TW lbForce/lb) Std. Dev. TW

Cost Net Present Value (NPV, $FY2010) Est. Std. Dev. NPV
Cost RDT&E Cost (RDTEC, $FY2010) Est. Std. Dev. RDTEC
Cost Average Cost per Unit (CPU, $FY2010) Est. Std. Dev. CPU
Cost Revenue (RV, $ FY2010) Est. Std. Dev. Revenue

Schedule Total Man-hours (Ltime, hours) Est. Std. Dev. Ltime
Schedule Break Even Year (BEY, rel. to 2010) Est. Std. Dev. BEY

Table 15: Baseline and Target Specification for the F-86F Sabre Wing Design

Metric F-86F (Baseline) Goal Target Value Units

Variable Cost 191.89 -5.00% 182 $K per Wing
Tooling Investment 112.00 -5.00% 106 $M
Net Present Value 289.37 5.00% 275 $M
Acquisition Price 538.60 -5.00% 510 $K
Operating Cost 5.20 Minimize — $M/year
Thrust/Weight 0.42 3.00% 0.4326 —

Wing Loading 47.9 -3.00% 46.5 lbf./ft.2̂
Climb Rate 42.4 5.00% 49.8 m/s

Minimum Turn Radius 475 -5.00% 452 m
Approach Velocity 74.3 Minimize — m/s
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Figure 102 gives an illustration of the strategies characterized by slight displacement

from the Pareto frontier to dominated points where risk in other dimensions is mitigated.

Considering Part A: in the risk-influenced design environment, risk dimensions are viewed

simultaneously with traditional design responses (notionally Performance and Cost in this

case). The current design point is Pareto-optimal in the performance and cost domains,

but when viewed in the Risk space, it is dominated by other, lower risk alternatives [23].

Due to this effect, there may exist design points that are acceptably sub-optimal but

offer gains in certainty and insensitivity to adverse states, as shown in Part B of Figure 102.

These alternatives may offer greater value to the decision-maker and the risk-influenced

methodology is designed to facilitate these trades [23].

In this environment, risk dimensions are viewed simultaneously with traditional design

responses (notionally Performance and Cost in this case). At the top of Figure 102 shows

the current design point is Pareto-optimal in the performance and cost domains, but when

viewed in the Risk space, it is dominated by other, lower risk alternatives.

However, there may exist design points that are within the frontier (Pareto-dominated)

but offer acceptable gains in certainty and insensitivity to adverse states (reduced risk),

as shown in the bottom of Figure 102. These alternatives may offer greater value to the

decision-maker and the risk-informed methodology is designed to facilitate these trades.

This final step of CASSANDRA is the knowledge extraction phase of the process, where

key strategic information can be explored. Uncertain cash flows are evaluated and compared,

and interactive filtration of design, scenario, and technology can take place. Here, trade

studies and what-if analyses can be explored: What is the sensitivity of Technology K2 to

the Scenario Assumption L4? Are there design settings that minimize this sensitivity if

desired?

6.2.5 Concluding Observations

It was found that in the absence of information regarding uncertainty and associated sen-

sitivity to inherent process variance, an executive decision maker may settle on a design

carrying disproportionate risk relative to the expected improvement offered.
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Figure 102: Illustration of design risk mitigation by displacement from the Pareto frontier
[23].
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Figure 104: Bubble plots illustrating three design alternatives. When viewed absent of
information about variance, a potentially high-risk design point may be selected. In the
left plot, the variance in cost is given by bubble size, and the variance in operating weight
is given by the bubble color (red being high variance). In the right plot, variance in the
break-even year is given by color and the variance in the net present value is given by bubble
diameter [23].

As large system designs increase in complexity and cycle time, careful attention must

be paid toward the balance of risk and reward. The method presented in this study is

an example of how risk analyses may be executed and incorporated into conceptual design

trades spaces in order to improve decision quality. A complex, manufacturing-influenced

aircraft wing design method was used as an example and modified to incorporate risk

views using both Response Surface Equations and Monte Carlo simulation. The resulting

data were reduced to a Pareto-optimal subset where trade studies that balance risk in

performance, cost and schedule could be closely evaluated.

6.2.5.1 Criticisms to the MInD study and moving forward

Response surface equations were able to model the continuous, smooth output spaces with

low fit and representation error and were generally suitable for example aircraft wing design

problem. It was assumed that the associated risk and risk states exhibit the same spatial

smoothness, which may not always be true in real-life environments.

The second criticism of the MInD study is that the results are not risk by a formal
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definition given in Chapter 2. Instead, they are actually propagated uncertainty, and that

uncertainty is represented singularly by variance. Converting them to risk proper requires

mapping the uncertainty to a utility curve (or cost measure). This approach works well

where the utility function is target-oriented, but the majority of the metrics of interest

are actually smaller-the-better. This means that the variance measure is incomplete: the

deviation could possibly be advantageous or detrimental. On cost metrics (or profit metrics),

the utility space is indeed directional, causing the variance measure to be insufficient in

distinguishing which side of the mean the variance tends to lie.

The third criticism is that the metrics of interest were difficult to aggregate. In the

study, all of the metrics were considered equally and simultaneously. In reality, a program

manager has very clear preferences toward which metrics matter. This approach suffers from

the dilution effect, where important metrics of interest are considered equally (and therefore

averaged in the program managers’ view) with several potentially non-important metrics.

The other problem with this is that not all of the metrics were completely independent,

and aggregating them into a focused decision space becomes difficult. An example here is

the relationship between weight and cost. The cost models were built with weight-based

cost estimating relationship (CERs), so aggregating cost and weight equally has the effect

of scaling weight at a greater rate than cost alone.

Moving forward into the next phase, the experimental apparatus was changed to better

enable the aggregation of the metrics of interest into a more holistic approach using the

cumulative cashflow diagram.
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New Research Observation VIIIa

No aggregated measure for design selection that sufficiently captured the economic viability

and business case of alternative designs.

New Research Observation VIIIb

Variance is non-directional, where there exists in reality a utility space or preference for

lower/higher/target values.

From these observations the following hypothesis can be stated:

Hypothesis VIa

The uncertain cumulative cashflow diagram is a candidate measure for holistic business case

evaluation and risk mitigation.

6.3 Strategy Generation in Small Data Sets

Chapter 2 touched briefly on the subject of making prediction and ultimately decisions in

the presence of sparse or missing data. The following section gives a method for addressing

the development of risk mitigation strategies where data is missing, sparse, or expensive.

This approach uses the normative paradigm, where a target is identified a priori and then

sought out by the control system. The approach given here leverages linear algebra and

first-order approximations of the objective space.

6.3.1 Development of the Jacobian matrix

The CASSANDRA methodology uses vector calculus to identify and discriminate between

the possible strategic mitigation alternatives. It employs heavy use of the Jacobian matrices
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and associated vector sets. The notion of this linear algebra approach came from discussion

with fellow researchers, who considered a similar approach to stabilizing flame combustion

in a supersonic ramjet motor [105], and the exergy allocation of thermal systems in a

more-electric aircraft [82]. The Jacobian, named after the German mathematician Carl

Gustav Jacobi (1804-1851), plays an important role in higher dimensional mathematics

[71] [119]. As the dimensions and risk mitigation strategies span across many dimensions

simultaneously, it was found to be a useful approach in identifying the mitigation strategies.

In this thesis, the Jacobian will refer to the partial derivatives of the response or state

(dependent) vectors, with respect to the control or independent vectors. As a reminder,

the state vectors describe the state of the program economic expectation of a new aircraft

development program. This programmatic economic expectation is expressed as the uncer-

tain expectation of the cumulative cashflow profiles associated with the implementation of

an aircraft design.

6.3.1.1 Definition of the Jacobian Matrix

The Jacobian matrix J , or commonly known as just the Jacobian [116], is the matrix of all

of the first order partial derivatives of a vector with respect to another vector. It is used to

obtain the state values of the system in the vicinity of the current state. If functions can

be written using n endogenous variables, and m outputs:

q1 = f1(x1, . . . , xn)

q2 = f2(x1, . . . , xn)

...

qm = fm(x1, . . . , xn)

(35)

Let F (x) be a vector valued function F : Rm → Rn which is at least once differentiable:

These can be re-written to be a single function that maps spaces Rm → Rn as F(x):

F = [f1(x1, . . . , xn), f2(x2, . . . , xn), . . . , fm(x1, . . . , xn)]

x ∈ Rm
(36)

The general partial derivative can thus be represented in matrix form as
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J =


∂f1

∂x1
· · · ∂f1

∂xn
...

. . .
...

∂fm
∂x1

· · · ∂fm
∂xn

 (37)

This matrix is known as the Jacobian or Jacobian Derivative.

6.3.1.2 Numerical Approximation

Finding the Jacobian at point x∗ allows F to be approximated in the neighborhood of x∗.

It also reveals the sensitivities to F with respect to all of the inputs. If this point is taken to

be x∗ = (x∗1, . . . , x
∗
n), then the approximation around this point by ∆x = (∆x1, . . . ,∆xn).

Using first order Taylor expansion of each term in fi, the functions comprising F become:

f1(x∗ + ∆x)− f1(x∗) ≈ ∂f1

∂x1
(x∗)∆x1 + . . .+

∂f1

∂xn
(x∗)∆xn

f2(x∗ + ∆x)− f2(x∗) ≈ ∂f2

∂x1
(x∗)∆x1 + . . .+

∂f2

∂xn
(x∗)∆xn

...
...

...

fm(x∗ + ∆x)− fm(x∗) ≈ ∂fm
∂x1

(x∗)∆x1 + . . .+
∂fm
∂xn

(x∗)∆xn

(38)

Using matrix notation to combine the vectors into a matrix form to describe the linear

approximation at x∗:

F (x∗ + ∆x)− F (x∗) =


∂f1

∂x1
(x∗) · · · ∂f1

∂xn
(x∗)

...
. . .

...

∂fm
∂x1

(x∗) · · · ∂fm
∂xn

(x∗)





∆x1

∆x2

...

∆xn


(39)

The Jacobian derivative of F at x∗ can then be written completely as

DF (x∗) = DFx∗ =


∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂xn
...

...
. . .

...

∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn

 (40)

The CASSANDRA methodology uses this numerical approximation of the linearized

space of the impact of the control variables (design, technology and scenario) to state
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variables describing the value of the uncertain and at-risk cumulative cashflow metrics.

6.3.1.3 Nullspace vector set of a matrix

The Jacobian matrix describes the approximated n-dimension tangent plane to the point it

is calculated around, (x∗). The goal of calculating this matrix is to use the information it

provides to linearly extrapolate effect of changing the input and facilitate the identification

of control strategies (identified as unit vectors) along which produce the most (or in some

cases no) change. This is useful in two ways:

1. Identification of the set of directions which produces the most change - which is useful

for mitigating adverse strategies in the normative design mode (see Figure 97.)

2. Identification of the set of directions which produce no change - useful for exploring

the set of scenario or design/technology changes which have no impact on the resulting

state space value. Exhaustive analysis of this space gives insight to the robustness of

the particular design point in consideration (see Figure 105.)

Consider the matrix A, which is an m by n matrix, and the homogeneous system below:

Ax = 0 (41)

The set of vectors x which satisfy this system form a non-empty subspace of Rn called

the nullspace and are denoted by N(A) .

Once the Jacobian matrix is determined, the null space associated with the matrix may

be calculated. The nullspace is an independent set of vectors in the input (x) dimension

that produce no change on the output. The nullspace of A must satisfy both addition and

scalar multiplication:

Ax1 +Ax2 = 0⇒ A(x1 + x2)⇒ x1 + x2 ∈ N(A)

and

k(Ax) = 0⇒ A(kx) = 0⇒ kx ∈ N(A)

(42)

if k ∈ R.
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Table 16: Variation in the filtration level of linearized Jacobian matrix of the CASSANDRA
methodology.

Threshold (ε) Percentage of Jacobian removed

10 99
1 95

0.1 80
1x10−2 75
1x10−3 60
1x10−4 40
1x10−5 10

6.3.2 Nullspace of the Jacobian

In practice, the CASSANDRA methodology relaxes the constraint slightly to identify sub-

spaces of Rn which are approximately nullspaces, or

Ax ≈ 0

or

|Ai,j | ≤ ε

(43)

Where i and j are the individual elements of A, and ε is a small positive prescribed

threshold. This is done to filter and reduce large nullspaces to manageable and impactful

workspaces following the Pareto 80/20 rule. The numerical nature of the linear approxima-

tion to the Jacobian give the opportunity for spurious micro perturbations, so ε is selected

at a level commensurate for isolating only the most relevant dimensions of the input spaces.

6.3.2.1 Uniqueness and the constraint on the number of input and output variables

As the Jacobian approximation method solves a linear system of equations, there exist

bounds on the number of linearly independent inputs and outputs to the Jacobian lin-

earized system around x∗. The linear system requires that the number of unknowns–or

in this case the m inputs or dimensions of x– be equal to or greater than the number of

output dimensions (n). If the input dimensions are given as the control variables in the

CASSANDRA methodology, then they comprise the m core design variables, technology
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x3

x2

x1

Figure 105: Locus of independent points describing the nullspace of the Jacobian matrix of
a notional design problem. Each of these points in the input space produce no change in
the output space [30].
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variables, and certain scenario variables. Refer to Table 7 for a complete taxonomy of the

variable types, examples, usage and their justification in the methodology.

Therefore, following the linearization system of equations principle, the following obser-

vation is made regarding the dimensionality of the inputs and outputs to the methodology:

Research Observation IX

If there are m independent inputs, and n dependent output of the model which describe

the product value, and the set Z of vectors describing program-level strategic mitigation

alternatives, then if:

m ≤ n (44)

then the set of vectors Z is non-empty.

6.3.2.2 Nullspace of the Jacobian matrix as a strategic development tool

Recalling the objectives of the program manager, one of the tasks of strategy development

is to identify the directions of managerial action which produce little or no change to

the program value expectation. The sensitivity of the current program state value to the

variables within and outside of control is of value to this goal. To this end, the Jacobian

offers valuable information. The trace of the Jacobian offers the direction of the greatest

change (or gradient), and the nullspace of the Jacobian offers a set of input directions

producing no change. Changing nomenclature slightly from the previous definitions of the

Jacobian and nullspace, let the state space Y be given as

y = F (x) (45)

The strategic mitigation approach compresses the state space into a representation of

state value. Let Value space be given then as:
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G(F (x)) = G(y) (46)

If the current program state value is G(Y (x)) at the point X, and the Jacobian at that

point is J(G(y)), and the s, i script refers to s strategies defined in i inputs, then:

Null(J(G(y)) = X̂∆x,s,i (47)

where X∆x,s,i is the set of differential vectors, usually called the vector basis of Null(A)

such that any linear combination of strategies in X:

Y (X +X∆x,s,i) ≈ G(Y (X)) (48)

which yields the same value function G(Y ). When the nullspace is calculated on the

Jacobian matrix, it identifies the principle, linearly independent directions in which the

input vector X may change and cause no change in the output vector Y (similar to walking

along a line on a topographical map, the altitude is held constant).

The unique value in this approach is that it produces a set of directions (versus an

approach which identifies a single direction) causing no change in state value. If this set is

large, and the magnitudes of the change are in directions previously interpreted as sensitive,

then the set itself becomes a measure of robustness. That is, the program state value is

insensitive to change (see the section on Robustness in Chapter 3 for more information).

This approach is by its definition explorative: the nullspace of the Jacobian evaluates

change outwardly. The nullspace of the Jacobian is but one set of program information

that can be captured from this linearized approach. In the next section, an approach

for normative of strategy mitigation development is identified using similar toolsets from

algebra.

6.3.2.3 Normative approach to strategy development using the Jacobian

In this section, an approach is developed for the generation of strategic mitigation plans to

return a perturbed state to a state of equivalent value. As described in the analogy of the

pilot maintaining level flight, the theory given here estimates the direction and magnitude
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needed to reach that equivalent state. The resulting plan is a mitigation vector in X that

is given in the variables within control.

Several things are required in this normative approach. Recall that if there are n di-

mensions describing the output states, then this approach requires

1. The original or desired state, given by its value as G(Y1,n) for independent input

vector X1.

2. The current or perturbed state, given by its value G(Y2,n) for independent input vector

after out-of-control perturbation X2 = X1+∆Xp,noise .

3. The Jacobian at the perturbed state, J(G(Y2,n)).

4. The ability to invert the Jacobian.

The first three requirements have been addressed in earlier sections, but the inverse of

the Jacobian matrix has not been discussed. In practice, the CASSANDRA methodology

rarely operates in cases where m = n, or the number of control variables is equal to the

number of dependent response variables (or state variables). Calculating the inverse of

non-square matrices is possible by approximation and use of the Moore-Penrose method

[8] [54]. This pseudoinverse method computes solutions by minimizing the least squared

error of a system of linear equations. Though this approach is computationally costly when

compared to the inversion of a square invertible matrix, MATLAB was able to calculate the

psuedo-inverse matrices of the Jacobian with relatively zero delay.

Beginning with the two state vectors, Y1,n and Y2,n

∆Gp,n = G(Y2,n)−G(Y1,n) (49)

Where ∆Gp,n describes the change in the j between the original and perturbed states.

Letting Z be the Jacobian at Y2,n, or

Z = J [G(Y2,n)] (50)

Taking the inverse of Z the multiply it by ∆Yp, it achieves
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Z−1 ∗∆Gp,n = B∆X̂m,control (51)

where B is the scaled vector norm and ∆X̂m,control is the unit mitigation vector required

to return the state to one of equivalent value. This vector is in differential form, so to arrive

at the total input vector the program manager should give

X2,m = X1,m +B∆X̂m,control (52)

Combining terms yields

[J [G(Y2,n)]]−1 ∗ [G(Y2,n)−G(Y1,n)] = B∆X̂m,control (53)

This equation yields the formulation for finding the linearized solution to the perturbed

state problem. The mitigation vector B ∗∆Xm,control is of unit length and is scaled by B

and is forthwith referred to as the principle strategic mitigation vector. As in other

gradient-based methods for numerical optimization, this approach yields a single strategic

vector. This leads to the following observations:

1. The mitigation vector may contain elements which are beyond the physical capability

or range of the controls. An example of this from the previous analogy is the mitigation

input for trim tabs, which has a control range of +/− 5deg. The linearized range may

indicate that the controller (or program manager) set the trim tabs to +10 deg, in

which case this is not possible.

2. The method produces a single vector (denoted here as the principle strategic vector),

but that vector may be projected onto vectors from within the nullspace at Y2 to

create independent strategic alternatives that surround the principle strategic vector

to create a strategic vector set.

6.3.2.4 Expansion of the principle strategic mitigation vector into a vector set

As mentioned in the last section, this method produces single principle strategic mitigation

vector. The CASSANDRA methodology aims to deliver many strategic alternatives to
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the program manager, so it is therefore of interest to explore expanding the specter into

a vector set. Several approaches were considered, some borrowing from multidimensional

optimization techniques, including probabilistic techniques for evaluating adjacent strategic

mitigation factors. For the sake of simplicity methodology delivers an approach that does

not require extensive programming nor identification of all of the covariance terms needed

in a probabilistic approach. Instead, this approach makes use of the nullspace available at

both the original and the perturbed program states.

As the principle strategic vector and the nullspace of the Jacobian are orthogonal in all

dimensions, it is possible to create a set linearly independent vectors that are a weighted

projection of the principle vector to each of the vectors in the nullspace.

Recalling Equation 47 of the nullspace at X1, we define similarly the nullspace at the

perturbed state at Xp

Null(J(G(Yp) = X̂p,i (54)

where X̂p,i is the set of i vectors describing the nullspace of the Jacobian. Each vector

is also of unit length, and may be projected onto the principle strategic mitigation vector

∆X̂m,control. Let θi is the angle between ∆X̂m,control and each vector within X̂p,i, then the

interior hypercone angle ∆θi creates the set of vector projections, given as:

Xm,hypercone,i = Bsin(∆θi)X̂p,i (55)

Xm,hypercone,i is the set of i surrounding strategic mitigation vectors, each containing m

elements in the control dimensions.

The principle strategic mitigation vector and the nullspace-projected hypercone are

shown for two dimensions in Figure 106.
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∆ Xm,hypercone,i

Nullspace of Y2

Figure 106: Hypercone in 2 dimensions created by projection of the principle strategic miti-
gation vector onto the nullspace vector set. This approach generates surrounding mitigation
vectors from the nullspace at the perturbed program state.

X1

1

X1*
Scenario Perturbation 

in Noise Variables 

(∆X,p )

Variance in Maximum Sunk Cost ($)

M
a
x
im

u
m

 S
u

n
k

 C
o
st

 (
$
)

Legend

• F Program State Value to Controller

• X Design / Control Vector

F1

F2

F3

F4

• The Jacobian is then inverted and multiplied by 

the difference in the program state function F

to achieve the approximate mitigation vector

3

)]()([ *1 xFxFJXmit  

)sin()(( *

, mitimit XxJNullX 

• Adjacent mitigation strategy vectors are 

identified by evaluating the nullspace of the 

Jacobian at x*

• The set of vectors in the nullspace are then 

projected against the principle mitigation 

vector with a small cone angle θ. 

3
3

∆θi

The controls of these 

states have an 

ordered preference

2

Figure 107: Pictorial describing the strategic mitigation of a design using the nullspace and
a hypercone angle θ of the jacobian to identify candidate risk mitigation strategies.

.

204



Table 17: Control variables and their limits in the example strategic mitigation approach.

Control Variable Value Lower Bound Upper Bound Control Range

AR 9 6 13 7
SW 1250 500 2000 1500

DESRNG 2000 1000 3500 2500
SHT 400 100 600 500

ARHT 6 1 12 11
SVT 270 100 600 500

ARVT 1.1 0.3 2 1.70
SWEEP 22 0 45 45

PWINGTI 0 0 1 1.00
PWINGCO 0.13 0 1 1.00
PWEMPTI 0.6 0 1 1.00
PWEMPCO 0.13 0 1 1.00
PWBODYTI 1 0 1 1.00
PWBODYCO 0 0 1 1.00

PWNACTI 0 0 1 1.00
PWNACCO 0 0 1 1.00

6.3.2.5 Example results from the strategic mitigation approach

Experimental Apparatus

Codes were written in MATLAB that approximate the inverted Jacobian matrix for

nullspace and gradient space identification.

Experimental Result

The nullspace and gradient spaces give information about the direction an impact of linearly

independent mitigation strategies.
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Figure 108: Percent change in the allowable control space that tries to achieve the normative
strategic mitigation target.
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Figure 109: Percent change in the results space that tries to achieve normative strategic
mitigation target.
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New Research Observation Xa

There exists a mitigation preference to the controller among the input dimensions as well

as physical limitations.

New Research Observation Xb

Some mitigation strategies are effective, some are not effective. The non-effective strategies

give value to the program manager as a priori insight to dangerous states.
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CHAPTER VII

PROBLEM FORMULATION AND METHODOLOGY

7.1 Introduction

The goal of this chapter is to identify and structure the dissertation contribution, design

problem, and to formalize the measures of success. The previous chapters focused on the

motivation, literature review of the current paradigms of risk analyses and their applications

in aircraft design processes. The aircraft design exercise has the following key attributes:

a highly multi-dimensional problem with non-linear interactions, mixing varying types and

fidelity of data, not all of which is quantitative nor certain.

This chapter presents the following key aspects of the dissertation and methodology:

1. Identification of the design problem.

2. Declaration of the decision perspective and methodology user.

3. Technologies available and their impact.

4. User preference towards risk, the analysis outputs, and strategy channels.

5. The baseline aircraft design problem.

6. The three case study scenarios.

The systems engineering and aircraft design fields present a stunning variety of problems

bearing risk and risk alternatives. Several candidate design problems were considered; it

is generally believed that the approach, if successful, is adaptable to a large majority of

these problems. The particular selection of the design problem for this thesis is therefore

based on access to public data and high fidelity codes. The Aerospace Systems Design

Laboratory offers a variety of tool sets for research. The most relevant tool sets for broad

economic evaluation of aircraft designs that integrate manufacturing (and thus a variety

of interesting trade study opportunities) are FLOPS, ALCCA and SEER. These are codes
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that have been developed over decades and incorporate a wide variety of empirical cost data

from many sectors of the aerospace industry. The author has experience in risk analyses

using these tool sets (see Appendix C for a description of the Manufacturing-INfluenced

Design study), therefore they were preferred to ground-up cost codes for this dissertation.

This study was carried out for a F-86F Sabre fighter jet. While this aircraft study is both

fruitful and readily accessible, the business management perspective of cash flow analysis

and risk aversion is more applicable to a commercial aircraft problem as the profit and loss

attitudes towards risk are magnified for these problems.

7.2 Identification of the Design Problem and Baseline identification

The CASSANDRA methodology is demonstrated on the executive-level decision-making

problem of a large-scale commercial transport aircraft manufacturer.

7.3 Identification of the CASSANDRA Methodology user

The executive level manager is in charge of a product development program, and is responsi-

ble for the market estimation, design, and manufacture of an all-new technologically-infused

aircraft. Her core objectives are the following:

• Produce maximum profit

• Assume minimum risk

• Achieve minimum break-even time

• Compete favorably with a single competitor by delivering value to the customer

Her problem is therefore multi-objective as the time, profit and risk are assumed to be

independent dimensions. This thesis will refer to this person and her responsibilities as

the Designer, or Program Manager interchangeably. The range of variables in her control

include design variables, technology inclusion/exclusion variables, and some limited control

of manufacturing. Outside of her control are external (market) variables, aleatory noise

variables, complexity factors and certain labor and materials costs. A complete breakdown
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of the control locus is given in the methodology and experimental platform sections of this

dissertation.

7.3.1 Beginning with the end in mind

The core deliverable, as outlined in the Thesis Objective, is the generation of a strategic

risk mitigation plan. Put formally, this is an identification of an adjustment in the

program strategy to insulate the business case from external perturbation or

influence (or scenario). It is appropriate at this time to re-iterate and focus definitions

for the terms in the Thesis Objective.

• Identification: Declaration, discovery generation or calculation and of a strategy.

• Strategy: A vector of settings (or changes to) of the variables within control that

constitute a plan to achieve the specific goal.

• Business Case: The risk-reward or economic viability and understanding of the

associated financial (not safety) risks of a business decision.

• External: Forces or influences that originate outside of the control of the Program

Manager.

• Scenario Perturbation or Influence: Deviation from the planned development,

manufacturing, or market expectations.

7.3.2 Definition and Etymology of Scenario

As the term scenario appears in the title of this dissertation, it is perhaps appropriate to

formally declare its meaning and its implication to the design problem presented to the

program manager. A scenario is an account or synopsis of a possible course of action or

events [133]. This dissertation focuses on the scenario as descriptors or more formally, as

the set of state variables that describe a possible course of events. Those events are given

as the internal and external state variables. Internal state scenario variables include the

role as an aircraft manufacturer or airframe integrator, the core technologies or intellectual

property owned, or the availability and quality of the human resources. External state
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Table 18: Incomplete taxonomy of candidate input variables to the BASUCA.

Description Variable Han-
dle

Design
Type

Taxonomy
Category

Aspect Ratio (Wing) AR Control Design
Area (Wing) SW Control Design
Design Range DESRNG Control Design
Area (Horizontal Tail) SHT Control Design
Aspect Ratio (Horizontal Tail) ARHT Control Design
Area (Vertical Tail) SVT Control Design
Aspect Ratio (Horizontal Tail) ARVT Control Design
Weight (Engine) WENG Control Design
Sweep (Wing) SWEEP Control Design
Percentage of Titanium (Wing) PWINGTI Control Technology
Percentage of Composites (Wing) PWINGCO Control Technology
Percentage of Titanium (Empennage) PWEMPTI Control Technology
Percentage of Composites (Empennage) PWEMPCO Control Technology
Percentage of Titanium (Body) PWBODYTI Control Technology
Percentage of Composites (Body) PWBODYCO Control Technology
Percentage of Titanium (Nacelle) PWNACTI Control Technology
Percentage of Composites (Nacelle) PWNACCO Control Technology
Number of Vehicles Produced or Sold NV Control and

Noise1
Scenario

Annual Percentage Inflation API Noise Scenario
Complexity Factor (Engine) CFENG Noise Scenario
Learning Curve (Block 1) LEARN1 Noise Scenario
Learning Curve (Block 2) LEARN2 Noise Scenario
Learning Curve, Assembly (Block 1) LEARNAS1 Noise Scenario
Learning Curve, Assembly (Block 2) LEARNAS2 Noise Scenario
Learning Curve, Avionics (Block 1) LEARNA1 Noise Scenario
Learning Curve, Avionics (Block 2) LEARNA2 Noise Scenario
Learning Curve, Engine (Block 1) LEARNP1 Noise Scenario
Learning Curve, Engine (Block 2) LEANRP2 Noise Scenario
Learning Curve, Fixed-Equipment (Block
1)

LEARNFE1 Noise Scenario

Learning Curve, Fixed-Equipment (Block
2)

LEARNFE2 Noise Scenario

Manufacturer’s Rate of Return RTRTN Noise Scenario
Engineering Labor Rate RE Noise Scenario
Tooling Labor Rate RT Noise Scenario
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variables may include things like the inflation rate, competitive factors and availability and

position in the market. Both of these types of factors influence the economic viability of

the airplane program, however they may impact its economics in different ways. There is a

hierarchy to the scenario state variables worth mentioning. Various researchers, engineers

and managers may refer to scenario variables while describing the same thing or within the

same hierarchy, so for clarity, a sample hierarchy of the scenario state variables is given in

Table 18. In this table, the taxonomy of variables allows the user to understand exactly to

which point of the hierarchy they may be referring.

A complete description of the scenario space is challenging to develop due to the sheer

dimensionality; however, identifying various bounds or nodes makes describing the space

more accessible. The methodology identifies several key scenarios and their associated state

variables, and a space can be developed around those scenarios using those as nodes. The

states themselves may be discretely described (where elements of the scenario are binary),

but they can be mapped to continuous spaces through combinations. Any linear combina-

tion of the scenario variables, provided they are not mutually exclusive, can form a new

candidate scenario. Monte Carlo simulations can be executed for the combination of states

in between the key scenarios which build a progressively more filled spatial representation

and ultimately lead to greater understanding [126] [34].

7.3.3 Definition of Strategy and Implications on the Design Problem

The term strategy is derived from the Greek word stratgos, and was first used in its current

form in writing in 1810. Merriam Webster defines strategy as an adaptation or complex of

adaptations (as of behavior, metabolism, or structure) that serves or appears to serve an im-

portant function in achieving evolutionary success [134]. With respect to the CASSANDRA

methodology, a strategy is a plan of programmatic adjustment to controls to mitigate an

unforeseen degradation (or perturbation) of the programmatic value by external (and gen-

erally uncontrollable) forces. In this regard the strategy, or strategic mitigation, is described

mathematically as a vector in X that accomplishes one of two goals:

1. Perturbation mitigation - Returns the programmatic state to a state of value
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equivalent to the original and desired, or

2. Conditional state value optimization - Maximizes the state value given a pertur-

bation.

The first strategic mitigation approach is similar to a control problem where an output

is fed back to a controller who adjusts the input as a function of the feedback and seeks

to maintain the current value. This strategic mitigation approach tends to favor stability.

This approach has the advantage of knowledge at the current state, and therefore a direct

awareness of the change from the original to the perturbed state. This enables the norma-

tive approach to be employed in discovery of mitigation strategies. However, this imposes

more on the program manager (or controller), in that the original state be one of already

acceptable value. In an explorative design paradigm, this may be more challenging.

The second strategic mitigation approach makes no assumption about the value of the

original state. It focuses instead on how the new (perturbed) state may seek a maxi-

mized programmatic value. This approach lends itself better toward the explorative design

paradigm yet suffers the difficulties of optimization. These difficulties include the potential

for settling on local instead of global minima, expensive function call requirements, and

continuous and discrete factor influences.

7.3.4 Dissertation Limitations on Risk and Modeling Fidelity

In order to scope the work of this work, several assumptions were made on the type, nature,

and magnitude of the environments and the risks modeled therein.

1. Uncertainty Elicitations are valid and complete - The selection of distributions on

the scenario variables, technology costs, technology cycle times, technology impact

factors, and design space exploration are given to be accurate and sufficiently broad.

This single assumption limits the realistic application of the results presented in the

notional problem, however with access to internal data a program manager could

potentially apply the method to improve decision making.
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2. Modeling and Simulation sufficiently capture the potential risk - The physics and

process based simulations are of acceptable validity to measure risk. Secondly, the high

speed surrogate models fit the range sampled with an acceptable degree of precision.

Response surface equations are generally able to model continuous, smooth spaces

with low fit and representation error, and are generally suitable for modern aircraft

design problems. It was assumed that the associated risk and risk states exhibit the

same spatial smoothness, which may not always be true in real-life environments.

7.4 Baseline Aircraft Selection

The generation of technology was selected to be of the early 1990’s, when large-scale use of

composite materials for primary structure became prevalent [11] [51] [75] [80]. The baseline

aircraft class was selected to be a single aisle, tube-and-wing aircraft carrying approximately

150 passengers and a range of approximately 2500-3000 nautical miles. This was selected as

both major commercial vehicle manufacturers (Boeing BCA and EADS Airbus) investigated

replacing their existing products in that time frame. This design problem has been called

the Next Generation Narrow Body and is of current interest to both Airbus and Boeing,

which may aim to replace their aging A320 and 737 aircraft. Table 19 gives a short overview

of the basic specification of the 150-passenger, single aisle Next-Generation narrow body

aircraft.

Several studies, including the Next-Generation single aisle effort, have shown that an

approximated 15-20% reduction in Direct Operating Cost may be possible for this class of

aircraft. This is by incorporating new lighter-weight (and thus fuel-saving) technologies,

specifically in the replacement of aluminum primary structure with carbon-epoxy structures

described in Chapter 1. The reduction in direct operating costs come in part from lighter

weight structures, however the total cost of ownership may be affected by the increase in

acquisition cost. Therefore, there exists a trade between the variable cost savings of the

lighter weight structure to the end user, and the program costs by the manufacturer or

airframe integrator.

1In billions of USD, corrected to Fiscal Year 2010. Amounts are approximates, as development aid and
subsidies shroud actual development cost.
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Table 19: Baseline geometric, performance and economic aircraft specification for the CAS-
SANDRA methodology demonstration. Resembles the Next-Generation Narrow Body air-
craft that major manufacturers explored in the early 21st century.

Description Handle Value Unit

Passenger (2-class) PAX 150 -
Maximum Range RANGE 2040 Nautical Miles

Gross Takeoff Weight GW 150000 lbs
Fuel weight FUEL 34000 lbs

Aspect Ratio AR 9.4 -
Wing Area SW 1360 feet2

Wing Taper Ratio TR 0.201 -
Wing Sweep angle SWEEP 25 deg

Wing Thickness-to-Chord TCA 0.133 -
Wing Loading W/S 114 lbs/ft2

Horizontal Aspect Ratio ARHT 5.6 -
Horizontal Tail Area SWHT 360 feet2

Horizontal Tail Taper Ratio TRHT 0.28 -
Horizontal Tail Sweep angle SWPHT 33 deg

Vertical Aspect Ratio ARVT 1.2 -
Vertical Tail Area SWVT 290 feet2

Vertical Tail Taper Ratio TRVT 0.28 -
Vertical Tail Sweep angle SWPVT 39 deg

Thrust-to-Weight T/W 0.265 -
Approach Speed VAPP 125.3 knots

Takeoff Field Length FAROFF 7515 feet
Landing Field Length FARLDG 5800 feet

Total Thrust THRUST 20700 lbs

Cruise Speed VCMN 0.787 Mach
Cruise Altitude CH 41000 feet

Acquisition Price ACPRICE 100 Million Dollars
Revenue Passenger-Mile $/RPM 0.14 Dollars

Direct $/Flight Hour $/FH-DOC 4600 Dollars
Indirect $/Flight Hour $/FH-IOC 3400 Dollars
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One of the key literature review sources was a report by NASA and Boeing for the

Advanced Subsonic Technology (AST) program, which was dedicated to exploring the via-

bility of more affordable composite structures technologies. The report authors verified an

economically viable, full-scale technology application on an all composite wing box for an

MD-90 passenger aircraft. The MD-90 is similar in size and in role to the Next-Generation

single aisle commercial transport, making the AST report particularly well-suited as a way

to calibrate and develop the CASSANDRA methodology.

For these reasons, the 150-passenger aircraft infused with new composite wing technol-

ogy is appropriate a baseline aircraft for this dissertation research.

7.5 Methodology Overview

This chapter covers the proposed approach to achieving a process with which to address the

Research Questions. This new method, called CASSANDRA, is named after the mytholog-

ical Trojan woman of such incredible beauty that an enamored Apollo gave her the power

of prophecy and the ability to see the future, shown in Figure 111. However, when his love

was not reciprocated, he cursed her so that no one would believe her prophecies. It is hoped

that the method is successful in measuring risks, while avoiding the latter curse of disbelief.

CASSANDRA stands for Computational Aircraft Sub-System ANalysis of Design Risk

Alternatives.

The goal of CASSANDRA is to quantitatively measure the risk of uncertain aircraft

systems and generate sets of risk mitigation strategies. The approach leverages elements of

the existing state of the art of probabilistic design methodology with a geometric scoring of

uncertain cumulative cashflows.

The CASSANDRA method is given in four separate sections: A) Problem Formulation,

B) Realization, C) Analysis, and D) Strategic Risk Mitigation. The constituent steps for

each section are listed below, and are also arranged graphically in Figure 112.

(A) Problem Formulation

(1) Define the Problem and Executive Voice

(2) Elicit Executive Cash Flow Utility Profile
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Figure 111: Artists’ renditions of the mythological beauty Cassandra, who was gifted with
prophecy but cursed with everyone’s disbelief.

(3) Establish OEC weightings

(4) Identify the Expected and At-Risk Scenarios

(B) Realization

(1) Define the Concept Space

(2) Identify the Control and Noise Variables

(3) Setup Fast multi-disciplinary System Model

(4) Execute Design of Experiments and Monte Carlo Simulations

(5) Filter factor effects by Analysis of Variance

(C) Analysis

(1) Calculate Market Capacity Based on Product Value

(2) Filter Candidate Designs

(3) Calculate Uncertain Cumulative Cashflow Metrics: Risk Aversion Angle and Risk

Benefit Ratio
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(4) Analyze the Uncertain Cumulative Cashflow Distributions

(5) Calculate Program State Value

(D) Strategic Risk Mitigation

(1) Identify and Compare Perturbed Program State Value

(2) Identify Principle Risk Mitigation Strategy Vector

(3) Identify Alternative Risk Mitigation Strategies

(4) Implement Mitigation Strategy and Verify

The overall approach to CASSANDRA is indeed a blend of many existing methods.

There is fundamental resemblance to the risk management methods covered in Chapter 4,

where context is given, risks are identified and analyzed, and proactive decisions are made

to address the risks. The process is adapted to probabilistic aircraft design processes where

the emphasis on technology infusion is given [87, 67]. Indeed, CASSANDRA leverages

these proven approaches with a new, additional layer of complexity: the Prospect The-

ory approach to risk interpretation measurement made possible through the use of Target

Cascading the objectives and targets to the sub-system level.

An overview of CASSANDRA illustrating the process and the areas of thesis contribu-

tion is given in Figure 112.
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Figure 112: Overall CASSANDRA methodology for treatment of aircraft program risk.
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7.5.1 Problem Formulation

7.5.2 Defining the Program Metrics and Executive Voice

As with many processes addressing risk assessment and aircraft technology evaluation, the

first step of CASSANDRA is to formally describe the problem, scope, perception of value,

and the system objectives. In this step, the context of the system and fundamental risk areas

of interest are established. The goal of this step is to develop target system objectives and a

tractable relationship between the product voice of the customer and aircraft manufacturer

elicitation of the value function. There are many methods for mapping the voice of the

customer to explicit system objectives (for example, an 8% reduction in the $/Revenue-

Passenger-Mile), notably a Qualitative Functional Deployment (QFD). Aircraft marketing

research helps establish the voice of the customer who establishes the design objectives.

In addition, the system-level value functions are established by parameter-izing the cash

flow curves and mapping them directly to a utility curve. This process involves mapping

objectives to the cash flow parameters, for example break-even year (as an objective) is

mapped to the intersection of the cashflow line with zero net cash flow. An example of the

risk mapping to system objectives is given in Appendix C.

7.5.3 Realization

This set of steps in the methodology assembles and organizes the input variables, the eco-

nomic cashflow responses, and builds the simulation framework. A diagram illustrating this

arrangement is given in Figure 113.

In these steps, the various spaces are identified and bounded for the CASSANDRA

methodology. There are three distinct spaces considered: the design space (x space), the

scenario space (or λ space) and the technology space (or k space. The definition of the

baseline vehicle and the ranges associated with each of the spaces is defined.

The Scenario and Technology spaces require an understanding of the risk intended to

be evaluated. This step involves high level assessment of the exchanges of risk to be made.

Therefore, the elicitation of the Scenario and Technology spaces should come after an eval-

uation of the technologies and scenarios pertinent to the baseline problem. Technologies
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here refers to materials, processes, or measurable improvements to the baseline design. The

scenario and scenario assumptions are all the descriptions of the system and environmental

state that are typically defaulted or assumed in a deterministic or non-risk probabilistic

analysis.

7.5.3.1 Separation between Control and Noise Variables

Figure 113 illustrates a combined view of design inputs, scenario assumptions, technology

forecasting, and results analysis. The design inputs are treated as separate candidate de-

signs, and conducting a design of experiments (DOE) on likely ranges is considered a design

space exploration process. This portion is deterministic.

The scenario assumptions, illustrated at the top of the diagram, are the representation

of the variance in underlying (non-design variable) assumptions that could occur in future

states. The vector describing the shifting assumption in this space is called the λ space.

Possible examples of λ space assumptions could be the price of oil, machining labor rates,

manufacturer learning curves, production rates, etc. The technology forecasting section

(illustrated on the bottom) represents the new probabilistic effects on design responses,

stemming from the addition of new technologies. Their space is known as the k space [87].

An example of this organization of the variables is given in Table 20.

7.5.3.2 Conduct Uncertainty Elicitation and Propagation

This step carries out the uncertainty analysis through the multi-disciplinary system: the

scenario assumptions (manufacturing labor tate, production quantity, etc) and technology

forecasts (materials specification type, manufacturing process, Young’s Modulus, etc) are

executed probabilistically for each design, similar to a nested Monte Carlo approach. This

allows the complete system model interaction between design variables, scenario assump-

tions, and technology forecasts to populate the candidate design response space. For each

of the preliminary designs, candidate ”future risky scenarios” or ”instances” are generated

to represent the potential drift from natural processes of the design specification. These

instances were generated by creating local distributions centered on each sub-system level

parameter in the DOE. This is done for each design point instead of on the whole so that
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the conditional robustness of each design point can be evaluated in post-processing. This

conditional probability calculation arrangement is what separates the risk assessment pro-

cess from a conventional sensitivity analysis: the deviations experienced by each design

point are based around the values defining the design itself, and not on the whole design

population. The values describing relative distributions applied to each design are selected

to represent discrete, likely scenarios defined by subject-matter-experts (SME) during the

risk declaration and distribution elicitation workshop. The result of the workshop will be,

in addition to the set of requisite Monte Carlo distributions, a formal description of the

assumptions and likely states substantiating the uncertainty range of the subsystem level.

This step is a key element of the risk analysis as it brings to light the discrete sources of

uncertainty.

Domain Type Example Symbol

Design Variables Geometry Aspect Ratio XG

Design Variables Configuration Number of Engines XC

Design Variables Architecture Fly by Wire XA

Scenario Assumptions Economic Price of Oil λε
Scenario Assumptions Labor Assembly Labor Rate/hour λγ
Scenario Assumptions Manufacturing Learning Curve λρ
Scenario Assumptions Materials Aluminum-Lithium Cost/lb λm
Scenario Assumptions Market Orders Received λµ

Technology Factors Materials Carbon-Epoxy Composite km
Technology Factors Manufacturing Process Automated Tape Layup kρ
Technology Factors Aerodynamic Circulation Control kα

Table 20: Taxonomy of uncertainty quantification in design inputs, scenario assumptions
and technologies.
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Figure 113: The overall CASSANDRA method illustrates an approach to balancing at-risk technology alternatives.
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7.5.3.3 Build the Fast Multi-disciplinary System Model

In this step, the assembly of the codes describing the multi-disciplinary system is done in

the same fashion as existing probabilistic design processes. Modeling and simulation of large

system design problems have expanded to incorporate investigations in the propagation of

uncertainty at the system level. As overall complexity rises, the simulations must increase

in fidelity to maintain accuracy. Monte Carlo technique requires thousands upon thousands

of samples to resolve the probability and variance information needed, posing serious con-

straints on using the high fidelity truth codes. Fortunately, methodological developments

in system-wide design have enabled high-fidelity codes to be captured and converted into

a reduced-form surrogates that can be accelerated without substantial statistical loss of

accuracy. The use of high-speed surrogate models (developed specifically over the range of

interest) are a common solution for achieving the probability density function resolution

needed for resolving uncertainty and risk.

7.5.3.4 System Model Fidelity

For CASSANDRA, the model of the system used is required to be of sufficient fidelity. A

natural question a user might ask is: What is the level of sufficiency (fidelity) needed? The

system model itself is considered an input to the CASSANDRA process; no model fit error

or model representation error is assumed at this time. Stults provides a separate method

used for propagating and developing required fidelity for uncertainty propagation of complex

systems [121]. Response surface equations are generally able to model continuous, smooth

spaces with low fit and representation error [87] and are generally suitable for modern

aircraft wing design problems. It was assumed that the associated risk and risk states

exhibit the same spatial smoothness, which may not always be true in real-life environments.

7.5.3.5 Effects Screening by Analysis of Variance

A two-level Design of Experiments (DOE) is used to develop a wide, space-spanning list

of candidate design factors. The purpose of this step is to reduce this number of factors

to a smaller set that is more active for the design problem and scenario set of interest.
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By statistical analysis of Variance (ANOVA), factors may be separated by their Contrast,

t-Statistic and p-value. Each design contains a vector of design parameters X space (Wing

Span, Aspect Ratio, Sweep, Airfoil, Rib spacing, etc) as well as k and λ vectors of their

respective settings (defaulted at this stage). Each design will then produce an associated

vector or responses, denoted as R.

7.5.4 Analysis

This portion of the methodology contains the bulk of the thesis contributions prior to the

development of risk mitigation strategies. Here the CASSANDRA methodology focuses on

the analysis of the output from Part B. In these steps the output data is transformed, filtered

and measured by the proposed metrics, ultimately reaching a valuation of the programmatic

state to the executive or program manager. It comprises five steps (C1-C5), given here in

summary:

1. Calculate Market Capacity Based on Product Value - Addresses the feed-forward vari-

able of market capacity and production quantity found in FLOPS by defining a win-

dow of likely sales volume as a function of the product specifications, the existing

customer’s baseline, and the level of performance offered by a competitor. This capa-

bility is measured by an enhancement of the Overall Evaluation Criterion formulation,

called OEC+.

2. Filter Candidate Designs - Results from Monte-Carlo simulation are filtered a posteri

by the number of vehicles sold using the prediction window given by the OEC+

formulation.

3. Calculate Uncertain Cumulative Cashflow Metrics: Risk Aversion Angle and Risk

Benefit Ratio - Here additional metrics are offered which capture the driving factors

of program value and risk on the uncertain cumulative cashflow space. These metrics

and their development were covered in Chapter 5, and give insight into the balance

of risk and reward to the program manager.
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4. Analyze the Uncertain Cumulative Cashflow Distributions - In this step, the CAS-

SANDRA methodology user reviews the results from the results processing steps and

draws initial design and technology conclusions based on the distribution and fron-

tiers of the uncertain cumulative cashflow metrics. An example conclusion would be

Design Range drives the risk aversion angle larger and the risk-benefit ratio remains

unchanged.

5. Calculate Program State Value - The responses within the uncertain cumulative cash-

flow space and their metrics are fused with the executive voice and weightings from

Phase A of the methodology to compile the results into a state value. This value

function will be held as the baseline or target in the risk mitigation steps from within

Phase D.

7.5.5 Strategic Risk Mitigation

In this section of the methodology, the user identifies an Expected program state. This

state is held as the reference, or baseline, and is selected such that it be considered to be

the target or program risk neutral state. This state is based on a single setting of the

control variables (both design and technology as well as the defaulted scenario variables

within control), and an expected elicitation of the distributions of the noise variables that

are out of user control.

The CASSANDRA methodology is comparative and gives a normative approach to

strategic mitigation. Therefore, when analyzing the risks to the assumption set in the noise

variables, the scenario is perturbed. This perturbation occurs in the a priori elicitation of

the noise variable. Put another way, the perturbation is defined by a shift in the expected

distribution of the noise variables. Recall the example in the Development chapter where

the pilot is tasked with maintaining level fight. The pilot is then faced with a change in

the variables outside his control: the landing gear will not retract, causing a shift in the

expectation of the noise variables, and he must work within the control space to maintain

the objective. In practice these elicitation are in assumptions about material costs, market

forces such as competitive entry or customer requirement shift, availability of capital, etc.
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Mapping the scenario description and associated elicitation of uncertainty has been

addressed by many researchers studying scenario-based risk assessment, specifically Millet

[94] who used an Analytical Hierarchical Process approach, Savci who used a knowledge-base

[109], and Holbrook [57].

The process for mapping the scenario description and associated perturbation to the

control and noise variables is given below:

1. Identify baseline control variable set and ranges.

2. Identify the baseline noise variables.

3. Elicit the baseline noise variable distributions settings.

4. Elicit any change in control variables or their ranges due to the scenario perturbation.

5. Elicit the change in baseline noise variables distribution settings.

6. Append any additional noise variables, and their ranges not previously captured in

the noise variable set description.

Using the known difference between the Expected and the Perturbed states in the un-

certain cumulative cashflow space, the CASSANDRA method then leverages the linearized

approach for solving for the Jacobian at the perturbed state location. This then gener-

ates the partial derivative sensitivities of each of the controls to the state value metrics.

From this, the principle Risk Mitigation strategy vector can be identified, which points the

user in the direction and magnitude of the control space mitigation strategy. This is a

linearized approach and prone to error yet, so alternative strategies are also identified using

the Nullspace of the Jacobian and a hyper-cone angle around the principle mitigation vec-

tor. Finally, each of these strategies is tested under the perturbed noise variable elicitation

and the mitigation selection is made.
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7.6 Demonstration and Results of the Methodology

This chapter applies the CASSANDRA methodology to a case study, demonstrating the

ability of the methodology to create risk measurement for the aircraft programs and de-

velop strategic risk mitigation strategies. These strategies aim to minimize or remove the

effect of a perturbation in noise variables by offering a set of changes within the control

space. The resulting impact of the perturbation and subsequent risk mitigation strategy is

demonstrated and compared to an alternative approach.

7.7 Case study: A Shift in Manufacturing Cost Estimation

In this case an event has forced the program manager to react to a sudden lack of advanced

material resources abroad and move engineering and tooling processes to the United States.

This causes a reduction in efficiency and an increase in the manufacturing labor and tooling

costs. The case study begins with a current aircraft design and program state that is near

launch ready. The economic risks have already been identified. The associated value of that

program state is given by the value state vector G(y) in Table 21. The case studies will

review the effectiveness of the strategy generation by using the independent sets of metrics:

statistics from the uncertain cumulative cashflows and the set of geometric parameters (risk

aversion angle and risk-benefit ratio).

7.7.1 Setup

Table 22 give the mapping of the scenario to the noise variables. This mapping shows the

original state assumption as well as the perturbation change caused by the external shift

in forces. The disaster is modeled by causing a shift in the distributions of two types of

variables in the noise space: the efficiency factors and the manufacturing labor rates. The

efficiency factors of the composite technology variables were permuted by 9% due to the

supply chain effects, and the labor and tooling costs were increased by 4% due to a shift in

some of the manufacturing to the United States.
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Table 21: Metrics in the program manager’s value function. This function translates the
program state variables from the uncertain cumulative cashflow chart into a weighted con-
sideration to the program manager.

Term Statistic Aircraft Price No. Weighting

Maximum Sunk Cost Mean, µ 3 Medium
Variance, σ 3 Low

100th Quantile 1 Low
0th Quantile 5 High

Break-even Month Mean, µ 3 0
100th Quantile 5 High
0th Quantile 1 High

Total Net Cash Flow Mean, µ 3 Medium
Variance, σ 3 Low

100th Quantile 1 Low
0th Quantile 5 High

Risk Aversion Angle θRA - High
Risk -Benefit Ratio ΓRB - High

Table 22: Mapping of scenario variables to the noise space, and the relative change caused
by the external perturbation described in the Case Study.

Perturbed Original
Factor Distribution Mean (UB) Var (LB) Change Mean (UB) Var (LB)

CFWINGCO Normal 0.47 0.10 - 0.47 0.10
CFEMPCO Normal 0.47 0.10 - 0.47 0.10

CFBODYCO Normal 0.35 0.05 - 0.35 0.05
CFLGCO Normal 1.00 0.10 - 1.00 0.10

EFWINGCO Normal 1.35 0.10 9% 1.23 0.10
EFEMPCO Normal 1.35 0.10 9% 1.23 0.10

EFBODYCO Normal 1.44 0.10 9% 1.31 0.10
EFLGCO Normal 1.10 0.10 9% 1.00 0.10

EFNACCO Normal 1.10 0.10 9% 1.00 0.10
API Normal 0.07 0.02 - 0.07 0.02

LEARN1 Uniform 90 70 - 90 70
LEARN2 Uniform 90 70 - 90 70

RGA Uniform 1.45 0.82 - 1.45 0.82
RMANSUP Uniform 76 41 4% 73 41

RQA Uniform 80 43 4% 77 43
RTENGMHR Uniform 120 65 4% 115 65
RDEVPMHR Uniform 71 38 4% 68 38

HIMAT Normal 1.00 0.08 - 1.00 0.08
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Figure 114: Original uncertain cumulative cashflow from Case study, showing the uncer-
tainty space and the triangle used for generating the risk aversion angle and risk-benefit
ratio.

7.7.2 Analysis

The baseline cumulative cashflow was executed under the original set of noise variable dis-

tributions. The resulting cashflow was then calculated using the BASUCA apparatus, and

the risk aversion angle and risk-benefit ratios were calculated following the CASSANDRA

method. The initial uncertain cashflow and risk triangle is shown in Figure 114. The risk

aversion angle was 37.2 degrees and the risk benefit ratio was 0.47.

The noise variables were then perturbed per the mapping of the external scenario shift

(keeping the design and technology variables constant), and the resulting effect on the

uncertain cumulative cashflow diagram is given on Figure 115. Here, the main change

was a reduction in the risk-benefit ratio, as the portion of area in the positive return

on investment region of the chart is reduced and the break-even date is extended. This

caused a negligible change in the risk aversion angle as the maximum negative sunk cost

and the ending 0th quantile net cash flow reduced by approximately the same amount.
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Original

Perturbed

Figure 115: Perturbed uncertain cumulative cashflow from Case study, showing the uncer-
tainty space and the triangle used for generating the risk aversion angle and risk-benefit
ratio.

Following the guidelines given in Chapter 5 regarding the efficiency of risk, the perturbed

state experienced a reduction in risk efficiency (by an overall increase in risk at constant

risk aversion angle). This is due to the increased cost structures introduced by the scenario

perturbation: efficiency factors for the technology costs and increased labor and tooling

costs.

The Jacobian was estimated and inverted per the CASSANDRA process, producing the

cell plot in Figure 117. Here the linearized sensitivities of the inputs to the outputs is easily

visualized.

The principle strategic mitigation vector was calculated by the approximated inverted

Jacobian approach shown given in the CASSANDRA methodology. The result was a mit-

igation vector and an associated mitigation vector set calculated from the vicinity of the

perturbation state. The vector is given in Figure 118 as a relative change from the original

design and technology variables. The results are normalized by the range of control power
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Original State

Perturbed State

Mitigated (under Perturbed State)

Figure 116: Mitigated uncertain cumulative cashflow from Case study, showing the original
state, the perturbed state (due to the scenario mapping to the noise variables) and the
mitigation (under the perturbed state.)

Figure 117: Jacobian matrix for generating mitigation strategies, shown for Case Study 2.
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Figure 118: Principle strategic mitigation vector (shown as a percent change of control
variable range) that tries to return the program to equivalent program state value in the
Case Study.

given in Table 17 so they may be plotted on the same scale. Here, it is shown that the miti-

gation required change in the design and technology variables. Among the design variables,

the strongest change was in the reduction of horizontal tail area.

7.8 Methodology Summary

There are many possible approaches to risk mitigation of complex systems. Chapter 4

reviewed some of the issues regarding the ambiguous nature of their effectiveness yet preva-

lence in past and present managerial parlance. The CASSANDRA methodology is but one,

but its focus is on the measurable and actionable implementation of a risk measurement

and mitigation method. From these measurable strategy implementations, further insight

about the economics and the technological, design, and scenario sensitivities to risk become

clear.
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Figure 119: Percent change in the allowable control space that tries to achieve the normative
strategic mitigation target for Case Study 2.
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CHAPTER VIII

CONCLUSIONS

Risk management is a challenging, probabilistic task that deals with multiple sources of

uncertainty that in turn affect many areas and disciplines simultaneously. The task of

guiding a successful new aircraft design is not immune to these risks, as real-world managers

on these projects must balance infusing unproven technologies and manufacturing processes

with programmatic constraints on cost, schedule, and performance risks.

Dealing with the risks requires a combination of judgmental and technical analyses,

involving many disciplines and perspectives towards risk. This thesis adopted the definition

of risk as a manifestation of uncertainty on program objectives and their consequences, and

went a step further to specifically express those manifestations onto the cumulative cashflow

space using modeling and simulation.

Modeling and simulation have become the standard practice for addressing these issues:

detailed simulations and explorations of candidate future states of these systems help re-

duce a complex design problem into a intuitive, manageable form where decision factors

are prioritized. There have been several important advancements in system design methods

that have leveraged modeling and simulation to carry out structured analyses. Yet, the field

is still growing quickly, especially in domain of probabilistic methods that treat uncertainty

quantification and mitigation. These analyses attempt to reduce overall uncertainty in cost,

performance and schedule by delivering holistic analyses with the ability to examine the

key engineering and programmatic trades: Should I risk making the product in-house or

outsource the manufacturing? What is the best technology portfolio and how do I optimize

and adapt it to my risk tolerance constraints? While there are still fundamental criticisms

about using modeling and simulation approaches (pertaining to fidelity, model form, appli-

cability of assumptions and scalability, etc), the emerging challenge becomes How do you

best configure uncertainty analyses and the information they produce to address real world
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problems?.

These high level questions motivated the dissertation research, and its objective is re-

called below:

Research Objective

In order to contribute to the present techniques for integrating risk management practices

into the design process, the objective of this research is to deliver three things:

1. A methodology that a program manager can use to measure and allocate the risk

arising from technology and manufacturing uncertainty onto the business case of a

new aircraft development project.

2. Development of metrics in the uncertain cumulative cashflow space which better ex-

press the extent and usefulness of the risk being assumed.

3. A process for identifying robust risk mitigation strategies in the presence of either

large or small available data sets.

The CASSANDRA methodology structured several modeling and analysis techniques

into one functional process for the exploration and management of technology and manu-

facturing risk in aircraft design. It sought to answer the question What are the financial

and schedule implications on the business case about including uncertain technology onto a

concept aircraft, and what can be done about it? To answer these questions, this investiga-

tion combined Monte-Carlo simulation, expert-based elicitation and a structure of models

to generate probabilistic results in the value space and a strategic mitigation approach for

the methodology user. This user is ideally a program manager (or executive) of a manufac-

turer/integrator working on a concept future aircraft. In this role, it was assumed that the

program manager has the ability to control design elements as well as the new technology

distribution on that aircraft. She is also responsible for the elicitation of the uncertainty in
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those dimensions within control as well as the external scenarios (that are out of program

control).

Unlike other methods treating uncertainty within the aircraft design process, this method

placed emphasis on the uncertainty in the cumulative cashflow space as the integrator of

economic viability. From this perspective, it then focused on exploration of the design

and technology space to tailor the business case and its associated risk in the cash flow

dimension.

The methodology was applied on a future single-aisle 150-passenger aircraft design, and

evaluated the cost and schedule implications of a composite materials technology called

Stitched Resin Film Infusion. As such, the problem was scoped away from searching for

highly improbable or unforeseeable failure modes (such as Black Swans and safety con-

siderations) and focused on a programmatic impact of design, technology and scenario

uncertainty.

8.1 Review of Research Questions, and Hypotheses

The research contributions resulting from the development methodology are at two levels.

The first level addresses the overarching hypothesis about the CASSANDRA method itself:

Methodology Hypothesis

The CASSANDRA methodology improved design awareness by forecasting the cost and

time risks caused by uncertainty in the technology and manufacturing decisions during the

conceptual design phase.

The overall methodology was compared to existing approaches and was shown to identify

more economically robust design decisions under a set of at-risk program scenarios. Using

the methodology, the fiscal robustness of candidate designs could be identified and projected

onto the uncertain cumulative cashflow space, causing the frontier of best designs to shift

relative to the existing approaches.
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Research Question

The CASSANDRA methodology improved design awareness by forecasting the cost and

time risks caused by uncertainty in the technology and manufacturing decisions during the

conceptual design phase.

The methodology hypothesis led to the creation of the BASUCA apparatus. This ap-

paratus allowed experiments with control and noise arrays to be executed rapidly over a

modeling framework for design sizing, synthesis, and cost estimation. The stitching of these

codes allowed the exploration of not only driving factors for the risk in the design responses

(captured by extensive screening tests), but the execution requirement for sufficiently as-

sessing risk-burdened technology. Recall the research structure:

Research Question I

How many executions of the noise array are enough to propagate the uncertainty to the

cumulative cashflow space and draw the same design selection?

Hypothesis I

Approximately 1000 simulation runs in the noise array for each control run to is sufficient

to propagate the uncertainty and deliver an actionable estimate of the cumulative cashflow

risk.

Result

It was found that between 50-125 simulation runs in the noise array for each control suffi-

ciently propagated the uncertainty and enabled the Jacobian approach to risk mitigation.

Additionally, a set of metrics in the uncertain cumulative cashflow space were developed
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to assist the methodology user in the identification, evaluation, and selection of design and

technology. These metrics are compared to alternate approaches and are shown to better

identify risk efficient design and technology selections. At the modeling level, an approach

is given to estimate the production quantity based on an enhanced Overall Evaluation

Criterion method that captures the competitive advantage of the aircraft design. This

model was needed as the assumption of production quantity is highly influential to the

business case risk.

Research Question II

How should total program risk impact of technology and manufacturing uncertainties be

measured so as to make cost and schedule allocations?

Hypothesis II

The probabilistic use of the uncertain cumulative cash flow space enables the aggregation

of many business case metrics, and allows for a small set of geometric risk measures that

prioritize design alternatives based on program risk attitude.

Result

It was found that the risk aversion angle θRA and the risk-benefit ratio ΓRB capture de-

coupled dimensions of the program risk perspective and allow for efficient selection and

allocation of at-risk design alternatives.

Finally, the research explored the capacity to generate risk mitigation strategies in to

two analysis configurations: when available data and simulation capacity is abundant, and

when they are sparse or incomplete. The first configuration leverages structured filtration

of Monte Carlo simulation results. The allocation of design and technology risk is then

identified on the Pareto Frontier. The second configuration identifies the direction of robust

risk mitigation based on the available data and limited simulation ability. It leverages a
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linearized approximation of the cashflow metrics and identifies the direction of allocation

using the Jacobian matrix and its inversion.

Research Question III

How should risk mitigation strategies be generated and assessed to best allocate design and

technology risk within program and business profitability constraints?

Hypothesis IIIa

Assuming availability of data and simulation capability, the design and technology control

variables should be selected by evaluating the Pareto frontier of the uncertain cumulative

cashflow program metrics.

Hypothesis IIIb

If data or simulation capability is sparse or unavailable, design and technology control

variables should be selected by identifying a target uncertain cumulative cashflow state

and generating the normative risk mitigation strategy by inversion of the Jacobian matrix

approximation.

Result

It was found that under both assumptions of data simulation capacity, the CASSANDRA

methodology user was able to identify more economically risk-robust design and technol-

ogy strategies than existing methods that do not leverage uncertain cumulative cashflow

information.

8.2 Final Remarks

This research grew out of the observation that risks entered the design space via many

avenues concurrently. The investigation of their integrated mitigation during the design

process is necessary for the program manager to improve her chances of program success in
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an uncertain world. The present research demonstrated the benefit of integrated modeling

and simulation and new metrics for the valuation and exploration of the business case.

The major focus of this research was on the implications of those risks onto the cu-

mulative cashflow realm. It was argued that this is an appropriate holistic measure of the

business case dynamics, and that it was able to capture the risk implications better than

discounted cashflow or net-present value techniques.

While the aircraft design challenge and example problem provided the specific prob-

lem dimensions leading to the development of the methodology, there are other similar

systems-of-systems on which CASSANDRA could reasonably be applied. One application

of particular interest is in the infrastructure for telecommunications and data centers. This

system exhibits large scale investment projects with lengthy cycle and payback periods, and

are also burdened with the perpetual obligation to adopting new technology.

8.2.1 Assumptions and Future Work

There were several major assumptions underlying the research and methods which should

also be explored in future work. Firstly, the uncertainty elicitations are valid and complete.

The selection of distributions on the scenario variables, technology costs, technology cycle

times, technology impact factors, and design space exploration are given to be accurate

and sufficiently broad. This single assumption limits the realistic application of the results

presented in the notional problem, however with access to internal data a program manager

could potentially apply the method to improve decision making.

Secondly, modeling and simulation sufficiently captures the potential risk. The physics

and process based simulations are of acceptable validity to measure risk. Secondly, the

high speed surrogate models fit the range sampled with an acceptable degree of precision.

Response surface equations are generally able to model continuous, smooth spaces with low

fit and representation error and are generally suitable for modern aircraft design problems.

It was assumed that the associated risk and risk states exhibit the same spatial smoothness

which may not always be true in real-life environments.

Other areas for future work include:
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1. Development of the risk aversion angle for multiple correlated studies. This topic was

covered in Chapter 7 and involves investigating the independence of both width of the

noise ranges and the noise variable breadth with the risk aversion angle. Identifying

how the resulting risk aversion angle may be combined would provide a valuable

contribution as studies from separate researchers may be integrated to better improve

the combined risk aversion angle measurement.

2. Correction for the risk-benefit ratio denominator. The denominator ACOST extends

leftward towards the risk aversion angle vertex, and thus increases the area of the

cashflow space without representation of this space by actual cashflows. This results

in sightly lower overall risk-benefit ratios. An envisioned improvement would be to

correct this effect by trimming the lower left triangle of this area to the lowest cumu-

lative cashflow line (Q0th for ACPrice1.)

3. Exploring the OEC+ further for the case of non-duopoly competitive markets. This

assumption of a duopoly becomes more invalid as new manufacturers enter the com-

petitive space. Game theory may also be applied to positive effect in this area. The

regional transport vehicle (RPV) category is a particularly diverse market where the

OEC+ formulation would need to be adjusted substantially.

4. Unit Cost-Time curve. Instead of the cumulative cashflow space, the author believes

that this plot (shown in Figure 70) may also be fruitful for risk and uncertainty

propagation analyses of the business case.
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APPENDIX A

GAUSSIAN BOUNDARY ANALYSIS

There exists a group of studies dedicated to resolving risk and uncertainty by analysis of

the boundaries of a system. Major research contributions to boundary-based risk analysis

methods are covered in detail by Morgan [95] and Fishburn [38]. In some of these studies,

the risk dimensions are assumed to be monotonic and the analytical range is solved deter-

ministically, offering rapid assessment of the propagation of uncertainty and a feel of system

limits. This applies well for systems exhibiting low internal coupling and linear behavior

[95], but in larger and more complex systems the linearity assumption weakens and the

Central Limit theorem drives Gaussian-like behavior, particularly in the extrema in which

the tails extend to infinity.

The bounds of the cumulative cashflow problem are indeed of value to the executive,

but Gaussian process will demonstrate a widening of bounds as a function of Monte Carlo

simulations. Effect is studied in great detail, particularly in 6-Sigma approaches, which

specifically define the number of failures per million. It is then worthwhile to examine this

effect, and answer the following Research Question:

Research Question VI

How many simulations need to be executed, and how does that affect the bounds of a

Gaussian system?

Rrequired = Xdesigns ∗Kportfolios ∗ λscenarios (56)

The effect of number of samples on the the extreme bounds of a discrete sample set is
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illustrated in Figure 120. In this demonstration, the number of standard normal random

variables in the sample set was steadily increased from 1 to 100,000 iterations. The normal

distribution is unbounded in both directions, but the rate at which the extrema tend toward

infinity is of interest in understanding the number of runs needed to resolve the bounds of

the aircraft design problem.
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Figure 120: Demonstration of the effect of number of samples versus the mean, standard deviation, and bounds for a pseudo-random
standard normal variable N (0,1).
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From this small experiment, one can easily see that for every order of magnitude increase

in the number of samples, the bounds of the normal distribution expand an additional 1-σ.

The implications of this in the exploration of a design space at risk are significant: increasing

the order of magnitude of the number of samples takes you an approximate 1-1σ further

outward in the risk space. This of course assumes a perfect Gaussian distributed risk space

which will be evaluated in detail in later sections. It is of interest at this time to examine

how the number of samples in the set relates to the number of factors able to be resolved.

For a full factorial experiment, the minimum number of cases required to completely resolve

is given by Equation 57.

RRequired = 2n (57)

where n is the number of two-level factors. Transforming the x-axis of Figure 120 by

Equation 57 gives the relationship between the number of fully resolvable factors in an

experiment and the growth of the extremas, shown in Figure 121. Here it shows that 1

million samples approaches 20 fully resolvable 2-level factors, with an associated aggregate

extrema at approximately 6 σ from the mean.
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Figure 121: Demonstration of the effect of fully resolvable factors versus the growth and stability of the mean, standard deviation, and
bounds for a pseudo-random standard normal variable N (0,1).
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APPENDIX B

FUTURE AND PRESENT VALUE

As the inflation rate assumption affects the future value of money, it is worth deriving how

sets of future payments and expenses can be corrected to a present equivalent value (and

vice versa). The following equation calculates a present equivalent amount with annual

percentage inflation rate i and number of years n:

PE(i) = F0(P/F,i,0) + F1(P/F,i,1) + F2(P/F,i,2+ . . .+ Fn(P/F,i,n) (58)

PE(i) =

n∑
r=0

Fr(
P/F,i,n)−t (59)

But as:

(P/F,i,0) = (1 + i)−t (60)

Then substituting yields

PE(i) =
n∑
r=0

Fr(1 + i)−t (61)

The Future Equivalent (FE) value can be calculated similarly using the same approach:

FE(i) = F0(F/P,i,n) + F1(F/P,i,n−1) + . . .+ F2(F/P,i,1) + Fn(F/P,i,0) (62)

FE(i) =
n∑
r=0

Fr(
F/P,i,n−t)n−t (63)

But as:

(F/P,i,n−t)) = (1 + i)n−t (64)
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Then substituting yields

FE(i) =
n∑
r=0

Fr(1 + i)n−t (65)

The last approach commonly used to correct future and annual cashflows is the Annual

Equivalent (AE) amount. The AE at a given interest rate is:

AE(i) = PE(i)(A/P,i,n) (66)

Substituting Equation 61 yields

(A/P,i,n) =

[
i(1+i)n

(1+i)n=+

]
(67)

AE(i) =

[∑n
r=0 Fr(1 + i)−t

] [
i(1+i)n

(1+i)n+1

]
(68)
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APPENDIX C

SUPPLEMENTARY AIRCRAFT DESIGN AND UNCERTAINTY

ASSESSMENT PROCESSES

Figure 122: Method flowchart for the TIES process (Technology Identification, Evaluation
and Selection) [67].
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Figure 123: Overview of key design processes for new aircraft development [84].

Figure 124: State of the art airframe development cycle duration, circa 1990 [118].
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APPENDIX D

FLOPS AND ALCCA OVERVIEW

D.1 FLOPS

The Flight Optimization System (FLOPS) is a multidisciplinary system of computer pro-

grams for conceptual and preliminary design and evaluation of advanced aircraft concepts.

It consists of nine primary modules: 1) weights, 2) aerodynamics, 3) engine cycle analysis,

4) propulsion data scaling and interpolation, 5) mission performance, 6) takeoff and landing,

7) noise footprint, 8) cost analysis, and 9) program control [89].

FLOPS was originally written by Linwood Arnie McCullers at NASA. Version 8.11 is

used for the research in this dissertation.

D.2 ALCCA

The stand-alone version of ALCCA was written and modified by Dimitri Mavris and Thomas

Galloway. It is the prediction of:

• AircraftManufacturingCosts(NASACR-152278)

• ProductionandRDT and ECosts

• ProductionCostvs.QuantityComparisons

• ManufacturerCumulativeandAnnualCashflow

• ManufacturerReturnonInvestment

• ManufacturerCostAnalysis(NASACR-152278)

• AirlineDirectOperatingCosts

• MaintenenceCostsandLaborCosts(NASACR-145190)

• AirlineIndirectOperatingCosts
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• AirlineReturnonInvestment

• AirlineReturnonInvestment-Operations

$COPER

$CMAN $IWING$IWGT

$NEWTECH$HMV_MV $REVLOSS

$RDTE

Manufacturing Related Inputs

Operations Related Inputs

Aircraft & 

Mission

Data

Manufacturer

Data

Operations 

Data

Scheduled

Heavy

Maintenance

HLFC & CC

Technology

Data

Revenue Loss

due to

Failures

Detailed

Wing

Data

Detailed

RDT&E

$IMAINT

Maintenance 

Data

ALCCA

Figure 125: The manufacturing and airline namelists and analysis chain of ALCCA.
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Figure 126: Cashflow calculations process of ALCCA [42].
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Figure 127: Manufacturer’s ROI calculations process of ALCCA [42].
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APPENDIX E

AIRBUS AND BOEING COMPETITION

E.1 Duopoly dynamics of large commercial transport aircraft manufac-
turers

Figure 128 illustrates the steady battle between Boeing and Airbus, showing both total

orders by year and total deliveries by year [12]. Airbus has grown steadily over the period

from 1989 to 2011 to capture roughly 50 percent of the new aircraft market.

Figure 128: Total orders and total deliveries for Boeing and Airbus over the period 1989-
2011 [12] [1].
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Figure 129: Chart of Airbus and Boeing commercial transport aircraft, organized by passenger count and maximum range
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