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“I can live with doubt and uncertainty. I

think it’s much more interesting to live not

knowing than to have answers which might

be wrong.”

Richard P. Feynman
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SUMMARY

Increasing space mission complexity coupled with challenging science requirements

are driving the need for fast and robust space trajectory design and simulation tools.

Current state-of-the art methods and techniques are often found to be lacking, par-

ticularly when problems are scaled to the future demands of mission design.

This challenging problem is addressed in this thesis by 1) identifying a set of

high impact “building-block” astrodynamics algorithms, 2) systematically improving

several current state-of-the art solution methods via theoretical and methodological

improvements and 3) taking advantage of modern computational hardware and nu-

merical techniques to provide significant improvements in speed and robustness. In

this thesis, five high impact astrodynamics problems are identified and their algo-

rithms are selected for improvement. The solutions to the selected problems have

applications ranging from preliminary mission design to high-fidelity space trajectory

design and simulation.

The first problem identified is the multiple-revolution Lambert problem. Lam-

bert’s problem is one of the most extensively studied problems in space-flight me-

chanics and enjoys a large volume of research, spanning over several decades. In this

thesis, a new formulation of the multiple revolution Lambert problem is presented.

The formulation is based on a cosine transformation and uses rational functions for

generating accurate initial guesses. Thanks to a new geometry based parameter, the

resulting formulation is simplified and only requires one auxiliary function to handle

the separate forms of the conic. Apart from enjoying 40% to 60% reduction in run-

time over the current state-of-the art Gooding’s method, the new formulation also
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results in a robust and accurate implementation.

High-fidelity perturbation models are one of the major speed bottlenecks encoun-

tered during spacecraft trajectory design and simulation. The current work attempts

to improve the performance of two aspects of these perturbation models, namely,

the high-fidelity geopotential evaluation and the accurate ephemeris computation.

High-fidelity geopotentials are typically computed via spherical harmonics, which is

slow and non-intuitive to implement efficiently. In this thesis a new model called

Fetch is proposed. Fetch is designed to take advantage of all the previous methods in

the literature, while finding innovative solutions to correct their respective problems.

The model is based on a modification to the Junkins weighting function method and

achieves up to three orders of magnitude in speedup over the conventional spherical

harmonics approach. As a part of this thesis, the Fetch model is applied to interpo-

late the GRACE GGM03C gravity model. Four Fetch models with different spherical

harmonic degrees and order are computed and archived.

The next problem that deserves attention is the computation of accurate solar

system body state and orientation data. The current work attempts to solve this

problem by proposing a new ephemeris system called FIRE (Fast Interpolated Run-

time Ephemeris). FIRE is custom designed for space trajectory applications that

favor speed and smooth derivatives. It relies on spline interpolation and is based on

a multi-level computation architecture. FIRE is demonstrated to be 50 to 70 times

faster (compared to JPL’s SPICE system) for typical trajectory applications while

still achieving high accuracy. The speed is gained in exchange for a modest memory

burden, which is necessary for the interpolation coefficients.

Shifting the focus to applications that require partial derivatives of a final state

with respect to an initial state; the thesis also investigates the problem of fast sen-

sitivity computation. Sensitivity information is used by many batch and sequential

filtering applications, gradient based optimization algorithms, and is applied in a wide
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range of engineering fields. The current work focuses on efficiently parallelizing sensi-

tivity computation across a single trajectory. A new hybrid parallelization strategy is

proposed, utilizing the Central Processing Unit (CPU) and the Graphics Processing

Unit (GPU) to achieve rapid sensitivity computation on a single workstation. For ex-

ample, trajectory propagation with overlapped computations demonstrate that first

order sensitivities are calculated almost for free when compared to the conventional

CPU implementation. The proposed technique can be applied to various optimiza-

tion methods like optimal control, parameter optimization and other gradient based

techniques.

The last chapter in this thesis aims to combine the two previously developed

(Fetch and FIRE) perturbation models with a GPU based integration algorithm for

simulating multiple high-fidelity space trajectories. The resulting tool provides un-

precedented, multiplicative speedups over similar simulations on the CPU with per-

formance gains of two to four orders in magnitude for various cases. The proposed

tool is highly relevant to a variety of problems like space object conjunction analysis,

covariance realism, particle filters and Monte-Carlo analyses.
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CHAPTER I

INTRODUCTION

1.1 Motivation

Non-trivial, complex space trajectories80,105,87,49,42 are being designed to tackle the

increasingly challenging requirements and objectives of future space missions. A

paradigm shift in the development of mission design algorithms is needed to handle

future mission design and space catalog maintenance requirements.

The main thrust of this thesis is to participate in this paradigm shift by 1) iden-

tifying a manageable set of commonly used astrodynamics algorithms (referred to

as building-block algorithms), which have a significant impact on the general space

mission design process, 2) reformulating and developing novel solution methodologies

to improve the accuracy and runtime performance of current state-of-the art algo-

rithms and techniques and 3) taking advantage of modern computer hardware such

as cluster computing and the Graphics Processing Unit (GPU) to deliver significant

improvements to the current algorithms and techniques.

A total of five major problems are considered due to their wide applicability and

potential for high impact in space-flight mechanics. The solutions to the first four

problems act as building-block algorithms for solving larger and more complex prob-

lems in astrodynamics, while the fifth problem showcases an application for solving a

large scale multiple spacecraft simulation problem. Improving and redesigning these

building block algorithms can improve their associated software packages (both legacy

and those yet to be written). The five selected problems along with their perceived

approximate impact on various astrodynamics applications are listed in Table 1. Each

of these problems have been extensively studied over the past few decades (details
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are provided in the next section). Existing state-of-the art algorithms are typically

classical in nature48,101,13,37,11,101 and stand to benefit from the recent theoretical,

algorithmic and computer hardware innovations. A dramatic improvement in perfor-

mance can lead to cost savings for the whole mission design process and may help to

solve the previously intractable problems in astrodynamics.

Table 1: Selected problems and their perceived potential impact (0 = no impact, 3
= high impact)

Lambert’s
Problem

High-Fidelity
Geopotential
Computation

Ephemeris
Computation

Sensitivity
Computation

Multiple
Spacecraft Trajectory

Simulation
Preliminary mission design 3 1 2 2 1
Space surveillance 2 3 3 2 3
Trajectory optimization 3 2 2 3 2
Orbit determination 1 3 2 3 3
Tour design 3 0 2 1 1
Non-astrodynamic applications 0 2 2 3 0

In the next few sections a brief introduction to each of these five problems along

with the relevant previous work and the adopted solution methodology is presented.

1.2 Previous Research and Proposed Solution Strategies

1.2.1 Lambert’s problem

1.2.1.1 Introduction and literature review

In this thesis we start by tackling a basic, yet significant problem in space-flight

mechanics, the multiple-revolution Lambert problem. The Lambert problem is one

of the most extensively studied problems in celestial mechanics and astrodynam-

ics.78,48,13,139,37 Given two points that are relative to a point mass gravitating body

and time of flight, a Lambert algorithm computes all possible Keplerian transfers be-

tween them. A variety of contributors have provided unique solution methods, yet the

Lambert problem is always reduced to a one dimensional root-solve of a transcendental

function. It was first introduced by Lambert in 1761 and was subsequently extended

by Gauss.139 With the arrival of the space age, the multiple revolution (multi-rev)

2



Lambert’s problem (signifying multiple revolutions around the point mass) has since

been studied and applied to a wide variety of space mission applications.

Due to its general formulation and wide applicability, the solution to the multi-

rev Lambert problem acts as a building block for various problems like grand tour

design,138,84,116,130,75,53 interplanetary trajectory optimization,1,84,115 and orbit de-

termination.86,14 Legacy codes that compute and optimize ballistic trajectories often

require excessive numbers of Lambert solutions.99,84,5 The inclusion of intermediate

flybys and maneuvers further compounds the computational burden. The sheer num-

ber of Lambert calls needed can make the problem expensive to solve in terms of

time and computer resources. Accordingly, to narrow the search space and provide

for tractable problems, heuristic pruning techniques are generally required in practice.

Optimal, and perhaps mission enabling solutions, therefore may be overlooked.

There exists a plethora of literature discussing various approaches developed over

the years to solve the multi-rev Lambert problem. Most of these solutions techniques

can be divided into two general types: 1) direct geometry based methods and 2) uni-

versal variable based methods. The types are characterized primarily by their choice

of iteration variable. The direct geometry based methods iterate in the conventional

space of orbit elements to solve some equivalent Lambert equations. Escobal37 in

his text gives multiple approaches where the iterates include semimajor axis, true

anomaly, semiparameter, eccentricity and the f and g series. He only presents the

zero-rev formulations but extending such techniques to multi-rev formulations is rel-

atively straight forward. The work done by Ochoa and Prussing93,32 during the early

1990s extends another geometry based approach, the Lagrange formulation, to its

full multi-rev case. Their approach is robust and therefore it is commonly employed.

However it suffers from three main drawbacks that are similar to most methods in its

class: 1) the method is only valid for elliptical orbits, 2) the iteration variable is the

semi-major axis and is therefore unbounded which can lead to numerical problems,
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and 3) in the multi-rev case, the lower of the two solution branches is not single

valued in flight time, causing notational complexity and a tedious implementation. A

recent addition to this class of methods is the eccentricity-vector based solution by

Avanzini9 which has been more recently extended to multi-revs by He et al.52 Other

approaches in this category include the p-iteration method by Herrick and Liu54 and

the classical method by Gauss himself.45 A dynamical systems based solution to the

Lambert problem was also proposed by Nelson.90 A recent solution strategy includes

the series inversion solution by Thorne.133

The need for a universal (valid for all conics) and numerically robust solution tech-

nique led to the “universal variable” solution of the Lambert problem.65,13,77,48,11,74

This approach is an efficient alternative solution method that combats many of the

shortcomings of the Lagrange and other methods that iterate directly on orbital ele-

ments. The transformation to an auxiliary variable that is better behaved than one

of the anomalies was introduced by Sundman.131 This transformation was later ap-

plied to a “unified” time of flight formulation (for all types of conics) by Battin13 and

Bate.11 It was shortly thereafter that Lancaster and his colleagues published in their

short note78 (and later in a more detailed technical report77) the first universal solu-

tion to the complete multi-rev Lambert problem. Battin was soon to follow with his

own universal approach that was highly tuned for computer implementation using hy-

pergeometric functions and continued fractions.13,12 Meanwhile, Gooding48 extended

the work of Lancaster by formulating an initial guess generator and the higher order

Halley’s method for rapid root solving. Battin’s method is mathematically elegant

and computationally efficient, yet is not as intuitive as other approaches. Gooding

was able to produce a robust, accurate Lambert algorithm which relied on first, second

and third derivatives of the Lambert TOF function for rapid convergence. Another

approach first proposed by Bate, Mueller and White11 utilizes a simple transformation

on the standard universal variable and results in just one root function that is valid
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for all revolutions. The search variable is related to the transfer angle and is therefore

easily bounded, except in the case of the hyperbola. Like all universal formulations,

the full domain of the iteration variable is single valued. Overall, the implementation

is straight-forward and computationally efficient. Recent studies comparing various

Lambert formulations suggest that Gooding’s implementation is the most robust and

fastest implementation available. Specifically, a recent study done by Peterson et

al.98 evaluates the performance of 6 different methods (including Battin’s and Good-

ing’s method) for the zero revolution case. Their conclusion suggests that Gooding’s

method is the best (arguably if not outright) in terms of accuracy, robustness and

speed. Similar conclusions were reached by Klummp70 in a previous study. A recent

implementation, documented in an article by DerAstrodynamics 1, claims to be “su-

perior” to other Lambert algorithms but fails to provide any evidence in its support.

Figure 1 briefly summarizes some of the major developments over the years related

to solving the Lambert problem.

Figure 1: Timeline of major previous work related to solving the Lambert problem

1http://www.amostech.com/TechnicalPapers/2011/Poster/DER.pdf
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1.2.1.2 Overview of solution strategy and results

With the intent to simplify the Lambert problem formulation and increase its runtime

performance, a new formulation based on a cosine of the change eccentric anomaly is

proposed. The new transformation simplifies the TOF equation and uses a bounded

geometry parameter which dictates the shape of the TOF function. Accurate initial

guess strategies based on rational functions lead to a fast and robust solution pro-

cedure. The proposed implementation is compared to Gooding’s method, which is

arguably the fastest and most robust.70,98 The new formulation is derived in chapter 2

of this thesis, followed by a thorough performance analysis, comparing both accuracy

and runtimes to the state of the art Gooding’s method. Rapid root solve coupled with

elegant derivative expressions results in 1.85, 1.75 and 2.15 times speedup (on aver-

age) over the Gooding method for hyperbolic, zero revolution and multiple revolution

case, respectively.

1.2.2 High-fidelity geopotential computation

1.2.2.1 Introduction and literature review

A major hurdle towards fast high-fidelity trajectory simulation are the computation-

ally slow spherical harmonics (SH) gravity fields computations.101,27,85 The problem is

expected to compound with the release of new, higher order gravity field models.132,55

With the current computational resources it is typically not feasible to account for

most of the accurate geopotential models in many high-fidelity trajectory simulations,

such as monitoring the space catalog.56 Accordingly, there is a pressing need for a

new class of gravity models that can achieve orders of magnitude in speedup over SH

while still preserving the accuracy and robustness of the SH approach.

Various alternatives to SH have been proposed and can be broadly divided into two

classes 1) Discrete mass models and 2) Interpolation models. Discrete mass models

(deemed as any model using point masses, or surface or volume mass distributions)
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only require a limited amount of global data71,144,107,106,88,145 and are straight for-

ward to evaluate. They can be easily coupled with SH models for the benefit of

an adaptive local resolution. Recently, there has been a growing interest in robotic

and potential human exploration of small, irregular shaped bodies.105 The volume-

based and surface-based discrete mass models are therefore compelling because they

are valid in the entire domain while SH representations fail to converge inside the

reference radius.140,96 In particular, the polyhedral method96 is a robust and elegant

solution for irregular small bodies although the extra computational requirements are

cumbersome. Recently, a modern high-fidelity geopotential mascon model has been

demonstrated to provide an order of magnitude speed improvements over SH when

implemented on a common Graphics Processing Unit (GPU).112

The second and a more popular class of alternative potential formulations are the

interpolation models. Applicable to both irregular and near-spherical shaped bodies,

methods in this class expedite computations by effectively trading computer mem-

ory for runtime speed. Essentially first proposed by Junkins in 1976,67 geopotential

interpolation methods have been bolstered recently by the extraordinary memory

resources of common computers. Depending on the method, a variety of techniques

and basis functions have been employed including weighting functions,69,68 wavelets,19

splines,19,81 octrees,28 psuedocenters59 and 3D digital modeling.94 Each interpolation

method balances accuracy with efforts to minimize runtime speed and memory foot-

print while achieving exactness, continuity and smoothness as appropriate.

The 3D geopotential interpolation model developed in this study is primarily moti-

vated by the works of Junkins,67,68 Hujsak,59 Colombi et al.,,28 Oltrogge94 and Beylkin

and Cramer19 among others. Over thirty years ago Junkins demonstrated that a one

order of magnitude speedup was possible at the expense of a modest investment in

memory. This was a remarkable feat considering the quality of computers at the time.

His model encompassed the region around Earth out to 1.2 radii and achieved roughly
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6 digits of accuracy at the expense of storing 30,000 coefficients. Hujsak revisited the

problem approximately 20 years later introducing the concept of interpolating the

pseudocenter coordinates instead of the potential or acceleration. With a simpler

interpolating scheme and improved hardware he fit a 70 × 70 field (for the northern

hemisphere at altitudes between 400 and 1,500 km) with only 5 megabytes of storage.

The algorithm requires the calculation overhead equivalent to a 5×5 field, leading to

approximately a 100 fold speedup compared to SH for the 70×70 resolution. Columbi,

Hirani, and Villac recently applied similar concepts using modern tools for calculat-

ing gravity fields for highly non-spherical bodies such as comets and asteroids. Their

methods are demonstrated to provide approximately 100 fold speedups except their

gains are compared to the expensive polyhedral methods. Beylkin and Cramer show

recent progress in the efficient storage of multi-resolution interpolating functions and

subsequently published the first global modern 3D interpolation geopotential model

called the Cubed-Sphere model.66 Using multiple concentric shells and Chebyshev ba-

sis functions, their method demonstrates 30 fold speedups compared to SH for their

highest resolution 150 × 150 model. Their break even model in terms of runtime is

said to be approximately at the resolution of 20× 20. The memory footprint of their

150×150 model is 856 MB. Their model suffers from small discontinuities across shell

boundaries, and requires the storage of extra coefficients for acceleration and higher

order derivatives.

1.2.2.2 Overview of solution strategy and results

The main drawback of 3D geopotential interpolation gravity models is their memory

requirements. As memory and processor technology has exponentially grown over

the years, a renewed interest in memory-intense numerical methods is increasingly

justified. Given the potential benefits of trading the abundantly available memory

for tremendous speed improvements, a new hybrid model is proposed (called Fetch)
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which attempts to take advantage of all the previous models, while finding innovative

solutions to correct their respective problems. Accordingly, the Fetch model improves

on the shortcomings of the aforementioned interpolation models. Priority is placed on

a solution method that 1) is continuous and smooth across the global domain to an

arbitrary order of derivatives, 2) is adaptive in terms of local vs. global resolution 3)

has a residual error profile that is in the noise of the accuracy of the underlying base

model (SH in this study), and 4) is singularity free. No previous or existing gravity

field interpolation model can claim a complete handle on each of these ambitious

priorities.

The new Fetch model optimally trades memory for speed and achieves global

continuity by taking advantage of a weighted interpolation scheme (developed by

Junkins et al.69). Singularity and associated numerical problems near the poles found

in spherical coordinates is tackled using a two level overlapping global grid structure.

High order analytic inverses for the resulting least squares problem are generated

using an algebraic manipulator to ensure accurate and rapid coefficient evaluation.

A parallel coefficient generation algorithm on a non-uniform grid (implemented using

MPI) enables high-fidelity global geopotential Fetch model generation. The original

Junkins weighting function method is modified to handle this new memory-saving,

non-uniform grid. Chapter 3 goes over the Fetch interpolation approach and applies

it to the geopotential application. Four Fetch models, based on efficient interpolation

of the GRACE GGM03C SH gravity model132 are generated. Up to three orders of

magnitude in speedup over spherical harmonics is demonstrated with the memory

requirements spanning from 120 MB to 2,360 MB.

1.2.3 Ephemeris computation

1.2.3.1 Introduction and literature review

Solar system ephemeris body states and orientations are consistently used in a va-

riety of aerospace applications (for example63,46,113,114,3, 83). The importance of the
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solar system data, the robust reliability of the current ephemeris systems (like JPL’s

SPICE2) and the need for precise trajectory computations have led to wide spread

use of ephemerides amongst scientists, engineers, and their associated software. The

current state-of-the-art ephemeris system in wide use today for high precision appli-

cations is the SPICE system provided by JPL. Similar SPICE related products from

JPL such as the DE405 customized routines by Miles128 are also commonly used. The

SPICE system has not been designed for speed and fast ephemeris data retrieval but

rather serves a much broader purpose. The SPICE system has a large collection of

routines which can be used to read SPICE ephemeris files (for natural bodies and

spacecraft). The system also provides information regarding the derived observation

geometry such as altitude, latitude/longitude and the lighting angles of these bodies.

While SPICE and its derivative products are well-maintained and provide invalu-

able capabilities to users around the world, it is well-known that ephemeris calls are

generally the bottleneck to speed improvements for precise applications. Typical tra-

jectory simulation applications including optimization, differential correction, orbit

determination and Monte-Carlo analysis often require thousands or more trajectory

propagations using common force models and time spans. Considering each single

iterate may easily require millions of calls to an ephemeris system, an extraordinary

amount of computational resources is wasted on unnecessary overheads. While a

broad spectrum of applications are indifferent to the computational burden of gen-

eral ephemeris calls, many applications are simply bogged down. However, the extra

cost has typically been considered an acceptable trade for the precision force model

afforded by the accurate ephemerides.
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1.2.3.2 Overview of solution strategy and results

The work presented in chapter 4 proposes a new custom ephemeris system that main-

tains the heavily relied upon accuracy, yet eliminates or substantially reduces the typ-

ical computational burdens associated with ephemeris calls. The new system, called

FIRE (Fast Interpolated Runtime Ephemeris), is designed for custom trajectory ap-

plications that favor speed and smooth derivatives. The new system minimizes the

overhead associated with ephemeris calls through the use of archived splines, a run-

time ephemeris (stored in the random access memory of the computer) and batch

processing routines. Performance comparisons with the Jet Propulsion Laboratory’s

Spacecraft Planet Instrument C-matrix Events (SPICE) ephemeris system show typi-

cal speed improvements of up to approximately two orders of magnitude. Performance

comparisons for high-fidelity trajectory propagations are also considered and a factor

of 70 in performance increase is achieved for typical cases. FIRE has potential value

to any high precision application or software requiring fast, accurate and smooth

ephemeris data.

1.2.4 Sensitivity computation

1.2.4.1 Introduction and literature review

Mathematical and computational models are used in most areas of science and engi-

neering for performing optimization.117,142,40,119 Gradient based numerical optimiza-

tion relies on accurate sensitivity information to robustly move a solution towards

an optimum. While there are various subfields in numerical optimization such as

Optimal Control22,110,109,123,104 and Parameter Optimization,60,47 all gradient based

continuous methods make use of numerical sensitivities to select new step directions.

Specifically, many trajectory optimization algorithms rely heavily on higher or-

der sensitivity information.100,18,39,20 The computational burden of sensitivity cal-

culations increases exponentially with problem complexity and the requirement for
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higher order derivatives. Therefore, with the existing CPU architecture, it is often

not feasible to solve realistic model problems because of the extraordinarily expen-

sive sensitivity calculations. Given a function evaluation computational complexity

of O(n), the corresponding first order sensitivities have a computational complexity

of O(n2), and similarly second order sensitivities have a computational complexity of

O(n3). This complexity (and the high costs of large CPU clusters required) therefore

prohibits many classes of high-fidelity optimization problems from being solved.

Parallel sensitivity analysis has been limited to a narrow class of problems.21,24,20,29

These methods are either not scalable or they perform inefficiently as the current CPU

hardware is not able to exploit the massive parallelism present in the underlying prob-

lem. To further improve performance, a reformulation of the solution method along

with exploitation of the current state of the art computer hardware is required.

1.2.4.2 Overview of solution strategy and results

In this thesis a novel strategy to use NVIDIA’s GPU (Graphics Processing Unit) to

rapidly calculate the sensitivities (derivatives) in a multilayer, parallel, and heteroge-

neous way while the CPU (Central Processing Unit) sequentially computes the less

expensive state equations, is proposed. The proposed tool computes both the first

and second order analytic sensitivities on the GPU with double precision accuracy.

The results show that first order sensitivities are calculated almost for free and an or-

der of magnitude speedup is obtained for second order sensitivities when compared to

a conventional CPU implementation. More details on the novel overlapping solution

strategy, its implementation and associated performance are given in chapter 5.

1.2.5 Multiple Spacecraft Trajectory Simulation

1.2.5.1 Introduction and literature review

With the advent of modern computers the field of computational space flight me-

chanics has witnessed rapid growth.33,8, 4, 66,112,92 This growth has fueled the need
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for high-fidelity spacecraft trajectory design and simulation tools, which are gain-

ing wider acceptance in the astrodynamics research community. These tools and

methodologies are becoming more relevant as the space environment is getting more

crowded, and as the surveillance sensors are improving in accuracy. Current state-

of-the-art high-fidelity integration algorithms and force models are computationally

burdensome, and often require large CPU computing clusters. High fidelity models

are therefore under-utilized in a variety of space surveillance applications, such as real

time tracking, the conjunction problem, particle filters, orbital debris tracking, etc.

A paradigm shift capable of providing multiple orders of magnitude in speedup while

still maintaining the desired accuracy, would be a significant step forward in solving

these computationally challenging problems.

The speed bottlenecks in most of the mentioned applications can be divided into

two main components: 1) trajectory integration and 2) force model computation.

Both of these sub problems have been studied by various authors over the years. See

for example, the references.61,10,44 There exist a large number of numerical integra-

tion techniques in the literature and they can be broadly divided in to two types 1)

single-step methods36,50 and 2) multi-step methods.17,102 Compared to single-step

integrators, the multi-step integrators are more complicated to implement, but have

the advantage of being more efficient as they can take larger step sizes for a given

accuracy, and also require fewer evaluations per step.17 One of the most commonly

used single-step methods for performing high-fidelity integration is the high order

Runge Kutta technique.36,73 Over the years various other alternatives, like the collo-

cation methods10 or the Taylor series integration methods,120 have also been proposed.

These methods show promise but further research is needed prior to a broad accep-

tance by the community. The problem of fast force model computation has also been

subjected to numerous studies in the past.71,112,88,68,8, 6, 19 Often truncated16,26 and

semi-analytic techniques103,61 are adopted, which compromise the accuracy of higher
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order solutions to improve performance.

1.2.5.2 Overview of solution strategy and results

The aim of chapter 6 of this thesis is to bring together the fast ephemeris compu-

tation model (chapter 4) and the new Fetch gravity model (chapter 3), along with

novel parallel algorithms to develop an integrated tool that is capable of performing

high-fidelity integration of multiple spacecraft at unprecedented speeds. To achieve

this goal a spacecraft integration tool is proposed that takes advantage of 1) new

fast and accurate gravity perturbation models (the FIRE and Fetch model) and 2)

a Graphics Processing Unit (GPU) based Runge-Kutta integrator to achieve massive

parallelism across multiple spacecraft. The two methods combined lead to multi-

plicative speedups, making the tool two to four orders in magnitude faster, when

compared to a similar simulation performed on a single CPU. The solution methodol-

ogy is highly relevant to the conjunction problem, covariance realism, particle filters

and Monte-Carlo analyses.

1.3 Dissertation Organization

This dissertation is divided into 5 primary chapters (2 to 6), excluding the intro-

duction and the conclusion. Each chapter is dedicated to solving one of the five

problems listed in Table 1. Each of these problems presented challenges which were

both theoretical and computational in nature. Keeping this in mind, a major part

of the current work has been to find solution methodologies which provide orders of

magnitude in speed increase while maintaining accuracy and robustness. Apart from

novel solution strategies, modern computational techniques like volume interpolation,

analytic matrix inversions and parallel GPU and CPU based programming have also

been utilized. Chapter organization, the type of improvements and the computer

resources used are summarized in Table 2.
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Table 2: Chapter organization and classification of contributions

Problem Chapter Contribution type Hardware used
Lambert’s problem 2 theoretical, algorithmic CPU

High-fidelity
geopotential computation

3
theoretical, methodological,

algorithmic
CPU, Cluster computing

Ephemeris computation 4 methodological, algorithmic CPU
Sensitivity computation 5 methodological,algorithmic CPU and GPU

Multiple
spacecraft trajectory simulation

6 algorithmic, methodological CPU and GPU

1.4 Publication History

The work done in this dissertation has been presented at various technical confer-

ences. Work done in chapter 4 has already been published in the journal of Celestial

Mechanics and Dynamical Astronomy. A publication based on chapter 3 has been

submitted to an AIAA journal and is currently under review. Appendix C lists the

author’s publication history.
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CHAPTER II

THE MULTIPLE REVOLUTION LAMBERT PROBLEM

2.1 Chapter Summary

In this chapter, a new universal variable (k) is introduced to improve the solution

performance for the multiple revolution Lambert boundary value problem. The for-

mulation is motivated by the Bate, Muller and White’s universal variable approach

and is based on the cosine of the change in eccentric anomaly. The formulation takes

advantage of a geometry-based parameter to simplify the universal formulation of

the Lambert equation. This equation, defined as a function of the universal vari-

able k, is shown to have simplified derivative expressions and requires only a single

transcendental function evaluation. The two Stumpff functions, present in several

classic formulations, are condensed to a single analogous function, that handles the

separate conic. Using rational polynomials for initial guesses combined with Halley’s

method for root-solving, allows for convergence in 2-4 iterations for ∼99.5% of cases

(on average). The accurate initial guess approximations further reduce the number of

minimization calls that are typically needed in order to bound the multiple revolution

root-solve. The formulation is derived, followed by a thorough performance analysis,

comparing both accuracy and runtimes to the state of the art Gooding’s method.

The method proposed is demonstrated to be statistically as accurate as the Gooding

method, while achieving ∼40-60% reductions in runtime, on average.

2.2 Chapter Nomenclature

x Sundman transformation variable

k Proposed universal variable

a Semimajor axis

e Eccentricity
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p Semilatus rectum

θ Transfer angle

d Transfer angle parameter (+1 for 0 < θ < π, -1 for π < θ < 2π)

f, g Lagrange f and g functions

τ Lambert geometry parameter

∆E Change in eccentric anomaly

∆F Change in hyperbolic anomaly

i ith spacecraft revolution

M Mass of the body

N Number of spacecraft revolutions

GM Gravitational parameter of the primary

T ∗ Target time of flight

k∗ Value of k corresponding to T ∗

k̃∗ Initial guess for k∗

k∗i Value of k corresponding to T ∗ for the ith revolution transfer

k̃∗i Initial guess for k∗i

TOF Time of flight

TOF
′

First derivative of TOF function with respect to k

TOF
′′

Second derivative of TOF function with respect to k

Tb,i Minimum TOF for the ith revolution transfer

kb,i k corresponding to Tb,i

k̃b,i Approximation for kb,i

~r1 Initial position vector

~r2 Final position vector

~v1 Initial velocity vector

~v2 Final velocity vector

W Auxiliary function

W
′

First derivative of W with respect to k

W
′′

Second derivative of W with respect to k

Nmax User requested maximum number of revolutions

Nub Total number of revolutions possible for a given set of input variables

zero-rev Zero revolution

lp Long period

sp Short period

multi-rev Multiple revolution

wrt With Respect To
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2.3 Introduction and Background

Lambert’s problem enjoys the title of being one of the extensively studied prob-

lems in celestial mechanics and astrodynamics.78,48,13,139,37 The problem has wide

applicability and its solution acts as a building-block algorithm for various prob-

lems like interplanetary trajectory design and optimization,1,84,115 grand tour de-

sign,138,84,109,130,75,53 and orbit determination86,14

The general Lambert problem involves computing all possible keplerian transfers

between two points relative to a point mass gravitating body. The general solution

procedure involves a one dimensional root-solve of a transcendental equation, which is

commonly addressed as the Lambert time of flight equation. The solutions methods

existing in literature for solving the multiple revolution Lambert problem fall under

two general classes 1) direct geometry based methods and 2) universal variable based

methods. Direct geometry based methods iterate on one of the conventional orbital

elements and have been a subject of active research for many years.37,45,93,32,54,9, 52

The need for a universal formulation, valid for all conics lead to the development of

the universal variable based solution of the multi-rev Lambert problem. The universal

variable based solution method is numerical robust and has enjoyed many outstanding

contributions over the past few decades.65,13,77,48,11,74 Recently, an alternate class of

methods based on dynamical systems theory90 and series inversion133 have also been

proposed.

Recent comparative studies performed by Peterson et al.98 and Klumpp both

identify Gooding’s method to be one of the most fastest and accurate implemen-

tations available for the solving the Lambert problem for the zero revolution case.

Gooding’s48 method extends the work of Lancaster77 by formulating an initial guess

generator and uses a 2nd order method for rapid root solving.

In this chapter a formulation of the multiple revolution Lambert problem based on

a cosine of the change eccentric anomaly, is introduced. The formulation is motivated
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by Bate et al’s.11 universal variable approach and shown to simplify the Lambert

TOF equation. Further, it also identifies a new bounded geometry parameter which

dictates the shape of the TOF function. The proposed formulation requires only a

single transcendental function evaluation and enjoys simple, elegant derivative ex-

pressions. Zero-rev and multi-rev initial guess strategies based on rational functions

lead to a fast and robust solution procedure. The accurate multi-rev initial guess

on a geometry based parameter is further used to significantly reduce the number

of minimization calls that are typically needed in order to bound the multiple rev-

olution root-solve. Given the simplified form of the TOF equation and its higher

order derivatives, a second order method (similar to the Gooding’s method) is used

for rapid root solving of the TOF equation. The proposed implementation is com-

pared to Gooding’s method, which as stated before is arguably the fastest and most

robust. Furthermore, the comparisons performed in this chapter use the original code

published by Gooding48 leading to a fair comparison. Thanks to the accurate initial

guesses, the proposed method (like Gooding’s method) also converges in 3 iterations

for a vast majority of the cases. Rapid convergence coupled with a simplified for-

mulation results in 1.85, 1.75 and 2.15 times speedup (on average) over the Gooding

method for hyperbolic, zero-rev and multi-rev case, respectively.

In the next section a briefly derivation of the Lambert formulation is presented.

Next, the initial guess generation techniques are described, followed by algorithm

implementation details. Finally, the performance of the new formulation is presented

and compared with Gooding’s method on a statistically exhaustive set of transfers.

2.4 Multiple Revolution Lambert Problem

Figure 2 depicts a general diagram of the Lambert problem. Vectors ~r1 and ~r2 are the

bounding position vectors; TOF stands for the time of flight for the transfer and θ is

the transfer angle between the two position vectors. All possible arcs connecting the
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Figure 2: General problem geometry

two points A and B with the required TOF and which satisfy Keplerian motion are

possible Lambert solutions. There are 2ND
ub+1 direct solutions and 2NR

ub+1 retrograde

solutions where ND
ub and NR

ub is the maximum number of revolutions possible for direct

and retrograde transfers, respectively, given a set of input parameters.

2.4.1 The Lambert formulation

In this section, a Lambert formulation based on the new universal variable, “k”, is de-

rived. The formulation is motivated by Bate et al’s.11 universal variable approach and

follows a similar derivation procedure to obtain the Lambert time of flight equation.

As Keplerian motion is confined in a plane, the vectors ~r2 and ~v2 can be expressed

as a function of ~r1 and ~v1 , given by Eqs. 1 and 2.

~r2 = f ~r1 + g ~v1 (1)

~v2 = ḟ ~r1 + ġ ~v1 (2)

where f , g, are the Lagrange f and g functions, respectively. The f and g functions

assume vectors ~r1 and ~v1 form the basis of the resulting solution space. The f and g

expressions can be written as a function of both the transfer angle θ and the change
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in eccentric anomaly ∆E (see pgs. 218-219 in Bate et al.11) , given by Eq. 3-6 below:

f = 1− a

r1

[1− cos(∆E)] = 1− r2

p
[1− cos(θ)] (3)

g = TOF −

√
a3

µ
[∆E − sin(∆E)] =

r1r2 sin(θ)
√
µp

(4)

ḟ = −
√
µa sin(∆E)

r1r2

=

√
µ

p

1− cos(θ)

sin(θ)

[
1− cos(θ)

p
− r1 + r2

r1r2

]
(5)

ġ = 1− a

r2

[1− cos(∆E)] = 1− r1

p
[1− cos(θ)] (6)

The classic Sundman transformation defines the time rate of change of the universal

variable x (Eq. 7) and is expressed as a function of change in eccentric anomaly ∆E

(see pgs. 191-192 in Bate et al.11), given in Eq. 8:

ẋ =

√
µ

r
(7)

x√
a

= ∆E (8)

As the hyperbolic anomaly (F ) and the eccentric anomaly (E) are related via the

definition F = iE, the equivalent form of Eq. 8 for hyperbolic orbits is given by:

x√
−a

= ∆F (9)

We now introduce the new universal variable k, defined by the transformation

cos(∆E) = k2 − 1, given by the right triangle in Fig. 3

Figure 3: Pythagorean transformation triangle
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Using Eq. 8 and 9 we relate the universal variable k with x as follows:

cos(
x√
a

) = cos(∆E) = k2 − 1 (10)

sin(
x√
a

) = sin(∆E) = k
√

2− k2 (11)

cos(i
x√
−a

) = cosh(∆F ) = k2 − 1 (12)

sin(i
x√
−a

) = sinh(∆F ) = k
√
k2 − 2 (13)

For ease of derivation, an intermediate variable, q, is defined as follows:

q =
x√
a

= ∆E = −i∆F (14)

Taking into account the correct quadrant and using Eqs. 10, 12 and 14, q can be

expressed as a function of k and N as follows:

q =

 (1− sgn(k))π + sgn(k) cos−1(k2 − 1) + 2πN −
√

2 ≤ k ≤
√

2

−i cosh−1(k2 − 1) k ≥
√

2
(15)

Note that the variable q is also related to the universal variable, z, used by Bate

et al.,11 as z = q2. Using Eq. 14, the expression for a can be written as:

a =
x2

q2
(16)

Substituting a from Eq. 16 into Eq. 3 results in the following expression:

x2

q2r1

[1− cos(∆E)] =
r2

p
[1− cos(θ)] (17)

Using the definition of cos(∆E) from Eq. 10 and isolating the expression for p

from Eq. 17, we obtain:

p =
r1r2q

2(1− cos(θ))

x2(2− k2)
(18)

Substituting p from Eq. 18 into Eq: 5, the following expression is obtained:

−
√
µa sin(∆E)

r1r2

=

√
µx2

r1r2q2

√
[1− cos(θ)] (2− k2)

r1r2 sin(θ)

[
x2(2− k2)

q2
− (r1 + r2)

]
(19)
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Next, substitute sin(∆E) from Eq. 11 and a from Eq. 16 into Eq. 19 and simplify

to obtain:

− k

( √
r1r2 sin(θ)

(r1 + r2)
√

1− cos(θ)

)
=
x2(2− k2)

(r1 + r2)q2
− 1 (20)

Inspecting the LHS of Eq. 20 we see the possibility of zero both in the numer-

ator and the denominator when θ = 0. To circumvent this, following trigonometric

equivalence is implemented:

sin(θ)√
1− cos(θ)

= d
√

1 + cos(θ) , d =

 +1 0 ≤ θ ≤ π

−1 π ≤ θ ≤ 2π
(21)

Next, a parameter dependent only on geometry is introduced:

τ = d

√
r1r2[1 + cos(θ)]

r1 + r2

(22)

where τ is a non-dimensional function of r1, r2 and θ and varies between
[
−1√

2
, 1√

2

]
.

Note, that the parameter τ is related to the unbounded parameter A found in the

universal variable approach of Bate et al.,11 as follows

τ =
A

r1 + r2

(23)

Using the above definition of τ , Eq. 20 simplifies into the following expression for

x:

x = q

√
(r1 + r2)(1− kτ)

(2− k2)
(24)

Substituting a and p from Eqs. 16 and 18, respectively, into Eq. 4, leads to:

TOF =
(r1 + r2)
√
µ

x

q

√
2− k2

[
d

√
r1r2[1 + cos(θ)]

r1 + r2

+
x2(q − k

√
2− k2)

q2
√

2− k2(r1 + r2)

]
(25)

Substituting τ from Eq. 22 and x from Eq. 24 into Eq. 25 results in the following

expression for TOF as a function of input geometry variables (τ and S) and the
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universal iterate variable, k:

TOF (k) = S
√

1− kτ [τ + (1− kτ)W ] (26)

S =

√
(r1 + r2)3

µ

m = 2− k2

W =
q√
m3
− k

m

Note that W becomes indeterminate as k approaches
√

2 and thus requires a

series evaluation when k −
√

2 is close to zero. Using q from Eq. 15, W is expressed

as follows:

W =


(1−sgn(k))π+sgn(k) cos−1(1−m)+2πN√

m3
− k

m
−
√

2 ≤ k <
√

2− ε (elliptical orbits)

− cosh−1(1−m)√
−m3 − k

m
k >
√

2 + ε (hyperbolic orbits)

Ws

√
2− ε ≤ k ≤

√
2 + ε (N = 0)

(27)

where Ws is given by the following series:

Ws =

√
2

3
−
v

5
+

2

35

√
2v2 −

2

63
v3 +

2

231

√
2v4 −

2

429
v5 +

8

6435

√
2v6 −

8

12155
v7

+
8

46189

√
2v8 −

8

88179
v9 +

16

676039

√
2v10 −

16

1300075
v11 +

16

5014575

√
2v12 −

16

9694845
v13

+
128

300540195

√
2v14 −

128

583401555
v15 +

128

2268783825

√
2v16 +O

(
v

33
2

)
(28)

v = k −
√

2

For the current thesis, the Ws series is truncated to include up to O (v8 ), and an ε

value of 2E-2 is selected resulting in Ws with a maximum error of 2E-15 at the
√

2− ε

boundary. It should be noted that W is related to the classic Stumpff functions (C

and S), defined in Bate et al.,11 by the following expression:

W =
S

C
√
C

(29)

Equation 26 (referred to as the TOF equation) along with Eq. 27 complete the set

of equations required to fully solve the multi-rev Lambert problem. The expression for

TOF is an explicit function of the universal variable k and requires only one inverse
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cosine function and 3 square roots to calculate the time of flight. Furthermore, S

has the dimension of time, hence the expression to the right of S is dimensionless.

This decoupling helps in the generation of initial guesses for the multi-rev transfer

solution, as discussed later. Figure 4 shows a representative plot of the whole solution

Figure 4: TOF vs. k [r1 = 1, r2 = 7.098, θ = 69.37 (deg)]

space as a function of k. Only the d = 1 case is shown for the elliptic transfers, while

the hyperbolic cases include both d = ±1. In Fig. 4, Tp stands for the parabolic TOF

and is obtained by substituting k =
√

2 in the TOF equation:

Tp = S

√
1−
√

2τ
(τ +

√
2)

3
(30)

It should be noted that for d = 1, TOF goes to zero at k = 1
τ

but for d = −1,

TOF goes to zero at k = +∞. Furthermore, each multi-rev transfer has a minimum

possible time of flight associated with it (Tbi), as shown in Fig. 4. Hence, if T ∗ is

less than Tb,i for a given revolution i, then the ith revolution transfer does not exist.

Hence, for a given set of input parameters there exists a unique upper bound on N ,

defined as Nub. If the solution exists, then the accurate location of the associated kb,i

provides robust bounds for ensuring a successful root search on each branch.
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2.4.2 Solution Procedure

Given a target time of flight (T ∗) and an input geometry set (S and τ); the solution

to the Lambert problem is found via a one-dimensional root-solve of the function L,

given below:

L(k) = TOF (k)− T ∗ (31)

where k is the universal iteration variable defined in the previous section. All

gradient based root solving methods require at least the first derivative of the function

being solved. The multi-rev case, as shown in Fig. 4, has a minimum TOF value (Tb,i)

for i > 0, and is obtained by minimizing L for each revolution i. These minimizations

are achieved using Newton’s method (requiring only the first two derivatives) and are

necessary to identify Nub and robustly bound the root solves of L in the multi-rev

case. For a given value of k, f and g functions are used to calculate the final v1 and

v2 velocity vectors as follows:

f = 1− 1− kτ
r1

(32)

g = τ(r1 + r2)
√

1− kτ (33)

ġ = 1− 1− kτ
r2

(34)

~v1 =
~r2 − f~r1

g
(35)

~v2 =
ġ~r2 − ~r1

g
(36)

The decision to use a second order root solving method is justified due to the

relatively simple form of the TOF function and its derivatives wrt k. Equation 37

gives these compact expressions (see Eq. 26):

TOF
′
=
−TOF

2c
+ Sτ

√
cτ(W

′
c−W )

TOF
′′

=
−TOF

4c2
+ Sτ

√
cτ(

W

c
+ cW

′′ − 3W
′
) (37)

c =
1− kτ
τ
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where W
′

and W
′′

are the first and second derivatives of W wrt k, efficiently

expressed in Eqs. 38 and 39, respectively.

W
′
=


−2+3Wk

m
k <
√

2− ε
−2+3Wk
−m k >

√
2 + ε

∂Ws

∂k

√
2− ε < k <

√
2 + ε

(38)

W
′′

=


5W
′
k+3W
m

k <
√

2− ε
5W
′
k+3W
−m k >

√
2 + ε

∂2Ws

∂k2

√
2− ε < k <

√
2 + ε

(39)

The Halley’s method enjoys cubic convergence unless TOF
′′ ≈ 0, in which case

it behaves like the Newton method. The iteration formula for the Halley’s method is

briefly stated is Eq. 40.

ki+1 = ki + ∆k

∆k = −L
[
TOF

′ − LTOF
′′

2TOF ′

]−1

(40)

Note that Gooding48 also uses Halley’s method to achieve rapid convergence. In

the next section the initial guess strategies for the hyperbolic case, zero revolution

elliptical case, and multi-rev case, respectively.

2.5 Initial Guess Generation

A robust Lambert solver relies on a fast and efficient root-solving algorithm. However

the convergence of any root solver benefits from a close initial guess. The lack of such

starting points has led researchers to adopt other less efficient root solving algorithms

(like the bisection method) for solving the Lambert’s problem.139 On the other hand,

Gooding, using an accurate initial guess strategy is able to achieve convergence to at

least 13 digits in 3 iterations for a vast majority of the cases.

Similar to Gooding’s method strategy of initial guess generation,5,48 the solution

space is divided into various regions and accurate approximations of the TOF function

27



within those regions are generated.

We start by defining a general rational approximating function given by Eq. 41.

F (x) =
axα + 1

bxα + c
(41)

where x is normalized from 0 to 1 and F (x) is the function being approximated.

A simple linear transformation in Eq. 42 is used to convert from a normalized x to k.

Variables kn and km denote the bounds on the value of k for a given region.

k = kn + (km − kn)x (42)

The coefficients a, b, and c are found enforcing general boundary conditions and

intermediate constraints, F1 = F (1), Fi = F (xi), F0 = F (0) resulting in:

F (x) =
[Fi (−F1 + F0)xα + F0 (F1 − Fi)]xiα − xαF1 (F0 − Fi)

[(−F1 + F0)xα + F1 − Fi]xiα − xα (F0 − Fi)
(43)

where xi stands for some intermediate value of x between 0 and 1 and changes

based on the region being approximated. Enforcing an intermediate constraint allows

us to capture the changes in curvature of the function being approximated. Similar to

xi, α also changes based on the region being approximated and is selected empirically

so as to allow for computation of the power 1
α

without the use of the expensive pow

function. Having the same degree (α) in the numerator and denominator allows us

to invert the rational polynomial (Eq. 41):

x∗ =

[
Z (F0 − F ∗) (F1 − Fi)

(Fi − F ∗) (F1 − F0 )Z + (F0 − Fi) (F1 − F ∗)

] 1
α

(44)

Z = xαi

It should be noted that for a given value of α and xi, Z can be precomputed and

stored as a constant. Finally, Eq. 42 is applied to convert from x∗ to k̃∗.

k̃∗ = kn + (km − kn)x∗ (45)
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where k̃∗ is an approximation of k∗ corresponding to T ∗. For speed consideration all

the initial guesses maybe computed in single precision.

Table 3 lists various Lambert problem sets considered for evaluating the perfor-

mance of the initial guesses defined in the next 3 sections. Throughout this study

length units (LU) and time units (TU) are selected such that r1 and GM are normal-

ized to unity. The normalized convergence tolerance is set to 1E-13, unless specified

otherwise. The vector ~r1 is expressed as function of the three variables a, b and c (see

Table 3):

~r1 =

[
a√

a2 + b2 + c2
,

b√
a2 + b2 + c2

,
c√

a2 + b2 + c2

]
(46)

Table 3: Test runs
Test Name Sol. Type # Test cases a b c ~r2(1 : 3) (LU) TOF (TU) Nmax

A Hyperbolic 1,000,000 -10↔10 -10↔10 -10↔10 -10↔10 0.3↔35.25 0
B Elliptical 1,000,000 -10↔10 -10↔10 -10↔10 -10↔10 0.0↔500.0 0
C Elliptical 1,000,000 -9↔9 -9↔9 -9↔9 -9↔9 0.0↔1000.0 20
D Elliptical 1,000,000 -9↔9 -9↔9 -9↔9 -9↔9 0.0↔2000.0 20

E
Elliptical,
Hyperbolic

1,000,000 -5↔5 -5↔5 -5↔5 -10↔10 2.00↔1000.00 20

2.5.1 Hyperbolic initial guess generation

Figure 5: Hyperbolic solution space [r1 = 1, r2 = 7.098, θ = 69.37, 290.63 (deg)]

Figure 5 gives a general overview of the hyperbolic solution space as a function of

k. The general behaviour of the solution space changes with the parameter, d, and
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hence separate initial guesses are generated for d = ±1, respectively. For d =1, TOF

goes to zero as k approaches 1
τ
, leading to well defined search boundaries. For d =

-1, the solution space is divided into two regions (see Fig. 5) as follows:

• Region H1 :
√

(2) ≤ k ≤ 20

• Region H2 : 20 < k ≤ +∞

For d=1 and d=-1 (only region H1) , we use the general initial guess formula given

by Eq. 44.

Table 4: Hyperbolic initial guess parameters
Case Region Eq.# kn km ki Z α F0 F1 Fi F∗

d = 1 H1, H2 44
√

(2) 1
τ

kn+km
2

1√
2

1
2

Tp (see Eq. 30) 0.0 TOF (ki) T∗

d = −1 H1 44
√

(2) 20 2kn+km
3

1
3

1 Tp TOF (20) TOF (ki) T∗

d = −1 H2 47 - - - - - - - - -

For the case d = −1 and region H2, a modified form of Eq. 44 (given by Eq. 47)

is used, which matches the value of TOF at k = 20 and k = 100 and allows k̃∗ to

approach infinity as T ∗ goes to zero. Table 4 lists the initial guess parameters for

various cases.

k̃∗ =

[
T1(T0 − T ∗)10− T0

√
20(T1 − T ∗)

T ∗(T0 − T1)

]2

(47)

T0 = TOF (20)

T1 = TOF (100)

To expedite initial guess computation the auxiliary function W can be precom-

puted for k = 20 and k = 100, simplifying the expression of TOF at these points as

follows:

TOF (20) = S
√

1− 20τ [τ + 0.04940968903(1− 20τ)] (48)

TOF (100) = S
√

1− 100τ [τ + 0.00999209404(1− 100τ)]

To evaluate the performance of the hyperbolic initial guess, a 1 million case Monte-

Carlo Test Run A (see Table 3) is performed. Figure 6 shows the distribution of
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Figure 6: Iteration distribution

Figure 7: Iteration vs. Transfer angle

number of iterations required corresponding to each root solve. For 99.28% of the

cases the method converges in 2 - 4 iterations, with 87.66% of cases taking 3 or

fewer iterations. The worst case iteration count (for 1 out of 1 million cases) was 13.

Figure 7 shows iteration count statistics as a function of transfer angle where each

data point represents the mean and ±3σ bounds for binned neighboring solutions

ordered according to cos(θ). Remarkably, the initial guess leads to leads to good

performance across the whole range of transfer angle. As shown later, the velocity
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Table 5: Zero-rev initial guess parameters (E1, E2), using Eq. 44, for d = ±1
Region kn km ki Z α F0 F1 Fi F ∗

E1 0
√

2 1√
2

1
2

1 TOF (0) Tp TOF ( 1√
2

) T ∗

E2 0 -1 −1
2

1
2

1 TOF (0) TOF (−1) TOF (−1
2

) T ∗

vector resolution will suffer in accuracy when θ is near Nπ, despite that the root-solve

procedure is well behaved.

2.5.2 Elliptical zero revolution initial guess generation

Figure 8: Zero revolution solution space [r1 = 1, r2 = 7.098, θ = 69.37 (deg)]

Taking into account the curvature changes, the zero revolution solution space is

divided into 4 different regions (E1...4) as shown in Figure 8. Separate approximations

to the TOF function are formulated for each of these regions. Specifically, for regions

E1 and E2 we use the general initial guess formula given by Eq. 44. For regions E3 and

E4 we modify Eq. 44 to approximate the inverse of the TOF , thereby making F (x)

go to zero as TOF goes to infinity. Also, contrary to the hyperbolic case, the general

characteristics of zero-rev solution space are independent of the transfer direction, d.

Table 5 lists the initial guess parameters for the two regions, E1 and E2. For

regions E3 and E4 we modify the the general 3 point interpolation formula (Eq. 44)
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to approximate the inverse of the TOF function as follows:

k̃∗ = −c4

(
(γ1c1 − c3γ3)c2 + c3c1γ2

γ3c1 − c3γ1 − γ2c2

) 1
α

(49)

γ1 = Fi(F
∗ − Fn)

γ2 = F ∗(Fn − Fi)

γ3 = Fn(F ∗ − Fi)

Table 6 lists the various initial guess parameters corresponding to Eq. 49, for the

regions E3 and E4, respectively.

Table 6: Zero-rev initial guess parameters (E3, E4), using Eq. 49, for d = ±1
Region kn km ki c1 c2 c3 c4 α Fn Fi F∗

E3 -1 −
√

2 -1.38 540649
3125

256 1 1 16 TOF (−1)−1 TOF (−1.38)−1 T∗−1

E4 -1.38 −
√

2 -1.41 49267
27059

67286
17897

2813
287443

4439
3156

243 TOF (−1.38)−1 TOF (−1.41)−1 T∗−1

For various intermediate values of k, values for W are precomputed to avoid

evaluation at runtime. Equation 50 lists the various intermediate values of W required

for the zero-rev initial guess.

W (−1.41) = 4839.684497246 , W (−1.38) = 212.087279879 (50)

W (−1) = 5.712388981 , W

(
−1

2

)
= 1.954946607

W

(
1√
2

)
= 0.6686397730

For k = 0 the TOF equation simplifies:

TOF (0) = S

(√
2

4
π + τ

)
(51)

The correct approximation region is identified by comparing T ∗ with TOF values at

k = 0, k = −1 and k = −1.138.

Similar to the hyperbolic case, a 1 million case Monte-Carlo Test Run B (see

table 3) is performed for initial guess performance evaluation. Figure 9 shows the

distribution of number of iterations corresponding to each root solve. The root solv-

ing process converges in 2 - 4 iterations, with a 96.25% cases taking 3 iterations or
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Figure 9: Zero-rev: Iteration distribution

Figure 10: Zero-rev: Iteration vs. Transfer angle

fewer. Figure 10 and 11 bin the results according to transfer angle and flight time,

respectively. The initial guess strategy performs well over the whole solution space,

with a slight increase in number of iterations for high TOF cases (near the limit of

k = −
√

2).
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Figure 11: Zero-rev: Iteration vs. k

2.5.3 Multiple revolution initial guess generation

Figure 12 shows the multi-rev solution space for an example ith revolution transfer.

The procedure for multi-rev initial guess generation is broken down into two parts,

1) computing k̃b,i, a close approximation to kb,i and 2) using k̃b,i to compute an

approximation of k∗i .

Figure 12: Multi-rev solution space [r1 = 1, r2 = 7.098, θ = 69.37 (deg)]
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2.5.3.1 Approximating Tb,i

We start by first computing a close approximation to kb,i, given by k̃b,i. A close

approximation to kb,i helps us in computing the multi-rev initial guess. The slope

of the TOF function is zero at k = kb,i. Equating the first derivative of the TOF

equation (Eq. 37) wrt k to zero, two solutions of τ as a function of N and kb,i are

obtained:

τ =
4W

′

4W ′kb,i + 3W ±
√

9W 2 + 8W ′ (52)

Using the positive root solution we plot τ as a function of kb,i and associated ∆Eb,i

(see Eq. 10) for different values of i in Fig. 14.

Figure 13: kb,i vs. τ

Remarkably, τ is found to be a well-behaved function of ∆Eb,i or kb,i. Figure 15

plots τ vs. kb,i in the region close to kb,i = −
√

2 . Given a value of i, all values of kb,i

which give τ ≥ −1√
2

are permissible. As i approaches infinity the minimum permissible

value of kb,i approaches the limit −
√

2. Similarly, in the τ vs. ∆Eb,i plot, the point at

which the curve crosses zero (∆Eb,i0) is only a function of i and rapidly approaches π

as i goes to infinity. The curve is nearly symmetrical about ∆Eb,i0 and this symmetry

becomes exact as i approaches infinity. With these insights, an approximation of
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Figure 14: ∆Eb,i vs. τ

Figure 15: Behaviour of kb,i near −
√

2

∆Eb,i as function of τ is given by follows:

∆̃Eb,i = v2 [1− sgn(τ)] + v2 sgn(τ)

(
1

1 + v1

)1/4

(53)

v1 =
8 |τ |

v2(
√

2− 2 |τ |)
v2 = ∆Eb,i0

The inverse of the approximation as defined above, matches the value of τ at

∆Eb,i = 0 and ∆Eb,i = ∆Eb,i0 and the slope at ∆Eb,i = 0. Finally, the transformation
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defined in Eq. 10 along with proper sign is used to compute k̃b,i from ∆̃Eb,i as follows:

k̃b,i = sgn(π − ∆̃Eb,i)

√
cos(∆̃Eb,i) + 1 (54)

For i = 1 → 20, ∆Eb,i0 is precomputed and stored as constant, and for i > 20,

∆Eb,i0 is set equal to π. The first 20 values of ∆Eb,i0 are given in Eq. 55.

∆Eb,i0(1→ 10) = [2.848574, 2.969742, 3.019580, 3.046927, 3.064234, 3.076182, 3.084929, 3.091610, 3.096880, 3.101145]

(55)

∆Eb,i0(11→ 20) = [3.104666, 3.107623, 3.110142, 3.112312, 3.114203, 3.115864, 3.117335, 3.118646, 3.119824, 3.120886]

Figure 16 shows the absolute error in k̃b,i as a function of τ for four different values

of i. The initial guess k̃b,i performs well over the full range of τ . Figure 17 shows the

iteration count distribution for the Test Run C (see Table 3), using Newton’s method.

A total number of 1,771,749 minimization root solves were performed. One average,

3-4 Newton-Raphson iterations are needed to satisfy the convergence tolerance.

Note that the only purpose of finding the minimum of the multi-rev curve is

to robustly bound the root-solve procedure for both the left and right branches.

Considering that an accurate approximation for Tb,i is now available, the algorithm

can actually skip the minimization phase for a large number of cases, while still

maintaining robustness. We check solution feasibility by comparing T ∗ to T̃b,i. A root

solve for kb,i is only required if T ∗ is close to (within some user defined percentage)

and less than T̃b,i. This strategy reduces the number of minimization root solves,

resulting in a significant increase in performance of the multi-rev algorithm. The

above strategy has been verified to work with a user defined percentage of 20 when

testing over ∼3 billion multi-rev solutions. A mathematically robust strategy for

bounding the root-solves without performing a full minimization is developed in the

next section. In general, we are guided by the basic principle that the minimization

step is expensive and should be avoided when possible.
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Figure 16: Absolute error in kb,i

Figure 17: Iterations distribution: minimization phase

2.5.3.2 Multi-rev initial guess:

To generate an approximation of k∗i , the multi-rev solution space is divided into 4

regions as shown in Fig. 12. For a given value of d, T ∗ and i, there are two possible

solutions of k∗. The branch to the right of the k = kb,i denotes the long period

(lp) solution and the branch on the left denotes the short period (sp) solution. The

bottom most point (kb,i) can either be positive or negative and is approximated by
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k̃b,i, with a corresponding TOF approximation, T̃b,i.

For a fixed sign of k̃b,i and depending upon the value of T ∗ and T̃b,i, six possible

initial guess regions (3 for each, sp and lp) are identified. The general 3 point approx-

imation formula defined by Eqs. 44 and 45 is used for computing the initial guess for

all of the 6 cases.

Table 7 lists the 6 six cases along with their initial guess parameters for k̃b,i ≥ 0.

For cases with T ∗ in M1 or M4 regions , the inverse of the TOF function is used

to compute the initial guess. In a similar fashion Table 8 lists the 6 cases and their

associated initial guess parameters for k̃b,i ≤ 0.

Table 7: Multi-rev initial guess parameters (k̃bi ≥ 0), used in Eq. 44
Sol.

Type
T∗

location
k̃b,i

location
kn km ki Z α F0 F1 Fi F∗

lp M1 M1 k̃b
√

2
k̃b+
√

2

2
1
4

2 T̃−1
b

0 TOF (ki)
−1 T∗−1

lp M1 M2 1
√

2 1+2
√

2
3

4
9

2 TOF (1)−1 0 TOF (ki)
−1 T∗−1

lp M2 M2 k̃b 1
1+k̃b

2
1
4

2 T̃b TOF (1) TOF (ki) T∗

sp M1 or M2 M1 or M2 0 k̃b
k̃b
2

( 1
2

)α 6
5

TOF (0) T̃b TOF (ki) T∗

sp M3 M1 or M2 -1 0 −1
2

1
2

1 TOF (−1) TOF (0) TOF (−1
2

) T∗

sp M4 M1 or M2 -1 −
√

2 −1−2
√

2
3

4
9

2 TOF (−1)−1 0 TOF (ki)
−1 T∗−1

Analogous to the previous sections, W for the multi-rev case can be precomupted

(Table 9) for intermediate values of k to expedite initial guess generation.

As k̃b,i is only an approximation for kb,i, there exists ambiguity in successfully

Table 8: Multi-rev initial guess parameters (k̃b,i ≤ 0), used in Eq. 44
Sol.

Type
T∗

location
k̃b,i

location
kn km ki Z α F0 F1 Fi F∗

sp M4 M4 k̃b −
√

2
k̃b−
√

2

2
1
4

2 T̃−1
b

0 TOF (ki)
−1 T∗−1

sp M4 M3 -1 −
√

2 −1−2
√

2
3

4
9

2 TOF (−1)−1 0 TOF (ki)
−1 T∗−1

sp M3 M3 k̃b -1
−1+k̃b

2
1
4

2 T̃b TOF (−1) TOF (ki) T∗

lp M3 or M4 M3 or M4 k̃b 0
k̃b
2

1
4

2 T̃b TOF (0) TOF (ki) T∗

lp M2 M3 or M4 0 1 1
2

( 1
2

)α 6
5

TOF (0) TOF (1) TOF ( 1
2

) T∗

lp M1 M3 or M4 1
√

2 1+2
√

2
3

4
9

2 TOF (1)−1 0 TOF (ki)
−1 T∗−1

Table 9: Precomputed W values
k W

−1−2
√

2
3

27.25239909 + 27.75304668N
−1 5.71238898 + 2πN
−1
2

1.95494660 + 2.71408094N

0
√

2
4

(π + 2πN)
1
2

0.75913433 + 2.71408094N
1 0.57079632 +2πN

1+2
√

2
3

0.50064759+27.75304668N
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Figure 18: Bounding minimization root solve

bounding the root solve, whenever k̃b,i is one of the region bounds. Figure. 18 depicts

the case when T ∗ lies in the region M2 with k̃b,i > 0. The algorithm first starts by

computing ki for both the branches. Next, consider the left branch (sp solution) in

Fig. 18 if TOF (ki) < T ∗ the and TOF (ki) > T̃b,i then a root between ki and kn

is guaranteed. Similarly, for the right branch (lp solution) if TOF (ki) < T ∗ and

TOF (ki) > T̃b,i then we can guarantee a root between ki and km.

Assuming, T ∗ ≥ T̃b,i, ambiguity arises when T ∗ < TOF (ki) in either of the

branches. In such a case, the algorithm first locates the branch on which k̃b,i lies

by computing the sign of the slope at k = k̃b,i. In Fig. 18, the left branch constitutes

k̃b,i and can be bounded, with a guaranteed root between k̃b,i and kn. For the right

ambiguous branch, the root solver at each iteration checks the validity of the current

step by checking sign of the slope at each iteration. If the computed slope at a given

iteration has the wrong sign, a new approximation of kb,i is computed by performing

Newton step updates, noting that the derivatives TOF
′

and TOF
′′

at the current k

are already present. The partial minimization root solve is performed until one out

of following two conditions is satisfied: 1) the root solver can be bounded, with the

new approximation of kb,i having the correct sign of the slope or 2) kb,i is located
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to within the user defined convergence tolerance. Having computed a new bound,

the initial guess is recalculated and the root solver proceeds to find the solution. In

the case when kb,i ≈ 0, the approximation k̃b,i may have the the wrong sign. As the

initial guess parameter set (see Tables 7 and 8) changes depending on the sign of k̃b,i,

a minimization root solve is also performed whenever TOF (0) < T̃b,i. The proposed

strategy of computing partial minimization root solves on the fly, robustly bounds

both the lp and sp solution branches while keeping the number of minimization root

solve iterations to a minimum.

Figure 19: Multi-rev: Iteration count distribution

To gauge the performance of the multi-rev initial guess, a 1 million case monte-

carlo Test Run D (see table 3) is performed (see Fig.19-21). The value Nmax is set

to 20, resulting in 26,530,092 root solves (with zero failures) out of which 25,500,957

(or 98.01%) cases take 3 iterations or less to converge (see Fig. 19). There are 7 that

failed to converge to the specified 1E-13 tolerance. These cases show no improvement

in their residual if more 10 iterations are performed. The maximum residual for these

7 partially converged cases is found to be 2.043E-13.

42



Figure 20: Multi-rev: Iteration vs. Transfer angle

Figure 21: Multi-rev: Iteration vs. k

2.6 Implementation Details

The proposed algorithm to solve the Lambert problem, is implemented keeping run-

time speed and numerical robustness in mind.

For the hyperbolic case, a ∼15% increase speed is observed by replacing inverse

hyperbolic cosine (required for computing W ) with its equivalent logarithmic form,

defined by Eq. 56. This logarithmic form of inverse hyperbolic cosine is used for both
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the initial guess generation and the hyperbolic root solves.

cosh−1(v) = log(v +
√
v2 − 1) (56)

v = k2 − 1

For the elliptical initial guess generation, computing various intermediate TOF values

requires evaluation of the expensive inverse cosine function. As high accuracy in the

initial guess is not required, we approximate the inverse cosine functions by a minimax

approximation, computed via Maple, accurate up to 5-6 digits, given by Eq. 57.

cos−1(x) ≈
π

2
− sgn(x)



0.000014773722+(1.1782782−0.52020038 |x|)|x|
1.1793469+(−0.53277664−0.14454764 |x|)|x| 0 ≤ |x| ≤ 0.6

0.011101554+(8.9810074+(−14.816468+5.9249913 |x|)|x|)|x|
9.2299851+(−16.001036+6.8381053 |x|)|x| 0.6 < |x| ≤ 0.97

−35.750586+(107.24325−70.780244 |x|)|x|
27.105764−26.638535 |x| 0.97 < |x| < 0.99

sin−1(|x|) |x| ≥ 0.99


(57)

During testing, it was found that for k ≈ 0, W is computed accurately to only

up to ∼13 digits in double precision arithmetic. This precision loss increases the

number of root solve iterations required from 3 to up to 7 in some rare cases. The

impact on speed from this precision loss is insignificant as k is seldom very close to

zero. Nevertheless, to prevent this precision loss, W is computed via a series when

|k| < 1E − 3:

W =

(
2Nπ + π

4

)√
2−k+

3 (2Nπ + π)

16

√
2k2− 2

3
k3 +

15

128
(2Nπ + π)

√
2k4− 2

5
k5 +O

(
k6
)

(58)

Note that, this precision loss is found to only affects the number iterations when the

root solver tolerance is set to 3E-13 or less.

2.7 Performance Comparison

In this section the performance of the proposed Lambert formulation is evaluated

against the well known Gooding’s Method.48 Previous comparative studies have

found Godding’s method to be among the fastest and most accurate of the methods

available.98,70 Note that Gooding’s method always performs 3 iterative corrections
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using Halley’s iteration method with well tuned initial guesses, and hence has a fixed

computation cost per root solve iteration. On the other hand the current formulation

subjects the root solver to a normalized tolerance of 1E-13 and a maximum iteration

count of 20. The original code from Gooding is taken directly from Ref.48 Both

Gooding’s code and the new formulation is compiled using the Intel Fortran compiler

version 12.0 subject to “O2” speed optimization flag. The test hardware used during

the performance comparison is comprised of an Intel Xeon X5650 CPU @ 2.67 Ghz ,

running on X86 64 Linux workstation.

2.7.1 Accuracy

To compare the absolute accuracies of both the methods, 10,677,126 “truth” solutions

(see Test Run E in Table 3) are generated using a Kepler solver, in quadruple precision,

subject to a tolerance of 1E-28. The final solution (after the random initial conditions

as specified in Table 3) set has a minimum and maximum θ of 0.076 degrees and 179.94

degrees, respectively. The resulting minimum and maximum value of eccentricity (e)

are 1E-3 and 268.75, respectively. Hence, the test suite is deemed exhaustive enough

to capture the global accuracy behavior of both the solvers.

Figure 22: Gooding’s method relative error vs. transfer angle
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Figure 23: New Lambert relative error vs. transfer angle

Figures 22 and 23 shows the relative errors between the Kepler solution and the

two Lambert implementations as a function of cos(θ). Both methods show a similar

accuracy profile, with almost the same RMS and max relative errors when compared

to the truth. Both methods suffer significant loss of accuracy with increase in relative

error by almost 1.5 orders of magnitude for θ close to 0, π or 2π.

To differentiate between the elliptical and hyperbolic case, the relative errors are

plotted as a function of eccentricity in Figs. 24 and 25. Unlike, Gooding’s method,

our algorithm stops once the root solve tolerance is met, hence may require less than 3

iterations to converge in some cases. Both solvers are found to experience numerical

degradation as eccentricity approaches unity, while they both perform well in the

hyperbolic solution regime.

The exhaustive accuracy comparison performed here demonstrates that the abso-

lute accuracy of the proposed Lambert formulation is statistically similar to that of

Gooding’s method. As stated earlier, Gooding’s method is considered to be one the

most accurate Lambert solvers available.70,98
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Figure 24: Gooding’s method relative error vs. e

Figure 25: Current method relative error vs. e

2.7.2 Runtime Comparisons

Figure 26 shows the variation of speedup over the Gooding method as a function of

TOF
Tp

. Each data point represents one million Lambert cases with input vectors ~r1 and

~r2 varying according to Test Run B (see Table 3). The ratio TOF
Tp

is varied from 0.05

to 1,000, there-by allowing both hyperbolic and elliptical multi-rev solutions. For the

hyperbolic case the speedup varies from 1.28 to 4.25, with the mean and mean absolute

deviation being 1.87 and 0.58, respectively. The runtime for the Gooding method
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increases as the TOF
Tp

approaches unity. For the elliptical zero-rev case (Nmax = 0), the

speedup varies between 7.08 to 1.44, with a mean value and mean absolute deviation

of 1.75 and 0.22 , respectively. The zero-rev runtime of the new method gradually

increases as TOF increases, due to increase in the iteration count. Gooding’s method

on the other hand always takes three iterations (without guaranteeing convergence),

hence has a fixed evaluation cost.

Table 10: Speedup statistics for various transfers in Fig. 26
Transfer type Nmax Mean speedup Mean absolute deviation

Hyperbolic 0 1.87 0.58
Elliptical 0 1.75 0.22
Elliptical 5 2.13 0.45
Elliptical 10 2.15 0.45
Elliptical 15 2.16 0.44

For the multi-rev case, a speedup of ∼11 times is achieved when the ratio TOF
Tp

is

close to unity. For low TOF cases, we get approximately 2.5 times speedup, as we skip

most of the bottom minimizations required to check for multi-rev solution feasibility.

At a certain TOF value, the number multi-rev of solutions become significant and

speedup peaks near 2 when Nub starts to overtake Nmax. Further increasing the ratio

TOF
Tp

leads to gradual drop in speedup as the number of iterations increases. Table 10

summarizes the mean speedup and mean absolute deviation (MAD) for various cases

in Fig. 26.

Due to fact that Gooding’s method always takes 3 iterations it cannot guarantee

convergence to a specified tolerance value. For some extreme cases with high TOF

values, it is found that Gooding’s method was not fully converged after 3 iterations.

On the other hand the current Lambert formulation implementation nominally in-

cludes a variable tolerance root-solver. This slight advantage in robustness comes

with a slight disadvantage when computing speedup values. Nevertheless, the pro-

posed method is faster by a factor of ∼1.3 to ∼3 for most cases considered, where

the specific speedup depends on a variety of parameters.

48



Figure 26: Speedup vs. TOF
Tp

2.8 Chapter Conclusion

A universal, multi-rev Lambert formulation based on the cosine of the change in

eccentric anomaly is proposed in this chapter. The new universal variable “k” is

introduced, resulting in a simplified form of the TOF equation. The formulation

requires only a single transcendental function evaluation and enjoys simple derivative

expressions. An accurate initial guess strategy is presented based on rational polyno-

mial approximations. The universal variable corresponding to the minimum multi-rev

TOF is found to be a well-behaved function of a geometry based parameter. Accurate

approximations of the inverse function leads to a fast and robust bounding strategy

for root-solving both sides of the multiple revolution curve. The initial guess strategy,

coupled with Halley’s iteration method leads to convergence in 2 or 3 iterations (with

tolerance set to 1E-13) for a vast majority of the test cases.

The new method and its implementation is on par in term of accuracy, and is

typically ∼1.3 to ∼3 times faster when compared to the state of the art Gooding’s

method. The runtime Fortran code is embedded as part of this thesis in appendix E.
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CHAPTER III

HIGH-FIDELITY GEOPOTENTIAL COMPUTATION

3.1 Chapter Summary

The current chapter focuses on improving runtime performance of the gravity geopote-

nial calculations and the associated gradients. A high-fidelity interpolation method

(which trades higher memory footprints for faster runtimes) is presented for approx-

imating a scalar quantity and associated gradients in the global 3D domain external

to a sphere. The new “Fetch” interpolation model modifies and utilizes the weight-

ing function method originally proposed by Junkins et al. to achieve continuity and

smoothness. An overlapping grid strategy ensures a singularity-free domain, while

minimizing associated memory costs. Local interpolating functions are judiciously

chosen with a new adaptive, order-based selection of local polynomials which min-

imizes coefficient storage subject to a radially mapped residual tolerance. Analytic

inversions of the normal equations associated with each candidate polynomial allow

for rapid solutions to the least squares process without resorting to the conventional

numerical linear system solvers. The gradient and higher order partial derivatives

are computed directly with no memory cost, and are smooth and continuous to a

user-specified order. The method is specifically applied to interpolate the GRACE

GGM03C geopotential model up to degree and order 360. Highly tuned interpolation

models of various resolutions are presented and discussed in detail. Released Fetch in-

terpolation models of the geopotential include resolutions of 33×33, 70×70, 156×156

and 360×360. The memory requirements span from 120 MB to 2360 MB, and the

expected speedups over spherical harmonics evaluations span from ∼10 to ∼3,000

fold. The break even resolution for runtime speeds is approximately degree and order
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8. The models are globally continuous to order 3 and thus may be of interest to a

variety of science and engineering applications.

3.2 Chapter Nomenclature

δ = Polar angle (0 to 180 degrees)

λ = Azimuth (equivalent to geocentric longitude, 0 to 360 degrees)

φ = Geocentric latitude (δ - 90)

δ, λ, r = Spherical coordinate set (r ≥ 1)

σ = Total loop counter

N = Total number of coefficients of a general node polynomial

Ni,j,k = Total number of coefficients of a node polynomial, associated to the i, j, k cell node

d = Degree of a local node polynomial

m = Total number of measurements per cell in each direction

B = Least square inverse matrix

ê1, ê2, ê3 = Unit vectors in polar angle, azimuth and radial direction

η0...4 = User controlled model residual tolerance constants

~x = Absolute position vector of the evaluation point in spherical coordinates

~y = Normalized (-1 to 1) position vector of the evaluation point in spherical coordinates

~xi,j,k = Absolute position vector of the i, j, k cell node in spherical coordinates

~xw = Normalized position vector in spherical coordinates of the evaluation point in the cell domain

Qd = Major candidate polynomial of degree d

Qd,z = Minor candidate polynomial of degree d and index z

Nmax = Maximum number of coefficients for a node polynomial

Omax = Maximum degree of a node polynomial

wi,j,k = Weight function associated to the i, j, k cell node

Re = Mean radius of the Earth

UF = Final composite potential computed using a weighted average

Ui,j,k = Local polynomial associated to the i, j, k cell node

~C = Coefficient vector for a node polynomial

Dα,β,γ = Node polynomial normalization matrix

Dw = Weight function normalization matrix

Ω = Hermite weighting function

SH = Spherical Harmonics

MPI = Message passing interface

3.3 Introduction and Background

High-fidelity trajectory computation using conventional spherical harmonics (SH)

gravity fields is computationally slow and difficult to implement if starting from
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scratch.101,27,85 New high order gravity models132,55 and growing number of objects

in the space catalog56 is driving the need for a new class of gravity models that enjoy

the robustness and flexibility of spherical harmonics while still achieving orders of

magnitude in speedup.

Over the years, two general class of alternative methods have been proposed 1)

Discrete mass models71,144,107,106,88,145 and 2) Interpolation models. Discrete mass

models are often used to provide increased local resolution when used along with

spherical harmonics. They are easy to implement and recent studies show that show

these models adapt well to the problem of small bodies.96 A recent study demonstrates

these models to provide an order of magnitude in speed improvements using common

Graphics Processing Unit (GPU).112

The interpolation models on the other hand classicaly trade memory for speed and

are becoming increasingly more relevant given the extraordinary memory resources of

common computers. Primarily motivated by Junkins, a variety of techniques and ba-

sis functions (for interpolating) have been proposed over the years including weighting

functions,69,68 wavelets,19 splines,19,81 octrees,28 psuedocenters59 and 3D digital mod-

eling.94 Recently the first modern global model, called the cubed sphere model has

been published.66 The highest resolution cubed sphere model of SH degree and order

150 achieves 30 fold speedup over SH and requires 856 MB of storage. The model

suffers from small discontinuities across shell boundaries, and requires the storage of

extra coefficients for computing acceleration and higher order derivatives. Each inter-

polation based method in general balances accuracy with efforts to minimize runtime

speed and memory footprint while achieving exactness, continuity and smoothness as

appropriate.

In this chapter we propose a new hybrid model (called Fetch) which attempts to

take advantage of all the previous models, while finding innovative solutions to correct

their respective problems. Four main priorities are defined which guide the selection of
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the adopted solution method and can be summarized as 1) continuity and smoothness

across the global domain to an arbitrary order of derivatives, 2) adaptivity in terms

of local vs. global resolution 3) a residual error profile in the noise of the accuracy

of the underlying base model (SH in this study), and 4) a non singular approach.

All previously proposed gravity field interpolation models fell short when evaluated

against each of these ambitious priorities.

Continuity in zeroth and higher order derivatives is a desirable feature for any force

model. Global continuity in the first derivative is necessary to accurately represent

a conservative field, while continuity in higher order derivatives may be important,

depending on the specific application. Most 3D interpolation based methods are not

globally continuous or require complex algorithms to achieve continuity. The tricubic

interpolation method by Lekien and Marsden81 is an example that achieves first order

continuity but at the expense of reduced accuracy and performance. Furthermore, in

their method the interpolants must be of the same degree globally, and accurate high

order derivatives of the fitting data are required for the coefficient generation process.

The Cubed-Sphere model is discontinuous even to the zeroth order across the shell

boundaries, although the discontinuity is small in the published models. Also, like the

tricubic method, the degree of the interpolants for the Cubed-Sphere model are fixed

globally. The new Fetch model takes advantage of a modified weighted interpolation

scheme (the original one developed by Junkins et al.69) to achieve third order global

continuity.

The classic singularity and associated numerical problems near the the poles (when

converting from Spherical to Cartesian frame) is avoided in the Fetch model using a

two level overlapping global grid structure with an additional weighting function to

ensure continuity between the grids. This approach to remove the singularity only

requires extra coefficients in the overlapping region(∼ 0.2% to 5% of the domain
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for high and low resolution models, respectively), and is therefore more memory ef-

ficient than storing an extra term throughout the entire domain. The new model

also introduces a novel polynomial selection strategy based on an ordered listing of

potential polynomial basis functions, leading to significant improvements in terms of

memory efficiency. The method utilizes an algebraic manipulator to produce high

order analytic inverses for the resulting least squares problems to ensure accurate

and rapid coefficient evaluation. High order polynomial approximations are feasible

via a master-worker implementation of the parallel coefficient generation algorithm

(implemented using MPI) drive by a least square fitting algorithm on a non-uniform

grid. The original Junkins weighting function method is modified to handle this new

memory-saving, non-uniform grid. The interpolated geopotential is exact in the sense

that accelerations and higher order derivatives are calculated as exact derivatives of

the interpolated function. Furthermore, the memory requirements scale approxi-

mately linearly with degree of the base field while the speedups are nearly a cubic

in the same argument. This favorable memory scaling makes the new Fetch model

attractive for use with high order gravity fields.

In this chapter the Fetch interpolation approach is applied to the geopotential

application. Information on how to use the Fetch gravity model is given which is

followed by a comprehensive performance profiling via a direct comparison with a

state-of-the-art, singularity-free SH implementation. The Fetch algorithm is devel-

oped to be general in the sense so that a user can control the coefficient generation

trade of memory vs. speedup with a minimum number of parameters. In this the-

sis, the Fetch model is applied to approximate the GRACE GGM03C gravity field.

In this thesis, four Fetch models are computed and the qualitative results governing

them are presented. Specifically, the highest resolution Fetch model corresponds to

the complete 360× 360 GMM03C SH field and required on the order of 12,000 CPU

hours to compute all of its coefficients. The highly optimized memory burden of
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this model is 2.36 GB, leading to as much as three orders of magnitude in runtime

speedups over the GGM03C SH model. On the other end of the spectrum, an 8× 8

Fetch model is found to approximately match the runtime speed of its associated SH

counterpart. The next section of this chapter gives an overview of the Fetch gravity

model.

3.4 Fetch Gravity Model Overview

Localized representation of the gravity field follows naturally from the fact that there

are uneven gravity undulations over the Earth surface. In order to separate the dom-

inant global effects from the smaller local undulations we formulate the geopotential

approximation as given by Eq. 59:

U ' UJ2 + UF (59)

where U represents the total potential from a specified degree and order of the

GGM03C spherical harmonics field, UJ2 represents the potential only due to the J2

term, and UF is the interpolated local potential obtained from the Fetch model. The

J2 term in Eq. 59 is three orders of magnitude more significant than all the higher

order terms combined. Removing of UJ2 (given by Eq. 60) from higher order terms

provides an extra 3-4 digits of accuracy in the potential interpolation at an almost

negligible computational cost. Most previous gravity field interpolation efforts have

also exploited the benefit of removing the low frequency terms.67,59,28,66,112,19,140 If

applicable, tides or any other time dependent low frequency terms could also be re-

moved from the static interpolation. In this study, however, only the mean J2 term

is removed:

UJ2 = −µ
r

[
J2(

Re

r
)2P2(sin(φ))

]
(60)

where µ and Re are the reference gravitational parameter and radius of the Earth

respectively, r and φ are the magnitude and geocentric latitude of the position vector
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respectively, and P2 is the second degree Legendre polynomial. The UF term in Eq. 59

represents the final composite polynomial, and is computed using a weighted average

of the eight node polynomials whose centers depend on the spacing of neighboring

8 cells. (see Fig. 27 and Eq. 61).69,67 The coefficients for each of the eight local

node polynomials are computed via least squares fits of the local geopotential (with

J2 removed). More details are provided later on the least squares solutions and

candidate forms for the local node polynomials.

Figure 27: Cell and node geometry for the weighed interpolation
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UF =
i+1∑
α=i

j+1∑
β=j

k+1∑
γ=k

wα,β,γ(~xw)Uα,β,γ(~y)

~xw = D−1
w (~x− ~xi,j,k)

~y ≡ ~xuα,β,γ = D−1
α,β,γ(~x− ~xpα,β,γ )

~xpα,β,γ = [
(~xα+1,β,γ+~xα−1,β,γ)·ê1

2
,

(~xα,β+1,γ+~xα,β−1,γ)·ê2
2

,
(~xα,β,γ+1+~xα,β,γ−1)·ê3

2
]T

Dw =


(~xi+1,j,k − ~xi,j,k) · ê1 0 0

0 (~xi,j+1,k − ~xi,j,k) · ê2 0

0 0 (~xi,j,k+1 − ~xi,j,k) · ê3



Dα,β,γ =


(~xα+1,β,γ−~xα−1,β,γ)·ê1

2
0 0

0
(~xα,β+1,γ−~xα,β−1,γ)·ê2

2
0

0 0
(~xα,β,γ+1−~xα,β,γ−1)·ê3

2



(61)

Figure 27 shows a cell and cell nodes geometry. The definition of Dw effectively

normalizes the ~xw vector to have components between 0 and 1 for use in the weight

functions wα,β,γ. The vector ~x gives the position of the evaluation point. The vector

~xα,β,γ is the location of the α, β, γ node, where α, β, γ are dummy indices for the

ê1, ê2, ê3 directions respectively. For each cell (e.g ~xα,β,γ) node there exists a unique

local node polynomial (e.g. Uα,β,γ). Unlike the original Junkins method, the node

polynomials are not centered at the node location (see Eq. 61) but instead at the

midpoint of the neighboring 6 nodes. Each node polynomial has the argument ~y

which is normalized by Dα,β,γ to be valid from -1 to 1 in each direction. Each cell is

part of the valid domain of 8 nodes. The choice of centering each node polynomial at

the midpoint of its 6 neighboring nodes is taken to allow Chebhyshev measurement

spacing during the least square polynomial fitting, as discussed later in the paper. The

wα,β,γ are Hermite weight functions67 valid in the normalized (0, 1) space. The weight

functions are always centered at the lower, left, front corner of each cell. The order of

the weight functions can be chosen arbitrarily high to ensure any degree of user desired

continuity or smoothness. The gradient of the potential is obtained by taking partial

derivatives of the resulting polynomial, and higher order derivatives are also available
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at a modest cost. Fitting only the potential function is memory efficient and leads to

an exact formulation. In contrast, many previous models67,59,28,19 ignore exactness

constraints, and fit directly the acceleration and any higher order derivatives66 leading

to significant memory growth.

It is worth re-emphasizing that the Junkins weighting function scheme69 allows for

arbitrary functions to be used for the local node interpolants. In the current study,

simple polynomials are chosen to minimize runtime. The number of coefficients in

each node polynomial is allowed to vary adaptively in each direction in order to

maximize efficiency (defined as high accuracy and low memory).

The process of generating and using the Fetch model is implemented in two phases.

Phase 1 is performed once off-line and consists of parallel computation of the local

node polynomial coefficients on a global 3D grid. In order to deal with the singularity

at the poles when working in the geocentric coordinates, a second rotated global

grid is introduced. Details on the singularity problem and the rotated grid solution

are given in the next section. Phase 2 is the runtime interpolation and involves

a weighted evaluation of the local node polynomials. In practice, users of a Fetch

model only interface with the runtime interpolation. The order of the weight functions

(and accordingly the degree of continuity of the final composite function across the

boundaries) is independent from the coefficient generation and can be selected at

runtime. The next section gives a brief overview of the coefficient generation process.

3.5 Phase 1: Coefficient Generation

The Fetch interpolation model relies on a global discretization scheme for achieving

adaptivity and continuity.69 The whole solution space is divided into 3D cells in the

spherical coordinate system consisting of polar angle (δ), azimuth (λ) and radial (r)

directions. The geopotential within each cell is fit (in a least square sense) via node

polynomials that are locally valid over the 8 cells touching that node. Hence, the
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problem of fitting the global geopotential is reduced to finding localized polynomial

coefficients corresponding to each cell node via least squares fitting.

3.5.1 Surface Discretization

Spherical coordinates are used for discretization of the whole solution domain outside

the sphere given by the Earth’s mean radius. The weighted interpolation scheme

(used to achieve global continuity) requires a uniform discretization in each dimen-

sion. In other words, the cutting planes that partition the global domain into local

cells must all be mutually orthogonal, although the spacing between the planes can

vary. Hence the spacing of the cutting planes (specified by the diagonal components

of Dw in Eq. 61) is a degree of freedom and can be utilized to improve efficiency.

The polar angle, azimuth (δ, λ) space is ultimately chosen to have equal spacing for

simplicity. Furthermore, the adaptive degree selection of the local polynomials af-

fords the rationale that the smaller cells (in the Cartesian sense) near the poles will

require polynomials of lower order to achieve the same accuracy as the larger cells

near the equator. In addition, the two grid strategy used to remove the singularity

also serves to keep a more uniform grid size in the δ, λ space when mapped to the

surface. The cutting plane spacing in the radial direction is highly adaptive as the

rapid undulations near the surface require shallow spacing while the high altitudes

can be modeled with relatively distant spacings.

3.5.2 Singularity

A spherical coordinates based grid suffers from singularities at the poles when con-

verting to and from the Cartesian coordinate space. A variety of methods are possible

for dealing with the singularity, such as that used by Pines.101 To avoid the burden

of the extra dimension, we choose to remain with spherical coordinates, but use a

rotated grid near the polar regions. Similarly, the Cubed-sphere model uses rotated

mappings on the polar region “cube faces” to handle the singularity.66 In the current
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approach, the global grid is divided into two sub-grids, the primary grid and the

rotated grid, both in the classic spherical coordinates. The primary grid suffers from

singularities at the poles but its domain of validity is constrained to lie sufficiently

far from both poles. Technically, according to Ref.27 and from observation, the main

grid is valid and numerically stable using spherical coordinates in all regions outside

of a few degrees away from the poles. However, in this application, we enforce a more

conservative domain, in order to avoid the small surface patches (and thereby save

memory) that result from the uniform (δ, λ) grid. For maximum memory efficiency

we find that a polar angle range of x < δ < (180 − x) is reasonable where x can be

chosen anywhere from ∼25 to ∼50 degrees. Starting from the poles, a rotated grid is

designed which has singularities at two points on the equator of the original grid (due

to a 90 degree rotation about the x-axis). Hence, the rotated grid serves to remove

the singularity at the poles in the original grid. Precise continuity between the two

grid sub-models is maintained via a Hermite weighting function applied in a narrow

overlapping band, as discussed in detail later.

Figure 28 shows the final surface discretization for the primary and the rotated

grids. The active region for both the grids is shown as the darker shade, while the

inactive region is lighter. The overlapping regions are indicated by the horizontal rings

(and also bounded by the solid lines in Fig. 29). Evaluation inside the overlap region

requires that both sub-models are computed and a 1D weighting function dependent

only on the polar angle is used to ensure continuity across the sub-model boundaries.

Note that for the coefficient generation phase, each sub-model only requires coef-

ficients for its respective domain including the overlapped areas. Therefore the two

sub-model strategy creates almost no overhead during coefficient generation. Fig-

ure 29 shows a projection onto the Cartesian xy plane of the primary grid (o) overlaid

with rotated grid (+) along with the overlapped region (bounded by the solid lines).
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Figure 28: Surface discretization (overlap near 36 degree and 144 degree polar angle)

Figure 29: Overlapped region

3.5.3 Radial Discretization

Unevenly spaced shells are used to space the cutting planes in the radial direction

extending all the way to the distance (approximately 230Re for GGM03C model)

beyond which the contribution from the SH terms higher than J2 becomes less than

machine double precision. The shells are densely packed near the surface where

the field changes rapidly and they spread out as altitude increases. Having closely

packed shells decreases the number of coefficients per cell but increases the number

of cells required for the global model. On the other hand, choosing a large radial step

size increases the number of coefficients per cell making runtime function evaluation

slower. Hence, there is a trade-off between runtime memory and speed requirements.
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Figure 30: Radial discretization

Figure 30 shows the radial shell placement and width selected for the model used

in this study, consisting of 68 shells. Starting from a log based distribution, manual

tuning is performed to obtain the final shell spacing.

3.5.4 Adaptive polynomial selection

The Junkins weighted interpolation approach affords the freedom to choose any degree

polynomial for the local approximation functions for a given node. This benefit is

utilized in the polynomial fitting process by adaptively choosing a different degree

polynomial for each cell node (see Fig 27).

Qd =
d∑
a=0

a∑
b=0

a−b∑
c=0

Cσy
a−b−c
1 yc2y

b
3 (62)

Equation 62 gives a general 3D polynomial considered during the fitting process.

Vector ~y represents the normalized (-1 to 1) position of the evaluation point, ~C is

the coefficients array, σ is the total cumulative loop counter and d stands for total

degree of the polynomial. One approach to select the basis polynomial is to pick a

value of d after a careful trade study, and then directly use the polynomial obtained

from Eq. 62 over the whole solution domain. Junkins adopted this strategy during

his early pioneering studies.67,68 Given the computation power present at that time
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and the intended application of his models, it was the most practical choice.

In our case, we want a broad range of candidate polynomials in order to finely tune

the memory requirements of the resulting global model. Inserting d=10 into Eq. 62,

results in a polynomial with N=286 coefficients. A set of candidate polynomials can

be extracted from the general polynomial by selecting any non-repeating subset of

the 286 terms. As an example, the number of possible ways to generate a set of

200 candidate polynomials (with no repeating coefficients) is 286!
200!(286−200)!

or on the

order of ∼ O(1074). To overcome this intractable problem, we extract a subset of

polynomials by incrementally removing the highest order terms (total degree equal

d) subject to a dependency on r. Removing such terms is justified because the radial

grid spacing is variable, thus partially absorbing the need for adaptivity in those

directions. Note that the summations in Eq. 62 are intentionally ordered such that

the removed terms are always the trailing terms.

Q2 = C1 + C2y1 + C3y2 + C4y3 + C5y
2
1 + C6y1y2 + C7y

2
2 + C8y1y3 + C9y2y3 + C10y

2
3

(63)

The algorithm to generate the candidate polynomial set starts by generating 9 major

candidate polynomials (Qd) from Eq. 62 for d ranging from 2 to 10. Next, we divide

each of the 9 major polynomials into minor candidate polynomials (Qd,z) by incre-

mentally removing terms. Equation 63 shows the 1st major candidate polynomial for

d = 2. It has 4 terms which are dependent on y3 out of which 3 (the 3 of total degree

2) are removed in succession to generate 3 minor candidate polynomials (Eq. 64). We

only need to delete the leading terms because the loop counter b changes slower than

the loop counter for c (see Eq. 62).

Q2,3 = C1 + C2y1 + C3y2 + C4y3 + C5y
2
1 + C6y1y2 + C7y

2
2 + C8y1y3 + C9y2y3

Q2,2 = C1 + C2y1 + C3y2 + C4y3 + C5y
2
1 + C6y1y2 + C7y

2
2 + C8y1y3

Q2,1 = C1 + C2y1 + C3y2 + C4y3 + C5y
2
1 + C6y1y2 + C7y

2
2

(64)

Equation 64 shows the three minor polynomials Q2,3, Q2,2, Q2,1 corresponding to the
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major polynomial Q2. The formula to calculate the number of terms to be removed

(nd) from a major polynomial of degree d is given by Eq. 65 . The total number of

minor polynomials (219) equals to the sum of the number of terms removed for each

major polynomial. Finally, the sum of 9 major and 219 minor polynomials together

gives us a total set of 228 candidate polynomials (P1...228). Algorithm 1 (see appendix

A) outlines the complete candidate polynomial generation procedure.

n1 = 1

ni = ni−1 + i ∀ i = 2 . . . d
(65)

During fitting, each of the candidate polynomials are ordered in terms of number of

total coefficients. Starting with the candidate polynomial with the fewest coefficients

(7 in current study), the least squares problem is evaluated. If a candidate polynomial

solution is found with residuals acceptable according to user prescribed tolerances,

then the polynomial is selected and the process is stopped for that node. Candidate

polynomials with a greater number of coefficients are not evaluated. In this manner,

the residuals of the local solutions will hover just below the user-supplied tolerance,

leading to a uniform global residual distribution. In addition, because the candidate

polynomials are evaluated in order of increasing memory footprint, each cell has

a minimized memory requirement. Therefore the coefficients corresponding to each

local node are chosen so as to minimize its memory footprint, subject to user provided

residual constraints.

3.5.5 Localized least square approximation

The local approximation for each node polynomial is obtained via a least squares

fit. As stated in the previous section, the minimum and maximum number coeffi-

cients allowed are fixed to 7 and 286 respectively. Given a candidate polynomial, the

conventional least squares method for generating the coefficients is summarized by
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Eq. 66.

~C = B~u (66)

Here, ~C is a N × 1 vector of coefficient estimates, ~u is a m3 × 1 vector representing

the measurements and B denotes the N ×m3 least squares inverse matrix (Eq. 67):

B = (HTH)−1HT (67)

The matrix H represents the m3×N sensitivity matrix, m3 represents the number of

measurements (noting there are m measurements in each of the 3 directions) and N

represents the total number of coefficients per node polynomial. The measurements

are spaced according to the Chebyshev node distribution function given by Eq. 68 in

each direction.129 This choice of placements helps to minimize the well known Runge’s

phenomena and increases the robustness of the fit. As the radial shells are unevenly

spaced, centering the node polynomials at the cell boundary (or cell nodes) destroys

the Chebyshev measurement spacing and leads to non-uniform residual distributions

over the node domain. Hence, to allow for Chebyshev spacing, the node polynomials

are centered at the midpoints of the neighboring 6 nodes as measured from the current

node. We note that our method differs from Junkins formulation as his polynomials

are centered at the cell nodes which is a special case in our formulation when we

choose constant cell sizes. Figure 31 shows the Chebyshev node distribution for m =

11 for a normalized 2D node domain.

xi = cos(
2i− 1

2m
π) , i = 1 . . .m (68)

The H matrix contains the first order partials of the candidate polynomial with

respect to the estimated coefficients. The functional form for the rth row of H is given

as follows:

H(r,:) =
∂Pi

∂ ~C

∣∣∣∣
~ρr

(69)
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Figure 31: 2D measurement distribution

where ~ρr is the measurement location, and Pi is the ith candidate polynomial. Com-

puting the analytic partials and evaluating them at the specific measurement loca-

tions, the full H matrix for each candidate polynomial is computed using a symbolic

manipulator program (Maple) and results in a m3 × N matrix of rational fraction

entries.

Each node polynomial is normalized between -1 to 1 along each of its dimensions

in its node domain. If the number of measurements (m3) and their respective po-

sitions (defined by the Chebyshev spacing) do not change, then the fully evaluated

H matrix is invariant across all nodes for a given candidate polynomial. This static

property of the H matrix (as pointed out by Junkins67 and Lekien and Marsden81) is

only true if the number of measurements and their relative positions (~ρr for all mea-

surements) are the same across all node domains. Given that the H matrix is static,

the inversion matrix that solves the least squares problem in Eq. 67 can be computed

analytically just once. In other words, once the B matrix is solved analytically, there

is no need to numerically solve a linear system in order to obtain the least squares

coefficient fit for a given candidate function. Therefore, in order to test a single

candidate polynomial across the global domain, each cell simply requires one matrix
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multiplication (Eq. 66). It is further emphasized that the H matrix, when evaluated

with a symbolic manipulator is composed of rational fractions. Accordingly, B from

Eq. 67 can be analytically computed and the results are also in the form of rational

fractions. Therefore, the typical numerical problems associated with solving large

linear systems is completely avoided. Quoting from68 the “one inverse property can

lead to order of magnitude savings in computer time for large data sets”.

As an example, the matrix B for the candidate polynomial having 7 coefficients

(N=7) and with m=11, is dense with explicit cosine functions present in most of its

terms (owing to the Chebyshev spacing from Eq. 68) . Equation 70 gives the first

row of this matrix. The actual size of the matrix is 7× 113.

B(1,:) =


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T

(70)

For this study a Maple worksheet is used to analytically invert the B matrices cor-

responding to all possible candidate polynomials. The worksheet takes the maximum

polynomial degree Omax and m as inputs and writes the B matrices to a file for later

use by the coefficient generation routines. Analytic inversion of the normal matrix

HTH of dimension m3 ×m3 is computationally intensive. For m on the order of 10,

such inversions were simply not possible on a typical desktop computer until recently.

However it is emphasized that these inversion matrices only need to be computed just

once for a given interpolant and a fixed measurement spacing scheme. The number of

observations in each direction is kept at a minimum of Omax+1 in order to preserve a

well posed (over constrained) least squares problem. Once the measurements are ob-

tained and the measurement vector is formed, only a single matrix multiply is needed
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to obtain the least squares coefficients. Exact and precomputed B matrices ensure a

fast, accurate, and numerically well-conditioned coefficient generation process.

Figure 32: Structure of (HTH)−1 for m=11 and N=286; black dots = non-zero
terms

For the current study, the value of m is fixed at 11 for all the node domains and the

maximum polynomial degree (Omax) is fixed at 10. Figure 32 gives the structure of

(HTH)−1 matrix for m=11 and N=286. Here, the black dots represent the non-zero

terms in the matrix. The size of this matrix is 286× 286. Maple version 13 was used

for this study and it took approximately 36 hrs on a single workstation (see Table 13)

to generate the B matrices for all 228 candidate polynomials.

3.5.6 Scalable SH degree selection

Once all the B matrices are generated, the measurement ~u for each node domain must

be computed in order to obtain the coefficients for all the candidate functions using

Eq. 66 . The measurement vector requires evaluation of the SH function at each of

the m3 locations within each node domain. Noting there are ∼8 million node domains

for the global 360× 360 resolution case, obtaining the measurement vector for m=11

requires evaluation of the SH function on the order of 10 billion times. Fortunately

the full precision SH field is not necessary at all altitudes as the high order terms

become undetectable to machine precision as the altitude increases.
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Accordingly, a scalable SH degree selection method is adopted. Figure 33 shows

the altitudes where the contributions of higher order terms of the SH expansion

(given by the GGM03C model) become less than a normalized 1E-15 (near machine

precision for double). For example at a radial distance of 10Re (equivalently at

an altitude of 9Re), only terms up to degree and order 30 are necessary for the

computation of the measurement vector. Using 1E-15 as a cut-off tolerance is overly

conservative considering that the max normalized residuals in the target SH field fits

(to be discussed later) are always substantially larger.

Figure 33: Degree and order selection curve

The equation used to generate the curve in Fig. 33 is given in Eq. 71 and is found

via a non linear least squares curve fit of a large sampling of measurements taken

across the global domain. Equation 71 takes in normalized radial distance (r) as

input and returns the degree and order value (Fsiz) which is the max degree and

order SH gravity field necessary for that radial distance.

Fsiz = min

[
360, f loor(

20.37185996049265

ln(r)1.165605077780336 + 1.625250344642757E − 2
+ 4.461932685300188) + 1

]
(71)

It is evident from Fig. 33 that for most of the global domain the high order spherical

harmonics terms are not significant even in double precision arithmetic. As the eval-

uations move radially outwards, the measurement vector computation time decreases
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rapidly thereby significantly speeding up the coefficient generation process. Note that

Eq. 71 can be used to speed up the computation of SH for general applications as

well.

3.5.7 Continuity

The Fetch model achieves continuity in any order by utilizing the weighted interpo-

lation scheme (developed by Junkins69,67 ) which leads to eight interpolant function

evaluations instead of one for each composite function call. The eight interpolants

applicable to each cell are evaluated in their own -1 to 1 normalized domain and the

weighting is done in the overlapping space inside a cell, normalized from 0 to 1. The

normalization allows the use of Hermite weighting functions which enable continu-

ous higher order derivatives. The weight function as they appear in Eq. 61 can be

found in Eq. 5a-5g of Ref.67 Equation 72 summarizes the final Fetch approximation

for the potential and first derivative with respect to x1, x2 and x3, which are the

spherical components of position vector defining the evaluation point. ~C stands for

the coefficients of the node polynomial under consideration, wi,j,k are the Hermite

weight functions at the i, j, k node as specified by Junkins, and Ni,j,k is the number of

coefficients for the i, j, k node polynomial. These partial derivatives are further con-

verted into final Cartesian acceleration by applying the inverse of the classic spherical

coordinate transformation. Higher order derivatives are obtained by taking further
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derivatives of Eq. 72 and applying the chain rule.
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(72)

Figure 34: Continuity in 2D from weighted evaluation

Figure 34 summarizes the weighting function technique for two equally spaced

dimensions. Equation 73 shows the final weighted evaluation of the potential function

in the small region of sub-grid overlap (see Fig. 29).

UΩ = Upri(δ, λ, r)Ω(φ) + [1− Ω(δ)]Urot(δ, λ, r) (73)

In Eq. 73 δ refers to normalized polar angle which varies between 0 and 1 across the

overlapped region. Upri and Urot are the interpolated geopotentials evaluated on the
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primary and the rotated grids, respectively. UΩ is the final weighted geopotential in

the overlapping region, and Ω represents a 7th degree 1D Hermite weight function

which achieves 3rd order continuity (determined by the outer term δ4) and is given

by Eq. 74.

Ω(δ) = δ4(35− 84δ + 70δ2 − 20δ3) (74)

Equations 73 and 74 can be further differentiated with respect to δ using the chain

rule and by using Eq. 61 to obtain continuous derivatives up to the desired order in

the overlap region. Hence, due to the weighting evaluation and the overlapping tech-

niques, continuity and exact higher order derivatives of the interpolated geopotential

are maintained globally. Exact higher order derivatives possess attractive dynami-

cal properties especially for applications such as orbit determination and trajectory

optimization. Figure 36 illustrates the continuity by showing the potential and its

first three derivatives with respect to Cartesian x for the sub-grid overlapping region.

Figure 36 (left) illustrates continuity in all four cases, achieved by choosing a 7th

degree Hermite weighting function which is continuous upto 3rd order (smooth upto

2nd order). Kinks and discontinuities in the higher order derivatives are illustrated

in Fig. 36 and result due to the use of a lower order (Fig. 35) weight function.

3.5.8 Residual tolerances

The final acceptable residual level (when compared to SH fitting function) for each

node domain is a function of four sub-tolerances: the RMS and max of the potential

residual and the RMS and max of the acceleration residuals (norm of the difference

of the Cartesian acceleration vectors). The potential residual tolerance is adaptively

determined based on the radial distance of the current point in the node domain and

the degree and order of the SH function being fit. The target value is chosen to

conservatively mirror the expected errors of the SH function. Estimated accuracies

of the GGM03C solution are given in Ref.132 and the associated release notes. The
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Figure 35: Weight functions continuous to 3rd order : 70× 70 field

accumulated error as a function of SH degree is replicated in Fig. 37. For example,

up to degree and order 70, the accumulated error for the geoid height is ∼ 6 mm or ∼

1E-9 in normalized units. Up to degree and order 360, the accumulated normalized

error is ∼ 3E-8. Therefore the confidence of the potential evaluation at the surface of

a 360× 360 and 70× 70 field is approximately 8 and 9 digits of accuracy respectively.

The accumulated error curve in Fig 37 serves as a baseline target for the interpolation

residuals for geopotential evaluation at the surface. In order to map the target resid-

uals to different altitudes, Eq. 75 includes the (Re/r) term similar to the structure

of the interpolant. For a given size of the SH field, the covariance matrix terms (σc

and σs) from the GGM03C solution are obtained.132 To be conservative the baseline

target potential residual (τU) is always kept below a user defined constant η0, which

is equal to 5E-9 for the current study.

τU(r) = min

η0 ,

√√√√[ d∑
i=0

(
Re

r
)
2i i∑
j=0

(σc(i, j)
2 + σs(i, j)

2)

] (75)
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Figure 36: Weight functions continuous to 1st order (right) : 70× 70 field

For a given degree and order of the SH field (d), a residual scaling graph is obtained

using Eq. 75. Figure 38 illustrates the curve for various degree and order truncations.

The Re/r term dominates at the high altitudes, making the baseline target residu-

als approximately the same for all four cases shown. This adaptive scaling in the

radial direction provides a context for targeting interpolation residuals, allowing for

a highly optimized memory footprint of the global model. The baseline target value

of τU multiplied by a user defined constant (η1) serves as the final potential RMS

residual tolerance used during the fitting process. The acceleration RMS residual

tolerance is directly obtained by multiplying the potential RMS residual tolerance by

a user defined constant (η2). The max residual tolerances on both the potential and

acceleration are obtained by multiplying the corresponding per node domain RMS

values (computed during the fitting process), by user defined constants, η3 and η4,

respectively. Equation 76 gives the four sub-tolerances that are required to be met

in order for a candidate polynomial to be selected. Here, Υ1...4 represent the final
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Figure 37: GGM03C accumulated surface error

potential RMS, acceleration RMS, potential max and the acceleration max residual

tolerances respectively. Its should be noted that κU and κ~∇U denote the per node

domain RMS values for the potential and acceleration, respectively.

Υ1 = τU η1

Υ2 = Υ1 η2

Υ3 = κU η3

Υ4 = κ~∇U η4

(76)

It can be argued, because the residuals of the interpolation model are within the

published accuracy of the SH model, that neither the fitted SH model nor the in-

terpolation model is more likely to represent the true geopotential. Despite such an

argument, the additional constraint to limit residuals in the accelerations is included

in order to maintain consistency in a uniform manner for the acceleration results

from both the GGM03C SH and the Fetch models. No constraints are placed on

higher order derivatives because there is no justification for exact consistency. To the

contrary, applications such as orbit determination and trajectory optimization require

exact derivatives of the function being used and not the function being approximated.
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Figure 38: Residual scaling graph (using η0=1)

3.5.9 Parallel coefficient generation

In spite of various algorithmic optimizations as stated in the previous sections, the

coefficient generation process for a complete 360 × 360 global model would require

on the order of 12,000 CPU hours using a modern workstation (2.27 GHz Intel Xeon

E5520 processor). Note that the 360× 360 degree and order model contains approx-

imately 8 million nodes and up to 228 candidate functions are evaluated for each

node, where each candidate function contains up to 286 coefficients. Furthermore,

each node includes 113=1,331 measurements, and each SH call can include up to

∼130,000 terms. As the coefficients need to be generated just once, the process is

parallelized using the MPI programming model. The main computation burden comes

from SH field computation and increases near the surface where higher order terms

are significant. Depending on the radial distance and the local geopotential char-

acteristics of the node under consideration, the fitting times can vary significantly,

leading to non-homogeneity in computation over the global domain.

To tackle the non-homogeneity, a parallel algorithm using a master-worker strat-

egy is implemented for computing the coefficients. A general version of the algorithm

is given in Appendix A (algorithm 3). The first CPU thread is made the master
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thread and is responsible for gathering and distributing work (nodes to be fit) to all

other CPUs or worker threads. The worker thread comes back to the master thread

after fitting its share of allocated nodes and waits for more nodes. Each worker thread

writes its own separate coefficient file and the master thread is responsible for joining

all the files into the final coefficient binary file. The master-worker algorithm leads to

a 1.37 fold speedup over the case of static assignments for each thread. The algorithm

also has attractive features like load balancing and auto resume which are useful if

computation is interrupted for any reason. The parallel version of the code is imple-

mented in Fortran and can be compiled using either the Intel MPI compiler or the

OPEN-MPI compiler. The complete process, as described, for fitting a 360 degree and

order field across the full domain takes 11 hrs. on a cluster of 1,100 processors (3.33

GHz Intel Xeon X5680 processor). For the current study, the TACC Lonestar Linux

Cluster is used consisting of 1,888 compute nodes with 6 cores per node, resulting in

a total of 22,656 cores and a peak compute performance of 302 TFLOPS.

Figure 39: Distribution of number of coefficients at 20 km altitude : 360× 360 field

Figures 39 to 42 shows a surface distribution for number of polynomial coefficients

of the optimally selected polynomials at altitudes ranging from 20 to 20,000 km for

the 360 × 360 model. At all altitudes, the (δ, λ) grid size remains the same; hence,

we observe a reduction in number of coefficients as altitude is increased. The regions
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Figure 40: Distribution of number of coefficients at 200 km altitude : 360 × 360
field

Figure 41: Distribution of number of coefficients at 2,000 km altitude : 360 × 360
field

with higher numbers of coefficients correspond to the regions where the geopotential

changes rapidly. Figure 43 shows the contour of the radial acceleration (in mGals

with two body and J2 terms removed) evaluated at the surface for 360× 360 field. A

bigger version of Fig. 43 is given in Appendix B. The computed coefficients for the

primary and rotated grids, along with the required meta-data, are stored in one dense

binary file.
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Figure 42: Distribution of number of coefficients at 20,000 km altitude : 360× 360
field

Figure 43: Radial acceleration (in mGals) for 360 × 360 GGM03C field at surface
(two body and J2 terms removed)
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Table 11: Fetch models
Model
name

SH
field

η1 η2 η3 η4 Γ Memory # Cells # Coefficients
Expected
speedup

1

F399m33v1 33× 33 1.00 10.00 11.00 10.00 2.00 121.44 MB 175,536 15,828,234 8.5
F399m70v1 70× 70 1.00 10.00 11.00 11.00 1.53 359.91 MB 564,075 46,891,426 28.7
F399m156v1 156× 156 1.00 12.00 11.00 11.00 1.21 897.57 MB 2,015,076 116,628,043 206.6
F399m360v1 360× 360 1.00 20.00 11.00 8.00 0.92 2.36 GB 7,615,254 312,545,677 2914.2

3.5.10 Model classification

Given the SH base field, the Fetch model is generated by specifying the four residual

constants (defined previously, η1...4) and a grid resolution control parameter called Γ.

s = Γ

√
180

d
(77)

In Eq. 77 s is the cell edge length in degrees, and d is the degree and order of the

SH base field. Γ provides a dial to control the memory vs. speedup trade. The value

of Γ directly affects the polynomial fitting accuracy and Fetch runtime performance.

A high value results in a final Fetch model with a smaller memory footprint but

slower runtime performance and vice versa. Typical values for Γ lie between 0.5 to 2

for various SH base fields considered in this study. Table 11 lists the various Fetch

models generated for this study and are classified based on the degree and order of

the SH field that is fit, residual tolerances (η1...4) and Γ. The naming convention

includes the SPICE body number,2 the SH model degree and order, and the version

number of the current release. The F, m, and v stand for Fetch, model, and version,

respectively. The memory footprint increases almost linearly with increase in the SH

degree and order.

Figures 44 and 45 shows various Fetch models with their memory footprint and

expected speedup as a function of Γ. Two classes of Fetch models corresponding to

SH field sizes 33 × 33 and 70 × 70 are shown. Increase in both, the speedup and

memory is observed with a decreasing value of Γ. For fairness, the residual tolerances

(Υ1...4) within each class of models are kept constant. The residual tolerances used

in Fig. 45 for the 70 × 70 models are more relaxed (by a factor of 1.2 on η2 and η4)

than for the models mentioned in Table 11. Only the models satisfying the residual
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Figure 44: Memory and Speedup vs Γ : 33× 33 Fetch model

Figure 45: Memory and Speedup vs Γ : 70× 70 Fetch model

tolerances are plotted, thereby imposing an upper limit on Γ.

3.6 Phase 2: Runtime Evaluation

The runtime implementation of a Fetch model is designed to be as simple as possible.

The steps required at runtime are 1. initialize Fetch (e.g. load the binary coefficient

file), and 2. call Fetch runtime routines to retrieve the potential and any desired

derivatives.
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The first step initializes Fetch and loads the coefficient file requested by the user

to the computer’s Random Access Memory (RAM). This step is executed only once

during the model initialization phase. This step can take anywhere from less than a

second to up to ∼20 seconds depending on the size of the Fetch model being loaded

and hardware of the computer. Once the model is initialized, various calls to Fetch

routines can proceed. Inside the core runtime routines, the coefficients are efficiently

tracked and the correct 8 neighboring node polynomials are identified and evaluated

followed by a final weighted evaluation of the composite Fetch runtime function.

3.6.1 Coefficient lookup

All routines take the spacecraft geocentric Cartesian position vector as part of their

input and subsequently identify the 3D cell housing that position vector. Normally,

such a task would require a lookup table, however the uniform surface grid spacing

along with the precomputed radial shell distances can be exploited to identify the

correct cell using only a double to integer conversion function. The coefficients are

stored in manner such that only one node position lookup is required in order to

gather all of the neighboring eight node positions.

3.6.2 Fetch runtime routines

Table 12 lists the runtime routines that have been implemented for the current release.

The main “get Fetch” routine takes the geocentric Cartesian vector, body GM , body

radius, J2 and required derivative order as inputs and gives the interpolated potential

plus derivatives as output. The accelerations are computed by taking the gradient

Table 12: Available Fetch routines
Routine name Task performed

init Fetch Initializes Fetch + coefficient file
get Fetch Computes potential + derivatives

Table 13: Test hardware/software
Component type Component

CPU Intel Core i7 950 @ 3.07 Ghz
RAM (Memory) 6.0 GB

Compiler Intel Fortran 12.0
Operating System Ubuntu 12.10

of the interpolated geopotential function with respect to spherical coordinates, then
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performing the necessary transformations to the Cartesian coordinates.127 Similar

coordinate transformations and chain rules are required for any necessary higher order

derivatives. In this implementation, runtime routines are provided to include up to

third order derivatives (with respect to Cartesian coordinates) of the potential. Again,

it is emphasized that the singularity issue with the spherical coordinates conversions

is handled through the use of the two overlapping grids.

3.7 Runtime Performance

In this section the performance of the Fetch models are evaluated against an optimized

CPU implementation of the Pines SH model.101,85 It is noted that both the Pines SH

algorithm and the Fetch model are singularity free. Even though the Fetch model

extends beyond the Moon, the performance comparisons are limited to an altitude

of approximately 5Re. All four of the Fetch models from Table 11 are considered

for performance comparison. Table 13 gives the specifications of the runtime test

hardware and compiler.

3.7.1 Comparison with fitting SH function

Comparisons are performed by dividing the evaluation region into five altitude bands

listed in Table 14 . For each band, sample direct calls to Pines SH and Fetch models

are made and differences between the Fetch and SH models are evaluated. The

number of sample points for each band vary between 6,500 and 50,000 and are selected

heuristically depending on the degree and order of the field.

Table 14: Performance evaluation regions
Band id Start altitude (km) End altitude (km)
Band 1 36.0 65.0
Band 2 65.0 1,000.0
Band 3 1,000.0 2,550.0
Band 4 2,550.0 6,378.0
Band 5 6,378.0 19,135.0
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Figure 46: Normalized difference (RMS) in potential when compared to SH

Figure 47: Normalized difference (max) in potential when compared to SH

Figures 46 to 49 show the RMS and max of the differences in potential and ac-

celeration corresponding to each of the bands and for the various fidelity models. As
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Figure 48: Normalized difference (RMS) in acceleration when compared to SH

Figure 49: Normalized difference (max) in acceleration when compared to SH

expected, the RMS of the differences in potential and acceleration is always found to

be less than the target residual from the fitting process and the max of the differences
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is generally one order of magnitude greater. The observed differences in lower fidelity

fields are much smaller due to the lower target residuals associated with the lower

field fits.

Figure 50: Potential difference profile, 200 km altitude:70× 70 field

Figure 51: Acceleration difference profile, 200 km altitude:70× 70 field

Figure 50 to 53 show the differences (in normalized units) in potential and accel-

eration at 200 km altitude for a Fetch model interpolating a 70× 70 SH model and a

360 × 360, respectively. As expected, the maximum differences in the potential and

acceleration are found to be less than their computed runtime residual tolerances.

Looking at Fig. 37, the estimated RMS accuracies of the GGM03C 360× 360 model
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Figure 52: Potential difference profile, 200 km altitude:360× 360 field

Figure 53: Acceleration difference profile, 200 km altitude:360× 360 field

are approximately 3E-8 at the surface (and get mapped to a slightly lower value when

evaluated at 200 km), therefore the Fetch model, with a max geopotential difference of

1E-11, is conservatively (noting the RMS of the difference is even lower) three orders

of magnitude below the noise level of the SH function being fit. The Cubed-Sphere

model is also three orders of magnitude below the noise of the SH model.66 Therefore,

both the Cubed-Sphere and Fetch models can be considered sufficiently accurate (if

not overly accurate) with respect to the true geopotential.

Figures 54 and 55 shows the comparison to SH statistics for a complete sweep of

87



Figure 54: Potential normalized differences

the global domain for the F399m156v1 model. Each point corresponds to a shell and

contains the max or RMS of the differences in potential and acceleration over all the

cells, with 27 random evaluations within each cell. Near the surface, Υ2 generally

is the limiting one of the four residual criteria (~Υ) and therefore the RMS of the

differences in potential are significantly smaller in these regions.

Figure 55: Acceleration normalized differences
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3.7.2 Speed comparison

As Fetch trades memory for runtime performance, the speed at which memory (RAM)

can be accessed has a major impact on the model’s runtime performance. Randomized

reads from memory are slower than sequential reads or reads from adjacent memory

banks. Hence, the runtime performance of Fetch varies significantly, depending on

how the coefficients are being accessed.

Fetch’s runtime performance is independent of the SH degree and order. Figure 56

shows minimum and maximum absolute evaluation time vs number of coefficients. To

generate the minimum evaluation time data, multiple points per cell are evaluated

to mimic the near sequential access behavior. The maximum evaluation time data

are generated by evaluating, in sequence, non-adjacent cells with the same number

of coefficients. Given the computational nature of SH, its evaluation time increases

quadratically as the degree and order of the SH field increases (see Fig. 57). From

the timing data, we can compute the expected runtime speedup corresponding for a

given number of coefficients. Higher order Fetch models demonstrate up to three to

four orders of magnitude in speedup. It is noted that the Fetch runtime performance

is cut in half in the regions where the primary and rotated grids overlap.

Fortunately, in most foreseen applications, the gravity field will be queried in a

near sequential manner, such as a trajectory following a 1D path in the 3D domain.

Hence we can expect absolute evaluation times close to the minimum evaluation time

values in Fig. 56. Typical low altitude applications (those more likely to require

high-fidelity gravity) will encounter cells with the greatest number of polynomial

coefficients. The higher order derivative routines are also tested and it is found

that including the Jacobian or the Jacobian and the Hessian of the acceleration cost

an additional ∼15% and ∼25% compute time, respectively, when compared to the

potential and acceleration only case. On the contrary, in a simple SH experiment, it is

noted the additional Jacobian or Jacobian and Hessian calculations lead to 50% and
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Figure 56: Fetch: absolute compute time, single sub-grid evaluation of potential
and acceleration

200% compute time increases, respectively. Therefore, the speedups of Fetch model

are further amplified in the case of higher order derivatives.

3.7.3 1D Path comparison

Table 15: Path classification
Path # Type

Perigee
alt. (km)

Apogee
alt. (km)

Inclination
(deg)

# Revs
Func.
calls

1 Low altitude, circular, inclined 200 200 65 32.5 65,000
2 Low altitude, circular, near polar 500 500 85 30.5 46,000
3 Medium altitude, circular, near polar 1,350 1,350 85 25.6 39,500
4 High altitude, circular, near polar 4,050 4,050 85 16.4 24,700
5 Low perigee, highly eccentric, inclined 150 5Re 65 6.5 12,600

To gauge the performance of Fetch in a realistic application, we query successive

calls according to a 1D trajectory or path in the global domain. Because different

paths access different cells with a different number of coefficients, five representative

spacecraft paths (see Table 15 and Fig. 58) are considered. The timings of the Fetch

and SH calls are evaluated for each of the four Fetch models and each of the five

spacecraft trajectories. It is assumed that the spacecraft trajectories are precomputed

and the timing results only include the Fetch and SH function calls.

Figure 59 summarizes the speedup results. For medium to high order Fetch models
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Figure 57: Absolute compute time for SH

Figure 58: Various paths

Figure 59: Fetch model speedups over SH: typical case of path evaluation such that
the sequential calls to Fetch are from the same or neighboring cells.
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we achieve multiple orders of magnitude in speedup. Specifically for the complete

360× 360 SH field the final speedup varies from 2,900 to 3,900 times.

3.8 Chapter Conclusion

The main objectives of the Fetch model is to provide a fast and accurate way for

calculating high order gravity fields while preserving the mathematical attractiveness

associated with the SH formulation. The Fetch method trades an affordable memory

investment for unprecedented speed gains. It uses a modified Junkins weighting

function technique to achieve continuity over the whole solution domain and allows

for localized resolution via adaptive polynomial fitting. The geopotential is the only

interpolated function with the acceleration and any higher order derivatives calculated

by explicitly differentiating the interpolant. The singularity present at the poles

when conventionally dealing in spherical coordinates is tackled by implementing a two

level grid structure with an overlapping latitude band. Therefore, the four priorities

(continuous/smooth, adaptive, non-singular, accurate) laid out in the introduction

are achieved. The memory footprint is fixed at the cost of storing the potential only,

and scales almost linearly with SH degree and order. In contrast, the speedup scales

in a near cubic fashion, making a compelling case for applications requiring high order

SH.

Adaptivity for the Fetch model is achieved both through the radial direction and

through the optimization of choosing the best out of 228 candidate interpolants for

each node. Precomputed analytic solutions to the least squares normal equations

afford the extreme flexibility of evaluating all candidate interpolants for all nodes (up

to 8 million in this study). Furthermore, target residual tolerances for each node are

calibrated based on the published accuracy of the GMM03C gravity model. These

residual levels are used to guide the fitting process, so as to minimize the number of

coefficients needed for each node while maintaining a uniform global residual profile
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that is consistent with the physics of the problem and the accuracy of the SH function

being fit. A master-worker based parallel version of the algorithm is implemented (in

MPI) to efficiently generate the coefficients for the high order SH fields. The par-

allel coefficient generation algorithm enables the fitting of high degree SH fields.The

highest resolution currently investigated (and native size of the GGM03C model) is

360×360 where the Fetch model achieves up to 3,900x speedups. The residual profile

for the potential and acceleration are uniform according to the order of the tolerance

specified. In its current form, the Fetch model does not satisfy the Laplacian equa-

tion. Future works could consider either constraining the least squares problem or

choosing basis functions that do naturally satisfy the Laplacian equation.

The ease of implementation combined with speed and favorable continuity proper-

ties make the Fetch model attractive for high-fidelity orbit determination or trajectory

optimization tasks. Chapter 6 showcases the Fetch model applied to the problem of

simulating multiple spacecraft trajectories on the GPU. The Fetch runtime code is

embedded as part of this thesis in appendix E.
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CHAPTER IV

EPHEMERIS COMPUTATION

4.1 Chapter Summary

Precise trajectory simulations typically require an ephemeris retrieval system, i.e.

some mechanism to identify planetary body states and orientations at given times.

However, the ephemeris systems most commonly used throughout industry and academia

are, by design, general in their capabilities and application. In this chapter a new

system called FIRE (Fast Interpolated Runtime Ephemeris) is introduced. FIRE is

designed for custom trajectory applications that favor speed and smooth derivatives.

The new system minimizes the overhead associated with ephemeris calls through the

use of archived splines, a runtime ephemeris (stored in random access memory of

the computer), and batch processing routines. Further, our approach naturally pro-

vides first and second time derivatives for a small additional computational cost. The

derivative capability is particularly attractive for optimization and targeting where

smooth and accurate derivatives are important. Relative performance comparisons

with the Jet Propulsion Laboratory’s Spacecraft Planet Instrument C-matrix Events

(SPICE) ephemeris system show typical speed improvements of up to two orders of

magnitude for various state and orientation calls. Performance comparisons for high-

fidelity trajectory propagations are also considered and a factor of 60 in performance

increase is achieved for typical cases. The proposed tool has potential value to any

high precision application or software requiring fast, accurate, and smooth ephemeris

data.

4.2 Chapter Nomenclature

a, e, i, ω,Ω, ν Classical orbital Elements
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N Number of knot pairs

ζ State vector

ns Size of state vector

V Interpolated variable at each knot

ξ Knot to current time distance

h Knot to knot distance

t Current time

t0 Epoch time

M Scaled second derivatives at knots

i Current knot index

x, y, z Components of position vector

u, v, w Components of velocity vector

G Standard gravitational parameter

m Mass of the body

R Rotation matrix (3×3)

α, β, γ 1st, 2nd and 3rd Euler angles

JD Julian Date

Nr Normalizing Factor

wrt With respect to

NPR Number of points per revolution

EMS Earth-Moon-Sun

FFT Fast Fourier Transformation

ACE Archived Cubic spline Ephemeris

RACE Runtime Adaptive Custom Ephemeris

JMSS Jupiter-Moons-Saturn-Sun

FIRE Fast interpolated runtime ephemeris

SPICE Spacecraft Planet Instrument C-matrix Events

4.3 Introduction and Background

In the last chapter a new high performance, higher order gravity model was proposed.

The next bottleneck problem commonly encountered when computing high-fidelity

perturbations is that of computing solar system body ephemeris. The solar system

body state and orientation data (commonly computed via JPL’s SPICE model2) has

applications in a variety aerospace applications.63,46,113,114,3, 83 The SPICE model

represents the current state-of-the art and provides a broad level of capability apart

from computing body state and orientations.It is well known that SPICE ephemeris
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calls suffer from large overheads and are one the major speed bottleneck for precise

applications. A large amount of computational resources are wasted in trajectory

simulations when applied to problems like optimization, differential correction, orbit

determination, and Monte-Carlo analysis.

With this fact being the motivation, a new custom ephemeris system is proposed in

this chapter. The new system, called FIRE (Fast Interpolated Runtime Ephemeris),

maintains the heavily relied upon accuracy, yet eliminates or substantially reduces

the typical computational burdens associated with ephemeris calls. FIRE is partic-

ularly suited for problems that favor higher speeds and smooth derivatives, such as

trajectory optimization,110,109,60,118 orbit determination25,114,72,83 and Monte Carlo

sensitivity analysis.35,3 The new system generally favors speed in sacrifice of rela-

tively more memory. The basic structure consists of an internally formatted, archived

ephemeris called ACE (created from an already established ephemeris such as SPICE)

and a problem dependent, dynamically created runtime ephemeris called the RACE.

Implementing a runtime ephemeris stored directly in RAM significantly reduces the

overhead associated with the multiple runtime ephemeris calls.

Various numerical techniques such as a fast and efficient cubic spline interpola-

tion for ACE generation, FFT for identifying base frequencies, batched runtime calls

(batch calls) to reduce overheads, adaptive tree structure evaluation to eliminate re-

dundancy, and numerically stable floating point algorithms have been implemented.

FIRE also provides the user with continuous and analytic first and second time deriva-

tives for all the ephemeris states (position, velocity) and orientation matrices. This

valuable derivative feature is absent from SPICE routines (like “SPKEZ”,“SPKEZP”

and “PXFORM”), where derivatives are available only through the expensive and

less accurate numerical differencing method.

For this thesis, we use SPICE as the benchmark for our performance comparison

as it is arguably the most widely accepted ephemeris retrieval architecture publicly

96



available. Extensive performance comparisons for direct position and velocity calls

show that FIRE is ∼70 to ∼250 times faster (depending upon the number of bodies

and type of call). If only the positions of bodies are evaluated, then FIRE performs

∼44 to ∼197 times faster. Further, a performance increase of ∼150 to ∼250 times

is observed if we also compute the orientation matrix along with the position and

velocity vector. When implemented in trajectory integration problems, the FIRE

integration is demonstrated to be ∼50 to ∼70 times faster than the same integration

using SPICE. For similar applications using SPICE, there is little motivation for

improving general algorithm efficiency because ephemeris calls dominate such a large

fraction of the total computational burden. In the case of FIRE, users are free to

experience the full benefit of improving the efficiency of their custom applications.

It should be emphasized that the FIRE system is not intended to be a replacement

for the full functionality of SPICE or any other established ephemeris system. It acts

as a wrapper over an already established ephemeris like SPICE and is intended to

replace only the state and orientation ephemeris calls for custom applications that

may benefit from FIRE’s speed and smooth derivatives.

4.4 FIRE Architecture and Core Numerical Computation

This section gives an overview of FIRE’s main architecture and its core routines. The

FIRE architecture is based upon the premise of increasing speed and maintaining

accuracy while sacrificing memory as efficiently as possible. It is written in Fortran

using a modular approach to ease its implementation and expandability.The main

architecture can be broadly divided into three sub-systems:

1. Archived Cubic spline Ephemeris (ACE)

2. Runtime Adaptive Custom Ephemeris (RACE)

3. RACE loading and Runtime batch processing routines
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The above mentioned sub-systems are computationally separate from each other,

each containing its own set of local core routines. A standard input method from

a text file corresponding to a “namelist” local to that system has been followed,

thereby imparting robustness and flexibility to the code. Even though the SPICE

naming convention has been adopted for consistency, we can create our own naming

convention and our own custom bodies or spacecraft by changing the relevant inputs.

Note, however, for the tree navigation algorithm, we do require that the “tree trunk’

is the main solar system barycenter defined by a body number of zero (see Fig. 60).

Details on the tree structure are discussed later.

Figure 60: Sample Tree Diagram

4.4.1 Archived Cubic Spline Ephemeris (ACE)

4.4.1.1 ACE computation

Cubic spline interpolation is actively being used in various fields like Robotics,62,58

Numerical integration,126 Image Interpolation137 and Animation.124 The ephemeris

states of spacecraft and planetary bodies are well behaved functions. Hence, cubic
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splines can easily achieve the desired accuracy and efficiency required for interpo-

lation. Further, cubic splines naturally provide continuous derivatives up to second

order. The second derivative will have kinks at the knots but remain continuous while

the first derivatives are smooth and continuous across the full domain. Note that we

interpolate on velocities separately instead of using the first derivative of the position

in order to maintain accuracy and continuous second derivatives. We choose the cubic

splines primarily because they are remarkably fast to compute in comparison to other

popular, higher order splines such as Chebyshev polynomials and B-splines.

Even though SPICE is already based on a Chebyshev polynomial, we interpolate

on the interpolated ephemeris for ease of implementation. We note that errors in our

interpolation of SPICE are on the same order or less than those interpolation errors

published by SPICE. Nonetheless, a possible future works could include interpolating

the raw currently unpublished data that SPICE uses for its interpolation.

ACE is generated by implementing an efficient cubic spline algorithm to inter-

polate the data generated by an established ephemeris. We adopt a clamped cubic

spline method well suited for accuracy and smoothness.34 The end conditions require

the first derivative of the interpolation variable at the first and the last knot. These

derivatives, for each state and orientation angle being interpolated, are calculated

using a fourth order numerical difference scheme. For spline computation, the linear,

tridiagonal system is given by Eq. 78.

A ~M = ~V (78)
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where A is a tridiagonal matrix given by Eq. 79:

A =



3.5 1 0

1 4 1

1 4 1

. . .

1 4 1

0 1 3.5


(79)

The linear system given by Eq. 78 is solved for M(1) to M(N − 1) by using

a numerically stable tridiagonal matrix algorithm.30 Further, M(0) and M(N) are

evaluated using the end conditions from Eqs. 80 and 81. Note: M(1) to M(N − 1)

values are solved first and then M(0) and M(N) are evaluated, subsequently.

M(0) =
3

h
[
(V (1)− V (0))

h
− ˙V (0)]− M(1)

2
(80)

M(N) =
3

h
[
(V (N)− V (N − 1))

h
− ˙V (N)]− M(N − 1)

2
(81)

After computing M(0) to M(N), the spline coefficients (a, b, c, d) are evaluated

using the Eqs. 82- 85

a = V (i) (82)

b =
(V (i+ 1)− V (i))

h
− h

6
(2M(i) +M(i+ 1)) (83)

c =
M(i)

2
(84)

d =
(M(i+ 1)−M(i))

(6h)
(85)

Finally the spline is evaluated using a numerically efficient form given by Eq. 86

(where ζ is a dummy interpolation variable or state vector) and 1st and 2nd derivatives

are calculated by Eq. 87 and Eq. 88, respectively.

ζ = a+ ξ(b+ ξ(c+ ξd)) (86)
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ζ̇ = b+ ξ(2c+ 3ξd) (87)

˙̇ζ = 2(c+ 3ξd) (88)

The distance between knots, while performing interpolation, directly affects the

accuracy and smoothness of the interpolation.34 In our case, the distance between

knots is the minimum time step required for successful interpolation which is driven by

the frequency of the body having the smallest orbital period for a particular system

of related bodies. Take the Jupiter system as an example containing the Jupiter

barycenter, Jupiter itself, and its major moons. Io has the smallest period of all

the major satellites. In this case, the frequency associated with Io will of course be

observed in the ephemerides of all bodies in the Jupiter system. Therefore, to capture

the high resolution motion, we assign all bodies a time step commensurate with Io.

In fact, to obtain the final time step for the whole Jupiter system, we divide Io’s

period by NPR (number of points per rev), a user defined accuracy parameter. In

our experiments, we find that NPR values in the range of 30-60 gives good results.

This time step corresponding to the knot separation is given to all the moons of

Jupiter according to the “MINGM” criteria. The “MINGM” criteria allows a body

to be considered if its GM value is above a predefined value. Decreasing “MINGM”

incorporates smaller bodies in the time step computation hence increasing the accu-

racy of interpolation. A body with GM less than the “MINGM” is assumed to have

no effect on the states of the remaining bodies in the system. Therefore its frequency

signature is deemed unimportant to the dynamics of the problem. As we will discuss

later regarding the rotation states, the FFT method is an alternative approach to

choosing the knot separation.

The ability to attain greater accuracy by either increasing the number of points

or by decreasing the MINGM defined value can be misleading. For smooth data,

if the knots are too densely populated, then the interpolating polynomial will use
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Figure 61: Normalized error in Jupiter’s Barycenter states

its high-degree coefficients, in combination with large and almost precisely cancel-

ing combinations. This may cause the interpolating polynomial values to oscillate

between its constrained points, and hence may produce spikes which affect the well

boundedness of errors.

The accuracy of the spline derivatives is typically less than the accuracy of their

immediate integrals. Hence, the normalized accuracy for the zeroth, first and second

derivative is generally on the order of 1E-8(normalized dimensionless value), 1E-6 and

1E-4 respectively for bodies and is of the order of 1E-14 (normalized dimensionless

value), 1E-11 and 1E-7 for barycenters. The normalizing factor (Nr) is calculated

as per Eq. 89. For our purposes, it is very important that the zeroth derivative

be accurate. Figure 61 shows a representative error plot for position and velocity

components along with their first and second derivatives for Jupiter’s barycenter.

Nr = max(ζi) ∀ i = 1 . . . ns (89)
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Note that the SPICE data, is not necessarily smooth to second order across the

full time domain. Discontinuities in derivatives may exist at junctions in the SPICE

interpolating functions. While the “error” plots presume that the SPICE numerical

derivatives are truth, one could argue that the FIRE derivatives are closer to the

truth in the absence of numerical differencing. In fact, for numerical purposes re-

garding targeting and optimization, it is more important for the derivatives to be self

consistent rather than absolutely correct.

We choose Euler angles for orientation interpolation because they perfectly pre-

serve orthogonality in the resulting rotation matrix. Other methods such as Quater-

nions,125 and Rodrigues Parameters134 were investigated extensively in order to avoid

the computationally expensive trigonometric calls. However, it is well known that

interpolating quaternions introduces complications including sign ambiguities and or

loss of orthogonality.124

Note that the SPICE interface with orientation data is a common rotation matrix

between user defined frames. Fire is currently limited to obtaining rotation matrices

between the IAU defined body fixed coordinate systems and the base ecliptic J2000

inertial frame.121 A rotation matrix between two general frames is achievable with

FIRE using two separate rotation calls and a matrix transpose and multiplication.

FFT’s can be easily used to catch frequencies of a periodic system.31 In this

study, an efficient and numerically stable FFT algorithm57,23 is used to calculate

the minimum step size required for interpolation of Euler angles. For a given angle,

the frequency corresponding to the largest spike in the Fourier transformed space

is recorded and the corresponding time step is calculated. This provides us with a

reliable, robust, and efficient interpolation method, even for complex and subtle body

dynamics. A representative FFT plot for the three Euler angles of the Moon are

shown in Fig. 62.

Here, α and β represent the pointing direction of the north pole of the body in
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Figure 62: Fast Fourier Transformation for Moon’s three Euler angles

question, while γ represents the angular location of the prime meridian. The accuracy

of the interpolation is of the order of 1E-15 (non-dimensional error) for both the slow

period angles and 1E-13 (nondimensional error) for the fast moving angle. Relative

normalized error plots for Euler angles of Titan (Neptune’s largest moon) for 50 days

are shown in Fig. 63.

A 3 − 1 − 3 rotation matrix (R) has been adopted via IAU Standards.121 The

expression for the time derivatives for R in terms of the time derivatives of α, β, and

γ are straight-forward. We obtain the time derivatives of the states directly from the

interpolation. The actual implementation for the time derivative of R is optimized

for serial access, favoring speed and re-use of data. Note that currently the FIRE

system is limited only to natural body orientation data retrieval.

104



Figure 63: Relative normalized error in Titan’s Euler angles

4.4.1.2 ACE storage

ACE is stored in a structured format, consisting of numerous gravitational subsys-

tems. Each body of a subsystem, has up to 3 associated binary files: one for position,

one for velocity, and one for rotation. The binary files contain the dependent variables

and their second derivatives at all the knot points for each interpolation variable. The

spline coefficients are calculated at runtime using optimized implementations of equa-

tions 5-8. The independent knot (time) values are stored in an efficient manner to

avoid redundancy while preserving speed. An archived ephemeris (ACE) is typically

generated when using FIRE for the first time or when there is major update in the

underlying ephemeris system used to generate ACE.

4.4.2 Runtime Adaptive Custom Ephemeris (RACE)

RACE is a binary, dense array, whose main purpose is to significantly increase the

speed of run-time ephemeris state and orientation calls by eliminating the overhead
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arising from invoking the archived spline. RACE also provides the user with a porta-

bility option to store as a binary file the problem specific RACE for reuse later. Hence,

multiple RACE’s can be generated and stored for different classes of problems. This

strategy leads to the idea of parent (ACE) and child (RACE) ephemerides.

By default, each body within the RACE has its state relative to its own native

barycenter. A user defined input can modify the RACE to change the interpola-

tion center for the bodies present. Typically we choose the new interpolation center

as the center of integration for a trajectory propagation and may lead to 50% to

150% performance improvement at runtime. The memory requirement of the run-

time ephemeris typically varies from 1 to 100 megabytes (approximately) depending

upon the accuracy of ACE and the time span and number of body states required for

the problem.

The number of knots for all the bodies is equal to some 2k value (where k is an

integer). Hence, knowing the body and the corresponding particular interpolation

variable having the largest value of k provides a mechanism to uniquely identify the

appropriate knots for each state and orientation in a batch call without performing

expensive searches in the RACE at runtime. This algorithm requires one “double”

to “integer” conversion and just a few elementary floating point operations, instead

of a linear or a binary search algorithm.

4.4.3 RACE loading and Runtime batch processing routines

The third sub-system is invoked at runtime and performs the following two operations:

1. Dynamic allocation of the RACE in memory

2. Computing the state vectors, the rotation matrices and any derivatives by eval-

uating the tree navigation algorithm (see Fig. 60)

In contrast to the capabilities of SPICE, the new system employs a single batch

call for interpolation of all of the necessary states and orientations at a particular
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time1. The term “batch call” refers to calling all the states of multiple bodies in one

call rather than calling the routines over and over for each body state and orienta-

tion. These batch calls significantly reduce the overhead associated with the common

initialization for each body.

In cases when an ephemeris is used in the force models for optimization and or

targeting routines, continuous first and second time derivatives may be necessary for

positions, velocities, and rotation matrices. Keeping this in mind, FIRE also provides

the user with set of flagged routines which can be invoked to get the first or both

the first and the second derivatives of position, velocity, rotation, or any combination

of these via only one batch call. This derivative data can be extremely useful for

problems which are sensitive, like trajectories with multiple close flybys or multiple

gravitating bodies.76,141 The RACE is general and users are free to call for states and

derivatives relative to any center.

Navigation of the tree structure (see Fig. 60) is required at runtime if the user

requested reference center is different from the RACE interpolation center. In the case

of trajectory integration applications, this reference center is typically the problem

specific center of integration. Again for a general system like SPICE, there is overhead

associated with evaluating the tree at runtime for every call and every body. In the

FIRE architecture, the batch calls provide all the necessary states with respect to one

common center. A efficient tree navigation algorithm is implemented, which removes

any redundant calls without sacrificing the numerical stability and accuracy of the

state being calculated.

The overview of the complete FIRE system is given in Fig. 64. Details on FIRE

implementation and usage are given in appendix D.

1We note that the Matlab version of SPICE, called MICE, includes batch calls although we
suspect it is simply a wrapper around the un-batched SPICE.
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Figure 64: Overview of the FIRE system

4.5 Performance

JPL’s ephemeris generation system (SPICE), is used for benchmarking the perfor-

mance of the FIRE system. The system configuration used for benchmarking is an

Intel dual core processor (2.6Ghz) with 4 GB of RAM. The benchmarking is done in

two ways. First, we directly call the routine for a certain fixed number of calls and

record the relative performance gain. Second, we perform two typical high-fidelity

trajectory simulations for the Earth-Moon-Sun (EMS) system and the Saturn system

with Saturn and its nine moons along with Jupiter and the Sun. We take into account

accelerations due to third body perturbation and gravity field of the central body (via

spherical harmonics).

The code is compiled and linked on the Intel Fortran Compiler for Windows version

11.0 and is subjected to default “-fast” compiler optimizations.

4.5.1 Performance with direct routine calls

In this comparison 3*224 (approximately 50 million) calls with random time inputs

are used to evaluate the performance of SPICE and FIRE. We use the SPICE rou-

tines “SPKEZP, SPKEZ” for computing position and velocity and “PXFORM” with
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Table 16: Various cases for Earth-Moon-Sun performance comparison
System Earth-Moon-Sun:
Type1 Moon wrt Earth-Moon barycenter(native barycenter call)
Type2 Earth and Moon wrt Earth-Moon barycenter(native barycenter call)
Type3 Earth wrt Moon(native system call)
Type4 Earth and Moon wrt Solar-System barycenter(half tree evaluation)
Type5 Earth, Earth-Moon barycenter and Sun wrt Moon(typical call)
Type6 Earth wrt Sun(full tree evaluation)

Table 17: Various cases for Jupiter-Moons-Saturn-Sun performance comparison
System Jupiter-Moons-Saturn-Sun:
Type1 Jupiter wrt Jupiter barycenter
Type2 Io, Europa, Ganymede, Callisto wrt Jupiter barycenter
Type3 Io, Europa, Ganymede, Callisto wrt Io
Type4 Io, Europa, Ganymede, Callisto wrt Solar-System barycenter
Type5 Io, Europa, Ganymede, Callisto, Jupiter, Sun, Saturn barycenter wrt Europa
Type6 Jupiter wrt Saturn barycenter

integer inputs for generation of the rotation matrix.

Two gravitational systems are studied for this comparison: the Earth-Moon-Sun

(EMS) system and the Jupiter-Moons-Saturn-Sun (JMSS) system. The EMS system

has only three bodies passed at once, hence highlighting the performance gain due to

the use of RACE, the runtime matrix. The JMSS system has eight bodies and thereby

quantifies the performance of the full capability of the tree navigation algorithm, batch

calls, and RACE. A type defined bar graph system is used to illustrate the speedup

of FIRE over SPICE. As shown in Table 16 and 17 there are a total of six types of

ephemeris calls, each with different performance characteristics due to different path

lengths required in evaluation of the tree algorithm (Fig. 60).

From Figs. 65, 66, 67, 68, we demonstrate dramatic performance gains from FIRE

in comparison to SPICE. Note that the most expensive call requires a full navigation

of the tree algorithm. Even in this worst performing case, FIRE routines are 45− 65

times faster than SPICE. The typical FIRE call where the batch routines are fully

exploited and most of the bodies share a common interpolation center is demonstrated

to be as much as 250 times faster.

Often a typical routine call includes the necessary position and velocity data for
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Figure 65: Speedup factor for EMS system (pos)

Table 18: Typical performance comparison ratio table for Earth-Moon-Sun system
Type Frame/Center SPICE time (s) FIRE time (s) Speedup

Typical call(pos and rot) EclipJ2000/Earth 3066.63 20.17 152

all the bodies along with rotation data for some bodies. Hence, to demonstrate full

performance capability of FIRE, these calls have been again evaluated along with

rotation matrices for Earth in the first system and for Io in the second system. Also,

we include a test with only rotation calls to a couple of bodies in the Jupiter system

for completeness. Accordingly, Tables 18 and 19 show the performance for both the

tests respectively. Hence for the FIRE performance the typical call is around 150−200

times faster when rotation states are included. We note that the huge improvements

when including rotation states may be over-shadowed by the heavy computational

burdens of spherical harmonics or polyhedral potential calculations that typically

accompany orientation state needs (see chapter 3 and 6).

A distinguishing feature of the FIRE system is its ability to provide the first and

second time derivatives of all the ephemeris states. The states plus first derivative

calls perform nearly equal to position-velocity calls only, and the combined states plus
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Figure 66: Speedup factor for EMS system (pos-vel)

Table 19: Typical performance comparison ratio table for Jupiter-Moons-Saturn-
Sun system

Type Frame/Center SPICE time (s) FIRE time (s) Speedup
Typical call(pos and rot) EclipJ2000/Io 5385.97 26.87 200

Rotation call only EclipJ2000 3443.91 14.11 244

first and second derivative calls require approximately 1-5% more time than the first

derivative only calls. We emphasize again that numerical derivative computation

using SPICE requires additional state calls (typically 2 calls for central difference

approximation), and the resulting derivatives are substantially less accurate due to

round off errors.

SPICE is also compared with the DE405 customized routines by Miles Standish,128

called PLEPH. It was found out that generally PLEPH (using typical maximum

speed optimizations) is approximately 6 times faster than SPICE. It should be noted

that PLEPH only works with DE405 ephemeris data, and thereby has a limited

scope. Further, a recent study by a company called Astrodienst 1 also shows that the

1ftp://ftp.astro.com/pub/swisseph/doc/swisseph.pdf
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Figure 67: Speedup factors for JMSS system (pos)

semi-analytic ephemeris developed by Steve Moshier,89 which enjoys no memory stor-

age, is about 10 times slower than SPICE. The study also propose a new ephemeris

called“The Swiss Ephemeris” 1, which significantly reduces the memory storage re-

quirement of SPICE DE406 ephemeris without impacting its accuracy by more than

1 milli-arcsecond.

4.5.2 Performance during trajectory integration

Beyond the raw performance of using direct calls only, we now proceed to a more

realistic comparison like that of spacecraft trajectory propagation. The relative per-

formance gains will of course not be as impressive as the previous cases because of

the integration and force calculation being done alongside ephemeris calls.

Two trajectory propagations are considered. One for the Earth-Moon-Sun sys-

tem and the other for the Saturn-Moons-Jupiter-Sun system. Spherical harmonics

gravity fields of various resolutions about the central body are also considered. For

integration, a variable step 8th order with 7th order error control, Dormand and Prince

1http://www.astro.com/swisseph/
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Figure 68: Speedup factors for JMSS system (pos-vel)

integrator36 set to a normalized tolerance of 1E-14 is used. Ephemeris rotation calls

are only included during the propagation when the non-spherical gravity field accel-

eration is included.

4.5.2.1 Earth-Moon-Sun (EMS)

For this comparison, a trajectory propagation of a mid altitude Earth orbiter has been

performed taking into account the third-body perturbing effects of Moon and the Sun.

This integration is performed for a period of 100 days. The initial conditions for this

propagation are listed in Table 20. The size of RACE for this case was approximately

6 megabytes. Various Earth gravity fields evaluated in the propagation are given in

Table 21.

Table 22 shows the comparison between FIRE and SPICE for different types of

acceleration. Accuracy and performance of the numerical integrations are the two

main criteria for comparison. Results of the trajectory integration show that FIRE

performs 40 to 60 times faster than SPICE for typical cases (third body perturba-

tions + J2-J10 terms). Also, as expected the speedup decreases as the resolution

113



Table 20: Initial condition (body-fixed
frame at epoch) for EMS trajectory

Orbital Parameter Value
Semi-major axis (a) 7500 (km)

Eccentricity (e) 0.074
Inclination (i) 35 (deg)

Argument of periapsis (ω) 9 (deg)
Longitude of ascending node (Ω) 20 (deg)

True anomaly at epoch (ν) 0 (deg)
Epoch (t0) 2454477.50 (JD)

Table 21: Gravity Field at Earth
Case Acceleration combination

1 two body
2 2 by 0 (J2 only) + two body
3 10 by 0 (J2-J10) + two body
4 50 by 0 (J2-J50) + two body
5 10 by 10 (10 degree + order field) + two body
6 50 by 50 (50 degree + order field) + two body

Table 22: Performance comparison ratio table for EMS trajectory propogation
Cases → Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

SPICE Time (s) 30.24 59.97 60.52 62.38 66.18 211.17
FIRE Time (s) 0.61 1.01 1.46 4.12 6.03 135.82

Speedup (factor) 50 60 41 15 11 2

of the spherical harmonics field is increased. The final state vector of FIRE is off

by 15 meters (approximately) when compared to the final state vector obtained by

using SPICE for a typical 100 day trajectory. This is well within acceptable limits

considering the spacecraft trajectory is highly perturbed and it makes hundreds of

revolutions (approximately 1,336) around the Earth during the integration.

Figures 69 and 70 show the evolution of the orbital elements (for 20 days) and the

resulting trajectory for the fully perturbed plus 10 by 10 gravity field case. Figure 71

gives the instantaneous position differences between FIRE and SPICE propagations.

We note that the orbital elements are reported in the body-fixed frame at epoch.

4.5.2.2 Saturn-Moons-Jupiter-Sun (SMJS)

Here we consider the case of Saturn, its nine moons, Jupiter and the Sun (SMJS).

A highly elliptical orbit with an apoapsis of 1,518,900 km (near Titan) and periapsis

of 141,100 km (close to Mimas) around Saturn is selected for this propagation. This

orbit enables us to capture the gravity signature of all the nine moons of Saturn,

the Sun, and Jupiter. The trajectory propagation is carried out for 200 days. We

only consider an 8 by 0 gravity field for Saturn. The initial conditions are given in

Tables 23 and 24 and the results are given in Table 25. For the typical case, FIRE’s
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Figure 69: Evolution of orbital elements for EMS system

Table 23: Initial condition (body-fixed
frame at epoch) for SMJS trajectory

Orbital Parameter Value
Semi-major axis (a) 830000 (km)

Eccentricity (e) 0.83
Inclination (i) 9 (deg)

Argument of periapsis (ω) 2 (deg)
Longitude of ascending node (Ω) 11 (deg)

True anomaly at epoch (ν) 0 (deg)
Epoch (t0) 2454477.50 (JD)

Table 24: Gravity field at Saturn
Case Acceleration combination

1 two body
2 2 by 0 (J2 only) + two body
3 8 by 0 (J2-J8) + two body

trajectory integration ran 70 times faster. The final state vector is off by 21 meters

(approximately) which again is well within acceptable limits given the long flight

time (approximately 22 revolutions) and highly perturbed and eccentric nature of the

trajectory.

Figure 72 shows the evolution of orbital elements for the perturbations plus J2

acceleration (2 by 0) case. Amongst Saturn’s moons, Titan is the largest and its

gravity signature appears as jumps in the orbital elements. The orbital elements

are shown for the first 100 days only. Figure 73 shows the resulting highly eccentric

trajectory propagation. Figure 74 gives the instantaneous position differences between
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Figure 70: Propagated trajectory in EMS system

Table 25: Performance comparison ratio table for SMJS trajectory propagation
Cases → Case 1 Case 2 Case 3

SPICE Time (s) 61.79 81.07 81.79
FIRE Time (s) 1.06 1.16 1.36

Speedup (factor) 59 70 60

the FIRE and SPICE propagations.

4.6 Chapter Conclusion

In this chapter a fast, efficient, smooth, and accurate ephemeris interpolation system

called FIRE is proposed for general use in precision trajectory and mission design.

The FIRE system is custom built for applications traditionally bogged down by the

heavy computational burden associated with typical ephemeris calls. FIRE relies

on established ephemeris systems (like JPL’s SPICE) to build a custom archived

ephemeris, hence FIRE is intended as a supplemental capability for users that benefit

from fast calls and smooth derivatives. The main disadvantage of FIRE is the added

layer of complexity and the additional (though modest) memory requirements during

runtime.
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Figure 71: SPICE and FIRE position difference (EMS)

We demonstrate speed improvement of approximately one order of magnitude for

typical applications when compared to similar functionality in SPICE, one of the most

widely used ephemeris system. The main performance gain is achieved through the

modest use of random access memory to store a custom, portable runtime ephemeris.

A major benefit of FIRE is that smooth, accurate, and self-consistent derivatives are

natural artefacts of the interpolation method. These derivatives are often required for

trajectory optimization and other classes of similar problems. At the time of writing

this thesis the FIRE software has already undergone extensive testing and will be

released to the general public via the Internet.

FIRE has been designed specifically to facilitate problems involving long or fre-

quent ephemeris propagations for various classes of orbital mechanics problems. The

new tool has potential value to any high precision application or software requiring

fast, accurate, and smooth ephemeris data. Chapter 6 demonstrates the use of FIRE

along with other perturbation model for performing high-fidelity multiple spacecraft
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Figure 72: Evolution of orbital elements for SMJS system

simulations.
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Figure 73: Propagated trajectory in SMJS system

Figure 74: SPICE and FIRE position difference (SMJS)
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CHAPTER V

FAST AND ACCURATE SENSITIVITY COMPUTATIONS

5.1 Chapter Summary

Gradient based trajectory optimization relies on accurate sensitivity information to

robustly move a solution towards an optimum. Computational complexity of sensi-

tivity calculations increases exponentially for higher problem dimensions and orders.

Hence, the computation of these sensitivities is traditionally a major speed bottle-

neck in trajectory optimization and targeting algorithms. In this chapter a novel

methodology using NVIDIA’s GPU (Graphics Processing Unit) to rapidly calculate

the derivatives in a multilevel, parallel, and heterogeneous way while the CPU (Cen-

tral Processing Unit) sequentially computes the less expensive state equations, is

proposed. A tool, based on the methodology, computes both the first and second

order analytic sensitivities on the GPU with double precision accuracy. For an ex-

ample trajectory propagation, overlapped computations are demonstrated such that

first order sensitivities are calculated almost for free compared to the conventional

CPU implementation.

5.2 Chapter Nomenclature

t Time

y State vector

f Equations of motion for the state

g Inequality constraint vector

c Equality constraint vector

X Nominal state vector

I Identity matrix

J Performance index or cost

n Dimension of state vector

[x, y, z] Position vector

120



[u, v, w] Velocity vector

G Standard gravitational parameter

M Mass of the body

φ1 First order state transition matrix

φ2 Second order state transition tensor

Ns Number of sub-trajectories

Nt Total number of integration steps

SP Single precision

DP Double precision

TR Thread recursion

STM State transition matrix, ∈ <N×N

STT State transition tensor, ∈ <N×N×N

GPU Graphics Processing Unit

CPU Central Processing Unit

ODE Ordinary differential equation

Gflop/s Giga floating point operations per second

nsub Total number of points per sub-trajectory (multiple of 16)

scale Scaling parameter for nsub

s/c revs Space craft revolutions

CUDA Compute Unified Device Architecture

NV CC NVIDIA C compiler

GPGPU General-purpose computing on graphics processing units

Conventions

i ith sub-trajectory

j jth point on a sub-trajectory

T Transpose

δx Very small change in x

ẋ Complete derivative of x with respect to time

A*B Matrix times tensor, A is a matrix and B is a tensor: A*B = Σk A(:,:)B(:,:,k)

AT *B*A Matrix transpose times tensor times matrix,

A is a matrix and B is a tensor: AT *B*A= Σk[A(:,:)TB(k,:,:)A(:,:)]

5.3 Introduction and Background

Gradient based numerical optimization is used in used in all areas of science and

engineering.117,142,40,119 Various sub-fields in numerical optimization such as Optimal

Control22,110,109,123,104 and Parameter Optimization,60,47 and other gradient based

121



continuous methods make use of numerical sensitivities to select new step directions.

Most trajectory optimization algorithms make use of higher order sensitivity infor-

mation100,18,38,95 to robustly move an optimum. Computational burden of sensitivity

calculations scales exponentially as a function of problem complexity and order of

the derivatives. Given a function evaluation computational complexity of O(n), the

corresponding first order sensitivities have a computational complexity of O(n2), and

similarly second order sensitivities have a computational complexity of O(n3). The

current state of methodology relies on serial computation of sensitivities on the CPU,

and is often not feasible to solve realistic model problems because of the extraordi-

narily expensive sensitivity calculations. This complexity (and the high costs of large

CPU clusters required to overcome) therefore prohibits many classes of high-fidelity

optimization problems from being solved.

Previous work in parallel sensitivity analysis has been limited to a small class of

problems.21,24,20,29,51 These methods generally fail and exploit the massive parallelism

present in the underlying problem. Furthermore, most of the previous researchers

have focused on the problem of parallelizing sensitivity computations either across

a multidimensional solution domain136 or to multiple differential-algebraic equations

(DAE).146,51 In the thesis we intend to solve the problem efficiently parallelizing

sensitivity computation across a single solution trajectory (or state integration).

The NVIDIA’s CUDA (Compute Unified Device Architecture91) technology en-

ables an innovative solution to the above problem. NVIDIA’s GPU architecture is

tailor made to exploit fine grain parallelism and CUDA makes it possible to program

the GPU hardware efficiently. With the introduction of double precision capability,

it is now possible to achieve dramatic speedups (without loosing accuracy) if new and

innovative algorithms utilize the large amount of parallelism efficiently.

In this chapter a new tool is proposed, which exploits heterogeneous program-

ming by utilizing the CPU and NVIDIA’s Graphics Card (GPU) together to achieve
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substantial speedups for sensitivity computation. The proposed algorithm breaks the

CPU derived solution trajectory (or solution path) into numerous smaller blocks and

solves the associated sensitivities in a heterogeneous parallel manner on the GPU.

These multiple levels of parallelism exploit the fine grained architecture of the GPU,

resulting in significant performance gains. A similar decoupling of the state and sen-

sitivity computation in done in Ref.51 but applied to problem of integrating multiple

DAE’s. On the other hand, the methodology proposed in this chapter attempts to

expose and exploit the multi-level parallelism in a single state integration.

Comparison with a CPU only simulation on an example Keplerian trajectory is

performed. The speedup for a two body trajectory plus sensitivity propagation over

the complete CPU implementation is ∼4 times and ∼14 times for first order STM

and second order STT sensitivity evaluations, respectively. The tool is general in its

design and implementation subject only to user defined equations of motion. The fast

sensitivity propagations can therefore be useful to a wide variety of gradient based

optimization or targeting problems.

In the forthcoming sections of this chapter the general sensitivity formulation

problem is defined, next a brief introduction of the NVIDIA GPU and the CUDA

programming model is provided which is followed by brief overview of the algorithmic

implementation, and finally the performance results are presented.

5.4 General Sensitivity Formulation

Numerical optimization refers to maximizing or minimizing a continuous function

subject to certain constraints and input variables. A general numerical optimization

strategy is shown in Fig 75. The black box function can be any continuous function

of the input.

A common and general optimization problem involving state equations is mathe-

matically defined as follows:
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Figure 75: General Solution Strategy

min
y(t0)

J(yf , tf ) , subject to



ẏ = f(y, t)

c(yf , tf ) = 0

g(yf , tf ) < 0

y ∈ <, t ∈ <+

Here J is the performance index which we want to minimize, y is the vector of

state (and control) variables, t is time, f(y) represents dynamics of the system, c(y)

and g(y) are the equality and inequality constraints (of arbitrary dimension) on the

state vector. If J=0 the problem reduces to a targeting or boundary value problem.

To solve the above problem using gradient methods, the sensitivities (derivatives)

of the final state vector with respect to the initial state vector are required. The first

order derivatives can be computed using numerical differencing of the function or

analytically by direct integration of the so-called state transition matrix (STM).110,13

Many solution techniques (Newtons method for example) require second order deriva-

tives to guide the solution efficiently towards the local optimum. The second order

state transition tensors (STT) can also be calculated via numerical differencing or

direct integration.100,18,38,95 The STM and STT are used to map derivatives from

one time to another on a given continuous trajectory. Please refer to13,122,95 for
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detailed discussion of STM and STT. The STTs have an exceptionally high compu-

tational cost associated with them. Hence, second order derivatives (Hessians) are

usually only approximated; and full second order derivatives are only used in special-

ized high-fidelity methods.79,97 Many important trajectory optimization problems are

highly non-linear in nature making these higher order sensitivity computations very

attractive in the solution process.

The general Taylor series expression for the first order STM and the second order

STT about the nominal state (X) is given by Eq. 90

δXj+1 = φ1δXj +
1

2
δXT

j *φ2*δXj (90)

These highly coupled sensitivities (φ1 and φ2) are evaluated alongside the integra-

tion of the state vector by solving Eq. 91 and Eq. 92.

φ̇1 = fxφ
1 (91)

φ̇2 = fx*φ
2 + (φ1)T*fxx*φ

1 (92)

subject to initial condition φ1(to) = In×n and φ2(to) = 0n×n×n

The complexity of computing the sensitivities in terms of flops (floating point

operations per second) is of the order O(np+1), where n is the dimension of the state

vector and p is the order of sensitivity required. In this study we consider only up

to p = 2. Consider a typical trajectory problem of dimension 6. The STT and STM

are of dimension 6 × 6 and 6 × 6 × 6, respectively. A concurrent evaluation of the

state, STM, and STT therefore requires numerical integration of 6+36+216 coupled

equations. Note that the STT dimension can be reduced to n(n + 1)/2 if symmetry

is considered.

Although the successive steps of the state trajectory must be computed in se-

quential form, the STM and STT can be calculated in parallel once all points of the

state are known. We build upon this insight and use the NVIDIA GPU hardware
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with the help of CUDA technology to achieve substantial performance improvement.

Appendix D gives brief overview of the NVIDIA GPU architecture and the CUDA

programming language.

The next section highlights the implementation of the fast sensitivity calculation

tool.

5.5 Heterogeneous Sensitivity Computation

At any given point on the solution trajectory, the STMs and STTs (of any order) are

a function of the state vector and time at that point. Hence, these sensitivities can

be evaluated in parallel once we obtain the state information for the whole trajectory.

Given two STMs which map the partial derivatives between times ti to ti+1 and

between times ti+1 to ti+2, then the equivalent STM mapping between times ti to ti+2

is given by the chain rule in Eq 93:

φ1(ti+2, ti) = φ1(ti+2, ti+1)φ1(ti+1, ti) (93)

For a second order STT, the mapping expression from one time to another is more

complicated and is calculated in Eq 94.

φ2(i+ 2, i) = φ1(ti+2, ti+1)*φ2(ti+1, ti) + (φ1(ti+1, ti))
T*φ2(ti+2, ti+1)*φ1(ti+1, ti) (94)

Herein lies the motivation to compute STMs and STTs in parallel. Given Nt

number of integration steps required for the state trajectory, the STM and STT from

point i to i+1 for all i = 1..Nt−1 can be calculated in parallel with initial conditions

I and 0 respectively. The final state sensitivities with respect to the initial state are

then calculated with the recursive evaluations of Eq. 93 and 94. We call this final

step the reduction or reduce step.

The next section discusses this solution strategy in detail.
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Figure 76: Solution Strategy

5.5.1 Solution strategy

We start by breaking the CPU generated sequential trajectory into multiple sub-

trajectories with each sub-trajectory consisting of nsub number of integration steps.

Figure 76 shows the basic solution strategy which further breaks a sub-trajectory into

various blocks, with each block containing a certain number of points. As only state

information is required to compute the sensitivities between two points in a particular

block, this structure is perfectly suited for explicit parallelism. The sensitivities within

each block are mapped to CUDA thread blocks and multiple blocks are joined together

to form a CUDA grid block. The whole grid block is then evaluated in parallel. The

final sensitivity matrix is calculated via the chain reduction on the CPU. Further,

these computations are repeated for each sub-trajectory which gives rise to multiple

levels of parallelism and permits concurrent execution.

To calculate the sensitivities a GPU kernel is invoked as soon as we have the CPU

integrated state at each point on a sub-trajectory. So while the GPU is evaluating the

sensitivities for the sub-trajectory (i) the CPU advances with the state integration

for the sub-trajectory (i+1). This enables overlapping the GPU sensitivity computa-

tion with the CPU state integration. Typically, for our first order STM computation

the GPU finishes before the CPU has finished integrating the next sub-trajectory.
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This results in an almost complete computation overlap between the two hardware’s,

except for the last sub-trajectory computation on the GPU. This heterogeneous com-

putation strategy along with an intelligent memory copy operation exploits the GPU

architecture efficiently. The basic execution strategy is the same for both the first

and second order STM and STT evaluation.

Next we elaborate on the specifics of the first and second order implementation.

5.5.2 First order STM implementation

The evaluation of the first order STM from one point to the next is divided into 4

kernel calls. The first kernel is responsible for calculating the initial function evalu-

ation and initializing the global memory for each thread. The global memory holds

the state information and the step size taken by the integrator at each point. The

next two kernels execute 12 times (sequentially) corresponding to the 12 function

evaluations required per time step in the DOPRI-78, Dormand Prince integrator36

(implemented on the GPU). After execution of kernels 1,2 and 3 we obtain the final

state transition matrices between subsequent points on the current sub-trajectory

being evaluated.

The kernel 4 is then invoked to locally reduce the STMs in each thread block to

a single STM. This operation uses a thread recursion (TR) algorithm. To facilitate

faster parallel computations, threads of a particular thread block load matrices in a

specific order, similar to parallel reduction algorithms on the CPU. The TR algorithm

for a thread block size of 8 is given in appendix A (algorithm 2). The TR algorithm is

shown in appendix A is for 8 threads per thread block, we use 256 threads per thread

block in our actual implementation.

After kernel 4 is finished we are left with limited number of state transition matri-

ces which have to be multiplied (in decreasing order) to get the final state transition

matrix for the sub-trajectory. The above procedure except for the final CPU reduction
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step is repeated for various sub-trajectories. The final reduction step is performed all

together for each sub-trajectory on the CPU after the state integration.

Using the TR algorithm we are able to significantly reduce to the number of matri-

ces which multiply in the final reduction step on the CPU. This strategy also imparts

numerical stability to the STM evaluation as we are always multiplying matrices

which are of the same order (approximately).

Figure 77 shows the TR algorithm and the final CPU reduction operation.

7 3 5 1 6 2 4 0

7*6 3*2 5*4 1*0

7*6*5*4 3*2*1*0

Matrix (i)

                              n-1      n

  1      2                   i

Each row of the grid represents a sub-trajectory

block (i)

CPU multiplies 
matrices 

M(n)*...M(i)*...M(0)
at the end 

Matrix ->

SubTraj 1

SubTraj 2

SubTraj n

.

.

Locally 
Reduced 
Matrix ->

Figure 77: TR algorithm (graphical) and final CPU reduction
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5.5.3 First order STM + Second order STT implementation

The second order implementation for each sub-trajectory is accomplished by 6 kernel

calls and one final complete CPU reduction. As in the previous case, kernel 1 per-

forms the initial function evaluation and global memory initialization for each thread.

Kernels 2 to 6 are called 12 times sequentially, each performing a part of a single func-

tion evaluation for one step of the integrator. Specifically, kernels 4 and 5 carry out

required the matrix tensor products needed for the second order STT integration.

After all kernels are finished we obtain the full first order STM and second order STT

between subsequent points on the sub-trajectory. This operation is repeated for all

the sub-trajectories, followed by a complete reduction to obtain the final sensitivities

on the CPU.

5.5.4 User interface

We basically replicate the capability of a general integrator where the user provides a

set of routines which perform the function evaluation. These routines are programmed

in C programming language. The user has full control over the parameters which di-

rectly affect the performance of the tool, like the number of points in a sub-trajectory

(nsub), number of thread blocks, number of sub-trajectories (Ns), etc.

The user routines (both for first order STM and second order STT) should be

optimized for minimizing global memory transfers and avoiding shared bank conflicts

(avoiding threads to read from shared memory in a random fashion) even at the

expense of doing more floating point operations (flops). This is often the case for a

GPU kernel, as global memory operations are generally more expensive (up-to 300

times slower) then floating point operations on the GPU.

By default the number of points per sub-trajectory (nsub) is set to 30, 720/scale.

The parameter nsub has to be a multiple of 32 to achieve high global memory per-

formance on the GPU. By default, the scale parameter has a value of 4 for the first
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order STM computation and 2 for the second order STT computation. The code

automatically handles the last sub-trajectory branch evaluation by launching empty

threads on the GPU, if Nt (number of steps taken by the CPU integrator) for the

complete trajectory is not a multiple of nsub.

Figure 78 depicts the general heterogeneous algorithm.

CPU GPU

Prepare input data

Integrate 6 states
(using ODE 7-8

 Dormand Prince)

Initialize 
coefficients

Set device,
initialize global and
constant memory

report success

  launch   GPU

  launch   GPU

  launch   GPU

  launch   GPU

Evaluate 
1 to k blocks

Evaluate 
k+1 to 2*k blocks

Evaluate 
2*k+1 to 4*k blocks

Evaluate 
4*k+1 to N blocks

Finalize results
 copy results back to the CPU

Perform Final Chain Matrix Multiplication 

- All calls in BLUE are non blocking (control returns to CPU 
immediately)

- Each launch GPU call copies new data to the GPU

initialize GPU

Figure 78: General hetrogenous algorithm for sensitivity computation

5.6 Results

In this section we evaluate the performance of our new tool against an optimized

CPU implementation. A 2-body near earth propagation is used as the test trajec-

tory. We evaluate performance for both the first order STM and second order STT
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implementation. For the 2-body case the order of integration of the state vector (y)

is 6. Hence the order of integration for the STM computation is 42 (36+6) and the

order for the STM plus STT computation its 258 (6 + 36 + 216). We are aware of

the symmetry present in the second order STT computation but we currently choose

to avoid the added complication in the GPU implementation.

Table 26 states the initial conditions for the propagated trajectory.

Table 26: Initial condition (body-fixed frame) for trajectory integration
Orbital Parameter Value

Semi-major axis (a) 8300 (km)
Eccentricity (e) 0.49
Inclination (i) 35 (degrees)

Argument of periapsis (ω) 9 (degrees)
Longitude of ascending node (Ω) 20 (degrees)

True anomaly at epoch (ν) 0 (degrees)

For the current computation, the scale parameter is set to a default value of 4

for the first order STM computation and 2 for the second order STT computation

for all the results. Hence, the number of points per sub-trajectory is 7,680 and

15,360, respectively. The scale parameter is a function of both the GPU hardware

and complexity of the problem being solved.

Table 27: Test hardware specifications
Component type Component

CPU Intel Core 2 Duo E6550 @ 2.33 Ghz
Operating system Linux X86 64

GPU Tesla C1060
Memory 4 GB

Table 28: Maximum theoretical performance comparison
Criteria CPU GPU

Max SP Gflop/s 24 933
Max DP Gflop/s 12 78
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5.6.1 Test Hardware

Table 27 gives the specifications of the test hardware. Table 28 gives the theoretical

performance of the CPU and GPU used for this example. The CPU code is compiled

with the Intel Fortran compiler version 11.0 with optimization level set to “-fast”.

This enables auto vectorization and inter-procedural optimization. These optimiza-

tions result in a 2 times improvement in performance over the un-optimized CPU

code. Apart from compiler optimization the CPU code is tuned for high performance

Fortran. The CUDA code is compiled using the NVCC compiler version 3.0 . All

computations are carried out using a RK-78 Dormand Prince integrator36 set to nor-

malized tolerance of 1E-14. For consistency and importance to the astrodynamics

community, IEEE compliant double precision arithmetic has been used for all the

results presented.

Table 29: Performance table (time, sec) for first order sensitivity computation

Tof (days) State only (CPU) State + STM (CPU) State + STM (GPU plus CPU)

4.25 0.10 0.38 0.12
17.00 0.39 1.52 0.41
25.00 0.58 2.29 0.60
68.00 1.54 6.11 1.58
100.00 2.32 9.15 2.35
136.00 3.09 12.19 3.13
200.00 4.54 17.86 4.60

5.6.2 First order STM computation

Table 29 gives the performance of our tool compared to the corresponding CPU

implementation for first order STM plus state computation.

We define speedup by Eq. 95

speedup =
(CPU time for integrating sensitivities along with the state)

(CPU time for integrating the state+GPU time for integrating sensitivities)
(95)

This speedup is always less then the theoretical maximum speedup, defined by

Eq. 96

speedupmax =
(CPU time for integrating sensitivities along with the state)

(CPU time for integrating only the state)
(96)
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Figure 79: Speedup for complete STM computation

Figure 79 shows the speedup we achieve over the full CPU implementation with

respect to time of flight. As we are able to almost completely hide the first order STM

calculations on the GPU, the final speedup approaches the theoretical maximum value

(Fig 79). In terms of speed, our GPU implementation of the STM plus state is almost

as fast as the the CPU implementation of the states only. Therefore, we approximately

achieve the conventionally difficult to compute STM calculations almost for free. We

further note that, for a computationally more expensive STM calculation (e.g higher

dimension state and complicated force models) the theoretical speedup limit will be

much higher and so will be our speedup over the CPU implementation.

5.6.3 First order STM + Second order STT computation

Table 30 gives the performance of our tool compared to the corresponding CPU

implementation for the second order STT, the first order STM, and state computation.

Figure 80 shows the speedup over the CPU implementation with increasing time

of flight. We can see that the speedup is more impressive than the first order STM
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Table 30: Performance table (time, sec) for first order sensitivity computation

Tof (days) State only (CPU) State + STM + STT (CPU)
State + STM + STT

(GPU plus CPU)

4.25 0.10 3.58 0.32
17.00 0.39 14.29 1.15
25.00 0.59 21.63 1.76
68.00 1.53 56.10 4.54
100.00 2.31 85.00 6.77
136.00 3.06 112.50 8.43
200.00 4.48 167.70 11.94

implementation because the dimension of the STT is 6 times larger. Due to the final

complete reduction being done on the CPU (as opposed to the first order STM case)

we are not able to efficiently overlap the computations between the GPU and CPU.

Still we are able to achieve an order of magnitude speed improvement over the CPU

implementation. As the GPU favors computation over memory operation, we expect

this speedup value to be higher for more computationally expensive STT evaluations.

It is worthwhile to note that the GPU performs 8 times (approximately) faster in

single precision mode than in double precision mode.

5.6.4 Numerical accuracy

The ODE 78 integration on the GPU is accurate up to 13 digits when compared to the

CPU integration. This has been achieved by designing numerically stable algorithms

and by using precision preserving math functions on the GPU. The final first order

STM and second order STT have relative errors of 1E-13 (approximately) for smaller

propagations (>=100 s/c revs). For longer propagations (>=1000 s/c revs) the final

difference in the computation on CPU and GPU is 1E-11 (approximately).

It is well known that after large number of space craft revolutions both the STM

and STT become very large. On the CPU computing these sensitivities leads to

rounding errors as large matrices are multiplied by small matrices at each successful

integration step. While on the GPU, as the matrices are reduced in thread blocks in
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Figure 80: Speedup for complete STM plus STT computation

parallel, they are always of approximately the same order during multiplication. Even

when they are finally reduced on the CPU they have a more stable rounding error

behavior, as the matrices are again of the same order approximately. This explains the

increase in relative difference as the number of revolutions of the spacecraft increases.

The STM from the GPU are therefore closer to the truth than those computed on

the CPU for long propagations.

5.7 Chapter Conclusion

A new tool is proposed in this chapter, capable of computing first and second or-

der sensitivities in parallel for gradient based numerical optimization. The proposed

tool implements a heterogeneous algorithm, utilizing both the CPU and GPU con-

currently to achieve substantial performance increase. The tool is able to compute

the first order sensitivities for almost no extra computational cost than compared to

integrating just the states on the CPU. The second order sensitivities are computed

at up to 14 times faster for example 2-body trajectory integration. The difference
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in the calculated sensitivities when compared with their CPU counterparts is 1E-

13, approximately. Further, the implementation is numerically more stable for long

trajectory propagations compared to an equivalent CPU implementation. The tool

is general in its design and can applied to any gradient based optimization problem

which requires fast and accurate sensitivities.

Given the performance, accuracy and generality of the proposed solution method-

ology (and the developed tool), it is well suited for a wide range of numerical opti-

mization problems. Problems which are intractable due to their high computational

complexity and/or dimension may now be attempted more readily without the burden

of slow sensitivity calculations.
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CHAPTER VI

MULTIPLE SPACECRAFT TRAJECTORIES USING GPU

COMPUTING AND FAST, HIGH-FIDELITY GRAVITY

PERTURBATION MODELS

6.1 Chapter Summary

To achieve both speed and accuracy in multi-spacecraft trajectory simulations, a so-

lution methodology is presented that takes advantage of 1) the Fetch and FIRE, high-

fidelity geopotential and third-body perturbation models, respectively, that efficiently

trade memory for speed and 2) a Graphics Processing Unit (GPU) based integrator

to achieve parallelism across multiple spacecraft. The two methods combined lead to

multiplicative speedups, making the tool almost five orders in magnitude faster, in

some extreme cases, compared to the same simulation performed in serial on a single

CPU. For state-of-the art space-catalog applications the tool is found to be two to

three orders in magnitude faster. The solution approach is highly relevant to the

conjunction problem, covariance realism, particle filters and Monte-Carlo analyses.

6.2 Chapter Nomenclature

a, e, i, ω,Ω, ν Classical orbital elements

x, y, z Components of spacecraft position vector

u, v, w Components of spacecraft velocity vector

~r General position vector

c Speed of light

m Mass of a spacecraft

A Projected area of a spacecraft

h0 Base altitude

H Scale height

ρ0 Nominal density

rp Periapsis distance
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ra Apoapsis distance

Cr Coefficient of reflectivity

Cd Coefficient of drag

Φ Solar intensity

~atot Total acceleration

~aeph Lunisolar (ephemeris) acceleration

~agrav Higher order gravity field acceleration

~adrag Acceleration due to atmospheric drag

~asrp Acceleration due to solar radiation pressure

G Standard gravitational parameter

GPU Graphics Processing unit

LEO Low Earth Orbit

MEO Medium Earth Orbit

RAM Random Access Memory

FIRE Fast Interpolated Runtime Ephemeris

SPICE Spacecraft Planet Instrument C-matrix Events

6.3 Introduction and Background

The increasing number of objects in space and the increasing complexity of space

missions coupled with improving surveillance accuracy is driving the need for high-

fidelity spacecraft trajectory design tools. A variety of space surveillance applications,

such as real time tracking, the conjunction problem, particle filters and orbital debris

tracking are currently slowed down by state-of-the art integration methods and force

models. The speed bottleneck associated with trajectory integration has be studies by

several authors.61,10,44 Both sinlge-step and multi-step techniques have been used for

trajectory integration. Recent alternatives like collocation methods10 and Taylor se-

ries120 based methods are actively being researched. Numerous past studies have also

focused on increasing the performance of the force calculations.71,106,112,88,68,111,8, 6, 19

Often, truncated16,26 and semi analytic techniques103,61 are adopted, which can com-

promise the accuracy.

Similar to the previous chapter, the massive parallelism present in the current
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problem is well-suited for the new NVIDIA Graphics Processing Unit (GPU) archi-

tecture. The new GPU architecture enables advanced features like zero-copy which

is essential for complex problems with large volumes of solution data. The advan-

tage of GPU based parallelism lies in its single user capability without the need for

expensive CPU clusters. The attractive compute speeds of the semi-analytic models

can be realized on the GPU without sacrificing accuracy.

In this chapter we present a methodology which enables large scale, high-fidelity

integration of multiple spacecraft. To achieve this goal we bring together the fast

and accurate perturbation models (the FIRE and Fetch models developed in chap-

ters 3 and 4) on the GPU, together with a GPU based Runge-Kutta integrator to

achieve massive parallelism across multiple spacecraft. The previously developed

FIRE ephemeris model was shown to be capable of providing up to two orders of

magnitude in speedup over the widely used JPL’s SPICE model2 and the Fetch grav-

ity model, which was demonstrated to provide up to three orders of magnitude in

speedup over a state-of-the-art non-singular spherical harmonics approach. These

perturbation models combined with a GPU based Runge-Kutta solver lead to mul-

tiplicative speedups, when compared to a serial single CPU implementation. The

performance of this new tool is evaluated in two configuration cases: 1) objects that

are in close proximity 2) objects that are randomly distributed in the LEO/MEO en-

vironment. The integration algorithm utilizes advanced GPU programming features

like zero-copy for data transfer and is only limited by the amount of Random Access

Memory (RAM) available. Results are presented for a grid including simulation flight

times of up to 2.5 days and number of objects up to 100,000. The methodology, im-

plemented on the NVIDIA M2090 GPU, is found to be five orders in magnitude faster

in some extreme cases, compared to the same simulation performed in serial on a sin-

gle CPU. The solution approach presented in this chapter is highly relevant to the

conjunction problem, covariance realism, particle filters, and Monte-Carlo analyses.
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It is emphasized that the current best practices do not always warrant the use of

a full 360 × 360 geopotential due to the high level of error sources in other terms

such as drag and solar pressure radiation. Furthermore, current best practices may

use analytic approximations of the third body perturbations, which are much faster

to compute than perturbations via SPICE. Therefore, the speedups presented in this

chapter are not expected to be fully realizable compared to current state of the art

techniques, but rather compared to the equivalent serial computations using SPICE

and the high degree and order spherical harmonics.

The next section of this chapter discusses the general computational structure

and adopted solution strategy. Note that the terms “object” and “spacecraft” are

equivalent for the current study.

6.4 General Computational Structure

Following a parallel heterogeneous approach similar to that in chapter 5, the proposed

solution strategy takes advantage of both the CPU and GPU working in tandem to

achieve multiplicative speedups. The high-fidelity gravity perturbation model compu-

tations and the state integration are carried out on the GPU. The CPU is responsible

for initializing the force models, defining the initial conditions for the current simu-

lation, and managing the uplink and downlink of data to and from the GPU. The

algorithm is designed to be general so it can readily apply to other similar classes of

problems.

Figure 81 depicts the general algorithmic model. The algorithm starts by initial-

izing the state vector of the objects to be integrated on the CPU. This initial state for

each object is passed to the GPU (via a CUDA feature called zero-copy) where the

actual integration is performed. The CPU is also responsible for loading and transfer-

ring the FIRE and Fetch model coefficients and other force model parameters to the

GPU during its initialization phase; more details are presented later. One thread per
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Figure 81: General Algorithmic Model

spacecraft strategy is adopted, hence, the number of threads launched on the GPU

is equal to the number of objects to be integrated. Multiple objects are integrated in

parallel with each thread integrating each object serially. As the computational model

enables each thread to enjoy the speedups from both the FIRE and FETCH models,

the final theoretical speedup from the overall simulation is multiplicative in nature

and is given by S = Sp ∗ Sa, where S represents the total speedup, Sp represents

the speedup due to parallelization on the GPU and Sa represents the acceleration

speedups due to FIRE and Fetch implemented on the GPU.
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At each integration step the new position vector for each of the objects is trans-

ferred on the fly to the CPU via zero-copy. Apart from initializing the state vector,

the CPU is also responsible for determining the maximum number of steps possible

on the GPU based integrator, which is determined by the amount of RAM available

on the system. Note, that in our current approach the number of objects that can be

integrated is not limited by the GPU memory, hence allowing large scale simulations.

The GPU integrator is the Runge-Kutta 54 variable step integrator with coefficients

adopted from Ref.41 More details on the GPU based integrator are given in the next

section.

6.5 GPU based Runge-Kutta integrator

To exploit the massive parallelism across multiple spacecraft a GPU based variable

step integrator (GPU-RK) is implemented. For simplicity, the current work adopts a

Runge-Kutta 54 integrator on the GPU. The integrator is similar to its CPU counter

part41 and is capable of doing computations in full IEEE compliant double precision

arithmetic. The input force model maybe general in nature and can be implemented

in CUDA or the C programming languages.

GPU-RK has been designed for maximum double precision performance by taking

advantage of the latest hardware and software innovations on the GPU. The integra-

tor takes advantage of both the L1 and L2 cache memories present on the FERMI

GPU architecture, thereby increasing the performance by up to 20% in favorable

cases. Furthermore, as each thread is responsible for integrating its own trajectory,

this leads to an embarrassingly parallel implementation, which minimizes the inter-

thread communication. GPU-RK also utilizes the extra shared memory available on

a modern GPU to store the force model parameters and intermediate accelerations.

Storing the state vector after every successful integration step for each thread can

quickly exhaust the limited on board GPU memory. A simple way to over come this
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problem is by limiting the number of integration steps on the GPU and calling the

GPU integrator multiple times until all objects are integrated for the requested time

of flight. Such an approach would require an estimate of the number of integration

steps for a given flight time and would change depending on the initial state vector of

the object being integrated. This not only increases the implementation complexity

but also makes the integration process inefficient.

Another way to overcome this problem is by using the zero-copy feature of CUDA.

Zero-copy allows mapping of a host (CPU) memory pointer directly on the GPU.

Though slow, this allows each GPU thread to directly read or write data from or to

the host memory. On the host side this pointer is accessed like any other variable on

the CPU, with any change being immediately visible to every thread on the GPU.

Apart from freeing the limited GPU memory, zero-copy also simplifies the memory

management process, eliminating the need to explicitly transfer memory between the

CPU and GPU. The amount of data that can be allocated at a given time is limited

by the amount of RAM present in the system. As zero-copy is limited by CPU-GPU

PCIe bandwidth it is only preferred if each thread reads and writes once to the mapped

memory pointer. The peak theoretical PCIe bandwidth for transfers between host

and device in each direction is ∼6 GB/sec, while the peak GPU memory bandwidth

for the Tesla M2090 GPU (with ECC off) is 177 GB/sec. More on zero-copy can be

found in the NVIDIA programming guide available here. 1

The methodology proposed here uses zero-copy for 1) mapping the initial per-

object state vector data to the GPU and 2) for writing per-object state vector data at

each successful integration step. Given the high compute-to-communication (device to

host) ratio of the force model, the impact due to zero-copy on the final performance is

small. Using zero-copy frees the GPU memory, enabling integration of large numbers

of objects on the GPU, only to be limited by the amount of RAM available on the

1http://docs.nvidia.com/cuda/index.html
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system.

6.6 High-Fidelity Gravity Perturbation Model

For high-fidelity spacecraft integration it is essential to take into account drag, solar

radiation pressure, the lunisolar perturbation effects and the high order gravity field

of the Earth. Hence, the proposed tool takes advantage of a high-fidelity gravity

perturbation model given by Eq. 97 during the integration process.

~atot = ~aeph + ~agrav + ~adrag + ~asrp (97)

where ~agrav is given by Eq. 98

~agrav = ~a(twobody+J2) + ~afetch (98)

~afetch refers to the high order gravity acceleration calculated via the Fetch gravity

model (see chapter 3), ~aeph is the lunisolar perturbations calculated via FIRE (see

chapter 4), and ~adrag and ~asrp represents the atmospheric drag and the solar radiation

pressure (SRP) based accelerations calculated via a simple cannon-ball model.

In this study only static gravity terms are considered. Low order solid and ocean

tides could be simply added via time dependent low degree and order spherical har-

monic representations. Other relevant high fidelity forces that are not considered in

this study include 1) high degree and order solid and ocean tides 2) general relativity

perturbations, and 3) attitude dependent SRP and drag models. The inclusion of

such terms is considered beyond the current scope and will be left to future work.

Both the FIRE and Fetch models are computed on the GPU and details of their

implementation are given in the next section. The computations are performed in

a non-rotating Earth centered frame and the required Earth orientations are also

obtained through the FIRE model.
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6.6.1 Lunisolar Ephemeris and Earth Orientation

Precise lunisolar ephemeris positions are essential for computing perturbation forces

due to the Sun and the Moon. The Earth’s orientation is necessary for use with

sectoral and tesseral gravity terms when a non-rotating integration frame is utilized.

If a body fixed integration frame is utilized, the Earth orientation is necessary to

transform the lunisolar positions. A state-of-the art and widely accepted source for

both lunisolar and body orientation information is the JPL SPICE system.2 The

FIRE ephemeris system, developed in chapter 4, is an attractive alternative that uses

SPICE as its source data, and is custom built for problems that favor higher speed

and smooth derivatives.

FIRE is capable of providing orders of magnitude in speed improvement (see

chapter 4) over the SPICE model.2 It also provides continuous and analytic first and

second derivatives of states and orientation matrices. The higher order derivatives as

well as offering continuity are attractive features for large scale high-fidelity trajec-

tory optimization and orbit estimation applications. Given these features, FIRE is

adopted as the GPU ephemeris model and is used to compute lunisolar positions and

Earth orientations. A direct implementation of the FIRE tree (see Fig. 60, chapter

4) traversal algorithm is not favorable for the GPU architecture. Excessive thread

branching present in a general tree algorithm leads to warp serialization (see NVIDIA

programming guide 1) and results in slow GPU performance. Instead, for the current

work, the FIRE tree is resolved on the CPU and the coefficients are transformed

relative to the center of integration before being copied to the GPU global memory.

Subsequently, only one double to integer conversion combined with Eq. 86 (see chapter

4 for details) is needed to compute the lunisolar ephemeris and Earth orientation.

1http://docs.nvidia.com/cuda/index.html
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6.6.2 High Order Geopotential

The conventional approach for computation uses spherical harmonics (SH) geopoten-

tial, which is known to be computationally slow when evaluated at high orders.27,101

It is simply not practical when accounting for a large number of objects to use high

degree and order SH, as the current best practices are usually limited to 36 × 36.43

The Fetch model, proposed in chapter 3, efficiently trades memory for speed and de-

livers orders of magnitude in speedup over state of the art SH approaches. The Fetch

model achieves many desirable properties like: 1) it is non-singular, continuous and

smooth 2) it is adaptive in terms of local vs. global resolution 3) it has a residual

error profile that is dynamic and conservatively in the noise of the accuracy of the

SH fitting function.

As part of this study the Fetch gravity model is implemented on the GPU. The

base SH harmonics field corresponds to the GRACE GGM03C gravity model. The

underlying FETCH algorithm is redesigned to take advantage of the L1 and L2 caches

available on the FERMI GPU architecture by keeping in mind the cache locality of the

coefficient lookup table. As the algorithm involves looking up polynomial coefficients,

it performs significantly faster if threads in groups of 32 are working on objects that

are spatially close to each other. Instruction level parallelism is encouraged to some

extent by the reordering of independent instruction so as to reduce read-after-write

register dependencies when computing high order gravity perturbations.

6.7 Tool Configuration

Table 31 lists the current tool configuration. The algorithm is sensitive to the number

of threads per block parameter, which defines the number of threads on the GPU

capable of accessing the same shared memory. As the number of threads per block

increases, so does the amount of required shared memory. Furthermore, the GPU

code uses almost the maximum number of registers (63 out of 64 for FERMI, and
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121 out of 128 for pre-FERMI architecture) possible per thread block, and achieves

a theoretical occupancy of 33%. Even though the force model affords large amounts

of computations per thread, the number of global memory transactions still have a

dominant effect on the runtime performance. As the Fetch and FIRE coefficients are

accessed from the global memory, their access pattern has a significant impact on

this tool’s runtime performance. Coalesced and cache friendly access patterns can be

expected to be up to 4-6 times faster than totally random access patterns. Also, note

that due to the memory transactions required for the coefficients lookup, the Fetch

model performs slower on the GPU than the CPU.

The CPU and GPU variable step integrators are both fixed to a normalized tol-

erance of 1E-11. The tool interfaces with the user via a Fortran name-list input file.

The user has the freedom to provide the initial state vector for all the objects that

are under consideration, or the tool can randomly distribute the objects over a range

of space. The gravity model can also be changed to a lower or higher order Fetch

model, if needed.

Table 31: Current Tool Configuration
Property name Type

Ephemeris model Sun + Moon perturbation model (via FIRE)
Gravity field resolution 70× 70, 156× 156, 360× 360 (deg, via Fetch)

Drag, SRP model Point mass
Threads per block 64

Table 32 gives an overview of the current test hardware.

6.8 Performance Evaluation

In this section the performance of the tool is compared to a state-of-the-art serial CPU

implementation using the SH gravity field model101 and JPL’s SPICE2 ephemeris.

Table 33 lists the various aspects considered for defining the speedup parameter.

With these points in mind, speedup is simply the ratio of GPU execution time over
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Table 32: Test hardware specifications
Component type Component

CPU Intel Xeon X5650 @ 2.67 Ghz
Operating system Linux X86 64

GPU 1 TESLA M2090
# Cuda cores 512
CPU memory 48.0 GB
GPU memory 6 GB
CPU compiler Intel Fortran 12.0
GPU compiler NVCC 5.0

Table 33: Tool configuration
Property CPU implementation CPU-GPU implementation

Higher order gravity field SH Fetch
Lunisolar perturbations SPICE, FIRE FIRE

Integrator RKF-54, DOPRI-78 GPU RKF-54
Runtime scaled fully computed

the scaled CPU execution time. Simulations on the CPU take on the order of days

to years to complete (on a single workstation CPU), hence, for the current study the

CPU propagation time is calculated for a small representative set of objects (1024)

for flight times equal to their orbital periods and then scaled to match the number of

objects and flight times simulated on the GPU. To evaluate the performance of the

tool two cases are considered:

• Case 1: Object initial conditions are densely packed to simulate a distribution

about a reference orbit (LEO).

• Case 2: Object initial conditions are randomly distributed over the LEO/MEO

environment.

6.8.1 Case 1: Dense Distribution

In this case, objects are initially clustered together in a random fashion forming a

uniform 6D distribution, akin to an uncertainty distribution about a single object.
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Table 34 gives the nominal 6 states (position, velocity) and gives the ranges on each

state. Table 35 gives the average orbital elements of the densely packed distribution.

Table 34: Three state nominal value and range (body-fixed frame)
State Nominal Value Range

x 5932.27 (km) ± 0.5
y 1445.81 (km) ± 0.5
z 3104.89 (km) ± 0.5

u -4.35 (kmsec ) ± 0.002

v 3.18 (kmsec ) ± 0.002

w 6.83 (kmsec ) ± 0.002

Table 35: Initial condition (body-fixed frame) for trajectory integration
Orbital Parameter Value

Periapsis (rp) 6950.00 (km)
Eccentricity (e) 0.30
Inclination (i) 65 (degrees)

Longitude of ascending node (Ω) 0 (degrees)
Argument of periapsis (ω) 9 (degrees)
True anomaly at epoch (ν) 0 (degrees)

For the performance tests, the flight time varies from 72 minutes to 1.5 days.

As the objects are densely packed, they all take approximately the same number of

integration steps. The number of objects on the GPU varies from 1,024 to 131,072.

Three different SH fields of degree and order of 70, 156, and 360 are considered.

Figures 82 to 84 show the case 1 speedup contours for various SH field sizes when

using the RKF-54 integrator and SPICE on the CPU. As the objects are densely

packed, the GPU L1 and L2 cache memory misses are minimized making force eval-

uations the most efficient. Average speedups of 1,629.29, 8,801.75, and 67,373.36 are

achieved, for the three SH field sizes, respectively, when simulating 16,384 objects.

Further increasing the number of objects, leads to little or no change in these speedup

numbers. Figures 85 to 87 show the speedup contours when SPICE is replaced by

FIRE on the CPU. Average reduction in speedup when moving from SPICE to FIRE
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Figure 82: Case 1: Scaled speedup, RKF-54, SPICE, 70× 70 SH field

Figure 83: Case 1: Scaled speedup, RKF-54, SPICE, 156× 156 SH field
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Figure 84: Case 1: Scaled speedup, RKF-54, SPICE, 360× 360 SH field

Figure 85: Case 1: Scaled speedup, RKF-54, FIRE, 70× 70 SH field
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Figure 86: Case 1: Scaled speedup, RKF-54, FIRE, 156× 156 SH field

(on the CPU) for SH field sizes of 70, 156 and 360 is found to be 16.6%, 4.30%, and

0.48%, respectively. Increasing the SH field size decreases the gains from using a fast

ephemeris computation system like FIRE.

Switching the CPU integration method from RKF-54 to DOPRI-78 reduces the

speedup values by a factor of ∼2 (Figs. 88 to 93). Even though the CPU-GPU com-

parison is no more “apples to apples” it does motivate one to implement a higher

order integrator on the GPU in the future. The higher order integrator would re-

quire fewer integration steps, thereby reducing the number of GPU global memory

transactions and total storage requirements.

The shape of the speedup contours can be explained by the fact that for a small

number of bodies the GPU execution time is bounded by global memory latency. In-

creasing the number of objects allows the GPU to more successfully hide this memory

latency until the code becomes balanced (at ∼8192 objects). Further increasing the
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Figure 87: Case 1: Scaled speedup, RKF-54, FIRE, 360× 360 SH field

Figure 88: Case 1: Scaled speedup, DOPRI-78, SPICE, 70× 70 SH field
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Figure 89: Case 1: Scaled speedup, DOPRI-78, SPICE, 156× 156 SH field

Figure 90: Case 1: Scaled speedup, DOPRI-78, SPICE, 360× 360 SH field
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Figure 91: Case 1: Scaled speedup, DOPRI-78, FIRE, 70× 70 SH field

Figure 92: Case 1: Scaled speedup, DOPRI-78, FIRE, 156× 156 SH field
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Figure 93: Case 1: Scaled speedup, DOPRI-78, FIRE, 360× 360 SH field

number of objects leads to a linear increase in GPU runtime. Also, for large flight

times the impact of zero-copy transfers becomes more significant, which leads to a

small increase in GPU runtimes.

6.8.2 Case 2: Random Distribution

In this case, the objects are randomly distributed over the LEO environment under

the following constraints on their orbital elements:

• Periapsis and apoapsis vary between 6,600 to 10,000 km.

• All angular orbital elements vary between 0 and 360 deg.

Similar to the previous case, the flight time varies from 72 minutes to 1.5 days.

The number of objects on the GPU again varies from 1,024 to 131,072.

Figures 94 to 99 show the case 2 speedup contours for various SH field sizes when

using the RKF-54 integrator and either SPICE or FIRE, on the CPU. Comparing
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Figure 94: Case 2: Scaled speedup, RKF-54, SPICE, 70× 70 SH field

Figure 95: Case 2: Scaled speedup, RKF-54, SPICE, 156× 156 SH field
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Figure 96: Case 2: Scaled speedup, RKF-54, SPICE, 360× 360 SH field

Figure 97: Case 2: Scaled speedup, RKF-54, FIRE, 70× 70 SH field
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Figure 98: Case 2: Scaled speedup, RKF-54, FIRE, 156× 156 SH field

Figs. 84 and 96, it is clear that there is a 3-4 fold decrease in GPU runtime performance

which is explained due to two reasons. One, the tool does not take advantage of

the fact that the memory is written on the CPU continuously (at each integration

step). Hence, the CPU waits until all GPU threads finish integration. Given the

varying number of steps across multiple threads, there is a drop in efficiency of the

algorithm. Second, the tool does random coefficient look-ups that are required to

compute higher order perturbations from the Fetch and FIRE models. Similar to the

previous case, switching the CPU integration method from RKF-54 to DOPRI-78

reduces the speedup values by a factor of ∼2 to ∼3 (Figs. 100 to 105). The contour

patterns for this case are simpler compared to the previous case as the GPU runtime

is dominated by global memory read and write latency.

The two cases studied provide approximate upper and lower bounds on the per-

formance of the tool, with the best case scenario being the densely packed case and
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Figure 99: Case 2: Scaled speedup, RKF-54, FIRE, 360× 360 SH field

Figure 100: Case 2: Scaled speedup, DOPRI-78, SPICE, 70× 70 SH field
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Figure 101: Case 2: Scaled speedup, DOPRI-78, SPICE, 156× 156 SH field

Figure 102: Case 2: Scaled speedup, DOPRI-78, SPICE, 360× 360 SH field
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Figure 103: Case 2: Scaled speedup, DOPRI-78, FIRE, 70× 70 SH field

Figure 104: Case 2: Scaled speedup, DOPRI-78, FIRE, 156× 156 SH field
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Figure 105: Case 2: Scaled speedup, DOPRI-78, FIRE, 360× 360 SH field

the worst case scenario being the randomly distributed case. It should also be noted

that typical real world applications like the space catalog consist of bodies which can

be grouped (to some extent) depending on their proximity to each other, pushing the

speedup values closer to those of case 1.

The speedup values presented in this chapter also reflect the fact the CPU code

under utilizes the CPU. Theoretically, if an algorithm utilizes all possible CPU cores

(6 for the current setup) to their full potential then the maximum theoretical speedup

by using the GPU will be approximately 7 times. Generally speaking, achieving close

to peak CPU performance is not possible unless the algorithm maps efficiently to the

CPU architecture, takes advantage of the multi-core parallelism and has undergone

extensive optimization.
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Figure 106: Case 1: absolute runtime (sec), 70× 70 SH field

Figure 107: Case 2: absolute runtime (sec), 70× 70 SH field
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Figure 108: Case 1: absolute runtime (sec), 156× 156 SH field

Figure 109: Case 2: absolute runtime (sec), 156× 156 SH field

6.8.3 Absolute performance

Figures 106 and 111 show the absolute runtime contours corresponding to cases 1

and 2 and for the three SH field sizes, respectively. Up to 32 GB of RAM is used to
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Figure 110: Case 1: absolute runtime (sec), 360× 360 SH field

Figure 111: Case 2: absolute runtime (sec), 360× 360 SH field

store the state vector at all intermediate integration steps. For both case 1 and case

2 and for SH filed size of 156, simulations demonstrate a runtime of less than an hour
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Figure 112: Absolute runtime (sec), Max TOF = 10 days, 156 × 156 SH field, #
objects = 16,384

Table 36: GPU code profile summary (Case 1, # objects = 16,384)
Field
size

L1 local
hit rate (%)

L2 throughput
(GB/sec)

Local memory
overhead (%)

Global load
throughput (GB/sec)

IPC
Local memory cache
replay overhead (%)

70× 70 33.096 63.913 152.881 5.516 0.731 10.838
156× 156 37.791 51.354 140.762 4.894 0.793 9.039
360× 360 39.464 44.290 129.483 4.883 0.816 8.155

when integrating 100,000+ space objects for 1 day flight time. Such simulations on

the CPU (using SH and SPICE) would take weeks or months to finish. Note that

the GPU runtime actually decreases when the Fetch model SH field size is increased.

To better understand this behavior the GPU code was profiled and the results are

summarized in Table 36.

As shown in Table 36, there is a significant increase in local memory overhead

and a decrease in L1 cache hit rate with a decrease in Fetch model SH field size.

This behavior can be explained from that fact that low order Fetch models have cells

which occupy a larger volume in space. Hence, during coefficient lookup, threads

from multiple wraps (a group of 32 GPU threads) are forced to read from the same

memory location more frequently. Unlike a CPU cache, the GPU cache performs

poorly if multiple threads from different wraps read from the same memory location.

This taxing of the GPU hardware also reduces the number of instructions issued per
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GPU clock cycle (IPC), thereby further decreasing the GPU runtime performance.

Figure 112 gives the absolute runtime performance of the tool when simulating

16,384 space objects, using the 156 × 156 SH gravity field, for long flight times.

Specifically, for a flight time of 10 days the tool takes 8.20 and 32.98 minutes (for

cases 1 and 2) to simulate 16,384 objects. The performance analysis demonstrates

that the methodology is capable of performing high-fidelity integration of multiple

objects at unprecedented speeds (on a single workstation), and is applicable to a

wide range of problems ranging from conjunction prediction to Monte Carlo analysis

to particle filters.

6.9 Chapter Conclusion

In this chapter, a fast high-fidelity multi-spacecraft trajectory integration tool is

demonstrated by incorporating recently developed fast gravity perturbation mod-

els and by utilizing the modern GPU architecture. The tool takes advantage of the

fast and accurate interpolation models developed in chapters 3 and 4 and a GPU

solver to achieve massive parallelism across multiple spacecraft. For integration the

tool uses a variable step GPU based Runge Kutta integrator to achieve parallelism

across multiple threads, while each thread is allowed to enjoy the speedup obtained

from using the fast perturbation models. Combining these two approaches leads to

multiplicative speedups when compared to simulations in serial on a single CPU. In

its current form the tool demonstrates sustained three to four orders of magnitude in

speedups for a range of typical flight times with 10,000 objects. While for state-of-the

art space-catalog applications the tool achieves two to three orders of magnitude in

speedups. Long time of flight simulations for 16,384 objects are also demonstrated.

The methodology and the tool has application in a variety of space surveillance ap-

plications including: the conjunction problem, covariance realism, particle filters,

constellation design and Monte Carlo analyses.
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CHAPTER VII

CONCLUSION

7.1 Dissertation Summary

In this thesis, five high-impact astrodynamics problems are identified and their state-

of-the art algorithms are systematically improved. Theoretical and methodological

improvements are combined with modern computational techniques, resulting in in-

creased algorithm robustness and faster runtime performance.

The multiple revolution Lambert problem is chosen as the first problem for im-

provement. As this is an important problem in preliminary mission design and anal-

ysis, a new universal variable Lambert formulation based on a cosine transformation

is described in chapter 2. The formulation is straight-forward and benefits from a

robust solution procedure driven by a technique to generate accurate initial guesses.

It has similar accuracy as the current state-of-the art Gooding’s method and results

in 40% to 60% reduction in runtime.

Chapters 3 and 4 focus on improving the runtime performance of two high-fidelity

perturbation models. In chapter 3 a global 3D interpolation model called Fetch is

developed and applied to interpolate the GRACE GGM03C Earth gravity model.

Various numerical and methodological innovations are combined to achieve continu-

ity, non-singularity, adaptivity, global resolution and speed. Four Fetch models of

varying resolutions are generated. The memory footprint of these four models varies

between 120 MB to 2.5 GB, while the speedup (over the Pines spherical harmonics im-

plementation) varies between 10x to 3,900x. In chapter 4, a simpler 1D interpolation

is implemented to construct a new ephemeris computation system called FIRE (Fast
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Interpolated Runtime Ephemeris). FIRE is designed for custom trajectory applica-

tions and uses spline interpolation along with a multi-level computation architecture

to achieve an order of magnitude in speedup over JPL’s SPICE ephemeris system. A

major benefit of FIRE is its ability to provide smooth, accurate and self consistent

derivatives.

In chapter 5, a novel methodology is introduced for parallel sensitivity computa-

tion using both the CPU and GPU in tandem for a single trajectory. A tool based

on the methodology computes first order sensitivities at almost no extra computa-

tional cost when compared to integrating just the state on the CPU. Second order

sensitivities are computed with order of magnitude speedups, for example two-body

integration.

Finally, in chapter 6, the Fetch and FIRE perturbation models are implemented

on the GPU and combined with a GPU based integrator to compute multiple high-

fidelity spacecraft trajectories simultaneously on a single workstation at unprece-

dented speeds. The solution approach is tested for up to 131,072 objects in low to

medium Earth orbit with a flight time of up to 10 days. Two to four orders in mag-

nitude speedups are demonstrated when compared with similar computations on the

CPU. Given the increasing number of objects in space, the tool provides promis-

ing capabilities and is relevant to conjunction analysis problems, covariance realism,

particle filters and Monte-Carlo analyses.

7.2 Recommendations For Future Work

The work done in this thesis can be extended and applied to a large variety of prob-

lems. In this section recommendations for possible future work are given for the five

problems solved in the thesis. Possible, future high-impact problems in astrodynamics

are also identified.
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7.2.1 Multiple revolution Lambert problem

• The Lambert algorithm developed in the thesis uses a second order root finding

method. An initial investigation shows that a higher order root finding maybe

faster and is worth investigating further.

• Spline fitting the universal variable corresponding to the minimum multiple

revolution time of flight as a function of the new geometry based parameter

would eliminate the need to compute the minimization root solves.

7.2.2 High-fidelity geopotential computation

• In its current form, the Fetch gravity model fails to satisfy the Laplace equa-

tion. Modifying the current models to satisfy the Laplace equation by using

alternative candidate fitting functions may be beneficial.

• The Fetch interpolation model can also be applied to other solar system objects

such as the moon, other planets, comets, asteroids, etc.

• Applying the Fetch model to generate high-fidelity atmospheric density models

can also be studied.

• Inclusion of temporal gravity effects such as those caused by tides may also be

investigated.

7.2.3 Ephemeris computation

• FIRE can be extended to include other bodies like comet, asteroids and artificial

spacecraft.

• Spline interpolation accuracy may be improved by using Chebyshev interpola-

tion points.
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7.2.4 Fast and accurate sensitivity computation

• A possible future work would be to simplify the GPU side derivative computa-

tion by using complex-step differentiation.

• The heterogeneous sensitivity computation algorithm is a good candidate for

dynamic parallelism and stands to benefit from the new NVIDIA Kepler archi-

tecture.

• The proposed algorithm also has potential application in many fields of numer-

ical optimization. Hence, one could adapt and apply the proposed algorithm

to other engineering optimization problems like those encountered in Chemical

and Electrical engineering.

7.2.5 Multiple spacecraft simulation using GPU Computing and Fast
high-fidelity gravity perturbation models

• Increase the order of the GPU integration. Apart from being more accurate,

this change would also reduce the number of intermediate steps needed to be

stored. A reduction in the number of steps would also reduce the number of

memory transactions and may therefore decrease the absolute runtimes.

• Restrict the algorithm memory requirement by breaking up the GPU compu-

tation between multiple streams. This could allow the integration of up to 1

million objects without requiring a large amount of memory.

• The fidelity of the tool can be further increased by incorporating high-fidelity

shape models for computing atmospheric drag and solar radiation pressure per-

turbations.

7.2.6 Future high-impact problems in astrodynamics

Given below is a partial list of other high-impact problems in astrodynamics which

may be considered as part of future studies:
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1. Investigating higher-dimensional (4 or more) volume interpolation schemes for

high-fidelity temporally aware atmospheric density modeling.

2. Designing of fast and parallel numerical optimization algorithms.

3. Parallelizing the multi-body tour design problem.

4. Investigating and designing parallel numerical integration schemes.

7.3 Primary Thesis Contributions

Table 37 briefly summarizes the main contributions (new, to the author’s knowledge)

of this thesis.

Table 37: Summary of thesis contributions

Problem Contribution

Multiple revolution

Lambert problem

→ derived a universal Lambert formulation based on a cosine transformation

→ developed a new geometry parameter considerably reducing the number of minimization

calls necessary to solve the multi-rev problem

→ demonstrated method accurate and 1.75 to 2.15 times faster (on average) than the current

state-of-the art Gooding’s method

High-fidelity

geopotential

computation

→ modified Junkins weighting function method to allow for variable node spacing in the

radial direction

→ developed a two level overlapping grid strategy to overcome the singularity at the poles

found in spherical coordinates

→ developed a parallel coefficient generation algorithm utilizing a novel adaptive polynomial

selection strategy to optimize model memory footprint

→ released four Fetch models of field sizes: 33, 70, 156 and 360; demonstrating speed im-

provements ranging from one to three orders of magnitude over spherical harmonics
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Ephemeris

computation

→ developed a multilevel ephemeris computation system for trajectory applications that favor

speed and smooth derivatives

Fast and accurate

sensitivity

computations

→ developed a multi-level trajectory decomposition methodology for parallel overlapping sen-

sitivity computation across a single trajectory; leading to first order sensitives being computed

at almost no extra computational cost than a state integration on the CPU

Multiple spacecraft

simulation using

high-fidelity gravity

models

→ developed a high-fidelity trajectory simulation tool, combining a GPU based integrator

and higher order Fetch and FIRE perturbation models

7.4 Global Summary

In this thesis novel attempts have been made to improve the runtime performance

of high impact astrodynamics algorithms. An interdisciplinary approach is adopted,

merging the field of astrodynamics and high performance computing to improve al-

gorithm robustness and performance.

Most of the algorithms presented in this thesis stand to benefit from future CPU

and GPU improvements. CPUs with better branch prediction capabilities and faster

transcendental functions should benefit the Lambert algorithm proposed in chapter

2. The Fetch and FIRE models are expected to benefit from the increasing L1,

L2 cache size of modern CPUs. As computer memory becomes less expensive and

more abundant, the use of high-fidelity models, which trade memory for speed, is

becoming increasingly justified. The algorithms presented in chapters 5 and 6 are

also expected to benefit from the improving double precision computing performance

of future GPUs. However, some minor algorithmic changes may be required in order

to tap the full potential of newer GPU architectures.

The work done in this thesis has wide applicability in astrodynamics and other

similar fields. Many problems from the preliminary mission design to high-fidelity

trajectory simulation, orbit estimation, and optimization stand to benefit. The work

presented here is of relevance to both the academic community and to research insti-

tutions such as the Air Force Research Laboratory (AFRL) and National Aeronautics
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and Space Administration (NASA). The high-fidelity ephemeris and gravity models

would help AFRL effectively tackle challenging problems like conjunction analysis,

non-linear filtering and high-fidelity tracking of the space catalog objects. Further-

more, lessons learned from the NASA Dawn mission and the recently proposed NASA

asteroid mission emphasize the importance of the high-fidelity gravity modeling of

small bodies. The Fetch model could be adapted and applied to model these complex

gravity environments. Apart from gravity modeling, the Fetch model can also be

used to model Earth’s atmospheric density and hence be of value to the space and

environmental science community. The field of numerical optimization can utilize

and benefit from the parallel sensitivity computation methodology presented in this

thesis. The methodology has application in various engineering fields ranging from

aerospace engineering to chemical engineering to electrical engineering.

Finally, a multidisciplinary approach is utilized in this thesis to tackle challenging

computational problems in astrodynamics. The techniques are found to be effective

for the problems considered, combining theoretical and methodological improvements

with modern computational hardware and numerical methods.
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APPENDIX A

ALGORITHMS

Algorithm 1 Candidate polynomial set generation
1: procedure polyget(Omax) . Input highest degree of the candidate polynomial ≥ 2

2: i← 0
3: n(1)← 1

4: for j = 2 to Omax do . Major polynomial loop

5: n(j)← n(j − 1) + j . Calculate number of terms to be dropped (Eq. 65)

6: for k = n(j)− 1 to 0 do . Minor polynomial loop

7: i← i + 1

8: C(N−k)...N ← 0 . Set (N − k) to N coefficients to zero

9: Pi ← Qj,k . Compute minor polynomial with last k + 1 coefficients set to zero

10: end for
11: i← i + 1

12: Pi ← Qj . Compute major polynomial with N coefficients

13: end for
14: return P1...i . The final set of candidate polynomials

15: end procedure

Algorithm 2 TR aglorithm for block size of 8
1: procedure TR . Suppose we have a total of 8 threads, hence 8 first order state transition matrices multiply in descending order .

load matrices to each thread in the following order

2: thread1 = M7, thread2 = M3, thread3 = M5, thread4 = M1

3: thread5 = M6, thread6 = M4, thread7 = M0 . this loading can be automated using bit-wise operations; next we
do recursive multiplication, each matrix multiplication is done is parallel at each iteration and uses shared memory to enable data
reuse . 1st iteration

4: thread1 : M76 = M7 ∗M6, thread2 : M32 = M3 ∗M2, thread3 : M54 = M5 ∗M4; , thread4 : M10 = M1 ∗M0;

5: threads synchronize . 2nd iteration

6: thread1 : M7654 = M76 ∗M54, thread2 : M3210 = M32 ∗M10

7: threads synchronize . 3rd iteration

8: thread1 : M = M7654 ∗M3210

9: for threadID == 1 do . the final thread writes the results back to the GPU global memory, other threads stall

10: globalMem(threadID) = M

11: end for
12: end procedure
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Algorithm 3 General master worker parallel algorithm
1: procedure Master-Worker(Nprocs) . Input the number of processors Nprocs

2: Initialize all MPI tags . Used to communicate between master and worker threads

3: Allocate work arrays per thread

4: if Thread I.D = master then . Master thread part

5: Generate initial work for each worker thread
6: MPI SEND(work, 3,MPI INTEGER,workeri, worktag,MPI COMM WORLD, flag) . Send work to each worker

thread
7: for i = 1 to Total Work Size do
8: MPI RECV (size, 1,MPI INTEGER,MPI ANY SOURCE, donetag,MPI COMM WORLD, status, flag) .

Notification from each thread
9: sender ← status(MPI SOURCE) . Check who sent the notification

10: if count < Total Work Size then . Make sure if we need to assign new work

11: count← count + 1

12: Allocate new work for each thread
13: MPI SEND(work, 3,MPI INTEGER, sender, worktag,MPI COMM WORLD, flag) . Send work to each

worker thread
14: update global work counter

15: else
16: MPI SEND(1, 1,MPI INTEGER, sender, quittag,MPI COMM WORLD, flag) . quit flag initiated

17: end if
18: end for
19: else . Worker thread part

20: 200← CONTINUE
21: MPI RECV (work, 3,MPI DOUBLE PRECISION,master,MPI ANY TAG,MPI COMM WORLD, status, ierr)

. Receive work from master
22: if status(MPI TAG) = quittag then

23: CONTINUE
24: else
25: Do work
26: Store work . Each worker threads stores its own work
27: countworker ← countworker + 1 . Keep track of how much work each thread is doing

28: MPISEND(countworker, 1,MPI INTEGER,master, donetag,MPI COMM WORLD, ierr)

29: GOTO ← 200
30: end if
31: end if
32: end procedure

178



APPENDIX B

RADIAL ACCELERATION: GGM03C GRAVITY MODEL

Figure 113: Radial acceleration (in mGals) for 360× 360 GGM03C field at surface
(two body and J2 terms removed)
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APPENDIX D

CODE SETUP AND IMPLEMENTATION

In this appendix, the code setup and usage details for some of the algorithms and

methods presented in this thesis is briefly stated. The CPU based codes are written

in Fortran and have been tested with the Intel Fortran complier on Linux. A brief

summary on GPU programming and Fortran-GPU code setup (used in chapters 5

and 6) is also provided.

D.1 The Universal Variable “k” Based Lambert Formula-
tion

The general setup cost of the proposed Lambert implementation is similar to that

of other Lambert solvers found in the literature. The code consist of a single For-

tran module (called “KLAM MOD”) which is distributed via the “Klam.f90” Fortran

source file. For using the code, a user needs to be familiar with the standard Lam-

bert problem terminology (briefly explained in the code comments section). The

user interfaces with the “K Lam” module via the main Fortran subroutine (called

“get klam”). For a given set of inputs, the subroutine outputs the velocity vectors

along with error codes and other relevant solution information (explained in the code

comments section). A tuned Lambert source code is presented as a part of this thesis

in appendix E.

Given the simplified form of the Lambert time of flight equation and its derivatives,

implementing the basic algorithm is straightforward. On the other hand, implement-

ing the initial guess strategy is complex and may significantly increase the code setup

and implementation time. Nevertheless, all the details for successfully implementing

the initial guess are provided in chapter 2.
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Table 38: Fetch model implementation details
Phase Number of files Computation type Required supporting data

Model coefficient generation 8 Parallel via MPI Maple inverse matrices data files
Fetch runtime routines 1 Serial (single CPU thread) Model coefficient file

D.2 High-Fidelity Geopotential Computation: The Fetch
model

The Fetch model is implemented in two phases. The first phase is responsible for

generating model coefficients using a MPI based parallel algorithm. The second phase

is responsible for computing the geopotential and its higher order derivatives using

the Fetch runtime routines. Table 38 briefly summarizes the code setup for both the

phases.

The coefficient generation routines interface with the user via a namelist input

file. The user is responsible for selecting a value of the parameter Γ (see Eq. 77), the

tolerance multipliers η0...4 (see Eq. 76) and the overlapping latitude. The coefficient

generation routines also rely on data files containing analytical inverse matrices data

which are computed via a Maple worksheet. The result of the coefficient generation

phase is a single Fetch model coefficient file for a given SH degree and order.

Similar to spherical harmonics (SH), using the Fetch runtime code is a two step

process, as given below:

1. Initialize the Fetch model and load the coefficient file (analogous to loading the

SH coefficients)

2. Call the “get Fetch” or “get FetchEZ” runtime subroutines with appropriate

derivative flags

The runtime subroutines are made accessible to the user through the “FETCH MOD”

module which is distributed via the “Fetch.f90” source file. The setup cost for using

the Fetch model is similar to that of SH, with the exception being that it requires more

memory (random access memory) for loading the Fetch model coefficients at runtime.
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The loading of the coefficient file (a one time process) can take from 2 seconds to 20

seconds depending upon the operating system and the memory performance of the

workstation.

Implementing the Fetch runtime algorithm from scratch requires a detailed un-

derstanding of the modified Junkins weighting function method. To overcome this

complexity, the runtime source code is provided as a part of this thesis in appendix

E.

D.3 Ephemeris Computation: The FIRE system

As stated in chapter 4, FIRE is written in the Fortran programming language and fol-

lows a modular, multilevel implementation strategy. The main architecture is divided

into three subsystems:

1. Archived Cubic spline Ephemeris (ACE); typically computed only once

2. Runtime Adaptive Custom Ephemeris (RACE); custom computed for a class of

problems

3. RACE loading and Runtime batch processing routines

FIRE currently uses the JPL’s SPICE “.bsp” and “.tpc” files2 to generate the

archived cubic spline ephemeris (ACE), although FIRE could easily be tailored to

use any established ephemeris as input. Each subsystem contains its own set of

local core routines. A standard namelist based input method is followed for each of

the subsystems and imparts robustness and flexibility to the code. SPICE naming

convention is adopted for the custom tree generation to preserve consistency.

The user typically computes the ACE once from an underlying base ephemeris.

In this thesis, SPICE is used as the base ephemeris system. Once ACE is created,

the user can create multiple custom RACE’s for different types of problems. Finally,
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using the runtime routines the user loads a RACE file and computes the required

state and orientation data.

FIRE, has in total nine different runtime subroutines (shown in in Table 39) which

can be called at runtime using the Fortran module “MAKE CFIRE”. Five of these

subroutines give states (xyz positions and uvw velocities) and orientations while the

remaining four additionally provide derivatives. Various combinations of “P, V, R

and D” are used to call for appropriate data type. For example, if only position

and rotation data is needed then the user would call the routine “FIRE PR”. This

provides a user friendly interface that is consistent with the existing functionality of

SPICE.

Table 39: FIRE runtime routines and their function
Routine name Function performed:

FIRE P Computes xyz states
FIRE PV Computes xyz and uvw states

FIRE PVR Computes xyz, uvw states plus the rotation matrix
FIRE R Computes the rotation matrix

FIRE PR Computes xyz and the rotation matrix
FIRE PD Computes xyz states, and corresponding derivatives

FIRE PVD Computes xyz, uvw states, and corresponding derivatives
FIRE PVRD Computes xyz, uvw states, the rotation matrix, and corresponding derivatives

FIRE DR Computes the rotation matrix, and corresponding derivatives

D.4 GPU Based Parallelism

D.4.1 NVIDIA GPU programming

Recent advances in the programmable GPU has lead to the development of a highly

parallel and multi-threaded processor with many-cores. Given the GPU’s high com-

putational power and its ability to tap fine grain parallelism, researchers are now map-

ping non-graphical applications to the hardware with a wide range of success.15,7, 64,108,135,5

This field is generally called GPGPU (General Purpose Computing on GPU’s) pro-

gramming. The main breakthroughs in GPGPU programming came with the devel-

opment of NVIDIA TESLA and FERMI architectures (in late 2006,82 and 2010143)
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along with the introduction NVIDIA CUDA 1 technology. Before CUDA, advanced

GPU programming knowledge was required to exploit the hardware effectively and

it was still not very efficient. Post CUDA, there has been tremendous growth in

wide scale GPGPU programming applications on the TESLA processors. Most of

these applications have witnessed a performance boost of 5 to 500 times, thereby out-

performing many mid-range supercomputers. With the addition of double precision

floating point arithmetic support to CUDA, it is possible now to achieve performance

increase without sacrificing accuracy. The main task is to design an algorithm which

maps well to the GPU and exploits this abundant computing power.

D.4.2 CUDA (Compute Unified Device Architecture)

The CUDA computing architecture is a C-like programming language with keywords

for labelling data-parallel functions (kernels), and their associated data structures.

Kernels generally execute a large number of threads (on the order of tens of thousands)

in parallel. A thread is basically a fork which results from concurrent execution of

computation on the GPU. Typically, in the GPU programming model, thousands of

threads perform the same set of operations over a different set of data. It is worth

noting that CUDA threads are computationally lighter than the threads on the CPU

and hence they need very few cycles to generate and schedule.

The NVIDIA C Compiler (NVCC) is responsible for compiling the CUDA code.

The part of the code which runs on the GPU is called the device code and the part

of the code running on the CPU is called the host code. The host and device codes

can be compiled using different compilers and linked at runtime.

The GPU execution starts with the host invoking a kernel function, where a large

number of threads are spawned. All threads which run on a kernel are collectively

called a grid block. This gird block is further divided into smaller units called thread

1http://www.nvidia.com/object/cuda what is.html
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blocks. Each thread block can have at most 1024 threads (512 on old GPU architec-

tures), which can communicate and synchronize among each other via shared memory

(up to 48 KB per thread block on new Fermi architecture). When all threads of a

kernel complete their execution, the corresponding grid terminates and the execution

continues on the host code until another kernel is invoked. Multiple kernels may also

be launched simultaneously using streams if the GPU resources are free. The general,

main points which have to be kept in mind while designing a CUDA algorithm are as

follows:

• designing a fine-grained parallel algorithm with sufficient amount of independent

thread blocks to hide global memory latency (time to access GPU’s global memory)

• using shared memory for data reuse within a thread block (according to NVIDIA

shared memory is 300 times faster than the global memory)

• coalesced and conflict free memory access between multiple memory abstractions

(device memory, shared memory, register memory)

• minimizing and/or hiding CPU-GPU memory transfers (PCI Bus transfers) as they

are slow and hence directly affect the performance

• optimizing register usage which restricts the number of threads and thread blocks

which can be deployed simultaneously

• concurrent execution (overlapping work between CPU and GPU) and stream com-

puting

All of these topics make it challenging to develop algorithms which map effectively

to the GPU. Often non-intuitive techniques are developed to map conventionally serial

algorithm to the GPU 1. Once an algorithm is developed, achieving high performance

(5x-50x) is possible. Very high performance boost (up to 100x or more) are possible

1http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.html#scan
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only if the algorithm maps efficiently to the GPU hardware and a sufficient amount

optimization has been performed. Hence, algorithm development is the major activity

for consideration when programming in CUDA. Fig. 114 gives an overview of the

CUDA programming model.

Figure 114: CUDA programming model [figure taken from91]

To make a computer system capable of running GPU based algorithms, a GPU

which supports CUDA (check NVIDIA CUDA programming guide for more informa-

tion), the latest NVIDIA CUDA drivers and NVIDIA CUDA toolkit 1 is required.

Once installed, the CUDA and its accompanying C code can be complied using

NVIDIA’s NVCC compiler.

D.4.3 Fortran-CUDA interface

Figure 115 outlines the general GPU interface strategy followed in chapters 5 and

6. The Fortran based CPU code communicates with C/CUDA code functions and

libraries using the ISO C Bindings feature present in the Fortran 2003. An ISO

1https://developer.nvidia.com/cuda-downloads
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Figure 115: General GPU code workflow

binding based wrapper for the most commonly used functions in CUDA was created

as part of this thesis and is used to control all communication between Fortran and

C/CUDA.
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APPENDIX E

EMBEDDED CODES

E.1 Multiple Revolution Lambert Solver Using The Univer-
sal Variable “k”

The universal variable “k” based Lambert solver source code can be obtained by

double clicking: . A user may need to rename the attached file to “klam.f90” in

some cases. A more up to date version of runtime code can be found here:

http://russell.ae.utexas.edu/index files/lambert.htm

E.2 The Fetch Model Runtime Routines

The runtime Fetch routines source code can be obtained by double clicking: . As

with the previous code, a user may need to rename the attached file to “Fetch.f90”

in some cases.

The coefficient files of the four Fetch models and an up to date version of runtime

code can be found here:

http://russell.ae.utexas.edu/index files/fetch.htm
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!---------------------COMMENTS-------------------------!
!     Multiple Revolution Lambert Solver using the cosine based based on universal Variable "k"
!     Copyright (C) 2013  Nitin Arora and Ryan P. Russell

!     This program is free software: you can redistribute it and/or modify
!     it under the terms of the GNU General Public License as published by
!     the Free Software Foundation, either version 3 of the License, or
!     (at your option) any later version.

!     This program is distributed in the hope that it will be useful,
!     but WITHOUT ANY WARRANTY; without even the implied warranty of
!     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!     GNU General Public License for more details.

!     You should have received a copy of the GNU General Public License
!     along with this program.  If not, see <http://www.gnu.org/licenses/>.
!
! ***************************************************************************************
!
!IMPORTANT: Please cite the thesis or the scholarly article from where this code was obtained.
!
!			A more recent version of the code ( with big fixes etc.) is avaliable at: 
!			http://russell.ae.utexas.edu/index_files/lambert.htm
! ***************************************************************************************
!Code Author : Nitin Arora
!Email : Nitin Arora: nitin.life@gmail.com
!	 Ryan P. Russell: ryan.russell@austin.utexas.edu 
!Project Authors: Nitin Arora and Ryan P. Russell
!Date: JUNE 25, 2013 
!Version: ALPHA_0.5
!------------------------------------------------------------------------------
MODULE KLAM_MOD
private
public get_klam,nmaxsol,v1vec,v2vec,get_d_parameter,sol_code
!------------------------------------------------------------------------------
! Given below is a summary on how to use the code
! Using the code just requires the user to "USE" the Fortran module
! and call the required runtime routines
!
! Module command to use in your calling function or program
!
! use KLAM_MOD   
!
! There are two runtime routines available :
!	
!	1) get_d_parameter(direction,r1_vector,r2_vector,d) ! calculates the transfer angle parameter d 
!	   the user may call this routine or may pick a value of d by default
!
!		Inputs:
!		direction = direction of motion
!		r1_vector = position vector 1
!		r2_vector = position vector 2
!
!		Outputs:
!		d = parameter based on the transfer angle theta		
!		  = + 1 for   0 < theta < pi (degrees) 
!		  = - 1 for  pi < theta < 2*pi (degrees) 
!
!
!	2) get_klam(r1_vector,r2_vector,GM,TOF,d,nmax) ! the main Lambert computation routine
!		 
!		Inputs:
!		r1_vector = position vector 1
!		r2_vector = position vector 2
!		GM 	  = G * Mass value for the central body
!		d 	  = transfer angle parameter ( +1 or -1 )
!		TOF  	  = input Time Of Flight
!		nmax 	  = maximum number of user requested revolutions (must be less than nmaxmax => see below )

!
!		Global Outputs : The routine overwrites the following public (module) variables as outputs
!		nmaxsol = maximum number of revolutions possible (<= nmax ) 
!		v1vec(1:3,-nmaxsol:nmaxsol) = velocities at pt. 1
!		v2vec(1:3,-nmaxsol:nmaxsol) = velocities at pt. 2
!		sol_code = solution code (explained below)
!
!    	Each of the velocities variables are laid out in memory as follows:
!		 v1vec(1:3, 0 ) = accesses the three components of the velocity at pt.1 for only the zero-rev or hyperbolic solution
!		 v1vec(1:3, -nmaxsol:nmaxsol ) = accesses the three components of the velocity at pt.1 for zero-rev + the multiple revolutions solutions on both branches
!						 solutions with negative index are 
!						 the Short period sols.(left branch) and those with positive index are Long period sols.(right branch)
!		 v2vec is laid out similarly 
!
!
!
!		**IMPORTRANT**
!			    NOTE: The algorithm performs faster in elliptical cases if the inputs are normalized; i.e. the inputs satisfy the following conditions:
!				norm(r1_vector) = 1.0d0
!				GM 		= 1.0d0
!				r2_vector is expressed in LU
!				TOF is expressed in TU
!
!
!------------------USER PARAMTERS----------------------!
integer,parameter	:: nmaxmax	   	= 20        ! Maximum number of revolutions allowed; must be equal to or greater than the user supplied nmax 
!							     if too large it my degrade v1vec and v2vec array performance
!
integer,parameter	:: MAXrootIter 		= 20        ! Maximum number of iterations allowed PER root solve
!
real(8),parameter	:: rootTOL         	= 1D-12     ! root solver tolerance (1E-7 to 1E-13 perform good)
!
real(8),parameter	:: minimizationTOL 	= 1D-10     ! minimization root solve tolerance; don't need a very high value as the bottom detection algorithm will make the change, if needed
!
real(8),parameter	:: angleTOL        	= 1D-5 	    ! Tolerance on cosine(transfer angle) close to +1 or -1 (0, PI or 2PI)  for transfer angle warning (see below)
!------------------------------------------------------!
!------------------------------------------------------!
!----------------------sol_code------------------------!
!
! The variable "sol_code" is a three part integer variable defined as :
!  == >           sol_code = xyz
! The biggest number at each place (x, y or z) takes precedence
!
!------------------------
! The zeroth place (z) term reports transfer angle warnings
!  = 1   default
!  = 2 : if transfer angle is close to 0 or 2*pi
!  = 3 : if transfer angle is close to pi (half rev solution)
!
! The tenth place term (y) reports solution accuracy warning
!  = 1 : if g is close to very zero (1/g in used calculating the velocity vectors)
!
! The hundredth place (x)  reports root solver warnings
!  = 1 : if the number of iterations (for any root solve) equals MAXrootIter
!		-may happen once or twice when computing billions of solutions with extremely small  or extremely large TOFs
!		 or for transfer angles close to 0 or 2PI
!		-generally the solution is converged to a tolerance of rootTOL*20 or better
!  = 2 : severe convergence problems ( if the convergence Tolerance > 1000*rootTOL)
!		  this should not happen; if it does then there is a bug;
!		  please email the author along with a small stand alone test case for replicating the problem
!------------------------
!
! The most common sol_code value when everything is okay is 1
! and an e.g case when all three warnings are present will be 212
!
!------------------------------------------------------!
!------------------------------------------------------!
!------------------------------------------------------!
!------------------------------------------------------!
!------------------------------------------------------!
!------------------------------------------------------!
!------------------------------------------------------!
!------------------------------------------------------!
!------------------------------------------------------!
!------------------------------------------------------!
!------------------------------------------------------!
!------------------------------------------------------!
!------------------------------------------------------!
!------------------------------------------------------!
!------------------------------------------------------!
!------------------------------------------------------!
!------------------------------------------------------!
!------------------------------------------------------!
integer,parameter:: fp_kind = kind(0.d0) ! Code Precision (8 = Double precision, this feautre is not tested; if you change then you may need to change some trig function calls)
real(8),parameter:: tofbotrejectparam = 0.20d0
real(8),parameter:: rootTOLrelax = max(rootTOL,1E-11)
real(fp_kind)    :: v1vec(3,-nmaxmax:nmaxmax)
real(fp_kind)	 :: v2vec(3,-nmaxmax:nmaxmax)
integer		 :: iter,iterTot,iterTotBot,iterbound,sol_code,erx,ery,erz
logical 	 :: hype,mult,know,newt,curve,monotonic,BOTSOLVED,donthaveslope
integer 	 :: nmax,k,absN,nmaxsol,sonum,region
integer		 :: it
REAL(fp_kind)    :: f,g,onebyg,gdot,r1,r2,onebyr1,onebyr2,onebyr1r2,mu,TOF,r1_p_r2,r12,dotr1r2,kout2,bytau
REAL(fp_kind) 	 :: r1vec(3),r2vec(3),paraTOF
REAL(fp_kind)    :: tau,A,sqA,Y,w,wmin,wmax,sqy,Ymul,sqypi,onebysqrtmu,wb,wbmin,wbmax,byTOF,tstar,sq1_p_ctheta,sqr1r2,ctheta
REAL(fp_kind)	 :: k1,k2,k3,dk1,dk3,dk2,ddk1,ddk2,ddk3,d2pre,TOFbotd,SLOPESIGN,slopesave
REAL(4)		 :: crossr1r2,sq1_p_stheta,stheta,byacosTOF,byacosTb,byacosTkb2,rS,alpham,byalpham,wbsav,whyplo,Tat2,Tat100,w100,wpi,tat1bysqrt2,thetain,tat2sqrt2by3
REAL(4)		 :: tatm1,tatm1by2,tatm1p38,tatm1p41,kbot,TOFbot,tstarf,tat20,wbot
real(fp_kind) 	 :: eps
real(fp_kind) 	 :: minw=0.020d0
real(fp_kind),parameter:: pi= 4.0d0*datan(1.d0)
real(4),parameter      :: spi= 4.00E0*atan(1.0E0)
real(4),parameter      :: stwopi = 2.0E0*spi
real(fp_kind),parameter:: sqrt2=dsqrt(2.d0)
real(fp_kind),parameter:: sqrt2by4=dsqrt(2.0d0)/4.0d0
real(fp_kind),parameter:: pisqrt2by4=pi*dsqrt(2.0d0)/4.0d0
real(fp_kind),parameter:: sqrt2by2=1.0d0/dsqrt(2.d0)
real(fp_kind),parameter:: sqrt2by3=sqrt(2.0d0)/(3.d0)
real(fp_kind),parameter:: twoninths=2.d0/9.d0
real(fp_kind),parameter:: oneeighth=1.d0/8.d0
real(fp_kind),parameter:: oneby4=1.d0/4.d0
real(fp_kind),parameter:: oneby3=1.d0/3.d0
real(fp_kind),parameter:: oneby2=1.d0/2.d0
real(fp_kind),parameter:: c3by2=3.d0/2.d0
real(fp_kind),parameter:: elevenPIsq=Pi
real(fp_kind),parameter:: pisq=pi*pi
real(fp_kind),parameter:: piby2=pi/2.0d0
real(fp_kind),parameter:: twopi=2.0d0*pi
real(fp_kind)	       :: wpart(0:nmaxmax)=pi, TOFpart(0:nmaxmax),twopiN,dpre,wpre,dTOFpart(0:nmaxmax)
real(fp_kind) 	       :: S

! for series evaluation  ; series in k - sqrt(2.0d0)
real(fp_kind),parameter:: K2c0 = 8.0D0*sqrt2/15.0d0
real(fp_kind),parameter:: K2c1 = -1.0d0/5.0D0
real(fp_kind),parameter:: K2c2 = 2.0D0*sqrt2/35.0d0
real(fp_kind),parameter:: K2c3 = -2.0d0/63.0d0
real(fp_kind),parameter:: K2c4 = 2.0d0*sqrt2/231.0d0
real(fp_kind),parameter:: K2c5 = -2.0d0/429.0d0
real(fp_kind),parameter:: K2c6 = 8.0d0*sqrt2/6435.0d0
real(fp_kind),parameter:: K2c7 = -8.0d0/12155.0d0
real(fp_kind),parameter:: K2c8 = 8.0d0*sqrt2/46189.0d0

real(fp_kind),parameter:: dK2c0 = -1.0d0/5.0d0
real(fp_kind),parameter:: dK2c1 = 4.0d0*sqrt2/35.0d0
real(fp_kind),parameter:: dK2c2 = -2.0d0/21.0d0
real(fp_kind),parameter:: dK2c3 = 8.0d0*sqrt2/231.0d0
real(fp_kind),parameter:: dK2c4 = -10.0d0/429.0d0
real(fp_kind),parameter:: dK2c5 = 16.0d0*sqrt2/2145.0d0
real(fp_kind),parameter:: dK2c6 = -56.0d0/12155.0d0
real(fp_kind),parameter:: dK2c7 =  64.0d0*sqrt2/46189.0d0


real(fp_kind),parameter:: ddK2c0 = 32.0d0*sqrt2/105.0d0
real(fp_kind),parameter:: ddK2c1 = -4.0d0/21.0d0
real(fp_kind),parameter:: ddK2c2 = 8.0d0*sqrt2/77.0d0 
real(fp_kind),parameter:: ddK2c3 = -40.0d0/429.0d0
real(fp_kind),parameter:: ddK2c4 = 16.0d0*sqrt2/429.0d0
real(fp_kind),parameter:: ddK2c5 = -336.0d0/12155.0d0
real(fp_kind),parameter:: ddK2c6 = 448.0d0*sqrt2/46189.0d0


real(fp_kind),parameter,dimension(50):: botguessZERO=(/2.848574491409989, 2.969741650979643, 3.019580167697935, 3.046926610519389, 3.064234271059298,&
&3.076181942098407, 3.084928535937408, 3.091609722060586,&
&3.096880371698017, 3.101144799326175, 3.104666193154276, 3.107623275458598, 3.110141683599834, 3.112312323573015, 3.114202599175326,&
&3.115863547988180, 3.117334525571622, 3.118646367629186, 3.119823577585527,&
&3.120885872947673, 3.121849299546783, 3.122727048288564, 3.123530063142538, 3.124267500086222, 3.124947077962162, 3.125575349828668,&
&3.126157915060319, 3.126699586762653, 3.127204525113945, 3.127676344459340,&
&3.128118199993506, 3.128532858432090, 3.128922756019091, 3.129290046440507, 3.129636640636758, 3.129964240067817, 3.130274364653145,&
&3.130568376356246, 3.130847499185477, 3.131112836230147, 3.131365384233320,&
&3.131606046106675, 3.131835641718049, 3.132054917224646, 3.132264553175187, 3.132465171565739, 3.132657342004643, 3.132841587114613, 3.133018387279276, 3.133188184826303/) 
!FIRST 50 rev bottom zero curve stored 

real(fp_kind) , parameter :: k00=sqrt2by4,k02=3.0d0*sqrt2by4*oneby4,k03=-2.0d0/3.0d0,k04=15.0d0*sqrt2/128.0d0,k05=-2.0d0/5.0d0
real(fp_kind) , parameter :: dk01=3.0d0*sqrt2by4/2.0d0,dk02=-2.0d0,dk03=15.0d0*sqrt2/32.0d0,dk04=-2.0d0
real(fp_kind) , parameter :: ddk00=dk01,ddk02=45.0d0*sqrt2/32.0d0,ddk03= -8.0d0
contains
!###############################################################################
subroutine get_d_parameter(direct,rveca,rvecb,dout)
        implicit none
        logical,intent(in):: direct
        integer,intent(out):: dout
        real(fp_kind) ,intent(in):: rveca(3),rvecb(3)
        real(fp_kind)  h(3)        
        call cross(rveca,rvecb,h)
        !if (notfilledfact) call fillfactorial()
        if (h(3)>0.d0) then
            dout=1
        else
            dout=-1
        endif        
        if(direct==.false.) dout=dout*-1 
end subroutine  get_d_parameter
!###############################################################################
subroutine get_klam(r1vecin,r2vecin,muin,TOFin,din,nmaxin)
implicit none
real(fp_kind) , intent(in) :: r1vecin(3),r2vecin(3),muin,tofin
real(fp_kind) 		   :: byconstS,TOFnudge
integer 		   :: j
integer, intent(in) 	   :: din , nmaxin
	nmax = nmaxin
	if(nmax > nmaxmax ) then 
		print*,'nmaxmax(',nmaxmax,') is less than nmax(',nmaxin,') please make sure nmaxmax>=nmax ; stopping'
		stop
	end if
	r1vec = r1vecin
	r2vec = r2vecin
	k = din
	TOF = tofin
	nmax = nmaxin
	mu = muin
	iterTot = 0
	iterTotBot=0
	erx = 0
	ery = 0
	erz = 1
	call get_geom(byconstS)
 	call get_paraTOF()
	byTOF = 1.0d0/TOF
	TOFnudge = TOF-5E-6
	eps = rootTOL
	hype = .false.
	if(TOF<paraTOF) then !Hyperbolic or Elliptical ?
		hype = .True.
		IF(TOF<rootTOL)then !TOF close to zero ?
			w = 1.0d0/tau
			Y = (r1_p_r2-w*A)
			sqy = sqrt(Y)
			call get_vel(0)
			nmaxsol = 0
			return
		end if
		! CHECK if close to parabolic TOF from right side
			if((paraTOF-TOF) < rootTOL) then
					w = sqrt2
					Y = (r1_p_r2-w*A)
					sqy = sqrt(Y)
					call get_vel(0)
					nmaxsol = 0
					return
			end if

	end if

	if(hype==.FALSE.) THEN 
										! CHECK if close to parabolic TOF from left side
										if((TOF-paraTOF) < rootTOL) then
												w = sqrt2
												Y = (r1_p_r2-w*A)
												sqy = sqrt(Y)
												call get_vel(0)
												nmaxsol = 0
												return
										end if
		nmaxsol = 0
		absN  = 0
		twopiN=0.0d0 !ZERO REV
		w = 0.0d0 
		call getZEROTOF(0)
		w = ig(0)
		call root_solve(w,wmin,wmax,dTOFbyfn2,iter)
		call get_vel(0)
			do j = 1,nmax !MULTI-REV LOOP
				twopiN=twopi*j
				wb = igb(j) ! GENERATING bottom guess.. storing current kboti to kbi variable
				kbot=wb
					call getTapproxbot(kbot) ! get approximate bottom time
					TOFbot= tstarf					
					BOTSOLVED = .False.	
					if(TOFnudge<TOFbot) then ! TOFnudge takes care fo the case when TOFbot - TOF is very close to single precision limit of 1E-7
						IF((TOFbot-TOF)*byTOF>tofbotrejectparam) then ! NO solution exist if TOF is less than the approxiamted bottom TOF By more than tofbotrejectparam*100% 
							exit
						else
								call solveBottom() ! solve bottom
								kbot=w
								call getK2nonly() ! we already have Y and SQY from the root solve on the bottom 
								TOFbotd = sqy*(y*k2+A)*byconstS !Using the alternate for of TOF equation
								TOFbot  = TOFbotd							
								BOTSOLVED = .True.	
								if(TOFbotd>TOF)exit		!I can exit here 		

						end if
					end if
					absN = j
					call getZEROTOF(j) !major partition always at ZERO
					if(TOFbot>TOFpart(j) .AND. BOTSOLVED == .False. )then 
							w = wb
							call solveBottom() ! solve bottom
							kbot = w							
							BOTSOLVED = .True.			
  					end if
					slopesign = 1.0d0 ! initalize the right sign of the slope
						if(kbot>=0.0) then 
							w = igm1(1)
						else
							w = igm2(1)
						end if
					call solveLamb()  ! solve for right branch solutions 
					call get_vel(j)						
					slopesign = -1.0d0! Re-initalize slope sign
						if(kbot>=0.0) then 
							w = igm1(-1)
						else
							w = igm2(-1)
						end if
					call solveLamb() ! solve for left branch solutions 
					call get_vel(-j)
					nmaxsol = nmaxsol+1		
			end do
	else !HYPERBOLIC
						twopiN=0.0d0 
						! Generate Hyperbolic guess
						if(k==1) then ! two different branches based on the d parameter
							w = 1.0d0/tau
							whyplo=w
						else
							call gettat20()			
							whyplo = 20.0D0
						end if	
						w = ig(-1)
						call root_solve(w,wmin,wmax,dTOFbyfn2,iter) !Root solve hyperbolic solution
						call get_vel(0) ! zero stores either hyperbolic or elliptical solution
						nmaxsol = 0
	end if
	sol_code = 100*erx + 10*ery + erz
end subroutine get_klam
!###############################################################################
real(4) function getZeroW() ! simply by putting Y = 0
implicit none
real(4) :: sqtau
		sqtau = tau*tau		
		getZeroW = -log(-1.0E0 +  (1.0E0+sqrt(1.0E0-2.0E0*sqtau))/sqtau )	
end function getZeroW
!###############################################################################
subroutine getT()
implicit none
      call getK2nonly() 
      y = 1.0d0-w*tau
      sqy = sqrt(y)
      tstar = sqy*(k2*y + tau)
end subroutine getT
!###############################################################################
subroutine getTapprox(win)
implicit none
real(4) , intent(in):: win
real(4) :: t1,t2,t3
      call getK2nonly_approx(win,t3) 
      t2 = tau
      t1 = 1.0E0-win*t2
      tstarf = sqrt(t1)*(t3*t1 + t2)
end subroutine getTapprox
!###############################################################################
subroutine getTapproxbot(win)
implicit none
real(4) , intent(in):: win
real(4) :: t1,t2,t3
      call getK2nonly_approx(win,t3) 
      wbot = t3
      t2 = tau
      t1 = 1.0E0-win*t2
      tstarf = sqrt(t1)*(t3*t1 + t2)
end subroutine getTapproxbot
!###############################################################################
subroutine getTatPi()
implicit none
      Y = 1.0d0-Pi*tau
      sqy = sqrt(Y)
      Tat2 = sqy*(0.2690861061E0*Y + tau)
end subroutine getTatPi
!###############################################################################
subroutine gettatm1by2()
implicit none
      Y = 1.0d0+0.5E0*tau
      sqy = sqrt(Y)
      tatm1by2 = sqy*(1.954946607*Y + tau)
end subroutine gettatm1by2
!###############################################################################
subroutine gettatm1()
implicit none
      Y = 1.0d0+tau
      sqy = sqrt(Y)
      tatm1= sqy*(5.712388981*Y + tau)
end subroutine gettatm1
!###############################################################################
subroutine gettatm1p38()
implicit none
      Y = 1.0d0+1.38E0*tau
      sqy = sqrt(Y)
      tatm1p38= sqy*(212.0872798795398E0*Y + tau)
end subroutine gettatm1p38
!###############################################################################
subroutine gettatm1p41()
implicit none
      Y = 1.0d0+1.41E0*tau
      sqy = sqrt(Y)
      tatm1p41= sqy*(4839.684497246645E0*Y + tau)
end subroutine gettatm1p41
!###############################################################################
subroutine gettat1bysqrt2()
implicit none
      Y = 1.0d0-sqrt2by2*tau
      sqy = sqrt(Y)
      tat1bysqrt2 = sqy*(0.6686397730*Y + tau)
end subroutine gettat1bysqrt2
!###############################################################################
subroutine gettat20()
implicit none
      Y = 1.0d0-20.0D0*tau
      sqy = sqrt(Y)
      tat20 = sqy*(0.04940968903D0*Y + tau)
end subroutine gettat20
!###############################################################################
subroutine gettat100()
implicit none
      Y = 1.0d0-100.0E0*tau
      sqy = sqrt(Y)
      tat100 = sqy*(0.009992094040E0*Y + tau)
end subroutine gettat100
!###############################################################################
subroutine get_paraTOF()
implicit none
      paraTOF = sqrt(1.0d0-sqrt2*tau)*(oneby3*tau+sqrt2by3)
end subroutine get_paraTOF
!###############################################################################
subroutine getZEROTOF(j)
implicit none 
integer,intent(in) :: j
     TOFpart(j) = (sqrt2by4*(pi+twopiN) +tau)					
end subroutine getZEROTOF
!###############################################################################
subroutine get_vel(capN)
implicit none       
integer,intent(in):: capN 
	f=Y*onebyr1-1.0d0
	g=A*sqy*onebysqrtmu

	if(dabs(g)<1.d-11)ery=1

	gdot=Y*onebyr2-1.0d0
	onebyg=1.d0/g 
    	v1vec(1:3,capN) = r2vec(1:3)+f*r1vec(1:3)
    	v2vec(1:3,capN) = -(gdot*r2vec(1:3)+r1vec(1:3))
	v1vec(1:3,capN) = v1vec(1:3,capN)*onebyg
	v2vec(1:3,capN) = v2vec(1:3,capN)*onebyg
end subroutine
!###############################################################################
subroutine cross(x,y,ans)
		implicit none
		real(fp_kind)  :: x(3),y(3),ans(3)
		ans(1)=x(2)*y(3)-x(3)*y(2)
		ans(2)=x(3)*y(1)-x(1)*y(3)
		ans(3)=x(1)*y(2)-x(2)*y(1)
end subroutine cross
!###############################################################################
real(fp_kind) function norm(x)
implicit none
real(fp_kind),intent(in) :: x(3)
	norm = sqrt(x(1)*x(1) + x(2)*x(2)+x(3)*x(3))
end function
!###############################################################################
subroutine get_geom(byconstS)
implicit none
	real(fp_kind) , intent(out) :: byconstS
        r1=sqrt(r1vec(1)*r1vec(1)+r1vec(2)*r1vec(2)+r1vec(3)*r1vec(3))
        r2=sqrt(r2vec(1)*r2vec(1)+r2vec(2)*r2vec(2)+r2vec(3)*r2vec(3))
	r1_p_r2 = r1+r2
        onebyr1=1.d0/(r1)
        onebyr2=1.d0/(r2)        
        onebyr1r2=onebyr1*onebyr2
        dotr1r2 = dot_product(r1vec,r2vec)
        ctheta= dotr1r2*onebyr1r2

	    if((ctheta+1.d0)<angleTOL) THEN
	    	erz = 3
	    else if(dabs(ctheta-1.d0)<angleTOL) THEN
	    	erz = 2
	    end if


		r12=r1*r2
		sqr1r2 = sqrt(r12)
		sq1_p_ctheta = sqrt(1.0d0+ctheta)
		onebysqrtmu = 1.0d0/sqrt(mu)
	   	S     = r1_p_r2*sqrt(r1_p_r2)*onebysqrtmu
	   	byconstS = 1.0D0/S
	   	TOF   = TOF*byconstS !time normalized.. but the solution velocities will automatically be in the right dimensions.. walla !
	   	byconstS = byconstS*onebysqrtmu
		A     = k*sqr1r2*sq1_p_ctheta
		tau   = A/r1_p_r2
	    	bytau = 1.0d0/tau


end subroutine get_geom
!###############################################################################
real(4) function ig(c) !zero rev
implicit none
integer,intent(in) :: c
real(4) :: tpara,t2,t7,t10
real(4) :: captof, tat1,numer,denom,tatzero,kmax,kmin,tmax,tmin,tmean,kmean,cc1
real(4),  parameter :: c1 = 173.0076800224552E0,c2=  256.0E0,c3 =0.009786288069E0 , c4=3.759624518E0 , c5 =1.820725083E0
real(4) , parameter :: ssqrt2=sqrt(2.0E0),soneby3=1.0E0/3.0E0
	select case (c)
		case(0) 
			
			if(TOF>TOFpart(0)) then 
				call gettatm1()	
				wmax =  0.0d0
				wmin = -1.0d0
				if(TOF<=tatm1) then  ! region left 1
					call gettatm1by2()
					captof  = TOF
					tatzero = TOFpart(0)		

					numer  =  0.5E0*(tatzero-captof)*(-tatm1+tatm1by2)
					denom  =  (tatm1-tatzero)*(tatm1by2-captof)*0.5E0 + (captof-tatm1)*(tatm1by2-tatzero)
					ig = numer/denom !alpha = 1

					!PRINT*,'left region 1',ig

				else
					call gettatm1p38()
					if(TOF<=tatm1p38) then
						wmax =  -1.00d0
						wmin = -sqrt2
						captof  = 1.0E0/TOF
						tatm1 = 1.0E0/tatm1
						tatm1p38 = 1.0E0/tatm1p38
						t2 =  captof*(tatm1-tatm1p38)
						t7 =  tatm1p38*(captof-tatm1)
						t10 = tatm1*(-tatm1p38+captof)

						numer  =  (t7*c1-t10)*c2  + c1*t2

						denom  =  -t2*c2  +  t10*c1 -t7					
			
						ig = -sqrt(sqrt(sqrt(sqrt(numer/denom)))) !alpha = 16
						!PRINT*,'RIGHT ***** region 1a',ig

					else
					call gettatm1p41()
						wmax =  -1.38d0
						wmin = -sqrt2
						captof  = 1.0E0/TOF
						!tatzero = 1.0E0/TOFpart(0)		
						tatm1 = 1.0E0/tatm1p38
						tatm1p38 = 1.0E0/tatm1p41
						t2 =  captof*(tatm1-tatm1p38)
						t7 =  tatm1p38*(captof-tatm1)
						t10 = tatm1*(-tatm1p38+captof)

						numer  =  (t7*c5-t10*c3)*c4  + c3*c5*t2

						denom  =  -t2*c4  +  t10*c5 -t7*c3				
			
						ig = -1.406527242105237*(numer/denom)**(0.004115226337E0) !alpha = 243.0
					!	PRINT*,'RIGHT ***** region 1B',ig

					end if
			    end if
			else			
			call gettat1bysqrt2()
			captof = TOF
			tatzero = TOFpart(0)
			tpara  = paraTOF
			tat1 = tat1bysqrt2
				wmax = sqrt2
				wmin = 0.0d0
			numer = (tatzero-captof)*(-tpara+tat1)*sqrt2
			denom = ( (tat1+captof-2.0E0*tpara)*tatzero+(tpara-2.0E0*tat1)*captof+tpara*tat1)
			ig = numer/denom !alpha = 1
			end if
		case default !hyper bolic	
			!print*,k,curve,tstar
			wmin = sqrt2
			wmax = HUGE(0.0d0)
			if(k==-1) then ! right region
				if(TOF<=tat20) then
					call gettat100();
					captof = TOF					
					tmax = tat100
					tmin = tat20
					!ALPHA = 0.5
					numer =  tmax*(tmin-captof)*10.0E0-tmin*4.472135955*(tmax-captof)
					denom =   captof*(tmin-tmax)
					ig =  numer/denom
					ig = ig*ig !alpha = 0.5 and no need for kmax or kmin as its in abosulte ks
					region = 10
				else					
					captof = TOF
					kmin = ssqrt2
					kmax = 20.0E0
					tmin = paraTOF
					tmax = tat20
					kmean = 7.609475707E0 ! at 1/3 FROM THE sqrt2
					tmean = gettat7P60()
					ig =  kmin+18.58578644E0*get3PMguess(tmin,tmax,tmean,captof,soneby3)		 !alpha = 1
					region = 101

				end if
				
			else	
				wmin = sqrt2
				wmax = w
				captof = TOF
				kmax = wmax
				kmin = ssqrt2
				tmax = 0.0
				tmin = paraTOF
				kmean = kmin + (kmax-kmin)*0.5E0
				call getTapprox(kmean)
				tmean = tstarf
				cc1 = 0.7071067812E0 !ALPHA = 0.5
					region = 1011
					ig =  get3PMguess(tmin,tmax,tmean,captof,CC1)
					ig =  kmin + (kmax-kmin)*(ig*ig) !alpha = 0.5 .. just sqrt on the solution from the function
				!if(ig<sqrt2)ig=sqrt2+0.001
			end if				
	end select
end function ig
!###############################################################################
real(4) function gettat7P60()
implicit none
real(4) :: t1
	t1 = 1.0E0 - 7.609475707E0*tau
	gettat7P60 = sqrt(t1)*(t1*0.1247898632E0 + tau)
end function gettat7P60
!###############################################################################
real(4) function gettat1_N()
implicit none
real(4) :: t1,t2
	t1 = 1.0E0 - tau
	t2 = twopiN + 0.570796326794897E0
	gettat1_N = sqrt(t1)*(t1*t2 + tau)
end function
!###############################################################################
real(4) function getmeanm1p267()
implicit none
real(4) :: t1,t2
	t1 = 1.0E0 + 1.276142375*tau
	t2 = 27.25239909+27.75304668*real(absN)
	getmeanm1p267 = sqrt(t1)*(t1*t2 + tau)
end function getmeanm1p267
!###############################################################################
real(4) function getmean1p267()
implicit none
real(4) :: t1,t2
	t1 = 1.0E0 - 1.276142375E0*tau
	t2 = 27.75304668E0*real(absN) + .500647590E0
	getmean1p267 = sqrt(t1)*(t1*t2 + tau)
end function getmean1p267
!###############################################################################
real(4) function gettatm1by2_N()
implicit none
real(4) :: t1,t2
	t1 = 1.0E0 + 0.5E0*tau
	t2 = 1.954946607E0+2.714080941*real(absN) 
	gettatm1by2_N = sqrt(t1)*(t1*t2 + tau)
end function gettatm1by2_N
!###############################################################################
real(4) function gettatm1_N()
implicit none
real(4) :: t1,t2
	t1 = 1.0E0 + tau
	t2 = twopiN + 5.712388980384689E0
	gettatm1_N = sqrt(t1)*(t1*t2 + tau)
end function
!###############################################################################
real(4) function gettat1by2_N()
implicit none
real(4) :: t1,t2
	t1 = 1.0E0 - 0.5E0*tau
	t2 = 2.714080941*real(absN) + 0.7591343343
	gettat1by2_N = sqrt(t1)*(t1*t2 + tau)
end function gettat1by2_N
!###############################################################################
REAL(4) function get3PMguess(tmin,tmax,tmean,captof,c1)
implicit none
real(4), intent(in) :: tmin,tmax,tmean,captof,c1
real(4) :: numer , denom 
		numer  =  c1*(tmin-captof)*(tmax-tmean)
		denom  =  (tmean-captof)*(tmax-tmin)*c1+(tmin-tmean)*(tmax-captof)	
		get3PMguess = numer/denom
end function get3PMguess
!###############################################################################
subroutine getslope(sw,stof,swk2,sdt)
implicit none 
real(4) , intent(in) :: sw,sTOF,swk2
real(4) , intent(out) :: sdt
real(4) :: dwk2,cc,t1,rtau,t3
		dwk2 = (-2.0E0+3.0E0*swk2*sw)/(2.0E0-sw*sw)
		rtau = tau
		cc = 1.0E0-sw*rtau
		t1 = sqrt(cc)*rtau
		cc = cc/rtau !c
		t3 = 1.0E0/cc ! 1/c
		sdt =  -stof*t3*0.50E0 + t1*(dwk2*cc-swk2)					
end subroutine getslope
!###############################################################################
real(4) function igm1(c) ! FOR kbot > 0 
implicit none
integer,intent(in) :: c ! j = abs rev number .. and c +1 for right hand and -1 for left ...
real(4) :: kmax,kmin,tmax,tmin,tmean,kmean,tat1_n,tat0,captof,C1,t2,tatm1_n,slopeval
real(4) , parameter :: ssqrt2=sqrt(2.0E0)
	captof = TOF
	tat0 = TOFpart(absN)
	select case (c) !(long period solutions)
		case(1)
			wmax = ssqrt2
			wmin = kbot
			tat1_n =  gettat1_N()
			monotonic = .false.
			if(kbot>1.0E0) then
				!if(kbot>=1.0E0) then ! the bottom is in the right region b
				region = 1

					call getslope(kbot,TOFbot,wbot,slopeval)
					if(slopesign*slopeval>0.0)monotonic = .true.

					kmin  = kbot
					kmax  = ssqrt2
					tmin  = 1.0/TOFbot !not symmetric as tmax = 0
					tmax  = 0.0E0
					kmean = kmin+(kmax-kmin)*0.5E0 !kmean  ! simplified..
					call getTapprox(kmean)
					tmean =  1.0/tstarf !not symmetric as tmax = 0
					C1 =    0.250E0 ! FOR ALPHA = 2.0
					if(captof>tstarf .AND. tstarf>TOF)then 
							wmin = kmean
							monotonic = .true.
					else if(tstarf<TOFbot) then
							tmin = tmin/2.0
					end if

					igm1 =  get3PMguess(tmin,tmax,tmean,1.0/captof,C1)
					igm1 =  kmin + (kmax-kmin)*sqrt(igm1) !alpha = 2.0 .. just sqrt on the solution from the function

			else if(TOF>tat1_n) then! bottom is in right a region a while TOF in right a B
					!alpha AGAIN 2.0 
					monotonic = .true.
					kmin  = 1.0E0
					kmax  = ssqrt2
					tmin  = 1.0/tat1_n 
					tmax  = 0.0E0
					kmean = 1.276142375E0 !kmean  ! simplified..					
					tmean = getmean1p267() ! MEAN POINT IS FIXED !
					tmean = 1.0E0/tmean
					!tmean =  tstarf !not symmetric as tmax = 0
					C1 =    0.4444444444444445E0 ! FOR ALPHA = 2.0..2/3
					igm1 =  get3PMguess(tmin,tmax,tmean,1.0/captof,C1)
					igm1 =  kmin + (kmax-kmin)*(sqrt(igm1)) !alpha = 2.0 .. just sqrt on the solution from the function
				region = 2
		
			else ! the BOTTOM HAS TO BE before tat1 if not WE HAVE PROBLEM 
			region=3
			kmin  = kbot
			kmax  = 1.0E0
			tmin  = TOFbot ! no need to invert here as the equation is symmetric except when tmax= 0
			tmax  = tat1_n
			kmean = (1.0E0+kmin)*0.50E0 ! simplified..

			call getTapprox(kmean)
			tmean =  tstarf
					call getslope(kbot,TOFbot,wbot,slopeval)
					if(slopesign*slopeval>0.0)monotonic = .true.

					if(captof>tstarf .AND. tstarf>TOF )then 
							wmin = kmean
						    monotonic = .true.
					else if(tstarf<TOFbot ) then
							tmean = (tmax+tmin)/2.0				
					end if

			C1 = 0.250E0 ! FOR ALPHA = 2.0
			igm1 =  get3PMguess(tmin,tmax,tmean,captof,C1)
			igm1 =  kmin + (1.0E0-kmin)*sqrt(igm1) !alpha = 2.0 .. just sqrt on the solution from the function

			END IF
		case(-1)	
			wmin = -ssqrt2
			wmax = kbot	
			monotonic = .FALSE.
			if(TOF<tat0) then
					region = 4

					kmin  = 0.0E0
					tmin  = tat0 !not symmetric as tmax = 0

					kmax  = kbot
					tmax  = TOFbot

					kmean = (kmax)*0.5E0 !kmean  ! simplified..
					call getTapprox(kmean)
					tmean =  tstarf !symmetric
					call getslope(kbot,TOFbot,wbot,slopeval)
					if(slopesign*slopeval>0.0)monotonic = .true.
					if(captof>tstarf .AND. tstarf>TOF)then 
							wmax = kmean
						    monotonic = .true.
					else if(tstarf<TOFbot ) then
							tmean = (tmax+tmin)/2.0				
					end if

					C1 = 0.4352752816E0 ! FOR ALPHA = 1.20.. or 5 / 4
					igm1 = get3PMguess(tmin,tmax,tmean,captof,C1)
					t2 = igm1*igm1 ! raise to power 2
					t2 = t2*t2 !raise to power 4
					igm1 = t2*igm1 ! raise to power 5	
					igm1 = kmax*( (sqrt(igm1))**(1.0/3.0) ) !alpha = 6/5 .. just sqrt on the solution from the function .. see if I can break in 

			else ! we are on the k<0 region

			tatm1_n = gettatm1_N()

					if (TOF<tatm1_n) then  ! region -a 
						monotonic = .TRUE.
						kmin  = -1.0E0
						tmin  = tatm1_n !not symmetric as tmax = 0

						kmax  = 0.0E0
						tmax  = tat0
						region=5
						kmean = 0.5E0 !kmean  ! simplified..
					    tmean = gettatm1by2_N()
						C1 = 0.5E0 ! FOR ALPHA = 1.0
						igm1 = -1.0E0 + get3PMguess(tmin,tmax,tmean,captof,C1)
					else !region -b
						monotonic =.TRUE.
						kmin  = -1.0E0
						tmin  = 1.0/tatm1_n !not symmetric as tmax = 0
						kmax  = -ssqrt2
						tmax  = 0.0E0
						region=6
						kmean = -1.276142375 !kmean  ! simplified..
					    tmean = 1.0/getmeanm1p267() !â��1.276142375
						C1 = 0.4444444444444445! FOR ALPHA = 2.0
						igm1 = kmin + (kmax-kmin)*sqrt(get3PMguess(tmin,tmax,tmean,1.0/captof,C1))
					end if
			END IF
	      end select	
end function igm1
!###############################################################################
real(4) function igm2(c) ! FOR kbot< 0 
implicit none
integer,intent(in) :: c ! j = abs rev number .. and c +1 for right hand and -1 for left ...
real(4) :: kmax,kmin,tmax,tmin,tmean,kmean,tat1_n,tat0,captof,C1,t2,tatm1_n,slopeval
real(4) , parameter :: ssqrt2=sqrt(2.0E0)
	captof = TOF
	tat0 = TOFpart(absN)
	select case (c)
		case(-1)
			wmax = kbot
			wmin = -ssqrt2
			tatm1_n =  gettatm1_N()
			monotonic = .FALSE.
			if(kbot<-1.0E0) then
					kmin  =  kbot
					kmax  =  -ssqrt2
					tmin  = 1.0/TOFbot !not symmetric as tmax = 0
					tmax  = 0.0E0
					kmean = kmin+(kmax-kmin)*0.5E0 !kmean  ! simplified..
					call getTapprox(kmean)
					tmean =  1.0/tstarf !not symmetric as tmax = 0
					C1 =    0.25E0 ! FOR ALPHA = 1.0 .. 2/3
					call getslope(kbot,TOFbot,wbot,slopeval)
					if(slopesign*slopeval>0.0)monotonic = .true.

					if(captof>tstarf .AND. tstarf>TOF )then 
							wmax = kmean
						    monotonic = .true.
					else if(tstarf<TOFbot ) then
							tmean = (tmax+tmin)/2.0				
					end if

					igm2 =  get3PMguess(tmin,tmax,tmean,1.0/captof,C1)
					igm2 =  kmin + (kmax-kmin)*sqrt(igm2) !alpha =1.0 ..
				
			else if(TOF>tatm1_n) then! bottom is in right a region -b a while TOF in left a -b
					monotonic = .TRUE.
					kmin  = -1.0E0
					kmax  = -ssqrt2
					tmin  = 1.0/tatm1_n 
					tmax  = 0.0E0
					kmean = -1.276142375E0 !kmean  ! simplified..					
					tmean = getmeanm1p267() ! MEAN POINT IS FIXED !
					tmean = 1.0E0/tmean
					C1 =    0.666666666667E0**(2.0) !0.4444444444444445E0 ! FOR ALPHA = 1.0 .. 2/3
					igm2 =  get3PMguess(tmin,tmax,tmean,1.0/captof,C1)
					igm2 =  kmin + (kmax-kmin)*sqrt(igm2) !alpha = 2.0 ..SQRT2 just sqrt on the solution from the function
			else ! the BOTTOM  and TOF HAS TO BE after tatm1 if not WE HAVE PROBLEM 
			kmax  = -1.0E0
			kmin  = kbot
			tmin  = TOFbot ! no need to invert here as the equation is symmetric except when tmax= 0
			tmax  = tatm1_n
			kmean = kmin+(kmax-kmin)*0.5E0 ! simplified..
			call getTapprox(kmean)
			tmean =  tstarf
					call getslope(kbot,TOFbot,wbot,slopeval)
					if(slopesign*slopeval>0.0)monotonic = .true.
					if(captof>tstarf .AND. tstarf>TOF)then 
							wmax = kmean
						    monotonic = .true.
					else if(tstarf<TOFbot ) then
							tmean = (tmax+tmin)/2.0				
					end if
			C1 = 0.250E0 ! FOR ALPHA = 2.0
			igm2 =  get3PMguess(tmin,tmax,tmean,captof,C1)
			igm2 =  kmin + (kmax-kmin)*sqrt(igm2) !alpha = 2.0 .. just sqrt on the solution from the function
			END IF
		case(1)	
			wmin = kbot
			wmax = ssqrt2	
			monotonic = .false.
			if(TOF<tat0) then
					kmin  = kbot
					tmin  = TOFbot !not symmetric as tmax = 0
					kmax  = 0.0E0
					tmax  = tat0
					kmean = (kmin)*0.5E0 !kmean  ! simplified..
					call getTapprox(kmean)
					tmean = tstarf !symmetric
					call getslope(kbot,TOFbot,wbot,slopeval)
					if(slopesign*slopeval>0.0)monotonic = .true.

					if(captof>tstarf .AND. tstarf>TOF)then 
							wmin = kmean
						    monotonic = .true.
					else if(tstarf<TOFbot ) then
							tmean = (tmax+tmin)/2.0				
					end if
					C1 = 0.25E0 ! FOR ALPHA = 2.00.. 
					igm2 = get3PMguess(tmin,tmax,tmean,captof,C1)
					igm2 = kbot - kbot*( sqrt(igm2) ) !alpha = 2.0 ..
			else ! we are on the k<0 region
			tat1_n = gettat1_N()
					if (TOF<tat1_n) then  ! region -a 
						monotonic = .TRUE.
						kmin  = 0.0E0
						tmin  = tat0 !not symmetric as tmax = 0

						kmax  = 1.0E0
						tmax  = tat1_n
						kmean = 0.5E0 !kmean  ! simplified..
					    tmean = gettat1by2_N()

						C1 = 0.4352752816E0 ! FOR ALPHA = 1.2 , 1/2**1.2
						igm2 = get3PMguess(tmin,tmax,tmean,captof,C1)
						t2 = igm2*igm2 ! raise to power 2
						t2 = t2*t2 !raise to power 4
						igm2 = t2*igm2 ! raise to power 5	
						igm2 = ( (sqrt(igm2))**(1.0/3.0) ) !
					else !region -b
						monotonic = .TRUE.
						kmin  = 1.0E0
						tmin  = 1.0/tat1_n !not symmetric as tmax = 0
						kmax  = ssqrt2
						tmax  = 0.0E0
						kmean = 1.276142375 !kmean  at 2/3 from 
					    Tmean = getmean1p267() ! MEAN POINT IS FIXED !!1.276142375  AT 2/3 .. WITH ALPHA = 2
						tmean = 1.0E0/tmean
						C1 = 0.4444444444444445E0!  = (2/3)**2
						igm2 = kmin + (kmax-kmin)*sqrt(get3PMguess(tmin,tmax,tmean,1.0/captof,C1))
					end if
			END IF
	      end select	
end function igm2
!###############################################################################
real(4) function igb(J) !MULTI REV BOTTOM GUESS ALWAYS 85 % OR MORE ACCURATE
implicit none
integer, intent(in)::j
real(4) :: xz,numer,denom,kt2
	xz =  botguessZERO(j)	
	if(j>51)xz =  Pi	
	kt2 = 2.0E0*k*tau
	numer = xz*(sqrt2-kt2)
	denom = numer + 8.0E0*k*tau
	numer = sqrt(numer/denom)
	igb = xz*sqrt(numer)
	if(k==-1)igb=2.0E0*xz-igb
	wbsav = igb !float	
	igb = sqrt(cos(igb)+1.0E0)
	igb = sign(igb,sPi-wbsav)
end function
!###############################################################################
subroutine solveLamb()
implicit none
		 if(monotonic)then 
					call root_solve(w,wmin,wmax,dTOFbyfn2,iter)
		 else
		 			call root_solve_multi(w,wmin,wmax,dTOFbyfn2,iter,iterbound)
		 end if
	iterTot = iterTot + iter
end subroutine solveLamb
!###############################################################################
subroutine solveBottom()
implicit none
			wmax 	= sqrt2 	
			wmin 	= -sqrt2
			eps	= minimizationTOL
			!region = 911
			call root_solve(wb,wmin,wmax,ddTOFbydfn2,iter)! can be any order as the func will give that order delta x	
			region = 0
			eps = rootTOL
	        iterTotBot = iterTotBot + 1
end subroutine solveBottom
!###############################################################################
 subroutine root_solve(x,xmin,xmax,func,iter) ! called from zero rev.. hyperbolic and bottom
    implicit none
    real(fp_kind)  :: x
    real(fp_kind) , intent(in):: xmin,xmax
    integer,intent(out):: iter
    external func    
    integer,parameter:: itermax=MAXrootIter
    real(fp_kind)   :: f,delta,deltax,dt,ddt,deltapre!,xsuccpre
	x=x+eps
	iter=0
	delta = 999.0d0
	if(x>xmax)x=xmax-1E-3 ! make sure in range
	if(x<xmin)x=xmin+1E-3
	deltapre = 1.0d0
    do while (delta>eps)             
        iter=iter+1
            	call func(x,f,dt,ddt) 
            	deltax=f            
		x=x+deltax
	        delta=dabs(deltax)/(dabs(x)+1.0d0) 	           	
		if(iter>9 .and. deltapre<delta)eps=rootTOLrelax ! if not reducing after 9 iters.. then reduce tol.. and then if still not reducing then just let it goto 20 iterations 
		deltapre = delta	
    	if(iter==itermax)then
    			erx = 1
    			if(delta>rootTOL*1000)erx=2
    			exit
    	end if
    end do
	w = x
	Y = (r1_p_r2-x*A)
	sqy = sqrt(Y)
	eps = rootTOL
 end subroutine root_solve
!###############################################################################
 subroutine root_solve_multi(x,xmin,xmax,func,iter,iterb)
    implicit none
    real(fp_kind) , intent(in):: xmin,xmax
    integer,intent(out):: iter,iterb
    external func    
    integer,parameter:: itermax=MAXrootIter
    real(fp_kind)   :: f,delta,deltax,dt,fold,ddt,xbold,delxb,deltapre !,xsuccpre
    real(fp_kind)   :: x
    logical prnt
    integer :: iterb2
	x=x+eps
	iter=0
	iterb = 0
	iterb2 = 0
	delta = 999.0d0
	delxb = 0.0D0
	if(x>xmax)x=xmax-1E-3 ! make sure in range
	if(x<xmin)x=xmin+1E-3
	deltapre = 1.0d0
    do while (delta>eps)             
        iter=iter+1
            call func(x,f,dt,ddt) 
        	do while(dt*slopesign<0.0d0)
        		xbold = x
        		x = x - dt/ddt
				call get_dtddt(x,dt,ddt)
				TOFbotd = tstar
				delxb = dabs(x/xbold - 1.0d0)	!partial minimizations
 				if( delxb<=eps .OR. (dt*slopesign>=0.0 .AND. TOF>TOFbotd) ) then
		        		iterb = iterb+1
						kbot = x
						if(slopesign<0) then 
								wmax = x
								if(x>0) then 
									x= igm1(-1)+1E-3 !Nudge to make sure value is good
								else
									x= igm2(-1)+1E-3 
								end if
						else
								wmin = x
								if(x>0) then 
									x= igm1(1)+1E-3 !Nudge to make sure value is good
								else
									x= igm2(1)+1E-3
								end if
						end if											
							w = x	
							call func(x,f,dt,ddt)
			           		exit
			    end if
			    
        	end do
	            deltax=f   
		    	x=x+deltax
	            delta=dabs(deltax)/(dabs(x)+1.0d0) !min(abs(x/xmold - 1.0d0),abs(deltax)) 
		    	if(iter>9 .and. deltapre<delta)eps=rootTOLrelax ! if not reducing after 9 iters.. then reduce tol.. and then if still not reducing then just let it goto 20 iterations 
            	deltapre=deltax
		    	if(iter==itermax)then
		    			erx = 1
		    			if(delta>rootTOL*1000)erx=2
		    			exit
		    	end if
    end do
	w = x
	Y = (r1_p_r2-x*A)
	sqy = sqrt(Y)
	eps = rootTOL !purify tolerance
 end subroutine  
!###############################################################################
subroutine getK2ndd()
implicit real(fp_kind) (t)
real(fp_kind)::xt
      if(w<=-1D-3) then	
	      t2 = (w*w)
	      t3 = acos(t2 - 1.0d0)
	      t4 = 2.0d0 - t2
	      t6 = twopi - t3  + twopiN
	      t5 = 1.0d0/t4
	      k2  =  (t6*sqrt(t5) - w)*t5
   	      dk2  = (-2.0d0+3.0d0*k2*w)*t5
	      ddk2 = (5.0d0*dk2*w+3.0d0*k2)*t5
     else if(w>=1D-3 .AND. w< (sqrt2-minw+twopiN)) then
	      t2 = (w*w)
	      t3 = acos(t2 - 1.0d0)
	      t4 = 2.0d0 - t2
	      t6 = (t3  + twopiN)
	      t5 = 1.0d0/t4
	      k2  =  (t6*sqrt(t5) - w)*t5
  	      dk2  = (-2.0d0+3.0d0*k2*w)*t5
	      ddk2 = (5.0d0*dk2*w+3.0d0*k2)*t5
     else if(w<1D-3) then!series to k ~= 0 improve convergence
		xt = twopiN+pi
		t2 = w*w
		t3 = t2*w
		t4 = t3*w
		t5 = t4*w
		k2 =   xt*k00 - w + xt*k02*t2 + k03*t3 + xt*k04*t4 + k05*t5
		dk2 =   -1.0D0 + xt*dk01*w +dk02*t2 + xt*dk03*t3 + dk04*t4
		ddk2 =  xt*dk01 - 4.0D0*w + xt*ddk02*t2 + ddk03*t3
     else if(w> (sqrt2-minw) .AND. w< (sqrt2+minw)) then	
		xt = w-sqrt2
		t2 = xt*xt
		t3 = t2*xt
		t4 = t3*xt
		t5 = t4*xt
		t6 = t5*xt
		t7 = t6*xt
		t8 = t7*xt
		k2 = K2c0 + K2c1*w + K2c2*t2 + K2c3*t3 + K2c4*t4 + K2c5*t5 + K2c6*t6 + K2c7*t7 + K2c8*t8 
		dk2 = dK2c0 + dK2c1*xt+ dK2c2*t2 + dK2c3*t3 + dK2c4*t4 + dK2c5*t5 + dK2c6*t6 + dK2c7*t7
		ddk2 =ddK2c0 + ddK2c1*w + ddK2c2*t2 + ddK2c3*t3 + ddK2c4*t4 + ddK2c5*t5 + ddK2c6*t6
     else if(w>= (sqrt2+minw)) then
	      t7   =  (w+1.0d0)*(w-1.0d0)
	      t3   =  log(t7 + sqrt(t7*t7-1.0d0)) !acosh
	      t4   =   t7-1.0d0
	      t5   =  1.0d0/t4
	      k2   =  (-t3*sqrt(t5) + w)*t5 !(t3*sqrt(-t5*t5*t5) - w*t5)
      	  dk2  =   (2.0d0-3.0d0*k2*w)*t5
	      ddk2 =  (-5.0d0*dk2*w-3.0d0*k2)*t5
	     ! print*,ddk2,-3.0d0*k2,-5.0d0*dk2*w,w
     end if
end subroutine  getK2ndd   
!###############################################################################
subroutine getK2nonly()
implicit real(fp_kind) (t)
real(fp_kind) :: xt
      if(w<=-1D-3) then	
	      t2 = (w*w)
	      t3 = acos(t2 - 1.0d0)
	      t4 = 2.0d0 - t2
	      t6 = twopi - t3  + twopiN
	      t5 = 1.0d0/t4
	      k2  =  (t6*sqrt(t5) - w)*t5
     else if(w>=1D-3 .AND. w< (sqrt2-minw+twopiN)) then
	      t2 = (w*w)
	      t3 = acos(t2 - 1.0d0)
	      t4 = 2.0d0 - t2
	      t6 = (t3  + twopiN)
	      t5 = 1.0d0/t4
	      k2  =  (t6*sqrt(t5) - w)*t5
     else if(w<1D-3) then!series to k ~= 0 improve convergence
		xt = twopiN+pi
		t2 = w*w
		t3 = t2*w
		t4 = t3*w
		t5 = t4*w
		k2 =   xt*k00 - w + xt*k02*t2 + k03*t3 + xt*k04*t4 + k05*t5
     else if(w> (sqrt2-minw) .AND. w< (sqrt2+minw)) then	
		xt = w-sqrt2
		t2 = xt*xt
		t3 = t2*xt
		t4 = t3*xt
		t5 = t4*xt
		t6 = t5*xt
		t7 = t6*xt
		t8 = t7*xt
		k2 = K2c0 + K2c1*w + K2c2*t2 + K2c3*t3 + K2c4*t4 + K2c5*t5 + K2c6*t6 + K2c7*t7 + K2c8*t8 
     else if(w>= (sqrt2+minw)) then
	      t2 = (w*w)
	      t7 = t2-1.0d0
	      t3 = log(t7 + sqrt(t7*t7-1.0d0)) 
	      t4 = -2.0d0 + t2
	      t5 =  -1.0d0/t4
	      k2  =  (t3*sqrt(-t5) - w)*t5
     end if
end subroutine  getK2nonly   
!###############################################################################
real(4) function asinapx(xin)  !8-10 times faster on core i7 950.. ~ 1E-6 accurate approximation of asinx
implicit none
real(4),intent(in)  :: xin
real(4) :: x,minn
		minn=1.0E0
		x =xin
		if(x<0.0) then 
			x=-x
			minn = -1.0E0
		end if
		if(x<=0.6E0) then
			asinapx = minn*(0.14773722341E-4 + (0.11782781984745E1 - 0.5202003788E0 * x) * x) / (0.11793469234756E1 + (-0.53277664139103E0 - 0.1445476375E0 * x) * x)
		else if(x<=0.97E0) then 
  asinapx = minn*(0.111027254700941E-1 + (0.8980990579262329E1 + (-0.1481643491349479E2 + 0.5924973991686889E1 * x) * x) * x) / (0.9229973208587132E1&
  & + (-0.1600100928285990E2 + 0.6838090399601930E1 * x) * x)
		else if(x<0.99E0) then 
			asinapx = minn*(-0.3575058587978971E2 + (0.1072432476447240E3 - 0.7078024409E2 * x) * x) / (0.2710576441034722E2 - 0.2663853511E2 * x)
		else 
			asinapx = minn*asin(x)
		end if
end function asinapx
!###############################################################################
subroutine getK2nonly_approx(sk,sk2) ! single precision W value
implicit real(4) (t)
real(4),intent(in)  :: sk
real(4),intent(out) :: sk2
real(4) , parameter :: spiby2 = spi/2.0E0
      if(sk<0.0E0) then
	      	t2 = (sk*sk)
	      	t3 = spiby2 - asinapx(t2 - 1.0E0)
	      	t4 = 2.0E0 - t2
	      	t5 = sqrt(t4)
	      	t6 = (stwopi - t3  + twopiN)
	      	t7 = t4 *t5
          	sk2 = (t6-sk*t5)/t7
     else if(sk>=0.0E0 .AND. sk<= (sqrt2-0.05+twopiN)) then
	     	t2 = (sk*sk)
	      	t3 = spiby2 - asinapx(t2 - 1.0E0)
	      	t4 = 2.0E0 - t2
	      	t5 = sqrt(t4)
	      	t6 = (t3  + twopiN)
	      	t7 = t4 *t5
          	sk2 = (t6-sk*t5)/t7
     else if(sk>(sqrt2-0.05) .AND. sk< (sqrt2+0.05)) then	
		xt = sk-sqrt2	
		t2 = xt*xt
		t3 = t2*xt
		t4 = t3*xt
		t5 = t4*xt
		t6 = t5*xt
		sk2 = K2c0 + K2c1*sk + K2c2*t2 + K2c3*t3 + K2c4*t4 + K2c5*t5 + K2c6*t6
     else if(sk>= (sqrt2+0.05)) then
	     	t2 = (sk*sk)
	      	t3 = acosh(t2 - 1.0E0)
	        t4 = -2.0E0 + t2
	      	t5 = sqrt(t4)
	      	t6 = (t3)
	      	t7 = t4 *t5
            sk2 = (-t6+sk*t5)/t7
     end if
end subroutine  getK2nonly_approx
!###############################################################################
subroutine dTOFbyfn2(winput,dfdx,dt,ddt)!halleys method call 
      implicit real(fp_kind) (t)
      real(fp_kind) , intent(in):: winput
      real(fp_kind) , intent(out):: dfdx,dt,ddt
      real(fp_kind) :: fx,yy,lf
        	w = winput
        if(w>wmax)w=MAX(wmin,wmax+(wmax-w))!GLOBAL CHECK to be in range and prevent sqrt of ( -1 )
        if(w<wmin)w=MIN(WMAX,wmin+(wmin-w))!  
      		call getK2ndd()
		yy = 1.0d0-w*tau
		t1 = sqrt(yy)*tau
		t2 = yy*bytau
		t3 = 1.0d0/t2
		tstar = t1*(k2*t2+1.0d0)!TOF
		fx = TOF-tstar !fx formed
		t6 = tstar*0.50d0*t3
		dt =  -t6 + t1*t2*(dk2-k2*t3) !t6 + t1*(dk2*t2-k2)
		ddt = -t6*t3*0.5d0 + t1*(t3*k2+t2*ddk2-3.0d0*dk2)
		lf = dt/fx
		dfdx =  dt/(lf*dt+ddt*0.5D0)
end subroutine dTOFbyfn2
!###############################################################################
subroutine get_dtddt(winput,dt,ddt)!halleys method call 
   	implicit real(fp_kind) (t)
      	real(fp_kind) , intent(in):: winput
      	real(fp_kind) , intent(out):: dt,ddt
	real(fp_kind) :: yy
        w = winput
        if(w>sqrt2)w=sqrt2+(sqr2-w)
        if(w<-sqrt2)w=-sqrt2-(sqrt2+w)
      	call getK2ndd()
		yy = 1.0d0-w*tau
		t1 = sqrt(yy)*tau
		t2 = yy*bytau
		t3 = 1.0d0/t2
		tstar = t1*(k2*t2+1.0d0)!TOF
		t6 = -tstar*t3*0.50d0
		dt =  t6 + t1*t2*(dk2-k2*t3) !t6 + t1*(dk2*t2-k2)
		ddt = t6*t3*0.5d0 + t1*(t3*k2+t2*ddk2-3.0d0*dk2)
end subroutine get_dtddt 
!###############################################################################
subroutine ddTOFbydfn2(winput,dfdx,temp,temp2)! NEWTON method call for bottom
	implicit real(fp_kind) (t)
      	real(fp_kind) , intent(in):: winput
      	real(fp_kind) , intent(out):: dfdx,temp,temp2
      temp =0.0d0
      temp2 = 0.0d0
      w = winput
     if(w>wmax)w=wmax+(wmax-w)
     if(w<wmin)w=wmin+(wmin-w)
      call getK2ndd()
      t2 = -1.0d0 + w * tau
      t3 = t2 *t2
      t4 = dk2
      t5 = t3 * t4
      t6 = k2
      t7 = t2 * t6
      t8 = tau*oneby3
      t15 = ddk2
      dfdx = -0.4D1 * (t5 + c3by2 * (t7 - t8) * tau) * t2 / (4.0d0 * t2*&
      &t3 * t15 + 0.12D2 * (t5 + (t7 + t8) * tau*oneby4)*tau)
end subroutine
!###############################################################################
END MODULE KLAM_MOD
!###############################################################################
!###############################################################################
!############################xxxxxxxxxxxxxxxxx##################################
!###############################################################################
!###############################################################################



!---------------------COMMENTS-------------------------!
!   High-Fidelity Fetch model runtime routines
!   Copyright (C) 2013  Nitin Arora and Ryan P. Russell

!     This program is free software: you can redistribute it and/or modify
!     it under the terms of the GNU General Public License as published by
!     the Free Software Foundation, either version 3 of the License, or
!     (at your option) any later version.

!     This program is distributed in the hope that it will be useful,
!     but WITHOUT ANY WARRANTY; without even the implied warranty of
!     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!     GNU General Public License for more details.

!     You should have received a copy of the GNU General Public License
!     along with this program.  If not, see <http://www.gnu.org/licenses/>.
!
! ***************************************************************************************
!
!IMPORTANT: Please cite the thesis or the scholarly article from where this code was obtained.
!
! The Fetch model coefficients and more recent version of the code ( with big fixes etc.) are available at: 
!           http://russell.ae.utexas.edu/index_files/fetch.htm
! ***************************************************************************************
!Fetch gravity runtime module
!Code Author : Nitin Arora
!Email : Nitin Arora: nitin.life@gmail.com
!	 Ryan P. Russell: ryan.russell@austin.utexas.edu 
!Project Authors: Nitin Arora and Ryan P. Russell
!Date: JUNE 25, 2013 
!Version: ALPHA_0.5
!------------------------------------------------------------------------------
!! Module name to use in your calling function or program
!
!  use FETCH_MOD   
!
! ROUTINES and Variables 
!
!a:  init_fetch(PATH_TO_COF_FILE,FETCH_J2,FETCH_R,FETCH_GM) 
!    This routine initializes fetch and read in the coefficients:
!    Input Variables :
!       PATH_TO_COF_FILE = Path to the coefficient file , windows e.g = 'C:\FETCH_example\COF\BLAH.BIN'  OR Linux e.g = '/home/Fetch_2013_Runtime/COF/BLAH.BIN'
!    OUTPUT :
!   	FETCH_J2 = Base field J2 (dimensionalized, e.g. currently all models are for GGM03C)
!       FETCH_R  = Base field mean body radius (dimensionalized, e.g currently all models are for GGM03C=6378.13630; this is good value for Length Unit if you want to non dimensionalize)
!       FETCH_GM = Base field GM (dimensionalized, e.g. currently all models are for GGM03C = 398600.44150 )
!
!b: get_FetchEZ(xyzdim,twobodylevel,derivorder,pot,acc,jac,hess)
!
!   The EASY Fetch call with default units in KM/sec corresponding to the GGM03C data. 
!   When calling this routine please make sure that xyzdim is in KM/SEC and expressed in body fixed frame
!   Inputs and Outputs are defined below
!
!c: get_Fetch(xyzdim,twobodylevel,derivorder,J2,Rbod,MUbod,pot,acc,jac,hess)
!   Main routine for computing Potential and any order of derivative: NOTE THIS ROUTINE DOES NOT COMPUTE 2 BODY TERM (Next Fetch revision may include that option)
!
!
!
!   COMMMON to routines b and c
!   Inputs :
!       xyzdim = input position vector of the evaluation point ( can be non-dimensional )
!       twobodylevel = 0 for without the two body term and 1 for with the two body term
!       derivorder = Order of derivative needed ( 0 = potential, 1 = pot+ acc , 2 = pot + acc + jac , 3= pot+acc+jac+hess)
!       J2 = value of J2 from base SH field ( e.g GRACE GGM03C )
!       Rbod = Mean central body radius ( if 'xyzdim' is non dimensionalized then , please make sure 'Rbod' is also in proper units ) 
!       Mubod = Mean central GM value ( if 'xyzdim' is non dimensionalized then , please make sure 'GM' is also in proper units ) 
!
!   Outputs:
!       pot  = geopotential
!       grad = gradient  (size  = 3,1) of the geopotential in Cartesian coordinates   ( optional argument )
!       jac  = jacobian  (size  = 3,3) of the geopotential in Cartesian coordinates   ( optional argument )
!       hess = hessian   (size  = 3,3,3) of the geopotential in Cartesian coordinates ( optional argument )
!
!       ALL RESULTS ARE COMPUTED IN DOUBLE PRECISION
!
!d: Other variables available for output
!      FETCH_COF_CURRENT : Average Number of coefficients in the current cell ( overwritten at each call to  'get_fetch')
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Please send any error or bugs or comments you have : nitin.life@gmail.com  
! Thanks you for using this software
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
!-----------------------------------DONT CHANGE ANYTHING BELOW-----------------------------
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
!------------------------------------------------------------------------------------------
! Summary of changes
! 7th feb 2013 :: corrected incr_array reading to just read the radial SHELLS
! 7th feb 2013 :: noticed small speed decrease(~ 5% to 7%) due to new COF variable. WIll be investigated in future releases.
! 3rd FEB 2013 :: Change COF VARIABLE and cof reading routines for single burst input (~40% speed increase in cof read) 
! 21 DEC 2012 :: MADE THE WHOLE MODULE PRIVATE, ADDED NEW WRAPPER FUNCTIONALITY TO PROVIDE THE DERIVAITVES AND J2 TERM INCLUSIVE GRAVITY FIELD.
! 20 DEC 2012 :: ADDED CHANGES TO TAKE INTO ACCOUNT THE NEW MPI PARALLEL ROUTINE 
! 20 DEC 2012 :: DETECTED A BUG IN THE STT ROUTINE AFFECTING ITS CONTINUITY.. ( UPDATE: FIXED)
! DEC 2012 :: ADDED NEW CONITUITY ROUTINE IN R DIRECTION 20 % SPEED INCREASE and 30% memory decrease
! NOV 2012 :: REVISED ALL THE RUNTIME ROUTINES TO TAKE INTO ACCOUNT VARIABLE INPUTS VIA COF FILE ONLY
!------------------------------------------------------------------------------------------
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
! A previous version of this code was under the Georgia Tech Applied Research Corporation licens, stated below:
!------------------------------------------------------------------------------------------
!
		!Copyright (c) 2012, Georgia Tech Applied Research Corporation
		!All rights reserved.
		! 
		!Redistribution and use in source and binary forms, with or without
		!modification, are permitted provided that the following conditions are met:
		!    * Redistributions of source code must retain the above copyright
		!      notice, this list of conditions and the following disclaimer.
		!    * Redistributions in binary form must reproduce the above copyright
		!      notice, this list of conditions and the following disclaimer in the
		!      documentation and/or other materials provided with the distribution.
		!    * Neither the name of Georgia Tech Applied Research Corporation nor
		!Georgia Institute of Technology nor the names of its contributors may
		!be used to endorse or promote products derived from this software
		!without specific prior written permission.
		! 
		!THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
		!ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
		!WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
		!DISCLAIMED. IN NO EVENT SHALL Georgia Tech Applied Research Corporation BE LIABLE FOR ANY
		!DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
		!(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
		!LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
		!ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
		!(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
		!SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
!
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Module FETCH_MOD
implicit none 
private
!module grid_variables
      public Global_lat,Global_lon,Global_r,Global_grid,init_fetch,get_Fetch,get_FetchEZ,FETCH_COF_CURRENT,mapCOFarray,MAP_VAL,inc_ar,COF_ARRAY,radial_val, Nfem_tot,Nfem_r,Nfem_lat,Nfem_lon,C_grid,size_lat,GRID,inc_ar_step


         integer, parameter       :: fp_kind = 8
     	 real(fp_kind), parameter :: pi =3.141592653589793238462d0,sec2day = 1.0d0/86400.0d0  
         real(fp_kind), parameter :: deg2rad = pi/180.0d0
         real(fp_kind), parameter :: rad2deg = 180.0d0/pi , NL = DSQRT( 2.0D0/(2.0D0*5.0D0) )
         logical          	  :: bool = .FALSE. , prnt = .FALSE.
         integer, parameter       :: N1max = 10! degree of the local approximation   
         integer*2, parameter     :: M = 11! no of obs / cell direction:  hence as its 3d cell so we have m * m * m observations / cell
         integer, parameter       :: Mmax = m*m*m
         logical          	  :: split=.true.,demyan=.true.
        
         !----------------------mesh parameters----------------------
         !-----------------(centroid discritization)-----------------

         real(fp_kind)      :: Error_Thresh_user,fac,MAINBOD_RAD
         real(fp_kind)      :: r_thresh,inc_ar_step
         integer            :: SP1,SP2,breakK,inc_steps,inc_ar_sz,ierr, myid, nproc, nsnd,root,FETCH_COF_CURRENT,counENDPrimary
         integer            :: cur_ci,cur_cj,cur_ck ! current point location cell -> min centroid index        
         integer,allocatable    :: inc_ar(:) !n1max , n2max and n3max are fixed params
   
        
         !*****************************************
         type model
            real(fp_kind) :: a, b,f
         end type model
            
         type(model) :: refellp
         
         
         !****************Local grid parameters*************************
         REAL(FP_KIND),allocatable,dimension(:):: cellc(:,:)
    	 REAL(fp_kind),allocatable,dimension(:) :: COF_ARRAY,COF_ARRAY2

                  !****************Local grid parameters*************************
    
         type grid1
            real(fp_kind) :: x, y , z
         end type grid1
         
         type(grid1)      :: grid_cell(m*m*m)
         
         !----------NON - ORTHO GONAL LOCAL GRID PARAMETERS---------------------
         integer :: num_coef = 0!actual value of  n**3         
         REAL(FP_KIND), ALLOCATABLE :: tempCOF(:)
         real(fp_kind)    :: U_array(mmax),a_array(mmax,1:3)
         !A(mmax,n**3), B (n**3,mmax),t1(n**3,mmax),t2(n**3,n**3),weight_matrix_lq(mmax,mmax)!!max arrays

         !****************EIGHT gloabal approximation parameters******************
         real(fp_kind)     :: loc_u(2,2,2)
         real(fp_kind)     :: final_u, step_r_cal,step_r_cal2
         real(fp_kind)     :: onebyr2,onebyr,onebyxy2,onebyroot,FETCH_GM ,FETCH_J2,FETCH_R
         real(fp_kind)     :: roott,onebyr3,onebyr4,onebyroot3,onebyroot5,onebyr5

!---------------------------------------------------------------

    real(fp_kind), allocatable :: radial_val(:)
    type grid_Variabls
     real(fp_kind)          :: Overlap_lat,gamma,mul_rms_pot,mul_rms_acc,maxPotcutoff,mul_max_pot,mul_max_acc,start_r,end_p,end_s_down,end_s_up,start_p,start_s_down,start_s_up
    integer(kind=8)         :: rshell,field,Body
    end type grid_Variabls
    type(grid_Variabls) ::  Grid
    Namelist  /Pr_grid/ Grid


    real(fp_kind)  :: size_r,size_lat,size_lon
    integer        :: Nfem_tot,Nfem_r,Nfem_lat,Nfem_lon,ia,ja,ka,global_rot_num,ni,nj,nk
    integer        :: mvalmin,mval
    integer        :: Global_tot,Global_r,Global_lat,Global_lon, total_centroids

    integer, ALLOCATABLE ::map_val(:),mapCOFarray(:) !Maps rotated to primary grid 

         type SPcoord
            real(fp_kind),dimension(:),ALlocatable :: r,LAT,LON ! all coordinates independent of each other
         end type SPcoord

         type(SPcoord) :: C_grid    !lat,lon,r sequence local primary centroid grid array

         type(SPcoord) :: Global_grid   !lat,lon,r sequence local secondry up grid array


    contains


!###############################################################################
    subroutine get_FetchEZ(xyzdim,twobodylevel,derivorder,pot,acc,STM,STT)
    implicit none
    double precision, intent(in):: xyzdim(3)
    double precision, intent(out):: pot
    double precision, intent(out),optional:: STM(3,3),STT(3,3,3),acc(3)
    integer, intent(in):: derivorder,twobodylevel
        call get_Fetch(xyzdim,twobodylevel,derivorder,FETCH_J2,FETCH_R,FETCH_GM,pot,acc,STM,STT)
    end subroutine
!###############################################################################
    subroutine setupconstants()
    implicit none
    	MAINBOD_RAD = 6378.13630D0
    	FETCH_R     = MAINBOD_RAD
        FETCH_GM    = 398600.44150D0
        FETCH_J2    = 4.841693259705400D-004
    end subroutine
!###############################################################################
!###############################################################################
    subroutine get_Fetch(xyzdim,twobodylevel,derivorder,J2unnorm,Rbod,MUbod,pot,acc,STM,STT)
    implicit none
    double precision, intent(in):: xyzdim(3),J2unnorm,Rbod,MUbod
    double precision, intent(out):: pot
    double precision, intent(out),optional:: STM(3,3),STT(3,3,3),acc(3)
    integer, intent(in):: derivorder,twobodylevel
    integer k,kgo,np1,pr
    double precision xyz(3),vecpos(0:3),vec2BJ2(0:3),onebyrbod,mubyrbod,x,y,z,vecout(0:3),vald(3,3),valdd(3,3,3)
    double precision :: potadd,vecadd(3),jacadd(3,3),hessadd(3,3,3)
    onebyrbod=(1.d0/Rbod)
    xyz=xyzdim*onebyrbod
    mubyrbod=MUbod*onebyrbod
    call xyz2SPH(xyz(1),xyz(2),xyz(3),x,y,z)
    vecpos =0.0d0
    if(present(acc))acc=0.0d0
    if(present(STM))STM=0.0d0
    if(present(STT))STT=0.0d0


    if(z<Global_grid.r(1) .OR. z>Global_grid.r(Global_r)) then
	    write(*,*)'Fetch Error: radial altitude (in spherical coordinates) out of bound'
	    STOP
    end if

    if(twobodylevel<0 .OR. twobodylevel>1) then
	    write(*,*)'Fetch Error: twobodylevel variable can be either 0 or 1 (see code comments)'
	    STOP
    end if

    if(derivorder<0 .OR. derivorder>3) then
	    write(*,*)'Fetch Error: derivorder variable can only be 0,1,2 or 3 (see code comments)'
	    STOP
    end if
	
    if(Rbod<0) then
	    write(*,*)'Fetch Error: input ref. radius Rbod cannot be negative (see code comments)'
	    STOP
    end if

    if(MUbod<0) then
	    write(*,*)'Fetch Error: input variable MUbod cannot be negative (see code comments)'
	    STOP
    end if

    select case (derivorder) 
        case(0) 
        call get_local_u(x,y,z,xyz(1),xyz(2),xyz(3),vecpos(0),pr) 
            call get_J2(xyz(1),xyz(2),xyz(3),1.0d0,1.0d0,J2unnorm,vec2BJ2(0))            

            vecout(0) = vecpos(0)    
            vecout(0) =vecout(0) +vec2BJ2(0)
            pot=vecout(0)*(mubyrbod)


        case(1) 
        call get_local_ud(x,y,z,xyz(1),xyz(2),xyz(3),vecpos(0:3),pr)
        call getJ2_unity(xyz,J2unnorm,vec2BJ2)   

            vecout(0:3) = vecpos(0:3)    
            vecout(0:3) =vecout(0:3) +vec2BJ2
            pot=vecout(0)*(mubyrbod)
            acc(1:3)=vecout(1:3)*(mubyrbod*onebyrbod)
                
        case(2) 
        call get_local_udd(x,y,z,xyz(1),xyz(2),xyz(3),vecpos(0:3),STM,pr)   
        call getJ2_unity(xyz,J2unnorm,vec2BJ2)
        call get_J2_JAC(xyz(1),xyz(2),xyz(3),MUbod,1.0d0,J2unnorm,vald)

            vecout(0:3) = vecpos(0:3)    
            vecout(0:3) =vecout(0:3) +vec2BJ2
            pot=vecout(0)*(mubyrbod)
            acc(1:3)=vecout(1:3)*(mubyrbod*onebyrbod)
            STM = (STM*mubyrbod + vald*onebyrbod)*onebyrbod*onebyrbod 

        case(3) 
        call get_local_uddd(x,y,z,xyz(1),xyz(2),xyz(3),vecpos(0:3),STM,STT,pr) 
        call getJ2_unity(xyz,J2unnorm,vec2BJ2)
        call get_J2_JAC(xyz(1),xyz(2),xyz(3),MUbod,1.0d0,J2unnorm,vald)
        call get_J2_HES(xyz(1),xyz(2),xyz(3),MUbod,1.0d0,J2unnorm,valdd)
            vecout(0:3) = vecpos(0:3)    
            vecout(0:3) =vecout(0:3) +vec2BJ2
            pot=vecout(0)*(mubyrbod)
            acc(1:3)=vecout(1:3)*(mubyrbod*onebyrbod)
            STM = (STM*mubyrbod + vald*onebyrbod)*onebyrbod*onebyrbod 
            STT = (STT*mubyrbod + valdd*onebyrbod)*onebyrbod*onebyrbod*onebyrbod 
    end select


    if(twobodylevel==1) then
        call get2bodyterm(derivorder,xyzdim,MUbod,potadd,vecadd,jacadd,hessadd)
        select case (derivorder) 
            case(0)     
                pot = pot - potadd
            case(1)
                pot = pot - potadd
                acc = acc - vecadd
            case(2)
                pot = pot - potadd
                acc = acc - vecadd
                STM = STM - jacadd
            case(3)
                pot = pot - potadd
                acc = acc - vecadd
                STM = STM - jacadd
                STT = STT - hessadd
        end select
    end if

    FETCH_COF_CURRENT = pr

end subroutine

!###############################################################################
    subroutine get2bodyterm(dorder,xyzdim,cg,potadd,vecadd,jacadd,hessadd)
    implicit double precision (t)
    double precision,intent(in):: xyzdim(3),cg
    integer,intent(in):: dorder  !pot,acc
    double precision,intent(out):: potadd,vecadd(3),jacadd(3,3),hessadd(3,3,3)
    double precision :: x,y,z,out3(14:40)
    integer :: i,j,k,coun
    x = xyzdim(1)
    y = xyzdim(2)
    z = xyzdim(3)

        select case (dorder) 
            case(0) 
                  t1 = x ** 2
                  t2 = y ** 2
                  t3 = z ** 2
                  t5 = sqrt(t1 + t2 + t3)
                  potadd = -cg / t5
            case(1)
                  t1 = x ** 2
                  t2 = y ** 2
                  t3 = z ** 2
                  t4 = t1 + t2 + t3
                  t5 = sqrt(t4)
                  t10 = cg / t5 / t4
                  potadd = -cg / t5
                  vecadd(1) = t10 * x
                  vecadd(2) = t10 * y
                  vecadd(3) = t10 * z
            case(2)
                  t1 = x ** 2
                  t2 = y ** 2
                  t3 = z ** 2
                  t4 = t1 + t2 + t3
                  t5 = sqrt(t4)
                  t10 = cg / t5 / t4
                  t14 = t4 ** 2
                  t17 = cg / t5 / t14
                  t23 = 0.3D1 * t17 * x * y
                  t26 = 0.3D1 * t17 * x * z
                  t32 = 0.3D1 * t17 * y * z
                  potadd = -cg / t5
                  vecadd(1) = t10 * x
                  vecadd(2) = t10 * y
                  vecadd(3) = t10 * z
                  jacadd(1,1) = -0.3D1 * t17 * t1 + t10
                  jacadd(1,2) = -t23
                  jacadd(1,3) = -t26
                  jacadd(2,1) = -t23
                  jacadd(2,2) = -0.3D1 * t17 * t2 + t10
                  jacadd(2,3) = -t32
                  jacadd(3,1) = -t26
                  jacadd(3,2) = -t32
                  jacadd(3,3) = -0.3D1 * t17 * t3 + t10
            case(3)
                  t1 = x ** 2
                  t2 = y ** 2
                  t3 = z ** 2
                  t4 = t1 + t2 + t3
                  t5 = sqrt(t4)
                  t10 = cg / t5 / t4
                  t14 = t4 ** 2
                  t17 = cg / t5 / t14
                  t23 = 0.3D1 * t17 * x * y
                  t24 = x * z
                  t26 = 0.3D1 * t17 * t24
                  t32 = 0.3D1 * t17 * y * z
                  t39 = cg / t5 / t14 / t4
                  t43 = t17 * x
                  t49 = t17 * y
                  t50 = 0.3D1 * t49
                  t51 = 0.15D2 * t39 * t1 * y - t50
                  t55 = t17 * z
                  t56 = 0.3D1 * t55
                  t57 = 0.15D2 * t39 * t1 * z - t56
                  t61 = 0.3D1 * t43
                  t62 = 0.15D2 * t39 * t2 * x - t61
                  t65 = 0.15D2 * t39 * t24 * y
                  t69 = 0.15D2 * t39 * x * t3 - t61
                  t78 = 0.15D2 * t39 * t2 * z - t56
                  t82 = 0.15D2 * t39 * y * t3 - t50
                  potadd = -cg / t5
                  vecadd(1) = t10 * x
                  vecadd(2) = t10 * y
                  vecadd(3) = t10 * z
                  jacadd(1,1) = -0.3D1 * t17 * t1 + t10
                  jacadd(1,2) = -t23
                  jacadd(1,3) = -t26
                  jacadd(2,1) = -t23
                  jacadd(2,2) = -0.3D1 * t17 * t2 + t10
                  jacadd(2,3) = -t32
                  jacadd(3,1) = -t26
                  jacadd(3,2) = -t32
                  jacadd(3,3) = -0.3D1 * t17 * t3 + t10
!                 Out3(5) = -0.3D1 * t17 * t1 + t10
!                 Out3(6) = -t23
!                 Out3(7) = -t26
!                 Out3(8) = -t23
!                 Out3(9) = -0.3D1 * t17 * t2 + t10
!                 Out3(10) = -t32
!                 Out3(11) = -t26
!                 Out3(12) = -t32
!                 Out3(13) = -0.3D1 * t17 * t3 + t10
                  Out3(14) = 0.15D2 * t39 * t1 * x - 0.9D1 * t43
                  Out3(15) = t51
                  Out3(16) = t57
                  Out3(17) = t51
                  Out3(18) = t62
                  Out3(19) = t65
                  Out3(20) = t57
                  Out3(21) = t65
                  Out3(22) = t69
                  Out3(23) = t51
                  Out3(24) = t62
                  Out3(25) = t65
                  Out3(26) = t62
                  Out3(27) = 0.15D2 * t39 * t2 * y - 0.9D1 * t49
                  Out3(28) = t78
                  Out3(29) = t65
                  Out3(30) = t78
                  Out3(31) = t82
                  Out3(32) = t57
                  Out3(33) = t65
                  Out3(34) = t69
                  Out3(35) = t65
                  Out3(36) = t78
                  Out3(37) = t82
                  Out3(38) = t69
                  Out3(39) = t82
                  Out3(40) = 0.15D2 * t39 * t3 * z - 0.9D1 * t55
                  coun = 13
            do i = 1,3
                do j = 1,3
                    do k = 1,3
                    coun = coun+1
                    hessadd(i,j,k) =  Out3(coun)
                    end do
                end do
            end do

        end select

    end subroutine
!###############################################################################
    subroutine getJ2_unity(x,conJ2,f)
    implicit double precision (t)
    !implicit none
    double precision,intent(in):: x(3),conJ2
    double precision,intent(out):: f(0:3)  !pot,acc
    double precision, parameter ::  NL = 1.0d0/DSQRT( 2.0D0/(2.0D0*5.0D0) )  
      t1 = x(1)**2
      t2 = x(2)**2
      t3 = x(3)**2
      t4 = t1+t2+t3
      t5 = dsqrt(t4)
      t6 = t5*t5
      t7 = t6*t5
      t9 = conJ2/t7
      t10 = 1.0d0/t4
      t13 = 1.5d0*t3*t10-0.5d0
      t15 = t6*t6
      t18 = conJ2/t15/t5
      t23 = conJ2/t15/t7
      t37 = t4**2
      F(0) = -t9*t13
      F(1) = 3.0d0*t18*t13*x(1)+3.0d0*t23*t3*x(1)
      F(2) = 3.0d0*t18*t13*x(2)+3.0d0*t23*t3*x(2)
      F(3) = 3.0d0*t18*t13*x(3)-3.0d0*t9*(x(3)*t10-t3*x(3)/t37)
      F(0:3)= F(0:3)*NL 
    end subroutine
!!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
!!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Subroutine SPH2xyz(lat,lon,R,x,y,z) !! SHERICAL TO X Y Z , R is in km,, lat and lon in radians
  implicit none
  real(fp_kind), intent(in) :: r, lat, lon !in km and radians
  real(fp_kind), intent(out):: x, y, z
  real(fp_kind) :: sinlat,coslat,sinlon,coslon

  sinlat = dsin(lat)
  coslat = dcos(lat)
  
  sinlon = dsin(lon) 
  coslon = dcos(lon)
    
  x = r*sinlat*coslon
  y = r*sinlat*sinlon
  z = r*coslat
End Subroutine SPH2xyz
!-------------------------------------------------------------------------------
Subroutine rotate_coordiantes(x,y,z)
implicit none
real(fp_kind):: x, y, z
real(fp_kind) ::y1, z1
    
    y1 = z
    z1 = -y

    y = y1
    z = z1

End Subroutine rotate_coordiantes
!-------------------------------------------------------------------------------
!-------------------------------------------------------------------------------
Subroutine rotate_coordiantes_rev(x,y,z)
implicit none
real(fp_kind):: x, y, z
real(fp_kind) ::y1, z1
    
    y1 = -z
    z1 = y

    y = y1
    z = z1

End Subroutine rotate_coordiantes_rev
!-------------------------------------------------------------------------------
!-------------------------------------------------------------------------------
Subroutine xyz2SPH(x,y,z,lat,lon,R)
  implicit none
  real(fp_kind), intent(OUT) :: r, lat, lon !in km and radians
  real(fp_kind), intent(IN):: x, y, z 
  
  r   = dsqrt(x*x + y*y + z*z)
  lat = dacos(z/r)
  lon = datan2(y,x)
  if(lon<0.0d0) lon= lon + 2.0d0*pi
  if(lon>=2.0d0*pi)lon=lon - 2.0d0*pi

  if(lat<0.0d0)lat = -lat 
  if(lat>=pi)lat= 2.0d0*pi -lat !wraps around

End Subroutine xyz2SPH
!!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
!!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    subroutine  init_global_grid()  
    implicit none       
           Global_lat = (180.0d0/size_lat)
           Global_lon = (360.0d0/size_lon)
           Global_r   = size_r
           Global_tot = (Global_lat+1)*(Global_lon+1)*(Global_r+1)
        
    END subroutine init_global_grid
!!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        Subroutine mesh_primary_grid()
          implicit none
          real(fp_kind) :: a,b,c
          integer :: i 
           a = C_grid.lat(1)*deg2rad
           b = C_grid.lon(1)*deg2rad
           c = radial_val(1)           
            do i = 1,Nfem_lat+1 
                    C_grid.lat(i) = a + dble(i-1)*size_lat
            end do
            do i = 1,Nfem_lon+1
                    C_grid.lon(i) = b + dble(i-1)*size_lon
                end do
            do i = 1,Nfem_r+1
                    C_grid.r(i)   = radial_val(i)
            end do      

               if(dabs( C_grid.lat(Nfem_lat+1)-Grid%end_p*deg2rad)>epsilon(Grid%end_p*deg2rad)*3.0) then
                print*,"machine epsilon not met during gridding for primary lat",C_grid.lat(Nfem_lat+1 )*rad2deg,epsilon(Grid%end_p*deg2rad),dabs( C_grid.lat(Nfem_lat+1)-Grid%end_p*deg2rad)
                stop
           end if
                   if(dabs(C_grid.lon(Nfem_lon+1)-360.0d0*deg2rad)>epsilon(1.0d0)*360.0d0) then
                print*,"machine epsilon not met during gridding for primary lat",C_grid.lon(Nfem_lon+1)
                        stop
          end if
    
        End Subroutine mesh_primary_grid
!!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    subroutine  mesh_global_grid()  
    implicit none   
    real(fp_kind) :: a,b,c  
    integer :: i
           a = 0.0d0
           b = 0.0d0
           c = radial_val(1)        
            do i = 1,Global_lat+1 
                    Global_grid.lat(i) = a + dble(i-1)*size_lat
            end do
            do i = 1,Global_lon+1
                    Global_grid.lon(i) = b + dble(i-1)*size_lon
                end do
            do i = 1,Global_r+1
                    Global_grid.r(i)   = radial_val(i)
            end do

                   if(dabs(Global_grid.lat(Global_lat+1)-180.0d0*deg2rad)>epsilon(1.0d0)*180.0d0) then 
                print*,"machine epsilon not met during gridding for global lat",Global_grid.lat(Global_lat+1)
                        stop
          end if
                   if(dabs(Global_grid.lon(Global_lon+1)-360.0d0*deg2rad)>epsilon(1.0d0)*360.0d0) then 
            print*,"machine epsilon not met during gridding for global lat",Global_grid.lon(Global_lon+1)
                    stop
          end if
    END subroutine mesh_global_grid
!!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
subroutine read_mval()
real(fp_kind) :: xyz1,xyz2,xyz3,lat2,lon2,r2
integer:: counp2,mvalp,i,j,k
counp2 = 0
mvalmin=99999999
mvalp=0
   do i = 1,Global_lon+1 !loops over each centroid 
    do j = 1,Global_lat+1
    do k = 1,Global_r+1
        call SPH2xyz( Global_grid.lat(j), Global_grid.lon(i), Global_grid.r(k),xyz1,xyz2,xyz3)  
            call rotate_coordiantes(xyz1,xyz2,xyz3)
        call xyz2SPH(xyz1,xyz2,xyz3,lat2,lon2,r2)

    if(lat2*rad2deg<=Grid%end_s_up .OR. lat2*rad2deg>=Grid%start_s_down) then
        counp2 = counp2+ 1
            mval = k + (Global_r+1)*(j-1) + (Global_r+1)*(Global_lat+1)*(i-1) + 1

            if(mval == mvalp) then
                print*, "equal to previous", i,j,k,mval
                stop
            end if          
            
            if(mval<mvalp)mval = mvalp
            if(mvalmin>mval)mvalmin = mval
            mvalp = mval
        end if
      END DO
   END DO
 END DO
global_rot_num = counp2
counp2= 0
!print*,counp2

if(allocated(map_val))DEALLOCATE(map_val)
Allocate(map_val(1:mval))
!print*,'map_val size',mval
map_val = 0
   do i = 1,Global_lon+1 !loops over each centroid 
    do j = 1,Global_lat+1
    do k = 1,Global_r+1
        call SPH2xyz( Global_grid.lat(j), Global_grid.lon(i), Global_grid.r(k),xyz1,xyz2,xyz3)  
        call rotate_coordiantes(xyz1,xyz2,xyz3)
        call xyz2SPH(xyz1,xyz2,xyz3,lat2,lon2,r2)
    !print*,Grid%start_s_down,Grid%end_s_up
    !if( (xyz3+Global_grid.r(k)*dcos(Grid%start_s_down*deg2rad))>=epsilon(2.0d0) .OR. (xyz3+Global_grid.r(k)*dcos(Grid%end_s_up*deg2rad))<=epsilon(2.0d0)   ) then
    if(lat2*rad2deg<=Grid%end_s_up .OR. lat2*rad2deg>=Grid%start_s_down)    then 

        counp2 = counp2+ 1
            mval = k + (Global_r+1)*(j-1) + (Global_r+1)*(Global_lat+1)*(i-1)+1         
            map_val(mval) = counp2
        end if
      END DO
   END DO
 END DO

end subroutine read_mval
!!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    subroutine  read_input_grid()
    implicit none           
    
           Nfem_r   = Grid%rshell
           size_r   = Nfem_r   
           size_lat = 360.0d0/dble(floor(360.0d0/(Grid%gamma*sqrt(180.0d0/Grid%field))))

               size_lon = size_lat
           Nfem_lon = 360/size_lon
          if(mod(Nfem_lon,2).NE. 0) then 
            size_lat = 360.0d0/dble(Nfem_lon+1)
            size_lon = size_lat
            Nfem_lon = Nfem_lon+1
          end if

                   if(dabs(Nfem_lon*size_lon-360.0d0)>epsilon(1.0d0)*360.0d0) then 
            print*,"machine epsilon not met for lon",Nfem_lon*size_lon,Nfem_lon*size_lon-360.0d0,epsilon(1.0d0)*360.0d0
            stop
          end if
           Nfem_lat = floor((180.0d0-2.0d0*Grid%start_p)/size_lat)

           Grid%end_p       = Grid%start_p + Nfem_lat*size_lat

                   if(dabs(Nfem_lat*size_lat-Grid%end_p+Grid%start_p)>epsilon(Grid%end_p+Grid%start_p)*(Grid%end_p+Grid%start_p)) then 
            print*,"machine epsilon not met for lat",Nfem_lat*size_lat,Grid%end_p+Grid%start_p         
            stop
          end if
           Grid%start_s_up  = 0.0d0
           Grid%end_s_up    = Grid%start_p + 2.0d0*size_lat         
           Grid%end_s_down  = 180.0d0
           Grid%start_s_down    = Grid%end_p   - 2.0d0*size_lat
           Nfem_tot = (Nfem_lat+1)*(Nfem_lon+1)*(Nfem_r+1)
    END subroutine read_input_grid
!!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Subroutine make_cell_grid()! -1 to 1 grid ( chebyshev )
implicit none
      integer i,j,k
      do k = 1,m
         do j = 1,m
            do i = 1,m                     
               grid_cell(i+m*(j-1) + m*m*(k-1)).x = -dcos( pi*(2.0d0*dble(i-1)+1.0d0)/(2.0d0*m) )!-1 to 1 grid with m total measurements
               grid_cell(i+m*(j-1) + m*m*(k-1)).y = -dcos( pi*(2.0d0*dble(j-1)+1.0d0)/(2.0d0*m) )!
               grid_cell(i+m*(j-1) + m*m*(k-1)).z = -dcos( pi*(2.0d0*dble(k-1)+1.0d0)/(2.0d0*m) )! 
            end do
         end do
      end do            
end Subroutine make_cell_grid
!-------------------------------------------------------------------------------
 Subroutine create_Increment_map()
 integer i, j , k ,k2
 real(fp_kind) :: add,rad
 fac =1.28d0
 k = 1
 rad =MAINBOD_RAD !6378.1363d0
 ! open(unit = 101,file='rshell.dat',status='REPLACE')
 if(allocated(radial_val))deallocate(radial_val)
 Allocate(radial_val(1:inc_steps))
 radial_val(k) = C_grid.r(1)
 i = 1
!        write(101,*)k,inc_ar(i),radial_val(k)
 add = 0
 k2= 1;
 do i = 2,inc_ar_sz 
    if(inc_ar(i+1).NE.inc_ar(i)) then
        k = k + 1
        radial_val(k) = inc_ar_step*k2*fac/rad + radial_val(k-1)
        add = inc_ar_step*fac
    !   write(101,*)k,inc_ar(i),radial_val(k)
        k2 = 1;
    else
        k2 = k2 + 1
        add = inc_ar_step + add
    end if        
 end do

!if(ID==0)print*,"Starting  / Final Altitude  (re)",radial_val(1),'/',radial_val(Grid%rshell)
 if ( k.NE.inc_steps) then 
    print*,k , inc_steps,"SAD ERROR"
    print*,inc_ar_step,inc_ar_sz
 end if

 End Subroutine create_Increment_map
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~FUNCTIONS~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
FUNCTION f(x,ty,ty2) ! ORTHONORMAL POLYNOMIAL APPROXIMATION
      integer,intent(in):: ty2,ty
      real(fp_kind), intent(in) :: x
      real(fp_kind), dimension(0:n1max) :: f
      integer :: k
             
    f(0)=1.0d0
    do k = 1,n1max
        f(k) = f(k-1)*x
    end do

end function
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
real (fp_kind) function w(x) ! LOCAL weight function _|_ to the ortho poly  
implicit none
      real(fp_kind), intent(in) :: x     
      w = 1.0d0 - ( (22.0d0*x*x - 17.0d0*x*x*x*x + 4.0d0*(x**6))/9.0d0 )    
end function w
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

real (fp_kind) function wht(x1,x2,x3) !LOCAL  1-d weight function driver
implicit none
      real(fp_kind), intent(in) :: x1,x2,x3   
         wht = w(x1)*w(x2)*w(x3)           
end function wht
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

real (fp_kind) function wt(i, x) !LOCAL  1-d weight function driver
implicit none
integer :: i 
      real(fp_kind), intent(in) :: x 
      real(fp_kind) :: y,sqy
      
         if(i==0)then
            y = 1.0d0 - x
         else 
            y = x
         end if
         
         sqy =y*y
         wt = (sqy*sqy)*(35.0D0 - 84.0D0*y + 70.0D0*sqy -20.0D0*sqy*y) !(Y**3)*(10.0d0-15.0d0*Y + 6.0d0*Y*Y) !y*y*(3.0d0-2.0d0*y)  
         
end function wt

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
real (fp_kind) function dwt(i, x) !LOCAL  1-d weight function driver
implicit none
integer :: i 
      real(fp_kind), intent(in) :: x 
      real(fp_kind) :: y,sqy,temp
       
  
         if(i==0)then
          y = x         
          dwt = -140.0d0*((1.0d0-y)**3)*y*y*y
         else 
         y = x       
         dwt = -140.0d0*y*y*y*(y-1.0d0)**3
         end if

         
end function dwt

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
real (fp_kind) function ddwt(i, x) !LOCAL  1-d weight function driver
implicit none
integer :: i 
      real(fp_kind), intent(in) :: x 
      real(fp_kind) :: y,sqy,temp
       
          if(i==0)then
          y = x         
          ddwt = (840.0d0*y-420.00d0)*y*y*((-1.0d0 + y)**2)
         else 
         y = x       
         ddwt =-840.0d0*(y-0.5d0)*y*y*((y-1.0d0)**2)
         end if

         
end function ddwt

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
real (fp_kind) function dddwt(i, x) !LOCAL  1-d weight function driver
implicit none
integer :: i 
      real(fp_kind), intent(in) :: x 
      real(fp_kind) :: y,sqy,temp
       
         if(i==0)then
          y = x         
     dddwt =  y*y*(4200.0d0*y*y - 8400.0d0*y + 5040.0d0) - 840.0d0*y
         else 
         y = x       
         dddwt = y*y*(-4200.0d0*y*y + 8400.0d0*y - 5040.0d0)+ 840.0d0*y !-4200.0d0*(y**4)+8400.00d0*(y**3)-5040.00d0*y*y+840.00d0*y
         end if    
end function dddwt
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
real (fp_kind) function gmul(i)    
implicit none    
      integer,intent(in)        :: i 
            gmul = 2.0d0*dble(i-1)/dble(m-1)
end function gmul
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Subroutine init_fetch(fieldinp,oFETCH_J2,oFETCH_R,oFETCH_GM)
   implicit none
   character(len=*), intent(in) :: fieldinp
   real(fp_kind) ,intent(out) :: oFETCH_J2,oFETCH_R,oFETCH_GM
   call setupconstants()
   oFETCH_J2 = FETCH_J2
   oFETCH_R  = FETCH_R
   oFETCH_GM = FETCH_GM
   call load_local_field2(fieldinp)
END SUBROUTINE init_fetch
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Subroutine load_local_field2(fieldinp)
   implicit none
   real(fp_kind), parameter :: deg2rad = pi/180.0d0
   character(len=*), intent(in) :: fieldinp
   real(fp_kind) :: siz,cpu1,cpu2
   REAL(fp_kind) :: elapsed_time
   integer :: temp,coun4,temps,i,savetemp,start,m1,ncofs,j,countt,IERR
   character*33 name_t

   siz = 0.0d0
   size_r = 68.0d0
   print*,'Reading Fetch Coefficients : '
   cpu1 = SECNDS(0.0d0)
   open(unit=119,file = trim(fieldinp),form='binary',ASYNCHRONOUS='YES',ACTION='READ',status='OLD',IOSTAT=IERR)
	 IF (IERR .NE. 0) THEN
         	WRITE (*,*) 'Fetch Error: File--> ', trim(fieldinp), ' does not exist '
		STOP
	 end if
   read(119)Grid%field,siz,size_r,Grid%start_r,Grid%gamma,Grid%start_p,inc_steps,counENDPrimary,temp,coun4,inc_ar_sz,inc_ar_step

   temps = Grid%field
  !print*,Grid%field,siz,size_r,Grid%start_r,Grid%gamma,Grid%start_p,inc_steps,counENDPrimary,temp,coun4,inc_ar_sz,inc_ar_step
   ALLOCATE(mapCOFarray(1:temp))
   savetemp = temp
   Allocate(COF_ARRAY(1:coun4))
   Allocate(COF_ARRAY2(1:coun4))
   Allocate(radial_val(1:inc_steps))
   ALLOCATE (inc_ar(1:inc_ar_sz+1))
   print*,'Fetch base field size:',Grid%field
    !print*,'mapcofarrray size',temp
    !print*,'cof array size',coun4
    !print*,'radial val size',inc_steps
    !print*,'inc_ar size', inc_ar_sz+1

   read(119)inc_ar(1:inc_ar_sz+1),radial_val(1:inc_steps),mapCOFarray(1:temp),COF_ARRAY(1:coun4)
   close(119)
   Grid%rshell=int(size_r)
   if(temps .NE. int(Grid%field)) then
    print*,"Fetch Error: Field size input and inside the coefficent file are not matching",Grid%field,temps
    stop
   end if
   CALL read_input_grid()
   CALL init_global_grid()      
   size_lat = size_lat*deg2rad
   size_lon = size_lon*deg2rad  
   if(size_lat .NE. siz) then
    print*,"Fetch Error: cell size computed and inside the coefficent file are not matching",size_lat*rad2deg,siz*rad2deg
    stop
   end if
   temp = Nfem_tot
   total_centroids = temp 

   ALLOCATE(C_grid%lat(Nfem_lat +1))
   ALLOCATE(C_grid%lon(Nfem_lon +1))  
   ALLOCATE(C_grid%r(Nfem_r+1))  
   
   ALLOCATE(Global_grid%lat(Global_lat +1))  
   ALLOCATE(Global_grid%lon(Global_lon +1))  
   ALLOCATE(Global_grid%r(Global_r+1)) 

   C_grid.lat(1) = Grid%start_p
   C_grid.lon(1) = 0.0d0
   C_grid.r(1)   = Grid%start_r !minimum point
   fac =1.28d0 !SHOULD BE INPUT IN FUTURE REVISIONS 
    !call create_Increment_map()
    call mesh_primary_grid()
    !print*,"Meshed Primary Grid"
    CALL mesh_global_grid()
    !print*,"Meshed Global Grid"
    call read_mval()
  ! Calculate the elapsed time in seconds:

   elapsed_time=SECNDS(cpu1)
   Print*,'Fetch initalization time:',elapsed_time,'(sec)'
   print*,"Model memory foot print",(sizeof(COF_ARRAY)+sizeof(mapCOFarray))/1024.0d0/1024.0d0,'(MB)'


END Subroutine load_local_field2
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
!-------------------------------------------------------------------------------
!--------------------------------SUBROUTINES------------------------------------
!-------------------------------------------------------------------------------
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


!Subroutine to find the inverse of a square matrix
subroutine get_rconst2(x)
IMPLICIT NONE
double precision,intent(in) :: x(3)
double precision :: xy2,r2
  xy2=x(1)*x(1)+x(2)*x(2)
  r2=xy2+x(3)*x(3)
  onebyr2  = 1.d0/r2
  onebyr   = dsqrt(Onebyr2)
  onebyxy2 = 1.0d0/xy2  
  roott = dsqrt(xy2)
  onebyroot = 1.0d0/roott
  
    onebyr3=Onebyr*Onebyr2
    onebyr4=Onebyr2*Onebyr2

        onebyr5=onebyr*onebyr4
        onebyroot3=onebyroot*onebyxy2
        onebyroot5=onebyroot3*onebyxy2

end subroutine get_rconst2     
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
subroutine get_rconst(x)
IMPLICIT NONE
double precision,intent(in) :: x(3)
double precision :: xy2,r2
  xy2=x(1)*x(1)+x(2)*x(2)
  r2=xy2+x(3)*x(3)
  onebyr2  = 1.d0/r2
  onebyr   = dsqrt(Onebyr2)
  onebyxy2 = 1.0d0/xy2  
  roott = dsqrt(xy2)
  onebyroot = 1.0d0/roott

end subroutine get_rconst
!!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Subroutine get_pt_cgrid(lat,lon,r,a,b,c)
!i = lon , j = lat, k = r
  implicit none
  real(fp_kind), intent(in) :: lat, lon ,r
  integer i,j,k,step,ax
  integer, intent(out) :: a,b,c

  i = 1 + floor((lat-C_grid.lat(1))/size_lat) 
  j = 1 + floor((lon-C_grid.lon(1))/size_lon)
  ax = 2 + floor((r- C_grid.r(1))/(inc_ar_step*fac/MAINBOD_RAD))
    if(ax<=0) ax=1
  k  = inc_ar(ax)
  !print*,'r and k vals',r,k
  !pause
  if(k<=0)k=1 

  !if(r > radial_val(2) .AND. k==1 )k=2
  if(dabs(r -radial_val(k)) > EPSILON(r) )k=k-1
    !print*,'a, gread(a), k ',ax,inc_ar(ax),k
  if(i>Nfem_lat+1 .OR. j>Nfem_lon + 1 .or. k > Nfem_r)then
      PRINT*,"GRID POINT CALC ERROR 1 primary ",i,j,k,Nfem_lat,Nfem_lon,Nfem_r
      print*,"in lat ?= ",lat/deg2rad,C_grid.lat(1)/deg2rad,size_lat/deg2rad
      print*,"in lon ?= ",lon/deg2rad,C_grid.lon(1)/deg2rad,size_lon/deg2rad
      print*,"in r ?= ",r,C_grid.r(1),size_r
  endif

   if(i>=Nfem_lat+1) then 
        print*,"OUT OF BOUD: NFEM LAT",lat*rad2deg,C_grid.lat(Nfem_lat+1)*rad2deg
   end if

   if(j>=Nfem_lon+1) then
        print*,"OUT OF BOUD: NFEM LON",lon*rad2deg,C_grid.lon(Nfem_lon+1)*rad2deg
   end if
  if(i*J*K<0)then
      PRINT*,"GRID POINT CALC ERROR 2 "
      print*,"in lat ?= ",lat,C_grid.lat(1),size_lat,i
      print*,"in lon ?= ",lon,C_grid.lon(1),size_lon,j
      print*,"in r ?= ",r,C_grid.r(1),size_r,k
      stop
  endif
prnt = .false.
 if(prnt) then
   print*,"Inside pt determination , cell starts from ",i , j , k
   print*,C_grid.lat(i)/deg2rad,C_grid.lon(j)/deg2rad, C_grid.r(k)
   print*,C_grid.lat(i+1)/deg2rad,C_grid.lon(j+1)/deg2rad, C_grid.r(k+1)
   pause
 end if
  cur_ci = j !ucreent cell i , j , k where my point is i = lon , j = lat, k = r
  cur_cj = i
  cur_ck = k
  a = j
  b = i
  c = k
end Subroutine get_pt_cgrid
!!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Subroutine get_pt_global(lat,lon,r,a,b,c)
!i = lon , j = lat, k = r
  implicit none
  real(fp_kind), intent(in) :: lat, lon ,r
  integer i,j,k,step ,ax
  integer, intent(out) :: a,b,c

  i = 1 + floor((lat- Global_grid.lat(1))/size_lat) 
  j = 1 + floor((lon- Global_grid.lon(1))/size_lon)
  ax = 2+ floor((r- Global_grid.r(1))/(inc_ar_step*fac/MAINBOD_RAD))
    if(ax<=0) ax=1
  k  = inc_ar(ax)

  if(k<=0)k=1

 ! print*,ax,inc_ar(1:2),inc_ar(ax),k,radial_val(k),radial_val(1),r
!pause
  if(i>=Global_lat+1) then 
        print*,"OUT OF BOUD: Global LAT",lat*rad2deg
   end if
  if(j>=Global_lon+1) then
        print*,"OUT OF BOUD: Global LON",lon*rad2deg
  end if
  !if(r > radial_val(2) .AND. k==1 )k=2

  if(dabs(r -radial_val(k)) > EPSILON(r) )k=k-1
!   if(FETCH_GM)
    !print*,"*** should never change ***"
    !print*,r,k,r-radial_val(k)
    !print*,"*** should never change ***"

  if(i>Global_lat .OR. j>Global_lon .or. k > Global_r)then
  PRINT*,"GRID POINT CALC ERROR 1 GLOBAL",i,j,k,Global_lon,Global_lat,Global_r
  print*,"in lat ?= ",lat,Global_grid.lat(1),size_lat
  print*,"in lon ?= ",lon,Global_grid.lon(1),size_lon
  print*,"in r ?= ",r,Global_grid.r(1),size_r
  stop
  endif
  if(i*J*K<0)then
  PRINT*,"GRID POINT CALC ERROR 2 GLOBAL"
    print*,"in lat ?= ",lat,Global_grid.lat(1),size_lat,j
  print*,"in lon ?= ",lon,Global_grid.lon(1),size_lon,i
  print*,"in r ?= ",r,C_grid.r(1),size_r,k
  stop
  endif
prnt=.false.
 if(prnt) then
   print*,"Inside pt determination , cell starts from GLOABL RRR",i , j , k
  pause
 end if
  cur_ci = j !ucreent cell i , j , k where my point is i = lon , j = lat, k = r
  cur_cj = i
  cur_ck = k
  a = j
  b = i
  c = k
end Subroutine get_pt_global

!!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
!!-------------------------------------------------------------------------------
Subroutine l2g(a,b,c,x1,x2,x3,lat,lon,r)!local (-1,1 nomalized) to global
  implicit none
  real(fp_kind), intent(out) :: lat, lon, r
  real(fp_kind), intent(in):: x1, x2, x3
  real(fp_kind) :: step_back,tmp,step_fwd,x333
  integer, intent(in) :: a,b,c
   if(x3>1.0d0 .OR. x3<-1.0d0) then
    print*,"x3 out of bounds p",x3
stop
   end if
   if(x2>1.0d0 .OR. x2<-1.0d0) then
    print*,"x2 out of bounds p",x2
stop
   end if
   if(x1>1.0d0 .OR. x1<-1.0d0) then
    print*,"x1 out of bounds p",x1
stop
   end if
   if(c>1) then
      step_fwd = (radial_val(c+1) - radial_val(c-1))/2.0d0
      r = (radial_val(c+1) + radial_val(c-1))/2.0d0  + x3*step_fwd 
   else
      step_fwd  = radial_val(c+1) - radial_val(c)
      r = C_grid.r(c)      + x3*step_fwd
   end if

   lat   = C_grid.lat(b)   + x1*size_lat 
   lon   = C_grid.lon(a)  + x2*size_lon

  if(lon<0.0d0) lon= lon + 2.0d0*pi
  if(lon>=2.0d0*pi)lon=lon - 2.0d0*pi

  if(lat<0.0d0)lat = -lat 
  if(lat>=pi)lat= 2.0d0*pi -lat

End Subroutine l2g


!!-------------------------------------------------------------------------------
Subroutine l2g_global(a,b,c,x1,x2,x3,lat,lon,r)!local (-1,1 nomalized) to global
  implicit none
  real(fp_kind), intent(out) :: lat, lon, r
  real(fp_kind), intent(in):: x1, x2, x3
  real(fp_kind) :: step_back,tmp,step_fwd,step,x333
  integer, intent(in) :: a,b,c
   if(x3>1.0d0 .OR. x3<-1.0d0) then
    print*,"x3 out of bounds g",x3
    stop
   end if
   if(x2>1.0d0 .OR. x2<-1.0d0) then
    print*,"x2 out of bounds g",x2
stop
   end if
   if(x1>1.0d0 .OR. x1<-1.0d0) then
    print*,"x1 out of bounds g",x1
stop
   end if
  ! step = (radial_val(c+1) - radial_val(c))
   lat   = Global_grid.lat(b)   + x1*size_lat 
   lon   = Global_grid.lon(a)   + x2*size_lon  
  if(lon<0.0d0) lon= lon + 2.0d0*pi
  if(lon>=2.0d0*pi)lon=lon - 2.0d0*pi

  if(lat<0.0d0)lat = -lat 
  if(lat>=pi)lat= 2.0d0*pi -lat

   if(c>1) then
      step_fwd = (radial_val(c+1) - radial_val(c-1))/2.0d0
      r = (radial_val(c+1) + radial_val(c-1))/2.0d0  + x3*step_fwd 
   else
      step_fwd  = radial_val(c+1) - radial_val(c)
      r = Global_grid.r(c)      + x3*step_fwd
   end if

End Subroutine l2g_global
!-------------------------------------------------------------------------------
!-------------------------------------------------------------------------------
Subroutine g2lb(a,b,c,lat,lon,r,x1,x2,x3,x0)!local (-1,1 nomalized) to global for the local cell then centroid.. else left most
  implicit none
  real(fp_kind), intent(in) :: lat, lon, r
  real(fp_kind), intent(out):: x1, x2, x3,x0
  real(fp_kind) :: step_fwd
  integer  :: a,b,c  
     
  ! print*, Nfem_lon+1,a,Nfem_lat+1,b,C_grid(a,b,c).lon
   x1   = (lat   - C_grid.lat(b) )/size_lat   
   x2   = (lon   - C_grid.lon(a) )/size_lon
  ! print*,"cval",c
   if(c>1) then
      step_fwd = (radial_val(c+1) - radial_val(c-1))/2.0d0
      x3 = (r -  (radial_val(c+1) + radial_val(c-1))/2.0d0 )/step_fwd
     !  step_r_cal2 = 1/(radial_val(c+2) - radial_val(c))

   else
    !  print*,c,r
    !  pause
      step_fwd  = radial_val(c+1) - radial_val(c)

      x3 = (r - C_grid.r(c) )/step_fwd
   end if

    step_r_cal = 1.0d0/step_fwd
    step_r_cal2 = 1.0d0/(radial_val(c+1) - radial_val(c))
    x0 = (r - C_grid.r(c) )*step_r_cal2 
        !step_r_cal2 = 1.0d0
  !  print*,x3,r,radial_val(c+1),radial_val(c),radial_val(c-1),C_grid(a,b,c).r-radial_val(c)
End Subroutine g2lb


!-------------------------------------------------------------------------------
Subroutine g2lb_global(a,b,c,lat,lon,r,x1,x2,x3,x0)!local (-1,1 nomalized) to global for the local cell then centroid.. else left most
  implicit none
  real(fp_kind), intent(in) :: lat, lon, r
  real(fp_kind), intent(out):: x1, x2, x3,x0
  integer, intent(inout) :: a,b,c  
  real(fp_kind) :: step_fwd     
   x1   = (lat   -  Global_grid.lat(b) )/size_lat
   x2   = (lon   -  Global_grid.lon(a) )/size_lon
   if(c>1) then
      step_fwd = (radial_val(c+1) - radial_val(c-1))/2.0d0
      x3 = (r -  (radial_val(c+1) + radial_val(c-1))/2.0d0 )/step_fwd
   else
      step_fwd  = radial_val(c+1) - radial_val(c)
         x3 = (r -  Global_grid.r(c) )/step_fwd
   end if
    step_r_cal  = 1.0d0/step_fwd
    step_r_cal2 = 1.0d0/( radial_val(c+1) - radial_val(c) )
    x0 = (r - Global_grid.r(c) )*step_r_cal2 
End Subroutine g2lb_global
!-------------------------------------------------------------------------------
!-------------------------------------------------------------------------------
Subroutine get_local_u_primary(lat,lon,r,xyz1,xyz2,xyz3,val,pr)

implicit none
   real(fp_kind), intent(in) :: lat,lon,r,xyz1,xyz2,xyz3
   real(fp_kind), intent(out):: val
   real(fp_kind) :: sum_u,masterI,x1,x2,x3,x11,x22,x33,x330,f1(0:n1max),f2(0:n1max),f3(0:n1max),val_inter,wtval3(0:1),wtval2(0:1),wtval1(0:1)
   integer :: ii,jj,nn,kk,ci,cj,ck,coun,temp2,nl,nnn,masterI2
   integer :: i,j,k,  pr
  
   val = 0.0d0   
  ! print*,'inside ud primary',lat/deg2rad,lon/deg2rad,r
   call get_pt_cgrid(lat,lon,r,i,j,k) 
   temp2 = (Nfem_r+1)*(Nfem_lat+1)
  pr =0
  do i = 0,1 
     do j = 0,1
       do k = 0,1
         ci = cur_ci + i
         cj = cur_cj + j
         ck = cur_ck + k
 
         masterI = ck +  (Nfem_r+1)*(cj-1) + temp2*(ci-1)
         call g2lb(ci,cj,ck,lat,lon,r,x11,x22,x33,x330)
      IF(I+j+k==0) then
            x1 = x22  !lon
            x2 = x11  !lat
            x3 = x330  !r
            wtval3(0) = wt(0,x3)
            wtval3(1) = wt(1,x3)
            wtval2(0) = wt(0,x2) !for lat which is j
            wtval2(1) = wt(1,x2)
            wtval1(0) = wt(0,x1) !for lon which is i == 1
            wtval1(1) = wt(1,x1)

       end if
          
            sum_u = 0.0d0
             coun = 0
            masterI2  = mapCOFarray( masterI)
            nnn = mapCOFarray(masterI+1)-masterI2
        masterI2 = masterI2-1
            pr = pr + nnn
                 
            nnn = nnn+masterI2
             coun = masterI2
       f1(0:n1max) = f(x11,1,0)
           f2(0:n1max) = f(x22,1,0)
       f3(0:n1max) = f(x33,1,0)  

                   do nn = 0, n1max
                     do kk = 0 , nn                    
                       nl = nn-kk
                        do jj = 0,nl                          
                           ii =nn- kk - jj !i:=nn - k-j:
                 if(coun<nnn)then
                        coun = coun + 1                          
                    sum_u =  sum_u +  COF_ARRAY(coun)*(f1(ii)*f2(jj)*f3(kk))   

                 end if         
                        end do      
                     end do
                  end do   
                  coun = 0    
        
            
               val= val + wtval3(k)*wtval2(j)*wtval1(i)  *sum_u
      end do
  end do
 end do
pr = nint(pr/8.0d0)
end Subroutine get_local_u_primary
!!-------------------------------------------------------------------------------
!!-------------------------------------------------------------------------------
Subroutine get_local_u_rot(lat,lon,r,xyz1,xyz2,xyz3,val,pr)

implicit none
   real(fp_kind), intent(in) :: lat,lon,r,xyz1,xyz3,xyz2
   real(fp_kind), intent(out):: val
   real(fp_kind) :: sum_u,sum_ux ,sum_uy,sum_uz, x1,x2,x3,x11,x22,x33,f1(0:n1max+1),f2(0:n1max+1),f3(0:n1max+1),val_inter,wtval3(0:1),wtval2(0:1),wtval1(0:1),xtemp(3)
   real(fp_kind)::  val_inter0, val_inter1, val_inter2,sum_u0,lat2,lon2,r2,actem,x330
   integer :: ii,jj,nn,kk,ci,cj,ck,coun,temp2,nl,masterI,nnn,masterI2
   integer :: i,j,k,  pr
   masterI = 0
   val = 0.0d0 
   xtemp(1) = xyz1
   xtemp(2) = xyz2
   xtemp(3) = xyz3

   call rotate_coordiantes(xtemp(1),xtemp(3),xtemp(2))

   call xyz2SPH(xtemp(1),xtemp(2),xtemp(3),lat2,lon2,r2)

   call get_pt_global(lat2,lon2,r2,i,j,k)


   temp2 = (Global_r+1)*(Global_lat+1)
   pr =0
  do i = 0,1 
     do j = 0,1
       do k = 0,1
         ci = cur_ci + i !lon
         cj = cur_cj + j !lat
         ck = cur_ck + k !r
 
         masterI = ck + (Global_r+1)*(cj-1) + temp2*(ci-1)+1
     masterI = map_val(masterI)+Nfem_tot
         call g2lb_global(ci,cj,ck,lat2,lon2,r2,x11,x22,x33,x330)

      IF(I+j+k==0) then
            x1 = x22
            x2 = x11
            x3 = x330
            wtval3(0) = wt(0,x3)
            wtval3(1) = wt(1,x3)              
            wtval2(0) = wt(0,x2)
            wtval2(1) = wt(1,x2)     
            
            wtval1(0) = wt(0,x1)
            wtval1(1) = wt(1,x1)
                  

       end if
          
            sum_u  = 0.0d0
           coun = 0

            masterI2  = mapCOFarray( masterI)
            nnn = mapCOFarray(masterI+1)-masterI2
        masterI2 = masterI2-1
            pr = pr + nnn
                 
            nnn = nnn+masterI2
               coun = masterI2

            f1(0:n1max) = f(x11,1,0)
            f2(0:n1max) = f(x22,1,0)
        f3(0:n1max) = f(x33,1,0)
         
                   do nn = 0, n1max
                     do kk = 0 , nn                    
                       nl = nn-kk
                        do jj = 0,nl                          
                           ii =nn- kk - jj !i:=nn - k-j:
                if(coun<nnn)then                              
                            coun = coun + 1                          
                            sum_u =  sum_u +  COF_ARRAY(coun)*(f1(ii)*f2(jj)*f3(kk))                
                end if                       
                        end do      
                     end do
                  end do    

                  val= val + wtval3(k)*wtval2(j)*wtval1(i)*sum_u  
  
                       
       end do      !
      end do
  end do
pr = nint(pr/8.0d0)
end Subroutine get_local_u_rot

!!-------------------------------------------------------------------------------
!!-------------------------------------------------------------------------------
!!-------------------------------------------------------------------------------

Subroutine getcartderiv(x1,x2,x3,ur2,acc)
implicit double precision (t)
      double precision,intent(in) :: x1,x2,x3          
      double precision,intent(in) :: Ur2(3)
      double precision,intent(out):: acc(3)
      double precision :: x(3),Ur(3)      
      x(1) = x1
      x(2) = x2
      x(3)  = x3
      call get_rconst(x)
      ur(1) = ur2(1)
      ur(2) = ur2(2)
      ur(3) = ur2(3)
      t1 = x(1)
      t3 = Ur(1)
      t5 = x(2) 
      t7 = Ur(2)
      t9 = x(3)
      t10 = t9 * onebyr2
      t12 = Ur(3)

      ACC(1) = onebyr * t1 * t3 - t5 * onebyxy2 * t7 - t10 * t1 * onebyroot * t12
      ACC(2) = onebyr * t5 * t3 + (t1 * onebyxy2 * t7 - t10 * t5 * onebyroot * t12)
      ACC(3) = t9 * onebyr * t3 + onebyr2 * roott* t12
      

end subroutine getcartderiv

!!-------------------------------------------------------------------------------
!!-------------------------------------------------------------------------------

Subroutine getcartderiv2(x1,x2,x3,ur2,urr,acc,JAC)
implicit double precision (t)
       
      double precision,intent(in) :: x1,x2,x3          
      double precision,intent(in) :: Ur2(3),urr(3,3)
      double precision,intent(out):: acc(3),jac(3,3)
      double precision :: x(3),Ur(3),root
      
      x(1) = x1
      x(2) = x2
      x(3) = x3
      call get_rconst2(x)
    root = roott

      ur(1) = ur2(1)
      ur(2) = ur2(2)
      ur(3) = ur2(3)
      t1 = x(1)
      t2 = onebyr * t1
      t3 = Ur(1)
      t5 = x(2)
      t6 = t5 * onebyxy2
      t7 = Ur(2)
      t9 = x(3)
      t10 = t9 * onebyr2
      t11 = t1 * onebyroot
      t12 = Ur(3)
      t13 = t11 * t12
      ACC(1) = t2 * t3 - t6 * t7 - t10 * t13
      t15 = onebyr * t5
      t17 = t1 * onebyxy2
      t19 = t5 * onebyroot
      t20 = t19 * t12
      ACC(2) = t15 * t3 + t17 * t7 - t10 * t20
      t22 = t9 * onebyr
      t24 = onebyr2 * root
      ACC(3) = t22 * t3 + t24 * t12
      t26 = t1 ** 2
      t29 = onebyr * t3
      t30 = Urr(1,1)
      t31 = t30 * onebyr
      t33 = Urr(2,1)
      t36 = Urr(3,1)
      t37 = t36 * onebyr2
      t39 = t1 * t9 * onebyroot
      t41 = t31 * t1 - t33 * t5 * onebyxy2 - t37 * t39
      t43 = onebyxy2 ** 2
      t47 = 2 * t5 * t43 * t7 * t1
      t48 = t33 * onebyr
      t50 = Urr(2,2)
      t53 = Urr(3,2)
      t54 = t53 * onebyr2
      t56 = t48 * t1 - t50 * t5 * onebyxy2 - t54 * t39
      t58 = t9 * onebyr4
      t63 = onebyroot * t12
      t64 = t10 * t63
      t68 = t36 * onebyr
      t72 = Urr(3,3)
      t73 = t72 * onebyr2
      t75 = t68 * t1 - t53 * t5 * onebyxy2 - t73 * t39
      JAC(1,1) = -onebyr3 * t26 * t3 + t29 + t2 * t41 + t47 - t6 * t56 + 2 * t58 * t26 * onebyroot * t12 - t64 + t10 * t26 * onebyroot3 * t12 - t10 * t11 * t75
      t78 = onebyr3 * t1
      t80 = t78 * t3 * t5
      t85 = t5 * t9 * onebyroot
      t87 = t31 * t5 + t33 * t1 * onebyxy2 - t37 * t85
      t89 = onebyxy2 * t7
      t90 = t5 ** 2
      t98 = t48 * t5 + t50 * t1 * onebyxy2 - t54 * t85
      t102 = 2 * t58 * t1 * t20
      t106 = t10 * t1 * onebyroot3 * t12 * t5
      t111 = t68 * t5 + t53 * t1 * onebyxy2 - t73 * t85
      JAC(1,2) = -t80 + t2 * t87 - t89 + 2 * t90 * t43 * t7 - t6 * t98 + t102 + t106 - t10 * t11 * t111
      t114 = t3 * t9
      t115 = t78 * t114
      t120 = t30 * t9 * onebyr + t36 * root * onebyr2
      t126 = t33 * t9 * onebyr + t53 * root * onebyr2
      t129 = onebyr2 * t1 * t63
      t130 = t9 ** 2
      t131 = t130 * onebyr4
      t138 = t36 * t9 * onebyr + t72 * root * onebyr2
      JAC(1,3) = -t115 + t2 * t120 - t6 * t126 - t129 + 2 * t131 * t13 - t10 * t11 * t138
      JAC(2,1) = -t80 + t15 * t41 + t89 - 2 * t26 * t43 * t7 + t17 * t56 + t102 + t106 - t10 * t19 * t75
      JAC(2,2) = -onebyr3 * t90 * t3 + t29 + t15 * t87 - t47 + t17 * t98 + 2 * t58 * t90 * onebyroot * t12 - t64 + t10 * t90 * onebyroot3 * t12 - t10 * t19 * t111
      t162 = onebyr3 * t5 * t114
      t166 = onebyr2 * t5 * t63
      JAC(2,3) = -t162 + t15 * t120 + t17 * t126 - t166 + 2 * t131 * t20 - t10 * t19 * t138
      t172 = onebyr4 * root
      JAC(3,1) = -t115 + t22 * t41 - 2 * t172 * t12 * t1 + t129 + t24 * t75
      JAC(3,2) = -t162 + t22 * t87 - 2 * t172 * t12 * t5 + t166 + t24 * t111
      JAC(3,3) = t29 - t130 * onebyr3 * t3 + t22 * t120 - 2 * t172 * t12 * t9 + t24 * t138

      
end subroutine getcartderiv2
!!-------------------------------------------------------------------------------
!!!-------------------------------------------------------------------------------

Subroutine getcartderiv3(x1,x2,x3,Ur,urr,Urrr,acc,JAC,HES)
implicit double precision (t)
            
      double precision,intent(in) :: x1,x2,x3          
      double precision,intent(in) :: Ur(3),urr(3,3),Urrr(3,3,3)
      double precision,intent(out):: acc(3),jac(3,3),hes(3,3,3)
      double precision :: x(3),root

      x(1) = x1
      x(2) = x2
      x(3) = x3
      call get_rconst2(x)
      root = roott

      t1 = x(1)
      t2 = onebyr * t1
      t3 = Ur(1)
      t5 = x(2)
      t6 = t5 * onebyxy2
      t7 = Ur(2)
      t9 = x(3)
      t10 = t9 * onebyr2
      t11 = t1 * onebyroot
      t12 = Ur(3)
      t13 = t11 * t12
      ACC(1) = t2 * t3 - t6 * t7 - t10 * t13
      t15 = onebyr * t5
      t17 = t1 * onebyxy2
      t19 = t5 * onebyroot
      t20 = t19 * t12
      ACC(2) = t15 * t3 + t17 * t7 - t10 * t20
      t22 = t9 * onebyr
      t24 = onebyr2 * root
      ACC(3) = t22 * t3 + t24 * t12
      t26 = t1 ** 2
      t27 = onebyr3 * t26
      t29 = onebyr * t3
      t30 = Urr(1,1)
      t31 = t30 * onebyr
      t33 = Urr(2,1)
      t34 = t33 * t5
      t36 = Urr(3,1)
      t37 = t36 * onebyr2
      t38 = t1 * t9
      t39 = t38 * onebyroot
      t41 = t31 * t1 - t34 * onebyxy2 - t37 * t39
      t43 = onebyxy2 ** 2
      t44 = t5 * t43
      t45 = t7 * t1
      t47 = 2 * t44 * t45
      t48 = t33 * onebyr
      t50 = Urr(2,2)
      t51 = t50 * t5
      t53 = Urr(3,2)
      t54 = t53 * onebyr2
      t56 = t48 * t1 - t51 * onebyxy2 - t54 * t39
      t58 = t9 * onebyr4
      t59 = t26 * onebyroot
      t60 = t59 * t12
      t63 = onebyroot * t12
      t64 = t10 * t63
      t65 = t26 * onebyroot3
      t66 = t65 * t12
      t68 = t36 * onebyr
      t70 = t53 * t5
      t72 = Urr(3,3)
      t73 = t72 * onebyr2
      t75 = t68 * t1 - t70 * onebyxy2 - t73 * t39
      t76 = t11 * t75
      JAC(1,1) = -t27 * t3 + t29 + t2 * t41 + t47 - t6 * t56 + 2 * t58 * t60 - t64 + t10 * t66 - t10 * t76
      t78 = onebyr3 * t1
      t79 = t3 * t5
      t80 = t78 * t79
      t84 = t5 * t9
      t85 = t84 * onebyroot
      t87 = t31 * t5 + t33 * t1 * onebyxy2 - t37 * t85
      t89 = onebyxy2 * t7
      t90 = t5 ** 2
      t91 = t90 * t43
      t98 = t48 * t5 + t50 * t1 * onebyxy2 - t54 * t85
      t100 = t58 * t1
      t102 = 2 * t100 * t20
      t103 = t10 * t1
      t104 = onebyroot3 * t12
      t105 = t104 * t5
      t106 = t103 * t105
      t108 = t53 * t1
      t111 = t68 * t5 + t108 * onebyxy2 - t73 * t85
      t112 = t11 * t111
      JAC(1,2) = -t80 + t2 * t87 - t89 + 2 * t91 * t7 - t6 * t98 + t102 + t106 - t10 * t112
      t114 = t3 * t9
      t115 = t78 * t114
      t118 = t36 * root
      t120 = t30 * t9 * onebyr + t118 * onebyr2
      t124 = t53 * root
      t126 = t33 * t9 * onebyr + t124 * onebyr2
      t128 = onebyr2 * t1
      t129 = t128 * t63
      t130 = t9 ** 2
      t131 = t130 * onebyr4
      t134 = t36 * t9
      t136 = t72 * root
      t138 = t134 * onebyr + t136 * onebyr2
      t139 = t11 * t138
      JAC(1,3) = -t115 + t2 * t120 - t6 * t126 - t129 + 2 * t131 * t13 - t10 * t139
      t142 = t26 * t43
      t146 = t19 * t75
      JAC(2,1) = -t80 + t15 * t41 + t89 - 2 * t142 * t7 + t17 * t56 + t102 + t106 - t10 * t146
      t148 = onebyr3 * t90
      t152 = t90 * onebyroot
      t153 = t152 * t12
      t156 = t90 * onebyroot3
      t157 = t156 * t12
      t159 = t19 * t111
      JAC(2,2) = -t148 * t3 + t29 + t15 * t87 - t47 + t17 * t98 + 2 * t58 * t153 - t64 + t10 * t157 - t10 * t159
      t161 = onebyr3 * t5
      t162 = t161 * t114
      t165 = onebyr2 * t5
      t166 = t165 * t63
      t169 = t19 * t138
      JAC(2,3) = -t162 + t15 * t120 + t17 * t126 - t166 + 2 * t131 * t20 - t10 * t169
      t172 = onebyr4 * root
      t173 = t12 * t1
      JAC(3,1) = -t115 + t22 * t41 - 2 * t172 * t173 + t129 + t24 * t75
      t178 = t12 * t5
      JAC(3,2) = -t162 + t22 * t87 - 2 * t172 * t178 + t166 + t24 * t111
      t182 = t130 * onebyr3
      JAC(3,3) = t29 - t182 * t3 + t22 * t120 - 2 * t172 * t12 * t9 + t24 * t138
      t189 = t78 * t3
      t192 = t44 * t56 * t1
      t194 = t44 * t7
      t195 = 2 * t194
      t196 = t43 * onebyxy2
      t200 = 8 * t5 * t196 * t7 * t26
      t201 = onebyroot * t75
      t202 = t10 * t201
      t204 = t58 * t13
      t205 = 6 * t204
      t209 = onebyr2 ** 2
      t210 = t209 * onebyr2
      t211 = t9 * t210
      t212 = t26 * t1
      t222 = t10 * t104 * t1
      t231 = Urrr(1,1,3)
      t232 = t231 * onebyr
      t234 = Urrr(1,2,3)
      t237 = Urrr(1,3,3)
      t238 = t237 * onebyr2
      t240 = t232 * t1 - t234 * t5 * onebyxy2 - t238 * t39
      t241 = t240 * onebyr
      t243 = t90 + t130
      t246 = t234 * onebyr
      t248 = Urrr(2,2,3)
      t251 = Urrr(2,3,3)
      t252 = t251 * onebyr2
      t254 = t246 * t1 - t248 * t5 * onebyxy2 - t252 * t39
      t257 = t43 * t1
      t259 = 2 * t70 * t257
      t260 = t237 * onebyr
      t264 = Urrr(3,3,3)
      t265 = t264 * onebyr2
      t267 = t260 * t1 - t251 * t5 * onebyxy2 - t265 * t39
      t268 = t267 * onebyr2
      t270 = t72 * t9
      t271 = t26 ** 2
      t273 = t26 * t90
      t274 = t90 ** 2
      t278 = (-2 * t271 - t273 + t274 + t90 * t130) * onebyr4 * onebyroot3
      t280 = t241 * t1 + t36 * t243 * onebyr3 - t254 * t5 * onebyxy2 + t259 - t268 * t39 - t270 * t278
      t283 = onebyr * t41
      t285 = Urrr(1,1,2)
      t286 = t285 * onebyr
      t288 = Urrr(1,2,2)
      t291 = t234 * onebyr2
      t293 = t286 * t1 - t288 * t5 * onebyxy2 - t291 * t39
      t294 = t293 * onebyr
      t298 = t288 * onebyr
      t300 = Urrr(2,2,2)
      t303 = t248 * onebyr2
      t305 = t298 * t1 - t300 * t5 * onebyxy2 - t303 * t39
      t309 = 2 * t51 * t257
      t310 = t254 * onebyr2
      t312 = t53 * t9
      t314 = t294 * t1 + t33 * t243 * onebyr3 - t305 * t5 * onebyxy2 + t309 - t310 * t39 - t312 * t278
      t321 = Urrr(1,1,1)
      t322 = t321 * onebyr
      t326 = t231 * onebyr2
      t328 = t322 * t1 - t285 * t5 * onebyxy2 - t326 * t39
      t329 = t328 * onebyr
      t336 = 2 * t34 * t257
      t337 = t240 * onebyr2
      t340 = t329 * t1 + t30 * t243 * onebyr3 - t293 * t5 * onebyxy2 + t336 - t337 * t39 - t134 * t278
      HES(1,1,1) = -3 * t189 + 4 * t192 + t195 - t200 - 2 * t202 + t205 + 4 * t58 * t59 * t75 - 8 * t211 * t212 * onebyroot * t12 - 4 * t58 * t212 * onebyroot3 * t12 + 3 * t222 + 2 * t10 * t65 * t75 - 3 * t10 * t212 * onebyroot5 * t12 - t10 * t11 * t280 + 2 * t283 - t6 * t314 - 2 * t27 * t41 + 3 * onebyr5 * t212 * t3 + t2 * t340
      t342 = onebyr5 * t26
      t344 = 3 * t342 * t79
      t345 = t27 * t87
      t346 = onebyr3 * t3
      t347 = t346 * t5
      t348 = onebyr * t87
      t350 = t78 * t41 * t5
      t355 = t322 * t5 + t285 * t1 * onebyxy2 - t326 * t85
      t356 = t355 * onebyr
      t358 = t30 * onebyr3
      t359 = t1 * t5
      t360 = t358 * t359
      t365 = t286 * t5 + t288 * t1 * onebyxy2 - t291 * t85
      t368 = t26 - t90
      t370 = t33 * t368 * t43
      t375 = t232 * t5 + t234 * t1 * onebyxy2 - t238 * t85
      t376 = t375 * onebyr2
      t378 = t36 * t1
      t385 = t5 * (3 * t26 + 3 * t90 + t130) * onebyr4 * onebyroot3
      t386 = t378 * t9 * t385
      t387 = t356 * t1 - t360 - t365 * t5 * onebyxy2 - t370 - t376 * t39 + t386
      t390 = t43 * t7 * t1
      t391 = 2 * t390
      t394 = 8 * t90 * t196 * t45
      t396 = t44 * t98 * t1
      t397 = 2 * t396
      t398 = onebyxy2 * t56
      t400 = 2 * t91 * t56
      t401 = t344 - t345 - t347 + t348 - t350 + t2 * t387 + t391 - t394 + t397 - t398 + t400
      t402 = t365 * onebyr
      t404 = t33 * onebyr3
      t405 = t404 * t359
      t410 = t298 * t5 + t300 * t1 * onebyxy2 - t303 * t85
      t414 = t50 * t368 * t43
      t419 = t246 * t5 + t248 * t1 * onebyxy2 - t252 * t85
      t420 = t419 * onebyr2
      t423 = t108 * t9 * t385
      t424 = t402 * t1 - t405 - t410 * t5 * onebyxy2 - t414 - t420 * t39 + t423
      t428 = 8 * t211 * t26 * t20
      t431 = 4 * t58 * t26 * t105
      t434 = 2 * t58 * t59 * t111
      t435 = t58 * t20
      t436 = 2 * t435
      t437 = t10 * t105
      t438 = onebyroot * t111
      t439 = t10 * t438
      t441 = onebyroot5 * t12
      t444 = 3 * t10 * t26 * t441 * t5
      t446 = t10 * t65 * t111
      t447 = t100 * t146
      t448 = 2 * t447
      t451 = t103 * onebyroot3 * t75 * t5
      t452 = t375 * onebyr
      t454 = t36 * onebyr3
      t455 = t454 * t359
      t459 = t53 * t368 * t43
      t464 = t260 * t5 + t251 * t1 * onebyxy2 - t265 * t85
      t465 = t464 * onebyr2
      t467 = t72 * t1
      t469 = t467 * t9 * t385
      t470 = t452 * t1 - t455 - t419 * t5 * onebyxy2 - t459 - t465 * t39 + t469
      t473 = -t6 * t424 - t428 - t431 + t434 + t436 + t437 - t439 - t444 + t446 + t448 + t451 - t10 * t11 * t470
      HES(1,1,2) = t401 + t473
      t475 = 3 * t342 * t114
      t476 = t27 * t120
      t477 = t346 * t9
      t478 = onebyr * t120
      t479 = t41 * t9
      t480 = t78 * t479
      t485 = t321 * t9 * onebyr + t231 * root * onebyr2
      t486 = t485 * onebyr
      t488 = t358 * t38
      t493 = t285 * t9 * onebyr + t234 * root * onebyr2
      t500 = t231 * t9 * onebyr + t237 * root * onebyr2
      t501 = t500 * onebyr2
      t505 = (t130 - t26 - t90) * onebyr4 * onebyroot
      t506 = t378 * t505
      t507 = t486 * t1 - t488 - t493 * t5 * onebyxy2 - t501 * t39 + t506
      t511 = 2 * t44 * t126 * t1
      t512 = t493 * onebyr
      t514 = t404 * t38
      t519 = t288 * t9 * onebyr + t248 * root * onebyr2
      t526 = t234 * t9 * onebyr + t251 * root * onebyr2
      t527 = t526 * onebyr2
      t529 = t108 * t505
      t530 = t512 * t1 - t514 - t519 * t5 * onebyxy2 - t527 * t39 + t529
      t533 = onebyr4 * t26 * t63
      t534 = 2 * t533
      t535 = t130 * t210
      t537 = 8 * t535 * t60
      t540 = 2 * t58 * t59 * t138
      t542 = onebyr2 * onebyroot * t12
      t544 = 2 * t131 * t63
      t545 = onebyroot * t138
      t546 = t10 * t545
      t548 = onebyr2 * t26 * t104
      t550 = 2 * t131 * t66
      t552 = t10 * t65 * t138
      t553 = t128 * t201
      t555 = 2 * t131 * t76
      t556 = t500 * onebyr
      t558 = t454 * t38
      t565 = t237 * t9 * onebyr + t264 * root * onebyr2
      t566 = t565 * onebyr2
      t568 = t467 * t505
      t569 = t556 * t1 - t558 - t526 * t5 * onebyxy2 - t566 * t39 + t568
      HES(1,1,3) = t475 - t476 - t477 + t478 - t480 + t2 * t507 + t511 - t6 * t530 + t534 - t537 + t540 - t542 + t544 - t546 + t548 - t550 + t552 - t553 + t555 - t10 * t11 * t569
      t576 = t329 * t5 - t360 + t293 * t1 * onebyxy2 - t370 - t337 * t85 + t386
      t578 = t344 - t347 - t350 - t345 + t348 + t2 * t576 + t391 - t398 - t394 + t400 + t397
      t583 = t294 * t5 - t405 + t305 * t1 * onebyxy2 - t414 - t310 * t85 + t423
      t589 = t241 * t5 - t455 + t254 * t1 * onebyxy2 - t459 - t268 * t85 + t469
      t592 = -t6 * t583 - t428 + t436 - t431 + t448 + t437 - t444 + t451 + t434 - t439 + t446 - t10 * t11 * t589
      HES(1,2,1) = t578 + t592
      t593 = onebyr5 * t1
      t596 = 3 * t593 * t3 * t90
      t598 = t78 * t87 * t5
      t601 = t26 + t130
      t611 = (-t273 - 2 * t274 + t271 + t26 * t130) * onebyr4 * onebyroot3
      t613 = t356 * t5 + t30 * t601 * onebyr3 + t365 * t1 * onebyxy2 - t336 - t376 * t85 - t134 * t611
      t616 = onebyxy2 * t98
      t618 = t90 * t5
      t631 = t402 * t5 + t33 * t601 * onebyr3 + t410 * t1 * onebyxy2 - t309 - t420 * t85 - t312 * t611
      t635 = 8 * t211 * t1 * t153
      t637 = 4 * t100 * t157
      t638 = t100 * t159
      t640 = 2 * t204
      t643 = 3 * t103 * t441 * t90
      t646 = t103 * onebyroot3 * t111 * t5
      t655 = t452 * t5 + t36 * t601 * onebyr3 + t419 * t1 * onebyxy2 - t259 - t465 * t85 - t270 * t611
      HES(1,2,2) = t596 - 2 * t598 - t189 + t2 * t613 + 6 * t194 - 2 * t616 - 8 * t618 * t196 * t7 + 4 * t91 * t98 - t6 * t631 - t635 - t637 + 4 * t638 + t640 - t643 + 2 * t646 + t222 - t10 * t11 * t655
      t660 = 3 * t593 * t79 * t9
      t662 = t78 * t120 * t5
      t663 = t87 * t9
      t664 = t78 * t663
      t666 = t358 * t84
      t671 = t36 * t5 * t505
      t672 = t486 * t5 - t666 + t493 * t1 * onebyxy2 - t501 * t85 + t671
      t674 = onebyxy2 * t126
      t676 = 2 * t91 * t126
      t678 = t404 * t84
      t682 = t70 * t505
      t683 = t512 * t5 - t678 + t519 * t1 * onebyxy2 - t527 * t85 + t682
      t686 = onebyr4 * t1 * t20
      t687 = 2 * t686
      t690 = 8 * t535 * t1 * t20
      t692 = 2 * t100 * t169
      t693 = t128 * t105
      t696 = 2 * t131 * t1 * t105
      t699 = t103 * onebyroot3 * t138 * t5
      t700 = t128 * t438
      t702 = 2 * t131 * t112
      t704 = t454 * t84
      t709 = t72 * t5 * t505
      t710 = t556 * t5 - t704 + t526 * t1 * onebyxy2 - t566 * t85 + t709
      HES(1,2,3) = t660 - t662 - t664 + t2 * t672 - t674 + t676 - t6 * t683 + t687 - t690 + t692 + t693 - t696 + t699 - t700 + t702 - t10 * t11 * t710
      t717 = t328 * t9 * onebyr - t488 + t240 * root * onebyr2 + t506
      t723 = t293 * t9 * onebyr - t514 + t254 * root * onebyr2 + t529
      t729 = t240 * t9 * onebyr - t558 + t267 * root * onebyr2 + t568
      HES(1,3,1) = t475 - t477 - t480 - t476 + t478 + t2 * t717 + t511 - t6 * t723 + t534 - t542 + t548 - t553 - t537 + t544 - t550 + t555 + t540 - t546 + t552 - t10 * t11 * t729
      t736 = t355 * t9 * onebyr - t666 + t375 * root * onebyr2 + t671
      t742 = t365 * t9 * onebyr - t678 + t419 * root * onebyr2 + t682
      t748 = t375 * t9 * onebyr - t704 + t464 * root * onebyr2 + t709
      HES(1,3,2) = t660 - t664 - t662 + t2 * t736 - t674 + t676 - t6 * t742 + t687 + t693 - t700 - t690 - t696 + t702 + t692 + t699 - t10 * t11 * t748
      t751 = t3 * t130
      t753 = 3 * t593 * t751
      t754 = t120 * t9
      t755 = t78 * t754
      t759 = 1 / onebyxy2
      t766 = t485 * t9 * onebyr + t30 * t759 * onebyr3 + t500 * root * onebyr2 - 2 * t118 * t58
      t776 = t493 * t9 * onebyr + t33 * t759 * onebyr3 + t526 * root * onebyr2 - 2 * t124 * t58
      t778 = t128 * t545
      t780 = t130 * t9
      t781 = t780 * t210
      t794 = t500 * t9 * onebyr + t36 * t759 * onebyr3 + t565 * root * onebyr2 - 2 * t136 * t58
      HES(1,3,3) = t753 - 2 * t755 - t189 + t2 * t766 - t6 * t776 + t205 - 2 * t778 - 8 * t781 * t13 + 4 * t131 * t139 - t10 * t11 * t794
      HES(2,1,1) = t344 - t347 - 2 * t350 + t15 * t340 - 6 * t390 + 2 * t398 + 8 * t212 * t196 * t7 - 4 * t142 * t56 + t17 * t314 - t428 + t436 - t431 + 4 * t447 + t437 - t444 + 2 * t451 - t10 * t19 * t280
      t811 = t148 * t41
      t814 = 2 * t142 * t98
      t815 = 2 * t192
      t816 = t596 - t598 - t189 - t811 + t283 + t15 * t387 - t195 + t616 + t200 - t814 - t815
      t818 = 2 * t638
      t821 = 2 * t58 * t152 * t75
      t823 = t10 * t156 * t75
      t826 = t17 * t424 - t635 - t637 + t818 + t640 - t643 + t646 + t222 + t821 - t202 + t823 - t10 * t19 * t470
      HES(2,1,2) = t816 + t826
      t827 = t161 * t479
      t830 = 2 * t142 * t126
      t832 = t165 * t201
      t834 = 2 * t131 * t146
      HES(2,1,3) = t660 - t662 - t827 + t15 * t507 + t674 - t830 + t17 * t530 + t687 - t690 + t692 + t693 - t696 + t699 - t832 + t834 - t10 * t19 * t569
      t838 = t596 - t811 - t189 + t283 - t598 + t15 * t576 - t195 + t200 - t815 + t616 - t814
      t842 = t17 * t583 - t635 - t637 + t821 + t640 + t222 - t202 - t643 + t823 + t818 + t646 - t10 * t19 * t589
      HES(2,2,1) = t838 + t842
      t862 = 6 * t435
      HES(2,2,2) = t15 * t613 - t391 + t394 + 3 * onebyr5 * t618 * t3 - 2 * t148 * t87 - 4 * t396 + 2 * t348 - 3 * t10 * t618 * onebyroot5 * t12 + t17 * t631 - t10 * t19 * t655 - 8 * t211 * t618 * onebyroot * t12 + t862 + 4 * t58 * t152 * t111 - 4 * t58 * t618 * onebyroot3 * t12 - 2 * t439 - 3 * t347 + 3 * t437 + 2 * t10 * t156 * t111
      t878 = 3 * onebyr5 * t90 * t114
      t879 = t148 * t120
      t880 = t161 * t663
      t884 = onebyr4 * t90 * t63
      t885 = 2 * t884
      t887 = 8 * t535 * t153
      t890 = 2 * t58 * t152 * t138
      t892 = onebyr2 * t90 * t104
      t894 = 2 * t131 * t157
      t896 = t10 * t156 * t138
      t897 = t165 * t438
      t899 = 2 * t131 * t159
      HES(2,2,3) = t878 - t879 - t477 + t478 - t880 + t15 * t672 - t511 + t17 * t683 + t885 - t887 + t890 - t542 + t544 - t546 + t892 - t894 + t896 - t897 + t899 - t10 * t19 * t710
      HES(2,3,1) = t660 - t827 - t662 + t15 * t717 + t674 - t830 + t17 * t723 + t687 + t693 - t832 - t690 - t696 + t834 + t692 + t699 - t10 * t19 * t729
      HES(2,3,2) = t878 - t477 - t880 - t879 + t478 + t15 * t736 - t511 + t17 * t742 + t885 - t542 + t892 - t897 - t887 + t544 - t894 + t899 + t890 - t546 + t896 - t10 * t19 * t748
      t912 = 3 * onebyr5 * t5 * t751
      t913 = t161 * t754
      t917 = t165 * t545
      HES(2,3,3) = t912 - 2 * t913 - t347 + t15 * t766 + t17 * t776 + t862 - 2 * t917 - 8 * t781 * t20 + 4 * t131 * t169 - t10 * t19 * t794
      t927 = t210 * root
      t936 = 2 * t172 * t12
      HES(3,1,1) = t475 - 2 * t480 - t477 + t22 * t340 + 8 * t927 * t12 * t26 - 4 * t533 - 4 * t172 * t75 * t1 - t936 - t548 + 2 * t553 + t542 + t24 * t280
      t942 = 8 * t927 * t173 * t5
      t943 = 4 * t686
      t946 = 2 * t172 * t111 * t1
      t949 = 2 * t172 * t75 * t5
      HES(3,1,2) = t660 - t664 - t827 + t22 * t387 + t942 - t943 - t946 - t693 + t700 - t949 + t832 + t24 * t470
      t951 = t182 * t41
      t955 = 8 * t927 * t173 * t9
      t958 = 2 * t172 * t138 * t1
      t961 = 2 * t172 * t75 * t9
      HES(3,1,3) = -t189 + t753 - t755 + t283 - t951 + t22 * t507 + t955 - t958 - t640 + t778 - t961 + t24 * t569
      HES(3,2,1) = t660 - t827 - t664 + t22 * t576 + t942 - t943 - t949 - t693 + t832 - t946 + t700 + t24 * t589
      HES(3,2,2) = t878 - 2 * t880 - t477 + t22 * t613 + 8 * t927 * t12 * t90 - 4 * t884 - 4 * t172 * t111 * t5 - t936 - t892 + 2 * t897 + t542 + t24 * t655
      t976 = t182 * t87
      t980 = 8 * t927 * t178 * t9
      t983 = 2 * t172 * t138 * t5
      t986 = 2 * t172 * t111 * t9
      HES(3,2,3) = -t347 + t912 - t913 + t348 - t976 + t22 * t672 + t980 - t983 - t436 + t917 - t986 + t24 * t710
      HES(3,3,1) = -t189 + t283 + t753 - t951 - t755 + t22 * t717 + t955 - t640 - t961 - t958 + t778 + t24 * t729
      HES(3,3,2) = -t347 + t348 + t912 - t976 - t913 + t22 * t736 + t980 - t436 - t986 - t983 + t917 + t24 * t748
      HES(3,3,3) = -3 * t477 + 2 * t478 + 3 * t780 * onebyr5 * t3 - 2 * t182 * t120 + t22 * t766 + 8 * t927 * t12 * t130 - 4 * t172 * t138 * t9 - t936 + t24 * t794
      

end subroutine getcartderiv3


!~-----------------------------------------

Subroutine get_local_u(lat,lon,r,xyz1,xyz2,xyz3,val,pr)
implicit none
real(fp_kind), intent(in) :: xyz1,xyz3,xyz2
real(fp_kind), intent(out):: val
real(fp_kind) :: lat,lon,r,val1,val2,lata,latb,latscale,we,mwe,dwe,latdown,latup,latpdown,latpup
integer :: pr,pr1
    
        !if(dabs(lon-2.0d0*pi)<epsilon(10.0d0))lat=0.0d0
    latdown = Grid%end_p*deg2rad !primary down (upper limit)

    latup   = Grid%start_p*deg2rad !primar up (lower limit)

    latpup   = Grid%start_p*deg2rad + 0.5*size_lat
    latpdown = Grid%end_p*deg2rad   - 0.5*size_lat

    if(lat < latup .OR. lat>latdown) then
    !print*,"not here "
    !print*,'1',lat*rad2deg,latup*rad2deg,latdown*rad2deg
        call get_local_u_rot(lat,lon,r,xyz1,xyz2,xyz3,val,pr)

    else if(lat > latpup .AND. lat< latpdown) then
    !print*,'2',lat*rad2deg,latpup*rad2deg,latpdown*rad2deg
        call get_local_u_primary(lat,lon,r,xyz1,xyz2,xyz3,val,pr)

    else 
    !print*,'3',lat*rad2deg,latdown*rad2deg,latpdown*rad2deg
    !print*,"here"
        call get_local_u_rot(lat,lon,r,xyz1,xyz2,xyz3,val1,pr)
        call get_local_u_primary(lat,lon,r,xyz1,xyz2,xyz3,val2,pr1)
         pr = max(pr,pr1)

        if(lat<=latpup) then
            lata = latup
            latb = latpup       
        else
            latb = latpdown
            lata = latdown
        end if
        latscale = (lat - lata)/(latb-lata)
            
        we = wt(1,latscale)     
        mwe = 1.0d0-we
        val = val1*mwe + val2*we        

    end if
end subroutine get_local_u
!!-------------------------------------------------------------------------------

Subroutine get_local_ud(lat,lon,r,xyz1,xyz2,xyz3,val,pr)
     !  get_local_ud(x,y,z,x11,x22,x33,val4,vald,0)
implicit none
real(fp_kind), intent(in) :: xyz1,xyz3,xyz2
real(fp_kind), intent(out):: val(1:4)
real(fp_kind) :: lat,lon,r,val1(4),val2(4),lata,latb,latscale,we,mwe,dwe,latdown,latup,latpdown,latpup,xtemp(1:3),actem,rotem(3),coslon,coslat,sinlon,sinlat
integer :: pr,pr1
    
        !if(dabs(lon-2.0d0*pi)<epsilon(10.0d0))lat=0.0d0
    latdown = Grid%end_p*deg2rad !primary down (upper limit)

    latup   = Grid%start_p*deg2rad !primar up (lower limit)

    latpup   = Grid%start_p*deg2rad + 0.5*size_lat
    latpdown = Grid%end_p*deg2rad   - 0.5*size_lat

    if(lat < latup .OR. lat>latdown) then
    !print*,"ROTATED "
    !print*,'1',lat*rad2deg,latup*rad2deg,latdown*rad2deg
    call get_local_ud_rot(lat,lon,r,xyz1,xyz2,xyz3,val,pr,rotem)
                !print*,val,'rot'
    call getcartderiv(rotem(1),rotem(2),rotem(3),val(2:4),xtemp)
    val(2:4) = xtemp
    actem = val(3)
    val(3) = val(4)
    val(4) = -actem

    else if(lat > latpup .AND. lat< latpdown) then
    !print*,"PRIMARY "
    !print*,'2',lat*rad2deg,latpup*rad2deg,latpdown*rad2deg
        call get_local_ud_primary(lat,lon,r,xyz1,xyz2,xyz3,val,pr)
        
        call getcartderiv(xyz1,xyz2,xyz3,val(2:4),xtemp)
        val(2:4) = xtemp
            !PRINT*,'val',val
    else 

    call get_local_ud_rot(lat,lon,r,xyz1,xyz2,xyz3,val1,pr,rotem)
    call getcartderiv(rotem(1),rotem(2),rotem(3),val1(2:4),xtemp)
    val1(2:4) = xtemp
    actem = val1(3)
    val1(3) = val1(4)
    val1(4) = -actem
        xtemp = val1(2:4)

    sinlon =sin(lon)
    coslon =cos(lon)
    sinlat =sin(lat)
    coslat =cos(lat)

    val1(2) =  xtemp(1)*sinlat*coslon + xtemp(2)*sinlat*sinlon + xtemp(3)*coslat
    val1(3) = -xtemp(1)*sinlat*sinlon + xtemp(2)*sinlat*coslon! + xtemp(3)*cos(lat)
    val1(4) = -xtemp(1)*coslat*coslon - xtemp(2)*coslat*sinlon + xtemp(3)*sinlat

    val1(3:4)= val1(3:4)*r
!print*,'vv',val1
        call get_local_ud_primary(lat,lon,r,xyz1,xyz2,xyz3,val2,pr1)
!rint*,'vv2',val2
        !call getcartderiv(xyz1,xyz2,xyz3,val2(2:4),xtemp)
        !val2(2:4) = xtemp
         pr = max(pr,pr1)

        if(lat<=latpup) then
            lata = latup
            latb = latpup       
        else
            latb = latpdown                      
            lata = latdown
        end if
        latscale = (lat - lata)/(latb-lata)
        !       print*,val1,latscale
        !print*,val2
        !pause
        we = wt(1,latscale)     
        mwe = 1.0d0-we

        !print*,lat,lata,latb
        !print*,latscale,we,mwe
        !pause


        dwe = dwt(1,latscale)/(latb-lata)

        val(1:4) = val1(1:4)*mwe + val2(1:4)*we
        val(2) = val(2) - val1(1)*dwe  + dwe*val2(1)
        call getcartderiv(xyz1,xyz2,xyz3,val(2:4),xtemp)
        val(2:4) = xtemp
        !PRINT*,'val',val
    end if
end subroutine get_local_ud
!!-------------------------------------------------------------------------------
!!-------------------------------------------------------------------------------
Subroutine get_local_ud_primary(lat,lon,r,xyz1,xyz2,xyz3,val,pr)
implicit none
   real(fp_kind), intent(in) :: lat,lon,r,xyz1,xyz3,xyz2
   real(fp_kind), intent(out):: val(1:4)
   real(fp_kind) :: sum_u,sum_ux ,sum_uy,sum_uz, x1,x2,x3,x11,x22,x33,f1(0:n1max+1),f2(0:n1max+1),f3(0:n1max+1),val_inter,wtval3(0:1),wtval2(0:1),wtval1(0:1),dwt1(0:1),dwt2(0:1),dwt3(0:1),valb(3),x330,x331
   real(fp_kind)::  val_inter0, val_inter1, val_inter2,step_r_cal0,sum_u0,xtemp(3)
   integer :: ii,jj,nn,kk,ci,cj,ck,coun,temp2,nl,masterI,nnn,masterI2
   integer :: i,j,k,  pr
  
   val = 0.0d0   
  ! print*,'inside ud primary',lat/deg2rad,lon/deg2rad,r

   call get_pt_cgrid(lat,lon,r,i,j,k) 
  ! print*,'i,j,k',i,j,k

   temp2 = (Nfem_r+1)*(Nfem_lat+1)
  ! print*,'temp2', temp2

  pr =0
  do i = 0,1 
     do j = 0,1
       do k = 0,1
         ci = cur_ci + i
         cj = cur_cj + j
         ck = cur_ck + k
 
         masterI = ck +  (Nfem_r+1)*(cj-1) + temp2*(ci-1)
    !  print*,'masterI', masterI
    !  pause

    call g2lb(ci,cj,ck,lat,lon,r,x11,x22,x33,x330)
    !print*,'x1,x2,x3,x30',x11,x22,x33,x330
    !print*,'step_r_cal',step_r_cal
    !print*,'step_r_cal2',step_r_cal2

      IF(I+j+k==0) then
            x1 = x22  !lon
            x2 = x11  !lat
            x3 = x330  !r


            wtval3(0) = wt(0,x3)
            wtval3(1) = wt(1,x3)
            dwt3(0)   = dwt(0,x3)*step_r_cal2
            dwt3(1)   = dwt(1,x3)*step_r_cal2
         !   print*,step_r_cal2,dwt3(1) 
    !   pause
            wtval2(0) = wt(0,x2) !for lat which is j
            wtval2(1) = wt(1,x2)
            dwt2(0)   = dwt(0,x2)
            dwt2(1)   = dwt(1,x2)
            
            wtval1(0) = wt(0,x1) !for lon which is i == 1
            wtval1(1) = wt(1,x1)
            dwt1(0)   = dwt(0,x1)
            dwt1(1)   = dwt(1,x1)               
            !step_r_cal0 = 
       end if
          
            sum_u = 0.0d0
            sum_ux = 0.0d0
            sum_uy = 0.0d0
            sum_uz = 0.0d0
            coun = 0
            masterI2  = mapCOFarray(masterI)
            nnn = mapCOFarray(masterI+1)-masterI2
        masterI2 = masterI2-1
            pr = pr + nnn
             !    print*,'masterI 2',masterI2
    
            nnn = nnn+masterI2
        !print*,'nnn',nnn
               coun = masterI2
       f1(0:n1max) = f(x11,1,0)
           f2(0:n1max) = f(x22,1,0)
       f3(0:n1max) = f(x33,1,0)  

                   do nn = 0, n1max
                     do kk = 0 , nn                    
                       nl = nn-kk
                        do jj = 0,nl                          
                           ii =nn- kk - jj !i:=nn - k-j:
                 if(coun<nnn)then
                        coun = coun + 1    
                !   print*, COF_ARRAY(coun), (f1(ii)*f2(jj)*f3(kk))                    
                    sum_u =  sum_u +  COF_ARRAY(coun)*(f1(ii)*f2(jj)*f3(kk))   
                    !if(cell(masterI).Coeff(coun-masterI2)- COF_ARRAY(coun) .NE. 0.d0)print*,'************not equal coeficients***********'
                    if(ii>0)sum_ux = sum_ux + (ii)*COF_ARRAY(coun)*(f1(ii-1)*f2(jj)*f3(kk))
                    if(jj>0)sum_uy = sum_uy + (jj)*COF_ARRAY(coun)*(f1(ii)*f2(jj-1)*f3(kk))
                    if(kk>0)sum_uz = sum_uz + (kk)*COF_ARRAY(coun)*(f1(ii)*f2(jj)*f3(kk-1))
                 end if         
                        end do      
                     end do
                  end do   
                  coun = 0    
        
                  
                       val_inter0 =  wtval3(k)*wtval2(j)*wtval1(i)                  
                       val_inter1 =  wtval3(k)*sum_u 
               val(1)= val(1) + val_inter0*sum_u

                 if(lat>=-90.0d0) sum_ux = -sum_ux

                             val(4)= val(4) + val_inter0*sum_ux + dwt1(i)*wtval2(j)*val_inter1  !lat
                             val(3)= val(3) + val_inter0*sum_uy + dwt2(j)*wtval1(i)*val_inter1     !lon .. as dwt1 = diff(u)/d(lon)
                             val(2)= val(2) + val_inter0*sum_uz*step_r_cal + dwt3(k)*wtval1(i)*wtval2(j)*sum_u

       end do      
      end do
  end do

 val(3:4) = val(3:4)/size_lat
    
 pr = nint(pr/8.0d0)
end Subroutine get_local_ud_primary

!!-------------------------------------------------------------------------------
Subroutine get_local_ud_rot(lat,lon,r,xyz1,xyz2,xyz3,val,pr,xtemp)

implicit none
   real(fp_kind), intent(in) :: lat,lon,r,xyz1,xyz3,xyz2
   real(fp_kind), intent(out):: val(1:4)
   real(8) :: sum_u,sum_ux ,sum_uy,sum_uz, x1,x2,x3,x11,x22,x33,f1(0:n1max+1),f2(0:n1max+1),f3(0:n1max+1),val_inter,wtval3(0:1),wtval2(0:1),wtval1(0:1),dwt1(0:1),dwt2(0:1),dwt3(0:1),valb(3)
   real(8)::  val_inter0, val_inter1, val_inter2,sum_u0,xtemp(3),lat2,lon2,r2,actem,valc(4),x330,runval,step_r_sav
   integer :: ii,jj,nn,kk,ci,cj,ck,coun,temp2,nl,masterI,nnn,masterI2
   integer :: i,j,k,  pr
   masterI = 0
   val = 0.0d0 
   xtemp(1) = xyz1
   xtemp(2) = xyz2
   xtemp(3) = xyz3

   call rotate_coordiantes(xtemp(1),xtemp(3),xtemp(2)) 
    !print*,'rotcord',xtemp(1:3)
   call xyz2SPH(xtemp(1),xtemp(2),xtemp(3),lat2,lon2,r2)
    !print*,'latlonr2',lat2/deg2rad,lon2/deg2rad,r2
   call get_pt_global(lat2,lon2,r2,i,j,k)
    !print*,'ijk',i,j,k
runval =0.0d0

   temp2 = (Global_r+1)*(Global_lat+1)
   pr =0
  do i = 0,1 
     do j = 0,1
       do k = 0,1
         ci = cur_ci + i !lon
         cj = cur_cj + j !lat
         ck = cur_ck + k !r
 
         masterI = ck + (Global_r+1)*(cj-1) + temp2*(ci-1)+1
            !print*,Global_grid.lat(cj)*rad2deg,Global_grid.lon(ci)*rad2deg,masterI
     masterI = map_val(masterI)+Nfem_tot    
        call g2lb_global(ci,cj,ck,lat2,lon2,r2,x11,x22,x33,x330)
   
      IF(I+j+k==0) then
            x1 = x22
            x2 = x11
            x3 = x330
            wtval3(0) = wt(0,x3)
            wtval3(1) = wt(1,x3)
        step_r_sav=step_r_cal2
            dwt3(0)   = dwt(0,x3)
            dwt3(1)   = dwt(1,x3)
       !    print*,step_r_cal2,1.0d0/size_lat,dwt3(1)
!pause
            wtval2(0) = wt(0,x2)
            wtval2(1) = wt(1,x2)
            dwt2(0)   = dwt(0,x2)
            dwt2(1)   = dwt(1,x2)
            
            wtval1(0) = wt(0,x1)
            wtval1(1) = wt(1,x1)
            dwt1(0)   = dwt(0,x1)
            dwt1(1)   = dwt(1,x1)              

       end if
          
            sum_u  = 0.0d0
            sum_ux = 0.0d0
            sum_uy = 0.0d0
            sum_uz = 0.0d0
            coun = 0

            !nnn = n1g2( masterI) 

            masterI2  = mapCOFarray(masterI)
            nnn = mapCOFarray(masterI+1)-masterI2
        masterI2 = masterI2-1
         !  print*,Nfem_tot,n1g2(masterI-Nfem_tot),nnn  
    !   pause
        pr = pr + nnn

            f1(0:n1max) = f(x11,1,0)
            f2(0:n1max) = f(x22,1,0)
        f3(0:n1max) = f(x33,1,0)
            nnn = nnn+masterI2
            coun = masterI2
                   do nn = 0, n1max
                     do kk = 0 , nn                    
                       nl = nn-kk
                        do jj = 0,nl                          
                           ii =nn- kk - jj !i:=nn - k-j:
                if(coun<nnn)then                              
                            coun = coun + 1                          
                            sum_u =  sum_u +  COF_ARRAY(coun)*(f1(ii)*f2(jj)*f3(kk))  
                !if(cell2(masterI-Nfem_tot).Coeff(coun-masterI2)- COF_ARRAY(coun) .NE. 0.d0)print*,'************not equal coeficients***********'
                if(ii>0)sum_ux = sum_ux + (ii)*COF_ARRAY(coun)*(f1(ii-1)*f2(jj)*f3(kk))
                if(jj>0)sum_uy = sum_uy + (jj)*COF_ARRAY(coun)*(f1(ii)*f2(jj-1)*f3(kk))
                if(kk>0)sum_uz = sum_uz + (kk)*COF_ARRAY(coun)*(f1(ii)*f2(jj)*f3(kk-1)) 
                end if                       
                        end do      
                     end do
                  end do    
                coun = 0   
                
                         
               if(lat>=0.0d0) sum_ux = -sum_ux
                         val_inter0 =  wtval3(k)*wtval2(j)*wtval1(i)                  
                         val_inter1 =  wtval3(k)*sum_u       
!           print*,'------'
!           print*,i,j,k
!           print*,sum_ux,sum_uy,sum_uz
!           print*,'------'
             
                       val(1)= val(1) + val_inter0*sum_u  
                       val(4)= val(4) + val_inter0*sum_ux + dwt1(i)*wtval2(j)*val_inter1
                       val(3)= val(3) + val_inter0*sum_uy + dwt2(j)*wtval1(i)*val_inter1
               runval = runval + dwt3(k)*wtval1(i)*wtval2(j)*sum_u
                       val(2)= val(2) + val_inter0*sum_uz*step_r_cal 

        !print*,k,wtval3(k),dwt3(k),dwt3(k)*wtval1(i)*wtval2(j),sum_u
           !pause!
                       
       end do      !
      end do
  end do
!print*,'final runlevel',runval*step_r_sav
val(2) = val(2) + runval*step_r_sav

val(3:4) = val(3:4)/size_lat
 !valb(3) = val(2)
pr = nint(pr/8.0d0)
end Subroutine get_local_ud_rot

!!-------------------------------------------------------------------------------
!!-------------------------------------------------------------------------------
subroutine getlatlonSTM(lat,lon,r,xtemp,valin,ux,valout)
implicit double precision(t)
    real(fp_kind),intent(in) :: xtemp(3),valin(3,3),lat,lon,r
    real(fp_kind),intent(out):: valout(3,3),ux(3)
    real(fp_kind) :: df(3),Ux1,Ux2,Ux3,Ux11,Ux12,Ux13,Ux22,Ux23,Ux33
      Ux1=xtemp(1)
      Ux2=xtemp(2)
      Ux3=xtemp(3)
      
      Ux11=valin(1,1);Ux12=valin(1,2);Ux13=valin(1,3);Ux22=valin(2,2);Ux23=valin(2,3);Ux33=valin(3,3); 
      t1 = cos(lon)
      t2 = t1 ** 2
      t3 = t2 * Ux11
      t5 = sin(lon)
      t7 = 0.2D1 * t1 * Ux12 * t5
      t8 = t5 ** 2
      t9 = t8 * Ux22
      t10 = t3 + t7 + t9
      t11 = sin(lat)
      t12 = t11 ** 2
      t14 = cos(lat)

    ux(1) =  xtemp(1)*t11*t1 + xtemp(2)*t11*t5 + xtemp(3)*t14
    ux(2) = -xtemp(1)*t11*t5 + xtemp(2)*t11*t1! + xtemp(3)*cos(lat)
    ux(3) = -xtemp(1)*t14*t1 - xtemp(2)*t14*t5 + xtemp(3)*t11
        ux(2:3)=ux(2:3)*r

      t17 = Ux23 * t5 + t1 * Ux13
      t21 = t14 ** 2
      t25 = Ux12 * r
      t28 = Ux11 - Ux22
      t43 = r * t17
      t48 = Ux1 * t1
      t49 = Ux2 * t5
      t52 = t43 * t11
      valout(1,1) = t10 * t12 + 0.2D1 * t14 * t17 * t11 + Ux33 * t21
      valout(1,2) = t11 * (t11 * t2 * t25 + (-r * t5 * t28 * t11 + Ux2 + t14 * Ux23 * r) * t1 - t5 * (t25 * t11 * t5 + Ux1 + t14 * Ux13 * r))
      valout(1,3) = -(t43 * t21 + (r * (t3 + t9 + t7 - Ux33) * t11 + t48 + t49) * t14 - (t52 + Ux3) * t11)
      valout(2,2) = r * t11 * (r * (Ux11 * t8 - t7 + Ux22 * t2) * t11 - t49 - t48)
      valout(2,3) = -(-r * ((-(t2 * Ux12 - t5 * t28 * t1 - t8 * Ux12) * r * t11 - Ux2 * t1 + Ux1 * t5) * t14 + r * t12 * (t1 * Ux23 - Ux13 * t5)))
      valout(3,3) = r * (r * t10 * t21 + (-0.2D1 * t52 - Ux3) * t14 + t11 * (Ux33 * r * t11 - t49 - t48))
      valout(2,1) = valout(1,2)
      valout(3,1) = valout(1,3) 
    valout(3,2) =valout(2,3) 

end subroutine
!!!-------------------------------------------------------------------------------

Subroutine get_local_udd(lat,lon,r,xyz1,xyz2,xyz3,val,val22,pr)
implicit none
real(fp_kind), intent(in) :: xyz1,xyz3,xyz2
real(fp_kind), intent(out):: val(1:4),val22(3,3)
!real(fp_kind) :: lat,lon,r,val1(4),val2(4),lata,latb,latscale,we,mwe,dwe,latdown,latup,latmin,elem_lat_rad,range_lat_rad,
real(fp_kind) :: lat,lon,r,val1(4),val2(4),lata,latb,latscale,we,mwe,dwe,latdown,latup,latpdown,latpup,val22a(3,3),val22b(3,3),ddwe,dddwe,xtemp(3),valtemp(3,3),udd(3,3),actem
integer :: pr,pr1
    

    latdown = Grid%end_p*deg2rad !primary down (upper limit)

    latup   = Grid%start_p*deg2rad !primar up (lower limit)

    latpup   = Grid%start_p*deg2rad + 0.5*size_lat
    latpdown = Grid%end_p*deg2rad   - 0.5*size_lat

    if(lat < latup .OR. lat>latdown) then

    !print*,'1',lat*rad2deg,latup*rad2deg,latdown*rad2deg
        call get_local_udd_rot(lat,lon,r,xyz1,xyz2,xyz3,val2,val22b,pr,xtemp)

        call getcartderiv2(xtemp(1),xtemp(2),xtemp(3),val2(2:4),val22b,xtemp,udd)
 val(1)=val2(1)
 val(2:4) = xtemp
actem = val(3)
val(3) = val(4)
val(4) = -actem
valtemp = udd

udd(1,2) = valtemp(1,3)
udd(2,1) = udd(1,2)
udd(1,3) = -valtemp(1,2)
udd(3,1) = udd(1,3)
udd(2,2) = valtemp(3,3)
udd(3,3) = valtemp(2,2)
udd(2,3) = -valtemp(2,3)
udd(3,2) = udd(2,3)
val22=udd
    !call getlatlonSTM(lat,lon,r,val1(2:4),udd,xtemp,val22a)
    else if(lat > latpup .AND. lat< latpdown) then
    !print*,'2',lat*rad2deg,latpup*rad2deg,latpdown*rad2deg
        call get_local_udd_primary(lat,lon,r,xyz1,xyz2,xyz3,val,val22a,pr)


        call getcartderiv2(xyz1,xyz2,xyz3,val(2:4),val22a,xtemp,val22)
                val(2:4) = xtemp

    else 

   call get_local_udd_rot(lat,lon,r,xyz1,xyz2,xyz3,val1,val22a,pr,xtemp)
        call getcartderiv2(xtemp(1),xtemp(2),xtemp(3),val1(2:4),val22a,xtemp,udd)
        val1(2:4) = xtemp
        actem = val1(3)
        val1(3) = val1(4)
        val1(4) = -actem
        valtemp = udd

        udd(1,2) = valtemp(1,3)
        udd(2,1) = udd(1,2)
        udd(1,3) = -valtemp(1,2)
        udd(3,1) = udd(1,3)
        udd(2,2) = valtemp(3,3)
        udd(3,3) = valtemp(2,2)
        udd(2,3) = -valtemp(2,3)
        udd(3,2) = udd(2,3)
        val22a=udd

    call getlatlonSTM(lat,lon,r,val1(2:4),udd,xtemp,val22a)!lat,lon,r,xtemp,valin,ux,valout
            val1(2:4)=xtemp

            call get_local_udd_primary(lat,lon,r,xyz1,xyz2,xyz3,val2,val22b,pr1)

         pr = max(pr,pr1)
        if(lat<=latpup) then
            lata = latup
            latb = latpup       
        else
            latb = latpdown
            lata = latdown
        end if
        latscale = (lat - lata)/(latb-lata)
                            
        we = wt(1,latscale)     
        mwe = 1.0d0-we

        dwe = dwt(1,latscale)/(latb-lata)
        ddwe = ddwt(1,latscale)/((latb-lata)**2)

        val(1:4) = val1(1:4)*mwe + val2(1:4)*we
        val(2)   = val(2) - val1(1)*dwe  + dwe*val2(1)
        val22(2:3,2:3) = val22a(2:3,2:3)*mwe + val22b(2:3,2:3)*we
        !print*,val22a(2:3,2:3)
        !print*,'===',mwe
        !print*,val22(2:3,2:3) 
            val22(1,1) =  val22a(1,1)*mwe + val22b(1,1)*we - 2.0d0*val1(2)*dwe+2.0d0*val2(2)*dwe+ddwe*(val2(1)-val1(1))
            val22(1,2) =  val22a(1,2)*mwe + val22b(1,2)*we - val1(3)*dwe+val2(3)*dwe
        val22(2,1) = val22(1,2)
            val22(1,3) =  val22a(1,3)*mwe + val22b(1,3)*we - val1(4)*dwe+val2(4)*dwe
        val22(3,1) = val22(1,3)

        call getcartderiv2(xyz1,xyz2,xyz3,val(2:4),val22,xtemp,val22b)
        val22 = val22b
            val(1) = val(1)
            val(2:4) = xtemp

    end if

end subroutine get_local_udd
!!-------------------------------------------------------------------------------
Subroutine get_local_udd_primary(lat,lon,r,xyz1,xyz2,xyz3,val,udd,pr)
implicit none
   real(fp_kind), intent(in) :: lat,lon,r,xyz1,xyz3,xyz2
   real(fp_kind), intent(out):: val(1:4),udd(3,3)
   real(fp_kind) :: sum_u,sum_ux ,sum_uy,sum_uz, x1,x2,x3,x11,x22,x33,f1(0:n1max+1),f2(0:n1max+1),f3(0:n1max+1),val_inter,wtval3(0:1),wtval2(0:1),wtval1(0:1),dwt1(0:1),dwt2(0:1),dwt3(0:1),valb(3),x330,x331
   real(fp_kind) :: uxx,uxy,uxz,uyz,uzz,uyy,ddwt1(0:1),ddwt2(0:1),ddwt3(0:1),dwtx,dwtz,dwty,ddwtx,ddwty,ddwtz,wxy,wyz,wxz,dwtxy,dwtyz,dwtxz
   real(fp_kind)::  val_inter0, val_inter1, val_inter2,step_r_cal0,sum_u0,xtemp(3),val2(3,3)
   integer :: ii,jj,nn,kk,ci,cj,ck,coun,temp2,nl,masterI,nnn,masterI2
   integer :: i,j,k,  pr
  
   val = 0.0d0   
   udd = 0.0d0

   call get_pt_cgrid(lat,lon,r,i,j,k) 

   temp2 = (Nfem_r+1)*(Nfem_lat+1)
 !  print*,"loopin"

pr = 0;

  do i = 0,1 
     do j = 0,1
       do k = 0,1
         ci = cur_ci + i
         cj = cur_cj + j
         ck = cur_ck + k
    ! if(r<Grid%start_r )print*,'First shell',ck,ci,cj
    ! if(r<Grid%start_r )ck=ck-1
         masterI = ck +  (Nfem_r+1)*(cj-1) + temp2*(ci-1)
  

         call g2lb(ci,cj,ck,lat,lon,r,x11,x22,x33,x330)
    ! x33 = -1.0d0
    ! if(r<Grid%start_r .AND. ck==0 )x330=1.0d0
        ! print*,ck,x33,x330,r
        if(x33>1.000030000002d0 .OR. x33 <-1.000030000002d0) then
            print*," udd a r cont failed",x33,lat,lon,r,ci,ck,ck,Global_grid.r(ck),Global_grid.r(ck+1),Global_grid.r(ck-1)
            pause
        end if
     
      IF(I+j+k==0) then
            x1 = x22  !lon
            x2 = x11  !lat
            x3 = x330  !r


            wtval3(0) = wt(0,x3)
            wtval3(1) = wt(1,x3)
            dwt3(0)   = dwt(0,x3)*step_r_cal2
            dwt3(1)   = dwt(1,x3)*step_r_cal2
            ddwt3(0)   = ddwt(0,x3)*step_r_cal2*step_r_cal2
            ddwt3(1)   = ddwt(1,x3)*step_r_cal2*step_r_cal2          


            wtval2(0) = wt(0,x2) !for lat which is j
            wtval2(1) = wt(1,x2)
            dwt2(0)   = dwt(0,x2)
            dwt2(1)   = dwt(1,x2)
            ddwt2(0)   = ddwt(0,x2)
            ddwt2(1)   = ddwt(1,x2)

            
            wtval1(0) = wt(0,x1) !for lon which is i == 1
            wtval1(1) = wt(1,x1)
            dwt1(0)   = dwt(0,x1)
            dwt1(1)   = dwt(1,x1) 
            ddwt1(0)   = ddwt(0,x1)
            ddwt1(1)   = ddwt(1,x1)              
            !step_r_cal0 = 
       end if
          
            sum_u = 0.0d0
            sum_ux = 0.0d0
            sum_uy = 0.0d0
            sum_uz = 0.0d0

        uxy=0.0d0
        uxz=0.0d0
        uyz=0.0d0
        uxx=0.0d0
        uzz=0.0d0
        uyy=0.0d0
        
        coun = 0
            
           ! nnn = n1g( masterI)

            masterI2  = mapCOFarray( masterI)
            nnn = mapCOFarray(masterI+1)-masterI2
        masterI2 = masterI2-1

        pr = pr + nnn
        nnn = nnn+masterI2  
            coun =  masterI2
        
       f1(0:n1max) = f(x11,1,0)
           f2(0:n1max) = f(x22,1,0)
       f3(0:n1max) = f(x33,1,0)                

                   do nn = 0, n1max
                     do kk = 0 , nn                    
                       nl = nn-kk
                        do jj = 0,nl                          
                           ii =nn- kk - jj !i:=nn - k-j:
                  if(coun<nnn)then
                        coun = coun + 1          
                        !Potential
                    sum_u =  sum_u +  COF_ARRAY(coun)*(f1(ii)*f2(jj)*f3(kk))          
                    !Acceleration
                    if(ii>0)sum_ux = sum_ux + dble(ii)*COF_ARRAY(coun)*(f1(ii-1)*f2(jj)*f3(kk))
                    if(jj>0)sum_uy = sum_uy + dble(jj)*COF_ARRAY(coun)*(f1(ii)*f2(jj-1)*f3(kk))
                    if(kk>0)sum_uz = sum_uz + dble(kk)*COF_ARRAY(coun)*(f1(ii)*f2(jj)*f3(kk-1))         
                    !Jacobian/STM
                    !Diagonal Terms
                    if(ii>1)uxx = uxx + dble(ii*(ii-1))*COF_ARRAY(coun)*(f1(ii-2)*f2(jj)*f3(kk))
                    if(jj>1)uyy = uyy + dble(jj*(jj-1))*COF_ARRAY(coun)*(f1(ii)*f2(jj-2)*f3(kk))
                    if(kk>1)uzz = uzz + dble(kk*(kk-1))*COF_ARRAY(coun)*(f1(ii)*f2(jj)*f3(kk-2))
                    !Cross Terms
                    if(ii>0 .AND. jj>0)uxy = uxy + dble(ii*jj)*COF_ARRAY(coun)*(f1(ii-1)*f2(jj-1)*f3(kk))
                    if(ii>0 .AND. kk>0)uxz = uxz + dble(ii*kk)*COF_ARRAY(coun)*(f1(ii-1)*f2(jj)*f3(kk-1))
                    if(jj>0 .AND. kk>0)uyz = uyz + dble(jj*kk)*COF_ARRAY(coun)*(f1(ii)*f2(jj-1)*f3(kk-1))
                 end if         
                        end do      
                     end do
                  end do    
                coun = 0    
      
                       val_inter0 =  wtval3(k)*wtval2(j)*wtval1(i)
                       wxy = wtval1(i)*wtval2(j)
               wyz = wtval2(j)*wtval3(k)
               wxz = wtval1(i)*wtval3(k)
                       val_inter1 =  wtval3(k)*sum_u
        !taking care fo sum_uz and uzz uzx and uzy terms.. for derivative chain rule.
               sum_uz = sum_uz*step_r_cal
                       uzz = uzz*step_r_cal*step_r_cal
            uxz = uxz*step_r_cal
            uyz = uyz*step_r_cal
            val(1)= val(1) + val_inter0*sum_u  
                 if(lat>=-90.0d0) sum_ux = -sum_ux
                             val(4)= val(4) + val_inter0*sum_ux + dwt1(i)*wtval2(j)*val_inter1  !lat
                             val(3)= val(3) + val_inter0*sum_uy + dwt2(j)*wtval1(i)*val_inter1     !lon .. as dwt1 = diff(u)/d(lon)
                             val(2)= val(2) + val_inter0*sum_uz + dwt3(k)*wtval1(i)*wtval2(j)*sum_u
!
!Jacobian
!
! Warning we have not divided the lat and lon by 1/(start_lat^2) yet
! ALso we are taking care of step_r_cal in uzz and uz ,, the dwtz are taken care of before so uz will have one multiply and uzz two 
!           

            

            dwtx  = dwt1(i)*wyz
            dwtz  = dwt3(k)*wxy
            dwty  = dwt2(j)*wxz

            ddwtx = ddwt1(i)*wyz
            ddwty = ddwt2(j)*wxz
            ddwtz = ddwt3(k)*wxy

            dwtxy = dwt1(i)*dwt2(j)*wtval3(k)
            dwtxz = dwt1(i)*dwt3(k)*wtval2(j)
            dwtyz = dwt3(k)*dwt2(j)*wtval1(i)

            udd(1,1) = udd(1,1) + 2.0d0*dwtx*sum_ux+val_inter0*uxx+ddwtx*sum_u 
            udd(1,2) = udd(1,2) + val_inter0*uxy + dwtxy*sum_u + dwty*sum_ux + dwtx*sum_uy
            udd(1,3) = udd(1,3) + val_inter0*uxz + dwtxz*sum_u + dwtz*sum_ux + dwtx*sum_uz
            udd(2,2) = udd(2,2) + 2.0d0*dwty*sum_uy+val_inter0*uyy+ddwty*sum_u
            udd(2,3) = udd(2,3) + val_inter0*uyz + dwtyz*sum_u + dwtz*sum_uy + dwty*sum_uz
            udd(3,3) = udd(3,3) + 2.0d0*dwtz*sum_uz+val_inter0*uzz +ddwtz*sum_u
                    

       end do      
      end do
  end do
!finalize udd (note that step_r_cal should have been taken care of by now and udd(3,3) should also be final by now)
 udd(1:2,1:2) = udd(1:2,1:2)/(size_lat*size_lat)
 udd(2,1)   = udd(1,2)

 udd(1,3) = udd(1,3)/(size_lat)
 udd(3,1) = udd(1,3)

 udd(2,3) = udd(2,3)/(size_lat)
 udd(3,2) = udd(2,3)
 udd(1,2:3) = -udd(1,2:3)
 udd(2:3,1) = -udd(2:3,1)
!finalize ud
 val(3:4) = val(3:4)/size_lat

!Converting to cartesian
 !call getcartderiv(xyz1,xyz2,xyz3,val(2:4),xtemp)

 val2(1,1)=udd(3,3)
 val2(1,2)=udd(3,2)
 val2(1,3)=udd(3,1)
 val2(2,1)=udd(2,3)
 val2(2,2)=udd(2,2)
 val2(2,3)=udd(2,1)
 val2(3,1)=udd(1,3)
 val2(3,2)=udd(1,2)
 val2(3,3)=udd(1,1)
 udd= val2;

pr = nint(pr/8.0d0)
!udd = val2


end Subroutine get_local_udd_primary
!!-------------------------------------------------------------------------------
!!-------------------------------------------------------------------------------
Subroutine get_local_udd_rot(lat,lon,r,xyz1,xyz2,xyz3,val,udd,pr,xtemp)
implicit none
   real(fp_kind), intent(in) :: lat,lon,r,xyz1,xyz3,xyz2
   real(fp_kind), intent(out):: val(1:4),udd(3,3)
   real(fp_kind) :: sum_u,sum_ux ,sum_uy,sum_uz, x1,x2,x3,x11,x22,x33,f1(0:n1max+1),f2(0:n1max+1),f3(0:n1max+1),val_inter,wtval3(0:1),wtval2(0:1),wtval1(0:1),dwt1(0:1),dwt2(0:1),dwt3(0:1),valb(3),x330,x331
   real(fp_kind) :: uxx,uxy,uxz,uyz,uzz,uyy,ddwt1(0:1),ddwt2(0:1),ddwt3(0:1),dwtx,dwtz,dwty,ddwtx,ddwty,ddwtz,wxy,wyz,wxz,dwtxy,dwtyz,dwtxz,lat2,lon2,r2
   real(fp_kind)::  val_inter0, val_inter1, val_inter2,step_r_cal0,sum_u0,xtemp(3),val2(3,3),actem
   integer :: ii,jj,nn,kk,ci,cj,ck,coun,temp2,nl,masterI,nnn,MASTERI2
   integer :: i,j,k,  pr
  masterI =0
   val = 0.0d0   
   udd = 0.0d0
  step_r_cal2 = 0.0d0
  step_r_cal  = 0.0d0
  x330 = 0.0d00
   xtemp(1) = xyz1
   xtemp(2) = xyz2
   xtemp(3) = xyz3
   call rotate_coordiantes(xtemp(1),xtemp(3),xtemp(2))
   call xyz2SPH(xtemp(1),xtemp(2),xtemp(3),lat2,lon2,r2)
   call get_pt_global(lat2,lon2,r2,i,j,k)

   temp2 = (Global_r+1)*(Global_lat+1)
 !  print*,"loopin"

pr = 0;

  do i = 0,1 
     do j = 0,1
       do k = 0,1
         ci = cur_ci + i
         cj = cur_cj + j
         ck = cur_ck + k
    ! print*,'ck ',ck

         masterI = ck + (Global_r+1)*(cj-1) + temp2*(ci-1)+1  
     masterI = map_val(masterI)+Nfem_tot        
         call g2lb_global(ci,cj,ck,lat2,lon2,r2,x11,x22,x33,x330)
    

    
        if(x33>1.000030000002d0 .OR. x33 <-1.000030000002d0) then
            print*," udd r cont failed b",x33,lat,lon,r,ci,ck,ck,Global_grid.r(ck),Global_grid.r(ck+1),Global_grid.r(ck-1)
            
                !    call g2lb_global(ci,cj,ck,lat2,lon2,r2,x11,x22,x33,x330)
            pause
        end if
     
      IF(I+j+k==0) then
            x1 = x22  !lon
            x2 = x11  !lat
            x3 = x330  !r


            wtval3(0) = wt(0,x3)
            wtval3(1) = wt(1,x3)
            dwt3(0)   = dwt(0,x3)*step_r_cal2
            dwt3(1)   = dwt(1,x3)*step_r_cal2
            ddwt3(0)   = ddwt(0,x3)*step_r_cal2*step_r_cal2
            ddwt3(1)   = ddwt(1,x3)*step_r_cal2*step_r_cal2          
  
            wtval2(0) = wt(0,x2) !for lat which is j
            wtval2(1) = wt(1,x2)
            dwt2(0)   = dwt(0,x2)
            dwt2(1)   = dwt(1,x2)
            ddwt2(0)   = ddwt(0,x2)
            ddwt2(1)   = ddwt(1,x2)

            
            wtval1(0) = wt(0,x1) !for lon which is i == 1
            wtval1(1) = wt(1,x1)
            dwt1(0)   = dwt(0,x1)
            dwt1(1)   = dwt(1,x1) 
            ddwt1(0)   = ddwt(0,x1)
            ddwt1(1)   = ddwt(1,x1)              
       end if
          
            sum_u = 0.0d0
            sum_ux = 0.0d0
            sum_uy = 0.0d0
            sum_uz = 0.0d0

        uxy=0.0d0
        uxz=0.0d0
        uyz=0.0d0
        uxx=0.0d0
        uzz=0.0d0
        uyy=0.0d0
        
        coun = 0
            
           ! nnn = n1g2( masterI)

            masterI2  = mapCOFarray( masterI)
            nnn = mapCOFarray(masterI+1)-masterI2
        masterI2 = masterI2-1

        pr = pr + nnn
        nnn = nnn+masterI2  
            coun =  masterI2


     !   pr = pr + nnn  
        
       f1(0:n1max) = f(x11,1,0)
           f2(0:n1max) = f(x22,1,0)
       f3(0:n1max) = f(x33,1,0)
!          
             !  coun = 0
                   do nn = 0, n1max
                     do kk = 0 , nn                    
                       nl = nn-kk
                        do jj = 0,nl                          
                           ii =nn- kk - jj !i:=nn - k-j:
                  if(coun<nnn)then
                        coun = coun + 1          
                        !Potential
                    sum_u =  sum_u +  COF_ARRAY(coun)*(f1(ii)*f2(jj)*f3(kk))          
                    !Acceleration
                    if(ii>0)sum_ux = sum_ux + dble(ii)*COF_ARRAY(coun)*(f1(ii-1)*f2(jj)*f3(kk))
                    !if(ii>0)print*,coun,sum_uz
                    if(jj>0)sum_uy = sum_uy + dble(jj)*COF_ARRAY(coun)*(f1(ii)*f2(jj-1)*f3(kk))
                    if(kk>0)sum_uz = sum_uz + dble(kk)*COF_ARRAY(coun)*(f1(ii)*f2(jj)*f3(kk-1))         
                    !Jacobian/STM
                    !Diagonal Terms
                    if(ii>1)uxx = uxx + dble(ii*(ii-1))*COF_ARRAY(coun)*(f1(ii-2)*f2(jj)*f3(kk))
                    if(jj>1)uyy = uyy + dble(jj*(jj-1))*COF_ARRAY(coun)*(f1(ii)*f2(jj-2)*f3(kk))
                    if(kk>1)uzz = uzz + dble(kk*(kk-1))*COF_ARRAY(coun)*(f1(ii)*f2(jj)*f3(kk-2))
                    !Cross Terms
                    if(ii>0 .AND. jj>0)uxy = uxy + dble(ii*jj)*COF_ARRAY(coun)*(f1(ii-1)*f2(jj-1)*f3(kk))
                    if(ii>0 .AND. kk>0)uxz = uxz + dble(ii*kk)*COF_ARRAY(coun)*(f1(ii-1)*f2(jj)*f3(kk-1))
                    if(jj>0 .AND. kk>0)uyz = uyz + dble(jj*kk)*COF_ARRAY(coun)*(f1(ii)*f2(jj-1)*f3(kk-1))
                 end if         
                        end do      
                     end do
                  end do    
                coun = 0    
    
                      
                       val_inter0 =  wtval3(k)*wtval2(j)*wtval1(i)
                       wxy = wtval1(i)*wtval2(j)
               wyz = wtval2(j)*wtval3(k)
               wxz = wtval1(i)*wtval3(k)
                       val_inter1 =  wtval3(k)*sum_u
        !taking care fo sum_uz and uzz uzx and uzy terms.. for derivative chain rule.
               sum_uz = sum_uz*step_r_cal
                       uzz = uzz*step_r_cal*step_r_cal
            uxz = uxz*step_r_cal
            uyz = uyz*step_r_cal
                       val(1)= val(1) + val_inter0*sum_u  

                 if(lat>=-90.0d0) sum_ux = -sum_ux
                             val(4)= val(4) + val_inter0*sum_ux + dwt1(i)*wtval2(j)*val_inter1  !lat
                             val(3)= val(3) + val_inter0*sum_uy + dwt2(j)*wtval1(i)*val_inter1     !lon .. as dwt1 = diff(u)/d(lon)
                             val(2)= val(2) + val_inter0*sum_uz + dwt3(k)*wtval1(i)*wtval2(j)*sum_u
                                !print*,dwt3(k),wtval1(i),wtval2(j)
!Jacobian
!
! Warning we have not divided the lat and lon by 1/(start_lat^2) yet
! ALso we are taking care of step_r_cal in uzz and uz ,, the dwtz are taken care of before so uz will have one multiply and uzz two 
!           

            

            dwtx  = dwt1(i)*wyz
            dwtz  = dwt3(k)*wxy
            dwty  = dwt2(j)*wxz

            ddwtx = ddwt1(i)*wyz
            ddwty = ddwt2(j)*wxz
            ddwtz = ddwt3(k)*wxy

            dwtxy = dwt1(i)*dwt2(j)*wtval3(k)
            dwtxz = dwt1(i)*dwt3(k)*wtval2(j)
            dwtyz = dwt3(k)*dwt2(j)*wtval1(i)

            udd(1,1) = udd(1,1) + 2.0d0*dwtx*sum_ux+val_inter0*uxx+ddwtx*sum_u 
            udd(1,2) = udd(1,2) + val_inter0*uxy + dwtxy*sum_u + dwty*sum_ux + dwtx*sum_uy
            udd(1,3) = udd(1,3) + val_inter0*uxz + dwtxz*sum_u + dwtz*sum_ux + dwtx*sum_uz
            udd(2,2) = udd(2,2) + 2.0d0*dwty*sum_uy+val_inter0*uyy+ddwty*sum_u
            udd(2,3) = udd(2,3) + val_inter0*uyz + dwtyz*sum_u + dwtz*sum_uy + dwty*sum_uz
            udd(3,3) = udd(3,3) + 2.0d0*dwtz*sum_uz+val_inter0*uzz +ddwtz*sum_u
                    

       end do      
      end do
  end do
!finalize udd (note that step_r_cal should have been taken care of by now and udd(3,3) should also be final by now)
 udd(2,1)   = udd(1,2)
 udd(1:2,1:2) = udd(1:2,1:2)/(size_lat*size_lat)


 udd(1,3) = udd(1,3)/(size_lat)
 udd(3,1) = udd(1,3)

 udd(2,3) = udd(2,3)/(size_lat)
 udd(3,2) = udd(2,3)
 udd(1,2:3) = -udd(1,2:3)
 udd(2:3,1) = -udd(2:3,1)
!finalize ud
 val(3) = val(3)/size_lat
 val(4) = val(4)/size_lat
!Converting to cartesian
 !call getcartderiv(xyz1,xyz2,xyz3,val(2:4),xtemp)

 val2(1,1)=udd(3,3)
 val2(1,2)=udd(3,2)
 val2(1,3)=udd(3,1)
 val2(2,1)=udd(2,3)
 val2(2,2)=udd(2,2)
 val2(2,3)=udd(2,1)
 val2(3,1)=udd(1,3)
 val2(3,2)=udd(1,2)
 val2(3,3)=udd(1,1)
 udd=val2

pr = nint(pr/8.0d0)




end Subroutine get_local_udd_rot
!!-------------------------------------------------------------------------------
!!-------------------------------------------------------------------------------
Subroutine get_local_uddd_primary(lat,lon,r,xyz1,xyz2,xyz3,val,udd,uddd,pr)
implicit none
   real(fp_kind), intent(in) :: lat,lon,r,xyz1,xyz3,xyz2
   real(fp_kind), intent(out):: val(1:4),udd(3,3)
   real(fp_kind), intent(out) :: uddd(3,3,3)
   real(fp_kind) :: sum_u,sum_ux ,sum_uy,sum_uz, x1,x2,x3,x11,x22,x33,f1(0:n1max+1),f2(0:n1max+1),f3(0:n1max+1),val_inter,wtval3(0:1),wtval2(0:1),wtval1(0:1),dwt1(0:1),dwt2(0:1),dwt3(0:1),valb(3),x330,x331
   real(fp_kind) :: uxx,uxy,uxz,uyz,uzz,uyy,ddwt1(0:1),ddwt2(0:1),ddwt3(0:1),dwtx,dwtz,dwty,ddwtx,ddwty,ddwtz,wxy,wyz,wxz,dwtxy,dwtyz,dwtxz
   real(fp_kind) :: uxxx,uxxy,uxxz,uyyx,uyyy,uyyz,uzzx,uzzy,uzzz,uxyz,dddwt1(0:1),dddwt2(0:1),dddwt3(0:1),dddwtx,dddwty,dddwtz,ddwtxdy,ddwtxdz,ddwtydx,ddwtydz,ddwtzdx,ddwtzdy,dwtxyz
   real(fp_kind)::  val_inter0, val_inter1, val_inter2,step_r_cal0,sum_u0,xtemp(3),val2(3,3),val3(3,3,3),step_r_cal3
   integer :: ii,jj,nn,kk,ci,cj,ck,coun,temp2,nl,masterI,nnn,masterI2
   integer :: i,j,k,  pr
  step_r_cal2 = 0.0d0
   val = 0.0d0 

  
   udd = 0.0d0
   uddd = 0.0d0
   val2 = 0.0d0
   val3 = 0.0d0
   call get_pt_cgrid(lat,lon,r,i,j,k) 

   temp2 = (Nfem_r+1)*(Nfem_lat+1)
 !  print*,"loopin"

pr = 0;

  do i = 0,1 
     do j = 0,1
       do k = 0,1
         ci = cur_ci + i
         cj = cur_cj + j
         ck = cur_ck + k
 
         masterI = ck +  (Nfem_r+1)*(cj-1) + temp2*(ci-1)
  

         call g2lb(ci,cj,ck,lat,lon,r,x11,x22,x33,x330)
    
        if(x33>1.000030000002d0 .OR. x33 <-1.000030000002d0) then
            print*," r cont failed",x33,lat,lon,r,ci,ck,ck,Global_grid.r(ck),Global_grid.r(ck+1)
            pause
        end if
     
      IF(I+j+k==0) then
            x1 = x22  !lon
            x2 = x11  !lat
            x3 = x330  !r


            wtval3(0) = wt(0,x3)
            wtval3(1) = wt(1,x3)
            dwt3(0)   = dwt(0,x3)*step_r_cal2
            dwt3(1)   = dwt(1,x3)*step_r_cal2
            ddwt3(0)   = ddwt(0,x3)*step_r_cal2*step_r_cal2
            ddwt3(1)   = ddwt(1,x3)*step_r_cal2*step_r_cal2          
            dddwt3(0)   = dddwt(0,x3)*step_r_cal2*step_r_cal2*step_r_cal2
            dddwt3(1)   = dddwt(1,x3)*step_r_cal2*step_r_cal2*step_r_cal2

            wtval2(0) = wt(0,x2) !for lat which is j
            wtval2(1) = wt(1,x2)
            dwt2(0)   = dwt(0,x2)
            dwt2(1)   = dwt(1,x2)
            ddwt2(0)   = ddwt(0,x2)
            ddwt2(1)   = ddwt(1,x2)
            dddwt2(0)   = dddwt(0,x2)
            dddwt2(1)   = dddwt(1,x2)
            
            wtval1(0) = wt(0,x1) !for lon which is i == 1
            wtval1(1) = wt(1,x1)
            dwt1(0)   = dwt(0,x1)
            dwt1(1)   = dwt(1,x1) 
            ddwt1(0)   = ddwt(0,x1)
            ddwt1(1)   = ddwt(1,x1)   
            dddwt1(0)   = dddwt(0,x1)
            dddwt1(1)   = dddwt(1,x1)   

        
      ! print*, dwt(0,x3)  ,dddwt3(0),dddwt3(1)
            !step_r_cal0 = 
       end if
          
            sum_u = 0.0d0
            sum_ux = 0.0d0
            sum_uy = 0.0d0
            sum_uz = 0.0d0

        uxy=0.0d0
        uxz=0.0d0
        uyz=0.0d0
        uxx=0.0d0
        uzz=0.0d0
        uyy=0.0d0

        uxxx=0.0d0
        uxxy=0.0d0
        uxxz=0.0d0
        uyyx=0.0d0
        uyyy=0.0d0
        uyyz=0.0d0    
        uzzx=0.0d0
        uzzy=0.0d0
        uzzz=0.0d0
        uxyz=0.0d0

        coun = 0
            
            masterI2  = mapCOFarray( masterI)
            nnn = mapCOFarray(masterI+1)-masterI2
        masterI2 = masterI2-1

        pr = pr + nnn
        nnn = nnn+masterI2  
            coun =  masterI2
            
       f1(0:n1max) = f(x11,1,0)
           f2(0:n1max) = f(x22,1,0)
       f3(0:n1max) = f(x33,1,0)
                   
              ! coun = 0
                   do nn = 0, n1max
                     do kk = 0 , nn                    
                       nl = nn-kk
                        do jj = 0,nl                          
                           ii =nn- kk - jj !i:=nn - k-j:
                  if(coun<nnn)then
                        coun = coun + 1          
                        !Potential
                    sum_u =  sum_u +  COF_ARRAY(coun)*(f1(ii)*f2(jj)*f3(kk))          
                    !Acceleration
                    if(ii>0)sum_ux = sum_ux + dble(ii)*COF_ARRAY(coun)*(f1(ii-1)*f2(jj)*f3(kk))
                    if(jj>0)sum_uy = sum_uy + dble(jj)*COF_ARRAY(coun)*(f1(ii)*f2(jj-1)*f3(kk))
                    if(kk>0)sum_uz = sum_uz + dble(kk)*COF_ARRAY(coun)*(f1(ii)*f2(jj)*f3(kk-1))         
                    !Jacobian/STM
                    !Diagonal Terms
                    if(ii>1)uxx = uxx + dble(ii*(ii-1))*COF_ARRAY(coun)*(f1(ii-2)*f2(jj)*f3(kk))
                    if(jj>1)uyy = uyy + dble(jj*(jj-1))*COF_ARRAY(coun)*(f1(ii)*f2(jj-2)*f3(kk))
                    if(kk>1)uzz = uzz + dble(kk*(kk-1))*COF_ARRAY(coun)*(f1(ii)*f2(jj)*f3(kk-2))
                    !Cross Terms
                    if(ii>0 .AND. jj>0)uxy = uxy + dble(ii*jj)*COF_ARRAY(coun)*(f1(ii-1)*f2(jj-1)*f3(kk))
                    if(ii>0 .AND. kk>0)uxz = uxz + dble(ii*kk)*COF_ARRAY(coun)*(f1(ii-1)*f2(jj)*f3(kk-1))
                    if(jj>0 .AND. kk>0)uyz = uyz + dble(jj*kk)*COF_ARRAY(coun)*(f1(ii)*f2(jj-1)*f3(kk-1))

                    !STT

                    if(ii>2)uxxx = uxxx + dble(ii*(ii-1)*(ii-2))*COF_ARRAY(coun)*(f1(ii-3)*f2(jj)*f3(kk))
                    if(jj>2)uyyy = uyyy + dble(jj*(jj-1)*(jj-2))*COF_ARRAY(coun)*(f1(ii)*f2(jj-3)*f3(kk))
                    if(kk>2)uzzz = uzzz + dble(kk*(kk-1)*(kk-2))*COF_ARRAY(coun)*(f1(ii)*f2(jj)*f3(kk-3))

                    if(ii>1 .AND. jj>0)uxxy = uxxy + dble(ii*jj*(ii-1))*COF_ARRAY(coun)*(f1(ii-2)*f2(jj-1)*f3(kk))
                    if(ii>1 .AND. kk>0)uxxz = uxxz + dble(ii*kk*(ii-1))*COF_ARRAY(coun)*(f1(ii-2)*f2(jj)*f3(kk-1))

                    if(ii>0 .AND. jj>1)uyyx = uyyx + dble(ii*jj*(jj-1))*COF_ARRAY(coun)*(f1(ii-1)*f2(jj-2)*f3(kk))
                    if(kk>0 .AND. jj>1)uyyz = uyyz + dble(jj*kk*(jj-1))*COF_ARRAY(coun)*(f1(ii)*f2(jj-2)*f3(kk-1))

                    if(ii>0 .AND. kk>1)uzzx = uzzx + dble(ii*kk*(kk-1))*COF_ARRAY(coun)*(f1(ii-1)*f2(jj)*f3(kk-2))
                    if(jj>0 .AND. kk>1)uzzy = uzzy + dble(jj*kk*(kk-1))*COF_ARRAY(coun)*(f1(ii)*f2(jj-1)*f3(kk-2))

                    if(jj>0 .AND. kk>0 .AND. ii>0)uxyz = uxyz + dble(jj*kk*ii)*COF_ARRAY(coun)*(f1(ii-1)*f2(jj-1)*f3(kk-1))
                 end if         
                        end do      
                     end do
                  end do    
                coun = 0    
    
                      
                       val_inter0 =  wtval3(k)*wtval2(j)*wtval1(i)
                       wxy = wtval1(i)*wtval2(j)
               wyz = wtval2(j)*wtval3(k)
               wxz = wtval1(i)*wtval3(k)
                       val_inter1 =  wtval3(k)*sum_u
        !taking care fo sum_uz and uzz uzx and uzy terms.. for derivative chain rule.
                sum_uz = sum_uz*step_r_cal
                        uzz = uzz*step_r_cal*step_r_cal
            uxz = uxz*step_r_cal
            uyz = uyz*step_r_cal


            uzzz = uzzz*step_r_cal*step_r_cal*step_r_cal
            uzzx = uzzx*step_r_cal*step_r_cal
            uzzy = uzzy*step_r_cal*step_r_cal
                uxxz = uxxz*step_r_cal
                uyyz = uyyz*step_r_cal
                uxyz = uxyz*step_r_cal

                       val(1)= val(1) + val_inter0*sum_u  
                      ! print*,val(1)
            !print*,wtval3(k),wtval2(j),wtval1(i)
            !print*,'-----------------------------'
!pause
                 if(lat>=-90.0d0) sum_ux = -sum_ux
                             val(4)= val(4) + val_inter0*sum_ux + dwt1(i)*wtval2(j)*val_inter1  !lat
                             val(3)= val(3) + val_inter0*sum_uy + dwt2(j)*wtval1(i)*val_inter1     !lon .. as dwt1 = diff(u)/d(lon)
                             val(2)= val(2) + val_inter0*sum_uz + dwt3(k)*wtval1(i)*wtval2(j)*sum_u

!Jacobian
!
! Warning we have not divided the lat and lon by 1/(start_lat^2) yet
! ALso we are taking care of step_r_cal in uzz and uz ,, the dwtz are taken care of before so uz will have one multiply and uzz two 
!           

            

            dwtx  = dwt1(i)*wyz
            dwtz  = dwt3(k)*wxy
            dwty  = dwt2(j)*wxz

            ddwtx = ddwt1(i)*wyz
            ddwty = ddwt2(j)*wxz
            ddwtz = ddwt3(k)*wxy

            dwtxy = dwt1(i)*dwt2(j)*wtval3(k)
            dwtxz = dwt1(i)*dwt3(k)*wtval2(j)
            dwtyz = dwt3(k)*dwt2(j)*wtval1(i)
                       !  print*,'int val',uxxx/(size_lat*size_lat*size_lat),uzzy/(size_lat)
            udd(1,1) = udd(1,1) + val_inter0*uxx + ddwtx*sum_u +2.0d0*dwtx*sum_ux
            udd(1,2) = udd(1,2) + val_inter0*uxy + dwtxy*sum_u + dwty*sum_ux + dwtx*sum_uy
            udd(1,3) = udd(1,3) + val_inter0*uxz + dwtxz*sum_u + dwtz*sum_ux + dwtx*sum_uz
            udd(2,2) = udd(2,2) + val_inter0*uyy + ddwty*sum_u+2.0d0*dwty*sum_uy
            udd(2,3) = udd(2,3) + val_inter0*uyz + dwtyz*sum_u + dwtz*sum_uy + dwty*sum_uz
            udd(3,3) = udd(3,3) + val_inter0*uzz + ddwtz*sum_u + 2.0d0*dwtz*sum_uz




! STT equations

            dddwtx  = dddwt1(i)*wyz
            dddwty  = dddwt2(j)*wxz
            dddwtz  = dddwt3(k)*wxy 
            dwtxyz  = dwt1(i)*dwt2(j)*dwt3(k)
            ddwtxdy = ddwt1(i)*dwt2(j)*wtval3(k)
            ddwtxdz = ddwt1(i)*dwt3(k)*wtval2(j)

            ddwtydx = ddwt2(j)*dwt1(i)*wtval3(k)
            ddwtydz = ddwt2(j)*dwt3(k)*wtval1(i)

            ddwtzdx = ddwt3(k)*dwt1(i)*wtval2(j)
            ddwtzdy = ddwt3(k)*dwt2(j)*wtval1(i)


            uddd(1,1,1)   = uddd(1,1,1) + val_inter0*uxxx + dddwtx*sum_u+ 3.0d0*ddwtx*sum_ux + 3.0d0*dwtx*uxx
            uddd(1,2,1)   = uddd(1,2,1) + val_inter0*uxxy + 2.0d0*dwtxy*sum_ux + 2.0d0*dwtx*uxy + dwty*uxx  + ddwtx*sum_uy + ddwtxdy*sum_u
            uddd(1,3,1)   = uddd(1,3,1) + val_inter0*uxxz + 2.0d0*dwtxz*sum_ux + 2.0d0*dwtx*uxz + dwtz*uxx + ddwtx*sum_uz + ddwtxdz*sum_u 

            uddd(2,1,2)   = uddd(2,1,2) + val_inter0*uyyx + 2.0d0*dwtxy*sum_uy + 2.0d0*dwty*uxy + dwtx*uyy + ddwty*sum_ux + ddwtydx*sum_u 
            uddd(2,2,2)   = uddd(2,2,2) + val_inter0*uyyy + dddwty*sum_u+ 3.0d0*ddwty*sum_uy + 3.0d0*dwty*uyy 
            uddd(2,3,2)   = uddd(2,3,2) + val_inter0*uyyz + 2.0d0*dwtyz*sum_uy + 2.0d0*dwty*uyz + dwtz*uyy  + ddwty*sum_uz + ddwtydz*sum_u 

            uddd(3,1,3)   = uddd(3,1,3) + val_inter0*uzzx + 2.0d0*dwtxz*sum_uz + 2.0d0*dwtz*uxz + dwtx*uzz  + ddwtz*sum_ux + ddwtzdx*sum_u  
            uddd(3,2,3)   = uddd(3,2,3) + val_inter0*uzzy + 2.0d0*dwtyz*sum_uz + 2.0d0*dwtz*uyz + dwty*uzz  + ddwtz*sum_uy + ddwtzdy*sum_u  
            uddd(3,3,3)   = uddd(3,3,3) + val_inter0*uzzz + 3.0d0*ddwtz*sum_uz + 3.0d0*dwtz*uzz !! + dddwtz*sum_u

            uddd(1,2,3)   = uddd(1,2,3) + val_inter0*uxyz + dwtz*uxy + dwtxy*sum_uz+dwtxyz*sum_u + dwtyz*sum_ux + dwty*uxz  + dwtxz*sum_uy + dwtx*uyz
            !print*,uzzz

       end do      
      end do
  end do

!finalize uddd
  uddd(1,1,1) = -uddd(1,1,1)/(size_lat*size_lat*size_lat)
  uddd(1,2,1) = uddd(1,2,1)/(size_lat*size_lat*size_lat)
  uddd(2,1,1) = uddd(1,2,1)
  uddd(1,1,2) = uddd(1,2,1)
  uddd(1,3,1) = uddd(1,3,1)/(size_lat*size_lat)
  uddd(3,1,1) = uddd(1,3,1)
  uddd(1,1,3) = uddd(1,3,1)
  uddd(2,1,2) = -uddd(2,1,2)/(size_lat*size_lat*size_lat)
  uddd(2,2,1) = uddd(2,1,2)
  uddd(1,2,2) = uddd(2,1,2)
  uddd(2,2,2) = uddd(2,2,2)/(size_lat*size_lat*size_lat)
  uddd(2,3,2) = uddd(2,3,2)/(size_lat*size_lat)
  uddd(3,2,2) = uddd(2,3,2)
  uddd(2,2,3) = uddd(2,3,2)
  uddd(3,1,3) = -uddd(3,1,3)/(size_lat)
  uddd(3,3,1) = uddd(3,1,3)
  uddd(1,3,3) = uddd(3,1,3)
  uddd(3,2,3) = uddd(3,2,3)/(size_lat)
  uddd(3,3,2) = uddd(3,2,3)
  uddd(2,3,3) = uddd(3,2,3)

  uddd(3,3,3) = uddd(3,3,3)

  uddd(1,2,3) = -uddd(1,2,3)/(size_lat*size_lat)
  uddd(1,3,2) = uddd(1,2,3)
  uddd(3,1,2) = uddd(1,2,3)
  uddd(3,2,1) = uddd(1,2,3)
  uddd(2,3,1) = uddd(1,2,3)
  uddd(2,1,3) = uddd(1,2,3)
!rint*,'printing values STT'
 do i=1,3
    do j = 1,3
        do k = 1,3
            ii = i
            jj = j
            kk = k
                if(i==1)ii=3
            if(i==3)ii=1
                if(j==1)jj=3
            if(j==3)jj=1
                if(k==1)kk=3
            if(k==3)kk=1        
             
            val3(i,j,k)=uddd(ii,jj,kk)
        end do
    end do
 end do


        
!finalize udd (note that step_r_cal should have been taken care of by now and udd(3,3) should also be final by now)
 udd(1:2,1:2) = udd(1:2,1:2)/(size_lat*size_lat)
 udd(2,1)     = udd(1,2)

 udd(1,3) = udd(1,3)/(size_lat)
 udd(3,1) = udd(1,3)

 udd(2,3) = udd(2,3)/(size_lat)
 udd(3,2) = udd(2,3)
 udd(1,2:3) = -udd(1,2:3)
 udd(2:3,1) = -udd(2:3,1)
!finalize ud
 val(3:4) = val(3:4)/size_lat

!Converting to cartesian
 !call getcartderiv(xyz1,xyz2,xyz3,val(2:4),xtemp)

 val2(1,1)=udd(3,3)
 val2(1,2)=udd(3,2)
 val2(1,3)=udd(3,1)
 val2(2,1)=udd(2,3)
 val2(2,2)=udd(2,2)
 val2(2,3)=udd(2,1)
 val2(3,1)=udd(1,3)
 val2(3,2)=udd(1,2)
 val2(3,3)=udd(1,1)
 udd=0.0d0;
 uddd=0.0d0
pr = nint(pr/8.0d0)
!udd = val2
 call getcartderiv3(xyz1,xyz2,xyz3,val(2:4),val2,val3,xtemp,udd,uddd)
 val(2:4) = xtemp

end Subroutine get_local_uddd_primary
!!!-------------------------------------------------------------------------------
!!-------------------------------------------------------------------------------
!!-------------------------------------------------------------------------------
Subroutine get_local_uddd_rot(lat,lon,r,xyz1,xyz2,xyz3,val,udd,uddd,pr)
implicit none
   real(fp_kind), intent(in) :: lat,lon,r,xyz1,xyz3,xyz2
   real(fp_kind), intent(out):: val(1:4),udd(3,3),uddd(3,3,3)
   real(fp_kind) :: sum_u,sum_ux ,sum_uy,sum_uz, x1,x2,x3,x11,x22,x33,f1(0:n1max+1),f2(0:n1max+1),f3(0:n1max+1),val_inter,wtval3(0:1),wtval2(0:1),wtval1(0:1),dwt1(0:1),dwt2(0:1),dwt3(0:1),valb(3),x330,x331
   real(fp_kind) :: uxx,uxy,uxz,uyz,uzz,uyy,ddwt1(0:1),ddwt2(0:1),ddwt3(0:1),dwtx,dwtz,dwty,ddwtx,ddwty,ddwtz,wxy,wyz,wxz,dwtxy,dwtyz,dwtxz
   real(fp_kind) :: uxxx,uxxy,uxxz,uyyx,uyyy,uyyz,uzzx,uzzy,uzzz,uxyz,dddwt1(0:1),dddwt2(0:1),dddwt3(0:1),dddwtx,dddwty,dddwtz,ddwtxdy,ddwtxdz,ddwtydx,ddwtydz,ddwtzdx,ddwtzdy,dwtxyz
   real(fp_kind)::  val_inter0, val_inter1, val_inter2,step_r_cal0,sum_u0,xtemp(3),val2(3,3),val3(3,3,3),step_r_cal3,actem,lat2,lon2,r2
   integer :: ii,jj,nn,kk,ci,cj,ck,coun,temp2,nl,masterI,nnn,masterI2
   integer :: i,j,k,  pr
  uddd =0.0d0
  step_r_cal2 = 0.0d0
  step_r_cal  = 0.0d0
  x330 = 0.0d00
  masterI =0
   val = 0.0d0   
   udd = 0.0d0
   xtemp(1) = xyz1
   xtemp(2) = xyz2
   xtemp(3) = xyz3
   call rotate_coordiantes(xtemp(1),xtemp(3),xtemp(2))
   call xyz2SPH(xtemp(1),xtemp(2),xtemp(3),lat2,lon2,r2)
   call get_pt_global(lat2,lon2,r2,i,j,k)

   temp2 = (Global_r+1)*(Global_lat+1)
 !  print*,"loopin"
!print*,'DDD vals now'
pr = 0;

  do i = 0,1 
     do j = 0,1
       do k = 0,1
         ci = cur_ci + i
         cj = cur_cj + j
         ck = cur_ck + k
 
         masterI = ck + (Global_r+1)*(cj-1) + temp2*(ci-1)+1  
     masterI = map_val(masterI) + Nfem_tot
         call g2lb_global(ci,cj,ck,lat2,lon2,r2,x11,x22,x33,x330)
    
        if(x33>1.000030000002d0 .OR. x33 <-1.000030000002d0) then
            print*,"uddd b r cont failed",x33,lat,lon,r,ci,ck,ck,Global_grid.r(ck),Global_grid.r(ck+1)
            pause
        end if
     
      IF(I+j+k==0) then
            x1 = x22  !lon
            x2 = x11  !lat
            x3 = x330  !r

          ! print*,"WEIGHT X1,x2,x3",x1,x2,x3
            wtval3(0) = wt(0,x3)
            wtval3(1) = wt(1,x3)
            dwt3(0)   = dwt(0,x3)*step_r_cal2
            dwt3(1)   = dwt(1,x3)*step_r_cal2
            ddwt3(0)   = ddwt(0,x3)*step_r_cal2*step_r_cal2
            ddwt3(1)   = ddwt(1,x3)*step_r_cal2*step_r_cal2    
              !    print*,"WEIGHT X1,x2,x3",dwt3(0),dwt3(1),step_r_cal2,x3,dwt(0,x3)
!pause 
            dddwt3(0)   = dddwt(0,x3)*step_r_cal2*step_r_cal2*step_r_cal2
            dddwt3(1)   = dddwt(1,x3)*step_r_cal2*step_r_cal2*step_r_cal2

            wtval2(0) = wt(0,x2) !for lat which is j
            wtval2(1) = wt(1,x2)
            dwt2(0)   = dwt(0,x2)
            dwt2(1)   = dwt(1,x2)
            ddwt2(0)   = ddwt(0,x2)
            ddwt2(1)   = ddwt(1,x2)

            dddwt2(0)   = dddwt(0,x2)
            dddwt2(1)   = dddwt(1,x2)
            
            wtval1(0) = wt(0,x1) !for lon which is i == 1
            wtval1(1) = wt(1,x1)
            dwt1(0)   = dwt(0,x1)
            dwt1(1)   = dwt(1,x1) 
            ddwt1(0)   = ddwt(0,x1)
            ddwt1(1)   = ddwt(1,x1)   
            dddwt1(0)   = dddwt(0,x1)
            dddwt1(1)   = dddwt(1,x1)           
            !step_r_cal0 = 
       end if
          
            sum_u = 0.0d0
            sum_ux = 0.0d0
            sum_uy = 0.0d0
            sum_uz = 0.0d0

        uxy=0.0d0
        uxz=0.0d0
        uyz=0.0d0
        uxx=0.0d0
        uzz=0.0d0
        uyy=0.0d0

        uxxx=0.0d0
        uxxy=0.0d0
        uxxz=0.0d0
        uyyx=0.0d0
        uyyy=0.0d0
        uyyz=0.0d0    
        uzzx=0.0d0
        uzzy=0.0d0
        uzzz=0.0d0
        uxyz=0.0d0

        coun = 0
            
            masterI2  = mapCOFarray( masterI)
            nnn = mapCOFarray(masterI+1)-masterI2
        masterI2 = masterI2-1

        pr = pr + nnn
        nnn = nnn+masterI2  
            coun =  masterI2
            
       f1(0:n1max) = f(x11,1,0)
           f2(0:n1max) = f(x22,1,0)
       f3(0:n1max) = f(x33,1,0)
            !              print*,"2 point",dwt3(0),dwt3(1)    

                   do nn = 0, n1max
                     do kk = 0 , nn                    
                       nl = nn-kk
                        do jj = 0,nl                          
                           ii =nn- kk - jj !i:=nn - k-j:
                  if(coun<nnn)then
                    coun = coun + 1          
                        !Potential
                    sum_u =  sum_u +  COF_ARRAY(coun)*(f1(ii)*f2(jj)*f3(kk))          
                    !Acceleration
                    if(ii>0)sum_ux = sum_ux + dble(ii)*COF_ARRAY(coun)*(f1(ii-1)*f2(jj)*f3(kk))
                    !if(ii>0)print*,coun,sum_uz
                    if(jj>0)sum_uy = sum_uy + dble(jj)*COF_ARRAY(coun)*(f1(ii)*f2(jj-1)*f3(kk))
                    if(kk>0)sum_uz = sum_uz + dble(kk)*COF_ARRAY(coun)*(f1(ii)*f2(jj)*f3(kk-1)) 

                    !Jacobian/STM
                    !Diagonal Terms
                    if(ii>1)uxx = uxx + dble(ii*(ii-1))*COF_ARRAY(coun)*(f1(ii-2)*f2(jj)*f3(kk))
                    if(jj>1)uyy = uyy + dble(jj*(jj-1))*COF_ARRAY(coun)*(f1(ii)*f2(jj-2)*f3(kk))
                    if(kk>1)uzz = uzz + dble(kk*(kk-1))*COF_ARRAY(coun)*(f1(ii)*f2(jj)*f3(kk-2))
                    !Cross Terms
                    if(ii>0 .AND. jj>0)uxy = uxy + dble(ii*jj)*COF_ARRAY(coun)*(f1(ii-1)*f2(jj-1)*f3(kk))
                    if(ii>0 .AND. kk>0)uxz = uxz + dble(ii*kk)*COF_ARRAY(coun)*(f1(ii-1)*f2(jj)*f3(kk-1))
                    if(jj>0 .AND. kk>0)uyz = uyz + dble(jj*kk)*COF_ARRAY(coun)*(f1(ii)*f2(jj-1)*f3(kk-1))

                    !STT

                    if(ii>2)uxxx = uxxx + dble(ii*(ii-1)*(ii-2))*COF_ARRAY(coun)*(f1(ii-3)*f2(jj)*f3(kk))
                    if(jj>2)uyyy = uyyy + dble(jj*(jj-1)*(jj-2))*COF_ARRAY(coun)*(f1(ii)*f2(jj-3)*f3(kk))
                    if(kk>2)uzzz = uzzz + dble(kk*(kk-1)*(kk-2))*COF_ARRAY(coun)*(f1(ii)*f2(jj)*f3(kk-3))

                    if(ii>1 .AND. jj>0)uxxy = uxxy + dble(ii*jj*(ii-1))*COF_ARRAY(coun)*(f1(ii-2)*f2(jj-1)*f3(kk))
                    if(ii>1 .AND. kk>0)uxxz = uxxz + dble(ii*kk*(ii-1))*COF_ARRAY(coun)*(f1(ii-2)*f2(jj)*f3(kk-1))

                    if(ii>0 .AND. jj>1)uyyx = uyyx + dble(ii*jj*(jj-1))*COF_ARRAY(coun)*(f1(ii-1)*f2(jj-2)*f3(kk))
                    if(kk>0 .AND. jj>1)uyyz = uyyz + dble(jj*kk*(jj-1))*COF_ARRAY(coun)*(f1(ii)*f2(jj-2)*f3(kk-1))

                    if(ii>0 .AND. kk>1)uzzx = uzzx + dble(ii*kk*(kk-1))*COF_ARRAY(coun)*(f1(ii-1)*f2(jj)*f3(kk-2))
                    if(jj>0 .AND. kk>1)uzzy = uzzy + dble(jj*kk*(kk-1))*COF_ARRAY(coun)*(f1(ii)*f2(jj-1)*f3(kk-2))

                    if(jj>0 .AND. kk>0 .AND. ii>0)uxyz = uxyz + dble(jj*kk*ii)*COF_ARRAY(coun)*(f1(ii-1)*f2(jj-1)*f3(kk-1))
                 end if         
                        end do      
                     end do
                  end do    
                coun = 0    
    
                      
                       val_inter0 =  wtval3(k)*wtval2(j)*wtval1(i)
                       wxy = wtval1(i)*wtval2(j)
               wyz = wtval2(j)*wtval3(k)
               wxz = wtval1(i)*wtval3(k)
                       val_inter1 =  wtval3(k)*sum_u
        !taking care fo sum_uz and uzz uzx and uzy terms.. for derivative chain rule.
                sum_uz = sum_uz*step_r_cal
                        uzz = uzz*step_r_cal*step_r_cal
            uxz = uxz*step_r_cal
            uyz = uyz*step_r_cal

                        !  print*,"3 point",dwt3(0),dwt3(1)    
            uzzz = uzzz*step_r_cal*step_r_cal*step_r_cal
            uzzx = uzzx*step_r_cal*step_r_cal
            uzzy = uzzy*step_r_cal*step_r_cal
                uxxz = uxxz*step_r_cal
                uyyz = uyyz*step_r_cal
                uxyz = uxyz*step_r_cal

                       val(1)= val(1) + val_inter0*sum_u  
                      ! print*,val(1)
            !print*,wtval3(k),wtval2(j),wtval1(i)
            !print*,'-----------------------------'
!pause
                 if(lat>=-90.0d0) sum_ux = -sum_ux
                             val(4)= val(4) + val_inter0*sum_ux + dwt1(i)*wtval2(j)*val_inter1  !lat
                             val(3)= val(3) + val_inter0*sum_uy + dwt2(j)*wtval1(i)*val_inter1     !lon .. as dwt1 = diff(u)/d(lon)
                             val(2)= val(2) + val_inter0*sum_uz + dwt3(k)*wtval1(i)*wtval2(j)*sum_u
                !print*,dwt3(k),wtval1(i),wtval2(j)
!Jacobian
!
! Warning we have not divided the lat and lon by 1/(start_lat^2) yet
! ALso we are taking care of step_r_cal in uzz and uz ,, the dwtz are taken care of before so uz will have one multiply and uzz two 
!           

            
            dwtx  = dwt1(i)*wyz
            dwtz  = dwt3(k)*wxy
            dwty  = dwt2(j)*wxz

            ddwtx = ddwt1(i)*wyz
            ddwty = ddwt2(j)*wxz
            ddwtz = ddwt3(k)*wxy

            dwtxy = dwt1(i)*dwt2(j)*wtval3(k)
            dwtxz = dwt1(i)*dwt3(k)*wtval2(j)
            dwtyz = dwt3(k)*dwt2(j)*wtval1(i)

            udd(1,1) = udd(1,1) + 2.0d0*dwtx*sum_ux+val_inter0*uxx+ddwtx*sum_u 
            udd(1,2) = udd(1,2) + val_inter0*uxy + dwtxy*sum_u + dwty*sum_ux + dwtx*sum_uy
            udd(1,3) = udd(1,3) + val_inter0*uxz + dwtxz*sum_u + dwtz*sum_ux + dwtx*sum_uz
            udd(2,2) = udd(2,2) + 2.0d0*dwty*sum_uy+val_inter0*uyy+ddwty*sum_u
            udd(2,3) = udd(2,3) + val_inter0*uyz + dwtyz*sum_u + dwtz*sum_uy + dwty*sum_uz
            udd(3,3) = udd(3,3) + 2.0d0*dwtz*sum_uz+val_inter0*uzz +ddwtz*sum_u
                    
        



! STT equations

            dddwtx  = dddwt1(i)*wyz
            dddwty  = dddwt2(j)*wxz
            dddwtz  = dddwt3(k)*wxy 
            dwtxyz  = dwt1(i)*dwt2(j)*dwt3(k)
            ddwtxdy = ddwt1(i)*dwt2(j)*wtval3(k)
            ddwtxdz = ddwt1(i)*dwt3(k)*wtval2(j)

            ddwtydx = ddwt2(j)*dwt1(i)*wtval3(k)
            ddwtydz = ddwt2(j)*dwt3(k)*wtval1(i)

            ddwtzdx = ddwt3(k)*dwt1(i)*wtval2(j)
            ddwtzdy = ddwt3(k)*dwt2(j)*wtval1(i)


            uddd(1,1,1)   = uddd(1,1,1) + val_inter0*uxxx++dddwtx*sum_u+ 3.0d0*ddwtx*sum_ux + 3.0d0*dwtx*uxx
            uddd(1,2,1)   = uddd(1,2,1) + 2.0d0*dwtxy*sum_ux + 2.0d0*dwtx*uxy + dwty*uxx + val_inter0*uxxy + ddwtx*sum_uy + ddwtxdy*sum_u
            uddd(1,3,1)   = uddd(1,3,1) + 2.0d0*dwtxz*sum_ux + 2.0d0*dwtx*uxz + dwtz*uxx + val_inter0*uxxz + ddwtx*sum_uz + ddwtxdz*sum_u 

            uddd(2,1,2)   = uddd(2,1,2) + 2.0d0*dwtxy*sum_uy + 2.0d0*dwty*uxy + dwtx*uyy + val_inter0*uyyx + ddwty*sum_ux + ddwtydx*sum_u 
            uddd(2,2,2)   = uddd(2,2,2) + val_inter0*uyyy++dddwty*sum_u+ 3.0d0*ddwty*sum_uy + 3.0d0*dwty*uyy 
            uddd(2,3,2)   = uddd(2,3,2) + 2.0d0*dwtyz*sum_uy + 2.0d0*dwty*uyz + dwtz*uyy + val_inter0*uyyz + ddwty*sum_uz + ddwtydz*sum_u 

            uddd(3,1,3)   = uddd(3,1,3) + 2.0d0*dwtxz*sum_uz + 2.0d0*dwtz*uxz + dwtx*uzz + val_inter0*uzzx + ddwtz*sum_ux + ddwtzdx*sum_u  
            uddd(3,2,3)   = uddd(3,2,3) + 2.0d0*dwtyz*sum_uz + 2.0d0*dwtz*uyz + dwty*uzz + val_inter0*uzzy + ddwtz*sum_uy + ddwtzdy*sum_u  
            uddd(3,3,3)   = uddd(3,3,3) + val_inter0*uzzz +dddwtz*sum_u+ 3.0d0*ddwtz*sum_uz + 3.0d0*dwtz*uzz

            uddd(1,2,3)   = uddd(1,2,3) + val_inter0*uxyz+ dwtz*uxy + dwtxy*sum_uz+dwtxyz*sum_u + dwtyz*sum_ux + dwty*uxz  + dwtxz*sum_uy + dwtx*uyz
            !print*,i,uzzz,uxxx/(size_lat*size_lat*size_lat),uxx/(size_lat*size_lat)

       end do      
      end do
  end do

!finalize uddd
  uddd(1,1,1) = -uddd(1,1,1)/(size_lat*size_lat*size_lat)
  uddd(1,2,1) = uddd(1,2,1)/(size_lat*size_lat*size_lat)
  uddd(2,1,1) = uddd(1,2,1)
  uddd(1,1,2) = uddd(1,2,1)
  uddd(1,3,1) = uddd(1,3,1)/(size_lat*size_lat)
  uddd(3,1,1) = uddd(1,3,1)
  uddd(1,1,3) = uddd(1,3,1)
  uddd(2,1,2) = -uddd(2,1,2)/(size_lat*size_lat*size_lat)
  uddd(2,2,1) = uddd(2,1,2)
  uddd(1,2,2) = uddd(2,1,2)
  uddd(2,2,2) = uddd(2,2,2)/(size_lat*size_lat*size_lat)
  uddd(2,3,2) = uddd(2,3,2)/(size_lat*size_lat)
  uddd(3,2,2) = uddd(2,3,2)
  uddd(2,2,3) = uddd(2,3,2)
  uddd(3,1,3) = -uddd(3,1,3)/(size_lat)
  uddd(3,3,1) = uddd(3,1,3)
  uddd(1,3,3) = uddd(3,1,3)
  uddd(3,2,3) = uddd(3,2,3)/(size_lat)
  uddd(3,3,2) = uddd(3,2,3)
  uddd(2,3,3) = uddd(3,2,3)

  uddd(3,3,3) = uddd(3,3,3)

  uddd(1,2,3) = -uddd(1,2,3)/(size_lat*size_lat)
  uddd(1,3,2) = uddd(1,2,3)
  uddd(3,1,2) = uddd(1,2,3)
  uddd(3,2,1) = uddd(1,2,3)
  uddd(2,3,1) = uddd(1,2,3)
  uddd(2,1,3) = uddd(1,2,3)

 do i=1,3
    do j = 1,3
        do k = 1,3
            ii = i
            jj = j
            kk = k
                if(i==1)ii=3
            if(i==3)ii=1
                if(j==1)jj=3
            if(j==3)jj=1
                if(k==1)kk=3
            if(k==3)kk=1        
             
            val3(i,j,k)=uddd(ii,jj,kk)
        end do
    end do
 end do


        
!finalize udd (note that step_r_cal should have been taken care of by now and udd(3,3) should also be final by now)
 udd(1:2,1:2) = udd(1:2,1:2)/(size_lat*size_lat)
 udd(2,1)     = udd(1,2)

 udd(1,3) = udd(1,3)/(size_lat)
 udd(3,1) = udd(1,3)

 udd(2,3) = udd(2,3)/(size_lat)
 udd(3,2) = udd(2,3)
 udd(1,2:3) = -udd(1,2:3)
 udd(2:3,1) = -udd(2:3,1)
!finalize ud
 val(3) = val(3)/size_lat
 val(4) = val(4)/size_lat

!Converting to cartesian
!call getcartderiv(xyz1,xyz2,xyz3,val(2:4),xtemp)

 val2(1,1)=udd(3,3)
 val2(1,2)=udd(3,2)
 val2(1,3)=udd(3,1)
 val2(2,1)=udd(2,3)
 val2(2,2)=udd(2,2)
 val2(2,3)=udd(2,1)
 val2(3,1)=udd(1,3)
 val2(3,2)=udd(1,2)
 val2(3,3)=udd(1,1)
!print*,"3ddDDD value"

!print*,'-----------'
 udd=0.0d0;
 uddd=0.0d0
pr = nint(pr/8.0d0)
!udd = val2



 call getcartderiv3(xtemp(1),xtemp(2),xtemp(3),val(2:4),val2,val3,xtemp,udd,uddd)
 val(2:4) = xtemp
actem = val(3)
val(3) = val(4)
val(4) = -actem
val2 = udd
 val3 =uddd
udd(1,2) = val2(1,3)
udd(2,1) = udd(1,2)
udd(1,3) = -val2(1,2)
udd(3,1) = udd(1,3)
udd(2,2) = val2(3,3)
udd(3,3) = val2(2,2)
udd(2,3) = -val2(2,3)
udd(3,2) = udd(2,3)

uddd(1,1,2) = val3(1,1,3)
uddd(1,2,1) = uddd(1,1,2)
uddd(2,1,1) = uddd(1,1,2)

uddd(1,1,3) = -val3(1,1,2)
uddd(3,1,1) = uddd(1,1,3)
uddd(1,3,1) = uddd(1,1,3)

uddd(1,2,2) = val3(1,3,3)
uddd(2,2,1) = uddd(1,2,2)
uddd(2,1,2) = uddd(1,2,2)

uddd(1,3,3) = val3(1,2,2)
uddd(3,3,1) = uddd(1,3,3)
uddd(3,1,3) = uddd(1,3,3)

uddd(1,2,3) = -uddd(1,2,3)
  uddd(1,3,2) = uddd(1,2,3)
  uddd(3,1,2) = uddd(1,2,3)
  uddd(3,2,1) = uddd(1,2,3)
  uddd(2,3,1) = uddd(1,2,3)
  uddd(2,1,3) = uddd(1,2,3)

uddd(2,2,2) = val3(3,3,3)
uddd(3,3,3) = -val3(2,2,2)

uddd(2,2,3) = -val3(2,3,3)
uddd(3,2,2) = uddd(2,2,3)
uddd(2,3,2) = uddd(2,2,3)

uddd(2,3,3) = val3(2,2,3)
uddd(3,2,3) = val3(2,2,3)
uddd(3,3,2) = val3(2,2,3)
!udd(1,2,2) = udd()
end Subroutine get_local_uddd_rot
!!!-------------------------------------------------------------------------------
Subroutine get_local_uddd(lat,lon,r,xyz1,xyz2,xyz3,val,val22,val3,pr)
implicit none
real(fp_kind), intent(in) :: xyz1,xyz3,xyz2
real(fp_kind), intent(out):: val(1:4),val22(3,3),val3(3,3,3)
!real(fp_kind) :: lat,lon,r,val1(4),val2(4),lata,latb,latscale,we,mwe,dwe,latdown,latup,latmin,elem_lat_rad,range_lat_rad,
real(fp_kind) :: lat,lon,r,val1(4),val2(4),lata,latb,latscale,we,mwe,dwe,latdown,latup,latpdown,latpup,val22a(3,3),val22b(3,3),ddwe,dddwe,val3a(3,3,3),val3b(3,3,3)
integer :: pr,pr1
    

    latdown = Grid%end_p*deg2rad !primary down (upper limit)

    latup   = Grid%start_p*deg2rad !primar up (lower limit)

    latpup   = Grid%start_p*deg2rad + size_lat
    latpdown = Grid%end_p*deg2rad   - size_lat

    if(lat < latup .OR. lat>latdown) then


        call get_local_uddd_rot(lat,lon,r,xyz1,xyz2,xyz3,val,val22,val3,pr)

    else if(lat > latpup .AND. lat< latpdown) then

        call get_local_uddd_primary(lat,lon,r,xyz1,xyz2,xyz3,val,val22,val3,pr)

    else 
        !print*,'inside uddd'
        call get_local_uddd_rot(lat,lon,r,xyz1,xyz2,xyz3,val1,val22a,val3a,pr)
        call get_local_uddd_primary(lat,lon,r,xyz1,xyz2,xyz3,val2,val22b,val3b,pr1)
         pr = max(pr,pr1)
        if(lat<=latpup) then
            lata = latup
            latb = latpup       
        else
            latb = latpdown
            lata = latdown
        end if
        latscale = (lat - lata)/(latb-lata)
                            
        we = wt(1,latscale)     
        mwe = 1.0d0-we

        dwe = dwt(1,latscale)/(latb-lata)
        ddwe = ddwt(1,latscale)/((latb-lata)**2)
        dddwe = dddwt(1,latscale)/((latb-lata)**3)
        val(1:4) = val1(1:4)*mwe + val2(1:4)*we
        val(2)   = val(2) - val1(1)*dwe  + dwe*val2(1)
        val22(2:3,2:3) = val22a(2:3,2:3)*mwe + val22b(2:3,2:3)*we
            val22(1,1) =  val22a(1,1)*mwe + val22b(1,1)*we - 2.0d0*val1(2)*dwe+2.0d0*val2(2)*dwe+ddwe*(val2(1)-val1(1))
            val22(1,2) =  val22a(1,2)*mwe + val22b(1,2)*we - val1(3)*dwe+val2(3)*dwe
        val22(2,1) = val22(1,2)
            val22(1,3) =  val22a(1,3)*mwe + val22b(1,3)*we - val1(4)*dwe+val2(4)*dwe
        val22(3,1) = val22(1,3)

        val3 = val3a*mwe + val3b*we
        val3(1,1,1) = val3(1,1,1) - 2.0d0*val1(2)*ddwe - 2.0d0*val22a(1,1)*dwe + 2.0d0*val2(2)*ddwe + 2.0d0*val22b(1,1)*dwe +dddwe*(val2(1)-val1(1)) +ddwe*(val2(2)-val1(2))
        !print*,dddwe*(val2(1)-val1(1)),dddwe,(val2(1)-val1(1))
        !pause

    end if

end subroutine get_local_uddd



!!!-------------------------------------------------------------------------------
subroutine get_J2(x,y,z,GM,RE,J2,U)
   implicit double precision (t)
   real(fp_kind),intent(in) :: x,y,z,GM,RE,J2
   real(fp_kind),intent(out):: U
      t2 = 1.0D0!(RE)
      t4 = x ** 2
      t5 = y ** 2
      t6 = z ** 2
      t7 = t4 + t5 + t6
      t8 = sqrt(t7)
      U = -GM * J2 * t2 / t8 / t7 / NL * (0.15D1 * t6 / t7 - 0.5D0)

end subroutine get_J2

!!!-------------------------------------------------------------------------------
subroutine get_J2_ACC(x,y,z,GM,RE,J2,ACC)
   implicit double precision (t)
   real(fp_kind),intent(in) :: x,y,z,GM,RE,J2
   real(fp_kind),intent(out):: ACC(3)
      t2 = 1.0D0!/(RE ** 2)
      t3 = GM * J2 * t2
      t4 = z ** 2
      t6 = x ** 2
      t7 = y ** 2
      t8 = -0.4D1 * t4 + t6 + t7
      t10 = t6 + t7 + t4
      t11 = t10 ** 2
      t13 = sqrt(t10)
      t17 = 0.1D1 / NL / t13 / t11 / t10
      ACC(1) = -0.1500000000D1 * t17 * t8 * x * t3
      ACC(2) = -0.1500000000D1 * t17 * t8 * y * t3
      ACC(3) = -0.1500000000D1 * t17 * (-0.2D1 * t4 + 0.3D1 * t6 + 0.3D1* t7) * z * t3

end subroutine get_J2_ACC
!!!-------------------------------------------------------------------------------
!!!-------------------------------------------------------------------------------
subroutine get_J2_JAC(x,y,z,GM,RE,J2,JAC)
   implicit double precision (t)
   real(fp_kind),intent(in) :: x,y,z,GM,RE,J2
   real(fp_kind),intent(out):: JAC(3,3)
      t1 = GM * J2
      t2 =1.0D0!/(RE ** 3)
      t3 = t1 * t2
      t4 = x ** 2
      t5 = z ** 2
      t6 = t5 * t4
      t8 = t4 ** 2
      t10 = y ** 2
      t11 = t10 * t4
      t12 = 0.3D1 * t11
      t13 = t5 * t10
      t15 = t5 ** 2
      t16 = 0.4D1 * t15
      t17 = t10 ** 2
      t20 = t4 + t10 + t5
      t21 = t20 ** 2
      t22 = t21 ** 2
      t23 = sqrt(t20)
      t25 = 0.1D1 / t23 / t22
      t27 = 0.1D1 / NL
      t36 = t27 * t25
      t39 = 0.75000000000000000000000000000000000000D1 * t36 * (-0.6D1 * t5 + t4 + t10) * x * y * t2 * t1
      t41 = z * t2 * t1
      t45 = -0.4D1 * t5 + 0.3D1 * t4 + 0.3D1 * t10
      t49 = 0.75000000000000000000000000000000000000D1 * t36 * t45 * x * t41
      t61 = 0.75000000000000000000000000000000000000D1 * t36 * t45 * y * t41
      JAC(1,1) = 0.15000000000000000000000000000000000000D1 * t27 * t25 * (-0.27D2 * t6 + 0.4D1 * t8 + t12 + 0.3D1 * t13 + t16 - 0.1D1 * t17) * t3
      JAC(1,2) = t39
      JAC(1,3) = t49
      JAC(2,1) = t39
      JAC(2,2) = -0.1500000000D1 * t27 * t25 * (0.27D2 * t13 - t12 - 0.4D1 * t17 - 0.3D1 * t6 - t16 + t8) * t3
      JAC(2,3) = t61
      JAC(3,1) = t49
      JAC(3,2) = t61
      JAC(3,3) = -0.1500000000D1 * t27 * t25 * (0.8D1 * t15 - 0.24D2 * t6 - 0.24D2 * t13 + 0.3D1 * t8 + 0.6D1 * t11 + 0.3D1 * t17) * t3

end subroutine get_J2_JAC
!!!-------------------------------------------------------------------------------
!!!-------------------------------------------------------------------------------
subroutine get_J2_HES(x,y,z,GM,RE,J2,HES)
   implicit double precision (t)
   real(fp_kind),intent(in) :: x,y,z,GM,RE,J2
   real(fp_kind),intent(out):: HES(3,3,3)
      t1 = GM * J2
      t2 = 1.0D0!/(RE ** 4)
      t3 = t1 * t2
      t4 = x ** 2
      t5 = z ** 2
      t6 = t5 * t4
      t7 = 0.41D2 * t6
      t8 = t4 ** 2
      t10 = y ** 2
      t11 = t10 * t4
      t12 = t5 * t10
      t14 = t5 ** 2
      t15 = 0.18D2 * t14
      t16 = t10 ** 2
      t17 = 0.3D1 * t16
      t20 = t4 + t10 + t5
      t21 = t20 ** 2
      t22 = t21 ** 2
      t24 = sqrt(t20)
      t26 = 0.1D1 / t24 / t22 / t20
      t27 = 0.1D1 / NL
      t28 = t27 * t26
      t34 = 0.5D1 * t11
      t36 = 0.6D1 * t14
      t42 = 0.7500000000D1 * t28 * (-0.51D2 * t6 + 0.6D1 * t8 + t34 + 0.5D1 * t12 + t36 - 0.1D1 * t16) * y * t3
      t44 = 0.15D2 * t11
      t45 = 0.4D1 * t14
      t50 = 0.7500000000D1 * t28 * (-t7 + 0.18D2 * t8 + t44 + t12 + t45 - t17) * z * t3
      t58 = 0.75000000000000000000000000000000000000D1 * t28 * (0.51D2 * t12 - t34 - 0.6D1 * t16 - 0.5D1 * t6 - t36 + t8) * x * t3
      t68 = 0.1575000000D3 * t27 * x * y * z * (-0.2D1 * t5 + t4 + t10) * t26 * t2 * t1
      t69 = 0.8D1 * t14
      t73 = t69 - 0.12D2 * t6 - 0.12D2 * t12 + t8 + 0.2D1 * t11 + t16
      t77 = 0.22500000000000000000000000000000000000D2 * t28 * t73 * x *t3
      t78 = 0.41D2 * t12
      t82 = 0.3D1 * t8
      t94 = 0.75000000000000000000000000000000000000D1 * t28 * (t78 - t44 - 0.18D2 * t16 - 0.1D1 * t6 - t45 + t82) * z * t3
      t98 = 0.22500000000000000000000000000000000000D2 * t28 * t73 * y *t3
      HES(1,1,1) = -0.7500000000D1 * t28 * (-t7 + 0.4D1 * t8 + t11 + 0.15D2 * t12 + t15 - t17) * x * t3
      HES(1,1,2) = -t42
      HES(1,1,3) = -t50
      HES(1,2,1) = -t42
      HES(1,2,2) = t58
      HES(1,2,3) = -t68
      HES(1,3,1) = -t50
      HES(1,3,2) = -t68
      HES(1,3,3) = t77
      HES(2,1,1) = -t42
      HES(2,1,2) = t58
      HES(2,1,3) = -t68
      HES(2,2,1) = t58
      HES(2,2,2) = 0.75000000000000000000000000000000000000D1 * t28 * (t78 - 0.1D1 * t11 - 0.4D1 * t16 - 0.15D2 * t6 - t15 + t82) * y * t3
      HES(2,2,3) = t94
      HES(2,3,1) = -t68
      HES(2,3,2) = t94
      HES(2,3,3) = t98
      HES(3,1,1) = -t50
      HES(3,1,2) = -t68
      HES(3,1,3) = t77
      HES(3,2,1) = -t68
      HES(3,2,2) = t94
      HES(3,2,3) = t98
      HES(3,3,1) = t77
      HES(3,3,2) = t98
      HES(3,3,3) = 0.75000000000000000000000000000000000000D1 * t28 * (t69 - 0.40D2 * t6 - 0.40D2 * t12 + 0.15D2 * t8 + 0.30D2 * t11 + 0.15D2 * t16) * z * t3
end subroutine get_J2_HES
!!!-------------------------------------------------------------------------------
!!!-------------------------------------------------------------------------------
!!!-------------------------------------------------------------------------------
!!!-------------------------------------------------------------------------------
END MODULE FETCH_MOD
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