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SUMMARY

The design of complex systems requires of analyses from numerous disciplines.

When each of the disciplines use the same information, have a common set of as-

sumptions, and satisfy the constraints imposed on the design, the design is said to be

converged. The convergence process for complex, multidisciplinary designs may be

lengthy. Finding an optimal design can be computationally burdensome, particularly

for design space exploration when uncertainties are considered. Dynamical systems

theory has established techniques for their analysis. Exploiting an analog between

the multidisciplinary design problem and dynamical systems enables leveraging of

these resources in a new domain. Viewing the multidisciplinary design process as a

dynamical system broadens the computational tools available, increases the number

of analyses that can be performed, and potentially speeds the design-analysis cy-

cle. Casting this problem as a dynamical system is a departure from the developed

techniques applied in multidisciplinary design.

Finding a converged multidisciplinary design can be thought of as a multidimen-

sional root-finding problem. The numerical process to identify the roots of the design

is typically an iterative one, where subsequent iteration relies on information from

prior iterates. This iteration scheme can employ methods from dynamical systems

theory, which evolves a state by a fixed rule. In this work, it is shown that use of

root-finding techniques allows the multidisciplinary design problem to be recast as a

dynamical system enabling rapid solution using established theory.

In this investigation, theoretical foundations are developed for casting the mul-

tidisciplinary design problem as a discrete dynamical system, including handling of

xxviii



constraints within the design. Three particular techniques from the domain of dy-

namical system theory are developed and utilized to yield a linear rapid robust design

methodology.

1. Stability analysis: The existence of a converged design (for a given iteration

scheme) is shown to be determinable using dynamical system stability analysis,

where the conditions for asymptotic stability are shown to be identically equal

to those required for convergence.

2. Optimal control: Constraints on the design variables and outputs of the

contributing analyses are shown to be accommodated in a similar way that

state and control constraints are treated in optimal control theory. Adjoining

conditions to the objective function allows handling of both of these constraint

types at the same level of the optimization hierarchy.

3. Estimation theory: A design’s robustness characteristics (i.e., the mean and

variance) is shown to be analyzable using a Kalman filter (for linear designs),

where the mean state and covariance matrix are products of propagating the

filter until the design converges. This technique allows for the accounting of

uncertainties within the model itself as well as within the parameters of the

design.

Each of these dynamical systems techniques is demonstrated independently as

well as in an ensemble in the robust design of engineering systems. As an ensemble,

a rapid methodology for robust multidisciplinary design is formulated which finds a

conservative upper bound of the variance of the design to a scalar objective function.

Analytic test problems are solved to illustrate the benefits of this approach. The

developed methodology is then applied to the design of a deployable aerodynamic

surface for a strategic system in which an increase in range or an improvement in

landed accuracy is sought.
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CHAPTER I

BACKGROUND AND MOTIVATION

1.1 Multidisciplinary Design

According to the Accreditation Board in Engineering and Technology engineering

design is defined as[1]:

Definition: Engineering Design

Engineering design is the process of devising a system, component, or process to
meet desired needs. It is a decision-making process (often iterative), in which the
basic sciences, mathematics, and the engineering sciences are applied to convert
resources optimally to meet the stated needs.

This definition lists several important characteristics of engineering design: (1) it is

usually an iterative process, (2) it is intended to meet a need (or objective), and (3)

it is an optimization process. Consider designing the following

1. A bracket to support a given load

2. A circuit to regulate a voltage

3. The trajectory for an existing vehicle

4. A sensor to take in information and output synthesized information

Each of these have the common trait that the performance (or how well the design

satisfies the need) can be quantified explicitly for the environment in which it is

expected to perform. In turn, this quantification can guide the design process in order

to obtain an optimum. Additionally, given appropriate data, each of these problems
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can be designed by a single discipline without the need for outside interaction. Often,

the system, component, or process being designed is comprised of many components

and disciplines that must have interaction with each other in order to obtain a design

that fulfills the stated need. Such is the case when designing

1. A wing for an aircraft

2. A bridge across a body of water

3. A robot that autonomously cleans the floors of a house

Ackoff defines a system as[2]

Definition: System

A system is a set of two or more interrelated elements of any kind that satisfies
the following conditions:

1. The properties or behavior of each element of the set has an effect on the
properties or behavior of the set taken as a whole.

2. The properties and behavior of each element, and the way they affect the
whole, depend on the properties and behavior of at least one other element
in the set. Therefore, no part has an independent effect on the whole and
each is affected by at least one other part.

3. Every possible subgroup of elements in the set has the first two properties:
each has a nonindependent effect on the whole. Therefore, the whole
cannot be decomposed into independent subsets. A system cannot be
subdivided into independent subsystems.

The definition of a system can be extended to include complex systems. For complex

systems, there are many contributing analyses (CAs) that contribute to the complete

design of the system. The CAs in the design represent an analysis, process, or subsys-

tem in the design of the complex system. In addition, there is generally some control

of the inputs into each of the CAs that govern the solution process. This leads to the

following extension of the engineering design definition for complex systems.
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Definition: Complex System Design

Complex system design is an engineering design where the system, component,
or process being designed to meet desired needs is made up of a hierarchy of
systems, components, or processes.

When each of the CAs is thought of as a system in and of itself, the complex system

may also be referred to as a System of Systems (SoS). There are many definitions of

a SoS[3, 4, 5, 6, 7, 8, 9, 10]. Each has separate requirements, such as those in Ref.

[9] which require that for a complex system to be a SoS each of the CAs must be in-

dependent, have some form of communication, and work towards a common mission.

Whereas Ref. [3] requires that a SoS have operational and managerial independence,

geographic distribution, emergent behavior, and evolutionary development. The com-

mon thread for each of these definitions is that the complex system is composed of

several CAs that may each be thought of as systems themselves.

It may be the case in complex system design where the CAs span different domains

of expertise (e.g., structures, trajectory, and budget) and design decisions made in

one discipline significantly affect the performance in another discipline. In this case,

the complex system is referred to as a multidisciplinary design.

Definition: Multidisciplinary Design

Multidisciplinary design is the engineering design of a complex system in which
at least two of the contributing analyses are from domains of different disciplines
and the performance of one discipline is affected by design decisions in another
discipline.

Inherently the design of most aerospace systems is multidisciplinary, which is why

it is the multidisciplinary design context that this research is built upon.
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1.1.1 Multidisciplinary Analysis vs. Design

Multidisciplinary analysis problems and multidisciplinary design problems are funda-

mentally complementary—design is an extension of analysis. The difference between

the analysis problem and the design problem lies in the existence of requirements.

These requirements are constraints that the system, component, or process must

meet. In addition, the design problem has a sense of optimality associated with it.

One solution to the multidisciplinary design problem involves wrapping an optimizer

around a multidisciplinary analysis framework for the desired problem. Constraints

in the optimization procedure are then obtained by either directly or indirectly trans-

lating the requirements on the system. In the research that follows, it is in this

sense that the multidisciplinary design problem is approached, one where the design

requirements are handled as constraints. That is, in the research that follows multi-

disciplinary design means the process of finding a vector of design variables, u, for a

given set of problem parameters, p, that solves the optimization problem

Optimize: J (u,p)

Subject to: gi(u,p) ≤ 0, ∀i ∈ {1, . . . , ng}

hj(u,p) = 0, ∀j ∈ {1, . . . , nh}

By varying: u


(1)

for a complex system in which at at least two CAs are from disparate disciplines.

In the multidisciplinary design problem given by Eq. (1), J (u,p) is the objective

function describing how well the design performs, the gi(u,p) are the inequality con-

straint(s) (requirements) to be met, and the hj(u,p) are the equality constraint(s)

(requirements) to be met. Furthermore, the computation of the objective function,

J (u,p), is dependent on several CAs which represent models of disparate disciplines.

Whereas, multidisciplinary analysis is the process of evaluating J (u,p), gi(u,p), and

hi(u,p) for a given set of design variables, u, and problem dependent parameters, p.
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1.1.2 Multidisciplinary Design Representations

The vast amount of information required to complete a design, particularly in multi-

disciplinary problems, can be managed by using a graphical representation of the

design. The decomposition of a design into appropriate CAs and identification

of information flow has been shown to provide perceptive insight into the design

process[11, 12, 13, 14]. The flow of information contributes significantly to the dif-

ficulty of the problem[11]. Consider the case when a CA relies on information of a

subsequent CA, this is known as a coupled design as the first CA must make as-

sumptions on the information provided by the second and the two must iterate until

the information used between the two CAs is consistent. This is a more difficult

problem than the non-iterative problem posed when the first CA did not rely on any

information from a subsequent CA.

Several traditional techniques exist for the graphical representation of multidisci-

plinary designs. Amongst these techniques are directed graphs, or digraphs, Program

Evaluation and Review Technique (PERT) diagrams, Structured Analysis and Design

Technique (SADT) diagrams, and Design Structure Matrices (DSMs) .

Directed graphs represent the design as a mapping of interconnected nodes. In

this representation, the nodes represent the CAs and the links represent the infor-

mation transfer from one CA to another CA and the direction of this transfer[15].

However, node locations are arbitrarily decided which can lend itself to a cluttered

and seemingly non-informative diagram for complex systems. PERT diagrams use

the fundamental concepts of the directed graphs; however PERT diagrams exhibit an

element of time. In this representation, nodes represent milestones of the design with

the distance between the nodes representing the time. Along each link between the

nodes are the CAs that need to be completed between milestones[16]. The benefit of

such a representation is the ability to rapidly identify the critical path of the project

and project completion. The downside to the traditional PERT diagram, is that they
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lose information regarding the sequence of the CAs between milestones and in par-

ticular any iteration that may be required between CAs. SADT represents designs

as a system of interconnected boxes and arrows. This method splits out the directed

graphs into a box diagram representation. Each CA is its own box diagram and

then the CAs are integrated together at a high level. The benefit of SADT is that it

allows a structured way to show the information contained within a directed graph,

including information feedback. However, ultimately the SADT diagrams provide

only a glimpse into the design because the actual information flow from a high level

between multiple CAs is not immediately evident without looking within multiple

box diagrams. DSMs address the primary shortcomings of the previous techniques

by imposing a structure to the design representation. A DSM is a square matrix

which maps the information flow between CAs. In the static sense, a DSM is referred

to as an N2 diagram, because if the design is composed on N CAs, the matrix’s

dimension is N×N [17]. Within the DSM, the nodes along the diagonal of the matrix

are the representative CAs while the off-diagonal elements represent information flow.

In particular, for a matrix A, element aij, i 6= j is non-zero (represented by a dot)

if node i provides information to node j. Feedback is readily identified using this

technique if aij 6= 0, i > j.

Figure 1 shows two representative DSMs for the designs of (a) a launch vehicle and

(b) an engine in an automobile[18, 19]. These show two common graphical depictions

of the DSM. In each of these diagrams the CAs are represented along the diagonal of

the matrix, while the dots connecting links in the upper triangular part of the matrix

represent feed-forward information flow and dots in the lower triangular part of the

matrix represent feedback information flow. In addition, the size of the dot in the

engine example provides an additional piece of information—the strength of coupling

between the CAs. Due to the relative clarity in illustrating the CA interactions, this

research will rely on the DSM representation of multidisciplinary designs.
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(a)

(b)

Figure 1: Sample Design Structure Matrices for the design of (a) a launch vehicle and
(b) an automobile engine.

1.1.3 Multidisciplinary Design Optimization

As discussed previously, engineering design implies that there is an optimal solu-

tion. The process of identifying this optimum requires implementing a methodology

that is more sophisticated than that required by single discipline systems. This is a
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consequence of the inherent coupling between CAs in the multidisciplinary problem.

Multidisciplinary design optimization (MDO) techniques attempt to overcome the

computational burden that is a result of the large number of design variables within

the problem, inherent nonlinearities, and multi-objective nature of the problem. The

number of design variables in a multidisciplinary design is likely to be significantly

larger than that of a single analysis[20, 21]. This computational problem is com-

pounded by the so-called “curse of dimensionality” since the time required to analyze

and optimize multidisciplinary problems increase at faster than linear rates[22]. In

addition to the computational burden of MDO techniques, there also exist organiza-

tional challenges which may cause large coordination efforts to be required in order

to transfer the data necessary between CAs[22].

For aerospace applications, monolithic sizing and synthesis codes have been tra-

ditionally relied upon. The representation of each discipline within these monolithic

codes were principally built upon historical data in order to make the analysis compu-

tationally tractable. Advanced conceptual design has pushed the limits of these his-

torical data sets requiring designers to base decisions on either extrapolation of these

data or to obtain the disciplinary data using high fidelity analysis. It is in deference

to the latter that the majority of the multidisciplinary design analysis/optimization

(MDA/O) community has built techniques for coupling sophisticated analysis tools

for each CA. Several approaches are surveyed below.

System Sensitivity Analysis: System sensitivity analysis (SSA) is a method for

analyzing the system-level total derivatives based on CA-level partial derivatives[23,

24, 25, 26, 27]. The system is described as a set of analyses with vectors of information

flowing between the various CAs. The technique then iterates to converge the design

more efficiently using the system-level derivative information. In addition, the system-

level derivatives can be used with a gradient-based optimizer to find values for certain
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system-level design variables that are able to be mathematically removed from the

CA level optimizers.

A sample DSM for the use of SSA is shown in Fig. 2 and the resulting global

sensitivity equations are shown in Eq. (2)[28].

A 

B 

C 

a1 a2 

b 

c 

u r 

Figure 2: Sample Design Structure Matrix for SSA.



I 0 0 0 0

0 I 0 0 0
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0 I −∂b
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0 I
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du
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du


=



∂a1

∂u
∂a2

∂u
∂b

∂u
∂c

∂u
∂r

∂u


(2)

Optimal Decomposition: Instead of changing the methods that each CA employs,

optimal decomposition reorganizes the design in order to improve efficiency. This

reorganization minimizes the amount of feedback within the design and, when neces-

sary, ensures that coupled CAs are located near each other.
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One MDO software implementing optimal decomposition principles is the Design

Manager’s Aid for Intelligent Decomposition (DeMAID) developed at NASA’s Lang-

ley Research Center[29]. Given a DSM, relative coupling between CAs, and relative

computational expenses, DeMAID will find the optimal order of execution for the

multidisciplinary design. This is useful for the case when the DSM organization is

not intuitive. More recent methods for the optimal decomposition of a design rely

on mutual information to measure the data dependence between CAs or forced-based

clustering to discover the sub-graph structure within the design[30].

Optimizer-Based Decomposition: Optimizer-based decomposition (OBD) is a

single-level optimization method that eliminates feedforward and feedback loops.

The elimination of these loops is done through the use of compatibility constraints

which ensure a converged design uses consistent variable values for the coupling

variables[31, 32]. Additionally, the potential conflict between the system-level de-

sign objectives and CA-level design objectives are eliminated in OBD by allowing all

of the design variables to be chosen by the system-level optimizer.

Collaborative Optimization: Collaborative Optimization (CO) is a bi-level de-

composition technique where the system level optimizer coordinates the optimization

at the lower CA level in order to achieve an overall system objective[33, 34, 31, 35,

36, 37, 38]. The coupling between CAs is handled through compatibility constraints

as with OBD; however, these constraints are implemented by assessing the differ-

ence in the target value set at the system-level and the actual values used by the

CAs. The unique implementation of the compatibility constraints allows distributed

optimization of the problem and is therefore more aptly scalable.
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1.2 Robust Multidisciplinary Design

1.2.1 Design Uncertainty

Uncertainty is not knowing with certainty a value or an action. More formally, un-

certainty is defined as[39]

Definition: Uncertainty

Uncertainty is the quality or state of being indefinite or indeterminate.

The ramifications of uncertainty on design could potentially mean that a design that

meets the design requirements and objectives in a deterministic environment may not

do so when the design is assessed probabilistically. Uncertainty can be classified in

several categories as shown in Table 1.

Table 1: Types of uncertainty in the conceptual design process.

Uncertainty
Description Example Reference

Source
Inaccuracies in Using an exponential [40], [41], [42],

Physical the physical atmosphere to [43], [44], [45],
Modeling modeling of represent the [46], [47], [48],

the system actual atmosphere [49], [50], [51]
Unknowns in Degraded performance

Unknown the operating or failure of a
Operating environment satellite in a [52], [53], [54],
Conditions of the system communications [55], [56], [28]

constellation

Within the design community, an accepted measure of design uncertainty is the

spread of the distribution. This can be characterized by the variance, σ2, or standard

deviation, σ, about the mean[57, 58]. Figure 3 shows a normal distribution and it

can be seen that the smaller the standard deviation (or variance), the tighter the

distribution, while a larger standard deviation (or variance) implies that the spread

of the distribution is large.
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Probability 

   = 68.2%  

  2 = 95.4%  

  3 = 99.7%  

Figure 3: Normal distribution.

1.2.2 Propagating Uncertainty

There are several methods for propagating the uncertainty through a system. The

following are current methods that can be used to obtain statistical information for

various types of systems:

Analytical Methods: Propagation of the uncertainty through a system can be

achieved analytically for a small subset of problems (e.g., linear systems with defined,

analytic probability distributions)[59]. For algebraic systems, the exact propagation

of the uncertainty is governed by the Liouville equation whereas for dynamical sys-

tems uncertainty propagation is governed by the Fokker-Plank-Kolmogorov equation

(FPKE)[60, 61, 62]. However, both the Liouville equation and FPKE are partial dif-

ferential equations whose analytic solution is possible only for stationary distributions

and for relatively simplistic systems.

Sampling Methods: Sampling methods, such as Monte Carlo analysis, obtain the
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distribution of a given objective function by running successive deterministic sim-

ulations with values chosen from random distributions for the stochastic variables

associated with the problem[63]. The stochastic variables continue to be sampled

and evaluated in the deterministic simulation until a statistically stationary distri-

bution is obtained. The clear advantage of sampling methods are that for a large

enough sample size they give the probability distribution being sought and they pro-

vide statistical insight into the results. However, the computational runtime can be

prohibitive and only in the limit does the resultant probability distribution represent

true probability distribution. One way to bypass the computational runtime asso-

ciated with direct sampling is to use metamodeling techniques to create a curve fit

of the system’s response. This is called the response surface methodology (RSM)

[64, 65, 66, 67, 68]. Commonly, a quadratic equation is used and in this case, the

surrogate model is referred to as a second-order response surface equation (RSE) .

Most Probable Point Methods: Most probable point methods obtain an estimate

for the cumulative distribution function for probabilistic system design[69, 70, 71, 72,

73, 74, 75, 76, 77, 78, 79, 80, 81]. In particular, these methods take a known input

distribution and evaluate it against a constraint function that is a requirement of

the design. While there are a wide variety of techniques that can be classified as a

most probable point method, these methods generally transform the input distribu-

tion into the standard normal space where each of the random variables are assumed

to be independent. Using an approximation of the constraint, the first design point is

found by minimizing the distance to the mean of the probability density function in

standard normal space while satisfying the approximate constraint. The cumulative

distribution function is found by allowing the constraint value to vary (i.e., instead

of exactly satisfying the constraint function, it satisfies the constraint function plus
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Figure 4: Visualization of the most probable point method with the most probable
point locus.

a bias). The probability of exceeding the constraint boundary can then be approxi-

mated. This is shown graphically in Fig. 4 where the constraint function is given by

g and the locus of the minimum distance to the mean of the probability distance in

standard normal space is identified as MPPL[71]. Fast probability integration (FPI)

is a well known technique from this class. FPI is an advanced mean value method and

was developed at the Southwest Research Institute[78]. The advantage of these meth-

ods is the ability to generate accurate results while keeping the number of function

evaluations to a computationally tractable value as compared to sampling methods.

However, the degree of approximation can greatly alter the accuracy of the results.

Linear Covariance Methods: Linear covariance analysis has its roots in the

Kalman filter[82, 83, 84]. Assuming a normal distribution, which is entirely defined

by the mean and the variance of the distribution, a covariance matrix describing the

initial covariance of the system can be found. The nominal dynamics of the system

are then propagated which is assumed to be the mean of the distribution. Next, the

dynamics are linearized about the nominal trajectory and the covariance matrix is

updated based on optimal estimation theory. The result is a covariance matrix at
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each point along the nominal dynamics which can be used to ascertain the joint prob-

ability density of the distribution. However, inherently the method does not allow

for the analysis of the algebraic systems since there is not a defined dynamical system.

Other Methods: There are several other techniques for propagating the uncertainty

through a system. For algebraic systems, these include techniques based on bound-

ing methods, differential analysis, Fourier analysis, polynomial chaos, and reliability

analysis[59, 85, 80, 86, 85, 79, 87, 88, 89]. For dynamic systems, these include the use

of numerical approximations to the FPKE equation, stochastic averaging, lineariza-

tion, Gaussian closure, and Gaussian mixture techniques[90, 91, 92, 93, 94, 95, 96, 97,

98]. All of these techniques rely on approximation techniques or are only applicable

in situations where the functional form of the system and distribution meet certain

requirements (e.g., the system is described by a polynomial).

1.2.3 Robust Design

In design the goal is traditionally to find the best solution to a given objective[99, 100,

101, 102, 103]. However, this optimum could lead to large variations in the objective

function around the optimum when the model or operating conditions are uncertain,

as is the case in the majority of engineering problems[33, 104]. This motivates the

need for robust design where the design is to perform as expected despite these un-

certainties.

Definition: Robust Design

Robust design is the process of devising a system, component, or process to
meet desired needs and meet a quality standard even in the presence of physical
modeling uncertainties and unknown operating conditions.

A graphical depiction of robust design is shown in Fig. 5.
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Figure 5: Robust design optimization compared to traditional design optimization.

The objective of robust design is to achieve a trade off between the mean value

of the response and the variance[105, 106, 107, 108, 109]. By achieving this compro-

mise between the mean objective value and the variance, the quality of the design is

improved. The techniques for robust design of systems range from Taguchi methods

to more sophisticated methods that are capable of optimizing directly measures of

robustness and are briefly surveyed below.

Taguchi Methods: Taguchi robust design is a robust design method that obtains

the control (design) variables which yield the least amount of variability to the un-

controllable (noise) factors in the design. This method obtains a robust design by

assessing linearized variations in the response to a reduced design space determined

through a design of experiments (DOE) in order to enable more rapid design space

exploration. The settings for the control variables are then chosen by optimizing the

mean squared deviation (MSD), which simultaneously minimizes the variation in the

objective function and shifts the mean to the desired target. However, this method

shows difficulty when accounting for nonlinear effects, including interactions between

control variables, dynamically changing processes, and nonlinear MSD behavior with
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control variables. In addition, it only provides a relative measure of robustness rather

than an absolute measure and cannot be compared between designs and does not

account directly for design constraints[110, 104, 111, 112].

Nonlinear Programming Methods: Other robust design methods use traditional

optimization methods in a direct way. In particular, they use nonlinear programming

(NLP) methods to formulate the design problem. As opposed to Taguchi methods,

these methods are able to directly consider the constraints within the design. Several

different objective functions are usually considered. One is an objective function that

is a linear combination of the mean response and the spread of the response such as

that shown in Eq. (3).

J (u,p) = αµr(u,p) + βσr(u,p) (3)

In Eq. (3), α and β are scaling factors or weights, µr is the mean response, and σr

is the standard deviation of the response. Another formulation is in terms of the

feasibility. In this case, the objective function is given by

J (u,p) = P [gi(u,p) ≤ 0 | hj(u,p) = 0] =

∫
gi(u,p)≤0
hj(u,p)=0

fup(u,p)dudp (4)

where fup(u,p) is the joint probability density function of u and p.

Practically, obtaining the statistical quantities needed in these objectives (i.e.,

µr, σr, or fup(u,p)) analytically is unlikely. Therefore, the majority of techniques

in the literature obtain them by using a sampling method[113, 114, 104, 115]. The

downside to this approach is that it can be computationally intractable to optimize

on a statistically relevant sample if the function evaluation cost is significant.

One way to reduce the computational cost is by using approximation techniques

for the response of the design using a metamodel such as an RSE[116, 117, 118, 119].
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However, approximating a complex design space using simplified models can be diffi-

cult. Another method for robust design when it is important to identify the feasibility

of a design is the extreme condition approach developed by Du and Chen[85]. This

approach derives the range of responses by min-max optimizations of the ranges of

the input and model uncertainties and then uses the results to find the optimum set

of design variables.

Non-statistical Methods: Not all techniques for robust design rely on comput-

ing the statistics of the design’s response. Some of these include worst case anal-

ysis, corner space analysis, and variation patterns. Worst case analysis assumes

that all of the system’s uncertainties can occur simultaneously in the worst possible

combination[120]. The effect on the constraint functions are then estimated based

on a Taylor series expansion and this is used to determine the feasibility of the de-

sign. Corner space evaluation is a similar concept; however, the variation in design

variables and parameters are not used to evaluate the variations in constraints[105].

Instead, a corner space is defined which consists of the vertices of the space defined

by the designs close to the target design point when perturbed under uncertainties.

Robust designs are then found by ensuring that the corner space touches the original

design constraints. Finally, variation patterns exploits the fact that uncertainties may

be correlated with each other and is a geometrical technique that identifies robust

designs at a given confidence level[121]. The shape of the design variable distribu-

tion, or pattern, is determined by their distribution and the size is determined by the

confidence level. For regular shapes, this allows rapid searching of robust designs;

however, for irregular shapes, the search can be computationally difficult.
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1.2.4 Robust Multidisciplinary Design

The concept of robust multidisciplinary design is relatively new and few authors dis-

cuss accounting for uncertainties in this context. Work by Gu et al. attempt to

address this topic by representing model uncertainty as a bias to the system output

and applying the concept of worst case analysis combined with sensitivity analysis

to obtain a robust design[122, 123, 119]. This method, to date, fails to account for

generic uncertain parameter representations and model error estimation. Du and

Chen developed two different techniques to perform robustness analysis and design of

multidisciplinary systems, system uncertainty analysis (SUA) and concurrent subsys-

tem uncertainty analysis (CSSUA)[124, 125]. These techniques borrow concepts from

system sensitivity analysis at both the the local and global level in order to guide the

multidisciplinary design process.

System Uncertainty Analysis: SUA uses the mean values of the inputs to deter-

mine the mean values of the coupling variables and CA outputs. The mean values are

then used to obtain first-order Taylor series approximations for the outputs of each

CA which are then used to formulate a linear representation of the entire multidisci-

plinary design’s response. Since the response obtained is linear, uncertainty can be

propagated analytically to obtain the mean and variance of the design’s response.

Concurrent System Uncertainty Analysis: CSSUA parallelizes the assessment

of the variances in SUA. In order to achieve this parallel process, optimization is used

to find the mean of each CA output by targeting the mean value of each of the coupling

variables. Once these are found, the mean value of the design’s response can be found

by substituting the mean of the coupling variable with the sub-optimization result.

Finally the same technique from SUA is used to obtain the linear representation of

the multidisciplinary design’s robustness.
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1.3 Dynamical Systems

A dynamical system uses a fixed rule to describe the evolution of a state. There are

two components of a dynamical system, a state vector which provides the state of the

system and a function which is the fixed rule describing how the state will evolve.

Definition: Dynamical System

Dynamical systems are functional relationships where a fixed rule describes how
a state evolves. It requires:

1. A state variable (or vector) which characterizes the system

2. A fixed rule describing how the state changes

Consider the ideal pendulum shown in Fig. 6.

m

mg

sinmg



L

Figure 6: An ideal pendulum.

In this example the bob has a mass m and is attached by a rigid rod of length L to

a fixed, frictionless pivot. The state of this dynamical system can be described by

two parameters. For this example, consider the angle that the pendulum makes with
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the vertical and the rotation rate of the pendulum recognizing there are other states

that could be used to describe the bob’s motion, such as its horizontal and vertical

position. Since gravity pulls the bob down with a force mg, it can be resolved into

two components: one which acts parallel to the rod and one which acts perpendicular.

Only the second affects the motion of the system. Applying Newton’s Second Law

for a constant mass, an equation in terms of θ, the angle the pendulum makes with

the vertical and the other parameters of the problem is able to be obtained:

θ̈ = − g
L

sin θ

This can be reduced to a first order system by making the substitution, x1 = θ and

x2 = θ̇. With a (state) vector denoted as x = (x1 x2)T , the first-order system is given

by

ẋ =

ẋ1

ẋ2

 = f(x) =

 x2

− g
L

sinx1


Where, from the definition of x1 and x2, the state variables are explicit in the fixed rule

since x1 = θ, the angular position of the pendulum with respect to the vertical, and

x2 = θ̇, the rotation rate of the pendulum are seen in the function f(x). Therefore,

since the pendulum has (1) a defined state and (2) a fixed rule describing the evolution

of the state, it is a dynamical system.

As another example of a dynamical system, consider the amount of money in a

bank account. Suppose that the annual interest rate, compounded monthly, is given

by r, then the account balance increases by a factor of (1 + r/12) each month. In

addition, suppose that a deposit, d, is made every month. In this example, the state,

x, is the balance in the account every month. The balance at month k+ 1 is given by

xk+1 =
(

1 +
r

12

)
xk + d

Even though this relationship is given by a discrete, difference relationship, it has

both of the components required by a dynamical system: (1) a state and (2) a rule
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describing the evolution of the state. Thus, the amount of money in a bank account

can be considered a dynamical system.

Finally, consider finding the root of a function g(x). The root is the value of x

such that the function’s value is 0. Many numerical methods for finding the root of a

function are dynamical systems since they rely on iterative schemes to identify the root

[126]. For instance, the bisection method, secant method, function iteration method,

and Newton’s method are all iterative techniques that satisfy the requirements of a

dynamical system. To demonstrate, consider Newton’s method of finding a root to

the uni-dimensional equation g(x) = 0 as shown shown in Fig. 7. An initial guess

g(x) 

x 
xk 

xk+1 

g(xk) 

g’(xk) 

1 

g(xk+1) 

)('

)(
1

k

k
kk

xg

xg
xx 

Figure 7: Newton’s method for numerically finding the root of a nonlinear equation.

is first taken, x0. Then y0 = g(x0) is computed. If y0 = 0, then x0 is a root. This,

however, is usually not the case. Newton’s method approximates the slope of the

function at a given point in order to find the root. It is desired to find y1 such that

y1 = 0. At x0, an approximation for the slope is given by

g′(x0) =
∆y

∆x
=
y1 − y0

x1 − x0

=
0− g(x0)

x1 − x0
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When this relationship is rearranged for x1 the following results

x1 = x0 −
g(x0)

g′(x0)

This can be generalized for any iterate k

xk+1 = xk −
g(xk)

g′(xk)

This relationship has the necessary components to be a dynamical system: (1) a state,

in this case x, and (2) a fixed rule describing how x evolves with iteration.

1.4 Previous Use of Dynamical System Concepts in Mul-
tidisciplinary Design

Several investigators have applied concepts from dynamical systems in analyzing and

designing complex multidisciplinary systems.

One example which couples dynamical system concepts with multidisciplinary

design is given by Appa and Argyris in Ref. [127]. They use dynamical system

theory to simultaneously optimize the structure and trajectory of an aircraft. System

identification is used to characterize in a generalized state the nonlinear CAs of the

system using regression or neural network methods. The derivatives of the dynamic

properties of the aircraft can also be found using system identification. These are

then coupled with the dynamic equations of motion for the system in order to form

a functional in terms of the physical state variable and the generalized states. While

their work embraces multiple aspects of dynamical systems theory and satisfies the

definition of a dynamical system as they define both a state and how that state evolves,

they provide little detail on how they transformed the original problem into the state

space and their solution methods. Furthermore, their work requires that the design

variables appear explicitly in the modeling of the CAs for the system, (i.e., where

the model is given by f(u,p) instead of f(g(u),p)). This functional form prohibits

coupling between CAs and is therefore limited in the set of applicable problems.
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Smith and Eppinger use stability concepts in the organization of a multidisci-

plinary design process[128]. Their work decomposes a DSM using eigenvectors in

order to minimize the feedback within the design. In this representation each of the

links between CAs is given a relative strength for the connection. Then the “modes”

are analyzed to identify the strongest connection. Although not explicitly described

in their work, by performing a modal analysis on the organization structure, an im-

plicit state is assumed, that of the information communicated between each of the

CAs. This state concept is identical to that used in this work. A similar organiza-

tional decomposition was made using game theory ideas by Lewis and Mistree[129].

This work iteratively anticipates the dependence of each CA on another and uses

that information to decompose the design for CAs that are lightly dependent on each

other. This work defines a state as the dependency of each CA on each other.

Others have combined an explicit dynamical system—that of the trajectory of a

vehicle—with multidisciplinary design. For instance, Delaurentis developed a method-

ology that probabilistically designed a multidisciplinary system at multiple levels of

the DSM hierarchy[41]. In this work, he employed metamodeling techniques for re-

sponse surface equations to design a vehicle in order to achieve a system level objec-

tive that includes both performance objectives (e.g., range and stability) and system

level considerations (e.g., weight). The developed metamodels contain variables for

the control system that directly impact the vehicle’s dynamical equations of motion

which govern the performance of the aircraft. The vehicle’s performance as well as

other sizing and synthesis components are accounted for, making it a multidisci-

plinary design; however, the use of dynamical system theory is limited to designing

the control system of the aircraft through the explicit equations of motion.

Work by Grant uses optimal control theory in order to simultaneously design the

trajectory and vehicle geometry for an entry, descent, and landing system[130, 131].

This work exploits dynamical system theory fully, albeit for a specific system in which
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the equations of motion are a function of the vehicle geometry and does not require

iteration between the CAs to converge the design. In turn, the problem is collapsed

to the design of a system as opposed to a general multidisciplinary design.

A summary of this previous work with a comparison to the methods presented in

this investigation is provided in Table 2.

Table 2: Some previous uses of dynamical system concepts in design.
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1.5 Study Overview and Objectives

A general multidisciplinary design problem features coupling and feedback between

CAs. This feedback may lead to convergence issues requiring significant iteration in

order to obtain a feasible design.

Because finding a converged multidisciplinary design can be thought of as a multi-

dimensional root-finding problem, an iteration scheme can be developed for the state

vector, where the subsequent iteration relies on information from prior iterates. The

process of finding the root iteratively will be shown to be identical to the that of

solving a dynamical system. Therefore, the multidisciplinary design problem can be

cast as dynamical system where the state is the iteration-dependent data required

by each of the disciplines comprising the design. Casting the multidisciplinary de-

sign problem as dynamical system enables leveraging techniques associated with the

dynamical system field in order to overcome some of the traditional shortcomings of

multidisciplinary design techniques, such as the computational burden required by the

iteration and the potentially conflicting objectives between CA-level and system-level

optimizations.

Rigorous description for casting the multidisciplinary design problem as a dynami-

cal system, including handling of equality and inequality constraints within the design

will be provided. Three areas from dynamical system theory are chosen for detailed

investigation: stability analysis, optimal control, and estimation theory. Stability

analysis is used to investigate the existence of a solution to the design problem. This

analysis can be broadened to investigating the range of initial guesses that provide

guaranteed convergence for different iteration schemes. Optimal control techniques

allow the requirements associated with the design to be incorporated into the system

and allow for constraints that are functions of both the CA outputs and input values

to be handled simultaneously. Finally, estimation methods are employed to obtain

an evaluation of the robustness of the multidisciplinary design.
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These three dynamical system techniques are then combined in a complete method-

ology for the rapid robust design of a linear multidisciplinary design. The developed

robust design methodology allows for uncertainties both within the models as well as

the parameters of the multidisciplinary problem. While linear multidisciplinary de-

signs are not common, extension to nonlinear designs is achievable through successive

linearization of the design or through an alternate estimation technique. A descrip-

tion of the appropriate domains of applicability for this linear technique is provided

in this thesis.

As observed in Table 2, this study is the only one to apply dynamical system theory

from the domains of stability, control, and estimation to the general multidisciplinary

design problem to address design convergence and optimization. In addition, it is the

only one to apply estimation theory to the quantify the uncertainty associated with

a design’s response.

1.6 Thesis Organization

The remaining portions of this thesis are organized as follows:

• Chapter 2 provides the theoretical context for this work. Included in this dis-

cussion is a definition of the state and discrete dynamical systems which enable

the casting of the multidisciplinary design problem in the form of a dynamical

system. In addition, the theoretical foundation for several other techniques uti-

lized within this work (e.g., root-finding methods, covariance matrices, matrix

norms, and unscented transform) are described. Finally, the chapter concludes

with a discussion of how to cast the multidisciplinary design problem as a dis-

crete dynamical system.

• Chapter 3 demonstrates how to apply various techniques from dynamical sys-

tem theory to the multidisciplinary design problem. These techniques include

using concepts from stability analysis, control theory, and estimation theory.
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Stability analysis can be used to determine whether a design is feasible, whether

an optimal design exists, the range of initial values that can be used to converge

the design, and the rate at which the design will converge. Control theory is

able to be used to enforce constraints that are functions of the CA’s output and

the design variables at the same level in the optimization hierarchy. Finally,

techniques with roots in estimation theory can be used to propagate uncer-

tainty through the multidisciplinary design, leading to a way to simultaneously

converge the design and quantify the uncertainty associated with that design

point. For each of these dynamical system techniques, the theory underlying

their use is summarized followed by a discussion of how the technique can be

used in context of the multidisciplinary design problem.

• Chapter 4 integrates the techniques described in Chapter 3 into a rapid ro-

bust design methodology for linear multidisciplinary design which is capable of

extension to nonlinear multidisciplinary design through the use of successive

linearization. Within this chapter are formulations of the rapid robust de-

sign methodology using two root-finding techniques—fixed-point iteration and

Newton-Raphson iteration.

• Chapter 5 demonstrates each of the dynamical system techniques developed

in illustrative multidisciplinary design problems. This chapter pedagogically

progresses from relatively straight-forward analytical examples to more com-

plex practical examples. The chapter concludes with applying the developed

methodology to the design of a deployable aerodynamic surface for a strategic

system.

• Chapter 6 discusses the extensibility of the rapid robust design methodology

from both computational and accuracy perspectives. The effect of problem

scaling on computational cost is considered by examining the number of design
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variables, number of CAs, nonlinearity of the CAs, and nonlinearity of the

response. In addition to computational cost, the accuracy of applying a method

with linear fundamentals to nonlinear problems is examined through nonlinear

perturbation analysis to identify the region of applicability for the method.

• Chapter 7 provides a summary of the thesis and its academic contributions.

In addition, various avenues for future work are discussed.

1.7 Academic Contributions

This thesis advances the state-of-the-art in the design and analysis of multidisciplinary

systems. The multidisciplinary design problem is recast as a dynamical system en-

abling new analyses to be performed and for a rapid robust design methodology to

be produced. The academic contributions of this research are summarized as follows:

Formulation of the General Multidisciplinary Design Problem as a Dynam-

ical System In Order to Leverage Established Techniques from Dynamical

System Theory

The convergence and optimization of a multidisciplinary design are root-finding prob-

lems, where the iterative techniques used to find the their solutions meet the require-

ments of a dynamical system. In turn, this allows the application of established

methods from dynamical systems to be applied to multidisciplinary design. Lever-

aging these techniques from dynamical system theory, the multidisciplinary design

process is shown to be more computationally tractable while yielding additional in-

sight into the problem.
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Application of the Dynamical System Domain to the Multidisciplinary De-

sign Problem

The applicability of dynamical system techniques to the multidisciplinary design prob-

lem will be shown through application of three different areas—stability, control, and

estimation. These techniques are chosen for the speed and knowledge they provide

relative to traditional MDO techniques as well as their use in formulating a rapid

robust design methodology.

Stability Analysis : Stability theory provides insight into the existence of a design

based on the convergence procedure being utilized. For linear, constant coefficient

systems, stability can be checked through eigenanalysis. For more general designs,

the existence of a converged design can be identified through Lyapunov techniques.

Lyapunov techniques can also identify domains for which initial guesses result in con-

verged designs as well as to assess information regarding the rate of convergence.

Control Theory : Optimal control techniques allow constraints that are a function of

both the CA output and the design variables to be included at the same level of the

design hierarchy. This is a departure from many traditional MDO techniques, where

only constraints that are an explicit function of the design variables are considered.

By allowing for both types of constraints to be considered simultaneously, a coordi-

nated search of potential designs ensues which is capable of providing computational

efficiency.

Estimation Techniques : Estimation theory provides a means to obtain a rapid es-

timate of the mean and variance of the design. These estimates are provided by

propagating additional equations alongside the convergence relations. Furthermore,

design decomposition can be guided through the use of these techniques.
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Development of a Linear Technique for the Rapid Robust Design of a Mul-

tidisciplinary System

Integrating these three areas of dynamical system theory together, a procedure for the

rapid robust design of a linear multidisciplinary system is produced. This methodol-

ogy provides a bound on the variance through the use of the matrix two-norm and is

applicable to nonlinear designs through successive linearization. The domain of appli-

cability of this rapid robust design methodology is quantified with respect to design

complexity, including nonlinearity. This design methodology is also demonstrated on

a suite of analytical and practical test problems.

Application of the Multidisciplinary Design Methodology to a Design Ex-

ample of Relevance to the Entry, Descent, and Landing Community

In addition to other test problems, a design example which obtains robust designs for

a deployable device that either increases the range or accuracy of a strategic system

is provided. This design example considers both the design of the deployable as well

as the selection of a guidance algorithm with comparisons to a contemporary robust

design methodology.
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CHAPTER II

CASTING THE MULTIDISCIPLINARY DESIGN

PROBLEM AS A DYNAMICAL SYSTEM

This chapter provides the theoretical background for casting the multidisciplinary

design problem as a dynamical system beginning with a discussion of the enabling

theoretical foundations. These include a rigorous definition of the state and a dis-

crete dynamical system. This is followed by a mathematical description of several

numerical root-finding schemes and how each satisfies the criterion to be dynamical

system. Theoretical foundations for several other techniques utilized within this work

are then discussed including the covariance matrix, matrix norms, and a more rigor-

ous discussion of various methods for propagating uncertainty through mathematical

mappings. The chapter then concludes with a discussion of how to cast the multidis-

ciplinary design problem as a nested discrete dynamical system where feasible designs

are identified and then optimized.

2.1 Enabling Theoretical Foundations

2.1.1 The Concept of a State

The concept of a state is fundamental in transforming the multidisciplinary design

problem to a dynamical system. It is a summary of the status of the system at a

particular instance.
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Definition: State

The state consists of the minimum set of parameters that completely summarize
the internal status of the dynamical system in the following sense: at any time
t0 ∈ T the state x(t0) is known, then the output at a future instance in time,
t1 ∈ T , y(t1) where t1 > t0 can be uniquely determined for a given evolution
scheme provided the input u[t0,t1] ∈ U is known.

In this work, two states will be considered—one which describes the output of

the CAs for the convergence of the design and another which describes the design

variables during the optimization of the design.

2.1.2 Mathematical Definition of a Dynamical System

Mathematically, a dynamical system is a set of times T , spaces U , Σ, and Y , and

transformations g : T ×T ×Σ×U → Σ and h : T ×Σ×U s → Y t. The transformations

g and h are such that[132]

x(t1) = g(t0, t1,x(t0),u[t0,t1])

and

y(t1) = h(t1,x(t1),u(t1))

The sextuple, (T ,U ,Σ,Y ,g,h), defines a dynamical system provided the transforma-

tions have the following properties:

1. Identity Property: for every t0, t1 ∈ T ,

x(t0) = g(t0, t0,x(t0), u[t0,t1])

2. State Transition Property: for every u ∈ U , v ∈ U such that u = v over an

interval [t0, t1] ∈ T , then

g(t0, t1,x(t0),u[t0,t1]) = g(t0, t1,x(t0),v[t0,t1])
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3. Semigroup Property: for every t0, t1, t2 ∈ T and t0 < t1 < t2,

x(t2) = g(t0, t2,x(t0),u[t0,t2])

= g(t1, t2,x(t1),u[t1,t2])

= g(t1, t2,g(t0, t1,x(t0),u[t0,t1]),u[t1,t2])

The first of these properties is a statement that g is an identity transformation when-

ever the arguments are the same. The second says that this causal dynamical system

does not depend on inputs prior to t0 since those inputs determined x(t0) and similarly

x(t1) does not depend on inputs after t1. This is referred to as the state transition

property. The third property says it is irrelevant how x(t2) is computed, whether it

be directly from x(t0) and u[t0,t2] or if x(t1) is obtained first from x(t0) and u[t0,t1] and

then used to compute x(t2) with u[t1,t2].

It is important to note that in the mathematical definition the transformation g

that describes a dynamical system is not required to be described by a differential

equation, although this is the case in many instances and fulfills the three required

properties.

2.1.3 Discrete Dynamical Systems

The framework developed for this work relies on discrete dynamical systems. That

is, a dynamical system of the form

xk+1 = f(xk,uk, k)

yk = g(xk,uk, k)

 (5)

where x is the state of the system, f is a function which describes the time evolution

of the system, u is the input into the system, and k is the iterate number. A specific

instance of Eq. (5) that is used throughout this work is a linear, discrete dynamical
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system, which is given by

xk+1 = Akxk + Bkuk

yk = Ckxk + Dkuk

 (6)

Graphically, this is shown in the block diagram shown in Fig. 8.

Bk Ck 

Ak 

Dk 

Delay uk yk 

xk xk+1 

+ 
+ 

+ 
+ 

Figure 8: Block diagram of a linear, discrete dynamical system.

2.1.4 Root-Finding Methods

Root-finding methods consider an equation of the form

f(x) = 0 (7)

where a root, x∗, that satisfies Eq. (7) (i.e., f(x∗) = 0) is sought.

2.1.4.1 Fixed-Point Iteration

Fixed-point iteration is a straight-forward method for finding the root of a function.

It does not rely on derivative information, and in general has linear convergence

properties. The fundamental concept behind the method is that there exists a fixed-

point for a transformed form of Eq. (7)

x = g(x) (8)
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where the iteration is prescribed by

xk+1 = g(xk) (9)

The algorithm is as follows

Algorithm: Fixed-Point Iteration

Transform f(x) = 0 to x = g(x);
Choose an initial guess x0 in [a,b];
for k=0,1,2,. . . do

xk+1 = g(xk);
if ‖ xk+1 − xk ‖ < ε then

x∗ = xk+1;
return x∗;

else
continue;

end

end

Consider the following proposition[133]

Proposition 1. Define {xk}∞0 using xk+1 , g(xk) as described in the algorithm

above. If {xk}∞0 converges to a limit x∗ and the function g is continuous at x = x∗,

then the limit, x∗, is a root of f(x) : f(x∗) = 0

Proof. Assume that {xk}∞0 converges to some value x∗. Since g is continuous, the

definition of continuity implies that

lim
k→∞

xk = x∗ ⇒ lim
k→∞

g(xk) = g(x∗)

Therefore, using this fact, the proposition can be proven by noting

g(x∗) = lim
k→∞

g(xk) = lim
k→∞

xk+1 = x∗

Thus, g(x∗) = x∗ and since the equation g(x) = x is equivalent to the original one

f(x) = 0, it can be concluded that f(x∗) = 0.
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This method to find the root is graphically shown in Fig. 9 where two curves

are shown, one for y = g(x) and another for y = x. These are the two sides of the

fixed-point iteration equation.

x 
x0 x2 x3 x1 

g(x0) 

g(x2) 

g(x3) 
g(x1) 

y = x 

y = g(x) 

y 

Figure 9: Visual represent ion of the fixed-point iteration root-finding method.

It is important to note that fixed-point iteration inherently fits the definition of

a discrete dynamical system described by Eq. (5) with no dependence on uk and

k. However, it is clear that the iteration scheme meets the criterion of a dynamical

system as it (1) has a defined state, the value of the root x, and (2) a fixed-rule that

describes its evolution with iteration (time). Furthermore, by inspection g(x) satisfies

the identity and semigroup properties. Since there is no dependence on additional

input (i.e., u) the iteration scheme also satisfies the state-transition property.

2.1.4.2 Newton-Raphson Iteration

As briefly described in the previous chapter, Newton-Raphson iteration is a first-order

method to root-finding. It has roots in the Taylor series expansion of the function

and uses successive linearization, as shown in Fig. 10, to find the root of the function
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described by Eq. (7). The iteration scheme is given by

g(x) 

x 
xk 

xk+1 

g(xk) 

g’(xk) 

1 

g(xk+1) 

)('
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1
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xg
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Figure 10: Newton’s method for numerically finding the root of a nonlinear equation.

xk+1 = xk −
(
∂f(xk)

∂xk

)−1

f(xk) (10)

As derivative information is used, it is expected that this method will converge to the

root faster than fixed-point iteration. Indeed this is true, as the method converges at

quadratic rates; however, ascertaining the derivative information requires additional

function evaluations.

The algorithm for Newton-Raphson iteration is found below. Note that there are

variants of this algorithm which do not require the computation of the inverse of

the Jacobian and instead solve the system directly for the step size using efficient

computation methods (e.g., LU decomposition).
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Algorithm: Newton-Raphson Iteration

Choose an initial guess x0 in [a,b];
for k=0,1,2,. . . do

J = ∂f(xk)
∂xk

;

xk+1 = xk − J−1f(xk);
if ‖ xk+1 − xk ‖ < ε then

x∗ = xk+1;
return x∗;

else
continue;

end

end

The following proposition describes the convergence of Newton-Raphson iteration

to the root[133]

Proposition 2. Assume that f ∈ C2[a,b] and ∃x∗ ∈ [a,b] where f(x∗) = 0. If

∂f

∂x

∣∣∣∣
x∗
6= 0, then ∃δ > 0 such that {xk}∞0 using

xk+1 = xk −
(
∂f(xk)

∂xk

)−1

f(xk)

will converge to x∗ for any initial approximation x0 ∈ [x∗ − δ,x∗ + δ].

Proof. Consider the first-degree Taylor polynomial and its remainder term

f(x) = f(x0) +
∂f(x0)

∂x0

(x− x0) +
1

2
(x− x0)T

∂2f(x0)

∂2x0

(x− x0)

Using the fact that f(x∗) = 0 yields

0 = f(x0) +
∂f(x0)

∂x0

(x− x0) +
1

2
(x− x0)T

∂2f(x0)

∂2x0

(x− x0)

If x0 is close enough to x∗ then the second-order term will be small compared to the

rest of the terms

0 ≈ f(x0) +
∂f(x0)

∂x0

(x− x0)

Solving for x∗ yields

x∗ ≈ x0 −
(
∂f(x0)

∂x0

)−1

f(x0)
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which can be used to define the next approximation, x1 to the root

x1 = x0 −
(
∂f(x0)

∂x0

)−1

f(x0)

which leads to the general rule

xk+1 = xk −
(
∂f(xk)

∂xk

)−1

f(xk)

Note that this general recursive relation is analogous to the fixed-point relation xk+1 =

g(xk). It can be shown that

∂g(x)

∂x
= I−

(
∂f(x)

∂x

)−T [
∂f(x)

∂x

∂f(x)

∂x
− ∂2f(x)

∂2x
f(x)

](
∂f(x)

∂x

)−1

=

(
∂f(x)

∂x

)−T [
∂2f(x)

∂2x
f(x)

](
∂f(x)

∂x

)−1

By hypothesis, f(x∗) = 0 and therefore
∂g(x∗)

∂x∗
= 0. Because

∂g(x∗)

∂x∗
= 0 and g(x)

is continuous it is possible to find a δ > 0 so that ‖ ∂g(x)

∂x
‖< 1 is satisfied on

[x∗ − δ,x∗ + δ]. Therefore, the sequence {xk}∞0 converges to the root x = x∗ for

x0 ∈ [x∗ − δ,x∗ + δ]

The next iterate of Newton-Raphson iteration is only a function of the current

iterate, xk, therefore it forms a discrete dynamical system as described in Eq. (5)

with no dependence on uk and k. Therefore, as with fixed-point iteration, it can also

be shown that Newton-Raphson iteration meets the mathematical requirements of a

dynamical system.

2.1.5 The Covariance Matrix

The covariance matrix of a n-dimensional random vector X is an n×n matrix defined

as follow[59]

Σ = E
[
(X− E[X]) (X− E[X])T

]
(11)

and can be thought of as a generalization of the scalar variance of a single random

variable X with mean µ and variance σ2 = E[(X − µ)2]. Note that the covariance

40



matrix is (1) positive semi-definite and (2) symmetric. The expansion of Eq. (11)

gives insight into the terms that comprise the covariance matrix

Σ =



σ2
X1

ρX1,X2σX1σX2 · · · ρX1,X2σX1σXn

ρX1,X2σX2σX1 σ2
X2

· · · ρX2,XnσX2σXn

...
...

. . .
...

ρX1,XnσXnσX1 ρX2,XnσXnσX2 · · · σ2
Xn


(12)

where σ2
Xi

is the variance of variable Xi and ρXi,Xj
is the product-moment coefficient

(i.e., the correlation coefficient) given by

ρXi,Xj
=

E
[
(Xi − µXi

)(Xj − µXj
)
]

σXi
σXj

(13)

The product-moment coefficient is a measure of the dependence of one random vari-

able on another random variable and can vary between -1 and 1. Negative values

indicate negative dependence (i.e., an increase in one variable produces a decrease in

the other variable), positive values indicate positive dependence (i.e., an increase in

one variable produces an increase in the other variable), and zero indicates zero corre-

lation between the two variables. Hence, the covariance matrix captures second-order

effects of the distribution with both the variance and dependence of each random

variable when taken pairwise with another random variable. For this work, the co-

variance matrix of interest is either (1) the output of each CA or (2) the output of

the entire design. These are used by other CAs within the multidisciplinary system

to compute the robustness of the entire design.

2.1.6 Propagating Uncertainty

The computation (or estimation) of the output distribution of a CA or design with

uncertain modeling or inputs can be achieved by a multitude of methods as discussed

in Chapter 1. For some specific examples, analytical methods could be utilized. For

example, when linear operations are conducted on random variables with known mean
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and covariance an exact propagation of the uncertainty is possible[59]. However, in

general, approximate techniques must be used. In this work, a sampling method,

the unscented transform, is pursued. The unscented transform selects the samples

so that the moments of the probability distribution can be matched. This leads

to more accurate estimates of the probability distributions. In addition, once the

multidisciplinary design is formulated as a dynamical system, covariance techniques

which implement a Kalman filter can be invoked as shown in Chapter 3.

While the theoretical development of the method in this investigation considers

all analyses to be linear (or linearized) such that an analytic propagation is possible,

the formulation discussed later allows extension to nonlinear applications.

2.1.6.1 Sample Statistics

Sample statistics describe the statistics of a known set of values. In this methodology,

it can be assumed that the sample is the resultant of a number of propagated trials

through the analysis. There are two two sample statistics of interest: the sample

mean (x̄) and the sample covariance (S). The unbiased estimates of each of these is

given by Eqs. (14) and (15), respectively[59].

x̄ =
1

n

n∑
i=1

xi (14)

Sjk =
1

n− 1

n∑
i=1

(xij − x̄j)(xik − x̄k) (15)

2.1.6.2 The Unscented Transform

The unscented transform approximates a probability distribution by selecting a small

number of test points, the sigma points, which are propagated through the analysis

to allow estimation of the posterior mean and covariance. While this is similar to

Monte Carlo analysis because a trial is propagated through the analysis, by selecting

the test points according to the eigenstructure of the covariance matrix, third-order
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accurate estimates of the resulting distribution’s mean and covariance matrix are

achievable with a small number of sigma points[134]. The relative speed and accuracy

of computation for the uncertainty propagation leads this technique to be the basis

of the Unscented Kalman Filter[135].

Conceptually, the unscented transform can be understood through the follow-

ing development. Suppose that the output of an analysis, y, is related to the n-

dimensional input, x, by the relationship

y = g(x) (16)

where x has mean x̄ and covariance Σ. The set of trial points are selected based on

the solution of the relationship[134]

AAT = nΣ (17)

There are an infinite number of matrices, A, that satisfy Eq. (17). Two commonly

used solutions are the upper triangular matrix found from the Cholesky decomposition

and the symmetric square root matrix. A set of 2n points, S = {σi}2n
i=1, are then

selected as the columns of ±A. The set of trial points are then given by[134]

X i = σi + x̄ (18)

and are propagated through the CA, Eq. (16)[134]

Y i = g(X i) (19)

. This set can then be used to find the mean and covariance matrix of the analysis’

output, which are given by[134]

ȳ ≈ 1

2n

2n∑
i=1

Y i (20)

Σ ≈ 1

2n

2n∑
i=1

[Y i − ȳ] [Y i − ȳ]T (21)
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These estimates are third-order accurate, meaning for analyses with polynomial input-

output relationships that are less than cubic, the approximation is exact. Hence, for

minimal computational expense (two times the function evaluations as the dimension-

ality of the matrix, A) a very good approximation of both the mean of the output of

the analysis (or design) and the output covariance matrix is obtained[134].

2.1.7 Matrix Norms

In order to obtain a singular value that bounds the variance, consider the matrix

two-norm which is defined as[136]

‖ A ‖2= max
‖x‖2=1

‖ Ax ‖2=
√
λmax(AHA) (22)

where AH represents the conjugate transpose of a matrix A and λmax(·) is a function

which returns the maximum eigenvalue. The two-norm can be more readily under-

stood in the context of spectral decomposition such that D = V−1AV where D is at

worst a block-diagonal matrix. In the case of real, distinct eigenvalues, the diagonal

of matrix D consists of the eigenvalues. By virtue of the properties of the covari-

ance matrix, Σ, the maximum eigenvalue is greater than or equal to the maximum

variance. This means that the two-norm provides a bound on the maximum variance.

In two-dimensions, this can be seen in Fig. 11 where the covariance matrix is

plotted as an ellipse. In Fig. 11, the axes σX1σX2 are the standard deviations as-

sociated with the covariance matrix, Σ. The eigenvectors of the covariance matrix

form the alternate set of axes (in blue), σX′1σX′2 . The two-norm is the variance of

the “pseudo-variable” that is oriented along the principal eigenvector of the resulting

ellipse, which is the magnitude of the semi-major axis of the ellipse. In other words,

the two-norm is the radius of the circle which completely encompasses the covariance

matrix. An advantageous feature of this norm is that it is always a conservative

estimate of the variance of the system.

Another way to view the resulting bound is through the auxiliary circle that is
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Figure 11: Visual representation of the matrix two-norm.

formed from sweeping through the eccentric anomaly of an elliptical orbit. This

auxiliary circle completely encompasses the elliptical orbit and is coincident with the

orbit at two points (when the true anomaly is 0◦ and 180◦), much in the same way

that the two-norm encompasses the ellipse formed from a covariance matrix and is

coincident at two points.

2.2 Multidisciplinary Design as a Dynamical System

2.2.1 Identification of Feasible Designs

Identifying feasible designs in multidisciplinary systems can be thought of as the

process of finding the root of a function. Consider a multidisciplinary problem where

the analysis variables are described by a multivariable function f(u,p) where u are

the design variables and p are the parameters of the problem. Assume that the

requirements of the design are given by only equality constraints that are a function

of the performance of the system. The performance of the design is described by a

multivariable mapping g(f(u,p)) and the requirements are given by z. In order to
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meet the requirements it is necessary to adjust the design variables u so that

z = g(f(u,p)) (23)

The solution u∗ of Eq. (23) is the root of the system. Since identifying feasible

designs within the multidisciplinary design problem requires finding the value of u

that satisfies Eq. (23), this process can be thought of as a root-finding problem when

an iterative solution method is chosen. As described previously, many of the iterative

schemes to find the root of a function, g(u), can be thought of as a dynamical system.

Therefore, finding the feasible designs can be a dynamical system.

2.2.2 Design Optimization

In order for a converged design to be an optimum with respect to some objective func-

tion, its performance needs to be evaluated with respect to other potential designs.

The general optimization problem is formulated as

Minimize: J (u,p)

Subject to: gi(u,p) ≤ 0, i = 1, . . . , ng

hj(u,p) = 0, j = 1, . . . , nh

By varying: u


(24)

which requires a stationary point of the Lagrangian given as

L(u,p,λ) = J (u,p) +

ng∑
i=1

λigi(u,p) +

nh∑
j=1

λng+jhj(u,p) (25)

to be found. The stationary point of the Lagrangian (Eq. (25)) is the value of u

such that ∇uL(u,p,λ) = 0. This is also a root-finding problem and therefore can be

thought of as a dynamical system.

2.2.3 Identifying an Optimal Multidisciplinary Design

Multidisciplinary design optimization can be broken down into two steps: (1) identi-

fying feasible designs and (2) identifying the optimal design from the set of feasible
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candidates. As discussed, both of these steps are root-finding problems. With the

choice of an appropriate iterative numerical root-finding scheme, each of these indi-

vidual steps can be posed as dynamical systems. When combined together, a nested

root-finding problem results. This is shown in Fig. 12

Root-finding Problem 2: Identify Candidate Designs

Root-finding Problem 1: Identify the Optimal Design

z - g(f(u,p)) = 0
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Figure 12: Multidisciplinary design through root-finding.

2.2.4 Analog of Dynamical System Variables and Multidisciplinary De-
sign Variables

The convergence and optimization of a multidisciplinary design problem have been

shown to be root-finding problems that can be given by an iterative relationship of

the form

yk+1 = f(yk,uk, k) (26)
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The iteration equation given in Eq. (26) is the same form given in the definition of

a discrete dynamical system equation, Eq. (5). Table 3 shows the analogy between

dynamical system variables in Eq. (26) and the variables associated with design.

Throughout the remainder of this thesis, this notation is used consistently.

Table 3: Analog between dynamical system variables and design variables.

Variable Dynamical System Description Design Description
y State CAs Output
u Control Design Variables
k Iteration # Design Iteration

2.3 Summary

This chapter provided the theoretical context for viewing the multidisciplinary design

problem as a dynamical system. Included in this discussion was a rigorous definition

of the state and discrete dynamical systems. This was followed by a description

of two numerical root-finding algorithms, fixed-point iteration and Newton-Raphson

iteration and it was shown that each of these methods both converge to a root and

meet the criterion to be a dynamical system. In particular, the state was shown to be

the independent variable and the iteration scheme meets the requirements set forth

at the beginning of the chapter to be a discrete dynamical system. In addition, the

theoretical foundation for several other techniques utilized within this work such as

covariance matrices, matrix norms, and unscented transform were described. Finally,

a discussion surrounding how to cast the root-finding problems associated with the

multidisciplinary design as a dynamical system ensued. This discussion showed that

both steps in design, finding feasible designs and the subsequent optimization are root-

finding problems that can be nested within one another to form a single dynamical

system.
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CHAPTER III

APPLYING DYNAMICAL SYSTEM THEORY TO

MULTIDISCIPLINARY DESIGN

This chapter builds on the approach of casting the multidisciplinary design prob-

lem as a dynamical system shown in Chapter 2 to apply dynamical system theory.

Techniques from dynamical system theory are applied to the multidisciplinary design

problem, including concepts from stability analysis, control theory, and estimation

theory. Stability analysis is shown to be able to determine whether a design is feasi-

ble, whether an optimal design exists, the range of initial values that can be used to

converge the design, and the rate at which the design will converge. Control theory

enables efficient handling of constraints as it enforces constraints that are functions

of the CA’s output and the design variables at the same level in the optimization

hierarchy. Finally, estimation theory is used to propagate uncertainty through the

multidisciplinary design, yielding a method that simultaneously converges the design

and quantifies the uncertainty associated with that design point.

3.1 Design Convergence Using Stability Concepts

Concepts from the stability domain of dynamical system theory are applied to mul-

tidisciplinary design in order to identify:

1. Whether a feasible design exists (for a given iteration scheme)

2. Whether an optimal design exists (for a given iteration scheme)

3. The range of initial values that can be used to converge the design

4. The rate at which the design will converge

49



Each of these is an enhancement compared to current MDA/O techniques enabled by

viewing the iterative relationships formed in the convergence of the design problem

as a dynamical system.

3.1.1 Foundations of Stability Analysis

The concept of stability allows for the identification of feasible designs for given

iteration schemes. These iteration schemes can usually be written in the form

yk+1 = f(yk,uk) (27)

where y is the state of the system, f is a function which describes the time evolution

of the system, u is the input into the system, and k is the iterate number. A specific

instance of Eq. (27) is a linear, discrete dynamical system, which is given by

yk+1 = Akyk + Bkuk (28)

For a given initial state, a system is stable if the state does not grow beyond

the initial state’s magnitude. More rigorously, this is defined in terms of equilibrium

points of a system. Consider the discrete dynamical system defined by Eq. (27), the

equilibrium point is defined as

Definition: Equilibrium of a Dynamical System

A particular point ye is an equilibrium point of the dynamical system given by
Eq. (27) if the system’s state at iterate k = 0 is ye implies that ∀k ∈ Z+ \ {0},
f(ye,0) = ye.

For a linear dynamical system, given by Eq. (28), the equilibrium point is the origin

of the system (i.e., ye = 0).

The equilibrium point’s stability is defined with regard to the zero-input discrete

50



dynamical system given by[132, 137, 138, 139]

yk+1 = f(yk,0)

yk=0 = y0

 (29)

Definition: Stability

For the system given by Eq. (29), if ∀ε > 0, ∃δ(ε, 0) ∈ (0, ε] an equilibrium point
of the system is

• stable if ∀k > 0 and ‖ y0 ‖< δ, ‖ yk ‖< ε

• asymptotically stable if

1. the equilibrium point is stable and

2. ∃δ′ ∈ (0, ε] such that whenever ‖ y0 ‖< δ′ the state’s evolution
satisfies lim

k→∞
‖ yk ‖= 0

• unstable if it is not stable or asymptotically stable

Figures 13 and 14 demonstrate the concept of equilibrium point stability. Figure

13 shows an intuitive concept of stability while Fig. 14 demonstrates different state

trajectories in R2 × R and R2. In Fig. 14, asymptotically stable state trajectories

are seen to approach the origin as time progresses whereas stable trajectories remain

within a given distance, ε of the origin.

Asymptotically 

Stable 

Stable Unstable 

Figure 13: Visualization of the concept of stability.
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Figure 14: Visualization of state trajectories in (a) R2×R and (b) R2 showing stability
for a continuous dynamical system.

3.1.1.1 Linear Stability Criterion

For discrete, linear systems, that is dynamical systems given by Eq. (28), the solution

for the evolution of the state and the output is given by

yk = Φ(k, 0)y0 +
k∑
j=1

Φ(k, j)Bj−1uj−1 (30)

where Φ(k, j) is the discrete state transition matrix. This transition matrix is given

by

Φ(k, j) = Ak−j (31)

in the case where Ak = A ∀k ∈ Z+, that is when A is constant. Substituting Eq.

(30) and Eq. (31) into Eq. (28) yields[132]

yk+1 = Ak+1y0 +
k∑
j=1

Ak−j+1Bj−1uj−1 + Bkuk (32)

which is a relationship that depends on the initial condition and the control history.

In the unforced case (i.e., uk = 0 ∀k ∈ Z+) and by the Cayley-Hamilton theorem,
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the stability criterion can be identified. If max
i
|λi| > 1 for any simple root of the

characteristic equation

det(A− λI) = 0 (33)

or max
i
|λi| ≥ 1 for any repeated root of Eq. (33) then the system is unstable. This

is because the Jordan canonical form of A has terms that tend to infinity as the

iteration proceeds (i.e., lim
k→∞

VTAkV =∞ since diagonal terms of VTAV are greater

than unity). Similarly, if max
i
|λi| ≤ 1 for any simple root or max

i
|λi| < 1 for repeated

roots of Eq. (33), then the iteration scheme is asymptotically stable[132, 140, 141].

More rigorous proof of this concept is provided in Ref. [140].

3.1.1.2 Lyapunov Stability

Stability of general dynamical systems, including the one formed for design, can be

studied using Lyapunov stability theory. This theory lays the foundations to assess the

stability characteristics of arbitrary designs and can be leveraged to provide insight

about the convergence properties of the design. For instance, Lyapunov stability can

be used to ascertain information regarding the convergence rate and what starting

iteration values will lead to a converged design for a given root-finding scheme.

Lyapunov stability theory is prevalent for continuous dynamical systems such as

the autonomous system

ẏ = f(y), ∀t ∈ [0,∞) (34)

for which the origin is an equilibrium point. A Lyapunov function is a continuously

differentiable map V : Rn → R such that

1. V (y) > 0, y 6= 0, V (0) = 0

2.
d

dt
(V (y(t))) ≤ 0, ∀t ∈ [0,∞)

where y : [0,∞)→ Rn is any solution of Eq. (34)[138]. In fact, it has been applied to

differential equations such as this since Lyapunov first defined this technique in 1892.
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Its use in dynamical systems, defined by difference equations such as those used to

converge and optimize designs, is less mature with the first treatment in the literature

being attributed to Hahn in 1958[142].

To begin the development of Lyapunov theory for discrete dynamical systems,

consider the following definition of a Lyapunov function[142, 139, 141, 143, 144]

Definition: Discrete Lyapunov Function

A mapping V : Rn → R is a Lyapunov function for the zero-input autonomous,
discrete dynamical system, Eq. (27), (i.e., f(yk,0)) at an equilibrium point ye
of f if there is an open neighborhood D at ye such that V is continuous on D
and

• V (y) > 0 ∀y ∈ D, y 6= ye, V (ye) = 0

• ∆V = V (yk+1)− V (yk) ≤ 0 whenever yk,yk+1 ∈ D

With this definition, the following theorem can be presented.

Theorem 1 (Lyapunov’s Direct Method for Discrete Dynamical Systems). Consider

the following dynamical system

yk+1 = f(yk), yk ∈ S ⊆ D

f(0) = 0


where it is assumed that f : Rn → Rn is continuous on an open neighborhood S of a

fixed-point ye and that V : Rn → R is a Lyapunov function for f at u∗, then at u∗

the dynamics governed by f are stable. If, in addition,

∆V = V (yk+1)− V (yk) < 0 whenever y,yk+1 ∈ D and yk 6= ye

then the trajectory governed by f are asymptotically stable at ye. If S = D = Rn and

V (yk)→∞ as ‖ yk ‖→ ∞,

then the dynamics governed by f is globally asymptotically stable at ye.
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The proof of this theorem is shown in Appendix A.

A special case of a discrete dynamical system is that of a linear, discrete system

with constant coefficients such as that shown in Eq. (28) with Ak = A ∀k ∈ Z+.

The zero-input stability in this case can be investigated using a quadratic Lyapunov

function of the form

V (y) = yTRy (35)

This form leads to

∆V (y) = V (yk+1)− V (yk) = yT
(
ATRA−R

)
y = −yTSy (36)

For any given S > 0, which is symmetric there is exactly one solution for a symmetric

matrix R which is the solution of Stein’s equation

ATRA−R = −S (37)

provided that

λi 6= λj 6= 1, i = 1, 2, · · · , n, j = 1, 2, · · · , n (38)

holds for all eigenvalues λi of A. Thus, if there is a solution, R, to Stein’s equation,

Eq. (37), then the linear system is globally asymptotically stable since ∆V < 0,

S = D = Rn, and V (yk) → ∞ as ‖ yk ‖→ ∞. For linear, constant coefficient

systems, this is equivalent to the results before (i.e., if an R exists, this implies

|λi| < 1 for all eigenvalues).

3.1.1.3 Summary of Stability Conditions

A summary of the conditions to achieve stability for both a general dynamical system

(in terms of Lyapunov functions) and a linear, constant coefficient system (in terms

of eigenvalue criterion) is listed in Table 4[132, 140, 141].

55



Table 4: Discrete dynamical system stability criterion.

General System Linear Constant
Classification Criterion System Criterion

Unstable
If |λi| > 1 for any

simple root or |λi| ≥ 1
for any repeated root

Stable
1. V (y) > 0 If |λi| ≤ 1 for any
2. ∆V ≤ 0 simple root and |λi| < 1

for all repeated roots
1. V (y) > 0 ∀y 6= 0 and V (0) = 0

Asymptotically 2. ∆V < 0 ∀y 6= 0
Stable (or ∆V ≤ 0 ∀y and ∆V 6= 0 for any |λi| < 1 for all roots

solution sequence {yk}) (or ∃R that satisfies
1. V (y) > 0 ∀y 6= 0 and V (0) = 0 ATRA−R = −S

Globally 2. ∆V < 0 ∀y 6= 0 with S = ST > 0)
Asymptotically (or ∆V ≤ 0 ∀y and ∆V 6= 0 for any

Stable solution sequence {yk})
3. V (y)→∞ as ‖ y ‖→ ∞

3.1.2 The Relationship of Stability to Design Convergence

From the multidisciplinary design perspective, stability of the dynamical system gives

information into the convergence characteristics of the design. Asymptotic stability

implies that there is a limited region for which the design will converge, whereas

global asymptotic stability implies that the design will converge regardless of the

design assumptions used to start the convergence procedure. If the dynamical system

representing the multidisciplinary design is unstable or stable, it implies that the

design will not converge. This is analogous to stating that a contraction mapping

exists.

3.1.3 Region of Attraction

The region of attraction to an equilibrium point ye of Eq. (29) is the set

A = {y : fk(y)→ ye as k →∞}
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This can be more readily understood as the set of initial guesses that make the

iteration scheme converge (i.e., those that will result in converged designs). The

following theorem helps in identifying this region of attraction[145]

Theorem 2 (Region of Attraction). Assume that φ : Rn → R is continuous and

satisfies

1. φ(ye) = 0

2. φ(y), y 6= ye

3. φ(y) ≥ a for ‖ y − ye ‖≥ b

where a and b are positive constants and ye is a fixed-point of f : Rn → Rn. Assume

also ∃w : Rn → R is continuous at ye with

1. w(ye) = 0

2. w(y) > 0, y 6= ye

3. w(f(y))− w(y) = −φ(y)(1− w(y)) ∀y ∈ Rn

Then A = {y : w(y) < 1} is the region of attraction.

The proof of this theorem is found in Appendix A. A function of the form φ(y) =

c ‖ y − ye ‖p satisfies the three required conditions for φ. Therefore, the problem of

finding the domain of attraction becomes a problem of finding the domain for w such

that w(y) < 1.

3.1.4 Methods for Identifying the Stability of a System

In general the search of a Lyapunov function V (y) is a difficult one, particularly

for nonlinear systems for which the equations describing their evolution may not be

known, as would likely be the case in design. However, several techniques for their

search exist[137, 138, 139, 140, 141]. An emerging technique that is used in this work

57



to identify Lyapunov functions is sum-of-squares decomposition. This technique is

particularly applicable for polynomial dynamical systems (including Taylor series ap-

proximations) and achieves a Lyapunov function by factoring a nonlinear polynomial

that is parametrized by unknown variables into a sum-of-squares. The resulting sum-

of-squares polynomial is positive definite and can be used to check the difference

condition to find if an iteration scheme for the design is convergent.

3.1.4.1 Sum-of-squares Decomposition and Analysis

A polynomial, f(y), y ∈ Rn is said to be a sum-of-squares if there exist polynomials

f1(y),..., fm(y) such that

f(y) =
m∑
i=1

f 2
i (y) (39)

This statement is equivalent to the following proposition[146].

Proposition 3. Let f(y) be a polynomial in y ∈ Rn of degree 2d. In addition, let z(y)

be a column vector whose entries are all monomials in y with degree no greater than

d. Then f(y) is a sum-of-squares if and only if there exists a positive semi-definite

matrix Q such that

f(y) = zT (y)Qz(y) (40)

Using the proposition definition of a sum-of-squares, it can be seen that a sum-of-

squares decomposition can be found using semidefinite programming, to search for

the Q matrix satisfying Eq. (40).

What is significant about sum-of-squares decomposition for design applications is

that it allows the search of a polynomial Lyapunov function V (y) (i.e., the f(y)) with

coefficients that are parametrized in terms of some other unknowns. A search for the

coefficients that render the polynomial f(y) a sum-of-squares can be performed using

semidefinite programming. For example, consider the construction of a Lyapunov

function for a nonlinear system where the following procedure can be used:
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1. Coefficients can be used to parametrize a set of candidate Lyapunov functions

in an affine manner, that is it can determine a set V = {V (y) : V (y) = v0(y) +
m∑
i=1

civi(y)}, where the vi(y)’s are monomials in y.

2. Search for a function V (x) ∈ V which satisfies V (y) − φ(y) and −
∂V (y)

∂y
f(y),

where φ(y) > 0 using semidefinite programing

The semidefinite programming problem above determines the state dependent linear

matrix inequalities (LMIs) that govern the problem which are resultants of solving

the following convex optimization problem

Minimize:
m∑
i=1

aici

Subject to: F0(y) +
m∑
i=1

ciFi(y) ≥ 0

By varying: ci


(41)

where ai ∈ R are fixed coefficients, ci ∈ R are decision variables, and Fi(y) are

symmetric matrix functions of the indeterminate y ∈ Rn. When Fi(y) are symmetric

polynomial matrices in y the computationally difficult problem of solving (41) is

relaxed according to the following proposition[146]

Proposition 4. Let F(y) be an m×m symmetric polynomial matrix of degree 2d in

y ∈ Rn. Furthermore, let z(y) be a column vector whose entries are all monomials

in y with degree no greater than d, and assume the following:

(i) F(y) ≥ 0 ∀y ∈ Rn

(ii) vTF(y)v is a sum of squares, with v ∈ Rm

(iii) There exists a positive semi-definite matrix Q such that

vTF(y)v = (v ⊗ z(y))T Q (v ⊗ z(y))

Then (i) ⇐ (ii) and (ii) ⇔ (iii)
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This proposition is proven by Prajna et al. in Ref. [146]. However, by applying

Proposition 4, it is seen that the solution to the sum-of-squares optimization problem

seen in Eq. (42) is also a solution to the state-dependent LMI problem, Eq. (41).

Minimize:
m∑
i=1

aici

Subject to: vT

(
F0(y) +

m∑
i=1

ciFi(y)

)
v is a sum-of-squares

polynomial

By varying: ci


(42)

This relaxation of the LMI problem turns the relatively difficult computation

problem associated with Eq. (41) to a relatively simple computational problem since

semidefinite programming solvers are readily available on multiple platforms[147, 148].

3.1.5 Estimating the Rate of Convergence Based on Lyapunov-like Tech-
niques

For a special case of an exponentially stable system, the rate of convergence can

be estimated. The following lemma defines the basis of exponential stability for a

discrete dynamical system

Lemma 1. For a system defined by Eq. (27) if there exists a function V (y) with

V (0) = 0 such that

1. V (yk) ≥ cφ(‖ yk ‖)

2. ∆V = V (yk+1)− V (yk+1) ≤M − αV (yk)

for some φ ∈ K and constants c > 0, M ≥ 0, and 0 < α < 1 then

1. cφ(‖ yk ‖) ≤ V (yk) ≤ (1− α)kV (y0) +M

k−1∑
i=0

(1− α)i

2. lim
k→∞

φ(‖ yk ‖) ≤
M

cα
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The proof of this lemma is found by application of a geometric series as shown in Ref.

[149]. The two conclusions of this lemma imply that the Lyapunov function provides

a bound on how the state converges as a function of iterate and the ultimate bound

of the state.

3.1.5.1 Linear Designs

For the zero-input general linear system as defined by Eq. (28) the following theorem

yields information regarding the exponential bounds of the design (i.e., how fast the

design converges)[150]

Theorem 3 (Linear System Exponential Stability). The origin of Eq. (28) with

uk = 0 ∀k ∈ Z+ is uniformly (exponentially) asymptotically stable if, and only if,

there exists a sequence of nonsingular matrices Wk ∈ Cn×n and some matrix norm

‖ · ‖, with ‖ Wk ‖ and ‖ W−1
k ‖ uniformly bounded, and β , sup

k
{βk} < 1 where

βk ,‖ Wk+1AkW
−1
k ‖. In this case, given any initial state y0 ∈ Rn and defining

w , sup
k
‖W−1

k ‖, ‖ yk ‖≤ βkw ‖W0y0 ‖

Proof of this theorem is found in Appendix A. This theorem says that if the linear

system describing the convergence of the design is transformed according to

ζk = Wkyk (43)

then

ζk+1 = Ψkζk (44)

where Ψk , Wk+1AkW
−1
k . Due to the condition βk < 1, ‖ Ψk ‖< 1, the transformed

system is a contraction mapping.

The computation of the matrix Wk for the case when Ak = A ∀k ∈ Z+ is signifi-

cantly more tractable and can be readily achieved by any of the following methods[150]

1. If A is diagonalizable, A = VDV−1 where D , diag{λi}, then choosing W =

V−1 and ‖ · ‖2 gives β = λmax.
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2. For any A, compute A = QHUQ, the Schur decomposition and set W = ΓU

where Γ = diag{1, γ, γ2, · · · , γn−1}.

3. Choose a positive definite S and solve R − ATRA = S to obtain a positive

definite R. Then compute the Cholesky factorization R = WTW to obtain

W.

Each of these provide a value of β which can be used as an absolute scale to describe

how fast a design will converge as the norm of the state ‖ y ‖ decreases by a factor

proportional to β at each iterate.

3.1.5.2 Nonlinear Designs

The methods of linear systems can be extended to nonlinear designs, that is those

designs whose iteration is described by Eq. (27). The following theorem provides a

sufficient condition for exponential stability and exponential bounds on the state[150].

Theorem 4 (Nonlinear System Exponential Stability). The origin of Eq. (27) with

uk = 0 ∀k ∈ Z+ is exponentially asymptotically stable if there exists a nonsingular

matrix W ∈ Cn×n and some matrix norm ‖ · ‖, such that

β , sup
k

sup
v∈Ω

n
W

[
∂f

∂y
(v)

]
W−1

n
< 1

for some open convex set Ω ∈ Rn with 0 ∈ Ω. There exists an open set Xs ⊆ Ω with

0 ∈ Xs, and ∀y0 ∈ Xs, ∃β0 ∈ [0, β] such that ‖ yk ‖≤ βk0κ(W) ‖ y0 ‖, and hence Xs

is a domain of exponential stability.

This is proven in Appendix A. This theorem provides a rate of convergence estimate

as long as the associated conditions are met. In this case, the rate of convergence

is given as β0 as the magnitude of the initial state is reduced successively by this

amount.
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3.2 Design Constraints Using Optimal Control Theory

Optimal control theory may be used to obtain the solution to the general multidisci-

plinary design problem. The solution procedure is a root-finding problem, however,

optimal control techniques can be used to adjoin a tangency condition for constraints

that are a function of the input or state. This allows for a general framework that is

capable of handling constraints that are functions of the design variables as well as

functions of the CA values. As such, constraints are moved to the highest level in the

optimization hierarchy.

3.2.1 Continuous Dynamical Systems

To first illustrate the handling of constraints using optimal control theory, consider

the general continuous-time optimal control problem given by

Minimize: J = φ(y(tf ), tf ) +

∫ tf

t0

L(y(t),u(t), t)dt

Subject to:
dy

dt
= f(y(t),u(t), t)

u(t) ∈ U

y(t) ∈ Σ

By varying: u(t)


(45)

In Eq. (45), φ is the terminal state cost, L is the transient or path cost, U is the set

of admissible controls, and Σ is the set of admissible states. Suppose that there is a

constraint on the state given by

s(y, t) = 0 (46)

Differentiating Eq. (46) with respect to time, one obtains

ṡ =
∂s

∂t
+
∂s

∂y

dy

dt
= 0 (47)

Substituting the state equation into this result yields

ṡ =
∂s

∂t
+
∂s

∂y
f(y(t),u(t), t) = 0 (48)
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Equation (48) provides a technique to yield the optimal control, u(t), that minimizes

J and meets the equality constraint on the state[151, 152]. If the control is not

explicit in Eq. (47), then the process of differentiating s and substituting the state

equation is continued until the control is explicit in the equation to form a set of q

point relationships {s(n)}, n = 0, . . . , q − 1, where n is the order of the derivative.

These tangency conditions can be adjoined using Lagrange multipliers to the path

cost, L, to solve for the optimal control history.

Inequality constraints of the form

s̄(y, t) ≤ 0 (49)

can be handled similarly[151, 152]. In this case, the solution process depends on

whether or not the state is on the boundary. If it is on the boundary, the same solution

process to equality constraints is followed, while for off-boundary solutions, the terms

are ignored. This results in a multiple sub-arc solution, although fundamentally the

process is identical to the equality constraint case.

3.2.2 Discrete Dynamical Systems

For the discrete optimal control problem posed as[140]

Minimize: J (y,u) =
n−1∑
k=0

L(yk,uk+1, k)

Subject to: yk+1 = f(yk,uk+1, k), ∀k ∈ {0, . . . , n− 1}

uk ∈ U(yk−1), ∀k ∈ {1, . . . , n}

yk ∈ Σ, ∀k ∈ {0, . . . , n− 1}

By varying: uk, ∀k ∈ {1, . . . , n}


(50)

where the restrictions on the domain of uk and yk provide an opportunity to introduce

constraints on the design variables and CA’s output, respectively. Similarly to the

continuous optimal control problem, the constraints are appended to the objective
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function through Lagrange multipliers, which, in turn, ensure the satisfaction of the

constraints.

The discrete optimal control solution satisfies the following necessary conditions.

First, assume the following regarding the analysis domain:

1. U is defined for each y ∈ Σ by equality and inequality constraints of the form

g(y,u) ≤ 0; g ∈ Rqk×1 (51)

h(y,u) = 0; h ∈ Rkk×1 (52)

2. Σ is defined by the equality and inequality constraints of the form

w(y) = 0; w ∈ Rrk×1 (53)

ω(y) ≤ 0; ω ∈ Rpk×1 (54)

3. There exists convex cones, P(i) and Q(i) with vertices at yk that cover Σ for all

k = 0, 1, . . . , n

4. There exists a scalar ψ0 ≤ 0 and vectors

ψk = [ψ1,k, . . . , ψn,k]
T , ∀k ∈ {1, . . . , n} (55)

γk = [γ1,k, . . . , γkk,k]
T , ∀k ∈ {1, . . . , n} (56)

λk = [λ1,k, . . . , λqk,k]
T , ∀k ∈ {1, . . . , n} (57)

µk = [µ1,k, . . . , µrk,k]
T , ∀k ∈ {0, . . . , n} (58)

νk = [ν1,k, . . . , νpk,k]
T , ∀k ∈ {0, . . . , n} (59)

b(i), i = 1, . . . , n ∀k ∈ {0, . . . , n} (60)

such that the direction of b(i) lies in the dual cone D(P(i))

5. Let a scalar function Hk(y,u) be defined as

Hk(y,u) = ψ0L(y,u, k) +ψT
k f(y,u, k) + γTkh(y,u) + λTk g(y,u) (61)
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The necessary conditions for an optimal control to exist are then given by:

1. If ψ0 = 0 then for at least one k at least one of the vectors ψk, γk, λk, µk, νk,

or b(i) is non-zero

2. For all k = 0, . . . , n and any vector δy whose direction lies in the intersection

of the cones Q(i), the following inequality holds(
−ψk +

∂Hk+1(y,u)

∂y
+ µTk

∂w(y)

∂y
+ νTk

∂ω(y)

∂y
−

nk∑
i=1

b(i)

)T

δy ≤ 0

where it is assumed that ψ0 = 0 and Hn+1 = 0

3.
∂H(yk−1,uk)

∂u
= 0, ∀k ∈ {1, . . . , n}

4. λα,k ≤ 0, λα,kg
α
k (yk−1,uk) = 0 ∀α ∈ {1 . . . , qk} and k ∈ {1, . . . , n}

5. να,k ≤ 0, να,kω
α
k (yk) = 0 ∀α ∈ {1, . . . , pk} and k ∈ {0, . . . , n}

The proof of these conditions minimizing J (y,u) is found in Ref. [140]. Note that the

process of adjoining the tangents of the state and control constraints to the objective

functional in the second criteria is nearly identical to that of the continuous case with

the additional requirement that the space is convex.

3.2.3 Solution Methods

The discrete problem as posed is a nonlinear programming (NLP) problem, which has

many known solution techniques, including gradient methods, quadratic program-

ming, sequential quadratic programming, and interior-point methods[153, 140, 154].

Direct methods to the continuous problem also approach the solution procedure

to the optimal control problem as a discretized problem, giving rise to an NLP. How-

ever, unlike the discrete formulation described previously, the direct solution to the

continuous problem may require the use of penalty functions for constraints. Alter-

natively, indirect methods would approximate the discrete problem as a continuous
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problem (i.e., taking the step size caused by the iteration to zero) and then solve the

resulting boundary value problem. This allows the constraints to be handled directly

using Lagrange multipliers. The validity of viewing the discrete problem as a con-

tinuous problem has been shown to work well for multidisciplinary design problems,

as the solution set is in general more restrictive (including continuity requirements

on the constraints) than the discrete problem; however, solutions may not always

exist[155, 156, 132, 157]. This is further shown in Chapter 5.

A comparison of the different solution methods is shown in Table 5.

Table 5: Comparison of solution techniques.

Advantages Disadvantages

Direct Methods
Large Region of Attraction Computationally Intensive

Large Number of NLP Solvers Convexity Requirement
Use of Penalty Functions

Indirect Methods
Fast Convergence Small Region of Attraction

Solution Optimality Solutions May Not Exist
Exact Solution of Constraints

3.2.4 Solution Search Coordination

By accommodating both design variables and CA constraints at the same level in the

optimization hierarchy, a reduced design space can be searched which eliminates the

design region with conflicting constraints. This is shown schematically in Fig. 15.

In Fig. 15(a), the design region resulting from traditional optimization where

constraints are only a function of design variables is shown which implies that there

is a relatively large feasible region. While in Fig. 15(b) the feasible region that

actually exists is shown as it accounts for all possible constraints in the problem.

This is the region that is searched by approaching this problem from the optimal

control perspective.
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(a)

y 

(b)

Figure 15: Feasible design space accounting for (a) design variable constraints only
and (b) design variable and contributing analysis constraints.

3.3 Propagating Uncertainty Using Estimation Theory

Feedback within a multidisciplinary design problem leads to significantly longer anal-

ysis times. Several methods have been developed to eliminate feedback within the

design. The traditional approach to eliminate the feedback within the design-analysis

cycle is to enforce a constraint in the converged design that the estimated value of

the feedback variable is within a given tolerance of the value resulting from the sub-

sequent CA. This is an effective technique for deterministic analysis and design; how-

ever, increasing the number of constraints can be computationally time consuming

for robustness assessment and robust design. A novel technique which applies con-

cepts from estimation theory to this challenge is the use of the Kalman filter. This

approach is particularly applicable to the robustness analysis problem as the final

quantities being sought are the mean and the variance of an objective function. This

approach has not been implemented previously because the Kalman filter is typically

implemented with respect to a dynamical system and the multidisciplinary analysis

and design problem is traditionally concerned with algebraic quantities. This use of

the Kalman filter in this fashion is analogous to linear covariance methods described
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in Refs. [82, 83, 84] and Appendix A.

3.3.1 The Discrete Kalman Filter

The Kalman filter can be thought of as a two step process, one which predicts the

state (e.g., the output of the CAs) and then an update step which corrects these

estimates based on the dynamics of the system. The prediction step is given by the

following equations[82, 135, 158, 159, 160, 161, 162]

ŷk|k−1 = Fkŷk−1|k−1 + Bkuk (62)

Σk|k−1 = FkΣk−1|k−1F
T
k + Qk (63)

where the notation j|k represents the estimate at j given observations up to and

including k. Furthermore, the value of ŷ0|0 is the initial mean state and Σ0|0 is the

initial covariance matrix of the state values. The correction step is governed by the

following equations[82, 135, 158, 159, 160, 161, 162]

x̃k = zk −Hkŷk|k−1 (64)

Sk = HkΣk|k−1H
T
k + Rk (65)

Kk = Σk|k−1H
T
kS−1

k (66)

ŷk|k = ŷk|k−1 + Kkx̃k (67)

Σk|k = (I−KkHk) Σk|k−1 (68)

where the final (a posteriori) estimate of the state is given by ŷk|k with covariance

matrix given by Σk|k.

3.3.2 Formulating the Multidisciplinary Design Problem in a Form Com-
patible with the Kalman Filter

The root-finding problem has been shown to be a dynamical system which can be

defined by the relation

yk = f(yk−1), ∀k ∈ Z+ \ {0} (69)
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where f(yk−1) is the output value of the CAs on the kth − 1 iteration. For random

variables in a linear system, this can be written in the form

yk = Fkyk−1 + wk−1, ∀k ∈ Z+ \ {0} (70)

where wk−1 is the noise associated with the model. For a linear multidisciplinary

design, Eq. (70) can also be written as

yk = Fkyk−1 + Bkuk + wk−1 (71)

which allows for inputs into the CA that are not outputs of other CAs, uk. When

coupled with an equation of the form

zk = Hkyk + vk (72)

and when it is assumed that wk−1 ∼ N (0,Qk−1) and vk−1 ∼ N (0,Rk−1), Eqs. (71)

and (72) define the dynamical system needed for a Kalman filter[158, 159, 160, 161].

The noise parameter, wk−1, gives the opportunity to account for random variables

within the linearization of the input-output relationship, that is random variables

associated with the matrix F. In this work, the Kalman filter is used as a data fusion

technique to give an optimal unbiased statistical estimate of the output of the CAs

as the design is converging.

The power in implementing the Kalman filter in multidisciplinary design analysis

lies in the ability to obtain a continuous estimate in iterate of both the mean and co-

variance of each CA’s output in the multidisciplinary design by propagating a system

of seven equations until the design converges.

3.3.3 Using the Covariance Matrix to Guide Design Decomposition

As one of the outputs of the Kalman filter is the estimated covariance at iteration k

this information could be used to ascertain the correlation coefficient between vari-

ables. Provided the covariance estimate, Σ, has the form of Eq. (12) and can be

70



represented as

Σ = {Σij} (73)

then the representative correlation (or product-moment) coefficients are given by

ρij =
Σij√

Σii

√
Σjj

, i 6= j (74)

where ρij ∈ [−1, 1]. What is important about the correlation coefficient is that it

gives a relative measure of how variable j depends on variable i. In particular as

|ρij| → 1 the importance of variable i on the response of variable j increases. This

gives a meaningful way to ascertain the importance of each CA and variables on other

CAs and variables. For design decomposition, it may be acceptable to neglect the

feedback variables with small correlation coefficient magnitudes.

3.4 Summary

This chapter provides the theory behind application of three techniques from dynam-

ical system theory to the multidisciplinary design problem. Stability analysis was

shown to be useful in determining whether a design is feasible, whether an optimal

design exists, the range of initial values that can be used to converge the design, and

the rate at which the design will converge. Control theory is shown to be capable of

enforcing constraints that are functions of the CA’s output and the design variables

at the same level in the optimization hierarchy. Finally, estimation theory is shown

to be capable of propagating uncertainty through the multidisciplinary design, pro-

viding a method to simultaneously converge the design and quantify the uncertainty

associated with each design point.
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CHAPTER IV

DEVELOPMENT OF A FRAMEWORK FOR THE RAPID

ROBUST DESIGN OF MULTIDISCIPLINARY SYSTEMS

This chapter takes the foundations set forth in Chapter 2 to view the multidisciplinary

design problem as a dynamical system to develop a comprehensive rapid robust design

framework for linear designs that utilizes dynamical system theory. This methodology

uses the three techniques described in Chapter 3, stability analysis, control theory, and

estimation theory as an ensemble. A framework is developed for two different root-

finding techniques—fixed-point iteration and Newton-Raphson iteration, although it

is extensible to other numerical root-finding methods that are recursive. A discussion

is also provided about how to extend this inherently linearly framework to nonlinear

multidisciplinary design through successive linearization.

4.1 A Rapid Design Robustness Analysis Framework

The cumulative contribution of this work is the ability to rapidly obtain a bound on

the robustness of a multidisciplinary system by posing the multidisciplinary design

problem as a dynamical system. In particular, a methodology that rapidly obtains

the mean and a bound on the variance of a multidisciplinary design’s response is

developed. The theoretical development of this methodology is restricted to linear

multidisciplinary designs. This implies a CA whose output, y, can be functionally

represented as a linear combination of the inputs into the CA, x, and an offset, b, or

y = Ax + b. While this may seem to be a restrictive framework in which to operate,

as in many engineering analyses, linearization can be employed to allow the CAs to fit

this functional form. With the mean and variance bound found, traditional measures
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of design robustness can be obtained (e.g., the mean, variance, MSD, etc.). Many

robustness assessment techniques, particularly those associated with NLP solutions,

require solution of a large number of trials. These trials consist of input variables

being drawn from distributions and then converging the design through iteration

in order to obtain the performance for that trial. The robustness of the design is

then ascertained by repeating this process until the output distribution is formed.

The methodology developed in this work circumvents the time intensive process of

propagating individual trials to obtain the output distribution by using the mean and

covariance matrix (the typical quantities needed to define robustness) directly and

then derives a bound on the response’s variance. With such a technique in place to

obtain estimates on the mean and variance, the design robustness may be directly

traded early in the design process.

A general multidisciplinary design features coupling between CAs. This may lead

to convergence issues, potentially requiring significant iteration in order to converge

on a design. As discussed previously, the iteration scheme implemented to find the

solution to the multidisciplinary design can be cast as a dynamical system where the

state is the output of each of the CAs and the fixed rule describing its evolution is

the method used to find the root of the design. In order to examine the existence of

a solution, the first application of this new perspective of multidisciplinary design is

used—stability analysis. If the dynamical system described by an iteration scheme

is asymptotically stable, there exists at least some solution to the multidisciplinary

design.

Another enabling technique for this methodology is in the handling of the multidis-

ciplinary design requirements. These are generally written as equality and inequality

constraints that are functions of the state. The iteration scheme implicitly handles

the compatibility constraints within the multidisciplinary design, a general statement

that each CA in a converged design must use the same information. Other constraints
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must be handled by more explicit techniques. By viewing the multidisciplinary de-

sign as a dynamical system, design constraints are able to be handled through similar

techniques as state and control constraints in optimal control, where the constraints

are added to the objective function. Adjoining these constraints allows the design

variables to appear explicitly in the objective function formulation. This method

allows for simultaneous handling of constraints of the outputs of each CA, which are

the coupling variables in the design, as well as the design variables.

The last of the the dynamical system techniques employed in this work to obtain

a rapid assessment of the design robustness is the use of an estimation technique

traditionally applied to state estimation, the Kalman filter. The Kalman filter is a

statistical estimation technique for linear dynamical systems which combines mea-

surements to estimate the true dynamics of the system. The multidisciplinary design

utilization of the Kalman filter allows for the mean (or nominal) and the covariance

matrix of each CA’s output to be found simultaneously as a function of iterate num-

ber. In this sense, the propagation of the filter equations can be used to converge the

design and provide estimates of robustness instead of requiring convergence for each

Monte Carlo sample, as in traditional robustness analysis.

Two additional techniques from non-traditional design fields are also used in the

methodology. The first of these is the unscented transform, which is a statistical

transformation that gives accurate estimates of the first two moments of the output

probability distribution of a CA while only evaluating a small sample of carefully

chosen points, the sigma points. This technique, is similar to a Monte Carlo; how-

ever, third order accuracy of the mean and covariance matrix is maintained for any

functional form of the CA despite the small number of trials (sigma points) evalu-

ated. The last enabling technique used in this work is the two-norm of a matrix. The

matrix two-norm provides a conservative bound for the output covariance variance,

as it finds the principal eigenvalue (i.e., the “variance” along the principal direction
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of the covariance matrix). This quantity gives a bound on the variance and, as shown

later, can be used as a direct surrogate for the variance for fixed distributions as the

observed error remains identical.

4.2 A Rapid Robust Design Methodology

The following section describes a rapid robust design methodology that implements

a matrix-norm to obtain a bound on the variance of a multidisciplinary system which

can be decomposed into CAs.

4.2.1 Formulation with Fixed-Point Iteration

Step 1: Decompose the Design

A general multidisciplinary design can be decomposed into multiple CAs. Each of

these CAs represents an analysis that contributes to the entire design. For example,

consider the design or analysis of an entry system. It may be desired for the entry

system to be evaluated with respect to its payload capability and landing accuracy.

Many different analyses must be conducted in order to obtain this information. This

information flow is shown in Fig. 16, where one such representation of each of the

analyses that must be conducted to design an entry system is shown[163]. In this

case, the entry system is decomposed into seven CAs. The responses of these CAs

allow the payload capability as well as the landed accuracy to be assessed. Each CA

in Fig. 16 (i.e., the blocks) represents an input-output relationship. For instance,

inputs into the aerodynamics analysis include the configuration of the entry system

and planetary body where it is to operate; outputs include the force coefficients of the

vehicle as a function of Mach number and attitude. This relationship may be known

analytically; however, it is more likely that this CA would represent a computational

analysis that is linked into the design process. This decomposition is also analogous

to that required by other MDO techniques, such as SSA, OBD, and CO and therefore

requires no additional upfront computational time.
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Figure 16: The decomposition of an entry system into a Design Structure Matrix.

In the theoretical development underlying this work, it is assumed that each of

the n CAs are linear and algebraic. This limitation will be addressed subsequently.

That is, the output of the CA is of the form

yj = Ajy + Bjud + Cjup + dj (75)

where yj ∈ Rlj , y ∈ Rm is the concatenated output from all of the CAs (e.g., if

y1, y2 through yn are the outputs of the n CAs in a multidisciplinary design, y =(
y1

T y2
T · · · yn

T
)T

), ud ∈ Rd are the deterministic system-level inputs into the

design, up ∈ Rp are the probabilistic system-level inputs into the design, and dj ∈

Rlj is the bias associated with the model. This implies Aj ∈ Rlj×m, Bj ∈ Rlj×d,

Cj ∈ Rlj×p, and that
n∑
j=1

lj = m.

For general designs where the CAs may not be linear, the required functional form

can be achieved through linearization where Aj =
∂g

∂y

∣∣∣
ỹ
, Bj =

∂g

∂ud

∣∣∣
ũd

, Cj =
∂g

∂up

∣∣∣
ũp

,

and

dj = − (Ajỹ + Bjũd + Cjũp)

when the input-output relationship for the CA is given by yj = g (y,ud,up) and (̃·)
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is the value of (·) about which the function is linearized. During the iteration, (̃·) is

the value of (·) from the prior iteration.

Step 2: Identify the Random Variables and their Distributions

In the design and analysis of a complex multidisciplinary system, it is unlikely that

each of the models and inputs are deterministic; instead, many are likely to be proba-

bilistic and account for unknowns in the modeling and in the operating conditions . In

order to propagate these uncertainties through the design to estimate the robustness,

the probabilistic variables must be identified.

The random variables associated with the uncertainty within the design are han-

dled in two different ways in this work depending on where the random variable is

functionally located. Functionally, the uncertainty resulting from inputs into the CA

refers to uncertainties associated with up, whereas uncertainty associated with the

physical modeling pertain to Aj, Bj, Cj, or dj. In the first instance, the mean is

propagated in the ŷk|k term of the filter equations and the covariance is propagated

in the Σk|k term of the filter equations. In the second case, the mean is again ac-

counted for in the ŷk|k term of the equations; however, the covariance is accounted

for in the Qk term of the filter. In the components of the Kalman filter mentioned,

the notation k|k refers to the kth iteration of the filter given all previous information

regarding the convergence of the system.

Due to the the propagation within the Kalman filter there is an assumption that

the uncertainties associated with the model are Gaussian. For symmetrical proba-

bility distributions (i.e., probability distributions centered about the mean), this is

not an overly strong assumption since the first two moments are the only terms be-

ing approximated. However, for asymmetric probability distributions, this becomes

a restrictive assumption that is a limitation of this technique.
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Step 3: Form the Iterative Equations

In order to implement the discrete Kalman filter, a causal, discrete dynamical system

must be formed. The process of converging the multidisciplinary design through root

solving leads to an inherent dynamical system. This root is typically sought out

using an iterative technique. For example, fixed-point iteration, defined in Eq. (69)

uses the previous iteration’s solution as an input to the current iteration. For this

work, f(·) is the concatenation of the input-output relationships for the CAs (e.g.,

if f1(·), f2(·) through fn(·) describe the input-output relationship for each of the n

CAs, f(·) =
(
f1
T (·) f2

T (·) · · · fn
T (·)

)T
). In the framework described here, where

the multidisciplinary design consists solely of linear CAs, the fixed-point iteration

relationship becomes tractable

yk = Λyk−1 + βud + γup + δ, ∀k ∈ {1, 2, ...} (76)

where it is assumed that Λ =


A1

...

An

 ∈ Rm×m, β =


B1

...

Bn

 ∈ Rm×d, γ =


C1

...

Cn

 ∈

Rm×p, and δ =


d1

...

dn

 ∈ Rm.

Step 4: Ensure a Solution Exists

Since the iterative system defined by Eq. (76) is a discrete, linear, dynamical system,

the existence of a solution to the multidisciplinary design problem is given solely by

the stability of the system. In particular, if the system is asymptotically stable, a

converged design exists for some initial guess of the CA outputs and if it is globally

asymptotically stable, a design exists for all initial guesses of the CA outputs.

For cases where Λ is a constant matrix, finding the eigenvalues of the matrix Λ

determines the existence of a design solution. Should all of these eigenvalues have
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moduli less than unity (i.e., |λi| < 1) the dynamical system is globally asymptotically

stable and the multidisciplinary system will converge regardless of the initial guess

for the output of the CAs. However, should this not be the case, and at least one

eigenvalue has a modulus greater than or equal to unity (i.e., |λi| ≥ 1), a contraction

mapping does not exist for the choice of root-finding schemes and the design will not

converge.

When Λ is a varying matrix or even a nonlinear mapping, a Lyapunov function

technique can be used to investigate the stability (and convergence) of the design.

In this case, for asymptotic stability, a positive-definite function is sought whose dif-

ference between iterates in some region around the origin is negative definite. As

described in Chapter 3, the search for a Lyapunov function can be accomplished us-

ing several methods, including some numerical based techniques. A sum-of-squares

analysis can be performed by expanding g(y,ud,up) in a sufficiently high-order Tay-

lor Series. This expansion can then be used in the semidefinite programming problem

as described in Eq. (42).

Step 5: Estimate the Mean Output and the Covariance

The mean output of the multidisciplinary system and the associated covariance matrix

are found by propagating the Kalman filter equations, Eqs. (62)-(68) until conver-

gence. In order to accomplish this, the iterative system formed in Eq. (76) needs to

be transformed to the form needed in Kalman filter, Eq. (71). This is a relatively

straightforward process when the following substitutions are made

Fk−1 = Λ, ∀k ∈ {1, 2, ...} (77)

Bk−1 =

(
β γ Im×m

)
, ∀k ∈ {1, 2, ...} (78)
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uk−1 =


ud

up

δ

 , ∀k ∈ {1, 2, ...} (79)

The mean state, that is the output of the analyses, (ŷ0|0) and the covariance matrix

associated with the state (Σ0|0) are initialized by the relations

ŷ0|0 = y0 (80)

Σ0|0 = Σ0 (81)

In this work, y0 and Σ0 are found by assuming a starting value for the coupled

CA and an input covariance matrix associated with the parameters of the problem.

These values are then propagated through each CA of a serial (i.e., uncoupled) design

structure matrix using the unscented transform technique. The concatenated output

of each of the CAs is then used to form y0 and the covariance matrix Σ0, which will

initially be a block diagonal matrix. The last parameter which need to be identified in

order to estimate the mean output and the covariance of the system is the covariance

matrix associated with the model, Q. This is a block diagonal matrix composed of

the variances and covariances associated with Aj, Bj, Cj, and dj. Note that the

iteration starts from an infeasible design point as the compatibility constraints are

not met and moves to a converged design which meets the design constraints using

Step 7.

The iterates are then found by by propagating the filter equations, Eqs. (62)-(68),

with Hk−1 = Im×m ∀k ∈ {1, 2, ...} and Rk−1 = 0 ∀k ∈ {1, 2, ...} until the design

convergence criterion is met. These are the values used by Geller to assess state-only

uncertainty using linear covariance analysis[84]. These values also enable the estimate

to approach the Cramer-Rao lower bound.

The exact convergence criterion can be of several forms, the two criterion used

within this work are an absolute tolerance of the state and a relative tolerance of the
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state. These are demonstrated in the following relations

‖ ŷk|k − ŷk−1|k−1 ‖2≤ ε1 (82)

‖ ŷk|k − ŷk−1|k−1 ‖2

‖ ŷk−1|k−1 ‖2

≤ ε2 (83)

Step 6: Identify the Mean and Variance Bound of the Objective Function

Assume the design objective is a linear combination of the outputs of linear CAs,

that is

r = My∗ (84)

where r ∈ R is the design objective value, M ∈ R1×q is a matrix describing the linear

combination of the pertinent CA outputs, and y∗ ∈ Rq is the vector of pertinent

CA responses that contribute to the design objective. An estimate of the mean and

variance bound for the design objective can be found as follows

r̄ = Mŷ∗n|n (85)

σ2
r ≤‖ Σy∗n|n ‖2 M1q (86)

where it is assumed the n iterations have occurred and Σy∗n|n is the reduced covari-

ance matrix associated with only the variables associated with y∗ (i.e., the rows and

columns of the variables not pertinent in the design objective are eliminated from

Σyn|n). Additionally, the notation 1q ∈ Rq×1 is the unity vector of length q (i.e.,

1q = (1 1 1 · · · 1)T ∈ Rq×1).

More generally, a first-order expansion of an objective function that is of the form

r = g(y∗) (87)

can be made. The linearized objective function, Eq. (87), about y∗nom is then given

by

r̃ =
∂g

∂y∗
y∗ − ∂g

∂y∗
y∗nom = Ny∗ + b (88)
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which leads to the results

r̄ ≈ Nŷ∗n|n + b (89)

σ2
r ≈‖ Σy∗n|n ‖2 N1Tq (90)

where it is assumed that N ∈ R1×q.

Step 7: Optimize for Uncertainty and Ensure Constraints are Met

Formulating the output of Step 6 in terms of the mean and variance allows for an

optimal control problem to be setup where the objective function is defined by

J = M
(
αŷ∗n|n + β ‖ Σy∗

n|n
‖2 1Tq

)
(91)

and α and β are weights on the relative components that can be varied to find different

compromised optimal designs. The problem is then to seek out the control, u, that

minimizes J . In this case the control is constant (since they are parameters of the

problem) and given by ud. The requirements outside of the compatibility constraints

are then handled by adjoining the set of convex constraints to the objective function

and identifying an optimum that satisfies the necessary conditions outlined previously.

Step 8: Evaluate the Quality of the Robustness Estimate

The quality of the robustness estimate can be evaluated by using the unscented trans-

form to get a higher-order estimate of the mean and the covariance of the output.

This step, however, may be time consuming and may not be desirable to perform

in all instances, particularly if the design is known to be linear, as the propagation

by the Kalman filter through a linear system is exact. The procedure to obtain this

estimate is as follows:

1. Identify the uncertain parameters for the problem and form the initial covariance

matrix for these parameters
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2. Identify the m (or m + 1 if an alternate form of the unscented transform is

used) sigma points based on the eigenstructure of the initial covariance matrix

to satisfy Eq. (17)

3. Propagate each of these sigma points through the design until convergence

4. Record the objective function for each sigma point propagation

5. Compute the scalar mean and variance from the composite results for each of

the objective function values via Eqs. (20) and (21)

4.2.2 Formulation with Newton-Raphson Iteration

When formulating the rapid robust design methodology using Newton-Raphson iter-

ation defined by Eq. (10) only Steps 3 and 5 need modification. This is true when

considering the substitution of any root-finding scheme that is defined by a recursive

sequence. As described in Chapter 2, fixed-point iteration is formed by a relation of

the form

y = g(y)⇒ f(y) = g(y)− y = 0

where it is desired to find the root, y∗, of a function f(y) = g(y) − y. Comparing

this result to the iteration relationship used when applying fixed-point iteration for

design defined by Eq. (76) means that

g(y) = Λy + βud + γup + δ

and

f(y) = g(y)− y⇒ f(y) = Λy + βud + γup + δ − y

Therefore, the form required by Newton iteration, Eq. (10), is

yk = yk−1 −
(
∂f(yk−1)

∂yk−1

)−1

[(Λ− Im×m) yk−1

+ βud + γup + δ], ∀k ∈ {1, 2, ...}
(92)
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When Λ, β, γ, and δ are independent of the CA output, y, the Jacobian is given by

∂f(y)

∂y
= Λ− Im×m

In the linear case, this prescribes the root in a single iteration as

yk = y∗ = − (Λ− Im×m)−1 (βud + γup + δ) (93)

provided that det(Λ − Im×m) 6= 0. However, in the general case Λ, β, γ, and δ

could be functions of y. Provided f = (f1 · · · fn)T is analytic in the complex domain,

it is suggested that the matrix of partial derivatives be found using complex step

differentiation[164, 165]

∂f

∂y
≈


= (f1(y1 + ih))

h
· · · = (f1(ym + ih))

h
...

. . .
...

= (fn(ym + ih))

h
· · · = (fn(ym + ih))

h

 (94)

By using the complex step differentiation a machine-precision approximation of the

derivative is obtained that is independent of the step size. The modifications to Steps

3 and 5 required to utilize Newton-Raphson iteration instead of fixed-point iteration

are shown below.

Step 3: Form the Iterative Equations

The iteration scheme required to converge the design is given by

yk =

[
Im×m −

(
∂f(yk−1)

∂yk−1

)−1

(Λ− Im×m)

]
yk−1

−
(
∂f(yk−1)

∂yk−1

)−1

[βud + γup + δ]

(95)

Step 5: Estimate the Mean Output and the Covariance

In order to propagate the Kalman filter equations, Eqs. (62)-(68), a dynamical system

needs to be formed. These follow from comparing comparing Eq. (95) to Eq. (71)

84



as was done in the case of fixed-point iteration. The following results after this

comparison

Fk−1 = Im×m −
(
∂f(yk−1)

∂yk−1

)−1

(Λ− Im×m) , ∀k ∈ {1, 2, ...} (96)

Bk−1 =


βT
(
∂f(yk−1)

∂yk−1

)−T
γT
(
∂f(yk−1)

∂yk−1

)−T
(
∂f(yk−1)

∂yk−1

)−T



T

, ∀k ∈ {1, 2, ...} (97)

uk−1 =


ud

up

δ

 , ∀k ∈ {1, 2, ...} (98)

4.3 Summary

This chapter took the techniques described in Chapter 3 to develop an eight step

methodology to rapidly obtain a robust design. The steps of this methodology are

shown below

1. Decompose the design

2. Identify the random variables in the design and their distributions

3. Form the iterative equations

4. Ensure a solution exists

5. Estimate the mean output and the covariance of the design

6. Identify the mean and variance bound of the objective function

7. Optimize for uncertainty and ensure constraints are met

8. Evaluate the quality of the robustness estimate for nonlinear designs
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While the theoretical development is restricted to linear systems due to the Kalman

filter being utilized, extensions via successive linearization to nonlinear designs were

discussed. The flexibility of the methodology to accommodate different numerical

root-finding algorithms was also demonstrated through formulation of an alternate

methodology with Newton iteration. Note that there is no additional upfront com-

putational time compared to other MDO techniques.
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CHAPTER V

DEMONSTRATION OF DYNAMICAL SYSTEM THEORY

APPLIED TO THE MULTIDISCIPLINARY DESIGN

PROBLEM

This chapter demonstrates the dynamical system techniques developed to illustrative

multidisciplinary design problems. This begins with an analytical, linear example that

describes the accuracy of the estimation technique to propagate uncertainty within

the design as well as a quantization of its performance relative to industry-standard

techniques. Then the methods to find the region of initial guesses required to converge

the design (i.e., make the design asymptotically stable) and examine the rate of

convergence are demonstrated. Then three robust design applications are presented.

One linear, analytical example and two nonlinear applications. The last application

shows the application of the developed methodology to a practical problem relevant

to the entry, descent, and landing community, the design of a deployable device to

increase the range or accuracy of an existing strategic system. For each of these

design applications comparison is made to traditional techniques.

5.1 Accuracy of the Mean and Variance Estimate

To show the accuracy of the mean and variance estimate provided by the rapid robust

design methodology, consider the coupled, linear two CA system shown in Fig. 17.

For this analysis, assume that there are two components to the probabilistic parameter

vector and the two output vectors, that is up ∈ R2, y1 ∈ R2, and y2 ∈ R2, which,

in turn, implies A′1 ∈ R2×2, B′1 ∈ R2, C′1 ∈ R2×2, A′2 ∈ R2×2, and B′2 ∈ R2. Also,

let the distribution of the probabilistic parameter input be given by a multivariate
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Figure 17: Two-contributing analysis multidisciplinary design.

normal, up ∼ N (µup
,Σup).

The effectiveness of the rapid robustness assessment methodology (i.e., Steps 1 - 6

of the rapid robust design methodology described in Chapter 4) will be demonstrated

by letting the mean of the probabilistic input, µup
, and the components of the co-

variance matrix σ2
y1

, σ2
y2

, and ρy1y2 vary between given ranges. The maximum error

between the response obtained from the robustness assessment methodology and an

analytical propagation is then reported for a multitude of points within the design

space.

5.1.1 Analytical Solution

As this is a multidisciplinary analysis consisting of two linear CAs, there is a single

simultaneous solution for y1 and y2 which is found to be

y1 = (I2×2 −C′1A′2)−1 (A′1up + B′1 + C′1B′2)

y2 = A′2 (I2×2 −C′1A′2)−1 (A′1up + B′1 + C′1B′2) + B′2


which implies that whenever I2×2 − C′1A′2 is non-singular, a unique solution exists

for y1 and y2. Since the only uncertainty in this analysis is given by the probabilistic

input vector, up, which is defined as a multivariate normal, the distribution of the

output for each CA can be found exactly. These are given by

y1 ∼ N
(
µy1

,Σy1

)
y2 ∼ N

(
µy2

,Σy2

)

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where

µy1
= (I2×2 −C′1A′2)−1 A′1µup

+ (I2×2 −C′1A′2)−1 (B′1 + C′1B′2)

Σy1 = (I2×2 −C′1A′2)−1 A′1ΣupA′1
T (I2×2 −C′1A′2)−T

and

µy2
= A′2 (I2×2 −C′1A′2)−1 A′1µup

+ A′2 (I2×2 −C′1A′2)−1 (B′1 + C′1B′2) + B′2

Σy2 = A′2 (I2×2 −C′1A′2)−1 A′1ΣupA′1
T (I2×2 −C′1A′2)−T A′2

T

Since both of the output distributions from the CAs are also multivariate normal,

the components of the response

r =
2∑
i=1

y1,i +
2∑
i=1

y2,i

can be found exactly by summing the components of mean components of µy1
and

µy2
to find the mean of the response and adding the appropriate variances from the

covariance matrices Σy1 and Σy2 . That is

r ∼ N

(
2∑
i=1

µy1,i +
2∑
i=1

µy2,i,
2∑
i=1

λ(Σy1)|i +
2∑
i=1

λ(Σy2)|i

)
where µy1,i is the ith component of y1, µy2,i is the ith component of y2, and λ(·)|i is

the ith eigenvalue of the matrix argument.

5.1.2 Rapid Robustness Assessment Methodology

To assess the performance of the robustness estimate provided by the rapid robust

design methodology, the first six steps outlined in Chapter 4 will be followed. These

steps obtain an estimate of the output mean and a bound on the variance provided

by the two-norm of the covariance matrix obtained by propagating the dynamical

system through a Kalman filter.

Step 1: Decompose the Design

The problem as given has already been decomposed into the representative contribut-

ing analyses; however, it is still necessary to identify each of the terms in Eq. (75).
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For the first CA, y1, the functional form is as follows

y1 =

(
0 C′1

)
y +

(
0

)
ud +

(
A′1

)
up + B′1

Similarly, for the second CA, the functional form is given by

y2 =

(
A′2 0

)
y +

(
0

)
ud +

(
0

)
up + B′2

Hence,

A1 =

(
0 C′1

)
B1 =

(
0

)

C1 =

(
A′1

)
d1 = B′1

A2 =

(
A′2 0

)
B2 =

(
0

)

C2 =

(
0

)
d2 = B′2

Step 2: Identify the Random Variables and their Distributions

There is only one set of random variables in this example, that of the probabilistic

input variable, up. This is given in the problem description as a multivariate normal

distribution, up ∼ N (µup
,Σup). Later, the two defining parameters of the multivari-

ate normal will be given numerical values.

Step 3: Form the Iterative Equations

In order to use the Kalman filter to simultaneously estimate the robustness and

converge the design, the iterative equations described in Eq. (76) for fixed-point

iteration need to be formed. Through analogy of variables, the matrices are given by

Λ =

A1

A2

 =

 0 C′1

A′2 0


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β =

B1

B2

 =

0

0



γ =

C1

C2

 =

A′1

0



δ =

d1

d2

 =

B′1

B′2



Step 4: Ensure a Solution Exists

In this problem, the components of Λ, β, γ, and δ are yet to be defined. However,

they are constant coefficients. This implies that the likelihood of finding a solution

is dependent entirely on the matrix Λ, providing a constraint to the values which

will be examined in this design space analysis. Expanding Λ allows the characteristic

equation to be found

Λ =



0 0 C1 C2

0 0 C3 C4

A1 A2 0 0

A3 A4 0 0


Therefore, the characteristic equation is given by

det(Λ− λI4×4) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 0 C1 C2

0 −λ C3 C4

A1 A2 −λ 0

A3 A4 0 −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

which can be solved in order to ensure that the modulus of each of the eigenvalues is

less than one for repeated roots or less than or equal to one for simple roots.
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Step 5: Estimate the Mean Output and the Covariance

The equations formed in the prior step can then be propagated through the Kalman

filter defined by Eqs. (62)-(68) with

Fk−1 = Λ, ∀k ∈ {1, 2, ...}

Bk−1 =

(
β γ I4×4

)
, ∀k ∈ {1, 2, ...}

uk−1 =


ud

up

δ

 , ∀k ∈ {1, 2, ...}

where in this example ud = 0 and up = E(up) = µup
. In this example, the matrix Q

is the null matrix since the only uncertain parameters of the problem are associated

with the input parameters, not the model. The unscented transform is used on an

uncoupled system with the distribution described in Step 2 in order to identify y0

and Σ0, the initial output mean and covariance for each design. A design is consid-

ered converged when the absolute difference between iteration estimates is less than

1× 10−4 or the relative difference is less than 1× 10−6.

Step 6: Identify the Mean and Variance Bound of the Objective Function

Upon convergence the value of y, the state variable in the problem, is the mean

response for each of the components of the output CAs. The matrix M is simply a

1× 4 vector of ones, 1T4 , since y∗ = y, that is, it is the entire state vector. Therefore,

r̄ = 1T4 ŷn|n

The estimate for the variance (i.e., the variance bound) in this case is simply

σ2
r ≤

4∑
i=1

‖ Σn|n ‖2= 4 ‖ Σn|n ‖2
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5.1.3 Analysis Results

In order to assess a large variety of problems, a parametric sweep of the design

variables was performed to identify the maximum errors in the design space. To

perform this parameter sweep, the problem’s parameters were varied independently

as shown in Table 6 where the distribution of each variable was assumed to be uniform

and a 100,000 case Monte Carlo analysis was conducted.

Table 6: Parameter ranges to assess the validity of the rapid robust design method-
ology.

Parameter Distribution
σ2

1 U(0, 100)
σ2

2 U(0, 100)
ρy1y2 U(−1, 1)

A′1

(
U(−1, 1) U(−1, 1)
U(−1, 1) U(−1, 1)

)
B′1

(
U(−1, 1)
U(−1, 1)

)
C′1

(
U(−1, 1) U(−1, 1)
U(−1, 1) U(−1, 1)

)
A′2

(
U(−1, 1) U(−1, 1)
U(−1, 1) U(−1, 1)

)
B′2

(
U(−1, 1)
U(−1, 1)

)

In order to guarantee convergence of the design, constraints were imposed on the

parameters to ensure that all of the eigenvalues of the matrix Λ had modulus less than

unity. To ensure realizable covariance matrices, that is a matrix that is symmetric

and positive definite, the components of the covariance (e.g., variance and correlation

coefficient) were determined independently and then combined to form the covariance

matrix.

In addition to the parameters shown in Table 6, the effect of the mean of the

probabilistic parameters was conducted by analyzing three different cases–one where

the mean was µup
= (0 0)T , one where the mean was µup

= (100 0)T , and one

93



where the mean was µup
= (100 100)T . The results were then compared with results

propagated analytically resulting in Figs. 18-20.

It is observed from these results that the mean error is less than 0.08% for all

of the cases examined. This is a result of the system being linear and the Kalman

filter propagating results exactly for a linear system. Therefore the error in the mean

is solely a result of the convergence criterion being utilized. For each case, there is

seen to be a rise in the standard deviation error near the origin. This is because the

nominal mean goes to zero causing a rise in the in the percent error near this point.

The rapid robustness assessment methodology is observed to provide a consistent

conservative bound on the variance as seen in Figs. 18-20 since all of the percent

error values are positive. It is also interesting to note that the error in mean and

standard deviation, regardless of the mean of the input, appears to be close to the

same order of magnitude. As the mean input value increases, the magnitude of the

mean response and standard deviation of that response increases, which causes a

decrease in the percent error. Furthermore, it is observed that the maximum error

approaches a limit of less than 40%. This limit is a function of the two-norm being

used. This limit is described and related to the dimensionality of the problem in

Chapter 6. In analyzing the data, the largest errors are caused for weakly coupled

systems, that is systems where C′1 is small. This can be explained since C′1 being

small leads to a larger domain of values that lead to a converged design. Additionally,

since the interplay between y1 and y2 is reduced, the iterations to achieve convergence

is reduced in these cases.
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Figure 18: Maximum error for a two contributing analysis multidisciplinary design
with µup

= (0 0)T .
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5.2 Analysis of a Linear, Two Contributing Analysis De-
sign

The errors associated with the rapid linear robustness technique are compared to

more commonly used methods to propagate uncertainty, namely a 10,000 case Monte

Carlo analysis, the unscented transform, and fast probability integration. For the data

presented, specific numerical values were utilized for the various problem matrices and

vectors. These are given by

A′1 =

0.25 0

0 0.5

 B′1 =

1

1

 C′1 =

1 0

0 1



A′2 =

0.25 0

0 0.25

 B′2 =

1

1


The errors between the rapid linear robustness analysis technique and traditional

analysis methods for these values are shown in Figs. 21-23.

The advantages of the rapid robust analysis technique are elucidated in the Table

7 where the four techniques are compared to analytic propagation of the uncertainty.

This table reports the maximum error from a parameter sweep of σ2
up,1

, σ2
up,2

, and

ρup,1up,2 across the range of values in Table 6 with µup
= (0 0)T . It can be seen that the

rapid robust analysis technique provides a slightly improved level of accuracy relative

to the other contemporary methods in estimating the mean. The error in standard

deviation is larger than the other techniques (three times greater than the unscented

transform); however, this error is less than 3% and is acceptable for conceptual design

studies. These levels of accuracy are obtained for less than one-third the number of

CA evaluations compared to the unscented transform and orders of magnitude fewer

CA evaluations relative to Monte Carlo and fast probability integration. For problems

in which the CA function evaluation time is large or the model for each CA needs to

be built in real-time, this provides a large execution time benefit.
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Figure 21: Mean and variance error between the rapid linear robustness analysis
technique and Monte Carlo analysis.
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Figure 22: Mean and variance error between the rapid linear robustness analysis
technique and the unscented transform.

99



σ
1
2

σ 22

Absolute Error in Response Mean

 

 

200 400 600 800 1000

200

400

600

800

1000

2

4

6

8
x 10

−3

σ
1
2

σ 22

Absolute Error in Response Standard Deviation

 

 

200 400 600 800 1000

200

400

600

800

1000

0.02

0.04

0.06

0.08

0.1

0.12

σ
1
2

σ 22

Percent Error in Response Mean

 

 

200 400 600 800 1000

200

400

600

800

1000

0.1

0.2

0.3

0.4

σ
1
2

σ 22

Percent Error in Response Standard Deviation

 

 

200 400 600 800 1000

200

400

600

800

1000

0.5

1

1.5

2

Figure 23: Mean and variance error between the rapid linear robustness analysis
technique and fast probability integration.

Table 7: Comparison of the performance of the rapid robustness assessment method
with other multidisciplinary uncertainty assessment techniques.

Rapid
Robust Fast
Design Monte Unscented Probability

Methodology Carlo Transform Integration
Maximum Percent

0.07843 0.10234 0.18458 0.10357
Discrepancy in
Mean Relative

to Analytic
Propagation, %

Maximum Percent

2.4583 0.02939 0.80879 0.14299

Discrepancy in
Standard

Deviation Relative
to Analytic

Propagation, %
Number of CA

140 109,954 435 2,349
Evaluations, -
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5.3 Region and Rate of Convergence for a Nonlinear, Two
Contributing Analysis System

Consider the design of a cantilever beam with a fixed load of 4 N applied to the tip

as shown in Fig. 24.

4 N 

Figure 24: Cantilever beam with a tip load.

The design of such a cantilever beam can be described by the DSM in Fig. 25.

 

21 yy

 

uyy 3

12
3

4
2yru

1y

2y

Figure 25: Nonlinear two contributing analysis design.

In Fig. 25, y1 represents the length of the beam (a surrogate for the cost), y2 is

a simplified relation for the maximum deflection of the beam, α parametrizes the

material properties characterizing the elasticity and cross-sectional parameters of the

beam, and u is a design variable governing the unloaded deflection.

For this design, the fixed-point iteration relations are defined by

y1,k+1 = y2,k

y2,k+1 = −4

3
αy3

1,k − u


101



The matrix W can be chosen (arbitrarily) to be

W =

1 2

0 2


and defining

a , 24αy2
1

it is shown that β < 1 for a ∈ [−1.9, 1.4], which shows the origin is exponentially

asymptotically stable for any finite α. With α = 0.1 the domain of attraction (i.e.,

the range of initial values that can be given to converge the design) is

A = {y| − 0.89 < y1 < 0.89}

Choosing V (y) =‖ Wy ‖2 it can be shown that Xs = {y|V (y) < 0.63} ⊂ A.

Therefore, by choosing ‖ y0 ‖2< 0.2 (i.e., y0 ∈ Xs) then β0 = 0.56 shows that the

iteration is bounded by

‖ yk ‖2< 0.9(0.56)k

Which means that the function exponentially reduces by a factor greater than 50%

for each iteration (β = 0.56).

5.4 Rapid Robust Design of a Linear, Three Contributing
Analysis System

Consider the linear, three CA system shown in Fig. 26 where each CA is scalar. In

 

'''

p

' DyCyBuAy 1312111 

 

'

232122 CyByAy '' 
321 yyyr du

1y

2y

 

'

323133 CyByAy '' 
3y

2y

Figure 26: Three contributing analysis multidisciplinary design.
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this case, it is desired to find ud ∈ R that minimizes the summation of the CAs output

while being within the unit cube centered at the origin. In other words

Minimize: [Jmean Jvar]

Subject to: y1, y2, y3 ∈ [−1, 1]

By varying: ud


where

Jmean = ȳ1 + ȳ2 + ȳ3

and

Jvar = σ2
y1

+ σ2
y2

+ σ2
y3

When using the rapid robust design methodology, σ2
yi

=‖ Σy∗ ‖2.

5.4.1 Applying the Rapid Robust Design Methodology

Step 1: Decompose the Design

The problem as given has already been decomposed into the representative contribut-

ing analyses; however, it is still necessary to identify each of the terms in Eq. (75).

For the first CA, y1, the functional form of the CA is as follows

y1 =

(
0 B′1 C ′1

)
y +

(
A′1

)
ud +

(
0

)
up +D′1

Similarly, for the second CA, the functional form is given by

y2 =

(
A′2 0 B′2

)
y +

(
0

)
ud +

(
0

)
up + C ′2

and the third CA

y3 =

(
A′3 B′3 0

)
y +

(
0

)
ud +

(
0

)
up + C ′3

Hence,

A1 =

(
0 B′1 C ′1

)
B1 =

(
A′1

)
C1 =

(
0

)
d1 = D′1

A2 =

(
A′2 0 B′2

)
B2 =

(
0

)
C2 =

(
0

)
d2 = C ′2
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A3 =

(
A′3 B′3 0

)
B3 =

(
0

)
C3 =

(
0

)
d3 = C ′3

Step 2: Identify the Random Variables and their Distributions

In this example, suppose that there is uncertainty in the component of the third CA’s

model that acts on the the CA output. This uncertainty is given as a normal distri-

bution, A′3 ∼ N (µA′3 , σ
2
A′3

) and B′3 ∼ N (µB′3 , σ
2
B′3

).

Step 3: Form the Iterative Equations

For this example, the fixed-point iteration equations described in Eq. (76) are

Λ =


A1

A2

A3

 =


0 B′1 C ′1

A′2 0 B′2

A′3 B′3 0



β =


B1

B2

B3

 =


A′1

0

0



γ =


C1

C2

C3

 =


0

0

0



δ =


d1

d2

d2

 =


D′1

C ′2

C ′3



Step 4: Ensure a Solution Exists

In this problem, the variables are yet to be quantified. However, they are constant

coefficients which allows the characteristic equation to be expressed as

det(Λ− λI3×3) = −λ3 + λ(A′2B
′
1 − A′3C ′1) + A′3B

′
1B
′
2 + A′2B

′
3C
′
1 = 0
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which can be solved in order to ensure that the modulus of each of the eigenvalues is

less than one for repeated roots or less than or equal to one for simple roots.

Step 5: Estimate the Mean Output and the Covariance

The equations formed in the prior step can then be propagated through the Kalman

filter defined by Eqs. (62)-(68) with

Fk−1 = Λ, ∀k ∈ {1, 2, ...}

Bk−1 =

(
β γ I3×3

)
, ∀k ∈ {1, 2, ...}

uk−1 =


ud

up

δ

 , ∀k ∈ {1, 2, ...}

where in this example ud = ud and up = 0. Since there are uncertainties with the

model, the matrix Q is given by

Qk−1 =


0 0 0

0 0 0

0 0 A′3σ
2
A′3
ŷ1,k−1|k−1 +B′3σ

2
B′3
ŷ2,k−1|k−1

 , ∀k ∈ {1, 2, ...}

Note that this implies that the state uncertainty can be no less than the uncertainty

associated with the model. The unscented transform is used on an uncoupled system

with the distribution described in Step 2 in order to identify y0 and Σ0, the initial

output mean and covariance for each design. A design is considered converged when

the absolute difference between iteration estimates is less than 1×10−4 or the relative

difference is less than 1× 10−6.

Step 6: Identify the Mean and Variance Bound of the Objective Function

Upon convergence the value of y, the state variable in the problem, is the mean
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response for each of the components of the output CAs. The matrix M is simply a

1× 3 vector of ones, 1T3 , since y∗ = y, that is, it is the entire state vector. Therefore,

r̄ = 1T3 ŷn|n

The estimate for the variance (i.e., the variance bound) in this case is simply

σ2
r ≤

3∑
i=1

‖ Σn|n ‖2= 3 ‖ Σn|n ‖2

Step 7: Optimize for Uncertainty and Ensure Constraints are Met

Formulating the output of Step 6 in terms of the mean and variance allows for an op-

timal control problem to be setup for the system design, where the objective function

is defined by

J = α1T3 ŷn|n + 3β ‖ Σy∗n|n ‖2

and α and β are weights on the relative components and can be varied. The design

space and constraints in this problem are inherently convex therefore the constraints

can be directly formulated as

g(y,u) =



y1 − 1

y2 − 1

y3 − 1

−y1 − 1

−y2 − 1

−y3 − 1


=

 I3×3

−I3×3

y − 16 ≤ 06

Additionally, there is an equality constraint for the control that states

h(y,u) = uk − uk−1 = 0, ∀k ∈ 1, . . . , n
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Therefore, the Hamiltonian in the optimal control problem is given by

Hk(y,u) = ψ0

(
αŷn|n + 3β ‖ Σy∗n|n ‖2

)
+ γT


 I3×3

−I3×3

 ŷn|n − 16

+ λT (uk − uk−1)

where the terms in this relation can be computed numerically. The optimal control

conditions listed in Chapter 3 can then be used to compute the value of ud for a

chosen value of α and β.

5.4.2 Design Results

The parameters used within the models for each of the cases examined are shown in

Table 8 where the values without distributions are assumed to be deterministic.

Table 8: Parameters for the robust design of a three contributing analysis system.

Parameter Case 1 Case 2

Λ

 0 1 1
1 0 1

N (1, 1) N (1, 1) 0

  0 1/3 1/3
1/3 0 1/3

N (1/3, 1) N (1/3, 1) 0


β

1
0
0

 1
0
0


γ

0
0
0

 0
0
0


δ

0
0
0

 0
0
0



5.4.2.1 Case 1: Divergent Design

In the first case, the nominal eigenvalues of Λ are found to be

λ = {−1,−1, 2}
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Hence, since |λmax| ≥ 1 ∀λi, i ∈ {1, 2, 3} there is not a feasible design to be found

with the iteration scheme. This is shown in Fig. 27 where the objective function

value exponentially diverges. Despite fixed-point iteration not being able to find a
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Iteration number, −
1 2 3 4 5 6 7 8 9 10

0

500

1000

R
 =

 y
1 +

 y
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 y
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Figure 27: Divergent behavior demonstrated by the fixed-point iteration system (ud =
1).

solution, a feasible design does exist. The feasible designs are characterized by the

equation

y =


0

−1/2

−1/2

ud

which implies that the deterministic optimum is found with ud = 2 which is also the

robust optimum for this problem for an equally weighted objective function. This

example demonstrates the need for alternative iteration schemes to be investigated.

However, it should be noted that the conditions outlined in Chapter 3 accurately

describe the behavior of the dynamical system resulting from the multidisciplinary

design as outlined.
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5.4.2.2 Case 2: Convergent Design

In the second case, the nominal eigenvalues of Λ (see Table 8) are substantially

different,

λ = {−1/3,−1/3, 2/3}

This implies that a feasible solution should be able to be found since |λmax| = 2/3 ≤ 1.

This fact is demonstrated in Fig. 28 where the objective function value converges for

an arbitrary value of ud.
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Figure 28: Convergent behavior demonstrated by the fixed-point iteration system
(ud = 1).

Candidate designs for this multidisciplinary system are shown in Fig. 29 for

both the rapid robust design methodology (in green) as well as an exact propagation

(in blue). Values for the exact propagation show the variance of the response, σ2
r ,

against the mean response, whereas the rapid robust design methodology show the

value 3 ‖ Σn|n ‖2 against the mean response. It should be also noted that the values of

ud for each method for three design points are presented on the figure for comparison

between the two methods.
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Figure 29: Optimal robust designs found using an exact propagation of uncertainty
(blue) and approximate bounding method (green).

Depending on the overall ability to handle uncertainty, the designer should choose

optimal solutions located on the the Pareto frontier. The Pareto optimal solutions are

located with ud ∈ [−2/3, 0] with the mean response r̄ ∈ [−2.5, 0]. In addition, when

examining Fig. 29 several important characteristics about the rapid robust design

methodology are clear:

1. The values for the approximate method produce optimal values of ud that are

within 1% of the exact values.

2. The bounding method provided a conservative bound for the variance of the

multidisciplinary design.

3. The method was capable of producing the same range of mean response as the

exact propagation.
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5.4.2.3 Deterministic Solutions

Several different approaches to finding the optimum were considered for the deter-

ministic version of this problem given as

Minimize: J = y1 + y2 + y3

Subject to: y1, y2, y3 ∈ [−1, 1]

By varying: ud


with up = 0. These approaches include solving this design problem as a discrete

optimal control problem, a direct optimal control problem, and an indirect optimal

control problem. For the discrete and direct optimal control problem, the optimal

design is found using the Sparse Nonlinear Optimization (SNOPT), an NLP solver

which uses a sequential quadratic programming algorithm[166]. A boundary value

problem solver using collocation was used to solve the indirect problem. The solutions

obtained for each of these techniques along with the number of DSM iterations is

shown in Table. 9.

Table 9: Design results for the linear, three contributing analysis system.

Method u∗d J ∗ DSM Iterations
Discrete -0.6665 2.499 21

Continuous, Direct -0.6645 2.478 26
Continuous, Indirect -0.6666 2.500 16

5.5 Rapid Robust Design of a Two Bar Truss

Consider the planar truss which consists of two elements with a vertical load at the

mutual joint, as shown in Fig. 30 (adapted from Ref. [167]).

For this problem, it is desired to find the vertical position of nodes 2 and 3, h2

and h3, that minimize the weight of the truss while ensuring that the structure will

not fail due to Euler buckling or yielding with some factor of safety given fixed values

for the material properties, E, σy, and ρ, the load, f , and the bar geometry, r1 and
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Figure 30: Two bar truss with a load at the mutual joint.

r2. The horizontal position of node 2 is constrained to be l. In standard form, the

problem is written as

Minimize: [m̄ σ2
m]

Subject to: g1(h2, h3) = |T1(h2, h3)| − πr2
1σy ≤ 0

g2(h2, h3) = |T2(h2, h3)| − πr2
2σy ≤ 0

g3(h2, h3) = −T1(h2, h3)− π2EI1

L2
1

≤ 0

g4(h2, h3) = −T2(h2, h3)− π2EI2

L2
2

≤ 0

By varying: h2, h3


where m̄ is the mean mass of the bars and the variance of the mass, σ2

m, for the rapid

robust design methodology is given by ‖ Σy∗ ‖2. In these relations, the mass is given

by

m = ρπg
(
r2

1L1 + r2
2L2

)
= ρπg

(
r2

1

√
l2 + h2

2 + r2
2

√
l2 + (h3 − h2)2

)
L1 and L2 are the lengths of the two bars, respectively, I1 and I2 are the moments

of inertia of the two bars (Ii =
1

4
mr2

i ), and T1(h2, h3) and T2(h2, h3) are the tensions
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in the two bars. In this formulation both the objective function and constraints are

nonlinear with respect to the design variables. Numerical values for this problem are

shown in Table 10.

Table 10: Parameters for the two-bar truss problem.

Parameter Description Nominal Value Distribution
E Young’s Modulus 200× 106 kN/m2 –
σy Yield Strength 250× 103 kN/m2 N (250× 103, 625× 106)
ρ Density 7850 kg/m3 N (7850, 100)
l Length 5 m –
r1 Radius of Bar 1 30 mm –
r2 Radius of Bar 2 5 mm –
f Applied Force 3.5 kN N (3.5, 0.49)
g Gravitational Acceleration 9.81 m/s2 –

5.5.1 Applying the Rapid Robust Design Methodology

Step 1: Decompose the Design

Two analyses must occur in order to design the two bar truss: a structural analysis

and a sizing of the bars constituting the truss. Although not explicit in the problem

statement, the mass of the bars also provide a load through their weight. Hence, this

is a coupled analysis problem since the structural analysis depends on the sizing of

each of the bars. The coupled DSM is shown in Fig. 31.

Structural 

Analysis 

Weights and 

Sizing 

21 WWr pd uu ,

2,TT1

21,WW

Figure 31: Two bar truss design structure matrix.
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The inputs into the design problem are the deterministic and probabilistic param-

eters of the problem whose values are shown in Table 10. In particular,

ud =

(
E l r1 r2 g y2 y3

)T
and

up =

(
σy ρ f

)T
The structural analysis CA feeds the forces seen in each of the members of the truss

to the weights and sizing module. These can be found through the static equilibrium

equations and are found by solving the linear equations

l

L1

0 1 0 0 0

− y2

L1

0 0 1 0 0

− l

L1

l

L2

0 0 0 0

− y2

L1

y3 − y2

L2

0 0 0 0

0
l

L2

0 0 1 0

0
y3 − y2

L2

0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





T1

T2

R1x

R1y

R3x

R3y


=



0

0

0

− l

2y3

(W1 +W2 + 2f)

f

(
1 +

y2

y3

)
0

0

f

l

2y3

(W1 +W2 + 2f)

f

(
1 +

y2

y3

)
+W1 +W2


for the tensions. The weights and sizing CA computes the weights of each of the bars

based on the relationship

y2 =

W1

W2

 =

πρgr2
1L1

πρgr2
2L2


Both relationships defined by the CAs rely on the lengths of the bars, which are given
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by

L1 =
√
l2 + y2

2

L2 =
√
l2 + (y3 − y2)2

This is a realistic example in which the CAs are nonlinear. Therefore, in order to

apply the developed methodology, a Taylor series expansion about a nominal value

(chosen to be the previous iterate’s mean value) must be conducted. Functionally,

this means that Eq. (5.5.1) can be expanded as follows

y1 =

T1

T2

 ≈

∂T1

∂ud


ûd

(ud − ûd) +
∂T1

∂up


µup

(up − µup
) +

∂T1

∂y


ŷ

(y − ŷ)

∂T2

∂ud


ûd

(ud − ûd) +
∂T2

∂up


µup

(up − µup
) +

∂T2

∂y


ŷ

(y − ŷ)


Similarly, Eq. (5.5.1) can be expanded as

y2 =

W1

W2

 ≈


πρgr2
1

ŷ2√
l2 + ŷ2

2

(y2 − ŷ2)

πρgr2
2

(
ŷ2 − ŷ3√

l2 + (ŷ2 − ŷ3)2
(y2 − ŷ2) +

ŷ3 − ŷ2√
l2 + (ŷ2 − ŷ3)2

(y3 − ŷ3)

)


Therefore, in the form of Eq. (75)

A1 =

(
∂T1

∂y


ŷ

)
B1 =

(
∂T1

∂ud


ûd

)

C1 =

(
∂T1

∂up


µup

)

d1 = −

(
∂T1

∂ud


ûd

ûd +
∂T1

∂up


µup

µup
+
∂T1

∂y


ŷ

ŷ

)

A2 =

(
∂T2

∂y


ŷ

)
B2 =

(
∂T2

∂ud


ûd

)

C2 =

(
∂T2

∂up


µup

)

115



d2 = −

(
∂T2

∂ud


ûd

ûd +
∂T2

∂up


µup

µup
+
∂T2

∂y


ŷ

ŷ

)

Step 2: Identify the Random Variables and their Distributions

All of the random variables in this example are associated with the parameters

and not with the model itself. As shown in Table 10, the values are given by

σy ∼ N (250× 103, 625× 106), ρ ∼ N (7850, 100), and f ∼ N (3.5, 0.49).

Step 3: Form the Iterative Equations

In order to use the Kalman filter to simultaneously estimate robustness and converge

the design, the iterative equations described in Eq. (76) for fixed-point iteration need

to be formed. Through analogy of variables, the matrices are given by

Λ =

A1

A2

 =

 0
∂T1

∂y2


ŷ

∂T2

∂y1


ŷ

0



β =

B1

B2

 =


∂T1

∂ud


ûd

∂T2

∂ud


ûd



γ =

C1

C2

 =


∂T1

∂up


µup

∂T2

∂up


µup



δ =

d1

d2

 =


−

(
∂T1

∂ud


ûd

ûd +
∂T1

∂up


µup

µup
+
∂T1

∂y


ŷ

ŷ

)

−

(
∂T2

∂ud


ûd

ûd +
∂T2

∂up


µup

µup
+
∂T2

∂y


ŷ

ŷ

)


where the numerical values for each of these matrices is evaluated at each subsequent

iteration at the appropriate nominal values.
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Step 4: Ensure a Solution Exists

While this problem is posed as a linear system, the matrix Λ varies with iteration.

This requires a Lyapunov analysis to be conducted in order to identify the stability

of the system. For this example, this analysis was completed simultaneously with

the convergence by numerically solving a matrix Riccati equation. A positive def-

inite matrix, R, for the quadratic problem was able to be found that satisfies the

relationship

ΛT
kRkΛk −Rk = −Sk

for Sk > 0. Since a solution for Rk was able to be found when Sk = I4×4 for each

iterate, this enables a Lyapunov function of the form

Vk(y) = yTk Rkyk

to be formed which shows asymptotic stability for a linear, time varying, discrete

system.

The stability of this problem was also analyzed by using a sum-of-squares Lya-

punov function technique as outlined in Chapter 3 where a tenth-order polynomial

about y0 was formed. Applying SOSTOOLS, a semi-definite programming algorithm,

to this problem yielded a polynomial solution to Eq. (42), that also satisfies the re-

quirements of a Lyapunov function.

The modulus of the eigenvalues show similar conclusions regarding the asymptotic

stability as Lyapunov stability as shown in Fig. 32.

Step 5: Estimate the Mean Output and the Covariance

The equations formed in the prior step can then be propagated through the Kalman

filter defined by Eqs. (62)-(68) with

Fk−1 = Λ, ∀k ∈ {1, 2, ...}

Bk−1 =

(
β γ I4×4

)
, ∀k ∈ {1, 2, ...}
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Figure 32: History of the modulus of the maximum eigenvalue of the two bar truss
system with iteration.

uk−1 =


ud

up

δ

 , ∀k ∈ {1, 2, ...}

where in this example ud =

(
E l r1 r2 g y2 y3

)T
and up = E(up) = µup

. In

this example, the matrix Q is the null matrix since the only uncertain parameters of

the problem are associated with the input parameters, not the model. The unscented

transform is used on an uncoupled system with the distribution described in Step 2

in order to identify y0 and Σ0, the initial output mean and covariance for each de-

sign. A design is considered converged when the absolute difference between iteration

estimates is less than 1× 10−4 or the relative difference is less than 1× 10−6.

Step 6: Identify the Mean and Variance Bound of the Objective Function

Upon convergence, the value of y, the state variable in the problem, is the mean

response for each of the components of the output CAs. In this example, the matrix
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M is given by

M =

(
0 0 1 1

)
since the objective is the weight of truss W1 +W2, the two elements of the second CA

output. Therefore,

r̄ =

(
0 0 1 1

)
ŷn|n

The estimate for the variance (i.e., the variance bound) in this case is two times the

two-norm of the entire estimated covariance matrix

σ2
r ≤

2∑
i=1

‖ Σy∗n|n ‖2= 2 ‖ Σy∗n|n ‖2

.

Step 7: Optimize for Uncertainty and Ensure Constraints are Met

Formulating the output of Step 6 in terms of the mean and variance allows for an

optimal control problem to be setup for the system’s design, where the objective

function is defined by

J = α

(
0 0 1 1

)
ŷn|n + 2β ‖ Σy∗n|n ‖2

and α and β allow different weighting on the mean and variance. The constraints for

this problem as given are

g(y,u) =



g1(y,u)

g2(y,u)

g3(y,u)

g4(y,u)


=



|T1(u)| − πr2
1σy

|T2(u)| − πr2
2σy

−T1(u)− π2EI1

L2
1

−T2(u)− π2EI2

L2
2


Additionally, there is an equality constraint for the control that states

h(y,u) = uk − uk−1 = 0, ∀k ∈ 1, . . . , n

Therefore, the Hamiltonian in the optimal control problem is given by

Hk(y,u) = ψ0

(
α

(
0 0 1 1

)
ŷn|n + 2β ‖ Σy∗n|n ‖2

)
+ γTh + λTg
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where the terms in this relation can be computed numerically. The optimal control

conditions listed in Chapter 3 can then be used to compute the values of y2 and y3

for a chosen value of α and β.

5.5.2 Design Results

As mentioned at the beginning of this section, the formulation of this problem is based

on work in Ref. [167]. This work showed the deterministic optimal design to be as

shown in Fig. 33 which also shows the minimum variance robust design found in this

work[167]. This positions the vertical positions of the nodes, (y∗2, y
∗
3), at (0.751, 9.970)
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h2, m 

h
3
, m

 

Literature 
Deterministic 

Solution 

Bar 2 Yields 

Bar 1 
Buckles 

Robust Design 
Methodology 

Minimum Mass 
Solution 

Robust Design 
Methodology 

Minimum Variance 
Solution 

Figure 33: Deterministic and robust design of a two bar truss with a load at the
mutual joint.

m with an objective function value of J = 291.092 N. The deterministic case of this

analysis (i.e., when α = 1 and β = 0) yields a very similar result with (y∗2, y
∗
3) at

(0.746, 9.991) m with an objective function value of J = 291.151 N which implies

that the method developed achieves an accurate numerical result even in the case of
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nonlinear problems.

The variation in terms of mean and variance for this problem is shown in Fig. 34.
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Figure 34: Variation of 2||Σy∗ ||2 with the mean objective function for the design of a
two bar truss with a load at the mutual joint.

From this figure, the deterministic optimum is the minimum mean solution; however,

it is not the minimum variance solution. This minimum variance design is approxi-

mately 39 N heavier.

5.6 Rapid Robust Design of a Deployable for Strategic Ve-
hicles

As the demands on the performance of entry, descent, and landing (EDL) systems

increase, additional technologies will be needed in order to enable the desired mission

sets. Deployable devices are one such technology, reducing or eliminating the max-

imum diameter constraint placed on the entry vehicle shape by the launch or boost

vehicle. Relaxation or elimination of this constraint provides an aerodynamic per-

formance advantage enabling a broad spectrum of next-generation missions for both
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civilian and national defense applications. Some examples of previously investigated

deployable systems are discussed in Refs. [168, 169, 170, 171, 172, 173, 174, 175, 176,

177, 178, 179, 180, 181, 182].

Deployables are usually thought to be drag enhancing devices to reduce the ballis-

tic coefficient of a system. However, for strategic vehicles, the inclusion of a deployable

device may also improve controllability, enhance constraint margins, and lead to new

concepts of operations. Boost-glide systems are typically mid- to high-L/D systems

that use a boost phase to achieve a desired state and then manage their energy to

glide to their desired target. Deployables could be added to existing strategic systems

leading to an evolved boost-glide mission set through increased range and accuracy.

This work robustly designs deployable systems for a representative strategic system

in order to examine this evolved boost-glide mission set.

5.6.1 Performance Impact of a Deployable System

In general, the performance of a vehicle is strongly characterized by the ballistic

coefficient, β, and the lift-to-drag ratio, L/D [183]. Figure 35 shows the 1σ miss

distance to a surface target and achievable range as a function of L/D for a range of

β. The results seen in Fig. 35 are the product of solving the optimal control problem

where the control is the orientation and magnitude of the net aerodynamic force

vector at Earth from an initial state of h0 = 155 km, v0 = 6.2 km/s, and γ0 = −9.6◦.

It was assumed that the aerodynamic force vector could be oriented freely and non-

continuously within a reachable cone having a half-angle defined by the maximum

L/D. The objective function to be maximized for this optimization problem is either

accuracy (in the case of Fig. 35(a)) or range (in the case of Fig. 35(b)).

In Fig. 35, it is seen that the miss distance is relatively insensitive to ballistic

coefficient; however, there is a strong, nonlinear dependence on L/D for values less
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Figure 35: Variation of (a) miss distance and (b) range showing sensitivity to lift-to-
drag ratio and insensitivity to ballistic coefficient.
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than 0.3 with limited additional improvement beyond this point. A strong, near-

linear dependence on L/D is seen for range capability. Like with the accuracy, there

is little sensitivity to the ballistic coefficient.

There is a large design space of deployable concepts. This investigation will limit

the design to a single concept—that of deployable chines, which are shown in Fig. 36.

In this investigation, the root chord is fixed at 2d.

d 

l 

Figure 36: Geometry of the deployable device.

Chines have the potential to increase the L/D performance of the system [184, 185,

186, 187]. This effect is shown in Fig. 37 where the improvement over a representative

baseline’s L/D is plotted against a non-dimensional size, l/d—the ratio of the distance

from the centerline of the vehicle to tip chord of the deployable to the baseline vehicle’s

diameter.

Figure 35 implies that from a performance perspective, the vehicle should have

as much L/D as possible while Fig. 37 indicates that in order to maximize the L/D

of the system, the deployable should be as large as possible. However, the larger the

deployable the more massive it is, which negatively impacts the performance of the

system. Therefore, a multiobjective design problem is formulated where the mass
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Figure 37: Increase in the maximum lift-to-drag ratio of the entry system for a single-
delta deployable as a function of deployable size.

Table 11: Baseline strategic vehicle aerodynamics

Parameter Value
(L/D)max 1.02
α|(L/D)max 22.5◦

CL|(L/D)max 0.864
CD|(L/D)max 0.849

of the decelerator is traded with the performance of the system (either accuracy or

range).

5.6.2 Baseline Strategic System Characteristics

The rapid robust design methodology is used to design a deployable system that

could be added to a representative baseline strategic system to potentially improve

its performance. The baseline system is shown in Fig. 38 and selected characteristics

describing its aerodynamics are shown in Table 11.
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Figure 38: Baseline strategic vehicle characteristics.

5.6.3 Modeling

This design can be decomposed into seven CAs as shown in Fig. 39. The models for

each of these CAs will be discussed in the discussion that follows.

System 
Definition 

Planetary 
Model 

Guidance, 
Navigation, and 

Control 

Trajectory 
Analysis 

Thermal 
Response 

Weights and 
Sizing 

System 
Aerodynamics 

Figure 39: Design structure matrix for the design of a deployable for a strategic
system.

5.6.3.1 Planetary Model

This analysis assumes an inverse square law gravity field and an exponential atmo-

spheric density profile for Earth.
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5.6.3.2 System Aerodynamics

For this investigation, a hypersonic aerodynamics analysis of the baseline strategic

system along with the deployable was performed using a Newtonian impact model.

These results were generated with a first-order industry standard tool, the config-

uration based aerodynamics (CBAero) tool [188]. The conditions at the maximum

lift-to-drag ratio, (L/D)max, were then regressed as a function of the size of the de-

ployable (e.g., CL(l/d), CD(l/d), etc.) for use in the design of the deployable system.

The deployable is assumed to be a single-delta shape as shown in Fig. 36.

5.6.3.3 Guidance, Navigation, and Control

Two different guidance schemes are considered in this work: bank-to-steer guidance

and acceleration control.

Bank-to-Steer Guidance

Bank-to-steer guidance has been used on missions such as Apollo and the Mars Sci-

ence Laboratory [189, 190]. This control technique rotates the lift vector around the

velocity vector. In the downrange direction, control is provided by varying the amount

of vertical lift, which is proportional to the cosine of the bank angle, σ. Crossrange

control is provided by bank reversals since both σ and −σ provide the same (L/D)vert.

Acceleration Control

Acceleration control is a bounding technique which controls the direction of the aero-

dynamic acceleration vector assuming that the magnitude of the acceleration is equal

to that produced by drag at zero angle of attack. This is consistent with a system

where drag is reduced as lift is produced. The direction of the acceleration vector is

allowed to freely vary within a cone with half-angle θc defined by the lift-to-drag ratio
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of the system

θc = tan−1

(
L

D

)
= tan−1

(
CL
CD

)
(99)

Mathematically, the commanded acceleration is given by

ac =
Dmax

m
û =

ρv2CD|α=0◦A

2m

u

‖ u ‖
(100)

with the constraint that

cos−1

(
ûTv

v

)
≤ θc (101)

Implementation

During propagation of the trajectory, an optimal control trajectory is obtained for the

remainder of the trajectory at frequency of 0.5 Hz. This optimal control is predicted

using GPOPS, a pseudospectral optimal control software [191, 192, 193, 194, 195]. In

the case where the range is to be maximized, the objective function used in GPOPS

is given by

J = −sf = −s(tf ) (102)

Similarly, when the accuracy is to be maximized, the objective function is given as

J = d2
miss = (r(tf )− rT)T (r(tf )− rT) (103)

which is equivalent to minimizing the miss distance.

5.6.3.4 Trajectory Analysis

In addition to Cartesian equations of motion, an additional equation for the range of

the system is also propagated. This equation for the range is given by

ṡ = v cos(γ) (104)

These equations were propagated from the initial state using a fixed-step, fourth-

order, Runge-Kutta propagator until the system reached the surface (h = 0).
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5.6.3.5 Thermal Response

The Sutton-Graves approximation for stagnation point heating is used [196].

q̇s = ks

√
ρ

rn
v3 (105)

For this analysis, rn = 0.25 m and the nominal value of the Sutton-Graves constant,

ks, for Earth, 1.74153× 10−4 kg1/2m−1/2 is used.

5.6.3.6 Weights and Sizing

Deployable Structure

The sizing of the deployable’s structure is based on work by Krivoshapko for ellipsoidal

shell pressure vessels where analytical relationships for the meridional and parallel

stresses and critical buckling pressure are given in terms of the geometry of the

ellipsoid [197].

σφ =
p

2bδ

√
r2(b2 − a2) + a4 (106)

σβ =
p

2bδ

2r2(b2 − a2) + a4√
r2(b2 − a2) + a4

(107)

pcr =
16Eδ4

a2
√

3(1− ν2)

[
1 +

(z
a

)1/2
√

193(1− 4δ2)

16δ
√

12(1− ν2)

]
(108)

In this work, the thickness, δ, is chosen based on minimum thickness resulting from

Eqs. (106), (107), and (108) when a factor of safety of 1.3 is applied. The value of the

internal pressure, p, is chosen such that it is twice the maximum dynamic pressure

experienced. The dimensions of the ellipsoid are such that it produces a minimum

volume deployable. The deployable’s mass is determined by the following relationship

mstructure =
3
√

3l2zδρd
4

(109)

which includes an increase in mass of 50% to account for deployable systems and

design immaturity.
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Deployable TPS System

A first-order relationship determined by Laub and Venkatapathy uses heat load as

the sole parameter to determine the thermal protection system (TPS) mass fraction

[198]. This approximate relation is used in this investigation to size the TPS material

for the deployable. The model uses historical United States planetary missions at

Venus, Earth, Mars, and Jupiter with ablative TPS to regress TPS mass fraction

against the integrated heat load. These missions have integrated heat loads ranging

from approximately 3 × 103 J/cm2 to 2 × 105 J/cm2 (the trajectories analyzed in

this investigation have heat loads that are approximately 7-12 × 103 J/cm2). The

derived mass model for the TPS is given by [198]

mTPS =
(
9.1× 10−4Q0.51575

)
m0 (110)

where Q is the integrated heat load in J/cm2 and m0 is the initial mass.

Deployable Mass

The total deployable’s mass is the addition of the structural mass (including deploy-

able system mass and margin) and the TPS system.

mdeploy = mstructure +mTPS (111)

5.6.4 Problem Setup

The setup of the design problem posed is presented below. First, the parameters

used within the models is presented, then the problem constraints are introduced,

and finally the optimization problem is formed.

5.6.4.1 Design Parameters

The solutions presented subsequently are based on the deterministic and probabilistic

parameters shown in Table 12.
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Table 12: Parameter values for the design.

Parameter Description Nominal Value Distribution

µg
Gravitational

3.986× 105 km3/m2 N (µ̃g, 106)
Parameter

ρ0
Surface Atmospheric

1.225 kg/m3 N (ρ̃0, 0.01)
Density

H Scale Height 7.116 km N (H̃, 4)

kCL

Lift Coefficient
1 N (k̃CL

, 0.0625)
Multiplier

kCD

Drag Coefficient
1 N (k̃CD

, 0.0625)
Multiplier

m0 Initial Mass 5,000 kg —
h0 Initial Altitude 155 km —

v0
Initial Velocity

6,200 m/s N (ṽ0, 40000)
Magnitude

γ0
Initial Flight −9.6◦ N (γ̃0, 0.04)
Path Angle

θ0 Initial Latitude Design Variable N (θ̃0, 0.0625)

φ0 Initial Longitude Design Variable N (φ̃0, 0.0625)

ψ0
Initial Heading

90◦ N (ψ̃0, 4)
Angle

hT Target Altitude 0 m —
φT Target Longitude 0◦ —
θT Target Latitude 10.354◦ —

ks
Sutton-Graves

1.74153× 10−4

√
kg

m
N (k̃s, 1× 10−8)

Constant
rn Stagnation Radius 0.25 m N (r̃n, 0.0025)

ρd Material Density 1.3 g/cm2 N (ρ̃d, 0.01)

E Young’s Modulus 3,000 MPa N (Ẽ, 90000)
σt Tensile Strength 60 MPa N (σ̃t, 100)
ν Poisson Ratio 0.4 —

5.6.4.2 Design Constraints

Several practical design constraints exist in this design space. These include:

1. A limitation on the size of the deployable: l/d ∈ [0.0, 2.0]

2. A limitation on the mass of the deployable: mdeploy ≤ 5, 000 kg

3. A restriction that the range must be greater than the range with no deployable:
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sf ≥ sf,baseline

4. A restriction that the accuracy must be greater than the accuracy with no

deployable: dmiss ≤ dmiss,baseline

5. A restriction that the heating must be consistent with anticipated deployable

ablative TPS materials: q̇s ≤ 100 W/cm2

Each of these constraints are appended to the objective function.

5.6.4.3 Standard Form of the Optimization Problem

The optimization problem, in standard form, is given by

Minimize: [Jmass − Jrange] or [Jmass Jaccuracy]

Subject to: g1(l/d, θ0, φ0) = −l/d ≤ 0

g2(l/d, θ0, φ0) = l/d− 2 ≤ 0

g3(l/d, θ0, φ0) = mdeploy(l/d)− 5000 ≤ 0

g4(l/d, θ0, φ0) = sf,baseline − sf (l/d) ≤ 0

g5(l/d, θ0, φ0) = dmiss(l/d, θ0, φ0)− dmiss,baseline ≤ 0

g6(l/d, θ0, φ0) = q̇s(l/d)− 100 ≤ 0

By varying: l/d, θ0, φ0


where

Jmass =
m̄deploy

m0

+
σ2
mdeploy

m2
0

Jrange =
s̄f

sf,baseline
−

σ2
sf

s2
f,baseline

Jaccuracy =
d̄miss

dmiss,baseline
+

σ2
dmiss

d2
miss,baseline

In terms of the rapid robust design methodology, the quantity
σ2
x

x2
can be replaced with

‖ Σy∗x ‖2

x2
for the quantity x, where x can be m0, sf , or dmiss. Pareto frontier solutions
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were identified by an additive weighting technique where the aggregate objective

function was of the form

J = αJmass − βJrange (112)

in the case where the mass and range was being investigated or

J = αJmass + βJaccuracy (113)

in the case where the mass and accuracy was being investigated.

5.6.5 Applying the Rapid Robust Design Methodology

Step 1: Decompose the Design

This problem has already been decomposed into the representative CAs; however, to

match the terms required by Eq. (75), these are described in terms of the matrices

yj =
∂gj

∂y

∣∣∣
ỹ
y +

∂gj

∂ud

∣∣∣
ũd

ud +
∂gj

∂up

∣∣∣
ũp

up

−
(
∂gj

∂y

∣∣∣
ỹ
ỹ +

∂gj

∂ud

∣∣∣
ũd

ũd +
∂gj

∂up

∣∣∣
ũp

ũp

)
, ∀j = {1, 2, . . . , 7}

where the CA’s output is nominally described by the expression

yj = gj(y,ud,up)

Step 2: Identify the Random Variables and their Distributions

There are 15 random variables that are used in this design problem as specified in

Table 12. Except for the material properties (i.e., ρd, E, and σt) the random variables

are treated as uncertain inputs, up, in the design problem.

Step 3: Form the Iterative Equations

For this example, fixed-point iteration is used to converge the design as described in

Eq. (76). In these terms, the equations are given by
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Λ =


∂g1

∂y

∣∣∣
ỹ

...

∂g7

∂y

∣∣∣
ỹ



β =


∂g1

∂ud

∣∣∣
ũd

...

∂g7

∂ud

∣∣∣
ũd



γ =


∂g1

∂up

∣∣∣
ũp

...

∂g7

∂up

∣∣∣
ũp



δ = −


∂g1

∂y

∣∣∣
ỹ
ỹ +

∂g1

∂ud

∣∣∣
ũd

ũd +
∂g1

∂up

∣∣∣
ũp

ũp

...

∂g7

∂y

∣∣∣
ỹ
ỹ +

∂g7

∂ud

∣∣∣
ũd

ũd +
∂g7

∂up

∣∣∣
ũp

ũp



Step 4: Ensure a Solution Exists

A sum-of-squares analysis using a tenth-order Taylor series polynomial was performed

using SOSTOOLS. As a result of this analysis, an asymptotically stable system was

able to be identified for the nominal parameters, using fixed point iteration.

Step 5: Estimate the Mean Output and the Covariance

The equations formed in the prior step can then be propagated through the Kalman

filter defined by Eqs. (62)-(68) with

Fk−1 = Λ, ∀k ∈ {1, 2, ...}

Bk−1 =

(
β γ I7×7

)
, ∀k ∈ {1, 2, ...}
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uk−1 =


ud

up

δ

 , ∀k ∈ {1, 2, ...}

where in this example ud = ud and up = 0. Since there are uncertainties with the

model, the matrix Q is not null and the appropriate elements are populated with the

model uncertainties. The unscented transform is used on an uncoupled system with

the distribution described in Step 2 (and Table 12) in order to identify y0 and Σ0, the

initial output mean and covariance for each design. A design is considered converged

when the absolute difference between iteration estimates is less than 1× 10−4 or the

relative difference is less than 1× 10−6.

Step 6: Identify the Mean and Variance Bound of the Objective Function

Upon convergence the mean values of mdeploy, sf , and dmiss (e.g., m̄deploy, s̄f , and

d̄miss) can be calculated using the output of the converged Kalman filter equations

from Step 5. The mass is an output of the weights and sizing CA while the mass

and miss distance are outputs from the trajectory CA. The estimate for the variance

(i.e., the variance bound) in this case is simply

σ2
r ≤‖ Σy∗x ‖2

where x in y∗x is either the deployable mass, mdeploy, the range, sf , or the miss distance

dmiss.

Step 7: Optimize for Uncertainty and Ensure Constraints are Met

Formulating the output of Step 6 in terms of the mean and variance allows for an op-

timal control problem to be setup for the system design, where the objective function
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is defined by either

J = αJmass − (1− α)Jrange = α

(
m̄deploy

m0

+
‖ Σmdeploy

‖2

m2
0

)
− (1− α)

(
s̄f

sf,baseline
−
‖ Σsf ‖2

s2
f,baseline

)
or

J = αJmass + (1− α)Jrange = α

(
m̄deploy

m0

+
‖ Σmdeploy

‖2

m2
0

)
+ (1− α)

(
d̄miss

dmiss,baseline
+
‖ Σdmiss

‖2

d2
miss,baseline

)
In these relationships α ∈ [0, 1] is used to identify the Pareto frontier.

The constraints can be formulated as both a function of the design variable (l/d)

and of the CA output (mdeploy, sf , dmiss, and q̇s) as

g(y,u) =



−l/d

l/d− 2

mdeploy − 5000

sf,baseline − sf

dmiss − dmiss,baseline

q̇s − 100


≤ 06×1

Additionally, there is an equality constraint for the control that states

h(y,u) = uk − uk−1 = 0, ∀k ∈ 1, . . . , n

Therefore, the Hamiltonian in the optimal control problem is given by either

Hk(y,u) = ψ0α

(
m̄deploy

m0

+
‖ Σmdeploy

‖2

m2
0

)
− (1− α)

(
s̄f

sf,baseline
−
‖ Σsf ‖2

s2
f,baseline

)

+ γTg(y,u) + λT (uk − uk−1)

or

Hk(y,u) = ψ0α

(
m̄deploy

m0

+
‖ Σmdeploy

‖2

m2
0

)
− (1− α)

(
d̄miss

dmiss,baseline
+
‖ Σdmiss

‖2

d2
miss,baseline

)

+ γTg(y,u) + λT (uk − uk−1)
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where the terms in these relations can be computed numerically. The discrete optimal

control conditions listed in Chapter 3 can then be used to compute the value of ud

for a chosen value of α.

5.6.6 Design Results

The results of the sizing of the deployable aerodynamic surface are presented in the

sections that follow.

5.6.6.1 Single-Delta Design Solutions

Converged, optimal deployable designs for the single-delta configuration are shown in

Figs. 40 and 41. The points denoted with circles correspond to optimal designs found

using the rapid robust multidisciplinary design methodology and points denoted with

an ‘x’ correspond to optimal designs found using a multi-objective particle swarm

optimizer (MOPSO) wrapped around a Monte Carlo simulation. The 1σ robustness

estimate provided by the Monte Carlo is the result of increasing the number of samples

until the change was less than 0.1%.

Correlation between the MOPSO results and those obtained through the rapid ro-

bust design methodology is seen in both Figs. 40 and 41. The discrepancy in values

can be attributed to the conservatism provided by the rapid robust design method-

ology with respect to the estimation of the variance as well as the inherent linearity

of the methodology. The variance bound approximates the variance in the response

of the design (i.e., the 1σ mass, range, or accuracy) with the largest eigenvalue of

the propagated covariance matrix, which is conservative and is seen throughout the

results. In addition, the sequential linearization procedure to accommodate nonlin-

earities introduces errors in the resulting solutions. These are discussed further in

Chapter 6. However, these shortcomings are within those accepted by the conceptual

design community and are compensated for by the additional speed of the method-

ology.
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Figure 40: Design solutions for range comparing the rapid robust design methodol-
ogy and a multiobjective particle swarm optimizer for a (a) bank-to-steer guidance
algorithm and the (b) acceleration control guidance algorithm.
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Figure 41: Design solutions for accuracy comparing the rapid robust design method-
ology and a multiobjective particle swarm optimizer for a (a) bank-to-steer guidance
algorithm and the (b) acceleration control guidance algorithm.
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Figure 40 demonstrates that the larger the deployable’s mass, the more range

capability the strategic system can achieve. In fact, for an approximately 300 kg

deployable, the range is improved over 1,200 km (an improvement of greater than

25%). The range is seen insensitive to the two guidance algorithms considered. This

is due to the fact that the trajectory for maximum range is largely a full-lift up

trajectory which is equally capable of being flown by a bank-to-steer algorithm and

the acceleration control method. For an equally weighted objective function between

range and mass, the optimal design has an l/d of 1.16 (mdeploy = 139 kg), regardless

of the guidance algorithm.

Figure 41 demonstrates that the larger the deployable is, the more accurate the

system will be. For an approximately 300 kg deployable, the accuracy is capable of

being improved by an order of magnitude from the baseline strategic system (from 2.8

km to 0.3 km). Unlike range, the accuracy of the system is sensitive to the guidance

algorithm. For the bank-to-steer algorithm, the control is nearly saturated with a

miss distance of about 5.5 km across all deployable sizes. However, using acceleration

control, improvement is consistently seen with a larger deployables (with larger L/D).

For an equally weighted objective function between range and mass using acceleration

control, the optimal design has a l/d of 1.14 (mdeploy = 131 kg).

A significant advantage of the rapid robust design methodology is computational

runtime. This is shown in Table 13 where the number of iterations required to obtain

the results shown in Figs. 40 and 41 is provided.

Despite returning approximately four times as many optimal solutions as the

MOPSO approach, the number of analysis iterations of the rapid robust design

methodology is an order of magnitude less (with runtimes less than 5%) than the

MOPSO. In addition, the probabilistic results obtained by this new methodology are

within 10% of those obtained using the MOPSO, with the vast majority having errors

less than 3% the MOPSO values.
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Table 13: Computational comparison between MOPSO and the Rapid Robust Design
Methodology.

Range Accuracy
Rapid Robust Rapid Robust

Design Design
Methodology MOPSO Methodology MOPSO

Number of
24,962 710,108 28,616 841,094

DSM Iterations, -
Computational

2.2 69.7 2.4 85.7
Runtime, hours

Center of Gravity Considerations

The results presented thus far allow for the center of gravity (CG) to be positioned

anywhere, including outside the outer mold line of the vehicle. This is not practical.

As shown in Fig. 42, when limiting the CG to be within the vehicle, as l/d increases,

the maximum L/D achievable diminishes to a point where it is actually less than the

baseline system.

In order to achieve trim conditions with practical values of CG position, a body

flap was added to the baseline system. This body flap was assumed to be a flat surface

that was 25% of the vehicle’s length. Figure 43 shows that the body flap deflection

angle in order to achieve maximum L/D. Note that the deflection angle remains less

than 30◦ for all deployable sizes considered.
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Figure 42: The (a) impact on L/D of constraining the CG position to be within the
vehicle and (b) the normalized (relative to the vehicle’s diameter) distance outside
the vehicle the CG needs to be to achieve (L/D)max.
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Figure 43: Body flap deflection angle required to trim the vehicle at the theoretical
maximum L/D.

5.6.6.2 Alternative Configuration

An additional deployable configurations were assessed to identify whether an improve-

ment in L/D can be obtained without the inclusion of a body flap. This configuration

is shown in Fig. 44.

(L/D)max  = 1.02 

(L/D)max,trim = 1.00 

Baseline 

(L/D)max  1.24 

(L/D)max,trim  1.01 

(L/D)max,trim/(L/D)max,trim|baseline = 1.01 

(L/D)max  1.53 

(L/D)max,trim  1.52 

(L/D)max,trim/ /(L/D)max,trim|baseline = 1.52 

Single-Delta Double-Delta 

Figure 44: Comparison of investigated deployable concepts showing the maximum
achievable L/D accounting for trim considerations.

While the single-delta deployable concept previously described does not provide
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improvement in performance without the addition of a body flap, the double-delta

configuration provides a significant increase in L/D (52%) relative to the baseline

strategic vehicle while maintaining an appropriate CG position. The large perfor-

mance improvement of the double-delta configuration without the use of a body flap

can be explained by the aerodynamic force of the deployable being located farther aft

than in the single-delta concept. The mean aerodynamic center of the baseline vehicle

is located close to the cylinder cap beneath the nose cone. The lift of the double-delta

deployable is sufficiently far aft to provide a sufficient restoring moment to allow the

vehicle to trim, whereas this is not the case for the single-delta configuration. For the

double-delta, the CG to trim at L/Dmax shifts aft as l/d increases resulting in a l/d

maximum of 2.0.

The trim angle of attack for these vehicles is significant (∼ 20◦), providing another

advantage of the double-delta—less drag area. This enables a larger L/D increase

relative to the single-delta configuration discussed previously. However, this is traded

for a more complex shape which would be more difficult to manufacture and deploy

in flight.

5.6.6.3 Double-Delta Design Solutions

Converged, optimal double-delta deployable designs are shown in Figs. 45 and 46.

As before, there is strong correlation between the MOPSO results and those obtained

through this methodology. However, in this case, as shown in Fig. 45, the range

performance is significantly improved for larger deployables. For an approximately

300 kg deployable, the range is improved over 2,400 km (an improvement that is

twice that of the single-delta with a body flap configuration). Furthermore, the

range capability insensitivity to guidance algorithm is persistent in the double-delta

configuration, since the trajectory is again largely full-lift up. For an equally weighted

objective function between range and mass, the optimal design has a l/d of 1.19,
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Figure 45: Design solutions for range comparing the rapid robust design methodol-
ogy and a multiobjective particle swarm optimizer for a (a) bank-to-steer guidance
algorithm and the (b) acceleration control guidance algorithm for the double-delta
configuration.
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Figure 46: Design solutions for accuracy comparing the rapid robust design method-
ology and a multiobjective particle swarm optimizer for a (a) bank-to-steer guidance
algorithm and the (b) acceleration control guidance algorithm for the double-delta
configuration.
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regardless of the guidance algorithm (mdeploy = 148 kg).

Figure 46 shows trends for the double-delta that are similar to those observed for

the single-delta configuration—the larger the deployable is, the more accurate the

system. When considering accuracy, however, the performance gain of the double-

delta configuration is not as great compared to range benefits. For an approximately

300 kg deployable, the 1σ accuracy is 0.2 km for the double-delta configuration,

compared to 0.3 km for the single-delta. However, the double-delta configuration is

characterized by a faster rate of improving accuracy as the deployable increases in

size (from an l/d of 0 to l/d of 2.0) compared to the single-delta and a body flap is not

required in order to achieve these performance gains. Again, 1σ accuracy of the system

is sensitive to the guidance algorithm, with the bank-to-steer guidance demonstrating

saturated qualities. For an equally weighted objective function between range and

mass using acceleration control, the optimal design has a l/d of 1.2 (mdeploy = 149

kg).

The computational runtime advantage (factor of 30) of the rapid robust design

methodology is shown in Table 14 where accuracies acceptable to conceptual design

are shown to be achievable.

Table 14: Computational comparison between MOPSO and the Rapid Robust Design
Methodology.

Range Accuracy
Rapid Robust Rapid Robust

Design Design
Methodology MOPSO Methodology MOPSO

Number of
26,842 642,132 33,534 713,124

DSM Iterations, -
Computational

2.3 59.6 2.8 64.2
Runtime, hours
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5.6.7 Conclusions

The rapid robust design methodology was implemented to optimize the design of a

deployable system for a strategic system. This methodology was shown to provide

similar results to traditional Monte Carlo methods with solutions within 10% for less

than 5% of the computational time.

Two deployable configurations were investigated—a single-delta and a double-

delta. For a 300 kg deployable, the single-delta configuration was shown to provide

an increase in 1σ range of more than 1,200 km (25%) and a reduction in 1σ miss

distance from 2.5 km to 0.5 km (500%) over the baseline strategic system. For this

configuration, a body flap is required for physical realizable CG positions. A 300

kg double-delta is able to increase the baseline system’s 1σ range by over 2,400 km

(50%) and reduce the 1σ miss distance by an order of magnitude (to less than 0.25

km) without the use of a body flap.

In addition to configuration, the effect of guidance algorithm was investigated

using a bank-to-steer algorithm and a bounding guidance algorithm. The range re-

sults were insensitive to guidance algorithm selection. However, when accuracy is

considered, guidance algorithm selection was shown to have a large effect as the

bank-to-steer algorithm’s control was shown to be nearly saturated with marginal

performance gains across the deployable sizes investigated.

5.7 Summary

This chapter demonstrated the use of dynamical system theory in multidisciplinary

design through several applications of increasing complexity. A probabilistic perfor-

mance assessment of the robustness methodology as well as example robust design

problems were provided, demonstrating application of dynamical system theory to

multidisciplinary design. The probabilistic assessment showed that the robustness

assessment methodology had maximum errors relative to exact values less than 1%
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on the mean objective value and less than approximately 35% in standard deviation

for a large design space. In addition, for specific values of the CAs, a comparison

between traditional uncertainty quantification techniques and the rapid robustness

assessment methodology demonstrated significant computational advantages of the

developed methodology. The capability of stability theory to provide ranges of initial

values to start the iteration was demonstrated along with the capability to compute

the rate at which the design will converge. Through the design examples, application

to nonlinear and practical problems were demonstrated. For the two-bar truss, the

successive linearization procedure showed a minimal mass design that is consistent

with that found in the literature while rapidly characterizing both optimal and ro-

bust designs. The computational advantages of the technique was also demonstrated

in robust design of a deployable aerodynamic surface for a strategic system. Fam-

ilies of comparable designs for this large, highly nonlinear problem were found 25

times faster than using Monte Carlo methods coupled with traditional multiobjective

optimization techniques.
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CHAPTER VI

COMPUTATIONAL PERFORMANCE OF THE RAPID

ROBUST DESIGN METHODOLOGY

This chapter describes the range of applicability for the rapid robust design methodol-

ogy from a computational perspective. This includes an analysis of the computational

cost associated with design complexity. The accuracy of the linear rapid robust de-

sign methodology is considered for general problems using nonlinear perturbation

analysis, providing a basis to identify the region in which the successive linearization

procedure is valid. A discussion of the conservatism resulting from use of the matrix

two-norm as a bound on design variance is also provided.

6.1 Computational Effect of Increasing the Design Com-
plexity on the Rapid Robust Design Methodology

The previous chapter demonstrated the use of the rapid robust design methodology on

several example applications ranging from analytical problems to a problem relevant

to the EDL community. For these problems, the number of function evaluations

were reduced by a factor that approached thirty relative to traditional Monte Carlo

methods wrapped in an evolutionary optimizer. The following sections examine the

effect of design complexity on the number of function evaluations required to obtain

a solution. Quantitatively defining the complexity of the design is a matter of debate

amongst experts[199, 200, 201, 202]. In this investigation, the following definition will

be employed.

Definition: Design Complexity

Design complexity is the relative difficulty in obtaining an optimal design.
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In the sections that follow, design complexity is used in the structural sense[201]. In

terms of the MDO problem, structural design complexity is comprised of components

such as the number of design variables, the number of CAs, the nonlinearity of the

CAs, and the nonlinearity of the response function. For the rapid robust design

methodology developed in this work, the effect of each of these components are first

examined individually, then several overall evaluation criterion are applied. Some of

these overall evaluation criterion also evaluate the strength of coupling between the

CAs.

6.1.1 Test Problem Definition

To assess the effect of increasing design complexity on the computational efficiency

of the rapid robust design methodology, a generalized test problem was formulated.

This test problem is shown in Fig. 47.

The DSM in Fig. 47 is fully coupled and can be functionally represented as

yi = f(y1,y2, · · · ,yi−1,yi+1, · · · ,yn−1,yn,u) (114)

where in this case f(·) and each CA are scalar functions. The function in Eq. (114)

is represented as an qth-order polynomial

f(y1,y2, · · · ,yi−1,yi+1, · · · ,yn−1,yn,u) =

q∑
j1=1

q∑
j2=1

· · ·
q∑

jn−1=1

q∑
jn=1

[
a(j1, j2, · · · jn−1, jn)yj11 y

j2
2 · · · y

jn−1

n−1 y
jn
n +

d+p∑
i=1

ui

]
(115)

Similarly, the response function is a rth-order polynomial consisting of the outputs

for each of the contributing analysis

r =
r∑

j1=1

r∑
j2=1

· · ·
r∑

jn−1=1

r∑
jn=1

b(j1, j2, · · · jn−1, jn)yj11 y
j2
2 · · · y

jn−1

n−1 y
jn
n (116)

In each case the coefficients, are given by

a(j1, j2, · · · jn−1, jn) =

 U(−1, 1), ji 6= i

0, ji = i
(117)
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and

b(j1, j2, · · · jn−1, jn) ∼ U(−1, 1) (118)

which are sampled before evaluating for each design. The inputs, u ∈ Rd+p, are

prescribed by

ui =

 udi , i ≤ d

N (0, 100), d < i ≤ d+ p
(119)

where udi are assumed to be design variables, d ≥ 1, and p ≥ 1.

The unconstrained robust design problem is given by

Minimize: J = r̄ + σr

By varying: ud


where r̄ is the sample mean of r and σr is the sample standard deviation (or its

estimate,
√
‖ Σy ‖2, in the case of the rapid robust design methodology).

6.1.2 Individual Sensitivities

The individual effect of the number of design variables, number of CAs, nonlinearity

of the CAs, and nonlinearity of the response are discussed below. In each case the

number of function evaluations is compared to a Newton-based solution where the

uncertainties are provided by a Monte Carlo simulation, FPI, or unscented transform.

In the case of the Monte Carlo, the number of samples was continually increased until

the change in the variance estimate was less than 1%.

Table 15 shows the parameters used to analyze each scenario used when examining

the individual effects of the increase in complexity while Fig. 48 shows the computa-

tional cost as each of these parameters are varied. For each sensitivity analysis, the

number of probabilistic parameters, p, was fixed at 10.
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Table 15: Parameters used to examine the individual effect of complexity parameters
on the design.

# of Design # of CA Non- Response
Parameter Description Variables CAs linearity Nonlinearity

d
# of design

Variable 1 1 1
variables

n # of CAs 10 Variable 10 10

q
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1 1 Variable 1
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Figure 48: Increase in computational cost with (a) number of design variables, (b)
number of contributing analyses, (c) nonlinearity of the CAs, and (d) nonlinearity of
the response.
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6.1.2.1 Effect of Number of Design Variables

In this case, the number of design variables, d, is varied while the other parameters

were held constant as shown in Table 15. Figure 48(a) shows that each of the methods

exhibit algebraic growth with number of design variables (i.e., the number of function

calls goes as O(nc) for some c). As a Newton optimization algorithm is being utilized,

this is expected. It is also observed that the Monte Carlo solutions have an order of

magnitude more function evaluations compared to the other techniques considered.

This is expected since the rapid robust design methodology, FPI, and unscented

transform require a fixed number of function evaluations to obtain the mean and the

variance.

6.1.2.2 Effect of Number of Contributing Analyses

The number of CAs is representative of the complexity of the problem domain. To

analyze this effect on the number of function calls, the number of CAs, n, is varied

while the other parameters were held constant as shown in Table 15. As seen in

Fig. 48(b), each of the methods exhibit approximately algebraic growth with the

number of CAs. The increase in the number of function calls is a result of the fixed-

point iteration requiring an increasing number of iterations in order to reach the

convergence tolerance. For larger designs (greater than 20 CAs), the rate of function

call growth with number of CAs is similar between each of the methods. However,

for small designs (less than 20 CAs) the rapid robust design methodology is observed

to have the slowest rate of growth.

6.1.2.3 Effect of Contributing Analysis Nonlinearity

The effect of CA nonlinearity was assessed by varying the maximum degree of the

polynomial defined in Eq. (115), q. Each of the ten CAs’ order is varied simultane-

ously so that each polynomial has the same number of terms. The other parameters

used in this analysis are shown in Table 15. Figure 48(c) shows that the rapid robust
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design methodology and FPI again exhibit algebraic growth with the number of CAs

due to the fact that they rely on successive linearization to approximate the sys-

tem. Since the unscented transform does not depend on the linearity of the CAs and

propagates the same number of samples based on the dimensionality of the problem

(n + d + p), it has no sensitivity to the nonlinearity of the CAs. The Monte Carlo

exhibits algebraic growth initially, with exponential growth (i.e., number of functions

calls ∼ O(cq)) for highly nonlinear systems. This can be attributed to the fact that

the Monte Carlo simulation ensures that the change in the variance estimate is less

than 1%, requiring additional sampling for more nonlinear designs.

6.1.2.4 Effect of Response Nonlinearity

The effect of response nonlinearity was assessed by varying the maximum degree of the

polynomial defined in Eq. (116), r. The parameters used in this analysis are shown

in Table 15 while the variation in the number of function calls required to obtain a

robust design is shown in Fig. 48(d). The variation in the number of function calls

required by the rapid robust design methodology and unscented transform as the

response nonlinearity is increased is similar. Both of the techniques exhibit quasi-

linear growth behavior for increasing nonlinearity, while the Monte Carlo and FPI

exhibit an algebraic increase in the number of function calls.

6.1.3 Overall Complexity Metrics

An overall complexity index could also be used to measure the performance of the

rapid robust design methodology compared to traditional methods. Four different

metrics are considered—an algebraic metric, a Jacobian metric, a force-based clus-

tering metric, and an input-output graphical based metric. In addition providing

information about the structure of the design problem, the Jacobian and the force

based clustering metric also account for the functional relationship within the design.

That is to say, in addition to topological considerations in the design, these metrics
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account for how strongly coupled the design is or what the mapping between the

input and output looks like.

6.1.3.1 Algebraic Metric

The algebraic metric combines the four individual metrics discussed previously—the

number of design variables, the number of CAs, the nonlinearity of the CAs, and the

order of the response. The metric considered is defined as follows

Ca = dr

(
n∑
i=1

qi

)
(120)

where qi is the order of the ith CA. In this metric, the size and the order of the CAs

are combined into a single value, the summation of the order of each CA; however,

for a linear design, this reduces to the number of CAs.

6.1.3.2 Jacobian Metric

The Jacobian metric augments the algebraic metric with the addition of the order

of the matrix of partial derivatives between the input and output of the design.

Specifically, this metric is defined as

CJ = Ca
d∑
i=1

O
(
∂r

∂ud

)
i

= dr

(
n∑
i=1

qi

)(
d∑
i=1

O
(
∂r

∂ud

)
i

)
(121)

The Jacobian captures the sensitivity of the output to perturbations in the input and

is used in many optimization algorithms (e.g., steepest-descent).

6.1.3.3 Force-Based Clustering Metric

Force-based clustering is a graphical method that can be used to reorder a design

into a structured DSM and simultaneously provides information on the strength of

the connection between CAs[30]. This method works by modeling the connections

between CAs with an attractive force that clusters CAs with strong linkages, pulling

CAs that use the same information together. Decomposing the problem in this way

arranges the DSM in the “lowest energy” state, which can be used to measure the
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strength of the connections between the CAs. This complexity index augments the

algebraic metric with the summation of these forces once the DSM is arranged in the

minimal energy state.

Cfbc = CaJfbc = drJfbc

(
n∑
i=1

qi

)
(122)

where Jfbc is the sum of the edges of the force-based clustering graph when decom-

posed.

6.1.3.4 Input-Output Graph Metric

The last metric considered is a graphical technique based on the topology of the

design. In this method the net information flow through each CA is considered. That

is the difference between the number of output variables to the number of used input

variables is utilized,

Cio = Ca
n∑
i=1

(dim(yi,out)− dim(yi,in))

= dr

(
n∑
i=1

qi

)(
n∑
i=1

(dim(yi,out)− dim(yi,in))

) (123)

where yi,out and yi,in are the number of output variables and used input variables,

respectively.

6.1.3.5 Correlation Between Computational Cost and Complexity

The use of each of these techniques is demonstrated in Fig. 49 for nine representative

designs. These designs varied from a linear, weakly coupled three CA system with

a single input to a nonlinear design with 20 CAs, five design variables, and a highly

nonlinear response. Each design case is shown in Table 16 where the number of

probabilistic parameters, p, is assumed to be 5 for each case.

From Fig. 49, it is observed that the number of function calls generally increase for

each metric. However, the number of function calls does not monotonically increase

with the Jacobian augmented metric. Furthermore, as seen by the same complexity
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Table 16: Design cases used to evaluate the overall complexity metrics.

Case Case Case Case Case Case Case Case Case
Parameter 1 2 3 4 5 6 7 8 9

n 3 3 3 3 3 10 10 20 20
q 1 2 1 5 5 1 5 1 5
r 1 1 2 1 5 1 5 1 5
d 1 1 1 5 5 1 5 1 5
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Figure 49: Increase in computational cost with complexities using the (a) algebraic
complexity metric, (b) Jacobian complexity metric, (c) force-based clustering metric,
and (d) input-output metric.

value resulting in multiple number of function calls, all metrics except force-based

clustering provided multiple values for the number of function calls for low complex-

ity designs. This makes the force-based clustering metric the most promising for
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evaluation of design complexity. However, this metric is also the most computation-

ally intensive and requires the reorganization of the DSM. In cases where this is not

tractable, the input-output metric can be used as an alternative.

6.1.4 Computational Speed of the Rapid Robust Design Methodology

Figures 48 and 49 show favorable computational performance of the rapid robust

design methodology compared to the more traditional design methodologies such as

Monte Carlo simulation using a gradient-based optimization algorithm. The rapid

robust design methodology scales favorably with the number of design variables and

number of CAs, and its scaled performance was only met or exceeded by the unscented

transform with respect to the nonlinearity of the CAs and response. Across the range

of problems investigated, optimum designs were achieved using the rapid robust design

methodology with fewer function calls than the traditional techniques evaluated with

at least an order of magnitude less function evaluations compared to FPI and Monte

Carlo methods). This implies that the rapid robust design methodology scales well

with increasingly complex designs.

6.2 The Accuracy of a Linear Technique

The rapid robust design methodology developed in this investigation is based on

linear system theory. However, in Chapter 4 this methodology was extended to

nonlinear problems through successive linearization. In Chapter 5 results for the

highly nonlinear deployable aerodynamic surface example show reasonable accuracy

(1σ errors less than 10%) relative to full nonlinear propagation.

The extent of nonlinearity that the rapid robust design methodology can accom-

modate can be analyzed through a perturbation analysis. That is a nonlinearity is

added to the converged linear system. This analysis is common in orbital mechanics

and in control applications. For instance in orbital mechanics, this type of analysis is
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common when dealing with perturbations (e.g., drag, gravity, etc.) in the Clohessy-

Wilshire equations of relative motion[203]. For control applications, it is common to

linearize around a trajectory and assess the effect of nonlinear perturbations to linear

matrix propagation[137].

For this analysis, two different designs were considered, one with three CAs and

another with ten CAs. In each case the first n − 1 CAs are scalar, linear, and fully

coupled, while the last is assumed to be a scalar, linear function with a nonlinear

perturbation term given by g(y). This is shown in Figs. 50 and 51.

y1  = A1y + ud + up 

y2  = A2y 

y3 = A3y + αg(y) 

Figure 50: Three contributing analysis design structure matrix for nonlinearity anal-
ysis.

For these designs, the iteration equations (based on fixed-point iteration) is given

by

yk = Λyk−1 + βud + γup + δk−1

where

Λ =

(
A1

T · · ·An
T

)T
β = γ =

(
1 0 · · · 0

)T
1×n

and

δ = γ =

(
αg(yk−1) 0 · · · 0

)T
n×1
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The values of Λ are given by

Λij =

 0, i = j or j = n

1

2
, otherwise

In addition, the inputs, u = (ud up)
T ∈ R2, are prescribed by

u1 = ud

u2 ∼ N (0, 100)

and the response is the value of the last CA,

r = yn

Finally, the nonlinearity is prescribed by one of three different functions

g(y) =



g1(y) = sin

(
n−1∑
i=1

yi

)

g2(y) = ln

(
n−1∑
i=1

yi

)

g3(y) = <(−1)

(
n−1∑
i=1

yi

)

Although the apparent nonlinearity analyzed is only present in the final CA, the

functional form presented accommodate a large number of nonlinearities throughout

the CAs within the design. A nonlinearity within coupled CAs amplify upon each

other until the design converges. As such, this modifies the value of α and potentially

leads to combinations of the three prototypical (or other) nonlinearity functions.

However, in each of these cases, the design’s response can be modeled as a Taylor

series expansion consisting of a linear term (e.g., the Ay term in r) plus nonlinear

terms (e.g., the αg(y) in r).

Solutions to the robust optimization problem given by

Minimize: J = ȳn + σyn

Subject to: yi ≥ 1 ∀i ∈ {1, . . . , n}

By varying: ud


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are found using a gradient based optimizer. In this problem, since there is only one

probabilistic variable the two-norm provides directly the variance of the response used

(i.e., σr =
√
‖ Σ ‖2).

A solution is first found for a fully linear design (i.e., α = 0), y∗lin. The weight on

the nonlinearity is then varied to obtain the results seen in Fig. 52.
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Figure 52: Variation in the computed accuracy of the rapid robust design methodology
with the degree of nonlinearity. Three different nonlinear functions are shown, (a)
sin(y), (b) ln(y), and (c) (−1)y.

In Fig. 52, the error, defined as the percent difference in J between the Monte Carlo

solution after the variance difference is less than 1% and the rapid robust design

methodology, is plotted on a log-log plot as a function of ε

ε =
α

|y∗lin|
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a normalized value of the perturbation. This normalized value of the perturbation

can be thought of as an amplitude relative to nominal design response.

The analysis shows a consistent trend, once the amplitude of the nonlinearity is of

the same order as the nominal response (i.e., ε ∼ 1), the error increases significantly

and once it is more than three orders of magnitude the error is greater than 10%.

However, after this divergence point, the rate of growth of the error is similar to that

prior to the divergence point. This result is independent of the size of the design and

the perturbation function. Therefore, to keep the errors associated with the rapid

robust design methodology consistent with that expected in the conceptual design

phase (i.e., < 10%), one must keep the nonlinear part of the analysis to less than

three orders of magnitude relative to the nominal linear response. This is not a

very stringent requirement as shown in Fig. 53, which shows Fig. 52(b) with the

nonlinearities associated with the single-delta deployable design examples found in

Chapter 5 for an equally weighted objective function.
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Figure 53: Nonlinear perturbation analysis using the function g2(y) = ln(y) with the
errors associated with the deployable design example superimposed.
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This example had nonlinearities in each of the CAs, yet still was able to achieve a ro-

bust design solution that is acceptable for conceptual design. The largest contributor

to this nonlinearity is the trajectory propagation coupled with guidance (contributing

over 60% to the overall nonlinearity of the design). .

6.3 Conservatism of the Matrix Two-Norm

In Chapter 5, an asymptotic error of approximately 40% was observed when sweeping

the design space of a linear design with two CAs. Each of the CAs had two output

variables (i.e., dim(y) = 4) and there were two probabilistic inputs into the design.

For linear systems, the Kalman filter propagates the uncertainty exactly, therefore,

this error is a function of the matrix two-norm being used to obtain a bound on the

variance. This section quantifies this error as a function of the geometry of the matrix

two-norm. The matrix two-norm was defined in Chapter 2 as

‖ A ‖2= max
‖x‖2=1

‖ Ax ‖2=
√
λmax(AHA)

which, in practical terms means that the matrix two-norm returns a value equal to

the maximum variance of the design.

Geometrically, consider the geometry shown in Fig. 54 for the matrix two-norm

where x and y are the projection of σX′1 on the σX1 axis and σX′2 on the σX2 axis,

respectively.

In this figure, the matrix two-norm approximates σX1 with σX′1 . The error in

this approximation is a maximum when θ = 45◦ (i.e., cos−1(σ̂TX1
σ̂X′1) = 45◦). The

percent error due to this approximation is given by

ε% = 100

(
σX′1 − x

x

)
= 100

(σX′1
x
− 1
)

where by geometry

x = σX′1 cos θ
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Figure 54: Two-dimensional geometry associated with the matrix two-norm.

Therefore, the expression for error can be reduced to

ε% = 100

(
1

cos θ
− 1

)
When substituting in θ = 45◦, this yields a percent error of 41.42% in the estimation

of the standard deviation for the two-dimensional problem of Fig. 54. This result

can be generalized to accommodate growth in the dimensionality of the covariance

matrix. As the dimensionality of the covariance matrix increases, the value of ε%

decreases due to changes in the geometry of the design space changing θ. This is

shown in Fig. 55.

In Fig. 55, for the case of four CA outputs, as was used in Chapter 5, this error

produces a 37.8% error, which is the error observed in the parameter sweep in Figs.

18-20. Even with a large number of design variables, the two-norm approximation to

the standard deviation produces a 20 − 25% conservative approximation. However,

this will only be achieved in cases where there is loose coupling between CAs.
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Figure 55: Maximum percent error due to the matrix two-norm approximation as a
function of the dimensionality of the problem.

6.4 Summary

This chapter discusses the limitations and extensibility of the rapid robust design

methodology from computational and accuracy perspectives. The effect of problem

scaling on computational cost was considered two different ways. The first examined

individual effects such as the number of design variables, nonlinearity of the CAs, and

nonlinearity on the computational cost. The second considered computational cost

through development of several potential complexity metrics. Relative to traditional

robust design methods, the rapid robust design methodology developed within this

thesis scaled better with the size of the problem and had performance that exceeded

the traditional techniques examined. In addition to computational cost, the accuracy

of applying a method with linear fundamentals to nonlinear problems was examined

through nonlinear perturbation analysis to identify the region of applicability for the

method. For a wide variety of problems if the magnitude of nonlinearity is less than

1,000 times that of the nominal linear response, the error associated with applying
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successive linearization will result in 1σ errors in the response less than 10% compared

to the full nonlinear error. Conservatism due to the use of the matrix two-norm was

also examined through assessment of the asymptotic error that was first observed in

Chapter 5. This error was shown to be the result of design geometry and is reduced

as the dimensionality of y (i.e., the number of outputs from the CAs) increases.
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CHAPTER VII

SUMMARY AND FUTURE WORK

7.1 Summary of Academic Contributions

This thesis advances the state-of-the-art in the analysis and design of multidisci-

plinary systems by developing and applying concepts from dynamical systems theory

to the conceptual design process. Three techniques from dynamical system theory—

stability analysis, constraint handling, and estimation theory—are shown to provide

advantages compared to traditional design techniques. Building on these techniques,

a rapid robust design methodology is developed for linear multidisciplinary design.

While the developed methodology is inherently linear, it was shown to be applicable

to nonlinear engineering problems through successive linearization.

7.1.1 Formulation of the General Multidisciplinary Design Problem as
a Dynamical System In Order to Leverage Established Techniques
from Dynamical System Theory

The design of multidisciplinary systems requires analyses from numerous disciplines in

order to achieve a set of objectives. A converged candidate design is one in which each

of the disciplines uses the same information, has a common set of assumptions, and

satisfies the problem constraints. An optimal design can be selected from the set of

converged candidates. These processes are traditionally computationally burdensome.

By leveraging advances in dynamical system theory, solution of the multidisciplinary

design process is shown to be more computationally tractable as well as yielding

robustness insight into the problem.

Finding a converged multidisciplinary design can be thought of as a multidimen-

sional root-finding problem (e.g., the process of finding x∗ such that f(x∗) = 0). In
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this case, the x being sought are the outputs of each of the CAs in the design and the

function, f(·), is the difference between the assumed values of the CAs output and the

actual values of the output. The solution process to identify the roots of the design

can be framed as an iterative one, where the subsequent iteration relies on informa-

tion from prior iterates. Since a dynamical system is defined by two characteristics:

(1) a state and (2) a fixed-rule describing the evolution of the state, the root-finding

iteration scheme can be thought of as a dynamical system, where the CAs output is

the state and the root-finding scheme is the fixed-rule.

7.1.2 Application of the Dynamical System Domain to the Multidisci-
plinary Design Problem

Three dynamical system techniques were investigated for the benefits they could

provide to multidisciplinary design as well as their use as an ensemble in development

of a rapid robust design methodology.

7.1.2.1 Stability Analysis

Typically, there is little indication beyond designer experience at the beginning of

the design-analysis cycle regarding the existence of a converged design that meets

the design specifications. Such was the case in the NASA Constellation program

where select requirements were relaxed or ignored[204]. Stability theory can be used

to rectify this problem by providing insight into the existence of a design based on

the convergence procedure being utilized. For a design to exist, it was shown that

when using iterative convergence techniques (e.g., fixed-point iteration), the iteration

scheme used to converge the design must be asymptotically stable. For linear, con-

stant coefficient systems, this was shown to be readily checked through evaluation of

the eigenvalues. However, for more general designs, existence of a converged design

was shown to be obtainable through the use of Lyapunov techniques. These tech-

niques were shown to be able to identify domains for which initial guesses result in
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converged, feasible designs as well as to access the rate of convergence. This allows a

priori knowledge regarding the design space, specifically whether a design is capable

of being found as well as how fast it can be found. Lyapunov techniques rely on iden-

tification of a Lyapunov function for analysis. Identifying this Lyapunov function,

in general, can be challenging; however, this work demonstrated that sum-of-squares

analysis can be used to obtain this function. This technique allows a Lyapunov func-

tion to be found for systems (including those with unknown variables) that can be

factored into a sum-of-squares. This is shown to be computationally efficient through

application of standard semi-definite programming tools. For exponentially stable

designs, it was shown that further analysis can be applied to the Lyapunov function

to identify the rate at which the design will converge.

7.1.2.2 Control Theory

Optimal control techniques were demonstrated in this thesis to allow equality and

inequality constraints to be included in the design procedure. These techniques allow

for the consideration of design variable constraints and constraints on the output of

each CA to be considered at the same level in the design hierarchy. This is a departure

from the majority of MDO techniques, where only constraints that are a function of

the design variables are considered explicitly at the system level. By applying these

constraints at the same level in the optimization hierarchy, a coordinated search of

the design space ensues which may lead to efficiency in the design process.

7.1.2.3 Estimation Techniques

Estimation theory is used in this work to obtain a rapid estimate of the mean and

variance of the design. The Kalman filter, when modified to resemble those formed

in linear covariance analysis, is propagated alongside the iteration relationship, pro-

viding a simultaneous estimate of the mean and covariance of the CAs’ output. This

was shown to have significant computational advantages as opposed to traditional
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uncertainty quantification techniques such as Monte Carlo simulation, the unscented

transform, and FPI. To achieve this estimate requires propagating seven additional

equations as opposed to traditional methods which require drawing from a distribu-

tion and converging the design for that set of uncertainty values or building successive

approximate functions to the response. Furthermore, since the correlation coefficient

for each output of the CAs can be obtained directly from the resulting covariance

matrix it can be used to guide design decomposition. In this approach, correla-

tion coefficients larger in magnitude are more significant in the response and as such

should always be included. However, variables with smaller correlation coefficient

magnitudes may be eliminated from the feedback structure of a design.

7.1.3 Development of a Linear Technique for the Rapid Robust Design
of a Multidisciplinary System

A method for robustness assessment and identification of a robust design that bounds

the variance using a matrix norm of the covariance matrix was also developed in

this thesis. This technique was developed for linear systems and was shown to be

readily extensible to nonlinear systems. This methodology was applied to a wide

variety of problems that ranged from algebraic examples to aerospace applications,

demonstrating the broad applicability of the developed techniques to a number of

fields. Significant computational performance gains of the developed technique were

demonstrated with a reduction in the number of function calls by a factor of two when

compared to the unscented transform and more than an order of magnitude when

compared to FPI and Monte Carlo techniques with minimal sacrifices to the accuracy

(< 3%). It was shown that the methodology could accommodate nonlinearity with

an order of magnitude less than 100 times the nominal value of the CA response.

Finally, conservatism associated with use of the matrix two-norm showed that the

error bounding the variance is a result of geometry and is reduced as the number of

outputs from the CAs increases.
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7.1.4 Application of the Multidisciplinary Design Robustness Methodol-
ogy to a Design Example of Relevance to the Entry, Descent, and
Landing Community

A design example which obtains robust designs for a deployable device that either

increases the range or accuracy of a strategic system was discussed. This design

example considered the impact of the geometry of the deployable aerodynamic surface

as well as the selection of a guidance algorithm. Agreement between the designs

obtained using the rapid robust design methodology and through utilization of a

Monte Carlo was observed.

7.1.5 Traceability of Each Contribution

The support for each of the contributions described above is provided in the chapters

indicated in Table 17

Table 17: Traceability of academic contributions.

Academic Contribution C
h

a
p

te
r

2

C
h
a
p

te
r

3

C
h

a
p

te
r

4

C
h
a
p
te

r
5

C
h
a
p
te

r
6

Formulation of the general multidisciplinary design
X X X –

–
problem as a dynamical system in order to leverage

established techniques from dynamical system theory
Application of the dynamical system domain to the

– X X X X
multidisciplinary design problem

Development of a linear technique for the rapid robust
– – X X X

design of a multidisciplinary system
Application of the multidisciplinary design robustness

– – – X –methodology to a design example of relevance to the
the entry, descent, and landing community
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7.2 Advantages of Viewing the Multidisciplinary Design
Problem as a Dynamical System

Viewing the multidisciplinary design problem as a dynamical systems improves the

design knowledge, broadens the computational tools, and reduces the computational

burden in the design-analysis cycle.

• Increase in Design Knowledge: Applying stability theory allows the iden-

tification of whether or not a feasible design exists for a given iteration scheme

and knowledge regarding how that design is approached. A priori knowledge of

this information can be used by the designer to examine the design space sensi-

tivities as well as gives an estimate of the time to obtain a design. In addition,

this information can be leveraged in a distributed work environment to provide

an estimate of the level of accuracy that is achievable for a given number of

data transfers.

• Broadens Computational Tools: Using optimal control theory allows for

constraints that are functions of both the CA output and the design variables

to be considered at the same level of the optimization hierarchy. This allows

the search for an optimal solution from a reduced design space, potentially

enabling efficiencies in the design process. Estimation theory can also be used

in a manner similar to linear covariance analysis to provide an estimate of the

mean and covariance of the CA’s output (and their effect on the design response)

at the same time as the design is found.

• Reduces Computational Burden: Several solution methods that are pri-

marily used within the dynamical system community were described within

this thesis. These include sum-of-squares analysis for stability analysis, use of

discrete and continuous optimal control solutions, and the Kalman filter. Ef-

ficient solution procedures for these methods exist, such as those described in
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Refs. [147, 131, 205]. As shown in Chapters 5 and 6, application of these

methods can provide solutions faster than those of current MDO techniques.

These advantages along with the comparable accuracy complement the existing con-

ceptual design techniques such as surrogate modeling and design of experiments.

7.3 Limitations of the Rapid Robust Design Methodology

The rapid robust design methodology developed in Chapter 4 has several limitations

due to the assumptions associated with its development. These include:

1. Linear technique: The application of the Kalman filter is exact only for linear

dynamical systems. However, as in this methodology, the Kalman filter can

be extended to nonlinear systems through successive linearization which may

induce an error in the estimate of the mean and covariance of the response.

As shown in Chapters 5 and 6, this is not a strong limitation of the technique.

The successive linearization procedure induces errors that are less than 1% as

long as the nonlinear perturbation is less than the magnitude of the linear CAs’

response.

2. Scalar objective function: As formulated, the rapid robust design method-

ology requires a single, scalar objective function. As mentioned in Chapter 1,

design is usually a multi-objective problem. Therefore in order to account for

the multi-objective nature of design an aggregate objective function such as

J =
∑

Ω

wiJ n
i (124)

needs to be formed in order to seek the Pareto frontier. In Eq. (124), Ω is the

set of objective functions, wi are weights on the objective functions, Ji is the

individual objective function, and n ∈ R+∪{∞}\0 is the power of the objective

function. A limitation of this technique is that aggregate objective functions
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are known to omit concave parts of the frontier, which limits the techniques

ability to find to full set of Pareto optimal designs[206].

3. Iteration scheme: If the application of the stability analysis portion of the

rapid robust design methodology fails to show at least asymptotic stability it

does not necessarily mean that a design does not exist. Instead, it implies

that for the given iteration scheme chosen, a design cannot be found. In these

instances alternative iteration schemes should be investigated.

4. Variance bound: The matrix two-norm of the covariance matrix was in-

voked in order to meet the scalar objective function limitation presented in

this methodology. While the two-norm provides a conservative bound on the

variance of the design’s response with estimates that are no more than 42%

that of the actual design response’s standard deviation, it is provides a source

of error in the solutions of the rapid robust design methodology.

5. Gaussian uncertainties: The derivation of the Kalman filter assumes Gaus-

sian distributions of the uncertainties[158]. Since the Kalman filter is utilized in

this work, the Gaussian distribution assumption is also applicable to this work.

7.4 Suggestions for Future Work

The work presented within this thesis has shown the applicability of dynamical sys-

tems techniques to the multidisciplinary design problem. In particular three areas

of dynamical system theory were explored as they relate to the the development of

a rapid robust multidisciplinary design methodology. Some suggested avenues for

future work are described below—additional dynamical systems techniques that have

potential applicability to the multidisciplinary design problem and potential tech-

niques to extend and overcome some of the limitations of the rapid robust design

methodology.
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7.4.1 Additional Dynamical Systems Techniques

The formulation of the multidisciplinary design problem as a dynamical system lends

itself to application of a large variety of dynamical systems techniques. These tech-

niques can be used to analyze and extend knowledge regarding the multidisciplinary

design problem. In addition, these methods could be used to formalize already existing

procedures and methodologies within the multidisciplinary analysis and optimization

community.

The stability aspect of dynamical system theory was discussed in Chapter 3 where

convergence conditions for constant coefficient, linear designs were identified using

eigenvalue analysis and more general designs were identified using Lyapunov the-

ory. However, Lyapunov theory has its limitations. In particular, if a Lyapunov

function cannot be found, then nothing can be said regarding whether the design

will ultimately converge. While this proved not to be an issue for any of the ex-

ample problems examined within this thesis, this characteristic ultimately limits the

utility of Lyapunov theory. Analyzing the invariant manifolds associated with con-

verged designs is one possible path to overcome the shortcoming of Lyapunov theory.

By identifying the stable invariant manifold, a path to a converged design can be

identified and as long as the iteration intersects this manifold, convergence can be

assured[207]. This technique is commonly used within the astrodynamics community

to identify transfers within the three-body problem[208].

Convergence properties of multidisciplinary designs were analyzed in this work for

a specific subset of problems—design iterations that can be shown to be exponentially

stable through Lyapunov analysis. However, other information about convergence

behavior can be identified through alternative means. For example, Fourier analysis,

which is used in computational fluid dynamics to identify the convergence properties

of finite difference solutions to partial differential equations, could be employed[209].

Similarly, for linear systems, the z-transform can be used to transform the analysis
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domain. In particular, the stability of a system in the z-plane can be determined

by looking at its trace in the z-plane. Namely, if all of the poles of the transfer

function lie within the unit circle then the discrete system is stable[210, 141, 132].

Furthermore, for this restricted class of systems, additional characteristics such as

rise time and overshoot can be characterized.

It was observed in Chapters 3 and 5 that indirect and direct continuous optimal

control solutions provided similar results as the discrete optimal control problem.

The reason for this is the more restrictive conditions associated with the solution to

the continuous problem which are a subset of the discrete optimal control problem.

However, the issue of time-horizon was not addressed, which can be further investi-

gated. Another area for further exploration within the control world is how to ensure

that the constraints are convex. For the problems examined in Chapter 5, the con-

straints were convex by formulation. However, for general design problems this may

not be achievable requiring techniques such as second-order cone theory to be used

to convexify the constraint[211, 212].

Finally, in the area of estimation theory additional methods to propagate uncer-

tainty could be incorporated. For this work, theoretical development was restricted

to linear designs which lend themselves to the use of the Kalman filter. However,

design is nonlinear, as demonstrated in Chapters 5 and 6. While the techniques

developed within this thesis were shown yield accurate estimates of the mean and

covariance for all but the most nonlinear of designs, other estimation techniques

may be more efficient and more accurate. These estimation techniques include the

Extended Kalman filter, which formalizes the successive linearization process imple-

mented in this work, the Unscented Kalman filter, which uses the unscented transform

instead of the linearized dynamics to propagate the uncertainty, and the particle fil-

ter, which propagates a small number of samples to obtain the mean and variance

at each iteration[162, 213]. In addition, the rapid assessment of uncertainty allows
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the contributors to the design’s uncertainty to be examined rapidly. This could be

accomplished in a traditional manner by perturbing the design variables to obtain the

sensitivities. However, as the full covariance analysis is available to the designer, the

individual CA response contributions to the uncertainty can be readily ascertained

as is performed in Ref. [84].

While this work was limited to the multidisciplinary design problem, dynamical

system theory has potential application in the design and optimization community at

large. For instance, stability analysis could be applied to an optimization algorithm

directly to identify whether or not the algorithm will obtain an optimal design and the

speed at which it can do so. As such, this information can be leveraged in the design

of optimization algorithms to ensure solutions are obtained efficiently. Similarly,

these techniques have further applicability to traditional MDO techniques such as

optimizer based decomposition, where the optimizer handles the design convergence,

allowing knowledge regarding the behaviors of these methodologies to be obtained

and leveraged.

In addition, the dynamical system field is rich with elements that could be used to

study design including chaos theory, ergodic theory, functional analysis, graph theory,

and topology theory. Each of these areas has numerous techniques that offer potential

to better understand the design problem.

7.4.2 Extending the Use of the Rapid Robust Design Methodology

In the derivation of the methodology, a strong underlying assumption of employing

the Kalman filter in the analysis is that the uncertain inputs and parameters are

Gaussian distributed. This is because the Kalman filter only propagates the first

and second moments (i.e., the mean and variance) which fully describe the normal

distribution. This assumption also holds well for symmetric probability distributions;

however, for asymmetric distributions it breaks down relatively rapidly[214]. Methods
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such as a particle filtering enable the propagation of various probability distributions,

but they do so at the expense of computational speed. A potential solution to this

problem would be to borrow from control theory and look at implementing a robust

or stochastic control algorithm[215, 216]. These techniques use assumptions of the

behavior of noise variables to make sure that a solution is reached. Alternatively,

investigation of a Gaussian-mixture type formulation (as is done in Ref. [98]) may

allow for a broader class of uncertainties to be accommodated within the developed

framework.

As formulated in this dissertation, the rapid robust design methodology lends it-

self to potential integration with an integrated design environment such as Phoenix

Integration’s ModelCenter or Simulia’s iSIGHT[217, 218]. These environments pro-

vide a general wrapping environment to provide a design analysis and optimization

framework for various types of CAs that can be substituted and changed. In such

an environment, the rapid robust design methodology could be readily applied to

provide computationally tractable, robust optimal designs for arbitrary designs with

CAs provided by standalone applications.

Another avenue for future work would be to add the capability to analyze a com-

bination of algebraic and dynamical CAs. For aerospace applications this capability

could be used to simultaneously design the guidance, navigation, and control (GN&C)

system with the trajectory and the vehicle. The design of the GN&C system is usually

accomplished subsequent to the preliminary design of the vehicle resulting in signifi-

cant iteration to approach an optimal design with respect to the true system metrics.

By pulling forward the GN&C design such that it is conducted simultaneously with

other aspects of the vehicle design, CA interactions are appropriately modeled. Syn-

thesis of the vehicle characteristics simultaneously with the GN&C system may allow

a robust solution to be obtained that improves aspects of the trajectory through

modification of vehicle characteristics and vice-versa.
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APPENDIX A

SELECT MATHEMATICAL CONCEPTS

A.1 Probability and Statistics

A.1.1 Probability Space and Random Variables

Probability space is a model for real world situations in which the outcome is assigned

according to some probability. It is a measure space such that the measure of the

whole space is equal to unity and is defined as[219]

Definition: Probability Space

Probability space is a triple, (Ω,F , P ), consisting of the following elements:

• Sample space (Ω): a representation of all possible outcomes (Ω 6= ∅)

• Event space (F): a collection of subsets of Ω such that

– The null set is an element of the event space: ∅ ∈ F
– The event space is closed under complements: if A ∈ F , then

(Ω\A) ∈ F
– The event space is closed under countable unions: if Ai ∈ F for
i = 1, 2, ..., then (∪Ai) ∈ F

• Probability measure (P ): A function P : F → [0, 1] such that

– The probability measure is non-negative: P (A) ≥ 0, ∀A ∈ F
– The probability measure is countably additive: P (Ai∪Aj) = P (Ai)+
P (Aj) if Ai ∩Aj = ∅, ∀Ai, Aj ∈ F

– The measure of the entire sample space is unity: P (Ω) = 1

With the concept of probability space defined, the formal definition of random

variables can be given[220].
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Definition: Random Variable

Let (Ω,F , P ) be a probability space and (Y,Σ) be a measurable space. Then a
random variable X is a measurable function X : Ω→ Y .

A random variable can be interpreted as the preimages of the well-behaved subsets of

Y (the elements of Σ) are events (i.e., elements of F), are are assigned a probability

by P . Or, more simply, a random variable is a function whose domain is the sample

space and maps events to real numbers.

A.1.2 Univariate Probability Density and Distribution Functions

For an univariate discrete random variable, a probability distribution assigns a prob-

ability for each of value of the random variable, while for a continuous univariate

random variable, the probability distribution gives the probability of the value falling

within a particular interval. Formally, a univariate probability distribution is defined

as[220]

Definition: Probability Distribution

For a random variable, X : Ω→ Y , a probability distribution is the pushforward
measure X∗P = PX−1 on (Y,Σ).

More tangibly, for real-valued random variables, the probability of a random variable

X being in the interval (−∞, x] is given by the cumulative distribution function

F (x) = P (X ≤ x), ∀x ∈ R (A.1.1)

A.1.2.1 Discrete Random Variables

For discrete probability distributions (i.e., the sample space, Ω, consists entirely of

values that are in a countable predefined set), the probability is characterized by a
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probability mass function, f(x), which is defined by the relationship

∑
x∈Ω

P (X = x) =
∑
x∈Ω

f(x) = 1 (A.1.2)

In addition, the probability mass function has the property

0 ≤ f(x) ≤ 1 (A.1.3)

The cumulative distribution function associated with discrete random variables is

such that there are jump discontinuities. Between these jump discontinuities, since

there is no additional probability as defined in Eq. (A.1.1), the value of the function

is constant.

A.1.2.2 Continuous Random Variables

For continuous random variables (i.e., the sample space, Ω, can consist of any subset

R), the cumulative distribution function is defined in terms of an integral instead of

a summation as shown in Eq. (A.1.4)

F (x) = P (X ≤ x) =

x∫
−∞

f(u)du (A.1.4)

where f(x) is the probability density function. The probability density function gives

the probability of a given value and is defined in terms of the cumulative distribution

function as

f(x) =
d

dx
F (x) (A.1.5)

Since the cumulative distribution function is a strictly increasing function, the proba-

bility density function, f(x), is a non-negative function whose integral over the entire

sample space is equal to unity.

A.1.3 Multivariate Probability Density and Distribution Functions

Assume n (n <∞) random variables X1, X2, . . . , Xn are defined on the same probabil-

ity space (Ω,F , P ). The cumulative distribution function of this bivariate distribution
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is given by[220]

F (x1, x2, . . . , xn) = P (X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) (A.1.6)

Similarly, the probability mass function (density function if Ω is continuous) is given

by

f(x1, x2, . . . , xn) = P (X1 = x1, X2 = x2, . . . , Xn = xn) (A.1.7)

where the usual properties of the probability mass (density) function hold. That is

to say the properties in Table A.1 hold where A ⊂ Ω..

Table A.1: Multivariate mass and density function properties.

Discrete Continuous

f(x1, x2, . . . , xn) ∈ [0, 1] f(x1, x2, . . . , xn) ≥ 0

∑
Ω

f(x1, x2, . . . , xn) = 1

∫
Ω

f(x1, x2, . . . , xn)dΩ = 1

P (X1, X2, . . . , Xn ∈ A) =
∑
A

f(x1, x2, . . . , xn) P (X1, X2, . . . , Xn ∈ A) =

∫
A

f(x1, x2, . . . , xn)dA

A.1.4 Characteristics of Univariate Distributions

A.1.4.1 Mathematical Expectation

The mathematical expectation of a probability distribution is a fundamental characteristic[59].
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Definition: Mathematical Expectation

If f(x) is the probability mass (density) function for a random variable X of
the discrete (continuous) type, then the mathematical expectation of a function
u(x) is defined as

E[u(x)] =
∑
x∈Ω

u(x)f(x)

for discrete distributions and

E[u(x)] =

∞∫
−∞

u(x)f(x)dx

for continuous distributions provided they exist and are finite.

From this definition, it is clear to see that the expectation is a linear operator.

A.1.4.2 The Moment Generating Function

For the majority of distributions whose densities are given analytically, it is useful to

consider the moment generating function[59].

Definition: Moment Generating Function

The moment generating function for a distribution whose probability mass (den-
sity) function is defined by f(x) is given by

M(t) = E(etX)

provided it exists and is finite for some t ∈ [−h, h].

To examine the impact of the moment generating function, consider the discrete case

where the sample space Ω consists of {ω1, ω2, ω3, . . .} then

M(t) = etω1f(ω1) + etω2f(ω2) + etω3f(ω3) + . . .

and hence the coefficient of etωi is the probability

f(ωi) = P (X = ωi)
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Therefore, since this probability is prescribed only to this distribution, the moment

generating function describes a unique distribution, if it exists.

A.1.4.3 The Mean

The mean (or average) is a fundamental quantity that describes the expected value

of the distribution, it is also the first moment.

Definition: Mean

The mean of a random variable X is given by

µ = E[X]

This is also expressed in terms of the moment generating function (when it
exists) as

µ =
dM

dt
(0)

A.1.4.4 The Variance

The variance is another measure of central tendency that describes the spread of val-

ues from the mean of the distribution.

Definition: Variance

The variance of a random variable X is given by

σ2 = E[(X − µ)2]

This is also expressed in terms of the moment generating function (when it
exists) as

σ2 =
d2M

dt2
(0)−

[
dM

dt
(0)

]2

A larger variance (standard deviation) implies that the spread of the distribution is

larger than that of a smaller variance.
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A.1.5 Confidence Interval

Definition: Confidence Interval

The confidence interval is an interval estimate to indicate how likely it is that
an estimated random variable will lie between the two bounds.

Mathematically, the pth% confidence interval is given by

p = P [l(X) < w < u(X)] (A.1.8)

where the pth% confidence interval is denoted by the endpoints, L = l(X) and U =

u(X), and is given by (L,U). Intuitively, the wider the confidence interval the higher

the confidence level as more of the distribution lies within the interval.

A.2 Filtering and Estimation Methods

A.2.1 The Discrete Kalman Filter

For dynamics given by

yk = Fkyk−1 + Bkuk + wk−1

zk = Hkyk + vk

 (A.2.1)

the Kalman filter gives a way to estimate the mean state and covariance. Here wk−1

is the noise associated with the model and vk−1 ∼ N (0,Rk−1) is the noise assoicated

with the measurement. The Kalman filter can be thought of as a two step process,

one which predicts the state (e.g., the output of the CAs) and then an update step

which corrects these estimates based on the dynamics of the system. The prediction

step is given by the following equations[82, 135, 158, 159, 160, 161, 162]

ŷk|k−1 = Fkŷk−1|k−1 + Bkuk (A.2.2)

Σk|k−1 = FkΣk−1|k−1F
T
k + Qk (A.2.3)

where the notation j|k represents the estimate at j given observations up to and

including k. Furthermore, the value of ŷ0|0 is the initial mean state and Σ0|0 is the
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initial covariance matrix of the state values. The correction step is governed by the

following equations[82, 135, 158, 159, 160, 161, 162]

x̃k = zk −Hkŷk|k−1 (A.2.4)

Sk = HkΣk|k−1H
T
k + Rk (A.2.5)

Kk = Σk|k−1H
T
kS−1

k (A.2.6)

ŷk|k = ŷk|k−1 + Kkx̃k (A.2.7)

Σk|k = (I−KkHk) Σk|k−1 (A.2.8)

A.2.2 The Discrete Extended Kalman Filter

The extended Kalman filter requires state transition and observation models of the

form

yk = f(yk−1,uk−1) + wk−1

zk = h(yk) + vk

 (A.2.9)

Like the Kalman filter, the extended Kalman filter is also a two step process with

a prediction step and an update step. The prediction step is given by the following

equations[135, 160, 161, 162]

ŷk|k−1 = f(ŷk−1|k−1,uk−1) (A.2.10)

Σk|k−1 = Fk−1Σk−1|k−1F
T
k−1 + Qk−1 (A.2.11)

The update step is governed by the following equations[135, 160, 161, 162]

x̃k = zk − h(ŷk|k−1) (A.2.12)

Sk = HkΣk|k−1H
T
k + Rk (A.2.13)

Kk = Σk|k−1H
T
kS−1

k (A.2.14)

ŷk|k = ŷk|k−1 + Kkx̃k (A.2.15)

Σk|k = (I−KkHk) Σk|k−1 (A.2.16)
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where the state transition and observation matrices are given by

Fk−1 =
∂f

∂y

∣∣∣∣
ŷk−1|k−1,uk−1

(A.2.17)

Hk =
∂h

∂y

∣∣∣∣
ŷk|k−1

(A.2.18)

A.2.3 The Unscented Kalman Filter

Assuming nonlinear dynamics given by

yk = f(yk−1,uk−1) + wk−1

zk = h(yk) + vk

 (A.2.19)

the unscented Kalman filter also has a prediction and correction step. This filter is

typically used when the predict and update functions, f and h are highly nonlinear.

For this filter, the state is augmented with the mean and covariance of the process

noise. The prediction step is given by the following equations[213]

yak−1|k−1 =
(
ŷTk−1|k−1 E(wT

k )
)T

(A.2.20)

Σa
k−1|k−1 =

Σk−1|k−1 0

0 Qk

 (A.2.21)

Provided the dimension of of the augmented states is n, then a set of 2n + 1 sigma

points are provided by the following equations

χ0
k−1|k−1 = xak−1|k−1 (A.2.22)

χik−1|k−1 = xak−1|k−1 +
(√

(n+ λ)Σa
k−1|k−1

)
i
, i = 1, . . . , n (A.2.23)

χik−1|k−1 = xak−1|k−1 −
(√

(n+ λ)Σa
k−1|k−1

)
i
, i = n+ 1, . . . , 2n (A.2.24)

where
(√

(n+ λ)Σa
k−1|k−1

)
i

is the ith column of the matrix square root of

(n+ λ)Σa
k−1|k−1 and λ is given by

λ = α2(n+ κ)− n (A.2.25)
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The variables α and κ control the spread of the sigma points and β is related to the

distribution of y. Typical values are α = 10−3, κ = 0, and β = 2 when y is Gaussian.

The sigma points are propagated through the propagation function

χik|k−1 = f
(
χik−1|k−1

)
, i = 0, . . . , 2n (A.2.26)

The predicted state and covariance are then given by

ŷk|k−1 =
2n∑
i=0

wimχ
i
k|k−1 (A.2.27)

Σk|k−1 =
2n∑
i=0

wic
(
χik|k−1 − ŷk|k−1

) (
χik|k−1 − ŷk|k−1

)
(A.2.28)

where the weights wim and wic are given by

w0
m =

λ

n+ λ
(A.2.29)

w0
c =

λ

n+ λ
+ (1− α2 + β) (A.2.30)

wim = wic =
1

2(n+ λ)
, i = 1, . . . , 2n (A.2.31)

The update step is governed by the following equations[213]

yak|k−1 =
(
ŷTk|k−1 E(vTk )

)T
(A.2.32)

Σa
k|k−1 =

Σk|k−1 0

0 Rk

 (A.2.33)

A set of 2n+ 1 sigma points are provided by the following equations

χ0
k|k−1 = xak|k−1 (A.2.34)

χik|k−1 = xak|k−1 +
(√

(n+ λ)Σa
k|k−1

)
i
, i = 1, . . . , n (A.2.35)

χik|k−1 = xak|k−1 −
(√

(n+ λ)Σa
k|k−1

)
i
, i = n+ 1, . . . , 2n (A.2.36)

The sigma points are propagated through the function

γik = h
(
χik|k−1

)
, i = 0, . . . , 2n (A.2.37)
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With the weights defined in the prediction step, the weighted sigma points are then

used to produce the predicted measurement and the measurement correction

ẑk|k−1 =
2n∑
i=0

wimγ
i
k (A.2.38)

Σzkzk =
2n∑
i=0

wic
(
γik − ẑk

) (
γik − ẑk

)T
(A.2.39)

The matrix

Σykzk =
2n∑
i=0

wic
(
χik|k−1 − x̂k|k−1

) (
γik − ẑk

)T
(A.2.40)

is used to compute the gain

Kk = ΣykzkΣ
−1
zkzk

(A.2.41)

which is used to compute the updated state

ŷk|k = ŷk|k−1 + Kk(zk − ẑk) (A.2.42)

Σk|k = Σk|k−1 −KkΣzkzkK
T
k (A.2.43)

A.3 Uncertainty Propagation Techniques

A.3.1 Analytic Propagation in Linear Systems

Consider an input-output relationship for an analysis of the following form[59]

Y = AX (A.3.1)

where A is a scalar matrix and X is a vector of random variables with mean µX and

covariance matrix ΣX. The mean for this combination is given by

µY = AµX (A.3.2)

and the covariance for this linear relationship is given by

ΣY = AΣXAT (A.3.3)

Hence, if the mean and covariance of the input variables are known, the mean and

covariance matrix of the output of the analysis can be determined analytically for the

case of a linear input-output relationship.
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A.3.2 Fast Probability Integration

The Advanced Mean Value (AMV) probability integration approximates the cumu-

lative distribution function for a response function that is assumed to be continuous

and smooth[78]. A complex Taylor series expansion of the response function, r, exists

of the form[78]

r(x) = r(µ) +
n∑
i=1

(
∂r

∂xi

)
(xi − µi) +H(x)

= a0 +
n∑
i=1

aixi +H(x)

= rmv(x) +H(x)

(A.3.4)

The coefficients to the Taylor series ai are found through numerical differentiation.

If the response function is nearly linear, the H(x) term can be neglected. This

results in the mean and variance of the linearized response function to be give by

µr = a0 +
n∑
i=1

aiµxi

σ2
R =

n∑
i=1

a2
iσ

2
xi

(A.3.5)

If the linearity of the response does not hold, the higher-order terms denoted by

H(x) need to be estimated. This involves estimating the function value for user-

defined set of cumulative distribution function values based on the response function

linear expansion, rmv.

A.3.3 Cramer-Rao Lower Bound

The Cramer-Rao lower bound states that covariance matrix, Σ, in terms of its pa-

rameters, θ, is bounded from below by the expression

Σ ≥ I−1(θ) (A.3.6)

where the elements of the Fisher information matrix, I(θ), are given by

[I(θ)]ij = −E
[

∂2

∂θi∂θj
ln `(x; θ)

]
(A.3.7)
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and the parameter estimation likelihood function is given by `(x; θ). Dependent on

the form of the distribution, this equation can be simplified. For example, suppose X

is an n-dimensional random variable distributed as a multivariate normal distribution

(i.e., X ∼ N (µ(θ),ΣX(θ))), then the Fisher information index is given by

[I(θ)]ij =
∂µT

∂θi
Σ−1

X

∂µ

∂θj
+

1

2
tr

(
Σ−1

X

∂ΣX

∂θi
Σ−1

X

∂ΣX

∂θj

)
(A.3.8)

In this case, the parameters, θ, are the input variables into the analysis where each

element of the mean and covariance matrix can be thought of as a estimated param-

eter.

A.3.4 Linear Covariance Methods

Linear covariance methods which has been used in the development of guidance, nav-

igation, and control (GN&C) systems. GN&C subsystems are governed by dynamic

equations (either differential or difference) and are composed of the system dynam-

ics, sensors, and actuators. As such, consider the following development of the linear

covariance equations, which has application in GN&C system and follows that by

Geller in Ref. [82].

A.3.4.1 Nonlinear Modeling

Consider a general set of dynamical equations for the truth model,

ẋ = f(x, û, t) + w (A.3.9)

where x ∈ Rn is a vector of true states, û ∈ Rnû is a vector of control commands,

and w ∈ Rn is a vector of zero-mean white noise processes with covariance given by

E
[
w(t)wT (t′)

]
= Σw(t)δ(t− t′) (A.3.10)

where Σw is the strength of the white signal noise and δ(t − t′) is the Dirac delta

function.
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Sensors can be divided into two categories: (1) inertial sensors for navigation state

update (e.g., gyros and accelerometers) and (2) non-inertial sensors for navigation

state update (e.g., cameras, LiDAR, radar). The inertial sensors are propagated by

continuous nonlinear equations of the form

ỹ = c (x, t) + η (A.3.11)

where ỹ ∈ Rny is a vector of continuous measurements at time t. Additionally, the

inertial sensors provide discrete measurements, ∆ỹj ∈ Rn∆y , at time tj

∆ỹj = ∆c (xj, tj) + ∆ηj (A.3.12)

The noninertial sensors provide a vector of measurements, z̃k ∈ Rnz , at time tk, where

the measurements are given by

z̃k = h (xk, tk) + νk (A.3.13)

The covariance of the noise for each of the classes of sensors is given by

E
[
η(t)ηT (t′)

]
= Σηδ(t− t′) (A.3.14)

E
[
∆ηj∆η

T
j′

]
= Σ∆η(tj)δjj′ (A.3.15)

E
[
νkν

T
k′

]
= Σν(tk)δkk′ (A.3.16)

The instantaneous corrections to the state vector as a result of performing an

impulsive maneuver (such as those resulting from Lambert targeting in a rendezvous

scenario) are allowed using this framework. A correction at time tc is represented as

x+
c = x−c + d

(
x−c ,∆ûc, tc

)
+ ∆wc (A.3.17)

Where d (x−c ,∆ûc, tc) : Rn×Rnû ×R 7→ Rn, is a function of the true state before the

maneuver, x−c , the vector of instantaneous commanded controls, ∆ûc, and the time

the maneuver is performed, tj.
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The navigation state and the state covariance matrix are propagated according to

the following relationships

˙̂x = f̂ (x̂, û, ỹ, t) (A.3.18)

˙̂
P =

[
F̂x̂ + F̂ỹĈx̂

]
P̂ + P̂

[
F̂x̂ + F̂ỹĈx̂

]T
+ F̂ỹΣ̂ηF̂

T
ỹ + Σ̂w (A.3.19)

where x̂ ∈ Rn̂ is the navigation state where n̂ ≤ n. The matrices F̂(·) and Ĉ(·) are

Jacobian matrices indicated by

F̂(·) =
∂ f̂

∂(· )
(A.3.20)

Ĉ(·) =
∂ĉ

∂(· )
(A.3.21)

where the partial derivatives are evaluated along the nominal trajectory. Noise from

inertial instrument measurements and unmodeled accelerations are accounted by the

inclusion of Σ̂η and Σ̂w, respectively, in Eq. (A.3.19).

The navigation state and state covariance updates are provided by the relation-

ships

x̂+
k = x̂−k + K̂(tk)

[
ẑk − ĥ (x̂k, tk)

]
(A.3.22)

P̂(t+k ) =
[
[I]n̂×n̂ − K̂(tk)Ĥx̂(tk)

]
P̂(t−k )

[
[I]n̂×n̂ − K̂(tk)Ĥx̂(tk)

]T
− K̂(tk)Σ̂νK̂

T (tk)

(A.3.23)

and the Kalman gain, K̂(tk), is given by

K̂(tk) = P̂(tk)Ĥ
T
x̂ (tk)

[
Ĥx̂(tk)P̂(tk)Ĥ

T
x̂ (tk) + Σ̂ν

]−1

(A.3.24)

In Eqs. (A.3.23) and (A.3.24), Ĥx̂(tk) represents the measurement sensitivity matrix

(i.e., the sensitivity of the measurements with respect to the navigated state).

The instantaneous maneuvers are updated according to the relationship

x̂+
j = x̂−j + d̂

(
x̂−j ,∆ûj,∆ỹj, tj

)
(A.3.25)
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The covariance matrix for these instantaneous maneuvers is updated according to the

formula

P̂(t+j ) = βP̂(t−j )βT + D̂∆ỹ(tj)Σ̂∆η(tj)D̂
T
∆ỹ(tj) + Σ̂∆w(tj) (A.3.26)

where

D̂(·) =
∂d̂

∂(· )
(A.3.27)

and

β =
[
[I]n̂×n̂ + D̂x̂(tj) + D̂∆ỹ(tj)∆Ĉx̂(tj)

]
(A.3.28)

The pointing, targeting, and control algorithms are assumed to use the most recent

value of the navigation state to compute the continuous and discrete commands, given

by Eq. (A.3.29) and (A.3.30), respectively.

û = ĝ (x̂, t) (A.3.29)

∆û = ∆ĝ
(
x̂−j , tj

)
(A.3.30)

A.3.4.2 Linear Modeling

The models presented in the preceding section are used to develop the nominal refer-

ence trajectory, x̄. These equations are then linearized to produce a set of equations

that describe the time evolution of the true state dispersions from the reference,

δx(t) = x(t)− x̄ and the time evolution of the navigation state dispersions from the

reference, δx̂(t) = x̂− x̄. The linearization of the propagation equations presented in

A.3.4.1 about the reference results in

δẋ = Fxδx + FûĜx̂δx̂ + w (A.3.31)

δ ˙̂x =
[
F̂x̂ + F̂ûĜx̂

]
δx̂ + F̂ỹCxδx + F̂ỹη (A.3.32)

where the uppercase matrices are the Jacobian matrices of the corresponding lower

case function with respect to the subscripted variable evaluated along the reference.
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The state updates can also be linearized about the reference, which results in the

relationships

δx+
k = δx−k (A.3.33)

δx+
k = K̂(tk)Hx(tk)δx

−
k +

[
[I]− K̂(tk)Ĥx̂(tk)

]
δx̂−k + K̂(tk)νk (A.3.34)

The state corrections for impulsive maneuvers are given by

δx+
j = [[I] + Dx(tj)] δx

−
j + D∆û(tj)∆Ĝx̂(tj)δx̂

−
j + ∆wj (A.3.35)

δx̂+
j =

[
[I] + D̂x(tj) + D̂∆û(tj)∆Ĝx̂(tj)

]
δx̂−j

+ D̂∆ỹ(tj)δ∆Cx(tj)x̂
−
j + D̂∆ỹ(tj)∆ηj

(A.3.36)

where again the uppercase matrices are the Jacobian matrices of the correspond-

ing lower case function with respect to the subscripted variable evaluated along the

reference.

An augmented state vector, x = (δx δx̂)T , consisting of both the true state dis-

persions (δx) and the navigation state dispersions (δx̂) can be created. The linearized

equations described in Eqs. (A.3.31)-(A.3.36) reduce to the matrix form

ẋ = Fx + Gη + Ww (A.3.37)

x+
k = A(tk)x

−
k + B(tk)νk (A.3.38)

x+
j = D(tj)x

−
k + M(tj)∆ηj + N (tj)∆wj (A.3.39)

where the matrices are given by

F =

 Fx FûĜx̂

F̂ỹCx F̂x̂ + F̂ûĜx̂

 , G =

[0]n×ny

F̂ỹ

 , W =

[I]n×n

[0]n̂×n

 (A.3.40)

A(tk) =

 [I]n×n [0]n×n̂

K̂(tk)Hx(tk) [I]n̂×n̂ − K̂(tk)Ĥx̂

 , B(tk) =

[0]n×ny

K̂(tk)

 (A.3.41)

D(tj) =

 [I]n×n + Dx(tj) D∆û(tj)∆Ĝx̂(tj)

D̂∆ỹ(tj)∆Ĉx(tj) [I]n̂×n̂ + D̂x̂(tj) + D̂∆û(tj)∆Ĝx̂(tj)

 (A.3.42)
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M(tj) =

[0]n×n∆y

D̂∆ỹ(tj)

 , N (tj) =

[I]n×n

[0]n̂×n

 (A.3.43)

A.3.5 Covariance Equations

The equations governing the propagation, update, and maneuver correction for the

augmented state vector’s, x, covariance matrix ΣA = E[xxT ] are formulated as follows

Σ̇A = FΣA + ΣAFT + GTΣηG + WΣwWT (A.3.44)

ΣA(t+k ) = A(t−k )ΣA(t−k )AT (t−k ) + B(t−k )Σν(t−k )BT (t−k ) (A.3.45)

ΣA(t+j ) = D(t−j )ΣA(t−j )DT (t−j )+M(t−j )Σ∆η(t−j )MT (t−j )

+ N (t−j )Σ∆w(t−j )N T (t−j )

(A.3.46)

Where it is noted that since E[x(t)] = E[x̄(t)] and E[x̂(t)] = E[x(t)], E[x] = 0.

Furthermore, it is assumed that w, ∆w, η, ∆ηj, and νk are mutually uncorrelated.

Along with Eqs. (A.3.19), (A.3.23), (A.3.24), and (A.3.26), Eqs.(A.3.44) - (A.3.46)

represents a complete set of linear covariance analysis equations.

A.3.5.1 Dispersion Analysis

The closed-loop GN&C system can be evaluated based upon the true state dispersions,

D̄, the navigation state dispersion D̂, and the covariance of the true navigation state

errors, P̄. The are given by

D̄ = E[δx(t)δxT (t)] = [[I]n×n [0]n×n̂] ΣA [[I]n×n [0]n×n̂]T (A.3.47)

D̂ = E[δx̂(t)δx̂T (t)] = [[0]n̂×n [I]n̂×n̂] ΣA [[0]n̂×n [I]n̂×n̂]T (A.3.48)

P̄ = E[(δx̂(t)−Mxδx)(δx̂(t)−Mxδx)T ]

= [−Mx [I]n̂×n̂] ΣA [−Mx [I]n̂×n̂]T
(A.3.49)

where it is assumed that the true navigation states are mapped from the states by a

function of the form

xn = m(x) (A.3.50)
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and Mx = ∂m/∂x. With these performance measures in place, P̄ can be compared

to P̂ to evaluate the onboard navigation performance, and the ability of the GN&C

system to control trajectory errors can be examined by evaluating D̄.

A.4 Proof of Lyapunov’s Direct Method

The following proof for Lyapunov’s direct method follows that outlined in Refs. [142]

and [143].

Proof: Lyapunov’s Direct Method for Discrete Dynamical Systems. Choose r0 > 0 such

that {yk : ‖ yk − ye ‖≤ r0} ⊂ S ∩ D. By the continuity of f there is an r1 ≤ r0

such that ‖ f(yk) − ye ‖≤ r0 whenever ‖ yk − ye ‖≤ r1. Now let ε > 0 be given

and assume, without loss of generality, that ε ≤ r1. Then choose δ ∈ (0, ε) so that

‖ yk − ye ‖≤ δ implies that

V (yk) < φ(ε) ≡ min{V (yk) : ε ≤‖ yk − ye ‖≤ r0}

This can be achieved using the continuity of V and the fact that V (yk) is positive

definite. Now suppose there is some y0 such that ‖ y0−ye ‖≤ δ but ‖ yk+1−ye ‖> ε

for some k. Assume that this is the first such k; thus ‖ yi − ye ‖≤ ε ≤ r1, i =

1, 2, · · · , k. Then ‖ f(yk)− ye ‖≤ r0 so that V (f(yk)) is well-defined and V (f(yk)) ≥

φ(ε). But by the definition of a Lyapunov function

V (yk+1) ≤ V (yk) ≤ · · · ≤ V (y0) < φ(ε)

This is a contradiction and stability is proved.

For asymptotic stability, it suffices to consider any sequence {yk} ⊂ {yk : ‖

yk − ye ‖≤ ε} and show that yk → ye as k →∞, and for this it suffices to show that

if ŷ is any limit point of {yk}, then ŷ = ye. Suppose not, then the mapping

r(yk) =
V (f(yk))

V (yk)
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is well-defined and continuous in some open neighborhood S0 of ŷ and since ∆V < 0,

r(ŷ) < 1. Hence, for a given α ∈ (r(ŷ), 1), there is a δ > 0 such that r(yk) ≤

α whenever ‖ yk − ŷ ‖≤ δ. Therefore, for sufficiently large ki, the subsequence

converging to ŷ satisfies

V (yki+1) = V (f(yki+1)) ≤ αV (yki) ≤ · · · ≤ αV (yki−1+1) ≤ · · · ≤ αiV (y0)

so that V (yki) → 0 as i → ∞. But the continuity of V implies that V (ŷ) = 0,

and because the Lyapunov function is positive definite, ŷ = ye proving asymptotic

stability.

For global asymptotic stability, note that for any y0, the radial unboundedness

of the Lyapunov function guarantees that {yk} is bounded otherwise there would be

a subsequence {yki} such that ‖ yki − ye ‖→ ∞ as i → ∞ and hence V (yki) → ∞

as i → ∞. This contradicts the monotone decreasing behavior of V (yk) required by

∆V < 0. It now follows precisely as in the case of asymptotic stability that yk → ye

as k →∞ proving global asymptotic stability.

A.5 Proof of Uniform (Exponential) Stability Criterion

The following proofs are adapted from Ref. [150].

A.5.1 Linear Systems

Proof: Uniform (Exponential) Stability for Linear Systems. The positive definite de-

crescent function Vk , ‖Wkyk ‖ satisifes

∆Vk = ‖Wk+1Akyk ‖ − ‖Wkyk ‖ ≤ −(1− β) ‖Wkyk ‖ < 0

which implies uniform (exponential) asymptotic stability by Lyapunov’s direct method

proven by Hahn in Ref. [142].
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A.5.2 Nonlinear Systems

Proof: Uniform (Exponential) Stability for Nonlinear Systems. For any y ∈ Ω, the

fundamental theorem of calculus gives

f(k,y) = f(k,y)− f(k,0) =

[∫ 1

0

∂f

∂y
(k, λy)dλ

]
y

Consider the positive definite decrescent function V (y) , ‖Wy ‖. Since Ω is open

with 0 ∈ Ω, ds , sup
d

[{y | V (y ≤ d} ⊂ Ω] > 0. Define Xs , {y | V (y) < ds} ⊂ Ω

which is open and 0 ∈ Xs. Then, for any k ≥ 0, if yk ∈ Xs

∆Vk = ‖Wyk+1 ‖ − ‖Wyk ‖

= ‖
∫ 1

0

W

[∫ 1

0

∂f

∂y
(k, λy)

]
ykdλ ‖ − ‖Wyk ‖

≤ −(1− β) ‖Wyk ‖< 0

which implies that yk+1 ∈ Xs. By induction if y0 ∈ Xs, yk ∈ Xs and ∆Vk < 0 ∀k ≥ 0.

Given y0 ∈ Xs, choose β0 such that

sup
k

sup
v∈X0

n
W

[
∂f

∂y
(v)

]
W−1

n
≤ β0 ≤ β < 1

where X0 , {y | V (y) ≤ V (y0)}. Then ∆Vk < −(1 − β0)Vk and the exponential

bounds follows from Lemma 1 with M = 0, α = (1− β0), and c =‖W−1 ‖−1.

A.6 Proof of Region of Attraction

This proof follows that outlined in Ref. [145]

Proof: Region of Attraction. If y0 ∈ A0 then the third condition on w(y) shows that

w(y1) ≤ w(y0) so that y1 ∈ A0 and, by induction, yk ∈ A0 and w(yk+1) ≤ w(yk), k =

2, · · · . Hence the sequence {w(yk)} converges. Also note that the third condition on

w(y) implies that

1− w(f(y))

1− w(y)
= 1 + φ(y), y ∈ A0
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so that

1− w(yk)

1− w(y0)
=

k−1∏
i=0

1− w(yi+1)

1− w(yi)
=

k−1∏
i=0

1 + φ(yi)

Since the left hand side of this equality converges as k → ∞, the right does as well

which implies that φ(yk) → 0 as k → ∞. Then the first condition on w(y) and the

continuity of φ ensures that yk → ye as k → ∞. Conversely, suppose that y0 /∈ A0

then the third condition on w(y) shows that w(y1) ≥ w(y0) ≥ 1 so that y1 /∈ A0 and,

by induction, w(yk) ≥ 1, k = 2, 3, · · · . But if lim
k→∞

yk = ye, then the continuity of w

requires that lim
k→∞

w(yk) = 0 which is a contradiction.
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APPENDIX B

PUBLICATIONS

B.1 Journal Articles

B.1.1 Published Journal Articles

• Other articles:

1. Steinfeldt, B.A., Grant, M.J., Matz, D.A., Braun, R.D., and Barton, G.,
“Guidance Navigation and Control System Performance Trades for Mars
Pinpoint Landing,” Journal of Spacecraft and Rockets, Vol. 47, No. 1, pp.
188-198, Jan-Feb, 2010.

2. Grant, M.J., Steinfeldt, B.A., Braun, R.D., and Barton, G.H., “Smart
Divert: A New Entry, Descent and Landing Architecture,” Journal of
Spacecraft and Rockets, Vol. 47, No. 3, pp. 385-393, May-June, 2010.

B.1.2 Pending Journal Articles

• Thesis relevant articles:

1. Steinfeldt, B.A. and Braun, R.D., “Use of Dynamical System Theory in
Multidisciplinary Design”

An article describing how to cast the multidisciplinary design problem
as a dynamical system theory with an overview of potential application
domains based on “Utilizing Dynamical Systems Concepts in Multidisci-
plinary Design”; submitted to the AIAA Journal in November 2012 (in
revision; recommended for publication).

2. Steinfeldt, B.A., Rossman, G.A., Braun, R.D., and Barton, G.H., “Rapid
Robust Design of a Deployable for Strategic Systems”

An article based on “Rapid Robust Design of a Deployable System for
Boost-Glide Vehicles” where the complete design of the two mid L/D sys-
tems are found using the rapid robust design methodology; submitted to
the Journal of Spacecraft and Rockets in May 2013.
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B.1.3 Planned Journal Articles

• Thesis relevant articles:

1. Steinfeldt, B.A. and Braun, R.D., “Multidisciplinary Design Conver-
gence Criterion Based on Stability Concepts”

An article describing the convergence criterion derived through stability
concepts for various root-finding schemes that is based on “Design Con-
vergence Using Stability Concepts from Dynamical Systems Theory”; tar-
geted for submission to Engineering Optimization in Fall 2013.

2. Steinfeldt, B.A. and Braun, R.D., “Using Optimal Control to Incorpo-
rate Design Constraints in the Multidisciplinary Design Problem”

An article describing the use of optimal control techniques to incorpo-
rate constraints within the multidisciplinary design problem that is based
on “Leveraging Dynamical Systems Theory to Incorporate Design Con-
straints for Multidisciplinary Design Problems”; targeted for submission
to the ASME Journal of Mechanical Design in Fall 2013.

3. Steinfeldt, B.A. and Braun, R.D., “Leveraging Estimation Techniques
in Multidisciplinary Design”

An article describing the use of estimation techniques to quantify uncer-
tainty within the multidisciplinary design problem that is based on “Using
Estimation Techniques in Multidisciplinary Design”; targeted for submis-
sion to Engineering Optimization in Fall 2013.

4. Steinfeldt, B.A. and Braun, R.D., “Extensibility of a Linear Rapid Ro-
bust Design Methodology”

An article demonstrating the linear robust design methodology applied
to nonlinear designs and the extent to which it is appropriate that is based
on “Extensibility of a Linear Rapid Robust Design Methodology”; targeted
for submission to the AIAA Journal in Fall 2013.

B.2 Conference Papers

B.2.1 Published Conference Papers

• Thesis relevant conference papers:

1. Steinfeldt, B.A., Theisinger, J.E., Korzun, A.M., Clark, I.G., Grant,
M.J., and Braun, R.D., “High Mass Mars Entry, Descent and Landing Ar-
chitecture Assessment,” AIAA-2009-6684, AIAA SPACE 2009 Conference
and Exposition, September 2009, Pasadena, California.
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2. Steinfeldt, B.A., Braun, R.D., and Paschall, S.C., “Guidance and Con-
trol Algorithm Robustness Baseline Indexing,” AIAA-2010-8827, AIAA
Guidance, Navigation and Control Conference, August 2010, Toronto, On-
tario, Canada.

3. Steinfeldt, B.A. and Braun, R.D., “Utilizing Dynamical Systems Con-
cepts in Multidisciplinary Design,” AIAA-2012-5655, AIAA/ISSMO Mul-
tidisciplinary Analysis and Optimization Conference, September 2012, In-
dianapolis, Indiana.

4. Steinfeldt, B.A. and Braun, R.D., “Design Convergence Using Stability
Concepts from Dynamical Systems Theory,” AIAA-2012-5657, AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, September 2012,
Indianapolis, Indiana.

5. Steinfeldt, B.A., Rossman, G.A., and Braun, R.D., “Rapid Robust De-
sign of a Deployable System for Boost-Glide Vehicles,” AIAA-2013-0031,
51st AIAA Aerospace Sciences Meeting including the New Horizons Forum
and Aerospace Exposition, January 2013, Grapevine, Texas.

6. Steinfeldt, B.A. and Braun, R.D., “Leveraging Dynamical Systems The-
ory to Incorporate Design Constraints for Multidisciplinary Design Prob-
lems,” AIAA-2013-1041, 51st AIAA Aerospace Sciences Meeting includ-
ing the New Horizons Forum and Aerospace Exposition, January 2013,
Grapevine, Texas.

• Other conference papers:

1. Thompson, R., Cliatt, L., Gruber, C., Steinfeldt, B., Sebastian, T., and
Wilson, J., “Design of an Entry System for Cargo Delivery to Mars,” 5th
International Planetary Probe Workshop, June 2007, Bordeaux, France.

2. Otero, R.E., Grant, M.J., Steinfeldt, B.A., and Braun, R.D., “Introduc-
ing PESST: A Conceptual Design and Analysis Tool for Unguided/Guided
EDL Systems,” 6th International Planetary Probe Workshop, June 2008,
Atlanta, Georgia.

3. Steinfeldt, B.A., Grant, M.J., Matz, D.A., Braun, R.D., and Barton,
G.H., “Guidance, Navigation, and Control Technology System Trades for
Mars Pinpoint Landing,” AIAA-2008-6216, AIAA Atmospheric Flight Me-
chanics Conference, August 2008, Honolulu, Hawaii.

4. Grant, M.J, Steinfeldt, B.A., Braun, R.D, and Barton, G.H., “Smart
Divert: A New Entry, Descent, and Landing Architecture,” AIAA 2009-
0522, 47th AIAA Aerospace Sciences Meeting Including the New Horizons
Forum and Aerospace Exposition, January 2009, Orlando, Florida.

5. Steinfeldt, B.A., and Tsiotras, P., “A State-Dependent Riccati Equa-
tion Approach to Atmospheric Entry Guidance,” AIAA-2010-8310, AIAA
Guidance, Navigation and Control Conference, August 2010, Toronto, On-
tario, Canada.
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6. Chua, Z. K., Steinfeldt, B.A., Kelly, J. R., and Clark I.G., “System
Level Impact of Landing Point Redesignation for High-Mass Mars Mis-
sions,” AIAA-2011-7296, AIAA SPACE 2011 Conference and Exposition,
September 2011, Long Beach, California.

7. Cruz-Ayoroa, J.G., Kazemba, C.D., Steinfeldt, B.A., Kelly, J.R., Clark,
I.G., and Braun, R.D., “Mass Model Development for Conceptual Design of
a Hypersonic Rigid Deployable Decelerator,” 9th International Planetary
Probe Workshop, June 2012, Toulouse, France.

8. Miller, M.J., Steinfeldt, B.A., and Braun, R.D., “Mission Architecture
Considerations for Recovery of High-Altitude Atmospheric Dust Samples,”
accepted for presentation at the 2013 AIAA Atmospheric Flight Mechanics
Conference, Boston, MA, August 2013.

9. Braun, R.D., Putnam, Z.R., Steinfeldt, B.A., Grant, M.J., and Bar-
ton, G.H., “Guidance Development for Aerospace Systems,” accepted for
presentation at the 2013 AIAA Guidance, Navigation, and Control Con-
ference, Boston, MA, August 2013. (Invited)

B.2.2 Planned Conference Papers

• Thesis relevant conference papers:

1. Steinfeldt, B.A. and Braun, R.D., “Using Estimation Techniques in Mul-
tidisciplinary Design”

Paper describing the use of the Kalman filter in multidisciplinary design to
quantify uncertainty; submitted to SciTech 2014. (January 13-17, 2014)

2. Steinfeldt, B.A. and Braun, R.D., “Extensibility of a Linear Rapid Ro-
bust Design Methodology”

Paper demonstrating the linear robust design methodology applied to non-
linear designs and the extent to which it is appropriate; submitted to
SciTech 2014. (January 13-17, 2014)

• Other conference papers:

1. Miller, M.J, Steinfeldt, B.A., and Braun, R.D., “Supersonic Inflatable
Aerodynamic Decelerators for use on Sounding Rocket Payloads,” submit-
ted to SciTech 2014. (January 13-17, 2014)
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