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SUMMARY 

 

For many firms, particularly those operating in high technology and competitive 

markets, knowledge is cited as the most important strategic asset to the firm, which 

significantly drives its survival and success (Grant 1996, Webber 1993). Knowledge 

management (KM) impacts the firm’s ability to develop process features that reduce 

manufacturing costs, product designs with the features and functionality to match 

consumer demand, and time to market. Unfortunately, many firms lack an understanding 

of how to develop and exploit knowledge capabilities for success. In this thesis I develop 

a rich and multifaceted understanding of how KM strategies lead to successful outcomes 

for a firm. The thesis comprises three essays, described below.  

The first essay (Chapter 2) examines how volume-based learning influences the 

relationship between a buyer and supplier in a two-period Stackelberg game. Three types 

of knowledge management practices are considered. First, in contrast to the literature, I 

recognize that knowledge accumulated from current in-house production contributes to 

the buyer’s future product and process development efforts. Second, I allow the supplier 

to invest in integration process improvement (a form of KD) to reduce the buyer’s 

integration cost.  Therefore, the supplier has two mechanisms to impact the buyer’s 

demand: price and process improvement. Lastly, both the buyer and supplier benefit from 

volume-based learning that reduces their respective production costs. I provide conditions 

under which the buyer partially outsources component demand as opposed to fully 

outsourcing or fully producing in-house. In addition, I identify conditions for which the 



 xi

supplier’s price and investment in integration process improvement can serve either as 

substitutes or complements.  

In the second essay (Chapter 3), I consider knowledge development (KD) 

strategies in a new product development (NPD) project with three stages of activities 

conducted concurrently: prototyping, pilot line testing, and production ramp-up. I capture 

the link between successive stages of engineering activities by recognizing that 

knowledge accumulated in one stage and transferred to another stage improves the 

efficiency of KD in the recipient stage. A Base Model and two extensions are introduced 

that differ in the manner in which knowledge transfer (KT) occurs. I find that the NPD 

manager pursues different dynamic strategies for KD in each stage of the project. In 

addition, I explore how the effectiveness of KD and the returns to KT impact the optimal 

strategies adopted in each stage.  

In the third essay (Chapter 4), I introduce a dynamic model to explore the impact 

of KT on a manager’s pursuit of an existing product improvement project and an NPD 

project. These two projects consume costly KD resources. A key feature of the model is 

the characterization of the KT process from the NPD project to the existing product 

improvement project. As a result of KT, the ability of the existing product improvement 

project to generate new knowledge is enhanced. However, the ability of the new product 

to generate expected net revenue when it is released to the marketplace is reduced due to 

the loss of proprietary knowledge. I obtain dynamic optimal strategies of KD in both 

projects and the optimal strategy of KT from the NPD project to the existing product 

improvement project.  



 

1 

CHAPTER 1 

INTRODUCTION 

 

 To succeed in the dynamic competitive marketplace, companies need to develop, 

retain and deploy the knowledge of their workforce (Groff and Jones 2003). According to 

the knowledge-based view of the firm, knowledge is considered the most strategically 

important resource (Grant 1996). Knowledge management comprises strategies and 

practices to identify, create, distribute, transfer and enable the adoption of insights and 

experiences either embodied in individuals or embedded in technical systems and 

organizational practices (Gaimon 2008). In this dissertation, I present three essays that 

examine knowledge management strategies in two domains: manufacturing and 

outsourcing, and new product development (NPD). In the first essay, I study how 

learning influences the relationship between a buyer and supplier. Three types of 

knowledge management practices are considered. For example, the supplier can invest in 

integration process improvement (a form of KD) to reduce the buyer’s integration cost. In 

the second essay, I consider how to manage the knowledge of the workforce involved in 

an NPD Project. More specifically, I examine the KD and KT activities in three 

successive stages of a single NPD project. In the third essay, I explore the impact of KT 

on the allocation of resources between a NPD project and an existing product 

improvement project. A key feature of the model is the characterization of the knowledge 

transfer (KT) process from the NPD project to the existing product improvement project. 

Due to KT, the ability of the existing product improvement project to improve the 

features and functionality of the existing product is enhanced.  
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        In the first essay (Chapter 2), I consider the interaction between the outsourcing 

decision of a buyer and the pricing and integration process improvement decisions of a 

supplier. In a two-period Stackelberg game, the buyer determines the portion of demand 

to meet from in-house production versus outsourcing. In an important departure from the 

literature, the buyer recognizes that current production enhances the development of 

future products. In addition, I introduce the possibility that the supplier invests in 

integration process improvement to reduce the buyer’s integration cost. Therefore, the 

supplier manipulates the buyer’s outsourcing decision through price and its investment in 

integration process improvement. Both the buyer and supplier benefit from volume-based 

learning that reduces subsequent production costs. I provide conditions whereby the 

buyer partially outsources component demand as opposed to fully outsourcing or fully 

producing in-house. For example, when the future value is sufficiently large, the buyer 

optimally pursues a partial outsourcing strategy for component demand to the supplier. I 

provide important insights on the relationships among the supplier’s price and investment 

in integration process improvement along with the ultimate impact on the buyer’s 

outsourcing decision. In particular, I explore when the supplier’s price and investment in 

integration process improvement are substitute strategies versus complementary.  

        In the second essay (Chapter 3), I consider KD in an NPD project with three stages 

of engineering activities: prototyping, pilot line testing, and production ramp-up. The rate 

that each activity is pursued over time drives the levels of prototyping knowledge, pilot 

line knowledge, and ramp-up knowledge, respectively. I capture the link between 

engineering activities by recognizing that, as a result of knowledge transfer (KT), the 

ability of the recipient stage to generate new knowledge is enhanced. The objective is to 
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maximize the net revenue earned when the product is released to the marketplace less 

development costs. Net revenue is a function of the levels of knowledge realized at the 

predetermined product launch time. I introduce a base model and two model variations, 

as described below. 

In the Base Model, KT is fluid, flowing continuously during the NPD project. 

This situation occurs when development teams are co-located and highly interactive. 

Moreover, KT occurs only in the forward direction, i.e., from prototyping to pilot line 

testing and from pilot line testing to production ramp-up. I find the optimal rate of each 

development activity follows an entirely different path over time. The prototyping team 

follows a front-loading strategy, the pilot line team follows a moderate delay strategy, 

and the ramp-up team follows an extreme delay strategy.  

In the first extension of the Base Model, I recognize that knowledge accumulated 

in the production ramp-up stage may be continuously transferred back to the prototyping 

stage to enhance the ability of the prototyping stage to generate knowledge. Therefore, I 

consider both forward KT as well as feedback. I find that the returns to feedback not only 

influence the magnitude of the optimal rates of each development activity, but also 

significantly impact the optimal paths taken by each development activity during the 

NPD project. For example, when the returns to feedback are large, the prototyping team 

follows an extreme delay strategy, while both the pilot line and ramp-up teams follow 

front-loading strategies. Clearly, relative to the Base Model, entirely different strategies 

are adopted when the returns to feedback are considered.  

In the second extension of the Base Model, knowledge is transferred from one 

stage to the next at discrete times during the NPD project. This situation is reasonable 
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when product development teams work separately in different locations. The manager 

determines not only the optimal rates for each development activity over time, but also 

the optimal number and times for KT. I find the optimal rates of prototyping, pilot line 

testing and ramp-up activities follow strategies that are analogous to those in the Base 

Model. This insight is important since it demonstrates that the continuous model is an 

excellent approximation for the discrete model, which is more difficult to solve. 

Nevertheless, despite similarities in the structures of the optimal solutions, under certain 

conditions, I find that important differences arise between the optimal solutions to the 

continuous and discrete forward KT models. 

In the third essay (Chapter 4), I introduce a dynamic model to explore a 

manager’s pursuit of an existing product improvement project and a NPD project. A key 

feature of the model is the characterization of the KT process from the NPD project to the 

existing product improvement project. Due to the KT, the ability of the existing product 

improvement project to improve the features and functionality of the existing product is 

enhanced. While the existing product improvement project generates revenue throughout 

the development horizon with certainty, the NPD project generates expected revenue only 

when it is successfully released to the marketplace, which is uncertain. However, the 

expected revenue benefits obtained when the new product is successfully released to the 

marketplace suffers as a result of the KT since proprietary knowledge is lost. Naturally, 

the two projects consume costly KD resources. I obtain dynamic solutions characterizing 

how the NPD manager invests in KD activities for both the new and existing projects and 

the optimal KT strategy from the NPD project to the existing product improvement 

project. In addition, I explore factors that impact the optimal KD and KT strategies 
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including the effectiveness of NPD and existing product improvement activities and the 

returns to KT.  
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CHAPTER 2 

THE EFFECT OF LEARNING AND INTEGRATION INVESTMENT 

ON MANUFACTURING OUTSOURCING DECISIONS: A GAME 

THEORETIC APPROACH 

 

2.1 Introduction 

The problem of whether to manufacture a component in-house or outsource its 

production is well established. Typically, outsourcing is advocated as a cost reduction 

strategy. In the electronics industry, outsourcing grew 25% from 1989 to 1998 (Plambeck 

and Taylor 2005). In pharmaceuticals, outsourcing increased from 20% in 1988 to 50-60% 

in 1998 (van Arnum 2000). After decades of outsourcing assembly and manufacturing 

capabilities to Asia, serious concerns have emerged regarding the loss of knowledge 

gleaned from the actual production experience. This loss in knowledge is particularly 

threatening for high-tech firms whose product and process development capabilities are 

tightly linked (Ettlie and Reifeis 1987, Ettlie 1995). According to Pisano and Shih (2009), 

the outsourcing by U.S. firms of “critical components (such) as light-emitting diodes for 

the next generation of energy-efficient illumination; advanced displays for mobile 

phones…new consumer electronics products like amazon’s Kindle e-reader…and many 

of carbon fiber components for Boeing’s new 787 Dreamliner” limits the ability of these 

firms to develop products that will be competitive in the future marketplace.  

Increasingly, firms are recognizing the value of manufacturing experience and 

undertake full or partial in-house production. Many major appliance makers pursue 
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partial or full in-house production because their manufacturing processes embody design 

intellectual properties that drive product competitiveness (Linton 2011). Intel 

manufactures all of its state-of-the-art chips in-house since volume-based learning 

facilitates important enhancements in process technology that ultimately reduce the 

production cost and improve reliability (Zerega 1999). NEC has reduced its reliance on 

outsourcing because it recognizes that by exploiting the link between manufacturing and 

technology innovation it can realize volume-based learning benefits to improve process 

technology and reduce future production costs (Zerega 1999). To achieve successful 

development of copper interface and silicon-on-insulation innovations, IBM exploited 

“the close relationships among design, testing, and production” (Zerega 1999). Cypress 

Semiconductor only partially outsources production of logic chips so that it may benefit 

from learning derived from in-house production to develop future process technologies 

(Zerega 1999).  Toyota designs all transmissions in-house and outsources 70% of the 

production. Toyota leverages the remaining 30% in-house production experience to 

improve the design of new transmissions and to enhance the development of future 

technology (Fine and Whitney 1996).   

In response to the buyer’s growing inclination toward more in-house production 

and to enhance the desirability of outsourcing, many suppliers make substantial 

investments in integration process improvement (written as IPI hereafter) to reduce the 

buyer’s integration cost. A supplier may reduce the buyer’s integration cost by 

developing alternative raw materials for components, creating specialized technology, re-

designing the integration process, or co-locating manufacturing facilities (Seewer 2004, 

Dyer 1996). Auto-parts suppliers often locate plants near Toyota and Nissan or to invest 
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in customized physical assets (Dyer and Ouchi 1993; Dyer 1994, 1996). In many cases 

the extent of a supplier’s investment in IPI may be so substantial that it reflects a multi-

year commitment between the buyer and supplier. In other words, to justify a substantial 

investment in IPI, the supplier may require the buyer to commit to do business for several 

years in the future (Dyer and Ouchi 1993). In fact, a supplier who invests in IPI to reduce 

a buyer’s integration cost is typically considered a strategic partner and receives a long-

term contract and commitment as well as future project awards from the buyer (Linton 

2011).    

In this paper, we introduce a two-period Stackelberg game of a supplier and buyer. 

Consistent with the literature, we assume both the buyer and supplier obtain reductions in 

their respective production costs in period 2 based on volume-based learning from period 

1 production. In addition, motivated by the anecdotal literature cited above, we introduce 

another learning concept, the future value, to capture the benefits of transferring current 

manufacturing experience for the design and development of future products and 

technologies. Furthermore, we allow the supplier two mechanisms to impact the buyer’s 

outsourcing decision: price and the investment in integration process improvement that 

reduces the buyer’s unit cost of integration. A supplier’s decision to invest in IPI 

considers the associated costs versus the value of the increase in outsourced demand 

generated by the buyer’s lower integration cost. According to Johnson and Kaplan (1987), 

the buyer’s integration cost significantly affects its outsourcing decision as well as the 

price charged by the supplier for outsourced components. Therefore, the supplier’s 

investment in IPI may have strategic consequences (Linton 2011). 
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Our research considers key issues from the perspectives of both the buyer and 

supplier. We obtain analytic conditions whereby a buyer chooses a partial outsourcing 

strategy as opposed to producing all components in-house or outsourcing all components. 

Moreover, given the game theoretic framework, we develop a deep understanding of how 

the buyer’s future value of manufacturing experience impacts the supplier’s price and 

investment in IPI. In general, we develop analytic insights on the interplay between the 

supplier's two mechanisms to impact the buyer’s outsourcing decision: the price and 

investment in IPI. In particular, we obtain conditions whereby the supplier’s strategies 

serve as substitutes versus complements with respect to the impact on the buyer’s level of 

outsourcing. As an example of the substitution effect, we identify conditions that drive 

the supplier to increase price while also increasing its investment in IPI. In addition, we 

explore the key role played by the buyer’s integration cost to impact the supplier’s 

investment in IPI as well as the price charged to the buyer. Lastly, we obtain insights on 

how the rates of volume-based learning for both the buyer and supplier impact the 

supplier’s investment in IPI and price decisions as well as the buyer’s outsourcing 

decision. 

In Section 2.2, we review three streams of literature that relate to this work. The 

base model is presented in Section 2.3 and important analytic results are given in 

Sections 2.3 and 2.4. In Section 2.5, we relax assumptions used in the base model and 

present numerical insights. The conclusions appear in Section 2.6.  

 

2.2 Literature Review 

This section is devoted to a discussion of three research streams that relate to this work. 
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2.2.1 The Learning Curve Literature 

Wright (1936) observed that the number of direct labor hours required to produce a unit 

of output decreases at a uniform rate as the quantity of units manufactured doubles. Most 

studies of learning curve theory, a fundamental part of management, focus on learning in 

terms of cost reduction or productivity improvement in relation to cumulative production 

(Yelle 1979). In our paper, we employ the standard power learning curve to capture 

reductions in the production costs of both the buyer and supplier in period 2 based on 

manufacturing experience in period 1.  

Beyond this traditional notion of learning, we also recognize that manufacturing 

experience contributes to the future value of the firm through the link between 

manufacturing engineering and technology innovation (Ghemawat 1986, Dyer and Ouchi 

1993). The concept of design for manufacturability demonstrates the importance of KT 

between product development and manufacturing engineering (Ettlie and Reifeis 1987). 

Bergen and McLaughlin (1988) and Ettlie (1995) find that superior product performance 

is realized when knowledge about manufacturing processes is leveraged in product 

design and development. In our paper, we consider the future value (beyond the two-

period problem) of the buyer’s production experience derived from in-house production. 

2.2.2 Outsourcing 

Few studies have considered partial outsourcing. In a single firm model, Anderson and 

Parker (2002) examine the outsourcing problem from the buyer's perspective, and discuss 

conditions that drive the buyer to undertake all in-house production, full outsourcing, or 

partial outsourcing. Parmigiani (2007) argues that a firm that concurrently insources and 

outsources may only need to manufacture a small portion of its demand in-house, while 
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still reaping the benefits of learning. In a game theoretic model, Gray et al. (2009) study 

both the buyer and supplier's problems and provide conditions where the buyer optimally 

pursues all in-house production, full outsourcing or partial outsourcing. In addition, they 

discuss how the supplier's pricing decisions are affected by the buyer's outsourcing 

decisions and they consider volume-based learning in the buyer and supplier's production 

costs.  

Our paper is most related to Gray et al. (2009) but with three important differences. First, 

in contrast to Gray et al. (2009) who consider piecewise linear learning in the production 

costs, we consider the traditional power learning. As a result, instead of the boundary 

solutions obtained by Gray et al. (2009), we are able to obtain interior solutions that 

facilitate a deeper understanding of the drivers of the buyer’s insourcing versus 

outsourcing decision. In addition, Gray et al. (2009) do not consider the supplier’s 

investment in IPI and its impact on the supplier’s price and the buyer’s outsourcing 

decision. Lastly, Gray et al. (2009) find that the supplier benefits from an increase in the 

buyer’s rate of learning that reduces the buyer’s production cost, whereas the buyer 

benefits from an increase in the supplier’s rate of learning only if the buyer’s rate of 

learning is positive. In contrast, we show that if the supplier’s rate of learning increases, 

both the buyer and supplier realize higher profit. Furthermore, we show that if the buyer 

has a higher rate of learning in its production cost, the buyer realizes higher profit and 

supplier’s profit declines. 

2.2.3 Technology, Product and System Integration   

Systems engineering is a well-established discipline (Kossiakoff et al. 2003). One 

element of systems engineering concerns the management of component integration (Fine 



 12

and Whitney 1996). A firm with a strong systems engineering capability is better able to 

integrate in-sourced or outsourced components. Anderson and Parker (2002, 2008) 

consider integration as a driver of a buyer’s outsourcing decision. In Anderson and Parker 

(2002) volume-based learning reduces the integration cost inside the firm, whereas in 

Anderson and Parker (2008) learning cost reductions are realized in relation to integration 

activities both inside and outside the firm’s boundaries. However, these authors analyze 

the problem only from the buyer's perspective and do not allow the supplier to invest in 

IPI. In contrast, we allow the supplier to determine its investment in IPI. Specifically, we 

consider the important interplay between the supplier's pricing strategy, its investment in 

IPI and the buyer’s outsourcing decision. 

2.3 Base Model Formulation 

In this section, we introduce the base model, a two period non-cooperative Stackelberg 

game of a buyer (b) and supplier (s). At the first stage of the first period, the supplier 

determines its investment in IPI, denoted by ߤ that reduces the integration cost realized 

by the buyer in both periods 1 and 2. At the same time, the supplier determines the fixed 

price, denoted by ܲ, to charge the buyer for outsourcing in both periods 1 and 2. The 

supplier selects its price and IPI strategies to maximize its two-period profit. In the 

second stage of the first period, the buyer reacts to the supplier's actions and determines 

the fixed amount of its component demand to outsource in both periods 1 and 2, denoted 

by 	ݓ . The buyer and supplier benefit from volume-based learning derived from 

production experience in the first period that reduces their respective unit production 

costs in the second period. Despite fixing the decisions of the buyer and supplier in 
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periods 1 and 2, a two-period model is needed to capture the volume-based learning cost 

reductions realized by both firms in period 2. 

The two-period fixed price and outsourcing strategies simplify the model and 

enable us to obtain many important analytic results. Beyond that, however, the fixed price 

and outsourcing strategies reflect a relationship between the buyer and supplier that is 

consistent with practice (Dyer and Ouchi 1993, Linton 2011). The investment in IPI 

represents a major commitment by the supplier and benefits the buyer in both periods 1 

and 2. It is therefore reasonable that the supplier expects a similar commitment from the 

buyer; i.e., the buyer must agree to a two-period outsourcing strategy. Naturally, the 

buyer would not enter into such an agreement without a two-period pricing strategy first 

announced by the supplier. Thus, the underlying modeling assumptions in the base model 

are reasonable. Nevertheless, in an extension (Section 5), we relax the fixed price and 

fixed outsourcing assumptions and allow the buyer and supplier to make different 

decisions in each period. In contrast to the analytic results for the base model given in 

Section 4, the managerial insights in Section 5 are derived from numerical 

experimentation.  

In the next sections, we define the model mathematically. Table A.1 (Appendix) 

contains a summary of notation. Let ܺᇱሺݕሻ and ܺᇱᇱሺݕሻ  represent the first and second 

order derivatives of ܺ with respect to ݕ, respectively. Let ܺ∗ denote the optimal solution 

of 	ܺ. To improve readability, all proofs appear in Appendix A. 

 

 

2.3.1 Base Model Features 
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Buyer's Volume of In-house Production versus Outsourcing. Let ܸ ൐ 0  be the 

volume of component demand to be met by the buyer in both the first and second periods. 

The buyer produces w	∈ ሾ0, ܸሿ units in-house and outsources ܸ െ  units in periods 1 ݓ

and 2. Letting ܴ  denote the market price of the component, the buyer’s revenue in 

periods 1 and 2 is given by 2ܴܸ. In Section 5, we allow dynamic demand in the two-

period problem.  

Buyer and Supplier’s Manufacturing Costs. Let ܥ௕  ሺܥ௦ሻ be the unit manufacturing cost 

for the buyer (supplier) in the first period. Let ିݓఈ and ሺܸ െ  ሻିఉ represent the learningݓ

curves for the buyer and the supplier, respectively, where the rates of learning are 

denoted by ߙand ߚ (0,1). Let ܥ௕ିݓఈ  be the 2nd period unit production cost for the 

buyer; let ܥ௦ሺܸ െ  ,be the 2nd period unit production cost for the supplier. Naturally	ሻିఉݓ

each firm’s period 2 unit manufacturing cost decreases at a decreasing rate in relation to 

its period 1 production volume (Yelle 1979).  

Buyer's Integration and Outsourcing Costs. Integration costs are incurred for the 

assembly of internally produced components as well as components outsourced to a 

supplier (Iansiti 1995a, 1995b, Anderson and Parker 2002, 2008). We assume that the 

buyer’s unit manufacturing cost in period 1, denoted by ܥ௕, includes any costs associated 

with internal integration. (Therefore, volume-based learning from period 1 may reduce 

the buyer’s manufacturing and internal integration costs in period 2.) In contrast, we 

explicitly define ܥ௜  as the unit integration cost incurred by the buyer for each unit 

outsourced to the supplier. Naturally, the buyer's unit outsourcing cost is the sum of the 

price charged for the outsourced component and the unit integration cost. Let P > 0 
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denote the price charged by the supplier per unit outsourced to the buyer. Therefore, the 

unit outsourcing cost incurred by the buyer is denoted as ܲ ൅  .௜ܥ

Buyer’s Future Value from Volume-based Learning. While we consider a two-period 

game, we recognize that the buyer may derive future benefits, beyond period 2, from 

volume-based learning. The benefits may be substantial and reflect the value of current 

manufacturing experience on the development of future products and technologies. We 

assume the future value is driven by the most recent production experience (i.e., 

production experience accumulated in the 2nd period). We introduce the future value, 

denoted by ݂ሺݓሻ ൌ ଴݂ݓ௙భ , with ଴݂ ൐ 0  representing a scaling factor and ଵ݂ ∈ ሺ0,1ሻ 

representing the rate of diminishing returns. That is, the future value the buyer gains from 

volume-based learning increases at a decreasing rate as the quantity of the buyer’s period 

2 in-house production increases.  

Supplier's Integration Process Improvement. We consider a supplier that has the 

ability to reduce the integration cost incurred by the buyer by investing in IPI. Process 

improvement activities may include the investment in new manufacturing equipment, the 

re-design of the integration process, and the hiring of more skilled employees (Carrillo 

and Gaimon 2004). At the beginning of period 1, the supplier determines the level of IPI, 

denoted as ߤ ∈ ሾ0,1ሿ. The supplier incurs the cost ܷߤఊ	for its investment in IPI where 

ܷ ൐ 0 and ߛ ൐ 1. Note that ܷ is a scaling factor and ߛrepresents the diseconomies of 

scale associated with larger investments in IPI. The assumption of diseconomies of scale 

is standard in the large body of literature on process improvement (Carrillo and Gaimon 

2004, Chand et al. 1996).  
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The supplier's investment in IPI directly impacts the buyer's integration cost. Let 

ܮ ൐ 0 represent the buyer's base unit integration cost, i.e., without any investment in IPI 

by the supplier. Let the buyer's unit integration cost be written as ܥ௜ ൌ ሺ1ܮ െ  ሻ so thatߤ

as the supplier's pursuit of IPI increases, the buyer's unit integration cost decreases. Of 

course, since the supplier invests in IPI at the start of period 1, the unit integration cost 

incurred is the same in both periods 1 and 2. 

The two-period non-cooperative game is solved using backward induction: first we 

analyze the buyer' production decision (w); subsequently we determine the supplier's 

optimal price and its investment in IPI (P and ߤ). 

2.3.2 Buyer's Decision 

In response to the supplier's price, ܲ , and investment in IPI, ߤ , the buyer 

optimally determines the amount of component demand to be met from in-house 

production versus outsourcing in periods 1 and 2, ݓ . The buyer’s objective 	 is to 

maximize profit (Π௕ሺݓሻ) over both periods as shown in Equation (1) subject to the 

constraints in Equation (2). The buyer’s two-period profit is comprised of (i) the revenue 

realized in periods 1 and 2; (ii) the in-house production costs in periods 1 and 2; (iii) the 

outsourcing costs in periods 1 and 2; and (iv) the future value of volume-based learning 

from period 2 in-house production. The cost of outsourcing includes the cost of 

purchasing components from the supplier as well as integrating those components into 

the buyer's production process. Since each period’s demand must be met from in-house 

production or outsourcing in that period, total revenue is fixed. The Lagrangian to be 

maximized appears in Equation (3) where ߣଵ	is the Lagrange multiplier corresponding to 

the constraint ݓ ൑ 	ܸ. (The other constraints in Equation (2) are considered implicitly, as 
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described in Theorem 1.) The first order Kuhn-Tucker conditions are stated in Equations 

(4)-(5) (Chiang and Wainwright 2005). The expression for 
ௗ್ࣦ
ௗ௪
	appears in Equation (6). 

Lastly, the sufficiency condition involves the second order derivative in Equation (7). 

With ܺሺݓሻ given in Equation (8), we know  
ௗమ್ࣦ
ௗ௪మ  has the same sign as ܺሺݓሻ. We use this 

insight in the statement of Theorem 1, below.  

Π௕ሺݓሻ ൌ –ଵିఈݓ௕ܥ–ݓ௕ܥ–2ܴܸ 2൫ܲ ൅ ሺ1ܮ െ ൯ݓ–ሻ൯൫ܸߤ ൅ ଴݂ݓ௙భ   (1)  

0 ൑ ݓ ൑ ܸ, and Π௕ ൒ 0        (2) 

ࣦ௕ሺݓ, ଵሻߣ ൌ –ଵିఈݓ௕ܥ–ݓ௕ܥ–2ܴܸ 2൫ܲ ൅ ሺ1ܮ െ ሻݓ–ሻ൯ሺܸߤ ൅ ଴݂ݓ௙భ 

                    ൅ߣଵሺܸ െ  ሻ         (3)ݓ

ௗ್ࣦ
ௗ௪

൑ ݓ,0 ൒ 0, and ݓ
ௗ್ࣦ
ௗ௪

ൌ 0       (4) 

ௗ್ࣦ
ௗఒభ

൒ 0, ଵߣ ൒ 0, and ߣଵ
ௗ್ࣦ
ௗఒభ

ൌ 0       (5) 

ௗ್ࣦ
ௗ௪

ൌ–ܥ௕ሺ1 ൅ ሺ1 െ ఈሻିݓሻߙ ൅ 2൫ܲ ൅ ሺ1ܮ െ ሻ൯ߤ ൅ ଴݂ ଵ݂ݓ௙భିଵ െ ଵߣ ൌ 0  (6) 

ௗమ್ࣦ
ௗ௪మ ൌ ሺ1ߙ െ ఈିଵିݓ௕ܥሻߙ െ ଴݂ ଵ݂ሺ1 െ ଵ݂ሻݓ௙భିଶ ൌ ሺ1ߙ௙భିଶሾݓ െ ଵିఈି௙భݓ௕ܥሻߙ െ

଴݂ ଵ݂ሺ1 െ ଵ݂ሻሿ			         (7) 

ܺሺݓሻ ൌ ሺ1ߙ	 െ ଵିఈି௙భݓ௕ܥሻߙ െ ଴݂ ଵ݂ሺ1 െ ଵ݂ሻ     (8) 

Theorem 1 gives the buyer's optimal solution. In Section 4, we analytically explore 

drivers of the buyer’s optimal solution. 

Theorem 1. Four cases characterize the buyer’s optimal solution denoted by ݓ∗ and ߣଵ
∗ .  

To obtain non-trivial solutions in which the buyer participates in the game, we assume 

ሻ∗ݓ௕ሺߎ ൒ 0 so that ࣦ௕ሺݓ∗, ଵߣ
∗ሻ ൒ 0. In addition, for Cases 2 and 3, let ߣଵ

௣௢௦ ൌ–ܥ௕ሺ1 ൅

ሺ1 െ ሻܸିఈሻߙ ൅ ଴݂ ଵ݂ܸ௙భିଵ. 
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 Case 1: If  1 െ ߙ െ ଵ݂ ൌ 0 and ܥ௕ ൏ ଴݂  or if  1 െ ߙ െ ଵ݂ ൐ 0 and ܺሺܸሻ ൑ 0, then ࣦ௕ሺݓ,  ଵሻߣ

is concave for ݓ ∈ ሾ0, ܸሿ (see Figure 2.1, Case 1). The optimal solution is ݓ∗ ൌ ݓ௜௡௧ which 

satisfies Equation (6) with ߣଵ
∗ = 0 (i.e., ݓ௜௡௧ is the interior solutionሻ.  

 Case 2: If 1 െ ߙ െ ଵ݂ ൌ 0 and ܥ௕ ൒ ଴݂  or if  1 െ ߙ െ ଵ݂ ൏ 0 and 	ܺሺܸሻ ൒ 0, then  ࣦ௕ሺݓ,  ଵሻߣ

is convex for ݓ ∈ ሾ0, ܸሿ (see Figure 2.1, Case 2). There are two possible optimal solutions. 

(a) ݓ∗ ൌ 0   and 	ߣଵ
∗ ൌ 0		 if ࣦ௕ሺ0,0ሻ ൐ ࣦ௕൫ܸ, ଵߣ

௣௢௦൯;	 or (b) ݓ∗ ൌ ܸ  and ߣଵ
∗ ൌ ଵߣ

௣௢௦ ൐ 0 , 

otherwise. 

 Case 3: 1 ݂ܫ െ ߙ െ ଵ݂ ൐ 0 and  ܺሺܸሻ ൐ 0, then ࣦ௕ሺݓ,  ଵሻ is initially concave then becomesߣ

convex for ݓ ∈ ሾ0, ܸሿ (see Figure 2.1, Case 3). There are two possible optimal solutions. (a) 

∗ݓ ൌ ுݓ
௜௡௧  and  ߣଵ

∗ ൌ 	0  if ࣦ௕൫ݓு
௜௡௧, 0൯ ൐ ࣦ௕൫ܸ, ଵߣ

௣௢௦൯,  where ݓு
௜௡௧  satisfies Equation (6) 

ுݓ)
௜௡௧  is the interior solution that maximizes  the concave domain); or (b) ݓ∗ ൌ ܸ  and 

ଵߣ
∗ ൌ ଵߣ

௣௢௦ ൐ 0, otherwise.  

 Case 4: If 1 െ ߙ െ ଵ݂ ൏ 0 and 	ܺሺܸሻ ൏ 0, then ࣦ௕ሺݓ,  ଵሻ is initially convex then becomesߣ

concave for ݓ ∈ ሾ0, ܸሿ (see Figure 2.1, Case 4). There are two possible optimal solutions. (a) 

∗ݓ ൌ ுݓ
௜௡௧  and  ߣଵ

∗ ൌ 0  if ࣦ௕൫ݓு
௜௡௧, 0൯ ൐ ࣦ௕ሺ0,0ሻ , where  ݓு

௜௡௧  satisfies Equation (6) 

ுݓ)
௜௡௧	is the interior solution that maximizes the concave domain; or (b) ݓ∗ ൌ 0 and ߣଵ

∗ ൌ 0, 

otherwise. 

 An important result emerges from Theorem 1. If the buyer were to ignore the 

future value of experience (dropping the last term in Equation (1)), then Π௕ሺݓሻ is always 

convex. Thus, the buyer optimally produces everything in-house to meet demand or 

outsources all demand to the supplier depending on which is smaller: the marginal in-

house production cost or the marginal cost of outsourcing. Said differently, Theorem 1 

shows that even if the marginal outsourcing cost is lower than the marginal in-house 



 19

production cost, the buyer may optimally pursue partial in-house production if it 

recognizes a sufficient future value of experience. 

 

 

 

 

 

 

 

 

 

 

 

2.3.3 Supplier's Decisions 

At the start of period 1, the supplier optimally determines the price, ܲ, to charge the 

buyer in both periods 1 and 2, and the one-time investment in IPI, ߤ, to maximize its two-

period profit as given in Equation (9) subject to the constraints in Equation (10). 

Naturally, the supplier's decisions reflect the subsequent response by the buyer (ݓ∗). The 

first term in Equation (9) represents the revenue earned by the supplier from the buyer’s 

outsourcing in periods 1 and 2. The second and third terms are the supplier's production 

costs to meet ܸ െ  units of demand from the buyer in periods 1 and 2. Lastly, the ∗ݓ

fourth term is the one-time cost the supplier incurs for the investment in IPI. The 

Lagrangian to be maximized appears in Equation (11) where ߣଶ	and ߣଷ are the Lagrange 
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Case 1 Case 2 
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Figure 2.1: Four Cases for the Buyer’s Problem 
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multipliers corresponding to the constraints Π௕ ൒ 0  and ߤ ൑ 1.	The first order Kuhn-

Tucker conditions for ܲ ߤ , ଶߣ , , and ߣଷ	are stated in Equations (12)-(15) (Chiang and 

Wainwright 2005). Lastly, we define ܪሺܲ, ሻߤ ൌ ൬
∂ଶΠ௦ ∂ܲଶ⁄ ∂ଶΠ௦ ∂P ∂μ⁄
∂ଶΠ௦ ∂μ ∂P⁄ ∂ଶΠ௦ ⁄ଶߤ∂

൰  as the 

Hessian Matrix of the supplier’s profit with respect to the solutions for ܲ and ߤ. We 

assume the Hessian Matrix is negative definite (i.e., ܪሺܲ, ሻߤ ൏ 0) so that the supplier’s 

profit is jointly concave with respect to ܲ and ߤ and sufficiency is guaranteed. Note that 

the assumption ܪሺܲ, ሻߤ ൏ 0 may be violated under extreme conditions: ܮ ௕ܥ ,  or ܥ௦  is 

extremely large; ܸ or ଴݂ is extremely small; or ߛ is extremely close to 1. (Naturally, if the 

objective is not jointly concave in P and ߤ then the optimal solution for one or more of 

the decision variables lies on a boundary.)   

To obtain non-trivial solutions in which the buyer and supplier both participate in 

the game, we introduce bounds on ܲ. Let ܲሺߤሻ ൐ 	0 be the lower bound on P to ensure 

௦ߎ ൒ 0 and let ܲሺߤሻ ൐ 	ܲሺߤሻ be the upper bound of P to ensure ߎ௕ሺݓ∗ሻ ൒ 0. It is easy to 

see that both bounds on ܲ are impacted by ߤ, and the solutions of Equation (12)-(15) are 

functions of  ݓ∗. To focus on non-trivial solutions, we assume that ܲ ൒ ܲሺߤሻ such that 

௦ߎ ൒ 0, i.e., the supplier participates in the game. The non-negativity of ߤ is implicitly 

guaranteed, as described in Theorem 2. 

The supplier’s optimal solution is given in Theorem 2. We analytically explore 

drivers of this solution in Section 4. 

,௦ሺܲߎ ሻߤ ൌ 2ܲሺܸ–ݓ∗ሻ– –ሻ∗ݓ–௦ሺܸܥ ௦ሺܸܥ െ  ఊ            (9)ߤܷ–ሻଵିఉ∗ݓ

0 ൑ ߤ ൑ 1;Π௕ ൒ 0; 	ܲ ൒ 0;	Π௦ ൒ 0       (10) 

ࣦ௦ሺܲ, ,ߤ ,ଶߣ ଷሻߣ ൌ 2ܲሺܸ–ݓ∗ሻ– –ሻ∗ݓ–௦ሺܸܥ ௦ሺܸܥ െ  ఊߤܷ–ሻଵିఉ∗ݓ
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                            ൅ߣଶ൫2ܴܸ–ܥ௕ݓ∗– –ଵିఈ∗ݓ௕ܥ 2൫ܲ ൅ ሺ1ܮ െ ൯∗ݓ–ሻ൯൫ܸߤ ൅ ଴݂ݓ∗௙భ൯ 

                            ൅ߣଷሺ1 െ  ሻ        (11)ߤ

ௗࣦೞ
ௗ௉

൑ 0, ܲ ൒ 0, and	ܲ
ௗࣦೄ
ௗ௉

ൌ 0       (12) 

ௗࣦೞ
ௗఓ

൑ 0, ߤ ൒ 0, and	ߤ ௗࣦೄ
ௗఓ

ൌ 0        (13) 

ௗࣦೞ
ௗఒమ

൒ 0, ଶߣ ൒ 0, and	ߣଶ
ௗࣦೞ
ௗఒమ

ൌ 0       (14) 

ௗࣦೞ
ௗఒయ

൒ 0, ଷߣ ൒ 0, and	ߣଷ
ௗࣦೞ
ௗఒయ

ൌ 0       (15) 

Theorem 2. The supplier’s optimal solution consists of  ܲ∗, ߣ ,∗ߤଶ
∗ and ߣଷ

∗. Four solutions are 

obtained if the buyer’s optimal solution is ݓ∗ ൌ ுݓ ௜௡௧ orݓ
௜௡௧ (Cases 1a-1d of Theorem 2); four 

solutions are obtained if the buyer’s optimal solution is ݓ∗ ൌ 0 (Cases 2a-2d of Theorem 2). To 

obtain non-trivial solutions in which the supplier participates in the game, we assume ݓ∗ ∈

ሾ0, ܸሻ and ߎ௦ሺܲ∗, ሻ∗ߤ ൒ 0 so that ࣦ௦ሺܲ∗, ,∗ߤ ଶߣ
∗ , ଷߣ

∗ ሻ ൒ 0 holds. (Therefore, we do not consider 

∗ݓ ൌ ܸ as in Theorem 1, Cases 2b and 3b.) 

 Case 1:  ݓ∗ ൌ ுݓ ௜௡௧ orݓ
௜௡௧.  

o Case 1a): ሺܲ∗, ,∗ߤ ଶߣ
∗ , ଷߣ

∗ ሻ ൌ ሺܲଵ௔, ,ଵ௔ߤ 0, 0ሻ when ߤଵ௔ ∈ ሾ0,1ሿ and ܲଵ௔ ∈ ሾܲሺߤଵ௔ሻ, ܲሺߤଵ௔ሻሿ. 

	ܲଵ௔ and  ߤଵ௔ are obtained by simultaneously solving 
ௗࣦೞ
ௗ௉

ൌ 0 and  
ௗࣦೞ
ௗఓ

ൌ 0 with ߣଶ ൌ ଷߣ ൌ

0.  

o Case 1b): ሺܲ∗, ,∗ߤ ଶߣ
∗ , ଷߣ

∗ ሻ ൌ ൫ܲଵ௕, 1, 0, ଷߣ
ଵ௕൯  with ߣଷ

ଵ௕ ൌ ሺܸܮ2 െ ሻ∗ݓ െ ߛܷ ൐ 0  and 

ܲଵ௕ ∈ ሾܲሺ1ሻ, ܲሺ1ሻሿ . 		ܲଵ௕  and 	ߣଷ
ଵ௕  are obtained by simultaneously solving 

ௗࣦೞ
ௗ௉

ൌ 0  and  

ௗࣦೞ
ௗఓ

ൌ 0 with ߣଶ ൌ 0 and  ߤ ൌ 1. 

o Case 1c): ሺܲ∗, ,∗ߤ ଶߣ
∗ , ଷߣ

∗ ሻ ൌ ሺܲ
ଵ௖
, ,ଵ௖ߤ ଶߣ

ଵ௖, 0ሻ  where ܲ
ଵ௖

 and 		ߤଵ௖  are obtained by 

maximizing ߎ௦  given ߎ௕ሺݓ∗ሻ ൌ 0 ଶߣ  .
ଵ௖  satisfies  

ௗࣦೞ
ௗ௉

ൌ 0  with ߣଷ ൌ 0 . Note that 		ߤଵ௖ ∈

ሾ0,1ሿ.  
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o Case 1d): ሺܲ∗, ,∗ߤ ଶߣ
∗ , ଷߣ

∗ ሻ ൌ ቀܲ
ଵௗ
, 1, ଶߣ

ଵௗ, ଷߣ
ଵௗቁ where ܲ

ଵௗ
satisfies ߎ௕ሺݓ∗ሻ ൌ 0, and ߣଶ

ଵௗ and 

ଷߣ	
ଵௗ satisfy  

ௗࣦೞ
ௗ௉

ൌ 0 and  
ௗࣦೞ
ௗఓ

ൌ 0 with  ߤ ൌ 1. 

 Case 2: ݓ∗ ൌ 0. 

 Suppose 1 െ ߙ െ ଵ݂ ൏ 0 and  ܺሺܸሻ ൐ 0 or  1 െ ߙ െ ଵ݂ ൌ 0 and ܥ௕ ൒ ଴݂.  

o Case 2a): ሺܲ∗, ,∗ߤ ଶߣ
∗ , ଷߣ

∗ ሻ ൌ ሺܲଶ௔, ,ଶ௔ߤ 0, 0ሻ , where ܲଶ௔  and ߤଶ௔  are obtained by 

maximizing ߎ௦  given ߎ௕ሺ0ሻ ൌ ௕ሺܸሻߎ ൒ 0 .  Note that ܲଶ௔ ∈ ሾܲሺߤଶ௔ሻ, ܲሺߤଶ௔ሻሿ   and  

ଶ௔ߤ ∈ ሾ0,1ሿ. 

o Case 2b): ሺܲ∗, ,∗ߤ ଶߣ
∗ , ଷߣ

∗ ሻ ൌ ሺܲଶ௕, 1, 0, ଷߣ
ଶ௕ሻ  where ܲଶ௕  satisfies ߎ௕ሺ0ሻ ൌ ௕ሺܸሻߎ ൒ 0  and 

ଷߣ
ଶ௕ satisfies  

ௗࣦೞ
ௗఓ

ൌ 0 with  ߤ ൌ 1.  Note that 	ܲଶ௕ ∈ ሾܲሺ1ሻ, ܲሺ1ሻሿ.  

 Suppose 1 െ ߙ െ ଵ݂ ൏ 0 and 	ܺሺܸሻ ൏ 0.  

o Case 2c): ሺܲ∗, ,∗ߤ ଶߣ
∗ , ଷߣ

∗ ሻ ൌ ሺܲଶ௖, ,ଶ௖ߤ 0, 0ሻ, where ܲଶ௖ and ߤଶ௖ are obtained by maximizing 

௕ሺ0ሻߎ ௦ givenߎ ൌ ுݓ௕൫ߎ
௜௡௧൯ ൒ 0.  Note that ܲଶ௖ ∈ ሾܲሺߤଶ௖ሻ, ܲሺߤଶ௖ሻሿ  and  ߤଶ௖ ∈ ሾ0,1ሿ.  

o Case 2d): ሺܲ∗, ,∗ߤ ଶߣ
∗ , ଷߣ

∗ ሻ ൌ ሺܲଶௗ, 1,0, ଷߣ
ଶௗሻ , where ܲଶௗ  satisfies ߎ௕ሺ0ሻ ൌ ுݓ௕൫ߎ

௜௡௧൯ ൒ 0 

and ߣଷ
ଶௗ satisfies  

ௗࣦೞ
ௗఓ

ൌ 0 with ߤ ൌ 1. Note that   ܲଶௗ ∈ ሾܲሺ1ሻ, ܲሺ1ሻሿ. 

2.4 Analysis of the Model  

In this section, we provide results based on analytic sensitivity analysis. While we focus 

our attention on the interior solutions (ݓ∗ ൌ ுݓ ௜௡௧ orݓ
௜௡௧, ܲ∗ ൌ ܲଵ௔ and ߤ∗ ൌ  ଵ௔), weߤ

note that analysis of boundary solutions is analogous, and therefore omitted. Our key 

results are stated in corollaries and are derived using comparative statics (Chiang and 

Wainwright 2005).   

2.4.1 Insights on Integration 

ܷ is the scaling factor of the supplier’s cost for ߤ units of IPI, which reflects both 

the complexity and modularity of the component. A large (small) value of ܷ indicates 
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that each unit of IPI is more (less) costly to the supplier. Intuitively, if the component is 

more (less) complex or less (more) modular then efforts to improve the buyer’s 

integration process are more (less) costly so that ܷ is larger (smaller). As expected, we 

find that if U increases, the supplier reduces its level of IPI (ߤ∗) so that the buyer’s unit 

integration cost increases. However, we also find that with larger ܷ the supplier may 

charge a higher or lower price (ܲ∗). Nevertheless, regardless of the change in price, the 

buyer always manufactures more components in-house (ݓ∗). The results on ݓ∗ and ܲ∗ 

are quite interesting and warrant further interpretation. 

With the lower investment in IPI that occurs when ܷ is larger, we expect the 

supplier to charge a lower price to entice outsourcing. We find, however, the supplier 

may charge a higher or lower price depending on the sensitivity of the buyer’s profit to its 

level of in-house production. In particular, if the buyer’s profit is highly sensitive to its 

amount of in-house production (or equivalently, insensitive to the supplier’s decisions), 

then the supplier charges a higher price (ܲ∗) simply to increase its marginal revenue. 

Since ܲ∗ and ߤ∗ we know the buyer’s unit cost of outsourcing is larger and it optimally 

undertakes more in-house production (ݓ∗ ). Alternatively, if 	 the buyer’s profit is 

insensitive to the portion of demand met from in-house production (or equivalently, 

highly sensitive to the supplier’s decisions), then the supplier charges a lower price (ܲ∗) 

to attract more outsourcing from the buyer. However, the decrease in price only reduces 

the supplier’s loss in total revenue and does not fully compensate for the increase in the 

unit integration cost. As a result, the buyer’s unit outsourcing cost is larger and ݓ∗. 

Therefore, regardless of whether the supplier’s price is higher or lower, if ܷ increases, the 

buyer’s unit outsourcing cost is larger, and the buyer pursues more in-house production. 
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Overall, the buyer’s profit declines because the additional benefits derived from more in-

house production are less than the additional outsourcing costs incurred. Similarly, driven 

by the loss in total revenue, the supplier’s profit declines when ܷ increases.  

The above insights are summarized in Corollary 1. To state the results 

mathematically, we introduce the following notation. Let ܼ ≡ ೏మಀ್
೏ೢమ

|ೢసೢ∗ ൌ
ௗమ್ࣦ
ௗ௪మ |௪ୀ௪∗ and 

note that Z < 0 holds. If ܼ is extremely small in relation to zero (i.e., ܼ ≪ 0), then the 

buyer’s profit is highly sensitive to the quantity of demand met by in-house production 

and relatively less sensitive to the supplier’s decisions on price and IPI. Alternatively, if 

ܼ  is close to zero (i.e., ܼ → 0ି ), then the buyer’s profit is highly sensitive to the 

supplier’s price and IPI decisions and relatively less sensitive to the quantity of in-house 

production. Also, let Φଵ ൌ
భ
ర

பమஈೞ
ப௉మ

ሺௗ
మ್ࣦ
ௗ௪మ ሻ

ଶ ൏ 0  and Φଶ ൌ 	Φଵ െ ܼ .  Clearly, Φଵ  is more 

negative in relation to the decrease in the supplier’s marginal profit with respect to price; 

and Φଶ increases as 	Φଵ increases or  ܼ decreases.  

Corollary 1. Suppose the supplier’s scaling factor for its investment in IPI (ܷ) increases. 

The buyer’s in-house production volume (ݓ∗) is larger, and the supplier’s level of IPI (ߤ∗) 

is smaller. If Φଶ ൐ 0 (Φଶ ൏ 0), then the supplier’s price (ܲ∗) is higher (lower). Lastly, 

both the buyer and supplier earn less profit.  

Another parameter related to the integration process is the buyer’s base unit cost 

for integration (ܮ). Intuitively, ܮ is affected by the past collaborative relationship between 

the buyer and supplier, the modularity of the component, and the ability of the buyer’s 

engineers to design an efficient component integration process. For instance, if the 

component is highly modular, integrating it with the production system is more 

straightforward and the base unit cost for integration is smaller. Similarly, if the buyer 
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and supplier have collaborated well in the past, the buyer may benefit from a more 

efficient integration process. In an intriguing result, we find that the effect of an increase 

in ܮ on the decisions of both the supplier and buyer depends on the magnitude of  ܷ, as 

described below. 

 Suppose the supplier’s investment cost for IPI (ܷ) is large and ܮ increases. We 

find that the supplier’s optimal investment in IPI may increase or decrease. There are two 

situations to consider. First, when ܮ  is large, we obtain ߤ∗  is moderate. Due to 

diseconomies of scale and since ܷ is large, the supplier incurs a substantial cost for even 

a small increase in ߤ∗. As a result, the increase in revenue for the supplier that would be 

obtained by reducing the buyer’s integration cost does not compensate for the higher cost 

incurred for IPI. Therefore, when both ܮ and ܷ are large and ܮ increases, the supplier 

optimally reduces its level of IPI (ߤ∗). Naturally, the reduction in ߤ∗ and increase in ܮ 

cause the buyer’s unit cost of integration to increase (ܮሺ1 െ  is ܮ ሻ). Second, when∗ߤ

small, we obtain ߤ∗ is small so that if L increases, the cost incurred by the supplier to 

increase its level of IPI is moderate even with large ܷ . In fact, the increase in the 

supplier’s revenue from more outsourcing fully compensates for the increase in the 

investment cost for IPI so that ߤ∗. Nevertheless, the increase in ߤ∗ is not sufficient to 

compensate for the increase in L and the buyer’s unit cost of integration is larger (ܮሺ1 െ

 .(ሻ∗ߤ

Again, we consider the situation where U is large and L increases, but shift our 

focus to the effect on the supplier’s price and the buyer’s level of outsourcing. Regardless 

of whether ܮ is large or small, if ܮ increases and the buyer’s profit is highly sensitive to 

the portion of demand met from in-house production (i.e., insensitive to the supplier’s 
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price), then the supplier charges a higher price (ܲ∗) to increase marginal revenue. With 

the higher price and higher unit integration cost, the buyer incurs a higher unit cost for 

outsourcing and produces more in-house (w*). Alternatively, if the buyer’s profit is 

highly sensitive to the supplier’s decision and ܮ increases, then the supplier charges a 

lower price (ܲ∗). However, the lower price is not sufficient to compensate for the larger 

base unit integration cost so that, again, the buyer’s unit outsourcing cost is larger and 

 . Clearly in this situation, the supplier charges a lower price simply to limit its loss in∗ݓ	

total revenue. Thus, when ܷ is large and ܮ increases, the supplier’s seeks to limit the 

negative impact on profit due to the reduction in the buyer’s outsourcing. Lastly, we find 

both the buyer and supplier earn lower profit as ܮ increases.  

The above insights are summarized in Corollary 2a. To state the results 

mathematically, we define	Φଷ ൌ ሺܸ െ ሻ∗ݓ െ ೏ೢ	ܮ
∗

೏ಽ
.  If ܷ ൐ మಽሺೇషೢ∗ሻംംషమ

ሺംషభሻംషభ
, we refer to ܷ as 

large; if ܷ ൌ మಽሺೇషೢ∗ሻംംషమ

ሺംషభሻംషభ
, we refer to ܷ as moderate; if	ܷ ൏ మಽሺೇషೢ∗ሻംംషమ

ሺംషభሻംషభ
, we refer to ܷ as 

small. Note that 	Φଷ  increases in relation to the amount of outsourcing, decreases in 

relation to the base unit integration cost, and decreases in relation to the marginal 

increase in the buyer’s amount of in-house production due to an increase in the base unit 

integration cost. 

Corollary 2a. Suppose the buyer’s base unit cost for integration (ܮ) increases and ܷ is 

large. If 	Φଷ ൐ 0	ሺ	Φଷ ൏ 0ሻ, then the supplier increases (reduces) its investment in IPI 

Φଶ	 If .(∗ߤ) ൐ 0	ሺΦଶ ൏ 0ሻ, the supplier’s price (ܲ∗) is higher (lower) and the buyer’s 

quantity of in-house production (ݓ∗) increases. Both the buyer and supplier earn less 

profit.  
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In Corollary 2b, suppose the cost of investing in IPI is small (i.e., ܷ is small). If ܮ 

increases, we find that the supplier increases its level of IPI to attract outsourcing from 

the buyer (ߤ∗). Since the cost of IPI is small, the increase in ߤ∗is sufficiently large so 

that it more than compensates for the increase in ܮ and thereby drives a reduction in the 

unit cost of integration (ܮሺ1 െ  ሻ). As before, the supplier’s price may increase or∗ߤ

decrease due to the increase in ܮ. First, if buyer’s profit is highly sensitive to the amount 

of in-house production and relatively less sensitive to price, then the increase in ܮ drives 

the supplier to lower its price (ܲ∗). With the lower unit cost for outsourcing, the buyer 

reduces its level of in-house production (ݓ∗). In this situation, we observe that the 

supplier’s pursuit of ߤ∗ and ܲ∗ are complements in terms of their impact on the buyer’s 

decision, ݓ∗. Second, if the buyer’s profit is highly sensitive to the supplier’s decisions 

and ܮ increases, then the supplier charges a higher price (ܲ∗). Nevertheless, the decrease 

in the unit integration cost more than compensates for the higher price so that again the 

buyer’s unit outsourcing cost is lower giving us ݓ∗. Thus, the supplier’s pursuit of ߤ∗ 

and ܲ∗ are substitutes in terms of their impact on the buyer’s decision, ݓ∗. Lastly, it is 

interesting to note that while the supplier earns less profit (the additional investment in 

IPI dominates the increase in total revenue), the buyer’s profit increases (the lower unit 

cost for outsourcing compensates for the higher unit production cost and reduction in 

future value).  

Lastly, when ܮ increases and is ܷ	moderate, the supplier increases its level of IPI 

 to precisely offset the increase in L so that the buyer’s unit integration cost (∗ߤ)

ሺ1ܮ) െ ሻ∗ߤ ) does not change. As a result, the buyer’s in-house production and the 
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supplier’s pricing decisions do not change. Since revenue is constant but its investment in 

IPI increases, the supplier’s profit is lower. Naturally, the buyer’s profit does not change.  

The above insights are summarized in Corollaries 2b and 2c.  

Corollary 2b. Suppose the buyer’s base unit integration cost (ܮ) increases and ܷ is small. 

The buyer’s optimal level of in-house production (ݓ∗) decreases, and the supplier’s 

optimal level of IPI (ߤ∗) increases. If 	Φଶ ൐ 0 (Φଶ ൏ 0) then the supplier’s price (ܲ∗) 

decreases (increases). The buyer’s profit increases whereas the supplier’s profit 

decreases. 

Corollary 2c. Suppose the buyer’s base unit cost for integration (ܮ) increases and ܷ is 

moderate. The buyer’s optimal level of in-house production (ݓ∗) and the supplier’s price 

(ܲ∗) do not change; the supplier’s investment in IPI (ߤ∗) increases. The supplier’s profit 

decreases; the buyer’s profit does not change. 

2.4.2 Insights on Learning 

Our model embodies two forms of learning. First, we analyze the effect of the rates of 

volume-based learning that reduce the period 2 manufacturing costs for both the supplier 

(Corollary 3) and buyer (Corollary 4). Second, we examine the effect of volume-based 

learning obtained by the buyer that enhances its development of future products and 

processes (Corollary 5).  

Intuitively, if the supplier has a higher rate of volume-based learning (larger ߚ), it 

has more incentive to attract outsourcing from the buyer to reduce its period 2 

manufacturing costs. As such, the supplier increases its level of IPI (ߤ∗) to reduce the 

buyer’s unit integration cost. However, the supplier’s price can increase or decrease. If 

the buyer’s integration cost is significantly reduced by the supplier’s investment in IPI, 
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the supplier is able to charge a higher price. Since the decrease in the buyer’s unit 

integration cost more than offsets the increase in price, the buyer’s unit outsourcing cost 

is smaller and the buyer’s level of outsourcing increases (ݓ∗ ). Again, we see a 

substitution effect whereby the supplier relies more on ߤ∗   and less on ܲ∗  to attract 

outsourcing. Alternatively, if the supplier’s investment in IPI has a limited effect on 

reducing the buyer’s integration cost, then to stimulate outsourcing from the buyer, the 

supplier charges a lower price (ܲ∗). Since both the price and unit integration cost are 

smaller, the buyer’s unit outsourcing cost is smaller and the buyer pursues less in-house 

production (ݓ∗ ). In this situation, the supplier’s price and investment in IPI are 

complementary in the sense that both seek to attract more outsourcing from the buyer. 

Therefore, regardless of the change in price, when the supplier’s rate of volume-based 

learning is larger, the buyer outsources more. Finally, when the supplier’s rate of learning 

increases, both the supplier and buyer earn higher profit. 

The above discussion is summarized in Corollary 3. To state the results 

mathematically, let Φସ ൌ ߛሺ∗ߤܮ2 െ 1ሻିଵ ൅ ܼ . Clearly, Φସ  increases in relation to the 

base unit cost of outsourcing, the optimal level of IPI, and the sensitivity of the buyer’s 

profit to the supplier’s price and IPI decisions. Additionally, Φସ decreases in relation to 

the diseconomies of scale associated with larger investments in IPI. 

Corollary 3. If the supplier’s rate of learning (ߚ) increases, then the supplier’s optimal 

level of IPI (ߤ∗) is larger, and the buyer’s optimal level of in-house production (ݓ∗) is 

smaller. When Φସ ൐ 0 (Φସ ൏ 0), the supplier charges a higher (lower) price (ܲ∗). Both 

the buyer and supplier realize higher profits. 
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Continuing with our analysis of learning, we find that the buyer’s optimal level of 

in-house production, ݓ∗, is U-shaped with respect to the buyer’s rate of volume-based 

learning,	ߙ. As such, we consider two cases as summarized in Corollaries 4a and 4b. 

First, suppose the buyer’s rate of volume-based learning is sufficiently small and 

increases. We expect the supplier needs to attract more outsourcing through its IPI and 

pricing decisions; and we expect the buyer undertakes more in-house production to 

reduce its period 2 unit production cost. Consistent with intuition, we do find that to 

further attract outsourcing, the supplier increases its level of IPI (ߤ∗). However, we also 

find that the supplier’s optimal price may increase or decrease. First, when ܮ is small or ߛ 

is large, increasing the level of IPI does not have a significant impact on the buyer’s unit 

integration cost and thereby forces the supplier to focus on lowering its price to attract 

more outsourcing ( ܲ∗ ). The decrease in the unit outsourcing cost more than 

compensates for the (small) increase in the buyer’s period 2 in-house production cost, and 

the buyer optimally increases its level of outsourcing (ݓ∗). As such, the supplier uses 

complementary strategies (lower price and larger IPI) to attract outsourcing. Second, if ܮ 

is large or ߛ is small, then the supplier charges a higher price (ܲ∗). In this situation, the 

supplier leverages the fact that increasing the level of IPI significantly reduces the 

buyer’s unit integration cost. Despite the higher price, the buyer’s unit outsourcing cost is 

lower so that the buyer outsources more to the supplier (ݓ∗). Thus, the supplier’s higher 

investment in IPI more than compensates for the higher price. Although the supplier’s 

earns more revenue from outsourced components, the high investment in IPI drives a 

reduction in the supplier’s profit.  
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The above discussion is summarized in Corollary 4a. To state the results 

mathematically, we let Φହ ൌ ∗ݓ െ ሺܸ െ ሻሺ1∗ݓ െ ሻߙ2 ൅ ሺ1 െ ሻ൫ሺ1ߙ െ ∗ݓሻߙ ൅

ሻ∗ݓሺ	݃݋൯݈ߙܸ  and Φ଺ ൌ Φଵݓ∗൫1 ൅ ሻሺ1∗ݓሺ݃݋݈ െ ሻ൯ߙ ൅ ߛሺܮ2 െ 1ሻିଵݓ∗ߤ∗ସାଶఈ൫1 െ

ߙ2 െ ሺ1 െ ሻ൯. We see that Φହ∗ݓሺ݃݋݈ߙሻߙ   increases in relation to the buyer’s rate of 

volume-based learning and the quantity of in-house production; but Φହ  decreases in 

relation to the quantity of outsourcing. Given our supposition that ߙ is sufficiently small, 

we know that Φ଺  increases in relation to the base unit cost of integration and the optimal 

level of IPI; but Φ଺ decreases in relation to the buyer’s rate of volume-based learning and 

the diseconomies of scale associated with investments in IPI. Note that if both ܮ and ߛ 

are small or both are large, the impact on Φ଺ depends on the relative magnitude of other 

parameters. 

Corollary 4a. Suppose the buyer’s rate of learning (ߙ) is sufficiently small (i.e., Φହ ൏

0ሻ	and increases. The buyer’s optimal level of in-house production (ݓ∗) is smaller, the 

supplier’s optimal level of IPI (ߤ∗ ) is larger. If Φ଺ ൐ 0 (Φ଺ ൏ 0), then the supplier 

optimally charges a higher (lower) price (ܲ∗). The supplier’s optimal profit is smaller.  

Second, suppose ߙ is sufficiently large and increases. Naturally, the buyer has 

incentive to pursue more in-house production because the high learning capability 

significantly reduces the in-house production cost. To attract more outsourcing, the 

supplier charges a lower price (ܲ∗). In contrast, since the buyer has a strong preference 

for in-house production, there is not enough incentive for the supplier to increase its level 

of IPI, as a result, ߤ∗. Therefore, the supplier’s price and investment in IPI serve as 

substitutes when ߙ is sufficiently large and increases. Ultimately, despite the supplier’s 

lower price, the higher integration cost and the strong capability for volume-based 
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learning in the production cost lead the buyer to produce more in-house (ݓ∗). As a 

result, the supplier’s revenue from outsourcing is lower. Even though the supplier’s 

investment in IPI is lower, the loss in revenue leads to a lower profit for the supplier.   

Corollary 4b. Suppose the buyer’s rate of learning (ߙ) is sufficiently large (i.e., Φହ ൒ 0ሻ 

and increases. The buyer’s optimal level of in-house production (ݓ∗) is non-decreasing, 

the supplier’s optimal level of IPI (ߤ∗) is non-increasing, and the supplier’s optimal price 

(ܲ∗) is non-increasingThe supplier’s optimal profit is smaller. 

We conclude our discussion of learning by analyzing the value of the transfer of 

knowledge from period 2 in-house production that enhances the buyer’s development of 

future products and processes. Suppose the future value obtained from volume-based 

learning in period 2 is larger ( ଴݂ ). Given the buyer’s greater incentive for in-house 

production, the supplier cannot justify the same investment in IPI so that ߤ∗ . 

Interestingly, the supplier’s optimal price may increase or decrease.  If the buyer’s profit 

is highly sensitive to the amount of demand met from in-house production (i.e., relatively 

insensitive to the supplier’s decisions), then the supplier increases the price (ܲ∗) to raise 

marginal revenue despite the falling quantity of outsourcing. Given the larger unit cost 

for outsourcing and the larger value of future knowledge, the buyer pursues more in-

house production (ݓ∗). As such, the supplier’s solution is complementary in the sense 

that the changes in both IPI and price have the effect of reducing the buyer’s level of 

outsourcing to limit the supplier’s loss in profit. Alternatively, if the buyer’s profit is 

highly sensitive to the supplier’s decisions, then the supplier charges a lower price (P*) 

to attract outsourcing. Clearly, the lower price seeks to substitute for the supplier’s lesser 

investment in IPI. However, given the buyer’s strong incentive for in-house production 
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driven by the higher future value, the decrease in price only limits the reduction in the 

buyer’s level of outsourcing (ݓ∗).  From this discussion, it is clear that when ଴݂ is larger, 

the buyer earns higher profit whereas the supplier’s profit is smaller.  

The above discussion is summarized in Corollary 5. To state the results 

numerically, we define Φ଻ ൌ Φଶݓ∗ െ ሺ1 െ ଵ݂ሻሺܸ െ ሻܼ∗ݓ െ ሺ1∗ߤܮ2 െ ଵ݂ሻሺߛ െ 1ሻିଵ . 

Clearly, Φ଻  increases in relation to the optimal amount of outsourcing and the 

diseconomies of scale associated with investments in IPI; but Φ଻ decreases in relation to 

the sensitivity of the buyer’s profit to the supplier’s decisions, the optimal level of IPI, 

and the base unit integration cost. 

Corollary 5. Suppose the future value benefits realized by the buyer are larger ( ଴݂ larger). 

The buyer increases its level of in-house production (ݓ∗), and the supplier’s level of IPI 

is smaller. If Φ଻ (∗ߤ) ൐ 0 (Φ଻ ൏ 0), then the supplier’s price (ܲ∗) is higher (lower). The 

buyer’s profit is larger and the supplier’s profit is smaller.  

2.5 An Extension: Dynamic Model 

In this section, we relax several assumptions made in the base model (Section 3). We 

allow the supplier’s price and the buyer’s outsourcing decisions to differ in periods 1 and 

2 (written as ଵܲ, ଶܲ, ݓଵ, and ݓଶ). However, we reasonably maintain that the supplier’s 

investment in IPI occurs once at the beginning of period 1 and impacts the buyer’s 

integration costs in both periods 1 and 2. Moreover, we allow dynamic demand for the 

buyer. Let component demand in period 1 be given by ܸ  and component demand in 

period 2 equal ܸሺ1 ൅ ,ሻߩ  with ߩ ∈ ሾെ1,∞ሻ , where ߩ  indicates the percent demand 

change between periods. Naturally, if ߩ ൐ 0	ሺߩ ൑ 0ሻ demand increases (is non-increasing) 

from period 1 to 2. The buyer’s revenue in periods 1 and 2 is written as ܴܸ and ܴܸሺ1 ൅
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 ሻ, respectively. The sequence of decision making in the model extension is describedߩ

below. 

In the first stage of the first period, the supplier determines its one time level of 

IPI (ߤ) and the price charged for an outsourced component in period 1 ( ଵܲ) to maximize 

the supplier’s profit in two periods (Π௦). At the second stage of the first period, the buyer 

determines its level of in-house production in period 1 (ݓଵ) in order to maximize its two 

period profit (Π௕). Again, the supplier and the buyer’s profits are maximized over two 

periods simultaneously because the pricing and outsourcing decisions in period 1 impact 

the learning benefits in period 2 (Gray et al. 2009). In the first stage of the second period, 

the supplier determines the price to charge the buyer in period 2 ( ଶܲ) to maximize its 

period 2 profit (Π௦ଶ). In response, the buyer determines its level of in-house production in 

period 2 (ݓଶ) to maximize its period 2 profit (Π௕
ଶ).  

While some analytic results are obtained, due to the complexity of the dynamic 

model, our interpretations rely entirely on insights obtained numerically. Moreover, to 

simplify the analysis we consider only non-boundary solutions, we assume the incentive 

compatibility constraints of the buyer and supplier are satisfied, and we assume 	 ଵ݂ ൌ
భ
మ
. 

We use backward induction to solve the two-period Stackelberg game.  

It is straightforward to show that Π௕
ଶ (Equation (16)) is concave with respect to ݓଶ. 

Analytically, using first order condition we find ݓଶ
∗ ൌ ቀ ೑బ

మ൫಴್ೢభ
షഀషುమషಽሺభషഋሻ൯

ቁ
ଶ
	is the non-

boundary solution for ݓଶ
∗ that maximizes Π௕

ଶ. Substituting ݓଶ
∗ into the supplier’s period 2 

profit, we obtain Π௦ଶ (Equation (17)). Again, it can be shown that Π௦ଶ is concave with 

respect to ଶܲ . We obtain an explicit non-boundary solution for ଶܲ  that maximizes the 
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supplier’s period 2 profit and satisfies the first order condition
ௗஈೞమ

ௗ௉మ
 = 0. In the next step, 

we substitute ݓଶ
∗ and ଶܲ

∗ into the buyer’s two-period profit, Π௕ (Equation (18)). Due to 

the mathematical complexity, we cannot show that Π௕ is concave with respect to ݓଵ, nor 

can we obtain an explicit solution for ݓଵ. However, numerically, we find ݓଵ
∗ such that 

ௗஈ್
ௗ௪భ

 = 0 and maximizes the buyer’s two-period profit. Lastly, we substitute  ݓଶ
∗, ଶܲ

∗, and 

ଵݓ
∗ into the supplier’s two-period profit and obtain Π௦ (Equation (19)). Again, we cannot 

show that Π௦  is jointly concave with respect to ଵܲ  and ߤ , nor can we obtain explicit 

solutions for ଵܲ
∗ and ߤ∗. Nevertheless, numerically we find optimal solutions of ଵܲ and ߤ 

that satisfy  
ௗஈೞ
ௗ௉భ

 = 0 and 
ௗஈೞ
ௗఓ

 = 0 and maximize the supplier’s two-period profit. 

Π௕
ଶ ൌ ܴܸሺ1 ൅ ଶݓଵିఈݓ௕ܥ–ሻߩ െ ሺ ଶܲ ൅ ௜ሻሺܸሺ1ܥ ൅ ଶሻݓ–ሻߩ ൅ ଴݂ݓଶ

భ
మ    (16) 

Π௦ଶ ൌ ଶܲሺܸሺ1 ൅ ଶݓ–ሻߩ
∗ሻ– ଵ൯ݓ–௦൫ܸܥ

ିఉ
ሺܸሺ1 ൅ ሻߩ െ ଶݓ

∗ሻ                             (17) 

Π௕ ൌ ܴܸ ൅ ܴܸሺ1 ൅ –ଵݓ௕ܥ–ሻߩ ଶݓଵିఈݓ௕ܥ
∗– ሺ ଵܲ ൅  ଵሻݓ–௜ሻሺܸܥ

          െሺ ଶܲ
∗ ൅ ௜ሻሺܸሺ1ܥ ൅ ଶݓ–ሻߩ

∗ሻ ൅ ଴݂ݓଶ
∗
భ
మ       (18) 

Π௦ ൌ ଵܲሺܸ–ݓଵ
∗ሻ ൅ ଶܲ

∗ሺܸሺ1 ൅ ଶݓ–ሻߩ
∗ሻ– ଵݓ–௦ሺܸܥ

∗ሻ– ଵሻିఉሺܸሺ1ݓ–௦ሺܸܥ ൅ ሻߩ െ ଶݓ
∗ሻ 

         െܷߤఊ                          (19) 

We conducted extensive numerical experimentation to develop insights on how 

parameter values impact the optimal solutions. The full range of experimentation for all 

input parameters is given in Table A.2. In Section 2.5.1, we compare the base model 

analytic results with the numerical results obtained assuming 0 = ߩ. In this way, we can 

isolate the impact of allowing the supplier’s price and the buyer’s outsourcing decisions 

to vary in periods 1 and 2. In Section 2.5.2, we extend insights from the base model and 

analyze the case of dynamic demand (0 ≠ ߩ).  
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2.5.1 Comparison of Base and Dynamic Models 

To perform a comparison with the base model, we assume that the buyer faces 

constant demand in periods 1 and 2 in the extension. We find that the impact of a 

parameter change on the decisions of the buyer and supplier in period 1 are consistent in 

both the base model and its extension, e.g., if ݓ increases (decreases) in the base model 

then ݓଵ and ݓଶ increase (decrease) in the extension. Intuitively, w and ݓଵ move in the 

same direction since, in both models, the buyer and supplier optimize their two-period 

profit to obtain period 1 solutions. Similarly, w and ݓଶ move in the same direction due to 

volume-based learning (i.e., w is driven by volume-based learning in the production cost 

and the future value whereas ݓଶ is driven by volume-based learning in the future value). 

Furthermore, we find that the supplier’s investment in IPI moves in the same direction in 

the base model and extension since, in both models, the supplier makes the investment 

decision only in period 1. Also, consistent with analytical results in the base model, we 

numerically find that the supplier’s period 1 price, ଵܲ , may increase or decrease 

depending on whether the buyer’s profit is highly sensitive to the quantity of in-house 

production. In contrast, the direction of change in the supplier’s period 2 price, ଶܲ, differs 

in both models. In the base model, we analytically prove that an increase in a parameter 

may drive an increase or decrease in price depending on whether the buyer’s profit is 

highly sensitive to the quantity of in-house production. In the extension, however, we 

find that an increase in a parameter changes ଶܲ,  in only one direction, independent of 

whether or not the buyer’s profit is highly sensitive to the quantity of in-house production. 

Intuitively, this numerical result occurs since, in the extension, the supplier only has one 

mechanism to impact the buyer’s outsourcing decision in period 2. Lastly, we find that in 
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response to a parameter change the profit for the supplier and buyer in the base model 

and extension move in the same direction.  

2.5.2 Effect of Dynamic Demand   

In this section, we consider the effect of dynamic demand realized by the buyer. 

Given the focus on constant demand in the base model, these numerical results provide 

new insights that contribute to our understanding of the problem. We consider the 

situation where the buyer’s demand is larger in period 2 than in period 1 ሺߩ ൐ 0ሻ. Note 

that these numerical results hold over the ranges of the parameter values given in Table 

A.2.  

With larger demand in period 2, the buyer has more incentive for in-house 

production in period 1 to reduce the period 2 in-house production cost. Observing the 

buyer’s strong incentive for in-house production, the supplier invests in more IPI to 

attract outsourcing. Moreover, if the buyer’s profit is less sensitive to the quantity of 

demand met from in-house production (i.e., more sensitive to the supplier’s decisions), 

then the supplier charges a lower price in period 1 to attract more outsourcing. (This 

insight is consistent with analytic results in the base model.) As a result, the buyer’s unit 

outsourcing cost is lower. Nevertheless, the buyer’s incentive to accumulate more 

volume-based learning is sufficiently strong so that the quantity of period 1 in-house 

production increases. As such, the supplier’s price and IPI strategies simply limit (but do 

not reverse) the loss in outsourcing in period 1. In period 2, the supplier observes the 

increase in the buyer’s period 2 demand as well as the diminishing returns to the buyer’s 

moderate future value of manufacturing experience and optimally charges a higher price. 

Naturally, given the buyer’s smaller unit production cost and the supplier’s higher price, 
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the buyer undertakes more in-house production in period 2. However, although the 

quantity of period 2 in-house production (ݓଶ
∗) is larger, the portion of demand met from 

period 2 in-house production (
௪మ
∗

௏ሺଵାఘሻ
) is smaller. Therefore, the supplier is able to charge 

a higher price in period 2 because it anticipates an increase in the buyer’s portion of 

outsourcing. Lastly, in terms of profit in period 1, the buyer’s profit is larger whereas the 

supplier’s profit is smaller. Nevertheless, driven by the period 2 increase in demand 

realized by both firms, the total two-period profits of the buyer and supplier are larger.  

2.6 Conclusion 

We introduce a two-period Stackelberg game of a buyer and supplier from which we 

obtain results that contribute to the literature on two dimensions. First, we recognize that 

in many industries manufacturing experience may substantially impact a firm’s ability to 

develop the next generation product and process technologies.  For firms developing high 

tech products with short life cycles, the seamless KT from one product generation to the 

next is critical. We introduce a future value to the buyer’s profit maximizing objective 

that reflects the benefits derived from current manufacturing experience to the successful 

development of future products and technologies. We show that if the future value is 

sufficient then the buyer optimally pursues a partial outsourcing strategy, even if the 

marginal cost of outsourcing is less than the marginal cost of in-house production. 

Analytic conditions are given providing insights on how the future value affects the 

buyer’s level of outsourcing as well as the supplier’s decisions. In contrast, we show that 

if the future value is ignored (zero) then the buyer does not optimally pursue a partial 

outsourcing strategy and instead meets all component demand either from in-house 

production or outsourcing; whichever is associated with the lower unit cost.   
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A second contribution of our research is that we permit the supplier to invest in 

IPI that enhances the buyer’s efficiency at integrating the outsourced component into its 

manufacturing process. This is important since, along with the supplier’s price, the 

buyer’s integration cost significantly affects its outsourcing decision. Thus, the supplier 

has two mechanisms to influence the buyer’s outsourcing decision: its price and its 

investment in IPI. Analytic results provide insights on situations where the supplier 

reduces its price and increases its investment in IPI (complementary strategy) versus 

situations where the supplier reduces both its price and investment in IPI (substitution 

strategy). Analytic results, described below, demonstrate that a buyer’s partial 

outsourcing decision and the supplier’s price and investment in IPI decisions are 

intertwined and impacted by volume-based learning realized by both firms, the cost of IPI 

incurred by the supplier, and the cost of integration incurred by the buyer. 

2.6.1 Supplier’s Two Mechanisms: Substitutes or Complements 

Consider the situation where the buyer’s manufacturing process becomes more complex 

so that the supplier’s investment cost in IPI increases. We show analytically that if the 

buyer’s profit is relatively less sensitive to the supplier’s price and IPI decisions and more 

sensitive to the quantity of in-house production, then the supplier optimally reduces its 

investment in IPI and charges a higher price. Therefore, the supplier’s two mechanisms to 

influence the buyer’s behavior act as complements in sense that both reduce the buyer’s 

pursuit of outsourcing in order to limit the supplier’s loss in total profit. We also show 

that, beyond in-sourcing more component demand, the buyer realizes less profit. 

Alternatively, if the supplier’s investment cost in IPI increases and the buyer’s profit is 

relatively more sensitive to price and IPI decisions and less sensitive to the quantity of in-
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house production, then we prove that the supplier reduces its investment in IPI and 

reduces the price charged to the buyer. As such, we observe a substitution strategy 

whereby the supplier lowers its price in order to compensate for the buyer’s higher unit 

cost of integration. Overall, however, our analytic results show that in both situations the 

unit cost of outsourcing increases and the buyer undertakes more in-house production. 

Again, both the buyer and supplier earn less profit.   

Similar complementary versus substitution effects are obtained from analytical 

sensitivity analysis on the buyer’s base unit integration cost. We find that as the base unit 

cost of integration increases, the supplier’s actions only limit its reduction in profit, 

whereas the buyer’s profit may increase, decrease, or remain unchanged depending on the 

magnitude of the supplier’s cost for IPI (see Corollary 2). 

2.6.2 The Rates of Learning on Cost Reduction for the Buyer and Supplier 

Our analysis reveals that the rates of volume-based learning that reduce the production 

costs for the buyer and supplier impact decisions in different ways. When the supplier’s 

rate of learning increases, we analytically show that the supplier increases its investment 

in IPI. Depending on the effectiveness of IPI on reducing the buyer’s integration cost, the 

supplier’s price may increase or decrease. In either situation, the buyer’s unit outsourcing 

cost decreases and the buyer outsources more to the supplier. Moreover, both the buyer 

and supplier earn higher profit. 

In contrast, consider the effect of volume-based learning for the buyer. When the 

buyer’s rate of learning is small and increases, the supplier invests more in IPI to attract 

more outsourcing. Although the price may increase or decrease, the buyer’s unit 

outsourcing cost declines due to the supplier’s investment in IPI. The low unit 
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outsourcing cost drives the buyer to increase its amount of outsourcing. Alternatively, if 

the buyer’s rate of learning is large and increases the buyer undertakes more in-house 

production regardless of the supplier’s decisions. The supplier limits the loss in 

outsourcing demand by lowering its price, and limits the reduction in profit by lowering 

costs (reducing IPI). Lastly, regardless of the magnitude of the buyer’s rate of volume-

based learning, if that rate increases, then we prove that the buyer’s profit increases but 

the supplier’s profit declines. 

From the above we have shown that both the buyer and supplier realize higher 

profit when the supplier has a higher rate of volume-based learning in its production cost. 

Similarly, we show that the buyer realizes higher profit if it has a higher rate of volume-

based learning in its production cost. Nevertheless, we find that the supplier does not 

benefit from an increase in the buyer’s rate of volume-based learning despite the fact that 

it has two mechanisms to manipulate the buyer’s outsourcing strategy. This finding is 

different from that of Gray et al. (2009).   

2.6.3 An Extension 

So far, we have presented analytic results derived for the base model, which assumes a 

fixed contractual agreement between the buyer and supplier in the two-period game. In 

Section 5, we present numerical results derived from an extension where we allow the 

supplier’s price and the buyer’s quantity of in-house production to vary over periods 1 

and 2. The supplier’s investment in IPI, however, remains a one-time decision made at 

the beginning of period 1. Furthermore, unlike the base model which assumes fixed 

demand, in the extension we allow the buyer’s volume of component demand to vary 

between periods 1 and 2. Based on extensive numerical experimentation, we find that if 
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the component demand is larger in period 2, the buyer has more incentive to reduce its 

unit production cost and pursues more in-house production in period 1. To attract more 

outsourcing, the supplier invests in more IPI and lowers the price in period 1. 

Nevertheless, the supplier’s actions simply limit the increase in the buyer’s period 1 in-

house production. In period 2, the supplier charges a higher price because it recognizes 

that, while the buyer’s component demand is larger, the buyer’s future value benefits 

from manufacturing experience are moderate and exhibit diminishing returns. Ultimately, 

the buyer pursues a modest increase in the quantity of in-house production in period 2, 

which provides it with sufficient future value benefits. Moreover, the buyer outsources a 

larger portion of the increase in its component demand for period 2 to the supplier. Lastly, 

both firms earn higher profit over the two periods.  

2.6.4 Future Research   

In this paper, we do not consider the situation where the buyer realizes volume-

based learning in the cost of its integration activities. According to Boone and Ganeshan 

(2001) and Anderson and Parker (2002, 2008), the learning phenomenon may exist in 

component integration. Future research may analyze how learning that reduces the 

buyer’s component integration cost impacts the decisions of the buyer and supplier. 

Moreover, we limit our attention to the case of static learning curves. Since the learning 

rate may change over the product life cycle, relaxing the static assumption might provide 

interesting insights on outsourcing strategies.    
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CHAPTER 3 

KNOWLEDGE CREATION AND KNOWLEDGE TRANSFER IN 

NEW PRODUCT DEVELOPMENT PROJECTS 

  

3.1 Introduction 

Due to time-based competition as well as short product life cycles a firm’s ability to 

introduce new products to the marketplace has become increasingly important (Cohen et 

al. 1996, Ha and Porteus 1995, Loch and Terwiesch 1998). Thus, a firm must excel at 

new product development (NPD) to sustain or expand profitability (Dahan and 

Mendelson 2001, Terwiesch and Loch 2004). Managing NPD endeavors entails 

managing teams of highly skilled employees responsible for designing components of the 

product and process. Over time, the teams embed their knowledge into the development 

project. This leads us to the fundamental problem: how to manage the evolution of 

knowledge of the NPD teams.  

In this paper, we introduce a Base Model and two model extensions that analyze 

how to manage knowledge throughout the NPD project. In all three models, progress in 

the NPD project is inferred by the growing levels of knowledge at three stages starting 

with prototyping, continuing to pilot line testing, and concluding with production ramp-

up (Terwiesch and Loch 2004, Loch et al. 2001, Thomke 1998). The manager determines 

the rates and timing of development activities to be pursued to increase the levels of 

knowledge throughout the NPD project. Naturally, costs are incurred as these 

development activities are undertaken over time. Ultimately, the knowledge embedded 
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into the NPD project by the product launch time determines the net revenue earned when 

the new product is released to the marketplace (Santiago and Vakili 2005, Chao et al. 

2009, Gaimon et al. 2011, Ozkan et al. 2012). It is important to note that the three model 

formulations introduced are supported by the authors’ interactions with NPD research 

analysts at a major U.S. consumer products firm, NPD managers from a U.S. firm in the 

energy industry, and a major electronic products manufacturer in Asia. 

A key feature of our Base Model is the characterization of how knowledge at each 

stage increases over time. At the initial prototyping stage, the level of knowledge 

increases as the team pursues prototyping activities. At the second stage, the level of pilot 

line knowledge increases as the team pursues pilot line testing activities as well as 

through the transfer of knowledge from the prototyping stage. Prototyping knowledge 

improves the ability of engineers involved in pilot line testing to identify design features 

to be tested, to properly design the pilot line configuration, and to undertake pilot line 

testing (Thomke and Bell 2001). Similarly, the level of ramp-up knowledge increases 

over time as the team pursues more production ramp-up activities and through the 

transfer of knowledge from the pilot line stage. Knowledge from pilot line testing 

improves the ability of the production ramp-up team to help identify which experiments 

or engineering trials to perform as well as how to perform them (Terwiesch and Bohn 

2001). In our Base Model, we assume KT is continuous. Therefore, the Base Model 

reflects an environment where the development teams are sufficiently small and highly 

interactive so that the flow of knowledge from one stage to the next is fluid and occurs 

continuously over time. Moreover, in the Base Model we assume that KT only occurs in 

the forward direction from an upstream to a downstream stage.  
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In an extension of the Base Model, referred to as the Feedback Model, we permit 

KT to occur continuously in both the forward and backward directions (Loch and 

Terwiesch 1998). Therefore, in addition to forward KT, we allow knowledge 

accumulated in a downstream stage to be continuously transferred backward to provide 

feedback to an upstream stage. For the three stage development process we consider, 

there are three feedback scenarios: (i) from the pilot line stage to the prototyping stage, (ii) 

from the ramp-up to the prototyping stage, and (iii) from the ramp-up to the pilot line 

stage. Feedback to the prototyping stage provides insights on design decisions including 

whether the materials chosen for the new product pass safety tests, and which design 

features ensure the manufacturability of the product. Feedback to the pilot line stage 

helps direct future testing efforts to ensure manufacturability.  

In another extension of the Base Model, referred to as the Discrete Model, we 

consider the situation where the teams responsible for the NPD project are sufficiently 

large or work in diverse locations so that continuous KT is not practical. Instead, 

knowledge is transferred at discrete times during the development project. As such, 

knowledge is accumulated at the prototyping stage before being transferred to the pilot 

line testing stage, and knowledge is accumulated at the pilot line stage before being 

transferred to the ramp-up stage. Also, consistent with the Base Model, we assume that 

KT occurs in the forward direction. To summarize, in the Discrete Model, the NPD 

manager determines the optimal rates of development activities (e.g., prototyping, pilot 

line testing, and production ramp-up), and the number of forward KTs and the times they 

should occur.  
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We contribute to the literature by introducing a Base Model and two model 

variations to analyze how knowledge should evolve over time for three stages of an NPD 

project. First, by comparing the solutions of the Base Model and the Feedback Model, we 

analyze the effect of feedback on the manager’s pursuit of prototyping, pilot line testing, 

and product ramp-up activities. Similarly, by comparing the solutions of the Base Model 

with the Discrete Model, we analyze the effect of different flows of KT (continuous 

versus discrete) on the manager’s approach to knowledge management. In particular, we 

explore drivers of situations where the NPD manager prefers to transfer large amounts of 

knowledge less frequently versus small amounts of knowledge more frequently. In 

addition, for all models, we explore how the effectiveness of development activities at 

one stage impacts the evolution of knowledge in all stages of the NPD project. This is 

important since the manager has some control over the effectiveness of development 

activities, which may be enhanced with higher skilled team members or through superior 

technical support. Lastly, we explore how the returns to KT (either forward or backward) 

impacts the manager’s pursuit of prototyping, pilot line testing, and production ramp-up 

activities throughout the NPD project. Again, the manager has some control over the 

returns to KT since she can formalize methods to document knowledge and can invest in 

advanced technical systems to facilitate the transfer.  

This paper is organized as follows: In Section 2, a review of the literature is 

provided. In Section 3, we introduce and analyze the Base Model where forward KT 

occurs continuously between successive development teams. All of the results for the 

Base Model are analytic. In Section 4, we introduce and analyze the Feedback Model 

where, beyond the continuous forward flow of KT, feedback continuously occurs from 
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the pilot line to the prototyping stage. Both analytic and numerical results are obtained. In 

addition, insights are given on the impact of feedback from the ramp-up stage.  In Section 

5, we introduce and analyze the Discrete Model where knowledge is batched and 

transferred in the forward direction at discrete times during the NPD project. While some 

results for the Discrete Model are analytic, other results are derived from extensive 

numerical experimentation. The concluding remarks are given in Section 6. 

3.2 Literature Review 

This research is related to the literature on KT and the literature on concurrent 

engineering in NPD projects. 

3.2.1 The Knowledge Transfer Literature 

Development knowledge that is product oriented includes knowledge about markets and 

consumer preferences as well as methods for market testing (Pisano 1997). In the context 

of process development, a firm’s technical knowledge includes elements like “theories, 

principles, algorithms, conceptual models, specific analytical or experimental techniques, 

heuristics, and empirical regularities” (Pisano 1997, p. 205). Patents, documents, or 

computer models, etc. capture those elements of technical knowledge that can be codified 

(Pisano 1997). Naturally, some development knowledge remains tacit and is therefore 

more difficult to transfer. In the production literature, the level of knowledge of the 

manufacturing workforce is inferred by the number of units produced per unit time that 

meet quality standards (Argote et al. 1990, Argote 1999). Similarly, in the NPD domain, 

the team’s level of knowledge may be inferred by both the number and quality of 

prototypes and pilot line experiments generated. Terwiesch and Bohn (2001) use the 

number of ramp-up experiments conducted to indicate the level of ramp-up knowledge.  
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Knowledge increases through learning activities, which may be categorized as 

either autonomous or induced (Dutton and Thomas 1984). Autonomous learning involves 

“automatic improvements that result from sustained production over long periods” 

(Dutton and Thomas 1984, p. 241). Induced learning requires managerial action and 

investment for the learning activities to occur (Terwiesch and Bohn 2001, Carrillo and 

Gaimon 2000, 2004). KT is a form of induced learning whereby one party passes 

knowledge to another either orally or with documentation (Ha and Porteus 1995, Argote 

1999, Ozkan et al. 2012). Argote and Ingram (2000, p. 151) define KT as “the process 

through which one unit (e.g., group, department, or division) is affected by the experience 

of another”. The importance of KT to a firm’s performance has been shown empirically. 

Based on data from the construction of Liberty ships, Argote et al. (1990) find that a 

shipyard that begins operation late is more efficient than those starting early because of 

KT. Focusing on KT across shifts at a single plant, Epple et al. (1991) find that 

substantial but less than complete KT occurs. In a study of the global semiconductor 

industry, Salomon and Martin (2008) find that KT shortens the time a firm needs to ramp 

up to full production at a new manufacturing facility.  

To understand factors that impact the effectiveness of KT, Lapre and Van 

Wassenhove (2001) examine factories in a steel manufacturing firm. They find that 

learning within the factory results in significant improvements in productivity. However, 

the knowledge transferred to other factories does not generate significant productivity 

improvements because of the lack of management buy-in and interdepartmental problem 

solving skills. Based on an eight year field investigation of Xerox Europe, Jensen and 

Szulanski (2007) examine whether the use of templates improves the effectiveness of KT. 
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A template refers to an existing business model that is observable, and is continuously 

used as a replication example (Winter and Szulanski 2001). Jensen and Szulanski (2007) 

find that using templates increases the likelihood of adopting a transferred routine, 

thereby enhancing the effectiveness of KT.  

In this paper, we consider KT in the context of a three-stage NPD project. 

Consistent with the above-mentioned literature, we recognize that the knowledge 

transferred from a source team can improve the effectiveness of development activities of 

the recipient team. We examine KT in the forward and backward (feedback) directions, 

and we examine KT that occurs continuously versus at discrete times during the NPD 

project. We obtain insights on how these different models of KT impact the manager’s 

pursuit of prototyping, pilot-line testing, and ramp-up activities throughout the NPD 

project. 

3.2.2 The Concurrent Engineering Literature 

We consider three distinct stages of engineering activities in an NPD project: prototyping, 

pilot line testing, and production ramp-up (Thomke 1998, Terwiesch and Bohn 2001, 

Loch et al. 2001, Terwiesch and Loch 2004). According to Thomke and Bell (2001), the 

transfer of prototyping knowledge improves the effectiveness of pilot line testing 

activities. Terwiesch and Xu (2004) analyze the situation where knowledge from pilot 

line testing improves the effectiveness of production ramp-up activities.  

In NPD projects, time-to-market is a key source of competitive advantage (Loch 

and Terwiesch 1998, Ulrich et al. 1993). To shorten product development time, 

concurrent engineering is widely used (Wheelwright and Clark 1992, Terwiesch et al. 

2002). Ha and Porteus (1995, p. 1431-1432) define concurrent engineering as a process 
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“in which engineering activities are conducted concurrently rather than sequentially.” In 

concurrent engineering, the time that knowledge is transferred from one stage to the next 

is critical (Thomke and Bell 2001). If the KT occurs too early, the recipient benefits from 

a limited addition of knowledge. On the other hand, if the KT occurs too late, the 

recipient has limited time to leverage and utilize the knowledge (Loch and Terwiesch 

2005). Thus, understanding how to manage the frequency and the timing of KT in 

concurrent engineering is vital (Loch and Terwiesch 1998). 

Krishnan et al. (1997) provide a model-based framework to manage the 

concurrency of product development activities. They introduce the notion of the 

evolution of upstream information and the downstream sensitivity to the upstream 

information whereby development activities are overlapped. Loch and Terwiesch (1998) 

extend this concept by incorporating an information batching policy. They present a 

dynamic decision rule to determine the optimal time for KT, and provide the optimal 

level of concurrency between activities. They show that uncertainty in the rate of 

engineering changes and the dependence of upstream modification and downstream task 

decrease the optimal level of overlapping, and make concurrent engineering less 

attractive. When knowledge is transferred in batches (at discrete times), costs are incurred 

reflecting efforts expended to create reports, presentations, and attend meetings, as well 

as costs for transportation and telecommunication (Loch and Terwiesch 1998). Since KT 

is costly, the NPD manager needs to balance the benefits realized and the associated costs 

incurred (Ha and Porteus 1995, Terwiesch and Bohn 2001).  

Our paper differs from the above NPD literature in three important aspects. First, 

to our knowledge, the NPD literature focuses exclusively on discrete KTs. However, KT 
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may also occur continuously, either forward or backward, if engineering teams are small 

and highly interactive whereby no explicit cost is incurred (i.e., the cost of KT is 

subsumed in the cost of regular development activities). This notion of continuous KT is 

supported by the authors’ interactions with NPD research analysts at a major U.S. 

consumer products firm, the case literature (Christensen 2006), as well as from the 

authors’ observations of small entrepreneurial firms. By analyzing differences in the 

solutions for the Base Model and the Discrete Model, we explicitly observe how the 

characterization of KT (i.e., continuous or discrete) impacts the manager’s pursuit of 

prototyping, pilot line testing, and ramp-up activities. By analyzing differences in the 

solutions for the Base Model and the Feedback Model, we explicitly observe how the 

direction of KT (i.e., forward or backward) impacts the manager’s decisions. 

Second, the literature focuses on how the impact of upstream knowledge to 

downstream activities (i.e., the returns to KT in our paper) affects the time of KT, but 

neglects to ascertain the impact on the rates of development activities (e.g., prototyping, 

pilot line testing and ramp-up production). In the discrete model, we extend the literature 

by considering the impact of the returns to KT, not only on the transfer times, but also on 

the rates of development activities in successive stages of an NPD project. In addition, we 

provide key insights on how the returns to KT impact the manager’s optimal strategies 

differently in the discrete versus continuous model.   

Lastly, most of the literature focuses on minimizing the product’s time-to-market 

(Krishnan et al. 1997, Loch and Terwiesch 1998, Loch and Terwiesch 2005). In contrast, 

we recognize that for many products, the time-to-market is determined by seasonality 

conditions or external market forces. Firms in the automotive industry release products 
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annually at the start of the year, whereas many computer electronics firms release new 

models in time for the annual holiday season. Therefore, in contrast to the literature, we 

focus on maximizing the net revenue derived from product development activities (i.e., 

the extent of functionality and features embedded in the NPD project) that is released to 

the market at a predetermined launch time. The features and functionality which drive net 

revenue are driven by the levels of knowledge from prototyping, pilot line, and ramp-up 

activities generated throughout the NPD project. We provide insights on how the 

marginal contribution to net revenue from each type of knowledge impacts the manager’s 

decisions.  

3.3 Continuous Forward KT Model (Base Model) 

In this section, we present a Base Model of an NPD project where KT between stages 

occurs in real time, i.e., continuously, in the forward direction. This situation may arise if 

a small number of NPD teams work closely together in the same location such that KT is 

fluid and thereby occurs continuously over time from one stage to the next. Product 

development occurs over time t[0,T], where 0 is the start of the NPD project and T is 

the given product launch time. The NPD manager determines the rates of prototyping, 

pilot line testing, and production ramp-up activities throughout the NPD project, as 

described below. In the remainder of the paper let XZ(Z) and XZZ(Z) denote the first and 

second order derivatives of X(Z) with respect to Z. 

3.3.1 The Levels of Knowledge 

The manager determines the rate of prototyping activities to pursue over time, 

denoted by y(t)≥0 for t[0,T] (control variable), which is measured in terms of hours of 

workforce effort. As prototyping activities occur, prototyping knowledge accumulates. 
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Let Y(t) denote the level of prototyping knowledge at time t for t[0,T] with Y(0)>0 

given (state variable). The level of prototyping knowledge at time t is comprised of the 

initial level (Y(0)) and learning benefits from the rate of prototyping activities undertaken 

through time t. The initial level of prototyping knowledge reflects the overall skill of the 

team at the project’s inception and is based on the team’s past experience, the amount of 

prior education and training, and peer reviews. The extent that prototyping activities at 

time t increase the level of prototyping knowledge at that time is driven by the rate of 

prototyping, the skill of the team, and the quality of the technical support available. With 

higher skill or superior technical support, the effectiveness of prototyping activities is 

higher as indicated by the parameter >0. This gives us Equation (1).  

Y୲ሺtሻ ൌ α଴yሺtሻ          (1)  

Similarly, the manager determines the rate of pilot line activities to pursue over 

time, denoted by p(t)≥0 for t[0,T] (control variable), which can be measured in terms of 

hours of workforce effort. Let P(t) (state variable) denote the level of pilot line 

knowledge at time t, with P(0)>0 given. The level of pilot line knowledge at time t is 

comprised of the initial level (P(0)) and learning benefits from the rate of pilot line 

testing activities pursued through that time. The initial level of pilot line knowledge 

reflects the skill of the pilot line team and is based on previous experience, years of prior 

education and training, and peer reviews. The increase in the level of pilot line 

knowledge at a particular time is driven by the rate of pilot line testing activities at that 

time as well as the skill of the team and the quality of the technical support available. 

Moreover, the effectiveness of pilot line testing activities on increasing the level of pilot 

line knowledge is enhanced by knowledge transferred from prototyping (Mihm et al. 
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2003). Prototyping knowledge improves the ability of engineers involved in pilot line 

testing activities to identify design features to be tested, to properly design the pilot line 

configuration, and to undertake the actual pilot line testing. Workforce skill of the pilot 

line team and the quality of technical support available are inferred by the parameter 0>0. 

The parameter 1(0,1) denotes the returns to KT and reflects the stickiness of the KT 

process. The value is close to 1 if the ability of the prototyping team to document and 

clearly communicate results is large (i.e., if knowledge is easily codified as opposed to 

tacit) (von Hippel 1994) and if the ability of the pilot line team to absorb the KT is 

substantial. This gives us Equation (2). 

P୲ሺtሻ ൌ β଴pሺtሻYሺtሻஒభ                 (2) 

Lastly, the manager determines the rate of production ramp-up activities to pursue 

over time, denoted by n(t)≥0 for t[0,T] (control variable), which can be measured in 

terms of hours of workforce effort. Let N(t) denote the level of ramp-up knowledge at 

time t, with N(0)>0 given (state variable). The level of ramp-up knowledge at time t 

reflects the initial level N(0) as well as the learning benefits from the rate of production 

ramp-up activities and the transfer of pilot line knowledge through time t. The transfer of 

pilot line knowledge enhances the effectiveness of production ramp-up activities to 

increase the level of ramp-up knowledge by providing direction on the experiments or 

engineering trials needed (Terwiesch and Bohn 2001). In Equation (3), the workforce 

skill of the ramp-up team and the quality of technical support are indicated by the 

parameter 0>0, and the stickiness of the KT process is given by the parameter 1(0,1). 

N୲ሺtሻ ൌ γ଴nሺtሻPሺtሻஓభ                                     (3) 
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3.2 The Objective 

The profit-maximizing objective appears in Equation (4). The first terms (outside the 

integral) represent the net revenue earned when the product is released to the market at 

time T. The remaining terms consist of the costs incurred for development activities 

during the NPD project. Since KT is fluid and occurs continuously over time along with 

development activities, its costs are simply subsumed in those associated with the rates of 

prototyping, pilot line testing and production ramp-up activities. Below, we elaborate on 

each term. 

Maximize rଵYሺTሻ ൅ rଶPሺTሻ ൅ rଷNሺTሻ െ ׬ ሾcଵyሺtሻ஢భ ൅ cଶpሺtሻ஢మ ൅ cଷnሺtሻ஢యሿdt
୘
଴

 (4) 

The ability of the firm to earn net revenue is a function of the cumulative 

knowledge generated by NPD activities at the product launch time (Cohen et al. 1996, 

Kim 1998, Chao et al. 2009, Gaimon et al. 2011). We assume the levels of knowledge at 

the launch time T characterize the final product features, functionality and process 

efficiency for the new product. In addition, the levels of prototyping, pilot line and ramp-

up knowledge may have value (i.e., contribute to net revenue) for future NPD projects. 

Let net revenue be denoted by rଵYሺTሻ ൅ rଶPሺTሻ ൅ rଷNሺTሻ with r1, r2, and r3≥0. (Carrillo 

and Franza 2006, Chao et al. 2009, Ozkan et al. 2012).  

During the NPD project, costs are incurred for prototyping activities, pilot line 

testing and production ramp-up (Clark and Fujimoto 1991). Let c1y(t)1 denote the cost 

incurred for prototyping activities undertaken at time t, with c1>0 and 1>1. The cost 

includes salaries for team members who conduct prototyping and the cost of the technical 

support systems, such as computer aided design workstations. Since 1>1 the cost is 

convex with respect to the rate of prototyping activities pursued at any instant of time 
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(Carrillo and Gaimon 2004, Chand et al. 1996, Terwiesch and Xu 2004). The cost 

increases at an increasing rate to reflect coordination costs and overtime or the use of less 

efficient methods as the finite development resources are increasingly strained. Similarly, 

we define c2p(t)2 and c3n(t)3, with c2 and c3>0, 2 and 3>1, as the costs for pilot line 

testing and production ramp-up activities at time t, respectively.  

3.3.3 Continuous Forward KT Solution 

In the remainder of the paper, the notation depicting time is suppressed whenever 

possible, all proofs appear in the Appendix, and “*” indicates an optimal solution. We 

solve the model using optimal control methods (Sethi and Thompson 2000). The 

Hamiltonian to be maximized is given in Equation (5). The adjoint variables 1(t), 2(t) 

and 3(t) are introduced to represent the marginal values of the levels of prototyping, 

pilot line, and ramp-up knowledge at time t, respectively. Since the level of prototyping 

knowledge at time t is sustained from that time through the remainder of the development 

project, 1(t) is interpreted as the marginal value of an additional unit of prototyping 

knowledge from time t to the product launch time, T. The optimality conditions for 1
*(t) 

are given in Lemma 1. Similar interpretations hold for 2(t) and 3(t) whose optimality 

conditions are also given in Lemma 1.  

H ൌ െcଵyሺtሻ஢భ െ cଶpሺtሻ஢మ െ cଷnሺtሻ஢య ൅ λଵሺtሻα଴yሺtሻ ൅ λଶሺtሻβ଴pሺtሻYሺtሻஒభ 

        ൅λଷሺtሻγ଴nሺtሻPሺtሻஓభ         (5) 

LEMMA 1: (i)	ߣଵ௧ ൌ െߣଶሺݐሻߚ଴݌ሺݐሻߚଵܻሺݐሻఉభିଵ,	ߣଵሺܶሻ ൌ  ;ଵݎ

(ii)	ߣଶ௧ ൌ െߣଷሺݐሻߛ଴݊ሺݐሻߛଵܲሺݐሻఊభିଵ, ߣଶሺܶሻ ൌ ሻݐଷሺߣ	ଶ; (iii)ݎ ൌ ݐ	ݎ݋݂	ଷݎ ∈ ሾ0, ܶሿ.   

In Lemma 1, we find that the marginal values of prototyping and pilot line 

knowledge are positive and decreasing over time and the marginal value of production 
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ramp-up knowledge is constant over time. The marginal value of prototyping knowledge 

at time t is driven by the sum of the marginal contribution to net revenue from 

prototyping knowledge at T and the marginal benefit to pilot line testing from the transfer 

of prototyping knowledge at time t. It is important to see that an additional unit of 

prototyping knowledge transferred early enhances the effectiveness of the rate of pilot-

line testing activities over the remainder of the development project. Thus, the marginal 

value of the level of prototyping knowledge decreases over time. Similarly, the marginal 

value of the level of pilot-line testing activities decreases over time. In contrast, the level 

of ramp-up knowledge derives value only in terms of the net revenue realized at the 

product launch. Thus, the marginal value of ramp-up knowledge is constant. 

3.3.3.1 Optimal Rates of NPD Activities 

The optimal rates of development activities are given in Theorem 1. From inspection, we 

see that the optimal rates of prototyping, pilot line testing, and production ramp-up 

activities at time t are functions of the marginal values and the marginal costs at that time. 

It is important to recognize that the marginal value of pilot line testing (production ramp-

up) activities at time t is a function of the level of prototyping (pilot line testing) 

knowledge transferred at that time. In Corollary 1, we describe how the optimal rates of 

development activities change throughout the NPD project; the interpretations follow. 

THEOREM 1: The optimal rates the NPD manager pursues development activities are:  

ሺ݅ሻݕ∗ሺݐሻ ൌ ቀഊభ
∗ሺ೟ሻഀబ
഑భ೎భ

ቁ
భ

഑భషభ ; (ii) ሻݐሺ∗݌	 ൌ ቀഊమ
∗ሺ೟ሻഁబೊሺ೟ሻ

ഁభ
഑మ೎మ

ቁ
భ

഑మషభ ; and (iii) 

݊∗ሺݐሻ ൌ ቀഊయ
∗ሺ೟ሻംబುሺ೟ሻ

ംభ
഑య೎య

ቁ
భ

഑యషభ. 
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COROLLARY 1: (a) ݕ௧∗ 	൏ 0 for t[0,T]; (b) ݊௧∗ 	൐ 0 for t[0,T]; (c) (Case i) ݌௧∗ 	൐ 0 

for t[0,ts),	݌௧
∗ 	ൌ 0  at ts, and ݌௧

∗ 	൏ 0  for t(ts,T], where ts[0,T]; (Case ii) ݌௧
∗ 	൏ 0 for 

t[0,T]; (Case iii) ݌௧∗ 	൐ 0 for t[0,T]. 

From Theorem 1 and Corollary 1 (a), we know that the optimal rate of 

prototyping is positive and decreasing over time until reaching ሺ௥భఈబ ఙభ௖భ⁄ ሻభ ሺ഑భషభሻൗ  at the 

end of the development project. (See Figure 3.1; for illustrative purposes only the 

solution is shown as convex in time.) We refer to this development strategy as front-

loading (Blackburn et al. 1996, Thomke and Fujimoto 2000, Ozkan et al. 2012). Front 

loading optimally occurs since an additional unit of prototyping activity early in the 

development project increases the level of prototyping knowledge at that time and 

thereby enhances the effectiveness of pilot line testing from that time through the 

remainder of the development project. Said differently, front loading the rate of 

prototyping activities is advocated since, as the NPD project progresses, there is less 

opportunity to benefit from KT to pilot line testing.  

At the other end of the spectrum, consider the result in Theorem 1 and Corollary 1 

(b). We find that the optimal rate of production ramp-up activities is positive and 

increasing throughout the NPD project. (See Figure 3.1; for illustrative purposes only the 

solution is shown as convex in time.) This result is obtained since the rate of production 

ramp-up is more and more effective over time due to the transfer of more and more pilot-

line knowledge. We refer to this solution as the extreme delay strategy since the 

maximum pursuit of production ramp-up occurs as the product launch time is reached.  

Lastly, we consider the optimal rate of pilot line testing activities. Under 

reasonable parameter values we obtain the solution given in Theorem 1 and Corollary 1 I 
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(i) where the optimal rate of pilot line testing first increases, peaks, and then decreases 

over time. Since the peak rate of pilot line testing is delayed until later in the planning 

horizon we refer to this as the moderate delay strategy. (See Figure 3.1; for illustrative 

purposes only the solution is shown as concave in time.) (Ozkan et al. (2011) simply refer 

to this as the delay strategy since they do not obtain the extreme delay strategy.) Two 

forces drive this result. First, as time passes and the level of prototyping knowledge 

increases, pilot line testing activities are more effective as a result of KT. Thus, early in 

the development project the desirability of pilot line testing increases over time. However, 

as less time remains in the development project, lesser benefits accrue due to the transfer 

of knowledge from the pilot line to ramp-up stage. As a result, later in the project, the rate 

of pilot line testing activities decreases over time. Putting these two forces together we 

find that the maximum rate of pilot line testing is moderately delayed until later in the 

development project in order to take advantage of the higher level of prototyping 

knowledge while also providing sufficient pilot line knowledge to be utilized at the ramp-

up stage.  

 

 

 

 

 

 

 

 

y(t), p(t), n(t) 

t 
0 

n(t): Extreme Delay  

p(t): Moderate Delay 

y(t): Front-loading  

Figure 3.1: Rates of NPD Activities over Time 
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For completeness, note that two other solutions are possible (though highly 

unlikely) for the optimal rate of pilot line testing activities. First, if Y(0) is extremely 

large or r2 is extremely small, we may obtain the solution in Corollary 1 I (ii). Starting at 

the initial time, the pilot line team leverages the extremely large level of prototyping 

knowledge so that the maximum rate of pilot line testing activities occurs at time t=0. 

Similarly, with extremely small r2, if prototyping does not, in itself, contribute to net 

revenue then its only value is through the KT to the ramp-up stage. Since the marginal 

value of KT decreases over time, we see that the rate of pilot line testing activities has its 

maximum at the initial time and decreases thereafter. Alternatively, if Y(0) is extremely 

small or r2 is extremely large, then the peak rate of pilot line testing occurs at t=T, as in 

Corollary 1 I (iii). The interpretation of case I (iii) is the reverse of case I (ii). 

3.3.3.2 Analytic Sensitivity Analysis 

Through analysis of the optimal solutions we find that if the effectiveness of the rate of 

any one development activity (0, 0, 0) or the returns to any KT activity (1, 1) is larger, 

then the optimal rates of all development activities are larger and the optimal levels of 

knowledge are larger at all stages over all time. Similarly, if the cost of any development 

activity is larger, then the optimal rates of all development activities are smaller so that 

the levels of knowledge are smaller at all stages for all time. Hence we observe a 

synergistic relationship among the rates of prototyping, pilot line testing and production 

ramp-up activities. The source of the synergy is the mathematical structure that links each 

stage to the next through KT. To understand this result intuitively, consider the following. 
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Recall that 0 represents the effectiveness of pilot line testing activities on 

increasing the level of pilot line knowledge. The manager has considerable control over 

the effectiveness parameter since she selects skilled team members and provides them 

with technical support resources. Intuitively, if 0 is larger, the pilot line team is more 

capable of building pilot line knowledge so that the rate of pilot line testing activities is 

larger throughout the NPD project. Moreover, the rate of production ramp-up activities is 

larger for all time since the transfer of more pilot line knowledge enhances its 

effectiveness at increasing the level of production ramp-up knowledge. Similarly, for 

larger 0 the marginal value of the level of prototyping knowledge is larger throughout 

the NPD project since prototyping knowledge provides more benefits when transferred to 

the pilot line stage. Therefore, larger 0 is associated with larger levels of prototyping, 

pilot line and ramp-up knowledge throughout the development project. This insight is 

important because it shows how the manager’s decisions regarding team skill and the 

resources provided for technical support at any one stage affect the pursuit of knowledge 

creation at other stages and ultimately impact net revenue at the product launch time. The 

above discussion is summarized in Corollary 2.   

COROLLARY 2: If workforce skill or technical support in pilot line testing (0) is larger, 

then the optimal rates of prototyping, pilot line testing, and production ramp-up activities 

are larger and the levels of knowledge in all stages of development are larger for t(0,T]. 

Analogous results are obtained for 0, 0, 1, and 1. The reverse results hold for c1, c2 

and c3.  

Next, we analyze the effect of the initial levels of knowledge at each stage of the 

NPD project. The existing knowledge provides a starting point for the NPD project and 
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influences the knowledge development strategies pursued by the manager (Pisano 1997). 

For simplicity, we focus our discussion on the effect of the initial level of pilot line 

knowledge, P0. Since knowledge transferred from the pilot line improves the 

effectiveness of production ramp-up activities, it would appear that larger P0 leads to a 

larger rate of ramp-up activities. However, a larger rate of ramp-up activities is associated 

with a larger development cost. Therefore, if P0 is larger, the NPD manager may need to 

control the amount of knowledge transferred to the ramp-up stage by reducing the rate of 

pilot line testing activities, which along with P0 drives P(t). We find that the impact of P0 

on the optimal solution depends on the relationship between the returns of KT to the 

ramp-up stage (1) and an expression indicating the extent of diseconomies of scale in the 

cost of ramp-up activities (113), as described below.          

Suppose 0<1<113 holds and P0 is larger. Since the extent of diseconomies of 

scale in the cost of ramp-up activities exceeds the returns of KT from the pilot line to the 

ramp-up stage, the manager has less incentive to develop pilot line knowledge and 

thereby reduces the rate of pilot line testing. Since the desirability of additional pilot line 

knowledge is small, the incentive to develop prototyping knowledge to improve the 

effectiveness of pilot line activities is small and the optimal rate of prototyping is reduced. 

Hence, we observe a substitution effect: the higher initial level of the pilot line 

knowledge is associated with smaller rates of pilot line testing and prototyping 

throughout the NPD project. Obviously, the levels of prototyping and pilot line 

knowledge are smaller.  

Alternatively, suppose the returns to KT from the pilot line stage are larger than 

the extent of diseconomies of scale in the cost of ramp-up activities (113<1<1). If P0 
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is larger, the manager optimally pursues a larger rate of pilot line testing activities 

throughout the NPD project in order to increase the effectiveness of ramp-up activities. 

Moreover, since prototyping knowledge improves the effectiveness of pilot line testing 

activities, the manager undertakes a larger rate of prototyping activities. As such, we 

observe a complementary relationship whereby a larger initial level of workforce 

knowledge drives the manager to pursue more pilot line testing and prototyping 

throughout the NPD project. Naturally, the levels of prototyping and pilot line knowledge 

are larger for all time. The larger level of pilot line knowledge increases the effectiveness 

of ramp-up activities, which are pursued at a larger rate, so that the level of ramp-up 

knowledge is larger throughout the NPD project. (As expected, if 1=113, then the 

initial level of pilot line knowledge has no effect on the rates of NPD activities.) 

To complete our analysis, we consider how P0 impacts the level of ramp-up 

knowledge. It can be shown that if P0 is larger, then the level of pilot line knowledge is 

larger throughout the NPD project. Therefore, even if <1<113 holds so that larger P0 

leads to smaller rates of pilot line testing and prototyping activities for all time, the level 

of pilot line knowledge is always larger. As a result, the effectiveness of the rate of ramp-

up activities is larger leading the manager to pursue a larger rate of ramp-up activities and 

driving a larger level of ramp-up knowledge throughout the NPD project.  

The above results are summarized in Corollary 3. The impact of the initial level of 

prototyping knowledge Y0 is analogous to the impact of P0 and is omitted.  

 COROLLARY 3. Suppose P0 is larger. When 0<1<113, the manager pursues 

smaller rates of prototyping and pilot line testing activities (y(t) and p(t)) for t[0,T]. 

When 1>1>113, the manager pursues larger rates of prototyping and pilot line 
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testing activities for t[0,T]. When 1=113, the manager pursues the same rates of 

prototyping and pilot line testing for t[0,T]. For any 1(0,1), the manager pursues a 

larger rate of ramp-up activities (n(t)) for t[0,T]. 

Lastly, the initial level of ramp-up knowledge (N0) has no impact on development 

activities in any stage, so it has no effect to the levels of prototyping and pilot line 

knowledge. N0 does, naturally, affect the level of knowledge in the ramp-up stage. An 

increase in N0 results in a larger level of ramp-up knowledge throughout the development 

project.    

3.3.3.3 Numerical Sensitivity Analysis 

While considerable insights are obtained analytically, numerical sensitivity 

analysis allows us to explore how the predetermined product launch time, T, impacts the 

development activities in each stage. Holding all other input parameters fixed, we find 

that if the product is launched later (T larger), then the rates of prototyping, pilot line 

testing and ramp-up activities are all larger for t[0,T]. In addition, the knowledge levels 

of each stage of the NPD project are larger at the product launch time. Intuitively, since 

the recipient team has more time to leverage the KT from the source team, the marginal 

values of knowledge are larger for both teams. However, it is important to recognize that, 

due to competition, a later product launch may be associated with smaller marginal 

contributions to net revenue from the levels of knowledge. In that situation, the effect of a 

delayed product launch on the optimal rates of development activities throughout the 

NPD project is unclear. 
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3.4 Feedback Model  

In Section 3.3, we consider the situation in which KT only occurs in the forward direction. 

However, in practice, feedback may occur whereby the knowledge accumulated in a 

downstream activity is transferred back upstream. In this section, we explore the situation 

in which KT occurs not only in the forward direction, but also in the backward direction 

in the form of feedback. More specifically, we allow the knowledge accumulated in the 

pilot line testing stage to be transferred back to the prototyping stage to improve the 

effectiveness of prototyping activities. For completeness, we also analyze the situation 

where feedback occurs from the ramp-up stage to the prototyping stage and the situation 

where feedback occurs from the ramp-up stage to the pilot line stage. We find that the 

general insights and implications of feedback are analogous in all situations.  

3.4.1 The Levels of Knowledge with Feedback 

The extent that prototyping activities at time t increase the level of prototyping 

knowledge at that time is driven not only by the rate of prototyping, the skill of the team, 

and the quality of the technical support available, but also by the level of pilot line 

knowledge transferred back, as given in Equation (6) (Loch and Terwiesch 1998). 

Feedback from the pilot line stage enables the prototyping team to better understand the 

impact of various elements of prototyping designs on pilot line configurations, (i.e., 

which product features work well versus fail during pilot line testing). Thus, feedback of 

pilot line knowledge enhances the effectiveness of prototyping activities on increasing 

prototyping knowledge. The parameter αଵ(0,1) denotes the returns to the feedback from 

the pilot line to the prototyping stage. A larger value of αଵ corresponds to the situation 

where the ability of the pilot line team to provide feedback is large and the ability of the 
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prototyping team to absorb feedback is large. In contrast, a value of zero corresponds to 

the situation where feedback is not relevant as reflected in the Base Model. Lastly, note 

that as in the Base Model, Y(0) is given, y(t)≥0 for t[0,T], and we have the same 

interpretation for α଴. 

Y୲ሺtሻ ൌ α଴yሺtሻPሺtሻ஑భ          (6) 

By incorporating Equations (2), (3), and (4) from the Base Model, we complete our 

statement of the Feedback Model. 

3.4.2 Optimal Solutions 

The Hamiltonian for the Feedback Model appears in Equation (7), the optimal solutions 

for λ1(t), λ2(t) and λ3(t) (whose interpretations are the same as those in the Base Model) 

are given in Lemma 2. Theorem 2 states the optimal rates of KD activities in each stage 

of the NPD project. The interpretations follow.    

H ൌ െcଵyሺtሻ஢భ െ cଶpሺtሻ஢మ െ cଷnሺtሻ஢య ൅ λଵሺtሻα଴yሺtሻPሺtሻ஑భ ൅ λଶሺtሻβ଴pሺtሻYሺtሻஒభ 

        ൅λଷሺtሻγ଴nሺtሻPሺtሻஓభ                      (7) 

LEMMA 2: The marginal values of prototyping, pilot line and ramp-up knowledge 

satisfy the following conditions:  

ሺ݅ሻߣଵ௧ሺݐሻ ൌ െߣଶሺݐሻߚ଴݌ሺݐሻߚଵܻሺݐሻఉభିଵ ൏ ଵሺܶሻߣ	,0 ൌ   ;ଵݎ

(ii)	ߣଶ௧ሺݐሻ ൌ െߣଵሺݐሻߙ଴ݕሺݐሻߙଵܲሺݐሻఈభିଵ െ ሻఊభିଵݐଵܲሺߛሻݐ଴݊ሺߛሻݐଷሺߣ ൏ ଶሺܶሻߣ ,0 ൌ   ;ଶݎ

(iii)	ߣଷ௧ሺݐሻ ൌ ሻݐଷሺߣ ,0 ൌ ଷሺܶሻߣ ൌ    .ଷݎ

 From (i) and (ii) in Lemma 2, we know that the marginal values of prototyping 

and pilot line knowledge for the Feedback Model are positive and decreasing over time. 

Also, we observe that the marginal value of ramp-up knowledge is positive and constant 

over the development project, which is consistent with the Base Model. The 
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interpretations of the marginal values of prototyping and ramp-up knowledge are 

analogous to the Base model and omitted. In contrast to the Base Model, however, given 

feedback we find that the marginal value of pilot line knowledge at time t is driven by the 

sum of the marginal contribution to net revenue from pilot line knowledge at T and the 

marginal benefit of feedback from the pilot line to the prototyping stage. The marginal 

value of pilot line knowledge decreases over time, since less time remains for the 

prototyping stage to benefit from feedback.  

The optimal rates of prototyping, pilot line testing, and ramp-up activities are 

functions of the above-mentioned marginal value functions, the levels of knowledge, the 

effectiveness of each type of KT, and the costs of development, as shown in Theorem 2. 

A key difference between the results of the Base Model and the Feedback Model 

concerns the optimal rate of prototyping. In Theorem 2, beyond those drivers identified 

for the Base Model, we observe that the optimal rate of prototyping activities at time t is 

impacted by feedback from the pilot line stage at that time. In particular, the optimal rate 

of prototyping at time t is driven by the marginal value of prototyping knowledge, as well 

as the level of pilot line knowledge transferred to the prototyping stage that enhances the 

effectiveness of prototyping activities.  

THEOREM 2: The optimal rates the NPD manager pursues development activities are:  

(i)ݕ∗ሺݐሻ ൌ ሺ
ఈబఒభ௉ഀభ

௖భఙభ
ሻ

భ
഑భషభ; (ii)	݌∗ሺݐሻ ൌ ሺ

ఉబఒమ௒ഁభ

௖మఙమ
ሻ

భ
഑మషభ; and (iii)	݊∗ሺݐሻ ൌ ሺ

ఊబఒయ௉ംభ

௖యఙయ
ሻ

భ
഑యషభ. 

3.4.3 The Impact of Feedback  

In this section, to investigate the differences between the Base Model and the Feedback 

Model, we examine how the returns to feedback from the pilot line to the prototyping 

stage (ߙଵ) impacts the manager’s optimal development strategies during the NPD project. 
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Of course, the manager has considerable control over the effectiveness parameter since 

she selects skilled team members and provides them with technical support resources. 

Moreover, understanding the effect of the returns parameter is critical since, if ߙଵ=0, then 

the Feedback Model reverts to the Base Model.   

COROLLARY 4: If the returns to feedback from the pilot line to the prototyping stage 

 ,ሻݐሻ are all larger for t[0,T]. It follows that ܻሺݐሻ and ݊∗ሺݐሺ∗݌ ,ሻݐሺ∗ݕ is larger, then (ଵߙ)

ܲሺݐሻ, and ܰሺݐሻ are all larger for t[0,T]. 

From Corollary 4, we see that if the feedback from the pilot line stage is more 

valuable in improving the capability of the prototyping team (αଵ is larger), the manager 

pursues a higher rate of prototyping activities throughout the NPD project and the level of 

prototyping knowledge is larger. Given the larger amount of prototyping knowledge 

transferred to the pilot line stage, the ability of the pilot line team to increase its level of 

knowledge is larger and the manager pursues a larger rate of pilot line testing throughout 

the NPD project. As a result, the level of pilot line knowledge is larger. Following the 

same logic, we know that the rate of production ramp-up activities and the level of ramp-

up knowledge are larger throughout the development project.  

COROLLARY 5: If ߙଵ  is sufficiently small then ݕ௧
∗ሺݐሻ ൏ 0  for t[0,T] (front-loading 

strategy); if ߙଵ is sufficiently large then ݕ௧∗ሺݐሻ ൐ 0 for t[0,T] (extreme delay strategy). 

Note that the sign of ݕ௧∗ሺݐሻ is determined by the sign of –ߚଵߣଶሺݐሻܲሺݐሻ ൅  .ሻݐሻܻሺݐଵሺߣଵߙ

OBSERVATION 1: In the vast majority of numerical experiments, if ߙଵ is moderate, 

then ݕ∗ሺݐሻ  is inverse U-shaped (moderate delay strategy) over time, for t[0,T]. 

However it is possible, under extreme conditions, for ݕ∗ሺݐሻ to be U-shaped (moderate 

front loading strategy).  
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From Corollary 5 (analytic result) and Observation 1 (numerical result), we see 

that the optimal solution for the rate of prototyping activities is radically different due to 

feedback from the pilot line to the prototyping stage (Figure 3.2). The rate of change in 

ሻݐሻܲሺݐଶሺߣଵߚሻ is determined by the sign of െݐሺ∗ݕ ൅  ሻ, where the first termݐሻܻሺݐଵሺߣଵߙ

indicates the value of the forward KT from the prototyping to the pilot line stage, and the 

second term is the value of the feedback from the pilot line to the prototyping stage. First, 

if the returns from feedback are relatively small (αଵ  is small), the second term is 

dominated by the first term and prototyping activities are front-loaded. Essentially, the 

NPD manager undertakes a larger rate of prototyping activities early in the development 

project to accumulate and transfer prototyping knowledge forward and thereby improve 

the effectiveness of pilot line testing. This analytic result is consistent with the solution in 

the Base Model where ߙଵ ൌ 0 . In contrast, suppose αଵ  is large so that the value of 

feedback from the pilot line stage is instrumental to enhancing the effectiveness of 

prototyping activities. In this situation, we analytically find that the second term 

dominates the first term and prototyping activities follow the extreme delay strategy. The 

extreme delay strategy is advocated so that the maximum rates of prototyping activities 

are pursued late in the development project after most of the benefits from pilot line 

feedback are realized.   

In contrast to the analytic results obtained when αଵ is either very small or large, 

given the complexity of the problem, we cannot obtain analytic results characterizing the 

rate of prototyping for intermediate values. However, based on extensive numerical 

investigation, we find that for intermediate values of αଵ , in the vast number of 

experiments, the optimal rate of prototyping is inverse U-shaped. In other words, the 
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manager pursues a moderate delay strategy. When the returns to feedback are moderate, 

the manager delays the maximum rate of prototyping until later in the development 

project to wait for more pilot line knowledge to be transferred. However, in extreme 

cases, when αଵ  is moderate, we also find the manager may pursue a moderate front-

loading strategy (i.e., y∗ሺtሻ initially decreases then increases over time). For example, the 

moderate front-loading strategy is more likely to occur for very large γଵ. Early in the 

NPD project, the rate of prototyping is relatively large (but decreasing) and is driven by 

the desire to enhance the effectiveness of pilot line testing through forward KT (due to 

large γଵሻ. Later in the planning horizon, the rate of prototyping increases and is driven by 

the desire to leverage the enhanced effectiveness of prototyping activities due to the 

increasing amount of feedback from the pilot line stage (due to moderate αଵ). Note that 

the moderate front-loading strategy did not occur in any solution of the Base Model and 

is unique to the Feedback Model.  

COROLLARY 6: As in the Base Model, for any ߙଵ ∈ ሺ0,1ሻ , we have ݊௧
∗ሺݐሻ ൐ 0  for 

ݐ ∈ ሾ0, ܶሿ (extreme delay strategy). 

The interpretation of Corollary 6 is analogous to that of Corollary 1(b) thus omitted.  

OBSERVATION 3: In the vast majority of numerical experiments, if ߙଵ  is small or 

moderate, then ݌∗ሺݐሻ is inverse U-shaped (moderate delay strategy) for t[0,T]. Also, if  

ଵߙ  is large, then ݌௧
∗ሺݐሻ ൏ 0  over time, for t[0,T] (front-loading strategy). However 

under extreme conditions when ߙଵ is small or moderate, it is possible that ݌∗ሺݐሻ is U-

shaped (moderate front-loading strategy).  

The rate of change in ݌∗ሺݐሻ is determined by the sign of െߣଵߙ଴ߙଵܻܲݕఈభିଵ െ

ଵܻ݊ܲఊభିଵߛ଴ߛଷߣ ൅  ఈభ, where the first term is the value of the forward KT fromܲݕ଴ߙଶߣଵߚ
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the prototyping to the pilot line stage, the second term is the value of the forward KT 

from the pilot line to the ramp-up stage, and the third term is the value of feedback from 

the pilot line stage to the prototyping stage. Analytically, we are not able to ascertain how 

the rate of pilot line testing changes over time in relation to αଵ . However, through 

extensive numerical experimentation, we observe that if αଵ  is small or moderate, the 

optimal rate of pilot line testing follows the moderate delay strategy; if αଵ is large then 

pilot line activities are front-loaded (Figure 3.3). The relationship between αଵ and ݌∗ሺݐሻ 

occurs because pilot line knowledge impacts the manager’s pursuit of prototyping 

activities through feedback. When αଵ  is small or moderate, pilot line knowledge has 

limited impact on the effectiveness of prototyping activities. In this situation, we obtain 

the Base Model solution in which the rate of pilot line testing follows the moderate delay 

strategy. However, as αଵ increases (while remaining small or moderate), the peak rate of 

pilot line testing occurs earlier reflecting the greater desirability of accumulating pilot 

line knowledge to serve as feedback for prototyping. In contrast, when αଵ is sufficiently 

large, the substantial desire to transfer large amounts of pilot line knowledge to the 

prototyping stage drives the manager to front-load pilot line testing. 

3.4.4 Feedback from Ramp-up 

In Section 3.4.3, we study the optimal KD strategies in a three stage NPD project when 

feedback occurs from the pilot line to the prototyping stage. In this section, we examine 

the optimal development strategies in the situation where feedback occurs from the ramp-

up stage to either the prototyping or pilot line stage.   

 When the returns to feedback from the ramp-up to the prototyping stage or from 

the ramp-up to the pilot line stage are sufficiently small, we find that the shapes of the 
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curves representing the optimal KD strategies are the same as those in the base model 

(though the actual values differ somewhat). In contrast, when the returns to feedback are 

sufficiently large, the shapes of the curves representing the optimal development 

strategies pursued by the NPD manager can be different from those in the base model, as 

described below. 

With sufficiently large returns to feedback from the ramp-up to the prototyping 

stage, the NPD manager optimally pursues the extreme delay strategy for prototyping 

activities in order to wait for ramp-up feedback. Moreover, the manager front-loads pilot 

line activities since the accumulation of pilot line knowledge enhances KD in the ramp-

up stage and thereby indirectly aids KD in the prototyping stage. Lastly, the manager 

front-loads ramp-up activities to rapidly build knowledge that is transferred as feedback 

to the prototyping stage.  

With sufficiently large returns to feedback from the ramp-up to the pilot line stage, 

consistent with the base model, the manager optimally front-loads prototyping activities 

to enhance the effectiveness of pilot line activities early in the NPD project. In contrast, 

the manager pursues the extreme delay strategy for pilot line activities in order to wait for 

the accumulation of feedback from the ramp-up stage. Lastly, the manager front-loads 

ramp-up activities to provide rapid feedback to the pilot line stage.  

Table 3.1 presents a summary of the optimal KD strategies when feedback does 

not occur or when the returns to feedback are sufficiently large and occur: (i) from the 

pilot line to the prototyping stage, (ii) from the ramp-up to the prototyping stage, or (iii) 

from the ramp-up to the pilot line stage.   
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Stages  

No Feedback 
Feedback from 
Pilot line to 
Prototyping 

Feedback from Ramp-
up to Prototyping 

Feedback from 
Ramp-up to 
Pilot line 

Prototyping 
Stage 

Front-loading  Extreme Delay Extreme Delay Front-loading 

Pilot line 
Stage 

Moderate 
Delay 

Front-loading Front-loading Extreme Delay 

Ramp-up 
Stage 

Extreme Delay  Extreme Delay Front-loading Front-loading 

 
Table 3.1: KD Strategies When the Returns to Feedback Are Sufficiently Small 

(Analogous to No Feedback) and When the Returns to Feedback are Sufficiently Large  
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Figure 3.2: The Optimal Rate of Prototyping in Relation to 
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Figure 3.3: The Optimal Rate of Pilot Line Testing in Relation to 
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3.5 Discrete Model  

In this section, we present an extension of the Base Model, referred to as the 

Discrete Model, where the forward transfer of knowledge from one stage of product 

development to the next occurs at discrete times. The Discrete Model is appropriate when 

the development team responsible for the NPD project is sufficiently large or operates in 

different locations so that the continuous transfer of knowledge is not practical. To 

simplify the model presentation, we initially assume one KT occurs from the prototyping 

to the pilot line stage, and one KT occurs from the pilot line to the ramp-up stage.1 In 

particular, we assume the level of prototyping knowledge accumulates from time 0 to t1 

when it is transferred to enhance the effectiveness of pilot line testing activities, and the 

level of pilot line knowledge accumulates from time 0 to t2 when it is transferred to 

enhance the effectiveness of ramp-up activities, where t1<t2. Therefore, in the discrete 

model, in addition to obtaining the optimal rates of prototyping, pilot line testing and 

production ramp-up activities, we also determine the optimal times that KTs occur 

between successive stages of the NPD project.  

In contrast to the Base Model where the cost of KT is continuously subsumed in 

the development costs of prototyping and pilot line testing, in the Discrete Model the 

costs for each of the two KTs are explicit. Discrete KT may take many forms. 

Fundamentally, the source team prepares presentations or documentation to communicate 

knowledge to the recipient team. The transfer may take place remotely by sending reports 

or design drawings via telecommunications technology or in face-to-face meetings. 

                                                 

 
 
1 Later, numerical solutions are given under other scenarios such as two stages with several KTs. 
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Naturally, when knowledge is "batched" and transferred at discrete times, costs are 

incurred reflecting meeting times, transportation, as well as efforts expended by the 

source team for documentation and by the recipient team to absorb and apply the new 

knowledge. If KT occurs earlier in the project, the cost is lower and the recipient has 

more time to benefit from the smaller amount of KT. Alternatively, if KT occurs later, the 

cost is higher and the recipient has less time to benefit from the larger amount of KT. 

Therefore, the manager needs to balance a complex set of tradeoffs when determining the 

times for KT. We formulate the model using impulsive control theory, described below. 

3.5.1 Knowledge Transfer  

We assume that forward KT occurs at the initial time from the prototyping to the pilot 

line stage and from the pilot line to the ramp-up stage.2 The KTs at the initial time reflect 

the fact that when the pilot line (ramp-up) team begins its development activities it 

already benefits from the prototyping (pilot line) knowledge developed from prior NPD 

projects.  

Let Ȳ(t) denote the level of prototyping knowledge transferred at time t1 to 

enhance pilot line testing activities, where Ȳ(0)=Y(0)>0. In other words, Ȳ(t) is a step 

function whose value is Ȳ(t)=Y(0) for t[0,t1] and Ȳ(t)=Y(t1) for t(t1,T], where Y(t1) is 

obtained from Equation (1). To formalize this mathematically, we introduce the 

impulsive control variable ȳ(t1)[0,1] which indicates whether a transfer of prototyping 

knowledge to the pilot line testing stage occurs at time t1. It will be shown that ȳ(t1) 

appears linearly in the model so that its optimal solution lies on a boundary. As such, 

                                                 

 
 
2 This assumption is easily relaxed and does not affect analysis of the model. 
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ȳ(t1)=1 indicates a transfer optimally occurs at t1; ȳ(t1)=0 indicates a transfer does not 

optimally occur. The above discussion is summarized in Equations (8) and (9). 

Ȳt(t) = 0,     t ≠ t1.         (8) 

Ȳ(t1
+)=Ȳ(t1)+[Y(t1)Ȳ(t1)]ȳ(t1) = Y(0) + [Y(t1)Y(0)]ȳ(t1),      t = t1.  (9) 

To determine the level of pilot line knowledge over the NPD project, we modify 

Equation (2) to reflect the fact that the transfer of prototyping knowledge occurs only at 

the initial time and at t1. After time t1, the effectiveness of the rate of pilot line testing 

activities is enhanced by the transfer of prototyping knowledge at t1. The parameter β1 

indicates the returns to KT and reflects the ability of the prototyping team to transfer 

knowledge as well as the ability of the pilot line team to absorb it. These relationships are 

summarized in Equation (10). 

Pt(t) = β0 p(t)Ȳ(t)β1,       t  [0,T].       (10) 

Similarly, let P̄(t) denote the level of pilot line knowledge transferred at t2 to 

enhance development activities at the production ramp-up stage, where P̄(0)=P(0)>0 

holds. Thus, P̄(t) is a step function whose value changes at t2, giving us P̄(t)=P(0) for 

t[0,t2] and P̄(t)=P(t2) for t(t2,T], where P(t2) is obtained from Equation (10). We 

introduce the impulsive control variable p̄(t2)[0,1] that appears linearly in the model so 

that a boundary solution is obtained: p̄(t2)=1 if a transfer optimally occurs; p̄(t2)=0 if a 

transfer does not occur at t2. This gives us the following.  

P̄t(t)=0,      t ≠ t2          (11) 

P̄(t2
+)=P̄(t2)+[P(t2)P̄(t2)]p̄(t2)=P(0)+[P(t2)P(0)]p̄(t2),  t = t2.    (12) 

To determine the level of ramp-up knowledge over the NPD project, we modify 

Equation (3) to reflect the fact that the transfer of pilot line knowledge occurs only at the 
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initial time and at t2. After time t2, the effectiveness of the rate of development activities 

at the ramp-up stage is enhanced by the transfer of pilot line knowledge. The parameter γ1 

indicates the returns to KT and reflects the ability of the pilot line team to transfer 

knowledge as well as the ability of the ramp-up team to absorb it. These relationships are 

summarized in Equation (13). 

Nt(t)=γ0n(t)P̄(t)γ1,  t [0,T].        (13) 

3.5.2 The Objective  

In contrast to the continuous model where the costs of KT are subsumed in development 

costs, in the discrete model explicit costs are incurred. The discrete transfer of 

prototyping knowledge to the pilot line stage occurs in meetings (either face to face or via 

telecommunications) or remotely by sharing computer generated drawings. Reflecting 

these transfer mechanisms, a cost is incurred for transportation, meeting facilities, 

telecommunications, as well as the time and effort by the prototyping team to document 

its results and the time and effort by the pilot line team to absorb those results. Also, KT 

disrupts ongoing development activities for both teams. Naturally, large amounts of KT 

are more disruptive and therefore more costly. Let the cost of transferring prototyping 

knowledge to the pilot line stage at time t1 be denoted by K1+c4(Y(t1)Ȳ(t1)). The 

parameter K1>0 represents the fixed transfer cost whereas the parameter c4>0 reflects the 

marginal cost in relation to the amount of the KT. Similarly, let K2+c5(P(t2)P̄(t2)) denote 

the cost of transferring pilot line knowledge to the ramp-up stage at t2 with K2 and c5>0. 

If the KT process is difficult or the knowledge itself is sticky (von Hippel 1994), then the 

cost parameters are larger. From Equation (14), we see that the NPD manager maximizes 

the net revenue obtained at the predetermined product launch time T, while minimizing 
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the costs associated with development activities incurred continuously over time and KT 

incurred at times t1 and t2.    

Maximize	rଵYሺTሻ ൅ rଶPሺTሻ ൅ rଷNሺTሻ െ ׬ ሾcଵyሺtሻ஢భ ൅ cଶpሺtሻ஢మ ൅ cଷnሺtሻ஢యሿdt
୘
଴

െ

yതሺtଵሻ ቀKଵ ൅ cସ൫Yሺtଵሻ െ Yഥሺtଵሻ൯ቁ െ pതሺtଶሻ ቀKଶ ൅ cହ൫Pሺtଶሻ െ Pഥሺtଶሻ൯ቁ  (14) 

3.5.3 Discrete Knowledge Transfer Solution 

The continuous and impulsive Hamiltonians are given in Equations (15) and (16), 

respectively. As in the Base Model, λ1(t), λ2(t) and λ3(t) denote the marginal values of the 

levels of prototyping, pilot line and ramp-up knowledge at time t. Let λ4(t) denote the 

marginal value of KT from the prototyping to the pilot line stage at time t, and  λ5(t) 

denote the marginal value of KT from the pilot line to the ramp-up stage at time t. The 

optimal solutions for λ4(t) and λ5(t) are given in Lemma 3.  

H ൌ cଵyሺtሻ஢భ െ cଶpሺtሻ஢మ െ cଷnሺtሻ஢య ൅ λଵሺtሻα଴yሺtሻ ൅ λଶሺtሻβ଴βଵpሺtሻYഥሺtሻ 

        ൅λଷሺtሻγ଴γଵnሺtሻPഥሺtሻ        (15) 

H୍ ൌ െyതሺtଵሻ ቀKଵ ൅ cସ൫Yሺtଵሻ െ Yഥሺtଵሻ൯ቁ െ pതሺtଶሻ ቀKଶ ൅ cହ൫Pሺtଶሻ െ Pഥሺtଶሻ൯ቁ 

         ൅λସሺtଵ
ାሻ൫Yሺtଵሻ െ Yഥሺtଵሻ൯yതሺtଵሻ ൅ λହሺtଶ

ାሻሺPሺtଶሻPഥሺtଶሻሻpതሺtଶሻ	       (16) 

From Lemma 3, we observe that the marginal values of the levels of prototyping 

and pilot line knowledge are step functions, and the marginal value of ramp-up 

knowledge is constant throughout the NPD project. Several intuitive results are reflected 

in Lemma 3. If the marginal cost of the KT from the prototyping to the pilot line stage is 

larger (smaller), the marginal value of the level of prototyping knowledge is smaller 

(larger) at time t1. In addition, the marginal value of the level of prototyping knowledge is 

larger (smaller) if the effect on net revenue is larger (smaller) or if the KT to the pilot line 

stage is more (less) effective. Similar interpretations hold for λ2
*(t). Lastly, from Lemma 
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3 (iv) and (v), we see that the marginal value of KT from the prototyping (pilot line) to 

the pilot line (ramp-up) stage is non-negative throughout the NPD project and decreases 

continuously for t≤ t1 and t>t1 (t≤ t2 and t>t2). If the returns from KT to the pilot line stage 

are larger (smaller), the marginal value of KT to the pilot line stage is larger (smaller) 

since the KT from the prototyping stage is more (less) valuable. Additionally, the 

marginal value of KT to the pilot line stage is larger (smaller) if the effect of pilot line 

knowledge on net revenue is larger (smaller). Similar interpretations hold for λ5
*(t).  

LEMMA 3: The marginal values of prototyping, pilot line and ramp-up knowledge and 

the marginal values of the KT of prototyping and pilot line knowledge satisfy the 

following:  

(i)ߣଵ
∗ሺݐሻ ൌ ସߣଵ൅ݎ

∗ሺݐଵ
ାሻ െ ܿସ	݂ݎ݋	ݐ ∈ ሾ0, ଵߣ ,ଵሿݐ

∗ሺݐሻ ൌ ݐ	ݎ݋݂	ଵݎ ∈ ሺݐଵ, ܶሿ;  

(ii)	ߣଶ
∗ ሺݐሻ ൌ ହߣଶ൅ݎ

∗ሺݐଶ
ାሻ െ ܿହ	݂ݎ݋	ݐ ∈ ሾ0, ଶߣ	 ,ଶሿݐ

∗ ሺݐሻ ൌ ݐ	ݎ݋݂	ଶݎ ∈ ሺݐଶ, ܶሿ;  

(iii)	ߣଷ
∗ ሺݐሻ ൌ ݐ	ݎ݋݂	ଷݎ ∈ ሾ0, ܶሿ;  

(iv) ߣସ௧
∗ ൌ െߣଶ

∗ሺݐሻߚ଴ߚଵ݌∗ሺݐሻ തܻሺݐሻఉభିଵ	݂ݎ݋	ݐ ് ଵݐ ସߣ  ,
∗ሺݐଵሻ ൌ ൫1 െ ସߣଵሻ൯ݐതሺݕ

∗ሺݐଵ
ାሻ ൅ ܿସ , 

ସߣ
∗ሺݐଵ

ାሻ ൌ ׬ ݐଵሻఉభିଵ݀ݐሻܻሺݐሺ∗݌ଵߚ଴ߚଶݎ
்
௧భ

ସߣ ,
∗ ሺܶሻ ൌ 0;  

(v) ߣହ௧
∗ ൌ െݎଷߛ଴ߛଵ݊∗ሺݐሻ തܲሺݐሻఊభିଵ	݂ݎ݋	ݐ ് ଶݐ ହߣ  ,

∗ ሺݐଶሻ ൌ ൫1 െ ହߣଶሻ൯ݐሺ̅݌
∗ሺݐଶ

ାሻ ൅ ܿହ , 

ହߣ
∗ሺݐଶ

ାሻ ൌ ׬ ଷݎ
்
௧మ

ହߣ ,ݐଶሻఊభିଵ݀ݐሻܲሺݐଵ݊∗ሺߛ଴ߛ
∗ ሺܶሻ ൌ 0. 

3.5.3.1 The Discrete KT Solutions  

Theorem 3 characterizes the optimality condition indicating whether or not prototyping 

(pilot line) knowledge should be transferred to the pilot line (ramp-up) stage at time t1 (t2). 

We know λ4(t1
+) is the marginal value of KT from the prototyping to the pilot line stage 

at time t1, and Y(t1)Ȳ(t1) is the amount of KT. Therefore, λସሺtଵ
ାሻ ሾYሺtଵሻ െ Yഥሺtଵሻሿ is the 

value of transferring prototyping knowledge to the pilot line stage at time t1, and 
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cସ൫Yሺtଵሻ െ Yഥሺtଵሻ൯ ൅ Kଵ is the corresponding cost. If the benefit is larger than the cost 

incurred at time t1, the manager pursues the KT and yത∗ሺtଵሻ ൌ 1. Conversely, if the cost of 

transferring prototyping knowledge is large, KT is less likely to occur. Similar 

interpretations hold for the optimal decision regarding the transfer of knowledge from the 

pilot line to the ramp-up stage at time t2. In the remainder of the paper, we assume 

yത∗ሺtଵሻ ൌ 1 and pത∗ሺtଶሻ ൌ 1 so that we focus on non-trivial solutions. 

THEOREM 3: ݕത∗ሺݐଵሻ  and ̅݌∗ሺݐଶሻ  satisfy: (i) ݕത∗ሺݐଵሻ ൌ 1  if 	ሺߣସሺݐଵ
ାሻ െ ܿସሻ൫ܻሺݐଵሻ െ

തܻሺݐଵሻ൯ െ ଵܭ ൒ 0  and ଵሻݐത∗ሺݕ	 ൌ 0	otherwise; (ii) ଶሻݐሺ∗̅݌	 ൌ 1  	݂݅	ሺߣହሺݐଶ
ାሻ െ ܿହሻ൫ܲሺݐଶሻ െ

തܲሺݐଶሻ൯ െ ଶܭ ൒ 0 and  ̅݌∗ሺݐଶሻ ൌ 0 otherwise. 

3.5.3.2 The Continuous Rates of Development Activities 

The optimal solutions for the rates of prototyping, pilot line testing and production ramp-

up are defined mathematically in Theorem 4 and illustrated in Figures 3.4. We find the 

optimal rate of prototyping follows a two-step function whose value changes at the time 

of KT, t1. Initially, the rate of prototyping activities is driven by the (constant) marginal 

value of KT at t1 and the (constant) marginal value of prototyping knowledge at T. With 

the constant marginal values and the convex cost, the manager optimally spreads out 

prototyping activities evenly over time so that from time 0 to t1 the rate of prototyping is 

constant. After t1, the rate of prototyping is only driven by the (constant) terminal value 

of the level of prototyping knowledge and the desire to smooth the convex cost so that, 

again, the rate of prototyping is constant after t1. However, prior to t1, prototyping is more 

desirable since it also reflects the value of increasing the effectiveness of pilot line testing 

activities. As a result, before the KT at t1, the optimal rate of prototyping is larger (i.e., 
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the steps go down). Therefore, the optimal rate of prototyping activities follows a discrete 

approximation of the front-loading strategy given in the Base Model.  

At the other extreme, we also find that the optimal rate of production ramp-up 

follows a two-step function. Driven by the (constant) marginal value of the level of ramp-

up knowledge at T, the (constant) pilot line knowledge transferred at t2, and the convex 

cost, the optimal rate of ramp-up activities is constant after the KT at t2. Similarly, driven 

by the terminal marginal value of the level of ramp-up knowledge and the convex cost, 

the optimal rate of ramp-up activities is constant before the KT. Moreover, following the 

transfer of pilot line knowledge, ramp-up activities are more effective at increasing the 

level of ramp-up knowledge. Thus, the rate of production ramp-up is larger after the 

transfer of pilot line knowledge at t2 (i.e., the steps go up). As such, the optimal rate of 

ramp-up activities follows a discrete approximation of the extreme delay strategy given in 

the Base Model. 

In contrast, under reasonable conditions the optimal rate of pilot line testing 

follows a three-step function whose value changes at the KT times, t1 and t2. Intuitively, 

given constant marginal values and the convex cost, the optimal rate of pilot line testing 

is constant from 0 to t1, t1 to t2, and t2 to T. After t2, the optimal rate of pilot line testing 

activities is only driven by the terminal value of the level of pilot line knowledge and the 

convex cost. In contrast, from t1 to t2, the optimal rate of pilot line testing activities is 

higher because it is also driven by the marginal value of the transfer of pilot line 

knowledge to the ramp-up stage at t2. As such, the step from t1 to t2 is higher than the step 

from t2 to T. Similarly, the step from t1 to t2 is higher than the step from 0 to t1 since, 

following the transfer of prototyping knowledge from stage 1 at t1, the effectiveness 
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(marginal value) of pilot line testing is larger. Therefore, the optimal rate of pilot line 

testing activities follows a discrete approximation of the moderate delay strategy given in 

the Base Model. Lastly, note that under extreme conditions, we obtain a two-step solution 

for the optimal rate of pilot line testing. If Y(0) is extremely large, the KT from the 

prototyping stage to the pilot line stage does not occur (t1 does not exist) so that the first 

step is from 0 to t2. This result is consistent with the continuous model. On the other hand, 

if r2 is extremely large, the optimal rate of pilot line testing still follows a moderate delay 

strategy; this result is in contrast to the continuous model where the extreme delay case 

occurs. Thus, even with extremely large r2, the step down in the pilot line activities 

optimally occurs since additional activities have less value after the KT to the ramp-up 

stage. 

The above results are summarized in Theorem 4, below. The insights are 

important since they show that, for a three stage model with two KTs, the continuous 

model is a reasonable approximation of the discrete model. This observation is important 

in the sense that managers can apply the front loading, moderate delay, extreme delay 

strategies obtained in the continuous KT model to the discrete KT problem, which is 

much more difficult to solve.  

 

 

 

 

 

 
Figure 3.4: Discrete Forward KT Model: The Optimal Rates of NPD 

Activities 
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THEOREM 4: (i) The optimal rate of prototyping activities follows a two-step function: 

ሻݐሺ∗ݕ ൌ ቀഊభ
∗ሺ೟ሻഀబ
഑భ೎భ

ቁ
భ

഑భషభ for t[0,t1]; ݕ∗ሺݐሻ ൌ ቀೝభഀబ
഑భ೎భ

ቁ
భ

഑భషభ for t(t1,T]. (ii) The optimal rate 

of pilot line testing follows a three-step function: ݌∗ሺݐሻ ൌ ቀഊమ
∗ሺ೟ሻഁబೊሺబሻ

ഁభ
഑మ೎మ

ቁ
భ

഑మషభ for t[0,t1]; 

ሻݐሺ∗݌ ൌ ቀഊమ
∗ሺ೟ሻഁబೊሺ೟భሻ

ഁభ
഑మ೎మ

ቁ
భ

഑మషభ  for t(t1,t2]; ݌∗ሺݐሻ ൌ ቀೝమഁబೊሺ೟భሻ
ഁభ

഑మ೎మ
ቁ

భ
഑మషభ for t(t2,T]. (iii) The 

optimal rate of production ramp-up activities follows a two-step function: ݊∗ሺݐሻ ൌ

ቀೝయംబುሺబሻ
ംభ

഑య೎య
ቁ

భ
഑యషభ for t [0,t2]; ݊∗ሺݐሻ ൌ ቀೝయംబುሺ೟మሻ

ംభ
഑య೎య

ቁ
భ

഑యషభ
 for t(t2,T]. 

3.5.3.3 The Optimal Times and Frequency of KT: Numerical Insights 

We begin this section by continuing our analysis of a three-stage NPD project where one 

transfer of knowledge occurs between successive stages at times t1 and t2, with t1<t2. The 

times to pursue KT satisfy optimality conditions given in the Appendix. Analytically, the 

conditions are sufficiently complex to preclude interpretation. Therefore, we conduct 

extensive numerical experimentation to understand how certain parameters impact the 

optimal times for KT and, subsequently, the optimal rates of development activities 

during the NPD project. In Observation 4, we describe how the effectiveness of 

prototyping activities on increasing the level of prototyping knowledge (0) impacts the 

optimal solution. The interpretation follows. 

OBSERVATION 4: Suppose 0 is larger.  

a) The optimal rate of prototyping activities is larger for t[0,T].  

b) If the returns to KT from the prototyping to the pilot line stage is small (1 small), 

then t1 occurs earlier, and the optimal rate of pilot line testing is larger for t[0,T]. 
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However, if the returns to KT from the prototyping to the pilot line stage is large (1 

large), then t1 is delayed, and the optimal rate of pilot line testing is smaller for 

t[0,t1] and larger for t(t1,T].  

c) If the returns to both KTs are small (1 and 1 small), then t2 occurs earlier, and the 

rate of production ramp-up activities is the same for t[0,t2] but smaller for t(t2,T]. 

Otherwise, if one of the returns to KT is large (either 1 or 1 large), then t2 is delayed 

and the rate of production ramp-up activities is the same for t[0,t2] and larger for 

t(t2,T].  

It is particularly interesting to note that, while Observation (4a) is consistent with 

the Base Model, the insight in Observation (4b) and (4c) are unique to the discrete model. 

Recall that in the Base Model, if the effectiveness of prototyping (0) is large, the rates of 

prototyping, pilot line testing, and production ramp-up are large regardless of the returns 

to KT. In contrast, in the discrete model, the impact of the 0 depends on the returns to 

KT: if 0 is larger, the manager controls the timing of KTs as well as the rates of 

prototyping, pilot line testing and ramp-up production in relation to the returns to KT, as 

described below. 

We find that if the returns to KT from the prototyping to the pilot line stage is 

small (small 1), the manager is forced to increase the level of pilot line knowledge by 

undertaking a high rate of pilot line testing throughout the development project. In 

contrast, if the returns to KT is large (large 1), the manager undertakes a low rate of pilot 

line testing before the transfer and a high rate after. Basically, the manager focuses more 

(less) efforts on pilot line testing after (before) the highly effective KT of prototyping 

knowledge occurs. 
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To determine the times for KT, the manager must balance the desire for 

transferring a large amount of knowledge (at a higher cost) later to drive a high level of 

returns at the recipient stage, versus transferring a small amount (at a lower cost) earlier 

so that the recipient has more time benefit from the KT. From Observation (4c), when the 

returns to both KTs are small (1 and 1 small), the optimal times for KT occur earlier. In 

essence, with small returns, KT has limited impact on improving the effectiveness of the 

recipient’s development activities. Therefore, the manager optimally transfers smaller 

amounts of knowledge earlier so that the recipient has more time to derive benefits. With 

the smaller amount of KT from the pilot line stage and given the limited returns to KT, 

the rate of production ramp-up activities is smaller after the KT. However, the rate of 

production ramp-up prior to the KT does not change since it is not affected by the 

effectiveness of prototyping. In contrast, when at least one of the returns is large, KT 

from the pilot line to the ramp-up stage is delayed, and the rate of ramp-up activities is 

the same prior to the KT but larger after. As such, the manager leverages the high returns 

by transferring more knowledge later, and then exploits the KT by pursuing a higher rate 

of ramp-up activities. 

In the remainder of this section, instead of focusing our numerical analysis on the 

times of KT, we focus on understanding drivers of the number of transfers that optimally 

occur. We now consider a two-stage NPD process where a series of KTs may occur from 

the prototyping to the pilot line testing stage. Therefore, we determine: the rate of 

prototyping activities, the rate of pilot line testing, and the sequence of times that KTs 

optimally occur from prototyping to the pilot line stage. The optimality conditions for the 
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optimal times of KT are analogous to those for the three-stage two-transfer problem and 

are available upon request. 

OBSERVATION 5:  (a) For a sufficiently small increase (decrease) in the returns to KT 

(1), the optimal number of KTs remains the same, but the times are optimally delayed 

(occur earlier)3. (b) For a sufficiently large increase (decrease) in 1, the number of KTs 

increases (decreases).  

In Observation (5a), due to the delayed sequence of times, the manager transfers a 

larger amount of knowledge from the prototyping to the pilot line stage at each KT. The 

larger amounts of KT lead to a significant increase in the ability of pilot line testing 

activities to increase the level of pilot line knowledge. Thus, the benefits from utilizing a 

larger amount of knowledge in a shorter period of time dominate the benefits from 

utilizing a smaller amount of knowledge for a longer period of time. Observation (5b) is 

obtained since, if the returns to KT are sufficiently large, the benefits derived from more 

frequent KTs are large, as well. With a sufficient increase in the returns, the benefits from 

more KTs outweigh the associated costs and the manager optimally pursues a larger 

number of KTs.  

In Observation 6, we explore the effect of the product launch time on the optimal 

solution. As reported in (i) (a) and (i) (b) and consistent with the Base Model, we find 

that if T is delayed, the optimal rates of all development activities increase. However, 

unique to the discrete model, we find that, when the product launch is delayed, the 

                                                 

 
 
3 We observe the same result in the 3-stage model: with a sufficiently small increase in 1, KTs from the 
prototyping to the pilot line stage and from the pilot line to the ramp-up stage are optimally delayed.  
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optimal times of KT are delayed, as well, (i) (c). Despite the delayed KT, the pilot line 

team has sufficient time to leverage the larger amount of KT from the prototyping stage 

due to the later product launch. Lastly, consider the result in (ii). Suppose for a particular 

product launch time, the manger optimally pursues N KTs. If the product launch time is 

sufficiently delayed, the number of KTs increases to N+1, the first KT occurs earlier, and 

the last KT occurs later relative to the case when T is not delayed. Ultimately, the 

frequency of KT is driven by the need to balance the trade-off between the benefits 

(larger levels of knowledge and net revenue) and the associated costs.  

OBSERVATION 6: (i) With a sufficiently small increase (decrease) in the product 

launch time T, (a) the optimal rates of all development activities are larger (smaller) 

throughout the NPD project; (b) the optimal levels of knowledge at all stages are larger 

(smaller) throughout the NPD project; (c) the optimal times of KT are delayed (earlier). 

(ii) For a sufficiently large increase (decrease) in the product launch time T, the number 

of KTs increases (decreases).  

To complete our comparison between the Base Model and the Discrete Model, we 

present the following additional numerical insights. First, for a sufficiently small increase 

in 0, the optimal number of KTs remains the same; and if the returns to KT are smaller 

(larger) (1), they occur earlier (later). This insight is analogous to Observation (2c). 

Moreover, for a sufficiently large increase (decrease) in 0, the optimal number of KTs 

increases (decreases). This insight is analogous to Observation (3b). Lastly, if the 

effectiveness of pilot line testing (0) is larger, the marginal net revenue associated with 

the level of prototyping or pilot line knowledge (r1 or r2) is larger, or the costs of 



 88

development activities (c1 or c2) or KT (c4 or K) is smaller, the optimal number of KTs is 

larger. This final result, while interesting, is intuitive. 

3.6 Conclusions and Future Research 

In this paper, we examine KD strategies in an NPD project with three stages of activities 

conducted concurrently: prototyping, pilot line testing, and production ramp-up. The 

manager determines the optimal rates that development activities in each stage are 

pursued over the NPD project which drive the levels of prototyping knowledge, pilot line 

knowledge, and ramp-up knowledge, respectively. An important feature of our research is 

that we capture the link between successive stages of development activities. Specifically, 

we recognize that by transferring prototyping knowledge to the pilot line stage, the 

manager enhances the ability of pilot-line testing activities to increase the level of pilot 

line knowledge. Similarly, transferring pilot line knowledge enhances the ability of the 

production ramp-up activities to increase the level of ramp-up knowledge. Ultimately, the 

manager seeks to maximize the net revenue earned at the product launch time (which is a 

function of the levels of knowledge at that time) less the costs incurred for development 

activities.  

A Base Model and two extensions are introduced that differ in the manner in 

which KT occurs. In the Base Model, KD activities are pursued by a relatively small 

number of persons who are co-located and who continuously transfer knowledge in the 

forward direction between successive stages. In the first extension of the Base Model, we 

allow the continuous feedback of knowledge from the ramp-up to the prototyping stage. 

In the second extension of the Base Model, we consider three large development teams 

who may reside in different locations. Since the continuous transfer of knowledge is not 
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practical, knowledge is batched and transferred from one stage to the next at discrete 

times. In the remainder of this section, we describe the key results of each model. 

3.6.1 Results of the Base Model 

In the Base Model, we show analytically that the optimal rate of prototyping activities 

continuously decreases over time (follows a front-loading strategy); the optimal rate of 

pilot line testing continuously increases then decreases over time (follows a moderate 

delay strategy); and the optimal rate of production ramp-up activities continuously 

increases over time (follows an extreme delay strategy). Therefore, we provide a 

comprehensive perspective of how the manager should undertake knowledge 

management throughout the NPD project. Beyond results on the evolution of knowledge, 

we obtain insights based on analytic sensitivity analysis, as described below.  

First, we show that an increase in the effectiveness of any development activity or 

the returns to forward KT leads to larger rates of all development activities throughout 

the NPD project. This result is particularly important since the manager has considerable 

control over the effectiveness of development activities as well as the returns to KT. The 

effectiveness of development activities is impacted by the manager’s initial selection of 

team members (skills) as well as the nature of the technical support (for example, CAD 

technology) provided. The returns to KT embody more complex relationships. Higher 

returns are associated with a greater ability of the source team to articulate and document 

knowledge; as well as greater ability of the recipient team to understand and apply that 

knowledge. To some extent, higher returns reflect the capabilities of the technical support 

system that facilitates the KT as well as the ability of team members to utilize the system. 

Also, the returns to KT are impacted by the stickiness of the knowledge (knowledge is 
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sticky if it is more tacit and more difficult to codify and transfer). Lastly, the ability of the 

source and recipient to drive the returns to KT also depends on the manager’s ability to 

motivate the source team to document knowledge, and the manager’s ability to motivate 

the recipient team to be receptive to utilize the knowledge. 

Second, we find that the initial level of knowledge at each stage in the NPD 

project impacts the optimal solution. The manager has considerable control over the 

initial level of knowledge of the development teams since the manager selects members 

of the teams based on their past experience and ability as indicated in performance 

reviews. In a particularly interesting result, we show that the impact on the optimal 

solution due to the initial level of pilot line knowledge depends on the relationship 

between the returns from KT to the ramp-up stage and the extent of diseconomies of 

scale in the cost of ramp-up activities. If diseconomies of scale dominate the relationship, 

then corresponding to a larger initial level of pilot line knowledge, the incentive to 

develop additional pilot line knowledge is smaller and the manager reduces the rate of 

pilot line testing activities throughout the NPD project. Furthermore, given the reduced 

incentive to develop pilot line knowledge, the manager pursues less prototyping activities 

throughout the NPD project. Therefore, we observe a substitution effect: with a higher 

initial level of prototyping knowledge, the manager undertakes less prototyping and pilot 

line activities. Nevertheless, due to the larger initial level of pilot line knowledge and 

despite the smaller rates of prototyping and pilot line activities, we show that the level of 

pilot line knowledge is larger throughout the NPD project. As a consequence, ramp-up 

activities are more effective and are pursued at a larger rate throughout the NPD project. 

In contrast, suppose the returns to KT from the pilot line to the ramp-up stage dominate 
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the effect of diseconomies of scale in the cost of ramp-up activities. We show that with a 

larger initial level of knowledge at the pilot line stage, the manager pursues more 

prototyping, pilot line testing and ramp-up activities throughout the NPD project. 

Terwiesch et al. (2002) also examine how preliminary information impacts KT strategies. 

However, they focus their analysis on features of the preliminary information: precision 

and stability.  

Lastly, numerically we explore how the product launch time impacts the 

manager’s knowledge management strategy. If the product launch time is delayed, 

holding other parameters constant, we find the manager optimally pursues more 

development activities in all stages over all time. This result reflects the longer period of 

time for which KT benefits are realized. It follows that, if the product launch time occurs 

earlier, then the manager optimally pursues less development activities in all stages over 

all time, unless the net revenue earned in relation to the levels of knowledge is larger. 

3.6.2 Continuous KT with Feedback 

In the Feedback Model, we consider not only the continuous forward KT between stages, 

but also the continuous backward KT from the pilot line to the prototyping stage, from 

the ramp-up to the prototyping stage, and from the ramp-up to the pilot line stage. A 

comparison of the Base Model and the Feedback Model shows that the optimal pursuits 

of prototyping, pilot line testing and ramp-up activities are significantly influenced by the 

returns to feedback. As expected, when the returns to feedback from the pilot line to the 

prototyping stage are sufficiently small, the optimal strategies for three development 

stages are the same as in the Base Model. However, when the returns to feedback from 

the pilot line to the prototyping stage are sufficiently large, the optimal strategies for KD 
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differ dramatically from the Base Model. In particular, if the returns to feedback are 

sufficiently large, the optimal rate of prototyping follows the extreme delay strategy; the 

optimal rate of pilot line testing follows a front-loading strategy; and the optimal rate of 

production ramp-up activities follows an extreme strategy (as in the base model). The 

maximum rate of pilot line activities is pursued at the start of the planning horizon in 

order to quickly accumulate pilot line knowledge to transfer to the prototyping stage. 

Similarly, the maximum rate of prototyping activities is delayed until the end of the NPD 

project in order to wait and thereby benefit from the accumulation of more feedback from 

the pilot line stage. Analogous insights are found when feedback occurs from the ramp-

up stage to either the prototyping or pilot line stage. 

In another key result, we find that, corresponding to a larger rate of returns to 

feedback, the manager pursues more prototyping, pilot line testing, and ramp-up activities 

over all time. This latter result reflects the synergy among the three stages of the NPD 

project as driven by both forward and feedback KT.  

3.6.3 Discrete KT 

In the model where forward KT occurs at discrete times, we analytically show that the 

optimal rates of development activities satisfy step functions that mimic the continuous 

time solutions obtained for the Base Model. In particular, the optimal rate of prototyping 

activities steps down when knowledge is transferred to the pilot line stage; the optimal 

rate of pilot line testing steps up when KT is received from the prototyping stage, and 

later steps down when knowledge is transferred to the ramp-up stage; the optimal rate of 

ramp-up activities steps up when KT is received from the pilot line stage. Despite the 

similarities in the structures of the optimal solutions, based on analytic and numerical 
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results, we find important differences between the continuous and discrete forward KT 

models, as described below. 

For the Discrete Model, we show analytically that if the effectiveness of 

prototyping is larger, the optimal rate of prototyping activities is larger throughout the 

NPD project. This insight is consistent with the Base Model. However, we also show that 

if the effectiveness of prototyping activities is larger, then the impact on the optimal 

times of KT and on the optimal rates of pilot line and ramp-up activities directly depends 

on the corresponding returns to KT. This result is entirely different from the Base Model. 

Essentially, when the returns to KT are relatively small, KT has limited impact on 

improving the effectiveness of the recipient’s development activities. As a result, the 

manager optimally transfers smaller amounts of knowledge earlier so that the recipient 

has more time to derive benefits. In contrast, when the returns to KT are relatively large, 

the manager optimally transfers larger amounts of knowledge later since the recipient is 

able to understand and absorb the knowledge.  

Interesting insights are also obtained for the Discrete Model based on extensive 

numerical experimentation. We show that as the returns to forward KT increases, if the 

number of transfers remains the same, the manager optimally delays the times of KT and 

the magnitude of each transfer is larger. This insight is particularly interesting if 

interpreted from the perspective of the stickiness of knowledge. When the knowledge to 

be transferred is tacit, the nature of the documentation process undertaken by the source 

is unclear. Similarly, it is difficult for the recipient to interpret, absorb and deploy the KT 

to enhance the effectiveness of its development activities. In other words, the returns to 

transferring tacit knowledge may be smaller. As a consequence, the NPD manager 
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pursues KTs earlier, and the magnitude of each KT is smaller. This timing strategy 

provides the recipient with sufficient time to digest and deploy the KT. In contrast, when 

knowledge is easily codified, the returns to KT may be higher since it is easier for the 

source to document the knowledge and easier for the recipient to absorb and deploy the 

knowledge. With higher returns, the times of the KTs are delayed and the magnitude of 

each KT is larger. Therefore, the manager is able to batch more knowledge in each KT 

since the source and recipient are better able to document and apply the knowledge.  

Lastly, numerically we explore how the product launch time impacts decisions in 

the Discrete Model. As in the Base Model, for a sufficiently small delay in the product 

launch time, the manager optimally pursues more development activities in all stages 

over all time. In addition, we observe that the manager delays all KTs. Nevertheless, the 

delayed product launch times allow the recipient stages sufficient time to leverage the 

larger KTs. Furthermore, if the product launch time is sufficiently delayed, the manager 

optimally pursues a larger number of KTs to balance the trade-off between the benefits 

(larger levels of knowledge and net revenue) and the associated costs.  

3.6.4 Future Research 

In this paper, we assume the effectiveness of development activities is constant over time. 

However, the effectiveness of development activities may increase over time as technical 

and market uncertainty is resolved. In particular, as time passes development activities 

may be more effective because there are fewer errors to be identified and corrected. 

Future research can examine the situation where the effectiveness of KD activities 

increases over time. Also in this paper, we assume a predetermined product launch time. 

While this assumption is entirely appropriate in some environments where external forces 
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determine the launch time, in other domains managers have the autonomy to determine 

the product launch time. Under time-based competition, an early product launch may 

drive higher product sales, whereas a later product launch may lead to a loss in market 

share and long-term sales. In future research, the product launch time can be determined 

optimally to maximize net revenue less development costs. 
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CHAPTER 4 

THE DEVELOPMENT OF A NEW PRODUCT VERSUS THE 

IMPROVEMENT OF AN EXISTING PRODUCT AND THE VALUE 

OF KNOWLEDGE TRANSFER 

 

4.1 Introduction 

While the product improvement of an existing product is necessary to sustain a firm in 

the short-term, new product development (NPD) leads a firm to long-term success 

(Wheelwright and Clark 1992, Chao et al. 2009). The link between product improvement 

of an existing product and NPD projects are twofold. First, firms often rely on the 

revenue derived from the improvement of existing products for the cash flow necessary 

fund NPD projects. Therefore, since firms usually have limited resources to support 

innovation projects, competition between product improvement projects and NPD 

projects is commonplace (Loch and Kavadias 2002, Taylor 2010). Second, knowledge 

from the NPD project may be transferred to enhance the improvement of the existing 

product. The benefit of the knowledge transfer (KT) is clear: it serves as a buffer against 

the considerable uncertainty regarding the successful release of the new product to the 

marketplace. In other words, the knowledge developed from a risky NPD project may 

ultimately benefit the firm only in terms of the KT that enhances the existing product 

improvement project. On the downside, however, when knowledge is transferred from 
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the new development project to an existing product improvement project, the proprietary 

benefits that would be obtained by the release of the new product are diminished. 

Interestingly, to increase the chance for survival of the new product, some authors 

recommend the separation of the development of new products and the improvement of 

existing products (Tushman and O’Reilly 1997, Christensen 1997, Hlavacek and 

Thompson 1973). When a NPD project competes for resources and executive attention 

with an existing product improvement project, the likelihood of success of the new 

product is significantly reduced by the internal competition. Therefore, this internal 

competition is often considered as a hindrance to the adaptation and development of the 

firm.  

In contrast, based on a field study of several software development firms, Taylor 

(2010) finds that internal competition can serve as one mechanism for knowledge 

diffusion which improves the overall firm performance in the marketplace. Taylor 

describes how, in one firm, the development team of an existing software product (E-

Static) integrated knowledge transferred from the development team of a new software 

product (N-Monitor) to improve the features and performance of the existing product. In 

fact, although the NPD project for N-Monitor was eventually terminated, the knowledge 

accumulated in the development process benefited the firm by enhancing the 

development efforts of the E-Static team. In conclusion, the internal competition provides 

the opportunity for KT from a new to an existing development project which might 

improve the overall firm performance.   

In this paper, we introduce a dynamic model to analyze a manager’s pursuit of 

knowledge development (KD) for an existing product improvement project and KD for 



 98

an NPD project during a pre-determined development cycle, referred to as a planning 

horizon. Progress in both projects is inferred by the growing levels of knowledge 

accumulated by the manager’s pursuit of development activities (Santiago and Vakili 

2005, Chao et al. 2009, Gaimon et al. 2011, Xiao et al. 2012). The rates of KD for the 

existing product improvement project as well as the NPD project are continuously 

determined throughout the planning horizon. Development activities include prototyping, 

simulation, and pilot line testing. In addition, the existing product improvement project 

may increase its level of knowledge through the transfer of knowledge from the NPD 

project. The rate of KT from the NPD project to the existing product improvement 

project is determined throughout the planning horizon. While the existing product 

improvement project generates revenue continuously and with certainty throughout the 

development project, uncertainty exists regarding the ability of the NPD project to 

generate revenue when it is successfully released to the marketplace. By investing in the 

accumulation of knowledge, the NPD team increases the probability of success in the 

marketplace. Therefore, we consider the expected revenue realized by the NPD project 

over the planning horizon (Chao et al. 2009, Ozkan et al. 2012). Moreover, the expected 

revenue earned by the NPD project is reduced as a result of knowledge transferred to the 

existing product development project since some of the benefits from the deployment of 

proprietary knowledge are lost. Naturally, costs are incurred as development and KT 

activities are undertaken over time. Ultimately, the manager seeks to maximize expected 

profit obtained from the product improvement project and the NPD project.  

Our results indicate that the manager optimally pursue a front-loading strategy 

(the rate of development activities continuously decreases over time) for the KD activities 
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in both the existing product improvement project and the NPD project.  The optimal rate 

of KT from the NPD project to the existing product improvement project may follow a 

front-loading or an extreme delay strategy (the rate of KD increases continuously over 

time) or a moderate delay strategy (the rate of KD first decreases and then increases over 

time) depending on which of the following dominates: the benefits to the existing product 

improvement project from KT and the penalty and costs for KT. 

This paper is organized as follows: In Section 4.2, a review of the literature is 

provided. Section 4.3 introduces the dynamic model. Section 4.4 contains the optimal 

solutions and interpretations. The concluding remarks and directions for future research 

are given in Section 4.5. 

4.2 Literature Review 

KT is a form of induced learning which requires managerial action for the learning 

activities to occur (Terwiesch and Bohn 2001, Carrillo and Gaimon 2000, 2004). Argote 

and Ingram (2000, p. 151) define KT as "the process through which one unit (e.g., group, 

department, or division) is affected by the experience of another". It requires one party to 

pass knowledge to the other party through discussion, seminars, presentations or 

documentation (Ha and Porteus 1995, Argote 1999, Ozkan et al. 2012, Xiao et al. 2012).  

The NPD literature has studied the KT that occurs between stages within a single 

development project. Moreover, the KT from one product development stage (or team) to 

another may occur sequentially, simultaneously, or be overlapped in time. KT can occur 

in the forward direction only from an upstream stage to a downstream stage or from a 

product design team to a process design team (Ha and Porteus 1995, Krishnan et al. 1997, 

Loch and Terwiesch 1998, Xiao et al. 2012) or in both forward and backward directions 
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(Ozkan et al. 2012, Xiao et al. 2012). The overlapping of development activities in an 

NPD project has been well studied (Ha and Porteus 1995, Krishnan et al. 1997, Loch and 

Terwiesch 1998, Ozkan et al. 2012, Xiao et al. 2012).  

Ha and Porteus (1995) investigate a model where product and process design are 

carried out in parallel to improve quality and to enhance manufacturability. During 

project development, progress reviews (a form of KT) are conducted to exchange 

information and discover design flaws. The flaws discovered reduce development time 

and the resources required later for redesign. Progress reviews also serve as a quality 

control process to evaluate the manufacturability of the product design.  Unfortunately, 

progress reviews are costly. Thus, the manager must determine when to conduct progress 

reviews to minimize the total expected project completion time and the cost of progress 

review.  

Krishnan et al. (1997) provide a model-based framework to manage the 

concurrency of product development activities which involves the KT from an upstream 

stage to a downstream stage. They introduce the view of the evolution of upstream 

information and the downstream sensitivity to the evolution.  If the upstream activities 

are finalized early, the flexibility to make future changes is lost, and design quality 

suffers. On the other hand, if upstream information is used by downstream while 

upstream activities are still evolving, then the downstream activities are forced to iterate 

thereby delaying product launch. The authors formulate a model whereby upstream and 

downstream activities are overlapped to minimize the product launch time. Results 

indicate when preliminary information should be used by the downstream activity, and 

which parts of upstream information should be utilized early in downstream activities. 
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Loch and Terwiesch (1998) develop a model of concurrent engineering that 

allows the overlapping of upstream and downstream activities and KT from the upstream 

to the downstream activities. They incorporate the uncertainty in the average rate of 

engineering change and the dependence of upstream modification and downstream task. 

They present a dynamic decision rule to determine the optimal time for communication, 

and provide the optimal level of concurrency between activities. They observe that 

uncertainty and dependence decrease the optimal level of overlapping, and make 

concurrent engineering less attractive. Terwiesch et al. (2002) analyze the exchange of 

preliminary information in a concurrent engineering environment. Based on a field study, 

they develop a time-dependent model which coordinates parallel development activities. 

They define two sets of coordination strategies: iterative and set-based, and discuss the 

trade-offs in choosing each strategy and how they change over the development project.  

Ozkan et al. (2012) consider NPD in the context of knowledge management. They 

examine the simultaneous and bi-directional KT between product and process design 

teams. They identify two possible KD and KT strategies for the product and process 

design teams: front-loading strategy (the rate of development effort decreases over time) 

and moderate delay strategy (the rate of development effort increases and then decreases 

over time). In addition, they examine how errors in KD and KT impacts the optimal 

strategies used. Xiao et al. (2012) examine forward and backward KT between three 

stages of an NPD project. They observe that feedback can significantly change the 

optimal KD strategy to be pursued. In addition to the front-loading and moderate delay 

strategies, we also introduce the extreme delay strategy (the rate of development effort 
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decreases over time) and the moderate front-loading strategy (the rate of development 

effort decreases and then increases over time).  

Note that the above literature focuses on the impact of KT either from one 

stage/team to another stage/team within one NPD project. In contrast we examine the KT 

between two NPD projects within one firm and assess how that KT impacts the overall 

firm performance. Based on a field study, Taylor (2010) examines the internal 

competition between a new technology development project and an existing technology 

improvement project. He finds that, as a result of internal competition, KT occurs from 

the new technology project to the existing-technology project. As a result, elements of the 

new technology are integrated into the development of the existing-technology product. 

Our approach, therefore, is consistent with Taylor’s field study. We optimally determine 

the rate of KD for the NPD project and the rate of improvement of the existing project, as 

well as the rate of KT from the new to the existing project, throughout the planning 

horizon.   

The aggregate project management problem has been addressed in the literature 

whereby a manager determines the development strategy for multiple NPD projects, 

typically subject to limited resources (Bower 1986, Rousell et al. 1991, Wheelwright and 

Clark 1992, Cooper et al. 1998, Kavadias and Loch 2003, Kavadias and Chao 2007, Chao 

et al. 2009). In the corporate environment, effective investment of resources directly 

impacts a firm’s competitive advantage (Lock and Kavadias 2002). Nobeoka and 

Cusumano (1997) describe the importance of managing multiple product lines on firm 

performance. Cooper et al. (1998) introduce methods used to allocate resources to 
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multiple product development projects under a budget constraint and introduce the notion 

of strategic buckets for the spending splits. 

Normative research exists modeling the investment of resources under a budget 

constraint in the context of NPD. Using a linear programing (LP), Beaujon et al. (2001) 

examine the resource investment problem for multiple R&D projects where partial 

funding of projects is allowed. The partial funding assumption differs from the traditional 

assumption which characterizes funding as a zero or one decision. Kavadias et al. (2005) 

also consider project funding as a continuous decision. They assume project funding can 

be adjusted up or down with upper and lower bounds. A heuristic method is provided in 

which the marginal benefits determine the optimal resource investment. Loch and 

Kavadias (2002) introduce a dynamic programming model of resource investment under 

a budget constraint. They assume that the project investments within the product line may 

build up gradually over time. They show that it is optimal for the manager to invest the 

next dollar to the project with the highest marginal benefit. Recently, using a dynamic 

model, Chao et al. (2009) study how the funding authority and incentives impact the 

competition for resources between an existing product improvement project and a NPD 

project.  They show that the manager invests more resources on the existing product 

improvement project under variable funding when the manager has the authority to use 

revenue derived from existing product sales to fund NPD effort.  

The focus of the above-mentioned literature is the problem of resource investment 

in NPD projects under limited resources (i.e., a budget constraint). In contrast, we do not 

consider a budget constraint for the investment in development resources. Instead, we 

maximize the expected profit which is the difference between expected revenue less KD 
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and KT costs. In addition, in contrast to the traditional resource allocation in multiple 

NPD projects, we explicitly recognize the potential value (increase in revenue) and the 

penalty and cost implications of KT from a new NPD project to an existing product 

improvement project. We identify the rates that KD activities should be pursued in both 

projects as well as the rate of KT from the NPD project to the existing product 

improvement project over time.  

4.3 The Model 

In this section, we consider product development in the context of knowledge 

management. We study a business division within a firm that produces and sells an 

existing product and develops a new product over a finite development cycle, ݐ ∈ ሾ0, ܶሿ. 

The terminal time of the development cycle (ܶ), referred to as the planning horizon, is 

exogenous. We examine how KD and KT impact the level of knowledge embedded in the 

existing product improvement project as well as how KD impacts the level of knowledge 

embedded in the NPD project. A senior manager oversees the development of both 

projects and determines the rates of KD and the rate of KT. We describe how the level of 

knowledge of the existing development project enhances the ability to continuously 

generate revenue over time; and how the level of knowledge for the NPD project 

enhances the ability of the firm to derive expected revenue when the new product is 

successfully released to the marketplace. The manager’s objective is to maximize 

expected profit which consists of revenue less the costs for KD and KT. 

4.3.1 The Levels of Knowledge and Knowledge Transfer 

Throughout the planning horizon, the manager invests in developing a new product based 

on a new technology that is fundamentally different from the underlying technology used 
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in the existing product. Let ݕ௡ሺݐሻ ൐ 0 denote the rate of KD pursed in the NPD project at 

time ݐ (control variable), which can be measured in terms of hours of workforce effort. 

Let ܭ௡ሺݐሻ (state variable) denote the level of knowledge for the NPD project at time t, 

with ܭ௡ሺ0ሻ ൐ 0 given. The level of new product knowledge at time t consists of the 

initial knowledge level (ܭ௡ሺ0ሻ) and the additional knowledge associated with the KD 

activities pursued through that time. The initial level of knowledge for the NPD project 

reflects the skill of the team and is based on past experience, years of education and 

training, and peer reviews. The increase in the level of new product knowledge at time ݐ 

is driven by the rate of KD at that time as well as the skill of the team and the quality of 

the technical support available. The skill level of the team and the quality of the technical 

support are inferred by the parameter ߙ௡ ൐ 0. This gives us Equation (1).  

ሻݐሶ௡ሺܭ ൌ  ሻ         (1)ݐ௡ሺݕ௡ߙ

In addition to developing the new product, the manager invests in improving the 

existing product to enhance its revenue generating potential. Improvements of an existing 

product include new product features, product feature upgrades, and process 

improvements that reduce manufacturing and distribution costs. Let ݕ௘ሺݐሻ ൒ 0 denote the 

rate of product improvement activities (KD) for the existing product development project 

at time ݐ (control variable), which can be measured in terms of hours of workforce effort. 

As additional KD activities are pursued, such as prototyping, simulation, and pilot line 

testing, the level of knowledge of the existing product improvement project accumulates. 

Let ܭ௘ሺݐሻ denote the level of knowledge associated with the existing product at time ݐ for 

tሾ0, ܶሿ with ܭ௘ሺ0ሻ ൐ 0 given (state variable). The level of existing product knowledge 

at time t is comprised of the initial level of knowledge (ܭ௘ሺ0ሻ), the benefits associated 
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with the rate of KD activities undertaken through time ݐ, and the learning benefits derived 

from KT from the NPD project to the existing product improvement project (Taylor 2010, 

Ozkan et al. 2012, Xiao et al. 2012). The initial level of existing product knowledge 

reflects the overall skill of the development team involved in the existing product 

improvement project and is based on the team’s previous experience, the level of prior 

education and training, and peer reviews. The extent that KD at time ݐ increases the level 

of existing product knowledge at that time is driven by the rate of development activities, 

the skill of the team, and the quality of the technical support available. The skill level of 

the team and the quality of technical support are indicated by the parameter ߙ௘ ൐ 0. This 

gives us the first term in Equation (3). The manner in which KT increases the level of 

knowledge of the existing product is described below. 

The transfer of new product knowledge benefits the existing product improvement 

project by providing it with novel ideas on product or process features. If knowledge can 

be codified the transfer may be facilitated through documentation of actual product 

prototypes or designs. In contrast, if knowledge is more tacit, it may be transferred 

through the redeployment of human resources (Taylor 2010). The senior manager 

determines the portion of new product knowledge to be transferred during the planning 

horizon. Let ܺሺݐሻ represent the cumulative amount of new product knowledge that has 

been transferred to the existing product improvement project by time ݐ (state variable). 

Therefore, the level of new product knowledge that has not been transferred to the 

existing product improvement project by time t is given by ܭ௡ሺݐሻ െ ܺሺݐሻ. In other words, 

ሻݐ௡ሺܭ െ ܺሺݐሻ	indicates the availability of new product knowledge that may be transferred 

to the existing improvement project at time t. Let ߠሺݐሻ ∈ ሾ0,1ሿ denote the portion of the 
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available new product knowledge that is transferred to the existing product improvement 

project at time ݐ (control variable). More specifically, the manager transfers the level of 

new product knowledge ߠሺݐሻሺܭ௡ሺݐሻ െ ܺሺݐሻሻ to the existing product improvement project 

at time ݐ, as shown in Equation (2). The parameter ߜ ൐ 0 denotes the marginal benefit of 

new product knowledge to the level of knowledge of the existing product improvement 

project as shown in the second term in Equation (3).  

ሶܺ ൌ ሻݐ௡ሺܭሻሺݐሺߠ െ ܺሺݐሻሻ        (2) 

ሻݐሶ௘ሺܭ ൌ ሻݐ௘ሺݕ௘ߙ ൅ ሻݐ௡ሺܭሻሺݐሺߠߜ െ ܺሺݐሻሻ      (3) 

4.3.2 Revenue  

The business division generates revenue from the existing product and the new product. 

We define the revenue continuously generated from the existing product at time ݐ  as 

ܴ௘ሺܭ௘ሻ ൌ  ሻ. The ability of a product to deliver revenue at time t is a function ofݐ௘ሺܭሻݐ௘ሺݎ

the cumulative knowledge embedded in the product at that time (Cohen et al. 1996, Kim 

1998, Chao et al. 2009, Gaimon et al. 2011, Ozkan et al. 2012, Xiao et al. 2012). As such, 

we assume the level of existing product knowledge accumulated through time ݐ 

characterizes the product specifications and features as well as the process efficiency, and 

thereby indicates the revenue generating ability of the existing product. In addition, we 

assume ݎ௘ሺݐሻ is positive and decreases over time. Therefore, unless the manager invests 

in its improvement, the ability of the existing product to drive revenue declines over time 

due to competition or changes in the marketplace.  

 While the development of the new product is critical to the long-term survival of 

the firm, it usually involves high risk of product failure due to technical and market 

uncertainties. Nevertheless, the manager may influence the probability of successful 
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development of the new product by investing in knowledge generating activities that 

reduce the market or technical uncertainties. We define ݂൫ܭ௡ሺݐሻ൯ as the probability that 

the NPD project is successfully developed at time ݐ,  with ݂ሺܭ௡ሺݐሻሻ ∈ ሾ0,1ሿ . Let 

݂൫ܭ௡ሺݐሻ൯ ൌ ݃ܳሺܭ௡ሺݐሻሻ  where ݃ ∈ ሾ0,1ሿ  and ܳሺܭ௡ሺݐሻሻ ∈ ሾ0,1ሿ . The parameter ݃  is a 

scaling factor. We assume that 
ௗொ

ௗ௄೙
൐ 0 and 

ௗమொ

ௗ௄೙
మ ൏ 0 so that 

ௗ௙

ௗொ
൐ 0 and  

ௗమ௙

ௗொమ
൏ 0. That is, 

the probability that the new product is successfully developed at time ݐ increases at a 

decreasing rate in relation to ܭ௡ሺݐሻ. In other words, as more knowledge is accumulated in 

the NPD project, the probability of success is higher.  

If the new product is successfully developed at time t, it generates revenue given 

by ܴ௡ሺܭ௡, ሻߠ ൌ ሻݐ௡ሺܭሻݐ௡ሺݎ െ  ሻ. In the first term, the level of knowledge embeddedݐሺܺ݌

in the new product through time t impacts the respective revenue generating potential at 

that time. In addition, we assume that ݎ௡ሺݐሻ  is positive and decreasing over time 

reflecting time-based competition, (i.e., if the new product is successfully developed late 

(early), the revenue generated is lower (higher)). However, from the second term, there is 

a loss in potential revenue when new product knowledge is transferred to the existing 

product improvement project since valuable new product features are no longer 

proprietary to the new product project. In a sense, the existing product cannibalizes the 

potential sales of the new product. We assume ݌  is positive and exogenous. By 

combining the probability of success for the new product, ݂൫ܭ௡ሺݐሻ൯ with the revenue 

function we have the expected revenue for the new product as ׬ ܴ௡ሺܭ௡, ݐሻ൯݀ݐ௡ሺܭሻ݂൫ߠ
்
଴

.  

The final sources of revenue reflect the values of knowledge at the terminal time. 

The levels of knowledge for the existing and new products may have value for future 
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NPD projects after the planning horizon. Let ௘ܸሺܭ௘ሻ ൌ  ௘ሺܶሻ denote the future of theܭ௘ߥ

existing product knowledge beyond time ܶ , with ߥ௘ ൐ 0 . Similarly, we define ௡ܸ ൌ

௡ߥ ௡ሺܶሻ as the future value of the new product knowledge after ܶ, withܭ௡ߥ ൐ 0.  

4.3.3. The Costs 

During the development cycle, costs are incurred for efforts expended on improving the 

existing product and developing the new product (Clark and Fujimoto 1991). Let 

௘ሻݕ௘ሺܥ ൌ ܿ௘ݕ௘ଶ  denote the cost incurred for KD activities undertaken at time ݐ  in the 

existing-technology project, with ܿ௘ ൐ 0. The cost includes salaries for engineers who 

conduct KD activities and the cost of the technical support systems. We assume the cost 

is quadratic with respect to the rate of activities pursued at any instant of time. The cost 

increases at an increasing rate to reflect the coordination costs, overtime costs, or 

capacity constraints on specialized resources that occur when disproportionally large 

amounts of activities are pursued at any instant of time (Carrillo and Gaimon 2004, 

Chand et al. 1996, Terwiesch and Xu 2004, Chao et al. 2009). Similarly, we define 

௡ሻݕ௡ሺܥ ൌ ܿ௡ݕ௡ଶ  , with ܿ௡ ൐ 0, as the costs for KD undertaken at time t in the new-

technology project. In addition to the costs of development activities, we also consider 

the cost of KT. When the new product knowledge is transferred to the existing product 

improvement project, a cost is incurred for the time and effort by the NPD project to 

document its results and the time and effort by the existing product improvement project 

to absorb those results (Xiao et al. 2012). Also, KT disrupts ongoing development 

activities for both teams. We define the cost of KT as ܥ௞ ൌ ܿ௞ߠଶሺܭ௡ െ ܺሻ. Therefore, 

large amounts of KT are more disruptive and more costly.  
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4.3.4 Objective Function and Hamiltonian 

The objective is to maximize the total expected profit obtained by the firm which is the 

difference between total revenue and the costs, as shown in Equation (4). The first term is 

the sum of the continuous (deterministic) stream of revenue earned by the existing 

product and the expected revenue earned by the new product. The second and third terms 

are the future values (beyond the current planning horizon) of the knowledge associated 

with existing and new products. The fourth term consists of the costs incurred for KD and 

KT during the planning horizon.  

max௬భሺ௧ሻ,௬మሺ௧ሻ,ఏሺ௧ሻ	 ׬ ሺܴ௘ ൅ ܴ௡݂ሻ݀ݐ
்
଴

൅ ௘ܸ ൅ ௡ܸ െ ׬ ሺܥ௘ ൅ ௡ܥ ൅ ݐ௞ሻ݀ܥ
்
଴

  (4) 

4.4 Optimal Solutions 

In the remainder of the paper, the notation depicting time is suppressed whenever 

possible, "ݔ∗" indicates an optimal solution of ݔ, and all proofs appear in the Appendix. 

We solve the model using optimal control methods (Sethi and Thompson 2000). The 

Hamiltonian to be maximized is given in Equation (5) where we introduce the adjoint 

variables ߣଵሺݐሻ,	 ߣଶሺݐሻ,	and ߣଷሺݐሻ. Since the level of incremental knowledge at time ݐ is 

sustained from ݐ through the remainder of the planning horizon, ߣଵሺݐሻ is interpreted as 

the marginal value of an additional unit of knowledge for the existing development 

project from time ݐ to the end of planning horizon, ܶ. A similar interpretation holds for 

 ሻ is the marginal value of an additional unit of KT from the NPDݐଷሺߣ ,ሻ. Lastlyݐଶሺߣ

project to the existing product improvement project at time t. The optimality conditions 

for the adjoint variables	appear in Lemma 1. 

ܪ ൌ ܴ௘ ൅ ܴ௡݂ െ ௘ܥ െ ௡ܥ െ ௞ܥ ൅ ௘ݕ௘ߙଵሺߣ ൅ ௡ሻܭߠߜ ൅ ௡ݕ௡ߙଶߣ ൅ ௡ܭሺߠଷߣ െ ܺሻ (5) 
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Lemma 1. The marginal values of existing product knowledge, new product knowledge, 

and the cumulative level of new product knowledge transferred to the existing product 

improvement project satisfy the following conditions:  

(i)	ߣሶଵሺݐሻ ൌ െݎ௘ ൏ ଵሺܶሻߣ	,0 ൌ   ;௘ݒ

(ii) ሻݐሶଶሺߣ ൌ െߠሺെܿ௞ߠ ൅ ଵߣߜ ൅ ଷሻߣ െ ݃ሺܳሺܭ௡ሻݎ௡ ൅ ሺെܺ݌ ൅ ௡ሻܳ௄೙ሻݎ௡ܭ ൏ 0 ଶሺܶሻߣ , ൌ

  ;௡ݒ

(iii)ߣሶଷሺݐሻ ൌ ௡ሻܭሺܳ݃݌ െ ߠሺܿ௞ߠ െ ଵߣߜ െ ଷሻߣ ൐ ଷሺܶሻߣ ,0 ൌ 0; 

In Lemma 1, we find that the marginal values of existing and new product 

knowledge are positive and decrease over time, and the marginal value of the cumulative 

amount of new product knowledge transferred is negative and increases over time. The 

marginal value of existing product knowledge at time ݐ  is driven by the marginal 

contribution to revenue from existing product knowledge over time. Since the existing 

product knowledge continuously generates revenue, an additional unit of existing product 

knowledge generated early creates revenue over the remainder of the development 

project. Thus, the marginal value of the level of existing product knowledge decreases 

over time. The marginal value of the new product knowledge at time ݐ is driven by the 

sum of the marginal contribution to expected revenue from new product knowledge over 

time and the marginal benefit to the existing product improvement project from the 

transfer of new product knowledge at time ݐ. Note that an additional unit of new product 

knowledge transferred early increases the level of existing product knowledge over the 

remainder of the planning horizon. Therefore, the marginal value of new product 

knowledge decreases over time as less time remains in the planning horizon to derive 

benefits. In contrast, the marginal value of the cumulative level of new product 
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knowledge transferred at time ݐ is negative since it is driven by the cost for KT and the 

penalty for losing the proprietary knowledge. As time passes and less time remains to 

incur the cost and penalty, the negative marginal value increases, reaching the value of 

zero at T.  

4.4.1 Optimal Rates of NPD Activities 

The optimal rates of KD in both projects and the optimal rate of KT from the NPD 

project to the existing product improvement project are given in Theorem 1. We observe 

that the optimal rates of KD and KT at time ݐ are functions of the marginal values and the 

marginal costs at that time. In Corollary 1, we describe how the optimal rates of 

development activities and KT change throughout the planning horizon. The 

interpretations follow.  

THEOREM 1: The optimal rates of existing product improvement and new product 

development activities, and the optimal rate of new product knowledge to be transferred 

to the existing product improvement project are: (i) ݕ௘∗ሺݐሻ ൌ
ఈ೐ఒభሺ௧ሻ

ଶ௖೐
; (ii) ݕ௡∗ሺݐሻ ൌ

ఈ೙ఒమሺ௧ሻ

ଶ௖೙
; 

(iii) ߠ∗ሺݐሻ ൌ max	ቄmin ቄ	
ఋఒభሺ௧ሻାఒయሺ௧ሻ

ଶ௖ೖ
, 1ቅ , 0ቅ. 

COROLLARY 1: For t[0,T], (i) ݕሶ௘∗ሺݐሻ ൌ
ఈ೐ఒሶ భሺ௧ሻ

ଶ௖೐
൏ 0 ; (ii) ݕሶ௡∗ሺݐሻ ൌ

ఈ೙ఒሶ మሺ௧ሻ

ଶ௖೙
൏ 0 ; (iii) 

ሶߠ ∗ሺݐሻ ൌ
ఋఒሶ భሺ௧ሻାఒሶ యሺ௧ሻ

ଶ௖ೖ
.  

From Theorem 1 and Corollary 1 (i), we see that the rate of existing product 

improvement activities is positive and decreasing over time until reaching 
ఈ೐௩೐
ଶ௖೐

 at the end 

of the planning horizon (see Figure 4.1). This development strategy is referred to in the 

literature as front-loading (Blackburn et al. 1996, Thomke and Fujimoto 2000, Ozkan et 
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al. 2012, Xiao et al. 2012). An additional unit of existing product improvement effort at 

time t increases the level of existing product knowledge and thereby the revenue 

generated at that time and throughout the remainder of the planning horizon. However, 

over time, there is less opportunity to benefit from the existing product knowledge so that 

KD declines. 

The results in Theorem 1 and Corollary 1 (ii) show that the rate of NPD activities 

is positive and decreasing over time until reaching 
ఈ೙௩೙
ଶ௖೙

 at time ܶ (see Figure 4.1). The 

manager pursues a front-loading strategy for the KD of the NPD project, as well. 

However, the driver of the front-loading strategy is different from that observed in the 

existing product improvement project. The front-loading strategy for KD of the NPD 

project optimally occurs since an additional unit of NPD effort at time t increases the 

amount of new product knowledge that can be exploited in the form of KT to the existing 

product from that time and throughout the remainder of the planning horizon. 

Lastly, in Theorem 1 and Corollary 1 (iii), we observe that the optimal rate of KT 

from the NPD project to the existing product improvement project is bounded by 0 and 1. 

The rate of change in ߠ∗ሺݐሻ over time depends the values of ߣߜሶଵሺݐሻ and ߣሶଷሺݐሻ. The first 

term ߣߜሶଵሺݐሻ represents the benefits of KT to the existing product improvement project. 

The second term ߣሶଷሺݐሻ indicates the penalty and cost for transferring the new product 

knowledge to the existing product improvement project. There are five cases that 

characterize how KT changes over time. At the extremes, we obtain ߠ∗ሺݐሻ ൌ 0 or 1 for 

t ∈ ሾ0, Tሿ. In other words, if 
ఋఒభሺ௧ሻାఒయሺ௧ሻ

ଶ௖ೖ
		൒ 1	 ቀ

ఋఒభሺ௧ሻାఒయሺ௧ሻ

ଶ௖ೖ
	൑ 0ቁover the entire planning 

horizon then KT is fixed at one (zero) for all time. The remaining three non-boundary 

solutions are described below. 
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 In Case 3, we have ߠ∗ሺݐሻ ∈ ሺ0,1ሻ	 for some non-zero interval of time and 

ሻݐሶଵሺߣߜ ൅ ሻݐሶଷሺߣ ൐ 0  for ݐ ∈ ሾ0, Tሿ , i.e., KT is a non-decreasing function of time 

throughout the planning horizon. (The conditions for four possible scenarios are 

described in the Appendix, which also contains illustrations.) In Case 3, we find that the 

maximum rate of KT is delayed to the end of the planning horizon. In the literature, this 

is referred to as the extreme delay strategy (Xiao et al. 2012).  This strategy is driven by 

the desire to delay KT until later in the planning horizon when the marginal penalty and 

cost of KT are driven to zero. 

In Case 4, we have ߠ∗ሺݐሻ ∈ ሺ0,1ሻ	for some non-zero interval of time and δλሶଵሺtሻ ൅

λሶ ଷሺtሻ ൏ 0 for t ∈ ሾ0, Tሿ, i.e., KT is a non-increasing function of time throughout the 

planning horizon. (The conditions for four possible scenarios are described in the 

Appendix, which also contains illustrations.)  In Case 4, we find that the maximum rate 

of KT occurs at the beginning of the development project. That is, the manager pursues a 

front-loading strategy for transferring the new product knowledge to the existing product 

improvement project. Front-loading occurs when the extent to which the benefits of KT 

dominate the corresponding penalty and cost is non-increasing over time. 

In Case 5, we have ߠ∗ሺݐሻ ∈ ሺ0,1ሻ	for some non-zero interval of time ݐ	 ∈ 	 ሾݐଵ,  ଶሿݐ

where ݐଵ ൒ 0 and ݐଵ ൏ ଶݐ ൑ ሻݐሶଵሺߣߜ ;ܶ ൅ ሻݐሶଷሺߣ ൑ 0 for ݐ ∈ ሾݐଵ, ሻݐሶଵሺߣߜ ;௠ሿݐ ൅ ሻݐሶଷሺߣ ൐ 0 

for ݐ ∈ ሺݐ௠, ௠ሻݐሺ∗ߠ ଶሿ; andݐ   is the minimum value of ߠ∗ሺݐሻ	for ݐ	 ∈ 	 ሾ0, ܶሿ . In other 

words, during a non-zero interval of time ݐ	 ∈ 	 ሾݐଵ,  ଶሿ, KT is convex decreasing, reachesݐ

a minimum, and becomes convex increasing. Furthermore, for ݐ	 ∈ ሾ0, ݐ ଵሻ andݐ ∈ ሺݐଶ, Tሿ 

we have ߠ∗ሺݐሻ ൌ 1 (i.e., KT is at its upper bound). Intuitively, this solution occurs when 

the marginal benefits of KT exceed the marginal penalty and cost throughout the 
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planning horizon; but initially at a non-increasing rate then later at a non-decreasing rate. 

(The conditions for four possible scenarios are described in the Appendix, which also 

contains illustrations.) We refer to the solution of Case 5, as the moderate front-loading 

strategy (Xiao et al.2012). Managerially, throughout the planning horizon the marginal 

benefits of KT exceed the corresponding marginal penalty and cost. Early in the planning 

horizon the extent that the marginal benefits exceed the marginal penalty and cost are 

substantial (but decreasing). This situation occurs for two reasons. First, early in the 

planning horizon the potential to exploit KT by the existing product improvement project 

is large but decreasing. Second, early in the planning horizon when new product 

knowledge is relatively small so that the probability of success in the marketplace for the 

new product is small, then the marginal penalty and cost for KT is small but increasing. 

In contrast, later in the planning horizon, the level of new product knowledge grows 

sufficiently large such that, while the benefits still dominate the penalty and cost (i.e., KT 

optimally occurs), the rate of increase in the penalty and cost of KT dominates the rate of 

decrease in the benefits. Therefore, KT is delayed until later in the planning horizon when 

the marginal penalty and cost of KT increases (from a negative value) to zero.  

 

 

 

 

 

 

 

,	ሻݐ௘ሺݕ  ሻݐ௡ሺݕ	

Figure 4.1: The Optimal Strategy for Existing Product Improvement 

and New Product Development Projects: Front‐loading  

ݐ
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4.4.2 Sensitivity Analysis 

In this section, we study the impact of parameter values on the optimal solutions and 

overall firm performance. In Corollaries 2 and 3, we explore how the effectiveness of 

development activities in the existing product improvement project and the NPD project 

(αୣ and α୬) impact the optimal rates of KD and KT, respectively. Corollary 4 discusses 

the impact of the returns KT (δ) on the optimal solution. Interpretations follow.  

COROLLARY 2: If workforce skill or technical support in the NPD project (α୬) is larger, 

then the optimal rate of KD for the NPD project is larger and the optimal rate of KT from 

the new development project to the existing product improvement project is smaller for 

t[0,T]. The optimal rate of KD for the existing product improvement project remains 

the same. The levels of knowledge associated with the NPD project and the existing 

product improvement project are larger t(0,T]. The overall expected profit is larger. 

The reverse results hold for ܿ௡. 

 Intuitively, if the effectiveness of KD for the NPD project is larger, then it is more 

desirable so that the rate of KD is larger throughout the planning horizon. Naturally, the 

level of new product knowledge is larger. With a larger amount of new product 

knowledge, although the manager pursues a smaller rate of KT, the cumulative amount of 

new product knowledge transferred to the existing product improvement project is still 

larger. Therefore, the level of existing product knowledge is larger. The increase in 

expected revenue and revenue that occurs due to the higher levels of new product and 

existing product knowledge, respectively, plus the smaller penalty for KT dominate the 

increase in costs due to more KT and more KD activities for the NPD project. Thus, the 

firm’s expected profit increases.  
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COROLLARY 3: If workforce skill or technical support in the existing product 

improvement project (αୣ) is larger, then the optimal rate of KD for the existing product 

improvement project is larger for t[0,T], and the level of existing product knowledge is 

larger for t(0,T]. The rate of KD for the NPD project, the rate of KT from the NPD 

project to the existing product improvement project, and the level of new product 

knowledge remain the same. The expected profit is larger. The reverse results hold for ܿ௘. 

 To interpret Corollary 3, note that the effectiveness of workforce skill and 

technical support for the existing product improvement project (αୣ) only impacts KD in 

the existing product improvement project. In particular, if αୣ  is larger, KD is more 

effective at increasing the level of knowledge for the existing product thus the rate of KD 

is larger and the level of existing knowledge is larger. Since the rate of KD for the NPD 

project and the rate of KT to the existing product improvement project are not impacted 

by the value of αୣ, the level of new product knowledge remains the same. The increase in 

revenue due to higher level of existing product knowledge dominates the additional cost 

for more KD in the existing product improvement project, and the expected profit is 

larger.  

COROLLARY 4: If the returns to KT (δ) is larger, then the optimal rate of KD for the 

new product is larger and the optimal rate of KT to the existing product improvement 

project is larger for t[0,T). The optimal rate of KD for the existing product 

improvement project remains the same. The levels of knowledge for the NPD project and 

the existing product improvement project are both larger for t(0,T]. The expected profit 

is larger. 
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 Lastly, we analyze the impact of the returns to KT. When the returns to KT are 

larger, the manager pursues a larger rate of NPD activities so that more new product 

knowledge is available for transfer to the existing product improvement project. 

Furthermore, the manager pursues a larger rate of KT throughout the planning horizon. 

As a result, the cumulative amount of new product knowledge transferred to the existing 

product improvement project is larger and the level of existing product knowledge is 

larger even though the rate of KD for the existing product improvement project remains 

the same. The expected profit is larger since the increase in revenue from the existing 

product plus the increase in expected revenue from the NPD project dominate the 

increase in penalties due to the loss of proprietary knowledge plus the increase in costs 

from more KD and KT. 

4.5 Conclusion and Future Research 

In this paper, we explore a manager’s pursuit of KD for an existing product improvement 

project and KD for an NPD project, which increase the respective levels of knowledge 

embedded in the existing product and the new product over time. Revenue is obtained 

with certainty and throughout the development project in relation to the level of 

knowledge in the existing product; but the amount of revenue is relatively limited. In 

contrast, substantial revenue may be realized when the NPD project is successfully 

released to the marketplace. The probability of success in the marketplace is driven by 

the level of knowledge in the NPD project over time. An important feature of our 

research is that we capture the link between the NPD project and the existing product 

improvement project through KT. More specifically, the knowledge accumulated in the 

NPD project can be transferred to the existing product improvement project for the 
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design of new features or capabilities that enhance the existing product and thereby 

increase its revenue generating potential. However, the loss in proprietary knowledge due 

to the KT reduces the expected revenue earned by the new product. The objective is to 

maximize the revenue earned from the existing product, plus the expected revenue from 

the new product, less the penalty for loss in proprietary knowledge and the costs of KD 

and KT.  

We obtain dynamic solutions characterizing how the NPD manager pursues KD 

for both the new and existing projects and KT from the NPD project to the existing 

product improvement project. We analytically show that the optimal rates of KD for the 

new product and the existing product continuously decrease over time (follow a front-

loading strategy); the optimal rate of KT may follow a front-loading, an extreme delay, or 

a moderate delay strategy depending on which of the two dominates: the benefits to 

revenue for the existing product improvement project from KT versus the penalty and 

cost associated with KT (see details in Section 4.4.1).  

We obtain insights on the impact on the optimal solution due to the effectiveness 

of KD for both an existing product improvement project and an NPD project. In addition, 

results are given depicting how the returns to KT impact the optimal solution. Next, we 

plan to explore the impact of the following on the optimal solutions: the penalty for 

losing proprietary knowledge associated with the NPD project; the rate at which the 

probability of success in the marketplace increases in relation to the level of NPD 

knowledge; the rate that revenue increases in relation to the level of knowledge for the 

existing product improvement project; the initial levels of new product and existing 

product knowledge; and the unit cost of KT.  
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APPENDIX A 

A1. Tables 

Table A.1: Notation for the Base Model 
 Buyer’s level of in-house production in periods 1 and 2 (decision variable) ݓ
ܲ Supplier’s outsourcing price in periods 1 and 2 (decision variable) 
ߤ Supplier’s level of integration process improvement (IPI) in period 1 (decision 

variable) 

ܴ Unit market price earned by the buyer. 
 ௕ Buyer's unit in-house production cost in period 1ܥ

ߙ Buyer's rate of volume-based learning in its production cost in period 2 

 ௦ Supplier's unit production cost in period 1ܥ

ߚ Supplier's rate of volume-based learning in its production cost in period 2 

ܷ Scaling factor of the supplier's investment cost in IPI 

ߛ Diseconomies of scale associated with the supplier’s investments in IPI 
 Base unit integration cost for the buyer (i.e., cost without IPI) ܮ

 ௜ Buyer's unit integration costܥ

௜ܥ ൅ ܲ Buyer's unit cost of outsourcing 

ܸ Component demand to be met by the buyer in each period 

଴݂  Scaling factor of the buyer’s future value benefits from volume-based learning 

ଵ݂  Rate of diminishing returns associated with the future value benefits  
Π௕ Buyer's profit in periods 1 and 2 

Π௦ Supplier's profit in periods 1 and 2 
 

 
 

Table A.2: Range of Input Parameter Values for Numerical Experiments 
R[10,100]; (0,1); f1=½; (1,2]; Cb, Cs[1,20]; 
L[1,10]; U[1,400]; f0[1,100]; V [1,200]; [-
0.9,5] 

 

 

A2. Proofs of Theorems and Corollaries 

Proof of Theorem 1. 

Proof of Case 1. ࣦ௕ሺݓ, ଵሻ is concave in two situations. First, given 1ߣ െ ߙ െ ଵ݂ ൌ 0 and 

௕ܥ ൏ ଴݂, we have ܺሺݓሻ ൏ 0 and 
ௗమ್ࣦ
ௗ௪మ ൏ 0. Second, given 1 െ ߙ െ ଵ݂ ൐ 0, we know that 
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ܺሺݓሻ  increases as ݓ  increases. From Equation (8), we have ܺሺܸሻ 	൑ 0 . Since ܺሺݓሻ 

increases as ݓ increases and ܺሺܸሻ 	൑ 0, we have ܺሺݓሻ ൑ 0 and 
ௗమ್ࣦ
ௗ௪మ ൑ 0 for ݓ ∈ ሾ0, ܸሿ. 

With the concavity of the Lagrangian, we obtain an interior solution ݓ௜௡௧ ∈ ሺ0, ܸሻ where 

௜௡௧ݓ  satisfies Equation (6). If  Π௕൫ݓ௜௡௧൯ ൒ 0	then the buyer participates in the game 

and	ݓ= ∗ݓ௜௡௧. From Equation (5), we obtain ߣଵ
∗ ൌ 0. (Note that if Π௕൫ݓ௜௡௧൯ ൏ 0, the 

buyer does not participate in the game.)  

Proof of Case 2. ࣦ௕ሺݓ, ଵሻ is convex in two situations. First, re-writing 1ߣ െ ߙ െ ଵ݂ ൌ 0 

as ଵ݂ ൌ 1 െ ߙ  and given ܥ௕ ൒ ଴݂,	 we have ܺሺݓሻ ൌ ሺ1ߙ െ ௕ܥሻሺߙ െ ଴݂ሻ ൒ 0  so that 

ௗమ್ࣦ
ௗ௪మ ൒ 0. Second, given 1 െ ߙ െ ଵ݂ ൏ 0, we know that ܺሺݓሻ decreases as ݓ increases. 

From Equation (8), we have ܺሺܸሻ ൒ 0.	  Since ܺሺݓሻ  decreases as ݓ  increases and 

ܺሺܸሻ ൒ 0, we know that ܺሺݓሻ ൒ 0 and 
ௗమ್ࣦ
ௗ௪మ ൒ 0 for ݓ ∈ ሾ0, ܸሿ. With the convexity of 

the Lagrangian, the Case 2 optimal solution occurs on a boundary: ݓ∗ ൌ 0	or	ܸ.  If 

∗ݓ ൌ ∗ݓ) 0 ൌ ܸ) then from Equation (5) we obtain ߣଵ
∗ ൌ 0	ሺߣଵ

∗ ൌ ଵߣ
௣௢௦ሻ and ࣦ௕ሺ0,0ሻ ൐

	ࣦ௕൫ܸ, ଵߣ
௣௢௦൯ ቀࣦ௕൫ܸ, ଵߣ

௣௢௦൯ ൐ 	ࣦ௕ሺ0,0ሻቁ. 

Proof of Case 3.  Given  1 െ ߙ െ ଵ݂ ൐ 0 and 	ܺሺܸሻ 	൐ 	0, since ܺሺ0ሻ ൏ 0 there exists ݓᇱ 

such that (i) for ݓ ∈ ሾ0,ݓᇱሻ we have 
ௗమ್ࣦ
ௗ௪మ ൏ 0; (ii) for ݓ ൌ   ᇱ we haveݓ

ௗమ್ࣦ
ௗ௪మ ൌ 0 (i.e., 

ܺሺݓᇱሻ = 0); and (iii) for ݓ ∈ ሺݓᇱ, ܸሿ we have 
ௗమ್ࣦ
ௗ௪మ ൐ 0, where 

ௗమ್ࣦ
ௗ௪మ 	is given in Equation 

(7). That is, the Lagrangian is initially a concave and then becomes a convex function of 

ுݓ Let the maximum of the concave domain be given by .ݓ
௜௡௧ and the minimum of the 

convex domain be given by ݓ௅
௜௡௧ , where ݓு

௜௡௧ ൏ ᇱݓ ൏ ௅ݓ
௜௡௧ . There are two possible 
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optimal solutions: ݓ∗ ൌ ுݓ
௜௡௧  and 	ߣଵ

∗ ൌ 0, or ݓ∗ ൌ ܸ  and ߣଵ
∗ ൌ ଵߣ

௣௢௦ ൐ 0, depending 

on whether ࣦ௕൫ݓு
௜௡௧, 0൯ ൐ 	ࣦ௕൫ܸ, ଵߣ

௣௢௦൯ or 	ࣦ௕൫ܸ, ଵߣ
௣௢௦൯ ൐ 	ࣦ௕൫ݓு

௜௡௧, 0൯, respectively. 

Proof of Case 4. Given  1 െ ߙ െ ଵ݂ ൏ 0 and  ܺሺܸሻ 	൏ 		0, since ܺሺ0ሻ ൐ 0 there exists 

ݓ ᇱᇱ such that (i) forݓ ∈ ሾ0,ݓᇱᇱሻ we have  
ௗమ್ࣦ
ௗ௪మ ൐ 0; (ii) for ݓ ൌ   ᇱᇱ we haveݓ

ௗమ್ࣦ
ௗ௪మ ൌ 0 

(i.e., ܺሺݓᇱᇱሻ = 0); and (iii) for ݓ ∈ ሺݓᇱᇱ, ܸሿ we have  
ௗమ್ࣦ
ௗ௪మ ൏ 0, where 

ௗమ್ࣦ
ௗ௪మ 	is given in 

Equation (7). That is, the Lagrangian is initially a convex and then becomes a concave 

function of ݓ . Let the minimum of the convex domain be given by ݓ௅
௜௡௧  and the 

maximum of the concave domain be given by ݓு
௜௡௧, where ݓ௅

௜௡௧ ൏ ᇱᇱݓ ൏ ுݓ
௜௡௧. Again, 

there are two possible optimal solutions: ݓ∗ ൌ ுݓ
௜௡௧ and ߣଵ

∗ ൌ 0, or ݓ∗ ൌ 0 and ߣଵ
∗ ൌ 0, 

depending on whether ࣦ௕൫ݓு
௜௡௧, 0൯ ൐ 	ࣦ௕ሺ0,0ሻ or ࣦ௕ሺ0,0ሻ ൐ 	ࣦ௕൫ݓு

௜௡௧, 0൯, respectively. # 

Q.E.D. 

Proof of Theorem 2 

 Since we assume that ܪሺܲ,  ሻ is negative definite, then the supplier’s profit is jointlyߤ

concave with respect to ܲ and  ߤ. As a result, the maximum profit is achieved at the 

interior solutions ሺܲଵ௔, ଵ௔ሻߤ , obtained by simultaneously solving 
ௗࣦೞ
ௗ௉

ൌ 0  and 
ௗࣦೞ
ௗఓ

ൌ 0 

with the associated Lagrange multipliers equal to zero. Note that ܲሺߤሻ is defined as the 

lower bound on P to ensure ߎ௦ ൒ 0  and ܲሺߤሻ  is the upper bound of P to ensure 

ሻ∗ݓ௕ሺߎ ൒ 0. Both bounds on ܲ are impacted by ߤ. Recall that since we consider non-

trivial solutions, we assume the supplier’s profit is non-negative so that the supplier 

participates in the game.  

Proof of Case 1.  
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Case (1a) When ߤଵ௔ ∈ ሾ0,1ሿ  and 	ܲଵ௔ ∈ ൣܲሺߤଵ௔ሻ, ܲሺߤଵ௔ሻ൧ , we obtain ߣଶ
∗ ൌ ଷߣ

∗ ൌ 0 

(Equations (14) and (15)) so that ሺܲ∗, ,∗ߤ ଶߣ
∗ , ଷߣ

∗ ሻ ൌ ሺܲଵ௔, ,ଵ௔ߤ 0, 0ሻ. Moreover, we have 

ܲଵ௔ ൌ భ
మ
ሺሺܸ െ ሻሺ∗ݓ ଴݂ ଵ݂ሺ1 െ ଵ݂ሻݓ∗௙భିଶ െ ሺ1ߙ௕ܥ െ ଵିఈሻି∗ݓሻߙ ൅ ௦ሺܸܥ െ ሻିఉሺ1∗ݓ ൅

ሺܸ െ ሻఉ∗ݓ െ ଵ௔ߤ ሻሻ  andߚ ൌ ቀమಽሺೇషೢ
∗ሻ

ೆം
ቁ

భ
ംషభ

.  

Case (1b) When ߤଵ௔ ൐ 1, since the supplier’s profit is concave in ߤ, we obtain ߤ∗ ൌ 1. If 

	ܲଵ௕ ∈ ൣܲሺ1ሻ, ܲሺ1ሻ൧ then ߣଶ
∗ ൌ 0 (Equation (14)) and ߣଷ

∗ ൌ ሺܸܮ2 െ ሻ∗ݓ െ ߛܷ  (Equation 

(15)).   

Case (1c) If 	ܲଵ௔ ൐ ܲሺߤଵ௔ሻ, to ensure the buyer participates in the game, the supplier 

determines ܲ∗  and ߤ∗  such that ߎ௕ ൌ 0 . Since the supplier’s profit is concave in ܲ , 

solving ߎ௕ ൌ 0,		 we obtain ܲ
ଵ௖
ൌ ܲሺߤሻ ൌ భ

మ൫ೇ–ೢ∗൯
൫2ܴܸ–ܥ௕ݓ∗– ଵିఈ∗ݓ௕ܥ ൅ ଴݂ݓ∗௙భ൯ െ

ሺ1ܮ െ ܲ ሻ. Substitutingߤ
ଵ௖

 for ܲ into ߎ௦ሺܲ,  gives ߤ ሻ and differentiating with respect toߤ

us ߤଵ௖ which maximizes the supplier’s profit. Note that the substitution reduces the two-

variable problem into a one-variable problem, where it is easy to show that ߎ௦ሺܲ
ଵ௖
,  ሻ isߤ

concave in ߤ. From  
ௗࣦೞ
ௗ௉

ൌ 0 (Equation (12)), we obtain	ߣଶ
∗ ൌ ଶߣ

ଵ௖ . If  ߤଵ௖ ∈ ሾ0,1ሿ then 

ଷߣ
∗ ൌ 0 (Equation (15)) giving us ሺܲ∗, ,∗ߤ ଶߣ

∗ , ଷߣ
∗ ሻ ൌ ሺܲ

ଵ௖
, ,ଵ௖ߤ ଶߣ

ଵ௖, 0ሻ. 

Case (1d) If  ߤଵ௖ ൐ 1, then set ߤ∗ ൌ 1 so that 

ܲ
ଵௗ
ൌ ܲሺߤ ൌ 1ሻ ൌ భ

మ൫ೇ–ೢ∗൯
൫2ܴܸ– –∗ݓ௕ܥ ଵିఈ∗ݓ௕ܥ ൅ ଴݂ݓ∗௙భ൯. From 

ௗࣦೞ
ௗ௉

ൌ 0 and 
ௗࣦೞ
ௗఓ

ൌ 0 

with ߤ∗ ൌ 1, we obtain ߣଶ
∗ ൌ ଶߣ

ଵௗ and ߣଷ
∗ ൌ ଷߣ

ଵௗ.  

Proof of Case 2. Focusing on the non-trivial solutions, the supplier sets ܲ∗ and ߤ∗ such 

that 	ߎ௕ሺ0ሻ ൒ ௕ሺܸሻߎ  giving us ߣଶ
∗ ൌ 0 . Setting  ߎ௕ሺ0ሻ ൌ ௕ሺܸሻߎ , we obtain ܲ  as a 

function of ߤ  expressed as ܻሺߤሻ , where  ܲ ൌ ܻሺߤሻ ൌ భ
మ
ሺܥ௕ሺ1 ൅ ܸሻିఈ െ ଴݂ܸ௙భିଵሻ െ
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ሺ1ܮ െ ,௦ሺܲߎ ሻ. Substituting for ܲ intoߤ  gives us ߤ ሻ and differentiating with respect toߤ

ଶ௔ߤ ൌ ቀ
మಽೇ
ೆം

ቁ
భ/ሺംషభሻ

.  Note that the substitution reduces the two-variable problem to a one-

variable problem, where it is easy to show that ߎ௦ሺܻሺߤሻ,    .ߤ ሻ is concave inߤ

Case (2a) If ߤଶ௔ ∈ ሾ0,1ሿ then ߤ∗ ൌ ଷߣ ଶ௔ andߤ
∗ ൌ 0.		Substituting ߤଶ௔ into the expression 

for ܲ  gives us ܲ∗ ൌ ܲଶ௔ ൌ భ
మ
ሺܥ௕ሺ1 ൅ ܸሻିఈ െ ଴݂ܸ௙భିଵሻ െ ܮ ቀ1 െ ቀ

మಽೇ
ೆം

ቁ
భ/ሺംషభሻ

ቁ . The 

supplier’s optimal solution is ሺܲ∗, ,∗ߤ ଶߣ
∗ , ଷߣ

∗ ሻ ൌ ሺܲଶ௔, ,ଶ௔ߤ 0, 0ሻ.   

Case (2b) If ߤଶ௔ ൐ 1, then we obtain ߤ∗ ൌ 1 and ߣଷ
∗ ൌ ଷߣ

ଶ௕, where ߣଷ
ଶ௕ satisfies  

ௗࣦೞ
ௗఓ

ൌ 0. 

From  ܲ ൌ ܻሺߤሻ, we have  ܲ∗ ൌ ܲଶ௕ ൌ ܻሺ1ሻ so that ሺܲ∗, ,∗ߤ ଶߣ
∗ , ଷߣ

∗ ሻ ൌ ሺܲଶ௕, 1, 0, ଷߣ
ଶ௕ሻ.  

The proofs of Cases (2c) - (2d) are analogous to those of Cases (2a) – (2b) and are 

omitted. Note that when 1 െ ߙ െ ଵ݂ ൐ 0  and ܺሺܸሻ ൐ 0 , 	then	ݓ∗ ൌ ுݓ
௜௡௧	or	ܸ . 

Alternatively, when  1 െ ߙ െ ଵ݂ ൌ 0  and ܥ௕ ൏ ଴݂  or 1 െ ߙ െ ଵ݂ ൐ 0  and ܺሺܸሻ ൏ 0 , 

then	ݓ∗ ൌ  ௜௡௧. Lastly, given our focus on non-trivial solutions, we do not consider theݓ

case ݓ∗ ൌ ܸ. # Q.E.D. 

Proof of Corollary 1 

 Define ܨଵ ൌ
ௗ್ࣦ
ௗ௪

|௪∗ୀ௪೔೙೟ ൌ–ܥ௕ሺ1 ൅ ሺ1 െ ఈሻି∗ݓሻߙ ൅ 2൫ܲ ൅ ሺ1ܮ െ ሻ൯ߤ ൅ ଴݂ ଵ݂ݓ∗௙భିଵ ൌ

0 . Using the implicit-function theorem (Chiang and Wainwright, 2005), we obtain 

೏ೢ∗

೏ು
ୀ െ ೏ಷభ ೏ು⁄

೏ಷభ ೏ೢ∗⁄   and 	೏ೢ
∗

೏ഋ
ୀ െ ೏ಷభ ೏ഋ⁄

೏ಷభ ೏ೢ∗⁄ . Substituting ሺܲଵ௔,  ଵ, weܨ	ଵ௔ሻ from Theorem 2 intoߤ

obtain ܨଶ given in Equation (A-1).  

ଶܨ ൌ–ܥ௕ ቀ1 ൅ ሺ1 െ ߙఈିଵ൫ܸି∗ݓሻߙ ൅ ሺ1∗ݓ െ ሻ൯ቁߙ ൅ ଴݂ ଵ݂ݓ∗௙భିଶ൫ܸ െ ଵ݂ሺܸ െ  ሻ൯∗ݓ

        ൅ܥ௦ሺ1 ൅ ሺܸ െ ሻିఉሺ1∗ݓ െ ሻߚ ൅ ܮ2 ቆ1 െ ቀమಽሺೇషೢ
∗ሻ

ೆം
ቁ

భ
ംషభ
ቇ        (A-1) 
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Since the sign of ݀ܨଶ ⁄∗ݓ݀  is the same as that of െ|ܪሺܲ∗, ,∗ሺܲܪ| ሻ| and given∗ߤ |ሻ∗ߤ ൐ 0, 

then ݀ܨଶ ⁄∗ݓ݀ ൏ 0. Using the implicit-function theorem, we obtain  ೏ೢ
∗

೏ೆ
ୀ െ ೏ಷమ ೏ೆ⁄

೏ಷమ ೏ೢ∗⁄ . The 

sign of 	
ௗ௪∗

ௗ௎
 is the same as that of  

ௗிమ
ௗ௎

, with 
ௗிమ
ௗ௎

ൌ మಽ
ೆሺംషభሻ

ቀమಽሺೇషೢ
∗ሻ

ೆം
ቁ

భ
ംషభ

൐ 0. Therefore, we 

have 
ௗ௪∗

ௗ௎
൐ 0 (i.e., ݓ∗ increases as U increases). Using the chain rule, we have 

ௗఓ∗

ௗ௎
 and  

ௗ௉∗

ௗ௎
, given in Equations (A-2) and (A-3), respectively. Note that 

ௗఓ∗

ௗ௪∗ is obtained by taking 

the derivative of ߤ∗ with respect to ݓ∗. Clearly, 
ௗఓ∗

ௗ௎
൏ 0 holds. That is, ߤ∗ decreases as U 

increases. In addition, the sign of 
ௗ௉∗

ௗ௎
 depends on the sign of Φଶ. When ܼ ≪ 0 (ܼ → 0ି), 

we have Φଶ ൐ 0	ሺΦଶ ൏ 0ሻ so that  
ௗ௉∗

ௗ௎
൐ 0	ሺ

ௗ௉∗

ௗ௎
൏ 0ሻ.   

ௗఓ∗

ௗ௎
ൌ

డఓ∗

డ௎
൅

ௗఓ∗

ௗ௪∗

ௗ௪∗

ௗ௎
ൌ െ భ

ೆሺംషభሻ
ቀమಽሺೇషೢ

∗ሻ
ೆം

ቁ
భ

ംషభ
െ మಽ

ೆംሺംషభሻ
ቀమಽሺೇషೢ

∗ሻ
ೆം

ቁ
మషം
ംషభ ௗ௪∗

ௗ௎
      (A-2) 

ௗ௉∗

ௗ௎
ൌ డ௉∗

డ௎
൅ ௗ௉∗

ௗ௪∗

ௗ௪∗

ௗ௎
ൌ ஍మ

ଶ

ௗ௪∗

ௗ௎
           (A-3) 

Substituting ݓ∗  and ሺܲ∗, ሻ∗ߤ   into Π௕  and Π௦ , we have Π௕
∗  and Π௦∗  given in 

Equations (A-4) and (A-5). Taking derivative of Π௕
∗  with respect to U, we have 

ௗஈ್
∗

ௗ௎
 as 

shown in Equation (A-6). Using the Envelope Theorem, we have 
ௗஈ್

∗

ௗ௪∗ ൌ 0 and 
ௗஈ್

∗

ௗ௎
൏ 0. 

That is, Π௕
∗  decreases as U increases. Taking derivative of Π௦∗  with respect to U and 

applying the chain rule, we have 
ௗஈೞ∗	

ௗ௎
 as shown in Equation (A-7). It follows that 

ௗஈೞ∗	

ௗ௎
൏ 0 

holds. That is, Π௦∗ decreases as U increases.  

Π௕
∗ ൌ –∗ݓ௕ܥ–2ܴܸ –ଵିఈ∗ݓ௕ܥ ሺܸ െ ሻଶሺ∗ݓ ଴݂ ଵ݂ሺ1 െ ଵ݂ሻݓ∗௙భିଶ െ ሺ1ߙ௕ܥ െ  ଵିఈሻି∗ݓሻߙ

        െܥ௦ሺܸ െ ሻଵିఉ൫1∗ݓ ൅ ሺܸ െ ሻఉ∗ݓ െ ൯ߚ െ ൯∗ݓ–൫ܸܮ2 ቆ1 െ ቀమಽሺೇషೢ
∗ሻ

ೆം
ቁ

భ
ംషభ
ቇ 

        ൅ ଴݂ݓ∗௙భ               (A-4) 
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Π௦∗ 	ൌ ሺܸ െ ሻଶሺ∗ݓ ଴݂ ଵ݂ሺ1 െ ଵ݂ሻݓ∗௙భିଶ െ ሺ1ߙ௕ܥ െ ଵିఈሻି∗ݓሻߙ െ ሺܸߚ௦ܥ െ  ሻଵିఉ∗ݓ

												െܷሺ
ଶ௅ሺ௏ି௪∗ሻ

௎ఊ
ሻ

ം
షభశം           (A-5) 

ௗஈ್
∗

ௗ௎
ൌ డஈ್

∗

డ௎
൅ ௗஈ್

∗

ௗ௪∗

ௗ௪∗

ௗ௎
ൌ డஈ್

∗

డ௎
ൌ െ ଶ௅ሺ௏ି௪∗ሻ

௎ሺఊିଵሻ
ቀమಽሺೇషೢ

∗ሻ
ೆം

ቁ
భ

ംషభ
൏ 0       (A-6) 

ௗஈೞ∗	

ௗ௎
ൌ

డஈೞ∗	

డ௎
൅

ௗஈೞ∗	

ௗ௪∗

ௗ௪∗

ௗ௎
ൌ െቀమಽሺೇషೢ

∗ሻ
ೆം

ቁ
ം

ംషభ
൏ 0         (A-7) 

# Q.E.D. 

Proof of Corollary 2 

Using the implicit-function theorem, we obtain ೏ೢ
∗

೏ಽ
ୀ െ ೏ಷమ ೏ಽ⁄

೏ಷమ ೏ೢ∗⁄ . Since ݀ܨଶ ⁄∗ݓ݀ ൏ 0, the 

sign of 
ௗ௪∗

ௗ௅
 is the same as that of  

ௗிమ
ௗ௅

, with 
ௗிమ
ௗ௅

ൌ ଶቌଵିം
ംషమ
ംషభ
ംషభ ቀ

మಽሺೇషೢ∗ሻ
ೆ ቁ

భ
ംషభቍ . When ܷ ൐

మಽሺೇషೢ∗ሻംംషమ

ሺംషభሻംషభ
,  we have 1 െ ം

ംషమ
ംషభ

ംషభ
൫మಽሺೇషೢ

∗ሻ
ೆ

൯
భ

ംషభ ൐ 0. Therefore  
ௗிమ
ௗ௅

൐ 0 and ೏ೢ
∗

೏ಽ
൐ 0 hold (i.e., 

∗ݓ  increases as L increases). Otherwise, when ܷ ൏ మಽሺೇషೢ∗ሻംംషమ

ሺംషభሻംషభ
, we have 1 െ

ം
ംషమ
ംషభ

ംషభ
൫మಽሺೇషೢ

∗ሻ
ೆ

൯
భ

ംషభ ൏ 0 so that ೏ೢ
∗

೏ಽ
൏ 0 holds. Using the chain rule, we obtain 

ௗఓ∗

ௗ௅
 and 

ௗ௉∗

ௗ௅
 as 

given in Equations (A-8) and (A-9), respectively. Clearly, the sign of  
ௗఓ∗

ௗ௅
 depends on the 

sign of ܸ െ ∗ݓ െ ܮ ௗ௪∗

ௗ௅
.  If 

ௗ௪∗

ௗ௅
൐ 0 and L is sufficiently large (small), we have 

ௗఓ∗

ௗ௅
൏

0	ሺ
ௗఓ∗

ௗ௅
൐ 0ሻ. However, if 	

ௗ௪∗

ௗ௅
൏ 0, we have 

ௗఓ∗

ௗ௅
൐ 0. In addition, the sign of 

ௗ௉∗

ௗ௅
 depends 

on the sign of Φଶ and 	
ௗ௪∗

ௗ௅
.  If  

ௗ௪∗

ௗ௅
൐ 0, then 

ௗ௉∗

ௗ௎
൐ 0	ሺ

ௗ௉∗

ௗ௎
൏ 0ሻ whenever Φଶ ൐ 0	ሺΦଶ ൏

0ሻ. Otherwise, if  
ௗ௪∗

ௗ௅
൏ 0, then  

ௗ௉∗

ௗ௎
൏ 0	ሺ

ௗ௉∗

ௗ௎
൏ 0ሻ when Φଶ ൐ 0	ሺΦଶ ൏ 0ሻ. 

ௗఓ∗

ௗ௅
ൌ డఓ∗

డ௅
൅ ௗఓ∗

ௗ௪∗

ௗ௪∗

ௗ௅
ൌ ଶ

௎ሺఊିଵሻఊ
ሺଶ௅௏ିଶ௅௪

∗

௎ఊ
ሻ
మషം
ംషభ ቀܸ െ ∗ݓ െ ௅

ௗ௪∗

ௗ௅
ቁ    (A-8) 

ௗ௉∗

ௗ௅
ൌ డ௉∗

డ௅
൅ ௗ௉∗

ௗ௪∗

ௗ௪∗

ௗ௅
ൌ ஍మ

ଶ

ௗ௪∗

ௗ௅
         (A-9) 
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         Taking derivative of Π௕
∗ (Equation (A-4)) with respect to L, we have 

ௗஈ್
∗

ௗ௅
 as shown 

in Equation (A-10). Using the Envelope Theorem, we have 
ௗஈ್

∗

ௗ௪∗ ൌ 0 so that 
ௗஈ್

∗

ௗ௅
ൌ

డஈ್
∗

డ௅
. 

When ܷ ൐ మಽሺೇషೢ∗ሻംംషమ

ሺംషభሻംషభ
		ሺ	ܷ	 ൑ మಽሺೇషೢ∗ሻംംషమ

ሺംషభሻംషభ
), we have 

ௗஈ್
∗

ௗ௅
൏ 0	ሺ

ௗஈ್
∗

ௗ௅
൒ 0ሻ . That is, Π௕

∗  

decreases (is non-decreasing) as L increases. Taking derivative of Π௦∗  (Equation (A-5)) 

with respect to L and using the chain rule, we have 
ௗஈೞ∗	

ௗ௅
 given in Equation (A-11). It 

follows that 
ௗஈೞ∗	

ௗ௅
൏ 0. That is, the Π௦∗  decreases as L increases. 

ௗஈ್
∗

ௗ௅
ൌ

డஈ್
∗

డ௅
൅

ௗஈ್
∗

ௗ௪∗

ௗ௪∗

ௗ௅
ൌ

డஈ್
∗

డ௅
ൌ െ2ሺܸ െ ሻ∗ݓ ቆ1 െ ം

ംషమ
ംషభ

ംషభ
൫మಽሺೇషೢ

∗ሻ
ೆ

൯
భ

ംషభቇ    (A-10) 

ௗஈೞ∗	

ௗ௅
ൌ

డஈೞ∗	

డ௅
൅

ௗஈೞ∗	

ௗ௪∗

ௗ௪∗

ௗ௅
ൌ െ2ሺܸ െ ሻ∗ݓ ቆ1 െ ቀమಽሺೇషೢ

∗ሻ
ೆം

ቁ
భ

ംషభ
ቇ ൌ െ2ሺܸ െ ሻሺ1∗ݓ െ ሻ∗ߤ ൏ 0  (A-11) 

# Q.E.D. 

Proofs of Corollaries 3, 4, and 5  

The proofs of Corollaries 3, 4 and 5 are analogous to Corollary 2 and are omitted.  # 

Q.E.D. 
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APPENDIX B 

Proofs of Theorems and Corollaries 

Proofs of Lemma 1 

Follows from standard optimality conditions, for example, λଵ୲ ൌ െHଢ଼  (Sethi and 

Thompson (2000)).  #Q.e.d. 

Proof of Theorem 1 

Follows from standard optimality conditions, for example, H୷ ൌ 0 (Sethi and Thompson 

(2000)).  #Q.e.d. 

Proof of Corollary 1 

Taking the first order derivatives of y, p, and n with respect to t, we obtain: 

y୲ ൌ ቀ ಉబ
ಚభౙభ

ቁ
భ

ಚభషభ ಓభ

మషಚభ
ಚభషభ
ಚభషభ

λଵ୲        (B-1) 

p୲ ൌ ቀ ಊబ
ಚమౙమ

ቁ
భ

ಚమషభ ሺ஛మଢ଼ሺ୲ሻಊభሻ
మషಚమ
ಚమషభଢ଼ሺ୲ሻಊభషభ

஢మିଵ
ሺλଶ୲Yሺtሻ ൅ λଶβଵY୲ሺtሻሻ    (B-2) 

n୲ ൌ ቀ౨యಋబ
ಚయౙయ

ቁ
భ

ಚయషభ ஓభ
஢యିଵ

Pሺtሻ
భశಋభషಚయ
ಚయషభ P୲       (B-3) 

      In Equation (B-1), since λ1t<0, we have yt<0. In Equation (B-3), since Pt>0, we have 

nt>0. The sign of pt depends on the sign of the expression λ2tY+λ21Yt, given in Equation 

(B-2). We know λ2t<0 and Y, Yt and λ2>0 so that the first term is negative while the 

second term is positive. Case i: First, early in the planning horizon, since both λ2 and Yt 

are decreasing in time, λ21Yt has its maximum value at the initial time 0. Second, λ21Yt 

has its minimum value at time T. Thus for reasonable parameter values, λ2tY+λ21Yt is 

positive at the initial time, and negative at the terminal time. Therefore, p* first increases 
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and then decreases over time. Let ts denote the peak time such that the expression equals 

zero: λ2t(ts)Y(ts)+λ21Yt(ts)=0 where ts[0,T].  

Theoretically, two other cases are possible though they require unrealistic 

parameter values. For completeness, we state these two cases. Case ii: For parameter 

values such as very Y(0) or very small r2, we have λ2tY+λ21Yt is negative so that pt<0 

holds for t[0,T]. Case iii: For parameter values such as very small Y(0) or very large r2, 

λ2tY+λ21Yt is positive so that pt>0 holds for t[0,T]. #Q.e.d. 

Proof of Corollary 2  

a) Taking derivative of y* with respect to 0, we obtain: 

 
ୢ୷∗

ୢ஑బ
ൌ

ப୷

ப஑బ
൅

ப୷

ப஛భ
ቂ
ப஛భ
ப஛మ

ப஛మ
ப୔
ቀ
ப୔

ப୮

ப୮

ப஛మ

ୢ஛మ
ୢ஑బ

൅
ப୔

பଢ଼

ୢଢ଼

ୢ஑బ
ቁ ൅

ப஛భ
பଢ଼

ୢଢ଼

ୢ஑బ
ቃ 

From the above, we see that 
ୢ୷∗

ୢ஑బ
 includes first order, third order, fifth order and sixth 

order effects. We reasonably assume that the fifth and sixth order effects are negligible 

compared to the first and third order effects. (Similar assumptions are made in Carrillo 

and Gaimon 2004, Heiman et al. 2001, Carrillo and Franza 2006, Gaimon et al 2011, 

Ozkan et al. 2012. Also see Chiang and Wainwright 2005.) Therefore, we simplify  
ୢ୷∗

ୢ஑బ
 as:   

dy∗

dα଴
ൎ

∂y
∂α଴

൅
∂y
∂λଵ

∂λଵ
∂Y

dY
dα଴

 

ൌ ቀ భ
ಚభౙభ

ቁ
భ

ಚభషభ భ
ಚభషభ

ሺ஛భ∗ሺ୲ሻ஑బሻ
మషಚభ
ಚభషభ ቌrଵ ׬

൫஛మሺ౪ሻஒబ൯
ಚమ

ಚమషభ	ஒభ	ଢ଼ሺ୲ሻ
ಚమሺಊభషభሻశభ

ಚమషభ

ሺ஢మ	ୡమሻ
భ

ಚమషభ

ቀ1 ൅
஢మሺஒభିଵሻାଵ

ሺ஢మିଵሻଢ଼

ୢଢ଼

ୢ஑బ
α଴ቁ dt

୘
୲ ቍ.  

The sign of 
ୢ୷∗

ୢ஑బ
 is the same as the sign of 1 ൅

஢మሺஒభିଵሻାଵ

ሺ஢మିଵሻଢ଼

ୢଢ଼

ୢ஑బ
α଴.  Proof by contradiction: 

When σଶሺβଵ െ 1ሻ ൅ 1 ൏ 0 , we assume that 
ୢ୷∗

ୢ஑బ
൏ 0. Clearly, α଴

ୢଢ଼

ୢ஑బ
ൌ ׬ ቀα଴yሺtሻ ൅

୲
଴
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α଴ଶ
ୢ୷∗

ୢ஑బ
ቁ dt ൏ ׬ α଴yሺtሻdt

୲
଴

൏ ܻሺݐሻ . Therefore, we have 1 ൅
஢మሺஒభିଵሻାଵ

ሺ஢మିଵሻଢ଼

ୢଢ଼

ୢ஑బ
α଴ ൐ 1 ൅

஢మሺஒభିଵሻାଵ

ሺ஢మିଵሻ
ൌ

஢మஒభ
ሺ஢మିଵሻ

൐ 0, which means  
ୢ୷∗

ୢ஑బ
൐ 0. By contradiction, we obtain  

ୢ୷∗

ୢ஑బ
൐ 0. 

When σଶሺβଵ െ 1ሻ ൅ 1 ൐ 0, we need to determine the sign of 
ୢଢ଼

ୢ஑బ
. Taking derivative of Y 

with respect to 0, we obtain 
ୢଢ଼

ୢ஑బ
ൌ பଢ଼

ப஑బ
൅ பଢ଼

ப୷

ୢ୷

ୢ஑బ
ൌ பଢ଼

ப஑బ
൅ பଢ଼

ப୷
ሺ ப୷
ப஑బ

൅ ப୷

ப஛భ

ப஛భ
பଢ଼

ୢଢ଼

ୢ஑బ
ሻ . We 

reasonably assume that the first and second order effects dominate the fourth order effect. 

Thus, we have 
ୢଢ଼

ୢ஑బ
ൌ ׬ ydt ൅

୲
଴ ׬ α଴ ቀ

ಓభ
ಚభౙభ

ቁ
భ

ಚభషభ ಉబ

మషಚభ
ಚభషభ

ಚభషభ

୲
଴ ൐ 0 giving us 

ୢ୷∗

ୢ஑బ
൐ 0.  

b) Taking derivative of p* with respect to 0, we obtain 
ୢ୮

ୢ஑బ
ൌ

ப୮

ப஛మ

ப஛మ
ப୔
ቀ
ப୔

ப୮

ப୮

ப஛మ

ୢ஛మ
ୢ஑బ

൅

ப୔

பଢ଼

ୢଢ଼

ୢ஑బ
ቁ ൅

ப୮

பଢ଼

ୢଢ଼

ୢ஑బ
.  

We reasonably assume that the fourth and fifth order effects are negligible, so that 	

ୢ୮

ୢ஑బ
ൎ

ப୮

பଢ଼

ୢଢ଼

ୢ஑బ
ൌ ቀಓమሺ౪ሻಊబ

ಚమౙమ
ቁ

భ
ಚమషభ ಊభ

ಚమషభ
ଢ଼
ಊభషಚమశభ
ಚమషభ

ୢଢ଼

ୢ஑బ
൐ 0. Taking derivative of P with respect to 

0, we obtain 
ୢ୔

ୢ஑బ
ൌ ப୔

ப୮

ୢ୮

ୢ஑బ
൅ ப୔

பଢ଼

ୢଢ଼

ୢ஑బ
൐ 0.  

c) Taking derivative of n* with respect to 0, we obtain 
ୢ୬

ୢ஑బ
ൌ ப୬

ப୔

ୢ୔

ୢ஑బ
൐ 0 and 

ୢ୒

ୢ஑బ
ൌ

ப୒

ப୬

ୢ୬

ୢ஑బ
൐ 0.  

The proofs for 0, and  0  are analogous and omitted.      #Q.e.d.  

Proof of Corollary 3 

The proof of Corollary 3 is analogous to Corollary 2 and is omitted. # Q.e.d. 

Proof of Lemma 2 

Follows from standard optimality conditions such as λଵ୲ ൌ െHଢ଼ (Sethi and Thompson 

(2000)).      #Q.e.d. 
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Proof of Theorem 2 

Follows from standard optimality conditions such as H୷ ൌ 0  (Sethi and Thompson 

(2000)).      #Q.e.d. 

Proof of Corollary 4 

Taking derivative of y∗ with respect to αଵ, we obtain: 

ୢ୷∗

ୢ஑భ
ൌ

ப୷∗

ப஑భ
൅

ப୷∗

ப஛భ

ୢ஛భ
ୢ஑భ

൅
ப୷∗

ப୒

ୢ୒

ୢ஑భ
ൌ

୐୭୥ሺ୒ሻ

஢భିଵ
ሺ
஑బ஛భ
ୡభ஢భ

ሻ
భ

ಚభషభN
ಉభ

ಚభషభ ൅
ப୷∗

ப஛భ

ୢ஛భ
ୢ஑భ

൅
ப୷∗

ப୒

ୢ୒

ୢ஑భ
.    

The first term (first order effect) is positive, and it is easy to prove that 
ப୷∗

ப஛భ
൐ 0 and 

ப୷∗

ப୒
൐ 0. Both 

ୢ஛భ
ୢ஑భ

 and 
ୢ୒

ୢ஑భ
 contain third and higher order effects. We assume that the first 

and second order effects dominate the third or higher order effects. Therefore, we have 

ୢ୷∗

ୢ஑భ
൐ 0. Similarly, we can prove 

ୢ୮∗

ୢ஑భ
൐ 0 and 

ୢ୬∗

ୢ஑భ
൐ 0. #Q.e.d. 

Proof of Corollary 5 

Taking derivative of y∗ with respect to t, we obtain: 

y୲
∗ ൌ ൬

α଴
cଵσଵ

൰

ଵ
஢భିଵ 1

σଵ െ 1
ሺλଵP஑భሻ

ଶି஢భ
஢భିଵP஑భିଵሺλଵ୲P ൅ λଵαଵP୲ሻ 

     ൌ ቀ
஑బ
ୡభ஢భ

ቁ
భ

ಚభషభ ଵ

஢భିଵ
ሺλଵP஑భሻ

మషಚభ
ಚభషభP஑భିଵ൫െߚଵߣଶߚ଴ܻܲ݌ఉభିଵ ൅  ఉభ൯ܻ݌଴ߚଵߣଵߙ

     ൌ ሺ
஑బ
ୡభ஢భ

ሻ
భ

ಚభషభ
ଵ

஢భିଵ
ሺλଵP஑భሻ

మషಚభ
ಚభషభP஑భିଵߚ଴ܻ݌ఉభିଵሺെߚଵߣଶܲ ൅  ଵܻሻߣଵߙ

The sign of y୲
∗ is determined by the sign of ଵܺ ൌ െߚଵߣଶܲ ൅  ଵܻ. Taking the derivativeߣଵߙ

of ଵܺ with respect to αଵ, we obtain 
ୢ௑భ
ୢ஑భ

ൌ
ப௑భ
ப஑భ

൅
ப௑భ
ப஛భ

ୢ஛భ
ୢ஑భ

൅
ப௑భ
ப஛మ

ୢ஛మ
ୢ஑భ

൅
ப௑భ
பଢ଼

ୢଢ଼

ୢ஑భ
൅

ப௑భ
ப୔

ୢ୔

ୢ஑భ
. The 

first order effect is given by 	
ப௑భ
ப஑భ

ൌ ଵܻߣ ൐ 0 . We assume that the first order effect 

dominates the third and higher order effects given by 
ୢ஛భ
ୢ஑భ

,
ୢ஛మ
ୢ஑భ

,
ୢଢ଼

ୢ஑భ
, and 

ୢ୔

ୢ஑భ
. Therefore, we 
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have 
ୢ௑భ
ୢ஑భ

൐ 0. When ߙଵ  is small, െߚଵߣଶܲ  dominates and ଵܺ ൏ 0 so that y୲
∗<0. If ߙଵ  is 

sufficiently large, ߙଵߣଵܻ dominates giving us ଵܺ ൐ 0 and y୲
∗>0.     #Q.e.d. 

Proof of Corollary 6 

The proof of Corollary 6 is analogous to Corollary 5 and omitted. # Q.e.d. 

Proof of Lemma 3 

(i)-(iii) follow from optimality conditions in standard control theory; (iv)-(v) follow from 

optimality conditions in impulsive control theory  (Sethi and Thompson (2000)).  #Q.e.d. 

Proof of Theorem 3 

Follows from optimality conditions in impulsive control theory (Sethi and Thompson 

(2000)).  #Q.e.d. 

Proof of Theorem 4 

Follows from standard optimality conditions, for example, H୷ ൌ 0 (Sethi and Thompson 

(2000)).  #Q.e.d. 

 

The numerical results reported in Section 5.3.3, employ the optimality conditions 

for the times of KTs, t1 and t2. The optimality condition in impulsive control theory, gives 

us ti such that Hሺt୧
ାሻ ൌ Hሺt୧ሻ ൅ H୲౟

୍ , for i ൌ ሼ1,2ሽ. For our problem and for i ൌ ሼ1,2ሽ, we 

have H୲౟
୍ ൌ 0 as well as Hሺt୧

ାሻ and Hሺt୧ሻ	given below. 

Hሺt୧
ାሻ ൌ cଵyሺt୧

ାሻ஢భ െ cଶpሺt୧
ାሻ஢మ െ cଷnሺt୧

ାሻ஢య ൅ λଵሺt୧
ାሻα଴yሺt୧

ାሻ 

               ൅λଶሺt୧
ାሻβ଴βଵpሺt୧

ାሻYഥሺt୧
ାሻ ൅ λଷሺt୧

ାሻγ଴γଵnሺt୧
ାሻPഥሺt୧

ାሻ     

Hሺt௜ሻ ൌ cଵyሺt௜ሻ஢భ െ cଶpሺt௜ሻ஢మ െ cଷnሺt௜ሻ஢య ൅ λଵሺt௜ሻα଴yሺt௜ሻ ൅ λଶሺt௜ሻβ଴βଵpሺt௜ሻYഥሺt௜ሻ 

              ൅λଷሺt௜ሻγ଴γଵnሺt௜ሻPഥሺt௜ሻ			         
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APPENDIX C 

C.1 Proofs of Theorems and Corollaries 

Proofs of Lemma 1 

Follows from standard optimality conditions, for example, ߣሶଵ ൌ െܪ௄೐  (Sethi and 

Thompson (2000)).  #Q.e.d. 

Proof of Theorem 1 

Follows from standard optimality conditions, for example, ܪ௬೐ ൌ 0 (Sethi and Thompson 

(2000)).  #Q.e.d. 

Proof of Corollary 1 

Taking the first order derivatives of ݕ௘, ݕ௡, and ߠ with respect to t, we obtain: 

ሻݐሶ௘∗ሺݕ ൌ
ఈ೐ఒሶ భሺ௧ሻ

ଶ௖೐
ൌ െ

ఈ೐௥೐
ଶ௖೐

൏ 0        (C-1) 

ሻݐሶ௡∗ሺݕ ൌ
ఈ೙ఒሶ మሺ௧ሻ

ଶ௖೙
൏ 0         (C-2) 

ሶߠ ∗ሺݐሻ ൌ
ఋఒሶ భሺ௧ሻାఒሶ యሺ௧ሻ

ଶ௖ೖ
         (C-3) 

Obviously, from Equation (C-1), we know that ݕሶ௘∗ሺݐሻ ൏ 0 holds. Since ߣሶଶሺݐሻ ൏ 0, 

from Equation (C-2), we have that ݕሶ௡∗ሺݐሻ ൏ 0. We know ߣሶଵሺݐሻ ൌ െݎ௘ ൏ 0 and ߣሶଷሺݐሻ ൌ

௡ሻܭሺܳ݃݌ െ ߠሺܿ௞ߠ െ ଵߣߜ െ ଷሻߣ ൐ 0. Next, we look at how ߠ∗ሺݐሻ changes over time in 

Cases 3-5. In each case, we consider four scenarios.  

Case 3 (see Figure C.1): First, if ߠ∗ሺݐሻ ∈ ሺ0,1ሻ, then the rate of KT increases over 

time from time 0 to ܶ. Second, if ߠ∗ሺ0ሻ ∈ ሺ0,1ሻ and there exists ݐଵ ∈ ሾ0, Tሿ that ߠ∗ሺݐሻ ∈

ሺ0,1ሻ for ݐ ∈ ሾ0, ሻݐሺ∗ߠ ଵሿ andݐ ൌ 1 for ݐ ∈ ሺݐଵ, Tሿ. In other words, ߠ∗ሺݐሻ increases over 

time before time ݐଵ, and then remains constant (ߠ∗ሺݐሻ ൌ 1) after ݐଵ. Third, if ߠ∗ሺ0ሻ ൌ 0 

and ߠ∗ሺݐሻ ∈ ሾ0,1ሻ, then there exists ݐଶ ∈ ሾ0, Tሿ that ߠ∗ሺݐሻ ൌ 0 for ݐ ∈ ሾ0, ሻݐሺ∗ߠ ଶሿ andݐ ∈
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ሺ0,1ሻ for ݐ ∈ ሺݐଶ, Tሿ. That is, ߠ∗ሺݐሻ remains constant before time ݐଶ, and increases over 

time after ݐଶ . Fourth, if ߠ∗ሺ0ሻ ൌ 0  and ߠ∗ሺܶሻ ൌ 1 , then there exists ݐଷ, ସݐ ∈ ሾ0, Tሿ 

ଷݐ) ൏ 	 ሻݐሺ∗ߠ ସ) thatݐ ൌ 0 for ݐ ∈ ሾ0, ሻݐሺ∗ߠ ,ଷሿݐ ∈ ሺ0,1ሻ for ݐ ∈ ሺݐଷ, ሻݐሺ∗ߠ ସሿ, andݐ ൌ 1 for 

ݐ ∈ ሺݐସ, Tሿ. Note that ߠ∗ሺݐሻ increases over time from time ݐଷ to ݐସ. 

Case 4 (see Figure C.2): First, if ߠ∗ሺݐሻ ∈ ሺ0,1ሻ, then the rate of KT decreases over 

time from time 0 to ܶ. Second, if ߠ∗ሺ0ሻ ∈ ሺ0,1ሻ and ߠ∗ሺܶሻ ൌ 0, there exists ݐହ ∈ ሾ0, Tሿ 

that ߠ∗ሺݐሻ ∈ ሺ0,1ሻ  for ݐ ∈ ሾ0, ହሿݐ  and ߠ∗ሺݐሻ ൌ 0  for ݐ ∈ ሺݐହ, Tሿ . In other words, ߠ∗ሺݐሻ 

decreases over time before time ݐହ, and then remains constant (ߠ∗ሺݐሻ ൌ 0) after ݐହ. Third, 

if ߠ∗ሺ0ሻ ൌ 1 and ߠ∗ሺݐሻ ∈ ሺ0,1ሿ, then there exists ݐ଺ ∈ ሾ0, Tሿ that ߠ∗ሺݐሻ ൌ 1 for ݐ ∈ ሾ0,  ଺ሿݐ

and ߠ∗ሺݐሻ ∈ ሺ0,1ሻ for ݐ ∈ ሺݐ଺, Tሿ. That is, ߠ∗ሺݐሻ remains constant (ߠ∗ሺݐሻ ൌ 1) before time 

ሺ0ሻ∗ߠ ଺. Fourth, ifݐ ଺, and increases over time afterݐ ൌ 1 and ߠ∗ሺܶሻ ൌ 0, then there exists 

,଻ݐ ଼ݐ ∈ ሾ0, Tሿ (ݐ଻ ൏ ሻݐሺ∗ߠ that (଼ݐ ൌ 1 for ݐ ∈ ሾ0, ሻݐሺ∗ߠ ,଻ሿݐ ∈ ሺ0,1ሻ for ݐ ∈ ሺݐ଻,  ሿ, and଼ݐ

ሻݐሺ∗ߠ ൌ 0 for ݐ ∈ ሺ଼ݐ, Tሿ. Note that ߠ∗ሺݐሻ decreases over time from time ݐ଻ to ଼ݐ.  

Case 5(see Figure C.3): First, if ߠ∗ሺ0ሻ and ߠ∗ሺܶሻ ∈ ሺ0,1ሻ, then the rate of KT 

decreases over time from time 0 to tଽ and increases over time from time tଽ to ܶ. Second, 

if ߠ∗ሺ0ሻ ൌ 1  and ߠ∗ሺܶሻ ∈ ሺ0,1ሻ , then there exists ݐଵ଴ ∈ ሾ0, Tሿ  that ߠ∗ሺݐሻ ൌ 1  for ݐ ∈

ሾ0,  ሻ decreases over time from time 0 to tଽ and increases over time fromݐሺ∗ߠ ଵ଴ሿ, andݐ

time tଽ  to ܶ . Third, if ߠ∗ሺ0ሻ ∈ ሺ0,1ሻ and ߠ∗ሺܶሻ ൌ 1, then there exists ݐଵଵ ∈ ሾ0, Tሿ that 

 ,ଵଵݐ ሻ decreases over time from time 0 to tଽ and increases over time from time tଽ toݐሺ∗ߠ

and then ߠ∗ሺݐሻ ൌ 1  for ݐ ∈ ሾݐଵଵ, Tሿ . Fourth, if ߠ∗ሺ0ሻ ൌ ሺܶሻ∗ߠ ൌ 1 , then there exists 

,ଵଶݐ ଵଷݐ ∈ ሾ0, Tሿ  ( ଵଶݐ ൏ ଵଷݐ ) that ߠ∗ሺݐሻ ൌ 1  for ݐ ∈ ሾ0, ଵଶሿݐ  and ( ,ଵଷݐ ܶ ], and ߠ∗ሺݐሻ 

decreases over time from time ݐଵଶ to tଽ and increases over time from time tଽ to ݐଵଷ.  

# Q.e.d. 
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Proof of Corollary 2 

Taking derivative of ݕ௡∗ with respect to ߙ௡, we obtain: 

 
ௗ௬೙∗

ௗఈ೙
ൌ

డ௬೙∗

డఈ೙
൅

డ௬೙∗

డఒమ
ቂ
డఒమ
డ௄೙

ௗ௄೙
ௗఈ೙

൅
డఒమ
డொ

డொ

డ௄೙

ௗ௄೙
ௗఈ೙

൅
డఒమ
డఏ

డఏ

డఒయ

డఒయ
డொ

డொ

డ௄೙

ௗ௄೙
ௗఈ೙

ቃ   (C-4) 

From the above, we see that  
ௗ௬೙∗

ௗఈ೙
 includes first order, third order, fourth order and 

sixth order effects. We reasonably assume that the first and third order effects dominate 

(Similar assumptions are made in Carrillo and Gaimon 2004, Heiman et al. 2001, Carrillo 

and Franza 2006, Gaimon et al 2012, Ozkan et al. 2012, Xiao et al. 2012. Also see 

Chiang and Wainwright 2005.) We simplify Equation (C-4) as:  

ௗ௬೙∗

ௗఈ೙
ൌ

డ௬೙∗

డఈ೙
൅

డ௬೙∗

డఒమ

డఒమ
డ௄೙

ௗ௄೙
ௗఈ೙

ൌ
ఒమ
ଶ௖೙

൅
ఈ೙
ଶ௖೙

׬ ቀ݃ݎ௡ܳ௄೙ ׬ ݐ௡݀ݕ
௧
଴ ቁ

்
௧

ݐ݀ ൐ 0   (C-5) 

Since ܳ௄೙ ൐ 0 , we have 
ௗ௬೙∗

ௗఈ೙
൐ 0  so that ݕ௡∗  increases as ߙ௡  increases. 

Analogously, we can prove that 
ௗ௬೐∗

ௗఈ೙
ൌ 0, 

ௗఏ∗

ௗఈ೙
൏ 0, 

ௗ௄೙
ௗఈ೙

൐ 0, 
ௗ௄೐
ௗఈ೙

൐ 0 and 
ௗ௉௥௢௙௜௧

ௗఈ೙
൐ 0. # 

Q.e.d. 

Proof of Corollaries 3 and 4 

The proofs of Corollaries 3 and 4 are analogous to Corollary 2 and are omitted. # Q.e.d. 

 
C.2 Figures 

  

Figure C.1: Case 3-the Changes of  ߠ∗ with respect to t.: Extreme Delay 
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Figure C.2: Case 4-the Changes of  ߠ∗ with respect to t: Front-loading 
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Figure C.3: Case 5-the Changes of  ߠ∗ with respect to t: Moderate Front-loading
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