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SUMMARY 

Diffusion tensor imaging (DTI) is a noninvasive MRI technique used to assess 

white matter (WM) integrity, fiber orientation, and structural connectivity (SC) using 

water diffusion properties. DTI techniques are rapidly evolving and are now having a 

dramatic effect on depression research. Major depressive disorder (MDD) is highly 

prevalent and a leading cause of worldwide disability. Despite decades of research, the 

neurobiology of MDD remains poorly understood. MDD is increasingly viewed as a 

disorder of neural circuitry in which a network of brain regions involved in mood 

regulation is dysfunctional. In an effort to better understand the neurobiology of MDD 

and develop more effective treatments, much research has focused on delineating the 

structure of this mood regulation network. Although many studies have focused on the 

structural connectivity of the mood regulation network, findings using DTI are highly 

variable, likely due to many technical and analytical limitations. Further, structural 

connectivity pattern analyses have not been adequately utilized in specific clinical 

contexts where they would likely have high relevance, e.g., the use of white matter deep 

brain stimulation (DBS) as an investigational treatment for depression.  

In this dissertation, we performed a comprehensive analysis of structural WM 

integrity in a large sample of depressed patients and demonstrated that disruption of WM 

does not play a major role in the neurobiology of MDD. Using graph theory analysis to 

assess organization of neural network, we elucidated the importance of the WM network 

in MDD. As an extension of this WM network analysis, we identified the necessary and 
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sufficient WM tracts (circuit) that mediate the response of subcallosal cingulate cortex 

DBS treatment for depression; this work showed that such analyses may be useful in 

prospective target selection. Collectively, these findings contribute to better 

understanding of depression as a neural network disorder and possibly will improve 

efficacy of SCC DBS.  
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CHAPTER 1 

INTRODUCTION 

1.1. Statement of Thesis 

 This dissertation seeks to characterize the structural organization of putative 

depression circuits using diffusion tensor imaging in an effort to aid future applications in 

optimizing surgical targeting for deep brain stimulation in treatment-resistant depressed 

patients. First, a comprehensive set of analyses of structural WM integrity was performed 

in a large sample of depressed patients to clarify and extend past observations of potential 

white matter abnormalities in MDD. Second, the topological organization of white matter 

connectivity was assessed using graph theory in order to elucidate potential structural 

connectivity differences in MDD patients versus controls. Finally, an analysis was 

performed to identify the key WM pathways impacted with successful subcallosal 

cingulate deep brain stimulation for treatment-resistant depression. These findings and 

methods will lead to better characterization of the neural circuitry in depression and will 

help to optimize pre-surgical targeting for SCC DBS. 
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1.1.1. White Matter Integrity in Major Depressive Disorder (Chapter 2) 

Numerous DTI studies have looked for WM integrity differences in patients with 

MDD. However, the findings have been highly variable with respect to the location and 

direction of the difference in diffusion measurements such as FA, RD, MD, and AD. The 

source of this heterogeneity is unclear, but may reflect clinical heterogeneity between 

studies, small samples (and publication bias), and/or the use of suboptimal 

acquisition/preprocessing/analytic methods. The working hypothesis is that investigating 

WM integrity differences by voxel-wise analysis in large sample, optimized 

preprocessing (susceptibility correction, study specific template) and well-established 

analytical method (TBSS, VBM) will demonstrate the differences of WM integrity 

between MDD and healthy controls. In order to validate the WM integrity differences, 

voxel-wise cross-participant statistics were performed on both VBM and TBSS analysis 

with rigorous thresholds. Three different FA comparisons were assessed: (1) between 54 

healthy controls and 134 MDD patients, (2) between 54 healthy controls and 54 age- and 

gender-matched MDD, (3) 100 iterative comparisons between 20 controls and 20 MDD 

patients, randomly selected from the larger sample; this last analysis was to identify the 

frequency of finding a “positive” statistical difference between the groups, using optimal 

analytic methods, with a sample size similar to those in previous studies.  
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1.1.2. White Matter Structural Networks in Major Depressive Disorder (Chapter 3) 

White matter connections, which play a crucial role in coordination of 

information flow between different regions of gray matter, are important to understand 

pathological conditions in MDD. Focal WM disruption associated with depression has 

been reported in many previous studies (1-11), but little is known about the alternations 

in the coordinated patterns of WM networks in MDD. Network analysis, including 

structural connectivity analyses with graph theory, may be more likely to identify WM 

disruptions in MDD rather than WM integrity analysis. The working hypothesis is that 

assessing WM topological organization differences by structural connectivity and 

graph theory analysis will help to understand how the WM network changes associated 

with MDD. To assess disrupted WM topological organization in MDD, structural 

connectivity with probabilistic tractogrphy and graph theory analysis were used to 

compare the WM network differences between MDD and healthy control group.  

1.1.3. Defining critical WM Pathways Mediating SCC DBS for TRD (Chapter 4) 

SCC DBS has shown encouraging clinical results for treatment of treatment 

resistant depression (12). Anatomical tracing of white matter tracts in nonhuman primates 

and diffusion tensor tractography in humans suggest that therapeutic effects of SCC DBS 

may depend on stimulation of a specific combination of WM tracts (13, 14). However, 

specific fiber bundles and pathways critical for the antidepressant effect of SCC DBS 
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have yet to be defined. Furthermore, stimulation of a suboptimal location results in 

incomplete antidepressant effects (15). The working hypothesis is that the structural 

connectivity pattern analysis based on current active stimulation locations of SCC DBS 

will identify the white matter tracts that must be impacted by SCC DBS to generate 

optimal clinical response. This will be tested by the following three analyses: (1) define 

necessary and sufficient pathways using tractography from actual stimulation location 

within clinical responders, (2) validate findings with quantitative SC analysis, (3) assess 

the relationship between key pathways and clinical outcomes.  

1.2. Diffusion MRI 

The use of Magnetic Resonance Imaging (MRI) for disease diagnosis and 

monitoring has rapidly evolved as a non-invasive, high resolution imaging modality. One 

of the advanced techniques of MRI is diffusion imaging (16-18). Diffusion imaging has 

enormous potential for addressing research questions in both basic and clinical 

neuroscience. With its non-invasive nature and high sensitivity to measure white matter 

(WM) integrity, diffusion imaging has significantly influenced the field of neuroscience, 

and this technique has the potential to identify clinically significant biomarkers (19-22). 

 Diffusion, defined as the random Brownian motion of water molecules, describes 

the transportation of water molecules from one spatial location to other locations over 
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time. Diffusion MRI utilizes this random displacement of water molecules in biological 

tissue. In free medium tissue, such as cerebral spinal fluid (CSF), the measured diffusion 

movement is largely independent of the orientation of tissue (i.e., isotropic). In contrast, 

diffusion movement of water molecule in WM, where the diffusion of water molecules 

hindered by cellular membrane or architecture, the measured diffusion displacement is 

depends on the orientation of tissue (i.e., anisotropic). (17, 18, 20, 23). By applying a pair 

of diffusion sensitized gradients, the difference of diffusion properties (i.e., displacement 

of water molecule in certain tissue) between different tissues can be measure from image 

contrast.  

1.3. Diffusion Tensor Imaging 

Diffusion tensor imaging (DTI) is commonly used to assess WM integrity, fiber 

orientation, and WM connectivity using water diffusion properties. The diffusion tensor 

model is developed to characterize diffusion anisotropy in voxels because the anisotropy 

can’t be represented by a single value due to its directional dependence. A three-

dimensional principal eigenvectors and eigenvalues are derived from tensor model and 

these indicate the principal diffusion directions and associated diffusivity magnitudes 

along them, respectively. In the tensor model, it is assumed that a water molecule 

undergoing diffusion for a limited time will generally be constrained to a volume known 

as the diffusion ellipsoid. This volume is spherical in voxels with isotropic diffusion. In 



contrast, voxels with anisotropic diffusion have oblate or prolate diffusion ellipsoids, 

depending on the relative magnitudes of the eigenvalues (Figure 1). 

Figure 1. Illustration of water molecule diffusion, left: low restriction (isotropic
right: high restriction (Anisotropy)

Based on the concept of anisotropic water diffusion across tissue, DTI allows the 

characterization of the axonal architecture of WM by various diffusion 

measurements. Diffusion 
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directionality because diffusion perpendicular to main fiber direction is more hindered by 

myelin layers and cell membranes than diffusion along the main direction (17, 24). The 

most commonly used diffusion measurement is fractional anisotropy (FA). FA is highly 

sensitive to microstructural changes and has been reported a 20% reduction in 

demyelinated mice due to lose of myelin (25). In addition to FA, mean diffusivity (MD), 

radial diffusivity (RD), and axial diffusivity are frequently used for diffusion 

measurements. MD reflects the total magnitude of diffusion and higher MD has been 

reported with increased extra cellular bulk water in edema. RD appears to be modulated 

by myelin in white matter, where as axial diffusivity is more specific to axonal 

degeneration because it can measure disruption of axon (25).  

In addition to various diffusion tensor measurements, anatomical connections in 

the brain can be measured by diffusion tractography method. Diffusion tractography is a 

method that follows fiber orientation estimates from point (voxel) to point (another voxel) 

to reconstruct the WM pathways (26). Diffusion tractography is the only available tool 

for measuring WM pathways or network non-invasively and in vivo. Such 

characterization of brain networks using tractography provides a comprehensive 

understanding of how these networks are structurally organized. 

Due to high sensitivity and specificity of white matter structural change with in 

vivo, DTI has recently become a widespread methodology in brain research for several 

neuropsychiatric disorders such as depression, obsessive-compulsive disorder, 

Alzheimer’s dementia, post-traumatic stress disorder, and addictive disorders (27, 28).   
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1.4. Major Depressive Disorder 

 Major depressive disorder (MDD) is a psychiatric disease characterized by a 

combination of symptoms that include a pervasive feeling of sadness, lowered energy, 

poor concentration and memory, and disruptions of sleep and appetite; patients with 

depression may also lose the ability to enjoy pleasurable activities, and they may have 

feelings of worthlessness and hopelessness that culminate in suicidal ideation and 

behaviors. MDD is a highly prevalent and a leading cause of worldwide disability (29). It 

affects approximately 1 in 6 people during their lifetime and causes significant 

occupational and social impairments (30). 

 Despite decades of research, the pathophysiology of MDD remains poorly 

understood. MDD is increasingly viewed as a disorder of neural circuitry in which a 

network of brain regions involved in mood regulation is dysfunctional (31, 32). In an 

effort to better understand the neurobiology of MDD and develop more effective 

treatments, much research has focused on delineating the structure and function of this 

mood regulation network. Recent, structural and functional neuroimaging studies have 

reported impairments in MDD in emotional processing, memory, and executive function 

networks (33), as well as  local functional and structural abnormalities (34), particularly 

in the subgenual anterior cingulate cortex (Cg25) (35), hippocampus (36), 

parahippocampal gyrus (37), medial prefrontal cortex (38), dorsolateral prefrontal cortex 

(DLPFC) (39), ventral striatum, and amygdale (40, 41). Findings from these studies of 

MDD are still not clear, likely limited by approaches that fail to capture the multivariate 
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structure of abnormalities associated with this complex disorder. Indeed, it is not well-

established yet whether MDD disrupts the structural and functional brain networks.  

1.5. WM integrity analysis in MDD using DTI 

 Regions of interest (ROIs) and voxel-based analyses have been commonly used to 

analyze structural differences in DTI data between groups or within subjects over time. 

ROI based analyses have the advantage of being hypothesis driven and less statistically 

constrained by control for multiple comparisons. However, ROI analyses can be biased 

due to manual and non-standardized selection of ROIs; and, any differences outside of 

the ROIs chosen would not be identified. Voxel based methods have the advantage of 

allowing whole brain analyses and can be fully automated. This eliminates investigator 

bias (e.g., from manual ROI selection).  

Two common voxel-based approaches for DTI analyses include voxel-based 

morphometry (VBM: direct voxel comparison between two different groups) and track-

based spatial statistics (TBSS). VBM of DTI data is a fully automated method that allows 

investigation of WM integrity in the whole brain, at each voxel (42, 43). TBSS is a newer 

analytic technique developed to reduce the alignment and smoothing problems that have 

been reported with VBM (44, 45). Both approaches have been used to assess for 
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differences in white matter integrity in a variety of psychiatric disorders including MDD 

(46-48). 

1.6. WM network analysis in MDD using DTI 

 In the past decade, much research has focused on volumetric or regional WM 

abnormalities to understand the neurobiology of MDD but it is still poorly understood 

due to highly variable previous findings with respect to the location and direction of the 

difference in white matter change. Recent developments in brain network analysis have 

been rapidly translated to studies in depression from brain regions to network 

organization. Although many studies have focused on the function of a network (49-54), 

including functional connectivity between key brain regions (55-61), there are not many 

studies that have focused on the structural network in MDD. Investigation of the large-

scale structural interconnectivity with previous findings provided by functional 

connectivity studies may lead to better understanding of how and where brain regions 

mutually communicate (62-66). Network analysis, including structural connectivity 

analyses with graph theory, e.g., those using various tractography approaches based on 

diffusion tensor data, may be more likely to identify such abnormalities. Therefore, 

investigation of disruption in structural connection between regions is, now, an important 

focus of research for depression. 
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Graph theoretical approaches to the analysis of complex networks that could 

provide a powerful new way of quantifying the brain’s structural system. Graphs are 

consisted of nodes (corresponding to brain regions) and edges (corresponding to synapses 

or pathways). In other words, graphs can be simply described by a connection matrix 

with binary elements that represent the presence or absence of an edge between pairs of 

node. Nodes can interact through direct connections, or indirectly via paths composed of 

multiple edges. The efficacy of these indirect interactions, which indicates how much 

parallel information can potentially be exchanged over the network, depends on the path 

length. Graphs of brain networks can be quantitatively examined for node degrees 

(number of edge that connect a node), clustering coefficients (tendency to cluster nodes 

into tightly connected), path lengths (distances between node to another node), and nodal 

centrality (relatively high importance in the network) (67, 68).  

Graph theory analyses in various psychiatric disorders revealed that the 

topological organization in WM networks can be disrupted under pathological conditions 

such as Alzheimer’s disease (69), schizophrenia (70), and multiple sclerosis (71). 

However, there is no study has been reported depression related alterations of the 

topological organization of WM networks. 
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1.7. Deep Brain Stimulation 

Deep brain stimulation (DBS) is a powerful clinical technology, positively 

impacting the lives of tens of thousands of patients worldwide. DBS has FDA approval 

for the treatment of Parkinson’s disease (PD) (72), essential tremor (ET) (73), dystonia 

(74), obsessive-compulsive disorder (OCD) (75). In addition, numerous clinical trials are 

currently underway or recently completed to evaluate its efficacy for other disorders, 

most notably epilepsy (76) and treatment resistance depression (TRD) (12, 15, 77, 78). 

Recent study of subcallosal cingulate cortex (SCC) WM DBS demonstrates the long-term 

safety and antidepressant efficacy in TRD (15). Although the early clinical results are 

very encouraging, it remains unclear which white matter pathways are critical to these 

DBS effects; better characterizing these critical pathways using structural connectivity 

analysis and finding ideal target location based on these critical pathways should further 

improve the efficacy SCC DBS. 

1.8. SCC WM DBS for TRD 

A first step toward understanding the effects of SCC WM DBS is to characterize 

the pathways that pass through the region. Two diffusion tensor tractography studies have 

been performed to determine variability in connectivity in and around the SCC WM DBS 

surgical target region, as well as compare the structural connectivity pattern of the SCC 
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WM target (13, 14). The results showed that the SCC WM seed had consistent ipsilateral 

connections to the medial frontal cortex, the full extent of the anterior and posterior 

cingulate, medial temporal lobe, dorsal medial thalamus, hypothalamus, nucleus 

accumbens, and the dorsal brainstem (Figure 2). These studies suggest the possibility that 

therapeutic effects of SCC DBS may depend on stimulation of a specific combination of 

WM tracts. However, these studies were performed from putative small target region 

without any consideration of actual stimulation location (general SCC regions) and 

parameters (fixed size). This inaccurate seed selection for tractography without location 

and size of each subject might be misleading the connection pathway from SCC WM 

stimulation. In addition to inaccurate seed, these results don’t tell us which tracts are 

directly stimulated by the electrode in the context of actual patient data, or how activation 

of specific pathways is probabilistically related to specific outcome measures. To answer 

to these questions, precise seed selection based on individual patient data and volume of 

activated tissue (VAT) which can estimate direct simulation region by stimulation 

parameters is required. The structural connectivity pattern analysis from estimated 

precise VAT seed will help to find key therapeutic pathways from direct stimulation of 

SCC WM DBS.  
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Figure 2. Human SCC WM connectivity.  A) Blue voxels identify the seed region for 
SCC WM tractography. B) Population-based mean tractography maps indicate 
voxels (blue) common to at least 75% of subjects. (David Gutman, Helen Mayberg, 
at el.) (14)

1.9. Modeling Activated Volume for DBS (VAT) 

 DBS modulates neural activity with electric fields. The neural response to 

extracellular stimulation is related to the second spatial derivative of the extracellular 

potential distribution along a given neural process (∂2Ve/∂x2) (79, 80). These modeling 

of neural response have been applied to predict the VAT for a given stimulation 

parameter setting in the context of diffusion tensor based DBS models (81, 82). The most 

important output of a diffusion tensor based DBS model is the predicted neural response 

to the stimulation. The biophysical model simulates the neural response to extracellular 

stimulation via multi-compartment cable models of neurons. The extracellular voltage 

distribution generated by the DBS electrode is applied to each compartment of the axon 

model, generating trans-membrane currents which if strong enough will elicit an action 

potential (Figure 3). This diffusion tensor DBS model will provide an exact shape of 



VAT that is currently stimulated with several stimulation parameters such as amplitude, 

frequency, and pulse width. The optimized shape of VTA will, therefore, improve an 

accuracy of structural connectivity analysis because it 

fibers for SCC WM DBS. 

Figure 3. Axonal activation. A) Iso
induced extracellular potentials (Ve) interpolated onto an axon model. With 
sufficient polarization, action potentials initiate in the axon where ∂2Ve/∂x2 is 
largest (red trace) and propagate in both directions, C) calculated volume of 
Activated Tissue. (Cameron 
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VAT that is currently stimulated with several stimulation parameters such as amplitude, 

frequency, and pulse width. The optimized shape of VTA will, therefore, improve an 

accuracy of structural connectivity analysis because it will provide exact stimulated WM 

fibers for SCC WM DBS. 

. Axonal activation. A) Iso-potential contour lines of DBS voltage. B) DBS
induced extracellular potentials (Ve) interpolated onto an axon model. With 

on, action potentials initiate in the axon where ∂2Ve/∂x2 is 
largest (red trace) and propagate in both directions, C) calculated volume of 

Tissue. (Cameron McIntyre, at el.) (81, 82). 

VAT that is currently stimulated with several stimulation parameters such as amplitude, 

frequency, and pulse width. The optimized shape of VTA will, therefore, improve an 

will provide exact stimulated WM 

potential contour lines of DBS voltage. B) DBS-
induced extracellular potentials (Ve) interpolated onto an axon model. With 

on, action potentials initiate in the axon where ∂2Ve/∂x2 is 
largest (red trace) and propagate in both directions, C) calculated volume of 
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CHAPTER 2 

White matter integrity in major depressive disorder 

The objective of this chapter is to investigate structural abnormality in major 

depressive disorder, including white matter integrity using diffusion tensor imaging. 

White matter fractional anisotropy, radial diffusivity, mean diffusivity, and axonal 

diffusivity are assessed to evaluate a major role of neurobiology in major depressive 

disorder with definitive analysis. 

2.1. Introduction 

 Numerous DTI studies have looked for white matter integrity differences in 

patients with MDD (1-11). However, the findings have been highly variable with respect 

to the location and direction of the difference in FA (Table 1). Six studies report a 

reduction of FA (in various regions) in MDD patients compared to HC, while another 

five studies show either an increase or no difference in FA between the groups. The 

source of this heterogeneity is unclear, but may reflect clinical heterogeneity of different 

patient cohorts, small samples (and publication bias), and/or the use of suboptimal 

acquisition/analytic methods. Regarding the last possibility, interpretation and analysis of 
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DTI data may be complicated by a small number of diffusion weighted directions (more 

directions yield higher integrity data), anisotropic voxel size and susceptibility distortion. 

In an effort to provide a more definitive analysis of potential white matter 

abnormalities in depressed patients, DTI was performed as part of a large study of 

depressed patients and in a group of healthy controls all scanned using a common 

protocol (83, 84). Using optimized processing methods, VBM and TBSS were performed 

on these data to assess for differences in FA between the groups. A strict threshold for 

statistical significance was applied.  
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Table 1. Summary of diffusion tensor imaging studies in patients with major depressive disorder using corrected whole-brain analysis 

TBSS: Track-Based Spatial Statistics, VBM: Voxel Based Morphometry. ROI: Region Of Interest, MNI: Montreal Neurological Institute, Dir.: Directions, Avg.: 
Average
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2.2 Methods 

2.2.1. Participants 

 Fifty-four healthy controls (HC) and one hundred thirty four MDD patients 

participated in accordance with Institutional Review Board policies at Emory University. 

HC participants were screened for history of current or past neurological and psychiatric 

disorders. These subjects were recruited as part of three separate imaging studies at 

Emory University using the identical DTI protocol. Eligible depressed patients were adult 

outpatients between 18 and 60 years of age who meet the Diagnostic and Statistical 

Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria for a primary diagnosis of 

MDD without psychotic features. Patients were excluded if they met lifetime criteria for 

psychotic disorder, or currently met criteria for OCD. Medication free Patients with new 

onset, recurrent, or chronic MDD both with and without past treatment were enrolled.  

All patients were participating in one of two studies involving randomized treatment and 

imaging biomarkers. The 28-item Hamilton Depression Rating Scale (HDRS) was 

assessed before MR data are acquired. Table 2 shows the demographic information and 

clinical characteristics of all participants.  
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Table 2. Demographic and clinical characteristics of participants 

Health control
(n = 54)

MDD 
(All n=134  
Matched n = 
54)

Statistics

F or 
χ2 df p

All 
participants

Age (Years) 34.42(10.06) 38.49(11.09) 0.6 186 0.4
Gender (Males/Females) 28 / 26 64 / 70 0.25 1 0.6
HDRS Score 19.28(3.47)
Duration of Illness 
(Years) 9.34(10.38)

Age 
& 
Gender 
Matched

Age (Years) 34.42(10.06) 34.41(8.9) 2.19 106 0.7

Gender (Males/Females) 28 / 26 28 / 26 0 1 1

HDRS Score 18.74(3.33)
Duration of Illness 
(Years) 7.77(8.41)

Duration of Illness: Period from age of onset to recruitment for study, MDD: Major depressive 
disorder 

2.2.2. Data Acquisition 

 Data were acquired on a 3T Tim Trio MRI scanner (Siemens Medical Solutions, 

Malvern, PA, USA) that permits maximum gradient amplitudes of 40mT/m. A twelve-

channel head array coil was used. DTI and T1-weighted data were collected within a 

single session for each subject and foam cushions were used to minimize head motion. A 

single-shot spin-echo echo-planar imaging (EPI) sequence was used with generalized 

auto-calibrating parallel acquisition (GRAPPA) with two fold acceleration (R=2) (85). 

The parameters used for DTI were: FOV = 256 x 256; b value = 1000 sec/mm2; voxel 

resolution = 2×2×2 mm; number of slices = 64; matrix = 128 x 128; TR/TE = 

11300/104ms; 60 non-collinear directions with four non-diffusion weighted images (b=0) 
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were acquired twice: once with phase encoding in the anterior to posterior (A-P) direction 

and once in the posterior to anterior (P-A) direction. To compensate susceptibility 

distortion, both phase up and down images were acquired. In addition to susceptibility 

distortion correction, we used slightly longer TR and TE than a typical diffusion protocol 

due to mechanical vibration of the patient table that caused by the low frequency gradient 

switching associated with the diffusion weighting. High-resolution T1 images were 

collected using a 3D magnetization-prepared rapid gradient-echo (MPRAGE) sequence 

with following parameters: TR/TI/TE = 2600/1100/3 ms; voxel resolution = 1×1×1 mm; 

number of slices = 176; matrix = 224×256.  

2.2.3. Data Preprocessing 

 Magnetic resonance imaging data were preprocessed using FSL software 

(www.fmrib.ox.ac.uk/fsl; Analysis Group, FMRIB, Oxford, United Kingdom (86). Non-

brain regions of T1 and diffusion weighted data (both A-P and P-A) were removed using 

the BET toolbox. To estimate and correct susceptibility induced distortion of the 

diffusion weighted images, a phase reversal distortion correction method, which also 

called Topup correction tool in FSL, was applied on obtained A-P and P-A diffusion data 

(87). This phase reversal distortion correction method assumes that different phase 

encoding diffusion images are caused by an identical magnitude of susceptibility 

distortion in the phase encoding direction, and can be resolved by estimating the 

underlying magnetic field map. By combining the images acquired in opposite phase 
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encoding directions, the distortion can then be corrected. To help confirm correction, 

deterministic and probabilistic tractography results of well-known brain white matter 

bundles are inspected for evidence of distortion. 

2.2.4. Fractional anisotropy map 

 Fractional anisotropy, radial diffusivity, mean diffusivity, and axonal diffusivity 

maps were generated from phase reversal distortion corrected diffusion weighted data. To 

improve the signal-to-noise ratio of diffusion tensor fitting, four non-diffusion weighted 

images (b0) are averaged after three of them are aligned to one reference image by affine 

transformation. Diffusion weighted image data were aligned to averaged non-diffusion 

weighted image by rigid body affine transformation to remove motion and eddy current 

induced artifact (88). Diffusion tensor, eigenvector and eigenvalue were then calculated 

by a tensor fitting model for quantification of directional diffusion and FA (Fdt function 

within FSL toolbox, Oxford, UK). (89). 

2.2.5. Study specific fractional anisotropy template 

A study specific FA template was created using all 188 subjects (MDD and 

control groups combined) to reduce misalignment error that caused by common brain 

template which is derived from specific age range (20~30) and healthy controls. First, 
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each subject’s FA image was transformed to a standard FA template (FMRIB58_FA, 

http://www.fmrib.ox.ac.uk/fsl/data/FMRIB58_FA.html) using rigid body affine 

transformation (degree of freedom: 6, FLIRT, FSL) followed by Gaussian smoothing 

with 3 mm full width half maximum (FWHM) and then averaged across subjects to 

create the initial study specific FA template. A second FA template was created by 

performing a similar process, but using linear co-registration (degree of freedom: 12) to 

the first FA template map, followed by blurring with a 3mm FWHM Gaussian kernel. 

The final template was created by averaging across subjects (Figure 4). This process was 

iterated six times using non-linear image registration (FNIRT, FSL). Results were 

visually inspected after each iteration for quality control. For analyses, each subject’s FA 

map was co-registered to the study specific template map by performing a linear (FLIRT, 

dof 12) transformation followed by a nonlinear (FNIRT) transformation. Individual 

subject FA transformation information to study specific FA template was saved and used 

for the other measurements (RD, MD, Axonal diffusivity) normalization. 
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Figure 4. A study specific fractional anisotropic template from 188 subjects.
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2.2.6. DTI data analysis 

For statistical analysis, a permutation-based statistical inference test with 

threshold-free cluster enhancement (TFCE: enhancing cluster-like structures in an image 

without having to define an initial cluster-forming threshold or carry out a large amount 

of data smoothing), using neighborhood voxel information to improve statistical 

sensitivity. For multiple comparisons, a family-wise error (FWE) correction (corrected 

p<0.05, 10000 permutations) was used with estimation of cluster size (TFCE_FWE 

correction and randomize functions within FSL) (90). 

2.2.6.1. Voxel-Based Morphometry 

The normalized FA, RD, MD, and axonal diffusivity map for each subject was 

next smoothed using a 5 mm FWHM Gaussian isotropic kernel to remove possible error 

caused by anatomical mismatching of like-brain regions.

2.2.6.2. Track-Based Spatial Statistics 

TBSS was performed using the same FA maps as used for the VBM analyses. 

For TBSS, the aligned FA maps were averaged to create a mean FA map. This mean FA 

map was then thinned to create a mean FA skeleton represent centers of tracts common to 

all subjects. FA values less than 0.2 were judged as noise and eliminated to reduce 

potential confounds introduced by inter-subject variability and partial volume effects (44, 

45). The aligned and threshold FA map of each subject were lastly projected onto the 
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mean FA skeleton for the voxel-wise statistical analysis. Same processing steps were 

applied to RD, MD, and axonal diffusivity.  

2.2.6.3. Voxel-wise FA analysis with MDDs and healthy controls 

Voxel-wise cross-participant statistics were performed on both VBM and TBSS 

(skelectonized) analysis using TFCE-FWE. To remove age and duration of illness effect 

in statistical test, both age and duration of illness were used as covariate and statistical 

results were adjusted using general linear model. We performed two sets of FA (MD, RD, 

axonal diffusivity) comparisons: (1) between all fifty-four healthy controls and one 

hundred thirty four MDD patients; and (2) between an age and gender-matched subset 

(54 subjects per group) to account for any potential effects due to minor mean age and 

gender differences among the healthy controls and MDD patient group, (Table 2). In a 

post-hoc analysis, twenty subjects from each group were randomly selected and 

compared with both VBM and TBSS analysis; this was iterated 100 times using different 

subsamples – this post-hoc analysis was performed to assess for the “false positive” rate 

in our sample using samples sizes similar to previous analyses.  
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2.3. Results 

2.3.1. Voxel-wise FA analysis using VBM and TBSS 

Voxel-wise statistics adjusted for age and duration of illness revealed no 

significant differences in FA, MD, RD, and axonal diffusivity between MDD and HC 

group for either the VBM or TBSS analysis. With a gradual decrease in statistical 

threshold, significant FA differences began appearing in genu of corpus callosum with a 

p-value of 0.15 (TFCE-FWE corrected). In addition to full group comparisons, the voxel-

wise statistical analysis of the age- and gender-matched subset also found no FA 

differences for either analysis.  

With the 100 interactive FA analyses using 20 subjects/group selected randomly 

for each comparison, statistically significant FA differences were identified for ten of the 

TBSS comparisons and eight of the VBM comparisons (p < 0.05 TFCE-FWE corrected). 

The brain regions seen in these “false positive” results included a spatially diverse set of 

WM regions. Of note, the genu of the corpus callosum was seen in eight of the ten “false 

positive” TBSS results and seven of eight “false” positive VBM results (Figure 5).  
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Figure 5. The right genu of the corpus callosum was seen in a) seven of the eight 
“false positive” VBM results and b) eight of ten “false positive” TBSS results 

2.4. Discussion and Conclusion 

 Despite previous reports of FA abnormalities in depression, this large DTI study 

found no significant differences in FA (RD, MD, Axial diffusivity) between MDD 

patients and controls using either VBM or TBSS. This included analyses of a subset of 

age- and gender-matched subjects. In an exploratory analysis, differences in FA between 

the groups were only seen when the threshold was decreased to a relatively low level – 

and, even then, the findings appeared “noisy”. Taken together, these results suggest that 

disrupted WM integrity does not play a major role in the neurobiology of MDD. 
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 These findings are not entirely inconsistent with prior DTI studies in MDD. When 

reviewed in toto (Table 1), it is notable that previous studies differ significantly in which 

brain regions show FA abnormalities. In our post-hoc analysis, where a series of smaller, 

randomly selected subgroups of patients and controls were compared, about 10% of 

comparisons showed “positive” FA differences despite no differences in the full sample. 

Similar to the studies in Table 1, the subsample analyses showing FA differences varied 

considerably in which regions were identified. Interestingly, a region consistently 

identified as showing FA differences between MDD patients and controls in our post-hoc 

analysis was the genu of the corpus callosum – a region identified in the previously 

published reports (6, 10). Given with the well-known prefrontal distortion in DTI images, 

it is possible that this region is especially vulnerable to false positive findings in DTI 

analyses (91).  

 There are several strengths of this study that increase confidence in these findings. 

First, this would be the largest published DTI study to date comparing MDD patients and 

controls; therefore, these findings likely represent a better estimate, compared to smaller 

studies, of reliable differences in white matter integrity between MDD patients and 

controls. Second, a study specific DTI template was created using the full sample (n=188) 

with an iterative normalization method, such that errors due to co-registration were 

reduced. Third, a phase reversal distortion correction was applied to the diffusion 

weighted images to reduce errors related to well-known frontal distortion in DTI images 

due to the sinuses (91, 92). Very few of the past published studies have used such a 

correction that is now relatively standard.  Fourth, we utilized the most up-to-date 
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analytic methods to reduce possible errors due to diffusion imaging acquisition and 

statistical comparison. For instance, four non-diffusion (b0) images were acquired during 

each scan session, then manually averaged to improve signal to noise ratio. Sixty non-

collinear diffusion directions and isotropic voxels were used to improve angular 

resolution and data integrity (anisotropic voxels in diffusion acquisition can affect tensor 

modeling and artificially alter FA values (93)). Finally, well-established diffusion 

analysis methods were used to calculate FA value, and a rigorous statistical threshold was 

applied. 

 Other possibilities exist for why previous reports have identified FA differences 

in MDD patients versus controls while this study did not. Samples selection differences 

may be a significant contributing factor, though subjects in this study were carefully 

evaluated to insure they met diagnostic eligibility criteria using structured diagnostic 

instruments and rating scales; it is therefore unlikely that they differed significantly from 

other MDD subjects enrolled in earlier studies. It is possible that subgroups of MDD 

patients (treatment-resistant, late-onset, early trauma exposure, familial, etc.) may be 

more likely to have white matter abnormalities, though this awaits verification. Notable 

in our analysis is that those contrasts showing positive differences couldn’t be attributed 

to a randomization bias of the study source of either the MDD patients or the control 

subjects. In general, prior studies used acquisition and analytic methods that were not 

optimal compared to current standards. This could introduce bias into the analyses 

increasing the likelihood of a Type I error.  
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 Although this study found no regional differences in FA between MDD patients 

and controls, this does not argue against the continued use of diffusion imaging to assess 

white matter in the study of MDD. Despite these negative findings in MDD, diffusion 

imaging remains a powerful tool in the study of neuropsychiatric disorders, particularly 

in light of oligodendroglia abnormalities in post mortem studies (94-96). As the field 

progresses, improved acquisition and analytic techniques may allow for the identification 

of white matter abnormalities between groups that are too subtle for current approaches 

to distinguish. Further, it may be that certain subgroups of depressed patients are more 

likely to show white matter abnormalities, such as patients with extreme treatment 

resistance or late-onset depression. Additionally, it may be that the pathophysiology of 

depression does not involve the integrity of white matter per sé, but rather abnormalities 

in the white matter connections between brain regions involved in mood regulation. To 

this end, structural connectivity analyses, e.g., those using various tractography 

approaches based on diffusion-weighted data, may be more likely to identify such 

abnormalities (97, 98).  
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CHAPTER 3 

White matter structural networks in Major Depressive Disorder 

In the previous chapter, multiple diffusion measurements, including fractional 

anisotropy, radial diffusivity, axonal diffusivity, and mean diffusivity, showed no 

statistical differences between health controls and MDD. These results suggest that 

disrupted white matter integrity does not play a major role in the neurobiology of major 

depressive disorder in this relatively large study using optimal imaging acquisition and 

analysis; however, this does not eliminate the possibility that the white matter 

connections between brain regions are involved in mood regulation.  

Graph theory provides a powerful tool for quantifying the organization of brain 

connectivity, allowing the brain to be depicted as graphs. Several studies have reported 

the disrupted topological organization of WM network in various neuropsychiatric 

disorders. However, no study has reported depression-related alterations of the 

topological organization of WM networks. In this chapter, probabilistic tractography and 

graph theory analysis were used to investigate the topological organization of whole-

brain WM networks in MDD.  
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3.1. Introduction 

 Recent developments in the quantitative analysis of brain connectivity, based 

largely on graph theory, have suggested that human whole-brain WM networks can be 

reconstructed by diffusion tractography (98-100), and graph theory in particular provides 

a framework for characterizing topological properties of brain network organization (101-

105). In graph theory, the brain is represented as a graph composed of nodes (brain 

regions or voxels), and edges (structural and functional connections between the nodes). 

Using graph theory, the organization of normal brains can be described in a small-world 

fashion with a high level of local clustering (i.e. nodes are often highly connected to their 

neighbors), combined with shot path lengths (i.e. it takes fewer steps from one node to 

another node in this network compared to a random network) at low cost (i.e. the mean 

physiological distance between two connected nodes is considerably less than a random 

network) (106). By comparing groups, this powerful tool then allows for the 

measurement of the disruption of brain organizational patterns in various brain diseases 

such as Alzheimer’s disease (107-109), schizophrenia (110-112), and depression (113-

116). 

Graph theory investigations of depressed individuals have been performed in 

small samples and limited to investigation of functional networks or gray matter volume. 

These studies have found brain network abnormalities in terms of path length and number 

of connections. WM networks have not been investigated with these methods.   
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In this study, quantitative global and regional topological organization of the brain 

were assessed, for the first time, using MR-derived structural connectivity of the whole-

brain WM network using graph network analysis in a large sample of patients with MDD. 

The hypothesis is that, MDD patients would show 1) abnormal network topology, 

including significantly abnormal global and nodal efficiency; 2) lower centrality, 

including betweenness and degree centrality compared with healthy control subjects.  

3.2. Methods 

3.2.1. Participants  

 For this analysis, the same subjects were used as for chapter 2. Fifty-four healthy 

controls and 134 MDD patients were analyzed. Demographic and clinical characteristic 

information of participants are shown in (Table 2). 

3.2.2. Image pre-processing 

 The same image pre-processing (acquisition) steps were applied as described in 

chapter 2. In addition to pre-processing, cortical and subcortical gray matter were 

segmented for region of interest extraction. 
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3.2.3. Interface region of interest extraction for network analysis 

Structural connectivity calculated from gray matter (GM) seed to GM target has 

low fiber coherence and is not robust due to nature of diffusion contrast in GM. To 

improve robustness of probabilistic tractography and reduce error caused by GM seeds, 

white- and gray-matter interface regions were generated. Each individual’s high 

resolution T1-weighted image was parcellated to extract 84 cortical and subcortical (42 

per hemisphere) regions of interests (ROIs), excluding brain stem and corpus callosum, 

using the FreeSurfer toolbox (http://surfer.nmr.mgh.harvard.edu) (Figure 6),  These GM 

ROIs were dilated to spatially coherent brain regions and overlapping regions between 

WM and dilated GM regions were created as an interface regions between WM and GM. 

These WM/GM interface masks were used for seed-to-target probabilistic tractograph 

and later to construct a brain network matrix. Additionally, boundary regions between 

GM and cerebrospinal fluid (CSF) were extracted for use as a stop mask to reduce 

artificial brain connections such as tracts jumping across hemispheres through CSF or 

GM edge. More details on the extracted interface ROIs are shown in Table 3. 
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Figure 6. Eighty-four cortical and subcortical WM/GM interface regions of interests 
for the brain network analysis (see Table 3 for detail region index) 
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Table 3. Extracted anatomical region of interest labels 
(L, R) Extracted ROI label  (L, R) Extracted ROI label  
(1, 43) Thalamus (22, 64) Middle temporal gyrus 
(2, 44) Caudate (23, 65) Parahippocampal gyrus 
(3, 45) Putamen (24, 66) Paracentral lobule 

(4, 46) Nucleus Accumbens (25, 67) Opercular part of  
inferior frontal gyrus 

(5, 47) Hippocampus (26, 68) Orbital part of  
inferior frontal gyrus 

(6, 48) Aygdala (27, 69) Triangular part of  
inferior frontal gyrus 

(7, 49) Pallidum (28, 70) Pericalcarine 
(8, 50) Bankssts (29, 71) Postcentral gyrus  

(9, 51) Caudal (dorsal) part of  
anterior cingulate gyrus (30, 72) Posterior cingulate gyrus 

(10, 52) Posterior part of  
middle frontal gyrus (31, 73) Precentral gyrus 

(11, 53) Corpus Callosum (32, 74) Precuneus  

(12, 54) Cuneus (33, 75) Rostral part of  
anterior cingulate gyrus 

(13, 55) Entorhinal area (34, 76) Anterior part of  
middle frontal gyrus 

(14, 56) Fusiform gyrus (35, 77) Superior frontal gyrus 
(15, 57) Inferior parietal lobule (36, 78) Superior parietal lobule 
(16, 58) Inferior temporal gyrus (37, 79) Superior temporal gyrus 

(17, 59) Isthmus of cingulate 
gyrus (38, 80) Supramarginal gyrus 

(18, 60) Lateral occipital gyrus (39, 81) Frontal pole 
(19, 61) Lateral orbital gyrus (40, 82) Temporal pole 
(20, 62) Lingual gyrus (41,83) Transverse temporal gyrus 
(21, 63) Medial orbital gyrus (42, 84) Insula 

L: Left, R: Right  
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3.2.4. Construction of structural connectivity network 

The procedure for deriving the brain structural connectivity map is shown in 

Figure 7. To reconstruct the whole-brain WM network and to derive the structural 

connection map among the aprior-selected 84 interface ROIs, probabilistic tractography 

(Fdt, http://www.fmrib.ox.ac.uk/fsl) was used. First, probabilistic density functions of 

primary and secondary diffusion orientation in each voxel were estimated (89). Second, 

seed-to-target probabilistic tractography was applied from each WM/GM interface mask 

(seed) to each of the other 83 masks (target) by sampling 1000 streamline fiber per voxel. 

The number of probabilistic streamlines starting from one ROI (i) to reaching another 

ROI (j) was counted as the connectivity probability. The connectivity probability from i 

to j is not necessarily equivalent to the probability from j to i because the probabilistic 

tractography is dependent on the seed location and their probabilistic density functions. 

However, these two probabilities are highly correlated across the brain regions (99). 

Therefore, probability Pij (equivalent Pji), between region i and j, was averaged by these 

two probabilities to build a symmetric undirected connectivity network matrix.  

After the symmetric probability connectivity matrix was derived, it was divided 

by the mean of the areas (S) of the paired WM/GM interface mask regions, �i��j

� , to 

normalize for the area differences across the brain (98). Finally, an 84 * 84 symmetric 

matrix was generated and this normalized connectivity matrix was termed the graph of 

normalized connectivity density (NCD) (106, 117).  



Figure 7. A flowchart for the construction of the WM network by DTI, 1) Parcellate 
of T1-weighted structural MRI, 2) The reconstruction of all of the WM fibers in the 
whole brain using probabilistic tractography, 3) The binary networks of each 
subject were created 
connections were mapped onto cortical surface.
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A flowchart for the construction of the WM network by DTI, 1) Parcellate 
weighted structural MRI, 2) The reconstruction of all of the WM fibers in the 

whole brain using probabilistic tractography, 3) The binary networks of each 
by threshold along network density, 4) The nodes and 

connections were mapped onto cortical surface.

A flowchart for the construction of the WM network by DTI, 1) Parcellate 
weighted structural MRI, 2) The reconstruction of all of the WM fibers in the 

whole brain using probabilistic tractography, 3) The binary networks of each 
by threshold along network density, 4) The nodes and 



40 

3.2.5. Threshold for binary network based on network density  

To remove false positive connections, the probability connection was thresholded 

into a binary matrix with a series of threshold value ranges (98). Network density was 

used to find the threshold. Network density was defined as the ratio of the number of 

connections between paired regions over the number of all possible connection in the 

brain (99, 118). Setting a network density threshold ensures that all the resultant networks 

have the same number of edges. There is currently no definitive way to determine single 

threshold value instead of network density with a range of threshold. In the present study, 

the whole range of network density, 0% to 100%, at an interval of 0.5% was first 

carefully evaluated. Finally, we used a range of network density, 10% to 30%, at an 

interval level of 0.1% based on previous study (119) because it allows prominent small-

world properties in brain networks to be observed (119). Through this thresholding 

procedure, a set of undirected and binary network matrixes was obtained for each subject.  

3.2.6. Network analysis 

For the undirected and binary WM network, both global (small-world properties) 

and regional network matrices were calculated.  The global matrices included: degree (ki), 

characteristic path length (Li), clustering coefficient (Ci), global efficiency (Eglob), local 

efficiency (Eloc), and small-worldness (SW). The regional matrices included: nodal 

degree (ki) and nodal betweenness centrality (BCi). Nodes with high degree or high 
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centrality are defined as a hub and represent important components for efficient 

communication, providing regulation of information flow (101). All graph-theoretic 

measures were calculated using the Matlab functions implemented in Brain Connectivity 

Toolbox (http://www.brain-connectivity-toolbox.net) (104). 

3.2.6.1. Random networks 

Networks were generated using random processes. In order words, artistry matrix, 

which has same size matrix as brain network matrix, was randomly generated. These are 

used as reference networks to confirm the existence of various small-world network 

properties.  

3.2.6.2. Regular networks 

Regular networks are ones in which every node has the same number of 

connections. Similar to random networks, these can be used as reference to verify the 

existence of small-world network properties in other networks.  

3.2.6.3. Network degree 

The network degree is the number of links that connect a node. It corresponds to 

the number of potential inter-regional connections. Network degree is defined as follows 

(Eq. 1). 

�i � ∑ �ij�∈	      Eq. 1. 
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Where ki means the network degree of node i and aij is the connection between i and j (aij

= 1when link (i,j) exists, otherwise aij = 0).  

3.2.6.4. Characteristic path length 

The characteristic path length (CPL) is the mean distance from one node to 

another. CPL between each pair of regions is commonly expressed according to the 

estimated physiological properties of the corresponding anatomical connection. The 

inverse of CPL indicates integrity or closeness centrality of node. CPL is defined as 

follows (Eq. 2). 


 � 	 ��∑ 
i
∈	 � �
�∑

∑ �ij�∈	,��

���
∈	 	 Eq. 2.

Where Li is the average distance between i and all other nodes, and dij is shortest path 

length between node i and j. 

3.2.6.5. Clustering Coefficient 

The clustering coefficient of a node, i, was defined as the likelihood that the 

neighborhoods were connected with each other. A relatively high clustering coefficient 

indicates the presence of tightly knit anatomical groups. The clustering coefficient of a 

node is defined as follows (Eq. 3). 
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∈	     Eq. 3. 

Where Ci means the clustering coefficient of node i.  

3.2.6.6. Global efficiency 

The global efficiency is a measure of how much parallel information can 

potentially be transferred over the network. It reflects the potential parallel exchange of 

neural information between involved anatomical regions, e.g., high global efficiency 

point to highly parallel information transfers in the brain. Global efficiency is defined as 

follows (Eq. 4). 

�glo � �
�∑

∑ �ij
-1�∈	,��


���
∈	 Eq. 4. 

Global efficiency is an inverse of CPL.  

3.2.6.7. Local efficiency 

The local efficiency reveals how much the network is fault tolerant, showing how 

efficient the communication is among the first neighbors of node I when node I is 

removed. It reflects the potential tendency for the existence of communities or clusters of 

anatomically and physiologically different regions that deal with common neural 

information. Local efficiency is defined as follows (Eq. 5). 
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Where djh (Ni) is the length of the shortest path between j and h, with only the neighbors 

of i included.  

3.2.6.8. Small-worldness index 

The term small-world properties were originally suggested by Watts and Stogatz 

(120) and it refers to the concept that the brain is organized as small-world structure, 

which has a highly efficient neuronal architecture (121). The small-world structure means 

that the brain has significantly more clustered than random networks and has similar 

characteristic path length as a random network. In physiological interpretation, small-

world networks have higher local efficiency than random networks and higher global 

efficiency than regular networks (networks in which every node has the same number of 

connections) (122). Small-worldness is defined as follows (Eq. 6). 

�� �	 � �rand
�

/
rand

Eq. 6.

Where C is the clustering coefficient and L is the characteristic path length.  Rand is the 

random network. Small-world networks (SW) often have SW >> 1. To examine the 

small-world properties of participants, the following three steps analysis was investigated; 
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1) the clustering coefficient and characteristic path length of participant networks were 

compared with random networks, 2) small-worldness (SW) was evaluated compared to 

network density, 3) local and global efficiency of participant networks were compared 

with random networks and regular networks, respectively.   

3.2.6.9. Nodal betweenness centrality 

The nodal betweenness centrality (BC) is a widely used quantity and can be used 

to express the structural importance of these nodes. It is denoted as the fraction of 

shortest paths between pairs of nodes that pass through a given node. Specifically, the BC 

of a weighted network is given as follows (Eq. 7).  

��
� � ∑ ���� �
�
�����,�∈������
 Eq. 7.

Where G is the graph, σ��� is the number of all shortest paths from node k to node j, and 

σ����i� is the number of shortest paths passing through node I in a weighted graph.  

3.2.6.10. Area under curve for each network measures 

To provide a summarized scalar for topological characterization of brain networks 

independents of single threshold, the area under the curve for each network metric was 

calculated. The integrated AUC metric is sensitive to detecting topological abnormalities 

in brain disorders (114, 123-125). 
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3.2.7. Statistical analysis 

To test for group differences in age, gender, and duration of illness, the data was 

analyzed using a t-test or χ2 test. These are provided in Table 2 (Chapter 2). To determine 

statistically significant group differences in network measures, nonparametric 

permutation tests (90) were performed on the AUC of each network measure. For the 

network centrality analysis, t-tests were performed between the MDD and control groups 

for both degree and betweenness centrality.  

3.3. Results 

3.3.1. Small-world structural network 

The topological properties of brain networks depend on the choice of threshold. In 

this study, we first examined small-worldness properties, including clustering coefficient, 

characteristic path length, global-/local-efficiently, and measures of network small-

worldness index (SW), at a range of 0% to 100% to find a definitive range of threshold 

value that show small-world characteristics. Mean SW index of all participants was 

greater than 1 through the entire range of network density (Figure 8), which is a typical 

feature of a small-world network. Moreover, structural brain networks of both MDD and 

control groups had higher clustering coefficient and identical characteristic path length 
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when compared with matched random networks (Figure 9). These results suggest that 

structural brain networks of both MDD and control groups have small-world architecture.  

Furthermore, all brain networks along the entire network density range 

demonstrated an economic small-world topology as follows; 1) higher global efficiency 

of networks in both MDD and control groups compared to random networks, 2) 

approximately equivalent parallel information processing of global efficiency but a 

higher fault tolerance of local efficiency compared to random networks, 3) both global 

and local efficiency rose much faster than the required wiring cost (network density) (e.g., 

approximately 15% network density, the structural brain networks reached 50% of local 

and global efficiency) (Figure 10 & 11). 

In this study, range of network density from 10% to 30% was used because the 

network density of mammalian brain network is estimated to be higher than 10% (98, 119, 

126, 127) and 30% network density was previously demonstrated  in various studies (117, 

128).  
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Figure 8. Mean small-worldness index of all participants as a function of network 
density (cost). Small-world networks often have S >> 1 and it suggests that 
structural brain networks show small-world properties. 

Figure 9. Small-world properties (clustering coefficient and characteristic path 
length) of structural brain networks. Red: MDD group, Blue: control group, Black: 
random network matched to all participants. Structural brain networks of both 
MDD and control group show higher cluster coefficient and equal characteristic 
path length compared with random networks. It is typical feature of small-world 
network.
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Figure 10. The local efficiency of random (Black), regular (Green) and structural 
WM brain networks (Red & Blue) as a function of network density. The brain 
networks under 5% ~ 60% network density showed higher local efficiency than 
matched random networks. 

Figure 11. The global efficiency of random (Black), regular (Green) and structural 
WM brain networks (Red & Blue) as a function of network density. The brain 
networks under each network density value showed higher global efficiency than 
matched regular networks. 
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3.3.2. Alteration of global characteristics in MDD 

Non-parametric statistical analysis revealed no significant differences between 

MDD and control groups in global network measures including degree (ki), characteristic 

path length (Li), clustering coefficient (Ci), global efficiency (Eglob), and local efficiency 

(Eloc). It indicates that both MDD and control groups have identical network’s capacity to 

transfer information globally. In other words, MDD group does not show abnormal 

global disruption of network’s capacity. 

3.3.3. Alteration of regional nodal characteristics in MDD 

Compared with the healthy control group, the MDD group showed decreased 

nodal centrality in left caudate, left middle cingulate cortex, left and right inferior parietal 

lobule, right anterior cingulate cortex, and dorsal lateral prefrontal cortex. It indicates the 

structural connections from- and to- these regions are depicted and it associated to MDD. 

The MDD group showed increased nodal centrality in left superior temporal gyrus and 

right inferior frontal gyrus (Table 4 and Figure 12) compared with the healthy control 

group 



Table 4. Brain regions showing abnormal nodal centrality in MDD compared with 
healthy control group 

MDD > Control
Left Superior temporal gyrus
Right Inferior frontal gy

MDD < Control
Left Caudate 
Left Anterior cingulate gyrus (caudal part)
Left Inferior parietal lobule
Right Inferior parietal lobule
Right Anterior cingulate gyrus (rostal part): 
Right Middle frontal gyrus (anterior part): DLPF

MCC: middle cingulate cortex, ACC: Anterior cingulate cortex, DLPF: dorsal lateral prefrontal cortex

Figure 12. Brain regions showing abnormal nodal centrality in brain structural 
networks (See table 4 for detail). Red: MDD < Control, Blue: MDD > Control, 
intensity: one or two centrality measure overlapped.
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. Brain regions showing abnormal nodal centrality in MDD compared with 

p-value
Degree

Left Superior temporal gyrus 0.0052 0.0032
Right Inferior frontal gyrus (orbital part) 0.0053 0.1682

0.0191 0.0157
Left Anterior cingulate gyrus (caudal part): dACC 0.046 0.0298
Left Inferior parietal lobule 0.1833 0.0072
Right Inferior parietal lobule 0.0416 0.088

ulate gyrus (rostal part): rACC 0.0516 0.0267
Right Middle frontal gyrus (anterior part): DLPF 0.0023 0.00001

MCC: middle cingulate cortex, ACC: Anterior cingulate cortex, DLPF: dorsal lateral prefrontal cortex

n regions showing abnormal nodal centrality in brain structural 
networks (See table 4 for detail). Red: MDD < Control, Blue: MDD > Control, 
intensity: one or two centrality measure overlapped.

. Brain regions showing abnormal nodal centrality in MDD compared with 

BC
0.0032
0.1682

0.0157
0.0298
0.0072
0.088

0.0267
0.00001

MCC: middle cingulate cortex, ACC: Anterior cingulate cortex, DLPF: dorsal lateral prefrontal cortex

n regions showing abnormal nodal centrality in brain structural 
networks (See table 4 for detail). Red: MDD < Control, Blue: MDD > Control, 
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3.4. Discussions and Conclusion 

This is the first study to use graph analyses of probabilistic tractography to 

compare the topological organization of structural brain networks between MDD patients 

and healthy controls. Although the results of the global integration did not show 

statistical significance between MDD and control groups, network centrality analysis 

suggests that many local brain regions were affected by MDD: decreased nodal centrality 

were seen in left caudate, left dorsal anterior cingulate cortex, left and right inferior 

parietal lobule, right rostal anterior cingulate cortex, and dorsal lateral prefrontal cortex, 

while increased nodal centrality was seen in left superior temporal gyrus and right 

inferior frontal gyrus. These results provide insights into our understanding of altered 

topological organization in structural brain networks of MDD. 

Small-world concept provides an attractive model for characterizing brain 

networks because it supports two fundamental organizational principles in the brain: 

integration and segregation(129). Networks that are cheap to build but still efficient in 

propagating information are said to be economic small-world networks. Here, we found 

that MDD patients and healthy controls showed both conventional and economic small-

world properties of the WM networks, characterized by high local clustering and short 

path length, which are in accordance with previous WM network studies in healthy adults 

(98, 99). Moreover, it shows high efficiency at low wiring cost (67). 
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We used regional network centrality measures, including betweenness and degree, 

to find localized network differences between MDD and control group. Nodes with high 

structural degree and betweenness centrality suggest regions that are highly interactive 

and that have the potential to participate in a large number of functional integrations. A 

novel finding of this study was the identification of a decreased tendency of nodal 

centrality in caudate, anterior cingulate cortex, dorsal anterior cingulate cortex, inferior 

parietal lobule, and dorsal lateral prefrontal cortex. These findings are consistent with 

functional imaging studies that suggested dysfunctions in these regions in the 

pathophysiology of depression (50, 130-139).   

Both the rostal and dorsal anterior cingulate have been implicated in the 

regulation of emotions and cognition (130-133). Many neuroimaging studies of MDD 

demonstrate functional abnormalities in ACC (133, 134), and in the relationship between 

metabolic activity of ACC and treatment response (decreased activity in subgenual ACC 

regions (50) but increased activity in dorsal ACC (dACC) regions (135) associated with 

successful antidepressant treatment). Recent fronto-cingulate studies also demonstrate 

abnormal functional connectivity among the rACC, dACC, and DLPF (133). For example, 

studies report reduced functional connectivity from the DLPF to the rACC (136, 137) and 

to the dACC (138, 139) in MDD during cognitive and/or affective challenges. This 

deficiency of functional connectivity might be related by this lower structural interaction 

(connection) between these regions.  
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The caudate nucleus, a basal ganglia structure, is known to be involved in the 

control of motor, cognitive, and emotional processes. Previous functional studies report 

reduced functional activity in the caudate (140) and reduced functional connectivity of 

the caudate to the default mode network (DMN) (141) are associated with depression. In 

addition to functional studies, structural investigations report reduced gray matter volume 

(142) in caudate associated with depression. The convergence of these data with our 

results suggests an important role of caudate structural connectivity in the 

pathophysiology of depression.  

Although the inferior parietal cortex (IPC) is a functionally heterogeneous region 

and its contribution to complex brain functions is poorly understood, a recent study using 

an emotional audiovisual task suggests aberrant neural response in audiovisual processing 

in depression. (143). These abnormalities in structural connectivity of the IPC region in 

our study further validate a role for this region in the biology of MDD.  

 While there are no statistical differences between MDD patients and healthy 

control subjects in global topological brain organization, there are differences in network 

derived nodal centralities, specifically degree and betweenness centrality. These results 

increase our understanding of the neural basis of MDD by demonstrating aberrant 

network organization in specific regions in MDD patients. The deficiencies of regional 

connectivity in MDD coincide with previously described roles for fronto-cingulate circuit 

and IPC in the neurobiology in this disorder. These findings have implications for 

understanding how the topological alterations in large-scale brain networks underlie 
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structural deficits in major depressive disorder. The topological network analysis also 

provides a new way to understand the neurobiology of specific structural deficits that 

can’t elucidate by voxel-wise white matter integrity analysis.  
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CHAPTER 4 

Defining critical WM Pathways Mediating Successful Subcallosal Cingulate Deep 

Brain Stimulation for Treatment-Resistant Depression 

As described in previous chapters, it have been clarified that disrupted WM 

integrity does not play a major role in the neurobiology of MDD (Chapter 2). Moreover, 

network analysis with tractography and graph theory provides a powerful method for 

quantifying the topological organization of WM connection differences between MDD 

and control groups. It allows detecting WM connection deficit in MDD (Chapter 3).  

In the past decade of search for better treatments for depression, increasing 

interest has focused on focal neuro-modulation. This focus has been driven by improved 

neuro-anatomical models of mood, thought, and behavior regulation, as well as by more 

advanced strategies for directly and focally altering neural activity. Deep brain 

stimulation (DBS) is one of the most invasive focal neuro-modulation techniques 

available; data have supported its safety and efficacy of treatment (31, 58, 144-146). DBS 

is achieved by implanting one or more electrode arrays (leads) into a specific region of 

the brain via burr holes in the skull using neuroimaging guided stereotactic neurosurgical 

techniques. Currently, electrode placement is based on local SCC anatomy with clinical 

efficacy assessed using standardized symptom severity scales. Clinical response may be 

improved by more precise targeting along specific white matter tracts based on network 

connection pattern. Structural connectivity pattern analyses using diffusion tractography 
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may help us address the clinical effectiveness of DBS by indentifying the necessary and 

efficient network pattern in responders. In this chapter, extending of WM network 

analysis to clinical application in depression, primary impact WM pathways that is 

mediating antidepressant response for SCC WM DBS was identified and assessed using 

diffusion tractography. 

4.1. Introduction 

For patients with treatment-resistant depression (TRD), deep brain stimulation 

(DBS) is an emerging experimental therapy.  In the past decade, a number of different 

stimulation sites have been investigated including the subcallosal cingulate white matter, 

the ventral capsule/ventral striatum, the nucleus accumbens, the lateral habenula, the 

inferior thalamic peduncle and the medial forebrain bundle (12, 78, 147-150). Six month 

response rates across studies range from 41%-66% with sustained or increased response 

over time. Of the various DBS targets for treating TRD, SCC white matter has been the 

most studied with published data available for 71 patients implanted at seven separate 

centers. Within some cohorts, outcome data for patients receiving more than six years of 

chronic SCC DBS suggest significant and lasting antidepressant efficacy. An industry 

sponsored clinical trial is now in progress (15, 77, 151-155).  

 Targeting the SCC white matter was based on converging imaging data 

demonstrating changes in SCC activity with antidepressant response to a variety of 
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standard treatments (31, 58, 144-146). Selection of this target was further supported by an 

extensive literature demonstrating monosynaptic connections between the subcallosal 

cingulate and specific frontal, limbic, subcortical and brain stem sites involved in mood 

regulation, depression and the antidepressant response (35, 156-161). Specific placement 

of the DBS electrodes was therefore driven by local anatomy: approximate coordinates 

were derived from previous PET imaging studies localizing the subcallosal cingulate 

region (Brodmann Area 25) and adjacent white matter, combined with anatomical 

landmarks identified in standard neurosurgical atlases (Figure 13) (162). 
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Figure 13. Anatomical location based the standardized method for targeting the 
SCG. A: Sagittal section showing the SCG. (Panels B and C are magnified images 
that correspond to the square in A.) B and C: To target the SCG, a line is initially 
traced parallel to the base of the Fr. Thereafter, AC-CCa and CCi-Fr lines are to be 
drawn parallel and perpendicular to the base of the frontal lobe, respectively, and 
divided into quartiles. D: Axial and/or coronal planes of a region corresponding to 
70–75% in AC-CCa and 25–30% in CCi-Fr should then be selected to define the 
anatomical gray/white matter junction of the SCG. SCG: subcallosal cingulate 
gyrus, AC: anterior commissure, CC: corpus callosum, CCa: anterior aspect of the 
CC, CCi: inferior portion of the CC, Fr: Frontal lobe (Hamani, Mayberg et al. 
(163)). 

Although SCC DBS is associated with notable antidepressant effects in patients 

with TRD, the magnitude of the response varies. First steps to define responder and non-

responder differences focused on the anatomical location of the active contacts used for 
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chronic stimulation indexed using standardized anatomical metrics performed on post-op 

1.5T structural T1 MRI images, but these studies found no differences among response 

subgroups (163). Comparable anatomical targeting in responders and non-responders was 

confirmed in a second cohort of patients using comparable localization methods (151).  

Additional studies further suggested that activity changes in areas remote from the 

stimulation target, such as the dorsal cingulate and frontal cortex, were potentially most 

important to a full antidepressant response versus local activity changes around the SCC 

DBS target (12). However, small sample size precluded definitive, clinically meaningful 

conclusions based on these observations.    

 Paralleling these ongoing clinical DBS studies, functional and structural 

neuroimaging methods have advanced rapidly (13, 67, 97, 164, 165), providing new 

strategies to examine responder-non-responder differences with an eye towards 

optimizing the surgical procedure and improving clinical outcomes. Studies of DBS 

mechanisms have similarly progressed with a shift in focus from local changes in cell 

bodies at the stimulation site to a more complex combination of local and remote effects 

(166-169). Axonal elements directly modulated by DBS (afferents and efferents 

projecting to and from the SCC, as well as fibers of passage) may be especially important 

to the antidepressant effects of the stimulation (170-177). Delineation of the various 

impacted white matter pathways is a next step to optimize the clinical procedure as well 

as better characterize the putative mechanisms of action.  



61 

 Diffusion tensor imaging (DTI), by quantifying the local diffusivity of water 

molecules in the brain tissue, allows delineation of direction, orientation and integrity of 

the white matter. Then, white matter connections between different brain regions can be 

calculated using tractography algorithms (89, 178-185).  

 Using fiber tractography approaches (89), the connections of the SCC have been 

previously mapped in healthy subjects, confirming the midline frontal, cingulate, medial 

temporal, striatal, thalamic, hypothalamic and brainstem pathways previously 

characterized in non-human primates and implicated through PET studies of blood flow 

change with chronic stimulation (13, 14, 157, 186, 187).  

 In applying tractography to the study of white matter connections of a specific 

DBS target, it is important to understand that DBS generates an electric field that is 

applied to the various neural elements surrounding the electrode. The response of those 

neural elements is dependent upon the electrode location and stimulation parameter 

settings, which are specific to each patient. Detailed computational models of the DBS 

activation volume have previously been developed (Figure 14) (174, 188) and 

successfully applied to the study of DBS in Parkinson’s disease (189).  Therefore, a goal 

of this study was to adapt the concepts of DBS activation volumes to the study of the 

SCC target. 

 To define the necessary and sufficient tracts for antidepressant response from 

SCC DBS we modeled individual probabilistic tract maps in patients enrolled in a clinical 
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trial of SCC DBS for TRD. We hypothesized that specific tract maps from the active 

DBS contact would be associated with clinical response after six months of chronic SCC 

DBS.   

Figure 14. Demonstration of small anatomical location change cause different tract 
connections. A) Coronal image of the DBS electrode location. Inset shows the St 
Jude four contact electrodes and the respective contact numbers. Stimulation 
through contact 3 resulted in the best clinical outcomes. B) Sagittal view of the DBS 
electrode location. Note that the MRI background image is 3 mm behind the tip of 
the DBS electrode as not to obscure the tractography results which project in 3D 
around the electrode. C) White streamlines represent axon model trajectories 
passing by the DBS electrode. D) Voltage distribution imposed upon each axon 
model from stimulation at contact 3. E) Axon models (red streamlines) directly 
activated by therapeutic stimulation. F) Axon models directly activated by non-
therapeutic stimulation. (Lujan, Choi, Mayberg et al. (190))  
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4.2. Materials and Methods 

4.2.1. Participants and clinical protocol 

Seventeen chronically depressed, treatment-resistant patients gave written consent 

to participate in a research protocol at Emory University testing safety and efficacy of 

SCC DBS in treatment-resistant depression (15) (clinicaltrials.gov NCT00367003). The 

protocol was approved by Emory University Institutional Review Board and the US Food 

and Drug Administration under an Investigational Device Exemption (G060028 held by 

H.S.M.) and was monitored by the Emory University Department and Behavioral 

Sciences Data and Safety Monitoring Board.  

 Patients underwent implantation of bilateral electrodes in the SCC area as 

previously described (15). Briefly, after a 4-week, single-blind, sham stimulation phase, a 

24-week open-label active stimulation phase was conducted. Response was defined here 

as in the original report of the clinical trial: 50% decrease in HDRS-17 (191). After 6 

months of chronic simulation there were 7 responders and 10 non-responders (41%). One 

of the responders was excluded from analysis due to inadequate quality of the pre-

surgical DTI data.  The imaging analysis in the responder group was done on 6 patients 

and on 10 in the non-responders. There were no significant differences in demographics 

or clinical characteristics between responders and non-responders (Table 5). 
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Table 5. Demographic and Clinical Characteristics 

Responder 
N=6 

Non-Responder 
N=10 

Statistics 
Z or 
χ2  p 

Gender (Female/Male) 3/3 6/4    0.15 0.69 

Age, mean (S.D.) 43(12.71) 41.1(7.02)    0.32 0.74 

Marital status 
(single/married/divorced) 3 / 2 / 1 6 / 3 / 1 - 

Years of Education, 
 mean (S.D.) 16.33 (3.27) 16.50 (3.06)    0.22 0.82 

Months of current  
episode, mean (S.D.) 55.66 (44.23) 74.00 (60.28) 0.10 0.91 

Age when first depressed, 
mean (S.D.) 24.33 (10.19) 17.30 (5.38) 1.31 0.18 

Lifetime number of  
depressive episodes, mean 
(S.D.) 

3.83 (3.06) 8.40 (11.56) 0.82 0.40 

Lifetime number of 
hospitalizations, mean (S.D.) 4.66 (3.56) 5.60 (6.77) 0.27 0.78 

Lifetime number of suicide 
attempts, mean (S.D.) 3.33 (4.72) 0.80 (1.03) 1.08 0.27 

Lifetime number of 
antidepressant 
treatments, mean (S.D.) 

19.33 (9.95) 25.7 (10.39) 1.30 0.19 

S.D.: Standard Deviation, MDD: Major Depressive Disorder, BP: Bipolar Disorder, 

Statistics: Z (Mann-Whitney U test), χ2 (Chi-Square test) 
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4.2.2. Magnetic resonance and computer tomography imaging 

 Multi-sequence structural and diffusion MRI was acquired in a single session one 

week prior to surgery. T1-weighted and DTI data were acquired on a 3T Tim Trio MRI 

scanner with a 12-channel head array coil (Siemens Medical Solutions, Malvern, PA, 

USA) that permits maximum gradient amplitudes of 40mT/m. Single-shot spin-echo 

echo-planar imaging (EPI) sequence was used for DTI with generalized auto-calibrating 

parallel acquisition (GRAPPA) with two-fold acceleration (R=2) (85). DTI parameters 

were: FOV = 256 x 256; b value = 1000 sec/mm2; voxel resolution = 2×2×2 mm; number 

of slices = 64; matrix = 128 x 128; 2 averaged; 64 non-collinear directions with one non-

diffusion weighted images (b=0); TR/TE = 11300/90ms. High-resolution T1 weighted 

images were collected using a 3D magnetization-prepared rapid gradient-echo 

(MPRAGE) sequence with the following parameters: TR/TI/TE = 2600/900/3.02 ms; a 

flip angel of 8º, voxel resolution = 1×1×1 mm; number of slices = 176; matrix = 

224×256. 

 Post-surgical high resolution CT data were acquired on a LightSpeed16 (GE 

Medical System) with resolution 0.46×0.46×0.65 mm3. These data were used to identify 

the location of DBS contacts which in turn were used to generate the volume of activated 

tissue (VAT).    
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4.2.3. DBS Activation Volumes 

The DBS contact locations were first identified in native CT space and then 

transformed to MNI152 space using each individual subject’s T1 MRI space (see below). 

The patient-specific DBS activation volumes were then defined within the context of 

MNI152 space. Figure 15 presents an example of the four contacts visible on one 

subject’s T1 image in CT space. There are 4 individual contacts on each DBS lead. Each 

contact is 1.4 mm in diameter. The contact at the tip of the array is longer than the other 3 

(3 mm vs 1.5 mm, respectively), with each separated by a 1.5 mm non-conductive gap 

(Libra system, St Jude Medical, Plano, TX). (Figure 15) 

Calculation of the DBS activation volumes required some special considerations 

given the St Jude DBS system and the grey/white matter transitions of the SCC region. 

Therefore, custom activation volumes were created for this study. The detailed 

methodology for DBS activation volume prediction is described in Chaturvedi et al. 

(192), which rely on artificial neural networks (ANNs) to characterize the spatial extent 

of directly activated axons as a function of the stimulation parameter settings. These 

ANNs are trained on the results of thousands of simulations that directly couple DBS 

electric field models with multi-compartment cable models of axons. In addition, the 

ANNs used in this study have several unique features: 1) explicit representation of the St 

Jude DBS electrode design, 2) use of current-controlled stimulation, and 3) separate 

ANNs for representing DBS in grey matter or white matter. Grey matter was represented 

in the DBS electric field model as an isotropic bulk tissue domain, while white matter 



was represented as an anisotropic bulk tissue domain with the axon models oriented 

parallel to the orientation of high electrical conductivity.

Figure 15. Identification of contact location, 
onto pre-surgical T1 image 
superior, 1 to 4. b: Activation volume using contact 1 and typical parameters for a 
sample subject (130Hz, 90us, 6mA)
calculated activated volume 

4.2.4. Tract Map Generation using Individual VAT seeds

Tract map were generated by following analysis processing. 

4.2.4.1.  Preprocessing

High-resolution T

regions using Freesurfer (

tractography mask and as a stop mask to reduce artificial connections such as crossing 

hemispheres through cerebrospinal fluid (CSF) or gray matter (GM) edge regions. 
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represented as an anisotropic bulk tissue domain with the axon models oriented 

parallel to the orientation of high electrical conductivity. (Figure 15) 

Identification of contact location, a: post-surgical CT image o
T1 image for one subject.  Contacts are numbered inferior to 

Activation volume using contact 1 and typical parameters for a 
sample subject (130Hz, 90us, 6mA), c: Probabilistic tractography connection from 

activated volume for one subject.   

Tract Map Generation using Individual VAT seeds

Tract map were generated by following analysis processing. 

processing

resolution T1 weighted images were parcellated into cortical 

regions using Freesurfer (http://surfer.nmr.mgh.harvard.edu) for use as a seed

tractography mask and as a stop mask to reduce artificial connections such as crossing 

ugh cerebrospinal fluid (CSF) or gray matter (GM) edge regions. 

represented as an anisotropic bulk tissue domain with the axon models oriented 

CT image overlapped 
.  Contacts are numbered inferior to 

Activation volume using contact 1 and typical parameters for a 
, c: Probabilistic tractography connection from 

weighted images were parcellated into cortical and subcortical 

) for use as a seed-to-target 

tractography mask and as a stop mask to reduce artificial connections such as crossing 

ugh cerebrospinal fluid (CSF) or gray matter (GM) edge regions. 



68 

 Tools within the FSL (http://www.fmrib.ox.ac.uk/fsl, Flirt and Fnirt, Oxford, UK) 

were used for all image registration and tractography processing (86, 193). First, T1 and 

DTI data were skull stripped to remove non-brain regions. Diffusion data underwent eddy 

current correction, and local DTI fitting (88, 89). CT and diffusion images were co-

registered to T1 image by affine transformation and then normalized to MNI152 template 

by applying nonlinear transformation information previously calculated by fnirt (FSL) in 

the nonlinear registration from T1 to the MNI152 template.  

4.2.4.2.  Probabilistic Tractography  

Probabilistic tractography was performed using Fdt, a diffusion toolbox in FSL 

(89, 194). Three analyses were performed (a) from VATs to whole-brain; (b) from VATs 

to regions of interest (seed-to-target) encompassing an expansion of regions identified in 

the whole-brain analysis; and (c) correlation between connectivity of identified regions 

and index of response to treatment. 

(a) Whole-brain tractography analysis 

With the goal to define tracts that are common to all responders, tract 

maps for each patient were generated using the combined VATs calculated for 

their two active DBS contacts, one in each hemisphere.   

 The contacts that were selected for the analysis were the ones that were 

delivering the stimulation at the 6-month visit. Participants may have changed 

stimulation contacts before, but the ones that were efficacious in generating 
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antidepressant response were maintained. Five thousand random samples per 

voxel were sent out from each individual’s bilateral VATs to whole brain. The 

whole brain fiber probabilistic tractography map was divided by total number 

of streamline sent out to compensate seed (VAT) size difference, and was then 

binarized (0.001% was used in the present results, but a series of other 

thresholds were also tested) (128). Each binary map was added to create the 

common population map of the structural connections in each group (e.g., all 

subjects share all voxels). To validate that these common tracts were not 

biased by specific subjects, a second map defined by shared pathways by 50% 

of the subjects was generated for comparison.  

(b) Seed-to-target tractography analysis

A second analysis was done to elucidate what is different in each 

individual responder and non-responder. Six cortical and subcortical target 

regions were selected from WM common pathways of responders, from the 

whole-brain analysis. These target regions were generated based on 

combination of the Freesurfer parcellated brain atlas (Desikan-Kiliany atlas) 

(68, 195, 196) and Harvard-Oxford structural atlas (FSL) (197-199). Three 

regions in each hemisphere were selected: (1) medial- and orbito-frontal 

cortex (BA10/BA11), (2) anterior cingulate cortex, and (3) a basal ganglia-

thalamic cluster including nucleus accumbens, caudate, putamen, and 

thalamus. Gray and white matter interface regions were extracted from each of 

the cortical-subcortical target regions to improve tractography quality (Figure 
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16, showing targets). Structural connectivity was calculated from paired two 

brain regions, which are bilateral VATs (Nu) and each brain target region (Nv). 

For each pair of brain regions, five thousands random samples per voxel were 

sent from bilateral VATs seed mask, and the total number of probabilistic 

streamlines started from seed regions and reached the GM/WM interface 

target region in that pair were summed and counted. After total number of 

connected streamline was counted for each brain region pair, it was divided by 

the mean of the areas of the two regions (Eq. 8), where Su and Sv represent the 

areas of the bilateral VAT and each brain target mask region to compensate 

size differences across brain regions, and (C(u,v)) is termed the normalized 

connection (density) (98, 99, 124, 128).  

C(u, v) = 2(Nu+Nv)
Su+ Sv

Eq.8

The normalized connectivity measure of each region was then normalized by 

total normalized connectivity value of each subject to compare across 

subjects. Finally, the ratio structural connectivity value from bilateral active 

simulation to six brain regions in each individual was compared. As no 

method has yet been validated to quantify absolute structural connectivity 

strengths, the normalized connectivity method was used to evaluate relative 



strength within each patient.  No comparison of absolute connectivity values 

are made across subjects.

Figure 16. Target regions used for DBS seed
tractography maps. Three regions selected from Desikan and Harvard
atlases: medial frontal cortex, anterior cingulate, and subcortical cluster 
ganglia including nucleus accumbens, caudate, putamen, and thalamus).  Right and 
Left sided regions are sampled independently.

(c) Correlation between structural connectivity and clinical efficacy of SCC 

DBS 

To evaluate the relationship 

clinical efficacy of DBS treatment, 

connectivity value

index (IDI) were calculated 

HDRS-17 scores over the 24 weeks of open, chronic DBS, is a

categorical, continuous measurement of
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strength within each patient.  No comparison of absolute connectivity values 

are made across subjects.

. Target regions used for DBS seed-to-target fiber probabilisti
tractography maps. Three regions selected from Desikan and Harvard
atlases: medial frontal cortex, anterior cingulate, and subcortical cluster 
ganglia including nucleus accumbens, caudate, putamen, and thalamus).  Right and 

ns are sampled independently.

Correlation between structural connectivity and clinical efficacy of SCC 

To evaluate the relationship between specific tract connectivity 

clinical efficacy of DBS treatment, correlations between 

values with HDRS-17 scores at 24 weeks and

were calculated (200).  The IDI, based on an integration of the 

17 scores over the 24 weeks of open, chronic DBS, is a

gorical, continuous measurement of clinical efficacy of SCC DBS

strength within each patient.  No comparison of absolute connectivity values 

target fiber probabilistic 
tractography maps. Three regions selected from Desikan and Harvard-Oxford 
atlases: medial frontal cortex, anterior cingulate, and subcortical cluster (Basal 
ganglia including nucleus accumbens, caudate, putamen, and thalamus).  Right and 

Correlation between structural connectivity and clinical efficacy of SCC 

specific tract connectivity and 

between normalized 

17 scores at 24 weeks and illness density 

The IDI, based on an integration of the 

17 scores over the 24 weeks of open, chronic DBS, is a non-

clinical efficacy of SCC DBS.
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4.2.5 Anatomical active stimulation coordinates 

Given past attempts using lower resolution MRI data to evaluate anatomical 

variation in contact locations in responders and non-responders to SCC DBS (13, 163), a 

final analysis of the activation volume location in standard stereotaxic space using the 

high resolution pre-surgical T1 images was performed. This analysis would show if 

structural anatomy per se could explain response to DBS. The activation volume for each 

subject was transferred to MNI space using a combination of linear and non-linear 

transformations (Flirt and Fnirt: FSL); the center of mass of the activation volume (x-,y-

,z- and Euclidean-distance from MNI center coordinate) was statistically tested.

4.3. Results 

4.3.1. Probabilistic Tractography Analysis 

(a) Whole-brain tractography analysis 

Three bilateral WM pathways were common to all DBS responders (n=6) :  

bilateral forceps minor connecting the seed to the medial frontal cortex 

(Brodmann Area 10), the cingulate bundle connecting the seed to the rostral 

and dorsal anterior and mid-cingulate cortex, and short subcortical midline 

fibers to subcortical nuclei including the nucleus accumbens, caudate, 

putamen and anterior thalamus (Figure 17). To prevent that these connections 



are not biased to specific subjects, more than 50 % subjec

are investigated and shows in 

Figure 17. Group Whole
DBS fiber tract target. 
month Responders (Blue) 
via forceps minor; subgenual, rostral and dorsal anterior cingulate via the cingulum 
bundle; and to nucleus accumbens, caudate, hypothalamus and anterior thalamus
Common tracts shared 
green. Abbreviations: mF: medial frontal, nAc: nucleus accumbens, Th: thalamus, 
Cau: caudate. 

Figure 18. Whole brain fiber probabilistic tractography shared pathw
more than 50% subjects, Responder group (Blue) shows robust shared pathways to 
medial frontal and subcortical regions. Green 
subjects which include responders and non
bilateral medial frontal were still indentified in responders group.
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are not biased to specific subjects, more than 50 % subjects shared pathways 

are investigated and shows in Figure 18.  

Whole-brain probabilistic tractography map defining the optimal 
. Based on individual activation volume tract maps, all 6

(Blue) share bilateral pathways to: medial frontal
via forceps minor; subgenual, rostral and dorsal anterior cingulate via the cingulum 
bundle; and to nucleus accumbens, caudate, hypothalamus and anterior thalamus

by all subjects regardless of 6-month response are shown in 
green. Abbreviations: mF: medial frontal, nAc: nucleus accumbens, Th: thalamus, 

. Whole brain fiber probabilistic tractography shared pathw
more than 50% subjects, Responder group (Blue) shows robust shared pathways to 
medial frontal and subcortical regions. Green shows the shared pathways of all 
subjects which include responders and non-responders. Specific shared pathways to 

eral medial frontal were still indentified in responders group.

ts shared pathways 

defining the optimal 
Based on individual activation volume tract maps, all 6-

: medial frontal-cortex (BA10) 
via forceps minor; subgenual, rostral and dorsal anterior cingulate via the cingulum 
bundle; and to nucleus accumbens, caudate, hypothalamus and anterior thalamus. 

month response are shown in 
green. Abbreviations: mF: medial frontal, nAc: nucleus accumbens, Th: thalamus, 

. Whole brain fiber probabilistic tractography shared pathways map of 
more than 50% subjects, Responder group (Blue) shows robust shared pathways to 

shows the shared pathways of all 
responders. Specific shared pathways to 
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(b) Seed-to-target tractography analysis

Confirming the findings from the whole brain analysis, DBS responders 

again showed consistent structural connectivity to both left and right medial 

frontal cortex (BA10), relative to the non-responders (Table 6). This result is 

evident in both the total absolute number of threads to each MF region and as 

a normalized ratio of connectivity comparing all six target regions. Non-

responders showed weak structural connectivity to one or both medial frontal 

cortex regions. The main difference between response and non-response to 

SCC DBS at 6 months of stimulation is the presence or absence of these 

strong structural connections to medial frontal lobes bilaterally. Structural 

connectivity of the SCC seed to other regions (subcortical structures, 

cingulate) was comparable between response groups. 
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Table 6. Seed-to-Target Analysis: Normalized structural connectivity from bilateral 
activation volumes to six predefined regions of interest based on the Whole- Brain 
Connectivity maps.  

Subject Medial Frontal Cingulate Cortex BasalGanglia/Thalamus 
 Left Right Left Right Left Right 

Responder 
N.C. 

(Ratio, %) 

1 37.44 
(1.85) 

169.56 
(8.38) 

155.87 
(7.70) 

398.97 
(19.71) 

482.12 
(23.81) 

780.49 
(38.55) 

2 104.00 
(3.65) 

133.06 
(4.67) 

172.55 
(6.05) 

506.95 
(17.78) 

1208.60 
(42.38) 

726.44 
(25.47) 

3 28.48 
(0.88) 

74.47 
(2.31) 

527.47 
(16.37) 

614.50 
(19.08) 

1372.45 
(42.60) 

604.06 
(18.75) 

4 14.76 
(0.79) 

370.05 
(19.69) 

110.73 
(5.89) 

210.59 
(11.21) 

793.99 
(42.25) 

379.16 
(20.18) 

5 416.54 
(14.68) 

530.61 
(18.70) 

416.06 
(14.66) 

341.42 
(12.03) 

762.47 
(26.87) 

370.66 
13.06 

6 408.02 
(16.69) 

280.67 
(11.48) 

772.14 
(31.58) 

711.85 
(29.11) 

106.95 
(4.37) 

165.76 
(6.78) 

Non-
Responder 

N.C. 
(Ratio, %) 

1 0.65 
(0.33) 

0.59 
(0.30) 

112.86 
(57.47) 

18.82 
(9.58) 

46.22 
(23.54) 

17.25 
(8.78) 

2 235.61 
(8.75) 

1.07 
(0.04) 

789.67 
(29.33) 

708.04 
(26.29) 

684.92 
(25.44) 

273.41 
(10.15) 

3 3.28 
(0.16) 

161.05 
(7.71) 

71.39 
(3.42) 

50.78 
(2.43) 

1186.06 
(56.80) 

615.51 
(29.48) 

4 1.10 
(0.08) 

66.45 
(4.91) 

0.06 
(0.00) 

0.42 
(0.03) 

748.26 
(55.31) 

536.58 
(39.66) 

5 1.92 
(0.05) 

92.13 
(2.59) 

458.06 
(12.90) 

2164.69 
(60.96) 

493.56 
(13.90) 

340.76 
(9.60) 

6 121.32 
(2.63) 

1.80 
0.04 

1370.89 
29.66 

1393.41 
30.15 

1211.30 
26.21 

522.56 
11.31 

7 3.59 
(0.09) 

12.28 
(0.32) 

1206.76 
(31.31) 

938.19 
(24.34) 

878.54 
(22.79) 

815.10 
(21.15) 

8 0.06 
(0.18) 

0.28 
(0.89) 

0.41 
(1.31) 

0.37 
(1.18) 

17.65 
(56.51) 

12.47 
(39.93) 

9 631.19 
(14.67) 

1097.62 
(25.50) 

790.40 
(18.37) 

793.98 
(18.45) 

854.70 
(19.86) 

135.87 
(3.16) 

10 70.04 
(1.53) 

253.56 
(5.54) 

1425.52 
(31.17) 

1091.02 
(23.86) 

925.16 
(20.23) 

807.66 
(17.66) 

N.C.: Normalized structural connectivity.  Gray shade indicates normalized connection 
value less than 10, indicative of no connection meeting threshold criteria. 
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(c) Correlation between structural connectivity and clinical efficacy of SCC 

DBS

HDRS-17 score at 24 weeks Response magnitude across all subjects using 

the HAMD-17 at six months was significantly correlated with structural 

connectivity of the SCC to both medial frontal cortices (Spearman's rho, Left 

mF: p = 0.035, Right mF: p = 0.025). The Illness Density Index (IDI) was also 

significantly correlated with structural connectivity of the SCC to both medial 

frontal cortices in all subjects (Spearman's rho, Left mF: p = 0.005, Right mF: 

p = 0.025). Strength of structural connections with the 24-week HDRS-17 or 

the IDI were not significant for any of the other response-specific pathways 

(Figure 19).

4.3.2.  Anatomical active stimulation coordinate 

Anatomical location of the active contacts did not discriminate the subgroups. 

There were no significant differences between responders and non-responders when 

analyzing either the coordinates of electrode (activation volumes) or the Euclidean 

distance from MNI center. (Mann-Whitney U test uncorrected, Left x: p = 0.32, y: p = 

0.51, z: p = 0.38, Euclidean distance: p = 0.58; Right x: p = 0.36, y: p = 0.63, z: p = 0.42, 

Euclidean distance: p = 0.87) (Figure 19 and Table 7). In addition, there was no 

lateralized difference in the location of the active contacts in the right and left 

hemisphere, based on the coordinates of the activation volumes. 



Figure 19. Anatomical location in MNI space of the VAT for r
non-responders (Red) at six months 
anatomical location between the

Table 7. Coordinates of Activation Volumes in MNI space

x 

Responder 

(n=6) 

-5.98 

(±1.11)

Non-Responder

(n=10) 

-6.86 

(±1.35)

Stat. (p) 0.32 

ED: Euclidean distance from MNI center coordinate, Stat.: Statistical analysis (Mann
Whitney U test), p: p-value 
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Anatomical location in MNI space of the VAT for responders 
) at six months of chronic DBS. There is no differences in 

anatomical location between the responder and non-responder group

Coordinates of Activation Volumes in MNI space

Left hemisphere Right hemisphere

y z ED x y 

25.61 

(±3.02)

-8.11 

(±3.69)

27.68 

(±2.35)

6.14 

(±0.33)

26.21 

(±2.12)

-

(±2.21)

26.53 

(±2.35)

-7.80 

(±3.98)

28.77 

(±1.73)

5.34 

(±1.56)

25.63 

(±2.62)

-

(±3.28

0.51 0.38 0.58 0.36 0.63 0.4

ED: Euclidean distance from MNI center coordinate, Stat.: Statistical analysis (Mann
value .  

esponders (Blue) and 
There is no differences in 

responder groups. 

Coordinates of Activation Volumes in MNI space

Right hemisphere

z ED 

6.04 

(±2.21)

27.70 

(±1.83)

7.46 

(±3.28)

27.48 

(±2.20)

0.42 0.87 

ED: Euclidean distance from MNI center coordinate, Stat.: Statistical analysis (Mann-
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4.4. Discussion 

This study demonstrates that clinical response to DBS is mediated by direct 

impact on a combination of specific fiber bundles passing through the SCC white matter 

target.  These fiber bundles include: (a) bilateral forceps minor of the anterior corpus 

callosum connecting the right and left medial frontal cortices, (b) the bilateral cingulum 

bundles connecting ipsilateral subcallosal cingulate to rostral and dorsal anterior 

cingulate cortices, and (c) frontal-striatal fibers of the medial branch of the uncinate 

fasciculus connecting medial frontal and subcallosal cingulate areas to the nucleus 

accumbens, anterior thalamus and other subcortical regions Involvement of these 3 sets 

of bundles in each hemisphere is confirmed using three different methods to define 

structural connectivity of the target. The whole-brain analysis generates a visual 

“fingerprint” of the full tract target. Secondly, seed-to-target analysis demonstrates the 

necessary involvement of connections of the SCC to bilateral medial frontal cortices in 

responders to DBS. The non-responder group missed critical frontal connections and each 

of them had weak connections to one or both medial frontal lobes. Thirdly, in addition to 

describing the necessary pathways for optimal response, a linear correlation is seen 

between connectivity of the target activation volumes to bilateral medial frontal lobes and 

treatment response. 

 The implementation of patient- and contact-specific electrical field modeling in 

conjunction with tractography allows a new insight into the way DBS mediates 

antidepressant response with implications for patient management. Previous reports of 
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anatomical location of contacts failed to explain why some participants did not respond to 

SCC DBS (163); a finding also confirmed in this cohort (Figure 19).  These new data 

provide insight into an alternative key source of variability, namely the impact on 

multiple fiber bundles as pass through this region of the SCC.    

 While these findings provide a potential strategy for optimizing DBS lead 

placement, the sample size is small, and a replication cohort with prospective testing is 

needed. Additionally, improved DTI acquisition methods (201), may allow detection of 

more subtle but equally critical pathways mediating response to SCC DBS such as 

pathways to the brainstem or medial branches of the uncinate fasciculus which sits lateral 

to forceps minor at this axial plane (187). 

 Based on the combined analyses in this study, it might be postulated that targeting 

bilateral SCC-Brodmann Area 10 (medial frontal cortex) connections alone might be 

sufficient to generate the optimal antidepressant effect as these tracts best distinguish 

responders and non-responders among the constellation of tracts identified and correlated 

with indices of clinical response across all subjects. However, with current DBS systems, 

and the associated size and shape of the stimulation field, specific stimulation of SCC-

BA10 fibers is not possible; cingulate and subcortical connections will also be stimulated. 

Future studies with capacity for current steering may allow direct testing of this 

hypothesis (202). Such technological advances will also allow disambiguation of 

stimulation of the direct SCC-BA10 connections from trans-hemispheric connections 

through forceps minor and even passing fibers from mF10 to subcortical regions.  
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 The primary finding from this study is that antidepressant effects of chronic high 

frequency DBS likely involves modulation of a distributed network in addition to local 

changes in SCC grey matter. Based on the available evidence, the mechanisms of DBS 

most likely involve a combination of local effects on neurons and glia in the direct 

current field with secondary transynaptic effects as well as orthodromic and antidromic 

effects on fibers of passage (203, 204).  Full characterization of the fiber and cell types 

will be required to model DBS mechanisms of action.    

 Clinically, this network analysis provides a potential new algorithm for target 

selection for SCC DBS. Instead of a purely anatomical or coordinate based approach that 

targets a single region, these findings suggest that targeting be based on connectivity 

within the network, i.e., which target will allow for a stimulation field that impacts the 

critical local regions and the white matter tracts to other key regions within the network. 

This can be prospectively tested using a pre-surgical assessment of an individual patient’s 

network structure with lead placement and contact selection done to ensure a current field 

that impacts the three white matter bundles described here.   

Management of non-responders to SCC DBS in this context is an important next 

consideration. Non-response can be multifactorial: inadequate patient selection, 

personality characteristics, psychological or environmental factors that become evident 

after the implantation in addition to missed pathways. As such, the lack of a full DBS 

response may be independent of appropriate modulation of the requisite neural pathways. 
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Therefore, we propose that contacts should not be changed prematurely if the individual 

connectivity map showed the tracts that matched the desired response “fingerprint”. This 

hypothesis will be tested in future analyses of the non-responder group.    

 In conclusion, the tractography maps of unambiguous response to chronic SCC 

DBS define a template involving bilateral forceps minor, cingulum and medial frontal-

striatal/subcortical fibers which may be characterized in individual patients prior to 

surgery using probabilistic tractography. Such an approach provides a new strategy for 

optimizing electrode implantation for SCC DBS.   
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CHAPTER 5 

Conclusions and Future Directions 

5.1 Problem Statement 

 Diffusion tensor imaging is becoming more commonly applied to explore the 

neurobiology of depression, and methods that study WM integrity need to be validated 

and quantified (Chapter 2). We described in previous chapters that measuring and 

identifying the structural neural circuits of depression using network analysis can provide 

additional information of neuronal alteration of the networks associated with depression 

(Chapter 3). Diffusion tractography has been used in recent research to analyze brain 

circuits that are associated with antidepressant response, possibly improving efficacy of 

subcallosal cingulate deep brain stimulation by defining necessary WM pathways 

(Chapter 4). 

5.2 Overview of Findings 

This work has focused on neural circuits of depression in order to clarify and 

further extend past observations that have been reported in in MDD. The methods we 

have described could potentially be utilized to optimize targeting of SCC deep brain 
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stimulation in patients with treatment-resistant depression, by utilizing the WM network 

analysis in MDD. 

 Through evaluation of a comprehensive set of analyses for structural WM 

integrity in a large sample of depressed patients, we demonstrated that disruption of WM 

does not play a major role in the neurobiology of MDD (Chapter 2).  

Using graph theory analysis to assess the organization of neural networks in MDD, 

we elucidated the importance of WM network, especially alteration of topological 

organization in MDD (Chapter 3). As an extension of this WM network analysis, we 

identified the necessary and sufficient WM circuits that are associated with 

antidepressant response in deep brain stimulation of the subcallosal cingulate cortex for 

treatment of depression. Clinical efficacy of DBS could be positively impacted by more 

precise targeting of these necessary tracts.  

5.3 Future Directions 

Current SCC DBS targeting is based on coordinates that rely on structural T1- and 

T2-weighted imaging.(163). Target location for lead implantation and choice of active 

contacts for stimulation are purely based on T1-weighted MR imaging, interpreted by the 

psychiatrists and neurosurgeons. . This method of target selection may explain some of 

the variability of clinical outcomes in SCC DBS.  
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Assessment of Structural Connectivity from active stimulation contacts through 

the key therapeutic contacts has not been done to date in SCC DBS. This novel approach 

to analyzing SCC DBS connections will help create a systematic approach for 

prospective target selection as well as optimizing contact selection in subjects who are 

already implanted and are receiving chronic DBS with suboptimal response. Slight 

variations in the anatomical location of stimulation can produce very different behavioral 

effects and this variation appears related to the precise combination of key therapeutic 

tracts affected by the stimulation (190). Therefore, as small changes in the target of 

stimulation have clinically significant behavioral effects, better understanding of the 

connectivity patterns of different targets within the SCC region is a critical next step.  

DBS electrode placement in the SCC could be optimized by incorporating the 

identification of critical WM tracts before surgery. In order to develop a systematic target 

selection procedure using tractography, a qualitative approach could be easily tested prior 

to surgery. A priori identification of these tracts has been done in subjects who received 

DBS in the SCC, as described in chapter 4.  

For this qualitative target selection, deterministic tractography was performed by 

using TrackVis (Wang R, Wedeen VJ, MGH) toolbox to find similarly desired 

connection patterns to key WM tracts that were defined in previous chapter. A tract 

density map was calculated using Diffusion Toolkit (Dtk, Wang R, Wedeen VJ, MGH) 

and then bilateral ROIs of 2.5 mm radius sphere-shape were initially placed in SCC 

region based on brain anatomy. The size of the radius was chosen given that the average 
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size of volume of activated tissue (VAT) was around 70 mm3 in previous analysis 

(Chapter 4). Following this, the tracts passing through bilateral initial seeds were 

analyzed along user-interactive changes of seed location in SCC region to determine the 

selected seed location that they connected to the identified regions in the previous chapter 

(e.g. bilateral mF10, ACC, sub-cortical cluster including striatum, thalamus, nucleus 

accumbens). This target selection was performed by both neuro-psychiatrists and 

neurosurgeons. An example of this qualitative individual target selection with 

deterministic tractography is shown in Figure 20. In order to compare differences in 

efficacy between purely structural anatomical approach and prospective tract 

identification, a sample of 27 participants in an ongoing protocol for SCC DBS was 

analyzed.  The initial 17 patients in the sample were implanted based on the classical 

anatomical target selection, and ten subjects were implanted after DTI-based method 

target selection was used. By using tractography-based qualitative DTI target selection, 

clinical response (as defined by a 50 % improvement in Hamilton Depression Rating 

Scale – 17 item) after six months of chronic stimulation was improved from original 41% 

(7 responders out of 17 participants) (15) to 70% (7 responders out of 10 participants). 

This result is suggestive of the improved efficacy of SCC when using quantitative DTI 

target selection approach.  

 For quantitative DTI target selection based on probabilistic tractography, 

normalized connectivity (described in chapter 4) was used. Optimal quantitative target 

location was suggested by identification of the voxel that has the highest normalized 
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connectivity value to six previously defined tracts. Preliminary results are shown in 

Figure 21.  

Figure 20. Qualitative DTI target selection using deterministic tractography, Top: 
Applied restricted (<35 degree) angular threshold for tracking, Bottom: < 90 degree 
angular threshold for tracking. 



Figure 21. Preliminary result for quantitative DTI target selection using 
probabilistic tractography, Red arrow indicated the voxel has highest normalized 
connectivity value to six indentified key tracts. 

The preliminary o

independent of target selection (patient selection, environmental factors) the improved 

efficacy could be accounted by the use of 

tractography target selec

outcomes by developing a systematical 
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. Preliminary result for quantitative DTI target selection using 
probabilistic tractography, Red arrow indicated the voxel has highest normalized 
connectivity value to six indentified key tracts. 
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In the future, implementation of prospective DTI target selection will improve 

surgical precision, minimize unnecessary stimulation parameter modifications and set a 

new standard for effective SCC DBS. This will be tested with upcoming DBS surgeries.  
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