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ABSTRACT 
 

 

 

Mobile ad hoc sensor networks are characterized by dynamic changes in communication 

links and network topology mainly due to node mobility. In such networks, it is a challenge to 

build a communication system that lasts longer and requires less reconfiguration and less 

communication overhead. In this study, we propose an on-demand topology reconfiguration 

approach for multi-agent systems aimed at enhancing the connectivity and performance. The 

proposed strategy groups nodes, elects cluster-heads and finally selects gateways for inter-cluster 

communication. This study, also, seeks to investigate the impact of topology structural 

characteristics on consensus building among multi-agent nodes. The structural properties 

evaluated are the algebraic connectivity ratio, average path, average cluster coefficient, average 

matching index, modularity and the average participation. The consensus is measured by nodes 

average state update. Statistical methods are employed to explore the interaction between these 

structural properties and the consensus. A theoretical analysis is provided to support the 

statistical results.  Finally, a comparative study of three distributed strategies for task allocation 

in a multi-agent system is presented. The objective is to determine for each node its course of 

action and the tasks it needs to accomplish. The methods are based on self-organizing map 

technique, Hungarian method and a linear programming optimization formulation. A theoretical 

section is provided to support the dynamics of these techniques and some of the results.  

  

 
 

 



 

vii 
 

    TABLE OF CONTENTS  

Chapter                                                                                                                                       Page  
 

1. INTRODUCTION AND PROBLEM STATEMENT .......................................................................... 1 
1.1 Introduction ...................................................................................................................................... 1 

1.2 Problem Statement ........................................................................................................................... 3 

1.3 Research Purpose ............................................................................................................................. 4 

2. LITERATURE SURVEY ..................................................................................................................... 6 
2.1 Topology Creation ........................................................................................................................... 6 

2.2 Topology Impact on Consensus ....................................................................................................... 7 

2.3 Task Assignment .............................................................................................................................. 8 

3. TOPOLOGY CREATION .................................................................................................................. 10 
3.1 Introduction .................................................................................................................................... 10 

3.2 Assumptions and Mathematical Preliminaries ............................................................................... 12 

3.3 Proposed Model ............................................................................................................................. 14 

3.3.1 Clustering ............................................................................................................................ 14 

3.3.2 Computing Minimum Dominant Set ................................................................................... 16 

3.3.3 Selecting Gateways ............................................................................................................. 18 

3.3.3.1 Distance to the Centroid .............................................................................................. 19 
3.3.3.2 Transmission Energy ................................................................................................... 19 
3.3.3.3 Node Degree ............................................................................................................... 20 
3.3.3.4 Available Energy ......................................................................................................... 20 

3.3.4 Cluster-head and External Gateway Link ........................................................................... 22 

3.3.5 Complexity .......................................................................................................................... 23 

4. TOPOLOGY IMPACT ON CONSENSUS ........................................................................................ 25 
4.1 Introduction .................................................................................................................................... 25 

4.2 Topological metrics ....................................................................................................................... 26 

4.2.1 Average Path ....................................................................................................................... 26 

4.2.2 Average Cluster Coefficient ................................................................................................ 27 

4.2.3 Average Matching Index ..................................................................................................... 27 

4.2.4 Average Participation Coefficient ....................................................................................... 28 



 

viii 
 

TABLE OF CONTENTS (CONTINUED) 

 
Chapter                                                                                                                                       Page 

4.2.5 Algebraic Connectivity Ratio .............................................................................................. 28 

4.2.6 Modularity ........................................................................................................................... 29 

4.3 Consensus Algorithm ..................................................................................................................... 29 

4.4 Methodology .................................................................................................................................. 33 

4.4.1 Data Collection and Correlation Matrix .............................................................................. 34 

4.4.2 Factor Extraction ................................................................................................................. 37 

4.4.3 Factor Rotation and Interpretation ...................................................................................... 38 

4.4.4 Multiple Regression Analysis ............................................................................................. 39 

4.5 Theoretical Analysis ...................................................................................................................... 40 

5. TASK ALLOCATION ....................................................................................................................... 46 
5.1 Introduction .................................................................................................................................... 46 

5.2 Task Allocation Techniques .......................................................................................................... 47 

5.2.1 Kohonen Self-Organizing Map (SOM) ............................................................................... 47 

5.2.2 Hungarian Method .............................................................................................................. 48 

5.2.3 Linear Programming Method .............................................................................................. 49 

5.3 Theoretical Analysis ...................................................................................................................... 51 

5.3.1 ILP optimization problem ................................................................................................... 52 

5.3.1.1 System Dynamics ........................................................................................................ 52 
5.3.1.2 Convergence................................................................................................................ 54 
5.3.1.3 Fairness ....................................................................................................................... 55 

5.3.2 Self-Organizing Map........................................................................................................... 55 

5.3.2.1 System Dynamics ........................................................................................................ 55 
5.3.2.2 Convergence................................................................................................................ 56 
5.3.2.3 Fairness ....................................................................................................................... 56 

6. RESULTS ........................................................................................................................................... 57 
6.1 Topology Creation ......................................................................................................................... 57 

6.2 Topology Impact on Consensus ..................................................................................................... 64 



 

ix 
 

TABLE OF CONTENTS (CONTINUED) 

 
Chapter                                                                                                                                       Page  

6.2.1 Statistical Results ................................................................................................................ 64 

6.2.2 Theoretical Results .............................................................................................................. 70 

6.3 Task Assignment ............................................................................................................................ 73 

6.3.1 Assumptions ........................................................................................................................ 73 

6.3.2 Explorative Simulation ....................................................................................................... 74 

6.3.3 Theoretical Results .............................................................................................................. 79 

7. CONCLUSIONS ................................................................................................................................. 83 
     BIBLIOGRAPHY .............................................................................................................................. 86 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

x 
 

LIST OF TABLES 

  
     Table                                                                                                                                     Page 

1. Final weights computed by the weight update function ................................................... 16 
 

2. Evaluation of the willingness function for four mobile nodes .......................................... 21 
 

3. Percentage contribution of each variable to the total variance of a variable .................... 65 
 

4. Loadings for each factor extracted .................................................................................... 67 
 

5. Significance test of linearity verification for all the independent variables. .................... 68 
 

6. Regression model prediction of the consensus building variable ..................................... 69 
 

7. The adjusted R square for the model ................................................................................ 69 
 

8. The importance of intracluster parameters in the predictive model ................................. 70 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

xi 
 

LIST OF FIGURES 

 
   Figure                                                                                                                                      Page 

1. The resultant clusters related to table 1............................................................................. 16 

2. Node positions corresponding to table 1. .......................................................................... 21 

3. Diagram showing the flow of information........................................................................ 31 

4. Nodes forming clusters on their own ................................................................................ 31 

5. Histograms and normal distribution plots for the six variables. ....................................... 35 

6. Cluster-head and gateway selection with four clusters. .................................................... 57 

7. Connecting multiple clusterheads and gateways. ............................................................. 57 

8. Number of nodes increase versus number of clusters ....................................................... 60 

9. Effect of increasing the transmission range on the  number of clusters. .......................... 60 

10. Formation of one cluster due to a higher number of nodes .............................................. 60 

11. The number of cluster increases when the transmission range is reduced........................ 60 

12. Transmission range versus density of intracluster links ................................................... 60 

13. Number of nodes versus density of intra and intercluster links ........................................ 60 

14. Linking single-node clusters ............................................................................................. 60 

15. Connecting nodes with different transmission range ........................................................ 60 

16. Number of clusters generated by different techniques ..................................................... 62 

17. Average cluster size generated by different techniques .................................................... 62 

18. Quality threshold behavior with different diameter values............................................... 62 

19. Number of cluster heads generated by the two techniques. .............................................. 63 

20. Cluster size generated by the two techniques. .................................................................. 64 



 

xii 
 

 
LIST OF FIGURES (CONTINUED) 

 
    Figure                                                                                                                                     Page 

21. Residual scatter-plot for the errors .................................................................................... 68 

22. Evolution of a node’s saturation ....................................................................................... 71 

23. Lyapunov exponent versus number of nodes and mapping functions. ............................. 71 

24. Network and intracluster synchronization ratio versus number of nodes ......................... 73 

25. Network and intercluster synchronization ratio versus number of nodes. ........................ 73 

26. Effect of inter and intracluster links on overall synchronization rate ............................... 73 

27. Effect of inter and intra sync rate on overall synchronization rate. .................................. 73 

28. Target assignment using SOM. ......................................................................................... 75 

29. Target assignment using Hungarian method..................................................................... 75 

30. Target assignment using ILP method. .............................................................................. 75 

31. Cost generated by each method. ....................................................................................... 77 

32. Average workload distribution generated by each method. .............................................. 78 

33. Task execution time for the three techniques. .................................................................. 78 

34. Robots ODE dynamics (ILP). ........................................................................................... 80 

35. Robots selection for target servicing (SOM) .................................................................... 80 

36. Cost of assignment for SOM and ILP. .............................................................................. 81 

37. SOM and ILP fairness in workload distribution. .............................................................. 81 

38. Cost of assignment when the number of target increases. ................................................ 82 

39. SOM and ILP fairness when the number of targets increases. ......................................... 82 

 



 

1 
 

CHAPTER 1 

 
INTRODUCTION AND PROBLEM STATEMENT 

 

1.1 Introduction 
 

Mobile ad hoc sensor networks are characterized by frequent topology updates and self-

configuration. Networks are created spontaneously whenever nodes are within the transmission 

range of each other. The arrival and departure of nodes in a network is an on-going dynamic 

process due to nodes high mobility. This dynamic nature causes the nodes in mobile ad hoc 

sensor networks to lose connectivity quite frequently.  Strategies are required to keep the 

network connected and adaptable to frequent changes in the network.  The connectivity and 

adaptability are very crucial for a lasting communication. They require the nodes to be aware of 

their own state and the state of their surroundings nodes.  For a randomly deployed mobile 

sensor, there are controllable and uncontrollable state parameters. The set of controllable 

parameters include power, transmission range, state, sensors, et cetera. The uncontrollable 

parameters are node position, neighbors, path, et cetera. The exceptions such as link failure and 

break downs are not part of the uncontrollable parameters. A condition for a connectivity and 

adaptability strategy is to encompass and balance between the two set of parameters. Neglecting 

or favoring one set over the other, generally results in a weak strategy. The third chapter in this 

research proposes a new periodic and on-demand topology reconfiguration strategy for a mobile 

ad hoc sensor network. This strategy combines a few controllable and uncontrollable parameters 

and generates a communication topology for randomly placed nodes.   
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Another issue related to mobile ad hoc sensor networks is collaboration.  In many fields, 

multi-agent systems, in general, are often characterized by the complexity of the interaction 

between their elements.  In biology, for example, the collective behavior of cells and tissues is a 

direct consequence of the properties of their placements and molecular constituents. In computer 

networks, the overall performance is measured by the network topology and each station’s 

throughput, security, scalability of protocol, et cetera. In manufacturing, the quality of a final 

product is evaluated by its design, functionality, reliability and maintainability. In general, in any 

design, the placement of system constituents affects the parts interaction. In other words, 

interaction is affected by the topology.  The fourth chapter in this research investigates the effect 

of structural properties of a topology on consensus building. The study involves measuring a few 

structural metrics for any given topology and defining a consensus or synchronization 

expression. Statistical techniques such as regression analysis and factor analysis can then be 

applied to show the interactions and interdependencies among the topological characteristics, and 

the impact of these structural properties on consensus. To support the statistical findings, a 

theoretical analysis is provided. 

Another issue associated with multi-agent systems is task allocation. To reach an 

objective, the set of nodes, in a mobile ad hoc network have to coordinate in their endeavor. The 

process requires a communication topology and involves sharing information to reach a 

consensus. The overall task is then accomplished when each node accomplishes its scope of 

tasks.  The key challenges in accomplishing a task in a multi-agent environment are task 

allocation and coordination. When fielding multiple nodes in an unknown area, the problem of 

uncertainty and unpredictability arises. In a dynamically changing environment, the problem 

becomes more complex to tackle. The fundamental problem is as follows, given a set of nodes 
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and targets (tasks) spread in a geographic area, how can a node decide on its course of action and 

contribute to the accomplishment of the overall task?   The fifth chapter in this research proposes 

to compare three distributed techniques aimed at providing each node with autonomous decision 

making. These task allocation strategies are mutually exclusive and do not require any 

coordination among nodes. The study focuses on the cost of task allocation, fairness and 

workload.     

In summary, chapter two provides a literature survey of the subjects. Chapter three builds 

a communication topology. Chapter four investigates the structural properties of the built 

topology. Chapter five compares the three node task assignment techniques.  

1.2 Problem Statement  
  

Topology control has been an interesting subject of research lately.  Many areas such as 

chemistry, biology and ad hoc networks benefited from its development. Topology control can 

be divided into two categories: topology construction for building the initial topology and 

topology maintenance aimed at preserving the topology. In the area of mobile sensor ad hoc 

networks, topology control is faced with many challenges such as energy conservation, time-

varying topology and low transmission quality. Many of the approaches in the literatures for 

communication topologies are either power mechanism based (e.g. energy cost) or hierarchical 

based (e.g. neighbors). There are no attempts to combine parameters of the power and 

hierarchical techniques in a new approach that identifies the available clusters, elect cluster 

heads, select gateways and establish communication links among all nodes.  

Constructing a communication topology for randomly dispersed nodes is necessary for 

exchanging information. The initial scope of information available to each node, in a mobile 
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sensor network, is usually limited by the information collected. Increasing this scope requires 

either collecting more data or requesting it from other nodes.  The process of exchanging data 

among nodes in order to improve their partial scope is a step in the consensus building path.  

There are many factors that influence the consensus building process. Communication topology 

is an important factor in the equation. The relation between the communication topology and the 

consensus is still a black box. No study has been performed to evaluate the impact of a 

communication topology on the consensus building.  

The concept of information exchange and consensus building can have many 

applications. Militarily, it provides the deployed land, air and sea vehicles with a complete view 

of the battle map and potential enemy targets. In space exploration, it presents the manned or 

unmanned vehicles with an exhaustive list of areas to be scanned and investigated. Nodes with a 

complete view of targets are faced with a dilemma of who should service what with respect to a 

specific metric (e.g. distance, energy).  The decision on the course of action is very crucial. 

Multiple task assignment techniques have been proposed. Some require multiple inputs while 

others depend on one parameter.  However no comparative study has been performed to list the 

pros and cons of selecting a technique. 

1.3 Research Purpose  
 
 

The purpose of this study is to build a communication network for randomly dispersed 

nodes. The algorithm combines adaptive resonance theory and Maxnet neural networks to cluster 

nodes. It uses integer linear programming for dominant sets to elect a cluster head. Gateways are 

selected using a willingness function that combines node degree, distance to cluster center, 
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available power and transmission energy. The resultant is a technique suitable for an on-demand 

or periodical topology configuration.  

The second purpose of this study is to investigate the impact of the communication 

topology on the average state updates required in consensus building. Random topologies are 

generated. Few topology metrics, namely the algebraic connectivity ratio, average path, average 

cluster coefficient, average matching index, modularity and the average participation, were 

evaluated. The objective is to extract the most important metrics influencing consensus building.  

Another goal of this study is to compare three techniques for task allocation. The 

comparison focuses on fairness, cost of assignment and workload distribution. The aim is to 

select a technique that provides a balance between these three characteristics. As part of the 

consensus building, a task assignment is required to determine the course of action for each 

node.   
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CHAPTER 2 
 

LITERATURE SURVEY 
 

2.1 Topology Creation 
 

Different heuristics have been proposed in the literature to create clusters, elect cluster-

heads and select gateway nodes. Some use a node identifier to elect cluster-heads. This approach, 

also known as lowest ID heuristics or identifier-based clustering, was introduced by Baker and 

Ephremides [1]. It assigns a unique ID to each node and elects the node with the lowest ID as a 

cluster-head. A cluster is then created by connecting all nodes with higher IDs to the cluster-

head. A node is selected as a gateway, only if it lies within the transmission range between two 

cluster-heads.    

Clustering based on node degree, max degree, or connectivity, is another commonly used 

approach. It was first introduced by Gerla [2]. A node with higher degree is more likely to be 

elected as a cluster-head. Using any protocol for neighbor discovery, a node with a maximum 

number of neighbors is elected to become cluster-head. If a tie occurs, the node with lowest ID is 

selected. The neighbors are then connected to the closest cluster-head to form a cluster. Only one 

cluster-head is allowed per cluster, and cluster-heads are connected to each other to act as 

gateways. 

Another approach is to assign weight to a node based on its readiness and disposition to 

become a cluster-head [3]. A node is elected as a cluster-head if its weight is higher than its 

neighbors. There are different ways of assigning weights. Some techniques are based on node 

energy, position, degree, speed, direction, et cetera. Others use a probabilistic approach.  
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Tan et al. proposed a priority based adaptive topology management approach that uses a 

heuristic weight function based on the distances to neighbors, current communication state, 

energy level and node speed [4]. The node with higher degree is elected as a cluster-head. 

Heizelman et al. proposed a low energy adaptive clustering hierarchy in which each node 

uses a probability value to elect itself as a cluster-head [5]. This approach is based on the number 

of cluster-heads and randomized rotation of cluster-heads.  

2.2 Topology Impact on Consensus 
 
 

Recent interest in consensus inference from topology structure has led to better 

understanding of parameters driving node dynamics in a network. Different approaches were 

proposed in the area of synchronization and consensus building. Some studies focus on 

discovering the relationship between the structural properties and the convergence; others tackle 

the problem from a numerical study point of view. 

Comellas et al. characterized the influence of topology by finding the relationship 

between the algebraic connectivity, the convergence ratio in terms of structural properties [6]. 

The result is that convergence is sensitive to some structural properties. 

Attay et al. on the other hand, compared the structural properties approach versus the 

spectral method [7]. Their conclusion is that topology properties fail, in some cases, to 

characterize the synchronization.    

Furthermore, Jun-Zhong et al. focused on few commonly used structural properties [8] 

and reevaluated their effect on consensus. Their numerical simulations revealed that structural 

properties are inter-related and synchronization is difficult to predict even if the properties are 

separated.      
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In a different approach, Hovareshti et al. defined a new measure for the convergence and 

applied it to small world networks [9]. The aim is to propose a design guideline for building a 

network which maximizes the convergence. 

In a similar way, Kar et al. conducted a series of numerical studies measuring the 

convergence speed on different type of topologies [10]. They reached the conclusion that 

expander graphs perform much better than structured graphs.             

2.3 Task Assignment 

 
Several solutions exist for task allocation in multi-robot systems. The technique presented 

by Sander et al. makes use of Delaunay triangulation to allow each node to identify a small set of 

adjacent nodes [11]. The objective is to move toward the target and away from other adjacent 

nodes.  

Sujit et al. presented a negotiation scheme among a swarm of UAVs (Unmanned Ariel 

Vehicles) [12]. Equipped with target detection sensor, the UAVs locate a target and relay its 

coordinates to their closest neighbors. Negotiation among UAVs decides on who should attack 

the target. In another work, Sujit et al. also proposed team theory concepts to build a consensus 

among UAVs [13]. The objective is to minimize the cost and maximize the payoff. This 

approach requires no communication among UAVs. 

Campbell et al. consider the case where robots are ignorant of their capabilities [14]. 

They proposed two learning techniques: greedy and best fit. Through a series of experiments, 

they showed that learning is important factor in task allocation. 
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Matarić et al. presented a technique based on bidding [15]. The focus is on two aspects: 

commitment and coordination. The robot has to decide whether to finish its current assignment 

or bid on other tasks and whether to base its action on local versus global information.   

Butterfield et al. presented a probabilistic Markov random field model [16]. Two types of 

interactions are proposed and combined into a joint probability distribution that dictates the 

global decision. A local evidence function is defined to express the observation and the action 

variables of each robot.  A pair-wise compatibility function is then defined to decide the action.  

Goldberg et al. presented a market-based planning approach for task allocation [17]. They 

extended the three layer architecture (planning, executive and behavioral) to robot’s decision 

making. At the planning layer, the trader component facilitates the auctioning and bidding of 

tasks. The scheduler component determines the feasibility and cost for the trader. At the 

executive level, the tasks are executed and synchronized. At the behavioral level, robots create 

feedback loops for control and coordination. 
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CHAPTER 3 
 
 

TOPOLOGY CREATION 

3.1 Introduction 
 

Mobile sensor networks are characterized by frequent topology updates and self-

configuration. Networks are created spontaneously whenever nodes are within the transmission 

range of each other. The arrival and departure of nodes in a network is an on-going dynamic 

process due to nodes high mobility. This dynamic nature causes the nodes in mobile sensor 

networks to lose connectivity. Strategies are required to keep the network connected and 

adaptable to frequent changes in the network.  

Although suitable for many applications, the unpredictable overhead generated by 

frequent topological changes can be cumbersome. In order to handle this problem, some 

strategies tend to focus on node power control mechanisms [18, 19, 20, 21], while others 

emphasize node hierarchy [22, 23, 24, 25]. Power control schemes tune power at each node to 

ensure the closest neighbor connectivity and thus the overall network connectivity. The 

hierarchical based approach, also known as clustering, consists of dividing nodes into two 

subsets. A set of cluster-heads and a set of nodes associated with cluster-heads. Connection 

among cluster-heads is established through selected gateway nodes. Regardless of the approach, 

the challenge is to keep the network stable as long as possible before a re-organization becomes 

necessary. 

In this chapter, we propose a periodic and on-demand topology reconfiguration 

framework for a mobile sensor network that results in enhanced connectivity and performance. 

The re-configuration is on-demand when nodes leave or join the network and periodic when 
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employed as an alternative approach to topology control and maintenance through scheduled re-

organization.  

The proposed approach consists of four stages. The first stage utilizes a combination of 

adaptive resonance theory (ART) and Maxnet to cluster nodes. Maxnet’s weight update equation 

helps in finding adjacent nodes in the network. The ART approach contributes to the formation 

of new clusters when adjacency conditions are not satisfied. The second stage addresses the 

election of a cluster-head for each cluster to facilitate intra-cluster communication. The selection 

is performed using an integer linear programming formulation on the adjacency or neighborhood 

matrix. The third stage deals with the establishment of inter-cluster communication. Gateway 

nodes are selected based on a willingness function that combines node degree, distance to cluster 

center, available power and transmission energy. The fourth stage consists of establishing an 

optimal connection between clusters. The task is also performed using an integer linear 

programming formulation.     

The chapter is organized as follows. Section 3.2 presents the mathematical concepts used 

in the proposed model. Section 3.3 outlines the proposed on demand communication topology 

update strategy. In this section, the neural network approach for clustering nodes based on range 

and proximity is described. It describes the selection of cluster-heads using the concept of 

minimal dominant sets. It describes the willingness function used to select the gateway nodes 

required for communication among clusters. It describes the approach for cluster inter-

connection. Section 3.4 analyzes the complexity of the method.   
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3.2 Assumptions and Mathematical Preliminaries 
 

In this section, we present the assumptions and the mathematical concepts used in the 

proposed model. First, nodes are to be confined to a geographic area. Nodes outside the defined 

perimeter belong to a different area. Communication between different areas is not considered in 

this paper. This assumption is required to allow nodes to discover each other via broadcast 

messages or through neighbor discovery, which is not a trivial task. Ideally, an omni-directional 

antenna with variable transmission range to cover the confined area would be appropriate. This 

requirement is necessary since nodes have to adjust their transmission range for inter-cluster 

communication. An alternative solution is a directional antenna, which is likely to detect more 

neighbors because of longer transmission range but requires processing antenna direction. For a 

distributed processing, nodes are assumed to determine their respective location and include it in 

their advertisements and communication along with their transmission range.  Nodes should 

share any knowledge about other nodes’ position and transmission range.  

The second assumption requires that nodes communicate through their elected cluster-

head. Communication among peers is not allowed. Instead, communication between cluster-

heads is performed via a designated gateway. A backup gateway, if available, will act as a 

normal node to prevent loops.    

In idle state, nodes have a limited transmission range. The proposed approach uses this 

limitation during cluster formation and assumes that the nodes will adjust their transmission 

range afterwards.  

We represent the network of nodes as an undirected graph G=(V, E) where V is the set of 

vertices and E is set of edges. The neighborhood N(v) of a vertex v consists of a set of vertices 
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adjacent to v, that is, N(v) = {uV:  uv  E}. Thus, the adjacency matrix A and neighborhood 

matrix N can be represented as follows:            



 


otherwise

Euvif
aA vu 0

1
][ ,

   

  : nI  is the identity matrix.                                                                                       (1)   

We also use the concept of domination in graph theory. A node u dominates another node 

v, if there is a link between u and v.  There are several ways to define a dominant set in a graph, 

each of which illustrates a different aspect of dominance [26, 27]. The definitions we followed 

are described below and they will be used in section 3.3. We refer the reader to 

Definition 1 [28]: A set S of vertices in a graph G = (V, E) is a dominant set if and only if all the 

following conditions hold true. 

 (a)   v  V-S,   u  S such that v is adjacent to u. 

 (b)  v  V-S,  d(v, S) ≤ 1, that is, no more than one edge is permitted between v and one  

        vertex in S.  

 (c)   v  V-S, |N(v) ∩ S|  ≥ 1, that is, every vertex v  V-S is adjacent to at least one vertex  

        in S.   

In our approach, we are interested in finding a minimal dominating set (MDS) S such that no 

proper subset SS '  is a dominant set and 
Sv

N(v) = V(G) . 

Theorem 1 [28]: A dominating set is a minimal dominating set if and only if for each vertex u   

S, one of the following two conditions holds: 

(a) u is an isolated vertex of S. 

(b)  v   V-S  for which  N(v) ∩ S = {u}. 

 

nIAN 
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3.3 Proposed Model 

 

This section describes the steps involved in building a communication topology for a 

group of nodes that are randomly placed. In the first step, nodes within each other’s range are 

grouped into clusters. In the second step, cluster-heads are selected to facilitate intra-cluster 

communication. In the third step, gateway nodes are selected to facilitate inter-cluster 

communication.  In the fourth step, inter-cluster links are established.    

3.3.1 Clustering 

 
Clustering is the process of partitioning a set of nodes into subsets that share a common 

characteristic. The most common criterion to group nodes is proximity. There are two methods to 

learn how nodes are organized: supervised and unsupervised. We focus only on unsupervised 

learning and particularly on competitive neural networks (NNs). We combine the concepts of 

two NN models Maxnet and ART to develop a clustering strategy.  

 Maxnet is an NN that does not require training, serves as a classifier and is used in 

identifying the winning node with the highest weight [29]. In our implementation, we are 

interested in finding nodes that satisfy the constraint of being within each other’s range. Our 

approach starts with assigning initial weights to links based on the distance between nodes. It 

uses an adjacency function  xf , as an indicator of an adjacent node; a weight update function to 

pick the “winning” node in the competition and a stopping condition to halt the weight update 

[29]. The adjacency function and the weight update function also used in evaluating the 

adjacency A and neighborhood N matrices. The adjacency function is described by 

                                       (2)   


 


.0

0
otherwise

xifx
xf
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The weight update function is described by ,                (3)     

where 
2

0 iT
  , ijw  is the distance between node i and j,  and iT  is the transmission range. 

The iterative process of the weight update given in equation 3 reduces the distance between any 

given two nodes (say, i and j) by a small value ( 
 jk

ik oldw )( ) and tests whether the weight 

reduces to zero. Note that f(x) also serves as a stopping condition. The weight update function 

requires that the quantity subtracted satisfies the inequality  













 jk
ik oldw )( ≤ ki TT   A value 

of zero in any row of the weight matrix ( ijw ) indicates that a within-range adjacent node has 

been identified. This concept is illustrated in table 1. The value of zero between (N2,N3) and 

(N3,N4) indicates an adjacency between these nodes which is illustrated in Figure1                                                      

The second concept borrowed from ART network allows the user to control the degree of 

similarity of patterns placed in the same cluster, and in turn, to control the number of clusters 

[29]. New inputs are first tested against the existing clusters. If no cluster fits the new input, a 

new cluster is created. Inputs with similar patterns are grouped in the same cluster. The creation 

of new clusters relies on a vigilance condition defined as follows. 

  ji TTjiDist ),(                                                                                                               (4) 

The algorithm creates a cluster for each pattern that does not satisfy the vigilance condition. Note 

that the right hand side of the vigilance condition can be controlled by the user. 
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TABLE 1 

FINAL WEIGHTS COMPUTED BY THE WEIGHT UPDATE FUNCTION 

 N1 N2 N3 N4 
N1 1 0.32 0.22 0.04 
N2 0.32 1 0 0.01 
N3 0.22 0 1 0 
N4 0.04 0.01 0 1 

                                             

 
 

Figure 1: The resultant clusters related to table 1. The dotted circles indicate the transmission range of each node. 

 

3.3.2 Computing Minimum Dominant Set 
 

After evaluating the adjacency matrix and determining the clusters in step 1, the next step 

is to elect the cluster-head set S using the concept of minimum dominant set (MDS). Computing 

MDS has been an active area of research in many fields. Among the earliest formulation of the 

problem was the placement of the five queens in a chessboard game. The queens have to be in a 

position either to occupy or attack any square. Many heuristics, mostly in graph theory and ad 

hoc networks, have been proposed to solve the problem of defining the MDS.  Whether 

centralized [30, 31] or distributed [32, 33], the proposed algorithms try to reduce the problem 



 

17 
 

complexity (which is NP-hard).  In our approach, we use a technique that is pseudo-polynomial, 

since it uses integer linear programming (ILP), which is known to be NP-complete [34].  

In the proposed approach, MDS is computed using a characteristic function: 

 1,0)(: GVf
                                                   (5) 

 

, which satisfies 



 


otherwise

Svif
vf

0
1

)(  .                                                                  (6) 

The characteristic function states that v is a cluster-head if it belongs to S. This function will be 

used to assign values to the variables in the linear programming formulation. 

There are two ways of defining the MDS [28, 35], both of which yield the same results during 

simulation. The first approach uses the adjacency matrix, in which a vertex v is considered to 

dominate the vertices in its neighborhood but not itself. It is equivalent to finding the vertices 

that have maximum neighbors and cover the whole graph:  

1nAX  ,                                                                    (7) 

where A is the adjacency matrix,  nxxxX ...,,, 21 is the column of variables to be evaluated, n1

denotes the  column n-vector of all 1’s and n is the number of nodes. 

The integer programming formulation for minimum cardinality domination set γ(G) is described 

as: 

           γ(G)  =  


n

i
ix

1

min                                                                                                          (8) 

               subject to 1nAX               

               with       ix {0, 1} , 



 

18 
 

which translates to minimizing the number of nodes that have the highest number of adjacent 

nodes.  

 The second formulation which uses the neighborhood matrix, assumes that each vertex 

can be dominated at most once and seeks to achieve as much domination as possible. Efficient 

domination happens when the maximum number of dominant vertices can be found. The integer 

programming formulation for computing the efficient dominating set F(G) is given by:    

                                                                                 (9)                            

subject to  1nNX           

              with           {0, 1} , 

where N is the neighborhood matrix and  ivdeg  is degree of node iv . This formulation translates 

to maximizing the number of neighbors of iv .  

At this stage, computing MDS by either method yields a set of all possible dominating 

nodes for that graph. As a result, some clusters end up with more than one dominant node. 

Selecting a cluster-head within one cluster requires the removal of the other candidates. The 

process of eliminating dominant nodes within one cluster is based on node degree. The highest 

degree node is selected as cluster-head.  If a tie occurs, the node with the lowest id is selected.  

3.3.3 Selecting Gateways 
 

In the previous sections, we discussed ways to create clusters and to elect cluster-heads 

within each cluster. In this section, we discuss the process of gateway selection. The purpose of 

the gateway selection process is to establish and facilitate communication between clusters. The 

mechanism that drives the selection of a gateway among multiple nodes is a process that 

  
1

( ) max 1 deg
n

i i

i

F G v x


 

ix
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involves two steps: a selection step and a decision step. We introduce a new “willingness 

function” in the selection process. The decision process to elect a gateway relies on the node 

with the highest willingness value. The pool of nodes is limited to the nodes within the same 

cluster excluding the cluster-head. The proposed willingness function incorporates four factors 

described below. The proposal was inspired by [36, 37] for electing a cluster-head. We adopted 

this technique for gateway selection by incorporating the following parameters. 

3.3.3.1 Distance to the Centroid  
 

This parameter denotes the distance of a node from the cluster’s center which is defined 

as follows: 

   
1

1, ,
n

Centroid Centroid i i
i

x yC x y R R
n 

  ,                                                                                          (10)    

 where n is the number of nodes in the cluster. i ix yR Rand are the x and y coordinates of node i. 

The distance from a node j to this centroid is described by 

 ,jDistToCent dist j C ,                                                                                                       (11) 

where j is any node under consideration for gateway selection. A node closer to the centroid is a 

lesser candidate to act as a gateway and a peripheral node is more likely to be selected as a 

gateway. 

3.3.3.2 Transmission Energy 
 

This parameter measures the transmission energy required by each node to reach all other 

nodes in the same cluster. This parameter is given by: 
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where jT  is the transmission range and ijd is the distance between node i and node . A node that 

is farther from all other nodes requires more transmission energy to communicate with other 

nodes. Unlike the DistToCent parameter, TrE is directly linked to the required battery power.   

3.3.3.3 Node Degree 
 

This parameter reflects the node’s neighbors that are within its transmission range. 

jDeg   



ji

jTjidist )),(( ,                                                                                                      (13) 

where jT  denotes the transmission range of node j. 

3.3.3.4 Available Energy 
 

This parameter is a gauge for a node’s available energy. There are three types of energy 

costs associated with this parameter. As time progresses, there is a cost for sitting idle and 

listening for traffic (IdleE), a cost for movement (MvE) and a cost for transmitting (TrE).  MvE 

and IdleE are mutually exclusive.  

   j j j j jAvailE AvailE IdleE TrE MvE                                                                                              (14) 

 (MvE > TrE > IdleE)                        

The willingness function (WF) is a combination of these parameters and is defined as follows:    

WF =1- α*DistToCen - β*TrE - λ*Deg - γ*AvailE                                                                    (15)        

       

j
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The values of α, β, λ and γ are user defined parameters and add up to 1. As an example, the 

values assigned for the initial topology creation are α=0.4, β=0.1, λ=0.5 and γ=0, since we 

assume that all nodes have equal energy to begin with. For a given cluster, the willingness 

function is evaluated for all nodes of that cluster. The node, excluding the cluster-head (CH3), 

with the highest willingness value is selected as the gateway for that cluster.  

Table 2 and Figure 2 illustrate the process of gateway selection. Table 2 shows that node 

2 which has the highest willingness value has been selected as gateway (G2).   Figure 2 shows 

node positions, location of the centroid and the cluster head.  

TABLE 2 
 

EVALUATION OF THE WILLINGNESS FUNCTION FOR FOUR MOBILE NODES 
 

Node LocToCent TrE Deg Willingness 
1 0.3103 1.045 1 0.2714 
2 0.2797 0.866 1 0.3015 
3 0.0647 0.215 2 -0.0474 
4 0.0945 0.223 2 -0.0601 

 

 
 
 Figure 2: Node positions corresponding to Table 1. 
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3.3.4 Cluster-head and External Gateway Link 
 

Cluster-heads and gateways are the fundamental components in a mobile sensor 

communication network. All communications need to pass through them before reaching the rest 

of the nodes. Once the cluster-heads are determined, the challenge is to find a link that connects 

them under the constraint that the communication between cluster-heads is via gateways. 

However, due to the randomness of node placement, this constraint is not always guaranteed to 

be satisfied.     

The purpose of establishing a cluster-head and an external gateway link is to connect a 

gateway with an external cluster-head (ECH) for a complete topology. There are different 

scenarios that need to be considered. Generally, the cluster-head is not a candidate to be elected 

as a gateway. But there may be cases where a cluster is formed by one single node that acts as a 

cluster-head and gateway at the same time.  To solve this problem, two separate approaches are 

proposed. The first one tackles the normal case, and the second approach deals with the 

exceptional case.   

The first approach, in which one gateway is linked to one external cluster-head, can be 

compared to a perfect matching graph assignment with equal set cardinality. Thus, it can be 

solved by this simple expression: 

, ,
1 1
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
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where ,i jx is the variable to be evaluated and jic ,  is an element of the distance matrix between all 

gateways and external cluster-heads belonging to multi-node clusters.  

The second approach requires that a gateway may connect to more than one external 

cluster-head belonging to a single-node cluster; and that each external cluster-head is linked to 

one external gateway. The formulation of this problem can be represented as a minimum weight 

b-perfect matching problem and solved using the following integer programming expression.          

, ,
1 1

,
1
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1
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

                                                                                                                          (17) 

where jic ,  is an element of the distance matrix between all gateways and external cluster-heads 

belonging to single-node clusters and ib  is the minimum number of external links allowed per 

gateway ( ib = 1 in our case). 

3.4 Complexity 

 

Analyzing the efficiency of an algorithm is of primary concern to any user. The goal is to 

have an idea on how much resources (time, storage) are required for the technique to execute.  

Run-time analysis objective is to estimate the increase in time when the number of inputs 

increases and determine an upper bound or limit for the execution time.  Analyzing a technique 

necessitates analyzing each of its components.  

The re-configuration method is composed of three parts: clustering, gateway selection 

and inter-cluster link establishment.  Clustering involves three nested loops )( 3n  and solving an 
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ILP problem. Gateway selection is accomplished by two nested loops )( 2n .  Inter-cluster link 

establishment is computed using two ILP formulations.  ILP uses a branch and bound based 

search technique [38, 39], which in turn, uses a tree structure to solve the problem. It partitions 

the feasible region into subsequent smaller subsets and then calculates bounds for each subset. 

These bounds are then used to discard some subsets and to update the current solution by a better 

solution. The iterative process stops when no feasible solution or better solution could be 

produced. In general for n ≥3, the optimal solution will result in 2/)1( n  decision variables ix

equal to 1 and 2/)1( n  decision variables ix  equal to 0, which suggests that ILP is at least 

)2( 2/)1( n exponential. The approach has an exponential order. It is suitable for applications that 

require a small number of nodes.  
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CHAPTER 4 
 
 

TOPOLOGY IMPACT ON CONSENSUS 

4.1 Introduction 
 

In many fields, multi-agent systems are often characterized by the interactions that take 

place among the agents.  In biology for example, the collective behavior of cells and tissues is a 

direct consequence of the properties of their molecular constituents. In computer networks, the 

overall performance is measured by each station’s throughput, security, scalability of protocol, et 

cetera. In manufacturing, the quality of a product is evaluated by the functionality, reliability and 

maintainability of each component. The performance of such a complex system is affected by the 

connectivity and placement (topology) of its constituents. 

Complex systems of collaborative multi-agent systems have to address coordination 

problem as well.  Constructing a communication topology for randomly dispersed nodes is 

necessary for exchanging information. In a mobile network, the initial scope of information 

available to each node is usually limited by the information collected locally. Increasing this 

scope of information requires either collecting more data or requesting it from other nodes.  The 

iterative process of exchanging local information among nodes followed by inferencing in order 

to gain global perspective of a problem is referred to consensus building. There are many factors 

that influence the consensus building process, communication topology being the most important 

of all. The relationship between the communication topology and the consensus process, at 

present, seems to be a black box. Studies aimed at evaluating the impact of the characteristics of 

a communication topology on the process of consensus building do not exist in the literature as 

of now.     
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In order to investigate the intricate connectivity and coordination, the system has to be 

translated into an abstract concept that can be mathematically modeled. The model is then 

subjected to a systematic characterization which seeks to uncover its characteristics.  These 

characteristics in turn, provide insights into the design and organization of the network that affect 

the consensus building process. Statistical techniques such as regression analysis and factor 

analysis can then be applied to show the interactions and interdependencies among the 

topological characteristics, and the impact of these structural properties on consensus building. 

The most significant properties can be included in the model for consensus building and the 

performance of such a model can be analyzed in detail.  

4.2 Topological metrics 
 

We begin with a set of topological metrics that we want to evaluate [10, 40, 41, 42, 43, 

44, 45, 46, 47]. Several structural properties and metrics were defined in the literature for 

networks based on intuitive concepts [48, 49, 50, 51].  Due to the difficulty in enumerating all 

properties and metrics, it becomes a necessity to choose a suitable subset. The challenging 

question then is to identify the most relevant properties and metrics? In our approach, we focused 

on introducing metrics that were not investigated extensively in the literature while keeping 

some of the well investigated metrics (average path and cluster coefficient). Then, we establish a 

relationship between the new set parameters and other parameters that are commonly used in the 

existing models in the literature.  

4.2.1 Average Path 
 

In graph theory, the minimum distance ijd between two vertices i and j  is measured by 

the length of the shortest path between the vertices or the minimal number of edges that can be 
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traversed. The average path length ijdd   is defined as the average distance between all pairs 

of vertices. Computing the shortest path between two vertices is not straightforward. The 

commonly used algorithm is Floyd-Warshall’s, which runs in )( 3n  and returns shortest path 

between all pairs of vertices [52]. 

4.2.2 Average Cluster Coefficient 
 

Cluster coefficient is another characteristic that relates to the internal structure of a 

network, more precisely its cohesiveness. It measures the probability that two vertices with a 

common neighbor are connected.  Given a vertex i with in neighbors, 
 

2

1inin
possible edges 

could exist between the neighbors. The clustering coefficient iC could be defined as the ratio of 

the actual number of edges iE over all the possible edges. 
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The average cluster coefficient is defined as 



n

i
iC
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C

1

1 , where n is the number of nodes. 

4.2.3 Average Matching Index 
 

Matching index is a basic measure for neighborhood analysis. It quantifies the 

topological overlap between two nodes by measuring their similarity in terms of common shared 

neighbors. The similarity is given by the following expression: 
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where jlij aa , are elements of the adjacency matrix and ji nn , are the respective number of 

neighbors of vertices i and j. The average matching index is defined as: 

 ijMAMI 
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n

i

n

j
ijM

n 1 1
2

1 .                                                                                                (20) 

4.2.4 Average Participation Coefficient 
 

Participation coefficient is characteristic that defines the role of each node in a complex 

network. The role fulfilled by a vertex is an important factor since it decides the node’s 

connections. A cluster-head or a gateway has more connections than a peripheral node since they 

act as facilitators in addition to their default role. This leads to the interpretation that the 

participation coefficient provides information about the link distribution among different 

clusters. A higher value indicates that the network has a higher ratio of nodes to clusters and vice 

versa. Computing the participation coefficient iP  of vertex i is given by: 

2

1

1 ,
n

ic
i

c i

kP
k

 
   

 
                                                                                                                   (21)  

where ick denotes the degree of i within its cluster c and ik is the total degree of i . The average 

participation coefficient is defined as: iPP  . 

4.2.5 Algebraic Connectivity Ratio 
 

Another commonly used property in measuring the connectivity in a graph is the 

algebraic connectivity parameter. It is an important factor in consensus building since it directly 

affects the network synchronization. This parameter also provides information about the 

robustness of a topology in terms of link and node failure. The higher the value the more failure 
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tolerant is the network.  In a given topology, this parameter is evaluated by the second-smallest 

eigenvalue of the Laplacian matrix L .  The ratio of the second-smallest eigenvalue over the last 

eigenvalue defines the algebraic connectivity ratio. 

        
 L
L

n


 2                                                                                                                        (22)      

The eigenvalues of L are ordered such that they satisfy:      LLL n  ...0 21 . 

4.2.6 Modularity 
 

 Cluster coefficient, as defined previously, measures the bonding between nodes. 

Modularity, on the other hand, quantifies the strength of clusters and evaluates the quality of the 

clustering. When “good” clustering occurs, intra-cluster connections are dense and inter-cluster 

links are sparse, whereas, when “bad” clustering occurs, nodes form a cluster on their own. One 

of the definitions of modularity is the difference between the fraction of intra-cluster edges over 

the total network edges and the fraction of extremities that connect two clusters and is given by: 

 2

1
,

n

ii i
i

Q e b


                                                                                                                      (23)     

where, ije represents the fraction of within-cluster edges, 



n

ji
ijiii eeb

2
1 and ije represent the 

fraction of edges having one extremity in cluster i and the other in cluster j . Q  is proportional to 

quality and tends to be negative for “bad” clustering. 

4.3 Consensus Algorithm 
 

In the previous sections, we presented the steps involved in building our communication 

network and provided a brief description of some structural properties we intend to extract from 
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the communication topology.  In this section, we present a description of the distributed 

implementation of the consensus building algorithm along with the mathematical formulation of 

the information flow that will be used as the main metric to evaluate the average state update.   

Before presenting the consensus building algorithm, we need to define initial target 

awareness for each robot. At this level, robots will have partial or no information about the 

targets location. The objective of each robot is to build the list of all targets through the 

consensus algorithm.   Since target discovery is not within the scope of this research, we 

experimented with two simple approaches. The first one assigns randomly a target to a robot. 

The advantage of this method is its fairness in target awareness. However it fails on proximity 

criteria (target assigned to the closest robot). The second approach uses a self-organizing map 

principle when the winner (closest) takes all. It has the advantage of being close to real-world 

scenario. However, its shortcoming is the lack of fairness. Many robots end up with no initial 

information about targets. To remedy this issue, targets were randomly positioned to increase the 

chance of partial knowledge. Having built a target scope for each robot, the next step is to 

exchange these initial scopes in order to build a consensus (final list of targets). The task is 

performed through an iterative process that is divided into two data flows processes: bottom up 

and top down (figure 3). Bottom up is used by a child to update its parent node. The top down 

flow is utilized by a parent to update its child.  However, due to randomness in the placement of 

the robots, there are cases where nodes form clusters on their own. Figure 4 illustrates an 

example of isolated cluster-heads (ICHs) where CH3 is the root and CH2 is the last descendent. 

To accommodate this case and reach a consensus among ICHs, the algorithm includes 

communication data between ICHs. Thus, 
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    Bottom up flow: 

 Each ICH that has a parent ICH sends its target scope to it. 

 Each ICH or Cluster head (CH) that has a parent Gateway sends its target scope to it. 

 Each gateway or regular node sends its target scope to the parent cluster head. 

 During this bottom up data forwarding, each node receiving a target scope updates its 

scope. 

Top Down flow 

 Each CH that has a child gateway or regular node sends its target scope to it. 

 Each gateway that has a child ICH or CH sends its target scope to it. 

 Each ICH that has a child ICH sends its target scope to it. 

 Similarly, each node receiving data, updates its scope.  

          
          Figure 3: Diagram showing the flow of information                Figure 4: Nodes forming clusters on their own where                             

between different types of nodes.                                             CH3 is the root. 

 

In summary, before the “target discovery” process, all the nodes in the network are in a 

state of zero knowledge   00 tSi , where  tSi is the target scope of robot i at time t. After the 

initial discovery of targets, the state of some robots changes to reflect the partial awareness

  ntSi  10  assuming that there are n targets to discover.  At the end of the iterative 

Isolated Cluster Head 

Gateway  Regular Node 

Cluster Head (intra/inter) 

Isolated Cluster Head 
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communication process and exchange of information, the robots reach the saturation state, where 

they all have a complete and identical view of the targets list.  

In general, the state of a robot i changes whenever it receives a state update from either 

its parent or descendant(s). This can be formulated by the following equation. 

     



m

ijj
jijii tsatStS

,1
1 ,                                                                                                 (24)  

where m is the number of nodes, ija denotes the adjacency of node i in the network topology and 

emphasizes that only the parent or descendent(s) are allowed to share their state js with it.    

However, not all exchange of information between a node i and its parent or 

descendant(s) results in updates of iS . Sometimes, it takes a few iterations for new information to 

travel from one extremity to the network to the other, meanwhile, nodes in the middle exchange 

the same state. To incorporate this into our equation, we define an activation function  
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Equation 24 then becomes:  
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At any given time, a robot must check whether it reached the saturation state or not. To 

accomplish that, it evaluates its state through the following saturation function: 
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where a is a constant. If the returned value is 1, the robot’s target list is complete. The iterative 

update process ends when all the robots reach their saturation. 
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To measure the consensus building, we define the average state changes as the total 

number of necessary updates performed by each robot to reach saturation over the number of 

robots as follows: 

,
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i t
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m
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                                                                                                           (27)  

where m is the number of robots, tiS , is the state update of robot i at time t and T is the saturation 

time.  

Practically, in small world or random networks, a robot can verify whether it reached the 

saturation state or not without knowing in advance the number of targets to discover. It can be 

accomplished by evaluating the network size through its diameter, which increases 

logarithmically with the number of nodes [53]. Thus if the number of unchanged messages 

coming from one direction exceed log(m) (m number of robots), it is an indication that saturation 

had been reached.    

4.4 Methodology 
 

In any scientific field, studying the nature of parameters is necessary, but not sufficient. 

The study should also account for the relationship among the variables. The idea of variables 

being interrelated is a well-accepted concept that can be mathematically represented. It helps in 

better understanding the contribution of each parameter, by itself and through interaction, to the 

overall result. Hence the evaluation of parameter is an important factor in deciding whether to 

account for it or ignore it in the study. 

Among the commonly used multivariable statistical methods that help scientists in 

analyzing the relationship between variables is factor analysis. 
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The aim of factor analysis [54, 55] is to reduce the set of observable variables to few 

hypothetical variables called factors. These factors are supposed to contain the essential 

information in the original variable set and are constructed in a way that reduces the overall 

complexity of the data by taking advantage of inherent interdependencies.   

In addition to studying the interrelationships between the variables, the objective of this 

section is to partition data into mutually exclusive sets with different weights. The importance 

assigned to each variable within a set will also help in reducing the dimensionality of data.    

The factor analysis method involves the following major steps: 

 Collecting data and computing the correlation matrix. 

 Extracting the unrotated factors. 

 Rotating and interpreting the factors. 

4.4.1 Data Collection and Correlation Matrix 

 
The selection of the variables to investigate has a critical bearing on the output of the 

study. The problem becomes more complex when the conducted investigation is an exploratory 

one. The lack of knowledge about the underlying nature of variables can lead to the discovery of 

higher orders of overlapping or similarities among the variables that requires a reassessment of 

the variables under consideration.  

As mentioned previously in section 4.2, the objective is to establish a bridge between 

newly introduced variables and some already studied parameters. The topological variables we 

intend to investigate using factor analysis are the following: 

 Average path. 

 Average cluster coefficient, 
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 Average matching index, 

 Average participation coefficient, 

 Algebraic connectivity ratio, and 

 Modularity.    

 

 
 

 
 

                               Figure 5:  Histograms and normal distribution plots for the six variables using a sample size of 1000. 

                

To perform a study using factor analysis method, there are some constraints that need to 

be satisfied. The first constraint deals with the measurement characteristics of the variables. 
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Ideally, factor analysis requires the data to be continuous and normally distributed (bell-shape). 

This requirement is important because it has a direct effect on the reliability of the correlation 

coefficient which is an indicator of the degree of correlation between variables. In practice, a bell 

shape is seldom satisfied. Prior to analysis, a pre-processing stage is sometimes required to clean 

up data from noisy, missing and outlier values. Since it is an exploratory area for us, we limited 

our pre-processing stage to normalizing data to fit a bell shape distribution. The initial test of 

normality on raw data revealed that none of the variables followed a normal distribution. The 

best goodness-of-fit value obtained was for a 4-parameters beta distribution. The histograms and 

distribution fitting of the six normalized variables are presented in Figure 5.  

The second constraint deals with size of the sample. As the size increases the more 

stability is introduced in the evaluation of the correlation coefficients. Factor analysis 

recommends a sample size between 500 and 1000. Below that range, spurious variance distortion 

increases, and above that range no major gains are obtained.  

After the data pre-processing step, the next crucial point in factorial analysis is the 

evaluation of correlation coefficients. This step helps in determining the relationship strength 

between the set of measures upon which the final decision will rely on. A major concern at this 

stage is the accuracy of the correlation coefficients. A result is statistically significant if it is 

unlikely to have occurred by chance. Usually a statistical test of significance is devised for each 

coefficient. It computes the probability p of a result being larger and compares it to the 

confidence level α. The result is said to statistically significant if p≤ α. However, a statistical 

significant result is not always of practical significance.  Since the conducted study is an 

exploratory one, the only option available to us is to rely on the statistically significant results. 

To compute the correlation matrix for the six topological metrics, we used Pearson’s correlation 
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coefficients. Pearson’s technique requires the data to be normally distributed and uses the 

covariance of the two variables over their standard deviation product to compute the elements of 

the correlation matrix [56]. The coefficients can take on values between -1 and +1. The result is a 

correlation matrix for each pair of variables along with a p-value for the test of significance for 

each coefficient. To interpret the correlation coefficients, statisticians recommend squaring the 

coefficients. The new coefficient is called a coefficient of determination. It provides information 

about the contribution of each variable to the total variance in one variable. For example, if the 

correlation between 1V  and 2V is 0.5 then 25% of the variance in 1V can be explained by the linear 

relationship between 1V and 2V . The other 75% remains unexplained.  

4.4.2 Factor Extraction 

 
The general goal of factor analysis is to define and extract clusters of highly interrelated 

variables from the correlation matrix [57]. These clusters are called factors and can be written as 

a linear combination of the variables. Different techniques for factor extraction have been 

proposed. Each has its possibilities, limitations and advocates [58].  The techniques include 

principal component, maximum likelihood, alpha, image, centroid, minimum residual, et cetera. 

The most widely used is principal component. It has the characteristic of being suitable for 

exploratory factor analysis. However, some assessments and evaluations of these methods 

suggest that the best method to use when data is normally distributed is maximum likelihood 

because it evaluates a wide range of goodness of fit indexes for the model [56].   

Choosing an extraction technique is only the first step in factor extraction. The next 

important step is to decide on the number of factors to retain. The main objective is not to over-

extract or under-extract.  But there is a general consensus among researchers that it is better to 
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extract too many factors than too few. At this stage, different criteria are proposed to stop the 

extraction process [53]. The most commonly used are the eigenvalues which are the sum of the 

factors squared weights. The cutoff point is a value above one. Another criterion based on 

discontinuity is the scree test [56]. It involves locating the point where the sudden drop of 

eigenvalues occurs on a scree plot.  The points above it are generally the factors to retain.  A 

third criterion relies on the desired percentage of variation to be explained by the factors.  

Extraction in this case, is subjective and relies on the user requirements on when to stop 

extracting.   

In our investigation, we would like to experiment with principal components and 

maximum likelihood. The objective is to compare their results in order to choose the best method 

to use for our analysis. Maximum likelihood has the characteristic of providing the correct 

number of factors to extract due mainly due to the definition of the degree of freedom for the chi-

square test which depends on the set of variables    
2

2 kzkzdf 
 , where z denotes the number 

of variables and k is the number of factors to extract. Knowing the number of factors we will 

then use the method that is more accurate. 

4.4.3 Factor Rotation and Interpretation 
 

The output of factor extraction phase is a factor matrix that contains the weights of each 

variable on the extracted factors also called loadings.  These coefficients are unrotated [58]. They 

lack meaningful interpretation, although they account for maximum variability. The objective of 

factor rotation is to preserve the amount the variability while enhancing the interpretability. The 

improvement is obtained by rotating the axes, thus resulting in a clear separation of variable 
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clusters on each factor. In other words, each cluster of variables will be associated with one 

factor which simplifies the interpretation. 

 There are two methods for factor rotation [56, 57]. Each offers a variety of choices.  The 

orthogonal method, in which the factors are kept at a 90º angle of each other, employs varimax, 

equimax and orthomax as a rotation method. The oblique method, on the other hand, departs 

from the right angle rule and offers promax, oblimin and quartimin as options. Orthogonal 

rotation produces factors that are uncorrelated and easy to interpret. The oblique method takes 

into consideration the possible existence of correlation between the extracted factors. Forcing 

orthogonality on correlated factors, results in a loss of information.  In exploratory data, it is 

recommended to implement the oblique method since both methods yield same results on 

uncorrelated factors. To rotate the factors in our study, we will implement the oblique method 

with the ‘promax’ option.   

4.4.4 Multiple Regression Analysis 
 

Multiple regression analysis is a statistical tool aimed at uncovering and understanding 

the relationship between a variable to be explained, called a dependent variable, and explanatory 

variables, called independent variables [59]. Multiple regression analysis tests whether the 

independent variables contribute to the variance in the dependent variable or not. It is used in 

many fields to measure the magnitude of the effect, if present, and forecast its value.    

Multiple regression analysis involves many steps, among them, the characterization of 

the relationship between the dependent variable and the set of predictors by a mathematical 

representation. The model can adopt a linear or a non-linear form, depending on the nature of the 

relationship. It is a crucial step to determine this nature before proceeding with the analysis itself.  

Another step that can substantially bias the results is the choice of the predictors. Failure to select 
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the appropriate independent variables can lead to the collinearity effect [60]. This happens when 

two or more independent variables contain much of the same information, making it difficult for 

regression analysis to determine which one is more important. Another concern, at this step, is 

the precision of the measurements when irrelevant variables are included, which tend to reduce 

the precision of the results.   

Multiple regression analysis offers a set of tools that helps in the interpretation of the 

results. The most important are:  

 The R-square represents the portion of variance in the dependent variable explained 

by all the predictors when grouped together.  

 The ANOVA (analysis of variance) table, which can be thought of as a significance 

value for the whole model, confirms the statistical significance of the R-square value. 

 The coefficients table indicates both the weight of each variable in the equation and 

informs about the severity of collinearity. 

4.5 Theoretical Analysis 

 
Several experiments were conducted with the statistical approach. The objective is to 

explore the impact of topology structure on the consensus. In summary, the statistical results 

described in section 5.2.1 revealed that intra and inter cluster links contribute to some degree in 

the consensus and synchronization among a set of nodes. The collected data for OCTOPUS 

communication network emphasized the importance of intra cluster links over inter cluster links 

in the synchronization process. The subjectivity of these results is a concern. Collecting different 

data could lead to different results. The question is to prove the validity of our statistical results 
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and uncover any other condition(s) on the role that intra and inter cluster links play in the 

consensus.  

In this section, we analyze the importance of intra and inter-cluster links in the consensus 

building for OCTOPUS topology. We proceed by defining a ratio for intra cluster, inter cluster, 

and overall network synchronization. We investigate the impacts of intra and inter cluster links 

on these ratios.  

The consensus process is a dynamic system by nature. It involves nodes’ state update.  

Some of its features in OCTOPUS underlying lattice are the time and state variables. Modeling 

the dynamics of OCTOPUS consensus involves defining the so called coupled map lattice which 

represents the dynamics of a node with respect to the state of other nodes at a given time. The 

general form of the coupling equation is [61]: 

 




n

j
ijijijii tsftsfwatsfts

1
))](())(([))(()1(   ,                                                                  (28) 

where )(tsi is the state of node i at time t, n is the number of nodes,  is the coupling strength, 

ijw is the weight of the edge between node i and j, A=[ ija ] is the adjacency matrix  ( 0ijijwa if 

0ija ) and f is a mapping function.  

In this analysis, we focus on a deriving a general form of the coupling equation for intra 

and inter cluster convergence and define a new condition for synchronization. Similar to section 

3.2, we define the communication network as a graph G=(V,E) where V is the set of vertices or 

nodes and E is the set of edges or links.  The set of nodes V is divided into m separate clusters. 

k
m
k CV 1  , where kC is a cluster and lkforCC lk  . In a cluster, we define N(i) as the 

adjacent neighbors of node i. Equation 28 then becomes 
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Within a cluster k the coupling equation is 
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We also define ijijij wa which restricts the dynamic of updates to the network 

organization. For a given cluster, ij informs about the links between the cluster head, dominant 

node, and its neighbor(s), dominated node(s). In a cluster, ij is only dependent of ijw ( )1ija . It 

can take many forms to represent the cluster lattice. One solution is to make ij independent of j 

and define it as a ratio of a node degree ( |)(| int
int iN ra

ra
i  ), intra links only, over the highest 

node degree in any cluster ( )}(:max{)( intint GViG ra
i

ra
k   ). Equation 30 becomes 
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Similarly, we define a coupling equation for nodes that play a role in inter cluster 

communication. In OCTOPUS, these nodes are the gateways and the cluster heads. The ratio 

comprises the node degree, in terms of the number of inter cluster links, over the total number of 

inter cluster links. Equation 31 becomes 

 '

int| |
'

'int
1' 1,

( 1) ( ( )) [ ( ( )) ( ( ))],
erm

k k k ki
i k i ij k j k ier

jk k k

s t f s t a f s t f s t




 

   


                                           (32)                                                             

where  is a set comprising one cluster head and one gateway within a cluster.
 

To define the Laplacian of the system, we set ra
k

ra
ira

ijl int

int
int



 and er

er
i

ij
er

ij al int

int
int




 for intra, 

respectively inter cluster connection, and 0ijl otherwise. The Laplacian representing the cluster 
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connections (intra) will have one row and one column of identical values. One characteristic of 

the Laplacian matrix is that the sum of each row is equal to zero. For this to hold, we set 


 
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int

int
int

kC

j
ra

k

ra
ira

iil  and 


 


||

1
int

int
int

j
er

er
i

ij
er

ii al  . Equations 31 and 32 become 
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Respectively, 
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The purpose is to derive a convergence ratio and boundary condition(s) for equations 33 

and 34. They will help in investigating the impact of intra and inter links on the overall 

convergence and synchronization process.   

When the system approaches the synchronous state )(ts , all the nodes exhibit similar state 

behavior ))(())(()1( tsftsfts k
i

k
i  , which is independent of the state of the neighboring 

nodes. By denoting T
n tststS )](),...,([)( 1 and T

nsfsfSF )](),...,([)( 1 , equations 33 and 34 take 

the general form:                                  

( ) ( ) ( ( )),nS t I L F S t                                                                                                       (35)                                                                                                             

where n is the number of nodes. Since the sum of each row in the Laplacian matrix is equal to 

zero, diagonalizing L leads to a set of nonnegative eigenvalues nii ,...,1,  .This set can be sorted 

as n  ...0 21 . Normalizing L using the corresponding eigenvectors niei ,...,1,  , results 

in  

        ))(()1()( tSFItS n
T

n                                                                                                 (36) 
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At this stage, a small perturbation is of the state is dictated by the equation 

)())(()1( ' tstsfts ii   [7, 62]. Along the ith eigenvector of equation 36, the perturbation is 

given by: 

)())(()1()1( ' tstsfts iii                                                                                       (37)                                                     

One solution for equation 37 is [7] 
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 A system of more than two nodes reaches a local asymptotic stability if [63, 64, 65] 
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In a dynamical system with an evolution equation, the second term of the addition is identified as 

the Lyapunov exponent  [64]. The more negative the exponent, the greater the stability of the 

system. 
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Equation 39 becomes: 

|1 | ,u
i e                                                                                                              (41) 

which leads to the following solutions: 
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For any communication network, the smaller the ratio
n

2 , the better is the convergence and 

synchronization. 
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CHAPTER 5 
 
 

TASK ALLOCATION 
 

5.1 Introduction 
 

The key challenges in accomplishing a task in a multi-robot environment include task 

allocation and coordination. Fielding multiple robots into an unknown area creates the problem 

of uncertainty and unpredictability. In a dynamically changing environment, the problem 

becomes more complex to tackle. While this area of research is still being explored, there are 

quite a few solutions that have been proposed. A simple and obvious solution is to implement a 

centralized system that divides the tasks among robots and monitors their progress. Some of the 

shortcomings of this approach are lack of scalability and reliability. A small increase in the 

number of robots adds more communication burden and slows down the central entity. A failure 

of the main entity, responsible for the entire system coordination and resources management, 

causes a complete shutdown of the system. 

The fundamental problem in task allocation is as follows:  Given a set of robots and 

targets (tasks) spread in a geographic area, how can a robot decide on its course of action and 

contribute to the accomplishment of the overall task? To address the task allocation problem, we 

propose to compare three distributed techniques that can be implemented on robots. These task 

allocation strategies are mutually exclusive and do not require any coordination among robots. 

The objective of this chapter is to explore the robots’ behavior when different techniques are 

employed. Concepts such as target detection, fault tolerance and collision avoidance, et cetera 

are beyond the scope of this chapter and hence are not considered here. 
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5.2 Task Allocation Techniques 

5.2.1 Kohonen Self-Organizing Map    

 
Self-organizing map (SOM) is a neural network (NN) model that is capable of projecting 

high-dimensional data onto lower dimensions [66, 67, 68]. The projection is done adaptively and 

preserves the characteristic features of the data. The algorithm has been successfully used for a 

number of applications such as density estimation, vector quantization, data visualization, 

computer-generated music, and pattern recognition among others. The design and development 

of SOM is inspired from the brain physiology. The inputs are mapped onto different topological 

areas; thus making the computational map, a crucial information-processing component. 

Computational maps exhibit the following properties:  

- Neurons with similar receptive field profiles are grouped. 

- Features of the input data are preserved by the output neurons. 

The algorithm responsible for the formation of SOM proceeds by initializing the synaptic 

weights. A robot’s initial coordinates represent its synaptic weights. Once the network has been 

properly initialized, there are three processes involved in the formation of SOM.  

The first process is a competitive process in which the neurons in the map compute their 

respective values of a discriminant function. The neuron with highest value is declared the 

winner. Given an input pattern denoted by T
nyyyY ],...,,[ 21  and a weight vector for a neuron j, 

],...,,[ 321 jjjj wwwW  , the  winning node is the one that yields the highest inner product YW T
j . 

Maximizing the inner product is mathematically equivalent to minimizing the Euclidian distance 

between Y and jW .The winning node j is then determined by: ||||minarg jj wy  .  
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The second process is a cooperative process which locates the neighbors of the winning 

node. A firing neuron tends to excite the neurons that are adjacent to it. In order to mimic this 

excitation in the Kohonen model, a neighborhood function of the lateral distance is defined. A 

typical choice is a Gaussian function of the form: 
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where ijd is the distance between node i and j and is the neighborhood radius.  The concept of 

neighborhood is sometimes used to locate a backup and replacement for a failing node.    

The third process is a synaptic adaptive process that allows the winning node to adjust its 

weight in accordance with the Kohonen learning algorithm. The learning is a linear combination 

of the old weight vector and the current input vector. 

))(()()( oldwyholdwneww jjj    ,                                                                                       (43)                                                                                                               

where y is the input vector, jw is the weight vector of unit j and is the learning rate [29]. This 

weight update algorithm will be used throughout the other methods to move the robot to the 

assigned target(s).  

SOM has a time complexity θ(n²), since the Euclidean distance to all neurons on the map 

is computed for each input pattern (n being the number of robots).  

5.2.2 Hungarian Method  

 
The second technique explored is the Hungarian technique, which is one of the most 

popular combinatorial algorithm.  Its objective is to solve the assignment problem which is 

known in graph theory as optimal matching for a bipartite graph. This algorithm is based on 

ideas of König and Egerváry [70].  It was first introduced by Kuhn and was refined by Munkres 
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[71, 72]. In the theorem, König states that in a bipartite graph, the maximum cardinality of a 

matching is also the minimum number of nodes covering all the edges. 

Generally, given a bipartite graph with a weight function w, the cost of a perfect 

matching K of a graph is defined as 



Ke

(e)  (K)  , where the cost γ(e) of an edge e is defined by 

γ(e)= C – w(e),  C being the maximal weight of all edges. Thus, determining the optimal 

matching in a graph with respect to the weight function is equivalent to solving the assignment 

problem for the matrix M where ijm  = C - ijw with ijw being the weight of edge between nodes i 

and j. This is equivalent to finding the perfect matching of minimal cost.  

The algorithm requires a square matrix and starts by converting the problem of maximum 

assignment to a problem of minimum assignment by replacing each ijw by C - ijw . It is made up 

of three parts. The first two steps of the algorithm generate a matrix with at least one zero in each 

row and column. The last step generates an optimal zero assignment through an iterative process. 

Initially, the brute force algorithm for solving the assignment problem has a time complexity 

θ(n!) since for a given n x n matrix, there are n possible solutions for the first target, n-1 possible 

solutions for the second target and so on. The Hungarian algorithm, as proposed by Kuhn, 

requires three nested loops, thus it has a running time θ(n³) which is polynomial compared to the 

exponential or factorial.  The fastest flavor of the Hungarian algorithm was proposed by Gabow 

and has a complexity θ(n²logn) [69].  

5.2.3 Linear Programming Method 

 
Linear programming (LP) is among the most widely used tool in decision making [39, 

72]. Such problems arise in all walks of life. Whether in economics, strategic planning, 

algorithms analysis, production scheduling and planning or train scheduling, the tool’s aim is to 
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transform a real-life practical problem into a mathematical model. It consists of constructing an 

objective function that needs to be maximized or minimized, specifying a set of constraints and 

defining a finite number of variables. In the case where the variables are restricted to integers, 

the linear model is called an integer linear programming (ILP) model. In our case, the decisions 

are limited to 1 (assigned to target) or 0 (not assigned). Translating the assignment problem for n 

robots and m targets into a formulation requires the following definitions: 

The objective is to find a minimum cost assignment. 
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where ijc is the cost for robot i to service target j, ib is the maximum number of targets a robot can 

service and ijx is the variable to be evaluated. The first constraint assigns more targets to a robot 

in case the number of targets exceeds the number of robots. The second constraint refers to 

indivisible tasks. 

Many exhaustive and implicit enumeration methods have been proposed to solve this 

type of optimization problem. The most popular are branch and cut, branch and bound, cutting 

plane, Dantzig-Wolf decomposition simplex, et cetera [67]. For our ILP problem, we propose a 

branch and bound based solution due to the popularity of the technique. Basically the branch and 

bound method uses a tree structure to solve the problem. It partitions its feasible region into 

subsequent smaller subsets (branching). It then calculates bounds on the objective function for 
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each subset (bounding). The bounds are, then, used to discard some subsets (fathoming) and to 

update the current solution by a better solution (relaxation). The iterative process stops when no 

feasible solution or better solution could be produced.          

      In this study, two search techniques were considered: best-node and depth-first. Best-

node traverses the tree level by level visiting all the nodes at the top level before searching the 

bottom level and has a time complexity θ( d2 ) d is the depth level of the tree. Depth-first search 

traverses the tree branch by branch going all the way to the bottom leaf. It has similar time 

complexity but less space requirement to execute. During simulation, the focus was on the best-

node search since it guaranties an optimal solution while depth-first stops at local minimum. 

5.3 Theoretical Analysis 

 
So far, we presented the three techniques. An explorative simulation was conducted to 

investigate the behavior of the three methods (see details in section 6.3.1). In summary, the 

preliminary simulation revealed that the three techniques generate different assignment solutions. 

However, for some configurations the assignment solutions are identical.  The experiments 

revealed, also, that the ILP and Hungarian methods are almost similar in terms of cost of 

assignment and workload distribution. This result is predictable, considering that both methods 

are two optimization techniques.  As a result, the goal of this section is to try to reproduce some 

of the results obtained in the explorative simulation.  The idea is to compare SOM to one 

combinatorial optimization technique ILP or Hungarian. The focus is on the workload 

distribution through a fairness ratio and the cost of assignment of the selected robots.  SOM is an 

NN. In order to compare SOM to an LP optimization technique, we must design a suitable 

common representation for both techniques. A model of differential equations is developed to 
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represent and capture the dynamics of the two techniques. A validation phase of the developed 

model is also presented before reproducing some of the results. 

  

5.3.1 ILP optimization problem 
 

5.3.1.1 System Dynamics 

 
The objective of the ILP or Hungarian implemented method is to find a task assignment 

plan for the robots by solving the following LP problem.  
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where n is the number of robots and m is the number of targets. Here, it is important to mention 

that the Hungarian method can be expressed as an LP problem by negating )(2 xrj constraint [74].  

The key step in designing an adequate NN for any linear problem is the construct of an 

appropriate energy or cost function E(x) [75].  One way of selecting a desired energy function is 

by defining a penalty function. The goal is to transform a constraint LP formulation to an 

unconstraint one by adding a penalty term to the objective function. The purpose of the penalty 

function is to inform about the amount by which the constraint is violated. 

Equation 43 could be transformed into the following general optimization problem:   
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where 0p   is the penalty parameter. 
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Equation 46 is equivalent to: 
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Furthermore, the penalty term could take different forms. Each expression requires an 

accompanying proof of the accuracy of the approximation. In this study, we express the penalty 

term as:  ])(,0[min)]([ xrxrP ikik  .   

This definition offers the advantage of being “exact” in the sense that the minimum of E(x) is 

equivalent exactly to equation 43 solution [75, 76]. If the constraint condition is verified, then the 

)(xrik signal is inhibited, otherwise the signal is amplified by α and passed to the next layer of the 

network.  Equation 47 then becomes: 
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The first term of the energy function in equation 48 denotes the original cost. The second 

term represents the constraint that a robot can service up to b targets. The third term specifies 

that each target requires only one robot to service it. And the last term forces the output ix to be 

0/1.  

The question now is how to solve this unconstraint problem with an energy function 

containing a penalty term.  Equation 46 form suggests that the search for a solution should be 

performed through an iterative process similar to [75]:   
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...)2,1,0()0(, )0()1(  kXXdXX k
kkk   ,                                                                          (49) 

 
where k denotes the length of the step to be taken in the direction of the vector kd .   

Different techniques are proposed to compute k and kd . In this study we select he steepest-

descent (gradient) method, and define the direction )( )(k
k XEd  . Equation 48 could be 

mapped to this system of differential equations [75]: 

)0()0(),( xxxE
dt
dx

x                                                                                                               (50)                                                                                              
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In its scalar form for any target j: 
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5.3.1.2 Convergence  

 
It is important to ensure that the cost function E(x) will converge to a local minimum 

after a specified period of time. This suggests that the cost function will enter the neighborhood 

of the minimum and remain there. In order to verify this aspect, let’s take the time-derivative of 

the energy function after normalizing equation 50 and assuming that µ is a positive time-variable 

parameter. The goal is to show that the cost function decreases as time progresses.      

Normalizing and setting µ = µ (t) yields to the general form:  
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If we consider that 0
dt
dE iff 0)(  xEx it follows that the trajectory of the cost function is a 

strictly monotonically decreasing time-function. It only depends on µ(t).   

5.3.1.3 Fairness 

 
Measuring the fairness in a task assignment problem is another metric that need to be 

investigated using the LP differential equations form. It will inform about the workload 

balancing and allow the comparison between LP and SOM. It is easy to verify it under ILP 

formulation since the fourth term of the energy function informs about the selection or not of a 

robot. We define the ILP fairness index for a given configuration as: 
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where ijij cC  is the evaluated cost of executing a task using equation 51. 

5.3.2 Self-Organizing Map 

5.3.2.1 System Dynamics 

 
In order to compare the two methods, we need to define a set of differential equations 

which models the behavior of nodes when SOM is employed.  Presented by an input ξ, SOM’s 

learning algorithm (equation 43) could be formulated as the following: 
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where h is the neighborhood function. In its vector form, equation 53 becomes: 

        ).,(.1 tttt wHww 
                                                                                                                              (56)                                                                                                         

Equation 55 is similar to a recursive algorithm which can be associated with the following 

ordinary differential equations (ODE) [77]: 

         ( ),Dw h w                                                                                                                                                    (57)                                                                                                                         
 
 where )(wh


is the mean vector field and can be solved using Euler approximation method for  

 
ODEs [77]. 
 

5.3.2.2 Convergence 
 

As the step size 0h , Euler’s numerical method solution approaches the exact solution. 

Different mathematical approaches were proposed to show that Euler’ numerical scheme is 

stable and consistent thus convergent [77, 78]. 

5.3.2.3 Fairness 

 
Measuring fairness under Euler formulation requires detecting the active robots. The only 

way to select a robot is through its lower cost to service a target T. An example will be provided 

in the simulation. Similarly, we define a fairness index for SOM formulation as: 
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  where ijC is the cost evaluated using Euler method on equation 57. 
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CHAPTER 6 
 
 

RESULTS 
 

6.1 Topology Creation 
 

The proposed on-demand topology update strategy is simulated in MATLAB. In this 

section, the network topology formation is explained step by step. To test our approach, a series 

of experiments have been conducted with different sets of nodes that were randomly placed in a 

geographic area. Figure 6 shows the results of cluster formation, cluster-head election and 

gateways selection of eight nodes with equal transmission range. In this figure, four clusters were 

identified. Cluster 1 comprises nodes CH7, N1, N4 and G6. Cluster 2 is formed by CH5 and G3. 

Finally, CH8 and CH2 form clusters on their own.  A node labeled by CH is the elected cluster-

head in each cluster, a node labeled by G is the gateway, and a node labeled N is a normal node.  

In the case of single node clusters, the cluster-head plays the role of a gateway as well. In Figure 

6, CH7 and CH5 are cluster-heads that use gateways G6 and G3 respectively. 

 

          
Figure 6: Cluster-head and gateway selection with four clusters.     Figure 7: Connecting multiple cluster-heads and gateway.          

 

Isolated clusters need to establish links among themselves. As a result of applying 

equation 17, a link is established between a single-node cluster and a gateway. CH2 is assigned 
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to G6 and CH8 is connected to G3. Figure 6 illustrates the establishment of the links between the 

single-node clusters and the gateways.  

The final step is to establish a link between the multi-node clusters via their respective 

gateway. Using equation 16, CH5 is linked to G6 and CH7 is connected to G3.  Figure 6 

illustrates the establishment of the link between multi-node clusters. However, contrary to the 

connections shown in Figure 6, not all gateways will be connected to all cluster-heads and vice 

versa. The implementation is such that an optimal connection is established among the set of 

gateways and cluster-heads. Figure 7 shows a fault tolerant connection between three cluster-

heads and three gateways. No link between CH3 and G2 or CH4 and G5 is established.  

There are factors that could affect the overall structure of the communication network: 

the number of nodes and the transmission range. Figure 8 shows that increasing the number of 

nodes lead to an increase, followed by a decrease of the number of clusters. In general, by 

saturating the area with a higher number of nodes, the number of clusters tends to get smaller. 

This is illustrated in Figure 10, twenty nodes with equal transmission range form one cluster 

having CH1 as a cluster-head and G12 as a gateway. This configuration has a negative impact on 

the power and workload of the cluster-head. Assuming that the probability of a link or node 

failure is minimal, the call for a topology reconfiguration will be mainly a result of low battery 

power of the cluster-head.   

On the other hand, Figure 9 shows that reducing the transmission range increases the 

number of clusters. As illustrated in Figure 11, the same twenty nodes with lower transmission 

range resulted in the appearance of fourteen clusters and three gateways (G18, G5 and G9). 

Compared to Figure 10, this configuration requires more processing and computing time to 

establish links between all the clusters.   
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Another experiment involves the distribution of intra-cluster and inter-cluster links 

established between the nodes. The purpose of this experiment is to measure the quality of the 

clustering technique and the goal is to obtain dense intra-cluster links and sparse inter-cluster 

links. Figure 12 shows that the ratio of intra-cluster links to inter-cluster links increases with an 

increase in the transmission range.  Figure 13 demonstrates a similar result with respect to an 

increase in the number of nodes in the network. 

Since the nodes are positioned randomly, there are situations where all nodes form 

clusters on their own.  In those cases, a single link is established between the cluster-heads. 

Figure 14 shows links establishment between single-node clusters. The major concern in these 

topologies is the cost of a link failure. Any loss of connection will automatically require a 

topology reconfiguration as opposed to a link failure between a gateway and a multi-node 

cluster. Figure 7 shows that no topology update is required if a multi-node cluster loses one of its 

inter-cluster links.  

Dynamic transmission range is another factor that affects the structure and the role of the 

node in a network. Figure 15 shows similar nodes positions presented in Figure 7 with different 

transmission ranges.  The result is a new communication network composed of four clusters in 

which some nodes assume  different role. Node 1 and 7 were respectively a gateway and a 

cluster head in figure 7.  In Figure 15 they become respectively  a normal and a gateway node.  

Testing the capabilities of the approach with random positions and random transmission ranges 

was very tedious and challenging. Thus, the necessity of keeping the transmission range 

parameter as constant for all nodes. 
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Figure 8: Relationship between the number of clusters and the      Figure 9: Effect of increasing the transmission range on the                                                                       
number of nodes.                                                                              number of clusters. 

            
 Figure 10: Formation of one cluster due to a higher number         Figure 11: The number of cluster increases when the               

of nodes.                                                                                         transmission range is reduced.   

         
  Figure 12:  Transmission range versus density of intra-cluster    Figure 13:  Number nodes in the network versus density of                                      

and inter-cluster links.                                                                   intra-cluster and inter-cluster links.                                             

                                                                                       
  Figure 14: Linking single-node clusters                                        Figure 15: Connecting nodes with different transmission range.                                                                                            
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To compare the performance of our technique (OCTOPUS) in terms of clustering 

capabilities, we conducted two scenario experiments similar to the one proposed by Chen et al 

[79].Three different clustering techniques were selected:  Hierarchical, subtractive and quality 

threshold clustering.  

Hierarchical clustering relies on an agglomerative algorithm to find clusters [80]. It 

considers each node as a single cluster and combines them to find the final number of clusters. 

Subtractive clustering computes the likelihood of a node being a cluster head [80]. The nodes in 

its vicinity are considered neighbors. Quality threshold clustering requires defining a diameter 

for a cluster such as the maximal distance between two nodes [80]. It relies on adding a 

candidate node that minimizes the increase of cluster diameter.  None of these techniques 

requires defining the number of clusters in advance.  

 The experiments consist of increasing the number of randomly placed nodes in a small 

area and applying the four clustering techniques. The number of clusters and the average cluster 

size were the two parameters selected to describe the clustering capabilities. OCTOPUS 

exhibited a better clustering behavior.  In Figure 16 OCTOPUS, consistently, maintains a lower 

number of clusters compared to the other techniques. Its curve indicates that the number of 

clusters tend to decreases when the number of nodes increases as mentioned previously. In 

Figure 17 OCTOPUS tends to merge small clusters and favors big cluster sizes while the others 

create clusters of smaller sizes. 
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Figure 16: Number of clusters generated by different                   Figure 17: Average cluster size generated by different      
techniques.                                                                                     techniques. 

 

Although OCTOPUS outperforms the quality threshold technique, their curves in Figure 

16 suggest that they both exhibit similar behavior. Given appropriate diameter value, both 

techniques could be similar.   Figure 18 illustrates the behavior of quality threshold technique 

when implemented with different diameter values. As the diameter increases, the quality 

threshold approaches the OCTOPUS behavior.  Thus, OCTOPUS clustering technique could be 

assimilated to a quality threshold clustering technique with a dynamic diameter adjustment.   

 

 
Figure 18:  Quality threshold behavior with different diameter values. 

       

A comparative experiment was conducted to evaluate the overall behavior of our 

deterministic approach against a probabilistic approach. Barolli et al. introduced a probabilistic 

cluster head election technique based on the available power, node degree and distance to the 

cluster center [81]. Zhang et al. proposed a gateway selection based on a probability p [82]. 
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Combining the two approaches resulted in complete probabilistic selection technique for 

gateways and cluster heads. Scores of random topologies of 10 nodes were generated and two 

parameters were evaluated using OCTOPUS and the probabilistic approach. The parameters are 

the number of cluster heads and the cluster size. The simulation revealed that OCTOPUS 

generated less cluster heads compared the probabilistic technique. Figure 19 shows the number 

of cluster heads created by the probabilistic approach most of the time exceeds OCTOPUS’s 

number of cluster heads. This is a result of the creation of more redundant cluster heads in a 

cluster since many cluster heads candidates satisfy the probability condition.  This problem was 

encountered in OCTOPUS but with less degree. The experiment showed that the introduction of 

extra variables in addition to the node degree increases the pool of cluster head candidates. The 

second parameter to be evaluated is directly related to the number of cluster heads. An increase 

in cluster number leads to a smaller cluster size. The cluster size generated by OCTOPUS is 

often higher than the cluster size created by the probabilistic approach. This is depicted in Figure 

20. In general, OCTOPUS technique tends to optimize by accommodating the maximum number 

of nodes under the minimum number of clusters.    

 
Figure 19: Number of cluster heads generated by the two techniques. 
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Figure 20: Cluster size generated by the two techniques. 

 

6.2 Topology Impact on Consensus 

6.2.1 Statistical Results 
 

Series of experiments were conducted in a MATLAB environment where scores of 

communication topologies were generated using 8 robots randomly dispersed in a small 

geographic area. The choice of 8 robots was dictated by the desire of obtaining a balance 

between the number of single-node clusters and multiple-node clusters. The number of targets to 

be assigned to the robots was also fixed to 8. Hopping that in the best case the initial scope of 

each robot will be 1. The coordinates of targets, however, remained unchanged, thus allowing 

one parameter (topology) to change while targets positions are fixed. 

 Collecting data was performed in two phases. First, the six structural metrics were 

evaluated for each topology generated. The same topology was then used, in the second stage, as 

a communication mean for the robots to update their target scope and evaluate the average state 

update. The data was then fed to the Statistical Package for the Social Sciences (SPSS) for factor 

analysis and regression modeling.  
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TABLE 3(a) 

PERCENTAGE CONTRIBUTION OF EACH VARIABLE TO THE TOTAL VARIANCE OF A VARIABLE 

Topology metrics 1 2 3 4 5 6 Total 

Algebraic Connectivity Ratio(1) ~ 4.7   0.3    4.6    10.6    13        39 
Average Path                           (2) 4.7 ~ 0.2    11.1   4   0.8      14 
Average Cluster Coefficient  (3) 0.3 0.2 ~ 0.1 0  1.5      3.7 
Average Matching Index       (4) 4.6 11.1 0.1 ~ 36.7    27        62 
Modularity                              (5) 10.6 4 0 36.7 ~ 4          41 
Average Participation            (6) 13 0.8 1.5 27 4 ~ 52 
Total 39 14 3.7 62 41 52  

 
 

TABLE 3(b) 

 
PERCENTAGE CONTRIBUTION OF EACH VARIABLE TO THE TOTAL VARIANCE OF A VARIABLE. THE SHADED 

AREAS ARE THE CONTRIBUTION THAT FAILED THE STATISTICAL TEST OF SIGNIFICANCE.  THE LAST 
COLUMN INDICATES THE COMBINED CONTRIBUTIONS OF ALL VARIABLES TO THE VARIANCE OF ONE 

VARIABLE 
 

Topology metrics 1 2 3 4 5 6 Total Contribution 
Algebraic Connectivity Ratio          (1) ~ L  L    L    L    L Medium 
Average Path                                    (2)  ~ L    L   L L      Low 
Average Cluster Coefficient            (3)   ~ L L  L      Low 
Average Matching Index                 (4)    ~ M    L        Medium 
Modularity                                        (5)     ~ L          Medium 
Average Participation                      (6)      ~ Medium 

       
After normalizing the data, the next step in the methodology described in section 4.4.1 is 

the evaluation of the correlation matrix for the six metrics. Using the coding listed below, 

table 3a summarizes the contribution percentage of each variable to the overall variance of a 

topology metric. The cases that failed the statistical test of significance are represented by the 

shaded area. Since the matrix is symmetric, only the upper diagonal is presented.  

 Low (L)        : 0%≤ v <30%; 

 Medium (M) : 30%≤ v <70%; 

 High (H)       : 70%≤ v < 100%; 
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From table 3b, all variables exhibit little influence over each other variance. Thus, 

suggesting the existence of a weak correlation between the variables. However, the last column 

suggests that the variability in one variable can be explained by the combined variance in all 

other metrics. Table 3a, also, reveals that average cluster coefficient failed the test of 

significance suggesting that its contribution is minimal if not inexistent.   

Combining factor extraction and rotation stage, maximum likelihood and principal components 

analysis, with ‘promax’ rotation, were conducted to assess the underlying structure for the six 

variables.  Several assumptions were tested, beforehand, to verify the existence of a factor 

analytic solution. The Kaiser-Meyer-Olkin and Bartelett’s tests were performed to measure the 

sampling adequacy and spehericity [60]. The first test reveals whether the distribution of data is 

acceptable for conducting a factor analysis. The level attributed to the data was on the border 

between middling and mediocre. The second test measures whether data is normally distributed 

and correlated enough to provide a reasonable basis for factor analysis. This condition was also 

met since the significance value for the test was far below the 0.05 value required. When 

experiencing with factor extraction, maximum likelihood did not allow the extraction of more 

than two factors.  The two extracted factors were designed to represent two constructs: intra-

cluster structure (factor 1) and inter-cluster structure (factor 2). After rotation the first factor 

accounted for 35% of variance and the second factor for 24%. Table 4 displays the variables and 

factor loadings for the rotated factors along with their communalities (C) which represent the 

amount of variance in each variable accounted for by the factor. A high value indicates that the 

extracted factors are a good representation of the variables. Values less than 0.5 were omitted to 

improve clarity.  
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TABLE 4 
 

LOADINGS FOR EACH FACTOR EXTRACTED, THE COMMUNALITIES VALUES AND THE VARIANCE 
ACCOUNTED FOR. NOTE. LOADINGS AND COMMUNALITIES (C) < .5 ARE OMITTED 

 
              Methods   /  Factors 
 
Variables 

Maximum Likelihood Principal Components 
Factor Loading 

1 2 C 1 2 C 
Algebraic Connectivity Ratio  .65 .52  .76 .79 
Average Path                              .55   
Average Cluster Coefficient       
Average Matching Index        -.91  .87 -.88  .83 
Modularity .68   .80  .65 
Average Participation              .78 .84  .85 .86 
Eigenvalues 2.1 1.5  2.1 1.5  
% of variance 35 24  35 24  

          
         
Few observations can be made from table 4. The communalities evaluated by the 

principal components indicate that the factors extracted represent well the original variables. 

Both methods reveal that the average cluster coefficient is not a determinant variable in variance 

changes. Another observation, in which both methods differ, is related to the average path 

variable. Principal components report it as a variable to be considered with a low loading 

whereas maximum likelihood suggests ignoring it.   

In a second phase, a multiple regression assessment was conducted in order to determine 

the best linear combination of the five structural variables for predicting the consensus variable 

(average state update). Prior to the assessment, there are some assumptions that need to be 

considered. The linear regression requires the relationship between each of the independents to 

the dependent variable to be linear. There are different ways to evaluate the linearity. The 

graphical method uses scatter-plots to visualize the relationship. It is the commonly 

recommended although difficult to interpret when the sample size is large. Another technique, 

statistical method, relies on the test of significance of the linearity hypothesis. The relationship is 

linear if the correlation coefficient between the independent variables and the dependent 
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TABLE 5 
 

SIGNIFICANCE TEST OF LINEARITY VERIFIED FOR ALL THE INDEPENDENT VARIABLES. P<0.05 

 
 
 
                                            

 
 
Figure 21: Residual scatter-plot indicating that the errors are normally distributed and no pattern is generated. 
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TABLE 6  
 

REGRESSION MODEL PREDICTION OF THE CONSENSUS BUILDING VARIABLE 

 
 

variable is statistically significant. This condition was met for all the five considered variables. 

Table 5 shows that the tests are below the 0.05 level of significance. Another assumption that 

was also checked is the residual (predicted minus observed values) being normally distributed. 

The scatter-plot in Figure 21 shows that dots are scattered and no patterns are created. 

 

TABLE 7 
 

THE ADJUSTED R SQUARE INDICATED THE PRESENCE OF A FAIRLY GOOD MODEL EXPLAINING 50% OF THE 
VARIANCE IN THE CONSENSUS BUILDING VARIABLE 
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TABLE 8 
 

THE IMPORTANCE OF INTRACLUSTER PARAMETERS IN THE PREDICTION. THE COLLINEARITY EFFECT IS 
MINIMAL SINCE TOLERANCE IS > 0.5= (1-0.499) AND THE MODEL COULD BE REPRESENTED BY THE 

FOLLOWING EQUATION 

AVERAGE-STATE-UPDATE = 0.271*INTRA-CLUSTER + 0.135*INTER-CLUSTER + 1.817 

    

 
           

The ANOVA analysis of the regression model, in table 6, showed that the combination of 

variables significantly predict the average update (sig<0.05). The model summary in table 7 

exhibited a multiple correlation coefficient R equal to 0.71 and the adjusted R-square is 0.5 

meaning that 50% of the variance in average state update variable can be predicted by algebraic 

connectivity ratio, average matching index , modularity and average participation combined. 

According to Cohen’s effect size, this is a considerable effect [83]. The beta weights, represented 

in table 8, suggested that the intra-cluster structure contributed more to the prediction of average 

update. The tolerances in the same table indicate a low collinearity (Tolerance > 0.5). This is due 

to the “orthogonality” of the two extracted factors. 

6.2.2 Theoretical Results  
 

The goal of our simulation is to show that OCTOPUS network will converge to a 

consensus given an appropriate mapping function. The role of intra and inter links on the 

convergence process is another aim of this simulation. The final objective is to determine the 

impact of intra and inter cluster synchronization on the overall network convergence.  
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For this purpose, we selected the saturation function 







 





an
xn

e

xf

1

2)( given in equation 26 as our 

mapping function. The starting point is to explore its behavior in reaching a convergence and 

stability point. Figure 22 indicates that all nodes will reach the saturation state. As the exchange 

of target list occurs between nodes, each node will update its target scope. The update stops 

when all targets are visible to a node.  Figure 23 shows that using equation 40 for 4000 iterations, 

the increase of the number of nodes generates a higher negative Lyapunov exponent. A higher 

negative value is a sign of greater system stability. Figure 23 reveals also, that the mapping 

function used is conducive to a stability point for the communication system. It is also important 

to mention that the theoretical ratio 
n

2  (synch-ratio) obtained from equation 41 defines a lower 

bound for our communication system stability region and informs about the shape and behavior 

of the synchronization curve. Our system will synchronize and stabilize as long as its calculated 

ratio stays above the theoretical bound and follows its shape. The synch-ratio will be useful when 

exploring the impact of intra and inter links on the synchronization.  

        
Figure 22: represents the evolution of a node’s saturation                    Figure 23: represents Lyapunov exponent values for            
state when the scope of targets increases.                                              different number of nodes and different mapping.                                                                                                                                                                                                                                                                                                                    

                                                                                                                                                                                                          
      
    

In general, by saturating the area with a higher number of nodes, the number of clusters 

tends to get smaller. More precisely, increasing the number of nodes leads to an increase, 

followed by a decrease of the number of clusters. This is illustrated in Figure 10, where twenty 
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nodes form one cluster. Moreover, the clustering technique is designed to favor dense intra 

cluster links over sparse inter cluster links when the number of nodes increases. Figure 12 shows 

that the ratio of intra cluster links to inter cluster links increases with an increase of number of 

nodes. This result forms the basis in the study of the impact of intra and inters cluster links in the 

convergence process.  

Series of communication topologies were generated by increasing the number of nodes. 

For each topology, a number of measures were evaluated: The ratio of intra cluster links over the 

total number of links, intra clusters synchronization ratio (equation 33), inter clusters 

synchronization ratio (equation 35), and the overall system synchronization ratio. 

In Figure 24, the calculated topology and intra cluster synchronization ratios are above 

the theoretical boundary and follow its trend. This confirms that the generated topologies will 

converge to a stable point. As the number of node increases, the system synchronization is 

dictated by intra cluster synchronization. The intra cluster convergence curve merge with the 

overall system synchronization curve.  

In contrast to intra cluster synchronization, Figure 25 shows that smaller inter cluster 

synchronization ratios are obtained for smaller number of inter cluster links. In other words, a 

better synchronization is obtained when less inter cluster links are present.  

A better visualization of the impact of intra and inter cluster links on the convergence of a 

topology is illustrated in Figure 26. Better system synchronization (low value) is obtained when 

the ratio of intra links is higher. Bad synchronization (high value) is obtained when the ratio of 

inter links is higher. Similarly, in Figure 27, a better system synchronization is obtained when 

intra cluster synchronization is dominant over inter cluster synchronization. Low system 

synchronization ratios are obtained for low intra cluster synchronization ratios.  

 



 

73 
 

                    
       Figure 24:  Network and intra cluster synchronization ratio           Figure 25 : Network and inter cluster synchronization ratio                              

when the number of nodes increases.                                             when the number of nodes increases. 

 

             
        Figure 26:  Variation of topology synchronization rate                 Figure 27: Variation of topology synchronization rate            

when intra and inter cluster links vary.                                          when intra and inter cluster synchronization rates vary. 

 

6.3 Task Assignment 

6.3.1 Assumptions 

Few assumptions need to be clarified before presenting the simulation results. The 

techniques assume that the autonomous robots are identical and have equal initial energy. The 

robots and targets are, also, randomly dispersed in a geographical area.  For simplification, a 

target or a task is non divisible and requires one robot to service it.  In the explorative simulation, 

the selected robots are moved to the assigned targets in a way similar to equation 43. The robot’s 

cost is measured by the distance from the robot initial position to the target position. The overall 

cost is a summation of all distances traveled by the robots. The workload distribution is 

measured by the number of targets assigned to a robot.   
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In the theoretical simulation, the deterministic factor for a robot selection in equation 57 

is the cost of assignment. The winning node is the robot with the lowest cost.  In equation 51, the 

selection is dictated by the value of 
ijx  in the output.  0 means the robots sits idle and 1 means it 

is active. The cost is evaluated by the dynamics of the differential equations 51 and 57. The 

workload distribution is measured by a fairness index. 

6.3.2 Explorative Simulation 

 
The objective of this section is to visualize, explore and compare the behavior of the three 

techniques before verifying it theoretically. The experiments focus on the fairness in workload 

distribution, the cost generated by the assignment and the execution time. Series of tests were 

devised to compare the three methods using MATLAB.  

The first test was designed to visualize the behavior of each technique using three 

configurations: 

 Number of robots equals the number of targets. (config. (a) → 4 robots and 4 targets). 

 Number of robots is greater than the number of targets. (config. (b) → 4 robots and 2 

targets). 

 Number of robots is less than the number of targets. (config. (c) → 3 robots and 7 

targets). 

Applying these techniques on each configuration led to few observations. The choice of 

an assignment technique is sometimes irrelevant.  Config. (b) in Figure 28, 29 and 30 shows the 

three techniques exhibiting similar behavior. Targets T1 and T2 are always serviced by the same  

robots, respectively R1 and R4. This suggests the existence of configurations and scenarios 

where other factors besides the technique need to be considered.  
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(a)                                                        (b)                                                             (c)  

                           
 Figure 28: Target assignment using SOM for config (a), (b) and (c).  Note  :  Circles denote robots (R) and squares denote targets (T).   

 
                              (a)                                                                (b)                                                                 (c)                                                        

                            
   Figure 29: Target assignment using Hungarian method for config (a), (b) and (c). 

 
                                                      (a)                                                           (b)                                                                      (c)                                                                

                             
 Figure 30: Target assignment using ILP method for config (a), (b) and (c). 
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The Hungarian and the ILP methods are apparently similar in behavior in most cases. 

Config. (a) and (b) in all figures show the targets being serviced by the same robots. The three 

methods, however, can yield three different solutions. Config. (c) in all figures present three 

different robot-to-target assignments. This implies the presence of dissimilarities in the three 

techniques. 

Another characteristic exhibited by config. (a) is fairness. SOM focuses on cost since 

only two robots are selected to service four targets.  The Hungarian and ILP methods, on the 

other hand, focus on load balancing. Each target is assigned a robot.   

The second goal is to compare the cost generated by each method. For this purpose the 

number of robots was kept constant (4) and the number of targets was increased from 4 to 16. 

The result in Figure 31 shows that ILP method generates a higher cost compared to the 

Hungarian and SOM methods. The Hungarian cost shows an almost perfect monotonous 

increasing function.  ILP and SOM, on the other hand, exhibit an almost perfect curve 

resemblance and tend to generate lower costs when the number of targets equal 5, 12 and15. 

The third purpose is to compare the workload distribution generated by each method. 

Keeping the same configuration as the previous test, we evaluated the average workload for each 

robot under each method. Figure 32 shows that ILP and Hungarian balance the workload among 

robots whereas SOM approach favors some robots over others. This explains why the cost of ILP 

and Hungarian is slightly higher compared to SOM. Figure 32 shows, also, a small difference in 

robots workload using the ILP and Hungarian method.  Robots 1, 2 and 3, experience different 

workloads under the two methods. 

 



 

77 
 

Another test conducted on the described methods is the evaluation of their running time. 

Many parameters can influence the accuracy of the results. These factors can range from the 

developer’s skills to the host machine configuration and MATLAB capabilities. In this test, we 

limited ourselves to verifying the accuracy of the time complexity stated for each method.   

For this purpose, we selected a configuration that includes 9 targets and measured the execution 

time for each method when the number of robots servicing the targets is increased from 1 to 4. 

Figure 36 shows that, for all techniques, the running time increases when the number of workers 

increases. A second observation is that ILP running time is always higher than Hungarian and 

SOM running time (factorial higher than polynomial). Third, SOM has a slightly lower execution 

time than Hungarian (θ(n²) < θ(n³)). 

 

 
 Figure 31: Cost generated by each method. 
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   Figure 32:  Average workload distribution generated by each method. 

 
 

  
   Figure 33: Task execution time for the three techniques when the number of processes increases. 
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In summary, this preliminary simulation revealed two major observations. First, ILP and 

the Hungarian method exhibit similar behavior in task assignment. Second, SOM focuses on cost 

whereas IPL and the Hungarian techniques focus on workload balancing.  

6.3.3 Theoretical Results  

 
The goal of this section is to reproduce and validate the observations obtained in the 

previous section using the differential equations developed for SOM and ILP techniques. The 

simulation is performed under MATLAB and uses similar robots and target configurations for its 

validation phase.  As an example, we use configuration (a) in Figure 28 and 30 to compare the 

behavior of these two methods. Configuration (a) consists of four robots and four targets 

randomly spread in a limited area. 

The reason for selecting this example is to validate and facilitate the interpretation of 

results.  For SOM behavior, we applied Euler method on equation 57 and captured the dynamics 

of each robot’s ODE when presented by an input (target). Figure 34a shows that R3 ODE 

converges rapidly to a stability point with a lower cost. This suggests that R3 is more appropriate 

to service T1. Similarly, Figure 34b, 34c and 34d show that R3, R3 and R1are good candidates to 

service respectively T2, T3 and T4.  These results are similar to the one obtained by SOM 

previously.  

The first step in simulating equation 51 is the selection of appropriate values for α and µ 

parameters. This step was accomplished by trial and error. The experimentation suggested that 

higher values of µ shortens the execution time and smaller values of α influence the weight and 

accuracy of the penalty function. Figure 35 shows that applying equation 51 on the list of targets 

resulted in the selection of four robots. This suggests that each robot will service one target. For 
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clarity only the dynamics of the active robots is presented. The result is similar to the one in the 

explorative simulation. Validating equations 51 and 57 was performed over few other 

configurations. The results were in general similar. 

(a)                                                                                 (b) 

 
(c)                                                                                   (d) 

   
             Figure 34: Robots ODE dynamics when targets are introduced (a)=T1, (b)=T2, (c)=T3 and (d)=T4. 

 

                                 Figure 35: Robots selection for target servicing, (1=active, 0=idle). 
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The two properties, we intend to compare is the cost of assignment and the fairness in 

workload distribution of equations 51 and 57.  Few random topologies (1000) of 10 robots and 

10 targets were generated. We measured the total cost of assigning the robots and the fairness 

ratio for equations 51 and 57. Figure 36 confirms the results obtained in the previous simulation. 

ILP cost of assignment is most of the time higher than SOM’s. Figure 37 shows that the fairness 

ratio of ILP is always higher than SOM’s. This means that ILP balances the workload among 

robots compared to SOM. 

                   
                                          Figure 36: Cost of assignment for SOM and ILP.  

               
                                           Figure 37: SOM and ILP fairness in workload distribution.  
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Another experiment was conducted to verify the impact of topology changes on the cost 

and workload distribution. The number of robots was kept constant (10) and the number of 

targets was increased, gradually, to 100. Figure 38 and 39 show that the behavior of the two 

equations was not altered by the changes. However the fairness decreased for both techniques 

whereas ILP cost increased considerably. This suggests that there are configurations where the 

cost will be a determinant factor and the fairness could be ignored.   

                     
                                             Figure 38: Cost of assignment when the number of target increases.  

                 
                                             Figure 39: SOM and ILP fairness in workload distribution when the number of targets increases. 
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CHAPTER 7 
 
 

CONCLUSIONS 
 
 

This dissertation proposes, in a first phase, a distributed technique to build a 

communication topology for mobile sensor networks. The approach starts with clustering the 

nodes into separate groups. Communication among nodes of the same cluster is facilitated by the 

elected cluster-head and communication with other clusters is performed by the selected gateway 

node. The result of this technique is a communication map that specifies for each node its role in 

the network. The technique has many applications. As an on-demand, a node can request a re-

configuration in case a failure occurs at the cluster-head or gateway level.   Similarly, a node 

joining the network could request a role through a re-configuration.   The approach can be 

employed as a scheduled technique for re-organization and re-configuration and an alternative to 

topology control and maintenance. However, an issue to consider is the cost of frequent updates 

and re-evaluation of the topology  

In a second phase, the study investigates the effect of few topology structural properties 

on the consensus building among robots. Six metrics, algebraic connectivity ratio, average path, 

average cluster coefficient, average matching index, modularity and average participation, were 

investigated using a factor analysis technique. Only algebraic connectivity ratio, average 

matching index, modularity and average participation proved to have a major impact on the 

consensus building. The regression analysis proved that up to 50% in consensus variability could 

be explained by these four parameters. It also showed that the consensus building could be 

predicted and that the metrics describing the intra-cluster connection have more weight in the 

model. 
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In this study, only six parameters were investigated resulting in a linear model and 50% 

explained variance.  This result could be improved if more structural and non-structural metrics 

were incorporated. Furthermore, a model describing the consensus building for any given 

topology with a random number of robots could be devised.                

In a third phase, we compared three techniques for task allocation in a multi-agent 

system. SOM competitive approach uses the Euclidian distance to assign a target to the winning 

node. The Hungarian algorithm, searches, within a cost matrix, for a minimal set of zeros that 

appears exactly once in each row and column in order to solve the assignment problem. Finally, 

the linear programming method tries to minimize an objective function under certain constraints. 

The experiments show that, overall, the techniques generate different assignment solutions along 

with different costs and workload distribution; but for certain configurations the solutions are 

either identical or similar. The key factor in deciding which technique to select involves finding a 

trade-off between the cost of assignment, workload distribution and execution time. SOM offers 

the lowest cost and running time with the worst workload distribution. ILP generates a higher 

cost, a higher execution time and a balanced workload. Hungarian exhibits an in-between cost 

and acceptable running time while preserving a balanced workload.  Thus suggesting the 

utilization of the Hungarian method is more appropriate for most scenarios. However in the case 

where robots have abundant power and the execution time is a concern, the selection of SOM is 

more suitable.   

This comparison study assumes that all robots are identical and have equal initial energy. 

It also assumes that tasks are non-divisible and require only one robot. In real scenarios and most 

of the time this is not the case. A heterogeneous park of robots or divisible tasks will require the 
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definition of additional constraints and a new cost matrix that combines all parameters for the 

three methods.   
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