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ABSTRACT

We prove that under some conditions, the central fans of capillary surfaces exist and are

stable. We perturb the contact angle of a capillary surface for a bounded domain which

is not necessarily symmetric, that has a central fan, and prove that the central fan will

continue to exist after the perturbation. We prove the result for some smooth conditions

with sufficient regularity. We provide examples to illustrate the existence and stability of

central fans.
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CHAPTER 1

1 INTRODUCTION

1.1 The Mathematical Theory of Capillarity

Capillarity, or capillary action, is the tendency or the ability of a liquid to flow on narrow

spaces or move in some certain direction by way of cohesive and adhesive forces.

A simple illustration of this physical phenomenon is liquid inside a thin tube. Capillary

action occurs at an interface whenever the cohesive forces between the molecules of the

same substance differs from the adhesive forces between molecules that attract between

unlike substances. When the adhesive forces is greater than the cohesion forces, the liquid is

attracted to the molecules of the wall causing it to wet it, so the level of the surface at the

middle will be lower than the level of the liquid at the surrounding area, and this will result

in a concave formation of the liquid in a circular tube.

The importance of studying capillarity phenomena lies in the fact that they arise in our

lives in different aspects where they control many vital and essential processes in it. Some

examples of this phenomena are absorption of a liquid by paper towels, the supply of water

from the roots of the tree to the leaves of a tree, a drop of water lying on a flat surface, the

surface of the water in a drinking glass, and much more.

The study of capillary surfaces goes back to ancient times, and has been under investi-

gations and studies by some of the greatest scientists. The effects of surface tension have

been studied for millennia and the development of “European” science was affected by many

disagreements between “Aristotelian” and “Archimedean” theories, including their theories

about why objects float in water; these disagreements are illustrated by Galileo Galilei’s

famous three-day discussion in 1611 which was recorded in 1612 as Discourse on Floating

Bodies.

In the preface of the most important and influential book in the literature on the math-

ematical theory of capillarity, Equilibrium Capillary Surfaces by Robert Finn (Springer-
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Verlag, 1986), one finds “Attempts to explain observed phenomena go back at least to

Leonardo da Vinci.” In addition, in 1712 articles on capillarity by Brook Taylor and Francis

Hauksbee are reproduced prior to the Introduction of Finn’s book. Taylor studied the be-

havior of a capillary surface near a corner and made some capillarity experiments. In 1805,

Thomas Young introduced the notion of mean curvature of a surface H of a surface S, and

related it to the pressure change δp across the surface. He also showed that the contact

angle depends only on the physical material, not the gravity field or the geometry of the

container. In the following year, P.S. Laplace introduced the mean curvature notion and

derived a formal analytic expression. Laplace produced the equation of prescribed mean

curvature, from which he derived the capillary equation. He found the first explicit formula

permitting quantitative prediction for a solution of a capillary problem of a circular capillary

tube in a gravity field.

In 1830, Gauss used the principle of virtual work formulated by Johann Bernoulli to unify

the work of Young and Laplace by deriving the capillary equation by a variational process,

and characterized these surfaces. His approach became the basic foundations for the modern

mathematical theory of capillarity, and since that time, a considerable amount of work

has appeared in the literature discussing the theory, and the topic became an area of active

research. Most of the studies in the eighteen and nineteen centuries were restricted to the case

of a capillarity tube that have some symmetric configurations. The problem of finding the

shape of a capillary surface has started to attract some prominent mathematicians as Plateau,

Monge, Poisson, Raileigh, Neumann, Minkowski, and Poincare [1], [2]. Capillary surfaces

and the mathematical theory describing them were important in the history of mathematics

(and science) and remain so today. The reasons for this are the type of nonlinearity inherent

in the variational principle for which they are minimizers and the contact angle condition

which represents their boundary condition at an intersection of solid-liquid, solid-gas and

liquid-gas interfaces. It is worth noting that a major impulse to study capillary surfaces

today comes from spacecraft and the problem of dealing with liquids, where the shape of
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the surface is determined by surface tension. In fact, this theory demonstrated to NASA

that the proposed design in the mid-1960s of fuel tanks for maneuvering thrusters would, in

micro-gravity, have failed to deliver fuel to the thrusters and would probably have resulted

in the destruction of manned spacecraft on atmospheric reentry.

The main question of the mathematical theory of capillary is the question of existence,

regularity, and behavior of such surfaces. One of the earliest studies of the existence of these

surfaces were done by Concus and Finn [3], where they studied the behavior of a capillary

surface in a wedge, and they obtained estimates from below and above for the heights of the

free surface and obtained necessary and sufficient conditions for the capillary surface to be

bounded or not. Serrin [4] studied the variational solutions of quasilinear elliptic differential

equations. In 1970, Concus and Finn [5] presented explicit asymptotic form for capillary

free surfaces, and several existence results have been obtained by C. Gerhardt, E. Giusti, M.

Giaquinta, P. Concus and R. Finn, and others.

In 1973, M. Emmer [6] obtained a variational solution of capillary problem, and Uraltseva

obtained a classical solution, and in 1976 E. Giusti [7] proved the existence of variational

solution for the mixed boundary value problem with a contact angle boundary condition

and Dirichlet boundary condition. Concus and Finn [8] studied capillary free surfaces in the

absence of a gravity and in the presence of gravity, and they provided necessary conditions for

the existence of solutions of capillary equations. They also studied [9] the singular solutions

of capillary equations, and they proved the existence and uniqueness of these solutions.

C. Gerhardt [10] studied the existence and regularity of variational solutions of capillary

equations, then he extended his studies to the surfaces of prescribed mean curvature [11]. L.

Simon and J. Spruck [12] proved that under certain conditions the capillary surface extended

continuously to the boundary. Details on Capillary surfaces can be found in [13].
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CHAPTER 2

2 BACKGROUND

2.1 Equations of Prescribed Mean Curvature

Let aij = aji, i, j = 1, ..., n, and consider the second order quasilinear operator Q of the

form:

Qu =
n∑

i,j=1

aij(x, u,Du)Diju+ b(x, u,Du)

where x = (x1, x2, . . . , xn) ∈ Ω ⊂ Rn, n ≥ 2. Let Π ⊆ Ω × R × Rn, then Q is elliptic in Π

if the coefficient matrix [aij(x, z, p)] > 0 for all (x, z, p) ∈ Π. That is, there exists minimum

eigenvalue λ(x, z, p) and maximum eigenvalue Λ(x, z, p) both positive and

0 < λ(x, z, p) |ξ|2 ≤
n∑

i,j=1

aij(x, z, p)ξiξj ≤ Λ(x, z, p) |ξ|2

for all ξ = (ξ1, . . . , ξn) ∈ Rn \ {0}, and for each (x, z, p) ∈ Π.

If further, we have Λ(x, z, p)/λ(x, z, p) ≤ M ∈ R for all (x, z, p) ∈ Π, then we say that Q is

uniformly elliptic in Π. If Q is elliptic in Ω× R× Rn, then we say that Q is elliptic.

The equation of prescribed mean curvature is a quasilinear second order, elliptic equation

of the form

n∑
i=1

Di(
Diu√

1+|Du|2
) = nH(x, u)

where H is the prescribed mean curvature of the solution u. If

H(x, u) = κu+ λ

then the equation is called a “capillary equation”. If in addition, H = 0, then the equation

becomes the minimal surface equation.
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2.2 Capillary Problem

A capillary surface can be defined as the interface separating two fluids adjacent to

each other. Capillary surfaces occur when two fluids are adjacent to each other without

mixing, and these surfaces separate the two substances. As a consequence of this, ideal

capillary surfaces have no thickness. If gravity is absent then the surface has a constant

mean curvature.

The definition of a capillary problem can be stated as the problem of finding a function

f ∈ C2(Ω) such that

div(Tf) = κf + λ in Ω (2.1)

subject to the condition

Tf · ν = cosγ on ∂Ω , (2.2)

where

Tf =
∇f√

1 + |∇f |2
.

The quantity κ = ρg
σ

is a constant, where ρ is the density of the liquid, g is the gravitational

acceleration, and σ is the surface tension. The quantity λ is a physical constant that is

determined by volume constraints when κ = 0.

The quantity γ = γ(s), 0 ≤ γ(s) ≤ π, is a function of position on ∂Ω, which is called

the contact angle, and it is the angle at which the the boundary of the supporting surface

and the capillary surface intersect. The surface z = f(x, y) describes the shape of the static

liquid gas interface in a vertical cylindrical tube of Ω. From the definition of κ, we can see

that it is positive if the gravity field is downward, and negative if the gravity field is upward.

The case κ = 0 refers to an absence of gravity; that is g = 0, and the mean curvature H in
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this case is constant.

Definition of a Corner: Let Ω be a connected domain. Then we say that Ω has

a corner at O = (0, 0) if and only if O ∈ ∂Ω, and there exists δ > 0, α ∈ [0, π], and

θ1, θ2 ∈ C0([0, δ] :→ C0((−π, π)) such that θ1(r) < θ2(r) for each r ∈ (0, δ), and

lim
r↓0
θ1(r) = −α, lim

r↓0
θ2(r) = α,

Ω ∩D(δ) = {(r cos(θ), r sin(θ)) : 0 < r < δ, θ1(r) < θ < θ2(r)}

where

D(δ) = {x ∈ R2 : |x| ≤ δ}.

We write

∂+Ω = {(r cos(θ2(r)), r sin(θ2(r))) : 0 < r ≤ δ},

and

∂−Ω = {(r cos(θ1(r)), r sin(θ1(r))) : 0 < r ≤ δ}.

Let Ω ⊂ R2,O =(0, 0) be a corner. We assume that ∂Ω is piecewise smooth, and tangent rays

to ∂Ω make an angle of 2α at O and θ = ±α are the tangent rays to ∂Ω at O. If 0 < α < π/2

then we say that the corner is convex, while if π/2 < α < π then we say that the corner is

nonconvex, or re-entrant. If α = 0 or π then the region has a cusp.

2.3 Dirichlet Problem

Let Q be an elliptic differential operator. Then, we define the Dirichlet problem as the

problem of finding a solution to the equation
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Qu = 0 in Ω

subject to the condition

u = φ on ∂Ω

for some ϕ ∈ L1(∂Ω).

Theorem 2.1. (Uniqueness Result): Let Q be elliptic operator in the bounded region Ω. Let

u, v ∈ C2(Ω) ∩ C0(Ω̄). If Qu = Qv in Ω and u = v on ∂Ω then u = v in Ω.

Proof. See [14], Theorem (10.2).

2.4 Variational Solutions

A classical solution of a partial differential equation is a function that satisfies the equa-

tion and the boundary condition at every point of the domain. But, because of the lack of

regularity, we don’t always expect classical solutions to exist. For example, Korevaar [15]

provided a solution of a capillary problem that is discontinuous at the corner. Hence, we need

a weaker concept of “solution”, that is a weak or generalized solution. We can obtain such

solution by two approaches, the Perron method and the variational method. This section is

devoted to the second type.

Definition of Locally Lipschitz Domains: Let Ω ⊂ Rn be an open connected set,

with boundary ∂Ω. The boundary ∂Ω is called a locally Lipschitz boundary if for each point

x ∈ ∂Ω, there is a neighborhood of x, say Ux such that ∂Ω ∩ Ux is the graph of a Lipschitz

continuous function.

Definition of Functions of Bounded Variations: Let Ω be an open bounded domain

in Rn. A function f ∈ L1(Ω) is said to be of bounded variation on Ω if
∫

Ω
|Df | <∞, where
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∫
Ω

|Df | = sup{
∫
Ω

f · div(g)dx : g ∈ C1
0(Ω; Rn) , |g(x)| ≤ 1 forx ∈ Ω}.

The set of all functions of bounded variations on Ω is denoted by BV (Ω). The integral∫
Ω
|Dv| is called the total variation of u in Ω, and denoted by V (u,Ω).

Variational Method: Let Ω ⊂ Rn be an open connected set, with ∂Ω locally Lipschitz.

Consider the following energy functional

M(v) =

∫
Ω

√
1 + |∇v|2dx+

∫
Ω

v∫
0

H(x, t)dtdx

where

v = ϕ on ∂Ω

for some ϕ ∈ L1(∂Ω).

G. Williams proved [17] that if Ω is a bounded domain with a locally Lipschitz boundary,

H(x, t) increases in t, H(x, t0) ∈ Ln(Ω) for each fixed t0 ∈ R, ϕ ∈ L1(∂Ω), and ψ ∈ W 1,∞(Ω)

such that ψ ≤ ϕ on ∂Ω, then we have

inf
K1

M(v) = inf
K2

{M(v) +

∫
∂Ω

|v − ϕ| dHn−1}

where K1 = {v ∈ W 1,1(Ω) : v ≥ ψ in Ω, v = ϕ on ∂Ω}, K2 = {v ∈ BV (Ω) : v ≥ ψ in Ω}.

2.5 Behavior of Capillary Surfaces Near Corners

The central question that addresses this theme is the following: How does a generalized

solution of a capillary problem behave near the corner ? For a convex corner, and a constant

contact angle γ, Paul Concus and R. Finn showed that if
∣∣π

2
− γ
∣∣ ≤ α then f is bounded

in Ω. Also for a convex corner, L. Simon [18] proved that if
∣∣π

2
− γ
∣∣ < α then f is C1 up

to the corner. Tam [19] proved that f and the normal vector are continuous up to the
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corner in the borderline case
∣∣π

2
− γ
∣∣ = α. It is worth noting that there is a general existence

theory that covers the case κ ≥ 0 and an existence theorem for κ < 0 and |κ| small. K.

Lancaster and D. Siegel [20] proved that a bounded capillary solution with contact angle

γ : ∂Ω→ (0, π) which need not be continuous, must be continuous at O if
∣∣γ+

0 − γ−0
∣∣ ≤ π−2α,

and
∣∣γ+

0 + γ−0 − π
∣∣ < 2α where γ+(s) and γ−(s) denote γ along the arcs ∂Ω+ and ∂Ω−

respectively, where s = 0 corresponds to the corner O, and γ±0 = lim
s↓0
γ±(s) where 0 < γ±0 < π.

For a nonconvex corner, if κ > 0 then the solution exists over piecewise smooth domains

Ω. If κ = 0, γ is constant, and ∂±Ω straight boundary segments forming a convex corner,

Concus and Finn showed that a bounded solution exists in a neighborhood of O only if∣∣π
2
− γ
∣∣ ≤ α. Korevaar [15] gave examples of capillary surfaces that are discontinuous at the

corner, and for any γ, 0 < γ < π/2.

2.6 Central Fans

Definition of Radial Limits: Suppose Ω has a corner at O and f ∈ C0(Ω). We say

that the radial limit of f at O in the direction θ ∈ (−α, α) exists if and if the following limit

exists

Rf(θ) = lim
r↓0
f(r cos(θ), r sin(θ))

Definition of Fans: We say that the radial limit of f at O has a fan if and only if there

exist α1, α2 ∈ [−α, α] , α1 < α2 such that Rf(θ) = Rf(α1) for all θ ∈ [α1, α2]. We say that

the angular interval [α1, α2] is a fan. If α > π/2 and α2 − α1 = π we say the radial limit of

f at O has a central fan [α1, α2].

The main Theorem of the existence of central fans is the following Theorem due to

Lancaster and Siegel [20].

Theorem 2.2. (Existence of central Fans): Let Ω ∈ R2, and Ω∗ = Ω∩Bδ(O) for some δ > 0.

Let f be a bounded solution to a capillary equation satisfying the contact angle condition on

∂±Ω∗ \ {O}, discontinuous at O, with
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0 < γ0 ≤ γ±(s) ≤ γ1 < π.

If α ≥ π/2 then Rf(θ) exists for all θ ∈ [−α, α]. If α < π/2 and there exists constants

γ±, γ̄±, 0 < γ± ≤ γ̄ < π satisfying γ+ + γ− > π − 2α and γ̄+ + γ̄− < 2α + π, so that γ± ≤

γ±(s) ≤ γ̄± for all s, 0 < s < s0 for some s0. then again Rf(θ) exists for all θ ∈ [−α, α].

Furthermore, in either case, Rf(θ) is continuous function on [−α, α] which behaves in one

of the following ways:

(i) There exists α1, α2 so that −α ≤ α1 < α2 ≤ α, and Rf is constant function on

[−α, α1] and [α2, α], and strictly increasing or strictly decreasing on [α1, α2]. Label these

cases (I) and case (D), respectively.

(ii) There exists α1, αL, αR, α2 so that

−α ≤ α1 < αL < αR < α2 ≤ α

with αR = αL+π, and Rf is constant on [−α, α1], [αL, αR], and [α2, α] and either increasing

on [α1, αL] and decreasing on [αR, α2] or decreasing on [α1, αL] and increasing on [αR, α2].

Label these case (ID) and case (DI), respectively.

Proof. See [20], Theorem 1.

Note that the existence of central fans is concluded from (ii) in the re-entrant corner

cases. Since the size of the central fan is π, then it cannot exist for domains with convex

corners. The fans where Rf is constant on [−α, α1], and [α2, α] are called “side fans”.

Lancaster and Siegel concluded the following two important corollaries.

Corollary 2.1. Let f be a bounded solution to (2.1) satisfying (2.2) on ∂±Ω \ O, with

lim
s↓0
γ±(s) = γ0, 0 < γ0 < π. Then for α ≥ π/2, case (ID) cannot occur when α+ γ0 ≤ 3π/2,

and case (DI) cannot occur when α ≤ γ0 +π/2. If α < π/2 and |π/2− γ0| < α or if α = π/2

then f must be continuous up to O.
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Corollary 2.2. Let Ω ∈ R2 be a connected open subset that is symmetric about the x−axis,

α ≥ π/2, γ(x,−y) = γ(x, y) for all x ∈ ∂Ω, and lim
s↓0
γ±(s) = γ0, satisfying

α− π/2 ≤ γ0 ≤ π/2 or π/2 ≤ γ0 ≤ 3π/2.

Let f(x, y) be a bounded solution to (2.1) satisfying (2.2) that is even in y. Then f must be

continuous up to O. The condition on the symmetry of f is automatic when κ ≥ 0.

Theorem 2.3. (Concus-Finn Conjecture): Let Ω ∈ R2 be a connected open subset, with

0 < α < π/2,. Suppose that lim
s↓0
γ±(s) = γ±0 , where 0 < γ−0 , γ

+
0 < π. If 2α +

∣∣γ+
0 − γ−0

∣∣ > π

then any solution to (2.1) and (2.2) with κ ≥ 0 has a jump discontinuity at O.

Proof. See [21].

A nonconvex version of the conjecture has also been proved by Lancaster in 2010.

Theorem 2.4. Let Ω ∈ R2 be a connected open subset, with π/2 ≤ α ≤ π. Let f ∈

C2(Ω) ∩ C1(Ω̄ \ {O} be a bounded solution of (2.1), (2.2). Suppose lim
s↓0
γ±(s) = γ±0 where

0 < γ−0 , γ
+
0 < π. If

2α +
∣∣γ+

0 − γ−0
∣∣ > π

then f is discontinuous at O whenever

∣∣γ+
0 − γ−0

∣∣ > 2α− π,

or

∣∣γ+
0 + γ−0 − π

∣∣ > 2π − 2α.

Proof. See [22], Theorem 2.1.

The main comparison principle that will be used is the following one

11



Theorem 2.5. (Concus-Finn Comparison Principle): Let κ ≥ 0, and N(u) ≥ N(v) in Q,

where Q is an elliptic operator and N(u) = div(Tu)−κu. Assume that u ∈ C2(R) and N(u) =

0. Let
∑

be the boundary of Ω, and assume it admits a decomposition
∑

=
∑

α ∪
∑

β ∪
∑

0

such that
∑

0 can be covered, for any ε > 0 by a countable number of discs Bδi of radius δi

such that
∑
δi < ε, and no regularity hypothesis needed on

∑
α or

∑
0. Suppose that

v ≥ u on
∑

α

ν · Tv ≥ ν · Tu on
∑

β

Then we have the following:

(i) If k > 0 or if
∑

α 6= ∅ then v ≥ u in Ω. Equality holds at any point if and only if v = u

(ii) If k = 0,
∑

α = ∅ then v(x) = u(x)+constant in Ω.

Proof. See [13], Theorem 5.1.

12



CHAPTER 3

3 TECHNICAL PREPARATORY RESULTS

3.1 Statement of The Problem

Studying the behavior of solutions of capillary boundary value problems near a re-entrant

(or nonconvex) corner is a central topic in the geometric analysis of capillary surfaces, since it

gives us good insight into the structure of the solution, and may suggest numerical techniques

for computing solutions of these partial differential equations. The question of whether

central fans exist or not is significantly important, and may lead to the question whether a

solution of the equation is continuous at the corner or not.

In his 1997 Math Reviews Featured Review of [20], Robert Finn wrote: “The paper is

perhaps as important for questions to which it calls attention as for those it answers. Notably,

no general conditions are presented under which a central fan will appear.”

In the 2004 Pacific Journal of Mathematics article “On a Theorem of Lancaster and

Siegel”, Danzhu Shi and Robert Finn [23] proved that a symmetry condition for the domain

and contact angle which Lancaster and Siegel assumed is necessary; they did this by making

an arbitrarily small, specific perturbation of the geometry of the domain in a particular case

and showing that the central fan which had existed in the symmetric case did not exist in

the perturbed case. One conclusion which this article might suggest is that central fans are

unstable. This dissertation is concerned with investigating the following questions:

1. Can capillary surfaces whose geometry or contact angle is not symmetric about the

x-axis have central fans?

2. Are central fans stable with respect to the “right” topology?

These questions may not have complete, nontrivial answers. In my dissertation, I have

investigated these questions by positively answer (2) in a manner that establishes examples

which positively answer (1). I will prove that these central fans are stable with respect to
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restricted perturbations of the contact angle. The idea used is to perturb the contact angle

of a capillary surface which has a central fan and show that the perturbed capillary surface

still has a central fan. The perturbation in question is allowed to break the symmetry of the

problem by breaking the symmetry of the contact angle; this provides examples which answer

(1) in a positive manner and shows that central fans are stable in a particular topology.

3.2 Lemmas

The following Lemmata and Theorems will be used in Chapter 4 to establish the stability

of central fans. From now on, we assume κ > 0.

Lemma 3.1. Let Ω be a bounded open domain in R2 with Lipschitz boundary and let Γ

be an open subset of ∂Ω which is a C4 curve. Let γ ∈ L∞(∂Ω) satisfy δ ≤ γ ≤ π − δ

almost all on ∂Ω for some δ > 0 and γ ∈ C1,β(Γ) for some β ∈ (0, 1). Suppose there exists

f ∈ C2(Ω) ∩ L∞(Ω) which satisfies

div(Tu) = κu in Ω (3.1)

and

Tu · ν = cos(γ) on Γ, (3.2)

where

Tf =
∇f√

1 + |∇f |2
.

Then f ∈ C2(Ω ∪ Γ).

Proof. This follows from the proof of Theorem 1 of [12], which relies on local arguments (e.g.

page 31 of [12]).

Lemma 3.2. Let Ω be a bounded open domain in IR2 with Lipschitz boundary and let Γ be an

open subset of ∂Ω which is a C1,β curve for some β ∈ (0, 1). Let φ ∈ L∞(∂Ω) be in C1,β(Γ).

14



Suppose g ∈ C2(Ω) ∩ L∞(Ω) is the variational solution of

div(Tu) = κu in Ω and u = φ on ∂Ω;

that is, g minimizes J(·) over BV (Ω), where

J(u) =

∫
Ω

√
1 + |Du|2 +

∫
Ω

u∫
0

κtdtdx+

∫
∂Ω

|u− φ| ds

for u ∈ BV (Ω). Set

T = {(x, t) ∈ Γ× IR : min{φ(x), g(x)} ≤ t ≤ max{φ(x), g(x)}}

and let G be the graph of g over Ω. Then for each x0 ∈ Γ, there exists a δ > 0 such that

{x ∈ ∂Ω : |x − x0| ≤ δ} ⊂ Γ and {(x, t) ∈ T ∪ G : |x − x0| < δ} is a C1,β manifold

-with-boundary whose boundary is {(x, φ(x) : x ∈ Γ, |x− x0| < δ}.

Proof. The proof follows from the proof of Theorem 4.2 of [24].

Theorem 3.1. Let Ω be a bounded open domain in R2 with Lipschitz boundary and let Γ

be an open subset of ∂Ω which is a C4 curve or a finite disjoint union of C4 curves. Let

γ ∈ L∞(∂Ω) satisfy δ ≤ γ ≤ π − δ almost all on ∂Ω for some δ > 0 and γ ∈ C1,β(Γ) for

some β ∈ (0, 1). Suppose there exists f ∈ C2(Ω)∩L∞(Ω) which satisfies (3.1) and (3.2). Let

ε > 0. Define g = gε ∈ BV (Ω) to be the minimizer over BV (Ω) of Jε(·), where

Jε(u) =

∫
Ω

√
1 + |Du|2 +

∫
Ω

u∫
0

ktdtdx+

∫
∂Ω

|u− (f + ε)| ds

for u ∈ BV (Ω). We have the following:

(i) g ∈ C2(Ω) and satisfies (3.1).
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(ii) g ∈ C1,β(Ω ∪ E) for each compact subset E of Γ and hence the contact angle

γg
def
= arccos (Tg · µ) ∈ [0, π] (3.3)

is well-defined and continuous on Γ, where µ denotes the outward unit normal to ∂Ω.

(iii) Suppose there is a finite set A = {x1, . . . , xm} ⊂ ∂Ω such that Γ = ∂Ω \ A. Then

f ≤ g ≤ f + ε in Ω.

(iv) Suppose there is a finite set A = {x1, . . . , xm} ⊂ ∂Ω such that Γ = ∂Ω\A. Then γg < γ

on Γ.

Proof. (i) Notice that the existence of g follows from Theorem 5 of [11], or Theorem 2.1 of

[7]. The interior regularity of g follows from Theorem 3.1 of [7] (see also [11], page 174; [28],

Theorem 3). The fact that g satisfies (3.1) is standard (e.g. [11], page 174).

(ii) The boundary regularity of g follows from Lemma 3.2.

(iii) Notice that f, g ∈ C2(Ω) ∩ C0(Ω ∪ Γ). Set M = {x ∈ Ω : f(x) > g(x)}. On ∂M ∩ Γ,

g < f + ε and so (ii) implies that γg = 0 on ∂M ∩ Γ. Thus f = g on Ω ∩ ∂M and γg = 0

almost everywhere on ∂Ω ∩ ∂M and so the General Comparison Principle (Theorem 2.5)

implies f ≤ g in M ; hence M = ∅.

Now let τ > 0 and set N = {x ∈ Ω : g(x) > f(x) + ε + τ}. Then g = f + ε + τ on

Ω∩ ∂N and g > f + ε on ∂N ∩ Γ and so (ii) implies γg = π almost everywhere on ∂Ω∩ ∂N.

The General Comparison Principle then implies g ≤ f + ε + τ and so N = ∅. Therefore

g ≤ f + ε+ τ in Ω for each τ > 0 and so g ≤ f + ε in Ω.

(iv) Suppose first x ∈ Γ and there is a sequence {yj} in Γ such that x = limj→∞ yj and

g (yj) < f (yj) + ε for each j. Then (ii) implies γg (yj) = 0 for each j and so γg(x) = 0. Since

γ ∈ (0, π), we see that γg(x) = 0 < γ(x).

Suppose next that x ∈ Γ and g ≥ f + ε in P ∩ Γ, where P is a neighborhood of x in IR2.

From (iii), we see that g = f+ε in P∩Γ. If γg(x) > γ(x), then g (x− tµ(x)) > f (x− tµ(x))+ε
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for t > 0 small and this contradicts (iii). (Recall that µ(x) is the exterior unit normal to ∂Ω

at x.) Thus γg ≤ γ on Γ.

Finally, suppose x ∈ Γ, γg(x) = γ(x) and g = f + ε in P ∩ Γ, where P is a neighborhood

of x in IR2. Since g ≤ f + ε in Ω and γg(x) = γ(x), the tangent plane Πg to z = g at (x, g(x))

and the tangent plane Π to z = f + ε at (x, g(x)) = (x, f(x) + ε) must coincide. Now the

mean curvature Hg of z = g at (x, g(x)) is κg(x)/2 and the mean curvature Hf of z = f + ε

at (x, g(x)) is κf(x)/2 = (κg(x)− κε)/2. Since g = f + ε in P ∩ Γ, the (signed) curvature

of the curve z = f (x− tµ(x)) + ε must be strictly less than the (signed) curvature of the

curve z = g (x− tµ(x)) for t > 0 small and so g (x− tµ(x)) > f (x− tµ(x)) + ε for t > 0

small, in contradiction to (iii).

Example 3.1. (Estimation of The Perturbation of The Contact Angle).

In this example, we find a lower bound of the gap difference between γ and γg. Consider a

cylindrical tube made of silver, and with radius 1 cm, with distilled water in it. The contact

angle of the water in a silver container is approximately equal to π/2, so the capillary surface

is horizontal. Let f be that surface, and consider g in Theorem 3.1, and assume that g = ε

on ∂Ω. Raise f by ε units up, and consider the lower hemisphere of radius R ≥ 1, say p(r),

such that p(1) = ε. The equation of p is

p(r) = ε+
√
R2 − 1−

√
R2 − r2.

Notice that p(0) = ε+
√
R2 − 1−R, and since p(0) < p(r) < 1, we can set

2

κR
≤ ε+

√
R2 − 1−R, (3.4)

that is

2

κR
≤ p(0) ≤ p(r) ≤ p(1) = ε,
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or in other words

−κε = N(f + ε) ≤ 2

R
− κp ≤ N(g) = 0.

By Concus-Finn comparison principle, we get g ≤ p ≤ f + ε and so γg < γp <
π
2
. Hence, we

obtain

π

2
− γg ≥

π

2
− γp. (3.5)

Calculations show that

cosγp =
1

R
,

Letting R = 2, then from (3.4) we choose ε = 2−
√

3 + 1/κ. We obtain γp = π/3, i.e. from

(3.5) we conclude

γ − γg ≥
π

2
− π

3
=
π

6
.

This example shows that a lower estimation can be found for the gap difference between the

contact angles of f and g.

Theorem 3.2. Let Ω be a bounded open domain in R2 with Lipschitz boundary and let Γ be

an open subset of ∂Ω which is a C4 curve or a finite disjoint union of C4 curves. Suppose

there is a finite set A = {x1, . . . , xm} ⊂ ∂Ω such that Γ = ∂Ω \ A. Let f, ε > 0 and g = gε

be as in the previous Theorem. Let σ ∈ C1,β(Γ) ∩ L∞(∂Ω) satisfy

γg(x) ≤ σ(x) ≤ γ(x) for almost all x ∈ ∂Ω. (3.6)

Then the variational solution h of (3.1)-(3.2) with γ replaced by σ in (3.2) satisfies

f ≤ h ≤ g ≤ f + ε in Ω; (3.7)
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here h is the minimizer over BV (Ω) of K(·), where

K(u) =

∫
Ω

√
1 + |Du|2 +

∫
Ω

u∫
0

κtdtdx−
∫
∂Ω

cos(σ)u ds

for u ∈ BV (Ω).

Proof. The variational solution h of (3.1)-(3.2) exists by Theorem 7.9 of [13]). From (3.6)

we obtain

cosγ(x) ≤ cosσ(x) ≤ cosγg(x),

that is

T (f) · ν ≤ T (h) · ν ≤ T (g) · ν (3.8)

Using (3.8), we apply Concus-Finn comparison to u = f, v = h and u = h, v = g in both

examples, so we conclude that

f ≤ h ≤ g ≤ f + ε in Ω. (3.9)

The theorem is therefore proved.
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CHAPTER 4

4 THE MAIN RESULT

4.1 Stability of Central Fans

Theorem 4.1. Let Ω ∈ R2 be an open, connected, bounded Lipschitz domain, that is symmet-

ric about the x−axis with a boundary ∂Ω ∈ C4 except at a corner O with an openning angle

2α, with α > π/2. Suppose γ : ∂Ω→ (0, π) is a piecewise C1,β map, γ(x,−y) = γ(x, y), and

f ∈ C2(Ω) ∩ C1,β(Ω̄ \ {O})

is a solution of (3.1) and (3.2).

Let γ+(s) and γ−(s) denote γ along the arcs ∂Ω+ and ∂Ω− respectively, where s = 0 corre-

sponds to the corner O and

γ0 = lim
s↓0
γ±(s), where 0 < γ±0 < π.

If γ0 < α− π/2 then f has a central fan at O.

Proof. Since γ0 < α− π/2 then we get

|2γ − π| > 2π − 2α.

By Theorem 2.4, this implies that f is discontinuous at O. Since f is even in y, the radial

limits of f cannot behave as (I) or (D) of Theorem 2.2, therefore it behaves as (ID) or (DI)

of Theorem 2.2, in which we conclude that there exists a central fan at O.

Theorem 4.2. Let Ω, f, and γ be as in the previous Theorem. Suppose there exists a central

fan at the corner O = (0, 0), and assume that we have the following case

Rf(α) > Rf(0) and Rf(−α) > Rf(0).

20



Then, there exists δ > 0 such that for every ε ∈ (0, δ], the solution h to the capillary problem

div(Tu) = κu in Ω (4.1)

subject to the condition

Tu · ν = cosσ on ∂Ω (4.2)

where

γg(x) ≤ σ(x) ≤ γ(x),

and g ∈ BV (Ω) minimize

J(u) =

∫
Ω

√
1 + |Du|2 +

∫
Ω

u∫
0

ktdtdx+

∫
∂Ω

|u− (f + ε)| ds

for u ∈ BV (Ω), has a central fan.

Proof. Choose δ to be

1

3
min{Rf(α)−Rf(0), Rf(−α)−Rf(0)},

and let ε ∈ (0, δ]. Then by (3.9) we get

Rf(θ) ≤ Rh(θ) ≤ Rf(θ) + ε for θ ∈ [−α, α]. (4.3)

In particular, we have the following

0 ≤ Rh(α)−Rf(α) ≤ ε,

0 ≤ Rh(0)−Rf(0) ≤ ε,
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and

0 ≤ Rh(−α)−Rf(−α) ≤ ε.

We obtain

Rh(α)−Rh(0) ≥ (Rf(α)− ε)− (Rf(0) + ε)

= (Rf(α)−Rf(0))− 2ε ≥ ε.

and

Rh(−α)−Rh(0) ≥ (Rf(−α)− ε)− (Rf(0) + ε)

= Rf(−α)−Rf(0)− 2ε ≥ ε.

Thus, h has a central fan. We conclude that under a small perturbation of the capillary

surface having a central fan, the resultant surface is capillary will preserve the central fan.

In other words, central fans are stable with respect to small changes in contact angles.

4.2 Examples

Example 4.1. (Stability of a Central Fan I).

Consider Figure 1 of [23]. Let ∂Ω and γ be as in Theorem 4.1. Let α = 7π/8, and consider

a bounded function f(x, y) that is even in y, and is a bounded solution to a capillary problem

with a contact angle γ ≤ π/4. Notice that in this case, we have

γ < α− π/2

Since Ω is symmetric, and then cases (I) and (D) cannot hold. By Theorem 2.5, a central fan

exists. Since α + γ ≤ 3π/2 then according to corollary 2.1 case (ID) cannot occur. So, we
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conclude that the radial limit behaves as (DI). Consider g as in Theorem 4.2, and perturb

the angle γ as we did in the Theorem, so that γg ≤ σ ≤ γ, and consider the solution h

to (4.1) and (4.2). Then, by Theorem 4.2 we conclude that h also has a central fan. This

implies that radial limit of h has a central fan, and behaves as (DI), exactly as that of f.

Example 4.2. (Stability of a Central fan II).

Let a square Γ be at the middle of a disc C, and consider Ω = C \ Γ. Clearly, there

are four corners with α = 3π/4. Let κ ≥ 0, and let f(x, y) be the solution to the capillary

problem in Ω, that is even with y, and with a contact angle γ < π/4. Then by Theorem

2.4, the function f is discontinuous at O. Also, from corollary 2.1 the case (ID) cannot

occur. Also, (I) and (D) cannot occur because of the symmetry, therefore the radial limits

of f behave as (DI). Again, perturb γ as we did in the previous example, and consider the

solution h to (4.1) and (4.2). Theorem 4.2 shows that the radial limits of h behave as (DI).
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CHAPTER 5

5 CONCLUSION

5.1 Applications of The Results

Chemists, engineers, physicists and others who study surface chemistry, capillarity and

related topics have developed empirical methods of predicting and explaining capillary ef-

fects. The mathematical theory of capillarity was developed in 1805-6 by Young and Laplace

and placed on a firmer theoretical foundation in 1830 by Gauss, before physicists, chemical

engineers and others developed and began using sophisticated experimental techniques to

investigate surface tension, surfactants, wetting and dewetting of surfaces, the relationship

between surface roughness and the wetting phenomenon, etc.

The principal conclusion of this work is the proof that in specific configurations, the

existence of central fans of radial limits of nonparametric capillary surfaces is a stable math-

ematical phenomenon. I wish to discuss the relationship of this work to the following items.

(1) The validity of the Young-Laplace-Gauss theory has been challenged over time. Is this

theory appropriate for its applications? In particular, does this theory yield conclu-

sions which can be tested experimentally? The answer to this last question is “yes”.

In a series of experiments proposed by Paul Concus (UC Berkeley) and Robert Finn

(Stanford) and conducted in NASA drop towers, during space shuttle missions and

on the MIR space station, the predictions of the mathematical theory were tested

and were found to be correct; the symmetry breaking of a symmetric capillary prob-

lem occurred as predicted by the Young-Laplace-Gauss theory, for example, during

an experiment on the MIR station. Since the results here require positive gravity,

they represent predictions of the Young-Laplace-Gauss theory which do not require

space travel in order to be tested. Chemical engineers, physicists, etc. often apply

a variety of empirical rules (e.g. “advancing” contact angles, “receding” contact an-

gles) and may question the Young-Laplace-Gauss theory. The conclusions obtained
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here may lead to experiments which, like the various NASA experiments, may confirm

that the Young-Laplace-Gauss theory offers a useful mathematical description of the

macroscopic behavior of fluid surfaces.

(2) Central fans are important because they represent a type of boundary behavior which

was completely unexpected by the experts. For example, when, in 1973, Paul Concus

computed a nonparametric minimal surface in an L-shaped (i.e. L-Shaped Tromino)

domain, he correctly assumed the radial limits at the reentrant corner existed but

incorrectly predicted the behavior of these radial limits (i.e. a central fan existed at

the reentrant corner but his a priori assumptions about the behavior of these radial

limits prevented him from realizing this). The central fan question of finding necessary

and sufficient conditions for the existence of central fans may be extremely difficult, but

initial steps like the one here which examines the stability of central fans are important

for understanding the question and the obstacles to its solution.

(3) What are applications of the work here? Our knowledge of industrial application of this

work is limited. One place where my results might have application is in the process of

“dip coating” certain types of capacitors. The DuPont company creates certain types

of capacitors by dipping a block of material into a solution and allowing the solution

to wet the bottom and portion of the sides of the block. The area and shape of the

coated region can influence the electrical and magnetic properties of the capacitor. If

the horizontal dimensions of the block are equal (i.e. the projection of the block is

a square), then the symmetry conditions in Corollary 2.2 are satisfied (provided the

container in which the block sits satisfy these conditions), and the capillary surface

will either be continuous at the corner or have a central fan. If this symmetry is

broken slightly, the results here suggest that the top of the coating (i.e. trace of the

capillary surface) may continue to be continuous or “nearly” continuous, which might

be advantageous to DuPont. (See [26]).
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(4) In example 4.1, and 4.2, we perturb the contact angle of a capillary surface with a

central fan γ < π/4, to retain the central fan after perturbation. In fact, if γ = π/4,

then γ = α− π/2, and according to corollary (2.2), we conclude that the function f is

continuous at the corner, so a small perturbation causes the continuity to vanish and

central fans would replace it. On the other hand, we found that central fans resist small

perturbations. The results in this study, as illustrated by the examples, are evidence

that reducing the contact angle with a small change may not affect the central fan,

and they will continue to exit. It turns out that central fans can be more stable than

continuity at the nonconvex corner. Maximizing the capillarity of fluids (and hence

reducing their contact angles) is widely used in industry. Battery manufacturers seek to

maximize the capillarity of the electrolytes to maintain the contact with the electrodes.

Since these results show that the central fans of the liquid is stable over the nonconvex

corners, I hope this will help to improve their products.

(5) It is a well known fact that raising temperature of the liquid reduces it’s surface tension.

This is because the temperature causes the kinetic energy of the molecules to increase,

therefore causing the cohesive forces between them to reduce. Thus, if a liquid is in a

capillary tube, then adhesive forces between molecules of the liquid and the molecules

of the walls will increase, and thus more liquid molecules will be attracted to the wall,

and this will result in reducing the contact angle. I hope battery manufacturers and

other manufacturers dealing with electric circuits can take advantage of my results to

improve the resistance efficiency of their products that are exposed to overheating and

are influenced by temperature, and to help them in extending the end of life of their

products.
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