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SUMMARY

Sea level rise (SLR) is one of the most damagingatts associated with climate change.
An important aspect of SLR analysis is to charamteits spatial variability, so that
potential threats of SLR to local regions of ingtrean be assessed more accurately.
Despite various studies on geographical patterntifiization of sea level change, the
related physical, empirical, and stochastic modetsstill in a fairly preliminary stage.
The objective of this study is to develop a comprative framework to identify the
spatial patterns of sea level in the historicabrds, project regional mean sea levels in

the future, and assess the corresponding impadtseoroastal communities.

In the first part of the study, a spatial patteeeagnition methodology is developed to
characterize the spatial variations of sea levdltarinvestigate the sea level footprints of
climatic signals. Utilizing clustering algorithnifis methodology is capable of grouping
sea level data with changing magnitude of spatalations over time into separate
regions, and it also has the functionality to ass® relative strengths of different
climate phenomena’s sea level footprints. Wheniaggb a spatial sea level dataset for
the period of 1950 to 2001, the pattern recognitioathodology identified spatial

patterns in the data that are potentially assatiatgh climate phenomena such as El
Nino-Southern Oscillation (ENSO), Pacific Decadascillation (PDO), and North

Atlantic Oscillation (NAO). ENSO was evaluated &g tstrongest spatial signal in the
data, which supports related findings of previowslies. A technique based on atrtificial
neural network is subsequently proposed to recoctstaverage sea levels for the
characteristic regions identified. Utilizing theraative relationship between sea level
and sea surface temperature (SST), the neural netakes regional average SST's and

global average sea level as input variables, agdnerates regional average sea levels as

Xii



outputs. By applying this neural network approaaygional average sea levels were
reconstructed for the characteristic regions idiectiby the pattern recognition technique,

as well as regions based on major ocean basins.

In the second part of the study, a spatial dynawstem model (DSM) is developed to
simulate and project the changes in regional seddeand sea surface temperatures (SST)
under different development scenarios of the wolchong the four marker scenarios
and two illustrative scenarios proposed by thergueernmental Panel on Climate
Change (IPCC), the highest and the lowest projeSt®@'s occur under scenarios A1FI
and B1, respectively, responding to the highestthadowest predicted global mean £O
concentrations. The highest sea levels are predeteler the scenario ALFI, ranging
from 71 cm to 86 cm (relative to 1990 global meaa kevel); the lowest predicted sea
levels are under the scenario B1, ranging frombli@ 64 cm (relative to 1990 global
mean sea level). Predicted sea levels and SSTtkeofndian Ocean are significantly
lower than those of the Pacific and the Atlantiee@t under all six scenarios. Sea levels
projected by the spatial DSM models are generalyel than those by previous semi-
empirical sea level models, which reflect the intance of feedback mechanisms to the

dynamic system of sea level and SST.

The third part of this dissertation assesses thadation impacts of projected regional
SLR on three representative coastal U.S. statesighra geographic information system
(GIS) analysis, namely Florida, Georgia and Newseer Remarkably different
magnitudes of land inundation were projected feséhthree study regions, which reflect
the variations among their land topography. Thgegted total area of land inundation
from 2010 to 2100 is about 3,000 square miles foridkla under all six IPCC SRES
scenarios, making it the most severely affectedioregamong the three. The

corresponding value for Georgia ranges from 20376 square miles, while that range
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for the state of New Jersey is from 142 to 202 sxjuales. These projections correspond
to about 5.4%, 0.3% - 0.6%, and 1.9% - 2.7% ofdineent total land area of Florida,

Georgia, and New Jersey. The importance of comgisievation datum referencing and
data accuracy was demonstrated through the exashplerida, suggesting the necessity
of examining the reference datum issue and eskahdjshigh accuracy elevation data for

future research.
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CHAPTER 1

INTRODUCTION

1.1 Background

Sea level rise (SLR) is becoming one of the moateming environmental issues faced
by the human society. According to the Intergoveental Panel on Climate Change
(Meehl et al., 2007), the average rate of globadm8LR over the FDcentury is 1.5-2.0

mm/yr, the average value for the period 1961-2@0&oout 1.8 mm/yr, and that for 1993-
2003 is about 3.1 mm/yr. Since 160 million peoplerently live in coastal regions that
are less than 1 meter above sea level (Allisonlet2809), even relatively small

magnitude of sea level rise can pose significaneatls to human populations and

properties close to the coast.

Different processes in the Earth system with padéint non-linear interactions can
contribute to sea level change. On decadal an@ddnge scales, global mean sea level
rise is mainly caused by four mechanisms: (i) trerexpansion of sea water; (ii) melting
of mountain glaciers and polar ice sheets; (iiijnlan interventions in the hydrologic
cycle (dam building, extraction of groundwater,.etand, (iv) vertical land movement
associated with glacial isostatic adjustment (G[{&pzenave et al., 2008) and other
geological phenomena. Note that mechanisms sugi)asd (iv) are not directly related
to climate change at relevant time scales. Accglginthese mechanisms should be

excluded from the quantification of sea level associated with climate change.

To quantitatively investigate the phenomenon ofleegal change, researchers have long

been devoted to building mathematical models. Brtesv/imodels adopted to study the



phenomenon of SLR can be generally divided into ¢ategories: (i) those that are based
on physical processes, and (ii) those that aredbase¢he statistical/empirical relationship
between sea level and other variables of the olimmtstem (i.e., global surface

temperature).

Models based on physical processes conceptualigadihe total global mean change
into contributions by thermal expansion of the egeaountain glaciers and ice caps, and
ice sheets. The spatial pattern of sea level (dyndapography) is affected by the
ocean’s density structure and dynamics, which anthér maintained by air-sea fluxes of
heat, freshwater and momentum. These physical maoldeh calculate the contribution to
sea level change by each component separately ukifggent formulations of the
physical processes under consideration. The setwae| category is frequently referred
to as the “semi-empirical” models. They utilize renoal and statistical techniques to
characterize the link between global sea levelgladal temperature based on historical
observations, which will then be used to projee thture. The term “semi-empirical”
comes from the fact that the model formulation ioates from basic physical
considerations but parameters of the model neells tietermined empirically from data
(Rahmstorf et al., 2012). The rationale behind ewgi modeling is that all major
contributors to sea level rise will respond to tenapure change (Grinsted et al., 2010).
Accordingly, by quantifying the correlation betwesea level rise and temperature, all
known and unknown mechanisms of sea level risedcoelincorporated into the analysis

(Rahmstorf, 2007).

To incorporate the potential interactions betweea kevel and temperature and the
possible feedbacks, the semi-empirical approach dessn extended to the dynamic
system model (DSM) by recent studies (Aral et 20]12; Schmith et al., 2012). Like

previous semi-empirical models, the DSM models allgdermine their parameters



empirically from historical data. However, unlikeepious semi-empirical models, the
the DSM models take into account the possible atteons and feedbacks between sea
level and temperature, thus treating the two asrative dynamic systems (Aral et al.,

2012; Schmith et al., 2012).

The potential threats of the projected sea lews need to be quantitatively assessed to
assist managerial decision makers. Previous sthdies analyzed the inundation impacts
of potential SLR at global, regional, and locallesaAt global scale, inundation impact
assessments were conducted using geographic informsystem (GIS) methods under
hypothetical SLR on the order of magnitude of netfg@ornitz et al., 2002; Li et al.,
2009; Lichter and Felsenstein, 2012; Dasgupta. e2@0D9).

1.2 Motivation and objective

As mentioned in the previous section, climate m®desed on physical mechanisms
have been extensively adopted to simulate sea lelwahge (Meehl et al., 2007).
However, these process-based climate models, sscthea state-of-the-art coupled
atmosphere-ocean general circulation models (AOGCHKs far are still struggling to
characterize all the relevant processes adequ@ely ice loss of mountain glaciers, ice
sheet melting, etc.). Further, predictions of saell by the process-based models do not

satisfactorily match observational records (Jewiegt al., 2012).

In contrast, the semi-empirical models all repradube historical sea levels well.
However, their decadal projections of global meaa kevel are generally higher than
those obtained by physical climate models. Questltave been raised about the semi-

empirical models regarding their physical basisyall as the statistical methodologies



involved (Holgate et al., 2007; Schmith et al., 200aboada and Anadon, 2010; von
Storch et al., 2008).

A common issue faced by both process-based andesapirical models is the spatial
variability of sea level. Process-based models gdéigehave the functionality to simulate
the spatial patterns of sea level change. Howdkhese models differ significantly with
each other with respect to the simulated spatisepes (Meehl et al., 2007). In addition,
process-based models like AOGCMs are often resttlaby their computational costs,
which limit their ability to quantify the uncertdias in spatial analysis. The previous
semi-empirical models mainly target global aversge level change, and are not able to
guantitatively assess the spatial variations ineea (Grinsted et al., 2010; Horton et al.,
2008; Jevrejeva et al., 2009; Jevrejeva et al.22&bBhmstorf, 2007; Rahmstorf et al.,
2012; Vermeer and Rahmstorf, 2009).

As historical records exhibit significant spatiariations in sea level change (Church et
al., 2004) and local/regional sea level rise tlwemte particularly relevant to coastal
communities, the development of models targetirgleeel’s spatial variability is critical.
Motivated by this challenge, the central objectofethis study is to develop a spatial

dynamic system model (DSM) to simulate and prajegitonal sea levels.

Despite numerous studies on spatial variationgaflsvel in the literature (Cabanes et al.,
2006; Mitrovica et al., 2001; Mitrovica et al., Z)Pardaens et al., 2011; Wunsch et al.,
2007), few studies developed methodologies to iffespatial patterns automatically
from spatial sea level data. This study develogpatial pattern recognition technique

based on clustering algorithms to characterizeaapatriations of the sea level signal.



Time series of regional average sea level for thegmns have particular characteristics
related to corresponding climate phenomena. Terpatéerns contained in long time

series of mean sea level for these regions mayige®upport for related climate studies.
Unfortunately, spatial sea level data is scarcetameé span of spatial data sets generally
are also relatively short (Chambers et al., 200@nkhgton et al., 2012; Meyssignac et
al., 2012; Smith, 2000). To address this issuegwal network approach is proposed to
reconstruct regional mean sea level from globalnresa level and spatial temperature

data.

Despite the large number of previous studies omdation impact assessment of
potential SLR, issues still exist in the relatedmeologies. A critical issue in previous
inundation impact studies is consistent datum esfeing for sea level data and land
elevation data. The accuracy of elevation data pleys an important role in the
inundation mapping process. This study applies & @éthod to analyze the inundation
impacts by projected SLR on several coastal regminshe United States, and the

important issues are investigated through pracéxamples.

1.3 Thesis or ganization

A literature review of research topics on sea leisel modeling is presented in Chapter 2.
This chapter analyzes the strengths and limitatiafs both process-based and
empirical/semi-empirical models. Based on the asiglyareas in need of further

investigations are identified, and suggestionditure research are propose subsequently.

Chapter 3 is focused on addressing the need diesehspatial pattern characterization
and regional sea level reconstruction. A pattecogaition technique based on clustering

algorithms is developed to characterize the spaftiations of sea level. A neural



network approach is then described to reconstregional mean sea levels from time

series of global mean sea level records and spatglerature records.

In Chapter 4, a spatial form of the dynamic systeadel (DSM) is proposed to analyze
spatial variations in sea level and temperaturengba Using spatial sea surface
temperature (SST) and reconstructed spatial sed éad, the spatial DSM model was
calibrated for two different configurations: (i)texnal forcing function embedded in the
system matrix; and, (ii) external forcing functitbeated explicitly. The dynamic system
matrices identified are analyzed to describe trerattteristics of the system, and regional

sea levels and SST’s are subsequently for thec2hstiry

Inundation impacts of the spatial DSM model's pctgel sea levels are quantitatively
assessed for three representative states alorgpthiecoast of the United States, namely
Florida, Georgia and New Jersey, in Chapter 5. crhieal issues of elevation datum and

data accuracy are also discussed in this chapter.

As the last chapter, Chapter 6 summarizes the nigjdings and conclusions of this

study, and it also provides suggestions for futesearch.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Different processes in the Earth system with paént nonlinear interactions can
contribute to sea level change. On decadal aneérfdnge scales, global mean sea level
rise is mainly caused by four mechanisms: (i) tr@rexpansion of sea water; (ii) melting
of mountain glaciers and polar ice sheets; (iiijnan interventions in the hydrologic
cycle (dam building, extraction of groundwater,.gtand, (iv) vertical land movement
associated with glacial isostatic adjustment (G[(&pzenave et al., 2008) and other
geological phenomena. Note that mechanisms sug@i)asd (iv) are not directly related
to climate change at relevant time scales. Accglginthese mechanisms should be

excluded from the quantification of sea level associated with climate change.

To quantitatively investigate the phenomenon ofleegal change, researchers have long
been devoted to building mathematical models. Gkmaodels based on physical
mechanisms described in the previous paragraph baes extensively adopted to
simulate sea level change (Meehl et al.,, 2007). ¢l@®n these process-based climate
models, such as the state-of-the-art coupled atn@wspocean general circulation models
(AOGCMs), by far are still struggling to characeeri all the relevant processes
adequately (e.g., ice loss of mountain glacierg #heet melting, etc.). Further,

predictions of sea level by the process-based model not satisfactorily match

observational records (Jevrejeva et al., 2012).



The issues of process-based models, as reflectdteitatest assessment report by the
Intergovernmental Panel on Climate Change (IPCCggiM et al., 2007), led to the
relatively recent development of the alternativa $&vel change modeling approach,
generally classified as empirical or semi-empiricabdeling (Grinsted et al., 2010;
Horton et al., 2008; Jevrejeva et al., 2009; Jeweejet al., 2012; Rahmstorf, 2007;
Rahmstorf et al., 2012; Vermeer and Rahmstorf, 200Be semi-empirical models all
reproduce the historical sea levels well, but teicadal projections of global mean sea
level are generally higher than those obtainedtysigal climate models that are used in
the IPCC assessment report (Meehl et al., 2007)s,T¢uestions have been raised about
the semi-empirical models regarding their physhkzdis or lack there-of, as well as the
use of the statistical methodologies involved (Htdget al., 2007; Schmith et al., 2007;
Taboada and Anadon, 2010; von Storch et al., 2008).

A common issue faced by both process-based andesapirical models is the spatial
variability of sea level. Process-based models gdéigehave the functionality to simulate
the spatial patterns of sea level change. Howdkhese models differ significantly with
each other with respect to the simulated spati&epes (Meehl et al., 2007), putting their
validity in doubt. In addition, process-based medide AOGCMs are often restrained
by their computational costs, which limit their l#tlyi to quantify the uncertainties in
spatial analysis. The previous semi-empirical m®dehinly target global average sea
level change, and are not able to quantitativebess the spatial variations in sea level
(Grinsted et al., 2010; Horton et al., 2008; Jeaxrajet al., 2009; Jevrejeva et al., 2012;
Rahmstorf, 2007; Rahmstorf et al.,, 2012; Vermeat Rahmstorf, 2009). As records
show significant spatial variations in sea levedrope (Church et al., 2004) and local sea
level rise is particularly relevant to coastal conmities. Thus the development of models

targeting sea level’s spatial variability is cratic



In this chapter, the literature review is preserdadea level rise modeling. The focus of
this chapter is to analyze the strengths and Itroita of both process-based and
empirical/semi-empirical models. Based on the asislyareas in need of further

investigations are identified, and suggestiongudture research are provided.

2.2 Moddsbased on physical processes

2.2.1 Review of process-based models

Since the change of sea level associated with @mdlgenic climate change is mainly
concerned about, models targeting other types of Iseel change (e.g., change
associated with Earth’s Milankovitch cycles) are¢ cansidered here. Among the relevant
climate models, the most comprehensive ones arecdingled atmosphere-ocean general
circulation models (AOGCMs). AOGCMs include thrdesdnsional representation of
the major components of the climate system, nana¢tgpsphere, ocean, cryosphere, and
land surface (Randall et al., 2007). These modstscharacterize the interactions among
different components of the climate system througjated physical mechanisms to the

best of our knowledge.

With respect to the simulation of sea level chamgegels based on physical processes
(e.g., those adopted by the IPCC) conceptuallyddithe total global mean change into

contributions by thermal expansion of the oceanymtain glaciers and ice caps, and ice
sheets. The spatial pattern of sea level (dynaapography) is affected by the ocean’s

density structure and dynamics, which are furthamiained by air-sea fluxes of heat,

freshwater and momentum (Meehl et al., 2007). Tipbgsical models then calculate the

contribution to sea level change by each comporsagarately using different

formulations of the physical processes under camattbn. For the models cited in the



IPCC’s most recent assessment report (Meehl e2@07), approaches that characterize

each component are described below.

The global average sea level rise due to thermadresion is calculated from change of
density of sea-water due to temperature changés,tive assumptions that ocean mass is
conserved and that density change due to salihiéynge is negligible (Gregory et al.,

2001). The mathematical model applied (Gregory.e2@01) is

Ah=- jf%zds e.1)
S-H p

where Ah is the global mean sea level rise,is the density of sea wate\f is its

change caused by thermal expansion), z is thecaértlevation relative to sea level
(positive upwards), H is the depth of sea watern danction of location, and S is the

surface area of the ocean.

For the contribution to sea level change by glacard ice caps, models adopted by the

IPCC (2007) were developed from the central concefurm of

=-L>hAaT e.2)

wheredh/ dt is the global mean sea level rise caused by ablafiaciers and ice caps,
A is the total surface area of the oceiadenotes the region of a certain glacier or ice
cap, A the area of the glacier or ice cap in the regibi,is the temperature change in
the region,h is the sensitivity of glacier and ice cap massubed to temperature change
(Gregory et al., 2006). In Equation (2/2)can be estimated by energy balance modeling

(Zuo and Oerlemans, 1997) or degree-day model tfBrvaite and Zhang, 1999). The

global average sensitivity can be further calculats the area-weighted average of local
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sensitivities in different regions. Later studiessidered the feedback of glaciers’ mass
balance, recognizing that mass loss will reduceatie@ of glaciers and hence decrease

the rate of ice ablation (Meehl et al., 2007). Teedback is modeled by linking the
surface area of a glacié¥ to its volumeV through a power law, such &¥s= cA"(Van

de Wal and Wild, 2001), where is a constant and is an empirical constant. In a well-
known study (Bahr et al., 1997), is configured as 1.375 for valley glaciers ancb ¥

ice caps.

Ice sheets on Greenland and Antarctica can comgritnisea level change through two
mechanisms: (i) surface mass balance (SMB); andlux of ice crossing the grounding
line (Meehl et al., 2007). For surface mass balageeeral circulation models (GCMs)
are utilized. These GCMs have higher spatial régols than those of the AOGCMs
chosen by the IPCC for climate simulation (van kgpet al., 2002; Wild et al., 2003).
This finer resolution is intended to better chagaze the features of the ice sheets such
as the steep slope near the edge of an ice shetie projection of sea level for the®21
century, IPCC (Meehl et al., 2007) applied a seeomtr fitting to the SMB change of
ice sheet versus global average temperature ch@ihgefitting is based on the results of
a related study using AOGCM simulations and scalimgthods (Gregory and
Huybrechts, 2006). Modeling for ice flux is even maa@hallenging. Understanding of
some major physical mechanisms related to ice sihgemics is still lacking, such as
the impacts of ice shelf on the inland ice flow.cBese of this lack of knowledge, the
IPCC’'s Fourth Assessment Report (Meehl et al., P00Fsorted to simplistic
approximation for calculation of sea level changesed by the dynamics of ice sheet.
Part of the contribution by ice sheet dynamics ésoanted for by modifying the

contribution of SMB change by —-5% 5% for Antarctica, and 0% * 10% for Greenland.
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As another component of the ice sheet dynamics’achpn sea level change, the

contribution from scaled-up ice sheet dischargestsnated according to the equation

dh _

T
— 3
dad T, @3)

where% is the equivalent rate of sea level riges 0.32mm/ yr( contribution during

1993 to 2003 due to recent acceleratiof)=0.63C , and T is the global mean

temperature relative to the 1865 to 1894 average.

In this approach, by adding the contributions dfedent components together, the total
sea level change is quantified. Models adoptechbyRCC actually used this summation
approach to project global mean sea level risééntf' century. Table 2.1 below shows
the projections of global mean sea level rise ftbmaverage level of 1980-1999 to the
average level of 2090-2099 (Meehl et al., 2007)ictvltan be viewed approximately as
the rise from 1990 to 2095. Since the lowest valomng the lower bound values under
different scenarios is 18 cm, and the highest valmeng the upper bound values is 59
cm, related studies have frequently quoted theeaafi¢PCC'’s prediction of sea level rise

by 2100 as 18-59 cm (Allison et al., 2009; Grinstedl., 2010).
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Table2.1 Global mean sea level rise projection by BeC

90% Confidenceinterval of sea
Scenario level rise (cm)

Lower bound Upper bound

Bl 18 38
B2 20 43
AlB 21 48
Al1T 20 45
A2 23 51
AlFI 26 59

2.2.2 Strengths of process-based models

The major strength of the “component-by-componesgd level rise models described
above is that they are closely linked to physicathanisms. As the U.S. Climate Change
Science Program (2008) stated, “to the extent that simulation is successful and
convincing, the model can be analyzed and manigditd uncover the detailed physical
mechanisms.” The fact that model fundamentals asedb on established physical laws,
such as conservation of mass, energy, and momemakes these models powerful in

investigating the mechanisms behind or associatédsea level rise.

This strength is specifically reflected in modelitige sea level change contributed by
thermal expansion. Processes affecting thermalresipa of the ocean, such as global
average surface air temperature change, ocearuptdte, change of sea water physical
properties, are all well studied. Mathematical espntation of these processes gives
accurate characterization of the physical systedhcamsequently convincing simulation

results.
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The development of our understanding of physicathraaisms, combined with the
increase of our computational power, can signifigaimprove the performance of the
physical models of sea level rise. The improvemamts make them more realistic

representations of the physical system and moreegdairools to probe characteristics of
the climate system. For instance, the recent dpuaat of full-stress ice sheet models
(Larour et al., 2012; Winkelmann et al., 2010) rsagnificantly reduce the uncertainty of

modeling sea level rise associated with ice shgsdmics.

2.2.3 Limitations of process-based models

2.2.3.1Unsatisfactory match between model predictions@skrvations

Despite the strengths of physical models descréiede, their performance in predicting
sea level rise is in general unsatisfactory, egfigcwhen it comes to predictions
associated with the contribution by the ice she&tsording to Rahmstorf et al. (2007),
satellite data showed a linear sea level riseab83 + 0.4 mm/year for the period 1993—
2006, significantly larger than the IPCC’s prediatiof 1-2 mm/year (Church et al.,
2001). Using AOGCM (HadCM3) simulations and proeleased models of sea level rise,
Gregory et al. (2006) computed the average raseaflevel to be 0.5 mm/yr rise for the
20" century, considerably lower than the average odtd.7 mm/yr estimated from
observations for the same period (Church and WRid®6). Note that similar process-
based models of sea level rise were adopted biPBE€ (Meehl et al., 2007). Based on
the kinematic constraints on ice sheet meltingfféfest al. (2008) proposed that an
improved estimate of the range of sea level risZl@0 should be between 0.8 and 2.0 m,
if increased ice dynamics are considered. Thiseasfg0.8-2.0 m is remarkably higher
than the 0.18-0.59m range predicted by the IPCCefet al., 2007). The deviation of

IPCC’s sea level predictions from correspondingnestions based on observational
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records is an indication that the process-basecelmadight not characterize the physical

mechanisms adequately.

In fact, there have been active discussions ovessare related to process-based models
of sea level change, the attribution problem (Leftéi and Miller, 2009; Leuliette and
Willis, 2011; Miller and Douglas, 2004; Mitrovicat e@l., 2006; Munk, 2002). The
attribution problem of global sea level rise, samet noted as the sea level budget
problem or the “sea level enigma”, refers to thsiesthat the sum of thermal expansion
and contributions from land ice is smaller than ¢éiséimated global mean sea level rise
based on observations. For example, in the IPCQstR Assessment Report (Bindoff et
al., 2007), the former is smaller by 0.7 £ 0.7 mmthan the latter for the period of 1961-
2003. This attribution problem suggests our undedihg of certain physical
mechanisms driving sea level rise is still insuéfit. Consequently, cautions should be
observed when the corresponding process-based snatelemployed to project future

sea level change.

2.2.3.2Insufficient understanding of physical mechanisms

Following the description of the unsatisfying penfiance by process-based sea level
models in previous section, this section is focusadtheir limitations in representing

certain physical mechanisms. These limitations @otential causes for the issues in
process-based models. As mentioned previously ctitisgory of models generally have
success in characterizing the fraction of sea leisd caused by thermal expansion.
However, because of limited understanding of plafsinechanisms, they have major

drawbacks in modeling sea level rise related tdotteaviors of land ice.
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For the modeling of sea level change caused byn#éng of glaciers and ice caps, one
major challenge is their relatively small spatiehle. Current physical models, such as
AOGCM, have coarse horizontal resolution (about B200 km) (von Storch et al.,
2008), which is significantly larger than most widual glaciers and ice caps. As a result,
they are represented crudely in physical modelsthEtmore, there are currently more
than 130,000 glaciers worldwide (World Glacier Moning Service, 2012), and they
have different structural and morphological chaastics. The large number and variety
of glaciers make it unrealistic to model each c#nthindividually. This leads to the
empirical modeling of global sea level rise caulsgdjlaciers and ice caps against global
average surface temperature change, as mentiomsbysly. However, global total
mass balance sensitivity calculated following thggical modeling approach is greater
than physical model results, which cannot be erplisatisfactorily by current state of

knowledge (Meehl et al., 2007).

The contribution of ice sheet dynamics is one eftiost significant gaps in our current
understanding of physical mechanisms behind sed thange. This dynamics is not a
simple heat-uptake from the atmosphere. It has tGoated underlying mechanisms
involving ice cracks, water flow within the icegisliding over the bedrock, etc (Alley et
al., 2005; Alley and Joughin, 2012; von Storch let 2008). Major challenges for ice
sheet dynamics modeling include stresses withinsiceets, different grid sizes for
atmospheric signals and ice sheets, surface anglasidl hydrology, and ice shelf

interactions with ocean circulation (U.S. Climatea@ge Science Program, 2008).

Because of the insufficient understanding of plalsimechanisms, the IPCC applied
simplistic approximation for calculation of correspuling sea level change (Meehl et al.,
2007). The modeling of ice sheet dynamics by the&dPrelied heavily on

parameterization. For instance, a scenario indegertdrm (0.32 £ 0.35 mm/yr) is added
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to the predicted contributions from ice sheet sitgfamass balance, which is derived from
the portion of the present ice sheet mass balastoeated to be due to dynamic changes
during the period 1993-2003. This approach asstinatghis term can reflect recent ice
flow acceleration, and that this contribution wéimain unchanged. Both assumptions are
problematic when compared to recent observatioesef® studies show that ice sheet
appear to be experiencing accelerated mass lossg (€t al., 2012; Rignot and
Kanagaratnam, 2006; Rignot et al., 2011; Velicognd Wahr, 2006), raising even more
concerns about the process-based models’ abiligcturately project future sea level
change. In addition, the ice sheet models are g#yneapplied in “off-line” mode,
meaning that they do not provide feedbacks to tiki&G&EMs. However, a study has
shown that the time scale of projected melting led Greenland Ice Sheet may be

different in coupled and off-line simulations (Ragilet al., 2005).

Based on their literature review, Jevrejeva e{2012) stated “at present, there are very
few estimates of dynamical ice sheet loss whichnatesimply statistical extrapolations
or expert opinion, and all models lack a properasentation of key processes such as

calving.” This summarizes the limitations of curtr@hysical ice sheet models rather well.

2.2.3.3The uncertainty issue of process-based models

The process-based models aim to simulate sea d&agige by summing up the major
components: thermal expansion, mass contributiom fylaciers and ice sheets (Meehl et
al., 2007). As described in previous sections,rtwgleling approaches for glaciers and
ice sheets have significant limitations. An additib issue is the uncertainty of
measurement data. For the process-based modelsumeeents of all components are
needed, which is a tremendous challenge for thensfic community. For instance, the

satellite imagery approach for glacier ice measergronly reveals the surface area, and
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the total volume is still uncertain, with estimatesging from 24 to 60 cm sea level
equivalent (Rahmsorf, 2012b). The large ice shaetsalso very challenging to measure.
Recognizing the uncertainties both in measuremants models, the IPCC’s Fourth
Assessment Report stated “the upper values ofaihges given are not to be considered
upper bounds for sea level rise.” There are als@@ms within the scientific community
that the IPCC projections for the 2&entury sea level rise may be an underestimated
range (Horton et al., 2008; Jevrejeva et al., 20@ore et al., 2010; Rahmstorf et al.,
2007; Zecca and Chiari, 2012).

2.2.4 Summary

Global sea level change models based on physioakpses conceptually divide the total
global mean change into contributions by thermaglagsion of the ocean, mountain
glaciers and ice caps, and ice sheets. These mibeeicalculate the contribution to sea
level change by each component separately witlergifit physically based formulations
which may also include empirical components. Treeess-based models have the merit
of explicitly linking specific physical mechanismsth mathematical formulations. They
are useful tools to investigate the mechanismsnoekea level change. However, the
physical mechanisms of sea level change assocvatidice sheet dynamics are not
sufficiently understood, and observational recdatsland ice have limitations both in
guantity and in quality. Consequently, parametéiomais heavily involved in modeling
sea level change contributed by land ice change.rébulted model predictions of sea
level did not match observations very well. Basediterature review, current process-
based models are not good choices for projectingdusea level change. Improvement
of land ice measurement technology, modificatiohprocess-based models based on
new measurement data, and alternative modelingoappes are among the potential

advances needed to project future sea level witte menfidence.
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2.3 Semi-empirical models

2.3.1 Review of semi-empirical models

Since process-based models cannot yet adequatahpatérize the complex physical
mechanisms behind sea level change, an alternatiyeto model sea level change has
been proposed, namely “semi-empirical” approache $ami-empirical models utilize
numerical and statistical techniques to charaaéte link between global sea level and
global temperature based on historical observatimhgch will then be used to project
the future. The term “semi-empirical” comes frone tfact that the model formulation
originates from basic physical considerations batameters of the model needs to be
determined empirically from data (Rahmstorf et &Q12). The rationale behind
empirical modeling is that all major contributors sea level rise will respond to
temperature change (Grinsted et al., 2010). Acogigi by quantifying the correlation
between sea level rise and temperature, all knowlnuaknown mechanisms of sea level

rise could be incorporated into the analysis (Rabrfi2007).

Most previous studies on semi-empirical modelinged level rise mainly focused on the
relationship between global average sea level dodabaverage surface temperature
(Etkins and Epstein, 1982; Gornitz et al., 1982in&ed et al., 2010; Jevrejeva et al.,
2009; Jevrejeva et al., 2010; Rahmstorf et al.,7200ermeer and Rahmstorf, 2009;

Winkelmann and Levermann, 2013). In the study gristand Epstein (1982), based on
data between 1890 and 1980, the rate of global reearevel rise was hypothesized to
be linearly dependent on the rate of global meafase temperature change and the rate
of polar ice sheet mass change. Gornitz et al.A188ind that global mean sea level is
positively correlated with global mean surface teimperature based on observational
data from 1880 to 1980. Based on observed datafsethe period of 1880 to 2001,

Rahmstorf (2007) proposed that the rate of globsmsea level rise is highly dependent
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on global mean surface air temperature, quantified coefficient of 3.4 mm/yr/°C. In a
subsequent study by Vermeer and Rahmstorf (200@),otiginal model (Rahmstorf,
2007) was modified by adding a rapid-response taviich assumes that the rate of
global mean sea level rise is also linearly prapodl to the rate of global mean
temperature rise and this makes the model perfoettebin capturing short-term
variability of sea level. Grinsted et al. (2010nstructed their semi-empirical model of
sea level rise and temperature with more param#tarsthose used previously, but they
essentially assumed that the rate of global meanesel| rise is linearly dependent on
global mean surface air temperature, same as thaémed by Rahmstorf (2007). Their
model was later modified to link sea level riseedity with global radiative forcing
change (Jevrejeva et al., 2009). Utilizing theie isheet model simulation results,
Winkelmann and Levermann (2013) proposed a modi#l kviear response functions to
estimate sea level change contributions by themwphnsion and solid ice discharge

from the ice sheets, which can be included in #tegory of semi-empirical models.

Formulations of major semi-empirical models are swanzed in the table below, where
t denotes timeH orH (t) is the global mean sea level at time T or T(t) is the
global mean surface temperature at timeAH and AT are the changes d¢f and T,
respectively,T, andt, are constant temperature and time, respectivelyerQetters are

all model parameters to be determined empiricalpmf data, except those that are
explained explicitly in the table. Please referthe corresponding references for detail

explanations of model parameters.
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Table2.2 Major semi-empirical models of sea level cleimgthe literature

Ye_ar O.f Model formulation Notation Model parameter Reference
publication
_ AM s the change of ocean _ C A (Etkins and
1982 AH =aAT +AM 1SS, a=18mm/ C b=2.6x10" mm/KC  gperein 1082)
_ . Gornitz et al.,
1982 H(t)=aT(t-t)+b - a=160mm/ C, b=3mm; t,=10yr ( Orlnééz()e a
dH . .
2007 o a(T-T,) a=3.4mm/ yr/ C;T,=-05C  (Rahmstorf, 2007)
a=5.6mm/ yr/ C;b=-49mm/ C
2009 aH _ a(T-T)+ bﬂ - y g (Vermeer and
dt dt TO - _0'41 C Rahmstorf, 2009)
2009 dad :l(aT +b- H) a=3100mm/ C; b=3680mm; (Grinsted et al.,
dt T T :1193yr 2010)
dH _1 _ F is the global mean radiative & =900 mm/( wi/ rﬁ) ; b=500mm;  (Jevrejeva et al.,
2010 ==(aF +b-H) : 2010
dt 1 forcing. 7=200yr 10)
dH ¢ (t-t a N f (t') is the external forcing a =-0.7, Q.l,— 0.’ for thermal expansion, (Winkelmann and
2013 d_ = J.C — f (t ) dt related to global temperature Antarctic and Greenland Ice sheet, Levermann, 2013)
t o b perturbation. respectively.
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The ranges of projected global mean sea leveinisiee 2£' century by published semi-
empirical models are summarized in TaBIl&. In this figure, the projections generally

span the range of 50 to 150 cm, with the widesgeasf 30-215 cm.

250 T T T T T T T

N
o
o

=
al
o

Sea level rise (cm)
H
o
o
T T
| |
| |
| |
| | |
| | |
| | |
|
E
| | |
[ [ [
[ [ [
B
[
[
[ [
[ [
[ [
[ [
| |
| |
| |
| |
| |
- |
|
|
| |
| |
| |

a
o
, T ,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

0 | | | | | | |
IPCC Rahmstorf ~ Horton  Vermeer Grinsted  Jevrejeva Zecca Jevrejeva
2007 2007 etal and etal etal. 2010 and etal. 2012
2008 Rahmstorf 2010 Chiari
2009 2012

Figure2.1 Projections of sea level rise in thé'2&ntury by semi-empirical models
(please refer to original publications for detaitslefinition of sea level rise, climate

scenarios, confidence level, etc.)

2.3.2 Limitations of semi-empirical models

The semi-empirical models have relatively simple delo formulation and their
parameters need to be configured empirically. Rtimjes of sea level rise in the 21
century by these models, as shown in Figue are generally larger than those obtained
by process-based models. These facts have raisegros among scientists, and there

have been discussions about the limitations of ®engirical models.
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2.3.2.1Physical basis

Since semi-empirical models of sea level changea@haracterize each related physical
process explicitly and separately, there have lmeecerns about whether they comply
with established physical laws. For instance, Chatcal. (2011) argue that non-climate-
change-related sea level rise, such as water ingment by dams, GIA, groundwater
depletion, should be removed from the calibratiataget for semi-empirical models, and
they found certain studies fail to apply a cormttior groundwater depletion (Church et
al., 2011). Based on a statistical analysis, Sdhetital. (2012) recently proposed that the
global mean surface air temperature adjusts tavkeage temperature of the upper ocean,
which is proportional to sea level change due trrtal expansion. This proposition
indicates that global mean surface air temperato@g adjust to sea level change, in
opposition to the physical formulation of the sesmpirical model by Rahmsorf (2007),
where sea level adjusts to temperature changedditi@n, same with the process-based
models mentioned previously, the semi-empirical ei®do far are also generally applied
in “off-line” mode. They do not consider possibeeflbacks of sea level to temperature
or to itself. The effects of this offline mode ajpption remain to be investigated and

guantified.

2.3.2.2Linearity of the models

The linear relationship between the rate of seallelange and global mean temperature
in some semi-empirical models has also been queestioChurch et al. (2011) pointed
out two processes influencing sea level cannotebeesented as linear, the reduction of
glacier area and the decrease of the ocean hesdteuefficiency. Other studies suggested
that the nonlinear process of ice sheet dynamigsauatribute significantly to sea level
change, which will invalidate the linear formulatian the semi-empirical models

(Hansen, 2007; Jevrejeva et al.,, 2012). Hansen 7(2@@ated that although the
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contribution of ice sheet dynamics to sea levehgeavas small until the past few years,
it has doubled in the past decade, thus the irtterawill unlikely follow a linear trend in
response to global warming. Rahmstorf (2010) ackedged that the linear relationship
in the semi-empirical model does not capture thesiibe rapid nonlinear ice-flow
changes expected by some glaciologists in thedutamd he further suggested that the
linear semi-empirical model will underestimate $®&el rise if the rapid nonlinear ice-

flow changes actually happen.

2.3.2.3Statistical techniques

In the literature, questions also exist regardirggddequacy of statistical techniques used
in some semi-empirical studies. The major issué¢hé application of ordinary least
square (OLS) method to nonstationary time seriespBrameter estimation, e.g., the
method applied in the study by Rahmstorf (2007yeg&d scientists argued that the study
by Rahmstorf (2007) inappropriately applied OLS moeftto nonstationary time series of
temperature/sea level records, hence the studygimaymisleading results (Schmith et al.,
2012; von Storch et al., 2008). When the OLS metisoapplied to nonstationary time
series, the residuals can potentially have posigiveocorrelation, violating the basic
assumption of independent identically distributéidD) errors for OLS method (von
Storch et al., 2008). However, based on theoriestatistics, the OLS estimator for
continuous dependent variables (e.g., rate of @eal Fise) is inefficient when the 11D
assumption is violated, but it remains unbiased @mkistent (Powers and Xie, 2008).
According to this conclusion, applying OLS method the estimation of semi-empirical
model parameters will not result in biased parametbut it will lead to inaccurate
uncertainty estimate. To improve the statisticathodology, Rahmstorf et al. (2012)
adopted the generalized least square (GLS) methsttad of OLS for parameter

estimation, which theoretically accounts for autoelation in the residual series
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(Cwpertwait and Metcalfe, 2009). The results of Ratorf et al. (2012) indicate that
parameter estimates by GLS are very similar witbséh by OLS, but parameter

uncertainty estimation by GLS has been improved.

2.3.2.4Strengths of semi-empirical models

The first advantage of semi-empirical approachea kevel change over process-based
models is that they reproduce historical sea legebrds well. Simulated sea level rise
rate during 1993-2006 by semi-empirical models-+#4 Bim/yr, very close to the rate of
3.3 mml/yr calculated from satellite altimetry, wehirocess-based models’ estimate of
the rate is 1.9 mm/yr (Jevrejeva et al., 2012). iSampirical models also have the merit
of implicitly accounting for the impacts of all theimate-related factors and their
possible feedbacks on sea level change (Zecca arati,C2012) since historical data

imbeds this information into the model during cediiion.

The linear relationship in semi-empirical modelswwat be guaranteed to hold in the
future (Rahmstorf et al., 2007; Rahmstorf et a12), just as the assumptions used by
the process-based models may not be valid underefgicenarios (Meehl et al., 2007).
Nonetheless, semi-empirical models reasonably septebehaviors of thermal expansion
and glacier and ice sheet melting exhibited inHis¢orical records. Specifically, the sea
level response of complex physical models relatedthermal expansion is well
reproduced by the semi-empirical method (Rahmsgif)7), and the linear dependence
of land ice on temperature is similar to that usedlacier modeling studies and by the
IPCC (Rahmstorf, 2010). Based on their derivation Storch et al. (2008) suggested
that a linear relationship should exist betweennbar-surface air-temperature and the
global mean heat flux into the ocean for the linedationship in semi-empirical models

to hold. They then cited references indicating hieat-flux into the ocean is correlated
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with the global mean near-surface temperaturepagih the physical mechanisms behind
this correlation remain to be explained (von Stogtlal., 2008). Semi-empirical models
have also been tested recently using different ddations, statistical techniques, and
choices of input data sets for temperature andesed, and the projections of different

versions of semi-empirical models were found teodirist (Rahmstorf et al., 2012).

The simplicity of semi-empirical models significgntdecreases the requirement for
computational power. As a result, systematic patemeensitivity analysis and
uncertainty assessment can be conducted in a timelyner, and projections under
various future scenarios are computationally pdssibhis is particularly interesting as
there have been active discussions on the uncirtasue of complex physical models

(such as those used by the IPCC) (Curry and Wel20&1 ; Hegerl et al., 2011).

Because of these characteristics, semi-empiricato@gh can serve as an effective
alternative to the still uncertain process-bas@uate model projections (Cazenave and
Llovel, 2010). However, because the empirical reteghip identified from historical

records cannot be guaranteed to hold in the fufRednmstorf, 2012), they should only
serve as an alternative before our understandinghg§ical mechanisms are mature.
Further more, the semi-empirical method should helgmprove our understanding of

physical mechanisms, so as to decrease empiricisfimate modeling.

2.3.3 Summary

Because of process-based models’ limitations inesgmting ice change mechanisms and
unsatisfying performance in reproducing historisel level records, semi-empirical
models are developed as an alternative approach. s€mi-empirical models utilize

numerical and statistical techniques to charaaete link between global sea level and
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global temperature in historical observations, Wwhe&subsequently applied to project the

future.

Semi-empirical models have their own limitations hgture. The most important
limitation of semi-empirical models is that theatbnship (usually linear) between sea
level and temperature configured based on histadiEt@ cannot be guaranteed to hold in
the future. Some technical aspects of semi-empimcalels also need improvement. For
example, non-climate-change-related sea level sBeuld be removed from the
calibration dataset of semi-empirical models, addgaate statistical techniques should

be chosen to address data with specific charatitsrsuch as nonstationarity.

Despite their limitations, semi-empirical modelsvéathe advantage of reproducing
historical sea level records well. Their proposadtronships do not conflict significantly

with established physical laws in their concernetetframe. Projections of sea level in
the 2£' century by semi-empirical models are generalljhbighan those by the process-
based models. Considering the widespread conclaisptocess-based models might
underestimate future sea level rise, semi-empiricaldels provide an acceptable
alternative before our understanding of physicatim@isms are mature. In addition,
semi-empirical models are relatively new, and cannlypproved to represent the physical
system more accurately. In this direction, the sempirical method can help to advance
our understanding of physical mechanisms, so adetwease empiricism in climate

modeling.

2.4 Dynamic system models

As mentioned in previous paragraphs, both procassdand semi-empirical models of

sea level change that appear in the literature rgnpeoperate in an “off-line” mode,
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where sea level change is simulated as a functidenoperature change. They do not
consider possible impacts of sea level change rmpéeature or the feedback of sea level
on itself. It has been known that sea level change potentially influence the
temperature through mechanisms such as change rdcsualbedo and moisture
availability, alteration of ocean currents, and tomntal shelf C@ pump (National
Research Council, 1990; Rippeth et al., 2008).example, increased sea level is likely
associated with ice loss, and ice loss can affeztctimate through albedo change and
water flux from continents to oceans (Grinsted ket 2010), which in return may
influence the temperature. A model that incorpadbe interactions between sea level
and temperature (“on-line” mode) can potentiallglgibetter results than those by the

models in “off-line” mode.

To incorporate the potential interactions betweea kevel and temperature and the
possible feedbacks, the semi-empirical approachbeas extended by recent studies.
Like previous semi-empirical models, the new modet determine their parameters
empirically from historical data. However, unlikeegious semi-empirical models, the
new ones take into account the possible interast@md feedbacks between sea level and
temperature, thus treating the two as interactiyeachic systems (Aral et al., 2012;
Schmith et al., 2012). To reflect the characterigature of this category of models, they

are named as “dynamic system models” in this study.

In a study by Aral et al. (2012), through systemainalysis of historic data on
temperature change and sea level rise, a lineaandignsystem model is proposed to
predict the two state variables, i.e. temperaturd sea level, simultaneously. The

governing equation of their model takes the follogvform
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whereH andT are global mean sea level and surface temperatugecertain year,
. dH dT . ,
respectwely,ﬁ anda are the rates of change in the same yags andc,’s are

model parameters to be determined from historieabrds. Using this model, Aral et al.
(2012) found that, while the rate of sea level riseproportional to global mean
temperature, it is also restrained by the currégitesof sea level with a constant of -
0.0045/yr. They suggested that this negative cahstaplies the decelerating effect of
current sea level on the evolution of its stateeifimodel results also indicated that sea

level rise may slightly accelerate temperature (#sal et al., 2012).

In a more recent study, Schmith et al. (2012) psepaa first-order vector autoregressive
(VAR) model for the relationship between sea lewald temperature, and applied
cointegration analysis to investigate the inteaxgi between the two. The form of their

model is very similar to that of Aral et al. (201®&hen written in discrete form, with

AT [T & 25)
an )~ ) e, |

whereh and T, are global mean sea level and surface temperatuaecertain yeat,

equations as below

respectively;Ah and AT, are the changes from-1to t; &, and&,, are error terms;

andl is a 2x2 parameter matrix to be determined frostohical records. Schmith et al.
(2012) then used the error correction form of teRabbreviated as VECM) to obtain
parameters and investigated the relationship betvgea level and temperature. Their

model results indicated that temperature causapedds on sea level. The mechanistic

29



interpretation of this causal relationship is givientheir study as: “the upper ocean
temperature is strongly related to the sea leveltduhermal expansion, and it dominates

the surface air temperature because of its largedapacity” (Schmith et al., 2012).

The dynamic system models inevitably inherit sormeithtions of previous semi-
empirical models of sea level change. The relalignbetween rate of sea level change
and impacting factors (states of sea level and ¢éeatpre) is still proposed as linear,
which cannot be guaranteed to hold in the futurendtheless, the dynamic system
models have advanced the semi-empirical approachcdmgsidering feedbacks and
interactions in the coupled sea level and temperasystems. Compared to previous
semi-empirical models, the dynamic system models hhve the additional capability of
predicting temperature, which can be further impobby taking into account of other
influencing factors. Because of these charactesistlynamic system models can serve as

viable options for sea level change simulation.

Because of the improvements, in dynamic system fadtie relationship between sea
level change and temperature is not straightforlyadthear anymore, and the
corresponding projections for theS2@entury may also change. For example, projected
sea level rise in the #1century by a representative semi-empirical mo&ahfmstorf,
2007) is compared with that by a representativeadhyia system model (Aral et al., 2012)
(Figure 2.2). In the figure, the range of sea level risgjgution by Aral et al. (2012) is
lower than that by Rahmstorf (2007), although thiegd the same temperature inputs.
The difference is indicative of different systeratehaviors of dynamic system models

from previous semi-empirical models.
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Figure2.2 Comparison of sea level rise projections lmgisempirical and dynamic

system model

2.5 Spatial variability of sealevel

Another important aspect of sea level change mogeis the simulation of spatial
variability of sea level, which is more relevant tocal communities. Based on
observational records, significant spatial variagiexist in sea surface heights (Figure
2.3). During the period of 1992 to 2004, regionatiations of sea level are found to be
larger than the expected global-mean values (Wuatah, 2007). Model projections by
the IPCC typically have regional sea level change/ing within about +0.15 m of the
mean (Bindoff et al., 2007).
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Figure2.3 Yearly mean sea surface height at 1950 (Chetreh, 2004)

Various mechanisms can contribute to the spatiépes of sea level rise. Polar ice mass
change is found to impact the spatial variatiorsed level near the poles (Mitrovica et
al., 2001). After a polar ice melting event, sedase height will actually decrease within

2000 km of the melting ice sheet, and increaserpssiyvely as one migrates away from
this region (Mitrovica et al., 2009). Local surfdeeating is important in explaining the

interannual sea level variability in various regaof the Atlantic Ocean (Cabanes et al.,
2006). Regional sea level pattern in the equat®aalfic Ocean since 1993 is potentially
caused by varying wind patterns associated wittmatk phenomena such as El Nino
Southern Oscillation, which is largely reflected riggional patterns of ocean thermal
expansion (Church et al., 2010). Analysis of mqutejections also revealed that spatial
patterns in sea level are dominated by steric effassociated with the ocean’s density
field (Pardaens et al., 2011). By analyzing spata level data during the period of 1992
to 2004, Wunsch et al. (2007) suggested generalilaiton change as another major

contributor to the observed sea level variations.
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Despite various studies on the geographical patiesea level change, physical models
targeting the spatial patterns are still in theielimninary stages. For instance, in the
Fourth Assessment Report by the IntergovernmergaelPon Climate Change (IPCC),
geographical patterns of sea level change projdnpetifferent models are not similar in
detail, with only 25% of spatial correlation coeféints between the pairs of models are
larger than 0.5 (Meelh et al., 2007). Major reskafforts are still needed to understand
the underlying oceanographic and climate procetssasprove the predictions of spatial
variability in future sea level change (Milne et, &@009). As an alternative to process-
based physical models, semi-empirical models sdd&e only focused on global mean
state of sea level (Grinsted et al., 2010; Jeveegtval., 2009; Rahmstorf et al., 2007;
Rahmstorf et al., 2012; Vermeer and Rahmstorf, 2088 a result, both process-based
and semi-empirical sea level change models cuyresutffer significant drawbacks in

characterizing spatial variations of sea level.

This study attempts to address the issue of spesiahtions in sea level through a
dynamic system modeling approach. The dynamic systpproach is improved to
incorporate spatial analysis capability, so th&tractions among sea levels and surface
temperatures in different regions of the oceansbeamvestigated. Our dynamic system
approach avoids the unconstrained uncertainty dause incorporating two many
physical processes, as commonly seen in mechamstiels. Meanwhile, compared to
typical spatial statistical approaches such as ecapiorthogonal function analysis, the
dynamic system approach has a stronger abilitgltde the spatial variations of sea level

rise to its underlying cause of global warming.
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CHAPTER 3

PATTERN RECOGNITION AND DATA RECONSTRUCTION FOR
SPATIAL SEA LEVEL RECORDS

3.1 Introduction

Sea level data can be grouped into different reglmnvarious approaches for different
analysis purposes of spatial pattern characteoizakor instance, regional mean sea level
comparison (Bursa et al., 1999) and identificatbérrontributing factors to regional sea
level differences (Menemenlis et al., 2007) requsipatial data to be grouped into pre-
defined regions. In the coming Chapter 4, the owelirbe divideed into 3 regions based
on the three major ocean basins (the Indian, Racifid Atlantic Ocean) for one spatial
analysis application. Under other circumstancesyewver, researchers may need to
identify spatial patterns from the data based dmibate characteristics, which is
previously unknown and cannot be arbitrarily defin®espite numerous studies on
spatial variations of sea level in the literatu@alfanes et al., 2006; Mitrovica et al., 2001;
Mitrovica et al., 2009; Pardaens et al., 2011; Waret al., 2007), few studies developed
methodologies to identify spatial patterns autooadlyy from spatial sea level data. To
reveal spatial pattern of the sea level signahatial pattern recognition technique based
on clustering algorithms is proposed in this chatgiegroup the spatial sea level data. As
an unsupervised learning method, clustering cap teldivide the ocean into regions
within which similarity of certain sea level attute record is optimized. In addition, the
dissimilarities between different regions are mazed. Because of the maximal intra-
cluster similarity and inter-cluster dissimilaritfiao, 2005), regions identified by
clustering methods have distinct characteristicelwmay reflect the underlying climate

phenomena.
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Since spatial regions resulted from different ragdivision approaches may reflect
climate patterns contained in historical recorteetseries of average sea level for these
regions have particular characteristics relatedcaoresponding climate phenomena.
Temporal patterns contained in long time seriesmieén sea level for these regions may
provide support for studies of related climate mmeana. Unfortunately, however,
spatial sea level data is scarce and time sparpatiat data sets generally are also
relatively short (Chambers et al., 2002; Hamlingtodml., 2012; Meyssignac et al., 2012;
Smith, 2000). To the contrary of spatial sea lede#la’s scarcity, various studies have
reconstructed global mean sea level and spatiatwsdace temperature (SST) data with
relatively long time span (Church and White, 20C6urch and White, 2011; Gregory et
al., 2012; Smith et al., 2008). Previous researdhdgated that sea level's spatial
patterns are closely related to the thermostefece{Levitus et al., 2005; Levitus et al.,
2009; Lombard et al., 2005), which motivates usetonstruct regional mean sea level
from spatial SST data. Previous studies have cortynmed the empirical orthogonal
function (EOF) method to reconstruct spatial sezelledata (Church et al., 2004;
Hamlington et al., 2012; Llovel et al., 2009; Sm2B00). The EOF approach works well
for filling data gaps, but is not an appropriateick for reconstructing regional mean sea
level from the global mean value. To address th@ie, a method based on neural
network analysis is adopted to reconstruct regiomsdn sea level from global mean sea

level and spatial SST data.

The clustering algorithm developed in this chaptan identify characteristic spatial
patterns from spatial sea level data. It is alquab&e of evaluating the relative strengths
of different spatial climate signals. The neuraltwurk approach can successfully
reconstruct spatial average sea level of differegions, and is potentially useful for

related climate studies. In this study, the recoiesed regional mean sea levels for the
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three major ocean basins and the clustered regomsused to calibrate our spatial

dynamic system model as described in Chapter 4.

3.2 Clustering spatial sea level data

Clustering techniques group objects into differeosters based on their similarity in the
feature space (Chuang et al., 2006). In this sttidy spatial sea level data by Church et
al. (2004) is applied to test our clustering metilody. The date set contains monthly
records of sea level on a 1°x1° lat-long grid fré@850 to 2001. Since only the annual
average sea level data is considered in the cingtprocess, each object has 52 records.
Our feature space can consequently be viewed asni@isional. To be consistent with
the subsequent studies, the spatial data by Chatreh (2004) were resampled, which
leads to a final spatial coverage of 2-358°E artb&4°N on a 2°x2° lat-long grid. The
total number of spatial grids with sea level resoiglabout 8000. Our task can be then
defined as grouping these 8000 grids into diffednsters based on their attribute in the

52-dimensional feature space.

The fuzzy C-means algorithm (Bezdek et al., 19843 ¥irst applied to cluster our spatial
sea level data. As a classical clustering techniquezy C-means calculates the
probability of an object belonging to each clugtased on the minimization of a cost
function. It has been widely used in pattern redomgm applications such as medical
image segmentation (Phillips et al., 1995), gerentification (Dembele and Kastner,
2003), audio signal processing (Haque and Kim, 2028d geographic information

systems (Di Martino and Sessa, 2009). Fuzzy C-mdargements probabilistic

membership assignment to avoid arbitrarily fora@ngertain object to be included only in
one cluster, a practice by hard clustering techesgguch as K-means (Selim and Ismail,

1984). Because of this feature, fuzzy C-means bas Bhown to perform better than K-
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means (Hamerly and Elkan, 2002). However, the fuZaypeans method has a major
disadvantage when processing spatial data fornbhatautilize the spatial information.

Information in the geographical space is often eated, and features in neighboring
spatial locations tend to be similar. In the clealsifuzzy C-means algorithm, objects
contiguous to each other are treated the sameoas tar apart, thus spatial contiguity

information is ignored.

To utilize the spatial information in target daten improved version of fuzzy C-means
algorithm by Pham (2001) is adopted here. The nnadlieal formulation of the spatial

fuzzy C-mean algorithm is as below:

n K n K n
SIS 3 SRR 9 3o 3L @)
irik =1 (3.2)

M :'Zln— (33)

wherei, j, andl all indicate the spatial identity of an grid € 8000),k is the identity
of a cluster K is a fixed integer larger than 1y, is the sea level data vector at grid
M, is the sea level data vector at the center ofteldsin the feature space, is the
probability of gridi belonging to clustek, p; is the spatial contiguity multiplier (1 if
grid i is contiguous to gridj, O if grid i is not contiguous to grid ), m is the
parameter controlling the degree of fuzziness, #hds the spatial penalty (a large

number forces high similarity between contiguoudr
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Because of the temporal trend and spatial variaticthe original sea level data (Figure
3.1), they need to be processed before enteringltiséering procedure. Since the aim of
this study is to identify a stable spatial pattefrthe sea level over time, annual global
mean sea level was subtracted from the data ssblette spatial variability from global
trend. The spatial variance of sea level changex t¢wne, indicating that the 52
dimensions of the feature space have varying madgst As a result, the shapes of
prospective clusters are likely to be non-spheiiicéhe feature space, which can cause a
major problem for the algorithm in Equation (3.I)he spatial fuzzy C-means

algorithm’s cost function is based on the Euclideanm of the difference between the
objects and cluster centersﬂx(—pknz) and resulting clusters will consequently be

spherical in the feature space. To address thie,ishe Euclidean norm is changed to the
Mahalanobis norm. The Mahalanobis norm is suitatien dimensions of the feature
space (attributes of objects) are unequally vagiabhd it also addresses the issue of
potential correlations between different dimensi@aguihua, 1990). The modified cost

function of the spatial fuzzy C-means algorithnmthecomes:

n [1LK]

Jrota = ' i rikm(xi _/Jk)T Ak(xi _/Jk)"'giirirl?zz pijrjlm (3.4)

i=1 k=1  j=11%k
A, =F* (3.9)

Zn‘,rnin(xi _,Uk)(xi _:Uk)T
Fo=2 (3.6)

n
PN
i=1

whereF, is the weighted covariance matrix fox, — 4 ) and the norm inducing matrix

A, is the inverse of, . This algorithm essentially adopts the Mahalanalig$ance as

the measurement of the difference between an oafeth cluster center.
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Figure3.1 Spatial distribution of sea level data overdti(data from Church et al., 2004)

Grouping of the spatial grids can be achieved bwyimmzing the cost function in

Equation (3.2) with respect to, . The well-known Gustafson-Kessel algorithm

(Gustafson and Kessel, 1978) is adopted in congtigaithe norm inducing matriR

and adopted the numerical scheme by Babuska @0812) to ensure numerical stability.

Iterative algorithm to solve for, thus achieving the grouping task is shown below.
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Table3.1 Iterative steps of the clustering algorithm

Iterative step Implementation
0 Randomly generaté, , with the constraint of Equation (3.2).
1 Compute cluster centelf, following Equation (3.3).
2 Compute the weighted covariance matﬁ,g( following Equation (3.6).

1/

d__
Compute the norm inducing matrix @, :[det(Fk) F.' (dis the

3

dimensionality of the feature space).
4 Updatel;, by minimizing the cost function in Equation (3.4).
5 Go to Step 1 until convergence.

Cluster validation. Two critical tasks of the clustering practice gieto determine the
targeting number of clusters; and (ii) to verifiathhe resulted clusters are valid. For our
clustering algorithm, this cluster number needs¢oconfigured a priori, so external
measures are needed to identify the optimal clustierber. A widely adopted approach
to identify the appropriate cluster number is @usialidation (Baarsch and Celebi, 2012;
Kim et al., 2004; Rawashdeh and Ralescu, 2012% a&pproach reveals that task (i) can
be accomplished using the outcome of task (2). Udirccluster validation, the optimal
cluster number is determined among various cargligatues based on an evaluation
metric of their final clustering results. This metroften referred to as the “cluster
validity index”, generally evaluates clustering uks based on their intra-cluster
compactness and inter-cluster separation. Variousd of cluster validity index exist in
the literature, and among the most commonly uses ane Dunn’s Index (Dunn, 1974),
Davies-Bouldin Index (Davies and Bouldin, 1979)h8uette Index (Rousseeuw, 1987),
and Xie-Beni Index (Xie and Beni, 1991). The Silatie Index is chosen for its
simplicity and graphical functionality. The Silhdte= Index for a certain objegt is

calculate as
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_ (h-3) 3.7
3 max(a ,h) (3.7)

where a is objecti's average distance to other objects in the samstas, andy is
objecti’s average distance to all the objects in othestels. The value of ranges

from -1 to 1, where a larger value indicates bethester compactness and separation.

The validity of a cluster can be assessed by examihe Silhouette Index values of all
the objects within it and the validity of the whaleistering result can be measured by the
overall shape of the Silhouette graph (FigB8r2). Note that in the process of cluster
validation, the clustering algorithm (Equation (3.4vas run without spatial penalty

(B =0), so that spatial patterns are identified solelgdal on the original data. Since the

average Silhouette Index value of all objects i onportant performance metric of the
clustering algorithm, it is used as the criteriorsélect candidates for the optimal number
of clusters. When grouping the spatial grids into32 4, 5, 6, and 7 clusters, the
calculated average Silhouette Index value is 0®36, 0.42, 0.33, 0.33, and 0.35,
respectively. So results with 3, 4, and 7 clustease relatively higher validity index
values. However, the patterns captured by clugiesith 7 regions have relatively small
spatial scale and the signals in them are accdsdiwgek. Based on the principle of
Occam’s razor, 3 and 4 are chosen as the finalidates for the optimal number of

clusters to characterize the spatial sea level data

To finally decide the optimal number of clustergveen the two candidates, the details
of their Silhouette graphs (Figuge2) need to be examined. In the silhouette graplbst

of the objects have positive Silhouette Index vakxeept for some very small portions.
Positive Silhouette Index value indicates that distance between an object within a

cluster and this cluster’'s center is smaller thiaa distance between this object and
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another cluster's center. So a positive Silhoudtiex suggests that the object is
appropriately clustered. To the contrary, objecith wegative Silhouette Index values
received inappropriate cluster assignment. Althotigs result for clustering with 4
regions has a larger average Silhouette Index \thluethat for clustering with 3 regions,
the former has larger regions of objects with digant cluster misassignment. As a
result, the optimal cluster number is chosen an@,all the following cluster analysis is

for the case with 3 clusters.

Cluster
Cluster

1 1 1 1 1 1 1 1 1 1 1 1 1 1
-04 02 0 02 04 06 08 1 -04 02 0 02 04 06 08 1
Silhouette value Silhouette value

(a) (b)

Figure3.2 Silhouette graph for the result of clustemvith: (a) 3 clusters; (b) 4 clusters.

Physical implications of clustering results. Result of the clustering with 3 regions (with
£ =0) is shown below (Figur8.3). The spatial pattern shown in our clusterieguit
(Figure 3.3) is closely related to important climate pheram Cluster 3's “belt” shaped
zone in eastern tropical Pacific probably resul@mf the distinct sea level change
behaviors in that region caused by the El Nifio-Bewut Oscillation (ENSO) events.
Meyssignac et al. (2012) demonstrated that sed leveéhe tropical Pacific region

behaves as an east-west dipole that fluctuateswimlyg the ENSO mode of variability,
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which supports our proposition. The isolated Cludtés mainly located in the western
tropical Pacific area, and is also likely relatedlie ENSO events, as well as the Pacific
Decadal Oscillation (PDO). A study by Becker et(2012) confirmed that ENSO events
strongly influence the interannual sea level valitgiof the western tropical Pacific. Sea
level in this region is lower/higher than averageimny El Niflo/La Nifia events on the
order of 20-30 cm. Merrifield et al. (2012) alsaufidl that sea level changes in the
western tropical Pacific are related to PDO and lmaquency fluctuations in the
Southern Oscillation Index. Two other significaaatures in the clustering result are the
isolated eastern tropical Indian Ocean and theitiogigally oriented region in northern
Atlantic Ocean. Previous studies indicate that forener is associated with combined
invigoration of the Indian Ocean Hadley and Walgelts (Han et al., 2010) and the later

with North Atlantic Oscillation (NAO) (Bindoff etla 2007).
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Figure3.3 Result of clustering with no spatial penalty

Spatial penalty function to test the strength of signals. In our clustering algorithm

(Equation (3.4)), the spatial penalty coefficiefit sets the strength of the assumed
similarity of sea level behavior between contigutagations. Wheng is set as a large

number, assumed similarity of contiguous is higlsnaall clustered region tend to be
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merged into a large cluster contiguous to it ifitheea level behaviors are not
significantly different. Because of this functiomgl| £ can be adjusted to filter out noise
in the clustering result, and to test the signifa of identified spatial patterns and their

associate climate phenomena.

(a) (b)

20 B0 100 140 180 220 260 300 340 20 B0 100 140 180 220 260 300 340

©) (d)
Figure3.4 Results of clustering with the spatial penatigfficient () set as: (a) 10; (b)

30; (c) 50; and (d) 100.

The impacts of the spatial penalty coefficighton our clustering result were tested
(Figure 3.4). As S increases, small regions of Cluster 1 and Clugtare gradually

merged into Cluster 3. So Cluster 3 can be viewgetha major body or the background
signal of sea level, while Clusters 1 and 2 areo@ated with particular climate

phenomena. Wheg is set at a large value of 100, the spatial pastassociated with

North Atlantic Oscillation disappear, with the riégwg Clusters 1 and 2 mainly reflecting
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the spatial characteristics of ENSO events. Tlasltegeveals that, compared to regional
climate phenomena like PDO and NAO, the ENSO evikate stronger influences on
the spatial variations of sea level. This conclns®supported by the Intergovernmental
Panel on Climate Change’s (IPCC) findings in itsiflo Assessment Report (Meehl et al.,
2007). Scientists in the IPCC found that ENSO-ggladcean variability accounts for the
largest fraction of variance in spatial patterngh@@rmosteric sea level (Bindoff et al.,
2007). Since themosteric effect is the major cbaotor to spatial sea level variations
(Bindoff et al., 2007, Meyssignac et al., 2012)istltudy’'s finding that ENSO has
stronger impacts on spatial sea level variatioas fADO and NAO is consistent with that

of the IPCC.

3.3 Spatial sea level datareconstruction

Average sea levels for regions identified by owoathm with £=100 are computed

since this clustering eliminated insignificant nog@gnals and retained spatial patterns of
major climate phenomena (Figudes). Compared to the average sea levels of thegerm
ocean basins, those of the clustered regions slgmifisant temporal patterns, which
may provide support for studies of related climatenomena. For this reason, long time
series of mean sea level for these regions mayaheble. Unfortunately, as described
above, time span of spatial sea level data isivelahort. For instant, the sea surface
height dataset constructed by Church et al. (2094)nly from 1950 to 2001. This
shortage of spatial sea level data motivates uggort to reconstruction techniques to

establish longer time series of mean sea levehlfgeting regions.
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Figure3.5 Average sea levels of: (a) regions identibgatlustering; (b) three major

ocean basins

Previous studies on the reconstruction of recoeds sea level (SST, sea level pressure,
and sea level) have utilized the technique of EwglirOrthogonal Function (EOF)
(Smith et al., 1996; Kaplan et al., 2000; Churchalet 2004). This method constructs
EOFs as eigenvectors of the spatial covariancebmatdata records from a certain time
period, and uses these EOFs to reconstruct sphttal beyond the original period. In
doing so, the EOF method assumes that the spatiehriance of data in the
reconstruction period is the same as that in theemation period. Artificial neural
network has also been applied to reconstruct regiorean sea level from tide gauge
records (Wenzel and Shroter, 2010). The sharedriyntg principle of these different
sea level reconstruction studies is that sea lavalifferent regions of the ocean are

related. Based on this principle, missing valuesed level at certain regions can be

reconstructed using spatial records from otheroregi

This study differs from previous spatial sea leslonstruction studies in that our target

is not to reconstruct sea level for certain regifvom available records of other regions.
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Instead, the aim of this study is to reconstrugiamal means of sea level based on the
global mean value, which is logically similar tetdownscaling techniques used in many
other climate studies (Haylock et al., 2006; Schaad Pryor, 2001; Wilby et al., 1998).
Since the general temporal trend of sea level istrained by the time series of global
mean sea level, our task is only to figure outdpatial variations of sea level among the
target regions. Previous study has shown that thetmosteric effect is the most
important impact factor of sea level regional Vaitity (Meyssignac et al., 2012). Sea
surface temperature (SST), which reflects the tbetaric effect, has also been used to
improve the accuracy of spatial sea level reconstm (Hamlington et al.,, 2012).
Accordingly, this study attempts to construct tegional variability of sea level based on

the sea surface temperature (SST), which reflbetshiermosteric effect.

As a powerful downscaling technique widely usedclimate studies, artificial neural
network (ANN) is also chosen in this study to restouct regional means of sea level
from the global-mean records (Rahmstorf, 2007) #mel regional means of SST
(computed from Smith et al.,, 2008). The architextaf the neural network is shown
(Figure 3.6). The feed-forward network is chosen to tale dlobal mean sea level and
the regional means of SST as input variables arelthie mean values of sea level for the
corresponding regions as outputs. Regional meassafevel computed from Church et
al. (2004) serve as the calibration data, or “ter'g®r the outputs of neural network. The
neural network is configured to contain only onédein layer with 4 neurons for scarcity

of calibration data.
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Figure3.6 Architecture of the neural network for regibsea level reconstruction

The mathematical formulation behind the schemdtitb® neural network (Figurg.6) is

as below:
A= f (W X+ B) (3.8)
Y = f,(W A+ B) (3.9)
f(x)= 1+1e _ (3.10)
f,(x)=x (3.11)

where X is the input data matrixA is the data matrix produced by the hidden layer,

is the output/target data matri®j and B, are weights and biases for the hidden layer of

neuronsW, and B, are weights and biases for the output layer ofroves) f, is the
transfer function for the hidden layer (log sigmdighction), andf, is the transfer

function for the output layer (direct output withidcansformation).
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The training mode of the neural network is setakkpropagation, with the optimization
method of the Levenberg-Marquardt algorithm (Hagetn al.,, 1996). Since our
methodology to reconstruct regional mean sea |svelssentially a hindcast approach
(using current data to reconstruct older data),edudiest 15% of the training data were
reserved as the validation set to improve the gdimation of the neural network. In
addition, to address the local minimum issue of lteeenberg-Marquardt algorithm,
every network training is repeated for 1000 randoitnal states of the neurons (weights

and biases).

Impacts of SST and region division. After its architecture and training methodologyg a
established, the neural network is first trained tasted using the available observation
data for potentially important issues before itattually applied in the reconstruction
phase. The first issue examined is the importafit¢keoregional average SST’s as input
variables in the neural network. Based on the itmginand the testing results,
incorporating regional average SST's as input \emsignificantly improved the neural
network’s performance on reconstructing sea levatla dfor region division based
clustering (compare Figu@7 (a) and (b)). However, for region division he® major
ocean basins, the difference caused by includin§’sS&s input variables is almost
negligible (Figure3.7 (c) and (d)). This difference might be relatedhe fact that areas
of regions identified based on ocean basins arquatie large. Weak signals tend to be
averaged out for spatial means of large areashescspatial relationship between the
mean sea levels of the three major ocean basiredaitsvely stable over time and is not
significantly affected by decadal climate phenome¥sa result, regional average SST’s
do not provide a significant amount of additionaformation in characterizing the
relationship between global mean sea level andnaedimean sea levels of ocean basins.
Another issue worth noticing is the impact of regidivision on neural network’s

performance. The neural network’s performance fegian division based on major
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ocean basins is remarkably better than that fororeglivision based on clustering
(compare Figurg.7 (a) and (c)). This difference is also likelylde related to the large
areas of ocean basins and the resulted relativgtyfisant and stable sea level signals,

which are easier to characterize than those obnsgdentified by clustering.
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Figure3.7 Training and testing of neural network: ()ioa division based on clustering

and SST’s as input variables; (b) region divisiasdd on clustering but SST’s not
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included as input variables; (c) region divisiorsé@d on major ocean basins and SST's as
input variables; (d) region division based on majoean basins but SST’s not included

as input variables.

Final results of reconstruction. Based on the training and testing results (Figui,
our neural network with SST's as input variablesalsle to reproduce the target
observations in the training phase and the trammesd/ork has great generalization into
the test phase. The neural network configuratios w@nsequently fixed as shown in
Figure 3.6, and all available observational data were w@senhputs to train the network.
The trained network was subsequently applied tonsttuct regional average sea levels
from the year 1870 to 1949. The final reconstructiesults are shown in Figu@8.
Reconstructed data for both region division scheheege temporal patterns consistent
with those shown in the observational records (fE@u8 (a) and (c)). Global mean sea
level computed from reconstructed data under ertbgion division scheme also matches
the observational global mean sea level pretty.\iglese results are strong indications

that the reconstruction of regional average seal kawe series has been successful.
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Figure3.8 Results of data reconstruction: (a) reconsttlaverage sea levels for regions
identified by clustering; (b) global average se&lecomputed from reconstructions for
regions identified by clustering; (c) reconstructegrage sea levels for regions based on
major ocean basins; (d) global average sea levelpated from reconstructions for

regions based on major ocean basins.
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3.4 Conclusions

To address this need of characterizing spatiakepathutomatically from observational
data, a pattern recognition technique based ortering algorithms s is developed to
characterize patterns in spatial sea level dathisnchapter. This methodology is capable
of clustering sea level data with changing magrmtatispatial variations over time, and
has the functionality to assess the impacts ofapainstraints through its spatial penalty
term. The optimal number of cluster division isestéd using a cluster validity metric
called Silhouette Index. When applied to a spated level data set by Church et al.
(2004), this methodology was able to identify sgigbatterns in the data that are related
to climate phenomena such as El Nino-Southern @soih (ENSO), Pacific Decadal
Oscillation (PDO), and North Atlantic OscillatioNAO). By the functionality of the
spatial penalty term in our clustering algorithnN&O is evaluated to be the strongest

spatial signal in the data, which is consistenhwiitdings of previous studies.

To resolve the issue of short time span of regiawalage sea level time series, a neural
network approach is adopted to reconstruct regioredn sea level from time series of
global mean sea level. Utilizing the correlativéatienship between sea level and sea
surface temperature (SST), the neural network tedégi®nal average SST's and global
average sea level as input variables, and it gesen®gional average sea levels as
outputs. The network is demonstrated to reprodbsemvational data well at the training
stage and has good generalization performance atalidation stage. For region division
based on clustering result, as well as that basethe three major ocean basins, the
neural network approach reproduced observationah deell and showed good
generalization performance. Both of these two rettanted data sets are used in Chapter
4 for the calibration of our spatial dynamic systeradel. Further analysis showed that

data reconstruction for clustered regions is maffecdlt than that for the major ocean
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basins because of the small areas of certain cbus®ST’'s were shown to be
indispensable for clustered regions’ data reconstm, but they did not significantly
affect the data reconstruction for major oceannzsmas weak signals tend to average out
for large areas. This neural network approach, aeatbwith the clustering methodology,

provides a viable tool for future research on gpatariations of sea level.
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CHAPTER 4

SPATIAL SEA LEVEL RISE ANALYSISUSING DYNAMIC
SYSTEM MODEL

4.1 Introduction

It is reported in the literature that sea leveleriéSLR) is not spatially uniform.

Consequently the development of modeling technigoepredict future regional sea
levels becomes critical. Previous studies have shtdvat models based on physical
processes may not yet predict regional sea levahgds with confidence (Vermeer and
Rahmstorf, 2009). As discussed in Chapter 2, §fpg f mechanistic modeling has its
own limitations by its nature, since the scientifiaderstanding of certain physical
processes (i.e., dynamics of ice sheets, glaci#ingethermodynamics of sea-volume
analysis, hydrologic impacts etc.) is still limitemlallow an accurate quantitative analysis
in a regional scale (Grinsted et al., 2010; Schpethal., 2012). An alternative way to
model SLR is the empirical or semi-empirical appigawhich utilizes numerical and

statistical techniques to reveal correlations betw8LR and temperature.

Previous studies on semi-empirical modeling of @l rise mainly focused on the

unidirectional impacts of global mean surface terapge on the global mean sea level
(Etkins and Epstein, 1982; Gornitz et al., 1982in&ed et al., 2010; Jevrejeva et al.,
2009; Jevrejeva et al., 2010; Rahmstorf et al.,728@rmeer and Rahmstorf, 2009). As
another application of semi-empirical models, theractive relationship between global
mean sea level and global mean surface air temperatas characterized in a dynamic
system model (DSM) proposed by Aral et al. (201@)ere both the rate of SLR and

surface air temperature change are hypothesizbd limearly dependent on global mean
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sea level and surface air temperature among otktarnal effects. Their results
demonstrated the advantages of this two-way intie@eacapproach over previous
unidirectional semi-empirical analyses. The assionpgh DSM was that the interactive
feedback mechanisms are expected to occur betweestate variables of the target
system. This two-way interaction concept origingdlpposed in Aral. et al. (2012) was
later confirmed in an independent study by Schrethal., (2012). The discrete model
used to solve the DSM by Aral et al. (2012) hassémme structure of the model used in
the study by Schmith et al. (2012). In their st&bhmith et al. (2012) also stated that the
surface air temperature adjusts to the averageaenpes of the upper ocean (because
oceans represent a much larger heat capacity thassphere), indicating that sea level
rise will affect temperature. Thus, the DSM conceptalidated by two independent
studies in the recent literature. The DSM analysas later successfully extended to
explicitly incorporate external forcing effectsg.iradiative forcing (Guan et al, 2013).
This application also demonstrated the versatiityhe DSM approach in analyzing the

SLR problem under different modeling strategies.

Despite its advantages over previous empirical fisodee global DSM model has the

limitation of being “zero-dimensional,” thus it aaot be used in spatial analysis of SLR.
As discussed in Chapter 2, significant spatial atayns exist in sea surface heights,
which are potentially associated with underlyingchenisms such as local surface
heating, polar ice mass change, and general ciicnlahange. Despite various studies
on the geographical pattern of sea level changgsigdl models targeting the spatial

patterns are still in their preliminary stages. Magsearch efforts are needed to improve

the predictions of spatial variability in futureasievel changes.

In this chapter, the dynamic system model (DSMyaggh (Aral et al., 2012; Guan et,al

2013) is extended to conduct spatial analysis. i8lpaariability of sea level and sea
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surface temperature is incorporated into the DSMhsb interactions among sea levels
and sea surface temperatures in different regidnghe oceans can be investigated.
Instead of focusing on complicated physical mectrasibehind the spatial variability of
SLR, the proposed model utilizes a spatially charaaed DSM to potentially address
this issue. For instance, the previously mentigoiegsical mechanisms, such as polar ice
melting, local surface heating, and general citoohachange of the oceans, will not be
characterized specifically in our model. Howeveasthof these physical mechanisms are
directly or indirectly connected with the sea soefdeight (sea level) and the surface
temperature (SST) of the oceans. If a spatial DSktessfully simulates the system
behaviors of sea surface heights and SST’s, thernmpdjysical mechanisms affecting
these two variables should have been appropriatetyacterized by the model. This
indicates that the model without explicit charaizion of physical mechanisms can
nonetheless be physically valid. Our hypothesith& the complex system behavior of
this problem is embedded in the historical recatithe state variables (sea levels and
SST's). If models are constructed successfullyapture historical system behaviors of
sea levels and SST's, subsequent predictive spatallysis can be made within certain
error bounds. The key point in such an applicaisathe degrees of freedom incorporated
into the selected model. As a first step in thiedion, two model configurations are
proposed which differ in the definition of the extal forcing function and the related

analyses are described in the following sectiorthisfchapter.

4.2 Mode Formulation

To investigate the spatial characteristics of Sttfe, DSM model is extended to include
spatially distributed state variables. In the sgabSM model the global scalar state
variables used in previous studies (Aral et all2@uan et al., 2013) are represented as

vector variables and the scalar coefficients of ghevious DSM will be represented in
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terms of matrices. This extension enables the mddelcharacterize the spatial
interactions between sea levels and temperaturéigfément regions of the ocean. In this
chapter, two configurations/applications of thisatsgd DSM model are presented, one
with an external forcing function term and the othéhout an explicit term of external

forcing function.

When the external forcing function is not considete be an independent term, the

matrix form of the spatial DSM can be given as

I H(t)=AH (1) +BT (1) +C,
dt 4.1)
ST (1)=DH () +ET() +C,

where H (t) and T (t)are vectors of regional means of sea level and 8&pectively,

at timet; A and B are coefficient matrices characterizing contribngi®o the rate of sea

level change as a function &f (t) and T (t), respectively;D and E are coefficient
matrices characterizing contributions to the rdt&S8T change as a function Ef(t)

and 'T(t), respectively;,C,, and C, are constant vectors indicating contributions te th

changing rate of sea level and SST from source=r ¢fian the current states of sea level

and SST respectively.

When the external forcing function is considerecaasndependent factor affecting sea

levels and SST's, the spatial DSM model can bergase

(4.2)
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where Q is a control matrix related to external forcing aﬁc(t) represents the

independent external forcing function which takesadified form of radiative forcing
(Equation (4.4)). The two assumptions adopted enftmmulation of Equation (4.2) are:
(i) the forcing function, i.e. increased greenhogas concentrations in the atmosphere,
will not directly affect sea level but rather affe®ST which in turn will cause sea level
rise. This assumption was confirmed in the studypblgmith et al. (2012) and Guan et al
(2013); and, (ii) the forcing function will not Ispatially variable but will be defined as a
globally uniform term. This assumption is more ofphysical interpretation than a
mathematically restriction, because carbon dioxid@ch is the target greenhouse gas in
this study, is a well-mixed greenhouse gas andneas uniform spatial distribution

(Church et al., 2001).

In this study, the spatial model is applied to tase of three major oceans (Figdré)
and also the case if three clustered regions disdusn Chapter 3. For these cases

Equation (4.2) will take the form:

dH,
d?—ﬁ &, a, a5 Hl b11 b12 b13 T1 CH 1
dt2 =l Ay Ay H ot bZl b22 bzs T+ Q
st &y 93 g H 3 b?;l b32 b33 Ts CH 3
dt (4.3)
dam
cjj';[' d11 d12 d13 Hl €, & &5 T1 q Cr 1
d_t2 = d21 d22 dzs H 2 + €1 €, €4 T+ & 1C
de d31 dsz d33 H 3 € & & Ts Cr 3
dt

whereH, andT, are sea level and SST, respectively, for the theg®ns ( =1, 2, 3) (In

this applicationj = 1, 2, 3 represents the Indian, Pacific, and Aita@cean respectively);

the first subscript index of the coefficient matelements indicates the target region,
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while the second subscript index indicates therdmuting region, e.g.b,;indicates the
impact of the third region’s temperaturg) on the rate of sea level change of the second
region (dH, / dt); coefficientsa’s, d’s, ande’s can be interpreted in a similar manner;
C, andC;are constant terms for the rate of change of sesl Bnd temperature in
regioni; ¢ measures the’'th region’s SST change contributed by the globekmal

forcing functionu. As an important impacting factor on temperatunangeu is the
same for all regions, and it takes a modified farfnthe radiative forcing definition

(Guan et al., 2013):

u(t) =[5.35In(c(t) /)|’ (4.4)

wherec(t) is the global average atmospheric carbon dioxateentration at year, c,

is the baseline global average atmospheric carboxidé concentration set as 278

ppm(v), andg is a coefficient to be determined during modéibcation.
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Figure4.1 Region division based on the three major obeams.
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4.3 Modd calibration and validation

From the mathematical perspective, the spatial in@tpiation (4.1), (4.2), and (4.3)) is
essentially a non-homogeneous system of first-didear ordinary differential equations
(ODEs). To solve this system of ODEs, the firstpsie to obtain the values of the
elements (model coefficients) in matricas B, D, E, Q, C,, andC; . This step is

the calibration stage of the proposed model. Atftermodel is calibrated, the system of
ODEs can be solved analytically or numerically timpute the values of the state
variablesH; ’s and T, 's, given the initial condition of the system. Thigll be the

prediction stage. The procedure of model calibratsodescribed in this section, and the

analytical and numerical methods used for moddliptien are discussed in Section 4.4.

4.3.1 Calibration and validation methodology

To calibrate the spatial DSM model (Equation (4.8))s first transformed into a matrix
form as shown below for computation conveniencee tmponents of Equation (4.3)

are denoted as

iy

N

(4.5)

- I I I
w

[y

dH, / dt
dH, / dt
dH, / dt
X'=4" 3 (4.6)

dT./ dt
dT,/ dt

dT,/ dt
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a, a, a; b, b, by
8, @, a3 b, b, by
K= 4.7)
d, d, d, &, &, &;
3 & € €3
3 &1 & &

o

o
o
o

21 22

o
o
o

31 32

C:Hl
Ciz
F(t) = Cus (4.8)
Cru+qu(1)
Cr, +qu(Y)
| Cra+quu(1) |

where X is a vector state variable whose elementsHirs andT’s, X' is the first-

order derivative ofX with respect to time, K is the coefficient matrixF(t) is the
non-homogeneous vector term of the system incotipgrahe impacts of the external
forcing functionU (t) and constant termg,,’s and C,,’s. Following this notation,

Equation (4.3) can be expressed as:

X' =KX +F(t) (4.9)

To obtain the coefficients in Equation (4.9), thentated Taylor series approximation is

applied for X', which gives

X(t+At)-X(t)
At

(4.10)

Combining the three equations (4.8), (4.9), antiQtenders
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el ]
c:H2
X(t+at)-X(t) KX (1) + Cus (4.11)
At Cp, +quu( t)
Cr, +q,u( 1)
| Cra*auu(t) |
Separating constants from variables,
0 c.]
0 Ciz
X(t+At)—X(t):KX(t)+ 0 u(t)+ Cus (4.12)
At % Cr
0, G
L% L Grs
Rearranging the equation results in
- 0 C,]|
0 Gy
X(t)
X(t+at)-X(t) 9 G ot (4.13)
At @ Cu|
6 G,
L 6@ G
By setting At =1yr, the equation above is transformed into a diseqtation
_ 0 C.]
0 &
X(t+1)-X(t) =| K T u(t) (4.14)
@ Cuf ,
9 G,
L 6@ G
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Equation (4.14) represents a linear system. Siregergational records fob((t),

X(t+1), andu(t) are available at different years, all the constantEquation (4.14)

(model parameters) can be obtained using the lilezet squares method (Aral et al.,

2012). The computational procedure of the leasaieumethod is described as below.

Transposing both sides of Equation (4.14) leads to

i o CHl—T
X (0)] 8 g
X({t+1)-X()] =l u(t) | |K H3 (4.15)
[X(t+1)=X(1)] =] u(t) 6o C.
9@ G,
L 4G G
This equation can be rearranged as
i o CHl_T
0 G
0 C
X(t+1) =x(t)" [=] X(t)" u(t) 1||K Ha (4.16)
X -x@ =[x w9 o G
6 G,
L & G

The equation above is the equation for the systpproaimation at yeat. For the
calibration data set spannirg years,t =1, 2,[llk . The system of equations for the

calibration data set can then be formulated as

— - — - O C:Hl
X@'-x@ [ x@ ud 1] o c,
X(3)'-x(2 |_| X(2 u(@ 1 ||, O Cy 4.17)

(m (m q G

X(K) =X(k-1)"| |X(k-0)" u(k-1) 1| % G

) - L % Gl




For notational convenience, the following equatiaresformulated:

(4.18)

n= ) (4.19)

X(k-1)" u(k-2) 1

The linear least squares solution of Equation (4.lvhich represents the model

application with the external forcing function, ddaen be obtained as

r U

=(n'n)"n'e (4.20)

For the model application without explicit exterfaicing function (Equation (4.1)), the

linear least squares solution can be computed as

- T

- (rTr)‘erQ (4.21)

where
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r= (4.22)

For the model application with external forcing ¢tion, there is an extra parameter to
be calibrated, which i in Equation (4.4). The value of this parametezabbrated by

supplying the model with atmospheric £€Q@oncentration input under a 2 °C
temperature increase scenario (NASA, 2012) andnfgribe global average of predicted

temperature increases to match the expected tetapemcrease.

To test the generalization ability of our proposeddel, a cross-validation method is
adopted, which uses part of the observational thatalibrate the model and the rest of
the data to validate it. The corresponding mathmalaprocedure is to first use the
calibration data set to obtain coefficients in Beua (4.14) through the least squares
method described above. The coefficients obtaimedren applied to make predictions
for the validation period following the proceduresdribed later in Section 4.4. The
prediction results are compared with the obsermatia@ata in the corresponding time
period to evaluate the model's generalization BbillA good agreement between
predictions and observations in the validation gebrndicates that the model generalizes

well, and it is thus validated.

4.3.2 Observational data for model calibration aalidation

In this study, the spatial sea level dataset watsidd from the Commonwealth
Scientific and Industrial Research Organization IREY) of Australia. This dataset,

reconstructed by Church et al. (2004), containsssetace height records for different
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regions of oceans. It compiles monthly sea levebmds from January 1950 to December
2001 for the ocean between 65°S and 65°N, withatiadpesolution of 1°x1° (lat-long).
From this data set the seasonal signal has beayveshand it also has inverse barometer
correction and glacial isostatic adjustment (GlAgda to tide gauge data. Church et al.
(2004) used near-global coverage from monthly H&teldata of sea level
(TOPEX/Poseidon dataset) from 1993 to 2001 to edérthe global covariance structure
of observed sea level variability. This covariastreicture was then applied to interpolate
longer monthly tide gauge records from 1950 to 203t are relatively sparse in number
(less than 500) to a final data set with spatialecage and resolution mentioned above.
As a measurement of errors in this dataset, it eeaspared with the satellite data over
1993-2000. The error of the original satellite dstdess than 5 cm (NASA, 2013).The
correlation between the two data sets has a glaeal-weighted average of 0.60; while
the correlation is above 0.9 in the tropical Padiind Indian Ocean (Church et al., 2004).
Errors of the tide gauge data used were not disd$sit a preliminary estimation can be
obtained. The Inter-governmental Panel on Climatar@e (IPCC) stated that tide
gauges can be based on different technologiesasifibat, pressure, acoustic, radar and
that “the Global Sea Level Observing System (GLOS&)cifies that a gauge must be
capable of measuring sea level to centimetre acgufar better) in all weather
conditions” (Meehl et al., 2001). Since the tideigm data source in Church et al. (2004)
contributed significantly in the GLOSS data, ieigpected that the tie gauge data used by
Church et al. (2004) have accuracy at the centinhexel.

For spatial temperature records, sea surface teyper (SST) was used instead of
surface air temperature data that was used inqus\gtudies (Aral et a2012; Guan et al
2013). The reason behind this choice is that $Sdne of the direct ocean temperature
indictors and it has a spatial coverage matchintpab of the sea surface height datasets.

The spatial SST dataset is obtained from Versidn eBExtended Reconstructed Sea
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Surface Temperature (ERSST) developed by Natiotiadale Data Center of NOAA,
USA, which is based on the International Compreiven®cean-Atmosphere Data Set
(ICOADS) release 2.4 (Smith et al., 2008). Thisadsg#t has monthly SST records from
January 1854 to December 2009 for the ocean bet@&58°E and 88°S-88°N on a
2°x2° lat-long grid. SST records in this dataset presented as anomalies computed
with respect to the 1971-2000 month climatology €>at al., 2003). As a measurement
of errors in this data set, the global root meamased error (RMSE) was computed for
the ERSST by Smith and Reynolds (2003), which @u&b.08 °C at 1880 and decreases
to about 0.02 at 2000.

In the current study the yearly average data aed us order to demonstrate the
methodology, so yearly means of the two datasets@mputed as arithmetic means of
the data in each consecutive 12 months (JanuaBetember). To render the spatial
coverage of the two datasets consistent, only dscat those overlapping grid points are
selected, giving both of the final datasets a apativerage of 2-358°E and 64°S-64°N
on a 2°x2° lat-long grid. In addition, all the datsed in this study was preprocessed so
that they are relative to the global mean valudatyear of 1990. After both datasets are
prepared, regional means of them are calculatesktoe as the observational data for

model calibration and validation.

As described above, the time span of the sea suheight dataset obtained from CSIRO
is very short (1950-2001), especially when compavid that of the SST dataset period
obtained from NOAA which is from 1854 to 2009. Whanalyzing global-mean sea
level and temperature datasets (Rahmstorf 2007;eAi. 2012), it became clear that the
CSIRO sea surface records from 1950 to 2001 witl me sufficient to capture the
historical trends. To address the issue of datatafpe the reconstructed regional mean

sea levels in Chapter 3 were used to calibratespatial DSM model.
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To calibrate the model with external forcing fuocti (Equation (4.2)), global mean
atmospheric C@concentration data (1880-2000) are obtained flzenGoddard Institute
for Space Studies of the U.S. National Aeronauticd Space Administration (NASA,
2012). Future C@ concentrations (2001-2100) projected by the carbgeie model
ISAM (Jain et al., 1994) are used for our modejgutions, which are obtained from the
IPCC (2012). CQ concentrations in both datasets are in unit ofspper million by

volume (ppmv), and their annual average valuesised in this study.

4.4 Analytical and numerical methods for model prediction

After the model coefficients are calibrated, anlginaal solution approach can be used to

predictH,’s andT.’s at any given time. However, finding the analgtisolution is time

consuming, and it has to be conducted for eacleréffit application. More importantly,
potential further development of the spatial DSMdelomight make it difficult or even
impossible to obtain an analytical solution. Fastamce, if the coefficients of the spatial
DSM model are configured as time-dependent, theqohare described in this section
will no longer be suitable for the solution. Facititese challenges, the alternative
numerical method is potentially a better choice aAgsult, the numerical method is used
for all model predictions in this study. Nonethslefor applications whose analytical
predictions can be easily obtained, the analyscélition can be utilized to validate the
adopted numerical method. For this reason, both ahalytical and the numerical
methods of model prediction are presented in thcsi@en. Following this discussion, the
methodology applied to construct the confidencerir@l of model prediction is described

lastly in this section.
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4.4.1 Analytical prediction method

In this section, the procedure to obtain the amatpredictions by the spatial DSM

model (Equation (4.3)) is described. In Equatior8)4K andF(t) are continuous over

time. In addition, the initial conditioiX (t,) is known. These conditions constitute an

initial value problem, which has been proved toehavunique solution (Zill, 2008).
According to the classical theories on the soluf@mon-homogeneous system of linear

ODEs (Zill, 2008), the analytical solution of Equat (4.9) has the form

X=X, +X, (4.23)
where X, is the general solution of the associated homageknear system

X' =KX (4.24)
and X ) is any particular solution of the non-homogenesystem. The approaches to

solve for X, and X, are described in the following paragraphs.

The general solution of the associated homogen@®ss (Equation (4.24)), also called
the complementary function, has different formais three different cases & with

respect to its eigenvalue features.

() K (nxn matrix) hasndistinct real eigenvalues. The solution of Equaf#24) is

X =cV,e" +cV,e +F ¢V, &' (4.25)
whereA's (A, 4,, ..., A)) andV's (V,,V,, ..., V,) are the distinct eigenvalues and
corresponding eigenvectors of mati; c’s (c,,¢c,, ..., ¢,) are arbitrarily chosen

constants.
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(i) K has repeated real eigenvalues. For a repeatedvalgem with multiplicity of m,

if it has m corresponding linearly independent eigetors {,,V,, ..., V,,), the general

solution of the system will contain the linear conation of the solutions

X, =Ve"
X, =V e"
N

X, =V e"

(4.26)

If the repeated eigenvalue with multiplicity of mshonly 1 eigenvector, then the general

solution of the system contains the linear comlimadf the solutions

X, =V,e"
X, = Ve +V "
[ (4.27)
tm—l tI'TT—Z
Xp=V,——€"+V,—— €'+ V, €
(m-1)! (m-2)!

The vectorV, is the eigenvector associated with eigenvaluélhe vectorsv,, V,, ...,
V, are called “generalized eigenvectors” correspamndnthe eigenvalud , and they

can be computed through the algorithm below:

(K-A1)V, =V, 0i=2,3,..m (4.28)

If the repeated eigenvalue with multiplicity of mashp eigenvectors (1<p<m), the

solutions can be obtained using an algorithm simwiéh the one above.

(i) K has complex eigenvalues. Aff=a +if is a complex eigenvalue of the coefficient

matrix K and V is its corresponding eigenvector, the general t&mlucontains two

linearly independent solutions
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X, =[VgcosBt -V, singt]e”

_ (4.29)
X, =[V, cospt +V, sinpt]e”

whereV, andV, are real number vectors containing the coeffisiaitthe real and the

imaginary parts ol , respectively.

Particular solution of the non-homogeneous lingamtesn can be obtained using two
approaches: (i) undetermined coefficients; and, (@riation of parameters. Because
variation of parameters is generally a more poweafiproach, that solution process is
adopted in this study. Procedures of this methedoaefly described as blow following
Goodwine (2011). The linearly independent solutiohghe homogeneous part of the
system can be arranged to form the “fundamentatixiaif the system. For instance, in
the case where the coefficient matkxhas distinct eigenvalues, the fundamental matrix

is formed as
®(t)=[V,e" Ve v, é ] (4.30)

As mentioned previously, the eigenvectdfss are allnx1 vectors.CI)(t) is accordingly

an nx n matrix. The variation of parameters approach assutmt the particular solution

of the system should have the form
X, =@(t)U(t) (4.31)

where U (t) is initially unknown. FindingU (t) will give us the particular solution of the

system. Through derivation (Goodwine, 2011), it barshown that

U(t) = @™ (t)F(t)dt (4.32)
The particular solution can then be calculated as

X, =®(t) [@* (t)F(t)dt (4.33)

73



Combining the general solution for the homogenegiaus of the system and the particular

solution, the general solution of the system is
X=®(t)C+o(t) [@* (t)F(t)dt (4.34)

where C is an nx1 vector containing arbitrary constanl@,(t) is the fundamental

matrix of the system, anB(t) is the non-homogeneous vector term of the sysiate

that constant of integration is not needed in treuation of this equation (Zill, 2008).

4.4.2 Numerical prediction method

The spatial DSM model can be solved numericallyhgighe classical forward Euler
method (Butcher, 2008). Using the forward Eulerhnodt the first-order derivative of the

matrix X is approximated as

X(t+At)=X(t)

X' O . (4.35)
Equation (4.9) is then transformed into
X (t+at) - X(t) =KX (t) +F(t) (4.36)
At
To solve the initial value problem, the equationabcan be rearranged as
X (t+At) = (AK +1) X (t) +AtF(t) (4.37)

Numerical experiments have shown that decreasiagithe stepAt to be less than 1
does not significantly increase the accuracy ofrtbmerical solution. Since the annual

mean ofX is investigated in this studwt is chosen as 1 year for this application.
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To project future sea levels and SST's, the initiputs of the model are regional mean

sea levels and SST’s at the starting year. Withiripats of observations at the starting

yeart (X(t)), the calibrated constant coefficients in matrib’esandF(t) of Equation
(4.37), and the external forcing function calcullat t (u(t)),the immediate outputs

X(t+At) can be calculated by settidg at a certain value (chosen as 1 year in this

study). Following the same procedure, predictedoresd mean sea levels and SST's

(X(t+At)) can be used as inputs to make further predictdns 2At . This process can

be repeated to make predictions for the desired timterval.

4.4.3 Confidence interval for model prediction

The uncertainty of model prediction is quantified the construction of confidence

intervals. A basic assumption in this analysishat the magnitude and the distribution of
errors do not change significantly from the moddilration stage to the prediction stage.
Based on this assumption, model errors in the i@dldn stage can be used to construct
the confidence intervals of model predictions. &wlhg the procedures by Ryan (1990),
the confidence intervals for model predictions tenconstructed as below. First, the

model error indicators for sea level and SST ateutated as their mean squared errors

(MSE) 67, and &%,. For a sea level prediction at the yea(H,(n)), its confidence

interval at the(1-a) confidence level is

H, (n),, = H (n)t ta,z’k_p_l\/ﬁzm Ux(n)T 1}(rTr)‘l[x(ln)}+%+1J (4.38)

wheret,, _,, is the critical value of the Student’s t distrilout, k is the total years of

observations in the calibration stage,is the number of parameter used for that specific
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prediction (p=7 here), and the definitions O((n) andl' can be found in Equation

(4.5) and (4.22), respectively.

The confidence intervals for SST predictions arkeutated differently for the model
applications with and without external forcing ftioas. Following the same notation as

the previous paragraph, for the model applicatisthaut external forcing function, the

confidence interval for SST prediction at the yea(T, (n)) is

T (M), =T(n= L\/U ([X( 0" 1(r Tr)‘l{x(ln)}%ﬂJ (4.39)

For the model application with external forcing étion, the corresponding confidence

interval is

X(n)
'I'i(n)u’a:'li'(n)ig,z’k_&l a5 [X(@T Y n 1}(nTn)_l  » "'%"'1 (4.40)
1

whereu(n) and are defined in Equation (4.4) and (4.19), respebti

4.5 Results and discussion

Model results for both of the two applications désed in Section 4.2 are presented in
this section. The first application utilizes the debgiven in Equation (4.1), which does
not include the forcing function explicitly. The ol was first calibrated with

reconstructed data from 1880 to 1992, using thstleguares method described in
Section 4.3.1. The confidence intervals of modehusations were also calculated

following the methodology discussed in Section 3.4 he calibrated model was then
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applied for the time period of 1993-2001, and tbsufts obtained were compared with
corresponding observations for the purpose of aibd. As shown in Figuré.2, model
results match observations well in both the calibraperiod and the validation period.
The RMSE of the overall fitting in the calibratiphase for sea level is 1.33 cm, and that
for SST is 0.12 °C. In the validation phase, theesponding numbers are 0.98 cm and
0.10 °C, respectively.

10 T T T T '08 T T T
€ () Indian ~ -1.2 + (d) Indian
~ 0 18
q) N
g 10 b T .
8 - )] 2L soee .
n
-20 IR T . A 2.4 1 I R . .
1880 1900 1920 1940 1960 1980 2000 1880 1900 1920 1940 1960 1980 2000
Year Year
10 T T T 1.6 T T T
\_g’ 0 (b) Pacific 1 Gl2y (e) Pacific
o) —
3 — 0.8
s 10 <N '
BT | e ] 04
wn I ]
-20 L L L L L | 0 . LS R 1 R [ 1 R |
1880 1900 1920 1940 1960 1980 2000 1880 1900 1920 1940 1960 1980 2000
Year Year
10 T T T T T T 0 T T T T T 1]
c . . 1
c) Atlantic —~ - = Atlant o
& () G 0.4 | (f) Atlantic
] ~
> - — -0.8 |
< -10 T A 1ol
] ] -1.
] - . .
-20 R N I T R [ ) U T L [ I ——
1880 1900 1920 1940 1960 1980 2000 1880 1900 1920 1940 1960 1980 2000
Year Year
Legend

Observation (training phase) Model prediction

° © © Observation (validation phase) 90% confidence interval of prediction

Figure4.2 Spatial model results in the training phasktae validation phase.
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To fully utilize the observational datasets, caméints for the dynamic system model,
Equation (4.1), were finally calibrated using aktdata from 1880 to 2001. The resulting
coefficient matrices are shown in Table 4.1. Whiile rate of sea level rise in the global
DSM model by Aral et al. (2012) is negatively cdated with its current state, this
negative feedback trend is not the same for evegion in our spatial DSM model. In
Table 4.1, two of the total three elements on thegahal of matrixA are positive
suggesting that feedback by a single region isneaessarily negative. An interesting
observation is that, for the matri, which quantifies the impacts of different regions
SST on their rate of SST rise, the diagonal elemarg all negative, indicating that the
three regions’ SST rise rates all receive negdieelbacks from their current states of
SST. From the perspective of control theory, tlagative feedback feature indicates that
the response of the temperature system is corilellawhen external controls are
implemented on the system. Note that the diagdeahents of matrice® and D do not
follow a systematic pattern. This illustrates tihgportance of representing appropriate
interactions between different regions in modebpgtial variations of SLR. Because of
this complex nature of spatial interactions, theéhmdology that may be used to model
global means of sea level and SST would not beogpiate to predict the spatially
distributed sea levels and temperatures of thegene That is treating different regions
of the oceans as if they are isolated regions wogidbe a reasonable approach and
interactive analysis needs to be performed as s&clin this study. Eigenvalue analysis
reveals that the most dominant eigenvalues foricestA , B, D, E are -0.37, 0.38, -
0.17, -0.27, respectively. Based on these eigeesakea levels and SST's generally have
negative impacts on the changing rate of themsdlesnd E ). While increase of SST
leads to increase of sea level rise r&9,(increase of sea level will decrease the SST rise

rate (D).
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Table4.1 Coefficient matrices obtained from model aailon

Rate Contributing variable
of
H T Constant
Rise
A (yrh B (cmPClyr) Ch (cmiyr)
0.22 0.20 -0.41 0.29 -0.35 0.22 1.02
dH/dt
0.63 -0.12 -0.41 0.30 -0.20 -0.12 0.57
0.60 0.23 -0.77 0.40 -0.45 0.11 1.15
D (°Clcmlyr) E (yrh) Cr (°Clyr)
-0.03 -0.07 0.11 -0.26 0.12 -0.01 -0.46
dT/dt
-0.04 -0.06 0.10 0.01 -0.07 -0.02 0.05
0.05 0.02 -0.06 -0.01 -0.02 -0.11 -0.07

The analytical formula for model prediction candi#ained by rearranging the matrices
in Table 4.1 and following the procedures descrilbeSection 4.4.1. Specifically, for the
spatial DSM model without explicit external forcirfgnction (Equation (4.1)), the
corresponding coefficient matriK computed from Table 4.1 has four distinct real

eigenvalues @, ~ 1, ) and two conjugate complex eigenvalues, (A, =m=ni).
Accordingly, K has four linearly independent real eigenvect®s-(V,) and a complex-
conjugate pair of eigenvector®/{/V,=M =Ni). As a result, Equation (4.23), (4.25),

and (4.29) are applied to construct the analyfmahula as

(1)
- (t)
5(t)
(t
(t
(t

- I I T

iy

4
=>"cV,e" + ¢[Mcosnt-N sinn] &+ ¢[N cosntM sinrft B+X_ (4.41)
=1

S— S
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The particular solutiorX ; can be obtained using the variation of parametegthod
discussed in Section 4.4.1, and the constgfiss ¢, andcg can be computed using the

initial conditions ofH,’'s andT,’s.

To test the accuracy of our numerical method diesdrin Section 4.4.2, the numerical
predictions are compared with the analytical priois computed using Equation (4.41)
(Figure 4.3). Based on the comparison, the numerical ptied& match the analytical

predictions very well, indicating that the numeliozethod adopted is accurate enough

for this application.
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Figure4.3 Analytical and numerical predictions of thedabwithout external forcing

function for the variable of: (a) sea level; (b)TSS

The predictions made using this model assume kigaaimthropogenic factors during the
prediction period behave similarly to those in ttadibration period. Carbon dioxide
emission scenarios used for projections in the IR@@alysis (Meehl et al., 2007) is not
considered here. However, this is not a restricsioigce the procedure described in Aral,
et al. (2012) can be used to implement this araligsi this case as well. Applying the
calibrated DSM (Tabld.1), sea level and SST for all three regions aogepted in the
21% century (Figure4.4). All three regions of the ocean will experiersignificant sea
level and SST rise in the 2kentury, but the magnitude of rise varies fromioego

region. The projected magnitude (with 90% configemderval) of sea level rise from
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2001 to 2100 for Indian, Pacific, and Atlantic Ocesre 38+3 cm, 47+4 cm, 43+3 cm,
respectively; those for SST rise of the correspogadegions are 1.8+0.3 °C, 1.3+0.3 °C,
1.6+0.3 °C. The magnitude of SLR in the Indian @ceasignificantly lower than those
in the other two regions, while the magnitude off Se is the lowest in the Pacific
Ocean. The outcome that the highest SST rise amegigns will not lead to the highest
sea level rise is again an indication that diffemegions of the oceans cannot be treated
as isolated zones. To compare our results withethms previous studies, the global
average of predicted sea levels or SST’s is céaledlas the area-weighted average of
regional means of sea level or SST. The global nsearlevel in 2100 relative to 1990 is
48 cm with 90% confidence interval of 45-51 cm. sSTiheésult matches the predicted
central value of 48cm (with a range of 9-88 cm}iy IPCC (Church and Gregory, 2001)
perfectly well. Our prediction of sea level is alslose to the range of 50-140 cm by
Rahmstorf (2007) and that of 40-45 cm by the glahelamic system analysis study of
Aral et al.(2012). The small difference between results of thodel and that in Aral et
al. (2012) is probably caused by the use of differypes of temperature data. As
mentioned previously in Section 4.3.2, sea surtaceperature (SST) was used in this
study, while surface air temperature data was uséide study by Aral et ak012. The
lower prediction of sea level by our model compatedhat by Rahmstorf (2007) is
likely associated with the incorporation of feedbawechanisms into our model. This
difference might indicate the importance of feedbaechanisms to the dynamic system

of sea level and SST.
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Figure4.4 Projections of regional means by the spat&i/Dwithout external forcing

function.

In the second application the model given in Equmat(4.2) is applied. Using the
methodology described in Section 4.3.1, the t¢gnm Equation (4.4) was calibrated as
1.21. After S is determined, the model in Equation (4.2) wasbcated with the sea
level (reconstructed using ANN, see detail desicmstin previous paragraphs), SST, and
global mean C@concentration data from 1880 to 1992 using théhodlogy described
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in Section 4.3.1. The calibrated model was theidat#d using observation from 1993 to
2001. Model results match observations well in bibil calibration and the validation
period (Figuret.5). The RMSE of the overall fitting in the cabltion phase for sea level
is 1.07 cm, and that for SST is 0.11 °C. In theidadlon phase, the corresponding

numbers are 0.35 cm and 0.09 °C, respectively.
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validation phase.
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The calibrated coefficient matrices in Equatior2jre shown in Tablé.1. As expected,
adding external forcing function to the model daes change the values of matric&s

B, or C,. However, changes are likely to occurbn E, andC,, as adding external

forcing will theoretically re-attribute contributis to SST change among sea level, SST,

constant term, and the external forcing. Compaoedatues in Table 4.1D andC; in

Table 4.2 have significant changes, while no significahtatnge is observed & .
Elements inD now exhibit a more discernible pattern, as valueshe diagonal are all
negative. These negative diagonal elements indibatethe three regions’ rates of SST
rise all receive negative feedbacks from their entristates of sea level. The absence of
significant change irE suggests that adding external forcing does notcaf&STs’
behavioral impacts on themselves. The three elenwi@ are all positive, an indication
that increased global mean €€&ncentration will lead to increased rates of $iS& for

all regions. The fact thad, is larger thang, and g, reveals that the Atlantic Ocean’s rate

of SST change are more sensitive to globa} €@hcentration change than the Indian and
the Pacific Ocean. The most dominant eigenvaluesnftricesA andB are the same
with those for our first model (Equation (4.1)). éfimost dominant eigenvalues for
matricesD andE are -0.18 and -0.29, respectively, which do ndtedisignificantly
from their previous values in the first model (Ego@ (4.1)). This demonstrates that our

model results are relatively robust.
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Table4.2 Calibrated coefficient matrices for spatialdalowith external forcing function

Rate Contributing variable
of
H T CO, Constant
rise
A (yrh B (cmPClyr) N/A Chx (cmiyr)
0.22 0.20 -0.41 0.29 -0.35 0.22 N/A 1.02
dH/dt
0.63 -0.12 -0.41 0.30 -0.20 -0.12 N/A 0.57
0.60 0.23 -0.77 0.40 -0.45 0.11 N/A 1.15
D (°Clcmlyr) E (yr) Q (°Clppmlyr)  Cy(°Clyr)
-0.04 -0.06 0.10 -0.29 0.12 0.01 0.073 -0.56
dT/dt
-0.04 -0.06 0.10 0.01 -0.07 -0.02 0.010 0.04
0.05 0.03 -0.07 -0.04 -0.03 -0.09 0.076 -0.17

Predictions made by the model with external fordungction reflect the changing trends
of the anthropogenic factors during the predictjmeriod. In this study, the future
anthropogenic factors are represented by projefitede CQ concentrations in the
atmosphere. Specifically, our model used projecfiethal mean CQconcentrations in
the 2f' century under six scenarios (Fig4ré) proposed by the IPCC. The six scenarios
include four marker scenarios (A1B, A2, B1, and B&J two illustrative scenarios (A1T
and A1FIl). The Al family of scenarios is commonharacterized by a homogeneous
future world focused on economic growth, with thadternative technological emphases:
fossil intensive (AlFl), non-fossil energy sourq@dlT), or balanced energy sources
(A1B). A2 assumes a very heterogeneous world thaorE economic growth over
environmental quality. B1 describes a homogeneousird world that values
environmental sustainability, and B2 describes terbgeneous world that is oriented
toward environmental protection. These four madanarios are recommended as the

basis of climate model projections, and detailedyslines behind different scenarios can

86



be found in the IPCC’s Special Report on Emissioan@rios (SRES) (Nakicenovic et

al., 2000).
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Figure4.6 Global mean atmospheric €&ncentrations under different scenarios

Projected sea levels and SST’s under the A1B siceass drawn in Figurd.7 to show
the temporal behaviors of different regions, whedtgredicted SST and sea level curves
progress smoothly over time. This “smoothness” Xxpeeted since our model targets
projecting long-term trends rather than short-tesuillations. The same smoothness was

observed for predictions of sea levels and SSTéeuall the other five scenarios.
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Figure4.7 Temporal patterns of model predictions underA1B scenario.

The final predicted sea levels and SST's (relativehe global mean values at 1990)
under all the six SRES scenarios are presentedgurd4.8. The highest and the lowest
projected SST’s occur under scenarios A1FI and l3pectively, responding to the
highest and the lowest predicted global mean, €@ncentrations. Accordingly, the
highest sea levels are predicted under the sceAdifid, ranging from 71 cm to 86 cm

(relative to 1990 global mean sea level); the lawmedicted sea levels are under the
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scenario B1, varying from 51 cm to 64 cm. Both phedicted sea levels and SST’s of the
Indian Ocean are significantly lower than thosetled Pacific Ocean and the Atlantic
Ocean under all six scenarios. The relative madaguof SST’s between the Pacific
Ocean and the Atlantic Ocean vary under differeeinarios. While the predicted sea
levels of the Pacific Ocean are slightly highemtiiaose of the Atlantic Ocean under all
the scenarios, the differences are not significAnbther interesting result is related to
projected temperatures under A1T, B1, and B2 s@nhaCompared to other scenarios,
the projected atmospheric @@oncentrations are significantly lower under ABL, and
B2 scenarios, and the predicted SST’'s are accdydilogver. However, the spatial
heterogeneity of predicted SST’s under these thceaarios is significantly higher than
that under the other three scenarios. The calaufgitgbal mean SLR from 2001 to 2100
is 67 cm, 60 cm, 78 cm, 70 cm, 56 cm, and 57 cneunsdenario A1B, A1T, A1FI, A2,
B1, and B2, respectively. This range of 56-78 crwiihin the range of 9-88 cm by the
IPCC (Church and Gregory, 2001) but is above tbemtral value of 48 cm.
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Figure4.8 Projections by model with external forcing antPCC SRES scenarios for

regional means of: (a) sea level; (b) SST (error @26 confidence interval).
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Regions of the ocean resulted from different donsschemes have different spatial
relevance, and they may reflect different climadterns contained in historical records.
So it is interesting to compare our model projextiainder different region division
schemes. For this reason, the spatial DSM model seagigured to investigate the
behaviors of the system under the six SRES scenéoioa different region division
scheme based on the spatial clustering result epteh 3 (Figuret.9). Because of the
change in region division scheme, regional aversgg levels and SST’s under this
configuration exhibited remarkably different temglopatterns from those under the

region division scheme based on the three majarobasins (Figurd.5).
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Figure4.9 Region division based on spatial clustering.

Following the same procedure as that of the secoode! application, the spatial DSM
model with the clustered region division scheme walthrated and validated after/a
coefficient was determined as 1.07 (Figdr#0). Note that the sea level prediction errors
in this application are noticeably larger than thasthe application with region division
scheme based on major ocean basins (Figuse especially for the case of Cluster 1.

The RMSE of the overall fitting for sea level an8TSare 1.39 cm and 0.11 °C in the
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calibration phase, respectively; the correspondinmbers in the validation phase are
1.23 cm and 0.14 °C, respectively. For the cas€loster 1's sea level, the RMSE of
fitting is as large as 1.90 cm. For the previoudet@pplication with region division

based major ocean basins, the RMSE of the ovaettatigf for sea level and SST are 1.33
cm and 0.12 °C in the calibration phase, respdgtitke corresponding numbers in the
validation phase are 0.98 cm and 0.10 °C, respygtiThe significant increase of model
errors in this application is probably caused lgy dlscillatory patterns shown in the time
series of regional average sea levels (Figuke(a)). The temporal patterns of regional
average sea levels are potentially associated e®ittain climate phenomena, thus they
may be particularly useful for related studies. ldwer, since the spatial DSM was
originally designed to simulate long-term trends sefa levels and SST's, it is not
specifically suited to capture the temporal osthg signals in the sea level records,

which leads to increased model errors.
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Figure4.10 Results of spatial DSM model with the clustieregion division scheme in

the training and the validation phase.

The calibrated coefficient matrices for the spafd®M model with clustered region
division scheme are shown in Tall&. Because of the large prediction errors deedrib
in the previous paragraph, the calibrated coefiitssietheoretically should come with
significant uncertainties. As a result, extra cautmust be taken when interpreting the

model coefficients and further using them for fetprojections.
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Table4.3 Coefficient matrices for spatial DSM with diei®d region division scheme

Contributing variable

Rate of
rise H T CG Constant
A (yr) B (cmPClyr) N/A Cy (cm/yr)
0.41 0.26 0.08 0.43 0.37 0.35 N/A 3.60
dH/dt
1.07 0.67 0.20 1.11 0.96 0.90 N/A 9.35
3.19 201 0.61 3.32 287 2.70 N/A 27.94
D (°Clcmlyr) E (yr} Q (°C/ppmlyr) Cr (°Clyr)
0.06 0.04 0.01 0.06 0.05 0.05 0.034 0.51
dT/dt
0.21 0.13 0.04 0.20 0.17 0.16 0.112 1.70
0.13 0.08 0.03 0.13 0.11 0.10 0.071 1.07

Projections of sea levels and SST’s at year 210€hregion division scheme based on
spatial clustering are shown in Figutd 1. Cluster 1 mainly represents a spatial footpri
of the El Nino phenomenon (see Chapter 3), ansllddated in the west tropical Pacific
region. As a result, Cluster 1's historical aver&$ is significantly higher than those of
the other two regions. Our projections also refldet distinction between the SST of
Cluster 1 and those of the other two regions (FEdgutl (b)). As expected, the highest
projected sea level and SST both occur under tlemasio AlFI. However, the
differences between projections under differenhades are not as significant as those
observed for region division based on major ocessins (Figuret.8), especially for the
case of sea level. This is also probably causethégignificant temporal oscillations in
the mean sea levels of Cluster 1 and 2. Temporllaigons in the observational data
lead to larger uncertainties in the projections,iclwvhcan potentially decrease the
differences between projections under differenhages. This result also suggests that
the spatial DSM with the current configuration ist well suited to characterize the

spatial behaviors of sea level under the clustezgibn division scheme.
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Figure4.11 Projections of regional means under regioisidin based on spatial

clustering: (a) sea level; (b) SST (error bar: 9%fidence interval).

4.6 Conclusions

A spatial form of the dynamic system model (DSM)pioposed to analyze spatial
variations in sea level and temperature changendJsiconstructed spatial sea level and
sea surface temperature (SST) data, the spatial D#del was calibrated for two
different configurations: (i) external forcing furen embedded in the system matrix; and,
(if) external forcing function treated explicitlithe dynamic system matrices identified
reveal that significant interactions exist amonfjedént regions of the oceans, and that
feedback mechanisms observed in our previous globdkl do not necessarily apply to
each single region. Instead, the feedback mechanéist in a more complex manner.
When dynamic system matrices are analyzed froncdmrol theory perspective, SST
can be viewed as a negative feedback system. fithisates that the system response is

controllable when external anthropogenic controtsimplemented on the system.
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For the model application with external forcing étion embedded in the system
matrices, sea levels and SST's are predicted 2t century based on the identified
dynamic system matrices. Projection results indi¢hat both sea levels and SST's will
rise significantly in the Z1century in all the three target regions of theamgebut their
magnitudes differ. The magnitude of sea level mséhe Indian Ocean is significantly
lower than those in the Pacific and the Atlantie@t, while the magnitude of SST rise is
the lowest in the Pacific Ocean. The global avei@dgsea level rise projected from 2001
to 2100 is 48 cm with the 90% confidence interMfad®51 cm, which is consistent with

previous projections.

For the model application with external forcing étion treated explicitly, sea levels and
SST’s for the three regions were projected usimdpal mean C@concentrations under
six IPCC SRES scenarios. The highest and the lowegected SST’'s occur under
scenarios A1FI and B1, respectively, respondinthéohighest and the lowest predicted
global mean C@concentrations. The highest sea levels are peztlishder the scenario
AlFI, ranging from 71 cm to 86 cm (relative to 19§I6bal mean sea level); the lowest
predicted sea levels are under the scenario Bgjmarirom 51 cm to 64 cm. Predicted
sea levels and SST’s of the Indian Ocean undesiakcenarios are significantly lower
than those of the Pacific and the Atlantic Oceahe Telative magnitudes of SST'’s
between the Pacific and the Atlantic Ocean varyeurdifferent scenarios, while the
predicted sea levels of the Pacific Ocean are tHidtigher than those of the Atlantic
Ocean under all the scenarios. Calculate globahnsea level rise from 2001 to 2100
varies from 56 cm to 78 cm, which is in the uppertipn of the IPCC’s 9-88 cm range.
A similar analysis was conducted for a model apion with a region division based on
spatial clustering. The temporal patterns of regicaverage sea levels are potentially
associated with certain climate phenomena, thug thay be particularly useful for

related studies. However, since the spatial DSMavagnally designed to simulate long-
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term trends of sea levels and SST's, it is not veelited to capture the temporal
oscillatory signals in the sea level records. T¢peculation is supported by the large
model calibration and validation errors, which sesfg that further model development

efforts are needed to utilize the information cored in the oscillatory signals.
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CHAPTER 5

CASE STUDY ON THE INUNDATION IMPACTS OF PROJECTED
SEA LEVEL RISE

5.1 Introduction

As the human society is facing potentially sigrafit rise of sea level, such as those
predicted in Chapter 4 of this study, accurate ichpasessments of sea level rise (SLR)
are critically needed worldwide. In these assesssnéemporal characterization of the

impact is as important as the spatial charactéoizdbr appropriate managerial decisions

to be made in a timely manner.

A host of studies have analyzed the inundation otgpa&f potential SLR at global,
regional, and local scales. Li et al. (2009) depetbgeographic information system (GIS)
methods to assess inundation impacts of a hypo#iejiobal SLR of one to six meters,
and estimated that the inundated area would beeeett.055 (for one meter) to 2.193
(for six meters) million square kilometers. Dasguet al. (2009) also used GIS methods
to identify inundation zones for 84 coastal regiaofs developing countries under
projected SLR of 1-5 meters. Assessments of inimnlataused by SLR have been
conducted for various regions, including New Jerdéys. (Cooper et al., 2008), South
Florida, U.S. (Zhang, 2011), the Florida Keys, UZhang et al., 2012), and the Chinese
coast (Yin et al.,, 2012). Studies have also quedtifnundation areas under potential
scenarios of SLR at a local scale, with targettiooa at metropolitan areas that include
Maui, Hawaii (U.S.) (Cooper et al., 2013), New Ydky (U.S.) (Gornitz et al., 2002),
Satellite Beach City, Florida (U.S.) (Parkinson aidCue, 2001), Collaroy/Narrabeen
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Beach, Sydney (Australia) (Hennecke et al., 2084y the cities of Tel Aviv and Haifa

(Israel) (Lichter and Felsenstein, 2012).

Despite the large number of studies on inundatiopact assessment of potential SLR,
issues still exist in the methodologies that aredus these studies. Hypothetical
magnitudes of SLR are commonly used to calculagestverity of inundation in some
studies (Dasgupta et al., 2009; Li et al., 200¢hter and Felsenstein, 2012; Parkinson
and McCue, 2011; Zhang et al., 2011). A series yglothetical SLR scenarios may
explore the range of possible inundation impaats,this approach involves significant
uncertainties in expected SLR projections. The Hygtical SLR scenarios are not very
useful in identifying the most likely magnitude BLR, since the likelihood of each
scenario is not quantified. Another issue in prasicmundation impact studies is that the
difference between sea level datum and land elmvatatum, as well as its impact on the
results, is rarely addressed. While the differeimcghe reference point may produce
negligible errors for small regions (Zhang, 201tl)jnay have a significant impact on

results of studies that target large regions.

In this chapter, inundation impact assessment lwced for three states along the
United States (U.S.) east coast, namely Floridar@a, and New Jersey, where the SLR
is a particularly concerning issue. Since future Bels under different scenarios have
already been projected in Chapter 4 of this stdldy,inundation impact assessment in
this chapter does not have to be based on hypcahsea levels. This will lead to a more
relevant assessment of the inundation threats entatget study regions, which can
provide critical and timely information for policynakers. Critical issues in the

inundation assessment process, such as the das@aegaessue and the elevation datum

issue mentioned above, are discussed, and relagggstions are given to future studies.
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5.2 Study regions

Three states along the east coast of the UnitadsS{d.S.) are selected as representative
regions for our inundation impact case study, ngyridbrida, Georgia, and New Jersey
(Figure5.1). Florida is chosen because of its long cosstind the large area of flat and
low-lying regions in its southern tip. Among thentiguous United States, Florida has the
longest coastline of 1,350 miles (U.S. Census Byr2@12), which makes sea level rise
a particularly concerning issue for the local comityu The coastline of Georgia is about
100 miles in length, where the United States’ foulatrgest port by container traffic, the
port of Savannah, is located. The state of Neweyehnss the second highest population
density (about 1,196 people per square mile of kEed) in the U.S., and about 52% of
its population lives in coastline counties. Othtatistical information about the regions

of study can be found in Tabtel.

Table5.1 Statistical information about the regionstatly

Land area? Length of Per centage of population
Region of study Population ©
(sqmi)  coastline® (mi) on coastline counties®
Florida 53,603 1,350 9,829,000 75.7
Georgia 57,501 100 18,538,000 4.9
New Jersey 7,354 130 8,708,000 51.6

a, b, c: from U.S. Census Bureau (2012)
d: from U.S. Census Bureau (2010)
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Figure5.1 Geographic locations of study regions

5.3 Data acquisition

The aim of this chapter is to analyze the inundatiopact caused by our spatial DSM
model’s projected SLR under different scenarioso Types of spatial data are needed for
this inundation impact assessment study, land #tevaaster data and U.S. states’
political boundary vector data. The political boang data is obtained from the
Topologically Integrated Geographic Encoding anfeRmcing (TIGER) database of the
U.S. Census Bureau (2013).

The land elevation data for the states of New Jease Georgia were acquired from the
1/3 arc-second digital elevation model (DEM) da¢d af the U.S. Geological Survey
(USGS) (2013). For the state of Florida, becausksatfelatively large area and the flat

topography in its southern part, two sets of datxewused to characterize its land
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elevation: (i) the 1 arc-second DEM data set of tHeGS (2013) and (ii) the high
accuracy elevation data (HAED) from South Floriddéoimation Access (SOFIA) of
USGS (SOFIA, 2012). For most parts of the Florig@amipsula, the 1 arc-second DEM
data are used for inundation mapping. For the grdaterglades area, because of its flat
topography, the elevation dataset with higher gattresolution HAED is used to make
the inundation mapping more accurate. The HAEDs#dthas a target accuracy of 15 cm,
and the measured samples have a RMSE error of dbont (Jones et al., 2012). The

coverage of the HAED data is shown in Figbr2.

Legend
I Florida land area
o HAED data points

Figure5.2 Coverage of the HAED dataset
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5.4 Inundation impact assessment

5.4.1 Inundation mapping

Before the actual inundation mapping process islgoied, the land elevation data need
to be processed first. Both the 1 arc-second aBdrttsecond DEM data were originally
obtained in the 1° x 1° (long-lat) tile form. Thesere then merged into three DEM files
whose spatial relevance matches that of the thredy segions respectively, using the
“mosaic to new raster” tool of the software ArcM@fersion 10.0) by ESRI (Redlands,
California, USA). Note that all the spatial datagessing and map production in this
chapter were conducted using this ArcMap softwiaoe.the case of Florida, to utilize the
HAED data, this vector data set (point shapefil@sirst transformed into a DEM file
with the spatial resolution of 1 arc-second. Treultied DEM file was then merged with
the 1 arc-second DEM file by replacing the corresjiog data in the latter. To improve
the accuracy of the subsequent spatial processiaghree DEM files were projected to
change their original coordinate system of GCS INéanerican 1983 to the state plane
coordinate systems. After this projection procagsthe DEM files for Florida, Georgia,
and New Jersey now have the coordinate systemsA@flINI83 State Plane for Florida
West (FIPS 0902), Georgia East (FIPS 1001), and Beraey (FIPS 2900), respectively.
The three projected DEM files were finally clippbg the political boundaries of the

three target states to be spatially relevant andrate.

After the preprocessing of land elevation data, ithendation mapping process was
carried out using the “single-value surface mod®OAA Coastal Services Center,
2010). This method uses only two types of data:sseface elevation and land elevation
(topography). Assuming topography of the land du&schange as sea water intrudes, an
area (a pixel in the DEM file) will be classified anundated if its land elevation is

smaller than the modeled sea surface elevatidreatame location. All the pixels of each
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DEM file were classified as above or below sealleard the classification result was
mapped. The number of pixels classified as belaM®el on the map was then counted

and multiplied by the area of a unit pixel to cédte the total inundation area.

5.4.2 Sea level datum

One important issue in the elevation comparisop sfehe inundation mapping process
above is the consistent use of datum for theseeieation datasets. For the elevation
comparison to be appropriate and the subsequemidation area calculation to be
accurate, the two datasets involved should beeebed to the same elevation datum. In
this study, the local mean sea level (LMSL) datuaswhosen as the datum to measure
the magnitude of sea level rise. Mean sea levell)M$ a tidal datum defined in the
National Tidal Datum Epoch (NTDE) based on datdectéd over a 19-year tide cycle
and it pertains to LMSL at the tide station at whitwas observed (NOAA, 2013). The
current NTDE for the U.S. is 1983-2001, and the WM&fined in this epoch was
adopted as the datum for our sea level height d&aland elevation datum for the DEM
data used in this study is the North American Datfirh988 (NAVD88). To examine the
elevation difference between the two data, theagien of LMSL relative to NAVD88 is

calculated using the software VDatum by NOAA (VDai2012).
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Figure5.3 Elevation of LMSL relative to NAVD88 at tidéations along the coastline of:

(a) Florida; (b) Georgia; and (c) New Jersey.

The results of the VDatum calculation are showrFigure 5.3. The LMSL’s at tide
stations along the Florida coastline are signifilsadifferent than the NAVD88 datum,
with the elevation difference on the order of magphe of 10 cm. For the other two states
Georgia and New Jersey, the corresponding differemaot as significant, which is on
the order of magnitude of 1 cm. Based on theseltsesihe insignificant difference
between LMSL and NAVD88 was neglected for the stateGeorgia and New Jersey.
The land elevation data of Florida was further pssed to account for the significant

difference between LMSL and NAVDS88 along its caastl Since the VDatum software
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only computes the difference for tide stations gltre coastline, interpolation techniques
are needed for inland areas. For this purposeslévation of LMSL relative to NAVD88
is first calculated at tide stations, which is gafig within the “datum calibration
regions” defined by NOAA (2011). In the second stepe “natural neighbor”
interpolation technique (Ledoux and Gold, 2005)ssd to calculate elevation of LMSL
at other locations, including those that are inlafge interpolated LMSL elevation will
help us compute the elevation of new sea levehascbastline moves landward under
projected sea level rise. The interpolation resuthown in Figuré.3. The interpolated
elevation of LMSL was subtracted from the prepreedsDEM dataset of Florida, so the
resulted DEM data is referenced to the datum LMB8Ilthe subsequent calculations, both
land elevation data and sea surface elevationadatde viewed as relative to the datum

of LMSL, so the elevation comparison between the ismappropriate.

Datum calibration stations

Florida State Boundary

Elevation of interpolated LMSL
(m, NAVD88)

High : 0.12

l Low : 041 0 50 100 200

Miles

Figure5.4 Interpolated LMSL elevation relative to NAVD&8 the state of Florida
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5.4.3 Projected future sea levels

Sea levels projected under the six SRES scenariGhapter 4 are used in this chapter to
assess the corresponding inundation impacts i ffleentury. Since the three selected
study regions are all along the east coast of tif&,Whe projected sea levels for the
Atlantic Ocean are specifically chosen to make atialy relevant assessment. As
described in Section 5.4.2, and the LMSL definel983-2001 epoch was adopted as the
datum for our sea level height data. Accordinglypjected mean sea levels of the
Atlantic Ocean by the spatial DSM model were radaled to be relative to their
averages from 1983 to 2001 (Figuséb). The projected sea levels at 2100 range from
58cm to 79 cm (relative to the 1983-2001 averafjeg. highest sea level rise is projected
under the AL1FI scenario, and the lowest under thesd&nario, which corresponds to the
highest and the lowest projected £€oncentration in the atmosphere (Chapter 4),

respectively.
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Figure5.5 Projected mean sea level of the Atlantic Oagater various IPCC SRES

scenarios (relative to the 1983-2001 average)
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5.5 Results and discussion

Based on the elevation comparison between the ggedeDEM data and the projected
sea level, inundation mapping of Florida, Georgiagd New Jersey was conducted and
the cumulative inundated land areas were plottad different world development
scenarios (FigurB.7). Significant differences exist between thgquted land inundation
situations of the three target regions, which wtflthe variations among their land
topography. Under all the six scenarios, Florid#l wxperience the most severe land
inundation, with the total area of inundation fr@&®10 to 2100 calculated to be about
3,000 square miles. The area of inundation from02@12100 for Georgia ranges from
201 to 376 square miles, while that range for tagesof New Jersey is from 142 to 202
square miles. To demonstrate the relative sevefitand inundation, the percentage of
inundated land area to the total current land erealculated for each state (Figlr®).
Based on the result, the percentage land inundé&tioRlorida, Georgia, and New Jersey
is projected to 5.4%, 0.3% - 0.6%, and 1.9% - 2.i@pectively. As expected, the most
serve land inundation will happen under scenari&lAdnd the least severe under B1 for

all the three study regions.
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Figure 5.6 Land inundation percentage by 2100 under uari®CC SRES scenarios
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Figure5.7 Cumulative land inundation since 2010 corregipm to projected sea level

rise under the scenario: (a) A1B; (b) ALT; (c) Alfd) A2; (e) B1,; (f) B2.
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In addition to the final magnitude of inundatiohettemporal behavior of the inundation
process is also critical for decision making. Thandation impact assessment results
indicate that the temporal patterns of land inuiotadiffer among the three study regions
(Figure5.7). For the case of Florida, the temporal inuiotigprocess follows a non-linear
pattern. The rate of inundation starts to accetefia@m 2040 and decelerate after 2060.
Since no such non-linear pattern has been obsearvdtle time series of projected
Atlantic Ocean mean sea level, the non-linear iatiod process should be caused by the
characteristic topography of Florida. This type man-linear inundation pattern was
observed in a previous study by Zhang (2011) fer $outh Florida region, which also
proposed that the nonlinearity is due to regioapbgraphy. The situation in this study is
similar. For the study region of Georgia, thereappears to be an acceleration of land
inundation after 2080, especially under the scesaAlFl and A2. However, the
magnitude of this acceleration is remarkably smahan that for the case of Florida. No
significantly non-linear pattern is observed in titae series of cumulative inundation

area for New Jersey under all the six scenarios.

To examine the spatial patterns of the inundatiaegss, land inundation maps under the
“business-as-usual” A1B scenario are plotted fariBh (Figure5.8), Georgia (Figure
5.9), and New Jersey (Figusel0). For Florida, the inundated areas are maadgted in
the southern part, with the Everglades as the seatrely affected region. This map also
shows the spatial features associated with thelinear temporal pattern of inundation
described in previous paragraph. Notice the rentdekiacrease of inundation area from
2040 (Figure5.8 (b)) to 2070 (Figur®.8 (c)), which suggests that the acceleration of
land inundation shown in Figu®7 is mainly caused by the inundation of the #at
low-lying Everglades area (southernmost region lofitfa on the map). The inundation
the Fort Lauderdale area (yellow region on the ls=agt coastline) also appears to

contribute to the non-linear inundation process. the case of Georgia, no particular
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spatial pattern was observed, indicating an indodahreat that is relatively uniform in
space. The inundation impact on New Jersey is mmo&ceable from 2070 and
afterwards, with its southeast coastal region asibst vulnerable to inundation caused

by projected sea level rise.
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Figure5.8 Inundation map of Florida under the A1B scenfar the year of: (a) 2010;
(b) 2040; (c) 2070; and (d) 2100.
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Figure5.9 Inundation map of Georgia under the A1B sderfar the year of: (a) 2010;
(b) 2040; (c) 2070; and (d) 2100.
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Figure5.10 Inundation map of New Jersey under the Aldhado for the year of: (a)

2010; (b) 2040; (c) 2070; and (d) 2100.
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The importance of elevation datum. As mentioned in Section 5.4.2, the land elevation
and sea level datasets involved in the inundatiappimg process should be referenced to
the same elevation datum. In previous studies (@h2@11; Zhang et al., 2011), geodetic
datum such as NAVD 88 has been directly used asd#tem for sea level, for the
difference between NAVD 88 and the local sea levelot significant. Similarly in this
study, for regions such as Georgia and New Jetbeydifference between sea level
datum LMSL and land elevation datum NAVDS88 is atsmgligible, thus it is acceptable
to simply use NAVD88 as the datum for sea levelweeer, for other regions where
LMSL is noticeably different from NAVDS88, such atkoFfda, use NAVD88 as the datum
for sea level might lead to errors in inundationppiag. This issue is particularly
important for the inundation mapping of large ardast have flat and low-lying land
surface, such as the Everglades area. To illusinatemportance of the consistent use of
elevation datum, two maps are plotted in Figbrgl for comparison. Notice that a
significant part of Florida’s current land areecliassified as under sea level for the case
of using NAVD88 as the datum of sea level (Figbrgl (a)). This result is apparently
inaccurate, and it demonstrates the importancefefencing land elevation data and sea
level data to the same datum. For future inundatispessment studies, the elevation
datum issue must be carefully examined for theacs study regions before related

assumptions are made.
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Figure5.11 (a) Calculated Florida land area with DEMvat®n higher than 0 m; (b)
calculated Florida land area with DEM elevationh@gthan the local mean sea level

computed by VDatum.

I mpacts of elevation data accuracy. It was described in Section 5.3 that a high acgurac
data HAED was used to characterize the flat togagraof Everglades area in Florida.
The issue of elevation data accuracy is criticaiportant for inundation mapping of flat
and low-lying coastal regions, where errors inehevation data can result in significant
inaccuracy in the inundation assessment resulasgess the influence of elevation data
accuracy on the inundation mapping result, a netvo$einundation assessment is
conducted for Florida, using the larc-second DENa @done without the HAED data.
The resulted time series of cumulative land inuiodiais plotted for different scenarios in
Figure5.12. Using land elevation data with lower accuraignificantly underestimated

the magnitude of inundation in Florida, and it ats@nged the temporal pattern of the
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inundation process. In light of the data accurasye, efforts should be devoted to the
creation and compilation of high accuracy elevatiata, such as the Light Detection and

Ranging (LIDAR) data.
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Figure5.12 Influence of elevation data’s accuracy onitliadation assessment result

for Florida under scenario: (a) A1B; (b) A1T; (clA; (d) A2; (e) B1; (f) B2.
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5.6 Conclusions

Inundation impact assessment is conducted fordwtan levels projected in Chapter 4 of
this study. Significant differences exist betweba projected land inundation situations
of the three target regions, namely Florida, Geoagid New Jersey, which reflect the
variations among their land topography. Under ladl $ix SRES scenarios, Florida will
experience the most severe land inundation, wightotal area of inundation from 2010
to 2100 calculated to be about 3,000 square niflles.area of inundation from 2010 to
2100 for Georgia ranges from 201 to 376 squaresmiidiile that range for the state of
New Jersey is from 142 to 202 square miles. Thegegied inundation areas correspond
to about 5.4%, 0.3% - 0.6%, and 1.9% - 2.7% oftthel current land area for Florida,

Georgia, and New Jersey.

Because of the characteristics in the target regtopography, non-linear patterns are
observed in the time series of calculated land dation areas for Florida and Georgia.
The rate of inundation starts to accelerate frod026nd decelerate after 2060 for Florida.
For the study region of Georgia, the accelerati@tomes noticeable from 2080,
especially under the scenarios AL1FI and A2. Closergnation of topographic features
revealed the characteristic regions that contribuie the non-linear pattern. These
regions are correspondingly facing the most sigaift threat of land inundation. For
Florida, the Everglades and the Fort Lauderdala are identified as the most vulnerable
to land inundation; while the most vulnerable regior New Jersey is its southeast
coastal region. For the case of Georgia, the intimuahreat appears to be relatively

uniform in space.

In the inundation mapping process, the importarfiaeferencing land elevation and sea

level to the same datum was demonstrated usingxéple of Florida. Results showed
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that using NAVDS88 as the datum for sea level leadignificant errors in the inundation
mapping result. For future inundation assessmeudiiest, the elevation datum issue must
be carefully examined for their specific study o before related assumptions are
made. Also for the case of Florida, using land &iew data with lower accuracy
significantly underestimated the magnitude of irati@h, which also changed the
temporal pattern of the inundation process. Intlighthe data accuracy issue, efforts
should be devoted to the creation and compilatfonigh accuracy elevation data, such

as the Light Detection and Ranging (LIDAR) data.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

Sea level rise is one of the most damaging conseggeof climate change. As more than
20 percent of the world’s population live withinQ.&m from the coast and less than 100
m above sea level (Nicholls et al., 2007), eveatigdly small magnitude of sea level rise
can pose significant threats to the human sockdyging the severe impacts of sea level
rise the scientific community has devoted significafforts to building mathematical
models to simulate and project the climate changsetb sea level rise (SLR). It is
reported in the literature that SLR is not spatialhiform, thus the development of
modeling techniques to predict future regional $®&els becomes critical. As the
physical, empirical, and stochastic models up te dge still in a fairly preliminary stage,
this study attempts to develop a comprehensivedvaork to identify the spatial patterns
of sea level in the historical records, projectioagl mean sea levels in the future, and

assess the corresponding impacts on the coastahgnities.

6.1.1 Spatial pattern recognition and data recoostm

A pattern recognition technique based on clustealygrithms was first developed for
characterizing patterns in historical spatial el records. This technique is capable of
clustering sea level data with changing magnitutispatial variations over time into
different characteristic regions. It can also b#izedd assess the relative strengths of
different climate phenomena’s sea level footpritdsder this technique, the optimal

number of characteristic regions is identified b tluster validity metric Silhouette
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Index, which removes the limitations of arbitrarygion number assignment. When
applied to a spatial sea level dataset for theodenf 1950 to 2001, the pattern
recognition technique developed was able to idgsiiatial patterns in the data that are
potentially associated with climate phenomena sashEl Nino-Southern Oscillation
(ENSO), Pacific Decadal Oscillation (PDO), and Mo#tlantic Oscillation (NAO).
ENSO was identified as the strongest spatial signéhe data, which supports related

findings of previous studies.

The issue of short time span of regional averagdeseel time series is commonly faced
by modeling studies on SLR. A neural network appinos proposed in this study to

resolve this issue by reconstructing regional ayesea levels from time series of global
mean sea level. Since the general temporal trersg@flevel is constrained by the time
series of global mean sea level, the essentialda#ikis neural network is to accurately
characterize the spatial variations of sea levebraynthe target regions. The proposed
neural network approach accomplishes this tasktitizing the correlative relationship

between sea level and sea surface temperature.(3&dihg regional average SST'’s and
global average sea level as input variables, theah@etwork is configured to generate
corresponding regional average sea levels as autpbe network was demonstrated to
reproduce observational records well at the trgirstage and has good generalization
performance at the validation stage. It was thepliegh to reconstruct the average sea
levels for regions identified by the spatial recition technique, as well as those for
regions defined based on major ocean basins. Cewchbwmith the spatial pattern

recognition technique, the neural network appropabvides a viable tool for future

research on spatial variations of sea level.

120



6.1.2 DSM model for spatial sea level rise analysis

The reconstructed spatial sea level data and $&&& data from other sources were
utilized to calibrate the spatial dynamic systendeldDSM) developed in the following
part of this study. This spatial DSM is an extensid the DSM by Aral et al. (2012) on
global mean sea level and SST simulation. It assuthat most of the physical
mechanisms of sea level change are directly orantly connected with the sea level and
the SST of the oceans. By characterizing the maiahip between the state variables (sea
levels and SST’s) in the historical records throagtynamic system approach, the spatial
DSM model aims to capture the complex system behsuhat are embedded in the
records. The spatial DSM model was calibrated oo different configurations: (i)
external forcing function embedded in the systentrimgwithout explicit form of
external forcing function); and, (ii) external forg function treated explicitly. The
calibrated dynamic system coefficient matrices ssgghat SST is a negative feedback
system, which indicates that the system responseordrollable when external

anthropogenic controls are implemented.

With dynamic system coefficient matrices calibratiedure sea levels and SST's can be
projected. With the first configuration (without axplicit form of external forcing
function), the spatial DSM model predicted thathbgea levels and SST's will rise
significantly in the 21st century in all the thne@jor ocean basins, but their magnitudes
differ. The magnitude of sea level rise in the &mdiOcean is significantly lower than
those in the Pacific and the Atlantic Ocean, wiiilat of SST rise is the lowest in the
Pacific Ocean. Calculated from the model projecjdhe global average of sea level rise
from 2001 to 2100 is 48 cm (45-51 cm as the 90%idence interval). For the spatial
DSM model configured to have the explicit form aternal forcing function, sea levels

and SST’s for the three major ocean basins in ffiec@ntury were projected using the
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predicted global mean G@oncentrations under six IPCC SRES scenarios. rlgup to
the model projection results, under all six scesasea levels and SST'’s of the Indian
Ocean at 2100 will be significantly lower than tead the Pacific and the Atlantic Ocean.
Sea levels of the Pacific Ocean at 2100 will bghgly higher than those of the Atlantic
Ocean under every scenario. The highest and thestoprojected SST’s occur under
scenarios A1FI and B1, respectively, respondinthé&highest and the lowest predicted
global mean C@concentrations. The highest sea levels are pegtlishder the scenario
A1FI, ranging from 71 cm to 86 cm (relative to 19§I6bal mean sea level); the lowest
predicted sea levels are under the scenario Bhimgrfrom 51 to 64 cm. Calculate
global mean sea level rise from 2001 to 2100 vafiesn 56 to 78 cm. Sea levels
projected by the spatial DSM models are generallyel than those by previous semi-
empirical sea level models. This difference islikassociated with the incorporation of
feedback mechanisms into the spatial DSM modelchviilustrates the importance of

feedback mechanisms to the dynamic system of sehdad SST.

Corresponding analyses were conducted for the adp@®M model with a different
region division scheme. This region division schemmebtained through the spatial
pattern recognition technique, thus the tempor#iepss of regional average sea levels
are potentially associated with certain climate qameena. However, the large model
calibration and validation errors suggest thatdpatial DSM model is not well suited to
capture the temporal oscillatory signals in the Isgal records for this application. The
result is most likely caused by the spatial DSMsitition of only targeting long-term
trends of sea levels and SST's. Future research fudiier improve the model
formulation for this type of applications, so tltatan utilize the information contained in
the oscillatory signals. In addition, the projectesh levels by the spatial DSM model,
which can be viewed as an improved semi-empiricatieh are still noticeably higher

than those indicated by the IPCC. Research efodsstill needed on both the process-
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based and the semi-empirical models to improveumgterstanding of related physical
mechanisms and to further develop model formulatibm better characterize these

mechanisms.

6.1.3 Case study on inundation impacts

Inundation impacts of the spatial DSM model’s pctgel sea levels were quantitatively
assessed for three representative states alorgpthiecoast of the United States, namely
Florida, Georgia and New Jersey. Remarkably differeagnitudes of land inundation
were projected for these three study regions, wheflect the variations among their land
topography. The projected total area of land intiodefrom 2010 to 2100 is about 3,000
square miles for Florida under all six IPCC SRE&nseios, making it the most severely
affected region among the three. The correspondahge for Georgia ranges from 201 to
376 square miles, while that range for the statdest Jersey is from 142 to 202 square
miles. These projections correspond to about 501386 - 0.6%, and 1.9% - 2.7% of the

current total land area of Florida, Georgia, angvNersey.

Non-linear patterns were observed in the time seofeprojected land inundation for
Florida and Georgia, which are associated withr ttogiographic characteristics. The rate
of inundation in Florida will accelerate from 2040hd decelerate after 2060; the
acceleration in Georgia becomes noticeable staftiogn 2080, especially under the
scenarios A1Fl and A2. These non-linear patteresnaainly contributed by the areas
facing the most urgent threat of land inundatiombsgquent examination of the
inundation mapping result was conducted to loca#ése areas. The Everglades and the
Fort Lauderdale area were identified as the molstevable to land inundation in Florida;
while the most vulnerable region for New Jersejtsssoutheast coastal region. For the

case of Georgia, the inundation threat appearsetoelatively uniform in space. The
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consistent datum referencing for land elevatioradatd sea level data is critical for
accurate land inundation mapping. Through the e¥awipFlorida, it is shown that using
NAVD88 as the datum for sea level lead to significarrors in the inundation
assessment result. Also for the case of Floride, niagnitude of inundation was
significantly underestimated when lower accuraaydlaelevation data were adopted,

which also changed the temporal pattern of thedatian process.

6.2 Recommendationsfor futureresearch

Although this study demonstrates a successful attem modeling the spatial variations
of sea level, further research is still neededenemal aspects of spatial SLR models. The
first potential area for future research is an iowed representation of the relationship
between different state variables of the dynamstesy. As the first step in the direction
of spatial DSM model, this study configures thitatienship to be linear. The linear
relationship has been tested to be adequate foelingdylobal mean sea level, and it is
shown to capture the major trends of regional sgal$ in this study. However, other
forms of correlative relationship may further impeothe model’'s ability to characterize
“irregular” temporal and spatial signals of seaeleviFor example, the relationship
between regional sea levels can be configurednevaway, so that it will implement an
upper limit constrain on the difference between tvegghboring regions’ sea levels. This
modification considers the gravitational constram the regional sea levels’ elevation
difference, so it characterizes the physical sysbemter. Research in this direction, as
noted by recent studies (Gasson et al., 2012; @nicPasaric, 2013), might need a non-

trivial amount of work.

One critical configuration of the spatial DSM modelthis study is that its dynamic

system coefficient matrices are constant. This igondtion enables the model to
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simulate the historical records well, but it midimit the model’s flexibility to simulate
the behaviors of sea levels under sudden extremmatel changes. Future research may
look into approaches to obtain the dynamic systeefficient matrices when they are not
constrained to be constant. For instance, changiagices can be applied under a
changing ocean circulation scheme. Studies follgwins direction need to devote more
efforts on linking the dynamic system matrices hggcal mechanisms so that the task of
model calibration is achievable and the subsequeatiel projections are robust.
Improvement in this aspect might also make the mbe#er suited to simulate the
oscillatory sea level signals, such as those shawnthe application based on

characteristic regions identified by the pattercognition technique.

Future research is also needed to separate redsuRalcontributions that are associated
with climate change from those that are not. Thehoe of spatial averaging within

regions of large areas helps to reduce the inflaefcregional and local non-climate-

change-related effects in this study. Nonethelesgipnal average sea levels and SST’s
might be affected to a certain extent by sourced #me not associated with climate
change. To address this issue, significant effares needed to collect spatial data on
related activities such as dam building and growatdnwdepletion, so that spatial sea level

and temperature can be corrected for the contabsithot caused by climate change.

Another potential direction for future researchthe feasibility of adding other state
variables to the dynamic system of sea level amgégature. As discussed in this study,
certain contributing factors of SLR, such as iceethmelting, interact with sea level and
temperature in a complex manner. Adding them agparate term or even as a new state
variable can potentially improve the DSM model'sillsk at characterizing the
sophisticated behaviors of sea level. Researchrggegin this area can also help to

improve specific configurations of the current mres-based models, thus it can serve as
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a knowledge bridge between process-based modelseanidempirical models on SLR.

One example in this area would be the case of mourglaciers. In the current

formulation of semi-empirical models, including tH@SM model, the impacts of

mountain glaciers on sea level are assumed to fhectexd by temperature change.
Although this assumption has been shown to be salglkepon a global scale, it introduces
additional uncertainties to spatial models. If folated as a new state variable in the
dynamic system, mountain glacier’'s impacts on thegial variations of sea level can be
potentially better captured. Note that this potdrdrea of research also relies heavily on
the availability of spatial data on related conitibg factors of SLR. So progress in
remote sensing technology and systematic compilaia processing of related data will

benefit research on SLR modeling much.

For future inundation assessment studies, the patehange of land topography during
the inundation process can be considered to be#ipture the spatial and temporal
characteristics, especially at the local scale. &leeation differences caused by datum
change must be carefully examined to assess thessigc of referencing related

elevation data to a specific datum. In additionlight of the data accuracy issue, efforts
should be devoted to the creation and compilationigh accuracy elevation data, such

as the Light Detection and Ranging (LIDAR) data.
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