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Abstract 

 

The development of condition monitoring and fault diagnosis systems for wind turbines 

has received considerable attention in recent years. With wind playing an increasing part 

in Canada’s electricity demand from renewable resources, installations of new wind 

turbines are experiencing significant growth in the region. Hence, there is a need for 

efficient condition monitoring and fault diagnosis systems for wind turbines. Gearbox, as 

one of the highest risk elements in wind turbines, is responsible for smooth operation of 

wind turbines. Moreover, the availability of the whole system depends on the 

serviceability of the gearbox.  

 

This work presents signal processing and soft computing techniques to increase the 

detection and diagnosis capabilities of wind turbine gearbox monitoring systems based on 

vibration signal analysis. Although various vibration based fault detection and diagnosis 

techniques for gearboxes exist in the literature, it is still a difficult task especially because 

of huge background noise and a large solution search space in real world applications. 

The objective of this work is to develop a novel, intelligent system for reliable and real 

time monitoring of wind turbine gearboxes. The developed system incorporates three 

major processes that include detecting the faults, extracting the features, and making the 

decisions. The fault detection process uses intelligent filtering techniques to extract faulty 

information buried in huge background noise. The feature extraction process extracts 

fault-sensitive and vibration based transient features that best describe the health of the 

gearboxes. The decision making module implements probabilistic decision theory based 

on Bayesian inference. This module also devises an intelligent decision theory based on 

fuzzy logic and fault semantic network.   

 

Experimental data from a gearbox test rig and real world data from wind turbines are 

used to verify the viability, reliability, and robustness of the methods developed in this 

thesis. The experimental test rig operates at various speeds and allows the implementation 

of different faults in gearboxes such as gear tooth crack, tooth breakage, bearing faults, 
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and shaft misalignment. The application of hybrid conventional and evolutionary 

optimization techniques to enhance the performance of the existing filtering and fault 

detection methods in this domain is demonstrated. Efforts have been made to decrease the 

processing time in the fault detection process and to make it suitable for the real world 

applications. As compared to classic evolutionary optimization framework, considerable 

improvement in speed has been achieved with no degradation in the quality of results.    

The novel features extraction methods developed in this thesis recognize the different 

faulty signatures in the vibration signals and estimate their severity under different 

operating conditions. Finally, this work also demonstrates the application of intelligent 

decision support methods for fault diagnosis in gearboxes.        
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CHAPTER 1 

Introduction 

 

There is a growing interest in renewable energy systems with increased concerns over 

climate change. Wind energy has an attractive share in renewable energy because it 

diversifies a resource portfolio and improves overall reliability of the power system. 

However, the engineering challenge for the wind industry is to design an efficient wind 

turbine to harness wind energy and turn it into electricity. Wind turbine technology has 

proved itself over the last 20 years and is developing rapidly. The electricity generation 

has become more affordable and cost-effective with the advent of wind turbines as large 

as 7.5 megawatts (MW) in capacity as shown in Figure 1.1 [1]. Despite all technological 

advancements in wind turbine design and installation, there is a price to pay in terms of 

harsh operating environments and reduced accessibility. In this chapter, we briefly 

introduce the fundamental concerns about climate; discuss the growing interests in 

renewable energy resources, especially the wind and provide a short discussion about the 

wind turbines and their reliability. Finally, an outline of the thesis is given with 

experimental and real world data collection setup.  

 

Figure 1.1: Increase in Wind Turbine Size and Capacity [1] 
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1.1 Climate Concerns 

 

There have been increasing concerns about the global warming, greenhouse gases and 

climate change over the past couple of decades. One of the major culprits in global 

warming is the generation of coal-fired electricity. According to environment Canada 

report [2], Canada’s total greenhouse gas (GHG) emissions were estimated to be 692 

mega tonnes of carbon dioxide equivalent (Mt CO2 eq) in 2010. This represents an 

increase of approximately 2 Mt (0.25%) from the 2009 level of 690 Mt. Although, the 

GHG emissions have been decreased by 48 Mt (6.5%) since 2005, this is still 17% higher 

than the target values of 607 Mt set by OECD, the Organisation for Economic Co-

operation and Development.  In 2010, Canada ranked 15th out of 17 OECD countries on 

GHG emissions per capita and scored “D” grade on the scale of “A to D”. The electricity 

production sector contributes 14% in GHG emissions as shown in Figure 1.2 [2].    

  

 

 

Figure 1.2: Green House Gases Emissions by Sector – Canada [2] 

 

1.2 Growth of Wind Energy in Canada 

 

Canada is committed to tackle the climate change by building a low-carbon economy and 

reducing the GHG emission levels by 17% till 2020. Canada’s electricity production 

sector is one of the cleanest in the world. However, Canada has taken further steps 
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towards developing an even cleaner electricity grid. Canada has moved forward on tough 

rules for coal-fired electricity sector. In Canada, coal-fired electricity generation is 

responsible for 77% of the total GHG emissions from the electricity and heat sector.  

 

Renewable energy resources are alternatives of the coal-fired electricity generation. Wind 

energy is one of the cleanest and renewable energy resources available throughout the 

world. The wind energy contributes only 1.3% of the total energy demand of Canada as 

shown in Figure 1.3 [3].      

 

 

                

Figure 1.3: Electricity Generation Resources – Canada [3] 

 

According to Canadian Wind Energy Association, Canada is expecting to fulfill 20% of 

its total energy demand through wind resources by the year 2025.  The wind power 

generation in Canada has increased exponentially for the last decade as shown in Figure 

1.4. In the Ontario province alone, the total installed wind power capacity is around 2000 

MW and it is expected to reach 7600 MW by the year 2018.  In the year 2011, Ontario 

built 8 wind farms with 251 wind turbines with a total capacity of 522 MW [4].  

 

1.3 Reliability of Wind Turbines 

 

As shown in Figure 1.1, the wind turbines are increasing in size and capacity with 

advancement in technology. Also, due to the fact that rich wind resources available 
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offshore, there is a significant move towards offshore wind energy installation. This 

poses significant technological challenges regarding wind turbine’s reliability and 

maintenance. 

 
 

Figure 1.4: Canada’s Current Installed Wind Energy Capacity [4] 

 

The first challenge is the increase in wind speeds offshore that will lead to much higher 

mechanical loadings on wind turbine’s components. The second challenge is the 

limitation of maintenance accessibility and the difficulties encountered due to severe 

weather conditions. Maintenance of a small component in a wind turbine is relatively 

easy if the turbine is installed onshore but it carries a very high cost if the turbine is 

operated offshore. Also the weather conditions impose restrictions on accessibility of an 

offshore wind turbine and a relatively simple problem can cost several days of downtime 

and associated tangible and intangible costs of maintenance. There are several studies 

carried out in recent years about the reliability of the wind turbines. In [5], authors report 

onshore wind turbines failure rate of around 1-3 failures per turbine per year using data 

from Germany and Denmark. The average failure rate of a wind turbine has a tendency to 

increase with an increase in its size and rating as shown in Figure 1.5. Figure 1.5 is a 

result of a survey conducted by LandWirtschaftsKammer (LWK) [1]. The LWK survey 

consists of a population of 158-643 (over the period) wind turbines of average age up to 
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15 years. The population includes both geared and direct drive configuration wind 

turbines.  

      

 

 

 

 

 

 

Figure 1.5: Failure Rates of Wind Turbine Models by Capacity [1] 

 

Another German wind power survey called Scientific Measurement and Evaluation 

Programme (WMEP) [6] conducted by Institut für Solare Energieversorgungstechnik 

(ISET) lists different subassemblies in a wind turbine and their failure probabilities. In 

Figure 1.6 [1], failure rates and downtimes for each failure type are listed from two large 

surveys of European wind turbines over 13 years (LWK and WMEP). Figure 1.6 shows 

higher failure rates for electrical systems in wind turbines and large downtime for 

gearbox failures. Using a simple relation between risk, failure rate and consequences, the 

gearbox failure is one of the highest risk events of wind turbines.   

   

1.4 Fault Diagnosis 

 

In any mechanical process, the detection of faults is the first and foremost priority of a 

maintenance function before diagnosis, prognosis, and cause or consequence analysis. 

Detection and diagnosis is inevitable to solve problems in maintenance and operations. 

Many detection techniques are able to detect different faults. However, most of these 

techniques suffer from low detection quality and/or slow response time, which restrict 

their use in online or real time fault detection applications. Diagnosis is not an easy task 

in a complex rotating machinery because there could be many factors involved. These 

factors include type, frequency, number of alarms, effectiveness of the fault data 

presentation, and the time delay in fault detection. All these factors make the fault 
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diagnosis a difficult and challenging task. Hence, there is a requirement for a real time 

automated condition monitoring and fault diagnosis system (CM-FDS) to aid in decision 

making. 

 

 
 

Figure 1.6: Wind Turbine Sub-assemblies Failure Rate and Down Time [1] 

 

Since, gearbox is a critical component in any mechanical process involving rotating 

machines such as wind turbines; it should be monitored effectively and efficiently. In a 

wind turbine system, typically the gearbox is responsible for around 15-20% of its 

maintenance and downtime costs [7]. The average preventive maintenance and repair cost 

of a gearbox in a wind turbine costs around $50,000 CAD in every 7-8 years of its 

operational life [8]. The cost of unexpected gearbox failure is even higher. As a specific 

example, according to the World Wind Energy Association, a gearbox of a wind turbine 

developed a severe fault in one of the wind farms in Canada in 2004 because of no 

condition based maintenance program in place. The repair and replacement cost was 

around $426000 CAD. This catastrophe could have been avoided with proper predictive 

and condition monitoring systems in place [9]. 

 

1.5 Condition Monitoring and Fault Diagnosis System (CM-FDS) 

 

This section presents a condition monitoring and fault diagnosis system (CM-FDS) for 

wind turbine gearboxes. The system incorporates modules such as fault detection, 

diagnosis, prognosis, and root-cause and consequence analysis along with maintenance 
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work and design change recommendations as shown in Figure 1.7. The purpose of this 

research is to present vibration based, real time, fault detection and diagnosis methods for 

wind turbine gearboxes. In Figure 1.7, the fault detection module uses vibration signals 

emanating from mechanical drive train of a wind turbine and intelligently searches for 

any possible fault buried under huge background noise. Adaptive techniques combined 

with optimization methods are used in this module for tuning the detection filters and 

satisfying an objective function. The fault detection step is a critical component in an 

overall diagnosis and decision making process as a poor detection quality may affect the 

results. Fault diagnosis module in Figure 1.7 incorporates extraction of representative 

health features, classification of different faults, and identification of faulty components. 

This module classifies different types of faults and makes the fault diagnosis decisions 

either comparing different clusters with information available in a database or estimating 

the faulty component's rotation frequency from the filtered signals. Fault prognosis 

module uses de-noising and soft computing techniques to model the dynamics of the 

system and predicts the system’s behaviour in future. Decision making module uses 

Bayesian belief network (BBN), fuzzy expert system (FES), and fault semantic networks 

(FSN) to reason causes behind a particular fault. This module either learns the BBN, the 

FES or the FSN from historical data or the parameters are defined by an expert in this 

field.   

 

1.6 Problem Definition  

 

Typically, faults in wind turbine gearboxes arise while they are in operation. Therefore, it 

is vital to detect, diagnose and analyse these faults as early as possible. The process 

should be non-destructive in nature to avoid wind turbine’s disassembly. It is pivotal to 

use non-destructive testing (NDT) techniques such as vibration analysis but vibration 

analysis generally suffers from various problems. 

 

1.6.1 Background Noise  

 

Vibration signals coming from wind turbines contain a huge amount of background noise 

because of the dynamic environment and severe weather conditions. Time domain 

averaging is normally performed to mediate the effects of the background noise like time 
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synchronise averaging (TSA) [10;11] or an inherent averaging present in fast Fourier 

transform (FFT) but at the expense of losing the important information present in the 

signal, especially, low energy faults. So, there is a trade-off between noise filtering 

through the averaging process and quality of results. 

 
 

Figure 1.7: The Condition Monitoring and Fault Diagnosis System (CM-FDS) 
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1.6.2 Real Time Fault Detection  

 

Time domain filtering is performed to avoid the averaging process, and evolutionary 

algorithms are used for tuning the filters [12;13]. The process generally improves the 

detection capability and quality of results but at the expense of computation time. 

Therefore, this technique is normally not suitable in real time fault detection applications. 

 

1.6.3 Early Fault Detection and Diagnosis 

 

Many critical mechanical processes like wind turbines require an early detection of faults. 

A satisfactory operation of these processes requires reliable detection and monitoring 

techniques for sub-systems like rotors, gearboxes and generators. The early fault 

detection enables timely repair of the system and avoids further deterioration. Methods 

based on evolutionary algorithms generally perform well in detection of early faults but at 

the expense of computation time [14]. Hence, their use is difficult for online real time 

diagnosis systems.      

 

1.7 Research Objectives 

 

To date, there is no such approach to address all the issues discussed in the previous 

section simultaneously. If efforts are made to improve the detection quality, the time 

complexity is compromised and vice versa. Also, in the diagnosis domain, no such 

features extraction technique exists in open research where an early indication of faults 

development can be seen. The primary objective of this thesis is to develop an integrated 

and intelligent fault diagnosis system that incorporates a trade-off between detection 

quality and time complexity. The system should be able to detect faults early in time, 

extracts faulty features from the vibration signals that best represent the health of the 

system under observation, predicts the faulty conditions and performs cause and 

consequence analysis. As shown in Figure 1.7, the proposed intelligent system consists of 

four main modules, fault detection through intelligent adaptive filtering, feature 

extraction and clustering through different signal processing techniques, prognostics and 

decision making through BBN, FES or FSN. The strategy is to develop advanced and 
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more robust techniques at each processing stage to improve the reliability of wind turbine 

condition monitoring systems. The specific objective's summary is as follows. 

 

(1)  Intelligent Filtering: To develop optimized and intelligent filtering techniques 

for reliable, vibration based fault detection in wind turbines. The methods should be able 

to increase the signal to noise ratio (SNR). 

 

(2) Features Extraction: To extract representative features those best describe the 

health of the system under test. The extracted features should be sensitive to fault 

conditions and robust to random variations because of noise.  

 

(3) Clustering and Prediction: To perform clustering and prediction on the 

extracted features for diagnosis of different types of faults and predicting the system 

response in future. 

 

(4) Fault Diagnosis: To develop an enhanced diagnostic (ED) scheme for automatic 

decision-making. The suggested ED scheme consists of the FSN module along with BBN 

and FES for cause and consequence analysis. 

 

1.8 Research Methodology 

 

The framework of the research methodology consists of different filtering techniques 

combined with conventional and evolutionary optimization algorithms for fault detection. 

Different novel features extraction algorithms are also proposed that best represent the 

healthy conditions of the system under observation. The BBN, FES and FSN are 

investigated for root-cause and consequence analysis or decision making. Figure 1.8 

shows a summary of the proposed research methodology. Wavelet analysis and band-pass 

filtering combined with evolutionary and conventional optimization algorithms form the 

basis of the background noise removal from vibration signals. A psychoacoustic filtering 

phenomenon is also included for this purpose. However, psychoacoustic filters are static 

in nature. Three different novel features extraction techniques are presented in Figure 1.8. 

Under the clustering and prediction framework, fuzzy c-means clustering, neural 
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networks (NN) and adaptive neuro-fuzzy inference system (ANFIS) are implemented. 

FSN, FES and BBN form the basis of cause and consequence analysis module.   

 

1.9 Expected Value of the Proposed Research 

 
The proposed research is closely related to the maintenance industry and market 

requirement. Mechanical processes must be monitored through reliable condition 

monitoring technologies in order to reduce operation and maintenance costs and at the 

same time avoid catastrophic failures that could lead to assets damage, accidents and loss 

of human lives. It is expected that the developed methods can be used for identifying 

different vibration based faults in wind turbine gearboxes, where they provide early 

warnings for incipient faults and formulate a framework for fault diagnosis. The 

developed methods can also be applied to detect vibration based faults in other 

mechanical processes. The original contribution of this research work is enhancement of 

existing condition monitoring and fault diagnosis systems (CM-FDS) for wind turbine 

gearboxes. The development process is based on the application of advanced signal 

processing techniques and the non-stationary operating conditions of the wind turbines.  

 

Figure 1.8: The Proposed Research Methodology 
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1.10 Vibration Data Collection  

  

In this thesis we use the following data sets from experimental test rigs as well as 

industry. 

 

1.10.1 Dataset: National Renewable Energy Laboratory 

 

The data used in this section emanate from a planetary gearbox inside a wind turbine. The 

data are provided by the National Renewable Energy Laboratory (NREL), through a 

consortium called the Gearbox Reliability Collaborative (GRC) [15]. The gearbox under 

test is one of the two units taken from the field and redesigned, rebuilt and instrumented 

with over 125 sensors. The gearbox first finished its run-in in the NREL dynamometer 

test facility (DTF) and later was sent to a wind plant close to NREL for field test, where 

two oil losses occurred. The test turbine in the field is a stall-controlled, three-bladed, 

upwind turbine with a rated power of 750kW. The turbine generator operates at 1200 

RPM and 1800 RPM nominal on two different sets of windings depending on the power. 

The planetary gearbox has an overall ratio of 1:81.491. It is composed of one low speed 

(LS) planetary stage and two parallel stages as shown in Figure 1.9 [16]. This work uses 

data from test case CM_2a with main shaft speed of 14.72 RPM and high speed shaft 

(HSS) speed of 1200 RPM as listed in Table 1.1. The data were collected for the duration 

of 10 minutes at the sampling frequency of 40KHzsF  . 

 

Table 1.1: Vibration Data Sets NREL 

Test Case Main Shaft 

Speed 

(rpm) 

Nominal HSS 

Speed 

(rpm) 

Electric Power 

(% of rated) 

Record 

Duration 

(min) 

CM_2a 14.72 1200 25% 10 

CM_2b 22.09 1800 25% 10 

CM_2c 22.09 1800 50% 10 

 

The data files are provided in a Matlab
®
 packed binary format for direct import into 

Matlab
®
 (*.mat). Header information is included that identifies signals (variables). The 

data are divided into ten one minute data sets for each test case listed and described in 
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Table 1.1. Files are labelled, for example, as CM_2a_01.mat for the first one minute of 

test case CM_2a.  

 

  
 

Figure 1.9:  Data Collection Setup (a) Sensor Locations (b) GRC Drive train 

Configuration (c) Planetary Gearbox [15]  

 

1.10.2 Dataset: Prognostics and Health Management Society 

 

Data collected in this section come from public data sets distributed by Prognostics and 

Health Management (PHM) Society under 2009 PHM challenge competition [17]. The 

data are representative of a generic industrial gearbox shown in Figure 1.10. Data were 

sampled synchronously from accelerometers mounted on both the input and output shaft 

retaining plates of the gearbox. An attached tachometer generates 10 pulses per 

revolution providing very accurate zero crossing information. Data were collected at 30, 

35, 40, 45 and 50 Hz shaft speed under high and low loading. Additionally, different 

repeated runs are included in the data, although the run time and load were not sufficient 

to induce significant fault progression. There are a total of 560 samples to be classified. 

Data are provided in *.csv file format and collected with different faults and their 

combinations, as listed in Table 1.2. 

 

(a) 

(b) (c) 
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Table 1.2: Vibration Data Sets PHM Society [17] 

IS: Input Shaft, ISd: Input Side, ID: Idler Shaft, OS: Output Shaft, OSd: Output Side 

Bearing elements: 8, R.E. diameter: 0.3125, Pitch diameter: 1.319, Contact angle: 0 

RPM: 1800, 2100, 2400, 2700, 3000, Load: Low, High 

Sampling frequency: 66.6667KHz, Unit: 2/m s , Each acquisition time: 4 sec 

No. of acquisitions: Two acquisitions per RPM per Load 

 
 Gears Bearings Shafts 

Case 32T 96T 48T 80T IS:ISd ID:ISd OS:ISd IS:OSd ID:OSd OS:OSd Input Output 

Spur1 Good Good Good Good Good Good Good Good Good Good Good Good 

Spur2 Chipped Good Eccentric Good Good Good Good Good Good Good Good Good 

Spur3 Good Good Eccentric Good Good Good Good Good Good Good Good Good 

Spur4 Good Good Eccentric Broken Ball Good Good Good Good Good Good Good 

Spur5 Chipped Good Eccentric Broken Inner Ball Outer Good Good Good Good Good 

Spur6 Good Good Good Broken Inner Ball Outer Good Good Good Imbalance Good 

Spur7 Good Good Good Good Inner Good Good Good Good Good Good Keyshear 

Spur8 Good Good Good Good Good Ball Outer Good Good Good Imbalance Good 

Case 16T 48T 24T 40T IS:ISd ID:ISd OS:ISd IS:OSd ID:OSd OS:OSd Input Output 

Helical1 Good Good Good Good Good Good Good Good Good Good Good Good 

Helical2 Good Good Chipped Good Good Good Good Good Good Good Good Good 

Helical3 Good Good Broken Good Good Good Good Combine Inner Good Bent Good 

Helical4 Good Good Good Good Good Good Good Combine Ball Good Imbalance Good 

Helical5 Good Good Broken Good Good Good Good Good Inner Good Bent Good 

Helical6 Good Good Good Good Good Good Good Good Good Good Good Good 

 

 

 

 

 

 

 

 

Figure 1.10: PHM Society Gearbox Data Collection Setup [17] 

 

1.10.3 Datasets: Real World Wind Turbine 

 

The real world datasets used in this work are collected from supervisory control and data 

acquisition (SCADA) module from two wind turbines. One dataset are spanned over two 

years (May, 2010 – April, 2012) and another dataset are spanned over a period of three 
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months (June, 2012 – September, 2012). The data were collected at minimum of 10-

minute intervals. However, the data collection is triggered, and the interval can increase 

depending on the state of the wind turbine. Different types of data were collected that 

include: 

 

(a) Wind parameters: Wind parameters include the direct measurements of the wind 

including wind speed, wind direction etc. 

 

(b)  Energy conversion parameters: Energy conversion parameters include, torque, 

blade pitch angle, rotor speed and power output etc. 

 

(c)  Vibration parameters: Vibration parameters include drive train accelerations 

and tower accelerations etc. 

 

(d) Temperature parameters: Temperatures measured at different turbine’s 

components include in this category. Parameters like bearings’ temperatures and 

nacelle interior temperatures are some examples. 

 

The vibration data were sampled at 23.67 KHz. In dataset1, the vibration data belong to 

Channel1: Generator Drive End (Bearing) and in dataset2, the vibration data belong to 

Channel7: Planetary Stage (Gearbox) as shown in Figure 1.11(b). In dataset1, 

maintenance was performed on bearing at generator’s drive end and a new bearing was 

replaced afterwards. In dataset2, there was a failure of planetary gearbox inside the wind 

turbine. Planetary gearbox is typically used in applications requiring a large reduction or 

increase in speed at high loads, such as helicopters and wind turbines. Generally, a 

planetary gearbox has three or more planet gears each meshing with a sun and a ring gear. 

Drive is provided via the sun gear and the ring gear is stationary. Figure 1.11(a) is an 

illustration of a single stage planetary gear set which consists of a sun gear, a ring gear 

and four planet gears. In Figure 1.11(b), the sensors and their corresponding vibration 

structures are as follows: 

 

Channel1. Generator Drive End (Bearing) 

Channel2. Generator Non Drive End (Bearing) 
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Channel3. High Speed Tachometer 

Channel4. Main Bearing Front  

Channel5. Main Bearing Rear   

Channel6. Low Speed Tachometer 

Channel7. Planetary Stage (Gearbox) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11: (a) Planetary Gearbox System (b) Wind Turbine 

 

The rest of the thesis is organised as follows: 

 

Chapter 2: Chapter 2 discusses the related work in vibration based fault detection of 

machines. The use of evolutionary and conventional approaches for noise removal in 

vibration signals in the research literature along with techniques for decision support and 

prognostics are also discussed.  

 

Chapter 3: Chapter 3 introduces the concepts behind condition monitoring of wind 

turbines. Different parts of a wind turbine structure, its systems and sub-systems are 

introduced. Also, some commercially available condition monitoring systems for wind 

turbines are listed.     

 

Chapter 4: Chapter 4 applies adaptive band pass and wavelet filtering with conventional 

optimization techniques for background noise removal from vibration signals.  

 

Source: http://www.newtobegreen.com/green-energy/wind-turbine/ 

(a) 

Planetary Gearbox 

Generator 

Wind Sensors 

(b) 

1 
2 

3 

4 

5 

6 
7 

Sensors 
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Chapter 5: Chapter 5 applies adaptive band pass and wavelet filtering with evolutionary 

optimization techniques for background noise removal from vibration signals. 

 

Chapter 6: Chapter 6 develops novel vibration based features extraction techniques for 

gears and bearings in time domain. It also introduces some frequency based techniques 

used in industry and research.  

 

Chapter 7: Chapter 7 proposes prognostics and clustering techniques for fault diagnosis. 

Two types of prognostics methods and two types of clustering methods are discussed in 

this chapter.  

 

Chapter 8: Cause and consequence analysis methods are proposed in chapter 8. Three 

methods including fault semantic networks, fuzzy expert systems, and Bayesian belief 

network are discussed in this chapter. 

 

Chapter 9: Chapter 9 discusses two real world case studies for wind turbines. Data 

emanating from wind turbine’s supervisory control and data acquisition module are 

analysed in this chapter.  

 

Chapter 10: Finally, Chapter 10 concludes the thesis along with proposals for future 

research. 

 

1.11 Conclusion 

 

This chapter highlights the increased concerns about GHG emissions and the importance 

of green and renewable energy. Wind energy is from one of the renewable energy 

resources present today but there are technical challenges faced by the wind industry to 

harness the wind energy efficiently. One of the main challenges is the reliability of the 

wind turbines and gearbox plays an important role in wind turbine’s reliability. This 

chapter lists some statistical reliability data for wind turbines and identifies gearbox 

among one of the highest risk elements in a wind turbine. The chapter further analyses 

the problem deeply and suggests CM-FDS system to tackle it efficiently. Experimental 
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and real world datasets used in this work are also described. In the following chapter, we 

will explore some existing methods of fault diagnosis for gearboxes along with their 

strengths and weaknesses when applied to monitor critical systems in real time 

environments. We also justify the need for an integrated framework for fault diagnosis of 

gearboxes.   
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CHAPTER 2 

 

Literature Review 

 

2.1 Motivation 

 

Gearboxes are complex and inseparable rotating parts of machines today. They are used 

to step-up or step-down the rotating speeds of the shafts and to transfer the power. Hence, 

the reliability of the whole system depends on smooth operation of the gearboxes. 

Development of faults in the gearboxes should be monitored efficiently and at early 

stages of occurrences in order to avoid costly failures. In this chapter, we explore some 

existing methods for fault detection in gearboxes. We focus on fault diagnosis methods 

based on vibration analysis.  

 

2.2 Fault Diagnosis of Gearboxes Based on Vibration Analysis 

 

Vibration signal analysis is a widely used technique to detect faults in rotating machines, 

especially bearings and gearboxes.  Many techniques have been developed in the past to 

extract machine health related features from vibration signatures.  These techniques are 

performed in conjunction with non-destructive testing (NDT) methods in order to identify 

faulty components in multi-component machines.  NDT is widely used in different 

disciplines of life. NDT plays an important role in determining the health of the system 

without physically tearing it apart.  In structural mechanics, key properties related to a 

structure such as displacement and acceleration are measured to determine the health of 

the structure and NDT is applied to identify faulty components.  Because NDT is used to 

analyze a system’s performance without causing any physical damage, it is a highly 

valuable technique to save both money and time in performing maintenance activities. 

 

NDT works very well in the case of detecting faults in gears and bearings as the 

kinematics information in gears and bearings are directly related with governing 
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frequencies in their vibration spectrums.  However, a correct identification of the faulty 

component becomes a difficult task especially for multi-component electromechanical 

equipment where a majority of components share similar characteristics and interact with 

each other such as gearboxes.  In gearboxes, gears mesh frequencies in the vibration 

spectrum, governs the faulty information present.  The detection task becomes more 

difficult if one has to identify a faulty gear from a set of gears meshing together.   

 

2.2.1 Fault Detection 

 

Vibration signals emanating from the rotating gearboxes are analysed to ascertain the 

current condition of the gearboxes. The vibration signals can be classified into stationary 

and non-stationary signals and based on this classification, the nature of their analysis 

methods differ.  For stationary signals, vibration analysis methods are divided into two 

domains, namely time and frequency. Time-domain methods include statistical, model 

based, and signal processing based methods. Frequency-domain methods include 

spectrum and cepstrum based methods. For non-stationary signals, joint time-frequency 

vibration analysis methods such as short time Fourier transform (STFT) and wavelet 

analysis (WA) [18; 19] are used for fault detection in gearboxes. Other methods of non-

stationary analysis for gearboxes include Wigner-Ville distribution (WVD) [20], Hilbert-

Haung transform [21] and kurtogram analysis [22]. The joint time-frequency analysis 

methods detect time localized transient features present in the vibration signals. The 

methods visualize the signals in three dimensions including time, frequency and 

amplitude variations as in STFT. The WA method provides a powerful multi-resolution 

analysis and the vibration signals are analysed through wavelet signals of different 

frequencies and shapes from the wavelet family. A widely applied WA method to detect 

time localized transient faults in gearboxes is Morlet wavelet analysis [23; 24].    

     

2.2.2 Features Extraction 

 

The features extraction system extracts characteristic signatures from incoming raw 

vibration signals emanating from gearboxes. The extracted features should be sensitive to 

the gearbox’s health conditions and should reflect the changes in the gearbox’s condition 

or possible fault development over time. As discussed earlier, the vibration based signal 
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processing analysis is the most common technique because of its advantage of being non-

destructive. Features extraction process extracts the information that best represents the 

faulty conditions present in the signal. Different methods for vibration based features 

extraction in gearbox fault diagnosis framework have been proposed in research [25-27].  

Different techniques such as genetic algorithm, wavelet analysis, and fuzzy inference 

have been successfully used for features extraction and fault diagnosis of gearboxes [28-

31]. In time-domain vibration based features such as kurtosis and spectral kurtosis are 

extensively used [32-34]. Other studies including statistical-based and transient-based 

features detection are performed in the past [35-37]. A comprehensive list of time-domain 

and frequency-domain features for fault detection and diagnosis of gearboxes is discussed 

in [38].  

 

2.2.3 Evolutionary Algorithms 

 

Evolutionary algorithms have been successfully applied in different fields of scientific 

computing and became a formal area of study in computer science known as soft 

computing. The extraordinary complexity of the natural world provides us with 

remarkably robust and well-designed optimization frameworks [39].  Many organisms in 

nature have a natural tendency to form swarms, for instance, birds and fish. Swarming 

behaviour is so prevalent in nature [40]. The global optimization problem has been 

flourished by nature-inspired techniques, such as ant colony optimization, genetic 

algorithms (GA), simulated annealing (SA), genetic programming (GP) [41] and others. 

There exist different studies of fault detection in dynamic systems using evolutionary 

algorithms. A fault detection and isolation system is presented in [42]. The system uses 

wavelet feature-extraction and self-organizing neural networks for fault classification. A 

vibration based features extraction method is used in [43]. The authors have used genetic 

programming for features extraction and artificial neural networks with support vector 

machines for classification of bearing faults. Another acoustics based method is used in 

[44] where an acoustic signal emanating from a printer is used for features extraction and 

fault detection. Combinations of wavelet analysis and other artificially intelligent 

techniques like neural networks, genetic algorithms (GA) and genetic programming (GP) 

have been successfully used for fault detection and diagnosis of machines and gearboxes.  
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2.2.3.1 Genetic Algorithms  

 

Genetic algorithms have been extensively used in fault detection in combination with 

different other algorithms to reduce the solution search space and to speed up the 

convergence rate. A combination of GA and fast kurtogram is discussed in [45], where 

rolling element bearing faults are explored. GA is also used for fault diagnosis of gearbox 

in combination with S-transform and non-negative matrix factorization (NMF) in [46]. A 

novel enhanced genetic algorithm (EGA) technique is developed in [47] for gearbox’s 

health prognostics. The EGA overcomes problems in classical GA methods and provides 

a more efficient technique for system training and optimization. A real coded genetic 

algorithm (RCGA) is used in conjunction with the ant colony optimization technique for 

real life optimization problems with many local extrema in [48; 49]. Although, a 

combination of different techniques has been proposed to avoid local extrema, there 

hardly exists any methodology that combines RCGA with other accelerated search 

methods to speed up the fault diagnosis process and at the same time preserve the result's 

quality. Hence, time consumption and slow convergence are still considered major 

shortcomings of GA. 

 

2.2.3.2 Particle Swarm Optimization  

 

Particle swarm optimization (PSO) is another type of nature-inspired technique that 

works on population based stochastic optimization principle. PSO was first proposed by 

Kennedy and Eberhart in 1995 [50]. Natural swarming behaviour of bird flocking and 

fish schooling is prominent and well-known in PSO implementation. Also, the biological 

principle of survival of fittest together with evolution of natural behaviour finds its traces 

in PSO. The algorithm finds an optimal solution in a global solution search space by 

sharing cognitive and social information among individuals or particles. As compared to 

other evolutionary population based algorithms such as GA, PSO has an advantage of 

being simple in implementation with faster convergence and fewer parameters [51; 52]. 

Many researchers have proposed a modified adaptive PSO with random inertia weights 

and genetic mutation operators in order to increase the convergence performance and to 

avoid local extrema [53-56]. Implementation of PSO for fault diagnosis of machines has 

been investigated by different researchers. In [57], PSO in conjunction with exact WA 
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and support vector machine (SVM) classifier has been used for fault detection in 

gearboxes. In [58], PSO is used to calculate an optimal placement of vibration sensor for 

the fault detection in a gearbox. Another interesting research on the fault diagnosis of the 

gearbox based on PSO optimization is presented in [59], where PSO is used to train back 

propagation neural networks (NN). The method increases the convergence speed of the 

NN and avoids getting stuck in local extrema. Another wavelet based NN algorithm has 

been proposed with modified PSO for gearbox fault detection in [60]. 

 

2.2.4 Fault Diagnosis 

 

Fault diagnosis is a sequential step involving detection, feature-extraction, classification, 

and decision making as shown in Figure 1.8. Traditionally, human experts are responsible 

to map extracted, clustered features to respective faults, causes and consequences. This 

approach is usually tedious, time intensive and unreliable, particularly when the feature 

space is large or decision has to be made with multiple features under consideration [61]. 

 

2.2.4.1 Fuzzy Expert Systems  

 

The fuzzy logic mimics the human reasoning abilities in linguistic form and uses different 

fuzzy operations to perform the fuzzy diagnosis [62]. An expert system with fuzzy 

classification has successfully been applied for bearing fault detection in the past [63]. 

The Fuzzy logic techniques do not have learning capabilities. However, they can be used 

with evolutionary algorithms to learn the mapping space as described in [64], where an 

adaptive, neural fuzzy inference system has been used to learn from data. Another fuzzy 

logic inference system has been used in [65] to detect faults in gearboxes. Here, an 

energy spectrum of wavelet analysis is used for feature-extraction and the fault conditions 

have been classified for different rotation frequencies with different levels of Daubechies 

wavelets. When a condition monitoring system is employed in real-world industrial 

applications, the critical issue is its reliability. Unreasonably missed alarms (i.e., the 

monitoring system cannot pick up existing faults) and false alarms (i.e., the monitoring 

system triggers an alarm because of noise, i.e., not real faults) can seriously mitigate the 

system’s validity. Hence, a more advanced diagnostic system is in demand for an 

accurate assessment of gear's health conditions. 
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2.2.4.2 Bayesian Belief Networks 

 

Bayesian belief networks (BBN) were introduced in 1988. Since then, researchers 

explored the possibilities to use Bayesian networks for medical decision analysis [66]. 

BBN is a probabilistic inference network that implies the Bayesian probability theory for 

the decision making process. BBN is a set of nodes connected through arcs. The arcs are 

directional, and the network is called directed acyclic graph (DAG). The application of 

BBN for fault diagnosis in gearboxes is relatively new and there is not much work done 

in this domain in the past. A BBN is used for fault diagnosis of flexible rotors in [67] 

where probability tables for each node in the BBN are chosen by an expert.  Other 

approaches for fault diagnosis in gearboxes using BBN is presented in [68; 69], where 

researchers have used different time-domain statistical features to classify different faults 

in gearboxes.  

 

2.2.5 Prognostics 

 

Prognostic has a very important role in order for an accurate and reliable decision 

making. Prognostics can be used effectively in utilization and maintenance of machinery 

systems. Prognostics can use different machines health related indices including 

temperature, oil-debris analysis, acoustics, and vibration. Among these, vibration based 

prognostics is quite common in condition based maintenance (CBM) of machines. In 

[70], researchers have used different health monitoring indices in gearboxes such as gear-

wear, gear-chipped, gear-crack, gear-pitting, and shaft misalignment for projecting the 

gearbox health information in future. They have used neuro-fuzzy approaches for 

modeling and prediction of gearbox dynamics. A comprehensive review on prognostics 

for CBM is presented in [71], where decision making process based on diagnostics and 

prognostics is discussed. The three main steps involved in CBM are data acquisition, 

signal processing, and decision making. Data acquisition step includes data pre-

processing, analogue to digital (A/D) conversion, and storage of data in computers.  

Signal processing step involves data processing for extraction of machine health related 

features. The representative features include time-domain, frequency-domain, and joint 

time and frequency domain signal processing. Prognostic is a part of decision making 
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process in the CBM of machines. Prognostic is performed by estimating the temporal 

evolution of the features over time [72 - 74]. Different methods are proposed for 

prognostics of machine health related indices in the past [75]. Among those, vibration 

based prognostics is more common. In vibration based prognostics, vibration signals 

emanating from sensitive components inside the gearbox are recorded and health related 

features are extracted. Different techniques are used to extract the health related features 

and time series prediction techniques are applied to the features trends for prognostics. In 

[76], researchers have used different time-domain and frequency-domain features for 

prognostics of gearbox’s health.  Statistical, evolutionary and soft computing approaches 

are used to estimate the predictors and the use of neural networks [77] and neuro-fuzy 

methods are very common [78]. In [79] authors have used general path model (GPM) for 

estimation of remaining useful life (RUL). The GPM uses statistical based techniques and 

degradation measures to estimate the time of failure (TOF) for a turbofan machine. 

 

2.3 Conclusion 

 

This chapter explores different vibration based fault diagnosis methods proposed in open 

research. Among these, adaptive filtering techniques are commonly used to filter 

vibration signals emanating from rotating machines. Objective functions like Shannon 

entropy, signal energy, kurtosis maximization, and singular value decomposition have 

been used in these techniques [80-83]. However, these techniques lack proper 

optimization framework in selecting suitable values of adaptive filter parameters. Some 

studies have used evolutionary algorithms for optimization of filter parameters but at the 

expense of computational time. On the other hand, different time-domain features 

extraction methods such as kurtosis, root-mean-square, peak-to-peak, and crest factor 

exhibit poor performance if used on raw vibration signals. Therefore, there is a need for 

an intelligent and integrated system that can do the followings: (1) harness the power of 

optimization algorithms and at the same time makes it suitable for real time applications 

such as wind turbine gearboxes, (2) extract the gearbox health related features for 

clustering and prognostics, and (3) devise a framework for intelligent decision support. In 

the next chapter, we will review such systems already implemented in the wind industry 
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with their analysis capabilities and shortcomings, and we will justify a need to enhance 

the performance of such systems. 
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CHAPTER 3 

 

A Review on Condition Monitoring of 

Wind Turbines in Industry 

 

3.1 Introduction 

 

As discussed in chapter 1, the detection of incipient faults in wind turbines is of utmost 

importance while the wind turbines are in operation. Wind turbines installed offshore, 

exhibit more probability of faults development as compared to onshore installations. Also 

the offshore wind turbines are subjected to severe environmental conditions that restrict 

maintenance activities. Therefore, it is a technological challenge to monitor wind turbines 

non-destructively. There are many condition monitoring (CM) systems of wind turbines 

already developed in the industry [84]. This chapter discusses the overall architecture of 

wind turbine monitoring systems and lists some commercially available CM systems 

along with their analysis capabilities, shortcomings, and a need to enhance their 

performance in the wind industry.       

        

3.2 Monitoring Structures of a Wind Turbine 

 

The CM of wind turbine is carried out because of many reasons: (1) obtaining 

information commercially important like amount of energy generated and operation 

status of a turbine, (2) monitoring the health of the wind turbine, (3) detecting faults and 

failures through alarm systems, and (4) finding the locations of faulty components or 

causes of faults for scheduling maintenance activities. The monitoring of a wind turbine 

consists of four major sub-systems as shown in Figure 3.1. The monitoring techniques are 

different for different sub-systems and mainly depend on the properties and behaviours of 

the structures of sub-systems and the environmental condition they are subjected to.   
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3.2.1 Supervisory Control and Data Acquisition (SCADA) 

 

SCADA is required on all modern wind turbine systems these days. SCADA monitors 

different important information from a wind turbine like, amount of energy generated, 

operational status of the wind turbine, turbine’s controller and related parameters. 

Although, SCADA monitors at comparatively high frequency, the measurements are 

averaged over a long period of time (5-10 minutes) and fed back to the monitoring and 

control panel [85]. SCADA also incorporates algorithms like trend analysis to monitor 

potential deviations of recorded parameters above the pre-set thresholds. SCADA 

systems provide alarms for different malfunctions occurred during the operation of a 

wind turbine.   

 

Figure 3.1: Structural Health Monitoring of a Wind Turbine 

 

Most recent SCADA systems include the following different parameters [85]: 

(a) Reactive power. 

(b) Active power output. 

(c) Wind speed. 

(d) Gearbox lubrication oil temperature. 

(e) Gearbox bearing temperature. 

(f) Gearbox winding temperature. 

(g) Power factor. 
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(h) Phase currents. 

(j) Nacelle temperature. 

(k) Drivetrain vibration readings. 

 

3.2.2 Structural Health Monitoring 

 

Structural health monitoring (SHM) systems determine the integrity of the wind turbine 

towers, structures, and foundations. In SHM, low frequency monitoring accelerometers 

(<5Hz) are used to detect faults in wind turbine’s structures induced by blade-passing 

frequencies. Recent trends in monitoring technologies of SHM systems include fibre 

optics strain calculations and acoustic emission sensing techniques.  

  

3.2.3 Rotor Condition Monitoring 

 

Wind turbine’s blades have increased in size more than 80m in recent years and they 

weigh more than 17 tones. Also, wind turbines’ rotors must bear more than 10
8
 stress 

cycles over an average span of 20 years of its life time. This makes the rotor’s condition 

monitoring a crucial task. Different issues in rotor blade’s monitoring include [86]: 

 

(a)        Rotor balance and aerodynamic symmetry. 

(b)        Moisture uptake. 

(c)        Icing. 

(d)        Surface roughness. 

 

Manufacturing defects or impacts and damages during transportation may cause the 

rotor’s imbalance and aerodynamic asymmetry. Also an accumulation of non-uniform ice 

and moisture results in an imbalanced rotor. The operation of the turbine must be stopped 

to mediate the effect of severe imbalance until either the ice melts or maintenance has 

been performed to rebalance the rotor. The variations in the rotor speed owing to 

asymmetry can be detected through variations in the power spectral density (PSD) of the 

electrical output recorded by the turbine’s SCADA system. In PSD, a peak at the rotor 

frequency indicates either rotor imbalance or aerodynamic asymmetry owing to yaw 

error. 
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3.2.4 CM-FDS System for a Wind Turbine     

 

CM-FDS system provides an overall health status of a wind turbine’s mechanical and 

electrical drive trains. A reliable indication of incipient faults, determination of faults 

severity, and locations of faults are the tasks handled by CM-FDS system. Figure 3.2 

shows different critical sections monitored by CM-FDS system in wind turbine’s nacelle.  

 

       

 

 

 

 

 

 

 

Figure 3.2: Condition Monitoring and Diagnosis in Nacelle 
(Source: http://www.newtobegreen.com/green-energy/wind-turbine/) 

 

These days, every modern wind turbine is partially or completely equipped with some 

form of CM-FDS system. The CM-FDS system includes system-level or subsystem-level 

fault detection and monitoring of a wind turbine. Different parameters like vibration of a 

wind turbine’s drive train [87], bearing temperature, oil particulate content, and optical 

strain measurements [88] are monitored in CM-FDS. The condition monitoring and fault 

diagnosis system for system-level and subsystem-level of a wind turbine pose great 

technological challenges that have led to various modeling and solution approaches in the 

open research literature [89-91].  

 

As stated above, an indication of a fault location is very important in CM-FDS system. 

An occurrence of a fault triggers further detailed investigations that include diagnosis and 

cause and consequence analysis. The identification of a faulty component in CM-FDS 

system bridges the gap between CM and FDS for wind turbines. Such a system is already 

proposed in Figure 1.7. A diagnosis process gives initial indications about the location of 

the faulty system and if possible the sub-system. The monitoring engineer could then start 
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further detailed investigations in order to pin point the exact location of the faulty 

component and estimate the physical nature of the fault. Keeping in view the above aims, 

the CM-FDS system should provide enough information to reliably monitor the wind 

turbine and its sub-systems and at the same time should not flood the monitoring engineer 

or data transmission bandwidth with excess and redundant information.    

     

3.3 Commercially Available CM-FDS Systems of Wind Turbines 

 

Some of the commercially available CM-FDS for wind turbines are shown in Figure 3.3 

[92]. The CM-FDS systems shown in Figure 3.3 focus on the following major areas of 

the wind turbine: 

 

(a)      Blades. 

(b)      Main rotor bearing. 

(c)      Gearbox gears. 

(d)      Gearbox bearings. 

(e)      Generator bearings.  

 

Some recent modern CM-FDS systems for wind turbines monitor generator windings, 

converters and pitch control systems. It is evident that 70% (14 out of 20) of 

commercially available systems described in Figure 3.3 use vibration analysis for 

condition monitoring of wind turbines. Three systems are specified for oil debris 

monitoring, one for vibration based monitoring of turbine blades and two for fibre optic 

based strain measurements.  

 

It is clear from Figure 3.3 that industry is extensively using vibration based analysis 

methods for condition monitoring of wind turbines. All 14 vibration based condition 

monitoring systems also imply some form of diagnosis capability after a fault is detected. 

All vibration based monitoring systems use fast Fourier transform (FFT) for diagnosis. 

The FFT is a well-established technique in the industry and it is a very useful tool to 

detect fault related frequencies and harmonic patterns present in a vibration signal. 
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3.4 Justification for Condition Monitoring of Wind Turbines 

 

Although, condition monitoring systems used in the industry today are quite matured and 

based over decades of research, they suffer from the following shortcomings: 

 

(1) Analysis of Non-stationary Signals. The vibration signals emanating from wind 

turbines mechanical drive trains or for that matter gearboxes are non-stationary in nature. 

Hence, there is a need for methods to perform signal processing of non-stationary signals 

such as WA or STFT. The conventional FFT method used in existing CM-FDS systems 

loses the time information and is not suitable for analysing non-stationary signals.  

 

(2) Background Noise. The problem of huge background noise in vibration signals 

restricts the performance of analysis and features extraction methods. An intelligent noise 

removal technique is needed to enhance the signal SNR. The existing CM-FDS systems 

incorporate many analysis and features extraction methods that use raw vibration signals. 

Therefore, they suffer from low detection quality and sometimes false alarms.  

 

(3) Effective Decision Support. The existing CM-FDS systems offer some kind of 

fault diagnosis based on FFT analysis but lack with advanced and intelligent decision 

techniques.   

 

Increasing the reliability of fault detection methods and automating the fault diagnosis 

process is a way forward for future research in wind turbine’s condition monitoring 

systems. Also applying intelligent signal processing to infer meaningful information from 

noisy data and methods used for data dimensionality reduction pave their way in modern 

condition monitoring systems for wind turbines. A lot of research has already been done 

in academia in this context as discussed in Chapter 2 but lacks in devising an appropriate 

optimization framework for background noise removal and fault detection that performs 

in comparatively less time and preserves the quality of results.        

 

3.5 Conclusion 

 

New technologies are encroaching on traditional methods for condition monitoring 

systems of wind turbines and are developing over the time. The future direction for 
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research on condition monitoring systems should be to develop and refine the existing 

techniques to suit the new working environments. The new technologies should be 

incorporated with existing condition monitoring systems in order to bridge the 

technological gaps and enhance their capabilities. Efforts should be made to monitor the 

high risk components in a wind turbine such as gearboxes and electrical system. This 

thesis work develops an integrated and intelligent framework for condition monitoring 

and fault diagnosis in wind turbine gearboxes. In the following chapters, we will develop 

conventional and evolutionary methods to intelligently detect faults in vibration signals 

emanating from wind turbine gearboxes. We will present transient based features 

extraction techniques and apply soft computing theory to predict the fault behaviour over 

time. We will also present a framework for intelligent decision support system in fault 

diagnosis of wind turbine gearboxes.    

   

 

 

Figure 3.3: Commercially Available CM-FDS Systems [92] 
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CHAPTER 4 

Conventional Optimization in 

Background Noise Removal 

 

4.1 Motivation  

 

One of the major problems in vibration based feature extraction is the presence of huge 

background noise. This makes fault detection a difficult process especially when the SNR 

of the faulty signal is very low and the fault is at an early stage of its development. 

Intelligent filtering techniques are required to remove the background noise and detect 

the valuable faulty information early in time. The early fault detection enables timely 

repair of the system to avoid further development of the faults into severe conditions and 

eventually catastrophic failures. This chapter develops conventional optimization 

methods to filter the huge background noise present in vibration signals emanating from 

wind turbine gearboxes. The methods are implemented in front end fault detection 

framework as shown in Figure 1.8.  

 

4.2 Adaptive Filtering  

 

Adaptive filtering is a process of iteratively calculating filter parameters to satisfy some 

objective functions. Two types of filtering methods are used in this chapter, band-pass 

filtering and wavelet analysis. In this chapter, we use conventional optimization 

framework to adaptively tune the filters and optimize an objective function. In 

conventional optimization techniques, one-dimensional golden section search and multi-

dimensional Nelder-Mead methods are used. A flow chart of the conventional 

optimization framework is shown in Figure 4.1, where coarse tuning and fine tuning steps 

are included for optimization of filter parameters. In coarse tuning step, the filter 

parameters are optimized through one-dimensional search techniques and an objective 

function is maximized. The optimized values of these parameters are then passed to the 

fine tuning step. In the fine tuning step, a multi-dimensional optimization method is used 
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to fine tune all the filter parameters simultaneously.  The main purpose behind using 

coarse tuning step is to benefit from the speed of one-dimensional search techniques and 

to give an advantageous start to multi-dimensional search methods. The process also 

helps in avoiding the multi-dimensional search methods to get stuck at local extremum.   

 

 

 

Figure 4.1: The Adaptive Filter Framework 

 

In this chapter, a combination of band-pass filter with kurtogram is also explored. 

Kurtogram is a fourth order spectral analysis tool and is suitable to detect non-

stationarities in a signal. Since vibration signals emanating from inside a wind turbine 

contain non-stationarity, kurtogram is a very useful tool to detect this phenomenon 

because of the sensitivity of kurtosis towards the faulty pulses present in the signal. The 

complexity of computing kurtogram is logn n  similar to the FFT and is suitable for 

implementation in real time fault detection applications. A detailed description about the 
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kurtogram is presented in [22]. Kurtogram gives an estimation of the faulty bandwidth 

present in the vibration signal and gives an advantageous start for band-pass filtering. 

 

4.2.1 The Objective Function 

 

The objective function or fitness function used for this work is maximization of kurtosis. 

Kurtosis is the degree of peakedness and is defined as a normalized form of the fourth 

central moment 4  
of a distribution. The kurtosis based objective function is calculated 

as [38] 
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Here, n  is total number of samples in the signal, ( )t ix  is the 
thi  sample,   is the signal 

mean,   is the standard deviation, min max1 1 1c c c   and min max2 2 2c c c   are the 

constraints on the search space. We use a penalty method and drop constraints of non-

linear objective function by substituting new terms in the objective function penalizing 

infeasibility in the form [93] 
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The new unconstrained objective function becomes 
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http://mathworld.wolfram.com/CentralMoment.html
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As an example, if the constraints min max1 1 1c c c  and min max2 2 2c c c   are satisfied, the 

  part in Equation (4.4) becomes zero, and if the constraints are not satisfied, a squared 

penalty is subtracted from the objective function that restricts the objective function to be 

maximized. The inclusion of penalty functions in the objective function makes the 

algorithms converge faster. In our case, we start   with a very small value less than 1 and 

sequentially increase it with some multiplier   so that 1 1t   . 

 

4.2.2 Chebyshev Band-Pass Filter 

 

Chebyshev band-pass filter is commonly used in many filtering application for fault 

detection. Figure 4.2 shows different design parameters for a typical Chebyshev band-

pass filter. The Chebyshev band pass filter has an advantage over other filters because of 

its speed since it is carried out by recursion rather than convolution. Although, it cannot 

be compared with a windowed sinc filter in performance but it presents an advantage in 

terms of speed and is widely acceptable in many real time applications [94]. We make 

use of the Chebyshev band-pass filter as a trade-off between speed and performance. The 

Chebyshev filter applies a mathematical strategy to achieve a faster roll off by allowing 

ripples in frequency response. We design type1 Chebyshev filter as it allows ripples only 

in the pass band. 

  

4.2.2.1 Conventional Optimization of Chebyshev Band-Pass Filter 

 

We need to control three parameters: centre frequency cF , quality factor Q  and pass 

band ripples pR . Filter order N  is kept constant at value equal to 4. Initially, the 

kurtogram is used to detect the faulty bandwidth present in the vibration signal. The 

filter's centre frequency cF  is estimated by the kurtogram, where the search process is 

started in the range 
2

c
c

F
F  .  Setting the quality factor 0.707Q  , 1pR   and the order 

4N   then applying one dimensional accelerated search to optimize cF , Q  and pR
 

parameters of the filter one by one in the coarse tuning step. The optimized results from 

the coarse tuning are then passed to the Nelder-Mead algorithm for multi-parameters 
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optimization. Here, cF , Q  and
pR are optimized for fine tuning. Since, the transition band 

is related to the pass band ripple 
pR  in the Chebyshev filter design, we ignore the 

parameters 1Fs  and 2Fs  in Figure 4.2. We also ignore the stop band ripples Rs  as type1 

Chebyshev filters do not exhibit stop band ripples. The values for 1 2,Fp Fp  are calculated 

from the following equations [95]: 
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After data acquisition and conditioning, the kurtogram is computed for the raw vibration 

signal. As described earlier, the kurtogram gives an initial estimate about the centre 

frequency of the filter that maximizes the kurtosis. 

 

Figure 4.2: Band-Pass Filter Specifications 
 

A Chebyshev bandwidth filter is initialized, and the filter parameters are set according to 

the initial estimates from the kurtogram. A direct search method with a derivative free 

search is used to tune the band-pass filter and the kurtosis is used as an optimization cost 

function as shown in Equation (4.4). A combination of genetic algorithm (GA) with the 

kurtogram for detection of rolling element bearings faults is proposed in [45]. Although, 

GA is given with initial parameters in order to search for the extremum, the process is 

still inherently slow if considered for real time implementation. In order to speed up the 

performance, a coarse tuning step is included, that performs a speedy one dimensional 
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search on Chebyshev band-pass filter one by one. The coarse tuning step makes use of 

the golden section search combined with parabolic interpolation for fast and guaranteed 

convergence [96]. Derivative free direct search method like Nelder-Mead is a good 

candidate for fast convergence and it outperforms evolutionary search algorithms in terms 

of computational complexity. The Nelder-Mead method fine tunes of the band-pass filter. 

It provides enough information and reasonable extraction of faulty features in a 

reasonable amount of time as compared to evolutionary algorithms. In each step of the 

optimization process, techniques with comparatively less computational complexity are 

implemented for real time realization of faults.  

 

4.2.2.2 Accelerated One Dimensional Search 

 

An accelerated one dimensional search is performed in the coarse tuning step as shown in 

Figure 4.1. As discussed earlier, we use golden section one dimensional search technique. 

The golden section search deals with a unimodal objective by rapidly narrowing an 

interval guaranteed to contain optimum [61]. Figure 4.3 illustrates the idea of the golden 

section search, where four carefully spaced points are iteratively considered. Leftmost 

( )lo
x is a lower bound on the optimal 

*x  and 
( )hi

x  is an upper bound. The function 

optimum lies between the interval, ( ) ( )
,

lo hi
x x 
 

. Points 
(1)

x  and 
(2)

x are the 

intermediate points. Each iteration determines whether the objective is better at 
(1)

x  or 

(2)
x , if 

(1)
x  proves better, the direction for the next iteration is left and 

(2)
x  becomes 

( )hi
x , and if 

(2)
x  proves better, the direction for the next iteration is right and 

(1)
x  

becomes 
( )lo

x . The choice of interior points define the efficiency of the search, whether 

it is (1) ( )
,

hi
x x 
 

 or ( ) (2)
,

lo
x x 
 

 interval and golden section search proceeds by keeping 

both these intervals equal in length. The two middle points of the golden section search 

are spaced according to the following equation: 
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Where 0.618   is the golden ratio and ( 1 5) 2    . Algorithm 1 [93] gives main 

steps in performing golden section optimization search. Although, the golden section 

search algorithm is reliable, it is slow and narrowing of the optimum containing interval 

requires considerable computation before an optimum is defined with considerable 

efficiency. We combine quadratic fit search with golden section search for rapid 

convergence, taking full advantage of the three point pattern fit. We can fit a quadratic 

function through three points and have a unique minimum or maximum, whichever we 

are seeking for the given objective function ( )F x . The unique optimum of the quadratic 

function agreeing with ( )F x  at three point pattern 
( ) ( ) ( )

( , , )
lo mid hi

x x x  occurs at [93] 
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s x  and 2( ) ( )( )hi his x . The algorithm starts with the golden section 

search and calculates four points
( ) (1) (2) ( )

( , , , )
lo hi

x x x x . It then determines the search 

direction (right or left) and fits a quadratic function with either 
( ) (1) (2)

( , , )
lo

x x x  or

(1) (2) ( )
( , , )

hi
x x x . It calculates the quadratic fit 

( )qu
x  from Equation (4.7) and again 

applies criteria similar to the golden section search to discard one point and so on. 

Whether to use the golden section search or parabolic interpolation in the next iteration of 

the algorithm depends on the value of the cost function. If the golden section search 

yields better value of the objective function than parabolic interpolation, the golden 

section search will be used for the next iteration, otherwise parabolic interpolation. The 

combination of parabolic interpolation and the golden section search can speed up the 

optimal search process by 35-40% as compared to the golden section search only [97]. 

Figure 4.4 shows the process of parabolic interpolation in combination with the golden 

section search. 
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Figure 4.3: Golden Section Search 

 

 

 

Algorithm 1: Golden Section Search [93]  
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4.2.2.3 Nelder-Mead Derivative Free Search 

 

The parameters found by the golden section search are passed to the direct search method 

for fine tuning. The Nelder-Mead is one of the most popular schemes for unconstrained 

search without calculating derivatives [93]. The accuracy and computation time of any 

search method greatly depends on the initial values. Since, we use the golden section 

search and parabolic interpolation to speed up the process, the Nelder-Mead method 

converges in less time and becomes computationally suitable to implement in real time 

applications. The Nelder-Mead strategy, in contrast to other greedy search techniques, 

maintains a set of 1n distinct solutions for n  decision variables. The distinct solutions 

(1) (2) ( 1)
y , y ,.....y

n
 are sorted in descending order having 

(1)
y  as the best objective 

function value and 
(2)

y  as the second best and so on. The Nedler-Mead method replaces 

the worst solution 
( 1)

y
n

with a better one in each iteration. Algorithm 2 [93] gives main 

steps in performing the Nedler-Mead search for multi-decision variables. In the case of 

any derivative free optimization method, the decision for the search direction is critical, 

and it directly relates to the algorithm's convergence properties. The Nedler-Mead 

method chooses a search direction away from the worst solution
( 1)

y
n

 in each iteration. 

 

 

Figure 4.4: Parabolic Interpolation and Golden Section Search  
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Algorithm 2: Nelder-Mead Multi-Parameter Optimization Method [93]  

 

4.2.2.4 Simulations and Discussions  

 
The vibration data used in this section are taken from “Spur2” case listed in Table 1.2 in 

Section 1.10.2.  In this case, one tooth on the 32 teeth gear is chipped. Vibration signals 

coming from input accelerometer sensor are used in this section.  Simulation results in 

Table 4.1 and Figures 4.5 and 4.6 show the results. A combination of different algorithms 

is used in this section in order to get comparisons. It is described in section 4.2.2.1 that, at 

the initial stage, we change cF ,Q  and pR parameters for the band-pass filter and apply 
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accelerated one dimensional search for rapid convergence and coarse tuning. Kurtogram 

gives an initial estimate for the centre frequency cF . Initially, we set 0.707Q   and 

1dBpR  . Order N is always set to 4. We run golden section search combined with 

parabolic interpolation to search for a value cF  of the band-pass filter which maximizes 

kurtosis of the filtered signal. Let us take the case in Table 4.1, the value of the centre 

frequency returned by the kurtogram for a particular signal is 5403.59HzcF  . Figure 

4.5(a) shows the change in the kurtosis value plotted against the centre frequency of the 

band-pass filter cF , in the range ,
2 2

c c
c c

F F
F F
 

  
 

.  Running an accelerated one 

dimensional search on cF , the optimum is found just in nine iterations of the algorithm 

because of the reduction in search space by the kurtogram and the accelerated nature of 

the golden section search and parabolic interpolation combination strategy. The 

termination criteria we use, is to stop the execution when further improvement is less than 

0.001. Figure 4.5(a) plots kurtosis behaviour against the centre frequency cF . Table 4-5-1 

in Figure 4.5 shows the results of this run. The initial run calculates the kurtosis value 

equal to 13.1735 for centre frequency 4557.83HzcF  . Freezing the value of the centre 

frequency at 4557.83HzcF   and applying one dimensional search to the filter quality 

parameter Q  in the range  0.1 1 and looking for any improvement in the kurtosis value. 

Figure 4.5(b) plots kurtosis behaviour against filter quality parameter Q . Table 4-5-2 in 

Figure 4.5 shows the results of this run. The algorithm converges in nine iterations, and 

there is an improvement in kurtosis value from 13.17 to 13.21 for 0.70017Q  . Further, 

freezing the values of 4557.83HzcF  and 0.70017Q  and applying one dimensional 

search to the filter pass band ripples pR in the range 1 10 dB . Figure 4.5(c) plots 

kurtosis behaviour against filter pass band ripples pR . Table 4-5-3 in Figure 4.5 shows 

the results of this run. The algorithm converges in six iterations improving kurtosis value 

from 13.217 to 13.219 for 1.103dBpR  . So, there is no considerable improvement in 

kurtosis value for pR  search.  
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We have optimized three parameters 4557.83HzcF  , 0.70017Q   and 1.103dBpR   

individually. The final kurtosis value we have obtained is 13.219. We use the Nelder-

Mead method for further fine tuning of the filter parameters. The Nelder-Mead method 

takes all the three parameters and applies multi-objective optimization as discussed in 

section 4.2.2.3. The Nelder-Mead method converges in 11 iterations with 22 function 

evaluations and produces the final values of 3839.81HzcF  , 0.600Q   and 4.1dBpR   

as shown in Table 4-5-4 in Figure 4.5. The Nelder-Mead method can often handle 

discontinuity, particularly if it does not occur near the solution. To avoid the Nelder-

Mead method to be stuck at local extremum, we use one dimensional accelerated search. 

The strategy gives good starting point for the Nelder-Mead method and ensures 

convergence at global extremum. Experiments show that if we use the Nelder-Mead 

method just after the kurtogram estimations and use 5403.59HzcF  , 0.707Q   and 

1dBpR   as a starting point, the method sometimes converges at local extremum. The 

kurtogram combined with GA as proposed in [45] gives a reasonable detection of faulty 

pulses but is computationally expensive and not suitable for real time implementation. 

Instead, after using the fast Chebyshev filter design, the computational complexity of GA 

is still not reasonable for real time implementation. On the other hand, the combination of 

kurtogram with golden section search and Nelder-Mead method gives comparable results 

in a reasonable amount of time for online real time implementation. In Figures 4.6(a) and 

4.6(b), a sample of a raw vibration signal from the case “Spur2” is shown with respective 

kurtogram. After initial parameter estimations through kurtogram, a band-pass filter is 

designed, and filtered signal is obtained. The faulty pulses in the signal are prominent as 

shown in Figure 4.6(d) but kurtosis value is not maximized (kurtosis = 10.20) because the 

band-pass filter is not yet tuned as shown in Figure 4.6(c). The tuned band-pass filter is 

then obtained through kurtogram-golden-Nelder-Mead combination as shown in Figure 

4.6(c), and the raw signal is filtered again. Faulty pulses are now more prominent as SNR 

is improved with kurtosis value maximized to 13.82 as shown in Figure 4.6(e). The above 

mentioned simulations are repeated for another case “Helical2” listed in Table 1.2 of 
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Section 1.10.2. In this case, 24T gear is chipped. Figure 4.7 and Table 4.2 show the 

optimization results. The kurtosis is maximized from 19.37 to 24.45.  
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Figure 4.5: Accelerated One-Dimensional and Multi-Dimensional Search 

  

 

 

 

(a) 

(b) 

(c) 

Table 4-5-1: One-Dimensional Search Fc 

Count Fc (Hz) Kurtosis Method 

1 4145.9 11.6888 Initial 

2 4854.1 12.0664 Golden 

3 5291.8 10.7178 Golden 

4 4584.52 13.1509 Parabolic 

5 4525.67 13.139 Parabolic 

6 4562.96 13.1726 Parabolic 

7 4558.21 13.1735 Parabolic 

8 4557.73 13.1735 Parabolic 

9 4557.83 13.1735   Parabolic 

 
Table 4-5-2: One-Dimensional Search Q 

Count Q Kurtosis Method 

1 0.44376 5.65486 Initial 

2 0.65623 12.5827 Golden 

3 0.78753 11.1468 Golden 

4 0.67871 12.9517 Parabolic 

5 0.70012 13.2146 Parabolic 

6 0.73351 12.3684 Golden 

7 0.71287 13.0666 Golden 

8 0.69820 13.2111 Parabolic 

9 0.70017 13.2147 Parabolic 

 
Table 4-5-3: One-Dimensional Search RP 

Count RP (dB) Kurtosis Method 

1 1.2077 13.2175 Initial 

2 1.8923 13.1153 Golden 

3 0.7845 13.1791 Golden 

4 1.2054 13.2176 Parabolic 

5 1.1421 13.2191 Parabolic 

6 1.1032 13.2192 Parabolic 

 

Table 4-5-4: Multi-Dimensional Search (Nelder-Mead) 

Count Function Eval. Kurtosis Procedure 

1 4 13.2192 Initial simplex 

2 6 13.2252 Contract inside 

3 8 13.2297 Contract inside 

4 10 13.2859 Contract inside 

5 12 13.3150 Contract inside 

6 13 13.5710 Reflect 

7 15 13.5734 Contract inside 

8 17 13.6158 Contract inside 

9 19 13.6192 Contract inside 

10 21 13.8201 Expand 

11 22 13.8211 Reflect 

3839.81HzcF  , 0.600Q   and 4.12dBpR 
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Figure 4.6: Band-Pass Filter Tuning (Case - Table 4.1) 

 
Table 4.1: Filter Tuning Algorithms – Different Combinations: 1800 RPM, Load: 

High (Accelerometer Location: Gearbox Input, Type of Gears: Spur, Case: Spur2) 

(Platform: Intel Core Duo 2.27 GHz, 4GB RAM) 

 

 

Params 

 

 

Kurtogram 

 

Filter 

Initialization 

(Chebyshev) 

Filter Tuning Algorithmic Combinations 

Kurtogram 

GA/ 

Kurtogram  

Nelder-Mead 

Kurtogram 

GA 

Nelder-Mead 

Kurtogram 

Golden 

GA 

Kurtogram 

Golden 

Nelder-Mead 

cF  5403.59 5403.59 4535.18/4025.72 4521.51 4546.18 3839.83 

Q  - 0.7071 0.707/0.562 0.6831 0.7521 0.600 

N  - 4 4/4 4 4 4 

pR  - 1 (dB) 1.217/1.434 (dB) 1.452 (dB) 1.016 (dB) 4.12 (dB) 

Time(s) 1.976  0.069 84.344/13.3259 92.359 63.156 10.178 

Kurt 1.1 10.20 13.20/13.05 13.011 11.913 13.821 

(c) 

(a) 

(d) 

(e) 

(b) 
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Figure 4.7: Band-Pass Filter Tuning (Case - Table 4.2) 

 
Table 4.2: Filter Tuning Algorithms – Different Combinations: 1800 RPM, Load: 

High (Accelerometer Location: Gearbox Input, Type of Gears: Helical, Case: 

Helical2) (Platform: Intel Core Duo 2.27 GHz, 4GB RAM) 

  

 

 

Params 

 

 

Kurtogram 

 

Filter 

Initialization 

(Chebyshev) 

Filter Tuning Algorithmic Combinations 

Kurtogram 

GA/ 

Kurtogram  

Nelder-Mead 

Kurtogram 

GA 

Nelder-Mead 

Kurtogram 

Golden 

GA 

Kurtogram 

Golden 

Nelder-Mead 

cF  2343.7266 2343.7266 1650.41/1445.30 1701.23 1709.15 1705.49 

Q  - 0.7071 0.7215/0.3451 0.6541 0.7035 0.6993 

N  - 4 4/4 4 4 4 

pR  - 1 (dB) 1.3785/0.5752 1.841 1.053 0.9932 

Time(s) 1.89  0.065 89.344/13.349 98.854 65.126 13.178 

Kurt 1.20 19.37 23.12/13.70 24.15 25.94 24.45 

(a) (b) 

(c) (d) 

(e) 
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In Table 4.1, the computation time improvement is from 92.35 sec (kurtogram-GA-

Nelder-Mead combination) to 10.17 sec (kurtogram-golden-Nelder-Mead combination) 

or 89%. As shown in Tables 4-5-1 to 4-5-4 of Figure 4.5, the total function evaluations 

are 46 for kurtogram-golden-Nelder-Mead combination. For kurtogram-GA-Nelder-Mead 

combination, the function evaluations are more than 300. GA implementation is not 

discussed in this chapter as we have used MATLAB
® 

GA toolbox for comparison 

purposes. In Table 4.2, the computation time improvement is from 98.85 sec (kurtogram-

GA-Nelder-Mead combination) to 13.17 sec (kurtogram-golden-Nelder-Mead 

combination) or 86.6%. Based on the above two cases, we can say, the proposed 

algorithm gives approximately 87% improvement in speed with almost no degradation in 

kurtosis values.  

 

The faulty pulses emanating from a particular fault in the gearbox is the result from a 

certain vibration mode of gears. These pulses should be present in the same bandwidth 

throughout the presence of the fault. The adaptive concept we have used here is to detect 

the faulty bandwidth and tune a band-pass filter in order to maximize the kurtosis. Tuning 

time is a critical factor for mission critical applications as this plays an important role for 

early and timely detection of faults.  After the filter is tuned, it can be used to extract the 

faulty information from the same bandwidth and from the same vibration mode. 

 
4.2.3 Morlet Wavelet Filter 

 
Wavelet transform is successfully used in de-noising vibration signals with huge 

background noise and increasing SNR. Wavelet transform provides a joint time-

frequency analysis paradigm for signal filtering. Wavelet transform is also suitable for the 

detection of transient faults present in the vibration signals emanating from a faulty 

machine. We use an adaptive wavelet filter based on Morlet wavelet for signal de-

noising. Morelet wavelet is a sinusoidal function with an exponential decay on both sides 

and very much like a faulty pulse in shape. When the Morlet wavelet with a suitable 

shape and centre frequency is convolved with the vibration signal, the filtered signal is 

obtained. The filtered signal reveals the faulty pulses that match with the shape of the 

wavelet used [81]. To get good performance and optimized results, the design parameters 
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of the Morlet wavelet must be selected carefully. As discussed in Chapter 2, previous 

studies on this problem have used different selection methods based on different 

objective functions like Shannon entropy, kurtosis maximization and singular value 

decomposition. However, these studies lack proper optimization techniques in selecting 

suitable values of Morlet wavelet design parameters. In [82], the authors used entropy as 

an objective function to be minimized in searching optimized wavelet parameters. The 

authors selected a range of the wavelet parameters that encapsulates the minimum of the 

entropy, and evaluated the objective function by varying the parameter values in pre-

determined steps. This approach is quite cumbersome and time consuming, especially in 

real time fault detection applications. Similarly in [83], the authors used energy to 

entropy ratio as an objective function to maximize and follow the same step-wise 

approach described above to optimize the objective functions. The authors have estimated 

the computational complexity of their proposed method as  3

2log ( )n no . Where n  

being the total number of data points in the signal. However, they have reduced the 

computational complexity to the order of  2

2log ( )n no by choosing a fixed bandwidth 

for practical applications. The computational complexity of the filtering process can be 

further reduced by choosing a suitable optimization framework that converges faster in 

the solution search space. In this section, we use optimization methods like golden 

section search and Nelder-Mead in order to select optimized values of Morlet wavelet 

design parameters. 

 

Wavelet transform is a convolution or inner product between the signal and that of the 

wavelet family. The wavelet family contains one mother wavelet and several daughter 

wavelets. The daughter wavelets are derived from mother wavelet by translation and 

dilation. Let ( )t  be the mother wavelet, the daughter wavelets are obtained by 

, ( ) ( )a b t t b a   , where a  is the scale parameter and b  is time translation. The 

Morlet mother wavelet is defined as  

 2 2

0( ) exp( 2 ( ) ),t       (4.8) 

which is a complex wavelet and can be decomposed into real and imaginary parts as  
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0

0

2 2

2 2

1
( ) exp( / 2)cos(2 )

2

1
( ) exp( / 2)sin(2 ),

2

r

i

t t t

t t t

  


  


 

 

 (4.9) 

Where 0  is a constant and   is a shape parameter. Generally, only the real part of the 

Morlet wavelet is used. The real part of the Morlet wavelet is a cosine signal that decays 

exponentially on both the left and the right sides, and its function shape is very much 

similar to an impulse. This similarity makes the Morlet wavelet very attractive and 

widely applied in mechanical fault diagnostic applications. A daughter Morlet wavelet is 

obtained by time translation and scale dilation of the mother Morlet wavelet as [81]  

 

 2 2 2

,
.

( )
( ) exp( ( ) / 2 )cos( )

a b

t b
t t b a

a


 


    (4.10) 

 

Where, a  is scale parameter for dilation and b  is time translation. By carefully choosing 

the Morlet wavelet design parameters, a daughter wavelet that matches in shape with the 

faulty pulses present in the signal can be constructed. When the signal is convolved with 

Morlet wavelet, the filtered signal is obtained, and the faulty information present in the 

signal is revealed. Figure 4.8 shows the Morlet wavelet with parameters 0.05  , 3a 

and 0b  .   

 

 

 

 

 

 

 

 

 
Figure 4.8:  The Morlet Wavelet 

 

One of the important properties of fast Fourier transform (FFT) is that convolution in one 

domain is a multiplication in another domain. Filtering operation is done by converting 

the time domain signals into the frequency domain and performing multiplication 

operation as 
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1 *( , ) ( ( ) ( )).W a b F X f f  (4.11) 

 

Where, ( )X f  and ( )f  are the Fourier transforms of time signals ( )x t  and ( )t , 

respectively, and  1
.F

 is the inverse Fourier transform. Figure 4.9 shows the wavelet 

transform operation. 

 

 

Figure 4.9:  The Wavelet Analysis 

 

4.2.3.1 Simulations and Discussions 

 

The vibration data are taken from NREL presented in Section 1.10.1. In this section, we 

use signals from test case “CM_2a” listed in Table 1.1. The data are emanating from the 

sensor AN3, which is located on input side of the planetary gearbox inside the wind 

turbine’s mechanical drive train assembly. One dimensional golden section search with 

parabolic interpolation is first used to optimize the shape factor   and the scale 

parameter a  one by one and keeping the time translation 0b  . The values of    and a  

are passed to Nelder-Mead derivative free search for fine tuning and maximizing the 

kurtosis as the objective function.  

 

Figure 4.10 shows the flow chart of the adaptive Morlet wavelet filtering. The simulation 

results are shown in Figure 4.11. In Figure 4.11(a), a raw vibration signal emanating from 

the gearbox is shown. Figure 4.11(b) plots the variation in the kurtosis value against scale 
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parameter a  and shape parameter  . In Figure 4.11(b) the optimum value of kurtosis is 

estimated to lie at 0.0005   and 34a  . This is the global optimum that will be 

searched by the optimization process. The optimum values of a  and   for the kurtosis 

maximization are searched by the one-dimensional golden section search one by one.  

 

 
 

Figure 4.10:  Flow Chart of the Adaptive Morlet Wavelet Filtering 

 

These values are then passed as a starting point to the Nelder-Mead method for fine 

tuning the results and finding maxima in Figure 4.11(b). Figure 4.11(c) shows the Morlet 

wavelet designed with final values searched by the Nelder-Mead method. This is the 

optimized wavelet to reveal the faulty pulses present in this particular vibration signal. 

The filtered signal is shown in Figure 4.11(d). The faulty pulses are clearly revealed in 

the filtered signal and the kurtosis value is maximized to 4.66. Table 4-11-1 in Figure 

4.11 shows the results of the one-dimensional run for the scale parameter a , keeping the 

shape parameter 0.0005.   The algorithm stops in 7 iterations, and the kurtosis value 

of 3.59 is found for the scale parameter 32.89a  . In table 4-11-2 in Figure 4.11, the 

value of the shape parameter   is varied while keeping 32.89a  . The algorithm stops in 

7 iterations and maximizes the kurtosis to 4.64 for 0.00046  . In table 4-11-3 in Figure 

4.11, the Nelder-Mead multi-parameter optimization method is used where 32.89a   and 

0.00046   are passed as initial values. The Nelder-Mead algorithm converges in 10 

iterations and finds the kurtosis value of 4.667 for 33.48a   and 0.0005  . The whole 
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optimization process takes 2.3 seconds on an Intel Core Duo, 2.27 GHz processor with 

4GB of RAM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11:  Adaptive Morlet Wavelet Analysis - Optimization 

Table 4-11-2: One-Dimensional Search   

Count   Kurt Method 

1 0.00082 4.3372 Initial 

2 0.00127 3.8108 Golden 

3 0.00054 4.6581 Golden 

4 0.00037 4.5311 Golden 

5 0.00058 4.6405 Parabolic 

6 0.00051 4.6630 Parabolic 

7 0.00046 4.6412 Golden 

 

Table 4-11-1: One-Dimensional Search a  

Count a  Kurt Method 

1 25.27 2.326 Initial 

2 34.72 3.009 Golden 

3 33.15 3.491 Golden 

4 32.67 3.503 Parabolic 

5 32.90 3.592 Parabolic 

6 32.89 3.593 Parabolic 

7 32.89 3.593 Parabolic 

 
Table 4-11-3: Nelder-Mead 

Count Eval. Kurt Procedure 

1 1 4.6392 Initial simplex 

2 3 4.6541 Contract outside 

3 5 4.6596 Contract outside 

4 7 4.6635 Contract outside 

5 9 4.6668 Reflect 

6 10 4.6668 Contract inside 

7 12 4.6668 Contract outside 

8 14 4.6668 Reflect 

9 16 4.6673 Contract inside 

10 18 4.6673 Contract inside 

33.48a  , 0.0005 
 

(a) (b) 

(c) (d) 
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4.3 Conclusion 

 

In this chapter, a conventional optimization method for real time gearbox fault detection 

is proposed. The method uses two types of adaptive filtering approaches, the Chebyshev 

band-pass filter and the Morelet wavelet filter.  The Chebyshev band-pass filter method 

uses a combination of kurtogram, one dimensional and multi-dimensional optimization 

techniques. The Morelet wavelet approach uses only one dimensional and multi-

dimensional optimization techniques. Both techniques are proven to find faulty 

information in a reasonable amount of time, and are suitable for real time applications. As 

compared to the Chebyshev adaptive band-pass filtering, the wavelet adaptive filtering is 

computationally less expensive and approximately ten times faster. The proposed method 

demonstrates a reasonable computational complexity and improves response time, which 

proves its applicability for real time fault detection in mission critical applications. One 

of the main contributions of this chapter is a combination of different conventional 

techniques to speed up the optimization process. We use kurtogram for estimating the 

faulty band width in the signal and use golden section search to reduce the solution search 

space for the Nelder-Mead method. This gives an advantageous start to the Nelder-Mead 

method and it converges faster.  

 

In the following chapter, we will harness the optimization powers of evolutionary 

algorithms to tackle the background noise problem in vibration signals.  
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CHAPTER 5 

 

Evolutionary Optimization in 

Background Noise Removal 

 

5.1 Motivation  

 

Biologically inspired or nature inspired optimization algorithms are extensively used in 

vibration based fault detection. Because of their inherently slow nature, they are not 

suitable for real time vibration based fault detection. However, we can harness their 

extraordinary capabilities by carefully reducing the solution search space. Researchers 

have proposed different flavours of evolutionary algorithms for speedy convergence. 

They combined the evolutionary algorithms with other algorithms to reduce the solution 

search space and speed up the convergence. Chapter 2 gives an overview of similar work 

in this field. In this chapter, we explore two types of evolutionary algorithms as part of 

the research methodology: real coded genetic algorithm (RCGA) and particle swarm 

optimization (PSO) as shown in Figure 1.8. RCGA is a flavour of GA that uses real 

values of design variables as compared to the binary coded GA that converts the design 

variable into binary strings for evolution process. As described in Chapter 2, PSO is less 

computationally expensive as compared to GA. We combine RCGA and PSO with 

conventional one-dimensional search techniques to speed up the convergence process and 

reduce the solution search space. The objective function we use is kurtosis maximization 

as described in Section 4.2.1. The RCGA tunes the Chebyshev band-pass filter presented 

in Chapter 4, and we apply PSO on both the Chebyshev band-pass and Morlet wavelet 

filters.   

 

5.2 Fault Detection Using Real Coded Genetic Algorithm (RCGA) 
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In fault detection using RCGA, we follow the same flow as shown in Figure 4.1 but use 

RCGA instead of the multi-dimensional Nelder-Mead method for fine tuning. The 

kurtogram and one-dimensional optimization methods reduce the solution search space 

for RCGA. The RCGA itself provides a framework to accelerate the search process as it 

works on real coded values instead of binary coded bit strings. 

  

5.2.1 Real Coded Genetic Algorithm (RCGA) 

 

Genetic algorithm (GA) is a general purpose derivative free global search algorithm. GA 

uses principles of natural evolution or survival of the fittest. Holland first described the 

basic principles of GA in 1975 [98]. In GA, the idea is to maintain and evolve a 

population of knowledge structures. The evolution takes place through a process of 

competition and controlled variations called crossover and mutation operators. Each 

structure in the population represents a candidate solution to a particular problem at hand 

and has an associated fitness value to determine which structure can be used to form a 

new competitive population. In the evolution process, a subset of relatively good 

structures is selected for reproduction and replaces a relatively bad solution in the new 

population.  Crossover operator makes use of the information contained into parents and 

combines them in a new population in order to increase the average quality of the 

population. The mutation operator randomly changes the new individuals to help avoid 

local extremum.  

 

Figure 5.1 shows a flow chart of the basic genetic operations. Here, an initial random 

population of candidate solutions is generated in the form of chromosomes. Each 

chromosome is ranked according to its fitness value. The fitness value is calculated based 

on pre-defined objective functions to be optimized. Individuals based on their fitness 

values are selected and evolved by performing crossover and mutation operators. The 

process continues until required criteria are met.  Genetic algorithms can be designed to 

evolve multiple parameters at the same time. The tuning of band-pass filters for vibration 

based features extraction presents two main restrictions.  
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 The evaluation is based on multiple parameters and sometimes on multiple 

objectives (kurtosis maximization, pass band ripple reduction, etc.). This fact adds 

complexity to the search space because we must obtain the best trade-off among 

different criteria. 

 The evolved band-pass filter accuracy is assessed by means of simulations which 

usually take a long time. This causes the run time of the algorithms to be 

extremely long. 

 
 

Figure 5.1: Genetic Algorithm Flow Chart  

 

The first restriction will be solved by using a multi-parametric and multi-criteria GA 

optimization. The GA optimization allows working with fitness functions comprised of 

different competitive objectives. In this case, we could obtain not only an optimal 

solution, but also a set of different possible solutions. In order to solve the second 

restriction, we use two approaches. First, a real coded or integer coded genetic algorithm 

(RCGA) to reduce the computational complexity of encoding/decoding to/from binary 

strings. Second, penalty multipliers are included in the objective function to make unfit 

chromosomes die soon. Section 4.2.1 explains the penalty function phenomenon in detail. 

This will considerably reduce the run time for the genetic algorithm search. We also use a 

steady-state RCGA, which involves selecting two of the best individuals in the 
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population and combines them to obtain the two off-springs. This approach improves the 

convergence performance and simultaneously decreases the number of evaluations. The 

following genetic operators are used. 

 
5.2.1.1 Encoding 

 

The genetic algorithm used in this work is real coded to decrease the computational 

complexity and increase the convergence speed. Here, real coded numbers represent the 

parameters of the band pass filter in the evolution process. 

 

Band-pass filter parameters chromosome: [ c pF Q R N ] 

  

5.2.1.2 Selection 

 

We use a very simple selection approach called a roulette-wheel selection. The roulette-

wheel selection is also named as a stochastic sampling with a replacement. In the 

roulette-wheel selection, a continuous segment of a line maps the individuals in such a 

way that each individual's segment is equal in size to its fitness. An individual whose 

segment spans a generated random number is selected for next generation. The process is 

repeated until the desired number of individuals is obtained (a mating population). 

 

5.2.1.3 Arithmetic Crossover 

 

An arithmetic crossover is used for reproduction and creation of new offspring from the 

mating of two selected parents. We use an arithmetic crossover operator that defines a 

linear combination of two chromosomes [43]. Two chromosomes, selected randomly for 

a crossover, Gen

iC  and 
Gen

jC  may produce two offspring, 1Gen

iC   and 1Gen

jC  , which is a 

linear combination of their parents as 
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  

  
 (5.1) 

 

Where, GenC and 1GenC 
are the individuals from old and new generations, respectively 

and   is a weighting factor which governs the dominant individual in the reproduction 

process. The value of   ranges from 0 to 1.  
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5.2.1.4 Arithmetic Mutation 

 

The mutation operator is used to inject new genetic material into the population, and it is 

applied to each new structure individually. A given mutation involves the random 

alteration of each gene with a small probability. We generate a random real value which 

makes a random change in the thk element selected randomly from the chromosome. In 

arithmetic mutation, we involve two chromosomes but mutate only one according to 

some mutation probability. The two chromosomes Gen

iC and 
Gen

jC , selected for the 

crossover in the previous section, can undergo mutation and they have equal probability 

of selection for the mutation. Let us say, two offsprings, 1Gen

iC  and 1Gen

jC  are produced 

in crossover operation, and the 
thk element of 1Gen

iC  is selected for mutation. The 

mutation will occur as follows   

 
1 1 1

1 2 ( 1) ( 1), ,... , . (1 ). ,... , .Gen Gen Gen

i i i i k jk ik i n inC C C C C C C C   

     (5.2) 

 

5.2.1.5 Elitism 

   

A process to select better individuals is called elitism. In other words, elitism selects 

individuals with a bias towards the better ones and allows the solutions to get better over 

time. 

 

5.2.1.6 Simulations and Discussions 

 

The vibration data are taken from NREL presented in Section 1.10.1. In this section, we 

use signals from test case “CM_2a” as listed in Table 1.1. The data are emanating from 

the sensor AN3, which is located on input side of the planetary gearbox inside the wind 

turbine’s mechanical drive train assembly. 

 

We change cF ,Q  and pR
 
parameters for the band-pass filter and apply accelerated one 

dimensional search for the rapid convergence and coarse tuning. Fast kurtogram gives us 

an initial estimate for the centre frequency cF  of the band-pass filter. Initially, we set 

0.707Q  , 1dBpR 
 
and order 4N  . Then run a golden section search combined with 
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parabolic interpolation to search for a value cF  of the band-pass filter which maximizes 

the kurtosis of the filtered signal. Consider the case in Table 5.1, the value of centre 

frequency returned by kurtogram for the particular signal is 546.87HzcF 
 

in 1.076 

seconds. Filtering the signal with these filter parameters ( 546.87HzcF  , 0.707Q  ,

1dBpR 
 

and 4N  ) gives kurtosis value of 4.55. Running the accelerated one 

dimensional search with centre frequency range [100 800]HzcF  , the optimum is 

found at 527.37HzcF 
 
and kurtosis value jumps to 4.85. The search only takes 0.24 

seconds because of reduction in search space by the kurtogram and accelerated nature of 

the golden section search and parabolic interpolation combination. The termination 

criteria used to stop the execution is when further improvement is less than 0.001. Let us 

freeze the value of the centre frequency at 527.37HzcF   and apply the one dimensional 

search to the filter quality parameter Q  in the range  0.1,2  and look for any 

improvement in the final kurtosis value. There is no considerable improvement in the 

kurtosis value. Therefore, we keep the value of 0.707Q  . Further, we apply one 

dimensional search to the filter pass band ripples pR
 
in the range 0.1,10 dB . There is 

still no considerable improvement in the kurtosis value. Therefore, we keep the value of 

1pR  and use the RCGA for further fine tuning of the filter parameters. The RCGA 

takes all the four parameters including filter order N , and applies multi-parameter 

optimization. We also restrict the pass band ripples below a maximum value of 

2.5dB   and formulate the objective function for RCGA as 

 

  
 

41

20

4

1

max max 0, .

n

t

i
obj p

x i
n

F R



 








   
 


 (5.3) 
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 is the kurtosis and  2max 0, pR  

 
is a penalty function 

with   as a penalty multiplier, pR is the evolved ripple value and   is the maximum 

allowable ripples in the pass band. If pR  , the term  2max 0, pR  
 

will subtract 
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a squared penalty value from the objective function and restrict the objective function to 

be maximized. This step also makes unfit chromosomes in the population worse so that 

they can be replaced or die soon and the population converge soon. The RCGA method 

with Population Size = 20 and No. of Generations = 100 converges in average of 17 

seconds and produces the final values of the filter parameters as shown in Table 5.1. In 

Table 5.1, different runs of the RCGA are shown. RCGA1-RCGA4 runs are for 

reproduction plan of steady state, replace worst and elitism is ON. RCGA5-RCGA8 runs 

are for reproduction plan of steady state, replace random and elitism is OFF. RCGA9-

RCGA12 runs are for reproduction plan of steady state, replace random and elitism is 

ON. The kurtosis value increases from 4.85 to 5.58 in the case “RCGA4” in Table 5.2. To 

avoid RCGA be stuck at local optimum, we make use of the one dimensional accelerated 

search. The strategy gives a good starting point for the RCGA and ensures convergence at 

a global optimum. The experiment shows that if we use RCGA just after kurtogram 

estimation and use 546.87HzcF  , 0.7071Q  , 1dBpR   and 4N   as a starting point, 

the method sometimes converges at local optimum. As shown in Table 4.2, the 

kurtogram, the golden section search and the conventional GA takes 65.12 seconds on 

Intel Core Duo 2.27 GHz platform with 4GB RAM. A combination of the kurtogram, the 

golden section search and the RCGA takes an average of 17 seconds, as shown in Table 

5.1, to find an optimum kurtosis value. Hence, there is an improvement of 74% in speed 

as compared to classical GA and kurtogram combination. 

 

A raw vibration signal and its kurtogram is shown in Figure 5.2(a) and Figure 5.2(b), 

respectively. After initial parameters estimation from kurtogram, a band-pass filter is 

initialized in Figure 5.2(c) and a filtered signal is obtained in Figure 5.2(d). The faulty 

pulses in the signals are quite prominent but the band-pass filter is not yet tuned. The 

kurtosis value reaches at 4.55. The tuned band-pass filter is then obtained through golden-

RCGA tuning combination as shown in Figure 5.2(e) and the raw signal is filtered again 

in Figure 5.2(f). Faulty pulses are now more prominent and the kurtosis value calculated 

is 5.58. Figure 5.3 shows the evolution in the cost function for all cases of the RCGA 

runs. In Figure 5.3, we can easily see the effect of elitism in the RCGA runs. If elitism is 

OFF and the reproduction plan is random replacement, the cost function trend can even 
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go towards opposite of the optimum as shown in Figure 5.3(b). It is also evident from 

Figure 5.3(a) that "replace worst, elitism ON" strategy converges the RCGA faster than 

others (Figure 5.3(b) and Figure 5.3(c)). In Figure 5.3(a), the RCGA4 run case converges 

faster in 26 generations with maximum value of the fitness function as compared to any 

other RCGA run case in Figure 5.3.  

Physical inspection of the gearbox confirms that there is a severe scuffing on the HSS 

pinion gear revolving at the speed of 1200 RPM as shown in Figure 5.4. The faulty pulses 

emanating from a particular fault in the gearbox are the result from a certain vibration 

mode of gears and these pulses should be present in the same bandwidth throughout the 

presence of the fault. The adaptive concept used is to detect the faulty bandwidth and 

tune a band pass filter in order to maximize the kurtosis. Tuning time is a critical factor 

here and for mission critical applications this plays an important role for early and timely 

detection of faults. 

 

Many researchers have proposed different techniques to avoid local minima and 

stagnation in the search process of evolutionary algorithms. Although, it helps to achieve 

a better convergence but at the same time it slows the convergence speed. Therefore, it is 

not suitable for time critical applications, where time is more important parameter as 

compared to the quality of the results. In order to increase the convergence speed and 

establish a trade-off between time complexity and result quality, we proposed to reduce 

the solution search space for the RCGA through using the kurtogram and the golden 

section search methods. This gives the RCGA an advantageous start and the convergence 

takes less time. 

 

Table 5.1: Filter Tuning Algorithm – Kurtogram, Golden Search and RCGA: 1200 

RPM, (Accelerometer Location: AN3 Gearbox High Speed Shaft (HSS) Pinion) 

(Platform: Intel Core Duo 2.27 GHz, 4GB RAM) 

 
cF  (Hz) Q  N  

pR  (dB) Kurtosis Time (sec) 

Kurtogram 546.87 0.707 4 1 4.55 1.076 

Golden Section 527.37 0.707 4 1 4.85 0.240 

Pop. Size: 20, Generations: 100, Cross-Over Prob.: 0.8, Mutation Rate: 0.01, 

Reproduction: SS Replace Worst,  Elitism: ON 

RCGA1 416.40 0.536 3 2.29 5.149 15.00 

RCGA2 371.93 0.546 7 1.78 5.200 17.00 
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Figure 5.2: Band-Pass Filter Tuning (Case: Table 5.1 - RCGA4) 
 

RCGA3 475.15 0.723 7 2.53 5.454 17.00 

RCGA4 404.61 0.605 8 2.41 5.581 14.00 

Pop. Size: 20, Generations: 100, Cross-Over Prob.: 0.8, Mutation Rate: 0.01, 

Reproduction: SS Replace Random,  Elitism: OFF 

RCGA5 453.58 0.696 9 1.58 5.087 19.00 

RCGA6 451.42 0.693 9 1.92 5.100 19.00 

RCGA7 318.39 0.378 2 0.50 4.811 15.00 

RCGA8 414.82 0.536 3 1.35 5.019 15.00 

Pop. Size: 20, Generations: 100, Cross-Over Prob.: 0.8, Mutation Rate: 0.01, 

Reproduction: SS Replace Random,  Elitism: ON 

RCGA9 390.47 0.501 3 2.44 5.178 15.00 

RCGA10 435.98 0.577 3 1.80 5.079 15.00 

RCGA11 308.95 0.378 2 2.67 5.164 15.00 

RCGA12 462.87 0.711 9 2.38 5.250 17.00 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 5.3: Fitness Function Evolution Trend (Case: Table 1 - RCGA1-RCGA12) 

 

 
 

Figure 5.4: Severe Scuffing on the High Speed Pinion [15] 

 

5.3 Fault Detection Using Particle Swarm Optimization (PSO) 

 

In fault detection using PSO, we follow the same flow framework as shown in Figure 4.1. 

For PSO, the kurtogram and one-dimensional optimization methods reduce the solution 

(c) 

(b) (a) 
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search space.  PSO itself provides a framework to accelerate the search process as 

compared to GA. 

 

5.3.1 Particle Swarm Optimization (PSO) 

 

PSO is a population based stochastic optimization technique. PSO was first proposed by 

Kennedy and Eberhart in 1995 [50]. PSO mimics the social behaviour of birds and fish 

schooling. Similar to other population based stochastic optimization techniques, like GA, 

PSO starts with a population of random solutions and eventually converges to find an 

optimal solution. The population in PSO consists of particles that fly in n-dimensional 

solution search space and follow the position of the best particle. Each particle in the 

solution search space is described by its position vector 
i

x  and velocity vector 
i

v . The 

velocity and position update equations of the PSO are 
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Where 
i

p is the best position of each particle, g
kp is the global best position of a particle in 

the swarm. The constants 1d  and 2d  are self-confidence factor and swarm-confidence 

factor, respectively. The value of 1d  and 2d  is normally taken to be in the range [1, 2]  as 

described in [56]. The parameters 1r  and 2r  are randomly generated and uniformly 

distributed in the range [0, 1] . This avoids any entrapment in a local optimum and 

provides a good convergence of the solution search space. t  is a time step and can be 

taken as 1. In Equation (5.4), w  is inertia weighting and is usually a linear descending 

function given by 

  max max min

max

.
T

w w w w
T

    (5.5) 

 

Where T and 
max

T are current and maximum iteration, respectively. Each particle's best 

position is evaluated through a fitness function that maximizes the kurtosis. Figure 5.5 

shows a description of position and velocity updates of the particles in PSO graphically. 
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Figure 5.5: Velocity and Position Updates in PSO 

 

5.3.1.1 Chebyshev Band-Pass Filter Optimized by PSO 

 

The vibration data are taken from NREL presented in Section 1.10.1. In this section, we 

use signals from the test case “CM_2a” as listed in Table 1.1. The date are emanating 

from the sensor AN3, which is located on input side of the planetary gearbox inside the 

wind turbine’s mechanical drive train assembly. The one-dimensional search from section 

4.2.2.2 is used to search for the filter's centre frequency cF  that maximizes the objective 

function.  Other filter parameters like the quality factor Q , the filter order N  and the 

pass band ripples pR are kept constant at values 0.707Q  , 4N   and 1pR  , 

respectively. Figure 5.6(b) gives an idea where the kurtosis maximizes at 4.85 for 

525cF  Hz and found by one-dimensional accelerated search method. Figure 5.6(c) 

plots kurtosis against cF  and Q , where it is evident that the kurtosis maximization occurs 

in the range of 300 500cF  Hz and 0.3 0.7Q  . We then initialize the PSO search 

for parameter ranges: 500 1500Fc  Hz, 0.3 2Q  , 2 8N   and 1 6pR  . We 

see that the PSO maximizes the kurtosis to 5.18 with 420.20cF  Hz, 0.54Q  , 3N   

and 2.99pR  . Figure 5.6(d) plots the final filtered vibration signal with kurtosis value 

equal to 5.18. Figure 5.7 plots each particle's best position versus iterations. It is shown in 

Figure 5.7 that particle-1 reaches the optimum point first in 50 iterations and other 
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particles follow it. With particle-4, converged at iteration 80, the whole population 

converges at iteration 80. The PSO parameters used in this section are as follows. 

 

No. of Iterations = 100 

No. of Swarm Particles = 5 

Inertia Weight w= Varies from 0.9 to 0.4 

Self Confidence 1d =1.496 

Swarm Confidence 2d = 1.4961 

Parameters 1r and 2r  = rnd[0-1] 

Threshold for Success = 0.0001 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: The Chebyshev Band-Pass Filter Optimized by PSO 

 

5.3.1.2 Morlet Wavelet Filter Optimized by PSO 

 

The main parameters we will tune for the Morlet wavelet are the shape parameter   and 

the scale parameter a . A suitably starting value for the scale parameter a  is determined 

through the one dimensional accelerated search method. As seen in Figure 5.8(a), the 

kurtosis is optimized for the scale parameter 35a  found by the one-dimensional search. 

Figure 5.8(b) plots the kurtosis against a  and  . In Figure 5.8(b), it is evident that the 

kurtosis maximization occurs in the range of 10 50a   and 0.0001 0.02  .  We 

(a) (b) 

(c) (d) 
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then initialize the PSO search for parameter ranges, 10 50a   and 0.0001 0.02  . 

The PSO maximizes the kurtosis to 4.66 with 34.12a   and 0.00047  . Figure 5.8(c) 

plots the final filtered vibration signal with kurtosis value equal to 4.66. The PSO 

parameters used in this section are as same as described in the previous section. 

 

5.3.2 Comparison of Band-Pass and Wavelet Filters Optimized by PSO 

 

The performance of the band-pass filter and the wavelet filter is compared in this section. 

As discussed before, we design the Chebyshev band-pass filter because of its speed. The 

band-pass filter has four parameters to be optimized by the PSO as compared to the 

Morlet wavelet that has two parameters to be optimized. Table 5.2 gives a comparison 

between the two.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: Swarm Particles Local Best Evaluations  

(a) (b) 

(c) (d) 

(e) 
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Figure 5.8: The Morlet Wavelet Filter Optimized by PSO 

 

In Table 5.2, PSO takes 8.756 seconds to find an optimum value of the kurtosis in case of 

the Morlet wavelet filter and 14.654 seconds in case of the band-pass filter. On the other 

hand, the quality of the results degrades in the case of the Morlet wavelet filter. The 

Morlet filter finds a kurtosis value of 4.66, whereas, the band-pass filter finds a kurtosis 

value of 5.18. Also, the one-dimensional accelerated search takes less number of 

iterations to converge for the Morlet wavelet filter. Based on the application 

requirements, either the band pass filtering or the Morlet wavelet filtering can be chosen. 

 

 

 

 

 

 

 

 

Table 5.2: Comparison of Band-Pass vs Morlet Wavelet Filters 

Platform: Intel Core i7 CPU, 2Ghz and 8GB RAM 

 

Parameters Band Pass Filter Morlet Wavelet Filter 

Accelerated Search 

Dimensions 
1 ( cF ) 1 ( a ) 

PSO Dimensions 4 ( cF , Q , pR , N ) 2 ( a ,  ) 

Filtering Time (s) 0.11307 s 0.0459 s 

Accelerated Search Iterations 8 5 

PSO Iterations to Converge 80 65 

PSO Time (s) 14.654 s 8.756 s 

Kurtosis Value 5.18 4.66 

 

(a) (b) 

(c) 
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5.4 Conclusion 

 

In this chapter, the evolutionary optimization methods such as RCGA and PSO are 

proposed for gearbox fault detection. The optimization process is based on the kurtogram, 

the one-dimensional accelerated search methods, and the evolutionary search schemes. 

Although, the evolutionary optimization algorithms exhibit strong ability to optimize 

multi-parametric function, they are inherently slow and are not suitable for real time 

applications. The kurtogram and the one-dimensional optimization techniques are used to 

reduce the solution search space and speed up the convergence process for the 

evolutionary algorithms. It is demonstrated that the developed hybrid optimization 

scheme has successfully achieved more than 70% improvement in convergence speed as 

compared to classical evolutionary algorithms.  This is because of the three main reasons:  

(1) inclusion of conventional kurtogram technique to reduce the solution search space for 

the evolutionary algorithm, (2) use of real coded-genetic algorithm to avoid encoding and 

decoding from binary to real numbers and vice versa and (3) inclusion of a squared 

penalty in the objective function that makes unfit or bad chromosomes or swarms worse 

and avoids them to be used in next generations or to be followed by others.  

 

After the fault detection process is complete and the faulty information is revealed. We 

extract the representative features that describe the health status of the gearbox. The 

following chapter develops such methods.   
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CHAPTER 6 

 

Vibration Based Features Extraction for 

Gearbox Fault Detection 

 

6.1 Motivation 

 

Extracting representative features that best represent the health of a system is of utmost 

importance in any CM-FDS system. The extracted features should be sensitive to the 

machine condition and should reflect the changes in the machine behaviour or possible 

faults development over time. Features extraction is a first step before fault clustering, 

classification and diagnosis. Features extraction also helps in reducing the data 

dimensionality and prevents the over flooding of the information.  In this chapter, we 

present vibration based features extraction methods for gears and bearings as shown in 

Figure 1.8. We develop three methods for time-based features extraction to represent the 

health of the gearboxes and present some existing frequency-based features for gears and 

bearings fault detection.   

  

6.2 Gear’s Features Extraction 

 

Gears are an inseparable part of most of rotating machines in the industry today. Gears 

transfer torque and power from one shaft to another. They are essential components of 

any rotating machinery where the availability of the whole system depends on the smooth 

function of gears and gearboxes. Reliable monitoring techniques are required to detect 

incipient faults in gearboxes and to avoid catastrophic breakdowns. 

 

6.2.1 Time Domain Analysis 

 

Time-domain analysis is a powerful technique to detect incipient faults in gearboxes that 

cannot be detected by conventional frequency-domain analysis techniques. In this 

section, we develop transient based features extraction methods for gearboxes.  
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6.2.1.1 Feature-extraction Based on Shock Response Spectrum 

 

Shock response spectrum (SRS) was first introduced by Maurice Biot in 1932 [99]. Since 

then, SRS was under development and use by the US military and R&D facilities as 

mechanical shock analysis. With the advent of today’s modern high speed computers and 

signal processing techniques, it is now possible to simulate SRS of a structure based upon 

well-defined transient forces. SRS is the maximum response of a series of single degree 

of freedom (SDOF) systems of the same damping to a given transient signal. SRS 

actually gives the severity of transient information present in the signal. Therefore, it is 

useful in extracting transient features present in the vibration signatures of faulty 

machines. A combination of wavelet analysis and SRS is already proposed in [100], 

where authors have demonstrated the use of SRS to investigate transient nature of process 

variables and extract complex interaction patterns among them. Another technique with 

SRS and adaptive wavelet filtering is used for gearbox fault detection in [101]. The 

process of SRS features extraction is shown in Figure 6.1. The faulty pulses or transient 

information, revealed after adaptive filtering, is divided into blocks and is fed into a 

sequence of SDOF oscillator systems with different natural frequencies. Block division is 

done in such a way that each block contains at least one faulty pulse inside. We use 

wavelet peak detection to detect the faulty peaks and then make block division. A 

detailed description about wavelet peak detection can be found in [102]. The SRS applies 

the transient information as a base excitation to an array of SDOF systems, as shown in 

Figure 6.2. Here, the SDOF modeling for each block is performed individually. 

 

 

Figure 6.1: SRS Transient Features Extraction 

 

In SDOF modeling, each system is assumed to have no mass-loading effect on the base 

input and consists of a mass with value M , spring with stiffness k  and a damper with a 
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damping coefficient c . The resonance frequency Nf , the critical damping ratio   and 

the damped vibration frequency d  of each SDOF is calculated from the following 

equations:  
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Where n  is natural frequency in radians. According to Smallwood [103], the above 

mentioned SDOF system can be simulated with the help of a digital recursive filter. The 

output of the filter using a sampled input is assumed to be a measure of the response of 

the SDOF system. The filter transfer function is presented as  

 

  
1 2

0 1 2

1 2 2
.

1 2

b b z b z
H z

Cz E z

 

 

 


 
 (6.2) 

 

Where nt
E e


 , cosC E K and .dK T  The interval T is the sampling time of the 

signal and the coefficients 0b , 1b  and 2b can be calculated as  
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Where sinS E K . The damping ratio of each system is typically taken as 0.05   and 

the natural frequency Nf  is an independent variable. The calculation is performed for a 

number of independent SDOF systems, each with a unique natural frequency. Any 

arbitrary set of unique natural frequencies can be used for the shock response spectrum 



76 

calculation. A typical scheme, however, is based on a proportional bandwidth, such as 1/6 

octave. This means that each successive natural frequency is 1/62  times the previous 

natural frequency. Thus, a sample set of q calculation frequencies in units of Hertz would 

be 10, 11.2, 12.6, 14.1…….,[  1/6 1
10 2

q
 ]. Note that the bandwidth increases with 

frequency. Each of the natural frequencies in the above example represents the center 

frequency of an octave band. Continuing with the 1/6 octave format, the following 

relationships hold for the lower frequency lf  
and the upper frequency uf  

 1/12

1/12

1
,

2

2 .

l c

u c

f f Hz

f f Hz





 (6.6) 

 

Figure 6.2 presents the idea behind the SDOF modelling of transient information present 

in the filtered signal. As discussed above, the transient information from the filtered 

vibration signal is divided into blocks and fed to the SDOF system. The shock response 

spectrum of the SDOF is constructed according to Figure 6.2. The SRS for each block is 

calculated and maximum value maxG  is taken. The following equation is used to extract 

the SRS features.  
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Where, BN  is a number of blocks the signal is divided into, maxG  is a maximum shock 

value in each block and refG  is a reference shock value. If an engineering unit g or m/s
2
, 

we select 1refG  and if the engineering unit is Pascal (pa), we select 620 10refG   . A 

squared term for maxG  is included to favour for large shock values. The SRS in Equation 

(6.7) is actually a logarithmic average of the maximum shock values in each block. 

 

The vibration data are taken from NREL presented in Section 1.10.1. In this section, we 

use signals from the test case “CM_2a” as listed in Table 1.1. The date are emanating 

from the sensor AN3, which is located on input side of the planetary gearbox inside the 
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wind turbine’s mechanical drive train assembly. The signals are adaptively filtered and 

divided into blocks. Signal in each block is fed to the base of SDOF systems for 

calculation of SRS and SRS index according to equation (6.7) and Figure 6.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: SRS SDOF Oscillation System 

 

The value of SRS index can go below zero or negative if the averaged maxG shock energy 

is less than 1.0 (very less amount of shock), since 10log of a number less than 1.0 is a 

negative value. In Figure 6.3(b), normalized SRS index’s trend is shown. The SRS index 

is increasing as the fault is getting worse with respect to time.  

 

 

 

 

 

 

 

Figure 6.3: SRS Features Extraction 

 

(a) (b) 
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6.2.1.2 Feature-extraction Based on Pulse Shape Analysis 

 
In pulse shape analysis, we analyse rise and fall transition durations, slopes and 

amplitudes of the faulty pulses present in the signal. Normally, in control theory, rise time 

is defined as the time for a waveform to go from 10% to 90% of its final value. We use 

the same reference levels here for the measurement of the rise and fall times of the faulty 

pulses. Hence, the rise and fall slopes rS and 
fS  are calculated as 
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 (6.8) 

 

The varying fault conditions, severity and development can be analysed from the shape 

and width of the faulty pulses. The following features are extracted 
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Where SRF , SFF  and AF  are the slope rise, the slope fall and the amplitude features of the 

faulty pulses present in the signal. Figure 4.6(e) is reproduced here as Figure 6.4(a). After 

Hilbert transform envelope detection in Figure 6.4(b), pulse shape analysis is performed 

in Figure 6.4(c). 

  

The Hilbert transform detects the envelope of the band passed signal. Hilbert transform 

can be expressed as follows   

     
1 1 ( )

ˆ( ) ( )* .
x

x t x t d
t t


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  


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            (6.10) 
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Hilbert transform creates an artificially complex signal ( )u t
 
from ( )x t . The real part 

( )x t  of the ( )u t
 
is the original signal and the imaginary part ˆ( )x t  is the Hilbert transform 

of the real part. Thus, ( )u t
 
is defined as ˆ( ) ( ) ( )u t x t jx t  . The magnitude and phase of 

( )u t
 

is computed as 2 2ˆ( ) ( ) ( )A t x t x t 
 

and 
ˆ( )

( ) arctan
( )

x t
t

x t
  . The magnitude 

( )A t
 
is the envelope of the signal and is always a positive function. Figure 6.4(d) plots 

slope versus amplitude features of the faulty pulses for normal and faulty conditions of 

the gearbox. In Figure 6.4(d), five distinct clusters are seen. The cluster with good 

gearbox “Spur1-Good” has less amplitude and slope values as compared to other clusters 

“Spur2-Chipped”, “Spur4-Broken” and “Spur5-Chipped&Broken”. For all clusters in 

Figure 6.4(d), the amplitude and slope values are linearly related. When the severity of a 

fault increases, the transients’ amplitudes and slopes also increase. In the “Spur5-

Chipped&Broken” case there are two distinct sub-clusters: one belongs to chipped gear 

and the other belongs to broken gear in the gearbox. Surely, the sub-cluster with high 

amplitude and slope values belong to the broken gear in the gearbox. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: Pulse Shape Analysis 

(c) (d) 

(b) (a) 



80 

6.2.1.3 Feature-extraction Based on Second Order Transient Analysis 

 
Meshing of gears can be modeled by a second order, critically damped, spring mass 

system [104] as shown in Figure 6.5(a). The spring is deflected by a force ( )f t  acting on 

it, normally an impulse. A second order differential equation for the system can be 

derived from Newton's law as 

 
2

2 2

1 ( ) 2 ( )
( ) ( ).s

nn

d x t dx t
x t K f t

dtdt




   (6.10) 

Where n
k

M
  is the natural frequency, sK  is the dc gain and 

1
2 2

nb b
k kM


    is the damping ratio. The choice of n , sK and   represents 

very important characteristics of the response of the second-order system. 

 

 
 

Figure 6.5: Second-Order Spring Mass System and Impulse Response 

 

(a) 

(b) 
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In Figure 6.5(b), an impulse response of a second-order system is plotted for values of 

0.1  , 1n    and 1sK  . The system response shown in Figure 6.5(b) is for the 

underdamped case where 1  . When a fault occurs in gears, especially tooth crack, 

severe forces act on the gears and each time the cracked teeth mesh between the gears, 

transient forces are generated. These transient forces are responsible for faulty pulses in 

the vibration signals emanating from the gearboxes. The second-order feature-extraction 

method estimates the values of natural frequencies n  and damping ratios   of mass 

spring systems virtually present between the gears. The driving force ( )f t , the spring 

constant ( )k t  and the damping ratio ( )t  change with time and are different for different 

faults. The envelope of the response is an exponential function of damping ratio   and 

natural frequency n , denoted by nte 
 or 

t
e 

 as shown in Figure 6.5(b). The time 

constant of the complex envelope 1
n

  is the time elapsed after the envelope falls 

down to 37% of its maximum value. The damping ratio   is experimentally calculated as 

from Figure 6.5(b). 
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The logarithmic decrement and the damping ratio is 
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 (6.12) 

 

These values can be further used for fault classification and clustering. In Figure 6.5(b), 

d
  is a damped natural frequency given by 21

nd
   .  

 

As described earlier, meshing of gears can be modeled by a second-order, critically 

damped spring mass systems. The properties of these systems differ for different faults. 

This phenomenon is used to calculate a set of representative faulty features. We estimate 
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the natural frequency 
n

  and damping ratio   of such a system from the faulty pulse 

itself. The method is described in Figure 6.5 and Equation (6.12). Figure 5.6(d) is 

reproduced here as Figure 6.6(a). One faulty pulse from Figure 6.6(a) is zoomed in Figure 

6.6(b). The amplitudes 1x  and 2x  are calculated as 0.1824 and 0.15011, respectively.  

 

Using Equation (6.12), we calculate 0.1952   and 0.04  . The calculation of 
d

  is 

performed by calculating the difference in two adjacent peaks in number of samples and 

as shown in Figure 6.6(b). In this particular case, this difference is 

4 42.6814 10 2.6740 10 74     samples. Since, the sampling frequency used in this case 

is 40000sF  Hz, 
d

  becomes 
1 1 3

40000
74 74 1.85 10

d Fs
       sec or 1.85 msec. 

The damped frequency 
d

  is then calculated to be 
2

3396.3 /
d d

rad s



    and natural 

frequency to be 3399.6
21

/
n

d rad s



  


.  

 

 

 

 

 

 

Figure 6.6: Second-Order Transient Analysis Feature-extraction 

 

Figure 6.7 plots natural frequency 
n

  versus damping ratio   . In Figure 6.7, four 

distinct clusters are visible, that belong to four levels of fault severity. When the fault’s 

severity increases, the natural frequency and damping ratio also increases. Each cluster in 

Figure 6.7 represents a different second-order spring-mass system.  

 

(a) (b) 
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Figure 6.7: Extracted Second Order Transient Features 

 

6.2.1.4 Pulse Position Analysis 

 

Pulse position analysis is performed to locate the faulty pulse positions on the horizontal 

axis or time axis.  Once the positions are located, a pulse repetition frequency can be 

easily calculated and converted to rotational speed (Revolution per Minute - RPM) of the 

faulty component.  The following equation is used to calculate the average pulse 

repetition [105] 
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Where, S  is the peak position (pulse position) on the time axis in terms of samples, p  is 

an index representing peak number and P  is the total number of peaks found in the 

signal.  The sampling frequency is sF . The RPM of the faulty component is then 

calculated as  1/ 60pRPM T  . After the raw vibrational signal is filtered and the 

faulty pulses are revealed, Hilbert transform envelop detection is performed and peaks are 

detected through wavelet peak detection. Let us take the final band-pass filtered signal 

from Figure 5.6(a) and plot it again in Figure 6.8(a). In Figure 6.8(b), the envelop 

detected through Hilbert transform and peaks detected through wavelet analysis are 

shown.  
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Equation 6.13 is applied to calculate the RPM of the faulty gear as shown in Figure 

6.8(c). In this particular case the RPM of the faulty gear calculated through equation 6.13 

is 1203.83. This indicates the high speed pinion gear on high speed shaft (HSS) to be the 

faulty component in the gearbox. We know from the kinematics of gearbox that the RPM 

of the HSS is 1200 and it confirms the high speed pinion gear as the faulty component. 

Physical inspection of the gearbox further proves the hypothesis. Figure 5.4 shows a 

severe scuffing on the HSS pinion gear revolving at the speed of 1200 RPM. 

 

   

 

 

 

 

 

 
 

 

Figure 6.8: Pulse Position Analysis 

 

6.2.2 Frequency Domain Analysis 

 

In this section, some of the problems with gears listed in Table 1.2 of section 1.10.2 are 

discussed with corresponding fault related peaks in frequency domain.  

 

6.2.2.1 Gears Tooth Wear (Chipped and Broken) 

 

Gear wear causes high amplitude peaks in FFT at gear mesh frequency (GMF) and its 

side bands. In the “Spur2” case listed in Table 1.2, the 32T gear revolving at 1800 RPM 

(30 Hz) is chipped. It should cause high amplitude at GMF of 32x30 960 Hz . Figure 

6.9 shows the FFT analysis with GMF and sidebands. In Figure 6.9, the FFT of the 
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“Spur1” case with good gearbox and “Spur2” case with 32T chipped gear is plotted side 

by side for comparison of FFT peak amplitudes. In the “Spur5” case listed in Table 1.2, 

the 32T gear revolving at 1800 RPM (30 Hz) is chipped and 80T gear revolving at 360 

RPM (6 Hz) is broken. It should cause high amplitudes at GMF of 32x30 960 Hz  and 

80x6 480 Hz . Figure 6.10 shows the FFT analysis with GMFs and sidebands. In 

Figure 6.10(a) the FFT of the “Spur1” case with good gearbox and “Spur5” case with 

32T chipped gear and 80T broken gear is plotted side by side for comparison of FFT 

GMF peaks around 480 Hz that belong to 80T broken gear. In Figure 6.10(a) the main 

GMF peak for the “Spur5” case is less in amplitude as compared to its side bands. This 

confirms the broken tooth. In Figure 6.10(b) the GMF peaks and side bands around 960 

Hz confirm the 32T gear chipped. 

 

 

Figure 6.9: FFT Analysis - Spur1 and Spur2 Cases  

 

6.2.2.2 Gear’s Eccentricity 

 

The gear’s eccentricity is because of bent shaft. The eccentricity can be detected by 

higher amplitudes at GMFs and its sidebands. Figure 6.11 shows a case of gear’s 

eccentricity. In Figure 6.11, the “Spur1” and “Spur3” cases from Table 1.2 are compared. 

In the “Spur3” case, 48T gear revolving at 600 RPM (10 Hz) is eccentric. This shows the 

peaks around GMF to be of 48x10 480 Hz .  
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Figure 6.10: FFT Analysis - Spur1 and Spur5 Cases 

 

 

Figure 6.11: FFT Analysis - Spur1 and Spur3 Cases 

 

(a) 

(b) 
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6.3 Bearing’s Features Extraction 

 

Rolling element bearings are most widely used elements in industrial machines. Rolling 

element bearings provide an interface between moving and stationary parts of a machine. 

It is very important to detect incipient faults occurring in rolling element bearings in 

order to avoid catastrophic breakdown and unnecessary maintenance and shutdown costs. 

In this section, we discuss some conventional concepts about bearing’s faults detection 

and present some features extraction methods representative of bearing’s health 

conditions. 

 

 

6.3.1 Signal Band-Pass Filtering 

 

A very famous method for bearing fault detection is known as demodulated resonance 

analysis or envelope power spectral density analysis and is presented in [106]. The 

method filters a frequency range around a machine structural resonance, which is excited 

by the periodic impulsive excitation forces generated on bearings with localized defects. 

Demodulating this frequency range generates a ‘‘signal envelope” which presents more 

clearly the impulsive nature of the fault than the signal itself. The technique is able to 

identify and characterize the nature of defects. 

 

6.3.2 Characteristic Defect Frequencies 

 

Defects in bearings exhibit periodic impulses in vibration signals recorded from faulty 

bearings. The shape and period of these pulses change according to the RPM, the fault 

type, fault location and bearing geometry. These characteristic defect frequencies are 

calculated as [107], 
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Where cf  is the fundamental cage frequency, bdf  is the ball defect frequency, idf  is the 

inner race defect frequency and odf  is the outer race defect frequency of a bearing. The 

shaft rotation frequency is Hz
60

s

RPM
F  , bn  is the number of roller elements in the 

bearing, d  is the roller diameter, D  is the pitch diameter of the bearing and   is the 

contact angle as shown in Figure 6.12. 

 

We use frequency domain analysis to extract the representative features for detection of 

bearing’s faults. The frequency domain features extracted here are amplitudes of 

spectrum for bearing’s characteristics frequencies calculated in Equations 6.14 – 6.17. 

Table 6.1 lists the bearing’s characteristics frequencies for the vibration data taken from 

Prognostics and Health Management (PHM) society as listed in Table 1.2 in Section 

1.10.2. The bearing’s dimensions are as follows: 

 

No. of elements = bn = 8 

Roller diameter = d = 0.3125 in 

Pitch diameter = D  = 1.319 in 

Contact angle =   = 0 

 

 

Figure 6.12: Bearing Defect Frequencies and Dimensions 
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Table 6.1: Characteristic Defect Frequencies – Bearings  

Fault Locations Characteristic Defect Frequencies (Hz) 

Outer race 45.78odf   

Inner race 91.57idf   

Cage 11.44cf   

Balls 119.51bdf   

 

To diagnose the type of the defect, frequency harmonic analyses are usually used. 

Therefore, a plan for computing the distributed energy in the vicinity of characteristic 

defect harmonics has been used to extract frequency features for further classification. 

The signals are filtered through the band-pass adaptive filtering method presented in 

Chapter 4 and the power spectrum of the filtered signal’s squared envelop is calculated. 

Figure 6.13 shows one case, “Spur4” with bearing’s ball defect. 

 

 

 

 

 

 

 

Figure 6.13: Bearing Ball Defect (a) Filtered Time waveform (b) Squared Envelop 

Spectrum 

6.4 Conclusion 

 

In this chapter, time domain transient features extraction algorithms for gears are 

presented: SRS, pulse shape analysis, and second-order transient analysis. SRS extracts 

features suitable for trend analysis or prognostics and the other two techniques extract 

features applicable for clustering. All three features extraction algorithms rely on 

transient information present in the signals. Vibration signals emanating from faulty 

machines contain transients of short duration. The shapes of these transients are sensitive 

(a) (b) 
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to types of faults present in the machines. Hence, features related with transients are 

sensitive to the faults present in the machines. This chapter also presents pulse position 

analysis for faulty gear identification. The pulse position analysis calculates the faulty 

pulse positions at time axis and estimates the rotation frequency of the faulty gear inside 

the gearbox. However, the technique can pose difficulties in estimating the faulty 

component’s rotation frequency if there are two or more than two faulty gears inside the 

gearbox. In later case, we have to rely on FFT or clustering techniques. In this chapter, 

we also explore frequency domain analysis for detecting different types of faults for gears 

and bearings. The features extracted in this chapter would be used for prediction, 

classification and clustering in the next chapter along with some new features extraction 

techniques.   
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CHAPTER 7 

 

Prognostic and Clustering of Machines 

Health Conditions  

 

7.1 Motivation 

 

Prognostic is a very important technique in machine health monitoring and calculation of 

remaining useful life (RUL) of machines. Prognostics become a difficult task, especially, 

in the presence of system noise, modeling inconsistencies and degraded sensor fidelity. In 

prognostics, current and past observations of certain health index are used to predict the 

future health states of the machine.  

 

Clustering is another technique to group similar objects in one group. Clustering analysis 

is very often used in machines fault diagnosis. It is required to extract useful health 

related features from vibration signals emanating from machines before clustering. 

Chapter 6 is dedicated to different time-domain and frequency-domain feature extraction 

for gearbox health monitoring. As shown in Figure 1.8, we develop a new technique 

based on psychoacoustic filtering to extract gearbox health related vibration features. We 

then use neural networks and neuro-fuzzy approaches for prognostics. In this chapter, we 

also present fuzzy c-means and linear regression analysis clustering techniques. We use 

sunspot data-set for measuring the performance of the designed predictors.  

 

7.2 Machines Prognostics 

 

In order to perform prognostics we can either use the SRS features extracted in Figure 

6.3(b) or develop a new technique for features extraction. As shown in Figure 1.8, we use 

psychoacoustic filtering to extract gearbox health related vibration features. Figure 7.1(a) 
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shows the process of features extraction and prognostics. Below, we discuss the each step 

one by one. 

 

7.2.1 Health Monitoring Index 

 

The vibration features extraction algorithm presented in this section works on the 

principle of transient analysis. Transients are very short and abrupt changes in sound 

waves due to non-linearity. Non-linearity could be mechanically introduced disturbances 

in electromechanical systems or unwanted clicks in transmission lines. The transient 

analysis algorithm presented here calculates a real time estimate of transients caused by 

non-linearity as perceived by the human ear. The Analyzer uses the knowledge about 

human ear filtering nature as presented in [108] ensuring that the transients are detected 

in a way that matches the nature of the cochlea and thereby as perceived by the human 

ear. Transient analysis gives a much better correlation to the perceived quality of sound 

than traditional measurements based on frequency analysis. The vibration features 

extraction algorithm presented in this chapter uses principles of auditory models 

developed by auditory physiologists. They have gathered considerable data which 

describes the response of mammalian auditory-nerve fibers and it is clear from the 

investigations that some of the frequency analysis is performed by human ear [109]. 

Figure 7.1(a) shows the block diagram of the transient analysis method. Pulses with short 

rise time or fall time will contain a broad spectrum of frequencies. Therefore it is possible 

to detect the instantaneous energy in frequency bands in the transient range of the ear. A 

common method for doing this is to use a filter bank containing a group of band-pass 

filters covering the frequency interval of interest. The purpose of the band pass filters is 

to detect the pulses in the frequency band where the pulses have most energy as perceived 

by the human ear. It will be the filter where the shape of the impulse response matches 

best the shape of the pulses. The optimal match will be an impulse response with shape 

equal to the pulse but reverse in time. A gamma tone filter bank is used in this study. 

Figure 7.1(b) shows a gamma tone filter bank. First designed by Patterson and Holdworth 

[110], gamma tone filter bank is an array of band pass filters which simulates the 

response of human ear cochlea. At each point along the cochlea, a psychoacoustic 
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measure of the width of the auditory filter is represented by an equivalent rectangular 

bandwidth (ERB).    

 

 

 

 

 

 

 

 

Figure 7.1: (a) Vibration Based Features Extraction (b) Gammatone Filters Bank 

(c) Gammatone Filters Impulse Response  

 

The bandwidth of the filters is set by a critical band function and so filters bandwidth 

increases with increase in its center frequency. The relationship between ERB and centre 

frequency 
c

F  Hz is given by the following equation 

 
24.7 0.108 .cERB F   (7.1) 

 

The impulse response of a band pass filter is defined by the following relation [110] 

 

 
   1 2 cos 2 .N mt

ch t Rt e F t      (7.2) 

 

(a) 

(b) (c) 
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Where R  is an arbitrary factor that is typically used to normalize the peak magnitude 

transfer to unity, N is the filter order, m  is a parameter that determines the duration of 

the impulse response and thus the filter’s bandwidth, cF  is the filter’s center frequency, 

and   is the phase of the tone. Figure 7.1(c) shows an impulse response with 

1000cF Hz , 125m Hz  and 4N  . To detect the energy in the channels the output 

signal from the band-pass filter is Hilbert transformed. The Hilbert transform detects the 

envelope of the band-pass filtered signal and extracts the instantaneous energy of the 

faulty pulses. 

 

After the pulses are extracted through envelope detection, feature extraction block 

follows. In feature extraction block, amplitude and steepness of the pulses are calculated 

as per Equation (6.9). Amplitude (maximum magnitude) is a linear detector for pulses in 

the full frequency area. Steepness (maximum slope) is very sensitive for catching 

nonlinear sounds in the high frequency area. Both metrics can be summarized to a 

logarithmic index expressing the amount and size of the pulses. The index may be based 

on either the magnitude or the steepness of the pulses. It is expected that pulses with a 

short rise time will be more annoying to the ear, than pulses with longer rise times. Thus, 

by considering the pulse envelope, it seems reasonable to focus the measure on the 

steepness in leading edge. Every transient detected is characterized by the 80% amplitude 

and the maximum steepness in the leading edge. In order to obtain an equal number of 

detected transients in each frequency bands, the output from the transient analyzer is split 

into blocks of a pre-specified duration. The duration is found as a trade-off between 

preserving the complexity of the measurement and having an equal number of detected 

transients in each channel. In each block, only the transient with the maximum steepness 

is gathered. The maximum steepness is found by differentiating the signal and finding 

maximum amplitude of the differentiated signal. The logarithmic index is calculated as 

follows 

 

 
2

, 1

10 2

1

10.log .

BN

max ij
i channels jB C

ref

S

S
N N

Vb
S



 
 
 
 
 
 

 
 (7.3) 
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Where 
S

Vb  is vibration steepness index, i  is index for band pass filter and 
C

N
 
is total 

number of band pass filters used. Index of sub-blocks in a band pass filtered signal is j

and 
B

N  is the total number of sub-blocks. The maximum steepness in band pass filter i  

and sub-block j is  max ij
S . The argument for squaring the maximum steepness is simply 

to put the large steepness values in favour.  1r e fS   if the measured amplitude is 

acceleration. For amplitude index AVb ,  max ij
S in Equation (7.3) is replaced by  max ij

A

where maxA  is the maximum amplitude of the non-differentiated envelope signal. The 

vibration features extracted are de-noised through wavelet de-noising techniques and 

normalized before prediction.  

 

7.2.2 Wavelet Denoising 

 

Wavelets are limited duration, undulatory mathematical functions. The time integral of 

wavelet functions equals to zero.  Figure 7.2 plots some common wavelets. Similar to 

Fourier transform, where we use sine and cosine as basis functions, wavelet transform 

uses wavelets as basis functions. Wavelets are used in many different fields including 

compression, signal processing, and de-noising [111]. In Fourier analysis, we 

approximate a function  f x  by sines and cosines functions with different frequencies 

and amplitudes. Thus, the approximation equation becomes 

 

 
      

^

1

sin cos .o i i

k

f x a a kx b kx




         (7.4) 

 

Where, oa , ia  and ib  are calculated from Fourier transform as  

 

        ω .j tF f t e dt







 
 

                   (7.5) 

 

Wavelet analysis is performed in the similar way as Fourier transform but with scaled and 

translated versions of mother wavelet  x  as basis functions. Mother wavelet can be 

any one from Figure 7.2 above and the scaling and translation is defined as child wavelets 

and can be calculated as 
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   , 2 .j

j k x x k     (7.6) 

 

Where  is a constant, k  is wavelet translation and 2 j is scale translation. We can 

estimate  f x  from the following equation in wavelet analysis 

 

   
,

^

,

,

.
j k j k

j k

f x c x
 

   (7.7) 

 

Where, 
,j k

c are the wavelet coefficients and are obtained through the wavelet transform as 

 
   , , .j k j kc f x x dx




   (7.8) 

 

 

 

   

 

 

 

 

 

 

 

 

Figure 7.2: Commonly used Wavelets: (a) Daubechies, (b) Gaussian,  (c) Meyer 

and (d) Morlet. 
 

Wavelet analysis basis functions are finite and limited to one size and this makes wavelet 

analysis useful technique for detecting local features like discontinuities and spikes in a 

signal. On the other hand, Fourier analysis basis functions are infinite in nature and an 

approximation of a specific part of the signal affects the entire signal. Wavelet analysis is 

joint time-frequency analysis technique as contrast to the Fourier transform that is purely 

(a) (b) 

(c) (d) 
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frequency analysis. This feature also makes wavelet analysis to tell about when in time a 

particular event took place. Wavelet smoothing or wavelet trend analysis is used to 

remove high frequency components from the monitoring index which can be assumed as 

noise. The process is also called wavelet de-noising. De-noising the signal is one of the 

most effective applications of wavelets in signal processing. The wavelet transform-based 

de-noising methods can produce much higher de-noising quality than conventional 

methods. Furthermore, the wavelet transform-based methods retain the details of a signal 

after de-noising [111, 112]. We approximate the original signal from Equation (7.7). 

Each coefficient 
,j kc  obtained in Equation (7.8) by wavelet transform is a contribution of 

the wavelet  ,j k x  in the whole approximation for the original signal. If the value of 

this coefficient ,j kc  is very small and its contribution to the approximation is considered 

negligible, we can omit the corresponding child wavelet  ,j k x  from the approximation. 

This procedure is called thresholding and it forms the basis for the wavelet de-noising. 

After de-noising the prediction trends by wavelet analysis, techniques for time series 

prediction comes in.    

   

7.2.3 Time Series Prediction 

 

The prediction of time series  x t  at r  time steps ahead, t rx  , is obtained based on its 

values at present and past time steps     21 2
[ , , ,..., , , ]t mr t r t r tt m r t m r
x x x x x x     

 as 

    21 2
( , , ,..., , , ).t r t mr t r t r tt m r t m r

x x x x x x x      
  Where   is a predictor functions and can 

be approximated through various conventional, statistical and artificially intelligent 

techniques like Bayesian, support vector regression, Adaptive Neuro-Fuzzy Inference 

System (ANFIS) and neural networks (NN). This paper uses a dynamic neural network, 

the nonlinear autoregressive model with exogenous inputs (NARX) and ANFIS 

techniques to approximate the predictor function  .   

  

7.2.3.1 The NARX  

 

The NARX is a dynamic neural network, used for modeling nonlinear dynamical 

systems. The NARX can be represented mathematically as  
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           1 ,..., 1 ; , 1 ,..., 1 .y uy n f y n y n d u n u n u n d       

 
          (7.9) 

 

Where,  nu  and  ny  are the input and output of the system at time step n , while 

1ud   and 1yd  , 
u yd d , are the input-memory and output-memory orders.  Equation 

(7.9) can also be written in compact form as      1 ;y n f n n    y u  , where  nu  and 

 ny  are the input and output regressor vectors respectively. The nonlinear mapping 

function  .f  is approximated through a multi-layer perception (MLP) algorithm trained 

with plain back propagation algorithm. This research deals with nonlinear univariate time 

series prediction and for this we set 0yd  . This reduces the NARX network to time 

delay neural network (TDNN) architecture and Equation (7.9) reduces to [113]   

 

        1 , 1 ,..., 1 .uy n f u n u n u n d        
(7.10) 

 

Figure 7.3 shows the way the NARX is trained and tested. During the training phase, the 

feedback loops (dotted lines in Figure 7.3) are not used.  

 

 

 

 

 

 

 

 

 

 

Figure 7.3: NARX for Training and Testing 
 (Feedback loops are required only during testing) 
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During the testing or prediction phase, if multistep-ahead predictions are required, the 

output values are fed back to both the input regressor  nu  and the output regressor 

 ny  at the same time. Thus, the resulting predictive model contains two feedback loops, 

one for the input regressor and another for the output regressor. Several types of 

activation functions can be used in the NARX neurons as shown in Figure 7.4 [126]. 

 

 

Figure 7.4: Different Types of Activation Functions used in NARX 

 

We use the following settings for the NARX network: 

 
Input delays: 2 

Feedback delays: 2 

Hidden layers: 1 

Hidden layer size: 10 

Training data: 70% 

Validation data: 15% 

Testing Data: 15% 

Performance criteria: Mean squared error (MSE) 
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Training algorithm: Levenberg–Marquardt 

Hidden layer activation function: Sigmoid 

Output layer activation function: Linear 

 

7.2.3.2 The Adaptive Neuro-Fuzzy Inference System (ANFIS) 

 

The basic structure of the ANFIS is shown in Figure 7.5. The ANFIS has m  inputs 

 1 2, ..., mx x x , each with n  membership functions (MFs), R  rules and one output y . 

When the ANFIS predicts a time series, the inputs are 

 ( 1) ( 2) 2, , ,..., , ,t mr t m r t m r t r t r tx x x x x x        and the output of the ANFIS is t ry x  . In the 

above mentioned case, the ANFIS predicts the time series r  time steps ahead based on 

current and the previous m  values. We use a Sugeno-fuzzy type inference system with 

five layers and 4m   inputs. Number of nodes N  in layer 1 is the product of number of 

inputs m  and the input MFs n  for each input, i.e., .N m n . Number of nodes in layers 

2-4 is equal to the number of rules R  in the fuzzy rule base. Layer 1 is a fuzzufication 

layer and it transforms the crisp inputs ix  to linguistic labels 
ijA . The examples of the 

linguistic labels are small, medium, large etc., and the transformation occurs with some 

degree of the MFs as  1

ij ijO x . Where, 1,...,i m , 1,...,j n  and ij  represents the 

thj  membership function for the input ix . Different types of MFs are used like 

triangular, trapeziodal, Gaussian etc. Layer 2 of the ANFIS is a product layer, where for 

each node k , the output represents weighting factor or firing strength of the rule R  

associated with k  . The output kw  of this layer is  2

k ik iO x , and it is the product 

of all its inputs scaled according to the MFs ik . Where 1,...,i m  and 1,...,k R . Layer 

3 is a normalization layer and the output of each node k  in this layer represents the 

normalized weighting factor 
__

kw  of the thk rule as 
3 k
k

kk

w
O

w



 . Where 1,...,k R . 

Layer 4 is a de-fuzzification layer and the output of each node in this layer is a weighted 

output of the first order Sugeno-type fuzzy if-then rule as 
__

4

k k kO w f . Where, 

k kj j k

j

f p x r  , 1,...,j n , 1,...,k R , kf  is the output of the thk  rule, and the 
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parameters 
kjp  and kr  are called consequent parameters. Layer 5 is the final output layer 

and it contains only one node inside. The output of the layer 5 is an overall output y  of 

the network as 
__

5

k k

k

O w f . It is also a sum of all the weighted outputs of the rules.  

 

We need a training dataset of desired input/output pairs  1 2, ,..., ,mx x x y to train the 

ANFIS or model the target system. In training phase, the ANFIS adaptively maps the 

input features space  1 2, ,..., mx x x   to the corresponding output y . The mapping in the 

ANFIS system is done through the membership functions (MFs), the rule base and the 

related parameters that emulate the training dataset. The training phase of the ANFIS uses 

hybrid learning method. It uses the gradient descent approach for fine tuning the 

parameters that define the MFs and applies the least squares method to identify the 

consequent parameters that define the coefficient of each output equation in Sugeno-type 

fuzzy rule base. The training process continues till the desired stopping criteria is 

reached, i.e., number of epochs or error tolerance. 

 

 

Figure 7.5: Basic Structure of ANFIS 
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7.2.3.3 Simulations and Discussions 

 

In this section, the prediction accuracy of both the time series predictors, NARX and 

ANFIS is compared using standard dataset of sunspot activity for years 1749-2012 [114]. 

The sunspot activity data has non-linear, non-Gaussian and non-stationary characteristics 

and is suitable to test the performance of the predictors. Figure 7.6(a) shows the sunspot 

activity data along with wavelet smoothing. NARX and ANFIS prediction results are 

shown in Figure 7.6(b) and 7.6(c) along with errors box-plots in Figure 7.6(d). In Figure 

7.6(d), the medians of the box-plots are centred at zero for both NARX and ANFIS 

predictors and the 2.698  lines are at 0.01  showing about 99.3% of the error 

observations within the range of 0.01 . Where   is the error standard deviation. There 

are some outliers for both NARX and ANFIS cases but NARX depicts better 

performance in this case. The mean absolute error (MAE) and mean square error (MSE) 

values are less in the case of NARX (sunspot data-set) in Table 7.1.  

 

In the framework of machine conditions prognostics, we calculate the machine’s health 

index proposed in section 7.2.1. The experimental vibration data we use in this section 

emanate from a planetary gearbox inside a windmill. The data are provided by the 

National Renewable Energy Laboratory (NREL), through a consortium called the 

Gearbox Reliability Collaborative (GRC).  The details about the data collected are shown 

in section 1.10.1 in Chapter 1. Figure 7.7(a) shows an example of a raw vibration signal, 

1 second (40000 samples) in length, collected from the gearbox inside the windmill. A 

total of 350 such vibration signals are analysed in this section.  

 

Vibration indices are calculated as proposed in section 7.2.1. Figure 7.7(b) shows a 

vibration index trend with wavelet smoothing. Figure 7.7(c) shows one step prediction for 

NARX and Figure 7.7(d) shows one step prediction for ANFIS. NARX seems to exhibit 

more promising results as compared to ANFIS in this case. Also, the MAE and MSE 

error values for NARX are less as shown in Table I (vibration index data-set). We can 

also use one step recursive prediction for NARX and ANFIS to predict as many future 

values as we want as shown in Figures 7.7(e) and 7.7(f). For multi-step recursive 



103 

prediction, we have to loop to output values back as discussed in section 7.4.1 in NARX 

case (dotted lines in Figure 7.3). Similar strategy is adopted in the ANFIS case. 

 

 
 
 

 

 

 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 7.6:  Sunspot Activity Data with Wavelet Smoothing and Prediction 

 

 

7.3 Clustering  

 

7.3.1 Fuzzy Logic and Fuzzy C-Means Clustering 

 

Fuzzy c-means clustering was first presented in 1981 [116]. It is an extension of hard k-

means clustering with the advantage of the fuzzy set theory. In fuzzy-set theory, the crisp 

or binary membership of a set is changed with gradual membership on the real and 

continuous interval [0 1] . Therefore, in fuzzy clustering a point belongs to a set by a 

partial membership function. Figure 7.8 shows the basic difference between crisp sets and 

fuzzy sets.  
 

 
 

 

(a) (b) 

(c) (d) 
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Figure 7.7:  Vibration Data with Extracted Features, Wavelet Smoothing and 

Prediction 

 

Table 7.1: MAE and MSE – NARX & ANFIS 

 

 

 

 

 

 

 

 

Data Set Model MAE MSE 

Sunspot NARX 0.0034 2.144x10
-5 

ANFIS 0.0035 2.421x10
-5 

Vibration Index NARX 0.0013 3.626x10
-6 

ANFIS 0.0086 4.079x10
-4 

(a) (b) 

(c) (d) 

(e) (f) 



105 

 
 

Figure 7.8:  Difference between Fuzzy Sets and Crisp Sets 

 

The main aim of the algorithm is to cluster those data points in a cluster that minimize a 

dissimilarity function of the form [117].  

       
/ 2*

1 1

, min , min .
n c

m

m m ik ik

k i

J J d
 

 
     

 
U v U v       (7.11) 

Where, ik is the membership values of thk data point in the thi cluster space, /m  is a 

weighting parameter in the range  1  , U is fuzzy partition matrix, v  is cluster centre 

matrix and d  is similarity matrix describes as 

 

   
2

1

1: and 1: .
m

ik k i k i kj ij

j

d d x v x v x v i c k n


            (7.12) 

Where, m  is the number of features, kx  is thk data point and iv  is the centroid of thi

cluster and can be written as  1 2, ,..., 1:i i i imv v v v i c   . Cluster centres are calculated 

from the following formula [95]:   

 
/

/

1

1

1: and 1: .

n m

ik kjk
ij n m

ikk

x
v i c j m









   



     (7.13) 

 

Where, x  is a fuzzy variable representing the data point. The fuzzy partitioning is 

performed iteratively with the following criteria. 

 
/

2

1

1

1
1 .ik

m
c

ik

j
jk

u s

d

d




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  
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

     (7.14) 
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The sum of the membership values should be equal to 1 as 

1,
k

ik

i I




        (7.15) 

and the stopping criteria is defines as 
   1

.
r r

U U 

   Where,  varies in the range 

 0 1 . The major objective is to minimize the cost function mJ . The flowchart for the 

fuzzy c-means clustering is shown in Figure 7.9. 

 

7.3.1.1 Simulations 

 

The data we use in this section is from Figure 6.7, the second order transient features with 

natural frequency n  and damping ratio  .  Figure 7.10 shows the clustered data with 

four clusters in 7.10(a) and five clusters in 7.10(b) along with corresponding cost 

functions’ trend in 7.10(c). The following parameters are used: 

No. of clusters = 4, Exponent for U = 2 and Error tolerance 1 6e   .  

No. of clusters = 5, Exponent for U = 2 and Error tolerance 1 6e   . 

 
 

Figure 7.9:  Fuzzy c-means Algorithm Flow Chart 

 

7.3.2 Linear Least-Squares Regression Clustering 

 

Linear least-squares regression fits a straight line 1oy a a x e    through a set of paired 

observation       1 1 2 2, , , ,.... ,n nx y x y x y . Where oa  and 1a  are the intercept and slope 
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of the straight line and e  is the error or residual between the model and the observations. 

The error e  can be written as 1oe y a a x   . In linear least-square regression fitting, the 

aim is to minimize the sum of squares of the residual as 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.10:  Fuzzy c-means Clustering 
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22

1

1 1

.
n n
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           (7.16) 

 

The values of the coefficients oa  and 1a  can be found by [97] 
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      (7.17) 

and 
_ _

1 .oa y a x          (7.18) 

Where, 
_

y and 
_

x  are the mean values of y  and x  respectively. The standard deviation for 

the regression line can be determined by  

.
2

r
y x

S
s

n



       (7.19) 

(c) 

(b) (a) 
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Where, 
y xs  is called the standard error of estimates for predicted values of y  

corresponding to particular values of x . The standard error of estimates quantifies the 

spread of the data around the regression line, similar to standard deviation that quantifies 

the spread of data around the mean value. If we calculate sum of the squares around the 

mean for dependent variable y , the quantity is quantified as 

2
_

1

n

t

i

S y y


 
  

 
  and the 

coefficient of determination 2r  becomes  

2 .t r

t

S S
r

S


        (7.20) 

Another important quantity called correlation coefficient is quantified as r  and is 

calculated as 2r r . The correlation coefficient can also be calculated as [97] 
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       
        

       

  

   

      (7.21) 

 

7.3.2.1 Simulations 

 

The data we use in this section is from Figure 6.4(d), which plots the faulty pulses’ 

amplitudes versus slopes for four different states of the gearbox, “Spur1 - Good”, “Spur2 

- Chipped”, “Spur4 - Broken” and “Spur5 – Chipped & Broken”. Four distinct clusters 

are seen in Figure 6.4(d). Linear least-square regression analysis is performed for each 

cluster. Figure 7.11 shows the results.   

 

Figure 7.11:  Linear Regression Analysis 
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Table 7.2 lists all the linear equations calculated through linear least-squares regression 

analysis along with respective coefficient of determination and correlation. The value of 

2 1r   in Equation 7.20 determines a perfect line fit that explain 100% variability of the 

data. In Equation 7.20, 0rS  for a perfect fit and r tS S  explains the fit with no 

improvement. In Table 7.2, the line slops of “Spur1-Good” and “Spur2-Chipped” cases 

are almost similar as evident from Figure 7.11 visually. But the “Spur1-Good” cluster 

points contain very small values of amplitudes and slopes. The values of amplitudes and 

slopes for faulty clusters are relatively higher than the good cluster. Any new, incoming 

data point will belong to a cluster with the fitted line closer to the data point in distance.  

 

Table 7.2: Linear Regression Analysis 

 

7.4 Conclusion 

 

This chapter discusses techniques for prognostics and clustering of machine health related 

features. Two different techniques are used for prognostics, NARX and ANFIS. The 

prognostics performance of the predictors is illustrated on two data-sets, sunspot activity 

and vibration index. Both NARX and ANFIS predictors perform quite well. The 

performance of the NARX predictor is found to be better than ANFIS in predicting 

vibration index time history. Results show the effectiveness of the predictors in 

estimating the variations of the monitoring indices. In this work, one-step-ahead 

prediction is considered and a recursive multi-step prediction is also shown for both the 

NARX and ANFIS cases. Both NARX and ANFIS have the potential to capture the 

dynamics of a nonlinear dynamic system but these models are not without problems. 

They have limitation in learning long time dependences due to the “vanishing gradient”, 

Data Set Case Model 2
r  r  

Spur1 - Good 0.0001 0.0847y x   0.8094 0.8996
 

Spur2 - Chipped 0.0002 0.0741y x   0.8604 0.9275
 

Spur4 - Broken 0.0005 0.1729y x   0.7367 0.8583
 

Spur5 – Chipped & Broken 0.0004 0.0494y x    0.9315 0.9651
 



110 

and like any dynamical system are affected by instability, and have lack of a procedure of 

optimizing embedded memory.  

 

Fuzzy c-means clustering and linear regression analysis are used for features clustering. 

Both the methods are able to group the features into clusters correctly. After clustering 

and prognostics of features has been performed, decision support module uses the 

information to extracts the representative rules that describe the health of the gearboxes, 

related faults, causes, and consequences. In the following chapter, we demonstrate three 

such techniques that can be used in implementing decision support module.         
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CHAPTER 8 

 

Cause and Consequence Analysis 

Methods  

 

8.1 Motivation 

 

The determination of what needs to be repaired, when it needs to be repaired and how it 

needs to be repaired is the main task of a maintenance function. Decisions are taken by 

interpreting available information and by acquiring or inferring necessary information 

that is not yet available. Hence, the decision making process becomes a critical task, 

especially in a complex environment. Clustering, prognostics, and diagnosis are 

inevitable to aid in the decision making process and a desired intelligent decision has to 

be made before the failure actually occurs. For example, in rotating machinery, the 

condition monitoring system may detect that the level of vibration on a bearing is too 

high and the intelligent decision process looks at the vibration pattern, performs a 

detailed diagnosis and suggests the solutions automatically. It can also determine whether 

the problem is due to bad bearings, misalignment or low oil level, to name a few.  

 

The output of the intelligent decision support system is to suggest the cause of the 

problem and how to tackle it efficiently. This leads to considerable efficiency in the 

maintenance process but at the same time increases the complexity of the decision 

support system. Hence, there is a need of automated methods to support the maintenance 

personnel in taking efficient decisions while providing them with meaningful results and 

keeping the information overflow to a minimum. In this chapter, we propose three 

decision support techniques as shown in Figure 1.8 demonstrate their applicability on 

gearbox fault diagnosis.   
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8.2 Fault Semantic Network (FSN) 

  

The concept of semantic network was first proposed by Richens in 1956 [118]. It is a 

network structure that represents relations between concepts. The concept of semantic 

network was further developed by Collins and Quillian in 1969 [119] where they 

introduced semantic network in a tree structure (directed or undirected graph) consisting 

of nodes and arcs. The nodes represent concepts and the connections show relations 

between nodes and as depicted in Figure 8.1.    

 

 

Figure 8.1:  Tree Structure of a Semantic Network 
 

Fault semantic network (FSN) originally realized by Gabbar in [120] and further 

elaborated by Gabbar in [121; 122], is a mean of representing fault knowledge based on 

relationships between objects. In FSN, the nodes correspond to different 

faults/causes/consequences and the links between them describe the dependencies. 

Initially, FSN is constructed based on ontology structure of fault models on the basis of 

process object oriented methodology (POOM) where failure mode (FM) is described 

using symptoms, enablers, variables, causes, consequences, and repair actions. Rules are 

associated with each transition of the causation model within FSN. The rules can be 

quantitative (probabilistic) or qualitative.  For example, failures related to gear tooth 

breakage might be associated with a qualitative rule such as 
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IF Structure = Gears AND PV = Vibration AND Symptom = Mesh Frequency Sidebands 

AND Dev = Very-High THEN FM = Gear Tooth Breakage AND Consequence = 

Damage/Production Loss AND Repair = Replacement. 

 

These rules are initially defined in generic form based on domain knowledge, i.e., 

regardless of plant specific knowledge and then further explained or trained for plant 

specific knowledge based on observations. As described above, the structure of FSN 

represents relations between variables quantitatively or qualitatively and this can be done 

through (1) probabilistic approach, (2) fuzzy approach and (3) mathematical model 

approach. Each approach is discussed as follows: 

 

Probabilistic Approach:  In probabilistic approach, a probability value is assigned to 

each node depending upon its hierarchy in the network as a parent node or a child node. 

We will further discuss the probabilistic approach in detail in this chapter when we will 

explore the Bayesian belief networks (BBN). 

 

Fuzzy Approach: This type of reasoning is a pure qualitative reasoning. In fuzzy 

approach, rules are associated with each transition of the causation model within FSN. In 

other word, relations between variables are described by specifying if-then statements.  

We will further discuss this approach in detail in fuzzy expert system (FES) section of 

this chapter. 

 

Model Formulation: This type of reasoning is a pure quantitative reasoning. 

Relationship between two variables is specified by mathematical equation such as

  2log cos cosy x x x     , where x  is an independent variable and y  is a dependent 

variable, or NN or ANFIS models. The mathematical models can be derived from system 

identification theory using genetic programming (GP) or other statistical based methods 

or the methods discussed in Chapter 7 like NN and ANFIS.   

  

8.2.1. Process Object Oriented Methodology (POOM) 

 

As described above that the FSN is constructed based on ontology structure of fault 

models on the basis of POOM. The POOM is an object oriented approach to construct the 
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process model in its static, dynamic or functional paradigms. In static paradigm, the faults 

are related with structures of machines like gears, shafts or bearings. In dynamic 

paradigm, the faults are related with dynamic behaviour of machines like over-loading, 

saturation or overheating. In functional paradigm, the faults are related with operation of 

machines like start-up, shutdown or wrong operation. Figure 8.2 shows the basic 

architecture of the POOM. All three paradigms are explained. The static view describes 

facilities, materials and topologies. Dynamic view describes behaviour required to do 

necessary actions and operational view describes purpose of each structure and set of 

actions to achieve desired functions [120].          
 

 
Figure 8.2:  The POOM Methodology [120] 

 

Figure 8.3 shows an instance of the FSN database using the POOM methodology. All the 

tables and the fields in the database are calculated either through historical data or expert 

opinion.    

 

One elaborated case example for gearbox failure is shown in Figure 8.4. For a particular 

symptom, there is a corresponding semantic network either fuzzy expert system (FES) or 

Bayesian belief network (BBN). The symptoms also have related hypotheses with 

corresponding diagnoses and repairs. 
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Figure 8.3:  FSN Database using POOM Methodology 

 

Figure 8.4:  FSN Case for Gearbox Failure 
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8.3. The Fuzzy Expert System (FES) 

 

Lofti Zadeh introduced the fuzzy logic theory in 1965 [115]. Fuzzy logic deals with 

uncertain and imprecise information mathematically. In fuzzy theory, the linguistic 

constructs are handled by a mathematical mechanism. The linguistic constructs can be of 

the form “cold”, “warm” or “hot”. The fuzzy logic provides an inference mechanism for 

imprecise and partial information to incorporate human reasoning capabilities.  Fuzzy 

systems use IF-THEN rules, where the IF part is called “antecedent” and the THEN part 

is called “consequent”. The basic configuration of a pure fuzzy system is shown in Figure 

8.5. A fuzzy inference mechanism maps fuzzy IF-THEN rules from input space to output 

space by using fuzzy logic methods.   

 
Figure 8.5:  The Fuzzy Expert System 

 

For example, fuzzy inference rules for a gearbox with a vibration sensor can be 

formulated as 

 

IF 'Kurt' IS 'N' AND 'GMF' IS 'N' AND '1x' IS 'N' THEN 'GearFailure' IS 'Gear No Wear' 

IF 'Kurt' IS 'H' THEN 'GearFailure' IS 'Gear Component Wear' 

IF 'GMF' IS 'H' THEN 'GearFailure' IS 'Gear Misalignment' 

IF 'GMF' IS 'VH' THEN 'GearFailure' IS 'Gear Misalignment' 

IF 'GMF' IS 'VVH' THEN 'GearFailure' IS 'Gear Misalignment' 

IF 'Kurt' IS 'VH' THEN 'GearFailure' IS 'Gear Cracked' 

IF 'Kurt' IS 'VVH' THEN 'GearFailure' IS 'Gear Cracked' 

IF '1x' IS 'H' THEN 'GearFailure' IS 'Gear Unbalance' 

IF '1x' IS 'VH' THEN 'GearFailure' IS 'Gear Unbalance' 

IF '1x' IS 'VVH' THEN 'GearFailure' IS 'Gear Unbalance' 

 

Where, N=Normal, H=High, VH=Very High, VVH=Very Very High, Kurt = Kurtosis, 

GMF=Gear Mesh Frequency and 1x = Shaft fundamental frequency. Different parameters 
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are used for fuzzy inference that includes vibration based time-domain and frequency-

domain features like kurtosis, FFT meshing frequency and shaft fundamental frequency 

levels. The corresponding membership functions in the fuzzy inference systems are 

shown in Figure 8.6. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 8.6.  FES: Gearbox Failure (a) Kurtosis MFs (b) GMF MFs (c) 1x MFs (d) 

Decision MFs (e) Kurt vs 1x Fuzzy Surface (f) Kurt vs GMF Fuzzy Surface 

 

8.4. Bayesian Belief Network (BBN) 

 

Bayesian belief network (BBN) is widely used for fault diagnosis, root cause and 

consequence analysis. Details about some previous research in BBN for fault diagnosis 

are discussed in Chapter 2. Figure 8.7 shows the process of constructing BBN for 

gearbox fault diagnosis, root cause and consequence analysis. Data collected from 

gearbox, combined with maintenance history, maintenance expert opinion and evidences 

collected by field operators is used for BBN construction. The K2 algorithm [123] is used 

for learning the BBN structure and node probabilities. After the network has learned from 

(c) (d) 

(e) (f) 
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the training data, junction tree algorithm [124] is used to query the network. The 

inference process updates the network probabilities according to the evidences entered.  

 
Figure 8.7:  BBN: Learning and Inference Process 

 

8.4.1 Querying the BBN  
 

The BBN has the ability to change dynamically by incorporating new data and updating 

its internal structure, rules and interaction strengths. In order to get expected results from 

the BBN, it is necessary to query the BBN in a structured way by incorporating the 

observations in the BBN to update the BBN structure according to the observed nodes 

and to get an answer to the query. Below, we describe different types of queries as used 

in BBN.  

 

Diagnostic Query: In this type, query starts from symptoms and results in causes so the 

direction is opposite to the arc direction. In an example of gearbox fault diagnosis, 

vibration test results can be considered as symptoms. The BBN can be queried to 

recognise the heavy load or tooth breakage as causes. 

 

Predictive Query: This type of query predicts faults in advance even without assuming 

symptoms. For instance increasing load on gearbox can cause particular vibration index 

to go high.  
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Inter-causal Query: This type of query is used when multiple causes result in one 

symptom. For instance, both high load and tooth breakage can result in one symptom, 

which is high vibration index in gearbox. 

 

Figure 8.8 shows an example of a BBN for gearbox failure.  In Figure 8.8, either the node 

probabilities are assigned by an expert or learnt by historical data. The BBN is very 

flexible and powerful to query in any direction. In the query process, we enter an 

evidence of an occurrence in the BBN and the BBN returns the answer to the query and 

updates the probability tables. 

 

Diagnosis Query: 

 

The diagnosis query can be as follows: 

What is the probability of the cause “Begrime (a)” provided the “Large Mag 1x (m)” has 

occurred? 

Evidence: Large Mag 1x (m) = True 

Query the BBN: 

P (a | m)  =  81.09% False 

18.91% True 

 

The BBN returns that there is 18.91% chance of “Begrime (a)”. 

 

Prediction Query: 

 

The diagnosis query can be as follows: 

What is the probability of observing “SRS index (q)” provided the “Lack of Lubrication 

(e)” has occurred? 

Evidence: Lack of Lubrication (e) = True 

Query the BBN: 

P (q | e)  =  91.51% False 

08.49% True 

 

The BBN returns that there is 8.49% chance of observing “SRS index (q)” above 

threshold. 
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Inter-causal Query: 

 

The inter-causal query can be as follows: 

What is the probability of observing “Fatigue (g)” and “Corrosion (h)” combined 

provided the “SRS Index (q)” has occurred? 

Evidence: SRS Index (q) = True 

Query the BBN: 

 

P (g, h | q)   =  76.03% False 

23.97% True 

 

The BBN returns that there is 23.97% chance of observing both the “Fatigue (g)” and 

“Corrosion (h)” together. 

 

Figure 8.8:  BBN for Gearbox Failure 

 

8.5 Conclusion 

 

In this chapter we discussed three methods for cause and consequence analysis, FSN, 

FES and BBN. FES is a qualitative method while BBN is a probabilistic and FSN is 

flexible to incorporate both FES and BBN as sub-methods. The POOM methodology 
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discussed in FSN has a structured approach in storing the data in the database. Based on 

the complexity of the application and decisions to be made, one or all of the above 

mentioned methods can be used.  
 

In the next chapter, we will apply some of the developed analysis techniques on real 

world data emanating from gearboxes inside wind turbines. The main purpose would be 

to access the health status of the gearbox or mechanical components inside the 

mechanical drive train of a wind turbine. 
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CHAPTER 9 

 

Condition Monitoring of Wind Turbines: 

Case Studies  

 

9.1 Motivation 

 

The advent of modern technologies and increased environmental awareness makes wind 

turbines a unique and important technical identity. For the last couple of decades the 

technology to harness the wind energy has flourished in its aerodynamic shape, structural 

dynamics, control system, and efficiency. Over the years, the annual energy produced by 

a wind turbine has increased massively and the weights of the turbines and noise levels 

they emit have been halved. As compared to other renewable energy resources and 

technologies to harness these energies, wind power generation is more technologically 

mature and relatively cost effective. Wind energy has a big share in the future of green 

energy of the world [125]. 

 

The importance of reliability cannot be ignored in any technological design, and 

formulation of novel strategies and technologies to mediate incipient faults and inherent 

shortcomings in the design has craved for years. The reliability, maintainability, and 

robustness of a design can be enhanced by developing such technologies. In wind 

turbines, this can be achieved by implementing an efficient, adaptable, and responsive 

system for condition monitoring and fault diagnosis. Such systems are already under 

constant development and use in the industry as described in Chapter 3. The main aim of 

this thesis work is to contribute in technological advancements for development of such 

systems. 
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This chapter uses some of the methods described in previous chapters along with some 

new techniques for condition monitoring and fault diagnosis of wind turbines. Two real 

world case studies are used where wind turbines developed faults in gears and bearings.                    

 

9.2 Case Study 1: Channel7 - Planetary Stage (Gearbox) 

 

The data used in this section emanate from the planetary gearbox inside the wind turbine. 

The details about the data are described in Section 1.10.3. Adaptive band-pass filtering is 

performed to extract the faulty information present in the gearbox. Figure 9.1(a) shows a 

vibration signal sample of Channel7: Planetary Stage (Gears) and its kurtogram in Figure 

9.1(b). The signal is adaptively band-pass filtered according to the information returned 

by the kurtogram and the conventional optimization techniques presented in Chapter 4. 

The filtered signal is shown in Figure 9.1(c) with filtered kurtogram in Figure 9.1(d). The 

filtered signal in Figure 9.1(c) clearly shows the presence of the impulses. Initial analysis 

on the filtered signal shows promising results. The duration between two consecutive 

pulses is changing because of the change in rotation peed (RPM). Since we only analyse 

the signal in two seconds window, the changing RPM does not have dramatic effects on 

the analysis. Performing pulse position analysis and taking the average of the changing 

time values in Figure 9.1(c) as follows: 

 

Generator shaft RPM and corresponding frequency = 1676.5  1676.5/60 = 27.94 Hz 

Time Duration Average = (0.312 + 0.367 + 0.400 + 0.316 + 0.286 + 0.255)/6 = 0.3226 

Relative Frequency at 27.95 Hz of Generator Shaft = 1/0.3226 = 3.099 Hz 

RPM of the damaged gear = 3.099 x 60 = 185.9         

 

It is evident form the above calculations that the RPM of the faulty gear is 185.9 (3.099 

Hz). In this particular case, we do not know the basic kinematics data of the planetary 

gearbox but a peak in FFT at 3Hz in Figure 9.1(e) indicates a component revolving at 

3Hz. Figure 9.1(f) plots the kurtosis history for the planetary gearbox. The signals are 

adaptively filtered through the band-pass and wavelet filters presented in Chapter 4 and        
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Figure 9.1:  Adaptive Filtering: Channel7 Planetary Gearbox 

(a) (b) 

(e) 

(f) 

(d) (c) 



125 

the kurtosis of the filtered signal is calculated. In Figure 9.1(f), the kurtosis is around 3.0 

in most cases, but the value of the kurtosis jumps to 8.32 on 13 August, 2012 and this is 

the time when the fault has been detected. The fault could have started earlier but there is 

no vibration signal present between 04 August, 2012 and 13 August, 2012. 

 

9.3 Case Study 2: SCADA Data 

 

The data used in this section is recorded from the SCADA system of a wind turbine. The 

details about the data are described in Section 1.10.3. The data are spanned over two 

years (May, 2010 – April, 2012). There are a total of 1198 chunks of the data with 5 

outliers as listed in Table 9.1 and in each chunk there are 4096 vibration samples for 

Channel1: Generator Drive End (Bearing).  Each chunk also contains the time history of 

the following parameters: 

 

(a) Time (Date/Time) 

(b) Speed (RPM) 

(c) Wind speed (m/s) 

(d) Output power (kW) 

(e) Bearing temperature (
o
C) 

(f) Pitch angle (degrees) 

(g) Torque (N.m)  
 

9.3.1 Outliers 

 

Some of the issues with the data are treated as outliers because of the following reasons 

(Table 9.1): 

 

(a) Presence of RPM values is zero. 

 

(b) Power output is negative. 

 

(c) Torque is zero. 

 

(d) Wind speed is large or negative. 
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9.3.2 The Power Curve  

 

The overall health of a wind turbine can be accessed by the shape of the power curve. An 

ideal power curve is a relationship between wind speed and the output power modelled as 

a sigmoid function. The power curve is plotted for the minimum and maximum wind 

speeds or cut-in and cut-out wind speeds for a particular wind turbine. A power curve 

based on SCADA data can deviate from the actual one because of the following reasons: 

(1) the values of the output powers are identical for the same wind speed; (2) some values 

of the power output are negative; (3) power errors due to malfunctions in turbine’s 

systems, sub-systems and components. So, the output power and wind speed are the 

important parameters for detection of any malfunction in a wind turbine. Figure 9.2 plots 

the relationship between wind speed and output power or the power curve.  

 

 
Figure 9.2:  Wind Turbine’s Power Curve  

Table 9.1: SCADA Data Instances with Out-of-Range Values 

Date Time RPM Power (kW) Torque (N.m) Wind Speed (m/s) 

24/05/2010 02:10:20 0 -3 0 -91 

24/05/2010 04:12:23 0 -3 0 -96 

29/05/2010 10:15:56 0 -3 0 39 

29/05/2010 16:33:47 0 -3 0 137 

29/05/2010 17:11:24 0 -3 0 126 
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9.3.3 Neural Network Prediction of the Output Power 

We use non-linear input-output NN for predicting the power values from three 

parameters wind speed, RPM, and torque. We modify the Equation 7.9 as   

 

 
       1 , 1 ,..., .y n f x n x n x n k                (9.1) 

 

Where,  nx  and  ny  are the input and output of the system at time step n , and  .f  

is a non-linear mapping function. We approximate  .f  by a non-linear input-output 

feed-forward NN with multi-layer perception (MLP). The main purpose is to predict 

future value  1y n  of the series  ny  given k  past values of

       , 1 ,...,n x n x n x n k    x . The general structure of a feed forward MLP is 

shown in Figure 9.3, which involves the input layer, the output layer, and several hidden 

layers of nodes. It is the inclusion of one or more hidden layers that makes the NN 

capable of approximating nonlinear functions (mappings) or classifying patterns in 

nonlinear separable classes. The input–output equations of the thk neuron in Figure 9.3 

are as follows [126]: 

     
1

,
n

k k k k kj j

j

y u u w x


           (9.2) 

  

 

 

 

Figure 9.3:  Multilayer Feed Forward NN  
 

In Figure 9.3, 1 2, ,... nx x x  are the input elements, ku  is the output of the summer, k  is a 

given threshold, 1 2, ,... nw w w  are the neuron’s synaptic weights and (.)  is the neuron’s 

activation function. The most important characteristic of the neural network is the ability 
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to learn from the environment. The learning is the process of updating the synaptic 

weights of the neural network through an enforcement applied to it from the environment. 

The learning rule has the following form [126]: 

      1kj kj kjw n w n w n    (9.3) 

Where  kjw n  is the adjustment of the weight  kjw n  at the thn time stamp. The 

computation of  kjw n  is performed through a well-known back propagation algorithm. 

Since we have a total of 1193 valid data samples over the span of two years we use 50% 

(596 samples) for training, 20% (239 samples) for validation and 30% (358 samples) for 

testing.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.4:  Feed Forward NN Prediction 

(a) (b) 

(e) (f) 

(d) (c) 
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Figures 9.4(a), 9.4(b) and 9.4(c) show the normalized wind speed, normalized RPM and 

normalized torque, respectively, used as inputs to the NN. Figure 9.4(d) shows the actual 

normalized output power and predicted output power through the NN. The prediction 

performance is shown in Figure 9.4(e) along with the histogram of the prediction error in 

Figure 9.4(f). The prediction error’s histogram being centred at mean value of zero and 

distributed normally shows the accuracy of the prediction. 

 

9.3.4 Condition Monitoring Channel1: Generator Drive End (Bearing)  
 

The vibration data emanating from “Channel1: Generator Drive End (Bearing)” are used 

in this section. We have 1198 samples with 5 outliers and this gives us 1193 valid 

samples to analyse. Vibration feature extraction process in Figure 7.1(a) and Equation 6.7 

is used along with principal component analysis (PCA) and fuzzy c-means clustering as 

shown in Figure 9.5.   

 

 

Figure 9.5:  Principal Component Analysis (PCA) of Vibration Features 
 

In the band-pass filter bank, we use 16 gammatone filters. Figure 9.6 plots all the 16 

vibration features extracted from the 1193 samples. Boxplots are used to explore the 

distribution of the features. In descriptive statistics, box plot is a convenient way of 

explaining the statistical spread of the numerical data graphically. Figure 9.7 shows the 

box plots for 16 vibration features plotted in Figure 9.6. It becomes immediately apparent 

that features 1,2,15 and 16 dominate the set. Based on this information, we can suppose 

that these four features contribute mostly to the main dynamics of the features set.    
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Figure 9.6:  Vibration Features – Channel1: Generator Drive End (Bearing) 

 

 

 

 

 

 

 

 

 

 

Figure 9.7:  Box Plots – Channel1: Generator Drive End (Bearing) 
 

However, this assumption is not always true. There can be cases where the contributions 

of dominant features are not that important as compared to some non-dominant features. 

So, box plots are not always helpful in choosing the right features that captures the 

dynamics of the system. One of such methods is PCA [99; 100] first proposed by 

Hotelling in 1936 [127]. The PCA is used extensively in features extraction, data 

dimensionality reduction and descriptive statistics. We perform PCA analysis on 16 

vibration features and analyse the resultant principal components. The process also 

reduces the data dimensionality and at the same time captures the data dynamics. Also, 

the process discards the redundant information in the data set. This is useful in preventing 

the overflow of the information. In PCA, we   
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Figure 9.8:  PCA Analysis and Fuzzy c-means Clustering 

(a) 

(b) 

(c) 
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construct new variables in principal component space as linear combinations of original 

variables. Figure 9.8(a) plots the first principal component of the 16 features and the 

Pareto chart in Figure 9.8(b) shows that the first two principal components explain 

around 86% variance of the data.  The first two principal components are plotted in 

Figure 9.8(c) where three distinct clusters are found when the fuzzy c-means clustering is 

performed. If we analyse the 16 extracted features one by one in Figure 9.6, we see that 

feature no. 15 or feature no. 16 can explain the system dynamics.  Figure 9.9 plots 

vibration features no. 15 and 16. 

 

 

 

 

 

 

Figure 9.9:  Vibration Features No. 15 and No. 16 

 

The high values of features 15 and 16 in Figure 9.9 or for that matter the high values of 

PCA1 in Figure 9.8(a) indicate the tendency of the bearing towards roughness or faults. 

The 1193 vibration feature samples shown in Figures 9.6, 9.8(a) or 9.9 are actually not 

continuous. There are some pauses in the collection of the data over the span of two 

years. We insert these pauses in Figure 9.10 to get clearer picture about the wind 

turbine’s status. Figure 9.10 shows that the turbine was down for 37 days in May-June 

2011. This was due to the maintenance activities performed. After maintenance, the 

amplitude of the bearing’s vibration signatures (SRS index) came down on y-axis and 

became smoother. Another downtime was in Jan-Feb 2012 where the bearing was 

replaced with the new one causing the vibration signatures amplitudes to come down on 

y-axis.      
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Figure 9.10:  Vibration Feature No. 15 and Turbine Down Time 
 

Let us analyse one vibration signature from Feb, 2011 and use the techniques developed 

in Chapter 4 or 5 to filter the signal for detection of any faulty pulses present in the 

signal. The results are shown in Figure 9.11, where sample no. 220 is analysed. The 

signal is band-pass filtered with filter parameters

6524.3, 0.70337, 4, 1.0048c pF Q N R    . We can clearly see that the faulty pulses in 

the filtered signal and the kurtosis is maximized to 9.42.  

     

 

 

 

 

 

Figure 9.11:  Adaptive Band Pass Filtering Fault Detection 

 

Anomalies are found in the bearing and we see that the data points in the power curve in 

Figure 9.2 are deviating from their original path. This is because of the power 

fluctuations caused by bad bearing. Figure 9.9 shows the fluctuations in vibration indices 

15 and 16 till sample no. 430 on the x-axis and Figure 9.4 (d) confirms the fluctuations in 

output power till sample no. 400 on x-axis. 

 

(a) (b) 
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9.4 Conclusion 

 

In this chapter, two different case studies for monitoring wind turbines are presented. In 

the first case study, we detected fault in planetary stage (gearbox) of a wind turbine based 

on vibration analysis. We successfully detected the fault present in the signal and 

calculated the rollover frequency of the faulty component. In the second case study, we 

analysed wind turbine SCADA data for accessing the health status of the wind turbine. 

The power curve of the wind turbine deviates from its original position if there are 

anomalies in wind turbine’s systems, sub-systems and components. We trained an NN 

prediction model for the output power of the wind turbine from wind speed, torque and 

RPM. The model is helpful in predicting the future behaviours of the wind turbine output 

status. We also performed vibration analysis on wind turbine’s generator drive end 

bearing by using the methods proposed in previous chapters. The vibration features 

extracted are reduced in dimensionality through the PCA. Fuzzy c-means clustering is 

performed to determine the health status of the wind turbine. Overall, the wind turbine 

has performed according to the specifications. The generator’s drive end bearing 

developed a fault with time and that caused fluctuation in the output power. The 

maintenance was first performed and the bearing was replaced with a new one later on. 

The bearing status is very clear by analysing the trend of the extracted vibration feature.        
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CHAPTER 10 

 

Conclusions and Future Research 

 

10.1 Motivation 

 

The aim of this research work is to make advancements in the field of condition 

monitoring and fault diagnosis of gearboxes in wind turbines. The growing interest in 

renewable energy resources has increased the need for wind energy systems or wind 

turbines and therefore, the importance of condition monitoring and fault diagnosis 

systems (CM-FDS) for wind turbines has unveiled.    

 

10.2 Summary and Conclusions 

 

In this thesis, the challenges and practicalities of condition monitoring and fault diagnosis 

of wind turbine gearboxes are discussed and different commercially available CM-FDS 

systems are listed with their analysis capabilities. Also a detailed literature survey is 

performed to summarize some of the existing state of the art techniques in this domain.  

However, there are issues and limitations because of variable load and variable speed of 

wind turbines and severe environmental conditions. There is also a trade-off between the 

time complexity and the quality of results in fault detection and diagnosis methods. 

Various methods proposed in past research mainly focus on detection quality at the 

expense of computation time. The approach is not suitable in many real time applications 

including monitoring of wind turbines.   

 

This thesis presents some novel techniques to enhance the capabilities of existing CM-

FDS systems in variable load and variable speed conditions. Conventional and 

evolutionary optimization techniques are used to intelligently search for faults present in 

the signals recorded from wind turbine gearboxes. Efforts have been made to reduce the 

computational time complexity while preserving the quality of the detection results. 

Three main processes in fault diagnosis are discussed: (1) intelligent filtering; (2) features 
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extraction and (3) intelligent decision support. Features extraction also incorporates 

clustering and prediction modules to differentiate different types of faults and to project 

the state of the system into the future.  

 

In intelligent filtering module, kurtogram is used as a front-end method for detection of 

transient faults [22]. Although kutogram is an efficient method for detecting the faulty 

bandwidth in non-stationary signals in real time, it suffers from low frequency resolution. 

Filters designed based on faulty bandwidth information returned by the kurtogram 

showed poor quality of results. In order to overcome this deficiency, and with less 

computational complexity, we proposed a hybrid filtering framework. We used two types 

of filtering techniques: (1) band-pass filtering; (2) wavelet analysis and optimized them 

through conventional and evolutionary optimization methods. The conventional 

optimization framework included one-dimensional golden section search and multi-

dimensional Nelder-Mead methods. The evolutionary optimization framework included 

real coded genetic algorithm and particle swarm optimization. We saw considerable 

improvements in detection quality and computational complexity as compared to various 

filtering methods proposed in research [22; 45; 82; 83]. Another filtering operation used 

in this module was based on psychoacoustic phenomenon. Psychoacoustic filtering 

applies gammatone filter bank to mimics the filtering operation of human ear. Not much 

research has been done on psychoacoustic filtering for vibration based fault detection and 

especially its applications for gearboxes. All three filtering techniques successfully 

extracted the faulty information present in the vibration signals.  

 

In features extraction module, we used transient based time-domain features extraction 

techniques. As described earlier in this thesis, transients are short duration pulses 

generated by interaction of faulty components in a machine. The shapes and amplitudes 

of these transients represent the severity of the fault. Therefore, transient based features 

extraction techniques can best represent the status of the machine. We have successfully 

demonstrated cases where transient based features are able to differentiate among 

different types of faults in a gearbox. However, transient based features extraction 

techniques presented in this work are at early stage of research and need to be 

investigated in more details as part of the future work.        
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The intelligent decision support module used three methods: (1) fault semantic networks 

(FSN); (2) fuzzy expert systems (FES) and (3) Bayesian belief networks (BBN). Due to a 

complex interaction patterns among the equipment variables, a construction of a 

mathematical model is very difficult and sometimes impossible. In this case, graphical 

semantic knowledge and fuzzy expert system is demonstrated to be very helpful. As 

described in Chapter 2, FSN, FES and BBN have been used for fault diagnosis in process 

environments and BBN is very mature in medical decision support systems. However, 

their application for fault diagnosis in machines is relatively new.  

  

10.3 Why Time Domain? 

 
While frequency domain fault detection and diagnosis techniques like fast Fourier 

transform (FFT) are well-established in the industry and in academia, they pose some 

disadvantages. The FFT based analysis techniques are not effective at light load 

conditions and time information is lost in the process [128]. Also an inherent averaging 

process present in FFT loses the important information present in the signal, especially, 

low energy faults.  

 

On the other hand, joint time-frequency analysis techniques like wavelet analysys (WA) 

or short time Fourier transform (STFT) are gaining much attention in recent years. STFT 

analyses signals with fixed sized windows and gives poor frequency resolution. WA is 

more flexible in terms of time and frequency resolutions and is suitable in detecting low 

energy incipient faults in machines. Although, time-domain analysis cannot match well-

established FFT diagnosis capabilities, it is good in detecting incipient faults in vibration 

signals that is otherwise not possible with FFT alone [129; 130]. 

 

10.4 The Innovative Contributions of the Thesis Work 

 

The main aim of this research work is to develop techniques for intelligent CM-FDS 

systems to monitor gearboxes in wind turbines with the help of suitable signal processing 

and soft computing techniques. In order to demonstrate the viability of the developed 
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system, different experimental and real world vibration datasets are used. The main 

contributions of this thesis are summarized as follows: 

10.4.1 Literature Review 

 

(1) A literature review has been performed to study the existing methodologies in the 

research and to determine their shortcomings in order to bridge the gap.  

 

(2) A small survey has been conducted in order to determine the existing CM-FDS 

systems used in industry, their analysis capabilities and shortcomings.   

 

10.4.2 Hybrid Optimization Framework 

 

(1) A hybrid conventional optimization framework has been developed to enhance 

the capabilities of the fault detection systems for gearboxes in wind turbines. The 

framework integrates different conventional techniques to speed up the process of 

vibration signal filtering and fault detection. It also support non-stationary signal 

processing suitable for detecting faults in wind turbines gearboxes.   

 

(2) A hybrid evolutionary framework has been developed to harness the optimization 

capabilities of the evolutionary algorithms and at the same time making it suitable for real 

world applications such as gearbox fault diagnosis in wind turbines.  

 

10.4.3 Time-domain Transient Based Features Extraction 

 

Three novel time-domain transient based feature extraction techniques have been 

proposed for fault detection in gearboxes. The developed techniques have been 

successfully tested on different vibration signals emanating from different gearboxes 

operating under different conditions. The extracted features are representative of the 

gearbox health conditions.  

 

10.4.4 Decision Support Systems 

 

Three types of decision support systems have been proposed and their applicability on 

gearbox fault diagnosis, cause and consequence analysis have been demonstrated.  
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10.4.5 Real World Case Studies 

 

The developed methods have been demonstrated by two real world case studies. 

Vibration data from real world wind turbines have been analysed and the fault detection 

capabilities of the proposed methods have been verified. Also, the applicability of the 

extracted features to determine the health of components in wind turbine mechanical 

drive train has been verified.   

 

10.5 Future Research 

 

In the framework of future research, we propose the followings: 

 

10.5.1 Time-Domain Features for Bearing Fault Detection 

 

In this research work, we have presented frequency-domain features extraction 

framework for fault detection of roller element bearings in Chapter 6. We have used the 

developed filtering mechanisms presented in Chapter 4 and 5, and analysed the filtered 

waveform with FFT to extract features related with characteristic defect frequencies for 

bearings. Therefore, the present research work lacks a detailed investigation for time-

domain features extraction for bearing fault detection.  Further investigation is needed to 

develop new methods for time-domain features extraction for detection of different faults 

in bearings as proposed in [130].   

 

10.5.2 Condition Based Maintenance for Wind Turbines 

 

Maintenance process has evolved over the years from breakdown to preventive and then 

predictive in tandem with condition based maintenance (CBM) as shown in Figure 10.1. 

The CBM approach, if implemented correctly can reduce the total operation and 

maintenance costs of wind turbines. In this research, our objective is to use real time 

vibration data and the vibration features extracted in Chapter 6 combined with prognostic 

approach in Chapter 7 to devise failure probability estimation at component level and 

system level as described in [131; 132] .  
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Figure 10.1:  Condition Based Maintenance Approach   
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