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poly(GEMA) poly(2-glucosyloxyethylmethacrylate) 

PPP  platelet poor plasma 

PRP  platelet rich plasma 

PS  polystyrene 

Rg  radius of gyration 

Rh  hydrodynamic radius 

SDS  sodium dodecylsulfate 

SEM  scanning electron microscopy 

STM  scanning tunneling microscopy 

TFP  trifluoperazine 

TRIM  trimethylolpropane trimethacrylate 

TRITC  tetramethylrhodamine isothiocyanate 

W/O  water-in-oil 

WP  washed platelets 
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SUMMARY 

 

Hydrogel materials have become a heavily studied as materials for interfacing 

with biology both for laboratory investigations and the development of devices for 

biomedical applications. These polymers are water swollen and can be made responsive 

to many different stimuli by choice of monomers, co-monomers, and cross-linkers or 

functionalization with pendent ligands, substrates, or charged groups. The high water 

content, low moduli and potential responsively of these polymers make good candidates 

for biomaterials. A specific type of hydrogel called a microgel or a hydrogel 

micro/nanoparticle has similar properties to bulk hydrogel materials with some key 

differences. Namely, the response kinetics to external stimuli are much faster than their 

bulk counterpart simply due to the decreased dimensions. Also, microgels can be utilized 

in dilute or concentrate suspensions for applications such as drug delivery or study of 

colloidal phase transitions. Furthermore, microgels have been used as building blocks for 

bottom-up fabrication of thin films or 3D matrices for biomedical coating, sensing, and 

tissue engineering applications. Many of the interesting results and utility of the 

microgels in these applications are due to their inherent softness of the material. 

In this dissertation, the softness, flexibility, and conformability of these water 

swollen particles is used to create an interesting sensor platform (Chapter 2), studied in 

the context of a microgel passing through a pore (Chapter 3 and 4), and used as an 

emulsifier to create a drug delivery platform (Appendix A and B). First, however, 

overviews of hydrogels as biomaterials, biomaterial design, microgels, and the 

importance of biomaterial mechanics are given in Chapter 1. Then, our efforts to use 
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microgels deformed on a surface as individual biosensing lenses are discussed in 

Chapter 2.  In Chapter 3, results showing the incredible flexibility of the microgels to 

squeeze through pores 10xs smaller than their diameter are discussed. These results are 

interesting considering the number of biological pores that might have to be traversed in a 

drug delivery application. The experiments described here involve a large number of 

particles passing through many pores. Next, resistive pulse analysis, as described in 

Chapter 4, was used to analyze single microgels passing through a single pore (Chapter 

5). This technique detects disruptions in ion current passing through a pore by a particle. 

Resistive pulse analysis allowed for detection of passage as well as deduction of possible 

mechanisms of passage. 

The unifying theme of this dissertation is the softness of microgels which is 

critical for all of these experiments. However, the study of individual microgel softness is 

challenging and complex, since the softness is composed of two different components. 

The first is that the microgel is a swollen polymer which can be deswollen by an external 

stimuli or force. The second is that the microgel is a volume conserving elastic colloid 

which can deform without deswelling under the certain conditions. Throughout, this 

dissertation will discuss the ramifications of the complex softness of microgels in each 

experimental result and potential application. 
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CHAPTER 1 

INTRODUCTION 

Adapted in part from: 

Hendrickson, G.R.;Smith, M.H.;South, A.B.;Lyon, L.A. Design of Multiresponsive 

Hydrogel Particles and Assemblies. Adv. Funct. Mater. 2010, 20, 1697-1712 

 

Lyon, L.A.; Hendrickson, G.R.; Meng, Z.; Iyer, A.N.S. “Exploiting the Optical Properties 

of Microgels as Microlenses and Photonic Crystals in Sensing Applications.” Microgel 

Suspensions-Fundamentals and Applications. Editors: Fernandez-Nieves, A.; Wyss, H.; 

Mattsson, J.; Weitz, D.A. Wiley-VCH Verlag GmbH&Co., 2011, Chapter 14. 

 

1.1 Biointerfacing 

  In 1994, Peppas and Langer defined a biomaterial as “substances other than 

food or drugs contained in therapeutic or diagnostic systems that are in contact with 

tissues or biological fluids.”
1
 Under this definition, biomaterials include permanent 

implants (e.g. internal pacemakers and replacement joints), temporary or semi-

permanent hospital devices (e.g. catheters or dialyzers), and consumer products used 

everyday (e.g. contact lenses). In other words, a biomaterial could be described as a 

material that is intended to biointerface. The effectiveness of the material is based on 

its ability to interface favorably with the intended nucleic acids, proteins, cells or 

organs both micro and macroscopically. 

  The choice of material has been as numerous as the applications. Some 

interesting early examples include glass eyes and wooden teeth.
2
 More recently, 

ceramics,
3,4

 metals,
5,6

  carbon nanotubes,
7
 gold nanoparticles,

8,9
 magnetic 

nanoparticles,
10

 silica particles,
11

 quantum dots,
12

 lipid particles,
13

 or micelles
14

 to 

name a few have been of interest. Biomaterials have even been formed out of 
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biological building blocks using self-assembly of proteins or peptides
20,21 

These 

materials have been developed mostly for drug delivery, tissue engineering, sensing 

or diagnostic platforms. Another large class of materials are polymeric biomaterials 

which include synthetic polymers (methacrylates, acrylamides, etc.) as well as 

biopolymers such as chitosan,
15,16

 chitin,
15

 alginate,
17

 and silk.
18,19

 Polymeric 

materials have become of particular interest due to the diverse chemical and physical 

properties that can be controlled using different synthetic strategies. With such 

chemical and physical diversity, there is the opportunity to design-in responsiveness 

to temperature, pH, proteins, nucleic acids, or cells. The ability to respond to a 

particular environment is the basis of developing a good biosensor. Likewise, a 

responsive biomaterial should not only act as a physical biomedical stand-in, but 

communicate favorably with biological environments or actively biointerface.  

1.2 Polymeric and Hydrogel Biomaterials 

Responsive polymeric materials are becoming increasingly attractive in tissue 

replacement,
20-25

 biological coating technologies,
26-28

 drug delivery,
23,29-42

 and 

biosensing.
23,40-42

 Hydrogels in particular are of interest for these applications due to the 

tunability of their mechanical and chemical properties, and therefore their versatility as 

device components. Wichterle and Lim in 1960 published a paper in Nature suggesting 

that a biomaterial should have three attributes; high water content, inertness toward toxic 

degradation and natural organ function, and permeability to metabolites.
43

 These 

scientists were working with a methacrylate hydrogel and spawned the interest in using 

these soft gel materials for biological applications. Since then many hydrogel products 

such as contact lenses have been marketed and commercially sold. These commercial 



 3 

successes and more importantly the interesting properties of hydrogels have made 

hydrogel biomaterials a rich area of study.
44-51

 

Hydrogel materials are cross-linked polymer networks which swell considerably 

in water, more specifically, they swell with 90-99% water by weight.
52

 The high solvent 

content allows, not only for the passage of small molecule metabolites, as mentioned 

above, but provides real estate for therapeutic or diagnostic cargo.
53,54

 The water content, 

distance between polymer chains, and therefore elasticity of the hydrogel can be tuned for 

the particular application. Response to stimuli can also be incorporated by inducing what 

is called a volume phase transition which occurs when the polymer collapses increasing 

the polymer density and expelling solvent. Stimuli that have been shown to induced 

volume phase transitions in hydrogels include temperature,
55,56

 pH,
57

 light,
58

 

macromolecules,
45,59,60

 and electric fields.
61

  

An interesting subset of hydrogel materials is hydrogel microparticles or 

microgels. Microgels (hydrogel micro- or nano- particles) exhibit similar utility to bulk 

hydrogels yet are spherical particles with diameters ranging from ~100 to ~2000 nm. The 

use of microgels offers particular advantages in terms of material architecture, response 

time, and versatility. Importantly, the tunability of the dynamics of these constructs is 

critical for their response, and therefore, the utility of microgels for applications such as 

sensing. Some inherent response can be engineered into a microgel by simply choosing 

monomers, co-monomers, and/or cross-linkers that change properties in response to 

stimuli. The most common responsive microgels either incorporate a monomer that when 

polymerized becomes thermo-responsive and shows a phase change at a given 

temperature, or a pH-responsive monomer that exhibits more or less intermolecular 
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Columbic repulsion as a function of the pH and salt content of the surrounding media. 

These two stimuli are advantageous for some applications, but to design materials for 

specific therapeutic or diagnostic applications, it is desirable to employ a generalizable 

construct that permits incorporation of a variety of response elements.
23,40-42,54,60,62,63

 The 

synthesis and characterization of hydrogel particles is a rich area of research, due to the 

interesting biomedical applications as well as fundamental properties.
64

 

1.3 Microgels 

1.3.1 Microgel Synthesis 

 Microgel particles have been synthesized by a variety of polymerization strategies 

including emulsion polymerization, inverse mini- or micro-emulsion polymerization, 

cross-linking of polymer chains, and precipitation polymerization. Precipitation 

polymerization is advantageous, because it can be performed in water with water soluble 

monomers. The strategy, however, is dependent on a solubility change as the polymer 

chain grows.  Two of the more commonly used monomers in precipitation 

polymerization of microgels include N-isopropyl acrylamide (NIPAm) or N-isopropyl 

methacrylamide (NIPMAm). In both cases, the monomer is water soluble, but above a 

certain temperature and chain length, the polymer expels water and prefers polymer-

polymer interactions over polymer-water interactions. This temperature for a polymer is 

the lower critical solution temperature (LCST), and it is ~31 ºC and ~44 ºC for pNIPAm 

and pNIPMAm, respectively (Figure 1.1).
65

 The microgel synthesis reaction proceeds as 

follows, the monomers (NIPAm or NIPMAm), co-monomers (e.g. acrylic acid (AAc)), 

and cross-linkers (e.g. N,N-methylenebisacrylamide (BIS)) are dissolved in solution  
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Figure 1.1. Left panel: Phase diagram illustrating the lower critical solution temperature 

of pNIPAm from Heskins and Guillet.
65

 Right panel: Illustration of the change of radius 

and refractive index contrast as temperature is increased left to right of a microgel 

solution from Wang et al.
66

 

 

 

 

 

 

 

 

 

 

 

Scheme 1.1. Top panel: Common BIS cross-linked NIPAm-AAc microgel reaction 

Bottom panel: Scheme illustrating microgel formation during synthesis. 

 

bubbled with nitrogen to remove oxygen radical scavengers. The solution is raised to a 

temperature above the LCST for the polymer and the thermal decomposition  
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temperature for the initiator (~70 ºC is typical) (Scheme 1.1).
67

 Then after addition of a 

thermally activated initiator (e.g. ammonium persulfate (APS)), an oligo-radical is 

formed. Once the oligomer reaches a critical chain length, since the solution is above the 

LCST, it collapses on itself expelling water and creating a precursor particle. The 

precursor particle then grows by collection of other precursor particles and direct addition 

of monomer or oligomers. Since, initiation of the synthesis is relatively fast the particles 

all grow at approximately the same rate and a monodisperse particle population is 

achieved. The microgel is formed using a thermo-responsive polymer, therefore, above 

the LCST for the polymer, the microgel deswells due to the entropic release of water. 

This temperature for a microgel is called the volume phase transition temperature (VPTT) 

(Figure 1.1).
66

  

 There are a host of strategies to impart synthetic control over the precipitation 

polymerization of microgels. By varying the temperature of synthesis or incorporating a 

temperature ramp at initiation, microgels up to a few microns in diameter can be 

synthesized.
68

 Also, by incorporation of surfactant and a higher initiator concentration, a 

high concentration of precursor particles stabilized by the surfactant is formed. The 

growth rate of these stabilized particles decreases by reducing aggregation of precursor 

particles thereby forming a stable solution of particles ~100 nm in diameter.
69

 Not only 

can microgels from a few microns to a 100 nm in diameter be formed by precipitation 

polymerization, but topological control has been shown by making core/shell microgels 

where different monomers can be spatially separated in the particle.
70

 This has led to a 

whole host of structures including hollow particles and core-double-shell particles as 

reviewed in a recent Accounts of Chemical Research article by Smith and Lyon.
71

 These 
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are just examples of the power of simple precipitation polymerization when used to make 

microgels. 

1.3.2 Microgel Characterization Techniques 

1.3.2.1 Size 

 Typical size characterization of microgels is done by dynamic light scattering 

(DLS). Here, the hydrodynamic radius, Rh, is determined by detecting light intensity 

fluctuations over time at a specific detection angle. Using the intensity fluctuations, an 

autocorrelation function is generated by plotting the autocorrelation value (between 1 and 

2) vs. delay times, τ. The autocorrelation function, which gives an indication of the 

similarity or the correlation between signals over time, is then fit by one of two fitting 

methods. Using the fits a diffusion coefficient for the scattering species can be 

determined. The first method is called a cumulant fit which fits this decay curve by 

assuming a single exponential decay. This is the fit most often used for microgels 

produced by precipitation polymerization because a monodisperse size distribution is 

expected. The second method is called a regularization fit which will assume multiple 

exponential decays so this might be used if multiple populations are expected. From each 

exponential, a diffusion coefficient is determined. Then the diffusion coefficient, D, can 

be used to calculate a Rh through the Stokes-Einstein equation (Equation 1.1). 

Equation 1.1. Stokes-Einstein Equation        
  

    
 

Here, the k, T, and η are Boltzmann‘s constant, temperature in kelvin, and viscosity of 

the solvent. Qualitatively, early autocorrelation decay means fast-diffusing or small 

particles and late decay means slow-diffusing or large particles. In our lab, two different 
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DLS instruments are used, a cuvette based system with 90º scattering detector and a 783 

nm laser and a plate reader system with a 158º detector and an 832 nm laser. Both 

systems could measure particles from a few nanometers to about a micron in diameter. 

Often DLS measurements were carried out on microgels at different pH or temperature 

values in order to determine the pH and thermoresponsivity. If the approximate size of 

the microgels approached 1000 nm in diameter or more, they were characterized by 

optical microscopy and atomic force microscopy (AFM).  Although not performed for the 

purposes of the work presented here, characterizations of radius of gyration, Rg, can be 

performed by multi-angle laser light scattering (MALLS) techniques. Here, the angle 

dependence on scattering is used to determine Rg and molecular weight. 

1.3.2.2 Charge 

 Most commonly the surface charge of micro and nanoparticles is determined by 

electrophoretic mobility and is reported as a ζ-potential. This is measured using an 

electrophoretic light scattering instrument and different low ionic strength buffers. This 

instrument detects movement of particles in an electric field gradient, thereby 

determining the electrophoretic mobility. Then the ζ-potential is calculated from the 

electrophoretic mobility; however, due to the fact that the microgel particles are not 

smooth spheres with a well-defined surface, these numbers are not reliable when 

compared to ζ-potentials of other particle types. Especially when the microgels have 

incorporated charged monomers, there is substantial charge buried within the particle 

which affects the electrophoretic mobility but are not accounted for in the calculation of 

ζ-potential. Currently, the most accurate way to characterize microgel acidic or basic 

monomer is by titration.  
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1.3.2.3 Structure 

 Largely microgel topology is characterized using two microscopy techniques and 

a light scattering technique. The first microscopy technique is AFM. In this case, particles 

are deposited on a surface and then imaged using a small tip on the end of a cantilever 

which deflects a laser into a four quadrant detector. The deflection of the laser by the 

cantilever is related to a change in height and depicted in a height map of the surface. The 

second technique that our group has used in the past and others have used more recently 

is cryogenic scanning electron microscopy (cryo-SEM). Here, a better representation of 

the water solvated particles can be achieved. Lastly, topology can be inferred by studying 

the ratio of the Rg to the Rh. The radius of hydration, Rh, is representative of the particle 

radius with its associate hydration sphere, whereas, the radius of gyration, Rg, is 

representative of the center of mass of the particle. It should be noted that a sphere of 

uniform density has an Rg/Rh of ~0.77. Therefore, particles with a high density core and 

dangling chains at the periphery would have a Rg/Rh of less than < 0.77 and a particle 

with a high density periphery and a low density interior, such as a hollow sphere, would 

have a Rg/Rh of  > 0.77.
72,73

 These numbers are found by DLS (Rh) and MALLS (Rg).  

1.4 Microgels as Biomaterials 

1.4.1 Biomaterial Design Rules 

 Design rules for diagnostic or therapeutic material applications can be based on 

advantageous therapeutic effects or useful transduction mechanisms, but can often be 

limited by factors such as toxicity or sensitivity. These rules should help generalize the 

effects of both physical and chemical properties of a biomaterial, in order to achieve 
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maximum therapeutic or diagnostic effect with minimum long or short term toxicity to 

healthy cells or organs. 

 Design rules, in general, for biomaterials have been investigated for all kinds of 

systems including 2- and 3-D bulk materials for tissue scaffolds and to nanoparticulate 

systems for drug delivery. The design considerations include properties such as size, 

shape, topology, morphology, mechanics, payload entrapment, and biospecific interaction 

(Scheme 1.2). Each of these design rules can affect the performance of the material as 

well as its toxicity. For instance, it has been shown that the shape of polymeric 

nanoparticles can effect tumor penetration as well as biodistribution.
74

 It is also known 

that effects of charge, size, and hydrophobicity can change the particle clearance 

mechanism, and its ability to accumulate in tumors through the enhance permeation and 

retention (EPR) effect.
75

 These design rules along with increasing knowledge of 

biological processes, like the size-dependence of  transdermal uptake and extravasation 

from the blood, emphasizes the importance of choosing the right size material for your 

application.
76

 One of the more recent findings has been that the mechanics of the material 

might change the biological response to the material.  

 

 

 

 

Scheme 1.2. Some biomaterial design considerations. 
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1.4.2 Importance of Biomaterial Mechanics 

 In applications utilizing synthetic biomaterials, such as drug delivery,
77-80

 

bioimaging,
81,82

 and tissue engineering,
83-87

 the material mechanical properties represent 

an important set of design parameters.
76

 Studies of biological tissues themselves have 

shown a wide range of moduli for different biological tissues and cell types including 

cancer cells versus healthy cells.
88,89

 Most studies of mechanical properties in 

biomaterials have focused on how cells interact with or move on surfaces of different 

rigidity in the context of mechanotransduction
83,86,87

 and cell proliferation or 

differentiation.
84,85

 Figure 1.2 shows examples of substrate stiffness directed stem cell 

differentiation.
85

 Although most studies have been based on these bulk substrates, it has 

been suggested, however, that the softness of nanoparticles may be relevant in processes 

such as phagocytosis or endocytosis.
90,91

 This indicates that not only are cells affected by 

the mechanics of large surfaces or interfaces, but also by the rigidity of individual 

nanoparticles. 

 

 

 

 

 

 

 

 

Figure 1.2. Matrix stiffness effects on stem cell differentiation from Discher and co-

workers.
85
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1.4.3 Microgel Mechanical Characterization  

 For years, microgel suspension moduli have been studied using different 

rheological methods;
92,93

 however, it has been more difficult to get at the moduli of single 

microgels. Three different methods have been developed for studying the mechanical 

properties of microgels; AFM measurements,
94-96

 osmotic compression studies,
97-99

 and 

capillary micromechanics.
97,100

  The AFM methods use a cantilever with a particular 

spring constant to probe the mechanics of a surface by applying a force and measuring 

the materials response.  The cantilevers used have had typical sharp tips used for  

imaging,
96

 been modified with a polystyrene sphere,
94

 or have been unmodified bare 

cantilevers.
95

 These AFM methods are largely preformed on microgels >10 μm in 

diameter which allows for modified tips with larger surface area. When the particles are 

≤1 μm in diameter, these AFM experiments become more challenging.  Now, the size of 

the tip has to be smaller and may penetrate the particle. Similarly, in the case of the 

capillary micromechanics experiments, the particles have to be sufficiently large to 

observe under an optical microscope and to get lodged in the end of a capillary.  This 

method forces microgel under very controlled pressures into a confined end of a pulled 

capillary, and by knowing the applied pressure and measuring the deformation of the 

particle, mechanical properties can be calculated. Lastly, the osmotic compression 

method is performed by placing microgels in a solution of non-interacting polymers at 

different concentrations which increases or decreases the osmotic pressure difference 

between the inside and outside of the particle. When the osmotic pressure is increased, 

the particle is forced to deswell. These changes in size are monitored by DLS, and after 

calculating the different osmotic forces, the bulk modulus of the particles can be 
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calculated. Although this method is promising, further development of methods to study 

small microgel or even nanogel mechanical properties is ongoing. 

1.4.4 Microgel Softness 

 Microgels are viscoelastic particles that are compressible and neither shape nor 

volume conserving. The softness of the microgel allows it to respond to both typical 

polymer environmental cues such as pH, ionic strength, or temperature, but also can 

respond to the global lattice energy of a colloidal crystal. Because of some of these 

observations, in a recent review written by Lyon and Fernandez-Nieves, the microgel 

particles were describe as having a polymer/colloid duality especially in the context of 

suspensions.
101

 The few examples of measurements of the classic values associated with 

softness, Young’s, shear, and bulk moduli of individual hydrogel microparticles were 

shared above. To follow will be select examples of both fundamental studies illustrating 

the effects of microgel softness and studies utilizing the softness in application. 

1.4.4.1 Fundamental Observations of Microgel Softness 

 Some of the most interesting observations of microgels have come from 

fundamental studies of microgel suspension phase behavior. Since the phase behavior of 

hard spheres suspensions was determine to be purely dependent on the volume fraction of 

particles,
102

 thermoresponsive microgels seemed like an interesting candidate for these 

studies due to their ability to change volume fraction on an external stimulus.
103-105

 

Experiments first demonstrated successful formation of ordered crystals formed from 

microgels. Some interesting results were found using p(NIPAm-co-AAc) microgels 

which imparted a charge component that could be tuned by solution pH.
106

 It was found 

that, when the particles were mostly protonated, the phase behavior was similar to hard 
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spheres, except the regions of crystallization extended above the appropriate volume 

fraction for hard spheres. This observation can be attributed to the compressibility of the 

microgels, which allows the particles to avoid getting trapped in a glass at these high 

concentrations. However, at near neutral pH, when the particles were more highly 

charged, the crystal region was very small or could not be observed at all. In this case, the 

particles cannot avoid being trapped into the glassy state potentially due to the reduced 

compressibility due to the charges in the microgels. In an even more dramatic example of 

the softness of these particles, microgel suspensions were formed with ~0.7 μm in 

diameter microgels with a few defect microgels of ~1.75 μm diameter.
107

 In this case, the 

1.75 μm particles deswelled to fit into the lattice that was created by the smaller 

microgels. The entropy gain from forming a crystal was greater than the loss due to 

deswelling the particle. This is a clear example of the softness of these particles and how 

they act as both a polymer and a colloid. 

1.4.4.2 Microgel Softness Applied in Bioapplications 

 The colloidal suspension studies above can be extended to applications such as 

color-tunable Bragg diffraction crystals.
108

 The light diffracted from the sample is based 

on the distance between the particles in the crystal, and the angle of the incident light. In 

this case, the lattice spacing could be changed by assembling the crystal at different 

temperatures, thereby changing the size of the pNIPAm microgels, the lattice spacing, 

and the resulting Bragg peak. In general, the softness of these materials allows for not 

only the inherit responsively due to the choice of a thermoresponsive or pH-responsive 

monomer, but enables the incorporation of other responsive elements due to the 

flexibility of the network. These are the same properties that allow for many different 
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sensing platforms to be developed using microgel and hydrogel materials.
44,45,52,109

 In 

Chapter 2, more specific hydrogel sensing platforms will be discussed as well as our 

efforts to develop a microgel biosensor. 

 In biology there are many examples of where the softness or deformability of 

particles is important. One in particular is red blood cells and their ability to squeeze 

through vasculature. The DeSimone group has used hydrogel microparticles as a possible 

red blood cell mimic by loading them with hemoglobin and watching them pass through 

small channels, utilizing the ability of the hydrogel to deform.
110,111

 Similar experiments 

observing the ability for microgels to deform and pass through pores will be discussed in 

Chapters 3 and Chapter 5. 

 Another advantageous property of these soft materials is that they have been 

shown to strongly deform at interfaces creating some interesting possible applications. In 

our laboratory, as discussed in Chapter 2, the asymmetrical deformation of these 

particles when attached to a glass substrate has allowed for the creation of 

microlenses.
112,113

 In other cases, these particles have been shown to deform dramatically 

to act as a stabilizer for oil-in-water particle-stabilized emulsions or Pickering emulsions 

(Appendix A).
114-116

 It has been shown that microgels deform drastically to help lower 

the surface energy at the oil/water interface. This observation has been suggested as the 

primary reason that microgels act as good emulsifiers. Similarly, it is possible that many 

of the interesting observations of microgels and microgel assemblies that have been 

observed could be linked to the softness of the particles. In the Lyon group, it has been 

observed, that layer-by-layer (LbL) films formed by alternate deposition of anionic 

microgels and a polycation self-heal.
117,118

 Here, when a film is deposited on a soft 
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substrate and the film is stretched in the dry state, it displays damage. Then, after wetting 

the film, it is repaired. These observations are under further investigation to discover the 

exact reasons for such an interesting result; however, one hypothesis is that due to the 

multi-valiancy and flexibility of the polymer it is not trapped in the high energy state that 

is created when damage is formed. Obviously, this is just a hypothesis that is being 

actively tested in the Lyon lab; however, it is just one example of a recent interesting and 

useful bulk property that could be a result of particle softness. In this dissertation, 

microgel softness is harnessed (Chapter 2 and Appendix A) or studied (Chapter 3 and 

Chapter 5) in the context of interfacing with biology. 
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CHAPTER 2 

MICROGELS AS MICROLENSES 

Adapted in part from: 

Hendrickson, G. R.; Lyon, L. A. Bioresponsive Hydrogels for Sensing Applications. Soft 

Matter 2009, 5, 29. 

 

2.1 Introduction to Bioresponsive Hydrogels 

  Responsive materials comprise an attractive field of study due to their possible 

applications in tissue engineering,
1-6

 biological interfaces,
7-9

 drug delivery,
10-26

 and 

biosensing.
21-24

 Hydrogels in particular are interesting for these types of applications 

due to the flexibility of their networks in aqueous media, the degree to which their 

mechanical and chemical properties can be tuned, and therefore their intrinsic 

compatibility with biological systems. Importantly, the tunability of the dynamics of 

these constructs is critical for the responsiveness, and therefore the bioresponsivity, of 

such materials. Some inherent responsivity can be engineered into a gel based simply 

on the choice of monomers, co-monomers, and cross-linkers used in synthesis. The 

most common responsive hydrogels either incorporate a thermo-responsive polymers 

that shows a phase change at a given temperature, or a pH-responsive monomer that 

exhibits more or less intermolecular electrostatic repulsion due to the pH and salt 

content of the surrounding media. These two stimuli are advantageous for some 

applications, but for higher order responsiveness to biological stimuli, it is desirable 

to design responsive materials sensitive to antigen-antibody binding or enzyme-

substrate interactions.
21-24,27-30

 These bioresponsive materials help bridge the gap 

between the robustness of synthetic polymers and the functionality and specificity of 
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biological interactions. 

  In this section a more extensive introduction to hydrogels designed specifically 

for sensing applications will be discussed and was purposely left out of Chapter 1. 

Examples based on bulk phase transition such as sol-gel transitions
31-33

 will not be 

discussed in great detail and the primary focus will be on swelling or deswelling 

responses in chemically cross-linked networks. These responsive hydrogels have been 

shown to give a number of different responses to analyte recognition. These include a 

simple expansion or contraction of the polymer network, a change in fluorescence 

response of fluorophore in the gel, a change in the diffracted wavelength in a colloidal 

assembly, or a change in the optical properties of the gel such as in the case of 

microlenses. Some select examples of each response will be presented. 

2.1.1 Physical Expansion/Contraction Response 

  A physical change in the size of the gel due to a change in network density is 

the basis for all of the responsive hydrogel systems discussed below. This sensing 

modality is particularly useful given the preponderance of different physical 

observables that are modulated as a result of hydrogel swelling. These include, but are 

not limited to size, porosity, density, refractive index, and modulus. Furthermore, the 

extreme porosity of hydrogels permits rapid analyte diffusion into the network, 

thereby taking advantage of the entire three-dimensional structure. As a result of these 

advantages, a wide range of sensor transduction methods could, in principle, be 

applied to hydrogel-based bioresponsive materials. Note however, that many of the 

examples described below have not been specifically engineered into a sensing 

system or device. For many bioresponsive hydrogels, this remains a relatively 
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untapped area of research, with far more effort having been expended on the 

development of new materials than on their real-world application in sensors. 

  An early bioresponsive hydrogel was developed by Miyata et al.
34

 that utilized 

a poly(2-glucosyloxyethyl methacrylate) (poly(GEMA)) hydrogel, which contains 

glucose moieties. The multivalent lectin concancavalin A (Con A) was then 

introduced to the polymer, which was accompanied by Con A binding to two to four 

glucose moieties thereby further cross-linking the poly(GEMA) hydrogel. This 

induced, non-covalent cross-linking was interrupted when free glucose was added into 

the solution, causing displacement of the polymer-pendant glucose moieties and 

expansion of the hydrogel network. A compression apparatus was used to detect the 

swelling of the gel. This construct was slightly modified in another study by 

covalently attaching the Con A to the hydrogel network, thereby limiting the diffusion 

of Con A from the gel.
35

 The covalently attached Con A could then re-cross-link the 

network after rinsing the gel with buffer, freeing the glucose, and binding of the 

glucose moieties attached to the polymer network.  

  In a similar vein, Miyata
36,37

 has published two different examples of antigen-

antibody responsive gels. In one example an acrylamide-based hydrogel was 

synthesized using a co-monomer displaying a covalently attached “antigen” (rabbit 

IgG). An anti-rabbit IgG antibody was added to the material, thereby forming cross-

links by binding two polymer-bound antigen equivalents. Consequently, when free 

rabbit IgG was present in an analyte solution, it displaced the covalently attached 

antigen from the bound antibody, disrupting the cross-links, and causing swelling of 

the gel.
36

 In the other example, both the antibody and antigen were covalently linked 
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to co-monomers in an interpenetrating network (IPN).
37

 The IPN was naturally cross-

linked by the antigen-antibody interactions and upon addition of free antigen these 

cross-links were again disrupted and caused swelling of the gel. The advantage of a 

covalently attached sensing element is that it allows for reversibility of the cross-

linking and therefore possibility of regeneration of the sensor after washing out the 

free analyte. These concepts of introducing different antibody-antigen interactions 

that can be used to sense either polyvalent protiens or the ligands that bind to them is 

an interesting for reversible/resuseable sensors and is employed by our group in the 

microlens construct discussed below.  

  Another method for introducing binding specificity into hydrogels is by 

molecular imprinting, which has been utilized in both bulk hydrogels and microgels 

(hydrogel microparticles). In a hydrogel example for recognizing the tumor specific 

marker glycoprotien, α-fetoprotein (AFP), the hydrogel was synthesized using both a 

Con A functionalized monomer and an anti-AFP functionalized monomer.
38

 Free AFP 

was introduced to the pre-polymer solution, which bound to both the Con A and anti-

AFP moieties during synthesis, creating a non-covalent cross-link. After synthesis, 

the AFP was washed from the system, and the hydrogel was left with specific binding 

sites that contained both Con A and anti-AFP recognition units, and were in theory 

organized appropriately for AFP binding. Therefore, when AFP was present the non-

covalent cross-link was recreated and the gel collapsed. The efficacy of the imprinting 

process was illustrated via appropriate controls. In a microgel example, the imprinted 

molecules were a therapeutic drug, theophylline, and the steroid 17β-estradiol.
39

 

These molecules were introduced into a pre-polymer solution of methacrylic acid 
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(MMA) and the cross-linker trimethylolpropane trimethacrylate (TRIM). After the 

photo-initiated synthesis and several rounds of washing to remove the imprinted 

molecules, affinity and competitive binding studies were performed showing good 

specificity and selectivity for the target molecules. Using moleular imprinting or 

screening of affinity to certain biomelecular targets into hydrogels or microgels  is an 

interesting way of designing a highly selective hydrogel network but may not be 

easily applied to different systems due to the variability in the network between 

analytes.
40,41

  

  Another way of introducing bio-specificity into hydrogels is by incorporating 

enzymes into the system.
42

 Here we will focus on two specific gel transitions: sol-to-

gel or gel-to-sol transitions and hydrogel swelling or deswelling. One example of a 

gel-to-sol transition was demonstrated in an acrylamide-based hydrogel synthesized 

with a tetrapeptide cross-linker.
43

 In this study, two different peptide cross-linkers 

were used in different hydrogel synthesis: a tyrosine-lysine linkage cleavable by α-

chymotrypsin and a serine-lysine linkage that could not be cleaved by the enzyme. 

The hydrogels were polymerized in a circular disk in a microfluidic channel, and in 

the presence of α-chymotrypsin, a gel-to-sol transition was observed by optical 

microscopy. Figure 2.1 shows the hydrogel containing the enzyme-degradable cross-

linker and the hydrogel containing the nondegradable cross-linker before and after 

exposure to the enzyme. This example is the only sol-to-gel transition example shared 

in this section mainly because these types of systems give excelent responses but are 

not always reversible due to the loss of material after solvating the gel.  
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Figure 2.1. Optical micrograph of an enzyme-responsive gel with the gels containing the 

cleavable peptide sequence (left) and the non-cleavable sequence (right) 0 (a), 5 (b), and 

20 min (c) after enzyme addition.  Scale bar = 500 μm.
43

 

 

  An example of a swelling response to enzymatic activity involved the cleavage 

of a peptide-linker that contained both anionic and cationic residues.
17

 In this case a 

poly(ethylene glycol)-poly(acrylamide) (PEGA) bead was synthesized with a pendent 

zwitterionic peptide sequence. Two different hydrogels were made with different 

peptide sequences, where those sequences contained the following critical 

components: a positively charged arginine directly attached to the hydrogel, a 

dialanine or diglycine linkage, a pendent aspartic acid with an 9H-fluoren-9-

ylmethoxycarbonyl (FMOC) protected amine and an acid group contributing the 

anionic part of the polyelectrolyte. The diglycine or dialanine linkages were cleaved 

with various enzymes, the most effective for both being thermolysin. As these 

linkages were cleaved, the negative part of the polyelectrolyte was lost into solution, 

and the positive fragment was left attached to the gel increasing the electrostatic 

repulsion in the hydrogel along with an increase in internal osmotic pressure due to 

increased couterion ingress and causing swelling. This change could conceivably be 

used for enzyme responsive drug delivery, or in the screening of enzyme inhibitors, as 

many proteases are involved in specific disease states, including many cancers.  

  Physical changes in hydrogels have also been coupled to protein 
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conformational changes that occur during a ligand binding event.
44,45

 In one example 

a PEG hydrogel was synthesized incorporating calmodulin (CaM) as a hydrogel cross-

linker. CaM has an extended conformation in the presence of calcium ions and upon 

ligand binding the protein collapses into a more compact structure. Due to this 

dramatic change in conformation, the CaM-crosslinked hydrogel collapsed 

significantly upon binding of the ligand, trifluoperazine (TFP). This response is 

shown in Figure 2.2. Using a protien that has a large conformational change due to 

ligand binding as a cross-linker is a clever way of introducing responsivity although it 

may not be as widely applicable to many protiens that are eith hard to incorporate into 

the gel, involve time-consuming synthesis and purification techniques, or do not have 

such an advantageous protien structure change. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Crystal Structure, Scheme, and Optical micrograph of the CaM containing 

gel before (left) and after (right) ligand binding.
44
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2.1.2 Fluorescence Response 

  In another sensing modality, hydrogels have been integrated with fluorecenent 

tags to provide an easily detectable readout of a change in the hydrogel network 

density.
46

 In one case, a glucose sensor was fabricated from an acrylamide-based 

hydrogel containing covalently attached rhodamine dye molecules and an amine 

moiety, which introduced pH sensitivity.
47

 The enzymes glucose oxidase and catalase 

were physically entrapped in the gel by adding them into the pre-polymer solution 

before polymerization. The gel was cut into disks that were then affixed to the end of 

the optical fiber, providing a means of exciting fluorescence, and collecting the 

resultant emission. When the optical fiber + gel assembly was placed into a solution 

of glucose, the glucose was oxidized by β-D-glucose oxidase to D-gluconic acid and 

hydrogen peroxide. The catalase then converted the hydrogen peroxide to water and 

oxygen to prevent oxygen depletion within the gel. Glucose oxidation decreased the 

local pH, protonating the amine groups in the gel, thereby increasing the electrostatic 

repulsion within the network, which is accompanied by swelling of the gel. The 

swelling of the gel decreased the local concentration of fluorophore, and consequently 

the fluorescent response was strongly dependent on the solution glucose 

concentration. In this application the response was not linear in the physiolocical 

glucose concentration range and may not be the easily transitioned to in-home 

diagnostics. 

  Another glucose sensing construct was designed such that fluorescence was 

increased due to the presence of glucose.
48

 In this case, a PEG-based hydrogel was 

synthesized with a covalently attached, fluorescently-labeled Con A and physically 
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entrapped fluorescien isothiocyanate (FITC) labeled dextran. The fluorophore 

attached to Con A was tetramethylrhodamine isothiocyanate (TRITC) which 

undergoes fluorescence resonance energy transfer (FRET) with fluorescein at short 

distances due to their strong spectral overlap. Therefore when the dextran binds Con 

A, the two chromophores undergo FRET and a decreased amount of fluorescien 

fluorescence is observed. However, introduction of glucose displaces the dextran 

from the Con A and increases the fluorescein fluorescent signal as shown in Figure 

2.3. 

 

 

 

 

 

 

 

Figure 2.3. Fluorecence spectra showing the FITC-dextran signal (left) and FRET signal 

(right) with 0 (●), 200 (■), 400 (▲), and 1000 (▼) mg/dL concentrations of glucose. 
48

 

 

2.1.3 Diffraction Response 

  Hydrogels have also been coupled to the diffraction from photonic crystals by 

either encapsulation of a photonic crystal inside a hydrogel network, or by the direct 

assembly of photonic crystals using microgels as building blocks. These systems are 
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potentially advantageous sensing constructs because the Bragg diffraction they 

display, which is due to the periodicity of the crystal, is tunable/responsive to gel 

swelling. Therefore if a hydrogel/photonic crystal hybrid is designed in which the 

interparticle spacing changes due to the presence of an analyte, a label-free 

colorimetric sensor is obtained.  

  One key example of photonic crystal sensors are embodied by polymerized 

crystalline colloidal arrays (PCCA) studied by the Asher group at the University of 

Pittsburgh. PCCAs are colloidal crystals embedded in a responsive hydrogel network 

as shown in Figure 2.4. A number of different sensing applications have been 

attacked using PCCAs including glucose sensing.
45,49-52

 For this application 

acrylamide-based hydrogels were modified to contain boronic acid units that bind to 

glucose; therefore, when glucose is present, multiple acid groups complex the glucose 

molecule thereby cross-linking the gel. The deswelling caused by this induced cross-

linking causes the interparticle spacing of the colloidal crystalline array to decrease, 

thereby blue-shifting the Bragg diffraction.
49,50,52

 The blue shift response is seen in 

when the ionic strength of the medium is high enough to shield Coulombic repulsion 

between the negatively charged glucose-boronic acid complexes. Conversely, when 

the ionic strength is lower, electrostatic repulsion in the gel causes a swelling 

response, increasing the interparticle spacing and inducing a red shift in the 

diffraction spectrum (Figure 2.4).
51

 The different responses due to different ionic 

strengths may be problimatic if you do not have great contol over the ionic strength of 

the system. 

  PCCAs have also been employed for nerve agent sensing.
53,54

 In this 
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methodology, an enzyme is covalently attached to the hydrogel network allowing 

binding of the analyte to the enzyme. Upon analyte binding or enzyme conversion, the 

charge in the network is either increased or decreased and swelling or deswelling 

occurs.  The analytes in two specific cases were organophosphorus (OP) 

compounds.
53,54

 In one case the enzyme acetylcholinesterase was bound to the 

 

 

 

 

 

 

 

 

 

Figure 2.4. Scheme (left) and corresponding diffraction spectra (right) of a PCCA in the 

absence (top) and presence (bottom) of analyte.
51

 

 

hydrogel network and upon OP binding an anionic complex was formed, causing the 

hydrogel to swell, increasing particle spacing, and shifting the Bragg diffraction 

peak.
53

 In a similar case, organophosphorous hydrolase was attached to the hydrogel 

along with a phenol moiety.
54

 When the analyte was introduced at a pH of 9.7, which 

is above the pKa of the pendant phenol groups, those moieties became deprotonated 
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and charged. When the OP was introduced and hydrolyzed by the enzyme, protons 

were released, thereby lowering the local pH below the phenol pKa and protonating 

the phenols. As a result, the internal network charge, electrostatic repulsion, 

interparticle spacing, and diffraction wavelength were all decreased. The PCCA 

method has been widely applied to other sensing applications, including metal ion,
55

 

ammonia,
56

 and creatinine sensing.
57

 These PCCA systems are nice contructs that 

have been shown to be responsive to many different analytes; however, does not seem 

to be excelent for any given analyte.  

  A different diffraction construct in which the colloidal crystal is directly 

formed from microgels has been studied as a glucose sensor.
58

 In this approach, 3-

acrylamidophenylboronic acid (APBA) was incorporated into pNIPAm microgels. 

The APBA is in equilibrium between neutral species and the hydrolyzed negatively 

charged species. Upon addition of glucose, the glucose binds to the charged form, 

yielding two water molecules and shifting the equilibrium towards the hydrolyzed 

products. This increases the number of locally charged species and the internal 

electrostatic repulsion, thereby causing a swelling of the microgels. Since these 

microgels are in assembled into a colloidal crystal, the expansion of the particles 

yields an increase in the interparticle distance and an increase in the Bragg diffraction 

wavelength and therefore a color change, shown in Figure 2.5. This is an important 

example because it is one of the only colloidal crystal sensing example in which the 

building blocks are microgels. This system, however, operates only above 

physicological pH so for real samples it might not work as well. The reason for the 

higher pH is that some of the APBA needs to be ionized in order to bind glucose. In a 
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more recent result, an etalon which is a device fabricated in a mirror-dielectric-mirror 

sandwich and causes constructive and desrtuctive interferance when light pass 

through it in the dielectic layer. The wavelength maximum is based on the distance 

between the two mirrors. In this case, microgels were used as the dielectric layer and 

were made to be glucose responsive. As they swell or deswell, the wavelength max 

changes creating a nice sensing mechanism .
59

 

 

 

 

Figure 2.5. Glucose sensing microgel colloidal crystals with and without glucose.
58

 

2.1.4 Direct Optical Response 

  This section focuses on hydrogel-based materials that change their optical 

properties due to a change in network swelling. Primary amongst these examples are 

microlenses that change their optical properties due to a change in refractive index or 

radius of curvature. The swelling response is therefore conveniently read out by 

observing the focusing power of the microlens by simply projecting an image through 

the microlens. Applying a stimulus that changes the focal length of the lens is 

observed as a focusing or defocusing of the projected image. There have only been a 

few examples of such optically responsive hydrogel materials. Most of the work done 

on such materials has been developed by our group using a microgel construct and 

will be discussed in detail. However, a few bulk hydrogel examples have also been 

reported.  
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  The primary example of a “bulk” hydrogel approach to responsive microlenses 

involved microlenses synthesized by polymerizing a hydrogel precursor solution onto 

a glass substrate in the form of a “microdome”.
60

 The microdome was an 

acryalamide-based gel that incorporated both covalently attached CaM and 

phenothiazine, which bind to each other creating a non-covalent cross-link in the gel. 

When the competing ligand chlorpromazine (CPZ) is present in the surrounding 

solution, it binds to CaM and displaces phenothiazine, thereby disrupting the cross -

link, which induces gel swelling. The swelling response changes the curvature of  the 

microdome as well as the refractive index. Therefore, the focal length changes and a 

focused image becomes defocused.  

  Another microlens construct was developed using a hydrogel ring to 

manipulate the curvature of a water/oil interface.
61

 This construct was made to 

possess pH and temperature responsivity by incorporating acid or amino groups and 

thermo-responsive monomers into the hydrogel ring, respectively. In the temperature 

responsive system the hydrogel ring was polymerized with NIPAm. Similarly, in the 

pH-responsive case the gel contained acrylic acid or 2-(dimethylamino)ethyl 

methacrylate (DMAEMA). These microlenses were fabricated by sandwiching a 

hydrogel ring between a solid glass surface and a surface containing a hole aligned 

with the hole in the ring. Water was incorporated into this region of the device, and 

oil was sandwiched between the top surface that containing the hole and another glass 

surface. This created a system that had a water/oil interface in the middle of the 

hydrogel ring. The curvature of this interface was then tuned by swelling or 

deswelling the gel by inducing a pH change or change in temperature.  
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  In our group a different type of microlens structure has been developed using 

well defined microgels as the building block. These microgels are synthesized via free 

radical polymerization of NIPAm and acrylic acid (AAc) with N,N’-

methylene(bisacrylamide) (BIS) as a typical covalent cross-linker. The microgels are 

then adsorbed to a surface and have been shown to act as individual optical elements 

following adsorption and deformation into hemispherical structures.
62

 A typical 

optical response is shown in Figure 2.6.
63

 Given the incorporation of temperature and 

pH responsive monomers, the resultant microlenses are similarly responsive to 

changes in temperature
64

 and pH.
63

 The optical response shown in Figure 2.6 is due 

to a change in pH, which changes the degree of AAc protonation and therefore the 

degree of Coulombic repulsion in the gel. Decreasing the pH of the surrounding 

media protonates the acid groups in the gel, causing deswelling that increases the 

refractive index which decreases the lens focal length. In the thermo-responsive case, 

a rise in temperature causes a contraction of the polymer network and a subsequent 

decrease in focal length. 

 

 

 

 

 

 

 

 

 

Figure 2.6.  Microgel microlenses: SEM image (left panal) at a grazing angle of an array 

of microlenses a)-d) DIC microscopy images at pH 3.0 (a) and 6.5 (b) with the 

corresponding projection images (c) and (d). Scale bar = 1 μm.
63
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  Following on the examples described above, the Lyon group designed 

microlenses that would display changes in refractive index that was induced via 

protein binding for use in sensing applications.
65-68

 Specifically, microlenses have 

been designed for two different pathways for sensing: a direct binding-induced 

response and a displacement-induced response (Scheme 2.1
66

). To illustrate each 

method, the small vitamin biotin was conjugated to the acrylic acid groups on the 

microgels. For the first binding induced method (Scheme 2.1, Route A), avidin or 

anti-biotin (antibody) was added to the solution around the microlens, resulting in 

binding of the protein to the microlens surface. Since both avidin (four binding sites)  

 

 

 

 

Scheme 2.1. Scheme showing the microlens sensing strategies: the binding-induced 

deswelling method (Route a) and displacement-induced swelling method (Route b).
66

 

 

and anti-biotin (two binding sites) are able to bind multiple equivalents of biotin, the 

protein binding events increase the surface cross-linking of the microlens. This cross-

linking induced a refractive index change and a visual signal was observed as shown 

in Figure 2.7.
65

 In this example, the lenses transition from a single square projection 

to almost double image response while in projection mode, which is achieved by 

simply placing a pattern in between the light source and analyzer in an inverted 
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microscope. This method is simple and could be applied to many different protein-

binding applications. A displacement-induced method can be achieved by designing a 

reversible antibody-antigen cross-linking construct. In this case, a photoaffinity 

approach is used to couple a bound antibody to the antigen-laden microlens. When the 

free biotin disrupts the cross-links via displacement, the microlens swells and the 

focal length increases accordingly. A biotin-free buffer wash removes the the free 

biotin, allowing for re-cross-linking of the gel and regeneration of the sensor.
68

  

  Using microgels as microlenses is attractive because of the ability to use many 

different solution based bioconjugation methods and the ease of assembly with simple 

electrostatic adsorption.  Also unlike the bulk gels post-synthesis modifications can 

help ensure uniformity of the lens structure among different bioconjugations. The 

microgel examples, however, do need to be extended to more relevent antibodies or 

other biomolecule sensing as well as be applied to multi-sensing applications. 

  Here, we have shown examples of different hydrogel constructs that have 

potential for use in sensing applications. We have highlighted examples of hydrogels 

that give different responses due to the presence of analyte. These responses include 

simple physical changes in gel size or shape, colorimetric responses such as 

fluorescence intensity changes or diffraction wavelength change, and finally optical 

responses that occur due to focal length changes in microlenses. In some cases, as 

with the well-developed PCCA approach, the pathway to true sensing systems is well 

established. However, other methods are very much still in the materials discovery 

and development stage; coupling of these approaches to commercially applicable 

sensor constructs remains as a logical next step in device development.  
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Figure 2.7. Microlens response to increasing amounts of avidin showing the DIC (left 

panels) and projection images (right panels) with particles with (left) an without (right) 

biotin. Scale bar = 2 μm.
65
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The efforts were two fold. First, a new generation of microlenses needed to be 

verified as responsive to not only similar probes as had been tested before but also 

extended to new probes such as nucleic acids. It was found that these new microlenses 

did respond to similar probes, however, the response was different. Secondly, 

extension of the microlens platform to a microfluidic device was performed in order 

to achieve the specific goal of making a device that could easily be extended to 

targeting multiple probes at the same time. The specific probes to be targeted were, in 

this case, autoantibodies which had been shown to be potential early detection cancer 

markers.
69-74

     

2.2 Experimental 

2.2.1 Materials 

 Monomers N-isopropylacrylamide (NIPAm; Aldrich) and N-

isopropylmethacrylamide (NIPMAm) were recrystallized from hexanes (Fisher 

Scientific) before microgel synthesis. Cross-linker N,N’-methylenebis(acrylamide) (BIS; 

Aldrich), ammonium persulfate (APS; Aldrich), and acrylic acid (AAc; Fluka) were all 

used as received. The pH 7 buffer was a 10 mM (ionic strength (IS) = 100 mM) 

phosphate buffer and the pH 3 buffer was a 10 mM (IS = 100 mM) formate buffer. All 

water used in the experiments was purified to 18 mΩ (Barnstead E-pure system). 

2.2.2 Microgel Synthesis 

 Large microgels were synthesized by precipitation polymerization of NIPAm, BIS 

(1 or 2 mol%), and AAc (10 mol%) with a total monomer concentration of 100 mM in 

100 mL. All components were dissolved in distilled, deionized water and stirred under a 

nitrogen purge while heating to 68 °C. Then APS (0.01 mM) was added to initiate the 
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reaction. The reaction was allowed to stir under nitrogen at 68 °C overnight. All particle 

solutions were filtered and purified via centrifugation. The samples were then freeze-

dried for storage. 

2.2.3 Microgel Array Formation 

 In general, all samples were prepared by first silanizing glass cover slips. First, 

cleaning the glass cover slips was done by sonication in a series of solvents (Alconox 

solution, nanopure water, acetone, absolute ethanol, isopropyl alcohol, absolute ethanol).  

Then the cover slips were placed in a 1% 3-aminopropyltrimethoxysilane (APTMS) in 

absolute ethanol solution for 2 hours, rinsed with ethanol, and stored in absolute ethanol. 

When ready for use the glass slides were removed from the ethanol, dried under nitrogen, 

and gaskets were placed on top of the slides. A solution of microgel particles in PBS 

buffer (pH= 7.4) was added to the gaskets and particles were left to adsorb to the slide for 

45 minutes. Most of the experiments were performed under adsorption conditions 

(particle concentration and time) which yielded sub-monolayers. Then the slide was 

rinsed with PBS buffer and dried under nitrogen.      

2.2.4 Microgel Lensing 

 Micogels adsorbed to glass surfaces can act as individual lensing elements called 

microlenses. The curvature, refractive index contrast, and thickness of the microlens 

determine the lens focal length, therefore, you can tune that focal length by inducing a 

change in one or more of these quantities. Lensing is done by placing a microlens in the 

focal plane of an inverted microscope as shown in Figure 2.8. Here by manipulating the 

focus while observing the microlens through an objective using differential interference 

contrast microscopy, light can be more or less focused through the lens. Furthermore, a 
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light screen with a pattern can be placed in the same focal plane as the lens near the light 

source and that pattern can be focused through the microlens (Figure 2.9). 

 

 

 

 

 

 

 

 

Figure 2.8. Left: SEM side view of microlenses on a glass surface.
68

 Right: Scheme of 

inverted microscope microlensing.
62

 

 

 

 

 

 

 

Figure 2.9. Left: Microlenses viewed using DIC imaging. Right: Microlenses after 

inserting a square pattern into the light path. 

 

2.2.5 Biofunctionalization 

 For experiments where either avidin or anti-biotin were the target molecule the 

capture molecule was biotin. Biotin was conjugated to the particles using EDC (1-ethyl-

3-(3-dimethylaminopropyl) carbodiimide hydrochloride) coupling which forms an amide 

bond between a carboxylic acid functionality and a primary amine (Scheme 2.2). This 

reaction is aided by a reactive intermediate formed by N-hydroxysuccinimide (NHS). 

This coupling was done between the acrylic acid groups on the particles and a biotin 

molecule with an amine moiety, biotin hydrazide. More specifically, lyophilized particles 



 47 

were re-suspended in pH 5.5 MES (2-(N-morpholino)ethanesulfonic acid) buffer. Then 

excess NHS and EDC were dissolved in small amounts of the MES buffer and added to a 

mixed suspension of particles and the biotin hydrazide. These reacted at room 

temperature overnight and then the particles were washed in pH 7 PBS buffer by repeated 

centrifugation and re-suspension. 

 

 

 

 

 

 

Scheme 2.2. Scheme of carbodiimide coupling of a primary amine to a carbocylic acid on 

a microgel (μG) mediated by N-hydroxysuccinimide (NHS). 

2.2.6 Biosensing Experiments 

 Biosensing was carried by incubating the microgel suspension in solutions of 

either anti-biotin, avidin, or DNA. The change in refractive index was then monitored by 

optical microscopy. In some cases, a non-binding fluorescent microgel was included as 

an internal control. 

2.2.7 Microfluidic Platform Experiments 

 In order to increase the capability of the microlens as a sensor these arrays were 

placed in microfluidic channels. Here, PDMS microfluidic devices (designed in the Hang 

Lu group in chemical engineering at the Georgia Institute of Technology) were added to 

the top of the already formed microgel array. These devices were simple Y-shaped 

microfluidic devices allowing for laminar flow between a two solutions in which 2 

different solution conditions could be flowed at the same time and allowed for 

simultaneous monitoring of the optical properties in each condition.  
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2.2.8 Increasing Sensitivity Experiments  

Five different stoichiometries were used to selectively label sets of particles with 

different amounts of biotin. First a 0.1 wt% solution of 2% BIS cross-linked microgels 

was made from a lyophilized sample and water. Next, six 2 mL aliquots of this solution 

were placed in centrifuge tubes and spun down and re-suspended in pH = 5.5 buffer. 

Then 100 μL of a 37 mg/ml solution of EDC and 100 μL of 42 mg/mL solution of N-

hydroxysuccinimide (NHS) is added to the particles to for an excess of EDC and NHS. 

Then different volumes of a 12.9 mg/mL solution of biotin hydrazide were added to the 

activated particles. In each case a different desired stoichiometry of the acrylic acid 

groups was functionalized: 1:10 (3.8 μL), 1:4 (9.5 μL), 1:2 (19 μL), 3;4 (29 μL), 1:1 (38 

μL), and 2:1 (78 μL). These solutions were allowed to shake at room temperature 

overnight and then centrifuged and re-suspended in pH = 7.4 PBS buffer. Then the 

HABA assay was performed to determine biotin concentration. 

The HABA (4´-hydroxyazobenzene-2-carboxylic acid) assay is a spectroscopic 

assay to determine the amount of biotin in solution (Scheme 2.3).  The basic idea is that 

when HABA is free in solution it only has a molar absorptivity of around 600 L/cm-mole 

at 500 nm; however, when it is bound to avidin its molar absorptivity is 34000 L/cm-

mole. It also has a binding constant to avidin of around 10
5
 where as biotin has a binding 

constant to avidin of around 10
15

. Therefore, if a solution of saturated avidin with HABA 

is made and mixed with a solution of biotin the biotin will displace the HABA from the 

avidin thereby decreasing the absorbance at 500 nm. 

In order for this assay to be successful it is very important that the solutions are 

stored in the fridge.  First a solution of 10 mM HABA in a 0.1 M PBS buffer was made. 

Then 5 mg of avidin was dissolved in a few mL of PBS buffer and 300 μL of the HABA 
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solution was added and the total volume was made to 10 mL. This assay was attempted 

on the 10% acrylic acid particles with varying concentrations of biotin. Solutions of D-

biotin were made to the concentration of biotin in the original conjugation solution and 

then diluted as reference solutions. Then the supernatant from the clean particles was 

collected and diluted to 10 mL. Next the HABA assay was performed by using 50 μL of 

the biotin solutions and 450 μL of the HABA/Avidin solution and then mixed. This ratio 

was decided on by trying some different ratios with the reference solutions. Lastly the 

absorbance of each solutions supernatant was taken and the resulting HABA/Avidin 

concentrations were calculated using Beer’s Law. Then the resulting biotin concentration 

could be calculated and related back to the original concentration taking into account all 

of the dilutions. 

 

 

 

 

 

 

 

Scheme 2.3. HABA assay scheme with HABA and biotin structures and displacement 

scheme showing the relative absorbance of HABA at 500 nm in the different states. 

 

2.3 Results and Discussion 

 The new generation of microlenses formed from single microgels adsorbed to a 

surface has been shown to be responsive to different stimuli such as pH (Figure 2.10). 

The pH response is due to the incorporation of acrylic acid (10 mol%) during synthesis. 
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In the pH 7 buffer, the acid groups in the particle are mostly deprotonated, therefore, the 

microgel has imbibed counter ions and their associated water in order to balance charge 

causing swelling. This solution condition results in one microgel refractive index and a 

particular particle curvature. However, when the particles are subjected to a pH 3 buffer 

the acid groups are mostly protonated which allows for expulsion of some of these 

counter ions and the associated water thereby deswelling the microgel. This deswollen 

microgel now has a different refractive index and different curvature resulting in a 

different lens focal length. This in turn now allows for a tighter focus of the light passing 

through the lens. While responses to environmental conditions are informative of the 

responsivity of these lenses, they are merely representative of the microlens response 

desired in response to a biomolecule. 

 In Scheme 2.4, there are three different schemes representing the mode of action 

for the microlens biosensing. All three require conjugation of some target molecule to the 

particle and in case A and B it is the small vitamin biotin. In these two cases, the probe 

molecules were avidin and anti-biotin, respectively. Avidin is a ~66 kDa tetrameric 

protein in which each subunit binds biotin with a nearly covalent bond strength (Kd = 10
-

15
). The second target molecule anti-biotin is used as a less tightly binding mimic of a 

typical antibody. This molecule binds 2 biotin molecules with a Kd = 10
-10

.  Since it is 

unlikely that either protein penetrates the particle due to their sizes, the binding of the 

protein to the surface of the microlens causes cross-linking of the polymer network at the 

surface of the microgel. The cross-linking as well as the presence of the protein on the 

surface of the microgel changes the lens curvature, refractive index, and structure. Here 

most of the changes in refractive index and curvature happen at the surface of the 

microgel forming a more complex lens structure. This effect, however, results in a similar 

optical response as shown in Figure 2.11 and Figure 2.12.  

  Although both of these sensing modalities had been observed in our group 

previously they needed to be verified with this microlenses. In the third biosensing 
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platform which was a new type of probe for our group, a biotiylated particle was also 

used, but here it was merely used as a linkage rather than the target. The target here was a 

biotiylated DNA oligomer. The microlenses were incubated with excess avidin allowing 

for near covalent binding to the microgel with open biotin binding to sites in the avidin. 

Then biotin conjugated DNA was added allowing for a microgel-biotin-avidin-biotin-

DNA linkage. Then complementary probe DNA was added. Then ethidium bromide (EB) 

was added to indicate hybridization. The excess negative charge on the surface should 

change the swelling of the microgel and therefore the focal length of the microgels. As 

shown in Figure 2.13, there was DNA hybridization as shown by the probe ethidium 

bromide. In 

 

 

 

 

 

 

 

 

 

 

Figure 2.10. Carboxylated microlenses response to pH. 

 

 

 

 

 

 

 

Scheme 2.4. Three different biosensing schemes: a. avidin binding (protein sensing), b. 

anti-biotin binding (antibody sensing), and c. DNA oligomer binding. Dark corona 

represents the change in focal length. 
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Figure 2.11. Avidin sensing with biotin labeled particles with some fluorescein labeled 

non-avidin binding standard particles. a) DIC microscopy after incubation with 500 nM 

Avidin-Texas Red b) Low light image showing only bound particles c) blue light 

excitation showing green fluorescence from standard particles d) green excitation 

showing avidin binding. Scale bar = 2 microns. 

 

 

 

 

 

 

 

 

 

 

Figure 2.12. Anti-biotin sensing with biotin labeled particles with some fluorescein 

labeled non-binding standard particles. a) DIC microscopy before incubation with anti-

biotin b) DIC microscopy after incubation with 300 nM anti-biotin c) low light image 

showing only the binding particles d) Blue light excitation showing the green standard 

particles. Scale bar = 2 microns. 
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this experiment some non-biotinylated microgels were adsorbed to the substrate as an 

internal control. These particles were labeled with fluorescein to identify them as the 

particles not conjugated with biotin. So, as shown in Figure 2.13, when avidin was added 

the expected lenses response was observed. Then as the negatively charged biotin 

conjugated target DNA was added the partcles restore a similar look to the original 

particles due to the increased swelling and necessary change in refractive index and 

curvature. Then after the probe DNA was added no optical change was observed. 

Although the binding methodology was successful, a strong optical change due to the 

probe DNA was not observed. Here, alternatives were discussed such as sensing a DNA 

hairpin using the hairpin as a cross-link to hopefully observe a change in the microlenses 

response, but efforts were quickly consumed by our second goal of extending this 

technology to a microfluidic platform sensing antibodies. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13. DIC and fluorescence microscopy images of DNA sensing platform. Scale 

bar = 2 microns. 
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 Expanding the sensing platform to a microfluidic device should provide for more 

rapid diffusion to the particle surface under flow as well as facile extension to multiplex 

sample analysis. The first most basic device that was fabricated was a Y-shaped 

microfluidic device. In these devices two different liquids can be introduced, one on each 

branch of the Y. Then as these two liquids merge there is very little mixing of the liquids 

depending on flow rate, distance down the channel, and the dimensions of the channel. 

This phenomenon is called laminar flow. Therefore, as shown in Figure 2.14, different 

microlens responses can be observed in parallel based on solution conditions or 

biomolecule concentration for example. Here pH 3 and pH 7 buffers were flowed in 

parallel and their respective microlens response is observed. Then buffer and anti-biotin 

solutions were flowed in parallel and their respective responses can be observed across 

the channel as shown in Figure 2.15. The response over time can also be monitored as 

shown in Figure 2.16. In just 10-15 minutes, a noticeable response is observed.  

 So far we have shown that these microlenses have the ability to respond to 

solution conditions and few different types of biomolecules. They have been incorporated 

into microfluidic devices, which give a fast response and the ability to have an internal 

control and with more device engineering have the possibility to sense multiple biological 

probes. Although all of these experiments suggest a promising sensing platform, the 

question still remains can these devices be sensitive enough for the current probes of 

interest such as cancer markers. 
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Figure 2.14. Microlens response to pH inside of a microfluidic channel. Top right: Image 

inside of the pH 3 buffer inlet. Bottom right: Image inside of the pH 7 buffer inlet. 

Middle left: inside the channel showing the response to both pH conditions. Bottom left: 

scheme of microfluidic channel. Scale bar = 2 microns. 

 

 

 

 

  

 

 

Figure 2.15. Microlens response to anti-biotin binding inside of a microfluidic channel. 

Image inside of a Y-channel microfluidic with 100 nM anti-biotin introduced through one 

Y and buffer in the other. 
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Figure 2.16. Microlens response to anti-biotin binding inside of a microfluidic channel 

over time. Image inside of a Y-channel microfluidic with 100 nM anti-biotin introduced 

through one Y and buffer in the other. 

 

 

 In order to get at the relative order of magnitude antibody sensitivity for each 

microlens, microgels were functionalized with different amounts of the biotin ligand. 

Here, biotin conjugation was done with biotin hydrazide added at 0, 10, 25, 50, 75, 100 

and 200 mol % of the acid groups. Then a HABA assay as described above was 

performed and it was found that there is 0, 13, 45, 99, 151, 200, and 415 μg of biotin per 

mg of particles. Which if you use the approximate 1 x 10
9
 g/mol molecular weight of the 

particles and the 244 g/mol molecular weight of biotin these values equal approximately 

0, 0.05 x 10
6
, 0.2 x 10

6
, 0.4 x 10

6
, 0.6 x 10

6
, 0.8 x 10

6
, and 2 x 10

6
 biotin molecules per 

particle. Then experiments were done with each particle type to assess the magnitude of 

their response to antibiotin as shown in Figure 2.17. This is plotted in terms of particle 

center brightness difference from the background brightness as assessed on a free image 

analysis program called ImageJ. This is shown as a function of particle biotin 

concentration for each antibiotin solution concentration. As is shown, concentrations of 

around 100 nM were the lowest concentration which induce a substantial change in the 

lens. 
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Figure 2.17. Biotinylated-microlens brightness differences between the middle of the 

particles and the background before and after incubation with buffer and various nM 

concentrations of anti-biotin. There are also microlenses with 7 different concentrations 

of biotin conjugated. 

 

2.4 Conclusions and Outlook 

 The ability to sense small quantities of peptides, whole proteins such as 

antibodies, and nucleic acids in biological samples has become a very active area of 

research due to the increased emphasis on early detection and early diagnosis of diseases 

like cancer. One of the most desirable traits for such a platform would be the ability to 

analyze complex samples such as plasma, whole blood, or even macerated cells without 

further sample treatment. This attribute would reduce cost by reducing the amount of 

time and reagents needed for sample pre-treatment. This reduced cost could increase 

testing frequency of not only the entire population but also of an individual increasing the 

the likely hood of detection and peace of mind. Being able to detect multiple 

biomolecules at once would help increase diagnosis accuracy by assessing the 

individual’s bimolecular profile rather than a single marker. Also, at least semi-

quantitative information is paramount for an accurate diagnosis. This microlens platform 
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has been applied to different proteins including antibodies. These microlenses were also 

extended to a more user friendly and multiplexable microfluidic device. However, the 

most important factor is being able to sense molecules at biologically relevant 

concentrations (sensitivity) and being able to distinguish between safe and unsafe 

concentrations (accuracy).  This method does not allow for the sensitivity or the 

quantitation that is necessary to sense autoantibodies or to compete with currently used 

techniques such as ELISA.  

2.5 Implications of Softness 

 When designing a microgel to be used as a microlens, it is hard to underestimate 

the importance of the “softness” or compliance of the material. Here the microgel is 

asymmetrically deformed on the surface to create a physical shape that not only is 

capable of scattering light but also focusing light through it. I suggest that one could 

describe the optical properties of these particles as soft, meaning that the particle has a 

transparent or nearly optically clear refractive index that allows for visible light passage 

and focusing. Furthermore, the ability to have its refractive index, curvature and structure 

altered by multiple external sources could also be diagnostic of being soft. Although the 

physical and optical “softness” allow for an interesting sensor platform, it also makes it 

difficult to design the particle topology as well as to determine ligand or target placement 

and density. In terms of ligand placement, it seems reasonable that placing the target as 

close to the periphery of the particle as possible is logical. The Lyon group has been 

doing this for years using a core/shell structure and localizing the labile functional groups 

in the shell. This was attempted with modest results. It gets more unclear when discussing 

ligand density. The ligands need to be close enough together so that when an antibody 

binds it will bind either to two ligands thereby cross-linking the gel or binding one ligand 

with high enough protein density on the surface to change the refractive index enough to 

be visualized as a change in focusing power. However, the ligands need to be far enough 
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apart so that a single binding event makes a large difference in connectivity. Further 

complicating the situation is determining the optimal particle design in terms of cross-

linking concentration and whether or not it should be a core/shell architecture. With such 

a soft and mobile platform, it is difficult to design these parameters and the most logical 

architectures that were attempted were did not yield more advantageous results. 
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CHAPTER 3 

PARTICLE SUSPENSION PASSAGE THROUGH MEMBRANES 

Adapted from: 

Hendrickson, G. R.; Lyon, L. A. Microgel Translocation Through Pores Under 

Confinement. Angewandte Chemie, International Edition  2010, 49, 2193. 

 

3.1 Introduction 

 In applications utilizing synthetic biomaterials, such as drug delivery,
1-4

 

bioimaging,
5,6

 and tissue engineering,
7-11

 the material mechanical properties represent an 

important set of design parameters.
12

 Most studies of mechanical properties in 

biomaterials have focused on how cells interact with or move on surfaces of different 

rigidity in the context of mechanotransduction
7,10,11

 and cell proliferation or 

differentiation.
8,9

 However, few studies have investigated the effects of the mechanical 

softness of nanoparticles in nano- or micro-biological environments. It has been 

suggested, however, that the softness of nanoparticles may be relevant in processes such 

as phagocytosis or endocytosis.
13,14

 This indicates that not only are cells affected by the 

mechanics of large surfaces or interfaces, but also by the rigidity of individual 

nanoparticles. The in vivo performance of nanoparticles is strongly dependent on a 

variety of biological processes, including, lymphatic drainage, endocytosis, extravasation, 

and kidney filtration. It stands to reason that any process that has a rigid size dependence 

may also be dependent on mechanical flexibility of the biomaterial.
15

 Therefore, it is 

necessary to consider mechanics when outlining the nanoparticle size restrictions relevant 

for certain processes. This might especially be important when the process involves 

passage through small, well-defined pores, such as in renal filtration.  
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 Renal or glomerular filtration is one of two routes of clearance of biomaterials from the 

body for particles smaller than 500 nm.
12,15,16

  The other clearance route is biliary 

clearance through the liver; however, in nanomedicine applications biliary clearance is 

generally bypassed due to the small particle sizes typically used.
16

 Therefore, renal 

clearance is an advantageous mechanism of nanoparticle excretion. This mechanism 

requires passage through approximately 8-nm diameter pores (as defined by endothelial 

gaps) under a pressure differential of 40 to 80 mmHg (0.7 to 1.5 psi).
17-21

 Obviously, for 

most carrier systems these figures of merit are not easily met and require the integration 

of degradability into the nanoparticle design or rigorous control over small particle 

sizes.
22-25

 In some cases these modifications may negatively alter drug loading/release, 

circulation times, cell uptake, and cytotoxicity. Therefore, it may be desirable to develop 

a carrier system that has the ability to be excreted without additional design complexity. 

For a hard sphere system, such as quantum dots, this implies a strict particle size limit,
26

 

which may negatively impact payload or may result in clearance through lymphatic 

drainage.
27

 However, soft conformable nanoparticles that are able to deliver a large cargo 

yet are flexible enough to fit through small pores are a potentially attractive alternative. 

One example of such a construct is that of hydrogel colloids (i.e. nanogels or microgels), 

which are nanoparticles that can be dramatically compressed, due to their significant 

network flexibility.
28

  

Herein, we describe the first demonstration of microgel translocation through 

cylindrical pores under pressure differentials relevant to renal filtration. We observe that 

microgel particles easily pass through such pores, even when the opening is >10 fold 

smaller than the unperturbed microgel diameter. For this study, track-etch membranes 
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were used as the model for pores in the renal system. As shown in Scheme 3.1, track-etch 

membranes were placed into gasket-sealed syringe filter holders and placed onto a luer-

lock syringe that was enclosed at one end. A fluorescently-labeled microgel dispersion 

was added to the syringe and ~0.5 psi of hydrostatic pressure was applied from a 

compressed air cylinder to the head space of the syringe. Eluant was then be collected 

and analyzed by steady-state fluorescence. 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3.1. Scheme of filtration setup and microgel filtration through a track-etch 

membrane.
29

 

 

3.2 Experimental 

3.2.1 Materials 

 Monomers N-isopropylacrylamide (NIPAm; Aldrich) and N-

isopropylmethacrylamide (NIPMAm) were recrystallized from hexanes (Fisher 

Scientific) before microgel synthesis. The fluorescent monomer 4-acrylamidofluorescein 
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(AFA) was previously synthesized.
30

 Cross-linker N,N’-methylenebis(acrylamide) (BIS; 

Aldrich), ammonium persulfate (APS; Aldrich), and acrylic acid (AAc; Fluka) were all 

used as received. The polystyrene (PS) standards (Duke Scientific) were diluted in a 

0.003 wt% surfactant (sodium dodecyl sulfate (SDS; Aldrich)) solution. The track-etch 

membranes were purchased from Sterlitech (Kent, WA). The pH 7 buffer was a 10 mM 

(IS = 100 mM) phosphate buffer and the pH 3 buffer was a 10 mM (IS = 100 mM) 

formate buffer. All water used in the experiments was purified to 18 mΩ (Barnstead E-

pure system). 

3.2.2 Microgel Synthesis 

 The larger microgels were synthesized by precipitation polymerization of NIPAm, 

BIS (1 or 3 mol%), AFA (0.02 mol%), and AAc (10 mol%) with a total monomer 

concentration of 100 mM in 100 mL. All components were dissolved in distilled, 

deionized water and stirred under a nitrogen purge while heating to 68 °C. Then APS 

(0.01 mM) was added to initiate the reaction. The reaction was allowed to stir under 

nitrogen at 68 °C overnight. For the smaller microgel synthesis, NIPMAm was used with 

BIS and AFA, in the same manner except 8 mM SDS was added to stabilize the l 

particles, the syntheses were performed at 70 °C, and 8 mM APS was used.
31

 All particle 

solutions were filtered and purified via centrufucation. The samples were then freeze-

dried for storage. 

3.2.3 Microgel Characterizations 

 Dynamic light scattering (DLS) was used to determine the hydrodynamic radius 

(Rh) under different pH conditions as described earlier.
32,33

 This was done with a Wyatt 

Technologies DynaPro plate reader DLS using a laser wavelength of 830 nm. Scattering 

intensity fluctuations were detected for 10 s per reading by an avalanche photodiode at 

and angle of 158° (back scattering) from the incident laser. Dynamics software (Wyatt 
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Technologies Corp.) was used to calculate and fit an autocorrelation function plotted 

from the random fluctuations in scattering intensity. These fits of the autocorrelation 

functions were used to calculate the diffusion coefficients and then through the Stokes-

Einstein equation, the Rh. The plate reader DLS provided the opportunity to use small 

volumes (50 μL) of particle solution and to run different aliquots in series without further 

sample preparation. Particle electrophoretic mobility measurements were carried out in 5 

mM ionic strength HEPES (pH 7.4) and formate (3.0) buffers by electrophoretic light 

scattering with a Malvern Instruments Zetasizer. 

3.2.4 Passage Experiments 

 Syringes (30 mL) were used for the filtration experiments by removing the 

plunger. Epoxy was used to seal a septum stopper in the top of the syringe. A 

manufacturer-supplied, luer lock membrane holder was used to hold the 25-mm radius 

membranes at the end of the syringe. The holders and syringes were sonicated and rinsed 

with a dilute Alconox solution and distilled, deionized water before assembly and use. 

After clamping the syringe vertically, a particle solution (~ 4 mL) was injected through 

the septum at the top of the syringe. Lastly a needle attached to a step-down (0 - 15 psi) 

regulator was placed into the septum to control the hydrostatic pressure. A particle 

solution of approximately 2 mL was collected which took anywhere from 4 to 8 hrs for 

the 100 nm pore experiments and 24 hrs to 48 hrs for the 10-nm pore experiments. After 

collection, all solutions were analyzed on a steady-state fluorescence spectrometer 

(Photon Technology International), equipped with a Model 814 PMT photon counting 

detector. For all microgels containing fluorescein the excitation wavelength was set to 

490 nm and emission was detected between 500-600 nm. For the polystyrene standards, 

excitation was set to 468 nm and emission was collect from 480-600 nm based on the 

literature from the manufacturer. Then the fluorescence at peak max [515 nm (μGels) 508 

nm (pS)] of the solutions was recorded. Readings of particles in pH 3 buffer were done 
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by spiking and aliquot of 0.5 mL of sample with 50 μL of a 100 mM pH 9 borate buffer 

to raise the pH to ~ 8 so that fluorescence would not be quenched. All data was analyzed 

by a Q-test and outliers at the 95% confidence interval were removed from the data set. 

The Q-test was done to remove any statistically irrelevant data. Also, the stars in the data 

sets represent data that is statistically different from the 88-nm pStyrene control at a 95% 

confidence level determined by a t-test. Standard curves for each particle type and pH 

condition were made by serial dilutions around the concentrations that passed through the 

membrane. Then using linear regression the background-subtracted fluorescence from the 

filtration experiments was used to calculate concentrations.  

3.3 Results and Discussion 

 The microgels used in this study were prepared via co-polymerization of N-

isopropylacrylamide (NIPAm), acrylic acid (AAc, 10 mol%), and 4-

acrylamidofluorescein (AFA, 0.02 mol %) with N,N’-methylenebis(acrylamide) (BIS) as 

a cross-linker. The microgel sizes as a function of pH (pH dependence arises from the 

AAc co-monomer) are shown in Table 3.1. The 1% cross-linked particles were 

approximately 1140 nm in diameter fully swollen at pH 7, whereas the 3% cross-linked 

microgels were smaller (648 nm) as expected due to the increased cross-linking. Also, the 

deswelling due to protonation of the AAc at pH = 3 was 43% for the 1% and 30% for the 

3% cross-linked microgels. Thus, these two microgel types provided two different sizes 

with two different pH-dependent compressabilities to investigate the generality of the 

phenomenon. Note that the cross-linking density difference only should account for a 

small difference in swollen particle elastic modulus (~8 kPa vs. ~13 kPa) based on 

previous bulk gel literature.
34

 More important than the differences in the microgels is the 

fact that both are significantly larger than the 100 nm track-etch membrane pores. For 

comparison, volume conserving, rigid polystyrene beads with diameters of 200 nm 



 72 

(negative control) and 88 nm (positive control) were used in identical filtration 

experiments.  

 As shown in Figure 3.1, after filtration the unfiltered solutions and the resulting 

eluants were analyzed by steady-state fluorescence spectroscopy, fluorescence 

microscopy, and bright field microscopy. The spectra of 3% particle solution unfiltered, 

filtered, and a buffer solution are shown. Also shown in Figure 3.1, a more concentrated 

solution of the same microgels was filtered through the 100 nm track-membranes and the 

solutions before and after filtration were dried on glass cover slips and analyzed via 

optical microscopy. Since the track-etch membranes have an extremely small pore 

density (100 nm pores: 4 pores/μm
2
; 10 nm pores: 6 pores/μm

2
), they do not allow for a 

high flux of particles, even if they are smaller than the pores. Therefore, steady-state 

fluorescence was used for quantification of the polymer mass passed through the filter. 

The fluorophore loading of the microgels and control polystyrene particles is not equal, 

however the unfiltered solutions contained the same polymer weight percent (wt%). 

Therefore, calculation of the particle wt% in the filtered solution allowed for fair 

comparison of particle flux. The background-subtracted fluorescence was converted to 

polymer wt% by creating standard curves of background-subtracted fluorescence to wt% 

for each particle at each pH condition. 

   

Table 3.1. Hydrodynamic radii (Rh) and swelling properties of microgels under different 
pH conditions.  

Particle Type Rh (nm) 

pH 7.4 

Rh (nm) 

pH 3.0 

ζ (mV)  

pH 7.4 

ζ (mV)  

pH 3.0 

D %* 

1% x-link µGel 570 324 − 20.5 − 4.1 43 

3% x-link µGel 433 303 − 17.3 − 3.3 30 

88 nm PS 48 46 N/A N/A N/A** 

200 nm PS 101 96 N/A N/A N/A** 
All Rh values were determined by DLS @ 25 °C. 
All ζ potentials were determined by electrophoretic light scattering 
*pH dependent deswelling percentage. 
**No statistical difference in radii between pH 3 and 7. (t-test 95%) 
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Figure 3.1. Fluorescence spectra, a) and b), of a 0.01 wt% solution of 3% cross-linked 

microgels (Dh = 648 nm) before (green) and after (green dotted) filtration through 100 nm 

pores at pH 7. The blue-dashed line represents pH 7 buffer. The spectrum of the filtrate is 

an average of 4 spectra. Panels (c), (d), and (e) are fluorescence microscopy images 

before and after flitration and a bright field microscopy image after filtration of the same 

microgels. Scale bar = 5 μm 

 

 The data in Figure 3.2 display the surprising result that the flux of both microgel 

types at pH = 7 was equal to that of the much smaller PS positive control. A greater 

difference between the microgels and the PS control is observed when the overall particle 

concentration is increased, Figure 3.3. We tentatively ascribe this concentration 

dependence to jamming of the PS particles in the pores (vide infra). It appears, however, 

that the deformable microgel particles do not display jamming effects at pH = 7, 

presumably due to their conformational flexibility and Columbic interparticle repulsion 

(see Table 3.1 for measured ζ potentials) during passage. 

Two pH conditions were studied to evaluate the influence of microgel swelling on 

passage through the pores. At low concentration (Figure 3.2), the flux of the 1% cross-

linked microgels at pH 3 is indistinguishable from the background. However, at pH 7 the 

1% microgels pass readily through the pores, presumably due to the increased flexibility  
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Figure 3.2. Filtration comparison of 1% and 3% microgels, 88 nm polystyrene, and 200 

nm polystyrene particles (0.001 wt%). Error bars represent the uncertainty over 3 or 4 

filtration experiments. Stars represent statistically significant data at the 95% confidence 

interval relative to 88 nm polystyrene at pH 7. Red squares are the hydrodynamic radii of 

particles at pH 7. Blue triangles are hydrodynamic radii of particles at pH 3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Filtration comparison of 1% and 3% microgels, 88 nm polystyrene, and 200 

nm polystyrene particles (0.01 wt%). Error bars represent the uncertainty over 3 or 4 

filtration experiments. Stars represent statistically significant data at the 95% confidence 

interval relative to 88 nm polystyrene at pH 7. Open circles are the hydrodynamic radii of 

all particles at pH 7. Filled triangles are hydrodynamic radii of all particles at pH 3. 
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of the swollen microgel, and decreased jamming due to Coulombic particle-particle 

repulsion. In the case of the 3% cross-linked microgels, there seems to be no difference 

between the two pH conditions. This is curious since both microgel types have a similar 

size at pH 3. Therefore, it could be the case that for this concentration and size, a 

jamming limit is being approached, and subtle differences in microgel modulus and 

interparticle potential produce large changes in pore passage. This is almost certainly the 

case when the concentration is increased further (Figure 3.3, 10-fold concentration 

increase); the observed flux for the microgels at pH 3 is much lower than that of the 

microgels at pH 7. This again suggests a jamming effect when the more rigid and less 

repulsive microgels try to fit through the small pores. This effect is emphasized by 

increasing the concentration another order of magnitude to 0.1 wt%, as shown in Figure 

3.4. This figure shows that as the feed concentration increases only the flux of the 3% 

cross-linked particles in there fully swollen state (pH 7) increases, suggesting that the pS 

and deswollen microgels are jamming. It should be noted, however, that when the 

concentration is increased to 1 wt%, the passage increases for the microgels at both pH 7 

and pH 3. The origin of this observation is still under investigation, but given our 

previous studies of microgel phase behavior at such concentrations,
35-37

 it is likely that 

particle-particle interactions strongly perturb the actual hydrodynamic radii under these 

conditions. It should also be noted that the particle to pore size ratio of ~10:1 appears to 

be the rough limit for these particles, as larger microgels (Dh ≥ 1.5 μm) did not appear to 

pass through 100 nm pores. 

 Having observed that pNIPAm-AAc microgels are able to translocate through 

pores 10 times smaller in diameter, we investigated the generality of this phenomenon to 

smaller pore sizes with more biologically relevant dimensions. Here, track-etch 

membranes with 10 nm pores were used in the same experimental setup (Scheme 3.1) 

with the same applied pressure differential of ~0.5 psi. The particles used in this 
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Figure 3.4. Normalized wt% passed versus feed concentration of 3% microgels at pH 3 

and pH 7 and 88 nm pS at pH 7. The wt% passed was normalized to that as the lowest 

feed concentration. 

 

experiment were fluorescent pNIPMAm microgels with a dilute solution diameter of 116 

nm; 88 nm diameter fluorescently-labeled polystyrene beads were used as a negative 

control. The synthesis of the microgels has been published previously and is discussed 

briefly in the experimental section.
31

 As shown in Figure 3.5, even at these smaller 

dimensions, the microgels still pass through the pores (pH 7) while the negative control 

does not. These data are compelling due to the similarity in pores size and pressures 

between those found in the kidney and used in these experiments. Also, it should be 

noted that when various FITC-dextran (fluorescein isothiocyanate–dextran) samples 

(MW = 20 or 150 kDa) were used as a positive control, they readily passed through the 

pores, as expected for a random chain flexible polymer. 

 Although the fundamental mechanisms underlying these observations are not 

understood quantitatively, the biology and physiology community has studied the 

glomerular filtration rate of macromolecules for many years.
17-20,38,39

 It has been found 

that linear polysaccharides such as dextran have a much greater filtration rate and larger 

hydrodynamic radius cutoff than do proteins, due to the rigidity and well-defined 

secondary structure of the latter.
17
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Figure 3.5. a) Fluorescence spectra of 0.001 wt% solutions before (solid) and after 

(dotted) filtration through 10 nm pores of 116 nm microgels (black) and 88 nm 

polystyrene beads (gray). After filtration spectra is an average of 4 spectra. b) Filtered 

wt% comparison of 116 nm microgels and 88 nm polystyrene. Diamonds are 

hydrodynamic radii of particles at pH 7. 

  

 Also, the soft matter community has extensively studied the passage of polymers 

through pores.
40-43

 Translocation of a linear polymer through pores or in confined spaces 

is generally most probable if the polymer can go end first through the pore (as opposed to 

folding). Likewise, it has been found that a branched polymer has a higher probability of 

passage through a pore if more than one chain end can find the pore opening.
15

 Therefore, 

a polymer nanoparticle with low connectivity and many different chain ends may have 

the conformational freedom to pass through a pore much smaller than its dilute solution 

diameter, due to the high number of energetically degenerate conformations with 

statistically identical passage probabilities. Also, the compressibility of these particles 

should be considered. For example, it has been shown that the combination of polymer 

and colloidal osmotic pressures, in a colloidal crystal of pNIPAm microgels was able to 

induce the dramatic deswelling of a much larger microgel “defect”.
28

 In that case the 

“defect” was compressed to a volume 15 times smaller than its dilute solution 

equilibrium volume, without imposing any direct mechanical force to the particle. It is 

therefore not unreasonable to hypothesize that similar microgels could adopt a 

configuration in which many chains enter the pore under a driving pressure differential, 
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followed by particle collapse/compression, and subsequent re-swelling as it emerges from 

the other side of the membrane. 

3.4 Conclusions and Outlook 

 We have observed phenomena that illustrate the ability of hydrogel microparticles 

to pass through pores at least 10-fold smaller in size under hydrostatic pressures relevant 

to renal filtration. This extremely surprising result can be rationalized by considering the 

extreme softness of these nano-objects and conformational flexibility of the polymer 

chains comprising the particles. Importantly, we have illustrated the generality of the 

phenomenon to absolute pore sizes that are relevant to renal filtration by using nanogels 

appropriate in size for injectable drug delivery formulations. These studies illustrate the 

importance of considering the mechanical flexibility as a critical design component of 

nano-biomaterials. This network flexibility and compressibility of microgels is not only 

interesting in terms of their performance as biomaterials for drug delivery but is also of 

fundamental interest, as soft colloid physics has become a vibrant field of study. Indeed, 

both the fundamental physics of microgel softness and the biological impacts thereof 

have been and continue to be an active area of investigation within our research group. 

3.5 Implications of Softness 

 Obviously, here the idea of softness is referring to the ability of a microgel to 

squeeze into and through small areas. These microgels do have a low modulus, probably 

in the 10-1000 Pa range based on previous studies.
44

 However, this is the modulus 

assuming the volume is conserved and all chains are fully hydrated, but the ability for a 

microgel to fit into a small space not only involves deformation but also has the 

possibility of deswelling. The ability of the particles to deswell and deform comes from 

the fact that a microgel is comprised of hydrated flexible chains and gives these types of 

particles a different meaning of softness. 
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CHAPTER 4 

RESISTIVE PULSE ANALYSIS: BACKGROUND AND 

EXPERIMENTAL 

 

4.1 Introduction 

4.1.1 General Principle 

 Resistive pulse analysis (RPA) is a technique based on electrochemical cell in 

which two electrolyte solutions are separated by a single pore. An electrode is placed in 

each solution and an electrical bias is placed between them. This creates an ion flow 

between the two electrodes through the pore and the magnitude of the current is 

determined by the electrical bias and the characteristics of the pore such as size, shape, 

surface charge, and electrolyte concentration. The main principle is based on the passage 

of an object, which could be a protein, cell, or colloidal particle, through the pore 

interfering with the current flow by occupying a percentage of the pore volume. 

Successful detection of the desired species is dependent on the ratio of pore volume to 

volume of the analyte; large volume exclusion from the pore changes the measured 

current flow. The name of this technique comes from the fact that as this species passes 

through the pore it most often suppresses current creating a brief resistive pulse in the 

current versus time trace (Scheme 4.1).  
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Scheme 4.1. Scheme of Resistive Pulse Analysis (RPA). 

 

4.1.2 Brief History 

The principle briefly described above is called the Coulter principle, patented by 

Wallace Coulter in 1953 (Scheme 4.2).
1
 He and his brother, Joe, started the Coulter 

Corporation which marketed and sold the first commercial Coulter counter in 1956 for 

counting microparticles and cells.
2
 The company was then bought by Beckman 

Instruments, Inc. in 1997 and is now known as Beckman Coulter, Inc. According to the 

Beckman Coulter, Inc website, the current Coulter counters can count and size particles 

from 0.4 μm to 1600 μm. Some of the first counters to focus on particles were developed 

by Deblois and co-workers.
3-9

 Many different researchers since then have made home-

built systems to study their particular analyte of interest. As described below, much of the 
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development here was to study particles or molecules smaller than the commercial 

instruments can detect. It should also be noted that the first commercial device with a 

tunable pore size is on the market called the qNano manufactured by Izon, Inc.
10

 This 

allows for the analysis of a wide range of sizes without changing the pore itself which is 

common in most instruments where the pore dimensions are fixed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 4.2. Schemes from Walace Coulters 1953 patent. US Patent 2656508.
1
 



 86 

4.1.3 Devices and Applications 

Although, a commercial Coulter Counter has been on the market for over 60 

years, many researchers have been developing ways of studying their particular flavor of 

analyte by developing their own system.
11-16

 These systems push the limits of the 

currently commercially available systems by tuning sensitivity, selectivity, sample 

preparation or sample introduction. In most cases, in order to achieve these goals a new 

pore platform was introduced. Scheme 4.3, published in a nice review by Kozak et.al., 

outlines the developments over the years.
16

 This scheme shows different pore types, 

platforms, and analytes that have been considered. In the following sections, examples of 

synthetic pores and biological pores and their respective analytes will be discussed.  

 

 

Scheme 4.3. Scheme showing the development of RPA systems.
16

 

 

4.1.3.1 Synthetic Pores 

 There are many different types of synthetic  resistive pulse devices including SiN 

pores,
17

 polymer pores,
18

 micropipette pores,
19

 carbon nanotube pores,
20-23

 graphene 
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pores,
24

  flexible pores,
25

 pores incorporated into microfluidic devices,
26

 and  glass 

capillary pores.
27

  A very nice recent review of all nanoscale electrochemical techniques 

was published in Analytical Chemistry by Oja, et al.
28

 Here, some examples of each pore 

type will be discussed.  

 The first example of a silicon nitride pore was made by using a focused ion beam 

(FIB) to mill a small cavity (60 nm) in one side of a Si3N4 membrane deposited over a 

small hole in a silicon substrate. Then an Ar
+ 

ion beam with a larger focus was used to 

mill away the opposite side of the membrane until a small few nanometer hole was 

created at the bottom of the previous formed cavity.
29

 Then these pores were used to 

analyze translocation events of different length dsDNA.
30

 Passage events where the DNA 

passed straight through the pore one end at a time and events where the two ends of the 

DNA entered together as it passed through were characterized. Recently, similar pores 

fabricated using e-beam lithography and reactive ion etching was used to fabricate silicon 

nitride pores which were then coated with Au.
31

 The gold surface was then used as a 

substrate to attach receptors for proteins which allowed for detection of specific proteins 

in a mixed sample as well as the ability to determine dissociation rates.
32

 

 One interesting polymer pore was formed by first forming a thin polymer 

membrane over a 2 mm hole in a Teflon substrate using a thermoplastic.
18

 Then after 

punching a large 200 μm hole in the membrane, laser heating was used to melt the plastic 

and therefore shrink the pore to diameters of ~ 8 nm. These pores were then used to 

detect DNA passage. Modified polymer track-etch membranes have also been used as 

nanopore devices.
33,34

 In this case, tracked membranes were purchased prior to their 

chemical etching into the cylindrical pores. This etching was performed in-house where a 
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special single-side plasma etch was performed in order to create a conical pore opening.
33

 

This etching was optimized to create conical pores with small side openings of less than 

100 nm.
35

  Gold plating and subsequent PEG-thiol functionalization to the interior of 

these pores has been done and the transport properties of proteins through these pores has 

been studied.
34

  

 Methods have also been developed using pulled pipettes as pores. DNA has been 

detected using pulled pipettes as well as ion binding to a functionalized nanopipette 

tip.
19,36-38

 A technique using pipette pulling has also been develop to for a glass 

nanochannel by sealing a small piece of the pulled pipette into another micropipette.
39

 

These pores were 100 nm to 5 nm in diameter and the transport properties of DNA and 

polystyrene particles were studied.  

 Carbon nanotube Coulter counter devices have been fabricated by embedding a 

single carbon nanotube in epoxy developed by Crooks and co-workers.
23

 It was shown 

that the electrokinetic mobility, particle count, diameter, and transport times of charged 

polystyrene spheres of approximately 60 nm in diameter could be determined using this 

technique.
20-22

 A detailed comparison with common nanoparticle characterization 

techniques such as dynamic light scattering (DLS) and transmission electron microscopy 

(TEM) was also done highlighting the advantages to single particle measurements in 

solution.
20

 

 Single or multiple sheets of graphene with single pores created by an electron 

beam have also been created.
24,40-42

 These device have the advantage of not only having 

sub-10 nm pores but also being extremely thin. This small thickness provides an 

extremely small and therefore sensitive sensing zone. Graphene devices have been 
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applied to the study of transients of different conformations of DNA as it passes through 

the pore.
41

 It was also shown that due to the ultrathin graphene a single base enters and 

leaves the sensing zone one at a time suggesting that it might be possible to perform in 

situ sequencing.
42

 

 A very interesting idea for increasing the utility of a pore and its dynamic range is 

to create a tunable pore.
25,43-47

 The pores are advantageous because a fixed pore only has 

a small range of possible analyte sizes. In addition it allows for an easier clearance 

mechanism for clogs that occur in the pore. Microparticle, nanoparticles and viruses have 

been sensed using these pores. These conical pores are formed in a cross-shaped 

thermoplastic by mechanically puncturing it with an electrochemically sharpened W rod. 

The pore size is adjusted by mechanically pulling on the 4 ends of the cross, which 

stretches the pore.  

 Another interesting advancement in resistive pulse analysis has been its 

incorporation into microfluidic platforms.
26

 As with most technologies that have been 

incorporated into microfluidics this platform allows potential for low sample volume, 

high sample throughput, multiplexed sample analysis, increased statistics, and portability. 

In one case, a device was fabricated with the idea of being able to mix cells with different 

molecules and then analyze the resulting sample.
48

 As a demonstration they showed that 

the device could count and distinguish between 5 μm, 10 μm, and 15 μm particles as well 

as between fibroblast cells and microspheres. In a similar application multiple Coulter 

counter pores in a microfluidic device were used to improve accuracy of differentiating 

between different sized PMA (polymethacrylate) particles and two different types of 

pollen.
49

 The same group also developed a device with parallel apertures that allowed for 
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a 300% increase in polystyrene particle counting rate for a high throughput counting 

device.
50

  A similar device was able to distinguish between PMA particles and pollen at 

the same counting rate.
51

 The idea of using multiple apertures was extended also to virus 

counting.
52

 In another device, a particle analysis of 500,000 particles per second was 

performed using mixtures of 3 different sized polystyrene particles and then mixtures of 

phage and polystyrene particles.
53

 Here, phage infected whole mouse blood could also be 

distinguished from uninfected whole mouse blood. This demonstrates the ability to 

recognize contaminates with a high background. The authors also pointed out that 

because of the high throughput nature of this device statistics on rare events could be 

collected. In another case it was shown that soluble antibodies could be detected by 

monitoring the size of an antigen functionalized colloid.
54

 As antibody bound the colloid 

the apparent size of the particle increased. Also, antibodies have been functionalized to 

the pore to detect proteins on the surface of a cell.
55

 As the cells flowed by the resonance 

time in the sensing zone increased if there were specific interactions between the cell and 

the pore bound antibodies. These microfluidic devices may be a great option for fast 

characterization and have the potential for commercial use. 

The last example is the one developed by the White group at the University of 

Utah. This method is the one described in detail in this chapter and is one which creates a 

single pore in the end of glass capillary.
27

 The White group has studied nanoparticle 

transport through these pores.
56

 In collaboration with our group, we studied the transport 

of microgels that were larger than the pores and these experiments will be the subject of 

Chapter 5.
57,58

 This concept was then extended to multi-laminer liposomes by the White 

group.
59
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4.1.3.2 Biological Pores 

 An interesting alternative to trying to fabricate very small pores for applications 

like nucleotide recognition, is to use a biological pore, These pores have very small and 

well defined geometries and sizes. One of the most common examples is α-hemolysin.
60

 

This is a toxin secreted by bacteria that will form a water filled pore in a cell lipid bilayer 

membrane and can increase water flow and ion flow resulting in osmotic death of a cell. 

There are three advantageous properties of this channel. First, the smallest point is 1.4 nm 

wide meaning that it has the potential to distinguish between very small differences 

between analytes. Second, the small channel is hydrophilic meaning that it is easy to 

hydrate. Third, this channel is a self-assembly of 7 protein subunits that will assemble 

only in a lipid bilayer allowing for dissolution of the subunits into a continuous phase and 

spontaneous assembly into a supported lipid bilayer. There are many example of using 

the α-hemolysin channel to detect and possibly sequence DNA.
61-65

 More recently, the 

White group at the University of Utah developed a method of suspending a lipid bilayer 

over the opening of a glass capillary nanopore and monitoring α-hemolysin ion channel 

formation in the bilayer.
66

 They then monitored protein binding to the channel.
66,67

 Next, 

this group tracked the effects of multiple channels forming in the bilayer and passage of 

oligios of a single nucleotide base.
68-71

 Then detection of single base mutations has been 

attempted by detection of different adducts in a long chain of bases.
72

 Then oxidative 

mutations were detected by hybridizing a small probe DNA stand which then depending 

on the strength of binding would unzip at different rates as it passed through the 

channel.
73,74

 Mutations were also detected by functionalizing the mutated bases with a 

crown ether and then as it passes through the channel the bulky and cation bound ether 
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could be detected as a larger blockage.
75,76

 Other strategies to slow down the DNA 

translocation for a better chance at increasing the differences between bases passing 

through the pore have included different modifications to the α-hemolysin channel.
77-80

 

Also, functionalization of different molecules to the channel has allowed for detection of 

other organic molecules.
3,8,9

 Evident is the effort from researchers to create a strategy to 

detect mutations and ultimately sequence DNA using RPA which is an inexpensive and 

fast analysis technique.  

4.2 Experimental Setup 

4.2.1 Conductivity Experiments 

 Scheme 4.4 shows our RPA setup. For conductivity experiments, a Dagan 

Corporation Chem-Clamp voltameter-amperometer with a preamplifier (0.05-1 nA/V) 

supplied the constant voltage bias and monitored the sample current. Data was collected 

at 1 x 10
5
 Hz and averaged over 1 x 10

4
 points. The Dagan voltameter was interfaced 

with a PC through a NI-PCIe-6320, X-series DAQ with a BNC-2120 shielded connector 

block and experiments were run in a LabView program written in house by the White 

group. The nanopore conductivity was monitored by placing an electrolyte solution inside 

and outside of a nanopore capillary with an Ag/AgCl (1 mm) electrode in the interior and 

exterior solutions. Then a constant bias (usually 100 mV) was placed between the two 

solutions and the current flow was monitored. In the pressure driven experiments a 

special air-tight capillary holder was used that housed both the capillary and the Ag/AgCl 

electrode. Then the pressure was changed by attaching a 10 mL syringe and either pulling 

or pushing to change the pressure differential between the inside and outside of the 

capillary. The pressure was monitored by a digital pressure gauge. This allowed samples 

to be pulled into or driven out of the nanopore. Keeping the nanopore clean is very 
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important and so prior to and after experiments the pore was rinsed with a number of 

solvents and electrolyte solutions including: ethanol, methanol, nanopure H2O, and the 

electrolyte solution used for the experiment. Also, very gentle sonication in water can be 

done to try and clear the nanopore of debris.   

 

 

 

 

 

 

Scheme 4.4. Scheme showing the development of overall RPA setup.  

 

4.2.2 Voltammetry Experiments 

 Voltammetry was mainly performed to diagnosis the nanopore size as well as the 

Pt electrode size that is created during nanopore fabrication as described in Section 4.3.3. 

The voltammetry experiments were also performed using the Dagan Chem-Clamp 

voltammeter except the voltage sweep was supplied to the Chem-Clamp device by a Pine 

Instruments potentiostat. The signals were sent to the PC through the same DAQ and 

monitored using LabView. Here, a two electrode setup was used. In the case of 

measuring the size of the Pt disk electrode created during nanopore fabrication, an 

Ag/AgCl (3M NaCl) electrode and the Pt disk electrode were used in a ferrocene in 
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acetonitrile solution. However, when measuring the nanopore size, two Ag/AgCl 

electrodes were used one inside and one outside of the capillary in a KCl solution. 

4.2.3 Pt Etching 

 Two steps in the fabrication of nanopores calls for Pt etching. In one step Pt wire 

is etched to sharpen the tip and in another the Pt wire sealed in glass is etched out to 

create the nanopore. In both cases, an Agilent waveform generator is used and both 

setups are shown in Scheme 4.5. Briefly, for sharpening the Pt tip a NaCN, KOH 

solution is used with a Pt counter electrode. In the case of etching the Pt out of the 

nanopore a CaCl2 solution was used with a Pt counter electrode. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 4.5. Scheme showing the Pt etching setups.  

 

4.3 Nanopore Fabrication 

4.3.1 Materials 

 For pore fabrication, Pt wire (99.95% purity; 25 μm diameter; Alfa Aesar), 

tungsten rods (0.010 in diameter; 3 in in length; FHC, Inc), and glass capillaries (1.65 

mm O.D.; 0.75 mm I.D.; softening point 700 °C; composition 67.7% SiO2, 2.8% BaO, 
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15.6% Na2O, 5.6% CaO, 4% MgO, 1.5% B, and 0.6% K2O%; Dagan Corporation 

(SB16)), and Ag paint (FHC, Inc) were used. During fabrication the following chemicals 

are used for various tasks as outlined below: NaCN, KOH, and CaCl2 all used as received 

from Sigma. A Loctite® 0151™ Hysol two-part epoxy was also used. Polishing materials 

from Buehler were used and more specifically Microcut silicon carbide wet and dry 

grinding paper, (P800, P2400, P4000), Microcloth PSA (2-7/8 inchs), and Micropolish II 

(0.05 μm). After pore fabrication, ferrocene (100%, Alfa Aesar), Tetra-n-butylammonium 

hexafluorophosphate (TBAPF6, Sigma), acetonitrile (Sigma), KCl (Sigma), bleach and 

Ag wire (1 mm diameter, Sigma) were all used during different diagnostic steps. All 

water used in experiments is DI water run through a Barstead Nanopure filtration system 

until the resistance is 18 MΩ. 

4.3.2 Fabrication 

 To fabricate glass nanopores a method developed by the White group at 

University of Utah was used.
27

 Here, the particular methods used in our group and for the 

experiments discussed in Chapter 5 will be described and are outlined in Scheme 4.6. 

First, a 1-2 cm long section of the 25 μm Pt wire is cut and attached with a small 

drop of Ag conductive paint to the end of a 3 in long by 0.010 in diameter tungsten rod. 

A small bend or kink should be put in the W rod. Next, the Pt wire/W rod assembly was 

threaded through a glass capillary (1.65 mm 0.D., 0.75 mm I.D.) with just the end of the 

Pt sticking out of the capillary (Scheme 4.6). The W rod allows for the maneuvering of 

the small piece of platinum wire inside and out of the end of the capillary and the kink in 

the rod does not allow for it to fall out of the capillary. Using a gloved finger the 

platinum wire is straightened and centered in the middle of the capillary. Here, you can 
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check the position and whether or not the tip of the platinum is bent with a microscope. 

The Pt wire being positioned in the exact center is not necessary; however, the wire 

should be as parallel to the walls of the capillary as possible. Now, there should be a 

centered Pt wire attached to the end of a bent tungsten rod inside of a glass capillary.  

 

Scheme 4.6. Scheme showing the fabrication process of the glass nanopores. Top images 

are zoomed in versions of key steps and the photograph is of a completed pore with an 

Ag/AgCl electrode inside of it. 

 

 The Pt wire is now sharpened to create a small diameter tip. The wire is protruded 

through the end of the glass capillary and the whole assembly is placed in a holder which 

can be lowered with a micromanipulator. This process is very similar to how many 

scientists fabricate scanning tunneling microscopy (STM) tips.
81

 A 6 M solution of NaCN 

in 0.1 M KOH is made to use as the sharpening solution. Then, a platinum electrode and 
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the Pt wire through W rod are hooked to different poles of a function generator as shown 

in Scheme 4.5. Then a sine function at 3.6 V amplitude and 100 Hz frequency is run 

between the two electrodes. Just before starting the AC sweep, the tip of the Pt wire is 

inserted into the solution. Then the AC sweep is turned on a as the Pt is etched away 

bubbles form when the bubbles stop forming the sweep is stopped and the tip is rinsed in 

water. An example of a sharpened platinum tip is shown in Figure 4.1.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Top left: SEM image of the sharpened Pt tip (Scale bar: 20 μm) Top right: 

SEM image of sharpened tip (Scale bar: 100 nm) Bottom: Confocal imaging done of a 

nanopore filled with a fluorescein solution. Single plane at the pore opening shown on 

left and the 3D reconstruction shown on right (scale bar in μm). 

 

 Next the platinum tip is pulled back into the capillary using the tungsten rod. 

Then a hydrogen in air flame is used to melt the glass capillary around the sharpened 

platinum tip. The whole tip is not melted into the glass as to reduce the Pt etching 
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removal time. Next, the W rod is pushed into the capillary a little in order to reduce any 

strain on the Pt wire. Then a small amount of epoxy is placed around the W rod and open 

end of the capillary to hold the W rod in place. This is allowed to dry usually overnight.  

 Polishing is the most tedious and important step. Here, the melted end of the glass 

is carefully rubbed against grinding paper of increasing grit number until a smooth, flat, 

mirror-finish glass surface is achieved.  Care needs to be taken to make sure that the 

length of the capillary stays as perpendicular to the polishing surface as possible. In fact, 

often the tip of the capillary would be polished in a figure eight pattern to ensure that 

even if the capillary is held at a small angle in one direction that the same angle is 

produced in the reverse direction in order to even out the polished surface. During this 

polishing the surface is frequently inspected under a microscope for both surface angle 

and smoothness. This surface is slowly polished until it approaches the tip of the Pt. As 

this happens since the glass surface is smooth it can reflect an image of the Pt tip if the 

whole assembly is held at the correct angle under a microscope. This allows for some 

feedback on how soon the Pt tip should be exposed. The Pt tip and its reflection should 

look like they are approaching each other as polishing continues. Once they appear close, 

a wet polishing pad with a small amount of polishing powder is used to remove a tiny 

amount of material each pass. Also, here a conductivity sensor is used in order to 

determine when the Pt has been exposed. One lead of the meter is placed under the pad 

on top of an insulating material. The other lead is hooked to the W rod. The polishing pad 

and powder are wet with a conductive solution (1M KCl), which allows for the resistance 

between the end of the capillary and the polishing pad to be sensed. Therefore, when the 

Pt wire is exposed the resistance drops and the conductivity meter can give a visual or 
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audio signal. The White group published the original conductivity meter design
27

, 

however, Richard Bedell, (Electronics shop, Georgia Institute of Technology, School of 

Chemistry and Biochemistry) built and designed a similar unit in which the desired 

resistance level in could be tuned.  Since the resistance is proportional the diameter of the 

Pt wire cross-section that is exposed and that circle represents the size of the nanopore, 

the polisher, in theory, can dial in the approximate relative resistance desired before 

polishing and polish until a light is seen and a beep is heard. Practically, however, the 

meter was set on the highest resistance in order to make the smallest pore. While 

polishing, it is important to wear gloves to insulate hands from the different surfaces, and 

the W rod should be touched to the polishing surface once in a while to make sure that 

the meter is still functional. This should give an immediate feedback since the resistance 

here is much lower than any of the threshold settings. 

 Once polishing is complete, the platinum can be etched (Scheme 4.5). A function 

generator is again used to etch the Pt out leaving a conical pore (Scheme 4.6). One lead is 

attached to a Pt electrode and the other is connected to the W rod of the polished Pt 

electrode. Then, the a ramp function is used from +3.0 to -2.9 V at 1 kHz. This can be left 

for up to a couple weeks depending on size of the Pt surface and therefore the size of the 

pore. Once the Pt has been etched out from where it was sealed in glass, the glass is 

scored with a file, broken, and the epoxy and W rod side of the capillary is removed. The 

glass capillary nanopore is immediately rinsed with water and placed into a small vial of 

water for storage until needed. A confocal 3D reconstruction of a pore is shown in Figure 

4.1. The glass capillary was filled with fluorescein then cut down to be mounted pore side 
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down on an inverted microscope. Also pictured is the single plane confocal image taken 

at the pore opening. 

4.3.3 Diagnostics  

 During fabrication of a nanopore there are two important diagnostics that can be 

performed. The first is to measure size of the Pt disc electrode that is created after 

polishing is finished. Here, the predictable redox chemistry of ferrocene is utilized. A 5 

mM ferrocene solution with 0.1 M TBAPF6 in acetonitrile was used with a Ag/AgCl 

counter electrode. One lead is connected to the Ag/AgCl electrode and one is connected 

to the W rod on the Pt disc electrode. Then a cyclic voltammagram (CV) is collected 

sweeping voltage from 0.2  to 0.7 V at 10 mV/s. This should produce a classic disc 

electrode CV with an oxidation and reduction at 0.4 V shown in Figure 4.2. The 

magnitude of this oxidation and reduction change is proportional to the size of disc 

electrode and can be calculated via Equation 4.1.  

   
  

     
 

Equation 4.1. Calculation for radius of a disc electrode. n, F, C, and D are the number of 

electrons, Faraday’s constant, ferrocene concentration, and ferrocene diffusion constant, 

respectively. Δi is the difference between the baseline and plateau of the CV.  

 

 The second diagnostic which is most important is sizing the actual nanopore after 

etching. This can be done by assessing the current flow through the pore using known 

ionic strength solutions. A high ionic strength solution (1 M KCl) is used to reduce the 

effects of any charge on the pore surface. Then current is passed through the pore by 

placing a Ag/AgCl electrode inside the capillary and outside the capillary with 1 M KCl 

solution in both. Then a voltage sweep was done from -0.1 V to +0.1 V and the current 

was monitored (Figure 4.2). These electrodes were fabricated by soaking a silver wire in 

a bleach solution for 15 or 20 min. To calculate pore diameter, Equation 4.2 was used. 
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Equation 4.2. Nanopore radius calculation. θ, Rp, and κ are the half-cone angle, pore 

resistance and solution conductivity, respectively. θ can be measured by SEM or optical 

microscopy. 

 

 
 

Figure 4.2. Example of the CV of ferrocene used to size the Pt. disc electrode (left) and 

the ion flux as a function of applied potential used to size the nanopore (right). 

 

  

4.4 Summary 

 Resistive pulse techniques have been used nicely to count, size and identify 

different particles, cells, viruses, and proteins. In the coming chapter, efforts will be 

described using resistive pulse techniques to study the passage of microgels through glass 

nanopores that are smaller than their diameter. The mechanics of soft particles passing 

through small pores is an important characterization for use of these particles in 

biomedical applications.  
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CHAPTER 5 

RESISTIVE PULSE ANALYSIS OF MICROGEL PASSAGE 

THROUGH A NANOPORE 

Adapted from: 

Holden, D.A.;Hendrickson, G.;Lyon, L.A.;White, H.S. Resistive Pulse Analysis of 

Microgel Deformation During Nanopore Translocation. J. Phys. Chem. C 2011, 115, 

2999-3004. 

 

Holden, D.A.;Hendrickson, G.R.;Lan, W.J.;Lyon, L.A.;White, H.S. Electrical Signature 

of the Deformation and Dehydration of Microgels During Translocation through 

Nanopores. Soft Matter 2011, 7, 8035-8040. 

 

5.1 Introduction 

  The work presented in this chapter is written based on research that was 

performed in collaboration with the White group at the University of Utah, which 

resulted in two publications.
1,2

 Most of the experiments and data were performed and 

collected in the White labrotory; however, the conception of experiments, data 

interpretations, and synthesis and characterization of the polymeric materials were in 

large part our contribution. 

  Investigations into synthetic biomaterials for applications such as drug 

delivery, bioimaging, and tissue enginneeing have led to the construction of different 

design rules for these materials.
3,4

 The most common design rules encompass size, 

shape, topology, charge, and mechanics. These design rules are formed by studying 

the effects of each of the design rules on  properties such as circulation, cellular 

uptake, biological clearance, payload retention and delivery, and toxcicity. Until 

recently, the effects of the mechanical properties of the material had not been 

extensively studied. For 2- and 3- dimensional cellular substrates, studies have been 
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performed on the effects of their rigidity on cellular processes such as 

mechanotransduction, differentiation, adhesion, and proliferation.
5-9

 Likewise for 

nanoparticulate biomaterials, the effects of material mechanics on phagocytosis or 

endocytosis have been studied.
10,11

  A much more heavily investigated design rule for 

particles in particular has been size.
12-15

 The size requirements for many different 

biological processes involved in biomaterial drug delivery have been extensively 

characterized as shown in Scheme 5.1.
3
 For example, it has been shown for renal 

clearance of rigid quantum dots, the size limits are close to the 8 nm pores defined by 

endothelial gaps in the kidneys.
16

 However, all of these sizes assume a rigid particle; 

the size design rules might be much different for a soft particle. The mechanical 

flexibility of a nanoparticle could allow particles that do not fit the currently accepted 

size restrictions for biological tight junctions to actually deform and squeeze though 

them. One of the smallest juctions is in the kidneys and is utilized for renal filtration, 

and since renal clearance is an advantagous clearance mechanism for a nanoparticle 

biomaterials it is of particluar interest. 

  As shown in Chapter 3, we have studied the passage of soft particles though 

track-etch membranes 10-fold smaller than the size of the particles in dilute 

solution.
17

 In those studies, the soft, conformable particles were NIPAm-AAc 

microgels cross-linked by BIS. The particles were forced through the cylindrical 

track-etch pores under modest pressure differentials similar to those present in the 

kidney durring renal filtration (40-80 mmHg).
18-22

 The experiments were perfomed 

with large (~1 μm) microgels passing through 100 nm pores as well as small (~100 

nm) microgels passing through 10 nm pores. In the case of the small microgels, the 10 
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nm pores are close to the size of the pores in the kidneys (~8 nm), and the particles 

are similar to the nanogels our group has studied as siRNA drug delivery vehicles.
23-25

 

Although, these experiments are encouraging and provide insight into the flexibility 

of these microgels, they do not provide detailed information on the passage 

mechanism of a single particles. 

 

 

 

 

 

 

 

 

 

 

Scheme 5.1. Size restrictions in biological processes involved in drug delivery. 

Adapted from reference.
3
 

   

  To gain information about the passage of these particles through single pores, 

the resistive pulse analysis technique was applied to microgel passage through glass 

nanopores.
1,2

 As described in detail in Chapter 4, resistive pulse analysis involves 

measuring the change ionic current  as an object interferes with the current passing 

through a pore separating two electrolyte solutions.
26

 This technique has been applied 

to “hard”particles like polystyrene or gold particles,
27-35

 cells,
36-38

 viruses,
30,39-43

 and 
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biological molecules like protiens and nucleic acids.
44-50

 For “solid” particles, cells, 

and viruses this technique has been used to count, size, and identify the analyte in 

simple and complex mixtures. In the cases of biomolecules, attempts to study binding 

to pore supported ligands, protien or nucleic acid folding, and even DNA sequencing 

have been made. Here, we studied the translocation, deformation, and dehydration of 

the microgels through nanopores. The particular pores used here are conical glass 

nanopores formed in the end of a glass capillary.
51

 

5.2 Experimental 

5.2.1 Materials 

 Materials for hydrogel microparticle (microgel) synthesis are the same as in 

Chapter 3. Buffers and electrolye solutions were made from KCl, K2HPO4, and KH2PO4 

(Mallinckrodt Chemicals). Materials for nanopore fabrication include Pt wire (99.95% 

purity; 25 μm diameter; Alfa Aesar), tungsten rods (0.010 in diameter; 3 in in length; 

FHC, Inc), glass capillaries (1.65 mm O.D.; 0.75 mm I.D.; softening point 700 °C; 

composition 67.7% SiO2, 2.8% BaO, 15.6% Na2O, 5.6% CaO, 4% MgO, 1.5% B, and 

0.6% K2O%; Dagan Corporation (SB16)), and Ag paint (FHC, Inc). All water used in 

experiments is DI water run through a Barstead Nanopure filtration system until the 

resistance is 18 MΩ. 

5.2.2 Microgel Synthesis 

 Large microgels were synthesized by precipitation polymerization of NIPAm, BIS 

(1 mol %), and AAc (10 mol%) with a total monomer concentration of 100 mM in 100 

mL. All components were dissolved in distilled, deionized water and stirred under a 
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nitrogen purge while heating to 68 °C. Then APS (0.01 mM) was added to initiate the 

reaction. The reaction was allowed to stir under nitrogen at 68 °C overnight. All particle 

solutions were filtered and purified via centrifugation. The samples were then freeze-

dried for storage and then re-dispersed into desired concentrations. Dynamic light 

scattering (DLS) was used to determine the hydrodynamic radius (Rh) under different pH 

conditions.
52,53

 This was done with a Wyatt Technologies DynaPro plate reader DLS 

using a laser wavelength of 830 nm. Scattering intensity fluctuations were detected for 10 

s per reading by an avalanche photodiode at and angle of 158° (back scattering) from the 

incident laser. Dynamics software (Wyatt Technologies Corp.) was used to calculate and 

fit an autocorrelation function plotted from the random fluctuations in scattering 

intensity. These fits of the autocorrelation functions were used to calculate the diffusion 

coefficients and then through the Stokes-Einstein equation, the Rh. The plate reader DLS 

provided the opportunity to use small volumes (50 μL) of particle solution and to run 

different aliquots in series without further sample preparation. Zeta potential 

measurements were carried out in 5 mM ionic strength HEPES (pH 7.4) and formate 

(3.0) buffers by electrophoretic light scattering with a Malvern Instruments Zetasizer. 

5.2.3 Nanopore Fabrication 

 Section 4.3 describes the nanopore fabrication in great detail and was adapted 

from the original steps published previously.
51

 In general, the tip of an electrochemically 

sharpened Pt wire was placed in the center of a glass capillary. The glass was melted over 

the tip and the melted end of the glass capillary was polished until the tip of the Pt wire 

was exposed creating a Pt disc electrode. Lastly, the Pt was etched out of the glass 

leaving behind a conical glass nanopore. 
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5.2.4 Experimental Setup-Translocation Experiments 

 Scheme 5.2 shows the experimental setup for all translocation experiments. Here, 

a Ag/AgCl electrode was placed in the solution outside and inside the capillary. A +0.1 V 

bias was applied between the two electrodes and the current was monitored by a Dagan 

Chem-Clamp voltammeter/amperometer with a high-sensitivity preamplifier (0.05 to 10 

nA/V) and filtered with a 10 kHz 3-pole low-pass Bessel Filter. A BNC 2120 board 

(National Instruments) and a PCI 6251 DAQ card (National Instruments) were used to 

interface with a PC and data was collected on in-house LabView virtual instrumentation. 

The glass nanopore capillary was held by a special pressure tight adapter supplied by 

Dagan Corporation in which pressure could be controlled by an external gas tight syringe. 

This pressure differential was used to drive particles in and out of the pore.  

 

 

 

 

 

 

 

 

Scheme 5.2. Scheme of the glass nanopore setup and passage of a microgel particle. The 

glass nanopore membrane has a single pore separating two electrolyte solutions inside 

and outside of the capillary.
1
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5.3 Results and Discussion 

 Translocation of single microgels through a single pore was studied using the 

experimental setup shown in Scheme 5.2. A current flow was induced through a single 

conical pore formed in a glass membrane by placing a Ag/AgCl electrode in an 

electrolyte solution on either side of the pore and placing an electrical bias between the 

electrodes.  The current flow was then interrupted by the passage of microgels through 

the pore as shown in Figure 5.1. These particles were driven through the pore using a 

gas-tight syringe to create a pressure differential between the inside of the capillary and 

the outside of the capillary. The microgels used here were NIPAm-AAc microgels that at 

pH 7 were negatively charged. The charged particles could be electrophoreticlly driven to 

the pore, but could not be pushed through the pore. Therefore, all experiments were 

performed under a pressure driven flow and the sign of the applied voltage did not affect 

microgel translocation.  

 The microgels studied were synthesized as described above, and were determined 

to be 570 nm in radius by DLS.  As mentioned above these particles do contain acid 

moieties and therefore exhibit a pH-dependent ζ-potential. At pH 7 these particles have a 

-20.5 mV potential and at pH 3 they have a -4.1 mV potential. Although, the ζ-potential 

for microgel particles can be used as a relative measure of charge, since the particles have 

an ill-defined surface the absolute numbers may not be easily compared to other particle 

types. For microgels, both surface and buried charges could affect electrophoretic 

mobility. Since, all of the translocation studies were performed in a pH 7 buffered 

solutions particles were fully charged and swollen with charge balancing ions making the 

particle conductivity significant.  
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Figure 5.1. a) open pore current of a 433 nm radius pore b) pulses created by 570 nm 

microgels (0.001 wt%) pushed through the pore under a -50 mmHg (inside vs. outside) 

pressure differential c) Single translocation pulse showing the translocation time, Δτ, and 

relative difference in current intensity, Δi/i. Solutions were buffered 10 mM KCl 

solutions and applied voltage was +0.1 V (internal vs. external).
1
 

 

 As a microgel passes through the nanopore electrolyte solution is displaced and a 

change in current is detected. This change in current creates a pulse in the i-t plots as 

shown in Figure 5.1. From these plots, quantities such as the translocation time (Δτ) and 

the current change magnitude (Δi/io) can be measured for each pulse. Here, the pore was 

433 nm in radius and the 570 nm radius microgel is passed through the pore under a 

modest pressure of 50 mmHg with a 0.001 wt% microgel concentration. Different from 

most RPA experiments, the microgels, increase the current as they pass through which 

suggests that the ion flux as the particle deforms through the pore increases as the particle 
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expels some ions. As observed in Figure 5.1a, an occasional baseline drift will be 

observed due to small changes in pressure. 

 In all cases, experiments were performed with particles starting only on the 

outside of the pore and then pulled into the pore. In order to verify that the observed 

signals were indeed particle passage events experiments were performed where the 

pressure differential was reversed to drive the captured particles back out of the pore 

(Figure 5.2). Here, events were observed for particles pulled into and then pushed back 

out of the pore suggesting complete particle translocation. This was observed for all pores 

greater than 375 nm in radius at 50 mmHg pressure differentials. In cases where the 

particles would not pass through the pores they might be “captured” in the pore and then 

dislodged by reversing the pressure as shown in Figure 5.3.  

  

 

 

 

 

 

 

 

Figure 5.2. Current vs. time trace of microgel passage (570 nm radius, 0.001 wt%) 

through a 466 nm radius pore in a buffered 10 mM KCl solution when pressure was first 

applied to pull the particles into the pore (-50 mmHg (internal vs. external)) and then 

back out of the pore (+50 mmHg (internal vs. external)). Applied voltage was +0.1 V 

applied (internal vs. external).
1
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 Passage events were analyzed for pores ranging from 73 nm to 915 nm in radius. 

For the pores greater than 700 nm in radius, particle passage events produced weak 

current changes due to the much larger sensing zone and could not be analyzed. Also, for 

pressure differentials of -50 mmHg (internal vs. external), passage events were not 

observed for pores smaller than 375 nm. However, for pores between 375 nm and 700 nm 

passage event rate increases as the pore size gets larger (Figure 5.4). Although, the event 

rate does increase as a third power to the radius, which agrees with the volumetric flow 

rate dependence on radius, it is a much lower event rate than expected. This is likely due 

to the Coulombic repulsion between the negatively charged glass pore and the negatively 

charged particle, as well as the fact that the particle has to deform to fit through the pore.  

 

 

 

 

 

 

Figure 5.3. Example of an i-t trace where the pore (358 nm radius) was too small for the 

pressure (-50 mmHg (inside vs. outside)) being applied to force the particle through and 

therefore the particle was “captured” and then forced out again by reversing the pressure 

(+50 mmHg (inside vs. outside)). Applied voltage = +0.1 V. Particle solutions were in a 

buffered 10 mM KCl solution.
1
 

 

 In order to further characterize the ionic strength dependence, experiments were 

performed using solutions ranging from 10 mM KCl to 130 mM KCl using a constant 

pressure differential (-50 mmHg) and pore size (433 nm) (Figure 5.5). It was found that 

the magnitude of the current change decreased as the salt concentration increased until at 



 119 

around 50 mM where passage events were not detected. Then, as the salt concentration 

increases further, the current sign was reversed and the current started decreasing as 

particles passed through the pore. This observation further reinforced the thought that the 

pulse is due to the release of the ions carried by the particle during translocation. If a line 

is fit to the data, the point at which the pulse height is zero is at 48 mM KCl which should 

have conductivity close to that of the microgel itself.  

   

  

 

 

 

Figure 5.4. Event rates vs. pore size for passage experiments with 570 nm microgels at 

an applied voltage and pressure of +0.1 V and -50 mmHg, respectively. Experiments 

performed in buffered solutions of 10 mM KCl with 0.001 wt% microgel. Solid line is 

analytical theory on pressure driven translocation. Dashed line is analytical theory 

multiplied by a best fit constant (0.0418).
1
 

 

 Also shown in Figure 5.5, the translocation times decrease as salt concentration 

increases which is probably due to a combination of three factors. First, at higher salt 

concentrations these particles slightly deswell due to increased screening of charges 

within a microgel making the required deformation for passage smaller. Second, the 

increased salt concentration helps screen charges on the glass nanopore from the particle 

thereby increasing the speed of translocation. Lastly, due to the screening of charges 

within a particle, there is a lower barrier to deformation of the particle. It should be noted 

that the convergence to a single translocation time is due to the fact that passage times 
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faster than ~ 50 μs could not be observed due to the 10 kHz low-pass filter on the 

instrumentation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5. a) Translocation times and b) peak heights for 570 nm microgels 

translocation events at an applied voltage and pressure of +0.1 V and -50 mmHg, 

respectively. Pore radius was 433 nm. Experiments performed in buffered KCl solutions 

of different salt concentrations with 0.001 wt% microgel concentration. Dashed line in a) 

is the electronic limitation due to a low-pass filter. Solid line in b) is a best-fit line. Insets 

in b) are examples of positive and negative pulses as a result of translocation.
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 Most of the pulses in these experiments are very uniform most likely due to the 

monodispersity of the particles; however, in some cases, there are a small number of 

variable peak heights (Figure 5.2). A Poisson statistical analysis was performed to 
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determine if these peaks were due to simultaneous single particle events or due to a 

particle aggregate. The method used has been described by Davis.
54

 This treatment will 

give the probability of uncorrelated particle translocation events, λ, that occur over a 

given time, T. The expected number of events, m is given by Equation 5.1. 

Equation 5.1.             λT 

 Since these events are stochastic, there is a finite probability that multiple events 

would overlap and appear as a single event. Therefore, the actual number of events might 

be higher than observed. The probability of multiple component events is determined by 

counting the observed events over time T. Then, if dt is defined as the time between the 

midpoint of events it follows that Equation 5.2 defines the probability that dt is greater 

than the time needed to resolve events, to. 

Equation 5.2.                     (dt     )      (    ) 

 If next the p is multiplied by the expected number of events, m, to give the 

number (N) of time intervals between observed events in which dt  >  to.  Then substitute 

mT for λ, rearrange, and Equation 5.3 results. 

Equation 5.3         ( )    ( )    (
  

T
) 

 Figure 5.6 shows a plot of ln(N) vs. to/T using data from Figure 5.1b where T = 

60.85 s. Here, the expected number of events, m, can be calculated by both the slope (-m) 

and the intercept (ln(m)) which yield 427 and 431, respectively matching closely the 

actual number of events, 443. Now, Equation 5.4 represents the probability that a single 

event represents more than one particle translocation. 

Equation 5.4.                   (       )[     (-     )]
(   )
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 Using this equation for analysis of the same data set as above gives a probability 

of 99.6 % of any pulse being a single particle translocation event or the probability of a 

double or triple event is 2.1 x 10
-3

 or 4.4 x 10
-6

, respectively. Since these events have 

prohibitively small probabilities, it is likely that any unusually high peak heights are due 

to actual particle aggregates, but most events are single particle translocations. 

  

  

 

 

 

Figure 5.6. Plot of ln(N) vs. to/T for data in Figure 5.1b T = 60.85 s with 443 total 

translocation events. The line is a linear regression fit to data.
1
 

  

 Figure 5.7 shows a cluster plot of Δi/i and Δτ for microgels passing through a 375 

nm, 509 nm, and 618 nm pores. As shown, the events are relatively monodisperse in 

change in current and translocation time. In particular, the distribution of Δi/i is around 

~15 % which does correlate nicely to the expected polydispersity of these particles of 

~10% by DLS. Also, the expected trends of smaller pores resulting in longer 

translocation times as well as larger of Δi/i are observed as well. The longer times are 

expected due to the larger deformation that must take place in order for a particle to pass 

through the smaller pore. The Δτ were 89 ± 17, 98 ± 11, and 117 ± 13 μs for the 618 nm, 

509, and 375 nm pores, respectively. As far as the increase in current change, when the 

particle is larger in relation to the pore size the more of the sensing zone is occupied 

resulting in the larger current changes. 
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Figure 5.7. Distributions of translocation times, Δτ, and relative intensity changes, Δi/i 

for 570 nm microgel passage through 375 nm (blue), 509 nm (red), and 618 nm (green) 

pores. (N = 50 events for each measurement) Cluster plot represents individual events. 

Experiments have applied voltage of +0.1 V, and applied pressure of -50 mmHg, and 

were performed in buffered 10 mM KCl solutions with a 0.001 wt% microgel 

concentration.
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 Up to now the particles have been studied at a single pressure, which correlates 

nicely to the experimental pressure in Chapter 3 and the biological pressure differentials 

in the kidneys. It was found that at these pressures in the nanopore experiments, the 

particles were to pass through pores that were about 65% smaller than there dilute 

solution size as opposed to 10% of their size as observed in the experiments in Chapter 

3. However, the charge repulsion between the glass nanopores and negatively charged 

microgel particles is a significant difference in the two experimental conditions. In the 

cases of the track etch membranes the pores were not charged. In the case of the kidneys 
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there is a slight negative charge, but the magnitude compared to the glass pore is 

unknown. 

 Now that RPA using glass nanopores and microgels has been performed at small 

pressure differentials, we wanted to observe what would happen if we varied the 

pressures. Similar experiments can be performed, only now when current blockages 

occur at small pressure differentials with smaller pores, they actually can pass if the 

pressure differential is increased. As shown in Figure 5.8, the same 570 nm microgels 

block a 302 nm glass pore as expected from the results above, however, if the pressure 

differential is increased from 50 to 150 mmHg the particles can now pass. Now similarly 

to before, the passage conditions for different pore radius to microgel radius (Rpore/Rμgel) 

can be measured only now the pressure was varied in order to determine the absolute 

limits of passage. Figure 5.9 shows a representative plot of event rates vs. applied 

pressure differentials for 5 different pore to particle size ratios. As is expected from 

previous experiments for pores less than about 60% the size of the microgel it takes more 

pressure to force them through the pore. Similar to before, once particles start passing 

through pores, the event rate increases slower than would be expected based on the 

volumetric flow rate. This effect is probably due to the negatively charged particle having 

to squeeze through the smaller pore.  

 From these plots, a minimum pressure can be determined to pass the particles 

through a particular Rpore/Rμgel (Figure 5.10). Here, passage events can be seen at pore 

radii down to approximately ~40% of the size of the pore under greater pressures. Then 

the slope of event rate vs. pressure differential are plotted vs. Rpore/Rμgel. It is shown that 

the slopes are considerably lower than the volumetric flow rate. 
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Figure 5.8. a) open pore current of a 302 nm radius pore b) blockage created by 570 nm 

microgels (0.00025 wt%) pushed through the pore under a -50 mmHg (inside vs. outside) 

pressure differential. Inset is the small typical current increase as the particle enters the 

pore just before the large decrease due to clogging the pore. c) Translocation events after 

increasing the pressure differential to -150 mmHg. All buffered 10 mM KCl solutions. 

All experiments have an applied voltage of +0.1 V (internal vs. external).
2
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Figure 5.9. Event rates vs. pressure for passage experiments with 570 nm microgels at 

different pore radius to microgel radius ratios (Rpore/Rμgel) (●, 1.2); (x, 0.8); (▲, 0.6); (■ , 

0.53); and (♦, 0.47). Applied voltage of +0.1 V. All experiments in buffered solutions of 

10 mM KCl with 0.00025 wt% microgel.
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Figure 5.10. a) Minimum pressure, Pmin to observe translocation for various Rpore/Rμgel. b) 

Slopes of the linear best fit lines to data in Figure 5.9 vs. Rpore/Rμgel. Red dots in both a) 

and b) correspond to expected values for Rpore/Rμgel = 1.2 based on volumetric flow rate.
2
 



 127 

 Another interesting aspect to these experiments with carefully controlled 

Rpore/Rμgel and pressure is to inspect the transient shapes. As shown in Figure 5.11, the 

peak shapes for events occurring at certain Rpore/Rμgel and pressures vary significantly. 

These shapes potentially give insight into the mechanism of particle passage. When the 

pressure is varied with the same solution salt concentration and pore size the peak shape 

goes from a narrow single increasing current peak at high pressure to a wide peak that 

increases and then decreases bellow baseline at smaller pressures. At high pressure, the 

particle deforms through the pore creating an increasing current at these low ionic 

strengths due to the ion content. As the pressure differential decreases, the particle no 

longer has the force to purely deform and pass through the pore elastically, but now must 

pass viscoelasticlly by draining some of the solvent and deswelling. This deswelling is 

evidenced by the decrease in current in the middle of the transient due to draining of ions 

and solvent. In the intermediate pressure cases, the particle then quickly re-swells giving 

the transient 2 maxima; however, when the pressure is sufficiently low the particle drains 

enough solvent and ions to dip below the baseline current and then as it passes it merely 

recovers to baseline current levels. A similar effect is observed if the pressure is kept 

constant and the size of the pores is changed. It should be noted that the deswelling 

kinetics suggest that the observed translocation times ( < 2ms) are on the same order as 

the transient times seen here for the longer translocations.
55,56

  Also, Equation 5.5 

published by Matsuo and Tanaka, defines the network relaxation time, τ.
57

   

Equation 5.5.                                                   
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Here, R
2
 is the radius of the gel and Dc is the so-called collective diffusion coefficient as 

defined by Tanaka and Fillmore.
58

 The collective diffusion coefficient is defined by the 

movement of the polymer network and the water in a gel. The approximate value of this 

diffusion is ~ 3 x 10
-7

 cm
2
/s. Using this value and the radius of our gels (~570 nm), τ is 

~1.1 ms and if a standard 10% polydispersity in radius is considered τ would vary 

between 0.9 ms and 1.3 ms. This approximate calculation supports the idea that in the 

shortest translocation times, deswelling is minimal, where as it is possible during the 

longer transients for much more deswelling. 

 

 

 

 

 

 

 

 

 

Figure 5.11. Transients of 570 nm microgel passage through 302 nm pores under 

pressure differentials of (i) -70, (ii) -80, (iii) -100, (iv) -120, and (v) -150 mmHg. As well 

as transients of 570 nm radius microgel passage through pores of (vi) 266, (vii) 302, and 

(viii) 405 nm radii under a -100 mmHg pressure differential. All buffered 10 mM KCl 

solutions.
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 The White group has done finite element simulations of these pores as shown in 

Figure 5.12. Here, a 2-dementional cross-section of a 300 nm radius pore and the 

resulting field are presented under the same experimental conditions as in the above 
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experiments. These simulations show that the expected peak shape based on the shape of 

the pore is similar to the peak shape in cases where the pressure or the pore size is high 

enough or large enough to pass through, as we describe it, “elastically”. Here, due to the 

fact that the particle is entering a sharp increase in field at the opening of the pore a sharp 

increase is seen. Then, as the particle passes through the pore, the field decreases more 

gradually and so does the current. However, these other interesting shapes cannot purely 

be described based on the conical pore shape and are attributed to particle deswelling.  

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12. Finite element simulation of a 300 nm pore with a solution of 10 mM KCl 

and an applied voltage of +100 mV similar to the experiments. b) Shows the potential as 

a particle pass through the center of a pore. Positions A, B, and C are given for 

reference.
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5.4 Conclusions and Outlook 

 We have shown that the RPA technique can be extended to studying the 

mechanics of microgels. More specifically, the mechanics of a 570 nm NIPAm-AAc 

microgel passing through a conical glass nanopore has been studied. Here, the passage 

limits for a the charged microgel under 50 mmHg pressure were discovered to be a pore 

to particle ratio of 0.65, where as if the pressure was allowed to be increased to 500 

mmHg passage, a ratio of 0.4 was observed. These passage parameters are likely 

dependent on the particle design as well as the pore charge. Therefore, this method could 

be extended to characterize many different microgel formulation passage parameters. 

 The effects of salt concentration on peak magnitude as well as sign have been 

investigated and may provide an interesting avenue to charge characterization in 

microgels. Lastly, the microgel passage mechanism has been studied by analyzing the 

transient shapes and time scales. These resistive pulse analysis methods could provide a 

valuable technique for studying the mechanics in the elastic and viscoelastic regions of 

microgels on the single particle level. This kind of information should provide important 

insights on the absolute design rules for soft, deformable microgel drug delivery vehicles 

and their ability to pass through small biological pores. 

5.5 Implications of Softness 

 It is not difficult to understand where the role of microgel softness is present in 

the experiments described in the chapter. As mentioned in the introduction if microgel 

particles are going to be utilized in biotechnology it is important to understand the role 

that a soft, flexible nanoparticle could play in all aspects of their application. Much of the 

attention is given to the cargo real estate that these particles possess due to their low 
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density and solvent content.  However, just as advantageous might be the ability to be 

cleared easily through the kidneys or to penetrate deep into a tumor. It might also be 

advantageous to use the fact that particles might have to deswell to pass under certain 

conditions as way to design a particle that would only release material when in tight 

junctions as in the kidneys or in tumor vasculature. After we published the data above, 

the White group extended these studies to liposomes. They found that, unless raised 

above the lipid bilayer transition temperature, the liposomes could not pass pores smaller 

than their size.
59

  

 Besides the insights to the design of a biomaterial that studying the softness in this 

way might provide, these techniques could provide fundamental “softness” information 

as well. I think that these experiments provide the ability to study softness in a way that is 

very difficult to do with any other technique. This experiment could perform single 

microparticle rheology. What has yet to be worked out is how one could relate these data 

to know rheological values. The differences in transient shapes and translocation times as 

the pressure is changed show the richness of the mechanics in these hydrogel 

microparticle systems. The softness is composed of both an elastic component as well as 

a viscoelastic component which is very hard to characterize on a single particle basis. 

Here, we might have a technique that could accomplish those measurements. 
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CHAPTER 6 

CONCLUSIONS, OUTLOOK, FUTURE DIRECTIONS 

 

6.1 Microgels as Microlenses 

  Microgels adsorbed to surfaces asymmetrically deswell and create individual 

lenses (Chapter 2). These lenses have a soft, responsive structure that allows for changes 

in lens focus by changes in microgel refractive index and curvature. Lenses have been 

designed to respond to temperature, pH, light, and biomolecules. However, the optimum 

target density on the surface of a flexible, conformable polymer particle for the most 

sensitive sensor is difficult to define. In addition, not enough is known about the optimal 

topology or morphology of the microgel design to create the most sensitive lens. 

Different core/shell designs were synthesized and tested as sensors, but did not lead to an 

optimal structure. The size of the particles and conformational flexibility allow for an 

interesting sensing platform, but may not be optimal for sensing molecules with typical 

antibody binding constants. In the future, as more complex particle designs are developed 

or different sensing methodologies could allow for sensing of relevant concentrations of 

biomolecules by individual particles. However, the current transduction mechanism of 

optically observed changes in lensing does not seem to be the optimal. Instead maybe 

small changes in polymer density could be sensed using techniques that measure accurate 

size or mechanical properties. 
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6.2 Microgel Passage through Pores 

  Microgel passage through pores smaller than their dilute solution diameter was 

observed using two different techniques. In the first experiment, suspensions of microgel 

particles were forced at low pressure through track-etch membranes with pores 10 times 

smaller than the size of the particle (Chapter 3). These experiments were done at 

pressures similar to the pressures in the kidneys during renal filtration. Experiments were 

not only performed with 1000 nm particles traversing 100 nm pores, but also with 100 

nm particles passing through 10 nm pores. In the case of the smaller particles, the size of 

the nanogels and pores were similar to the size of nanogels used by our group in siRNA 

delivery and the size of the pores in human kidneys, respectively.  

 In a very different experiment, individual microgels were detected using resistive 

pulse analysis (Chapter 4) as they passed through glass nanopores (Chapter 5). Particle 

passage in this case only occurred when the pore radius was at least 40% as large as that 

of the particle. These much more modest passage parameters are due to the repulsion 

between charged glass nanopore and the charged microgel. It was also observed that the 

passage rate and sign of the resistive pulse were dependent on solution ionic strength. 

The most important result is that the passage rate dependence on pore size and back 

pressure were not linear suggesting a change in passage mechanism different from purely 

elastic deformation. We have suggested that an observation of passage with and without 

particle deswelling. In other words, elastic and viscoelastic passage mechanisms were 

observed. 

 The range of possible characterization experiments that could be performed using 

this technique is large. Experiments using various microgels with different cross-linking 
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densities and charges could be used to determine the mechanical property dependence on 

passage. Also, a range of experiments could be performed to study the passage of a 

particle through a functionalized pore. Here the pore could be made neutral or opposite 

charge of the microgel. Lastly, passage could be monitored as the microgel releases a 

loaded drug, binds a soluble ligand, or binds a ligand on the pore surface. While the 

specific nanopores used in these experiments are not trivial to fabricate, similar 

experiments could be performed using a different resistive pulse technique. 

6.3 Microgel Softness 

 The work presented here has described different techniques and various potential 

applications for microgels. The unifying theme of this dissertation is microgel softness. 

These chapters describe the use of the inherent microgel colloidal deformation which 

allows for creation of individual lensing elements and stabilization of emulsions 

(Appendix A and B). Secondly, the conformational polymer flexibility allows for 

responsive changes to environmental cues or presence of biomolecules. Lastly, we 

observed both the colloidal deformation and polymer conformational flexibility, allow 

microgel passage through small pores. Although, the softness of microgels and the effects 

of this softness in some applications are well known they still remain difficult to 

characterize. 
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APPENDIX A 

CO-STABILIZED EMULSIONS: PROTEINS AND MICROGELS 

 

A.1 Introduction 

 Emulsions have been studied in a wide range of industries and applications 

including food,
1-7

 cosmetics,
8,9

 pharmaceuticals,
10,11

 synthetic chemistry,
12-16

 and 

separations.
17,18

 Emulsions are colloids which are formed from relatively high energy 

mixing of immiscible liquids creating small droplets of the dispersed phase in the 

continuous phase.
19,20

 Some of the most familiar emulsions are formed with oil and water 

in food products. Some examples of oil-in-water (O/W) emulsions include milk, ice 

cream, dressings, and mayonnaise. Conversely, some water-in-oil (W/O) emulsions 

include butter and margarine. In either case, the immiscible phases have a high interfacial 

surface energy; therefore, since the interfacial surface area between the continuous phase 

and the dispersed phase are increased during emulsion formation or homogenization, 

emulsions are inherently thermodynamically unstable. However, additives called 

emulsifiers can make the emulsion more kinetically stable. The emulsifier keeps the 

droplets of the dispersed phase from undergoing one of five types of destabilization 

processes; creaming, sedimentation, flocculation, coalescence, or Ostwald ripening. 

Creaming or sedimentation occurs when the dispersed phase has a lower or higher 

density, respectively, than the continuous phase and the droplets undergo gravitational 

separation. The droplets rise in the case of creaming and fall to the bottom in the case of 

sedimentation. Either of these processes can be aided by the other three instability 

mechanisms. Flocculation is when droplets aggregate together but do not combine. 
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Coalescence is when two or more droplets merge. Ostwald ripening occurs when larger 

droplets grow through transport of the dispersed phase through the continuous phase from 

smaller drops. The choice of the emulsifier, dispersed phase, and continuous phase can 

help reduce all of these instabilities. There are many different formation strategies
21-23

 

and types of emulsions that have been developed.
24

 Specifically, the emulsifier identity 

can vary from proteins to particles and will be discussed below.  

A.1.1 Protein Stabilized Emulsions 

 Probably the most famous protein stabilized emulsion is milk. Here, the main 

emulsifiers are proteins called caseins, which stabilize the fat in milk in droplets that are 

large enough to scatter visible light giving milk its white appearance.
25

 Proteins are good 

candidates for emulsifiers because they are amphiphilic which allows for interactions 

with both a polar and non-polar phase. Most common protein emulsions are found in 

food, however, there are examples of other proteins used as emulsifiers such as human 

serum albumin (HSA), bovine serum albumin (BSA), lysozyme, β-lactoglobulin, and 

fibrinogen.
26-30

 Many of these protein emulsifiers have been made as a fundamental study 

of protein stabilized emulsions, but a particularly interesting case is a fibrinogen 

emulsion made to carry docetaxel, an anti-cancer drug.
28

  

A.1.2 Pickering Emulsions 

 Pickering emulsions are particle stabilized emulsions first observed and published 

by Pickering in 1907.
31

 Where as with most surfactants the most important parameter for 

emulsion stabilization is the amphiphilicity, for particles it is thought to be one of three 

factors: the three phase contact angle, capillary forces formed between two emulsions 

trying to merge, or long range electrostatic repulsion between droplets.
32,33

 Many 
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different particle types have been shown to be effective emulsifiers including barium 

sulfate, calcium carbonate, silica, polystyrene, and polytetrafluoroethylene particles.
34

 

One of the most interesting factors of Pickering emulsions is their incredible stability. In 

fact, the desorption energy for these particles can be thousands of kBT, whereas normal 

surfactants have a desorption energy around kBT.
35

 To calculate these values, the size of 

the particle, interfacial tension between the continuous and dispersive phases, and the 

contact angle between the particle and the two phases are used. Interestingly there have 

also been Pickering emulsions formed from protein particulates like ferritin and zein.
36,37

 

It can be argued that most protein emulsions might have a Pickering effect, due to 

different protein micelles or aggregates that might aid in stabilization. However, in most 

cases, the still soluble protein is thought to have a major role in stability, which is not the 

case for the intentional protein particulates. Lastly, one very interesting structure that was 

formed by first forming a Pickering emulsion is a colloidosome.
38

 Colloidosomes are 

often made by forming a Pickering emulsion, connecting the particles together (e.g. 

chemical cross-linking), and removing the inner liquid, so that the inner solution and 

outer solution are the same liquid. The name comes from liposomes only instead of lipids 

they are formed of colloids. 

A.1.3 Microgel Stabilized Emulsions 

 Of the many different particles that have been used to form Pickering emulsions, 

microgel particles are an interesting class.
39

 These emulsions can be made to be 

responsive by choosing a responsive microgel. It has been shown that thermoresponsive 

poly(N-isopropylacrylamide) microgels used as emulsifiers create thermoresponsive 

emulsions, where the emulsion breaks at high temperature above the volume phase 
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transition temperature (VPTT) of the microgels.
40-44

 Also, if acid moieties are 

incorporated into the microgel network creating a pH-responsive microgel, then the 

emulsions can be destabilized by lowering the pH of the solution.
40-43

 These studies 

suggest that charge and water content somehow affect emulsion stability. However, it has 

been shown in at least two studies that the charge alone does not cause emulsion stability. 

In the first study, emulsions stabilized by microgels with a positive charge and a negative 

charge were mixed and coalescence was not observed.
45

 The second study utilized 

core/shell microgels were in one set of particles the shell contained acid groups and in the 

other the core contained acid groups.
46

 Here, it was shown that emulsions stabilized by 

both particles were pH dependent even though the surface charge of the core localized 

acid particles was very low. This led the authors to the conclusion that surface charge was 

not the sole reason for stability of the microgel stabilized emulsions. Similarly, it was 

observed that microgels with lower crosslinking densities were better emulsifiers.
47

 All of 

these observations, as well as the fact that the microgels have been shown to deform quite 

substantially at the oil water interface (Scheme A.1), have led to the thought that the 

deformability of the microgels is the reason for the stability.
46,48,49

  This hypothesis agrees 

with all the experiments showing that lower cross-linked, fully swollen microgels form 

stable emulsions, while deswollen particles destabilize the emulsion.  

 Using these soft deformable stabilizers, groups have created microgel based 

colloidosomes,
50

 performed biocatalysis,
51

 and made rupturing microgel capsules.
52

 To 

our knowledge, co-stabilization of emulsions has not been performed using both a protein 

and a microgel. Observations of co-stabilized emulsions were made with pNIPAm  
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Scheme A.1 Cartoon demonstration the deformation of a microgel at the interface of oil 

(yellow) and water (blue) based on experiments by Prof. Walter Richtering and co-

workers.
49

  

 

microgels (1 % BIS cross-linked) and bovine serum albumin (BSA) or fibrinogen. In 

these experiments, crude typical emulsion formation methods were used such as 

homogenizing, vortexing, or stirring. Then, after 24 hrs, protein was added and the 

solution was imaged.  In our work, microgel emulsions were then formed using a more 

controlled microfluidic approach and incubated with protein to test the hypothesis that the 

protein is gradually replacing the microgels as the main stabilizer. Not only would these 

observations lead to some interesting conclusions about the effectiveness of microgels as 

emulsifiers vs. proteins, but, if well understood, these co-stabilized emulsions could 

introduce an interesting class of hybrid emulsions.  

A.2 Experimental 

A.2.1 Materials 

 Monomer N-isopropylacrylamide (NIPAm; Aldrich) was recrystallized from 

hexanes (Fisher Scientific) before microgel synthesis. Cross-linker N,N’-

methylenebis(acrylamide) (BIS; Aldrich), ammonium persulfate (APS; Aldrich), acrylic 

acid (AAc; Fluka), rhodamine cadaverine conjugate (Invitrogen), bovine serum albumin 

(BSA; Sigma), and bovine serum albumin Alexfluor 488 conjugate (Invitrogen) were all 
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used as received. The pH 7 buffer was a 10 mM (IS = 100 mM) phosphate buffer. The pH 

3 buffer was a 10 mM (IS = 100 mM) formate buffer. The pH 5 buffer was a 10 mM (IS 

= 100 mM) MES buffer. All buffers were ionic strength adjusted using NaCl. All water 

used in the experiments was purified to 18 mΩ (Barnstead E-pure system). Materials for 

fabrication of microfluidic devices included square capillaries (1,0 mm ID, 1.4 mm OD; 

VitroCom), round capillaries (1.0 mm OD, 0.58 mm ID; Sutter Instruments) and epoxy (5 

minute; Devcon). 

A.2.2 Microgel Synthesis 

 Large microgels were synthesized by precipitation polymerization of NIPAm, BIS 

(1 mol % or 0 mol %), and AAc (10 mol%) with a total monomer concentration of 100 

mM in 1000 mL. All components were dissolved in distilled, deionized water and stirred 

under a nitrogen purge while heating to 68 °C. Then APS (0.01 mM) was added to 

initiate the reaction. The reaction was allowed to stir under nitrogen at 68 °C overnight. 

All particle solutions were filtered through glass wool and purified via dialysis for 10 

days (10,000 MWCO dialysis tubing vs. nanopure water). The samples were then freeze-

dried for storage and then re-dispersed into desired concentrations. 

 The microgels were then conjugated with 6-carboxytetramethylrhodamine 

cadaverine via carbodiimide coupling to the acid groups on the microgel particles. Both 

the ULC particles the 1 % cross-linked microgels were dispersed in pH 5.5 MES buffer at 

5 mg/mL. Then solutions EDC (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 

hydrochloride), N-hydroxysulfosuccinimide (Sulfo-NHS), and the rhodamine conjugate 

were added to the particles and the solution shook at room temperature overnight. Then 

the particles were purified by centrifugation and concentrated to stock solutions of 10 

mg/mL.  
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A.2.3 Microgel Characterizations 

 Dynamic light scattering (DLS) was used to determine the hydrodynamic radius 

(Rh) under different pH conditions as described earlier.
53,54

 This was done with a Wyatt 

Technologies DynaPro plate reader DLS using a laser wavelength of 830 nm. Scattering 

intensity fluctuations were detected for 10 s per reading by an avalanche photodiode at 

and angle of 158° (back scattering) from the incident laser. Dynamics software (Wyatt 

Technologies Corp.) was used to calculate and fit an autocorrelation function plotted 

from the random fluctuations in scattering intensity. These fits of the autocorrelation 

functions were used to calculate the diffusion coefficients and then through the Stokes-

Einstein equation, the Rh. The plate reader DLS provided the opportunity to use small 

volumes (50 μL) of particle solution and to run different aliquots in series without further 

sample preparation. These measurements were performed in both pH 7 and pH 3 buffers. 

 These particles were also imaged after depositing them on glass coverslips. Glass 

coverslips were cleaned by sonication in an Alconox solution, DI water, acetone, 

isopropyl alcohol, and ethanol. Then, the coverslips were incubated in a 1 % solution of 

4-aminopropylsilane in absolute ethanol for 2 hrs and then rinsed and stored in ethanol. 

Next, the particles were deposited using a centrifuging technique published previously.
55

 

The functionalized coverslips were placed in solutions of particles in a 6-well plate and 

spun to the surface using a plate rotor centrifuge for 10 min at 2250g. Then, the 

coverslips were allowed to shake overnight in DI water, rinsed, and dried under N2 before 

imaging with atomic force microscopy. 

A.2.4 Emulsion Formation 

 Emulsion formation was performed using a microfluidic co-flow device similar to 

those published previously.
23,56,57

 Briefly, the devices, as shown in Figure A.1, were 

fabricated on top of microscope slides. A square capillary of 1.0 mm inner-diameter (ID)  
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Figure A.1. Digital camera (top) image of the complete emulsion formation device and 

an optical microscopy image of the area where the emulsions are formed with flows of 

materials indicated. 

 

is mounted using an epoxy to a large microscope slide formed by joining two separate 

slides, epoxy, and small pieces of glass. Then, two round capillaries of outer-diameter 

(OD) 1 mm and ID of 0.58 mm are chosen that just fit into the square capillary. One of 

the round capillaries is then pulled to using a Sutter Instruments pipette puller. Next, the 

pulled capillary and the round capillary are cut to length and rinsed with acetone. Then, 

the pulled capillary is inserted into one end of the mounted square capillary. Tubing is 

placed on one end of the other round capillary and then inserted into the square capillary 

opposite of the pulled capillary. The capillaries are aligned as shown in Figure A.1 and 

secured with epoxy. Next, plastic short syringe tips are modified to slide over the 

capillaries at 3 different locations; the end of the pulled capillary, where the pulled 
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capillary and square meet, and where the un-pulled capillary and the square meet. These 

syringe tips are attached over these openings to allow for liquid introduction with epoxy. 

First, a small amount of epoxy is used to attach them to the glass surface over the 

openings of the capillaries being careful not to clog the capillaries. Second, a small 

amount of epoxy is used to seal around the base of the syringe base. Lastly, a liberal 

amount of epoxy is used to seal all the way around the base and up the outside of the 

plastic syringe. After 24 hours of drying, the device is tested for leaks by attaching tubing 

to all three outlets and pushing deionized water through the previous attached tubing. If 

leaks are seen then they are dried and resealed with epoxy. 

 This device is used to form emulsions by flowing the inner and outer phase in the 

same direction with a small back flow coming through the other end of the square 

capillary. The inner liquid flow is stabilized by the flow of the outer liquid and the small 

back flow allows for focusing of the stream into the collection capillary. In this case, the 

inner liquid is dodecane and the outer liquids are suspensions of microgels. The 

microgels stabilize the droplets as they break off of the liquid jet formed as the liquids are 

introduced using syringe pumps. The microgel suspensions are between 1-3 mg/mL 

concentration and the outer flow, inner flow, and back flow are 8-12 mL/min, 5-10 

mL/hr, and 5 mL/hr, respectively. These experiments can be observed using a microscope 

and camera.  

A.2.5 Protein Introduction Experiments 

 After emulsion formation, the solution was allowed to sit for 24 hrs in order for 

emulsion equilibration. Then 1 mL aliquots of the emulsion were placed in small vials. 

Next, a BSA/BSA-Alexafluor 488 (100/1) of 100 mg/mL was diluted into the emulsion 

suspensions at final concentrations of 0.1, 1, 5, and 10 mg/mL. Small 40 μL aliquots of 

these solutions were removed 1 hr, 24 hrs, and 48 hrs, placed into small Coverwell 

profusion chambers placed on glass coverslips, and imaged using confocal microscopy at 



 149 

20x (0.8 NA) and 63x (1.40 NA). In another experiment a 127 μL aliquot of the original 

emulsion was added to a larger gasket/coverslip sample chamber and while visualizing 

the emulsion a 20 μL of the 100 mg/mL BSA solution was added and imaged for 1 hr.   

A.3 Results and Discussion 

 Microgels were used to stabilize oil-in-water (O/W) emulsions. The microgels 

used were prepared by precipitation polymerization with monomers of NIPAm and AAc 

and a BIS cross-linker. Preparation of the emulsions was performed by re-suspending 

freeze dried fluorescently conjugated microgels into pH 7 PBS buffer, adding either extra 

virgin olive oil or heptane, and vortexing or stirring to create the emulsion. Then protein, 

either BSA or fibrinogen, was added to create a microgel emulsion with adsorbed protein. 

These solutions contained a wide variety of emulsions as shown in Figure A.2. Some of 

the emulsions had little to no protein adsorption, while some had mostly protein and only 

a few particles. Probably the most interesting case is when the protein was adsorbed in 

between the particles on the surface of the emulsion. The range of different protein and 

microgel adsorption states led to the hypothesis that the protein was slowly displacing the 

microgels from the surface of the emulsion droplet. However, since emulsions created 

with the crude techniques above create very concentrated and heterogeneous emulsions, a 

different method for emulsion formation was used to test this hypothesis. 

 The microgels used for this study were made in a 1 litter synthesis due to the high 

particle consumption of the co-flow emulsion formation method using microfluidics. 

These particles had an Rh of 482 nm with a polydispersity of 11 % and 305 nm with a 

polydispersity of 9 % at pH 7 and pH 3, respectively. The deswelling at lower pH is due 

to the protonation of the incorporated acid groups and release of counter ions and their  
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Figure A.2. Confocal microscopy images of different emulsions with proteins adsorbed. 

Top left is a microgel (green) with fibrinogen (red) stabilized extra virgin olive oil 

emulsion. Top right, bottom right, and bottom left are a microgel (red) heptane-in-water  

emulsions with BSA adsorbed (red). 

 

associated water.  After synthesis, these particles were functionalized with a rhodamine 

conjugate using carbodiimide coupling and then purified and imaged with AFM and 

confocal microscopy (Figure A.3). Solutions of these particles at 2 mg/mL in pH 7 buffer 

were used for emulsion formation by microfluidics. The devices used are shown in 

Figure A.1. Here, the 2 mg/mL microgel outer solution flowed at 12 mL/min, while the  
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Figure A.3. AFM image of the 1% cross-linked microgels adsorbed on an amino-silane 

functionalize glass surface with a line trace showing the height of the particles. (Inset) 

confocal image of microgels adsorbed to a glass surface. Scale bar = 5 μm. 

 

inner solution of dodecane was flowed at a rate of 8 mL/min. These two flows constitute 

a co-flow device which creates a jet of dodecane and the stabilized emulsions break off of 

the jet. The backward flow of the outer solution was the same concentration as the co-

flow microgel solution but was run at only 5 mL/hr. This flow helps focus the oil jet into 

the collection capillary (on the right in the picture). This technique created emulsions of 

~4 ± 1 μm (average of 29 emulsions by confocal image analysis) in diameter and fairly 

dilute due to the high outer flow rate. A confocal microscopy 3D reconstruction of an 

emulsion is shown in Figure A.4. 
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Figure A.4. 3D construction of confocal images of emulsions made with BSA (left) by 

vortexing and made with microgels (right) by microfluidics.  

 

 To test the adsorption of protein to these emulsions, 5-1 mL aliquots of the 

emulsion were placed in small vials and allowed to sit for 48 hrs. to stabilize. Then, 

different amounts of a 100 mg/mL solution of BSA/BSA-Alexafluor 488 (100:1) were 

added to each aliquot to make solutions of 0, 0.1, 1, 5, and 10 mg/mL of BSA/BSA-

Alexafluor 488. Small amounts of the emulsion and protein solutions were imaged with 

confocal microscopy at 1, 24, and 48 hr after protein addition. Examples of the emulsions 

at these time points and different protein concentrations are shown in Figure A.5. These 

images show that no protein preferentially adsorbed to these emulsions no matter the 

concentration of protein or incubation time. Next, a sample of the emulsion without 

protein was placed on the confocal microscope and a small drop of 100 mg/mL 

BSA/BSA-Alexafluor 488 was added. This single emulsion was imaged for 1 hr to 

observe protein adsorption. This experiment allowed for imaging of a single emulsion  
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Figure A.5. Confocal images of microgel (red) stabilized emulsions at different 

incubation times with different BSA (green) concentrations. Scale bar = 5 μm  

 

while being immersed in protein solution. While observing this emulsion it lost a little 

brightness due to photobleaching but no protein adsorption was observed (Figure A.6). 

These results suggest that the hypothesis of protein displacement of microgels at an 

emulsion surface is not the mechanism for the creation of the emulsions as in Figure A.2. 

Therefore, these co-stabilized emulsions must be made by a different mechanism which 

could be dependent on the choice of inner phase or emulsion formation strategy.   
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Figure A.6. 3D confocal reconstruction of a microgel (red) stabilized emulsion before 

(left) and after (right) incubation with 13 mg/mL BSA/BSA-Alexafluor 488 (green). 

Scale bar = 5 μm. 

 

A.4 Conclusions and Outlook 

 We have tested the hypothesis that microgels are being replaced by proteins when 

used to stabilize emulsions. By forming microgel stabilized emulsions with a method 

which produces a more monodisperse, dilute emulsion, we were able to ensure 

homogeneous mixing of the emulsions with the protein and a more consistent result. Our 

results indicated that at the very least this phenomenon is not general to all microgel 

stabilized emulsions and more likely that our interesting observation was due to a 

completely different mechanism. However, these results suggest that when making 

observations of emulsion behavior, care needs to be taken to consider the concentration, 

homogeneity, and stability of the emulsion when different observations are made and 

mechanisms are proposed.  

A.5 Implications of “Softness” 

 The stability of microgel emulsions is owed to their softness and deformability as 

discussed in the introduction. The conformational flexibility of microgels allows for 

amazing stability at the surface of these emulsions even when proteins, which have long 
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been established as good emulsifiers, are present. The more rigid proteins cannot displace 

the microgels even at the edge of particle. This is encouraging for the stability of 

microgel emulsions in protein-rich solutions such as in biomedical applications.  
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APPENDIX B 

PLATELET CONTRACTION INDUCED DRUG RELEASE 

 

 

B.1 Introduction 

  Many different drug release mechanisms have been proposed from numerous 

biomaterials.
1,2

 Most commonly diffusion from an implanted material “depot” is used, 

perhaps with gating by ionic strength, pH, temperature, dilution, or erosion of the device. 

Here, it is proposed to use a mechanically-induced rupture of the device to cause drug 

release. The mechanical stress is provided by platelets which contract naturally in the 

presence of chemical cues during the clotting cascade.
3
 The type of device that might be 

advantageous for mechanical destruction and release might be an emulsion, since the 

surface adsorbed emulsifier is critical for stability of the colloid. These emulsions are 

designed to bind platelets such that when the platelet contracts it disrupts the emulsion 

releasing the payload. Various emulsion formulations have been employed to induce 

binding of platelets and rupture. Applications of such a construct could be used to deliver 

drugs that reduce the formation of blood clots in vivo or in blood circulating medical 

devices as shown in Scheme B.1. The design targets locations of high concentrations of 

platelet activating factors such as areas of thrombosis. 
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Scheme B.1. Scheme of proposed drug release mechanism. Scheme made by Dr. Wilbur 

Lam. 

B.2 Experimental 

B.2.1 Materials 

 Monomer N-isopropylacrylamide (NIPAm; Aldrich) was recrystallized from 

hexanes (Fisher Scientific) before microgel synthesis. Cross-linker N,N’-

methylenebis(acrylamide) (BIS; Aldrich), ammonium persulfate (APS; Aldrich), acrylic 

acid (AAc; Fluka), rhodamine cadaverine conjugate (Invitrogen), Alexafluor 488 

cadaverine (Invitrogen), bovine serum albumin (BSA; Sigma), bovine serum albumin 

Alexfluor 488 conjugate (Invitrogen), bovine serum albumin Alexfluor 555 conjugate 

(Invitrogen), fibrinogen, and Alexafluor 488 (Invitrogen)  were all used as received. The 

pH 7 buffer was a 10 mM (IS = 100 mM) phosphate buffer. The pH 5 buffer was a 10 

mM (IS = 100 mM) MES buffer. All buffers were ionic strength adjusted using NaCl. All 

water used in the experiments was purified to 18 mΩ (Barnstead E-pure system).  

B.2.2 Microgel Synthesis 

 Large microgels were synthesized by precipitation polymerization of NIPAm, BIS 

(1 or 3 mol %), and AAc (10 mol%) with a total monomer concentration of 100 mM in 

100 mL. All components were dissolved in distilled, deionized water and stirred under a 

nitrogen purge while heating to 68 °C. Then APS (0.01 mM) was added to initiate the 
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reaction. The reaction was allowed to stir under nitrogen at 68 °C overnight. All particle 

solutions were filtered through glass wool and purified via centrifugation.  The samples 

were then freeze-dried for storage and then re-dispersed into desired concentrations. 

 The microgels were either conjugated with conjugated with 6-

carboxytetramethylrhodamine cadaverine or Alexafluor 488 cadavverine via 

carbodiimide coupling to the acid groups on the microgel particles. The 3 % cross-linked 

microgels were dispeserd in pH 5.5 MES buffer at 5 mg/mL. Then solutions EDC (1-

ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride), N-

hydroxysulfosuccinimide (Sulfo-NHS), and the fluorescent conjugate were added to the 

particles and the solution shook at room temperature overnight. Then, the particles were 

purified by centrifugation and concentrated to stock solutions of 10 mg/mL.  

B.2.3 Microgel Characterizations 

 Dynamic light scattering (DLS) was used to determine the hydrodynamic radius 

(Rh) under different pH conditions as described earlier.
4,5

 This was done with a Wyatt 

Technologies DynaPro plate reader DLS using a laser wavelength of 830 nm. Scattering 

intensity fluctuations were detected for 10 s per reading by an avalanche photodiode at an 

angle of 158° (back scattering) from the incident laser. Dynamics software (Wyatt 

Technologies Corp.) was used to calculate and fit an autocorrelation function plotted 

from the random fluctuations in scattering intensity. These fits of the autocorrelation 

functions were used to calculate the diffusion coefficients and then through the Stokes-

Einstein equation, the Rh. The plate reader DLS provided the opportunity to use small 

volumes (50 μL) of particle solution and to run different aliquots in series without further 

sample preparation. These measurements were performed in both pH 7 and pH 3 buffers. 
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B.2.4 Emulsion Formulations and Formation Methods 

Emulsion Formulation Emulsion Formation 

Microgels and Fibrinogen/evoo 
Vortexing 

Stirring 

Microgels with targeting peptides/evoo Vortexing 

Fibrinogen/evoo  Vortexing 

Fibrinogen cross-linked emulsions/evoo Vortexing 

Fibrinogen and BSA Co-Stabilized 

Emulsions/evoo 
Vortexing 

Fibrinogen/dodecane 
Vortexing 

Homogenizing 

Microfluidics 

 

Table B.1. Table of formulations and formation methods for drug delivery emulsions 

(evoo =  extra virgin olive oil) 

  

 Table B.1 above lists the emulsion formulations and emulsification methods used 

thus far for interaction with platelets. Emulsions were formed with 4 different methods 

and they include vortexing for 1-2 min., stirring for 30 sec to 10 min., homogenizing for 

30 sec to 2 min, and finally using the microfluidic device described below. The 

microfluidic approach was performed using a microfluidic co-flow device similar to 

those published previously.
6-8

 The microfluidic device fabrication is described in detail in 

Appendix A.  

B.3 Preliminary Results 

 A variety of delivery vehicles were fabricated for use in delivery of theraputics to 

thrombotic regions in the body. The targeting mechnism is the concentration of factors 

involved in the clotting cascade which would only be high in the regions close to 

thombosis. When these factors are present in high enough concnetration,  the platelets 

that are assosiated with the delivery vehicle would contract releaseing the contents of the 

carrier. In this case, the drug delivery vehicle is an emulsion. The emulsion should get 

disrupted by binding to the surface and then contaction of the platelets. The difficultes are 

forming an emulsion which will interact with platelets and then visualizing the effect 
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when thrombin, a critical factor in the clotting cascade that signals platelet contraction, is 

introduced. 

 The first experiments were performed with microgel stabalized emulsions and two 

stratagies were employed for platelet adhesion. The first was adsorption of fibrinogen to 

the microgel emulsion, and the second was to conjugate a platelet binding peptide to the 

microgel and then form the microgel emulsion. Fibrinogen is a blood circulating protien 

which, upon exposure to thrombin, areas of fibrinogen are cleaved allowing for its self-

assosiation into a fibrinogen polymer which is called fibrin. Fibrin is the biopolymer that 

makes up the majority of a clot. Platelets do not bind to blood circulating fibrinogen but 

will bind to surface adsorbed fibrinogen. Therfore, it might bind fibrinogen that is 

deposted on the surface of the emulsions. Figure B.1  shows an image of the microgel 

emulsion after incubation with fibrinogen. A platelet binding peptide that had been 

grafted to surfaces that then bound platelets was used.
9,10

 A cystine-terminated peptide 

was conjugated through malimide-polyethylene glycol-amine (MAL-PEG-NH2) to the 

acid groups on the microgel particle. When either construct was incubated with platelets, 

the platelets seemed largely uninterested in the emulsions. Shown in Figure B.2 is an 

example of one microgel and fibrinogen emulsion that has some platelets near it, but this 

seemed to be the exception. It was hypothesized that the particles which seem to stick out 

further than the fibrinogen might prevent the platelets for getting to the fibrinogen. The 

peptides were unsuccessful, however, concentrations of the peptide on the surface of the 

particles might need to be adjusted.  

 Since contact with the fibrinogen surface seemed like it might be inhibited by the 

microgels, emulsions purely stabalized by fibrinogen were formed. A few different 

formulations were attempted; mixed BSA and fibrinogen stabalized emulsions, 

fibrinogen emulsions formed and then cross-linked via gluteraldehyde cross-linking of 

amines, and fibrinogen emulsions with different hydrophobic phases. The mixed BSA 
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Figure B.1. 3D confocal reconstruction of microgel (green) stabilized emulsion after 

incubation with fibrinogen (red).  

 

and fibrinogen emulsions were formed to reduced the amount of fibrinogen on the 

surface of the emulsion, since it has been observed that too much firbinogen does not 

allow for platelet adhesion.
11

 However, these proteins did not form very uniform BSA-

fibrinogen emulsions. Most of the emulsions were one protien or the other one. Cross-

linked fribrinogen was used based on unpublished results in the Lyon lab that suggest that 

cells do not adhere well to mobile multilayer substates. Therfore, if the fibrinogen is 

locked in place, the platelets might bind more easily. Although,a large number of 

experiments were not attempted, the cross-linked fibrinogen emulsions also did not bind 

platelets. Lastly, all previous emulsions were made using extra virgin olive oil (evoo); 

however, it was noticed that olive oil in buffer made an emulsion that was quite stable, so 

the oil was changed to dodecane to simplify the system, since it readily separates with 

buffer without the pressence of an emulsifier. 
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Figure B.2. Confocal image of microgel (green) stabalized emulsion after incubation 

with fibrinogen and addition of platelets (red). 

 

 As platelet experiments were on-going, attempts to produce more stable and 

monodisperse fibrinogen emulsions were made. Vortexing and stirring with different 

speeds, concentrations, and times were attempted and although there was some variability 

in the formed emulsion, they were all very similar. They were very polydisperse in size 

and only stable for a few hours to creaming. Creaming was the most common instability 

observed which can be a result of a few different instabilities. Aggregation, coelecence, 

and Ostwald rippening can lead to creaming which can be enhanced by solvent density 

differences, emulsion size dispersity, and emulsion size. Therefore, microfluidic devices 

as describe above have been used to atempt to form more monodisperse, stable 

emulsions. Fabrication of the co-flow devices has lead to formation of emulsions of 50-

80 μm in diameter and fairly monodisperse. However, these emulsions, made with 

dodecane and fibrinogen, creamed fairly quickly, and this method uses a large amount of 

protien. A few different statagies, that will be discussed later, can be used to decrease the 

emulsion size which should help increase stability as well as decrease the material 

demands. 

 After emulsions were formed, experiments were performed to observe 

interactions between platelets and the emulsions. In most cases, experiments were 
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performed by mixing either washed platelets (WP) or platelet-rich plasma (PRP) with 

emulsions, and then activating the platelets with a thrombin and Ca
2+

 while observing 

with confocal microscopy. The platelets are labled with a near or far red fluorophore and 

the microgels and/or fibrinogen are labled with a rhodamine or Alexafluor 488 conjugate. 

Confocal setups have included either a 20x (0.8 NA) or a 63x (1.40 NA) objective and in 

most cases a gasket placed on a coverslip was used to hold the samples. Figure B.3 

shows an example of a few cases where platelets were attached to the emulsions; 

however, release or contraction was not observed. These cases were also rare potentialy 

due to the instability of the emulsion to creaming, and the emulsions floating out of 

viewing area, while the platelets spread on the bottom of the sample chamber (Figure 

B.3).   

 

Figure B.3. (A) and (B) confocal images of fibrinogen (green) stabalized emulsions with 

platelets (red) attached. (C) Confocal image of platelets (red) spread on glass. 

 

 In addition to adapting the emulsion formation to make smaller emulsions, 

attempts have been made to use microfluidics to introduce the nanoemulsions, platelets, 

and platelet activators. These type of experiments should allow for better anticipation of  

the location of binding events as well as for detailed high numerical appeture imaging. 

An example of one of these experiments is shown in Figure B.4. Here, the microfluidic is 

a Y-shaped 50 μm x 50 μm channel where the thrombin and Ca
2+

 solution is introduced 

on one side with emulsions and platelets in the other channel. Due to laminer flow in  
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Figure B.4. Confocal images over time of the opening of Y-shaped PDMS microfluidic 

device with fibrinogen (green) emulsions mixed with platelets (red) coming in the top 

and a solution of thrombin and Ca
2+

 in the bottom. A fibrin clot with mixed in platelets 

forms at the junction of the two liquids. 

  

these channels, diffusion of thrombin across the interface between the two liquids is fairly 

slow and the formation of fibrin starts at the interface, as shown in Figure B.4. Platelets  

(red) start attaching to the fibrin (green) network. Unforunately, emulsion droplets did not 

make it into the channel due to there larger size, which adds to the efforts to make smaller 

more stable emulsions. 

 With some results suggesting platelet binding, some macroscopic experiments 

were performed with a large amount of platelets and emulsions in vials. Figure B.5 

shows and example of these experiments. Here, PRP was mixed with fibrinogen, 

fibrinogen stabalized emulsions, microgel stabalized emulsions, buffer, and fibrinogen 

stabalized emulsions in ratios of 1:10,1:10,1:10,1:10, and 1:1, respectively. The platelet 

number was held constant. In these experiments, the solutions were mixed and then the 

activatior solution was added which induces fibrin formation (clot formation) and 

activates platelets to become contractile. Over time a clot is formed and then the platelets 

attach to the fibrin network and contract the network. All cases look similar except for the 
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case where a high concentration of emulsions were added. Here, it looks as if the 

emulsions might prevent further shrinkage of the clot. However, it is unclear if this broke 

the emulsion or if the emulsion is still intact. 

 

 

 

 

 

 

 

 

 

Figure B.5. Digital camera images of vials of (A) 1:10 v/v ratio of fibrinogen and PRP, 

(B) 1:10 v/v fibrinogen emulsions (FE) and PRP, (C) 1:10 v/v microgel emulsions and 

PRP, (D) 1:10 v/v buffer and PRP, and (E) 1:1 v/v FE and PRP 5 min (top), 20 min 

(middle), and 15 hrs (bottom) after addition of thrombin and Ca
2+

 . 

 

 Lastly, an observation that was made without platelet addition is that the 

fibrinogen emulsions can grow fibrin off of their surfaces (Figure B.6). Here, fibrinogen 

emulsions were incubated with thrombin and imaged via confocal. Fibrin fibers are seen 

growning off of these emulsions. The question remains will this help stabilize the 

emulsions in a clot making it hard to rupture the emulsion or will the incorportation of the 

emulsion into the clot actually destabalize it emough to release its contents.  
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Figure B.6. 3D reconstructions of confocal images of (A) fibrinogen with thrombin 

added, (B) fibrinogen stabalized emulsion, and (C) fibrinogen stabalized emulsion with 

thrombin.  

 

B.4 Outlook 

 The preliminary results here have encouraged further investigation into platelet 

induced release and emulsion incorporation into clots. The formation of stable small 

emulsions will continue with modifications to flow focusing and co-flow devices with 

help from Prof. Alberto Fernandez-Nieves and Dr. Josef Guerrero. More specifically, the 

modifications will use less material and make smaller emulsions. The first new device 

includes a co-flow device similar to what has been used in these experiments only with a 

size-limiting collection aperture. The second is a flow focusing device in which 

emulsions are also collected through and aperture. Another technique that will be 

attempted is extrusion similar to the way that liposomes have been formed. Here, an 

emulsion is formed by a conventional crude method (stirring, vortexing, homogenizing), 

and then the size is determined and distribution is narrowed by forcing the emulsion 

through a certain pore size. Smaller and more stable emulsions should increase the 

platelet experimental reproducibility. Overall, we have established and interesting project 

in both platelet induced contraction and formation of fibrinogen stabilized emulsions. 

This project was performed in collaboration with Dr. Wilbur Lam’s lab with Yumiko 

Sakurai and much of the work will be continued by Caroline Hansen in Prof. Andrew 

Lyon’s lab. 
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