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SUMMARY

This thesis consists of two parts. The first part focuses on the hidden Markov

model (HMM) with application in cell adhesion experiment, and the second part on

the Bayesian cubic spline in computer experiment.

The first part of this thesis contains two works on the hidden Markov models. In

Chapter 1, a new model selection method is proposed for hidden Markov models. In

Chapter 2, we implement HMM in the cell adhesion experiment. The second part

of this thesis introduces a Bayesian cubic spline in computer experiment. Chapter

3 proposes the estimation of Bayesian cubic spline and compares it with two other

methods.

Chapter 1 deals with HMM model selection. Estimation of the number of hid-

den states is challenging in hidden Markov models. Motivated by the analysis of a

specific type of cell adhesion experiments, a new framework based on hidden Markov

model and double penalized order selection is proposed. The order selection pro-

cedure is shown to be consistent in estimating the number of states. A modified

Expectation-Maximization algorithm is introduced to efficiently estimate parameters

in the model. Simulations show that the proposed framework outperforms existing

methods. Applications of the proposed methodology to real data demonstrate the

accuracy of estimating receptor-ligand bond lifetimes and waiting times which are

essential in kinetic parameter estimation. This is joint work with Dr. Ying Hung,

Dr. Jeff Wu, Dr. Veronica Zarnitsina and Dr. Cheng Zhu.

Chapter 2 shows the application of HMM in cell adhesion experiments. Abrupt

ix



reduction/resumption of thermal fluctuations of a force probe has been used to iden-

tify association/dissociation events of protein-ligand bonds. We show that off-rate

of molecular dissociation can be estimated by the analysis of the bond lifetime while

the on-rate of molecular association can be estimated by the analysis of the waiting

time between two neighboring bond events. However, the analysis relies heavily on

subjective judgments and is time-consuming. To automate the process of mapping

out bond events from thermal fluctuation data, we develop a hidden Markov model

(HMM)-based method. The HMM method represents the bond state by a hidden

variable with two values: bound and unbound. The bond association/dissociation is

visualized and pinpointed. We apply the method to analyze a key receptor-ligand in-

teraction in the early-stage of hemostasis and thrombosis: the von Willebrand factor

(VWF) binding to platelet glycoprotein Ib (GPIbα). The numbers of bond lifetime

and waiting time estimated by the HMM are much more than those estimated by a

descriptive statistical method from the same set of raw data. The kinetic parame-

ters estimated by the HMM are in excellent agreement with those by a descriptive

statistical analysis, but have much smaller errors for both wild-type and two mutant

VWF-A1 domains. Thus, the computerized analysis allows us to speed up the anal-

ysis and improve the quality of estimates of receptor-ligand binding kinetics. This is

joint work with Arnold Ju, Dr. Ying Hung, Dr. Jeff Wu and Dr. Cheng Zhu.

Chapter 3 is concerned with prediction of a deterministic response function y at

some untried sites given values of y at a chosen set of design sites. The intended

application is to computer experiments in which y is the output from a computer

simulation and each design site represents a particular configuration of the input

variables. A Bayesian version of the cubic spline method commonly used in numerical

analysis is proposed, in which the random function that represents prior uncertainty

about y is taken to be a specific stationary Gaussian process. An MCMC procedure

is given for updating the prior given the observed y values. Simulation examples and

x



a real data application are given to compare the performance of the Bayesian cubic

spline with that of two existing methods. This is joint work with Dr. Jeff Wu.
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CHAPTER I

HIDDEN MARKOV MODELS WITH APPLICATIONS IN

CELL ADHESION EXPERIMENTS

1.1 Introduction

Cell adhesion plays an important role in many physiological and pathological processes

(Dustin et al. 2001). It is mediated by specific interactions between receptors on one

cell and corresponding ligands on another cell. This work is motivated by newly

developed method, called thermal fluctuation assay (Chen et al. 2008), which allows

a real-time monitoring of receptor-ligand interactions.

Figure 1: Illustration of the Biomembrane Force Probe
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Figure 2: Observations from a Thermal Fluctuation Experiment

In thermal fluctuation assay, red blood cell (RBC) is used as an adhesion sensor.

Receptor surface (target bead on the right of Figure 1) and ligand surface (probe

bead linked to a RBC on the left of Figure 1) are brought into zero distance con-

tact, allowing receptor-ligand bonds to form by thermal fluctuation of RBC. When

a bond forms, thermal fluctuations are reduced. Thus, decrease/resumption of ther-

mal fluctuations of a biomembrane force probe (left bead linked to RBC in Figure

1) pinpoints association/dissociation of receptor-ligand bonds. Accurate estimation

of the instants of bond formation and dissociation is essential because they form the

basis for subsequent estimation of the kinetic parameters for specific receptor-ligand

interaction (Chen et al. 2008). The position of the probe bead is tracked by image

analysis software to produce the data shown in Figure 2. In this Figure, horizontal

position of the left edge of the probe bead is plotted versus time. Bond formation is

equivalent to adding a molecular spring in parallel to the force transducer spring to

stiffen the system (Marshall et al., 2006; Wu et al., 2005). Therefore, the fluctuation

decreases when a receptor-ligand bond forms and resumes when the bond dissociates.

The objective of this study is to identify association and dissociation points for

2



receptor-ligand bonds. It can be challenging because these points are not directly

observable and can only be detected through the variance changes in thermal fluctu-

ations. Moreover, the thermal fluctuations are independently distributed given their

binding status (e.g., binding or not), but the transition from one status to another can

be dependent. For example, in some receptor-ligand systems (Zarnitsyna et al. 2007;

Hung et al. 2008), the chance of having a binding in the next contact is increased (or

decreased) if there is a binding in the immediate past. Because of the dependence,

standard approaches such as change point techniques (Carlstein et al. 1994; Hawkins

and Zamba 2005) are not directly applicable. Identifying association/dissociation

points becomes even more difficult when the recorded data contains more than one

type of bonds and the number of types is unknown which is quite common in cell-cell

adhesion interactions. In general, different types of receptor-ligand bonds are associ-

ated with different fluctuation decreases, depending on the stiffness of the molecules.

We can thus classify the association and dissociation points into different bond types

according to different levels of reduction in thermal fluctuation. The difficulty is that

the levels of reduction are unknown and have to be estimated from data. Thus, there

are two issues involved in this study. The first is to accurately estimate the num-

ber of bond types in the process and the second is to identify the association and

dissociation points for each type of bonds.

The existing approach for analyzing thermal fluctuation assay data is to calculate

the moving standard deviation of the thermal fluctuation data (Chen et al. 2008).

This approach, though intuitive, is not robust to the size of moving windows and

limited to the study of one type of bonds. To overcome these problems and address

the two foregoing issues, a new framework based upon hidden Markov models (HMM)

(Rabiner 1989; Bickel et al. 1998; Cappé et al. 2005) and an order selection procedure

is proposed. This framework provides a systematic approach to simultaneously deter-

mine the number of bond types and identify the association and dissociation points.

3



The probe fluctuates with different variations that correspond to different underlying

binding states. These unobservable states are not assumed to be independent, but

rather to have a Markovian structure so that the cell memory effects can be captured.

Therefore, the proposed framework uses hidden states in HMM to represent the bind-

ing status. Given the hidden states, probe locations are assumed to be independent

and normally distributed with some unknown parameters that capture the variations

associated with different bond types.

HMMs have proven to be very useful in many areas (Rabiner 1989, Scott, James,

and Sugar 2005, Yuan and Kendziorski 2006) and theoretical properties of HMMs,

given the number of state is known, have been extensively studied (Leroux 1992,

Bickel, Ritov and Rydén 1998, Cappé, Moulines, and Rydé 2005). However, the

unknown number of bond types in the current experiment requires the study of a new

problem, namely, estimation of the number of states. A standard approach would be

to use likelihood ratio tests with the likelihood ratio asymptotically distributed as

a χ2 random variable. However, this result is not true for HMMs because, if the

null hypothesis is true, then the parameters are not uniquely identified under the

alternative (Gassiat and Kéribin 2000, Robert et al., 2000). Other order selection

methods, such as AIC (Akaike 1974) and BIC (Schwarz 1978), are commonly used

in practice. Examples can be found in Leroux and Puterman (1992), Hughes and

Guttorp (1994), Albert et al. (1994), and Wang and Puterman (1999). However, these

methods have not been theoretically justified in the context of HMMs (MacDonald

and Zucchini, 1997). Although some theoretical studies has been developed along this

line, such as the minimum distance estimator (Chen and Kalbfleisch 1996, MacKay

2002) and BIC-type of penalized approaches (Csiszár and Shields 2000, Gassiat and

Boucheron 2003, Chambaz et al. 2009), the order selection problem has not yet been

satisfactorily resolved for HMMs. A new order selection method is proposed in this

paper and its consistency is addressed. The merits of this approach are borne out in

4



a simulation study comparing with existing methods.

Although the proposed order selection approach in HMMs is motivated by the

study of cell adhesion experiment, it has applications in many areas, including signal

processing (Kaleh and Vallet 1994, Chambaz et al. 2009), environmental science, and

bioinformatics (Koski 2001). In these problems the number of underlying states is

often unknown. Efficient estimation of the order can improve the prediction accuracy

and provide valuable scientific information. For example, MacKay (2002) proposed an

HMM to model lesions experienced on the brain stem given an unobservable disease

state in the study of multiple sclerosis. Our proposed method would be useful in

estimating the number of hidden disease states. In another example, Hughes and

Guttorp (1994) model the rainfall process given unobserved weather states. The

proposed method can be applied to estimate the unknown number of weather states.

In the study of heart rate variability in sleeping neonates (Clairambault et al. 1992),

the proposed method is readily applicable to characterize the number of periods in

the neonate sleep.

The remainder of this article is organized as follows. The existing method and

some preliminary analysis results for a thermal fluctuation experiment are presented

in Section 1.2. The hidden Markov model approach is developed and an order se-

lection procedure is introduced in Section 1.3. The order selection is shown to be

asymptotically consistent in estimation. An efficient algorithm, called expectation

conditional maximization, is used for maximum likelihood estimation. In Section 1.4,

simulations are presented to demonstrate the performance of the proposed approach.

In Section 1.5, the proposed approach is applied to the analysis of two thermal fluc-

tuation experiments. Summary and concluding remarks are given in Section 1.6.
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1.2 Preliminary analysis of a thermal fluctuation experi-
ment

As explained in Section 1.1, the association/dissociation points in the thermal fluctu-

ation assay indicate thermal fluctuation variance decrease/increase. Therefore in the

existing approach (Chen et al. 2008) these points are identified using a moving stan-

dard deviation plot based on the thermal fluctuation data. Figure 3 illustrates such

a plot with standard deviations calculated by 15 consecutive observations. In this

figure, some periods (marked by arrows) in which the standard deviations decrease

significantly indicate the presence of bonds.
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Figure 3: Moving Standard Deviation Plot Based on Data in Figure 2

Standard deviation plots are intuitive and easy to implement but have limitations.

First, the accuracy of identifying the association and dissociation points is susceptible

to the number of consecutive points used in calculating the standard deviations. That

is, the resulting plots can be different with different numbers of consecutive points

used in the calculation, which can lead to inconsistent identification of the association

and dissociation points. Second, it has no clear decision rule and theoretical justifica-

tion, especially when the observations are not independent. This issue becomes more
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serious when there is more than one type of bonds.

1.3 Hidden Markov models

1.3.1 Modeling

A framework based upon Hidden Markov models (HMM) is introduced to analyze

the thermal fluctuation experiments. Suppose ys represents the probe location at

time s. There is an unobservable binding state, denoted by xs, associated with ys.

The change of state can be described by a stationary Markov chain on K states with

transition probability Pij = P (xs+1 = j | xs = i) and stationary probability πi, where

i, j ∈ {1, . . . , K}. Different order of cell memory effect (Zarnitsyna et al., 2007)

can be captured and assessed by the use of transition matrix. Conditional on the

undelying binding states, the observed probe locations are assumed to be mutually

independent and normally distributed with density f(ys; σx(s), φx(s)), where φx(s) and

σ2
x(s) are the mean and variance. The hidden states are defined only according to

the variance in this study because it is believed that different binding states lead to

different levels of fluctuation captured by their variances (Chen et al. 2008). The

mean functions φx(i) are allowed to be different with respect to the states because

the probe can be pulled/pushed by a small force due to the presence of a bond. In

general, the proposed framework can be relaxed to include situations in which the

hidden states are defined according to the mean and/or variance.

The standard thermal fluctuation experiment is usually conducted with several

independent replicates. Thus a more general setting is written as follows. Assume

Y i = (yi1, . . . , yit) to be the ith sequence of observations from the experiment and

the index ij denotes the jth observation in the ith sequence. Let X i = (xi1, . . . , xit),

Φi = (φi1, . . . , φit), and Σi = (σx(i1), . . . , σx(it)) be the hidden states, mean, and

7



variance for the ith sequence. Then, the density for Y i can be written as

F (Y i; Σi,Φi) =
K∑

x(i1)=1

· · ·
K∑

x(it)=1

t∏
j=1

f(yij; σx(ij), φx(ij))πx(i1)Px(i1)x(i2) · · ·Px(i,t−1)x(it).

(1)

The goal of the thermal fluctuation experiment can be restated as that about

the underlying states. For example, the number of the hidden states represents the

number of bond types in the experiment. The starting and ending points of each

state represent the association and dissociation points of the corresponding bond.

Note that K is an upper bound for the order of the states and the true value, denoted

by K0, is unknown because it represents the unknown number of binding status.

An estimator K̂0 of K0 will be obtained by using an order selection procedure given

below.

1.3.2 Order selection and asymptotic properties

Accurate estimation of the order of the hidden states is important in analyzing ther-

mal fluctuation experiments because it represents the number of bond types. To

perform the order selection, an intuitive approach would be to maximize the likeli-

hood. Let Y 1, . . . ,Y n be a random sample from (1). Let Σ = (Σ1,Σ2, . . . ,Σn) and

Φ = (Φ1,Φ2, . . . ,Φn). The log-likelihood function of the HMM can be written as:

ln(Σ,Φ) =
n∑
i=1

logF (Y i; Σi,Φi),

where F (Y i; Σi,Φi) is given in (1). By maximizing ln(Σ,Φ), however, the resulting

model may overfit the data with a large value of K̂0. MacKay (2002) proposed

a penalized minimum-distance (MD) method that prevents such an overfitting by

avoiding having small πk values. This approach is shown to be consistent in estimating

the number of hidden states. However, it overlooks another type of overfitting which

was first observed by Chen and Khalili (2008) in finite mixture models, i.e., overfitting

with some component densities close to each other. To circumvent this problem, Chen

8



and Khalili (2008) introduced a double penalized approach for finite mixture models.

This approach is further extended to HMM in this paper, which takes into account

both types of overfitting and provides a better estimation of the number of hidden

states.

A double penalized log-likelihood function is defined as

l̃n(Σ,Φ) = ln(Σ,Φ) + CK

K∑
k=1

log πk −
K−1∑
k=1

pn(ηk), (2)

where ηk = σk+1−σk, for k = 1, 2, . . . , K−1, and σ1 ≤ σ2 · · · ≤ σK . The first penalty

is used to prevent small value of πk. The second penalty, pn, is a nonnegative function

that shrinks small ηk to 0 with positive probability. Thus it prevents overfitting by

different normal distributions with variances close to each other. Several penalty

functions are available in the literature (Donoho 1994, Tibshirani 1996, 1997, Zou

and Hastie 2005, Zou 2006). In this paper, we assume pn to be a smoothly clipped

absolute deviation penalty (SCAD) (Fan and Li 2001). We choose SCAD for pn

because it is used in many applications and has desirable asymptotic properties. The

SCAD penalty can be characterized by its derivative

p′n(η) = γn
√
nI{
√
n | η |≤ γn}+

√
n(aγn −

√
n | η |)+

a− 1
I{
√
n | η |> γn}, (3)

where a > 2 and γn are tuning parameters. By maximizing (2), the estimated order

K̂0 of HMM can be obtained.

Let Y = (Y 1,Y 2, . . . ,Y n) and X = (X1,X2, . . . ,Xn). To study theoretical

properties of the proposed procedure, we first rewrite the density function of HMM

as:

F (Y ; G,Φ) =

∫
F (Y ; Σ,Φ)dG(Σ), (4)

where

G(Σ) =
K∑

x(1)=1

· · ·
K∑

x(t)=1

πx(1)Px(1)x(2) · · ·Px(t−1)x(t)I(σx(1) ≤ σ1, . . . , σx(t) ≤ σt). (5)
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Let (Ĝn, Φ̂) be the maximizer of l̃n(G,Φ), where

Ĝn =
K∑

x(1)=1

· · ·
K∑

x(t)=1

π̂x(1)P̂x(1)x(2) · · · P̂x(t−1)x(t)I(σ̂x(1) ≤ σ1, . . . , σ̂x(t) ≤ σt).

For later proofs and properties of estimator Ĝn, we want to rewrite Ĝn into sum-

mation from 1 to K0. Follow the notation of Chen and Khalili, we define the index

sets I(k) = {j : σ0,k−1 +σ0k ≤ 2σ̂j ≤ σ0k+σ0,k+1} for k = 1, 2, . . . , K0 with σ00 = −∞

and σ0,K0+1 =∞. Introduce ϑ̂ as an estimator of the stationary probability cum the

transition probability:

ϑ̂(k1, k2, . . . , kt) =
∑

x(1)∈I(k1)

∑
x(2)∈I(k2)

· · ·
∑

x(t)∈I(kt)

π̂x(1)P̂x(1)x(2) · · · P̂x(t−1)x(t),

where k1, k2, . . . , kt = 1, 2, . . . , K0. Use ϑ̂m to estimate πm by:

ϑ̂m =
∑

x(1)∈I(m)

∑
x(2)

· · ·
∑
x(t)

π̂x(1)P̂x(1)x(2) · · · P̂x(t−1)x(t) =

K0∑
k2=1

· · ·
K0∑
kt=1

ϑ̂(k1 = m, k2, . . . , kt).

Therefore, Ĝn can be expressed in terms of ϑ̂ as follows:

Ĝn =

K0∑
k1=1

K0∑
k2=1

· · ·
K0∑
kt=1

ϑ̂(k1, k2, . . . , kt)Ĥ(k1, k2, . . . , kt,Σ),

where

Ĥ(k1, k2, . . . , kt,Σ) =

∑
x(1)∈I(k1)

· · ·
∑

x(t)∈I(kt)

π̂x(1)P̂x(1)x(2) · · · P̂x(t−1)x(t)I(σ̂x(1) ≤ σ1, . . . , σ̂x(t) ≤ σt)

ϑ̂(k1, k2, . . . , kt)
.

Similarly, we can have:

Ĥm =

K0∑
k2=1

· · ·
K0∑
kt=1

Ĥ(k1 = m, k2, . . . , kt,Σ).

The following two results prove the consistency of the double penalized approach

in estimating the order. They are extensions of similar results for the mixture models

(Chen and Khalili 2008). Assumptions and proofs are along the lines of Chen and

Khalili (2008) and thus deferred to the appendix.

Theorem 1: Suppose F (Y ; Σ,Φ) satisfies the identifiability and regularity con-

ditions in the appendix and SCAD penalty term is γn = O(n1/4 log n). Then,
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(i) for any continuous point Σ of G0, Ĝn(Σ) → G0(Σ) in probability as n → ∞,

and ϑ̂k = π0k + op(1) for each k = 1, 2, . . . , K0;

(ii) all atoms of Ĥk converge in probability to σ0k for k = 1, 2, . . . , K0.

The next theorem shows that Ĥk has a single atom with probability tending to 1

for each k, and thus Ĝn is consistent in estimating K0.

Theorem 2: Assume the same conditions as in Theorem 1. Under the true

finite mixture density F (Y ; G0,Φ0), if (Ĝn, Φ̂) falls into an O(n−1/4) neighborhood

of (G0,Φ0), then K̂0 tends to K0 with probability tending to one.

These asymptotic properties require an infinite collection of independent sequences

Y i with fixed length t. It is worth noting that this assumption can be relaxed to

single sequence (y1, y2, . . . , yt) with t → ∞. The results still hold by constructing

n independent HMM subsequences of length T with Y i = (yi1 , yi1+1, . . . , yi1+T−1),

where i = 1, · · · , n, i1 ∈ {1, 2, . . . , t}, and | i1 − j1 |→ ∞ for any i 6= j.

1.3.3 Estimation

The Baum-Welch expectation-maximization (EM) algorithm (Baum, Petrie, Soules,

and Weiss 1970; Dempster, Laird, and Rubin 1977; Welch 2003) is generally used to

estimate the unobservable states. Since Σ has no closed form in the M-step, direct ap-

plication of the standard EM algorithm is not computationally tractable. Therefore, a

modified version of the EM algorithm, known as expectation conditional maximization

(ECM), is applied (Meng and Rubin 1993). The idea is to replace each M-step with a

sequence of conditional maximization steps in which each parameter is maximized in-

dividually. Let Ψ = (σ1, σ2, . . . , σK , π1, π2, . . . , πK , P11, P12, . . . , PKK , φ1, φ2, . . . , φK)

stand for all the unknown parameters in the model. The complete log-likelihood

function is:
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lcn(Y ,X; Ψ) =
n∑
i=1

K∑
v(i1)=1

· · ·
K∑

v(it)=1

zi1,...,it log
( t∏
j=1

f(yij; σv(ij), φv(ij))πv(i1)Pv(i1)v(i2) · · ·Pv(i,t−1)v(it)

)
,

where zi1,...,it = 1, if (v(i1), v(i2), . . . , v(it)) = X i; and 0 otherwise, are unobserv-

able indicator variables. Thus, the penalized complete log-likelihood function can be

written as

l̃cn(Y ,X; Ψ) = lcn(Y ,X; Ψ) + CK

K∑
k=1

log πk −
K−1∑
k=1

pn(ηk)

and is maximized by iteratively performing the following two steps.

E-Step: Let Ψ(m) be the parameter estimate in the mth iteration. There are

n sequences observed and the length of each sequence is t. Assuming that Ψ(m) is

the true parameter and given the observed data, the conditional expectation of the

complete loglikelihood function with respect to zi1,...,it can be written as:

Q(Ψ; Ψ(m)) =
n∑
i=1

K∑
x(i1)=1

· · ·
K∑

x(it)=1

w
(m)
Xi

log
( t∏
j=1

f(yij; σx(ij), φx(ij))Px(i1)x(i2) · · ·Px(i,t−1)x(it)

)
+

n∑
i=1

K∑
k=1

{w(m)
i,k +

Ck
n
} log πk −

K−1∑
k=1

pn(ηk),

where

w
(m)
Xi

= w
(m)
x(i1),x(i2),...,x(it)

=

∏t
j=1 f(yij; σ

(m)
x(ij), φ

(m)
x(ij))π

(m)
x(i1)P

(m)
x(i1)x(i2) · · ·P

(m)
x(i,t−1)x(it)∑K

x(l1)=1 · · ·
∑K

x(lt)=1

∏t
j=1 f(yij; σ

(m)
x(lj), φ

(m)
x(lj))π

(m)
x(l1)P

(m)
x(l1)x(l2) · · ·P

(m)
x(l,t−1)x(lt)

,

w
(m)
i,k =

K∑
x(i2)=1

· · ·
K∑

x(it)=1

w
(m)
x(i1)=k,x(i2),...,x(it), k = 1, 2, . . . , K.

CM-Step: It includes two substeps and the (m + 1)st iteration is the final out-

put of the two substeps. Let Π = {π1, π2, . . . , πK}, P = {P11, P12, . . . , PKK} and

g1(Ψ) = Σ. The first substep is to estimate Π(m+1), P(m+1) and Φ(m+1) by maxi-

mizing Q(Ψ; Ψ(m)) subject to the constraint g1(Ψ) = g1(Ψ(m)). It can be written in
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closed form as follows:

π
(m+1)
k =

∑n
i=1 w

(m)
i,k + CK

n+KCK
,

P
(m+1)
ab =

∑n
i=1

∑t
j=1 Pr

(m)(xi,j−1 = a, xij = b | Y i)

nt
∑K

k=1

∑n
i=1

∑t
j=1 Pr

(m)(xi,j−1 = a, xij = k | Y i)
,

φ
(m)
k =

∑n
i=1

∑t
j=1 α

(m)
ij (k)β

(m)
ij (k)yij∑n

i=1

∑t
j=1 α

(m)
ij (k)β

(m)
ij (k)

, k, a, b ∈ {1, 2, . . . , K},

where Pr(xi,j−1 = a, xij = b | Y i), αij(k) and βij(k) are defined as: αij(k) =

Pr(yi1, yi2, . . . , yij, xij = k), βij(k) = Pr(yi,j+1, yi,j+2, . . . , yit | xij = k). Also,

F (Y i; Σi,Φi) =
∑K

k=1 αit(k), and Pr(xi,j−1 = a, xij = b,Y i) = αi,j−1(a)Pabf(yij; σb, φb)βij(b).

Details on choice of initial values and the setting of α and β can be found in Baum

et al. (1970) and Welch (2003).

The second substep is to update Σ by conditional maximization. Constrained on

g2(Ψ) = g2(Ψ(m+ 1
2

)), where g2(Ψ) = {Π,P,Φ} and Ψ(m+ 1
2

) = (Π(m+1),P(m+1),Φ(m+1),Σ(m)),

the new estimation can be obtained by using the Newton-Raphson method. Because

of the non-smoothness of the SCAD penalty pn(η), a local quadratic approximation

(LQA) is suggested by Fan and Li (2001) to implement the Newton-Raphson iter-

ation, i.e., p̃n(η; η
(m)
k ) = pn(η

(m)
k ) +

p′n(η
(m)
k )

2η
(m)
k

(η2 − η
(m)2

k ). However, it is known that

LQA can have problems like numerical instability and sharing a drawback of back-

ward stepwise variable selection (Hunter and Li 2005). Several methods are proposed

to address the problems, including a perturbed version of LQA proposed by Hunter

and Li (2005) and an iterative algorithm based on local linear approximation (LLA)

proposed by Zou and Li (2008). Because LLA inherits the desirable features of lasso

(Tibshirani 1996) in terms of computational efficiency and avoids the drawback of

LQA, we implemented the LLA according to the suggestion of Zou and Li (2008) as

follows:

p̃n(η; η
(m)
k ) = pn(η

(m)
k ) + p′n(η

(m)
k )(η − η(m)

k ).

Based on some simulations (not reported here), LLA outperforms LQA in selecting
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the correct order of HMM under the current setting, which is consistent with the

findings in Zou and Li (2008). More discussions on LLA can be found in Rahul et al.

(2011).

Detailed updating procedure of Σ can be written as follows. To update σ1, we

have

σ
(m+1)
1 = σ

(m)
1 − D1

1(Ψ(m+ 1
2

))

D1
2(Ψ(m+ 1

2
))
,

where

D1
1(Ψ(m+ 1

2
)) = ∂σ1 |Ψ(m+1

2 )

n∑
i=1

K∑
x(i1)=1

· · ·
K∑

x(it)=1

w
(m+ 1

2
)

Xi

log
( t∏
j=1

f(yij; σx(ij), φx(ij))
)
− ∂σ1 p̃n(η1; η

(m)
1 ),

and

D1
2(Ψ(m+ 1

2
)) = ∂σ1σ1 |Ψ(m+1

2 )

n∑
i=1

K∑
x(i1)=1

· · ·
K∑

x(it)=1

w
(m+ 1

2
)

Xi

log
( t∏
j=1

f(yij; σx(ij), φx(ij))
)
− ∂σ1σ1 p̃n(η1; η

(m)
1 ).

For σk with k = 2, 3, . . . , K − 1, the estimation is given by

σ
(m+1)
k = σ

(m)
k − Dk

1(Ψ(m+ 1
2

))

Dk
2(Ψ(m+ 1

2
))
,

where

Dk
1(Ψ(m+ 1

2
)) = ∂σk |Ψ(m+1

2 )

n∑
i=1

K∑
x(i1)=1

· · ·
K∑

x(it)=1

w
(m+ 1

2
)

Xi
log
( t∏
j=1

f(yij; σx(ij), φx(ij))
)

− ∂σk p̃n(ηk−1; η
(m)
k−1)− ∂σk p̃n(ηk; η

(m)
k ),

and

Dk
2(Ψ(m+ 1

2
)) = ∂σkσk |Ψ(m+1

2 )

n∑
i=1

K∑
x(i1)=1

· · ·
K∑

x(it)=1

w
(m+ 1

2
)

Xi
log
( t∏
j=1

f(yij; σx(ij), φx(ij))
)

− ∂σkσk p̃n(ηk−1; η
(m)
k−1)− ∂σkσk p̃n(ηk; η

(m)
k ).
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For σK , we have

σ
(m+1)
K = σ

(m)
K − DK

1 (Ψ(m+ 1
2

))

DK
2 (Ψ(m+ 1

2
))
,

where

DK
1 (Ψ(m+ 1

2
)) = ∂σK |Ψ(m+1

2 )

n∑
i=1

K∑
x(i1)=1

· · ·
K∑

x(it)=1

w
(m+ 1

2
)

Xi

log
( t∏
j=1

f(yij; σx(ij), φx(ij))
)
− ∂σK p̃n(ηK−1; η

(m)
K−1),

and

DK
2 (Ψ(m+ 1

2
)) = ∂σKσK |Ψ(m+1

2 )

n∑
i=1

K∑
x(i1)=1

· · ·
K∑

x(it)=1

w
(m+ 1

2
)

Xi

log
( t∏
j=1

f(yij; σx(ij), φx(ij))
)
− ∂σKσK p̃n(ηK−1; η

(m)
K−1).

Based on the two substeps, the (m+ 1)st iteration can be updated by

Ψ(m+1) = (Π(m+1),P(m+1),Φ(m+1),Σ(m+1)).

The iterative procedure is terminated if the log-likelihood increment is smaller

than a predetermined value. Its convergence is guaranteed according to the results

in the EM literature (Wu 1983, Meng and Rubin 1993). For the tuning parameters,

cross-validations (Stone 1974) are usually used. The widely used leave-one-out cross

validation, however, cannot be applied in this case because of the dependent structure

of HMM, i.e., yij and yi,j−1 are dependent to each other through xij. Therefore, we

implement the half-sampling cross validation method proposed by Celeux and Durand

(2008), which preserve the Markov chain structure. Let Y i = (yi1, yi2, . . . , yit) be a

sequence of HMM. We choose the odd (and resp. even) sub-chain of each HMM

sequence, i.e., Y 1
i = (yi1, yi3, . . .) (and Y 2

i = (yi2, yi4, . . .)). Each sub-chain forms a

new HMM with Ψ̃ = (Π,P2,Φ,Σ). Denote the maximum double penalized estimates
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for odd subsequences by Ψ̂n,1 and by Ψ̂n,2 for even subsequences. Then the half-

sampling cross validation is given by

CV (γn) = −
2∑
i=1

lin(Ψ̂n,i)

and γn is chosen by minimizing CV (γn). Through cross validation, it is observed

that the double penalized method is not sensitive to the choice of a and CK , and

similar results were observed and discussed in Chen et al. (2008). They suggested

that if σ̂k ∈ [M−1,M ] for some large enough M , then a recommended setting of CK

is CK = logM . In the context of this study, we use half-sampling cross validation

and choose CK = 0.6 log 10 for all simulations and real examples. We chose a = 3.7

in (3) as recommended by Fan and Li (2001).

1.4 Simulation study

To illustrate the order selection performance, we compare the proposed approach

with three methods in the literature: AIC (Akaike 1974), BIC (Schwarz 1978), and

minimal-distance (MacKay 2002). Both AIC and BIC select the order by directly

controlling the order K. The minimal-distance (MD) criterion is defined by

MD(F̄n, F ) = dKS(F̄n, F )− Cn
k∑
i=1

log πi,

where F̄n is the t-dimensional empirical distribution function of F , t is the length of

each sequence, and dKS is the Kolmogorov-Smirnoff distance.

Simulations were conducted based on 16 settings and the details are summarized

in Table 1. The first column, K0, indicates the true number of hidden states which

ranges from 2 to 9. More attention was given to orders 2 to 5 because they reflect

the numbers of bond populations in the cell adhesion experiments. The transition

probabilities and the means and variances of the conditional normal distributions are

also listed. These settings take into account variance and/or mean changes and also

incorporate various settings of the transition matrices. When K0 increases, values

16



of the transition matrices play a key role in determining the types of HMMs. We

focus on two types of settings that represent the two cases in the study of MacKay

(2002). One is a “unbalanced” case in which higher probabilities appear on the

diagonal (i.e., proportion of time in each state is unbalanced as in cases 4 and 5).

The other is a “balanced” case in which the same probability appears in each element

of the transition matrix (as in cases 6 to 9). Also, different values of n (i.e. 2, 5, 10,

20, 50,100) are considered. Simulations are also conducted for cases with K0 > 5.

Because they give similar conclusions, to save space, only one example with K0 = 9

is reported in the table.

We use cross validation to choose the tuning parameter γn/
√
n in the inter-

val [.1, .5]. For each simulation setting, the ECM iterations terminated if the log-

likelihood increment is smaller than 10−4. This algorithm converges efficiently. For

example, for HMM with 2 sequences and length 100, it took about 40 seconds for an

Intel Xeon CPU with 2.66 GHz and 3.00 GB of RAM to achieve such convergence.

Furthermore, as recommended by Meng and Rubin (1993), adding a few more inner

loops for updating σk can speed up convergence.
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Table 1: Parameter Settings in Simulation

case K0 Mean Variance Transition Matrix n t

1 2 (0, 0)′ (0.5, 4)′ 0.5 2 50

2 2 (0, 0)′ (0.5, 4)′ 0.5 20 50

3 2 (0, 0)′ (0.5, 4)′ 0.5 50 50

4 2 (0, 0)′ (0.5, 4)′ P4 2 50

5 2 (0, 0)′ (0.5, 4)′ P4 20 50

6 2 (0, 0)′ (0.5, 4)′ P4 50 50

7 4 (9, 20, 1, 9)′ (0.3, 0.5, 1, 2)′ P8 2 100

8 4 (9, 20, 1, 9)′ (0.3, 0.5, 1, 2)′ P8 100 100

9 4 (3, 10, 7, 1)′ (0.3, 0.5, 0.8, 1.1) 0.25 2 100

10 4 (3, 10, 7, 1)′ (0.3, 0.5, 0.8, 1.1) 0.25 10 100

11 4 (3, 10, 7, 1)′ (0.3, 0.5, 0.8, 1.1) 0.25 50 100

12 5 (20, 1, 5, 9, 17)′ (0.6, 0.8, 1.5, 1.7, 2) 0.2 5 100

13 5 (20, 1, 5, 9, 17)′ (0.6, 0.8, 1.5, 1.7, 2) 0.2 10 500

14 5 (20, 1, 5, 9, 17)′ (0.6, 0.8, 1.5, 1.7, 2) 0.2 100 500

15 9 (0, 10,−16, 20, 15, (0.2, 0.5, 0.8, 0.9, 1.2, 1/9 10 1000

−4,−20,−8, 0)′ 1.3, 1.4, 2, 2.1)′

16 9 (0, 10,−16, 20, 15, (0.2, 0.5, 0.8, 0.9, 1.2, 1/9 50 1000

−4,−20,−8, 0)′ 1.3, 1.4, 2, 2.1)′

Tables 2 and 3 show the order selection performance of the four methods in the

16 settings, where

P4 =

 0.9 0.1

0.3 0.7

 .
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P8 =



0.75 0.1 0.1 0.05

0.2 0.7 0.05 0.05

0.2 0.1 0.6 0.1

0.3 0.1 0.1 0.5


.

For each setting, the true order is indicated by the number with boldface in the

“order” column. For each method, we report the percentage of times out of 100

replications that the estimated order equals to a value between 1 and 11. The value

with the highest frequency is indicated by a boldface. When the true order is 2 (i.e.,

cases 1 to 6), the double penalized approach (DP) is consistently the best and has

more than 84% success rate in identifying the true order. AIC also works reasonably

well in these settings, while BIC tends to underestimate in some cases. When sample

size increases, the selection accuracy of DP is improved which is consistent with the

asymptotic results. This result is observed throughout the simulations, i.e., cases 7-8,

cases 9-11, cases 12-14, and cases 15-16. For K0 = 4, both MS and DP outperform

the other methods in the unbalanced cases (of 7 and 8). It appears to be more difficult

to identify the correct order in the balanced cases (cases 9 to 14). In these cases, DP

consistently identifies the correct order with the highest frequency while most of the

other methods underestimate the order even for larger sample size. In cases 15 and

16 with K0 = 9, DP outperforms the other three methods.
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Table 2: Simulation results

case order AIC BIC MS DP case order AIC BIC MS DP

1 0.22 0.7 0.23 0.09 1 0.18 0.7 0.16 0.08

2 0.78 0.3 0.74 0.84 2 0.82 0.29 0.83 0.87

1 3 0 0 0.03 0.06 2 3 0 0.01 0.01 0.05

4 0 0 0 0.01 4 0 0 0 0

5 0 0 0 0 5 0 0 0 0

1 0.17 0.66 0.17 0.07 1 0.18 0.41 0.14 0.08

2 0.79 0.34 0.81 0.89 2 0.81 0.59 0.78 0.85

3 3 0.04 0 0.02 0.03 4 3 0.01 0 0.07 0.07

4 0 0 0 0.01 4 0 0 0.01 0

5 0 0 0 0 5 0 0 0 0

1 0.16 0.37 0.11 0.05 1 0.19 0.39 0.14 0.08

2 0.84 0.63 0.85 0.88 2 0.8 0.59 0.84 0.9

5 3 0 0 0.02 0.07 6 3 0.01 0.02 0 0.02

4 0 0 0.02 0 4 0 0 0.02 0

5 0 0 0 0 5 0 0 0 0
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Table 3: Simulation results

2 0 0 0 0 2 0 0 0 0

3 0.4 0.72 0.02 0.08 3 0.39 0.65 0 0.07

7 4 0.42 0.28 0.86 0.73 8 4 0.44 0.32 0.88 0.90

5 0.18 0 0.12 0.19 5 0.17 0.03 0.12 0.03

6 0 0 0 0 6 0 0 0 0

2 0 0 0 0 2 0 0 0 0

3 0.56 1 0.92 0.4 3 0.6 0.98 0.78 0.32

9 4 0.42 0 0.08 0.53 10 4 0.4 0.02 0.21 0.65

5 0.02 0 0 0.07 5 0 0 0.01 0.03

6 0 0 0 0 6 0 0 0 0

2 0 0 0 0 3 0.02 0 0 0

3 0.55 0.95 0.66 0.25 4 0.58 0.75 0.57 0.38

11 4 0.45 0.04 0.34 0.75 12 5 0.39 0.25 0.47 0.6

5 0 0.01 0 0 6 0.01 0 0 0.02

6 0 0 0 0 7 0 0 0 0

3 0.04 0 0 0.01 7 0.08 0 0 0

4 0.52 0.72 0.38 0.25 8 0.57 0.8 0.35 0.11

13 5 0.39 0.28 0.59 0.74 14 9 0.35 0.2 0.61 0.8

6 0.05 0 0.03 0 10 0 0 0.04 0.09

7 0 0 0 0 11 0 0 0 0

7 0 0 0 0 7 0 0 0 0

8 0.67 0.98 0.42 0.35 8 0.58 0.95 0.47 0.19

15 9 0.31 0.02 0.46 0.64 16 9 0.37 0.04 0.51 0.72

10 0.02 0 0.07 0.01 10 0.05 0.01 0.02 0.08

11 0 0 0.05 0 11 0 0 0 0.01
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1.5 Application in cell adhesion experiments

We now consider the application to the thermal fluctuation experiments in this sec-

tion. The proposed approach is applied to real data (Chen et al. 2008) to assess

the accuracy in identifying the number of bond types and specifying their associa-

tion/dissociation points. Two sets of experiments were recorded. One is L-selectin

interacting with P-selectin glycoprotein ligand-1 (PSGL-1) and another is P-selectin

interacting with PSGL-1. It is known that the stiffness of L-selectin differs from that

of P-selectin so we expect to see a difference in the level of thermal fluctuation re-

ductions during their bonds formation with PSGL-1. The first data set has one type

of bond in the experiment and is used to validate the level of thermal fluctuation

reduction for each type of bonds. The second data set has a mixture of two different

types of bonds and is used to test a proposed model to see if it can separate these

two bonds.

For the first data, the interest focuses on the interactions between L-selectin and

PSGL-1. Low densities of selectins and PSGL-1 are used to ensure that interactions

formed are most likely single bonds, i.e., either no bond or a single L-selectin-PSGL-

1 bond for each interaction. There are 18 independent replicates of the thermal

fluctuation sequences and each of them has over 300 probe positions recorded in 5

second. Figure 2 is a typical sample with such a setting. The HMM is applied with

K = 4 and the number of the hidden states is correctly specified as two, i.e. K0 = 2,

using the double penalized approach. The estimated transition matrix is

P̂ =

0.9924 0.0076

0.0242 0.9758


and the stationary probabilities are

Π̂ = (0.7645, 0.2355).

Define state 1 as no bond state and 2 as the L-selectin-PSGL-1 bond state. The
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estimated hidden states can be represented as in Figure 4 based on the data in Figure

2. The lines indicate the transition points of states. The starting points of state 2

are the association points of the L-selectin-PSGL-1 bonds and the starting points of

state 1 are the dissociation points.
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Figure 4: HMM Analysis, L-selectin and PSGL-1 Adhesion Experiment

To assess the goodness-of-fit of the fitted model, a graphical technique proposed

by Altman (2004) is implemented. Define the empirical 2-dimensional cumulative

density function (CDF) by:∫ z1

−∞

∫ z2

−∞
F̄2dx =

∑n
i=1

∑t−1
j=1 I{yij ≤ z1, yi,j+1 ≤ z2}

n(t− 1)
.

When the parameters Ψ are estimated, the resulting distribution,
∫ z1
−∞

∫ z2
−∞ F̂2dx, can

be treated as the estimated 2-dimensional CDF. The idea of Altman (2004) is to

compare the empirical CDF with the estimated bivariate distribution as shown in

Figure 5. With observed data ranging from -16 to 17, we have zi taking value in

(-16,17) and i = 1, 2. The points are reasonably close to the 45◦ line through the

origin, indicating that the model is correctly specified.
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Figure 5: Comparison of the Estimated and Empirical Bivariate Distributions

Previous research has shown that a memory effect might exist in the repeated

contacts, i.e., the adhesion probability in the next contact might be increased because

of the adhesion in the immediate past (Zarnitsyna et al., 2007). In the HMM context,

a memory effect can be expressed in terms of the transition probabilities, i.e., P10 <

P11 or not. The existence of such an effect can be carefully assessed by a likelihood-

ratio (LR) test (Giudici et al., 2000) based upon the fitted HMM. That is, to perform

the hypothesis test as follows:

H0 : P10 ≥ P11 vs H1 : P10 < P11.

To perform the LR test, we evaluate the maximum log-likelihood under H0 and under

H1. They are -1730.34 for H0 and -1659.28 for H1. Therefore, the LR statistic is

142.12. Comparing to the χ2 distribution with one degree of freedom leads to a

p-value close to 0, which supports the hypothesis of a first order memory effect.

In the second setting, the thermal fluctuation observations are collected with a

mixture of two types of receptor-ligand bonds that are formed due to interactions of
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L-selectin and P-selectin with their PSGL-1ligand. There are in total 48 independent

mixture sequences collected. The HMM framework with K = 5 is applied to analyze

the mixed observations. The order of the hidden states is correctly specified as three

with the estimated transition matrix

P̂ =


0.9499 0.0498 0

0.0018 0.8953 0.1029

0.0449 0.0636 0.8915

 ,

and the stationary distribution:

Π̂ = (0.3404, 0.4264, 0.2332).

The goodness-of-fit of this model is assessed graphically as shown in Figure 6

with zi ∈ (−22, 24.5) and i = 1, 2. Figure 7 gives a typical sequence analyzed by

the HMM approach. The circles represent the hidden states corresponding to the

P-selectin-PSGL-1 bonds, the dots represent those corresponding to the L-selectin-

PSGL-1 bonds, and the rests labeled by triangles represent those corresponding to no

bond. The estimated variances of the fluctuations for the P-selectin-PSGL-1 bond and

the L-selectin-PSGL-1 bond are 16.2104 and 12.4027 respectively. They indicate that

the formation of the L-selectin-PSGL-1 bond reduces the BFP thermal fluctuations

more than what the P-selectin-PSGL-1 bond does. This can be explained biologically

because L-selectin has a higher stiffness than P-selectin (Chen et al. 2008).
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Figure 6: Comparison of the Estimated and Empirical Bivariate Distributions
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Figure 7: HMM Analysis, Mixture Bonds Experiment
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1.6 Summary and concluding remarks

This paper is motivated by application of the thermal fluctuation method (Chen et

al. 2008) to study the kinetics of multiple receptor-ligand interactions during cell-cell

adhesion. This study uses the reduced thermal fluctuations to indicate the presence of

receptor-ligand bonds. More than one type of bond is observed and they correspond

to different levels of fluctuation decrease due to their string strength difference. In

order to provide a systematic approach to identify the number of bond types and

the corresponding association/dissociation points, a new framework based on hidden

Markov models and order selection is proposed. It works by assuming that the probe

fluctuates differently according to the underlying binding states of the cells, i.e., no

bond or a number of distinct types of bonds. These states are unobservable but their

changes can be captured by a Markov chain.

In spite of the prevalence of HMMs in many applications, their modeling and

inference mainly focus on the situations where the order is known. In many real

situations including the present one, the number of hidden states is unknown. To

tackle this problem, a double penalized procedure is introduced. It is shown to

be asymptotically consistent in estimating the order of HMMs. Efficient algorithm

based on expectation conditional maximization is presented. The proposed method

outperforms three existing methods in a simulation study. It is also successfully

applied to two real data sets. Judging by its good performance in the simulation

study and application to real data, we think the proposed methodology should find

applications in other areas.

Although the SCAD penalty is chosen for the double penalized procedure, it can

easily be extended and implemented to other penalty functions. We have conducted

a small simulation study by using the Lasso penalty (Tibshirani 1996) and the results

lead to comparable conclusions. Similarly, the asymptotic result in the paper should

be extendable to other penalty functions. This work is left for future investigation.
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CHAPTER II

AN HMM-BASED ALGORITHM FOR EVALUATING

RATES OF RECEPTORLIGAND BINDING KINETICS

FROM THERMAL FLUCTUATION DATA

2.1 Introduction

During the early stage of hemostatic and thrombotic processes, platelets tether to and

roll on the immobilized von Willebrand factor (VWF), which is mediated through

binding between the 45kDa N-terminal domain of the alpha subunit of the GPIb-IX-

V complex (GPIbα) and the A1 domain of the VWF (Ruggeri and Men-dolicchio,

2007). Disease-related mutations in the VWF have been found to change the mechan-

ical regulation of platelet adhesion, resulting in the bleeding disorder von Willebrand

disease (VWD) (Ruggeri, 2007). From a biophysical perspective, these mutations

alter VWFGPIbα binding kinetics. It has been shown that single-residue mutation

R1450E that exhibits the type 2B VWD phenotype increases VWFGPIbα binding

affinity and supports the rolling of more platelets at slower velocities without a min-

imum shear requirement (Auton et al., 2010; Coburn et al., 2011). Another single-

residue mutation G1324S that exhibits the type 2M VWD phenotype decreases the

binding affinity between these two mole-cules (Morales et al., 2006; Coburn et al.,

2011).

The binding affinity is the ratio of the on- to off-rates, which quantifies the net ef-

fects of receptorligand association and disso-ciation. To measure the on- and off-rates

separately, mechanical methods, such as the thermal fluctuation assay, that employ

ultra-sensitive force probes, e.g., the biomembrane force probe (BFP) (Chen et al.,

2008) and optical tweezers (Molloy et al., 1995; Veigel et al., 1999; Lister et al., 2004;
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Sun et al., 2009), have been developed to measure the interactions of proteins im-

mobilized on surfaces. The idea stems from the observation that force probes used

for single-molecule experiments are usually susceptible to thermal fluctuations. The

formation of a molecular bond spanning across the gap between the force probe and

the target physically connects the two surfaces and reduces the thermal fluctuation

of the force probe. In other words, the newly-formed bond is equivalent to adding

a constraint to the force probe (Chen et al., 2008). In the analysis of experimental

data, bond formation is detected from the reduction in the thermal fluctuation of the

probe position and bond dissociation is detected from the resumption of thermal fluc-

tuation, as judged by the sliding standard deviation moving below or above certain

thresholds. Although this descriptive statistical method is simple, it has several disad-

vantages: It is time-consuming, not very robust, susceptible to noise, and subjective.

To overcome these drawbacks, we developed a Hidden Markov model (HMM)-based

algorithm that provides an automatic and systematic procedure for analyzing ther-

mal fluctuation data efficiently. We first assume a hidden state, bound or unbound,

for each observed probe position. Given the hidden states, the probe positions are

assumed to be independent and normally distributed with unknown parameters. The

forward-backward algorithm (Baum et al., 1970; Dempster et al., 1977; Welch, 2003)

was used to estimate the underlying states and unknown parameters.

Because of its versatility in modeling and robustness in prediction performance,

HMM has wide applications in computational biology. For example, HMMs can

detect tumor subtypes with microarray data (Zhang et al., 2011) and identify protein-

binding sites in DNA (Cardon and Stormo, 1992). However, to the best of our

knowledge, no HMM-based computer algorithm has been developed for analyzing

thermal fluctuation data. In the thermal fluctuation assay, if the probe is in either

the bound or unbound state at one moment, it is more likely to be in the same state

at the next moment. This memory effect can be successfully captured by assuming
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a Markovian structure at the transition of the underlying states (Hung et al., 2013).

Furthermore, HMM enables us to provide statistical inference such as the confidence

interval and the prediction interval. In particular, by using the likelihood ratio test

based on the fitted HMM, we can verify the memory effect objectively and rigorously

in repeated adhesions (Hung et al., 2013).

This paper is organized as follows. Sections 2.2.1 and 2.2.2 describe the experiment

setup and the existing method. Section 2.2.3 illustrates the procedures to analyze

thermal fluctuation data. Sections 2.2.4-2.2.7 discuss the modeling and computation

of HMM. In Section 2.3, we use the HMM to derive kinetic rates by analyzing thermal

fluctuation data obtained for the interaction of VWF-A1 and glycocalicin (GC), the

extracellular portion of GPIbα. We also show the performance of the HMM method

in comparison to the manual method based on descriptive statistics. In addition

to the dataset with wild-type (WT) A1, datasets with two single-residue A1 VWD

mutations: R1450E (type 2B) and G1324S (type 2M) are added to the performance

test of the HMM method and show that the HMM is far easier to use. Section 2.4

presents the discussion and concluding remarks.

2.2 Methods

2.2.1 Experimental setup

The recombinant WT VWF-A1 domain (residues 1238-1471) and two single-residue

mutants, R1450E that exhibits the gain-of-function (GOF) phenotype of type 2B

VWD and G1324S that exhibits the loss-of-function (LOF) phenotype of type 2M

VWD, were gifts from Dr. Miguel Cruz (Baylor College of Medicine, TX). The

GPIbα extracellular domain glycocalicin (GC) was a gift from Dr. Jing-fei Dong

(Puget Sound Blood Research Institute, WA).

The BFP system (Chen et al., 2008) and the interacting molecules are respectively

illustrated in Figure 8A and B. The VWF-A1 and GC were covalently coupled to the
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probe bead (Figure 8B, left) and the target bead (Figure 8B, right), respectively.

Human red blood cells (RBCs) were purified from peripheral blood of healthy donors

by finger prick and biotinylated using a protocol approved by the Institutional Re-

view Board of the Georgia Institute of Technology. In order to enable attachment

to the apex of the biotinylated RBC, streptavidins were coated to probe beads. The

pressurized RBC by micropipette aspiration serves as an ultra-sensitive force trans-

ducer with a soft spring constant of 0.15 pN/nm by tuning the pressure through a

custom-made manometer system. A homemade LabviewTM program was used for

data acquisition by tracking the probe bead displacement with 0.7 ms temporal and

±3 nm spatial resolution. The experiment used a high-speed camera at 1,500 frames

per second (fps) to track the axial (horizontal) position of the probe in discrete time

points. The raw data of probe position x vs. time t consist of four phases (Figure

8C). The target bead was driven by a computer-controlled piezoelectric translator to

approach the probe bead at a speed of 2 µm/s (Figure 8C, black). After a short con-

tact of 0.1s (green), the target was retracted (purple) and held from the probe by a

separation distance of 10 nm for 10-15s (blue and red). The Brownian motion of the

probe bead was monitored with the same BFP spring constant for all experiments.

Experiments were performed at room temperature (25◦C).

2.2.2 Descriptive statistical method

The underlying idea is that anchoring the probe bead to the target bead via a VWF-

A1GC bond reduces the thermal fluctuations. This is because the stiffness of the

system (ksys) is the BFP stiffness (kBFP ) without a bond but is changed to the sum of

the BFP stiffness and the molecular bond stiffness (kmol), i.e., ksys = kBFP+kmol, with

a bond. The reduction in thermal fluctuation follows from the equipartition theorem,

ksysσ
2 = kBT , where kB is the Boltzmann constant, T is absolute temperature, and

σ2 is the ensemble variance of the displacements that represents a metric of thermal
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fluctuations. At constant temperature, an increase in ksys would cause a decrease

in σ2. Thus, the decrease in σ2 indicates bond association while the increase in σ2

indicates bond dissociation. The variance of bound portion should be smaller than

that of unbound portion. In the descriptive statistical method, we approximated the

en-semble standard deviation by a sliding standard deviation of 90 consecutive data

points, σ90, from the x-t sequence and plotted it vs. t (Figure 8D). We chose 90

points by balancing the competing needs for an approximate value and temporal

resolution. Note that the number of points chosen to plot the standard deviation can

affect analysis results. We then draw two horizontal lines to represent the thresholds

to identify bond association (solid line in Figure 8D) and dissociation (dashed line).

The choice of thresholds also requires the experimenter’s judgment and can cause

variation in classifications of bound vs. unbound states. The descriptive statistical-

based method selects data points with a σ90 lower than the association threshold

to be in the bound state and those higher than the dissociation threshold to be in

the unbound state. This method is very time-/labor-consuming, which may take

several days to finish the analysis of data generated from a one-day experiment. To

obtain statistically-meaningful results, a large number of distance curves need to be

collected, making data analysis the bottleneck of the output. Moreover, this analysis

uses personal judgment to select the window width of sliding standard deviation and

the thresholds for state classification. This will inevitably bring in subjectivity and

errors.

2.2.3 Data preparation: removing erroneous data and correcting drift

To overcome drawbacks of the descriptive statistical-based algorithm, we developed

an HMM-based algorithm. Before applying either method, a careful automated pre-

screening of x vs. t raw data is required. This is because some of the curves exhibit

large magnitude of rapid shifting, probably due to environmental perturbations and
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human errors during experiments (× in Figure 9). The poor quality of such data pre-

vents reliable analysis by either algorithm. In particular it may affect HMM learning

by causing false-positive bond classification. As a first step of data preparation, er-

roneous data are removed (Figure 9, Step 1). For the acceptable data (
√

in Figure

2), there may still be slow drift in the holding phase, which might be caused by mis-

aligned contact between the probe and the target during the assembly of the BFP.

As the second step of data preparation, a high order polynomial is fitted to the po-

sition data and corrects the drift (Step 2). After pre-screening, the clean data are

ready for both descriptive statistical-based algorithm to use and HMM training and

classification. In the learning process, we train HMM to get the tuning parameter

using cross validation as described in Section 2.2.6 (Step 3). Then HMM is ready for

data classification (Step 4) and kinetic analysis (Step 5).

2.2.4 An HMM-based algorithm for analyzing thermal fluctuation data

We developed an HMM method to analyze x-t curves from the thermal fluctuation

assay (Figure 10). The objective is to computerize the bond state annotation similar

to the descriptive method but with a higher efficiency (Figure 10A). The statistical

methodology can be found in Hung et al. (2013). Here we model the molecular

interaction on a BFP as a process with the hidden bound state following Markovian

structure (Figure 10B). Let xt denote the horizontal position of the probe at time t.

For each observation xt, there is an unobservable variable zt representing the binding

state at time t. The indicator variable zt takes value 0 (Figure 10B, blue) when

there is no bond between the probe and the target at time t, and 1 (Figure 10B, red)

otherwise. The change of state zt can be described by a stationary Markov chain with

two states, transition probability Pij = P (zt+1 = j | zt = i) and stationary probability

Pi, where i, j take values of 0 or 1. Stationary probability P1/P0 can be interpreted

as the probability of observing bound/unbound event in the experiment. When the
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corresponding binding state zt is given to be k, the corresponding probe position xt

is assumed to be mutually independent and normally distributed with mean µHMM

and variance σ2
HMM . From Section 2.2.2, we have σ2

HMM,0 > σ2
HMM,1. As a result,

the HMM method divides an x-t curve into a series of segments. Each segment is

characterized by a constant µHMM and σ2
HMM . This will distinguish the bound and

unbound portions, thus making the threshold much easier to be seen (Figure 10C).

2.2.5 HMM computation

A forward-backward algorithm is used to compute the parameters and unknown

states. Stationary probability of the unbound state P0 is the only tuning parameter

in the algorithm. The reason for using P0 is to incorporate biological knowledge of

the binding frequency into HMM. This tuning parameter can be chosen through cross

validation. In fact, we can show that the analysis result is insensitive to the initial

choice of P0 as long as it lies in a proper range (Section 2.3.2). The forward-backward

algorithm is a two-step procedure that computes the estimate as follows: in the for-

ward step, it computes P (zm | x1, . . . , xm) for all m ≤ n, where n is the length of the

sequence; then in the backward step, the algorithm computes P (xm+1, . . . , xn | zm).

It is known that the algorithm converges to the maximum-likelihood estimate (Baum

et al., 1970).

2.2.6 On- and off-rate estimates

This subsection describes how to statistically estimate kinetic on- and off-rates (kon

and koff ) of receptorligand interaction through the previously classified bound and

unbound states vs. time segments. Because formation and dissociation of single

biomolecular bonds are stochastic events, the moments when they occur and their

durations are random. The on- and off-rates represent statistical characteristics un-

derlying these probabilistic kinetic processes. Therefore, they are determined by the

totality of the data rather than individual points in the collection. As such, kon and
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koff are insensitive to small disturbance and error, such as missing or false alarm in

a small number of events. This property can be used to train the tuning parameter

in HMM (Section 2.2.7) and explain the performance comparison of the HMM- and

descriptive statistical-based algorithms (Section 2.2.3).

Let waiting time tw be the period from the dissociation moment of the existing

bond to the association moment of the next bond; and bond lifetime tb be the period

from the moment of bond association to dissociation. A pooled collection of waiting

times should follow the distribution of the first-order kinetics of irreversible association

of single bonds:

Pw = 1− exp(−kcontw) (6)

where the cellular on-rate kcon = Acmrmlkon is a product of four parameters: Ac is

the contact area (considered as a constant for all experiments), mr and ml are the

respective receptor (GC) and ligand (A1) densities measured by flow cytometry (Yago

et al., 2004), and kon is the molecular on-rate. Pw is the probability for a bond to

form after waiting time tw. Pw can be estimated by survival frequency as the fraction

of events with waiting time ≥ tw. Thus, the cellular on-rate can be estimated from

the negative slope of the ln(1 − Pw) vs. tw plot (Figure 11A). Similarly, a pooled

collection of bond lifetimes should follow the distribution of the first-order kinetics of

irreversible dissociation of single bonds:

Pb = exp(−koff tb), (7)

where Pb is the probability for a bond formed at t = 0 to survive at tb and can be

estimated by survival frequency with bond lifetime ≥ tb. The negative slope of the

ln(Pb) vs. tb plot provides an estimate for the off-rate koff (Figure 12A). Our recent

work (Ju et al., 2013) suggested that the VWF-A1GC bond has two states at low

force: one major state that features events with short lifetime (0.01s < tb < 0.5s)

and one minor state with long lifetime (tb ≥ 0.5s). Usually long lifetime events
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mingle with multiple bond events and become susceptible to drifting-induced noise,

while events with very short lifetime (tb ≤ 0.01s) are highly suspected as non-specific

events. For illustrative purposes, we only demonstrate the accuracy and reliability of

HMM with events in short lifetime regime (0.01s < tb < 0.5s).

2.2.7 Training of HMM

To choose the tuning parameter and test the robustness of the algorithm, we imple-

ment a half-sampling cross validation method (Celeux and Durand, 2008) which pre-

serves the underlying Markov chain structure. We segregate the complete sequence of

probe position observations X = (x1, x2, . . . , xn) into the odd, i.e. X1 = (x1, x3, . . .),

and even, i.e. X2 = (x2, x4, . . .) sub-sequences. Denote the off-rate of the HMM

result from the odd sub-sequence as koffX1 and the even sub-sequence as koffX2.

The relative error εc between the two sub-sequences is defined as:

εc = (1− koffX1/koffX2)2.

We can similarly define the relative error of off-rate between HMM and descriptive

statistical methods. Let k1
off be the off-rate of X using descriptive statistical method

and k2
off be the result of HMM. The relative error εr is defined as:

εr = (1− k2
off/k

1
off )

2.

We choose tuning parameter P0 such that the relative error εc is small. Later, we

shall illustrate the robustness of HMM by showing that the range of P0 with small εc

overlaps with that with small εr (Section 2.3.2).

2.3 Results

2.3.1 Justification of HMM with the VWF-A1GC interaction

We compare kinetic rate estimates from descriptive statistical analysis with those

from HMM on the same set of thermal fluctuation data. For the interaction of GC
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with VWF-A1 (Figure 8A), the HMM method (Figure 10A) performs as well as the

descriptive method in bond annotation (Figure 8C). The linearized distributions of

respective waiting times and bond lifetimes determined by the two methods over-

lapped and showed similar slopes, suggesting similar cellular on-rate (Figure 11A)

and off-rate (Figure 12A) estimates from two methods. Indeed, the means and 95%

confidence intervals of the cellular on-rate by the descriptive statistical algorithm and

HMM are 1.302± 0.079s−1 and 1.395± 0.046s−1, respectively (Figure 11B). The two

confidence intervals overlap, indicating that the parameter estimates are statistically

close to each other. For the off-rate, the means and 95% confidence intervals by the

descriptive statistical algorithm and HMM are 26.58 ± 0.92s−1 and 26.46 ± 0.18s−1,

respectively (Figure 12B), which also overlap with each other.

In addition to the above analysis of the WT VWF-A1 data, we compared perfor-

mance of the HMM and descriptive statistical methods using data from two single-

residue mutations in VWF-A1 that alter their interactions with GPIb in biologically

important ways: 1) G1324S that exhibits type 2M VWD phenotype and 2) R1450E

that exhibits type 2B VWD phenotype. To compare molecular on-rates requires re-

moval of the site density effect. We measured the site densities of VWF-A1 and GC

respectively and divided the cellular on-rate kcon by mrml. corresponding to each

A1 construct (WT or mutant). The result is the effective on-rate, Ackon. Since

the contact area Ac was kept as close to constant as possible between experiments,

the Ackon is a good measure for on-rate comparison (Chen et al., 2008). Both the

descriptive and HMM methods show that mutation G1324S decreased effective on-

rate, from 6.64 ± 0.20 to 2.07 ± 0.05 × 10−6µm4s−1 (descriptive) and 7.12 ± 0.12 to

2.24±0.03×10−6µm4s−1 (HMM) (Figure 11B), but had little effect on off-rate (Figure

12B). This correlates with the loss-of-function phenotype of G1324S as it induces less

platelet agglutination compared to WT A1 (Rabinowitz et al., 1992). Both the de-

scriptive and HMM analyses indicate that the R1450E mutation resulted in an 8-fold
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increase in the effective on-rate: 6.64±0.20 to 76.59±1.51×10−6µm4s−1 (descriptive)

and 7.12±0.12 to 82.64±2.79×10−6µm4s−1 (HMM) (Figure 11B), which are in good

agreement. Similar to G1324S, R1450E had little effect on stress-free off-rates of the

short state (Figure 12B). The result correlates with the gain-of-function phenotype

of R1450E. Type 2B VWD mutations in the A1 domain have been shown to result

in abnormal interactions between platelet GPIb and soluble VWF, such that R1450E

A1 requires less ristocetin or lower shear to induce platelet agglutination (Matsushita

and Sadler, 1995). Such abnormal interactions have been suggested to lead to pro-

longed bleeding time due to either the lack of unbound GPIbα on platelet surface to

interact with immobilized VWF at sites of vascular injury, reduced platelet counts

due to early clearance of platelet aggregates, or both (Ruggeri and Mendolicchio,

2007). Note that HMM has much narrower width of 95% confidence intervals com-

pared to that of descriptive statistical method for both cellular on-rate (Figure 13A)

and off-rate (Figure 13B) for all three molecular interactions tested here. Thus, the

HMM method is more accurate (less error) than the descriptive method presumably

because it reduces the errors brought by subjective judgment of the experimenter.

Moreover, the HMM method can measure far more events than the descriptive sta-

tistical method from the same set of raw data, e.g., 112 to 40 for waiting times (first

group in Figure 13C) and 169 to 46 for bond lifetimes (first group in Figure 13D) for

the WT A1 case. In the mutant cases, the HMM measurements also outnumbered

the descriptive statistical measurements (Figure 13C and D), indicating that many

of the waiting times and bond lifetimes gone undetected by the descriptive method

can be resolved by HMM.

Although the kinetics parameters differ for different molecular interactions, the

estimates from HMM are consistent with the anticipated biological effects and match

the results from the descriptive statistical method. These results validate HMM as

a reliable and accurate method for evaluating the on- and off-rate change of each
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mutation relative to WT.

2.3.2 Tuning parameter reliability of HMM

In HMM, the probability of observing a data point in the unbound state P0 is the

only tuning parameter in the algorithm. Based on the half-sampling cross validation

in Section 2.2.7, we plot the relative error εc (Figure 14A) and εr (Figure 14B) against

different P0. The P0 that gives the lowest εc ranges from 0.85-0.96 from which we

choose the value in our prediction algorithm. It can be seen from Figure 14B that

different choices of P0 do not render much inconsistency between the results from

descriptive statistical method and HMM, as the relative error is smaller than 0.025.

This shows the robustness in the prediction performance and the reliability of the

HMM tuning parameter.

2.3.3 It is easier to learn HMM than the descriptive method

To further verify that HMM reduces the time required for data analysis by the de-

scriptive method, we did the following performance tests:

1. Compare the time required for a new student to learn the HMM and the de-

scriptive method

2. Compare the time required for an experienced student to analyze the same set

of raw data using the two methods.

For the first test, we surveyed two new students in our lab who just started

learning the thermal fluctuation assay. We plot their learning curves by tracking

their performance from week 0 to week 8 (Figure 15A). For each week, we recorded

the time required for them to finish analyzing similar amount of thermal fluctuation

data by using both manual method (blue) HMM method (red). We found that it

took much less time for both to finish the analysis by HMM than by the descriptive
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method every week: 20 vs. 4 hours at week 0 and 8 vs. 1 hour at week 8. The HMM

is much less time-consuming than the descriptive statistical method.

For the second test, we collected information from two students who had expe-

rience in analysis of BFP thermal fluctuation data. We assigned the same data set

used in Figures 4 and 5 to them and recorded the times it took for them to finish

the analysis using the two methods (Figure 15B). Consistently, using the HMM (red)

took much less time than using the descriptive method (blue), 1 vs. 5-6 hours.

2.4 Discussion

It has long been recognized that changes in thermal fluctuation can be used to identify

single-molecule events. This idea was implemented in early work to probe the duration

and contact stiffness of myosin motors interacting with actin filament ( Molloy et al.,

1995; Mehta et al., 1997; Veigel et al., 1999; Lister et al., 2004). More recently, it was

used to analyze two-dimensional kinetics of adhesion molecules interacting with their

ligands (Chen et al., 2008; Sun et al., 2009; Huang et al., 2010; Chen et al., 2010),

to measure molecular elasticity (Marshall et al., 2006; Sarangapani et al., 2011; Chen

et al., 2012), and to determine protein conformational changes (Chen et al., 2012).

Some studies employed BFP that was custom-designed and home-made in a handful

of laboratories (Chen et al., 2008; Huang et al., 2010; Chen et al., 2010; 2012). Others

used optical tweezers (Molloy et al., 1995; Mehta et al., 1997; Veigel et al., 1999; Sun et

al., 2009) and atomic force microscope (Marshall et al., 2006; Sarangapani et al., 2011)

that are commercially available in many laboratories. Therefore, these methods have

high potential for a broad range of applications by many investigators. Unfortunately,

previous analyses were done using merely eyeballing (Molloy et al., 1995; Mehta et al.,

1997; Veigel et al., 1999; Lister et al., 2004) or descriptive statistical analysis (Marshall

et al., 2006; Chen et al., 2008; Sun et al., 2009; Huang et al., 2010; Chen et al.,

2010; Sarangapani et al., 2011; Chen et al., 2012). The drawbacks of these primitive
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analyses may limit the applications of the thermal fluctuation methods because the

descriptive statistical-based algorithm is very time consuming, subjective, and prone

to noise and error. In this study, we developed a computational algorithm based

on analytical statistics rather than descriptive statistics. The HMM-based algorithm

automates and high-throughputs the processing of data and has the advantage of

being rigorous and objective. We used the VWF-A1GC system to test the HMM

method. The estimates from HMM are comparable to those from the descriptive

statistical method (manual analysis) (Figures 8C and 10A) with the same tuning

parameters (Figures 11 and 12).

This paper compares the on- (Figure 11) and off- (Figure 12) rates of GC inter-

actions with WT and two mutant A1 domains. At static conditions, platelet GPIbα

does not bind WT VWF unless a modulator ristocetin is added to induce the con-

formational activation of the A1 domain (Berndt et al., 1988). By comparison, the

type 2B VWD mutant R1450E binds GPIbα spontaneously without ristocetin (Mat-

sushita and Sadler, 1995; Auton et al., 2010) whereas the type 2M VWD mutation

G1324S abolishes the ristocetin-induced binding to GPIb (Rabinowitz et al., 1992;

Morales et al., 2006). Our kinetics measurements correlate well with these biochemi-

cal characterizations in that the R1450E mutant gains the function with an increased

on-rate whereas the G1324S mutant loses the function with a decreased on-rate (Fig-

ure 11B). The data indicate that the association kinetics reflect the conformational

states of VWF-A1. There has recently been significant progress in correlating protein

structure and binding kinetics. A web server has been developed for prediction of

association rate constant by incorporating the protein conformational changes based

on the archived protein-ligand complex structures (Qin et al., 2011). Complementing

such efforts, the HMM method combined with the thermal fluctuation assay provides

experimentally measured binding kinetics and their correlation to protein structure

and function.
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The HMM method consistently shows higher accuracy than the manual method re-

gardless of the biological variation embedded inside the datasets (Figure 13A and B).

Furthermore, it also detects far more waiting time and bond lifetime events than the

descriptive method (Figure 13C and D). Possible reasons for the descriptive method

to capture less events include: First, the calculation of sliding standard deviation σ90

may not resolve short bonds if their lifetimes are shorter than the chosen length of

the sliding window. Thus, the calculation mixes both bound and unbound observa-

tions, which may miss many waiting times and short bond lifetime events; Second,

the decision rule (bound vs. unbound) of the descriptive statistical method heavily

relies on an empirical threshold. In most cases, this threshold will be manually drawn

in a conservative way to avoid false positive annotation caused by noise. Since the

reduction of variance by bond formation is relatively small and may not be detected

sometimes, the manual method tends to miss bonds when experimental noise is not

well controlled.

Aside from its advantage of robustness in prediction (Figure 14), the HMM method

is more convenience and requires less learning times than the descriptive method

(Figure 14). The comparison was made after an automated prescreening process to

eliminate erroneous data resulted from the experimental errors, drifting and noises

(Figure 9). It should be noted that the HMM method shares the same biophysical

rationales as the descriptive method, but provides the statistical basis to computerizes

the manual analysis. Yet, it requires on average 30 seconds for the HMM to finish

annotation of one data trace but it takes 5 minutes for the manual method to do so

(Figure 8C and 10A).

Although the proposed HMM is motivated by the study of thermal fluctuation

experiments, it can be directly applied to different types of studies in bioinformatics

(Koshi and Goldstein, 2001). Based on the proposed HMM method, extensions to

higher orders models with unknown number of states (Hung et al., 2013) can be made.
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Therefore, such a framework is particularly attractive in the study of computational

biology such as the analysis of gene expression (Seifert et al., 2011), protein and

DNA sequences (Marioni et al., 2006), where the conventional first-order HMM is not

sufficient (Seifert, 2013). The HMM method developed in this paper is also applicable

to other areas, including signal processing (Kaleh and Vallet, 1994; Chambaz et al.,

2009) and environmental science (Hughes and Guttorp, 1994). For future work, we

will include the receptors of two or multiple species on a cell and study the cooperative

binding of multiple receptors. Unlike a bead target, a cell target is characterized by

its soft membrane and instant mobility. Thus, more noise is expected in a cell system

than in a purified protein system. The next generation algorithm should be more

powerful in correcting thermal fluctuation drifting and noise caused by a restless cell

surface. Moreover, multiple receptors will bring in more complex binding kinetics or

multiple states such as unbound, receptor-1 bound, receptor-2 bound, and cooperative

bound states. To discriminate these states, this method requires higher sensitivity.

We hope that continuous improvement of the HMM-based algorithm will allow us to

shed new light on examining protein interactions on the single-molecule level.
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Figure 8: A. BFP photomicrograph. A micropipette-aspirated RBC with a bead
(left, termed probe) attached to the apex was aligned with a bead (right, termed
target) aspirated by another micropipette. B. BFP functionalization. VWF-A1 and
streptavidin were covalently coupled to the probe bead. Glycocalicin (GC) was co-
valently coupled to the target bead. The schematic is no to scale as the sizes of the
molecules have been enlarged relative to the sizes of the beads. C. Thermal fluctua-
tion data. Data plot of the instantaneous horizontal position x of the probe vs. time t
collected from one test cycle of the thermal fluctuation assay. During the experiment,
the target bead was driven to approach the probe bead (black), contact for 0.1 s
(green), retract (purple) and be held (blue and red) stationary with at a preset posi-
tion. Blue and red traces annotate, respectively, bound and unbound states detected
by the descriptive statistical method. 5 minutes on average were taken to finish the
manual annotation on one trace. D. Plot of σ90 (the sliding standard deviation of 90
consecutive x positions from data in C around t) vs. t. The same color coding is used
as C.
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Figure 9: Step 1, pre-screening; Step 2, drift removal, the first two steps were applied
to both descriptive and HMM methods; Step 3, HMM parameter estimation; Step 4,
identification of states by HMM; Step 5, evaluation of on- and off-rate by analysis of
waiting time and bond lifetime distributions, respectively.
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Figure 10: A. Bound and unbound status annotation by the HMM analysis from
the same data in Figure 1C. The average time spent for the algorithm to finish the
annotation of one trace is 30 seconds. B. Illustration of the HMM. At time t, let xt
be the observed horizontal position of probe and zt be the unobserved binding state.
Observation xt can be classified into two states: zt = 0 (blue) or zt = 1 (red). Also,
zt follows a Markov chain and xts are independent normally distributed given zt. C.
Plot of HMM (the predicted standard deviation from the HMM analysis of A) vs.
t. Each segment of C corresponds to the estimated standard deviation of bound or
unbound period of A in red or blue by the HMM analysis.

47



Figure 11: A. Exponential waiting time distributions for the interaction of WT
A1 and GC. An ensemble of 40 waiting times, defined as the intervals from the
moment of a bond dissociation to the moment of the next bond association, was
measured by the descriptive statistical method and pooled (blue squares). Another
ensemble of 200 waiting times was measured by HMM from the same raw data and
pooled (red squares). For each method, the natural log of the survival frequency with
waiting times > tw was plotted against tw and fitted by a straight line (solid line).
The negative slopes of the best-fits represent the cellular on-rate kcon = mrmlAckon
estimated by the two methods. The variations in these values are shown by the 95%
confidence interval of the best-fit (dotted lines). The red dotted lines are obscured
because they overlap with the red solid line. B. Comparison of effective on-rate Ackon
estimated by descriptive statistical and HMM methods for WT, G1324S (Type 2M)
and R1450E (Type 2B) A1s vs. GC. Ackon was calculated by dividing kcon by the
product of the protein densities on the probe (ml for A1) and target (mr for GC)
beads, i.e. mrml = 1.96, 2.8 and 0.19 × 105µm−4 determined by flow cytometry for
respective conditions. The error bars indicate the 95% confidence interval for each
method.
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Figure 12: A. Exponential bond lifetime distributions for the interaction of WT A1
and GC. An ensemble of 50 bond lifetimes, defined as the time span from association
to dissociation of one bond, was pooled by the descriptive statistical method (blue
squares). Another ensemble of 200 bond lifetimes was measured by the HMM method
from the same raw data and pooled (red squares). For data obtained by each method,
the natural log of the survival frequency with bond lifetimes > tb was plotted against
tb and fitted by a straight line. The negative slopes of the best-fits represent the
off-rate koff. B. Comparison of off-rates estimated by the descriptive statistical and
HMM for WT, G1324S (Type 2M) and R1450E (Type 2B) A1s vs. GC. The error
bars show the 95% confidence interval for each method.
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Figure 13: A and B. Errors (measured as 95% confidence interval, CI) of the
estimated cellular on-rates kcon (A) and off-rates koff (B) for 2D binding kinetics of
GPIbαVWF-A1 interaction under the following biological conditions: the wild-type
(WT) VWF-A1 (circles), the loss-of-function VWF-A1 mutant G1324S (squares) and
the gain-of-function VWF-A1 mutant R1450E (triangles). The errors were plotted
for both the descriptive statistical method (blue) and the HMM method (red). C and
D. The numbers of waiting times (C) and bond lifetimes (D) that the descriptive
statistical method (blue) and the HMM method (red) are respectively capable of
measuring from the same set of raw data.
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Figure 14: A. Half-sampling cross validation. The relative error of off-rate from odd
sequence vs. off-rate from even sequence was plotted against P0. B. The relative
error of off-rate vs. P0 by comparing the HMM with descriptive statistical method
with the same data as the whole sequence.

Figure 15: A. Comparison of the times spent by a new student to learn the descriptive
statistical method (blue) and the HMM (red). Two students who were new to both
methods were surveyed. The times for them to finish analysis of one data set were
plotted vs. different time checkpoints. Each curve represents a surveyed student. B.
Comparison of the times spent by the experienced students to analyze the same set
of raw data using the descriptive statistical method (blue) and the HMM (red). Two
students were surveyed.
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CHAPTER III

BAYESIAN CUBIC SPLINE IN COMPUTER

EXPERIMENTS

3.1 Introduction

Because of the advances in complex mathematical models and fast computation, com-

puter experiments have become popular in engineering and scientific investigations.

Computer simulations can be much faster or less costly than running physical exper-

iments. Furthermore, physical experiments can be hard to conduct or even infeasible

when only rare events like land slide or hurricane are observed. There are many suc-

cessful applications of computer experiments as reported in the literature. Gaussian

process (GP) has been used as the main tool for modelling computer experiments.

See the books by Santner, Williams and Notz (2003), Fang, Li and Sudjianto (2005),

and the November 2009 issue of Technometrics, which was devoted to computer ex-

periments.

First we introduce the GP model. Suppose an experiment involves k factors

x = (x1, . . . , xk)
t and n computer runs are performed at {x1, . . . ,xn}. We can write

the input as the n× k matrix D = (x1, . . . ,xn)t. The corresponding response values

is the vector YD = (y1, . . . , yn)t. The GP model assumes that

y(x) = btf(x) + Z(x), (8)

where f(x) = (f1(x), . . . , fm(x))t is a vector of m known regression function, b =

(b1, . . . , bm)t is a vector of unknown coefficient, and Z(x) is a stationary GP with

mean zero, variance σ2 and correlation function corr(y(x1), y(x2)) = R(x1,x2) =

R(‖x1 − x2‖). For the GP model in (8), the best linear unbiased predictor (BLUP)

of y(x) is an interpolator, which will be shown in (12).
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One popular choice of the correlation function is the product exponential corre-

lation function with power two. The one-dimension powered exponential correlation

function with k = 1 and x ∈ R can be written as:

R(d) = exp(−θd2), (9)

where d = ‖x1 − x2‖ is the distance between two input values x1 and x2, and θ is

the scale parameter. It has been used in many applications (O’Hagan 1978, Sacks

and Schiller 1988, Sacks, Schiller, Welch 1989 and Abrahamsen 1997) and software

including JMP 8.0.2 2010. However, a process y(x) with (9) as the correlation func-

tion has the property that its realization on an arbitrarily small, continuous interval

determines the realization on the whole real line. This global influence of local data

are considered unrealistic and possibly misleading in some applications (Diggle et al.

2007, p. 54). We shall refer to this property as global prediction. Another well known

correlation function is the Matérn family (Matérn, 1960). For the one-dimension case,

it is a two-parameter family:

R(d) = {2ν−1Γ(ν)}−1(d/φ)νKν(d/φ),

where Kν(·) denotes a modified Bessel function of order ν > 0, and φ > 0 is a scale

parameter for the distance d. As ν → ∞ the Matérn correlation function converges

to (9).

Another commonly used interpolation method is the spline. An order-s spline

with knots ξi, i = 1, ..., l is a piecewise-polynomial of order s and has continuous

derivatives up to order s − 2. A cubic spline has s = 4. GP may also be viewed as

a spline in a reproducing kernel Hilbert space, with the reproducing kernel given by

the covariance function (Wahba 1990). The main difference between them is in the

interpretation. While the spline is driven by a minimum norm interpolation based

on a Hilbert space structure, GP is driven by an expected squared prediction error

based on a stochastic model.
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In this paper we will focus on the cubic spline by considering it in the GP frame-

work via the cubic spline correlation function (Currin et al. 1991, Santner et al.

2003):

R(d) =


1− 6(d

θ
)2 + 6( |d|

θ
)3, if |d| < θ

2
,

2(1− |d|
θ

)3, if θ
2
≤ |d| < θ,

0, if |d| ≥ θ,

(10)

where θ > 0 is the scale parameter. Currin et al. (1991) showed that the BLUP

with the function in (10) as the correlation function gives the usual cubic spline

interpolator. An advantage of the cubic spline correlation is that θ can be made

small, which permits prediction to be based on data in a local region around the

predicting location (Santner et al. 2003, p. 38). We shall refer to this property as

local prediction.

In this paper, we introduce a Bayesian version of the Gaussian process approach

for the cubic spline correlation function given in (10). One advantage of Bayesian

prediction is that the variability of y(x) given observations can be used to provide

measures of posterior uncertainty and designs can be sought to minimize the expected

uncertainty (Ylvisaker 1987, Sacks, Welch, Mitchell, and Wynn 1989). Some empirical

studies have shown the superiority of Gaussian process over the other interpolating

techniques including splines (see Laslett 1994). Here we show the potential advantage

of using Bayesian cubic spline in the GP model compared to the powered exponential

correlation function (9) through simulation studies.

The paper is organized as follows. In Section 3.2, we give a brief review on the

kriging technique based on GP models. In Section 3.3.1, we develop a Bayesian

version of the cubic spline method, abbreviated as BCS. In Section 3.3.2, a nugget

parameter is introduced to the GP model underlying the BCS method when numerical

and estimation stability is required and a summary procedure for the BCS is given.

In Section 3.3.3, we consider its extension to high dimensions. In Section 3.4, BCS is
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compared with two competing procedures in three simulation examples: GP based on

the cubic spline correlation function in (10), abbreviated as CS and GP based on the

powered exponential correlation function in (9), abbreviated as PE. CS and PE will

be explained with details in Section 3.2. In Section 3.5, we compare the performance

of BCS and PE on some real data. Some concluding remarks are given in Section 3.6.

3.2 A brief review on kriging

The GP model has been used in geostatistics, known as kriging (Matheron 1963,

Cressie 1992, Diggle et al. 2007). Kriging is used to analyse spatially referenced

data which have the following characteristics (Cressie 1992). The observed values yi

are at a discrete set of sampling locations xi, i = 1, . . . , n, within a spatial region.

The observations yi are statistically related to the values of an underlying continuous

spatial phenomenon S(xi) (Diggle et al. 2007). Sacks et al. (1989) proposed kriging

as a technique for developing meta models from computer experiment. Computer

experiment produces a response for a given set of input variables. Here we only

consider deterministic computer experiment, i.e, the code produces identical answers

if run twice using the same set of inputs.

Suppose we want to provide the prediction of a function y(x) at an untried location

x, given the observed y values at D = (x1, . . . ,xn)t. For the Gaussian process in (8),

the best linear unbiased estimator (BLUE) of b is

b̂ = (f tDRD(θ̂)−1fD)−1f tDRD(θ̂)−1YD, (11)

where fD = f(D) = (f(xi))xi∈D, dependence on θ is now explicitly indicated in the

notation and θ̂ is the estimate of θ. The BLUP of Y0 = y(x0) at x0 ∈ R is

Ŷ0 = b̂tf0 + R0(θ̂)tRD(θ̂)−1(YD − b̂tfD), (12)

where b̂ is given in (11), f0 = f(x0) and R0 = (R(x0 − x1), . . . , R(x0 − xn))t is the

n×1 vector of correlations between YD and Y0. If we denote µD = btfD and µ0 = btf0,
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then (12) becomes

Ŷ0 = µ̂0 + R0(θ̂)tRD(θ̂)−1(YD − µ̂D).

One way to estimate θ and σ2 is through the maximum likelihood. Maximum likeli-

hood is a commonly used method for estimating parameters in both computer exper-

iments and spatial process models (Wecker and Ansley 1983; Mardia and Marshall

1984; Currin et al. 1988; Sacks, Schiller, and Welch 1989; Sacks, Welch, Mitchell, and

Wynn 1989). For the powered exponential correlation function in (9), the estimate

of σ2 yields

σ̂2(θ) =
1

n
(YD − µD)′RD(θ)−1(YD − µD).

Estimation of θ is usually done by a constrained iterative search. We refer to this

method as kriging based on the powered exponential (PE). If we adopt the cubic

spline correlation function in (10), the correlation parameter θ is both a scale and

truncation parameter. In this case, the estimation method of θ is based on the

restricted maximum likelihood method (REML). REML (Patterson and Thompson,

1971) was proposed as a method of obtaining less biased estimates of the variance

and covariance parameters than the (unrestricted) maximum likelihood. We refer to

this method as kriging based on the cubic spline correlation function (CS).

3.3 Bayesian cubic spline

3.3.1 The prior and posterior processes

As YD ∼ N (µD, σ
2RD(θ)) and Y0 ∼ N (µ0, σ

2R0(θ)), we will develop the Bayesian

framework for the cubic spline method, where R is the cubic spline correlation func-

tion in (10) and θ is the scale parameter. For the choice of prior, we assign the

non-informative priors to µD and θ, the conjugate prior to σ2 and assume that the
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priors are independent with each other:

µD ∼ 1,

σ2 | α, β ∼ InverseGamma(α, β),

θ | a ∼ U(0, a),

β ∼ 1/β,

where θ follows the uniform distribution in [0, a]. Here θ can be viewed as the knot

location parameter in spline. In the Bayesian spline literature (Dimatteo et al., 2001,

Wang 2008), it is a common practice to assign uniform prior to the knot location

parameter. The prior parameter a is fixed as a = maxxi,xj∈D‖xi − xj‖. The reason

for choosing this particular a is because the function in (10) is truncated and equals

zero for |d| ≥ θ. Because we want the GP to have a local prediction property, we

choose a to be the largest distance among the x values in D. A simulation study

(not reported here) shows that a larger range of a does not change the overall perfor-

mance in estimation. Because an unknown shape parameter α will bring unnecessary

complication in the computation, we assume α to be fixed and known.

We use the Markov chain Monte Carlo (MCMC) method to perform the Bayesian

computation (Christian and Casella 2004; Gill 2008). It samples from probability

distributions by constructing a Markov chain that has the desired distribution as its

equilibrium distribution. Gibbs sampling (Casella and George 1992; Gelfand and

Smith 1990) is an MCMC algorithm. It can approximate the posterior distribution

of parameter of interest by obtaining a sequence of sample values from a specified

multivariate probability distribution. Since the marginal posterior distributions of

µD and β are in closed form, Gibbs sampling can be implemented to obtain the
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posterior distribution of µD and β:

µD | YD, θ, σ
2 ∝ P(YD | µD, θ, σ2)P(µD)

∝ N (µD,RD(θ, σ2))× 1

∝ exp

(
−1

2
(YD − µD)′RD(θ, σ2)−1(YD − µD)

)
∼ N (YD,RD(θ, σ2)), (13)

β | α, σ2 ∝ P(σ2 | α, β)P(β)

∝ InverseGamma(α, β)× β−1

∝ βα−1 exp
(
−β/σ2

)
∼ Gamma(α, σ2).

However, the parameters θ and σ2 are embedded into the covariance function σ2R in

(10) and have no posterior distribution in closed form. Thus we will sample θ and

σ2 using the Metropolis-Hastings (MH) algorithm (Metropolis et al. 1953, Hastings

1970). The MH algorithm works by generating a sequence of sample values in such

a way that, as more and more sample values are produced, the distribution of values

more closely approximates the desired distribution. Specifically, at each iteration, the

algorithm picks a candidate for the next sample value based on the current sample

value. Then, with some probability, the candidate is either accepted (in which case the

candidate value is used in the next iteration) or rejected (in which case the candidate

value is discarded, and the current value is reused in the next iteration).

Specifically, we sample θnew and σ2
new by following normal symmetric probability

densities with respect to the existing θ and σ2 (denoted as θold and σ2
old). The normal

symmetric probability densities work as jumping distribution, because they choose

a new sample value based on the current sample. In theory, any arbitrary jumping

probability density Q(δold | δnew) can work, where δ is the parameter of interest. Here
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we choose symmetric Q(δold | δnew) = Q(δnew | δold) for simplicity. The variance term

in the normal distribution is the jumping size from old sample to new sample of the

MH algorithm. Here we choose the variance to be one. As the size gets smaller, the

deviation of the new parameters from the previous one should get small. The jumping

probabilities are:

log θnew ∼ N (log θold, 1), (14)

log σ2
new ∼ N (log σ2

old, 1). (15)

After getting θnew and σ2
new, the acceptance ratios are defined as:

r1 = P(YD|µD,θnew,σ2)P(θnew|a)
P(YD|µD,θold,σ2)P(θold|a)

=
|RD(θnew,σ2)|−1/2 exp(− 1

2
(YD−µD)′RD(θnew,σ2)−1(YD−µD))1θnew∈[0,a]

|RD(θold,σ2)|−1/2 exp(− 1
2

(YD−µD)′RD(θold,σ2)−1(YD−µD))1θold∈[0,a]
,

r2 = P(YD|µD,θ,σ2
new)P(σ2

new|α,β)

P(YD|µD,θ,σ2
old)P(σ2

old|α,β)

=
|RD(θ,σ2

new)|−1/2 exp(− 1
2

(YD−µD)′RD(θ,σ2
new)−1(YD−µD))σ−2α−2

new exp(−β/σ2
new)

|RD(θ,σ2
old)|−1/2 exp(− 1

2
(YD−µD)′RD(θ,σ2

old)−1(YD−µD))σ−2α−2
old exp(−β/σ2

old)
.

We accept θnew (and resp. σ2
new) with probability r1 (and resp. r2) if r1 < 1 (and

resp. r2 < 1). If r1 ≥ 1 (and resp. r2 ≥ 1), we accept θnew (and resp. σ2
new).

3.3.2 Nugget parameter

One possible problem with the kriging approach is the potential numerical instability

in the computation of the inverse of the correlation matrix in (12). This happens

when the correlation matrix is nearly singular. Numerical instability is serious be-

cause it can lead to large variability and poor performance of the predictor. The

simplest and perhaps most appealing way is to add a nugget effect in the GP mod-

eling. In the spatial statistics literature (Cressie, 1992), a nugget effect is introduced

to compensate for local discontinuities in an underlying stochastic process. A well-

known precursor is the ridge regression in linear regression analysis. Gramacy and

Lee (2012) gave justifications for the use of nugget in GP modeling for deterministic
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computer experiments. Here we consider the option of adding a nugget parameter in

GP model by using ridge regression.

Consider the Gaussian model:

Y ∼ N (µ,R(σ2, θ) + τ 2I),

where τ 2 is the nugget parameter. Adding the matrix τ 2I to R makes the covariance

matrix nonsingula and helps stabilize the parameter estimate. We can use the MH

sampling to estimate τ 2 by letting γ2 = τ 2/σ2 and assign the prior distribution of

γ2 to be a uniform distribution in the interval of [0, κ], where κ is fixed and known.

Simply replace RD and R0 in Section 3.3.1 by VD = RD + γ2I and V0 = R0 + γ2I.

To use the MH sampling to get γ2, we choose the jumping distribution

log γ2
new ∼ N (log γ2

old, 1), (16)

and to sample the new parameter γ2
new based on the current γ2

old by using the accep-

tance ratio

r3 = P(YD|µD,γ2new,θ,σ2)P(γ2new|κ)

P(YD|µD,γ2old,θ,σ2)P(γ2old|κ)

=
|VD(γ2new,θ,σ

2)|−1/2 exp(− 1
2

(YD−µD)′VD(γ2new,θ,σ
2)−1(YD−µD))1γ2new∈[0,κ]

|VD(γ2old,θ,σ
2)|−1/2 exp(− 1

2
(YD−µD)′VD(γ2old,θ,σ

2)−1(YD−µD))1γ2
old
∈[0,κ]

.

In the computation, we use the criterion introduced by Peng and Wu (2013) to

determine whether or not to include a nugget effect. We use the condition number

of a matrix as the primary measure of singularity. Formally, the condition number of

an m × s matrix M is defined as κr(M) = ‖M‖r‖M−1‖r, where ‖M‖r denotes the

r-norms of a matrix M , defined by ‖M‖r = maxz 6=0‖Mz‖r/‖z‖r, ‖z‖r = (
∑

i|zi|r)1/r,

and z ∈ Rs. For r = 2, it reduces to the standard definition of condition number, that

is, the ratio of its maximum eigenvalue over its minimum eigenvalue. See Golub and

van Loan (2012) for details. Here we use the LAPACK reciprocal condition estimator

in MATLAB to determine whether the covariance matrix R is ill-conditioned. If

(κ1(R))−1 < 10ε, where ε = 2−52 is the floating-point relative accuracy, then R is
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ill-conditioned and we will introduce the nugget effect into the model. Otherwise, we

will set the nugget effect to be zero.

With the option of adding a nugget parameter, the steps to perform the Bayesian

cubic spline are summarized as follows:

1. Set initial values for µD, θ, σ2 and let γ2 = 0.

2. Calculate κ1(R).

3. If (κ1(R))−1 ≥ 10ε, set γ2 = 0, sample µD, θ and σ2 from (13), (14), (15)

respectively. If the parameters do not converge, go back to step 2.

4. If (κ1(R))−1 < 10ε, use V = R + γ2I instead of R and sample µD, θ, σ2 and γ2

from (13), (14), (15) and (16) respectively. Repeat this step until convergence.

5. Calculate the estimate of Y0 using (12) with µD, θ, σ2 and γ2.

3.3.3 Extension to high dimensions

For multi-dimensions, let x ∈ Rk and assume the correlation function R(xi,xj) =∏k
t=1 Rt(xi,t− xj,t) =

∏k
t=1 Rt(dt), where xi and xj are in Rk, dt is the distance of xi

and xj on the tth dimension and Rt is the correlation function for the tth dimension.

The multi-dimensional spline correlation function R(d) is the product of the one-

dimension spline correlation function with individual parameter θt estimated for each

dimension (Ylvisaker 1975, Chen, Gu, and Wahba 1989). The corresponding Bayesian

computation is done by doing the MH sampling for each dimension until convergence.

Our criterion for convergence is when the change of ‖θ‖ between consecutive iterations

of the MCMC computation is smaller than 10−4. Most times θ converges fairly fast

in our simulation studies.
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3.4 Simulation study and results

First, we compare the performance of the proposed Bayesian cubic spline (BCS)

method with two other methods: PE and CS (described in Section 3.2). The criterion

for evaluating the performance of the estimators is the integrated mean squared error

(IMSE), defined as

IMSE(f̂) =

∫
Ω

(f̂(x)− f(x))2dx,

where f and f̂ are respectively the true function values and estimated values and Ω is

the region of the x values. The following mean squared error (MSE) is a finite-sample

approximation to the IMSE:

MSE(f̂) =
1

m

m∑
i=1

(f̂(xi)− f(xi))
2, (17)

where m is the number of randomly selected points {xi} from Ω. Three choices of

the true function f(x) are considered in Examples 1-3, which range from low to high

dimensions and from smooth to non-smooth functions.

Example 1.

f1(x) = {1− exp(−.5/x2)}2300x3
1 + 1900x2

1 + 2092x1 + 60

100x3
1 + 500x2

1 + 4x1 + 20
.

This two-dimensional function is from Currin et al. (1991), where x ∈ [0, 1]2 and

f1 ∈ [4.1, 13.8]. We scale f1 into [0, 1]. Currin et al. (1991) studied a 16-run de-

sign in their paper. Four designs are considered: 42 design (16 runs) with levels

(.125, .375, .628, .875) (Joseph 2006) and (0, .3333, .6667, 1) (Currin et al. 1991), 52

design (25 runs) with levels (0, .25, .5, .75, 1), and 62 design (36 runs) with levels

(0, 0.2, 0.4, 0.6, 0.8, 1). Four types of noise ε are added to f1(x): U(0, 0) (no noise),

U(0, .2), U(0, .5) and U(0, 1). As the range of the noise increases from 0 to 1, the

function f1(x) + ε becomes more rugged. It allows us to compare the performance of

the three methods as the true function become less smooth.

For noise based on U(0, 0) (and resp. U(0, .2), U(0, .5) and U(0, 1)), we conduct

the simulation as follows. First, a noise is randomly sampled from U(0, 0) (and resp.
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U(0, .2), U(0, .5) and U(0, 1)). For each simulation, the noise is fixed and denoted as

{ε1, . . . , εn}. Here n, the number of design points, is 16, 16, 25 and 36 respectively

for the four designs. Second, the values of {f1(x1), . . . , f1(xn)} are calculated. Then

the values of {f1(x1) + ε1, . . . , f1(xn) + εn} are treated as the response values by PE,

BCS and CS in parameter estimation. The purpose of this step is to facilitate the

study of robustness of estimation against noises. Then, MSE (see (17)) is calculated on

m = 100 of x randomly sampled from [0, 1]2. We sample repeatedly and independently

{ε1, . . . , εn} and {x1, . . . ,xm} for each simulation and record the average of the MSE

values from 500 simulations for each noise and design setting in Table 4. For each

simulation setting, the method with the smallest MSE is highlighted in boldface.

The MCMC iterations of the BCS terminate if the change of parameter estimate

is smaller than 10−4. The running time takes about 20 seconds for an Intel Xeon

CPU with 2.66 GHz and 3.00 GB of RAM to reach such convergence. The powered

exponential method performs best when the noise is small (U(0, 0) and U(0, .2)) or

the design size is large (36-run). This is because the example is relatively smooth

when noise is small and the function f1 contains the exponential term exp(−.5/x2),

which can be best captured by the non-zero exponential correlation function. PE

also benefits from the larger sample size of 62, which helps to stabilize estimate.

For relatively small designs (16- and 25-run) with large noise (U(0, .5) and U(0, 1)),

CS and BCS perform better than PE. When design is small and noise is large, the

response surface tends to be very rugged and there is not enough data for PE to

estimate the surface with good precision. A localized estimate like CS and BCS with

truncated correlation function give smaller MSE. BCS in most cases outperforms CS.

The over-smoothing property of PE can result in large estimation errors as will be

shown in Example 2 and in Section 3.5.

Example 2.

f2(x) = 0.3 exp−1.4x|cos(10πx)|+ 3x.
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Table 4: Average MSE Values for PE, BCS and CS Predictors in Example 1

U(0, 0) U(0, .2) U(0, .5) U(0, 1)

PE 1.0034 1.0437 1.7192 1.8951
42(J) BCS 1.0852 1.1116 1.6830 1.8198

CS 1.1036 1.2518 1.6714 1.9854
PE 1.1223 1.3495 1.6545 2.4491

42(C) BCS 1.1662 1.4021 1.5762 2.1108
CS 1.1710 1.4322 1.6318 2.1476
PE 0.9087 1.0186 1.3516 1.4845

52 BCS 1.0305 1.0391 1.2473 1.3642
CS 1.0481 1.1204 1.2665 1.5816
PE 0.2171 0.2588 0.5604 0.6352

62 BCS 0.2503 0.2954 0.6117 0.7723
CS 0.2942 0.2769 0.7479 0.8042

This is a one-dimension function and contains a non-smooth term |cos(10πx)|. Here

f2 is scaled into [0, 1]. As in Example 1, four types of random noise are added to f2

and 5, 10, 20 and 30 design points (i.e., {x1, . . . , xn} values) are uniformly sampled

from [0, 1]. In each simulation, noise is sampled and fixed, denoted as {ε1, . . . , εn},

where n = 5 (and resp. 10, 20 and 30). Then 5 (and resp. 10, 20 and 30) design

locations {x1, . . . , xn} are uniformly sampled from [0, 1]. The values of {f2(x1) +

ε1, . . . , f2(xn) + εn} are used as the response values. The MSE for each simulation

is calculated on m = 100 randomly sampled x values in [0, 1]. For each design, we

repeat this procedure 500 times by taking random samples of {εi}ni=1 and {xi}ni=1.

The average MSE based on the 500 simulations is given in Table 5 for each noise and

design setting . Again, the method with the smallest average MSE is highlighted in

boldface.

In all cases, CS and BCS beat PE even when no noise is added to the true function.

BCS performs better than CS in most cases. CS performs better than BCS in four

cases, three of which the difference is not significant. PE gives much worse results

when the design size is small (5, 10) and the noise is large (U(0, .5) and U(0, 1)). This

is due to the global prediction property of PE. For non-smooth functions, this can
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bring in unnecessarily large errors. On the other hand, the better performance of CS

and BCS benefits from their local prediction property.

Table 5: Average MSE Values for PE, BCS and CS Predictors in Example 2

U(0, 0) U(0, .2) U(0, .5) U(0, 1)

PE 0.0026 0.2857 0.7214 0.8147
5 BCS 0.0018 0.0764 0.2219 0.2712

CS 0.0021 0.0518 0.2768 0.2853
PE 0.0017 0.0389 0.1626 0.3260

10 BCS 0.0014 0.0262 0.0514 0.1929
CS 0.0013 0.0259 0.0591 0.1964
PE 0.0015 0.0092 0.1443 0.1547

20 BCS 0.0004 0.0051 0.0757 0.1190
CS 0.0011 0.0063 0.1125 0.1248
PE 0.0011 0.0049 0.0754 0.1853

30 BCS 6.80E-04 0.0034 0.0311 0.1775
CS 7.20E-04 0.0028 0.0596 0.2005

Example 3.

f3(x) =
2πx1(x2 − x3)

ln(x4/x5)[1 + 2x1x6
ln(x4/x5)x25x7

+ x1
x8

]
.

This is an 8-dimensional smooth function from Morris et al. (1993), where x1 ∈

[63070, 115600], x2 ∈ [990, 1110], x3 ∈ [700, 820], x4 ∈ [100, 5000], x5 ∈ [.05, .15],

x6 ∈ [1120, 1680], x7 ∈ [9855, 12046] and x8 ∈ [63.1, 116]. Here we scale x1, . . . , x8

and f3 into [0, 1]. Morris et al. (1993) proposed a 10-run design with two levels 0 and

1 based on the maximin distance criterion (see Table 6). In the study, we consider the

10-run design together with 10-, 20- and 50-run Latin hypercube design (McKay et

al. 1979). A n-run Latin hypercube design in [0, 1]k is based on the Latin hypercube

sampling. For each dimension, we independently sample n values randomly from

each interval (0, 1/n), . . ., (1 − 1/n, 1) and randomly permute the n values. Here

we apply the maximin criterion to choose the Latin hypercubes, i.e., maximizing the

minimum distance between points. As before, four types of noise are added to the

true function. In each simulation, after the noise {ε1, . . . , εn} is sampled, one Latin

hypercube design is generated, denoted by {x1, . . . ,xn}, where n = 10, 20, 50. Then

65



apply PE, CS and BCS to {f1(x1) + ε1, . . . , f1(xn) + εn} for parameter estimation.

The MSE is calculated based on m = 5000 random samples {xi}5000
i=1 in [0, 1]8. The

simulations are repeated 1000 times and the average MSE values are given in Table

7. The running time for each simulation of BCS is less than 2 minutes on the same

machine.

The results are similar to those of Example 1. This is expected as they are both

smooth functions. PE gives best results among the three methods when the noise is

small (U(0, 0) and U(0, .2)) or the sample size is large (50LH). BCS and CS perform

well when sample size is small (10 and 20) and the noise is large (U(0, 1)). BCS

generally outperforms CS.

Table 6: A Maximin Distance Design in [0, 1]8 for n=10 (Morris et al. 1993)

x1 x2 x3 x4 x5 x6 x7 x8

1 1 0 0 1 0 1 1
1 1 1 1 0 0 1 0
1 0 0 1 1 0 0 0
0 1 0 0 1 1 0 0
1 1 0 1 0 1 0 1
0 1 1 0 0 0 0 1
0 0 1 1 1 0 1 1
0 0 0 0 0 1 1 1
0 0 1 1 0 1 0 0
1 0 1 0 1 1 1 0

3.5 Application

Instead of simulating from known functions, we perform another comparison study by

using the methane combustion data from Mitchell and Morris (1993). Table 8 shows

its 50-run design. In addition, Mitchell and Morris gave 20-, 30-, 40- and 50-run,

7-variable maximin design in their paper. The first 20, 30, 40 and 50 runs in Table

8 consist of these designs denoted as D20, D30, D40 and D50. The response y is the

logarithm of the ignition delay time.
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Table 7: MSE Values for PE, BCS and CS Predictors in Example 3

U(0, 0) U(0, .2) U(0, .5) U(0, 1)

PE 0.0386 0.0457 0.0695 0.1850
10 BCS 0.0472 0.0610 0.0846 0.1557

CS 0.0501 0.0672 0.0884 0.1691
PE 0.0277 0.0473 0.0721 0.1821

10LH BCS 0.0412 0.0612 0.0891 0.1592
CS 0.0458 0.0632 0.0876 0.1409
PE 0.0013 0.0125 0.0405 0.1714

20LH BCS 0.0053 0.0358 0.0774 0.1454
CS 0.0077 0.0298 0.0868 0.1621
PE 5.10E-04 0.0096 0.0311 0.1355

50LH BCS 0.0041 0.0137 0.0532 0.1414
CS 0.0043 0.0159 0.0581 0.1523

Before conducting the comparison, a careful data analysis is performed to show

some feature of the data. For D20, D30 and D50, we randomly take 90%, 80% and

50% of the original data as the response values for PE and BCS to estimate θ. The

average values of θ̂j, j = 1, . . . , 7, based on 100 simulations are calculated and given

in Table 9 for each setting. For each design, the value of θ̂ from PE increases as

the number of input data decreases while the values θ̂ for BCS are more stable. The

divergent behavior between PE and BCS for this data can be explained by their

respective global and local prediction properties. First, note that a larger θ value

indicates a more smooth surface. As the size of input data gets smaller, the data

points are spread more thinly in the design region [0, 1]7. The fitted response surface

by PE will become more smooth due to its global prediction property. The change

will not be as dramatic for BCS thanks to its local prediction property. Even though

we do not know what the true response surface is or how rugged it is, this divergent

behavior seems to suggest that BCS is a better method for the data and this will be

confirmed in the next study based on cross validation.
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Table 8: Methane Combustion Data

Run x1 x2 x3 x4 x5 x6 x7 y

1 0 0 0 0.5 1 1 0.25 7.9315

2 0.25 0.5 0.5 0.75 0 1 0 6.2171

3 0 1 0 0.25 0 0 1 7.8535

4 0.5 0.5 0.75 0 1 0.25 0 7.5708

5 0 0.75 0.75 1 1 1 0.5 6.3491

6 1 0 1 0.25 0 1 0 5.3045

7 0 1 0 0.75 1 0.5 1 8.5372

8 0.75 0.25 0 1 1 0 1 7.871

9 0.5 0.75 0.25 0 0.25 0.5 0.5 7.8725

10 0.25 1 0.75 0.75 0.5 0 0.25 6.593

11 0.5 0 1 0.25 1 0.75 1 6.2131

12 1 0 0 0.5 0.5 0.5 1 7.6311

13 1 0.5 1 0.75 0 0.25 0.5 5.109

14 0 1 0.25 0.25 0.75 1 0 8.4206

15 1 1 0 1 0.25 0 0.5 7.2242

16 0.5 0 0.25 1 0 0.25 0.75 6.0216

17 1 1 1 1 0.5 1 0 5.3495

18 1 1 0.5 0.25 0 1 1 6.0325

19 1 0 1 0 0.75 0 0.25 6.4065

20 0.5 1 0.75 1 0.25 0.75 1 5.5674

21 0.25 0 0.5 0.25 0.25 0 1 6.5214

22 0 0.5 0.5 0 0.75 0.5 0.75 7.7907

23 0.25 0 0 0.25 0 0.75 0.5 7.3542
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Table 8 – Continued from previous page

Run x1 x2 x3 x4 x5 x6 x7 y

24 0.75 0.75 1 0 0 0 0 5.8651

25 0.25 0 1 0.5 0.75 0.5 0 6.4489

26 0.75 1 0.25 0.75 1 0.75 0.25 7.6225

27 0 1 1 0.5 0.25 1 0.5 5.8572

28 1 0.5 1 0 1 1 0.5 6.5656

29 1 0.25 1 1 1 0.25 0 5.7137

30 0 0 0 1 0.25 1 1 6.5603

31 0.5 0 0.5 0 0.75 1 0.25 7.5044

32 1 0 0.75 0.75 0.5 0.75 0.25 5.8721

33 1 0 0 0 1 0.25 0 8.206

34 1 0.5 0 1 0 0.75 1 6.3746

35 0.25 0.5 1 0.75 0.5 1 1 5.4478

36 1 0.75 0 0 0.5 1 0.75 7.6953

37 0.5 0 1 0 0 0.5 0.75 5.3423

38 0.5 1 0 1 0 1 0.25 6.4493

39 1 0.25 0 0.5 0 0.5 0 6.8957

40 0.75 0.5 0.25 0.5 1 1 1 7.5563

41 0.75 0.75 0.25 0.5 0 0.25 1 6.7549

42 0.75 0 0.75 0.75 0 1 1 5.0056

43 0 0.25 0.25 1 0.75 0.25 0.75 7.4006

44 1 0.25 0.75 0 0.25 0 1 5.6656

45 0.5 0.5 0.5 0.5 0.5 0 0 7.4111

46 0.75 1 0.75 0.25 0.25 0.75 0.25 6.7111

47 1 0.5 0.25 0.25 0.75 0.75 0 7.9182
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Table 8 – Continued from previous page

Run x1 x2 x3 x4 x5 x6 x7 y

48 1 0.25 0.5 1 1 1 0.5 6.2543

49 0 0.75 0.5 0.75 0.25 0.25 0.5 6.7319

50 0.25 1 0.25 1 0.75 1 0.75 6.9749

Table 9: Average θ̂ values using PE and BCS

Method % of input θ̂1 θ̂2 θ̂3 θ̂4 θ̂5 θ̂6 θ̂7

D20 PE 90 0.1137 0.0368 0.2697 0.0606 0.0712 0.0101 0.0137
D20 PE 80 0.1892 0.0878 0.4891 0.0928 0.1082 0.0348 0.0647
D20 PE 50 0.4092 0.2977 0.7952 0.3177 0.3580 0.2476 0.2681
D20 BCS 90 4.1345 4.0635 3.6870 3.8788 3.8440 4.2943 3.3749
D20 BCS 80 4.5264 4.5190 3.6424 3.8407 4.5733 4.6059 4.0459
D20 BCS 50 4.1244 4.8617 3.8581 3.4646 4.2030 5.5327 3.1355
D30 PE 90 0.0958 0.0318 0.1582 0.0335 0.0700 0.0079 0.0144
D30 PE 80 0.1216 0.0647 0.3231 0.0667 0.1017 0.0292 0.0256
D30 PE 50 0.2293 0.1874 0.5877 0.1790 0.2252 0.1315 0.1348
D30 BCS 90 3.7533 4.9328 4.6481 3.6454 5.2628 4.6647 2.0442
D30 BCS 80 3.4020 5.2822 5.4022 3.4501 5.8690 4.6797 2.5237
D30 BCS 50 4.5891 4.9748 5.8604 3.4380 5.5703 4.9078 2.4123
D50 PE 90 0.1297 0.0441 0.1057 0.0394 0.0529 0.0112 0.0129
D50 PE 80 0.1189 0.0404 0.1676 0.0506 0.0741 0.0093 0.0124
D50 PE 50 0.1200 0.0449 0.2086 0.0641 0.0956 0.0123 0.0155
D50 BCS 90 3.3356 4.9131 4.9231 3.2469 3.8125 3.5908 5.0959
D50 BCS 80 3.3427 5.4804 4.3651 3.4601 3.6676 3.3073 4.9948
D50 BCS 50 3.8516 4.7773 4.5888 3.6960 3.8341 3.3936 5.3051

We now use the same data and design settings to run cross validations on D50,

D40 and D30 for each of the three methods. One round of cross-validation involves

partitioning the data into complementary subsets, performing the analysis on one

subset (called the training set), and validating the analysis on the other subset (called

the validation set). To reduce variability, multiple rounds of cross-validation are
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performed using different partitions, and the validation results are averaged over the

rounds (Geisser 1993 and Kohavi 1995). Each time we take a fixed number of data

out of D50 (resp. D40, D30) and use them for model fitting. The remaining data

are used to calculate the MSE in (17). Because CS gives much larger MSE in each

case, we only compare the MSE results for PE and BCS. For D50, the results of

training data size as 40 and 30 are plotted in Figures 16 and 17. In each figure, one

dot indicates the MSE from PE versus the MSE from BCS for a given design. The

reference line of 45◦ indicates that the two designs are equally good since they render

the same MSE. When the majority of the dots is below the line, it means BCS has

smaller MSE. This is evident in Figure 17. PE gave some very bad predictions with

MSE as high as 5.5 (dots in right bottom of Figure 17), while the majority of MSE

of BCS centres around 1.5. The average of MSE from 100 simulations for each cross

validation setting for BCS and PE and the percentage of BCS outperforming PE are

given in Table 10. There is a much larger difference between PE and BCS when the

training data size is relatively small (20 and 25). This is probably caused by the

global prediction and over-smoothing properties of PE.

Table 10: Comparison of PEM and BCS

Design Training Data Size MSE(PEM) MSE(BCS) % BCS Better

D50 40 0.6237 0.6524 58
D50 30 2.4980 1.3908 92
D40 30 0.8812 0.7132 61
D40 25 2.8516 1.5590 89
D30 25 1.6108 0.7888 69
D30 20 1.9498 1.2729 86

3.6 Conclusions

Cubic spline is widely used in numerical approximation. In the GP modeling, use

of the cubic spline correlation function in (10) can lead to sparse correlation matrix

71



0 0.5 1 1.5
0

0.5

1

1.5

MSE of PEM

M
S

E
 o

f B
C

S

Figure 16: MSE of 40 Training Data in D50

with many zero off-diagonal elements. By comparison the two commonly used cor-

relation functions, the Matérn family and the powered exponential correlation, do

not enjoy this property. A sparse correlation matrix can reduce the computation

cost and enhance the computation stability. The viability of cubic spline for com-

puter experiment applications received a further boost when JMP 8.0.2 2010 provides

the powered exponential correlation and the cubic spline correlation as its only two

choices in GP modeling. The prominence the JMP software gives to the cubic spline

was one motivation for us to develop a Bayesian version of the cubic spline method.

By putting a prior on the parameters in the cubic spline correlation function in (10),

Bayesian computation can be performed by using MCMC. The Bayesian cubic spline

should outperform its frequentist counterpart because of its smoothness and shrink-

age properties. It also provides posterior estimates, which enable statistical inference

on the parameters of interest.

We compare BCS with CS and PE in a simulation study and application to real
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Figure 17: MSE of 30 Training Data in D50

data. We have also considered other correlation functions such as the spherical family

R(d) =


1− 3|d|

2θ
+ 1

2
( |d|
θ

)3, if |d| ≤ θ,

0, if |d| > θ.

Because the performance of the frequentist version of the spherical family is similar to

that of the cubic spline, these results are omitted in the paper. In the three simulation

examples, BCS outperforms CS in most cases. PE performs the best when the true

function is smooth or the data size is large. BCS and CS perform better than PE

when the true function is rugged and the data size is relatively small. This difference

in performance can be explained by the local predication property of BCS and CS and

the global predication property of PE. Recall that, in global prediction, the prediction

at any location is influenced by far-away locations (though with less weights). This

leads to over-smoothing, which is not good for rugged surface. Local prediction does

not suffer from this as the prediction depends only on nearby locations. In the real

data application, BCS outperforms PE in all choices of design. In summary, when the
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response surface is non-smooth and/or the input dimension is high, the BCS method

can have potential advantages and should be considered for adoption in data analysis.

Some issues need to be considered in future work. When the dimension is high, the

parameter estimation is based on the MH sampling which can be costly. Grouping

the parameter to reduce computation is an alternative. Also, we have considered

mostly the non-informative priors. If more information is available, informative prior

assignment should be considered.
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APPENDIX A

REGULARITY CONDITIONS OF CHAPTER 1

We first state the identifiability conditions for Theorem 1. The hidden Markov model

is identifiable if the following conditions are satisfied (MacKay 2002):

A1. The Markov Chain {xi} is irreducible and aperiodic.

A2. The parameter space for (σ, φ), denoted by Ω, is compact.

A3. f(y; σ, φ) is continuous in σ and φ.

A4. Given ε > 0, there exists A > 0 such that for all (σ, φ) ∈ Ω, f(A; σ, φ) −

f(−A; σ, φ) ≥ 1− ε.

A5. The family of finite mixtures of {f(y; σ, φ)} is identifiable, i.e.,

F (y,G1) = F (y,G2) ⇒ G1 = G2.

A6. There is an upper bound on the number of hidden states.

We can see that most of the identifiability conditions are quite natural and hold

for many popular distributions.

We need the following regularity conditions:

B1. 1. E(| logF (Y ; Σ,Φ) |) <∞.

2. There exists ρ > 0 such that F (Y ; Σ,Φ) is measurable for each (σ,Φ).

B2. F (Y ; Σ,Φ) is differentiable with respect to (Σ,Φ) to order 3. The derivatives

are jointly continuous in Y ,Σ,Φ.
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B3. Let Ui,σn11 ,...,σ
nt
t

(Σ, G,Φi) = ∂n1+···nt

∂σ
n1
1 ∂σ

n2
2 ···∂σ

nt
t

logF (Y i; Σ,Φi), where n1 +n2 + · · ·+

nt ≤ 3. For each atom of G0, σ0k, there exists a small neighborhood of (σ0k,Φ0)

and a function q(Y ) with E{q2(Y )} <∞ such that for G,G′′,Σ,Σ′ and Φi,Φ
′
i

in this neighborhood, we have:

| Ui,σn11 ,...,σ
nt
t

(Σ, G,Φi)−Ui,σn11 ,...,σ
nt
t

(Σ′, G′′,Φ′i) |≤ q(Y i){‖Σ−Σ′‖+‖G−G′‖+‖Φi−Φ′i‖}.

B4. The matrix with the (k1, k2)th element E{U1,σm(Σk1 , G0,Φ0)U1,σm(Σk2 , G0,Φ0)}

is finite and positive definite.

B1 to B4 ensure that the MLE Ĝn of HMM with unknown order K0 is
√
n-

consistent and asymptotically normal.
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APPENDIX B

SUPPLEMENTARY PROOFS OF CHAPTER 1

Lemma 1 Under the conditions in Theorem 1, Ĝn has the following property:

K∑
k=1

log π̂k = Op(1).

Proof of Lemma 1. From Jensen’s inequality, under condition B1 and the identifia-

bility conditions for the hidden Markov Chain: E{logF (Y ; Σ,Φ)} < E{logF (Y ; Σ0,Φ0)}

for any (G,Σ) 6= (G0,Σ0). This would imply:

ln(G,Σ)− ln(G0,Σ0) ≤ −Cn,

almost surely for (G,Σ) 6= (G0,Σ0) with some C > 0. For γn = Op(n
1/4 log n) and

a > 2, the SCAD function satisfies:

K−1∑
k=1

pn(ηk)−
K0−1∑
k=1

pn(η0k) = o(n).

Therefore, when the parameter space Ω is compact,

sup
N
l̃n(G,Σ)− l̃n(G0,Σ0) ≤ sup

N
ln(G,Σ)− ln(G0,Σ0)− o(n) ≤ −Cn.

Hence, Ĝn → G0 and it has at least K0 distinct atoms, which indicates that η0k >

0 is approximated by one of the η̂k. Note that the SCAD penalty is a constant

outside a small neighborhood of 0. As a result, pn(η̂k) = pn(η0k) in probability and∑K−1
k=1 pn(η̂k)−

∑K0−1
k=1 pn(η0k) ≥ 0, which implies:

0 ≤ l̃n(G,Σ)−l̃n(G0,Σ0) ≤ {ln(Ĝn, Σ̂)−ln(G0,Σ0)}+{CK
K∑
k=1

log π̂k−CK0

K0∑
k=1

log π0k}.

Denote by (Ḡn, Σ̄) the MLE of (G,Σ) with at most K atoms. Then

ln(Ĝn, Σ̂)− ln(G0,Σ0) ≤ ln(Ḡn, Σ̄)− ln(G0,Σ0) = Op(1).
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Therefore,

CK

K∑
k=1

log π̂k ≥ −ln(Ḡn, Σ̄) + ln(G0,Σ0) + CK0

K0∑
k=1

log π0k = Op(1).

2

Proof of Theorem 1. i). We have shown in the proof of Lemma 1 that (Ĝn, Σ̂)

is a consistent estimator of (G0,Σ0).

ii). By Lemma 1, the mixing proportion on each atom of Ĝn is positive in proba-

bility. Thus the atom of Ĥk must converge to σ0k in probability. 2

The following lemma is a high-dimensional version of result from Serfling (1980,

page 253).

Lemma 2 Let h(Y ; Σ) be continuous at Σ0, uniformly in Y . Let F be a distribution

function for which
∫
| h(Y ; Σ) | dF (Y ) < ∞. Let Y n

1 = (Y 1,Y 2, . . . ,Y n) be a

random sample from F and suppose that Tn = Tn(Y n
1 ) is a function of the sample

such that Tn → Σ0 in probability. Then, in probability, we have

1

n

n∑
i=1

h(Y i; Tn)→ E0h(Y ; Σ0).

Proof of Theorem 2. Let G̃ be the maximizer of l̃n(G,Φ) among those with

K̂0 = K0 and mixing probabilities ϑ1, . . . , ϑK0 . We would like to show that, within

a n−1/4-neighborhood of G0, any estimate G in (5) with K̂0 > K0 cannot be a local

maximizer of l̃n(G,Φ), i.e., l̃n(G,Φ) < l̃n(G̃,Φ) in probability.

From Theorem 1, we know that πk are grouped and in each group they sum up to

π0k + op(1) and also ϑk = π0k + op(1), which leads to
∑K

k=1 log πk −
∑K0

k=1 log ϑk < 0

in probability. For the SCAD penalty, as shown in Chen and Khalili (2008), we have:

K−1∑
k=1

pn(ηk)−
K0−1∑
k=1

pn(η̃k) =
∑

j,j+1∈Ik

pn(ηj) ≥
√
nγn

∑
j,j+1∈Ik

| σj+1 − σj | .

The above two inequalities lead to:

l̃n(G,Φ)− l̃n(G̃,Φ) <
[
ln(G,Φ)− ln(G̃,Φ)

]
−
√
nγn

∑
j,j+1∈Ik

| σj+1 − σj | .
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From Taylor expansion, we have:

ln(G,Φ)− ln(G̃,Φ) ≤
n∑
i=1

δi −
1

2

n∑
i=1

δ2
i +

1

3

n∑
i=1

δ3
i ,

with

δi =
F (Y i; G,Φi)− F (Y i; G̃,Φi)

F (Y ; G̃,Φ)

=

K0∑
k1=1

· · ·
K0∑
kt=1

ϑ(k1, k2, . . . , kt)
F
(
Y i; H(k1, k2, . . . , kt,Φi)

)
− F (Y i; Σ̃k1,k2,...,kt ,Φi)

F (Y i; G̃,Φi)
.

To avoid double index, denote k1, . . . , kt as k(1), . . . , k(t). For any Σ in a small

neighborhood of Σ0, we have the following expansion:

{
F (Y i; Σ,Φi)− F (Y i; Σ̃k(1),k(2),...,k(t),Φi)

}
F−1(Y i; G̃,Φi) =

t∑
m=1

(σk(m) − σ̃k(m))Ui,σk(m)

+
1

2

∑
m1,m2∈{1,...,t}

n1+n2=2

(σk(m1) − σ̃k(m1))
n1(σk(m2) − σ̃k(m2))

n2Ui,σ̃n1
k(m1)

,σ̃
n2
k(m2)

(Σ̃, G̃)

+
1

6

∑
m1,m2,m3∈{1,...,t}
n1+n2+n3=3

(σk(m1) − σ̃k(m1))
n1(σk(m2) − σ̃k(m2))

n2(σk(m3) − σ̃k(m3))
n3

Ui,σ̃n1
k(m1)

,σ̃
n2
k(m2)

,σ̃
n3
k(m3)

(ξi, G̃),

for some ξi between Σ and Σ̃k(1),k(2),...,k(t). Let

p(k(1)n1k(2)n2 . . . k(t)nt) = (18)∫
(σk(1) − σ̃k(1))

n1(σk(2) − σ̃k(2))
n2 · · · (σk(t) − σ̃k(t))

ntdH(k(1), k(2), . . . , k(t)).

Thus, we can rewrite (18) as:

n∑
i=1

{
F
(
Y i; H

(
k(1), k(2), . . . , k(t)

)
,Φi

)
− F (Y i; Σ̃k(1),k(2),...,k(t),Φi)

}
F−1(Y i; G̃,Φi) =

1

2

n∑
i=1

∑
m1,m2∈{1,...,t}

n1+n2=2

p(k(m1)n1 , k(m2)n2)Ui,σ̃n1
k(m1)

,σ̃
n2
k(m2)

(Σ̃, G̃)

+
1

6

n∑
i=1

∑
m1,m2,m3∈{1,...,t}
n1+n2+n3=3

p(k(m1)n1 , k(m2)n2 , k(m3)n3)× Ui,σ̃n1
k(m1)

,σ̃
n2
k(m2)

,σ̃
n3
k(m3)

(ξi, G̃).
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Because E{
∑

m1,m2∈{1,...,t}
n1+n2=2

Ui,σn1
0k(m1)

,σ
n2
0k(m2)

(Σ0, G0)} = 0 for any Σ,

n∑
i=1

∑
m1,m2∈{1,...,t}

n1+n2=2

Ui,σn1
0k(m1)

,σ
n2
0k(m2)

(Σ0, G0) = Op(n
1/2),

for Σ in a neighborhood of atoms of G0. Hence from condition B3, we have

n∑
i=1

∑
m1,m2∈{1,...,t}

n1+n2=2

Ui,σ̃n1
k(m1)

,σ̃
n2
k(m2)

(Σ̃, G̃) = Op(n
3/4).

Also, we can get from B3:

n−1

n∑
i=1

∑
m1,m2,m3∈{1,...,t}
n1+n2+n3=3

Ui,σ̃n1
k(m1)

,σ̃
n2
k(m2)

,σ̃
n3
k(m3)

(ξi, G̃) = Op(1).

Then:

1

6

n∑
i=1

∑
m1,m2,m3∈{1,...,t}
n1+n2+n3=3

p(k(m1)n1 , k(m2)n2 , k(m3)n3)Ui,σ̃n1
k(m1)

,σ̃
n2
k(m2)

,σ̃
n3
k(m3)

(ξi, G̃) =

Op(n)×
∑

m1,m2,m3∈{1,...,t}
n1+n2+n3=3

p(k(m1)n1 , k(m2)n2 , k(m3)n3) =

Op(n
3/4)×

∑
m1,m2∈{1,...,t}

n1+n2=2

p(k(m1)n1 , k(m2)n2).

It remains to obtain the order of
∑n

i=1 δi. There exists some C1, such that:

n∑
i=1

δi ≤ C1n
3/4

K0∑
k(1)=1

· · ·
K0∑

k(t)=1

∑
m1,m2∈{1,...,t}

n1+n2=2

ϑ(k(1), k(2), . . . , k(t))p(k(m1)n1 , k(m2)n2).

For
∑n

i=1 δ
2
i , we have:

n∑
i=1

δ2
i =

n∑
i=1

(
K0∑

k(1)=1

· · ·
K0∑

k(t)=1

ϑ(k(1), k(2), . . . , k(t))

( t∑
m=1

p(k(m))Ui,σ̃k(m)
(Σ̃, G̃)

+
1

2

∑
m1,m2∈{1,...,t}

n1+n2=2

pk(m1)n1 ,k(m2)n2Ui,σ̃n1
k(m1)

,σ̃
n2
k(m2)

(Σ̃, G̃)

+
1

6

∑
m1,m2,m3∈{1,...,t}
n1+n2+n3=3

pk(m1)n1 ,k(m2)n2 ,k(m3)n3 × Ui,σ̃n1
k(m1)

,σ̃
n2
k(m2)

,σ̃
n3
k(m3)

(ξi, G̃)

))2

= I + II + III,
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where

I =
n∑
i=1

(
K0∑

k(1)=1

· · ·
K0∑

k(t)=1

ϑ(k(1), k(2), . . . , k(t))

( t∑
m=1

p(k(m))Ui,σ̃k(m)
(Σ̃, G̃)

+
1

2

n∑
i=1

∑
m1,m2∈{1,...,t}

n1+n2=2

p(kn1
m1, k

n2
m2)Ui,σ̃n1

k(m1)
,σ̃
n2
k(m2)

(Σ̃, G̃)

))2

,

II =
1

36

n∑
i=1

( K0∑
k(1)=1

· · ·
K0∑

k(t)=1

ϑ(k(1), k(2), . . . , k(t))
∑

m1,m2,m3∈{1,...,t}
n1+n2+n3=3

p(k(m1)n1 , k(m2)n2 , k(m3)n3)

× Ui,σ̃n1
k(m1)

,σ̃
n2
k(m2)

,σ̃
n3
k(m3)

(ξi, G̃)
)2

,

III =
1

3

n∑
i=1

(
K0∑

k(1)=1

· · ·
K0∑

k(t)=1

ϑ(k(1), k(2), . . . , k(t))

( t∑
m=1

p(k(m))Ui,σ̃k(m)
(Σ̃, G̃)

+
1

2

n∑
i=1

∑
m1,m2∈{1,...,t}

n1+n2=2

p(k(m1)n1 , k(m2)n2)Ui,σ̃n1
k(m1)

,σ̃
n2
k(m2)

(Σ̃, G̃)

))

×
( K0∑
k(1)=1

· · ·
K0∑

k(t)=1

ϑ(k(1), k(2), . . . , k(t))
∑

m1,m2,m3∈{1,...,t}
n1+n2+n3=3

p(k(m1)n1 , k(m2)n2 , k(m3)n3)

× Ui,σ̃n1
k(m1)

,σ̃
n2
k(m2)

,σ̃
n3
k(m3)

(ξi, G̃)

)
.

Because (Σ̃, G̃,Φ)→ (Σ0, G0,Φ0), ϑm → π0m in probability. From Lemma 2,

n−1
∑

U2
i,σ̃k(m)

(Σ̃, G̃)→ E0{U2
i,σ0k(m)

(Σ0, G0)},

n−1
∑

U2
i,σ̃

n1
k(m1)

,σ̃
n2
k(m2)

(Σ̃, G̃)→ E0{U2
i,σ

n1
0k(m1)

,σ
n2
0k(m2)

(Σ0, G0)}.

Hence, n−1I converges to a quadratic form in (p(k(m)), p(k(m1)n1 , k(m2)n2)). For

some positive constant C2 < C3, we have:

C2nR(p(k(m)), p(k(m1)n1 , k(m2)n2) ≤ (I) ≤ C3nR(p(k(m)), p(k(m1)n1 , k(m2)n2)),

(19)
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where

R(p(k(m)), p(k(m1)n1 , k(m2)n2)) =

K0∑
k(1)=1

· · ·
K0∑

k(t)=1

( t∑
m=1

p(k(m))2

+
∑

m1,m2∈{1,...,t}
n1+n2=2

p(k(m1)n1 , k(m2)n2)2
)
.

Similarly,

II ≤ εnR(p(k(m)), p(k(m1)n1 , k(m2)n2)). (20)

From Cauchy inequality, we have

III ≤ εnR(p(k(m)), p(k(m1)n1 , k(m2)n2)). (21)

From (19)-(21),

n∑
i=1

δ2
i ≥ CnR(p(k(m)), p(k(m1)n1 , k(m2)n2).

For
∑n

i=1 δ
3, through Taylor’s expansion, we have:

n∑
i=1

δ3 =
n∑
i=1

(
K0∑

k(1)=1

· · ·
K0∑

k(t)=1

ϑ(k(1), k(2), . . . , k(t))

( t∑
m=1

p(k(m))Ui,σ̃k(m)
(Σ̃, G̃)

+
1

2

∑
m1,m2∈{1,...,t}

n1+n2=2

p(k(m1)n1 , k(m2)n2)Ui,σ̃n1
k(m1)

,σ̃
n2
k(m2)

(Σ̃, G̃)

))3

≤ C4n
( t∑
m=1

| p(k(m)) |3 +
∑

m1,...,m6∈{1,...,t}
n1+···n6=6

p(k(m1)n1 , . . . , k(m6)n6)
)

≤ εnR(p(k(m)), p(k(m1)n1 , k(m2)n2)),

which proves that
∑n

i=1 δ
2 dominates

∑n
i=1 δ

3 in probability.

In conclusion, we have, for some constant C:

ln(G)− ln(G̃) ≤ Cn3/4

K0∑
k=1

∑
i,j∈Ik

(σi − σj)2 ≤ Cn1/2

K0∑
k=1

∑
j,j+1∈Ik

| σj+1 − σj |

in probability. We get:

l̃n(G,Φ)− l̃(G̃,Φ) = Cn1/2

K0∑
k=1

∑
j,j+1∈Ik

| σj+1 − σj | −n1/2γn

K0∑
k=1

∑
j,j+1∈Ik

| σj+1 − σj |

(22)
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in probability. As γn = Op(n
1/3 log n) → ∞, (22) is negative for large n. It is a

contradiction to the assumption that G with K̂0 > K0 is an MPLE. This completes

the proof. 2
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