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SUMMARY

Many complex and interdependent systems engineering challenges involve more

than one stakeholder or decision maker. These challenges, such as the definition

and acquisition of future air mobility systems, are often found in situations where

resources are finite, objectives are conflicting, constraints are restricting, and uncer-

tainty in future outcomes prevail. Air mobility operational models which simulate

fleet wide behavior effects over time, in various mission scenarios, and potentially

over the entire design life-cycle, are always multi-dimensional, cover a large decision

space, and require significant time to generate sufficient solutions to adequately de-

scribe the design space. This challenge is coupled with the fact that, in these highly

integrated solutions or acquisitions, multiple stakeholders or decision makers are re-

quired to cooperate and reach agreement in selecting or defining the requirements for

the design or solution and in its costly and lengthy implementation. However, since

values, attitudes and experiences are different for each decision maker, reaching con-

sensus across the multiple criteria with different preferences and objectives is often

a slow and highly convoluted process. In order to reach consensus on the solution

requirements, their preferences must be in agreement.

Not only do the decision makers have different preferences or importance weight-

ings for the multiple operational or logistical dimensions, they also have influence

over each other in terms of persuading one to change their preferences. This con-

sensus reaching process is traditionally performed through compromises, trades and

other negotiation steps, all which are influenced by the relationships between deci-

sion makers. Each decision maker in the group must be willing to accept a set of
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requirements all can agree upon in place of one that may benefit the decision maker

directly but would not have sufficient support from all decision makers. Thus, an

expensive, lengthy and ad hoc decision process is often employed where stakeholders

slowly coalesce around a final solution after significant resistance and/or sacrifice of

their individual preferences and self-interested objectives.

In response to these common deficiencies and provide quantitative data, this re-

search investigates and proposes solutions to two challenges: 1) increase the speed at

which operational solutions and associated requirements are generated and explored,

and 2) systematize the group decision-making process, to both accelerate and improve

decision making in these large operational problems requiring cooperation.

The development of the Air Mobility Operations Design (AirMOD) model is pro-

posed to address the first challenge by implementing and leveraging surrogate models

of airlift capability across a wide scenario space. In addressing the second major

challenge, the proposed Multi-Agent Consensus Reaching on the Objective Space

(MACRO) methodology introduces a process to reduce the feasible decision space, by

identifying regions and requirements of high probability of reaching consensus. These

consensus subregions of the entire design space are found by simulating multi-agent

decision-making processes using game-theoretic techniques while applying the prefer-

ences of, and influence relationships between, the decision makers. The preferences

of the decision makers are quantified through discrete choice experiments and inverse

design filtering techniques to acquire distributions of the importance weightings for

each of the objectives. Similarly, the relationships of influence between decision mak-

ers is computed with separate discrete choice experiments quantifying affinities to

form coalitions with other decision makers.

The resultant decision space characterization can assist decision makers to take

action more quickly and confidently from the responses to the two challenges by in-

creasing the knowledge of the solution space through increased alternative generation
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and identifying regions with high probability of reaching consensus within the group

of stakeholders. The MACRO methodology is tested on a proof of concept involv-

ing the future acquisition decision of the fleet size and solution requirements for a

heavy-cargo transport aircraft system, simulated by the AirMOD model.

AirMOD was found to perform remarkably well by being able to generate 1 mil-

lion simulations in less than 50 minutes to cover the entire decision space. The vis-

ible trades and additional analysis only possible by this larger data set significantly

increase the capability to explore air mobility solutions and potentially increase con-

fidence and quality of decision making for requirements definition phases in system

engineering problems. When the AirMOD data set was tested in a 5-agent group de-

cision making scenario, the application of MACRO methodology was able to isolate

a consensus region with less than 1% of the initial full set of operational solutions.

Further analysis identified three solutions as most likely to be accepted in a consensus

reaching exercise. These three solutions form the initial set of requirements that all

stakeholders should initially consider to save time and resources, by removing unnec-

essary decision-making iterations. If one solution is found acceptable by all parties

from this initial consensus region subset, then considerable resources will no longer be

expended and time delays from lengthy negotiations will have been avoided. Simula-

tion and experiments confirmed that influence relationships play a significant role in

group decision-making activities and that discrete choice experiments offer an addi-

tional technique to extract not only preference distributions but power relationships.

Cooperative game theoretic techniques also offer benefits when desiring to facilitate

consensus reaching expeditiously by incentivizing cooperation through rewards of in-

creased group influence and utility. Implementing the AirMOD model and MACRO

methodology is found to potentially facilitate the requirements definition phase for

future air mobility systems with increase speed and transparency.
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CHAPTER I

INTRODUCTION AND MOTIVATION

1.1 Design and Decision Making

Engineering is about design and design is about making decisions.

Regardless of where one starts in the cycle of analyzing, decomposing or solving

a problem, it invariably will end up at some point characterized as a decision which

must be made. Even at the highest level of decomposition, answering the general

question, “What is the problem?” requires a decision. Is the problem to meet the

customer needs or stay employed? Is it to design something new or use an old design

in a new way? Is to cut costs or improve performance? Is it both? Is it neither? Rittel

and Webber take this notion once step further stating that “... designing systems [and

therefore decision making] today is difficult because there is no consensus on what

the problems are, let alone how to resolve them” [133].

Decision making is universal for almost every task and every step inside or out-

side of engineering activities. Although, traditionally, engineering might have been

considered an activity after the decision is made and once a design is selected, the

delineating line has become so blurred that now it has become almost a part of the

decision making itself.

Today as decision making becomes an integral part of engineering, technical anal-

yses, physics-based models, and statistics, to name a few, are brought earlier into

the design or decision phases [103]. Systems engineers must now account for, under-

stand, and design solutions with a larger set of dimensions, objectives and constraints.

The additional dimensions, beyond the classical technical and performance based ob-

jectives, include financial constraints, operational logistics, and even political and
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societal implications.

This more recent requirement for engineers to design while maintaining a “bigger

picture” of the world and the context in which a design will be implemented into

a system, provided impetus to create a relatively new discipline designated system

engineering, the development of which was accelerated through various organizations

such as the International Council on Systems Engineering (INCOSE) founded in the

early 1990’s [78]. Further expansion of this notion, where independently function-

ing systems are applied or implemented across geopolitical boundaries, are physically

separated, and exhibit emergent behavior providing capability that no one system

can perform in isolation, requires system-of-systems (SoS) engineering. Examples of

these problems for SoS engineering often include: power and energy production, trade

and consumption, air, sea and ground transportation and the World Wide Web. The

US World News has recently noted that universities themselves have moved to better

educate the future problem solvers: “Engineering is at the core of so many complex

global challenges—in healthcare, medicine, energy, food safety, manufacturing, com-

munications, the environment—that grad programs have realized cross-disciplinary,

even multi-disciplinary programs, are essential now to train new engineers” [65].

As these SoS engineering solutions become more complex, interdependent and

sophisticated, the decision-making processes and algorithms themselves require con-

current development. Thus, the decision making that complement systems and SoS

engineering must be equally multi-dimensional, adaptable and powerful. Borrow-

ing the phraseology from a classical quote attributed to Einstein1, one could state

that “we cannot perform decision making in the same way we have for these more

integrated and complicated problems.”

Furthermore, these highly integrated and complicated problems are no longer

1“We can’t solve problems by using the same kind of thinking we used when we created them.”
- Albert Einstein
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solved by any one person or entity. They impact multiple people and they are solved

by multiple people. Moreover, the funding for such solutions would likewise come

from an even wider set of stakeholders: “In fact, it is much more likely that individual

systems will be funded by a diverse group of organizations, and the goals of the funding

sources for individual elements may not align with the goals of the SoS stakeholders”

[72]. Likewise, the expertise in different dimensions of the solution is found in different

individuals or entities and thus the decision making is similarly performed collectively

as a group. Collaboration and cooperation become more than good ideas, they become

essential. The final decisions may still slowly evolve over time such as standards for

Internet protocols or be implemented relatively quickly such as in recent economic

bailouts, but regardless, multiple stakeholders are involved and each can influence the

final decision whatever it may be.

This multi-agent, or group decision making, in the context of systems engineering,

and an approach to improving this often overlooked but highly crucial activity from

an engineering perspective, is the general topic of this research.

1.2 Engineers as Decision Makers

Former Congressman Vern Ehlers once declared that “What the country desperately

needs is more scientists and engineers in the public office at all levels” [147]. Cur-

rent President Barack Obama has written “I wish the country had fewer lawyers

and more engineers” [118]. Despite various backgrounds, educations and experiences,

these public officers share the same perspective that what may be missing from pub-

lic institutions and from the decision and policy making processes are not necessarily

“engineers” in form but the engineering ideals and people possessing the desperately

needed skills of analytical reasoning, objectivity and mathematical rigor that engi-

neers commonly possess.

Many more have argued that government officials do not, but should, apply more
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of the scientific method in their leadership and decision-making activities, perhaps

sharing the thought that “[s]ome quantitative researchers believe that systematic sta-

tistical analysis is the only road to truth in the social sciences” [89]. Some have

suggested that policy makers do not take time to sift through data or use informa-

tion pertinent to the current issues, resulting in significantly less effective decisions.

Other individuals have wondered if engineering practices and scientific methods can

and should be applied more often to social or economic challenges. At least one

organization, Scientists and Engineers for America, have made it their mission “to

promote evidence-based decision making at all levels of our government” [147].

But why are engineers, or more precisely the engineering principles, often turned

to as a potential source for answers to difficult challenges? The responses may vary

but a key element to the answer could be found in a statement by Hilberry: “All

solutions in engineering are compromises” (quoted in [194]). Thus, any solution or

engineering design comes as the result of testing and evaluating trades between op-

tions or variables, balancing the pros and cons, and comparing the candidate solutions

across output metrics (e.g. time, cost, risk) in order to meet specified or implied re-

quirements. These “compromises” are inherently a part of any engineering exercise

where the resources are limited, arguably a necessary condition for any real chal-

lenge. The trade-offs and compromises a skillful engineer must grapple with in design

are similar in kind to the challenges government leaders, business executives, and

other professionals face continually. These challenges are always, to a certain extent,

multidimensional, complex, interdependent, multidisciplinary and non-trivial.

Furthermore, they are always found in situations where resources are finite, objec-

tives are conflicting, constraints are restricting, and uncertainty in future outcomes

prevails. Blanchard and Fabrycky opined that “there is usually little assurance that

predicted futures will coincide with actual futures. The physical and economic el-

ements on which a course of action depends may vary from their estimated values
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because of chance causes...[T]his lack of certainty about the future makes decision

making one of the most challenging tasks faced by individuals, industry, and govern-

ment” [22]. However, decisions are and will be continually made at varying degrees

of success for these important and multi-faceted problems.

Since the systems engineering field has experience in these types of problems and

have developed tools to understand, decompose and analyze the relationships and

characteristics of large complex problems, it should be of no surprise that govern-

ment officials, including the President of the United States, are interested in applying

these skills to decision making for current societal concerns as well. Although there

may be areas and challenges where the scientific method and engineering skill sets

are helpful, the over extension of these tools into so called “wicked” problems also de-

serves a warning from Rittel: “The kinds of problems that planners deal with-societal

problems-are inherently different from the problems that scientists and perhaps some

classes of engineers deal with” [133]. However, modeling and simulation, theory and

experimentation, and computer and technological advancements have not only im-

proved but accelerated in the four decades since this warning was given. True, there

are problems which are ill-defined and ones that do not have a solution, or if they

do, have a temporary solution, but limiting one’s options for solving a problem, or at

least, improving the current state would be unwise.

Therefore, a key caveat in this research is that the ideas presented herein are

not a panacea for all problems. At the highest level, this research seeks to take a

few steps to more fully involve and apply engineering principles into decision-making

processes and push the state-of-the-art in group decision-making activities for multi-

dimensional problems.
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1.3 The Era of Big Data

One of the ways that computer technology has aided in quantifying or, at a minimum,

understanding these highly complex problems is through both more data and better

data. Improved statistical models and methods have allowed the analyst an ever

increasing suite of tools with which to investigate the multi-dimensional solution

spaces. Coupled with accelerated computational speeds and memory availability, the

number of options, alternatives and candidate solutions to various problems have

grown exponentially. Surrogate models and other advanced design methods have

further enabled this explosion of multi-dimensional data [47]. The former challenge

of “insufficient data” has become a challenge to find the “needle in the haystack” or

piece of information among the gigabytes to terabytes of data stored and available.

The relatively new multidisciplinary field of visual analytics has become increasingly

important as the data to analyze and interpret becomes ever larger [104].

In terms of decision making, a larger set of alternatives can be offered and a literal

uncountable set of solutions can be modeled and potentially implemented. The trend

is likely to occur as decision makers seek greater levels of confidence that the best

solution is available and can be found, tested and analyzed. The flip side to this “big

data” revolution is the need for more sophisticated methods to explore and analyze,

not one at a time, but in bulk or parametrically. Having a larger number of designs

might be a good thing as it potentially increases the chances that the one ideal

solution has been modeled, but it may require increased time to find the “needle in

the haystack” and make the design selection. These two initially contradictory goals:

1) increase definition and resolution of the design space with more data points, and 2)

accelerate decision times without sacrificing quality, are in fact possible, but require

methodological advancements and improvements to modeling efforts such that better

and faster decisions can be made.

In order to grapple with these goals and the ever increasing amounts of data, the
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analyst and/or decision maker need improved tools and decision making environments

to play games and perform more in depth sensitivity analyses and exploration activi-

ties. Since the problems faced by these decision making groups are highly integrated

and complex, the assumptions and objectives of all, or any one decision maker, may

be initially unknown. Furthermore, their preferences can change, especially as each

learns or gains more information about the problem from exploring the “big data”

associated with better defined solution spaces. Similarly, no static analysis tool is

sufficient and can adequately account for an expected evolving preference or group

objective function over time. Tools must be quick, dynamic, and able to process large

amounts of data to properly account for the multi-dimensional design spaces. The

decision making in these types of problems will not be a simple, linear sequence of

steps and thus the associated tools that facilitate group decision with big data must

be made equal to the task.

1.4 Decision Making for Requirements Definition

In no place are decisions more significant than in the early phases of the acquisition

process, before the pre-conceptual or requirement definition phases. The decisions

made at these points in the process can drive a disproportionately larger percentage

of the ultimate cost and designs of any future system. In essence, the desires and

preferences of those individuals or organizations forming the requirements drive what

eventually is generated as solution alternatives, and thus the design selection at later

phases.

Efforts to better facilitate parts of this overall process has been recently revised

from the Requirements Generation System (RGS) into the Joint Capabilities Integra-

tion and Development System (JCIDS). However, limitations still exists, and research

addressing the various challenges of the JCIDS acquisition process has provided a
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number of potential improvements [72]. Two of those improvement areas involve ac-

celerating the time at which parts of the process are implemented and increasing the

traceability of decisions. Advancing the way in which groups of decision makers reach

consensus for the requirements definition phase for major acquisition programs could

potentially shorten the total time for system development and later assist with keep-

ing system development programs from straying by resisting “requirements creep”

from enhanced traceability. This, in turn, could save costs and increase the future

success rate for acquisition programs.

1.4.1 Requirements Issues with the VH-71A U.S. Presidential Helicopter

A recent and very public example of one such failure, in part due to requirements

issues, is the US presidential helicopter, the VH-71A. As winners of the 2002 VXX

competition, the VH-71A was initially awarded to Lockheed Martin and AgustaWest-

land in 2005, to design and produce 23 helicopters which would replace the aging fleet

of VH-3D and VH-60N helicopters. The initial contract was for $1.7 billion dollars

[176] for the system development and demonstration phase.

However, very soon after the award, cost overruns and schedule slips were al-

ready projected due to changes or misinformation as understood between the various

parties. A statement by Lockheed Martin encapsulated the major issue: “Immedi-

ately following contract award, Lockheed Martin and Navair [US Naval Air Systems

Command] realized there was a difference in understanding about operational and

technical requirements and how to develop and test the subsystems and the aircraft”

and also that “additional required aircraft modifications, enhanced safety, additional

testing and enhanced supportability” [184] were also part of the requirements creep

that was observed. Much later these failures were described as “runaway require-

ments, program delays, and soaring costs” [90].

Some have suggested that the result of such requirements creep was that the “US
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Figure 1: Conceptual Drawing of the VH-71A U.S. Presidential Helicopter which was
canceled in 2009 (From [109])

Navy source-selection team was kept separate from the rest of Navair during the VXX

competition” [184]. In other words, transparency between groups was not enforced

and thus requirements came a surprise as the new group of decisions makers who held

influence in later increments or stages had different preferences.

These changes of the decision makers and other unforeseen factors, which could

have been mitigated, were not considered or accounted for in the overall program. The

final outcome was a cancellation of the VH-71A program by Department of Defense

(DOD) in 2009 after a doubling of the expected costs from 2005 to 2009. One of

the identified reasons was again related to requirements: “Stringent performance

requirements (some with no flexibility) were laid out for the system prior to the start

of development and did not appear to involve significant consideration of trade-offs of

cost, performance, and schedule negotiated between the customer and the developer”

[179]. Analysis revealed the final cost was expected to total $13 billion, up from $6.5

billion estimated in 2005, for the 23 helicopters (or close to $600 million per vehicle).

The U.S. Governmental Accounting Office reported total program expenditures up
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to the cancellation date summed to near $3 billion [179].

The requirements definition phase can be a severe stumbling block, if not per-

formed adequately, to the success of a program. Furthermore, since so many decision

makers have much at stake in the decision, the process can be held up much longer

than desirable by the final user. After all, decisions makers are prone to change and

may expect flexibility in others while ironically not recognizing it in themselves. Not

only are the decision makers themselves replaced with others over time but their pref-

erences can shift, reverse, or “move” based on experience, information and external

pressures. This can have negative impacts on the overall process (e.g. cancellation) if

these probable events are not considered. Therefore, a real need exists to explore ways

to improve the group decision making process applied to this requirements definition

phase of the acquisition process.

1.5 Motivating Problem: Requirements Definition for Fu-
ture Air Mobility Systems

Since the fall of the Soviet Union in 1991, the US Department of Defense (DoD) has

slowly moved away from traditional acquisition policies dominating the Cold War, into

a policy where capability and affordability reign as the governing principles for making

decisions about asset procurement. This paradigm shift most recently redefined in the

2012 Joint Capabilities Integration and Development System (JCIDS) [32], focuses on

the process to obtain a more agile and flexible force to meet the needs of the modern

war fighter.

Furthermore, under an environment of increased scrutiny and projected decreasing

budgets into the next decade [44], the most recent DoD plan to cut costs “incorporates

all areas from potential savings, to force structure enhancements, modifications, and

adjustments” [120]. Some of these have already been initiated, most dramatically in

the reduced procurements of F-35s (1591 to 365 from 2002 through 2017 [180]) and

F-22s (750 to 195 [186]) in the last few years.

10



Other aircraft programs have been cut or reduced, and less expensive strategies

such as service life extension programs (SLEP) have become more common to modify

or upgrade aging, but existing, aircraft. One of these aircraft systems is the C-5

Galaxy.

1.5.1 The C-5 Galaxy

The C-5 Galaxy is the largest heavy-lift transport aircraft in the US military. It is the

only cargo aircraft capable of transporting some of the heaviest combat equipment

including two combat ready Abrams tanks, six Apache attack helicopters or the 74-

ton mobile scissors bridge, up to a maximum payload of 270,000 pounds [175]. With

cargo space for 36 standard pallets or 10 light armored vehicles coupled with both

a rear and nose door with full width drive-on ramps allows for expedited loading of

only 2 hours [46]. These and other features make the C-5’s high carrying capacity a

very attractive capability to maintain. This “astounding capability” of the C-5, as

described by General John W. Handy, former commander of the US Transportation

Command and Air Mobility Command, is why “[w]e certainly need to keep [it] at

our fingertips for as far as I can see into the future.” The C-5 was also described by

Handy as an aircraft “whose value is dramatically underappreciated” [167].

However, the C-5 has suffered from low mission capable rates due to reliability

and maintainability issues for years. For example, one estimate for the maintenance

man hours per flight hour reached as high as 46 for the C-5A variant [71].

Strategic reviews found that C-5 platform met a key requirement for the US mil-

itary and two programs were initiated to upgrade and modify the C-5 in response to

the poor operational and sustainment metrics observed. The first of these two pro-

grams, the Avionics Modernization Program (AMP), seeks to “replace the existing

flight and engine instrument system and the flight control system with integrated,
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state-of-the-art, cost-effective, highly reliable and capable systems ” [45]. The sec-

ond program, the Reliability Enhancement and Re-engining Program (RERP), will

improve the logistics and sustainment metrics of the C-5 “by replacing the propul-

sion system and modifying the mechanical, hydraulic, avionics, fuel, and landing gear

systems as well as other structural modifications” [177]. C-5 aircraft which have suc-

cessfully completed both programs are designated C-5M Super Galaxy aircraft. As

of December 2012, only 6 production C-5M’s have been delivered out of 9 current

C-5M’s overall [101]. From the initial estimate of fully modernizing 112 C-5s, the

number was reduced to only 52 in February 2008 [174] with the potential for even

more reductions. As recent as October 2011, proposals to reduce the fleet by an-

other 15 aircraft was offered as potential ways to save additional funds in an “Age of

Austerity” [12].

Figure 2: The C5-M Super Galaxy During its First Flight in 2006 (From [175])

1.5.2 Strategic Airlift Comparison Tool (SACT)

In 2010, efforts to model the capability of the C-5M over the C-5A platform was

conducted resulting in a tool called the Strategic Airlift Comparison Tool (SACT)
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Figure 3: Screen Shot of the Strategic Airlift Comparison Tool (SACT) [142]

[142] to demonstrate and analyze the benefits from an operations and logistics per-

spective of the C-5M aircraft (see Figure 3). A user of the SACT tool was able to

define various mission scenarios including mission payload, payload types, locations,

maximum on ground (MOG) and other input scenario parameters. The logistic out-

puts included the mission time to close, fuel consumption flight hours, utilization,

etc. Various trades with fleet sizes and refueling en route across platforms against

the output metrics of interest were also available. SACT was developed to provide

a modeling and simulations environment which could rapidly evaluate and compare

scenarios with various enablers such as surrogate modeling techniques, to allow for

increased and faster trade space analysis and improved decision making.

The tool has since been updated and enhanced internally at Lockheed Martin,

with additional data integrated into the analysis framework.

1.5.3 Requirement for Future Military Transport Aircraft

Today the C-5 RERP program is still under careful scrutiny and the future uncertain

with the continual looming possibility of further reductions. In fact, the most recent

FY 2012 annual report from the Office of the Director, Operational Test & Evaluation

reported a less than ideal observation that “C-5 Program Office continues to address
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deficiencies identified during the C-5M initial operational tests in 2010” [166].

Whether or not drastic reductions occur, the problem remains about how to main-

tain the carrying capacity of the current C-5 fleet into the future but at reduced cost.

If upgrades and modifications become so expensive per unit, is it more reasonable to

consider an all new design? Could the new design be a derivative of the C-5? Are

schedule slips for modernization tolerable with an ever aging fleet? Could a smaller

but more reliable fleet maintain the same capability as the current one? Would it be

cheaper in the long term? Is it cheaper in the short term? Is the cost per flying hour

still too high for the modified C-5? Can the military get by with a fleet with mostly

C-17s?

These and other questions quickly cover the design or solution space for this

multi-dimensional problem. Defining the requirements for a future fleet of heavy lift

transport aircraft is a multi-agent, highly convoluted problem. The various stakehold-

ers may have differing views on the future threats or locations in need for transport.

Regarding the differences of these perspectives Ostrosi et al. conclude that “[d]ifferent

disciplines, with the subjective nature of the opinions of actors, often reflect latent

conflicts in actors’ commitments” [124]. Thus, they may have conflicting opinions

about funds available for such a fleet or diverging estimates on the actual needed

carrying capacity. Lastly, they will likely differ in the importance they place on per-

formance, cost, availability and maintainability described succinctly by Jemison and

Sitkin: “Acquisitions are strategic, complex, occur sporadically (for most firms), and

affect varied stakeholder groups and multiple actors whose involvement is temporally

and functionally divided. These factors, in combination, result in an acquisitions

process that is both discontinuous and fractionated” [82].

The two conflicting goals are again exemplified in this aforementioned challenge,

namely, 1) generating alternatives or solutions, and 2) evaluating and selecting the

design.
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Firstly, the design space must be sufficiently defined and enough alternatives gen-

erated so as to adequately cover all possible combinations of solutions. This, in turn,

requires a model fast enough to populate the entire design space with data such that

all possibilities are considered and analyzed. A slow, non-parametric model will be

ineffective in providing this capability. Surrogate models with Monte Carlo simula-

tions in sufficiently wide ranges are needed to account for the various perspectives

and preferences of all stakeholders and decision makers. If the model leaves spaces

unexplored, the potential for one, many or all stakeholders to reject the data based on

its biased or uneven exploration of the space is possible. Developing and generating

the required data for these particular operational space decision-making activities is

the first major objective of this research.

Secondly, the solution for such a problem will clearly involve more than one stake-

holder or decision maker. The necessary decision-making process can be slow, ineffi-

cient and wasteful, or the process can facilitate clarity in determining preferences of

all the stakeholders quickly and in identifying solutions that all can potentially agree

upon as quickly as possible. Multiple decision makers will each seek to maximize

their own objective or utility function. At the same time, the solution space requires

the cooperation of all stakeholders and thus suggesting or guiding the group to the

ultimate solution or at least to the region of the space at which cooperation will be

most likely to occur is needed. This covers the second major objective of this research.

1.6 Other Group Decision-Making Challenges in Aerospace
Systems

The following examples point out additional ramifications of group or multi-agent

decision making for challenges involving aerospace systems. These examples should

not be considered a complete discussion of all of the aspects of the challenge but

a short summary to illustrate a particular point observed in multi-agent decision

making. These examples, selected for their aerospace related elements, have been
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heavily publicized in both the domestic and global arenas.

1.6.1 The International Space Station

The International Space Station (ISS) is a multi-national endeavor to have a perma-

nent human presence in space. The ISS, stationed in a low-earth orbit, is considered a

research facility that provides an environment for space-related experimentation such

as testing for future space exploration and other objectives.

Four countries, the United States, Russia, Japan, and Canada, as well as several

European Union member countries, with their respective space agencies, are con-

sidered partners in the ISS program. Each has their own agenda and reasons for

cooperating with the other countries to make the ISS successful. Each country has

similarly contributed different parts to the station and have benefited in different

ways. Currently, discussions are underway to decide the fate of the ISS in the next

few decades. Although orbiting since 1998, criticisms of high cost in connection with

little scientific contributions from the meager experiments conducted, has resulted

in debates about funding continuation. Furthermore, other countries have expressed

interest in joining the ISS program, including China, India and South Korea. Brazil

was also part of the program before but has since departed from participating [88].

With the changing number of decision makers or countries with changing amounts

of interest or ways to contribute, a constant decision-making process is in continual

flux and with various support levels from different countries. How best can the partner

nations meet the needs of the current and future stakeholders? Who has a say on the

design, schedule and staffing of the ISS? How much will each country contribute and

control in terms of life-cycle or utilization?

1.6.2 The Joint Strike Fighter

The Joint Strike Fighter (JSF) illustrates a similar agreement and partnership be-

tween nation states. However, the structure of partnerships establishes three levels
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within the JSF program. The United Kingdom is a level one partner, Italy and the

Netherlands are level two, and Turkey, Australia, Norway, Denmark, and Canada are

all level three [173]. Since partners at level two contributed more financially to the

program, would they expect more influence over the design decisions than level three

partners? How do non-financial contributions influence the design? Does the type of

relationship with the United States (i.e. geographically, ideologically, or fiscally) give

one nation more or less influence? Or do partner nations have almost no influence

in the design and are simply “first customers” of the platform? How is Lockheed

Martin, the prime contractor, influenced by partner nations or how do they influence

others to increase or maintain current order levels?

1.6.3 USAF KC-X Competition

The USAF’s KC-X air refueling tanker competition, which was rife with scandal,

political maneuvering, and problems, required almost a decade to “decide” the winner.

Multiple stakeholders including the USAF, Boeing, Northrop Grumman, EADS and

others spent many years and millions of dollars to influence others and the key decision

makers in various ways.

Many of the strategic maneuvers such as protesting evaluation methods or threat-

ening to withdraw from the competition, were perhaps calculated, yet they still drove

how the decision makers responded, underlying the fact that decisions perhaps are

not entirely based on the engineering design and on, at least in part, subjective fac-

tors [150]. How can this type of group decision making be avoided? Or at least how

can it be accelerated so as to decrease the time required?

1.6.4 Observations from Contemporary Examples

The above examples illustrate some common issues with multi-agent or group decision

making. Often the set of decision makers is unspecified or at best changing. These

same decision makers do not always recognize, or want to use the power or influence
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they have on other agents, especially if it does not further their own agenda or ob-

jectives. Similarly, they might not even know their agenda or at least the outcomes

of any one decision since they, understandably, don’t know how other agents will

act. Lastly, the decision on how to act or what solution to implement can affect the

relationship of the decision makers into the future, yet another dimension to consider

when exploring the entire solution space.

For multi-agent decision making the attributes of, and relationships between, deci-

sion makers is as important or more important to the eventual outcome of an decision-

making activity. Since engineering design and, in particular, systems engineering is so

heavily composed of decision-making activities, in complex problems involving more

than one decision maker, there exists a need to better understand and quantify how

decisions are made in multi-agents systems. The interactions between decision mak-

ers and the changes to the individual preferences can potentially drive the decisions

more than the actual objective data.

1.7 Focus of this Research

The main focus of this research is to 1) better define and characterize the design space

by being enabled to generate greater number of alternative solutions quickly, and 2)

develop a systematic methodology when dealing with problems where the engineering

design or solution is dependent on the preferences of more than one decision maker

and each decision maker must be in agreement or reach consensus on the final design

point. Providing insight as to how one should act within a multi-agent decision-

making environment can significantly improve how agents make decisions and reduce

the time necessary for agents to take action. Furthermore, with an understanding of

the general characteristics of the eventual agreed upon design point, decision makers

can begin to hedge their design or contribution to the solution by investing early.

In other words, if one knows with some level of confidence where all the decision
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makers will eventually “end up” in terms of an agreed upon decision point, they can

take actions sooner, reducing costs and improve performance. For example, if an

engine manufacturing company can ascertain with some degree of confidence that

the eventually selected design point will have a certain thrust or other requirement,

they can take steps to prepare in advance instead of waiting for the decision to be

made. Thus, their actions can be robust against the possible decision outcomes of

the multi-agent environment. Similarly, an agent can perform analysis to identify if

entering into a negotiation or discussion with another agent is feasible by evaluating

the likely output decision points based upon the preferences and political clout of the

various agents.

The methodology developed throughout this research should not be considered a

technique for ranking alternatives or selecting the best solution by combining agents’

preferences, which have been shown to have significant limitations [5]. Instead, it

should be viewed as a probabilistic or heuristic approach to identify areas of the

design space where decision makers are more likely to reach a consensus. Potentially,

this strategy will be independent of the type of decision-making technique ultimately

used, since the focus will be on how the preferences of decision makers become aligned

over the events (e.g. trading importance weightings or criteria preferences, forming

alliances, etc.) usually held static within a decision-making technique.

Clearly, different preferences among the decision makers would make different

points or solutions more attractive. In the general case, therefore, decision makers

will prefer different solutions, at least initially. When the underlying assumption that

decision makers are incentivized to cooperate and reach a consensus, or, that reaching

a decision is more favorable for all decision makers than not reaching agreement, com-

promises are expected, trades will be performed and adjustments to one’s preferences

will occur.
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How these compromises, trades and preference adjustments factor into the de-

cision of a multi-agent system is not always analyzed from a systems engineering

perspective. Applying engineering principles and techniques to the decision process

directly can facilitate this consensus reaching thereby reducing the decision time and

making preferences more transparent and tractable.

1.8 Dissertation Organization

This dissertation has been divided into six chapters. The next chapter, Chapter 2,

reviews some of the observations about the motivating problems and other contempo-

rary challenges summarized in this introductory chapter, followed by a formalization

of the research objective, research questions and hypotheses. Chapter 3 describes

some of the background information and technical foundation for the methodology.

Chapter 4 presents an overview of the methodology with its constituent elements,

AirMOD and MACRO. Chapter 5 describes the development and implementation

of the first element, the AirMOD model. In Chapter 6, the second element, the

MACRO methodology, is further tested and developed by stepping through a canon-

ical problem while discussing the various assumptions with a variety of examples and

experiments. Chapter 7 discusses the application of the MACRO methodology to the

AirMOD data set and air mobility problem introduced in the current chapter and an-

alyzes the results and findings. The final chapter concludes this research dissertation

and underscores some of the key discoveries, contributions, benefits and limitations

of the methodology.
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CHAPTER II

RESEARCH OBJECTIVE, QUESTIONS AND

HYPOTHESES

2.1 Review of Observations

The following list of observations is made regarding the air mobility challenge from

the previous chapter and the other related aerospace examples with their attendant

decision-making attributes.

Observation: Utility functions, such as an overall evaluation criterion, can be

interdependent between decision makers. The various individuals in a group decision-

making process such as selecting the fleet size and design of the future airlift capability

are interdependent. Their preferences may be dependent on each other’s perspectives

and expertise, especially in highly integrated and complex problems.

Observation: Preferences or weightings on the dimensions or objectives are sub-

ject to change with different information or external influences. People are prone to

change and can be persuaded to alter their opinion and preferences by others or by

additional information.

Observation: Ultimate decisions are often influenced by external dimensions,

constraints or factors which are not part of the classic decision-making process. Ad-

ditional unaccounted dimensions to the problems, non-quantifiable constraints and

other hidden objectives can often drive the underlying decision process. Group deci-

sion making with completely rational and objective stakeholders is at best rare and

more likely non-existent.

Observation: The initial design point from which decision makers begin their

deliberations has a strong impact or influence on the eventual final decision. The
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initially preferred design point for each individual, can and does affect how a group of

decision makers negotiate, apply trade-offs and reach consensus, through anchoring

and expected compromises.

Observation: For large scale, multi-agent multi-criteria challenges, the time lost

to make a better or “best decision” can potentially be used for incremental improve-

ments of an “early and good decision.” The large amount of time necessary to make a

decision for some acquisition involving large and highly integrated systems, could be

displaced to improving the system once a faster but good enough decision has been

make.

Observation: The number and attributes of decision makers can change over

time. Decision makers can enter and leave a group decision-making process at increas-

ing occurrences when the total time period to reach consensus is longer. Reducing

the time at which decision makers need to reach consensus in group decisions, can

avoid some of the negative problems of continual group restructuring.

Observation: Influence or power between decision makers is a real element to any

group decision and can fluctuate based on various factors. Position, experience and

expertise are just some of the intangible sources which play a role in group decision

making. More transparent power is evident through group members’ roles such as

buyer/seller roles or investment willingness of the various agents, but many others

are more private and elusive such as interpersonal abilities or negotiation skill-sets.

2.2 Research Objective

In a number of the aforementioned observations, the relationships between decision

makers play a significant role in the final decision. As systems engineers seek to solve

real challenges where:

• more than one agent has influence on the decision,

• the number of agents can vary over time,
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• the agents are uncertain of their own preferences,

• the agents are influenced by subjective factors, and,

• the agents can change their preferences with more information,

the decision-making aspects of engineering design will need to account for these

added complexities with greater skill in the future to minimize the bad decisions re-

sulting in wasted time and/or money. Furthermore, a proper understanding of the

dynamics between decision makers can allow designers, or decision makers them-

selves, to be more confident in taking robust action against the uncertainty in the

multi-agent, decision-making process. Lastly, the decision space itself must be suffi-

ciently defined and populated for confidence that enough solutions are on the table for

selection. Within operational systems characterized by numerous entities with mul-

tiple dimensions and outputs metrics tracked, the models generating the alternative

solutions is both slow and potentially burdensome.

Therefore, in connection with these observations and the need for more expedi-

tious alternative generation, there exists a need to develop a systematic approach

or methodology to address the concerns of multi-agent decision making concurrently

with improved operational design space definition for ultimately enhanced require-

ment definition for future air mobility solutions. The objective of this proposed

research is expressed as follows:

Research Objective: Improve group decision making for requirements definition

in cooperative air mobility operational solutions, by 1) generating greater numbers

of operational design solutions, and 2) identifying the subset of feasible designs by

accounting for preference uncertainty and the decision makers’ influence relationships.
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2.3 Research Questions and Hypotheses

The research objective of this proposal leads to a number of research questions which

will guide the formulation of the hypotheses and eventual development of the method-

ology.

2.3.1 Research Question #1 and Hypothesis #1

The first need as established in the objective is to increase the available designs which

populate sufficiently the entire design space. With operational models often requiring

large times to execute, most decisions are made with far fewer operation solutions than

desired. The associated research question for the first half of the research objective

is thus:

Research Question #1: How can the number of operational design solutions

originally considered increase to include a greater portion of the potential design

space?

At once, the answer to such a question hints at accelerating the speed at which the

operational model is executed. Since most useful operational models are complicated

discrete event simulation models, the possibility to regress a sufficient number of

output simulations, and recast them as surrogate models can allow one to then quickly

query or calculate any design point within the region for which the surrogate model

is valid. Formalizing this hypothesis becomes:

Hypothesis #1: Monte Carlo simulations of surrogate models developed around

time-consuming operational models will provide capability to more rapidly define the

design space by generating greater numbers of candidate solutions in the same time

period.

2.3.2 Research Question #2 and Hypothesis #2

One can assume that all agents seek individually to make better decisions and any

additional information in assisting what the eventual outcome would be under various
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circumstances is desirable. If information was available providing some confidence

about which designs or solutions would be ultimately selected as a group, then this

would predictably help and guide the actions of the particular decision maker, either

by causing them to act more quickly, or at least raising the confidence of future

actions.

Even if the exact solution which the set of agents may agree upon cannot be pre-

dicted accurately, identifying the region of the decision space that may be most likely

to include an area of agreement can benefit the decision makers, both individually

and as a group. Therefore, the following research question formalizes this inquiry:

Research Question #2: How can the feasible decision space be reduced to

facilitate decision makers in reaching consensus?

Individually, a decision maker who has confidence the dynamics of the group will

reach agreement, for example, in region A of Figure 4, can investigate the character-

istics of the nearby solutions and begin research, investment, etc. which will benefit

them under these types of solutions. In this sense, they can hedge their efforts, time

or resources to preparing for some design or solution in that area while the group is

still reaching agreement, likely to be in that region. Although, the final decision may

not be exactly in the “middle” of region A, the individual agent likely has had time

to create a robust response and maximize the payoff of, or at a minimum begin de-

velopment on some solution from within that region. Thus, one agent can strategize

and take action sooner if information about common design characteristics, types or

attributes of the solutions will be reached.

As a group, if decision makers can collectively accept that after days, weeks,

months or some other time period, they are likely to be converging on region B (in

Figure 4), for example, then their time should be devoted to analyzing solutions

within or near that region; effectively shrinking down the total decision space from

the black lined area to the blue lined area. With this method, the solution (or rather
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Figure 4: Potential Expected Regions Where Decision Makers may Reach Consensus

solution set or region) is one of “satisficing,” in that the decision makers are willing

to accept a solution which is sufficiently “better” for all agents at the cost of not

exploring in detail the total decision space which may be prohibitively large. Since

no real “optimal” solution exists without a known objective function, collectively

accepting a satisficing solution earlier is also desirable as it can save both time and

resources for many decision makers.

Modeling and simulating these actions with appropriate game theoretic techniques

and data, in particular information about the individual preferences and power inter-

relationships, the related hypothesis can be stated as:

Hypothesis #2: Simulating the multi-agent decision-making process with an

iterated ultimatum game across all objectives, with the application of the preference

distributions of, and power relationships between, agents, will significantly reduce the

decision space and identify regions with high probabilities of reaching consensus.

The metric to evaluate if Hypothesis #2 is valid or “not rejected” is the ratio

between the number of designs at which the group decision could reach consensus

and the full set of candidate points from the initial data. Ideally, this ratio is as small

as possible (approaching one over the total number of initial designs at deterministic

preferences) but can remain high with inputs such as the low numbers of discrete
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choices to which individual decisions makers chose to respond or a low number of

iterations of other steps in the methodology. In this sense, Hypothesis #2 will be at

least supported (marginally) if this ratio is less than 0.5, with a target value of less

than 0.1 to show high utility.

2.3.3 Research Question #3 and Hypothesis #3

One of the essential pieces of information for testing Hypothesis #2 was the prefer-

ence distribution information from each decision maker. Ideally preferences are rigid,

non-changing and perhaps even deterministic, but the observations indicate a large

propensity for decisions makers to potentially change their “minds” and thus their

preferences, based on additional information or even in the company of others with

influence. Acquiring these data more quickly without increasing the work load of any

decision maker is a desirable goal. Formulating this into a research question, provides

the following:

Research Question #3: How can a decision maker’s preference information,

including the potential for changing preferences, across all objectives be acquired more

quickly and accurately?

This question addresses the need to quantify how a decision maker values each

of the criteria or objectives. Any value system is based on the beliefs, experiences

and information available to a decision maker. These three factors can result in an

agent changing the importance of any particular dimension over time. For example,

during times of economic prosperity, reducing negative environmental effects such as

emissions from aircraft becomes more important. In times of slow economic growth,

environmental concerns often take a secondary role to more short terms problems.

But how quickly is one willing to change preferences between criteria and to what

extent?

A weighting distribution can provide clues as to the range of weights a decision
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maker might be willing to apply under different circumstances. If a particular weight-

ing distribution has zero probability of being less than 0.5, for example, it would mean

that over many different circumstances that particular criterion is of most importance.

Similarly, if the weight can cover a range from low importance (i.e. 0) to a high im-

portance (i.e. 0.9), the decision maker may be either willing to trade this criteria for

something else, or its importance is only valid in some situations. Extracting what

reasonable combinations of weights could be acceptable by a decision maker shows

insights into the value system and preferences for various dimensions; not only what

is likely to be important, relative to each other, but how likely an agent is to change

their mind about the importance of the criteria.

In fact, studies suggest that having an exact numerical value for importance

weightings is not necessary, and that “elicitation procedures that are more natural

for the user are likely to be more accurate” [121]. This “more natural” way could be

using the design space more directly through pairwise or discrete choices comparisons

to extract preferences.

This research hypothesizes that eliminating those combinations of weightings that

do not satisfy a decision maker’s preferences can be filtered down to a distribution (i.e.

histogram of feasible weightings) that reflect the possible weightings that a decision

maker may be willing to accept to reach consensus, or more formally:

Hypothesis #3: Infeasible design or preference filtering on the range of possible

weightings combinations, from a set of discrete choices employing candidate solutions,

will identify a decision maker’s preferences by providing feasible weighting distribu-

tions for each criterion or objective.

Hypothesis #3’s metric of interest is the difference between an assumed preference

structure or truth model compared to the predicted weighting distributions by the

methodology. If the implementation of the appropriate step cannot adequately predict

this truth preference model within a reasonable level of error, then this difference
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metric is large and Hypothesis #3 can be rejected.

2.3.4 Research Question #4 and Hypothesis #4

The other information referred to in Hypothesis #2 was the power or influence re-

lationships that exist between decision makers. These relationships can potentially

drive the decisions and therefore the region of consensus by biasing those preferences

of decision makers with greater influence over others. Any group decision-making

technique requires a process to analyze these relationships and how one can extract

or obtain those interactions is a relevant research question.

Research Question #4: How can the influence relationships between decision

makers be identified and quantified?

Agents are susceptible to influence by other decision makers, and similarly deci-

sions can be heavily impacted by the relationship between agents. For example, if one

agent seeks to establish an agreeable relationship with another agent for a different

or future reason (e.g. an upcoming opportunity to partner with them for a proposal),

they may be willing to side with that other agent more quickly. In a particular case,

one of their objectives would be the “satisfaction of the other agent” or pleasing the

other agent. On the other hand, with cooperation required for many decisions, de-

cision makers also want to have the others move “closer” or more aligned with their

own importance weightings of the criteria. This may come as an expense by conced-

ing the importance on one dimension (not as important to another agent) in order

to acquire more of another preferred criteria. Lastly, two agents may be willing to

“move nearer” each other in terms of preferences, but how much should each of them

“move”; meeting half-way in the middle? The answer would be dependent on the

power or influence exhibited on each other and the willingness of each agent to value

cooperation versus sacrificing their own objective function.

Requiring each agent to select where (in terms of preferences) and with whom
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they would agree and form a coalition, can provide insight into how, if, and with

whom they are likely to form coalitions. This hypothesis is structured below:

Hypothesis #4: Discrete choice experiments between designs, and with whom

an agent will form a coalition in the decision space, will identify relationships of

influence, under the power constraints equations, between decision makers.

Similar to Hypothesis #3, the metric to evaluate Hypothesis #4 is the difference

between an assumed perceived influence truth model and the one predicted by the

methodology. Close agreement would suggest that Hypothesis #4 should not be

rejected.

2.4 Summary of Research Question and Hypotheses

For reference purposes, the following table summarizes the research questions and

hypotheses introduced in the previous sections.
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Table 1: Summary of Research Questions and Related Hypotheses

Research Question Hypothesis

1.0 How can the number of
operational design solutions
originally considered in-
crease to include a greater
portion of the potential
design space?

Monte Carlo simulations of surro-
gate models developed around time-
consuming operational models will pro-
vide capability to more rapidly define
the design space by generating greater
numbers of candidate solutions in the
same time period.

2.0 How can the feasible deci-
sion space be reduced to fa-
cilitate decision makers in
reaching consensus?

Simulating the multi-agent decision-
making process with an iterated ulti-
matum game across all objectives, with
the application of the preference distri-
butions of, and power relationships be-
tween, agents, will significantly reduce
the decision space and identify regions
with high probabilities of reaching con-
sensus.

3.0 How can a decision maker’s
preference information, in-
cluding the potential for
changing preferences, across
all objectives be acquired
more quickly and accu-
rately?

Infeasible design or preference filter-
ing on the range of possible weightings
combinations, from a set of discrete
choices employing candidate solutions,
will identify a decision maker’s prefer-
ences by providing feasible weighting
distributions for each criterion or ob-
jective.

4.0 How can the influence re-
lationships between decision
makers be identified and
quantified?

Discrete choice experiments between
designs, and with whom an agent will
form a coalition in the decision space,
will identify relationships of influence,
under the power constraints equations,
between decision makers.
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CHAPTER III

TECHNICAL BACKGROUND AND LITERATURE

The following sections will review and discuss some basic and foundational material

contained in associated literature relevant to group decision making. Some of this

information will serve as the building blocks upon which the methodology discussed

in later chapters will be based. Other sections within this chapter serve as background

information and will summarize the work previously performed by other researchers

in related fields.

3.1 Decision Theory

Decision Theory is the broad and diverse field of study predominantly focused on

investigating how decisions are made (descriptive), should be made (prescriptive),

how they can be improved (or even optimized), and what factors drive the ultimate

decisions in different environments and situations [14]. Like other major fields, the

taxonomy for decision theory has differing perspectives but major categories would

likely include:

• single-criteria vs. multi-criteria decision making

• single-agent vs. multi-agent (individual vs. group decision making)

• time-dependent vs. time-independent decisions

• deterministic vs. probabilistic (fuzzy or stochastic)

• certainty vs. uncertainty

• rational vs. irrational
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These and other classifications and subcategories suggest an extensive discipline

which is even further expanded when the various subfields are applied to different

problems. Although numerous texts have been written defining large portions of

this discipline such as [83], [63], and [128] to name a few, it continues to expand

as evident from numerous contributions to new journals including the Journals of

Cognitive Engineering and Decision Making, Decision Analysis, Decision Sciences and

Decision Support Systems, which focus on human factors, theory and implementation,

respectively, in terms of decision making.

With such a broad scope in decision theory, applications, and analysis, subfields

have been introduced to further refine the areas and contributions of decision scien-

tists. A few more specific subfields within the overarching umbrella of decision theory

include:

• Expected Utility Theory (EUT)

• Game Theory

• Decision Field Theory (DFT)

• Prospect Theory

These subfields are further expanded with applications to various domains in eco-

nomics, social behavior, cognitive psychology, and, of course, systems engineering.

Many of these areas can be considered to have large overlap in fundamental princi-

ples and axioms, and some may suggest that they are more generalized theories of

each other, under certain assumptions.

For example, Expected Utility Theory is often associated with the work of von

Neumann and Morgenstern’s [182] and pertains to how a rational or even ideal de-

cision maker seeks to maximize the payout or utility for a decision situation. It is

closely related to Game Theory, where similar goals exist to accept strategies or make
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decisions which maximize one’s payout, but with additional factors involved such as

the interdependence of players where payouts are dependent on the decisions of others

for cooperative and competitive situations [66].

In Decision Field Theory (DFT), researchers are most interested in studying the

dynamics of decisions, how they develop over time and how decision makers change

preferences. Furthermore, DFT examines the mechanisms of how decisions makers

analyze data, deliberate (sometimes at length), vacillate during conflict resolution or

how the preference relation changes with time [29].

Lastly, Prospect Theory attempts to describe how decisions are made in reality,

under uncertainty and risk, and with other human or cognitive limitations. In this

respect, it is often considered at the other end of the spectrum away from the rational,

ideal or optimal decision-making theories such as EUT [85].

Since the current research concerns group decision making with multiple agents,

the principles of game theory apply and in particular cooperative games as discussed

in later sections of this chapter. However, since another objective of the methodology

discussed in this research seeks to facilitate and even accelerate decision making,

ideas will also be drawn from DFT and Prospect theory in which it is acknowledged

decision makers will change preferences and may be persuaded from non-rational

factors. Lastly, essential evaluation functions, such as utility curves and formulations,

will touch on some of the contributions of EUT.

Decision theory is also inextricably linked to optimization. In decision theory, one

is concerned with identifying the “best” choice or alternative given a decision maker’s

preferences. Similarly, optimization seeks to find the optimal point which maximizes

the utility function or minimize the objective function of the decision maker. In

essence, all decisions require some form of optimization strategy or technique to find

the best alternative (with or without mathematical tools and techniques). Likewise,

all optimization processes require the application of a decision maker’s preference and
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objective function with which to optimize.

3.2 History of Decision Theory

Although a detailed discussion or presentation about the history of the development

of modern day decision making is beyond the scope of this research, a brief summary

may be useful in introducing some of the topics discussed later and why they arose

in the evolution of decision theory. In particular the ideas of bounded rationality

and satisficing, and the need for improved methods for group decision making for

the increasingly more common interdisciplinary problems and solutions, are placed in

context of the overall research objectives.

Decision making is as early as self-awareness. Maximizing one’s own chances

of survival is manifestly good decision making required for intellectual evolutionary

progression. However, as opined in the Harvard Business Review, up before the

17th century, analysis of risk were relegated to “priests and oracles” [28]. From the

Renaissance onward, numbers became increasingly more useful and models, tools

and theories were developed to support or refute the popular heuristics passed from

generation to generation in the various trades and profession. In the 20th century,

the mathematical foundation had reached sufficient sophistication to initiate advanced

decision making methods, in particular as ideas about rationally such as that assumed

in Expected Utility Theory were further developed in the works of Von Neumann and

Morgenstern [182]. Empirical research quickly followed testing these rational theories,

and differences were identified between the normative and descriptive theories of

decision making. This check on the “unalloyed progress toward perfect rationalism”

[28] resulted in various other principles and theories which matched more closely how

humans made decisions in real-life. Generally described as “bounded rationality”

[68], these principles are based on the limitations of the human mind, the return

to heuristics allowing “fast and frugal” decision making, and even social or external
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pressures.

Today a compromised approach to decision making from both the rational choice

and bounded rationality parts of the spectrum may be most promising and this re-

search seeks to utilize both of these aspects from decision theory in the proposed

methodology contained herein.

3.3 Aircraft Design and Decision Making in Practice

In terms of aircraft design, Raymer strongly suggests that one must “...let the numbers

(not opinion, prejudice, or preconceived notions) make the final selection” within

the conceptual design phase [132]. Realistically, however, there are a number of

dimensions which are outside the control of the aircraft designer and these are not

always governed by numbers, in the traditional sense. Just as propulsion engineers do

not directly concern themselves with all variables of the other aerospace engineering

disciplines, aircraft system engineers or designers do not always include trades across

dimensions about which they do not have sufficient knowledge. For example, the

aircraft designer can offer the best design to minimize cost, emissions and empty

weight, but if agreements or contracts have already been made regarding material

type, location of fabrication, or other constraints, a revisit to what is “best” under

previously unknown dimensions is essential. The design itself will undergo an iterative

process applying more information about more dimensions and added constraints, but

the decision making itself will also undergo iteration.

It is well established that decision makers under different circumstances will weight

different dimensions differently. For example, minimizing fuel consumption is more

important if the price of fuel is likely to go up in the future. Similarly, reducing noise

for a particular aircraft design may be a bigger driver than other dimensions if the

aircraft will be used in a highly populous area. Clearly, changes to the weightings

will occur as the number of dimensions used in the decision-making process increases
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or decreases. A dimension or factor previously considered not important can become

increasingly important or even dominant in later stages of the decision making, as

more information about the problem or design is established.

To complicate the decision-making process even more, decision makers will alter

their preferences after familiarizing themselves with the process or are sometimes re-

placed with a different decision maker in the middle of the process. This is often the

case in public office where the individuals filling many elected or appointed govern-

ment positions change every two, four, or six years. If major acquisition programs

take on average longer than six years, the likelihood that the solution, design or de-

cision will be opposed, reevaluated or require buy-in from the next decision maker is

almost guaranteed. Similarly, for the full aircraft research, design testing and evalu-

ation RDT&E phases, which take many years to complete, the decision making can

be dynamic and convoluted.

Finally, decisions are made in environments which are ever changing and in which

rational decision theories are less likely to predict accurately. This makes “it hard to

ignore the distinction between the objective environment in which the ... actor ‘really’

lives and the subjective environment that he perceives and to which he responds”

[158].

3.4 Multi-Criteria Decision Making

Since all engineering problems are effectively trades within and across different dimen-

sions, almost every decision is fundamentally multi-dimensional (i.e. multi-criteria or

multi-objective). Practically speaking, one can argue that if only one dimension exists

the decision-making process is trivial. Maximizing one’s utility function is a straight

forward process by identifying the minimum or maximum value along that dimension

or at a certain value if a particular target is sought. Generally, only multi-objective
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decisions require some sort of external preference that will assist in weighing the im-

portance of conflicting or negatively correlated dimensions. That is, the value in one

dimension can be increased but perhaps at a reduction in another dimension, or vice

versa. The decision making for these situations becomes much more challenging since

the “right” solution depends heavily on an individual or group ascribing weightings or

importance values to the various dimensions. This mapping of customer preferences

to engineering characteristics is often done using qualitative techniques such as the

Quality Function Deployment (QFD) [165] or HUDDLE [64].

Multi-Criteria Decision Making (MCDM) at its core is really just decision making,

where the adjective “multi-criteria” can, in one sense, be considered redundant since

almost every decision would be between conflicting choices or objectives. Even simple,

mundane choices of what to eat or where to go has, to a certain degree, conflicting

choices. A Dean from the Columbia Business School is recorded saying that “As

for conflicting objectives - quality vs. lower cost, better product vs. cheaper raw

materials, for example - just about any idiot can maximize a single function. Anybody

can increase sales. After all, if nothing else matters, you can decrease the price to

zero. In fact, you don’t have to stop there. If they won’t take it at zero, you pay

them to take it” (quoted in [194]).

Thus, some could quickly argue that “Single Criterion Decision Making” does not

exist. Or if it does, the answer is often trivial and the sole remaining challenge in

this case would be to identify that single criterion. The decisions that face engi-

neers, business leaders and politicians are always multi-criteria. No one dimension

can be completely optimized without some cost or detriment to another criteria or

dimensions.

As illustrated in Figure 5, each of the aerospace engineering disciplines depicted

may seek to optimize their particular field. However, a structurally rigid aircraft may

not be sufficiently aerodynamic, a noiseless aircraft may not be very fast, and a light
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Figure 5: Aircraft Design from the Perspective of Each of the Disciplines (from [115])

aircraft may have little carrying capacity. Aircraft design is a multi-criteria or multi-

objective decision-making activity where the various individuals or disciplines must

reach agreement on many design variables to achieve success. Compromises must

be made, iterations must be performed, and group decision making will be required

continually throughout the design process.

3.5 Decision-Making Techniques

A relatively recent attempt [134] to enumerate the number of decision-making tech-

niques in existence found more than 70 available multi-criteria decision-making tech-

niques. Many of these techniques are, as could be expected, proposed to respond to

the different types, domains, and scope of problems. However, they also each contain

inherent limitations, different assumptions and shortcomings making them invalid if

applied incorrectly to the wrong type of problem and even undesirable if incorrect

results are obtained.
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A comprehensive discussion of these techniques is beyond the scope of this re-

search but some of the common features or characteristics of these techniques will be

mentioned in various sections with three contrasted in the appendix of this disserta-

tion. However, a summary and comparison of some of the popular techniques often

applied to operations research is found in [169]. Furthermore, efforts to assist the

decision maker in selecting the “right” or “best” technique based on the attributes of

the decision problem itself have been made previously [96].

It is possible that any technique for a single decision maker, with appropriate

characteristics, could be adapted for a group decision-making problem, which is the

focus of this current research. However, the focus will be directed toward the steps in

the overall methodology for multi-agent consensus reaching and not on the limitations

or weaknesses of the candidate technique. In fact, throughout later discussions and

examples in this research the application of a simple technique, a weighted additive

utility function, will be preferable over more convoluted techniques to deemphasize the

particular technique and underscore the properties of the group consensus reaching

approach. Therefore, the attempt will be made to isolate many of the steps of the

methodology to the valuation function of candidate designs.

Research has shown that formal processes or selection methods are not often

employed in industry settings, with one survey suggesting that less than one in four

companies use such techniques [143]. Therefore, a simple additive utility function

could already improve decision making in a variety of organization without any need

to apply any more sophisticated techniques. However, more sophisticated options

are available if needed; for instance, 24 different types of additive utilities alone have

been analyzed and compared in previous studies [59]. If these techniques are not

used, human decision making can result in inconsistencies or sub-optimal choices, as

a result of the human biases or irrationality often exhibited in multi-objective decision

making discussed later [84].
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3.5.1 A Common Preference Structure

A large portion of decision-making techniques make use of preference information.

This is most readily described as importance values or weights w on each of the

attributes, objectives or criteria on a set of alternatives or designs. Often these

weights are normalized such that for n attributes or dimensions, the weight vector w

is defined as:

w =

[
w1 w2 . . . wn

]
(1)

where:

n : Total number of objectives

subject to:
∑n

k=1wk = 1, for all k = 1, . . . , n

which can satisfy the requirements of a generalized barycentric coordinate system

[55].

This preference structure is the most commonly used, perhaps for its simplicity

and transparency, but the suggested techniques, process, and methods to acquire such

a structure involve a variety of principles such as Shannon’s entropy [188] or Shapley

values [187].

Evaluation of the alternatives themselves with different techniques take multiple

forms (e.g. weighted product model, weighted sum model, The Technique for Order

of Preference by Similarity to Ideal Solution - TOPSIS [77]) but many of them will

make use of this simple preference structure from equation (1). (See Appendix B

which compares three common decision-making techniques and their similarity to a

simple additive weighting model).

There are other structures which can also be implemented with simple objective

rank ordering which of course is possible if the objectives are also attached to weights
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directly. Thus, weightings can provide rank orders, but rank orders cannot provide

weightings.

3.5.2 Preference or Weight Extraction

A variety of techniques have been proposed and implemented to obtain the actual

preferences for each of the dimensions or objectives of a decision maker. Many make

use of pairwise comparisons, with one of the most well known called the Analytical

Hierarchy Process (AHP) [141]. In the traditional AHP implementation, the decision

maker is given two objectives at a time and asked to provide the ratio that they

prefer one to the other. For example, after being given the objectives of range and

payload of a notional aircraft design, the decision maker may respond that payload is

twice as important as range. Later, comparing the payload and cost objectives may

result in cost being three times more important than payload. These ratios are then

used to extract the weightings for the various objectives [49]. Assuming the decision

maker is consistent one might conclude that cost would be six times more important

than range. Consistency checks are of course possible but in decision problems with

many objectives, the decision maker may not want to go through every pairwise

comparison of two objectives. Recent efforts to account for these inconsistencies

using optimization methods show some advantages [20]. However, the objectives and

the important ratio between any two of them may depend on the values of other

objectives. Just because the decision maker prefers a lower cost than increasing

payload in the above example, their opinion may change if the range was excessively

small. Pairwise comparisons usually assume that everything else is known or at least

held constant within a particular context or situation. If that context is not known

or fuzzy, AHP can provide considerably inaccurate preferences. Lastly, AHP suffers

from rank reversals from the addition of irrelevant alternatives suggesting it can often

be misused in decision-making activities [16].
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The alternative is to compare the actual designs. Instead of pairwise comparison

of objectives, the decision maker is given two or more designs and asked to rank

them in some fashion. With two designs, they respond with which one is better or

even how much more one is better than the other. With three or more designs, they

can rank them ordinally or cardinally (if so desired). Although this may required

additional effort and time to assess designs instead of objectives the results can be

more reflective of reality since parts of the whole are not considered in isolation, which

in the aggregate are not that significant. For example, two objectives may not be

important overall, but comparing them side by side may unnecessarily exaggerate the

one or the other.

This idea of ranking on the design space was recently shown to be effective in de-

termining the preferences of experts regarding nanotechnology-enabled food products

[60]. In the study, 26 hypothetical designs each with 10 objectives were analyzed and

the experts were asked to select and rank the five best options and five worst options.

The criteria weights were then calculated in various models and compared.

This shows a potential process in extracting the weights for other spaces with mul-

tiple dimensions or objectives. Requesting the decision makers to rank or designate

a preferred design among a few designs, may be much more realistic (and reflects

the actual decision-making process more accurately) than making decisions simply

between objectives directly.

Furthermore, there is the potential to obtain uncertainty in the weights themselves

as well. The equivalent in the AHP method might be to request the highest and lowest

ratio between two objectives. However, the highest and lowest might be complete

reversals of each other. That is, for some decision makers, objective 1 might be twice

as important as objective 2, but objective 2 might be twice as important as objective

1 in some situations. Although initially this sounds less useful, it at least bounds the

relationship the decision maker considers these two objectives can assume, but even
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this only provides the bounds on one objective pair. In reality, there is a range of

values which all the objectives may possess in pairwise comparisons. Since preferences

will be highly interdependent and context based, it is thus more useful to obtain them

all together under the assumption that a decision maker can change opinions and will

not hold their preferences so rigid. The results of such a process would allow a

distribution of possible weights that the decision maker could potentially accept as

reflective of their true preference structure.

3.6 Human Decision Making

Since the optimization or the decision-making process is so heavily dependent on the

preferences of individuals (or a group) through the objective function, any change in

the preferences of that individual or group will likely result in different solutions. In

this sense, there is no global optimal solution. The optimum depends on a changing

set of factors both internal and external to the decision makers, individually or as a

group. “We all make decisions based on the information we have and the objectives

we’re pursuing, and these things vary from position to position” [127].

Only the single decision maker applying his or her current preferences can an

optimum solution be selected, but this would be, at best, a temporary solution amid

the dynamics of a large SoS engineering problem. Any change in the environment

and the solution is less optimal. Similarly, any change in preferences, and the solution

is likely to no longer be ideal. Flexibility and robustness can be designed into the

system but often these design decisions assume the decision maker is true to their

preferences. If the preferences and thus objective function itself changes, robustness

is a much more difficult proposition.

This notion of preferences being “contrary to one’s own real interests” due to

“incorrect or on incomplete information” is considered in detail by Harsanyi [74]. He

proposes that utility functions should be defined in terms of “hypothetical informed
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preferences rather than in terms of his actual preferences because the later will often

contain some mistake preferences contrary to his real interests” [74]. The difference

between these is accounted by how informed a decision maker may be. When in-

creased information is available, one is likely to change their opinion according to

new “informed preferences.”

Since humans will “change their mind,” and thus their preferences or importance

weightings on the various criteria, based upon beliefs, knowledge, external conditions,

etc., assuming a temporally static preference landscape for any decision should be

questioned. In addition, for many decisions which are evolutionary and are made over

time, the decision maker(s) will change. This is evident in many political positions

where the decisions can take years to be implemented and require the support of

many decision makers sequentially. If these political decision makers are replaced

every few years, the preferences will likely change from person to person in addition

to the change that any one individual will experiences over time after new information

or experiences. This process is not only seen in government agencies. In business,

CEOs or other management personnel can change just as quickly, making temporary

decisions based on their own preferences, only to be replaced a few months or years

later resulting in a new leader taking a new direction with new preferences.

It is with these types of ideas where Zeleny asks “What is so precious about as-

suming unchanging and continuous preferences, judgmental consistency, transitivity,

inflexibility, utility maximization, and an inability to learn?” [194]. Although this

rigidity in the normative approach of how human decision makers act is often de-

scribed as rational, a much more fluid, uncertain and unpredictable algorithm, often

referred to as irrationality, governs real-world decision making and warrants an equal,

or perhaps greater amount, of attention.

This irrationality and its effect on decisions is most at play when the scenarios are

evolving over time. Changing preferences is a challenging reality to manage in any
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decision environment. But with changing scenarios and changing preferences concur-

rently, the irrationality within human decision makers can be an even more substantial

factor in the outcomes. When the scenarios change, the decision makers are likely to

respond and alter the particular objective function or decision process implemented

up to that point. Scenarios drive the objective function and any methodology must

account for the specific situation, people and external environment in which both

decisions and the solutions are made and implemented, respectively. This is an-

other reason why tools and environments must be developed to account for scenario

changes, which in turn cause modifications or corrections to the objective function

and ultimately results in potential irrational behavior in humans, such as a change

to one’s preferences into something biased or even counter-intuitive.

3.6.1 Limitations of Human Decision Makers

The human mind is fraught with limitations. It is terrible at calculating probabilities

of single events [39], its capacity to remember or transmit information is low [108],

and falls victim to distraction [94], illusion and bias. Experimentalists have identified

other more specific limitations, for example, the human mind can fall prey to a belief

in a “hot hand” in events (e.g. “streak shooting” in basketball) [70], an expression of

the gambler’s fallacy [171]. Similarly, multiple dimensions become increasing difficult

for humans to process and evaluate, summarized by a conclusion observed by Miller

“people are less accurate if they must judge more than one attribute simultaneously”

[108].

Some of these limitations are actually accounted for in some of the conclusions

reached in the theory of evolution: “natural selection will favor strategies that make

many incorrect causal associations in order to establish those that are essential for

survival and reproduction.”[62]. In other words, these so called limitations in human

minds were (and potentially still are) advantageous in many environments where
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making the right decision, even a minority of the time, is crucial. Shermer provides a

visual example of this phenomenon, where the cost associated with believing a rustle

in the wind is actually one’s predator is small, compared to the cost when believing

a real predator is only the wind [153].

However, when applied to decision-making processes, recognizing and overcoming

some of these “naturally selected” strategies could be in the decision maker’s best

interest especially when the decision environment is considerably different than the

one for which the strategy was originally acquired.

The following sections discuss some of the more evident limitations of human

decision makers which must be recognized for any attempt in improving the decision-

making process in groups.

3.6.2 Manipulation of Decision Makers’ Preferences

The fact that humans change their mind readily is universally accepted. Research in

advertising is dedicated to studying how the human mind can be influenced to buy or

support a particular product or issue, respectively. Many advertising techniques will

take advantage of the innate limitations of the human mind to objectively evaluate

candidates. One of the simplest techniques makes use of message repetition, working

under the assumption that one’s attitude will be, or can become, more positive when

receiving stimuli that are more familiar [193]. Although some research suggests that

too much repetition can incite attitudes of irrelevance or even negative responses

[13, 30], the obvious goals remains the same to persuade, convince, and manipulate

others or customers into making a decision that maximize their own objective function

of increased profit, votes or prestige.

Preference reversal has been empirically shown in notable experiments by Tversky

and Kahneman testing how framing decisions can have drastic impacts on the results.
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In one experiment, respondents would reverse the preference between two hypothet-

ical diseasing treating programs, depending on the focus of the question being on

the expected number of lives saved or on the expected number of deaths. In other

experiments, decision makers would choose the worse of two prospects and “exhibit

patterns of preference which appear incompatible with expected utility theory” [172]1.

Thus, even the way in which data is presented to decision makers must be analyzed

to avoid potential errors from not-objective judgments, qualitative comparisons, and

biases.

Time pressure has also been shown to explain preference changes or reversal from

a DFT theory perspective [48] and, more expectedly, identified as a crucial effect on

decision accuracy and quality [125].

In a seminal study by Solomon Asch, the manipulation that was observed was

more pronounced and caused directly by the “apparent” preferences or decisions of

the group members. In the experiments, each member in a group was to state which

line in a set of three was identical in length to a separate reference line a short distance

away. When the group was composed of 11 confederates (responding to the task in

the same wrong way) and one participant, the participant would conform to and

agree with the majority’s wrong decision one third of the time on average [6]. The

results indicate that social pressures with a group setting can alter opinions. Since

the true answer was obvious in the experiments, the willingness to join the group may

be found to be even more exaggerated when uncertainty is greater or the differences

in the data less clear or ambiguous. More recently, experiments testing conforming

to the group or the majority was reproduced but without confederates [111].

Manipulation of decision makers has also been shown to exists under risk and

uncertainty. Experiments illustrated how an “attraction factor” caused respondents

1Many years later, Daniel Kahneman would be awarded the Nobel prize in Economic Science “for
having integrated insights from psychological research into economic science, especially concerning
human judgment and decision-making under uncertainty” [116]
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to reverse their opinions about which prospect was better even if the two options

were identical in terms of utility [192]. The same study found the expected result

that an additional method of manipulation (i.e. to change one’s preference) is by

allowing decision makers to gain information or consult with other agents. This has

been shown for when information is gained from another decision maker [33] and

when information is gained from independent experiences [92].

3.6.3 Biases in Decision Making

Biases can arise in a variety of ways in decisions making processes.

Decision makers will sometimes seek for data that confirms their preconceived

notions about the problems and how it should be solved. At the same time, they may

disregard data suggesting their decision made a priori is incorrect or less desirable.

This confirmation bias can have negative effects as the final decision which may

eventually be considered as poor, undesirable or even wrong [170].

In fact, some decision support tools can offer variable weightings on the metrics of

interest (such as common slider bars for importance parameters). When the decision

maker “plays” with those settings until their predetermined design is ranked or listed

as the best, a confirmation bias has occurred if the decision maker uses the tool to

support what they had already intended to select. In this case, the decision support

system serves no purpose other than to support one’s a priori decision (a not entirely

useless endeavor) but there can exist a disconnect with what the decision maker wants

as an outcome (an expression of their true preferences) and what they believe that

answer should be.

A similarly related bias comes when decision makers are more likely to trust their

own research, team or company over that of another when the question of credibility

arises. Often one trusts their own model or results more than another’s, even if no

compelling evidence suggests this reflects reality. This authority bias can also exist
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when an individual or team claims an expertise either from formal education or expe-

rience and demands or at least persuades others to accept their conclusions as truth.

In group decision-making activities, especially in cooperative multi-agent decisions,

when a decision maker possesses a certain skill, position or knowledge necessary for the

potential solution, others may unnecessarily or unconsciously believe their knowledge

can be applied to other areas of the problem overextending the authority’s influence

in the group. In discussing process in group settings, Yalom describes that “... indi-

viduals high on the pyramid not only are more technically informed but also possess

organizational information that permits them to influence and manipulate: that is,

they not only have skills that have allowed them to obtain a position of power but,

once there, have such a central place in the flow of information that they are able

to reinforce their position” [189]. This bias thus comes to play a role in persuading

others in group decision-making activities and should be accounted for in decision

models.

An overconfidence bias can develop if historical trends have been favorable in

some way, and the unfounded trend is expected to continue. This is most evident in

quantification of risk where decision makers can become overconfident that a partic-

ular risky design can still meet the requirements because a design has performed well

in the past. As a result, decisions can be selected which are riskier then what the

data or models suggest is prudent. This is closely related to what Schwenk calls a

prior hypothesis bias [146] where decision makers inappropriately maintain beliefs or

attitudes despite additional evidence that strongly opposes their assumed views.

Relying to an inappropriate amount on one or a few pieces of information can

result in an anchoring bias. In other words, the starting point can have a dispro-

portionate amount of influence on the final decision. This is well known among

professional salesman and negotiators and is exploited to further their own interests.

Campell et al. [31] analyzed group consensus forecasts in finance and found “sizable
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predictable forecast errors” from this bias. However, the same phenomenon can exist

in decision making regarding engineering solutions, which often make assumptions

about future conditions, and thus attention should be given to avoiding unnecessarily

emphasizing some designs over others prematurely or placing too much weight on

previous performance.

These biases, and many other ones [171], can contribute significantly to some

highly undesirable decisions. Good decision-making practices will always seek to

remove these biases as much as possible or at least account for them in the decisions

making process as various types of uncertainty.

3.6.4 Irrationality in Decision Makers

With so many limitations with which to grapple, the decision theorists have broadly

classified the actions which go against one’s sincere and objective beliefs and reasons

as irrational. Similarly, when decisions are made with little or no reasoning and effort,

or made under emotional stress, the term irrational is used to describe these types of

decisions. For example, it might be considered irrational to forgo an operation now,

if greater pain could be avoided in the future (assuming avoiding the most possible

pain is desired) for the same cost.

Thus, although one would understandably seek to avoid making decisions irra-

tionality, the time constraints, resources available, psychological biases present or

even subjective and external factors can cause one to act irrational. This irrational

behavior is shown in various experiments where individuals will punish others at the

expense to themselves in order to establish fairness and encourage cooperation [56].

One of the best mathematical examples of irrationality can be illustrated in a game

theoretic construct called the prisoner’s dilemma (which is more formally defined in a

later section). In the Prisoner’s Dilemma, two prisoners are found to act (by testifying

against the other) irrationally as a group because of the uncertainty in what the other
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prisoner will do. This uncertainty causes them to act in such a way that would be

counter to their objective (i.e. freedom). If they had a chance to contemplate the

entire situation and knew what the other prisoner was considering they might have

both acted more rationally.

More formally, the ‘rational man’ is defined as “a man whose thought processes

consist exclusively of logical propositions, or a man without prejudices, or a man

whose emotions are inoperative” such that the term rational is efficient or, “maximiz-

ing the output for a given input, or minimizing input for a given output” [52].

Likewise, rationality in decision making typically refers to a decision maker acting

in accordance with their beliefs or reasons. These reasons are usually a result of some

combination of the information or data available to the decision maker. Often, a

rational decision is one which maximizes the benefit and minimizes the cost. In other

words, the action taken by a rational decision maker is one that maximizes their own

utility so that “[r]ational individuals choose the alternative that is likely to give them

the greatest satisfaction” [148]. Since the ability to choose the best option is required,

a necessary condition is that the rational decision maker can evaluate or predict the

outcome of different actions.

In many different fields, assumptions or knowledge about the information available

to the decision maker and about their preferences for the various criteria are modeled

to provide insight into how individuals will act. Under the assumption that decision

makers act as rational agents, choice models can be developed to make predictions of

how combinations of decision makers or groups will respond collectively. These are

clearly simplifying assumptions in order to model, analyze and predict how individuals

will or rather should make decisions but often humans are much less predictable and

so modifications to these models have quickly emerged.
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3.6.5 Bounded Rationality

When the predictive capability of the models of rational choice theory began to de-

viate from empirical data and experiments, the notion of bounded rationality was

established and first proposed by Herbert Simon in 1957. He states that the “capac-

ity of the human mind for formulating and solving complex problems is very small

compared with the size of the problems whose solution is required for objectively

rational behavior in the real world—or even for a reasonable approximation to such

objective rationality” [157]. The basic tenet of bounded rationality is that the deci-

sion maker will not always choose or select the alternative that maximizing their own

utility or satisfaction. Simon’s description of bounded rationality is that it is “intend-

edly rational, but only limitedly so” [157]. Elsewhere, Radner describes it with at

least three essential aspects, namely, 1) existence of goals, 2) searching for improve-

ment, and 3) long-run success [129]. A number of ideas have been proposed as to

why bounded rationality2 may be a more accurate principle to guide decision-making

analyses.

Firstly, humans, although perhaps considered rational in their ability to anticipate

the outcomes of various situations, will likely not have the mental capacity to evaluate

all outcomes or even be able to cognitively analyze varied and non-commensurate

criteria. These “simple mental models” constructed by decision makers will be used

even if there are inherent “ambiguities or contradictions” [160]. A non-quantitative

and simplifying exercise may be employed and no attempt to quantify and evaluate

every contingency or make every comparison between criteria is necessary or even

possible.

2Even before the term had been coined, Benjamin Franklin had admitted to using a type of
bounded rationality in a letter to Joseph Priestly. He writes: “...tho’ the Weight of Reasons cannot
be taken with the Precision of Algebraic Quantities... I have found great Advantage from this kind
of Equation [in negating pros and cons of equal weight], in what may be called Moral or Prudential
Algebra” [15]

53



Furthermore, time or other constraints will preclude any one from considering all

possibilities which means the optimal solution may never have been actually consid-

ered. Gigerenzer and Goldstein share an example of bounded rationality: “...[A]n

organism would choose the first object (a mate, perhaps) that satisfies its aspiration

level–instead of the intractable sequence of taking the time to survey all possible al-

ternatives, estimating probabilities and utilities for the possible outcomes associated

with each alternative, calculating expected utilities, and choosing the alternative that

scores highest” [69]. Not only would one fail in calculating all the scores or utilities

of the numerous alternatives, but the fact that uncertainty as expressed as proba-

bilities means that imperfect knowledge about some or all of the outcomes is likely,

resulting in limitations to the rational processes described previously. Related to this

issue is simply the capacity to process information, and keep sufficient information

in working memory to make decisions. In [108], evidence suggests only around seven

pieces of information can be properly kept in short-term memory for judgment and

thus decision making. Computer aides and visual analytics can of course extend that

capability but ultimately the decision maker can only process a small amount.

As an effect of Simon’s and other’s efforts in promoting a bounded rationality

approach to decision making, a variety of subfields have been defined and adjust-

ments to the traditional rational theories have been applied resulting in some new

designations, including “behavioral economics”, “behavioral game theory,” and even

“behavioral finance” [19].

3.6.6 Satisficing

In response to the inherent issues and limitations suggested by bounded rationality,

the idea of “satisficing,” a combination of the words or ideas of sufficing and satisfy-

ing, was proposed to account for the fact that very often decision makers will accept

and choose an alternative that simply satisfies its own needs [156]. For example, an
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engineer can always run more experiments to increase the accuracy of a regression or

for other analyses, but very often executing a sufficient number of cases is all that is

needed for making certain decisions at the conceptual level. Obviously, considering

all alternatives and evaluating their scores would be desirable but very often com-

putational resources, time or both are limited and a subset of all the design points

is enough. This idea is closely related to design of experiments and surrogate model

creation, in that a small amount of evaluated points or designs can often provide

insight into the other points or regions not directly sampled.

In this sense, satisficing does not seek the optimal solution as a decision-making

process. Satisficing seeks to find a solution or solutions which are sufficient or ade-

quate. The time, cost or effort required to gather all the information and perform an

exhaustive evaluation on all the possibilities would be too large or impossible for one

endorsing the principle of satisficing. Thus, one selecting a satisficing strategy for

decision making could be considered one who applies as part of the decision process

a preference or importance in saving time or money (the cost) in place of finding

the optimal solution. This trade is evident between using up more time (or other

resources) to find the optimal solution or accepting the first (or an early) design,

solution or point that is “good enough” and still meets the requirements or needs as

aspiration levels.

3.6.7 Evidence of Satisficing

One particularly evidential study of the feasibility of satisficing algorithms was per-

formed by Gigerenzer and Goldstein [69]. They created a competition between a sat-

isficing algorithm, called “Take the Best” (TTB), and other integration algorithms,

such as Regression, Weighted and Unit-weighted linear models.

The TTB algorithm compares each factor or attribute (a “cue” in the experiment),

one at a time, and will select the appropriate option when the two currently pertinent
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cue values sufficiently discriminate between the two candidates. If the two values do

not discriminate between candidates, the algorithm continues to the next cue, ordered

in terms of a ”ecological validity” or a measure of how often that cue would correctly

predict the “best” decision. Therefore, in the TTB algorithm, the decision can be

made after only one cue thus ignoring all the other information available for each

particular comparison. This results in a satisficing strategy where limited knowledge

and/or time leads to a decision deemed adequate.

On the other hand, the integration algorithms would make use of all information

available with models inclusive of each of the factors, variables, or dimensions (i.e.

“cue”) and even given additional information not explicitly used by the relatively

simple TTB.

The competition in [69] evaluated how often a simulated decision maker correctly

picked the larger, in terms of population, of two cities presented with different infor-

mation (i.e. cues). Figure 6 summarizes the surprising result that the TTB algorithm

performs just as good as some of the integration algorithms (e.g. tallying) and supe-

rior to some of them (e.g. Weighted Linear Model) for certain. Of note is that with

no information about the candidates (or cities) the performance of all algorithms are

equal at 50% accuracy (i.e. guessing) and at the other extreme with all informa-

tion, the algorithms are also comparatively and equally good (≈74%). However, the

most interesting is that with some but limited knowledge, the certain algorithms per-

form better than algorithms which implement features hailed as elements of classical

rationality, such as “consider as much data as possible.”

In essence, in some situations decision makers can make just as good (or even

better) decisions with limited knowledge. Furthermore, these better decisions can be

made more quickly and with simpler heuristics if appropriate.

The conclusion drawn from this experiment is telling:
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Figure 6: Comparing predictive accuracy for “Take the Best” against integration
algorithms across different levels of tacit knowledge (i.e. Objects Recognized) (Re-
produced from [69])

The single most important result ... is that simple psychological mecha-

nisms can yield about as many (or more) correct inferences in less time

than standard statistical linear models that embody classical properties

of rational inference. The demonstration that a fast and frugal satisfic-

ing algorithm won the competition defeats the widespread view that only

“rational” algorithms can be accurate. Models of inference do not have

to forsake accuracy for simplicity. [69]

This is understandably a useful finding, appropriate for the current research objec-

tive in trying to accelerate decision making without necessarily decreasing the quality

of decisions. In the proposed methodology, the decision maker will be presented a

relatively simple task of choosing the most preferred of two designs. The assumption

that these decisions will be “good enough” and potentially faster without sacrificing

accuracy is considered a key enabler.
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3.7 Group Decision Making

Careful analysis reveals that we “often give our greatest responsibility to groups”

including groups such as board of directors, board of regents, juries, the Supreme

Court, Congress, and surgical teams [95]. Groups also dominate the workplace with

a majority of large companies establishing work groups or work teams as the core

unit. As problems grow in scope and breadth, increasingly collaboration between

individuals with different skills or expertise will be needed. This collaboration is a

key attribute of well-functioning groups even if co-location is not a defining feature.

In engineering design, teams or groups, composed of experts from various disciplines,

work together with the individuals taking on different roles. Decisions can impact

many or all of the disciplines and thus decision making is an essential element to

explore and facilitate within these groups or Integrated Product Teams (IPT) [144].

Group decision making is clearly when more than one individual or entity has some

influence or “say” on the ultimate or final decision made. A dictatorship may be the

best counter example of group decision making and yet even a dictator will likely have

aides, counselors, etc. who influence their decisions. In the widest or all-inclusive def-

inition of group decision making, one could argue that most of our seemingly personal

or independent decisions are influenced by our backgrounds, culture or environment.

So, although each individual is responsible for one’s actions a realization that truly

autonomous decisions are rarer than perhaps typically considered is warranted.

Forsyth [61] discusses four common approaches to making decisions in groups.

The first is delegating or choosing an individual to make the decisions on behalf of

the group. This can, of course, no longer be classified as “group” decision making, but

if the appointed decision maker listens, is willing to try and discern the group’s wishes

and attempts to reflect the interests of the group (i.e. a kind of “benevolent dictator”

[1]), the group still has a way to collectively express their preferences through their

leader’s decision. The second is averaging or combining the individual perspectives,
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decisions or preferences of the group members. Initially this can be done in private so

as to not unnecessarily influence each other (i.e. Asch experiment) and then a method

can be selected for averaging the individual decisions. The third is through voting,

where the majority rules, and the minority are expected to accept the group’s decision.

(This and the previous approach can suffer from various limitations underscored by

a discussion of Arrow’s Impossibility Theorem in a later section.) The last approach

is through group consensus where discussion, analysis, compromise, negotiation, etc.

continue until all members are in agreement and a unanimous decision is supported

by all. Understandably, this last approach is most desirable but not always the most

efficient. Encouraging this approach by more quickly aligning preferences to each

other is one of the main goals in satisfying the second objective of this research.

The approach taken, however, is only a part of the challenges to group decision

making. Not only is group multi-objective decision making further complicated when

more than one person has control over the weights of the objective function, but

difficulties can arise even about what the criteria should be within the decision rule.

Similarly, group decision making has to consider not only the conflicting nature of the

various objectives but the conflict between individual preferences within the group.

Each individual comes to the decision-making process with different values regarding

the objectives or criteria. Some individuals may not consider some of the objectives

established as even relevant and will base their preferences on a subset of the ob-

jectives, effectively weighting some criteria as zero or of no importance: “[D]ifferent

importance may be assigned to [criteria] from design to design and from designer to

designer” [194].

Furthermore, with engineering solutions to the large scale problems typically in-

volving greater numbers of individuals, all with different expertise and preferences

accounting for the various perspectives of the problem and solution, there exists a

real need to study and understand influences between the players and, in general, the
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group dynamics in decision-making activities.

A number of different ideas or philosophies have arisen to try and reconcile the

differences or at least forecast how a group will reach a decision. Some of these

areas include Principal-Agent Theory [57], Strategic or Standard Groupthink [81],

Evolutionary Theory [38] or Sociological Determinism [51]. These areas of research

cover both rational and non-rational group action as well as different perspectives on

society, including both individualistic and holistic views [3].

For engineering applications, group decision making is common in the design pro-

cess such as in making trades between engineering groups, incorporating unquantifi-

able performance objectives and conflict resolution between disciplines [149]. In this

sense, group decision making could be viewed as essentially an activity involving ne-

gotiation across preferences and objectives. Very often these negotiations can involve

mean or additive weighting functions, voting methods or some combination of them,

such as the Delphi method, to create knowledge-based systems to assist with decision

making in a variety of situations [35].

In general, a group’s objective function or utility function ug(x) will take the form:

ug(x) = f(u1(x), u2(x), ...uN(x)), (2)

where ui(x) is the individual utility function of the ith decision maker (i = 1, ..., N)

of an alternative, described by x, where x = [x1, x2, ....xn], a set of attributes or

objectives defining the specific alternative.

Combining individual utility functions in the literature is sometimes referred to as

the “social welfare function”, and is heavily influence by the work of Kenneth Arrow

[5].
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3.7.1 Arrow’s Impossibility Theorem

In 1950, Kenneth Arrow published what is now known as Arrow’s Impossibility The-

orem [5]. This theorem proves that no aggregation method of ordinal or ranking

preferences can be created or implemented such that it satisfies five generally accept-

able criteria or conditions of fairness, namely:

• Unrestricted domain - A social function which rank orders the alternatives is

complete and repeatable for any set of individual voters and their preferences.

• Positive association of social and individual values - Any individual in the group

adjusting preferences for an alternative cannot allow an opposite change in the

group’s ranking. For example, an individual increasing the rank of one option

cannot result in the group reducing its rank over all.

• Independence of Irrelevant Alternatives - The preferences of the group should

not change for the winning alternative if an additional alternative which is

inferior to all others is added into, or removed from, the pool of candidate

alternatives.

• Citizen sovereignty - All possible rankings for the alternatives must be possible

by some set of the individual preferences.

• Non-dictatorship - No one individual’s preference can decide for the remainder

of the group or population.

Since any attempt at combining ordinal preferences (i.e. rankings) in any partic-

ular decision-making technique could allow for the breaking of, at least, one of the

above fairness criteria, dealing with paradoxes (e.g. in some voting methods), and

how one will reconcile the proof of Arrow’s Impossibility Theorem with any proposed

solution, must be addressed.
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3.7.2 Cardinal Utility Functions

In [87], Keeney responds to the apparent limitations of Arrow’s Impossibility The-

orem in using any aggregation method by proving that for some problems a group

utility function holds to similar conditions when using cardinality utility functions.

For situations when the alternatives are certain (i.e. deterministic), Keeny states

that: “...given five assumptions analogous to Arrow’s, using cardinal utilities rather

than rankings, it is always possible to define consistent aggregation rules for a group

cardinal utility function” [87].

Admittedly, this requires the individual decision makers to create their own von

Neumann-Morgenstern utility function and thus not only define the rank or order of

their preference but also the strength of preference between each alternative. However,

this does provide a way to aggregate utilities while maintaining the acceptability

conditions described previously.

More specifically, group cardinal utility functions over uncertain alternatives do

not break the above assumptions, if

uG = u(u1, u2, ...uN) =
n∑

i=1

kiui, (3)

where, k ≥ 0, i = 1, ..., N and ki > 0 for at least two ki’s [87].

3.7.3 Group Decision-Making Techniques and Consensus Reaching

In response to the added complications of group decision making, a plethora of

decision-making techniques have been created to account for the different domains,

various stakeholders and diverse types of problems.

Many of the individual techniques for decision making have been proposed and

analyzed with the various adjustments to account for the multiple stakeholders. For

example, TOPSIS has been extended for groups [154], for groups with preference

aggregation within the procedure [155], and for groups in fuzzy environments [34].
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Likewise, AHP has been extended to group decision making with goal programming

in fuzzy environments [190].

Traditional multi-attribute or multi-objective group decision-making techniques

are similarly enhanced or adjusted to account for the weights of different multiple

decision makers, the aggregation processes, and the normalization operation. For

example, one particular group decision-making techniques make use of Monte Carlo

simulations for aggregating decision maker preferences [102]. It also incorporates

incomplete information about the weights and the utility functions across the differ-

ent decision makers which are then made more precise through a negotiation pro-

cesses. The result is hopefully a consensus alternative for the entire group. Another

study compared experimentally the effectiveness of three group decision-making tech-

niques using multi-objective linear programming (MOLP), namely 1) the Group Naive

Search (GNS) implementing a weighted-sums approach, 2) the Group Step Method,

and 3) the Group Goal Programming Method [79]. GNS was found to take longer on

average for the group to reach compromised solutions and resulted in lower quality

solutions compared to the other two.

Furthermore, the VIKOR method [122], which is similar to TOPSIS but imple-

ments a slightly altered aggregation process as a function only of the distance from

the ideal point, proposes a compromise solution, and uses linear normalization. TOP-

SIS, on the other hand uses both the distance from the ideal and detailed comparison

between TOPSIS and VIKOR methods is presented in [123].

Yet another technique, extending the VIKOR method, has also been applied

to multi-attribute group decision-making problems, where the attribute weights are

given as generalized interval-valued trapezoidal fuzzy numbers [98]. This is similar to

having a distribution on the weights themselves, although four points must be defined

for each objective’s “trapezoidal fuzzy number” which may become excessive for high

dimensional spaces.
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Of course, voting methods themselves can be applied to group decision making and

often are [21]. Popular methods or techniques include the Borda Count [42], Plurality

Voting [37], Condorcet Method [140], Instant Runoff [162] to name a few. Similarly,

they also contain their own unique modifications to account for different problems

or decision situations such as multi-stage voting or binary voting trees [126]. How-

ever, many of these suffer from limitations (described in an example presented in the

appendix), and thus do not meet the requirements defined by Arrow’s Impossibility

Theorem summarized previously when there are three or more alternatives.

Regardless of the exact group decision-making technique implemented, at some

level, the process must address the influence or power of each one of the stakeholders

or decision makers within the group. Furthermore, sufficient distribution of power is

expected among the decision makers or else one may approach breaking the ‘Non-

dictatorship’ requirement for reasonable aggregation methods, resulting in a problem

appropriate for a single decision maker.

3.7.4 The Delphi Technique

A similar technique to the overall methodology presented in this research is called

the Delphi technique, originally proposed by Olaf Helmer-Hirschberg [75]. In general,

the Delphi technique seeks to facilitate group decision making by iteratively collecting

information from, and presenting results to, a set of experts which will reach consensus

on a particular problem, typically focused on forecasting future states or planning. It

has been successfully implemented in a variety of ways and in a variety of domains

including medical care, government planning, and business [97].

Although this research and the Delphi method have generally similar goals in fa-

cilitating consensus reaching for multiple decisions making the domains of application

are quite different as well as a number of other details. Still, some of the ideas and

process involved in a Delphi-based decision making activity form the inspiration and
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foundation for parts of the steps in the methodology described herein. Some of the

similarities and differences are discussed below.

First of all, the Delphi technique was designed initially to be used as a forecasting

tool by aggregating expert knowledge, opinion, or, in particular, “informed intuitive

judgment” about future states of technology and science. In some respects, the Delphi

technique is designed to assist with prediction-making or planning. In other words,

an agreement or consensus on the likely futures and the associated probabilities of

these futures are desired outcomes of such an activity.

In contrast, the methodology presented in this dissertation is more focused on

requirements definition (or concept selection from a different perspective). At these

decision points, a future is assumed (perhaps as a result of some completed Delphi

technique implementation) and the response to the this future is now under consider-

ation. The future needs or scenario may already be created or exit (i.e. humanitarian

needs after a natural disaster) but the solution to the future problem or needs requires

cooperation amongst stakeholders. Simply worded, Delphi concerns itself more with

consensus on the future scenario necessary for planning while the methodology herein

focuses on the solution set or response to those futures.

Similarly, while the Delphi technique primarily attempts to use “experts,” (how-

ever they may be defined), in isolation, the methodology presented here assumes no

correlation with “expert” and “decision maker” and assumes that interaction is a key

part of the process. The decision makers themselves are not necessarily experts in

the fundamental sense but are evidently in positions of decisional power and exert

influence over others and on the selected solution or requirements.

Furthermore, since many of the solutions which will meet the requirements for

a particular problem demand cooperation between the various players, decisions in

isolation are likely not acceptable as trades and compromises will be almost always

required. This is one limitation of the Delphi technique which can end with two (or
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more) polarized groups quite confident about their respective opinions about the given

situation. Since all stakeholders must be in agreement with one set of requirements

or design, this is also unacceptable for the given motivating problem for air mobility

requirements definition. For example, an RFP with two sets of design requirements

because the decision makers could not agree would clearly be a disaster. The iterations

of the Delphi technique, of course, can be repeated many more times but no guarantee

on full group consensus is given.

On the other hand, the similarities between the proposed methodology and the

Delphi technique also exist in a variety of ways. There is an initial information elici-

tation step in both processes which reveals the preferences of each of the individuals.

In both methods, the opportunity to keep responses to the various questions can

be made anonymous such that a truer opinion is extracted from the questionnaire

(or discrete choices) due to increased confidence by the participants that no one else

will see their answers. Yet, the reasons for such opinions are available to others for

additional persuasion. Thus, both methods also account for changes in the decision

makers preferences albeit in different ways. The Delphi technique requires updating

each players opinion in each iteration while the proposed methodology accounts for

this with a distribution of possible preferences. Lastly, the opportunity to weight the

opinions of experts in the Delphi technique is matched by the power or influence rela-

tionships in the proposed methodology. The assumption that not all decision maker

or expert is equal (in the sense of their ability to persuade others to view things

their way) is an available option in both processes. Thus, in the Delphi technique,

each expert may be assigned a weight, whereas in the methodology presented in this

research, an influence relationships is obtained for each decision maker in the group.
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3.8 Power and Influence in Groups

The research into power and influence, what they comprise, their difference and/or

similarities, and their impacts on decision making is abundant. The studies, data and

interpretations of various experiments span a wide range of fields.

A study by Raven, Schwarzwald and Koslowksy starts with the statement: “Social

power can be conceived as the resources one person has available so that he or she can

influence another person to do what that person would not have done otherwise” [131].

In a decision making context, this can equate to persuading someone else to change

their preference to become more aligned with another decision maker. Although

independently the first would not normally change their preference, expressions of

power or influence would cause them to concede and compromise fully or at least

partially in cooperative group decisions. In particular, one of 11 identified sources of

power may stem from legitimate reciprocity, where one is obligated to respond to an

agent’s request if in the past (or in the future), positive action has been (or will be)

granted to the target [131]. This is often the impetus of mutually beneficial contracts,

the result of which often encourage partnering repetitively for other projects. The

other power sources, such as power derived from expert knowledge, position, or ability

to reward or punish, are also feasible ways that influence can be exerted over others

in cooperative group decision making [131].

Although clearly inequitable from some perspectives, it may be desirable to have

some differing levels of power or influence spread across the group if the problem is

broad enough to cover a variety of perspectives, points of view or objectives. After all,

these problems will likely require a variety of experts, each with experience, knowledge

or competency in one a particular area of the problem.

This is almost guaranteed with large SoS engineering problems, which, by defi-

nition, incorporate multiple views, interfaces and functions, and employ remote, yet

highly integrated, physical systems. Therefore, recognizing these perspectives and
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that some of them can be more accurate, pertinent or important than others is a

crucial step in properly implementing useful acceptable group decision-making pro-

cesses.

The weights attached to the decision maker’s is sometimes referred to as a scaling

constant, to distinguish the use of the term “weight” traditionally used to define the

importance value for a particular dimension or attribute. However, the weight of a

decision maker is still used in many references but is in essence an indication of that

member’s power or influence in the group, scaled or normalized appropriately.

3.8.1 Evaluating the Power or Influence of a Decision Makers

Just like the various attributes or objectives can be assigned a weight or importance

value, the decision makers themselves can assume values indicative of the power or

influence they have over the group. As the number of decision makers reach very large

numbers (e.g. the population of a country) in some decision problems (e.g. political

elections) the individual weight or power of just one decision maker is very small,

but pools of similarly minded individuals, coalitions or subgroups can and do have

significant clout in these situations (e.g. political parties, petitions, etc.).

According to [130] there are two basic ways of assigning the weight or influence

to the decision makers: the supra decision maker approach and the participatory

approach. If a supra decision maker is available to assign weights (i.e. scaling factors)

to the others then this particular step precipitates to a single-agent decision-making

problem, and the classical preference evaluation techniques can be used, not on the

attributes or the objective, but on the importance of decision makers themselves.

However, often in group decisions, there is no one decision maker which defines the

power structure or importance of the others. In such situations, a participatory

approach is required.

The following sections summarize a few of the ways that influence and power have
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been evaluated for group decision-making activities.

3.8.2 Shapley Values

Shapley values, named after Lloyd Shapley, provide a context to analyze coalitions in

n-person decisions involving cooperation [152]. Each member in a group will have a

Shapley value for a particular group decision. The value is conceptualized as the payoff

to a particular member for joining the coalition or a group with similar preferences.

The difference in payoffs between the coalition before and after some player joined is

“claimed” by that same player as their compensation in joining the coalition. As each

player calculates their marginal payoff of the coalition, a marginal vector is created,

and a certain player’s Shapley value will be the average of marginal vectors across all

the possible orders of the players [10]. The summation of the Shapley values for all

decision makers in a group must equal to 1.

3.8.3 Shapley-Shubik power index

A related value to the Shapley value called the Shapley-Shubik (SS) power index

can also be used in situations where coalitions can be formed in some multi-agent

decision-making processes [151]. This power index quantifies the power an individual

decision maker may have in expressing and achieving their preferences, based on the

full set of permutations of the votes for all players in the election or decision-making

process.

For example, the SS index (φi) for player i is the value:

φi =
1

n!

∑
S⊆N

(|S| − 1)!(n− |S|)!(v(S)− v(S\{i})) (4)

where, n is the number of players, and v(S) represents the payoff of coalition S

[10]. This value represents the contribution or payoff to the game of the difference

with player i (v(S)) and without player i (v(S\i)). When averaged over all the

possible n! permutations, the ith player has the contribution value or power index
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Figure 7: Example of Various Levels or Degrees (arrow thickness) of Influence Between
Agents (Taken from [110])

of φi [10]. When each player is given a power index, a prediction on how any one

agent will be influenced by another can be modeled, by assuming that one decision

maker with more “power” will be able to persuade another agent to agree to their

preferences more readily.

Figure 7 illustrates how multiple agents can have different levels of influence, if

at all, on other entities. This example demonstrates potential relationships where

voters have less influence on the central banks than financial experts or government

agencies, considered a more likely scenario [110].

Assuming a dynamic number of decision makers at any one time, the value would

require reevaluation since during negotiations or trades across different objectives,

the power of any one player or agent is likely to change or shift.

3.8.4 Other Methods to Extract Decision Maker Weights

AHP, although used often to apply weights to objectives or attributes directly, has

been used to extract the power between decision makers as well [130]. This approach

has the decision makers define the ratio between their strength, weight or power

directly with each other decision makers. An eigenvector method is then implemented

to obtain the power or scaling factor for each stakeholder. Similarly, in [181], a
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discussion of calculating the decisional power of the members in a group environment

is discussed using the REMBRANDT software suite implementing multiplicative AHP

and SMART (Single Multi-Attribute Ranking Technique). In parallel with research

implementing AHP, applications of TOPSIS have also been extended to determine

the strength or power of each member in a group [191].

Likewise, game theory applications have been recast to also provide power indices

of decision makers in groups [43]. Lastly, Banzhaf [11] and Coleman [36] power indices

are two other options for calculating and describing the power or influence between

members for collective groups.

3.9 Game Theory

Two individuals often considered the founders of game theory, von Neumann and

Morgenstern [182] have provided the mathematical foundation upon which a con-

siderable amount of research has been performed on how decisions are made amidst

uncertainty. This uncertainty is typically found in how one’s payoff, or some other

metric of success, is dependent upon someone else’s decisions. Since a decision-maker

cannot know for certain what alternative or strategy others may choose, their ex-

pected payoff is uncertain. On the other hand, whichever alternative they choose

can impact the payoff of other decision makers. Understanding, analyzing and eval-

uating this interdependency of decisions and payoffs among all the decision makers

is at the heart of game theoretic research. Much of the effort focuses on identifying

strategies considered “equilibria” from which a decision maker will select and apply

continuously to the particular situation, since any other strategy will result in a less

favorable outcome.

The analysis of these “games” has been useful for making decisions in many dif-

ferent fields from economics [53] to ecology [53] to engineering [26]. Although these
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games are essentially simplified models of real-world problems or challenges they pro-

vide a framework from which insight can be gained about how other decision makers

will react or respond to one’s own decisions; a useful tool in today’s ever more net-

worked and interdependent society.

3.9.1 Types of Games

As the number of areas grows for applying game theory, more precise and definitive

characterizations of the types of games have resulted. These categories, described

in the following sections, have allowed game theorists to understand and model the

more complex assumptions that occur in real-life situations.

3.9.2 Symmetric and Asymmetric games

In symmetric games the payoff for a particular strategy regardless of the player is the

same. If the payoffs are dependent on the player the game can be called asymmetric.

For example, if in a particular game, the payoff is an apple or an orange for each player,

and both players find both food items equally satisficing, the game is symmetric.

Whereas if one player is allergic to oranges, the game payoffs would be asymmetric,

with a negative payoff if receiving an orange and a positive payoff with an apple. The

other player’s payoffs remain the same as in the symmetric case.

In general, no two decision makers are identical. Each has his or her own beliefs,

experiences and values. In most cases, asymmetric games are more reflective of reality

as a result. The value of a good or service, for example, is often viewed differently

between the buyer and seller. Still, the significant use and applicability of symmetric

games is evident such as analyzing nuclear deterrence theory [80].

3.9.3 Perfect and Imperfect games

Perfect and Imperfect games refer to the information that each of the decision makers

or players has regarding the history of the game. Since this type of categorization
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requires previous moves, a sequential game or one that has a number of choices over

time is most commonly associated with a game of perfect information. Most one

move games will be classified as games of imperfect information since knowledge of

how the other player or players will act in the game is unknown.

3.9.4 Zero-sum and Non-zero-sum games

As the name suggests, zero-sum games refer to the inverse relationship of the players’

payoffs. That is, for a two player game, if one player receives a negative payoff (i.e.

-100) the other player will receive an equal in magnitude positive payoff (i.e. +100)

and similarly for an n-player games, one player’s payoff increase will be counted by an

equivalent decrease for one or more of the other n− 1 players’ payoffs. On the other

hand, the non-zero-sum game removes the restriction that one player’s lost is another

player’s gain. For example, if one player can change their strategy and increase their

own payoff without negatively impacting the payoff of the other players, the game is

non-zero-sum.

3.9.5 Cooperative or Competitive Games

Another categorization that can be applied to game theory is cooperative or com-

petitive games. Competitive, or non-cooperative, games are often used to model

situations where coalitions cannot exist to increase the payoff of the group or coali-

tion [73]. Very often non-zero-sum games are competitive games in the sense that one

player’s loss is another player’s gain and thus both compete for the limited resources.

Cooperative games are models of situations where the players can form alliances or

coalitions to increase the groups’, and potentially each individual’s, payoff. Many

games involving voting can be considered cooperative games in that a group of indi-

viduals can pool their votes together to reach a majority or some other threshold to

guarantee their particular agenda across all the players both within and without the

coalition. Since all players in a coalition seek a common result, before their “vote”
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Figure 8: Example Payoff Matrix for the Classical Prisoner’s Dilemma

is cast together, members within the coalition may have to make compromises, but

these are considered acceptable concessions if the ultimate decision is more closely

aligned with their own individual preference.

3.9.6 The Prisoner’s Dilemma

The Prisoner’s Dilemma is a 2-player game in which two prisoners, having been

recently arrested for committing a crime, are each individually and separately offered

a choice by the police: the prisoner can either provide evidence or testimony against

the other prisoner or remain silent. If both prisoners remain silent (i.e. both cooperate

with each other), there will not be enough evidence to convict either of the prisoners

and they will both remain in prison on a smaller charge for a short sentence of one

year. If one prisoner provides evidence (i.e. defects) and the other remains silent

(i.e. cooperates), the first prisoner will go free and the second will go to prison for

five years. If both prisoners testify against the other (i.e. both defect) they will both

serve a sentence for three years.

A chart, called a payoff matrix, describing the dilemma with payoffs and strategies

for both prisoners, is summarized in Figure 8.

The first prisoner, Prisoner 1, has their strategies down the rows, where “Coop-

erate” indicates cooperating or helping the other prisoner (i.e. staying silent) and

74



“Defect” indicates defecting or testifying against Prisoner 2. Prisoner 1’s payoffs are

the first number in each quadrant. Prisoner 2 has the same two strategies and their

payoffs are given as the second number in each quadrant. The payoffs are repre-

sented in Figure 8 by how many years in prison each will avoid for each combination

of strategies. This is to keep all numbers positive such that each prisoner wants to

maximize the number of years avoided for their individual sentence.

If Prisoner 1 cooperates and remains silent, Prisoner 2 would want to defect and

go free as indicated in the top right quadrant. If Prisoner 1 defects and testifies,

Prisoner 2 would want to defect as well, and have their sentence reduced since if they

remained silent (bottom left quadrant) they would spend the maximum amount of

time in prison. Regardless of what Prisoner 1 does, Prisoner 2’s best strategy is to

defect. But the exact same process and logic can be applied to Prisoner 1 in that

their best strategy is also to defect regardless of what Prisoner 2 does. As a result,

both prisoners will defect and both will serve the maximum sentence (and avoid

only 1 year). In this particular game, a Nash equilibrium is found in the bottom

right quadrant (both defect), where neither prisoner can improve their payoff by

switching to the cooperate strategy. However, there is a more Pareto-optimal point

(both cooperate), where both prisoners can improve their payoffs. Interestingly, the

selfish rationality of both prisoners seeking to minimize their sentence (maximize

their payoff) resulted in an equilibrium which was sub-Pareto-optimal. Thus, the

individual rationality resulted in group irrationality by both selecting a less optimal

strategy, even though a strategy exists where both could improve their payoff.

The Prisoner’s Dilemma game can be generalize with the payoff matrix presented

in Figure 9, where R is the reward for mutual cooperation, S is the Sucker’s payoff,

T is the Temptation to defect and P is the Punishment for mutual defection, and

T > R > P > S with R > (S + T )2 for the game to be defined as the Prisoner’s

Dilemma [8]. Comparing this generalized form to Figure 8, these equations hold true
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Figure 9: General Payoff Matrix for the Classical Prisoner’s Dilemma

when considering that a higher payoff is less time in prison. For example, the inverse

payoff matrix could have T=0, R=-1, P=-3, and S=-10, where the payoff represent

years lost in prison and one would still want to maximize their payoffs (i.e. make less

negative) as in Figure 9.

The game of Chicken, or sometimes known as Hawk-Dove, can take on the same

general form but with different equations, namely, S > P > T > R [105], and

replacing “Cooperate” with “Continue Straight” (Hawk) and “Defect” with “Swerve”

(Dove), under the assumption that the game is conceptually interpreted as two cars

driving straight toward each other and it is a test of driver bravado. An equilibrium

can be found where both players will swerve and receive payoffs equal to P. However,

in this game, the dynamics are slightly different in that if one player changes their

strategy to “Continue Straight”, it does make sense for the other player to accept

a lower payoff by also switching to “Continue Straight”, although, they will have

to accept a lower payoff by continuing with the “swerve” strategy. The concept of

“brinkmanship” is one way to bring the other player back to the original “Swerve”

strategy as discussed in more detail in [145].

In both these games, the actions of each decision maker are dependent on the

actions of the other. If player 1 decides on a certain strategy and player 2 knew it,
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player 2 could maximize their own payoff, but if player 1 knew that player 2 knew what

player 1 was going to do, player 1 could change their strategy also, and so on with

this pattern continuing ad infinitum. To avoid this never ending circular logic, the

equilibrium point(s) aforementioned were shown to be point(s) at which neither player

is willing to change their position or strategy without external pressures or additional

information. Thus, applying strategies to find the equilibrium, game theory can be

effective in allowing one to identify what strategy they should implement which will

best maximize their individual payoff, or meet their particular objectives.

3.9.7 Limitations to the Classic Prisoner’s Dilemma

The classic Prisoner’s Dilemma (PD) game has a number of useful attributes and is

used in a variety of problems where more than one player has an influence on what

all the players receive as payoffs. However, a number of limitations have been found

and alternative games or different modifications to the classical prisoner’s dilemma

game have been investigated, with one candidate being the Snowdrift Game [50].

Some of the limitations with short descriptions of the PD are listed below:

• The classical PD involves only 2-players. Although 2-player models cover a

large amount of real-world decisions, often more than two agents are involved

in any decision. This is typical in any voting activity such as a company’s board

of directors or shareholders, and in elections.

• The payoffs are deterministic in a classical PD game. Although a number of

different values for T,R, P, and S in Figure 9 satisfy the requirements for a PD

game, those values are often probabilistic in nature, in that the actual payoff

may be higher or lower than the expected payoff. In other words, the payoff is

also uncertain regardless of the combination of strategies employed by the two

agents. For example, the payoff if both players defect may be an actual time in

prison above what was expected if the judge so decrees.
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• The classical PD also assumes that there is no real knowledge about how the

other player(s) will act. In reality, there is some history or available knowledge

which will provide insight into the value system or expected choices of the

opposite player. Most real-world multi-agent decisions are not made between

two or more individuals with no knowledge of the other’s background.

• Assuming only one PD game is played the players expected behavior is well

predicted. However, very often players come in contact and reach multiple

decision points with the same individual(s). This can be quickly accounted for

with the iterated prisoner’s dilemma, where a number of sequential PD games

are played and behaviors are much more varied especially when the number of

iterated PD games is unknown.

• Some forms of the PD game include no real investment or cost. That is, the

players don’t necessarily put any additional effort into their strategies. Real

decisions and strategies required different amounts of investment or cost to the

player. Furthermore, if one player has already invested heavily into one strategy

they are more likely to select it.

As a result of these limitations, additional games are considered which are sum-

marized in the next few sections, namely the snowdrift game and the ultimatum

game.

3.9.8 The Snowdrift Game

The Snowdrift (SD) game is one answer to some of the limitations of the PD in

describing real-world interactions between human decision makers. Researchers have

explained that “the PD does not represent the frequent situation where individuals

obtain immediate direct benefits from the cooperative acts they perform and costs of

cooperation are shared between cooperators” [91].
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The SD game is generally described as a snow drift blocking the road which two

drivers (or players or actors) on either side of the snowdrift desire to travel through.

They can let the other player clear the road and remove the snow while they wait or

they can decide to help remove some or all of the snow [164].

Staying in the car and letting the other driver clear all the snow is the ideal

strategy. However, it is also the best option for the other driver as well. The social

dilemma, similar to the PD, is evident in that defecting or refusing to help remove

the snow is best when the other driver is cooperating and is clearing the snow [41].

However, since the ultimate goal for both drivers is to pass to the other side, there

is an incentive to not wait and begin to remove snow. Regardless of what the other

driver does, eventually the one who removes the snow will gain passage. Thus, there

is a cost or investment associated with removing the snow but a road clear of snow

enabling passage is clearly a benefit and can be acquired regardless of what the other

driver chose as their strategy.

The SD game has been shown to be a better model for high cooperation as shown

in Figure 10 [91]. In Figure 10, the data show the results of how often cooperating

acts were observed in the two games (PD and SD) between players who were both

female (FF), both male (MM) or one of each gender (FM). The numbers below the

bars represent the sample size in each of the six categories.

The SD game is a useful tool for analyzing decision making when there is an ad-

ditional incentive to cooperate. In many business deals, the cooperation or consensus

point is reached after each player or actor is willing to make a compromise (i.e. a

cost or investment) to obtain the item. In such cases, it must be assumed that the

cost expended by any one agent or player is less than the benefit. An agent will not

trade or sell a product or position for one that is of lesser value.

In terms of decision making, reaching consensus is usually more favorable than
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Figure 10: Comparing the Iterated PD and Iterated SD (from [91])

never reaching an agreement, since time can quickly become a cost if indecision nega-

tively affects both or all parties. It also can be used to show that free-loaders can be

modeled as a common occurrence in many group decision-making activities. Lastly,

SD can potentially be used to account for the higher levels of cooperation observed

in experimental tests compared to PD models and predictions [50].

3.9.9 The Ultimatum Game

Another game which improves upon PD in some areas is the Ultimatum game. Tra-

ditionally set up as a 2 player game, one player (the proposer) will propose how much

(or a percentage) of some money, or other desirable resource, the proposer will re-

ceive and how much the other player (the responder) will receive. The responder can

accept or reject the proposal. If he or she rejects the proposal, neither player receives

any money [117]. A Nash equilibrium is found with a proposal that is just slightly

greater than zero. This equilibrium is found since the responder, assuming he or she

is rational, will take any proposal greater than zero [137]. However, experimental

results indicate that this equilibrium does not predict actual human behavior very
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well, especially over time [119], [113].

Thus, in reality, experimental results have suggested that individuals are willing to

penalize themselves in order to punish unfairness in others. The responder is willing

to accept a loss to punish the proposer. As a result, over time if the ultimatum game

is played multiple times, with sequential bargaining, proposals may tend to the 50-50

split, but other splits may be equally likely with asymmetric information or external

influences [163]. For example, consider two companies where both have different

requirements for return on investment or other economic metrics, and both desire to

combine expertise to add value to a particular product line. The profit share of each

of these companies will likely not be 50-50, based on their contribution to the design

of the product. Thus, “fairness” can only be defined in the particular context when

both parties agree to the split. Clearly, if one company invests significant more capital

in a development program, they will understandably expect a higher return. On the

other hand, if the smaller company does not contribute financially but possesses a

skill or expertise, they may be also able to claim a larger percentage than what the

capital investment input would suggest. Therefore, the “fair” value is dependent on

each of the agents (i.e. companies) perceived deserved level of compensation. Still,

as in previous examples, agreement is preferred over no agreement and thus attempts

to propose and counter propose until a point is reached which is mutually acceptable

will likely occur. However, the point at which that occurs, is again dependent on the

relationship between the decision makers, the individual preferences or weightings for

the particular criteria involved, and the knowledge about the design point.

3.10 Discrete Choice Modeling

Choice modeling is one name for the general principle of creating models representing

(usually) preferences between attributes or about criteria, from data created from

comparing two or more designs or concepts. Other names describing this research area
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include: “discrete choice”, “stated preference” or “choice experiments” [138]. Since

the choice is often between two options, the term “binary choice” is also commonly

used [158]. The resultant model can effectively predict how a human will make

decisions and their individual behavior when given a choice between options.

Much of the recent theory on choice modeling is based on the work of Daniel

McFadden who received the Nobel Prize in Economic Sciences in 2000 for his work

on discrete choice [99]. Although McFadden’s work is expectedly founded in both

empirical and theoretical economic models, choice modeling has been applied to other

fields where choice and human behavior is an essential factor such as in occupational

positions, recreational activities or transportation mode choices [107].

Figure 11: The Choice Process (from [107])

A recent model representing the choice process is shown in Figure 11. In this

model, more inputs and outputs are evident than usually considered. Not surprisingly,

data or information (shown entering the model at the top) is a requirement in any

choice or decision-making process. Experience, on the other hand, is also a key
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input which is often couched in phrases such as “the art of design”, “subject matter

experts” or “tacit knowledge.” Time, training or experience with previous decisions

drive both preferences and perceptions through memory of previous choices. Whether

this “memory” is actual historical trends, previous designs or established precedence,

it influences how the data is perceived and what attributes or criteria are preferable.

The process itself will result in a choice, where the data (and beliefs about the data)

in combination with the preferences of the data or criteria are applied under the

constraints of time, money or other limitations. A number of outputs in addition to

the ultimate choice can be extracted from this process, namely attitude scales, stated

perceptions, stated preferences and revealed preferences.

Attitudes (i.e. attitude scales) are “stable psychological tendencies” to view or

consider an outcome approvingly or not, whereas perceptions are how one interprets a

particular stimulus cognitively [18]. Preferences, similar to attitudes, are a perspective

or measure of how one relates to a particular entity or criterion in terms of “like” or

“dislike.” Preferences can be rank ordered qualitatively or measured quantitatively

usually with utility, a level of satisfaction as viewed by the decision maker often

“correlative to Desire or Want” [100]. The preference for one attribute over another

attribute can be revealed in the utility or score of each attribute. For example, if a

decision maker receives more “utils” (i.e. general unit of pleasure or satisfaction) for

a low risk design than a low cost design, their stated preference would be for lowering

risk over lowering cost. However, since these two dimensions may not be independent

(i.e. low risk designs do not necessarily mean low cost designs), and furthermore

the utility could be a function of the magnitude of both of the measures, multi-

dimensional utility functions are required to evaluate the utility of any particular

design. For these multi-dimensional preferences, a utility function can be composed

of the summation (or other mathematical combination) of the individual utilities of

the various dimensions or objectives.
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CHAPTER IV

METHODOLOGY DESCRIPTION AND DEVELOPMENT

In order to satisfy the research objectives and to perform experiments that can answer

the various research questions and lend support to the related hypotheses, an overall

methodology has been developed which allows one to test the pertinent variables in

response to the motivating problem. The overall methodology with its two constituent

parts is described in the following sections. A brief description of each of the two main

parts is presented and then again in more detail of the specific steps.

4.1 Research Methodology Overview

The overall methodology discussed in this research is broken down into two major

elements, 1) the Air Mobility Operations-based Design Model (AirMOD), and, 2) the

Methodology for Multi-Agent Consensus Reaching on the Objective Space (MACRO).

Together these two components offer a unique solution in addressing the motivating

problem discussed in Chapter 1 to define the requirements of the fleet for a new

heavy-lift cargo air transportation system.

Figure 12 illustrates where these two components fall within the classic systems

engineering paradigm. After the need has been establish and the problem defined

(i.e. requirements definition for air mobility systems) with the associated value, the

set of possible solutions or alternatives, comprising a set of requirements, must be

generated as potential candidates answering the problem. These solutions are design

requirements or parameters which will drive future decisions within the acquisitions

process.

The evaluation of these designs is then performed using utility scores across the

operational metrics of interest. After a sufficiently large set of candidate solutions has
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Figure 12: Methodology Application Areas to the Generalized Decision-Making Pro-
cess

been generated and evaluated by AirMOD, the designs are passed onto the MACRO

methodology in which the multiple stakeholders or decision makers reach a consensus

on the design space in selecting a set of requirements for further investigation, testing

and analysis.

The following two sections briefly describes these two elements followed by addi-

tional descriptions and details of the steps in the MACRO methodology.

4.2 AirMOD Model Overview

The Air Mobility Operations-based Design Model (AirMOD) is in direct response

for the need of faster simulations to generate many more candidate solutions. With

increase computational power and advanced modeling techniques, decision makers

demand a better defined and characterized decision space. No longer are small data

sets with just a few potential solutions adequate for the ever-changing and uncertain

environments in which decision need to be made. Solutions which consider a variety of

input scenarios, parameters, initial conditions and constraints all must be simulated

and analyzed. Confidence in decision making can only come from a design or decision

space which is well defined and explored. Only then can a decision maker make a
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decision.

AirMOD provides an operational and logistical perspective to system engineer-

ing solutions by calculating mission success in terms of the time to close or deliver

certain total amounts of payload to various location throughout the world under dif-

ferent scenarios (discussed in more detail in later sections). For these operational

models, with multiple objectives and potentially many more input variables, many

simulations must be executed across the input space to increase the design space

characterization. AirMOD leverages advanced design methods and techniques in-

cluding surrogate models to execute each case much more rapidly compared to the

full simulation model.

With the implementation of surrogate modeling techniques, AirMOD can generate

a new solution every ≈3 ms, equivalent to about 1 million executions in less than 50

minutes. This in turn allows the identification of essential logistical and operational

trades that are impossible with classical tools. Only with enough design points or

solution can these trades and the associated Pareto fronts be explored and utilized in

more advanced decision making processes.

Finally, these trades provide key levers on the decision space in which decision

makers can utilize for making compromises and reaching consensus in group decision-

making processes. Without the capabilities of AirMOD, group decision making on

this air mobility operational design space would be severely limited with a higher

probability of decisions made with greater uncertainty and with less confidence.

4.2.1 AirMOD Process Flow

The AirMOD model leverages the process flow, shown in Figure 13, from the Strategic

Airlift Comparison Tool (described in more detail in the next chapter).

The discrete event simulation, written in SimPy [159], begins with all aircraft

within the predefined fleet at the Aerial Port of Embarkation (APOE) and ends when
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Figure 13: AirMOD Simulation Flow Block Diagram [From [142]

no more missions (i.e. no more cargo remains undelivered at the APOE) are required

and the last delivery has been completed.

The aircraft in turn are assigned a route type by the user, which defines the flight

path and the en route refueling locations if any. After the mission is flown, a delay is

applied to account for scheduled maintenance such that the utilization never exceeds

16 hours. The unscheduled maintenance is randomly applied through the break rates

parameter entered by the user and discussed in a later chapter.

During each mission (see the middle column of Figure 13), the sequence of events

will occur, updating each aircraft status, such as loading, waiting, repair, or other

operations, which are tracked and recorded for total up-time, down-time, flight hours,

etc. on a per aircraft basis and then summed for the fleet wide statistics. Additional

base operations occur within its subblock as indicated on the far right column of

Figure 13. These events include additional wait times for limited resources (e.g.
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depot or fueling stations, cleared runway), ground operations (e.g. time to refuel),

and repair times if a failure is identified and requires maintenance.

The output metrics include the times associated for these various categories and

ultimately rolled up to the metrics of interest including the total time to close the

mission, fuel consumption, flight hours, and actual fleet wide utilization values.

Since the model is stochastic in nature, multiple runs for each scenario is repeated

to obtain a distribution on the time to close, which then allows for appropriate statis-

tics on these same distributions. A design of experiments with 50000 cases covered

the design space was then executed with 1000 repetitions for each case. Neural net-

works were then employed to created the surrogate models which enable even faster

computation of the output space. These surrogate models are then applied by the

AirMOD model (with additional enhancements discussed later) to create candidate

C-X designs very rapidly. Each design, in turn, represents a potential set of require-

ments that meets the stated problem of multiple decision makers agreeing upon the

needs and requirements of a future air mobility system described in Chapter 1.

4.3 MACRO Methodology Overview

The Methodology for Multi-Agent Consensus Reaching on the Objective Space (MACRO)

responds to the other half of the problem to improve decision making within an op-

erational design space to increase transparency and quality of group decisions.

The MACRO methodology in the current research is broken down into three main

steps, namely:

• Step 1: Calculating Weighting Distributions

• Step 2: Extracting Power Relationships

• Step 3: Reaching Preference Consensus
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In Step 1, the focus is to obtain the preferences or importance weightings for

all criteria or objectives from each decision maker. The uncertainty in the decision

maker’s preferences are expressed as weighting distributions and are calculated from

the answers provided from discrete choices of pairwise comparisons of designs or

solutions. This step is directly in response to exploring and testing the Research

Question #3 and its complementary hypothesis, respectively.

Step 2 extracts the power or influence relationships between the decision makers.

Discrete choice experiments are again invoked to quantify the willingness of each de-

cision maker to form a coalition with others while potentially selecting a less desirable

design such that a trade between utility and partnership is realized. Research Ques-

tion #4 and Hypothesis #4 drive the creation of this step to obtain this data such

that later consensus reaching processes can be possible.

Lastly, Step 3 evaluates, through simulation, the expected region, both in the

preference space and later mapped to the design space, at which the set of deci-

sion makers are most likely to reach consensus. This model incentivizes cooperation

between decision makers, under the assumption that coalitions can be formed and

can exert greater power or influence over agents not part of a coalition. The second

research question and hypothesis will be addressed with this step in the methodol-

ogy, showcasing the overall feasibility of reducing the design space using weighting

distributions, power relationships and game-theoretic applications.

This overall process is called the methodology for Multi-Agent Consensus Reach-

ing on the Objective Space (MACRO). These three steps of the MACRO methodology

are visualized in Figure 14 with the set of candidate designs as the major input and

the subset or region of designs at which consensus is likely as the output, with the

complementary preference space region as well.
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Figure 14: Overview of the MACRO Methodology

A preliminary step, sometimes referred to as “Step 0” in later chapters of this

document, refer to the necessary processing steps of data or design points to create

a feasible sets of candidates upon which the methodology acts. Although it is not

a formal step in the methodology, it is addressed by the first half of the research

objective and fulfills a crucial prerequisite assumed to have occurred before Step

1. Its importance and requirements are addressed in the canonical and case study

problems in later chapters of this research.

The following three sections further expand upon and described in more detail the

aforementioned methodology step summaries.

4.3.1 Step 1: Calculating Weighting Distributions

The first major step is to calculate the importance weightings or preferences of each

decision maker on the various objectives as much as possible. Since there is un-

certainty in the level of importance each decision maker places on the objectives,

especially in group settings where changing opinions, or persuasion to differing view-

points can exist, the preferences are expressed as “weighting distributions” reflecting

the range of importance values or coefficients that the decision maker might apply

under a variety of conditions.

In the previous chapter, a discussion of some of the alternatives for extracting

this information (such as AHP or user-defined values) was discussed with some of

the limitations inherent in those methods. AHP can suffer from rank reversal and
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Figure 15: Flow Block Diagram of Step 1: Calculating Weighting Distributions

consistency issues. User-defined methods such as slider bars or other direct methods

might not produce a distributions from which preference changes are accounted. Also,

these methods are often scenario independent such that the decision maker is required

to assume some general or average scenario and assign weightings to it. Furthermore,

he or she will typically only look at small subsets of the multi-dimensional space and

never consider the global perspective with all dimensions in mind. To remedy these

concerns, a discrete choice experiment is implemented which does provide context

and allows the decision maker to interact with “designs” and not “partial designs”,

in the sense of only a subset of the design parameters.
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As shown in the block diagram of Figure 15, Step 1 begins by preprocessing

the candidate designs among which decision makers seek to cooperate in choosing

one design or set of requirements. This preprocessing, referred to above as Step 0,

prepares the designs such that it meets the necessary requirements for later phases

of the methodology. If necessary, quantifying the objectives that originally contain

qualitative data would be performed within this sub-step. For example, a “low-

medium-high” scale would necessarily need to be converted to numerical values (e.g.

1-3-5) if this dimension was to be included in some utility or valuation function for

later steps. However, the discrete choice experiments themselves could still make use

of the qualitative data, but numerically comparing various designs, a requirement for

the methodology, is still needed.

Once the full design space is prepared and available, the number of objectives to

include throughout the remainder of the methodology is defined. Ideally, the mini-

mum amount of objectives will simplify and accelerate the analysis, but guaranteeing

sufficient coverage in terms of the complete trade space of all essential objectives is

required. Various guidelines and processes have been suggested to either expand or

prune the list of necessary objectives [86].

With the dimensional size of the design space now defined, a set of all possible

weights for each objective or the set of all weighting vectors in n-dimensions can be

created at a particular resolution or discretization level. When n is large, the number

of discretization levels should be lower to reduce data memory requirements, but

higher resolved weighting vector can results in more precise weighting distributions.

Once the set of weighting vectors is defined, the one loop in Step 1 is entered

(shown in Figure 15) by selecting two from the pool of candidate designs for the first

discrete choice given to a decision maker. After the decision maker has responded,

the infeasible weighting vectors are removed from the preference space, and the valid

weighting distributions are updated.
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This is followed by an optional refinement step where, if needed, the discretiza-

tion level is increased for those areas of the preference space that are still valid and

additional weighting vectors are concatenated to the set of feasible weighting vectors.

This refinement step would likely only occur if very few designs or weighting vectors

remain feasible and expanding the preference set is essential for additional discrete

choice experiments.

The genesis or need for a refinement step was only developed after a recognition

of the fact that higher dimensional design spaces required ever increasing weighting

vectors to defined the objective space adequately. With sufficient computing power

and memory available, this step could potentially be skipped but is likely still neces-

sary for any problem of significant scope and with a large number of parameters or

objectives.

Regardless of the refinement step, the stopping criteria will either continue the

loop, where the next iteration of a discrete choice is provided to the decision maker

with the reduced set of possible weighting vectors, or exit the loop, and thus Step 1,

if the distribution of weighting vectors is sufficiently known or if time and resources

will not allow for any additional discrete choice experiments of the particular decision

maker.

Since each decision maker must respond individually to discrete choice experi-

ments, the loop is executed for each agent or stakeholder in the group. Furthermore,

each decision maker will have, potentially, a different stopping criterion. For example,

one decision maker might have time to answer as many as time permits, while another

may only desire to answer 5 or fewer. This is discussed further in later chapters with

experiments to quantify the effects of differing stopping criteria.

Of course, with a different number of discrete choices for each decision maker,

the certainty on the weighting distributions will be expectedly different. Although

the methodology does not require equal amounts of certainty across decision makers,
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performance, measured by the relative “size” of the consensus region, is improved with

less uncertainty. The following chapter will further explain and provide examples and

analysis regarding these differences.

4.3.2 Step 2: Extracting Power Relationships

The second major step in the methodology is to obtain the power relationships from

discrete choice experiments. This step makes use of the weighting distributions from

Step 1 and is presented in an outline form in Figure 16.

Similar methods are available to extract this information as from Step 1 (e.g.

AHP) but with the same limitations and issues. Since the information about the

influence between decision maker can be highly sensitive, a method to extract these

relationships while still allowing each decision maker to be comfortable with the

provided information is requisite. Furthermore, a desire to use similar processes from

before in Step 1, namely discrete choice experiments, such that the decision makers

are not required to learn an additional technique for the current step. This not only

encourages comfort with the process due to familiarity, but can also help in facilitating

the speed at which responses are elicited.

Step 2 commences by defining the relationships which will be extracted from the

set of discrete choices to be responded by the decision makers. Since a decision

maker will possess a power relationship with all other decision makers, the set of

power indices or relationships for all combinations can be defined with various power

constraint equations, expressed in a matrix, A. The solution, x, to the system Ax = b

constitutes the relationships sought within this step.

Defining the right hand side b vector remains as the focus for the remainder of

Step 2. Initially, it assumes large uncertainty, which is reduced after decision makers

respond to various discrete choices about what designs and with whom they are more

likely to form a coalition. Each response to a discrete choice will narrow the range of
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Figure 16: Flow Block Diagram of Step 2: Extracting Power Relationships

a particular element in the b vector and once the range is sufficiently narrow, Step 2

solves the system of equations multiple times to obtain a distribution or range of the

power relationships as the output.

Depending on the maximum desirable b vector range, and on the number of deci-

sion makers, the number of discrete choice experiments necessary to satisfy the system

will vary. However, a sufficient number of repetitions of the loop from one or more

decision makers within Step 2 of Figure 16 is required to make Ax = b solvable such

that A is invertible. If more equations than unknowns are provided, a linear least
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squares approach to solving the system is available as indicated by the dashed line

and block in the bottom left of Figure 16.

4.3.3 Step 3: Reaching Preference Consensus

The last major step of the methodology is obtaining the consensus region within

the preference space and mapping those to the designs space to identify the set of

designs which the group of decision makers are most likely to accept based upon their

individual weighting distributions and power relationships and illustrated in Figure

17.

This step’s origination comes from the requirement that to avoid many of the

negative effects described by Arrow’s Impossibility Theorem, if all decision makers

are united in their preference structure then no conditions of fairness are broken.

Furthermore, an assumption that consensus is reached intermediately before the final

design or requirements are accepted by all parties. Coalitions are formed between

decision makers and then these coalitions form super coalitions and so on until the

full group consensus.

As explored in the previous chapter, voting techniques were first considered for

consensus reaching but rejected due to a number of limitations, underscored by Ar-

row’s Impossibility Theorem and described in more detail in the appendix. Analysis of

other techniques including game theoretic approaches were more promising with the

sequence of specific cooperative games considered including the Prisoner’s dilemma,

the Snow Drift game and the Ultimatum Game, the latter which offered the best

attributes for the specific problem of bilateral and intermediate consensus reaching

stages.

The two sets of data, individual weighting distributions and power relationships

from steps 1 and 2 respectively, are inputs to a simulation of multiple executions of

the ultimatum game which provides the region of consensus between only between
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Figure 17: Flow Block Diagram of Step 3: Reaching Preference Consensus

those decision makers (or coalitions of decision makers).

This new consensus region becomes the preference or weighting distribution of the

newly form coalition. Similarly, the power relationships are updated between decision

makers and the coalitions.

If there is only one coalition (i.e. the group is now all in agreement), the group

preferences are applied to the design space and Step 3 is complete, with the group

consensus region defined.

If there remain two or more decision makers or coalitions, the process is repeated
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by selecting two of them, and repeating the ultimatum game simulations between the

individuals or coalitions.

Since the order of how coalitions are formed can have some impact in the final con-

sensus region, Step 3 can be repeated multiple times, if desired, to obtain a superset

of designs that could be agreed upon, from a variety of coalition-forming sequences.

Lastly, variations on the simulation parameters are possible such as increasing

one’s propensity to accept proposals in later stages of the overall, simulation, coali-

tion forming process. Likewise, a group themselves could have greater influence over

a smaller group depending on the relative group sizes. The constituent group mem-

bers would still drive the consensus process but a multiplier effect could be enabled

to model other types of pressure such as going along with the majority (but not

necessarily with a majority of the power).

4.3.4 Summary of the MACRO Methodology

The three major steps of the overall MACRO methodology are combined in Figure

18 to show some of the key interfaces between the steps.

These data and other methods will be described in more detail with examples in

following chapters.

As with all model and methodologies, the extent of applicability is limited and

implementing the MACRO methodology is no exception. However, at least three

ways have been identified in which MACRO could be used:

• By an outside analyst attempting to forecast which design requirements a

group of decision makers will select and study the potential outcomes from

such predictions. In this use case, the analyst must make assumptions about

how the various stakeholders will respond to discrete choice experiments on the

design space. This is a possible source of uncertainty but can still reduce the

set of potential designs if assumptions are founded on historical data or other
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Figure 18: Flow Block Diagram of the MACRO Methodology
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reasonable trends.

• By one of the individuals in a group attempting to identify the sensitivity

of the consensus region with or without their cooperation. In this way, MACRO

would be used as a type of meta-decision making tool, allowing an individual

to prepare more for eventual discussion and negotiation which may take place

between parties. Not only understanding the design space, but also exploring

the group dynamics through MACRO can better prepare and individual for

future interactions in decision meetings.

• By the full group willing to implement the methodology to accelerate the

potentially lengthy consensus reaching process. In this use of MACRO, all

decision makers are willing to respond to a sufficient number of discrete choices,

such that preferences structures and influence relationships are defined, and are

willing to work through the entire methodology to, at minimum, observe the

set or region of solutions at which the model predicts high rates of consensus.
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CHAPTER V

DEVELOPMENT AND IMPLEMENTATION OF AIRMOD

The current chapter summarizes and describes the first element of the overall method-

ology in response to the first half of the research objective. This element in the

methodology generates the alternatives necessary for design down selection and, in

turn, the requirements definition phase for future air mobility systems. The data

created by this model enables the MACRO methodology, discussed in the following

chapter, for consensus reaching in performing the group goal of defining the require-

ments expeditiously with increased transparency.

5.1 Air Mobility and Operations Design Model (AirMOD)

The Air Mobility and Operations Design Model (AirMOD) makes use of the underly-

ing surrogate models previously developed in 2010 at the Georgia Institute of Tech-

nology as part of the Strategic Airlift Comparison Tool (SACT) project for Lockheed

Martin’s analysis on C-5 fleet logistical comparisons. However, no Lockheed Martin

data from these efforts are included in the following sections and references to C-5

data, trends, and costs are publicly available and cited accordingly.

5.2 Strategic Airlift Comparison Tool (SACT) Description

The Strategic Airlift Comparison Tool (SACT) allows one to make comparisons be-

tween two platforms, namely the C-5A and C-5M, in a variety of scenarios across

logistical and operational output metrics.

A screen shot of the tool at initial start-up, and before the user or decision maker

has entered any scenario or comparative data is shown in Figure 19.

Inputs and assumptions such as Aerial Ports of Embarkation (APOE), Aerial
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Ports of Debarkation (APOD), en route refueling locations and other mission scenarios

parameters are defined on the left hand side of the tool. The right hand side is reserved

for displaying the mapped scenario and feasible airfield locations and mission city-

pair, in addition to the output metrics of interest such as the time to close the mission,

fuel consumption, flight hours, etc.

Figure 19: Screen Shot of Strategic Airlift Comparison Tool After Initial Start-up

In terms of layout, each input or output subgroup is designated by an outline

box and associated blue triangle in the top left corner. Each outline box will contain

particular controls to define the scenarios or other parameters, such as mission payload

or fleet size. Using the JMP R©1 standard toolbar, the SACT layout can be readjusted

1JMP is a statistical software package developed by the SAS Institute with advanced visual
analytics capabilities
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for different users or audiences by resizing, closing, and/or cloning various outline

boxes. As a user or group interacts with SACT, different analyses can be executed or

suppressed depending on preferences and specific perspectives such as performance,

financial or political. Some of these boxes and analyses are further described in detail

in the following sections.

5.2.1 Mission Scenario Inputs

The scenario and associated parameters are entered inside the Mission scenario outline

box. An APOE and APOD is selected through a map or list box interface, followed by

a total mission payload. Many parameters are defaulted at start-up such as the fleet

size of 10 for both platforms. These parameters satisfy the requirements of surrogate

models to calculate the logistic output metrics.

5.2.2 Aerial Ports

A variety of methods are available for entering the APOE or APOD desired locations.

Selecting the airfield directly on the map, filtering based on country or airfield name,

followed by accepting the selected airfield by clicking the button labeled “done,” are

all valid ways to select an aerial port to define the scenario. Similar processes can

be performed for selecting the en route or retro en route locations as well. Figure 20

shows one example of filtering to show only airfields in Germany.

5.2.3 Type of Payload and Loading Curves

An option to select the type of payload, such as Pallets or various Combat teams, is

available within SACT to analyze the operational metrics that would be required for

specific missions. A custom payload option can be adjusted for additional types of

payload not listed in the drop down menu.

Each of the payload types will have an associated loading curves displaying the

efficiency of the total carry capacity for the loads on average. For example, the C-5
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Figure 20: Selecting an APOE in SACT

only has a certain number of tie-down locations such that a limit of 36 pallets can

be carried [175]. Thus, certain payloads will not allow the platform to use the total

payload carrying capacity due to volume, called a “cubed-out” condition. Figure 21

shows the loading for such a payload where the average payload per flight will plateau

even if larger payloads are possible.

Figure 21: Loading Curves in SACT
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5.2.4 En Route Location Selection

Since some scenarios include an APOE-APOD airfield pair with distances too far for

C-5 platforms to reach directly, the option to include en route refueling can be applied.

Also, some scenarios might be valid with very small payloads but at such small values

to suggest infeasible operational modes. A threshold can be set to constrain the

smallest payload possible within a scenario. Stopping over to refuel can open up the

operational space at a cost of maintaining that base and the time lost for refueling.

Thus, the main SACT objective to compare the two assets can include, not just

“what” but “how” the platforms deliver cargo with potentially different flights paths

used.

5.2.5 Payload-Range Curves

The Payload-Range (PR) Curve is the main performance differentiator between the

two platforms, the C-5A and C-5M. Figure 22 illustrates the two notional PR curves

for the two platforms. For the specified APOE-APOD distance around 3700 nmi,

the C-5M has a carrying capacity of about 20000 lbs greater than that of the C-5A.

This will equate to difference in output metrics discussed later. Similarly, at different

scenarios the point at which both platforms will lie on the PR curve will update in

real time when using the tool. Lastly, at different ambient APOE temperatures, the

performance and thus PR curves will change accordingly, which can also be entered

in by the user.

5.2.6 Allocated Fleet Size

Comparing the platforms within a fleet is also available within SACT. Adjusting

dynamically the fleet size of one or both of the platforms will result in an appropriate

increase or decrease in the time to close the mission and the other output logistics

metrics. An interactive bar chart shown in Figure 23 shows the current fleet sizes

used as input parameters to the operational surrogate models. Users can click and
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Figure 22: Notional Payload-Range Curve for the C-5A and C-5M

drag the bars based on potential and expected fleet sizes to analyze the impact of a

larger (or a smaller) number of aircraft on the metrics of interest.

Figure 23: Fleet Size Bar Chart for the C-5A and C-5M

5.2.7 Aircraft Break and Repair Times

The break rate and repair times of the two platforms can likewise be updated in

real-time and the output’s sensitivity to these input parameters can be investigated.

A user specifies the probability, in terms of a percentage, that each aircraft will be

found to be non-mission capable due to a broken part, and the distribution of time

required to repair those parts as shown in Figure 24.
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Figure 24: Break and Repair Rates for the C-5A and C-5M

5.2.8 Global Reach and Airfield Locations

The mission scenario is visualized in a Global Reach outline box (shown in Figure

25) which has a number of useful capabilities as well. Comparing or contrasting

the number of airfields that each platform can reach flying direct with the same or

different payloads can be applied. Furthermore, airfields only with sufficiently long

and wide airfields can be shown by filtering out those runways that are too short and

narrow for C-5 aircraft. Lastly, coloring the airfields with additional meta-data can

be performed within this outline box such as elevation or other airfield attributes.

5.2.9 3D Flight Paths

Comparing different flights paths to identify the benefits of different en route refueling

locations can be performed within the tool and projected on a 3D globe as shown

in Figure 25. This capability allows the user to explore additional dimensions with

the system such as political ramifications from requirements to enter various the

airspaces of foreign nations. In Figure 25, three different ways are compared in

delivering payload to a notional scenario in India from the continental US. The first

employs a direct path while the other two have refueling stops in Europe. Some of the

countries over which the flight paths extend may not allow US aircraft to enter their

airspace, and thus the penalty in terms of the operational metrics can be identified
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Figure 25: Map Display of Scenario and Airfields Reachable by Each Platform at
Specified Payloads
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when selecting those scenarios.

Figure 26: 3D Flight Paths of Three Scenarios

5.2.10 Number of Days to Close and Other Output Metrics

The number of days required to close a particular mission scenario and the uncertainty

in that value (via the standard deviation) is presented as a distribution in the output

metrics outline boxes. For a fleet size of 11 aircraft for both the C-5A and C-5M

respectively, the output metrics are displayed on the right hand side of the tool

shown with an example of notional output, in Figure 27.

The distributions of the time to close indicate the expected, best and worst times

that the surrogate models calculate a scenario mission can be complete. The standard

deviation of the distributions will be functions of the break and repair times as entered

by user. The logistics metrics include the cost and amount of fuel consumed for the

entire mission as well as the total flight hours and the utilization. In the particular

example presented in Figure 27, the C-5M fleet close the mission in about 10 days

faster than the C-5A fleet. Furthermore, employing C-5M’s instead of C-5A would
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Figure 27: Time to Close and Other Output Metrics from SACT
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save about 5$ million in fuel cost and over 300 flight hours. Lastly, the aircraft

themselves would be used more at a higher utilization value due to a more reliable

aircraft platform in terms of both break rates and repair times.

5.3 AirMOD Enhancements to SACT

In developing experiments for testing and investigating Hypothesis #1, the AirMOD

platform builds upon the basic functionality of the SACT tool by allowing for batch

mode capability enabling fast Monte Carlo (MC) simulations across scenarios, fun-

damental design parameters (through the payload-range curve), and reliability con-

ditions. The output metrics, including the mean and standard deviation of the time

to close the mission, total fuel consumption, utilization, and total flight hours, have

been maintained from the original surrogate models with necessary changes to the

underlying assumptions such as the threshold for the minimum payloads and fuel

reserve requirements, which are both variable in AirMOD.

Within this updated platform, the comparative analyses are no longer performed

between the C-5A and C-5M models but between different designs (designated as C-X)

from the combinations of inputs and output metrics. Furthermore, large numbers of

MC simulations can be quickly performed to cover the potential design and operation

space for Pareto frontier extraction and eventual decision-making activities examined

by the other research questions and hypotheses.

5.3.1 AirMOD Scenario Definition

A subset of the thousands of SACT airfields possible was down-selected to provide a

manageable set of city-pair combinations for application within the AirMOD model.

These 25 bases or cities are listed in Table 2.

These airfields were primarily selected based on their relative locations such that

most regions of the earth are considered in the possible city-pair scenarios, with

an accompanying wide range of distances. Many of the locations coincide with an
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Table 2: Subset of Locations Used in AirMOD

1 Al Dhafra Air Base 14 Lima
2 Bombay 15 Manila
3 Cairo 16 Mexico
4 Cape Town 17 Moscow
5 Dover Air Force Base 18 Ramstein Air Base
6 Eielson Air Force Base 19 Rota Naval Base
7 Incirlik Air Base 20 Santiago
8 Jakarta 21 So Paulo
9 Joint Base Pearl Harbor-Hickam 22 Sydney
10 Joint Base San Antonio 23 Transit Center at Manas
11 Kandahar Airfield 24 Travis Air Force Base
12 Kunsan Air Base 25 Yokota Air Base
13 Lagos

existing air base currently shared or used by U.S. military forces. Lastly, some city

centers with large populations were included which often contain a relatively large

airfield (longer than 11000 feet), such that most designs with a TOGW larger than

the maximum TOGW for C-5 aircraft are still feasible. These cities would likely

serve as the main service ports for major humanitarian efforts or as a supply base for

regional conflicts.

The 25 locations are illustrated geographically in Figure 28, overlaid onto a world

map shaded in gray.

Figure 28: 25 Locations Available for Scenario Definitions

With 25 locations, the 600 (i.e. 25x24) city-pair or APOE-APOD combinations
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(Aerial Port of Embarkation -Aerial Port of Debarkation combinations) cover a variety

of distances and latitudes/longitudes for each flight path. The great circle distance

between each city pair is projected onto the same world map in Figure 29.

Figure 29: Great Circle Distance and Flight Paths from all 600 APOE-APOD Com-
binations Projected onto a World Map

With the projected great circle distances, airspace analysis for non-ally countries

is also available within AirMOD with an example presented in Figure 30 where the

countries whose airspace is entered during the great circle flight path are highlighted

in red.

Figure 30: Great Circle Flight Path from Dover Air Force Base to Kandahar Airfield
with highlighted countries with airspaces entered

Lastly, a histogram of the distances between the 600 APOE-APOD combinations

is shown in Figure 31, indicating that for a large percentage (30%) of APOE-APOD
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combinations the range exceeds 7000 nmi (the maximum range for C-5 without cargo

[175]). These combinations, of course, would necessitate stopping over en route for

refueling, and similarly for all shorter distances when sufficiently large payloads are

transported.

Figure 31: Great Circle Flight Path Distances for all 600 APOE-APOD combinations

For these more constraining cases, such as with higher payloads, initial filtering can

be applied to the set of APOE-APOD combinations to investigate possible scenarios

with other cargo weights (or even with other aircraft platforms) as shown in Figure

32 where only distances less than 3250 nmi are indicated.

Figure 32: Great Circle Flight Path Distances for all APOE-APOD combinations
with distances less than 3250 nmi

To account for refueling en route (or “retro” en route) AirMOD has 4 distinct

types of scenarios with which to perform simulations:
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• Type 1: Direct flights, no en route or retro en route refueling

• Type 2: En route and retro en route refueling occurs at the same location

• Type 3: En route refueling occurs with direct return flight from APOD to

APOE

• Type 4: Refueling at en route and retro en route locations occur at different

locations

The four modeling types are visualized in Figure 33. Although numerous addi-

tional types of combinations are possible (e.g. multiple en route refueling locations),

these four types are sufficient in exploring the design space while requiring the given

C-X platform to fly at the extremes of the payload range performance capabilities.

Figure 33: AirMOD Modeling Types: Type 1 (top left), Type 2 (top right), Type 3
(bottom left) and Type 4 (bottom right)

Another key parameter considered part of the scenario definition is the total mis-

sion payload. This is expectedly dependent on the mission type (e.g. humanitarian,

regional conflict) but to test the high carrying capacity of the heavy airlift cargo

aircraft, large total mission payloads are entered. A uniform distribution from 10 to
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30 million pounds of cargo is used in randomly creating the scenarios’ total mission

payload in MC simulations.

Finally, to complete the scenario definition required for model simulation, the

total number of aircraft (i.e. fleet size) can vary in a similar fashion with a random

uniform distribution anywhere from 1 to 60. This maximum value of the range was

selected based on the maximum total mission payload of 30 million, and the expected

maximum C-X cargo per flight (i.e. ≈350000 lbs, larger than the C-5’s 270000 lbs

[175]), for 86 total flights. With more than 60 aircraft, this approaches an impractical

level, where most of the aircraft would fly only one or two trips and be underused (or

unused) a majority of the time.

5.3.2 Payload-Range Curve

A payload-range (PR) curve is used to define the model’s multiple C-X designs from

a capability stand point. AirMOD will then use this design (via a PR curve) to

calculate the expected payload per flight, based on the scenario type, for further use

as inputs to the associated discrete event surrogate models.

Four parameters can be entered (or randomly selected in MC simulation mode) to

characterize the PR curve, namely, 1) the maximum take-off gross weight (MTOGW),

2) the maximum range at MTOGW, 3) the ambient temperature, and 4) the reserve

fuel. A fifth parameter, the minimum or threshold payload at which the model will

not execute or fly the missions, can be likewise set. This input represents the payload

at which it is no longer practical to fly from APOE to APOD due to an extremely

long distance. For example, a C-X may be able to transport a small 10000 lbs payload

per flight a distance of 7000 nmi without refueling, but for any substantial amount

of total mission payload (20 million lbs) the cost of transporting the total amount in

such small “chunks” far outweighs the benefit of not stopping to refuel.

For the scope of this current research, and to make use of the surrogate models,
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the range of possible C-X transport capability is set to generally match that of the

C-5 with slightly larger payloads. The range of the MTOGW is simulated between

a range of 250000 and 350000 lbs (i.e. up to 30% more payload than the C-5). The

distance for the MTOGW condition is similarly sampled but in a range from 2500 to

3500 nmi. Beyond this distance, the payload begins to be traded for longer ranges.

The third parameter, temperature, can negatively impact the capability by reducing

the MTOGW and therefore the payload for a given field length and elevation. The

data and related surrogate model calculating this trend was less accurate and thus

this parameter was defaulted to 10◦C so that comparisons were consistent for all

model runs. The fourth and fifth parameters, reserve fuel and minimum payload,

were similarly defaulted to 10000 lbs and 25000 lbs respectively, since these were

considered policy based decisions (i.e. safety policies and operations practicality) and

need to be consistent across all designs.

Figure 34: One Randomly Generated PR Curve with distance and payload at specified
design point (left), Multiple PR curves from MC simulations (right)

The right hand side of Figure 34 shows 1000 randomly generated PR curves from

the associated MC simulations of the aforementioned parameter distributions. Each

PR curve represents a different design which the operational model will employ to cal-

culate the logistical metrics within the particular scenario. (One such design example

is shown in the left hand side of Figure 34).
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5.3.3 Reliability and Repairability Inputs

The current model incorporates five different reliability and maintainability parame-

ters which impact the availability of the aircraft.

The first, called the break rate (expressed as a percentage), defines the proba-

bility that any one flight will be delayed due to part failure, and will thus require

maintenance crews to investigate and perform repair or part replacement operations.

The break rate is effectively the inverse of reliability in that an aircraft with high

reliability will possess a low break rate. The range from which the MC simulations

generate the break rate values is between 0 and 60%, which covers a wide range of

reliabilities, including a current estimate of the C-5’s mission capability of 55% to

60% [174] (or converted to break rates near 40-45%).

The next four parameters define the likelihood or probability of time required to

repair/replace parts once an aircraft is identified as non-mission capable and together

these four parameters will sum to 100%. Each of these four percentages (p) specifies

the probability that repairs will require one of four time periods (ti, i = 1...4): 0-4

hours when i=1, 4-12 hours when i=2, 12-24 hours when i=3, and 24-72 hours when

i=4. For example, if these four percentages (pi, i = 1...4) are 35%, 25%, 30% and

10%, respectively, on average 35% of the flights that are non-mission capable will

require an additional 0-4 hours of time delay to diagnose the problem, repair/replace

parts, etc. Within the model, a uniform distribution within that time period (e.g.

[0,4] hours) will be sampled for the actual simulated repair time.

These four parameters are further combined into an overall expected time to

repair by calculating the weighted sum of the four categories of time periods. In

the example listed above the expected time to repair would be: te =
∑4

i=1 pit̄i =

0.35(2)+0.25(8)+0.30(18)+0.10(48) = 12.9 hrs. On average, with all else being held

constant, scenarios with identical te can be expected to produced similar responses,

therefore only this expected time will be used to reduce 5 parameters down to 2 for
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design display and discrete choice experiments.

5.3.4 Model Inputs and Outputs Summary

A summary of the AirMOD model inputs and outputs metrics is presented in Table

3. Although the scenario is defined with two (or more) locations, these inputs are

converted to great circle distances which is ultimately used in the model calculations.

In a similar fashion, the AirMOD model will use the PR curve to extract the particular

operations point (based on the most constraining leg and distance of the scenario) to

calculate the intermediate payload per flight variable used in the surrogate models.

The output metrics are also used as intermediate values and processed in various ways

as discussed in more detail in the next sections.

Table 3: Summary of AirMOD Input and Output Variables

Variable Name/Category
Input or
Output?

Range/Values Units

APOE (Scenario) Input (Lat, Long) degrees
APOD (Scenario) Input (Lat, Long) degrees
En Route (Scenario) Input (Lat, Long) degrees
Retro En Route (Scenario) Input (Lat, Long) degrees
Type (Scenario) Input 1, 2, 3, 4 -
Total Mission Payload (Scenario) Input [10,30] lbs (millions)
MTOGW (PR curve) Input [250000,350000] lbs
Range at MTOGW (PR curve) Input [2500,3500] nmi
Break Rate Input [0,60] %
Expected Repair Time Input [2,48] hrs
Number of Aircraft Input [1,60] -
Mean Time to Close Output - days
Std. Dev. Time to Close Output - days
Fuel Consumption Output - lbs
Utilization Output 0-24 hrs/day
Flight Hours Output - hrs

5.4 Tradeoff Analysis

With the input ranges defined in the previous section, investigations into the available

trades are necessary to identify the dimensions or factors across which decision makers
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will have different preferences.

Initially, only 40000 simulations were executed within the AirMOD model, 10000

of each type, to obtain a high level, or cursory summary, of the relationships between

the various inputs and outputs.

Figures 35 and 36 show some of the most important input parameters versus the

output metrics of interest, namely, Mean Time to Close (MTTC), Standard Deviation

of the Time to Close (SDTTC), Total Fuel Consumption, Total Flight Hours, and

Utilization. In Figure 35 all four types (i.e. Type 1, 2, 3, and 4) are included with

Type 1 colored in red, Type 2 in green, Type 3 in blue, and Type 4 in orange.

Since some of the points are occluded by each other in this figure, a filtered data

set (presented in Figure 36) shows the same data but only for Type 1. Many of

the same relationships were observed in each of the four types and thus observations

about Type 1 trends and relationships can often be applied to the other three types

unless otherwise specified. The individual subplots from Figure 36 are discussed in

the succeeding figures in more detail.

Firstly, in Figure 36, the most visible trade is found between the payload per flight

and the two outputs of fuel consumption and total flight hours. This is expected since

flying with smaller payloads (perhaps due to “cubing-out” conditions) still requires the

same flight hours (under the assumption of equal block speeds) and thus operational

flight hours are closely correlated to the fuel consumption. In fact, this particular

relationship is tied to many of the trades discussed in this section. That is, larger

aircraft which can carry larger payloads can potentially decrease the total amount of

fuel consumed for some conditions. On the other hand, many smaller vehicles may

consume more resources (in addition to fuel) since more flight hours, crew members,

hangar locations, etc. are necessary, albeit they are all individually smaller or less

fuel consuming compared to a larger vehicle. This, of course, is the financial and

operational motive behind mass public transportation.
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Figure 35: Scatterplot Matrix of various Input Parameters to Operational Output
Metrics for All Types
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Figure 36: Scatterplot Matrix of various Input Parameters to Operational Output
Metrics for Type 1. Individual subplots are discussed in Figures 37 through 45
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5.4.1 Trades Involving Mean Time to Close

From Figure 36 another trade readily visible after zooming in on the range, is the

Number of Aircraft versus the MTTC. Expectedly, more resources available (i.e. the

number of aircraft) will help complete the mission more rapidly. Figure 37 shows a

MTTC range from 0 to 50 with the full range of Number of Aircraft, 1 to 60, broken

out by the four types, as compared to the equivalent top left subplot in Figure 35.

Figure 37: Number of Aircraft versus the MTTC Subdivided by Type

Operationally, the optimal strategy for this sub-trade is to minimize both the

MTTC and number of aircraft. The minimization of these two objectives is inversely

related. For example, increasing the number of available aircraft would decrease the

MTTC, with the opposite result from decreasing the Number of Aircraft. The set of

non-dominated points, which form the Pareto frontier, are found along the bottom

left side edge in each of the four scatterplots of Figure 37. No points, designs or

solutions exist to the left or below this frontier.

However, since only two of the multiple dimensions are shown in Figure 37, this
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edge is only a local Pareto frontier, and does not consider the influences from ad-

ditional design or scenario variables. For example, focusing only on the Type 1

simulations, with an additional 1 million model runs, the simulations result in the

two graphs of Figure 38 after processing.

Figure 38: Number of Aircraft versus the MTTC for Type 1 with highlight Pareto
frontier (left), Pareto frontiers of the same design space for various Mission Payloads
(right)

The exact same relationship is found between MTTC and Number of Aircraft

with the Pareto frontier designated with the black line as found on the left hand side

of Figure 38. The points have been colored according to the total mission payload

for the particular scenario.

For each integer value for the Number of Aircraft, the time to close increases for

larger mission payloads, with the dark red points representing the largest payloads.

This intuitively satisfying result visually reveals a similarly shaped edge separating the

color bands of mission payloads. These edges represent the “set” of Pareto frontiers

across this dimension and are part of the higher dimensional Pareto frontier which

also includes the mission payload scenario parameter.

These are shown more explicitly in the right hand side of Figure 38, where the

minimum MTTC or minimum Number of Aircraft (when the other is held constant)
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for a given mission payload range is indicated.

Of course, Figure 38 shows only three of the multiple dimensions. The dimensional

space of the true Pareto frontier is much higher. For example, breaking out the points

into the same five categories of Total Mission Payload results in Figure 39. This shows

the thick band of impacts that other variables may have above the Pareto frontier

(black lines) for each mission payload category.

Figure 39: Number of Aircraft versus the MTTC for Type 1 with highlighted Pareto
frontiers for each Mission Payload Category

Coloring the same points, not by Mission Payload, but by the size of the aircraft

(i.e. by Empty Weight or Payload per Flight) as shown in Figure 40 more clearly

shows that not only does the total mission payload affect the time to close but the

carrying capacity of each of the aircraft. Not surprisingly, the MTTC is smaller with

larger fleets of large aircraft.

An interesting feature is also observed in the lowest Mission Payload category
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Figure 40: Number of Aircraft versus the MTTC for Type 1 with highlighted Pareto
frontiers for each Mission Payload Categories and colored by Empty Weight
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of Figure 40. The Mean Time to Close does not continually decrease after about

25 aircraft are employed to transport the cargo. For these cases, an excess number

of aircraft are available. For example, if a fleet consists of 50 aircraft, and each

can transport a payload of 250000 lbs, a 10 million pound total mission payload is

transported with just 40 aircraft with one flight each while 10 aircraft are not used at

all. This effect is, of course, more dramatic with larger aircraft in a large fleet with

a scenario involving a small mission payload, but the shape of the Pareto frontier

is consistent with this expected behavior. The minimum mean time to close is also

readily shown by the lowest point in this same category. Regardless of how many

additional aircraft are used, the time to close a mission cannot be faster than the

actual trip time (with associated loading delays, airfield constraints, etc.) for one

flight for every aircraft required to deliver the full mission payload.

Returning to Figure 37, comparing the local Pareto frontier for each of the four

types shows another observation that could be predicted from the “Type” definitions

above. Across all the combinations of high-level design parameters and scenarios, the

MTTC is lowest for Type 1 followed by Type 3, Type 2 and Type 4, in that order.

Stopping to refuel twice, en route and retro en route, (i.e. for Types 2 and 4)

will clearly take more time than Type 1 or 3 which has no refueling stops on the

return flight and only one stop en route for Type 3. For small distances, Type 1

will dominate Type 3 in terms of time to close especially if distances are below the

maximum range at maximum payload. However, at certain distances, the benefit to

stopping over en route for refueling allows each aircraft to fly at a larger payload

per flight, which may “make up” for the time lost due to refueling and other delays

associated with the en route stop (e.g. delays associated with descending, taxing,

taking-off, ascending, etc.). Furthermore, not every en route location will be directly

along the great circle path between the APOE-APOD combination and therefore time

and fuel are lost in traveling to those “off-direct-path” locations. Still, flying direct
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over a long distance with small payloads may be less efficient, more time consuming,

or more costly depending on the scenario.

This trade is partially shown in Figure 41. The points are colored based on the

distance between the APOE and APOD. For long distances (dark red), only Type 2

and Type 4 are able to achieve the missions since the aircraft would be unable to fly

directly there (for Type 1) or back (for Types 1 and 3).

The MTTC is much better (lower) for Type 1 and 3 but for any specific APOE-

APOD combination with a large great circle distance, these types are not feasible.

However, the general trend, even across all types, that a smaller payload per flight

results in a longer time required to close the mission is evident. Lastly, no points

are seen below the constraint imposed upon the model with a practical limit of a

minimum payload per flight of 25000 lbs.

Figure 41: Payload Per Flight versus MTTC subdivided by Type, colored by Distance
between APOE and APOD

5.4.2 Trades involving the Break Rate

Another interesting trend visible in the scatterplot matrix of Figures 35 of 36 is that

between the break rates and the standard deviation for the time to close (SDTTC).
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The same scatterplot, broken down by type, is shown in Figure 42. The overall behav-

ior is consistent with expectations that when the break rate is higher, the SDTTC is

likewise higher. An increased chance that an aircraft requires repairs for every flight,

and the associated delay for the time to repair, will result in a wider spread in the

distribution of the time to close output metric.

Type 1 performs the best among the 4 types, but with the aforementioned qualifier

that many of these points are for shorter distances. The explanation for Types 2 and

4 performing the worst is found in the large number of take-off and landings for en

route and retro en route refueling stops. This equates to additional chances for a

break to occur, based on the parameter assumptions of the model, and will result in

more delays for the time needed to repair or replace parts.

Figure 42: Break Rate versus SDTTC subdivided by Type

Investigating the impact of break rates and mission payload on the MTTC, is also

interesting. In Figure 43, the points are subdivided by Type and also by Mission

Payload. Each subplot shows an increase in the MTTC as the break rate increases to
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different degrees. A similar trend of Break Rate with SDTTC is seen with the MTTC

metric, in that the larger the payload, the larger the number of flights are needed,

and thus a larger number of chances to break down, resulting in a longer time to

close the mission. As before, Types 1 and 3 are superior to Types 2 and 4 for similar

reasons discussed previously and shown most explicitly in the lower graph of Figure

43 which presents the minimum MTTC for each Type and for each Mission Payload

category.

5.4.3 Trades Involving Fuel Consumption and Flight Hours

The third and fourth rows of Figures 35, fuel consumption and total flight hours, are

quite similar since a key intermediate variable used in the calculation for fuel is the

flight hours for each leg of the mission.

The graph on the left hand side of Figure 44 shows the payload per flight versus

the total flight hours with the points colored by the total mission payload, similar

to the payload per flight versus the MTTC figure earlier (Figure 41). Being able

to visualize all of these relationships for the four types on the same graph without

occlusion (as shown on the right hand side of Figure 44) can be accomplished by

normalizing the total flight hours by the total mission payload. The new output,

“Flight hours per Million Pounds”, is more useful in comparing scenarios that differ

in terms of the mission payload. Since larger mission payloads would clearly require

more flights and thus more flight hours, the ratio between these two metrics allows

one to compare across the types in some situations. For example, the right hand side

illustrates that, in terms of flight hours and payload per flight (i.e. a surrogate for

the size of the aircraft), a Pareto frontier exists upon which decision makers can trade

between these two objectives, independent of the mission payload. It also shows the

similarity between Types 2 and 4 in at least these two dimensions. Of course, fuel,

which is, again, highly correlated with flight hours, can be normalized with respect
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Figure 43: Break Rate versus MTTC subdivided by Type and Mission Payload Cat-
egory (top), Break Rate versus Minimum MTTC for each Mission Payload Category
(bottom)
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to the mission payload to acquire the fuel consumed per pound (or a million pounds)

in like manner.

Figure 44: Payload Per Flight versus Total Flight Hours subdivided by Type (left),
Payload Per Flight versus Total Flight Hours per Million Pounds (right),

5.4.4 Trades Involving Utilization

Utilization, found in the bottom row of the scatterplot matrix of Figure 35 has an

interesting relationship with the Number of Aircraft. The left side of Figure 45

presents this same data with the four Types broken out into subplots.

The trade is again evident by noticing that the smaller the fleet size, the more an

aircraft it needed and used assuming everything else being held constant (to meet a

target date for mission completion, for example).

With this particular metric, Utilization, opinions on the correct amount of usage

can vary significantly. Using the aircraft too much increases degradation rates, low-

ering the life of the aircraft, and potentially reducing reliability. However, a small

number of aircraft may have its advantages by reducing the initial fleet acquisition

cost and other life cycle costs such as maintenance, repair part inventories, and labor.

On the other hand, some may argue that a low utilization value is desirable because
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Figure 45: Number of Aircraft versus Utilization subdivided by Type (left), Number
of Aircraft versus Utilization (only for Type 1), colored by Break Rate (right)

the aircraft are not degrading as quickly, costs for supporting the crew are lower (less

flights equals less operating costs), inherent redundancy allows for a larger absolute

number of aircraft to be down due to maintenance (resulting in higher fleet-wide

reliability), and there is the potential to meet more demanding requirements (such

as supporting two concurrent missions). Of course, these advantages come at a cost

since acquiring, storing, and maintaining a larger fleet is clearly more expensive.

The right hand side of Figure 45 shows the same plot for Type 1 with individual

designs colored by the break rate. In this graph, the dark red points on the bottom

edge indicate simulations with a very large break rate. Since break rate would ef-

fectively increase the down time for each aircraft the utilization is correspondingly

lower for these cases. This confirms that the model, at least in this situation, behaves

correctly.

Another trade involving utilization is that which exists with respect to SDTTC.

Figure 46 illustrates this relationship only for Type 1 with the designs colored by
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break rate (dark red equals higher break rates). In order to reduce the uncertainty

in the time to close (i.e. SDTTC), one would necessarily see a higher utilization rate

likely due to a lower break rate. This is also seen directly from the subplot between

utilization and break rate in Figure 35 much earlier.

Figure 46: Utilization versus SDTTC, colored by Break Rate

5.4.5 Other Operational Trades

Plotting the output metrics with respect to each other underscores additional inter-

esting relationships. In Figure 47, the normalized MTTC is plotted by type against

the SDTTC. Coloring by total mission payload (dark red equals higher mission pay-

loads), reveals that, in general, the larger the mission payload the larger the spread

or uncertainty on the time to close (i.e. higher SDTTC). With more flights required

for a higher mission payload come more chances for maintenance events and the cor-

responding repair time delays, which, in turn, cause wider variances in the time to

close distribution.
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Figure 47: MTTC by Million Pounds versus SDTTC, colored by Mission Payload

Other interesting observations involve the minimum normalized MTTC. As de-

scribed before, the Type 1 performs best for MTTC and SDTTC, but the associated

scenarios and APOE-APOD combinations are nearer to each other with no en route

refueling stops. Type 2’s SDTTC is comparable to Type 3’s, but Type 3 performs

much better in terms of time to close, likely due to the direct return flight. Lastly,

Type 4 has the largest SDTTC of all types but sometimes performs better than Type

2 in terms of MTTC. This can occur when the return flight selects a retro en route lo-

cation more optimally situated along the great circle path than the en route refueling

location.

These relationships often come back to one of the fundamental trades in the

currently discussed operational space. Figure 48 displays this basic trade between

the number of flights (which is highly correlated to the number of flight hours and

therefore the fuel consumed) and the payload per flight (which is in turn highly

correlated with the Maximum Payload, Empty Weight, and MTOGW).
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For each one of the lines representing the same Mission Payload in Figure 48, the

product of the size of the aircraft (expressed through the payload per flight) and the

number of flights required to reach that payload is similar. Thus, many flights can be

performed with smaller aircraft or fewer flights with larger aircraft. This relationship

is independent of the number of available aircraft, but as shown in previous trades,

the larger the fleet size the shorter the time to close. Figure 48 is created from 1

million simulations of Type 1 where the scenario is held constant, varying all other

parameters as discussed previously.

Figure 48: Payload Per Flight versus the Number of Flights, subdivided by Total
Mission Payload Categories

This trade is made more obvious by investigating two points at the extreme ends

of the 30 million pounds Mission Payload “isoline”2. At one point on this isoline, the

payload per flight was set at 161300 lbs, delivering 30 million pounds in 186 flights.

This selected data point had a MTTC of just over 19 days with a fleet size of 29.

2This “isoline” is in fact a mean line for the particular Mission Payload category indicated
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However, a second point, also situated on the 30 million pounds Mission Payload

isoline, only required 109 flights (41% less than the first), but with a much larger

payload per flight of 277100 lbs. This second simulation had a fleet size of 23 and

closed the mission with a MTTC of 14.3 days. Break rates were 42% and 51%

respectively for these two example points. Other combinations of aircraft size, fleet

sizes and break rates will provide other measures of MTTC and SDTTC that can

satisfy a decision maker’s preference on how quickly and with how many aircraft one

can complete a given mission scenario to deliver a certain amount of payload.

For most of the preceding discussion, few comments have been given describing

the costs associated with some of the data points. A decision maker would ideally seek

to concurrently minimize flight hours (and at the same time total fuel consumption)

while minimizing the time to close, the size (i.e. weight) of the aircraft, the break

rate, etc. However, each of these has an associated cost, which typically increases as

the metric’s value decreases. These additional dimensions must be included in the

list of objectives upon which any decision maker can perform trades.

For example, to decrease the break rate, significant R&D funds would be required

to improve the reliability or life of the individual subsystems or other parts of the

aircraft. To decrease the total flight hours, larger payloads per flight are possible but

at a cost of acquiring generally heavier and costlier aircraft. Minimizing the time to

close is always possible with larger fleets but that comes with increased acquisition and

maintenance costs. Lastly, even minimizing the required stops for en route refueling

(e.g. changing from Type 3 to Type 1 for a given scenario) necessitates a more

capable, but simultaneously more expensive, aircraft.

For purposes of the creation of a Pareto optimal set of points on which a group of

decision makers will reach consensus, three kinds of costs have been identified: 1) the

cost to decrease the Break Rate, 2) the Operating Cost (per flight hour), and 3) the

Acquisition Cost. Many other kinds of costs (e.g. manufacturing, maintenance, etc.)
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are available, but the three listed here are sufficient for the scope of this research and

can capture a large portion of the costs from a high-level operational and logistics

view point.

The cost associated with improving the Break Rate is modeled after the behavior

discussed in [2]. Figure 49 shows the general relationship of the relative cost to im-

prove the reliability (i.e. lower the break rate) in a system. Often the reliability can

be improved drastically for a relatively small cost increase, for example, by moving

from point A to point B. Improving the marginal reliability after point B significantly

increases the cost as a percentage of the total cost. Therefore, a much larger per-

centage of cost increases are required to go from point B to C than from point A to

B.

Figure 49: The General Shape of the Reliability-Cost Curve (From [2])

Since the DoD was initially willing to invest $12 billion into upgrading and im-

proving the reliability of the C-5 fleet through the RERP and AMP Programs from a

mission capable value near 60% to 75% [174] (i.e. improving the break rate from 40%

to 25%), the assumption is made that this represents the “low hanging fruit” of the

reliability-cost curve where the cost per reliability increase is flattest. The break rate,

by investing nothing, would potentially remain at 40% (i.e. mission capable value of

60%) which gives the starting point for the reliability-cost curve used in this model.
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Below break rates of 25% the cost would increases exponentially as the time, effort,

and difficulty increases to cause the break rate to approach lower and lower values.

Lastly, as seen in Figure 50, even small decreases in the break rate would require

some associated RDT&E costs and therefore the cost is concave down in the region

of break rates from 40% to 25%.

Figure 50: Reliability-cost Curve Used in the Current Analysis

The second kind of cost is the acquisition cost, or the unit price. Although a variety

of cost estimating relationships exists from a manufacturing, engineering, tooling, or

flight-test perspective [76], for purposes of this research a very basic relationship

between the empty weight and unit cost will be sufficient.

Nicolai and Carichner [114] estimate that the price for the C-5B falls just above

the $400/lb trend line in FY 1993 dollars for a total near $160 million. An official

military specifications sheet estimates the unit cost of the C-5B at $179 million in FY

1998 dollars [175], which would convert to $252 million in FY 2012 dollars, or around

$630/lb after applying an economic escalation factor (i.e. CPI = 1.59, from 1993 to
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2012). For military aircraft, these values also concur with basic trend lines and ranges

($341/lb - $485/lb) estimated by Roskam [135]. This simple ratio will be applied for a

first order approximation for calculating the cost of the larger aircraft designs whose

empty weight (We) to MTOGW ratio is maintained from the C-5 platform estimate.

Lastly, the operating cost will typically include a variety of different sources such

as fuel, oil, crew, day-to-day maintenance, and training, to name a few [114]. Often

the fuel is considered one of the largest contributors to the operating cost which is

highly correlated with the total number of flight hours. Furthermore, the maintenance

costs can also be expressed in maintenance-man hours per flying hour (MMH/FH)

[24]. Hence, total operating costs are often calculated on a per flight hour basis. The

operating cost per flight hour (CPFH) of the C-5 aircraft has been estimated by one

data analyst as high as $47,819 (or even higher by some models) [185] and as low as

$23,100 [174] by the Governmental Accountability Office, who lowered their estimate

to $20,947 [178] in 2009. This most recent value (based on DoD data) will be used

for calculating the expected operating cost for any new aircraft platform.

With the equations or estimating relationships above, the operational metrics can

be converted to a cost to achieve the particular level of performance. Therefore, the

payload per flight versus the number of flights relationship, such as that shown in

Figure 48 earlier, can be recreated in terms of acquisition cost and operating cost

respectively, as shown in Figure 51.

The payload per flight is associated with a particular aircraft design and a certain

MTOGW. Assuming the fuel consumption rates are consistent with current engine

technology, the fuel and empty weight ratios can be extracted and the acquisition

price can be calculated based on We. The number of flights is similarly translated to

a summation of the total flight hours and then multiplied by the CPFH to obtain the

total operating cost for the particular mission scenario.

In Figure 51, each of the five lines represent a particular mission payload category.
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Figure 51: Acquisition Cost versus Total Operating Cost with Categories for Total
Mission Payload

Thus, any point along a particular line can satisfy the mission requirements in terms

of the cost for the two objectives. For example, more expensive (and thus larger

aircraft) would be cheaper in terms of the total operating cost. Smaller and cheaper

aircraft require more flight hours and thus, a corresponding higher operating cost,

but with a lower unit cost.

Of course, the fleet size or number of aircraft would significantly impact the effec-

tive total mission cost (i.e. the sum of operating and acquisition costs), but too few

aircraft in the fleet results in a much higher mean time to close. Thus, both of these

costs can also be traded with the MTTC in this multi-objective decision space.

Furthermore, the cost to improve (lower) the break rate can be traded against the

MTTC and the SDTTC. If a time constraint to deliver a certain amount of payload is

imposed, one can either purchase more aircraft or make the current ones more reliable

by reducing the break rate. Both of these options come at a cost, but either one may

be less expensive in a particular mission scenario. Finally, the cost associated with

maintaining an overseas base such as an en route location for refueling could also be
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included in these trades but no useful cost estimation was found for base maintenance,

and was eventually deemed unnecessary for the scope of the current research, allowing

it to focus on the group decision-making aspects more than the numerous potential

and specific costs associated with the problem.

5.4.6 Summary of Trades

Some of the obvious and fundamental operational trades available in this data set,

described in the previous sections, are listed below with short summaries. The arrows

indicate the common direction (or target) viewed by decision makers on each of the

objectives.

• Mean Time to Close(↓) versus Number of Aircraft(l): Shortening the time to

close can always be accomplished (to a point) by having a larger fleet, but a

larger fleet comes at a larger cost.

• Mean Time to Close(↓) versus Utilization(target): The MTTC can be reduced

by using the aircraft more frequently over a period of time. However, increased

use accelerates degradation and may reduce the life of the aircraft.

• SDTTC(↓) versus Number of Aircraft(l): Having extra aircraft can compensate

for aircraft down for maintenance and would decrease the uncertainty on com-

pletion times. Again, more aircraft equal higher maintenance and acquisition

costs.

• SDTTC(↓) versus Break Rate(↓): Making aircraft more reliable reduces the

uncertainty in the time to close. Decreasing the break rate, though, will still

require costs originated from RDT&E.

• Total Flight hours(↓) versus Payload per Flight(l): As one increases the other

decreases assuming all other factors are held constant.
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• Payload per flight(l) versus Number of Flights(↓): This is similar to trading

acquisition cost for operating cost, or vice versa.

• MTTC(↓) versus Payload per Flight(l): Having larger aircraft can decrease the

time, but larger aircraft are more expensive.

• Number of Aircraft(l) versus Cost(↓): Increasing the fleet size always comes at

an increased cost.

• Number of Aircraft(l) versus Utilization(target): Having an excess of aircraft

means every individual aircraft is used less, but that increases costs for main-

tenance, storage, and even the initial acquisition cost.

• En Route Refueling(↓) versus MTTC(↓): This trade becomes more interesting

based on the distances and locations for the specific mission scenario. Stopping

over to refuel might be faster but it could also be slower for locations significantly

off the direct path.

Additional trades are clearly possible between these and other various inputs, such

as engine technologies acting on the fuel consumption rate, or different constraints on

the safety assumptions such as the required reserve fuel. These, and other variables

like them, were either defaulted or assumed constant throughout this research to a

tractable, but still sufficiently large, decision space.
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CHAPTER VI

DEVELOPMENT AND APPLICATION OF MACRO TO

CANONICAL PROBLEM

This chapter describes and tests the second major element in the overall method-

ology on a canonical data set to facilitate experimentation and explanation of the

results. The three steps in the MACRO methodology are analyzed through a variety

of experiments examining the effects of such factors as objective space discretization,

methods to create discrete choices, the number of decision makers, the number of

objectives, sequences of coalitions forming, and influence differences.

6.1 Step 1: Calculating Weighting Distributions

The approach described in this research makes the assumption that a set of points,

designs or solutions are available to the decision maker. This is commonly known as

the decision matrix (D) where each row representing a different design will have a

value in each of the columns representing the objectives or dimensions (e.g. speed,

weight, cost) of the design space. Although objectives can take values qualitative

in nature, a further assumption that a translation or mapping from qualitative to

quantitative values in terms of a utility or value function has occurred. A form of

this process will be implemented for the proof of concept in the next chapter. This

chapter assumes the completion of such a task has been applied to the decision space.

Similarly in the canonical problem developed in the proceeding sections, the use

of normalization for the decision space between lower and upper values of 0 and 1

respectively will be assumed where, unless otherwise specified, the higher the value

the better, or more preferred. Correspondingly, the preference direction would be to
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prefer designs with higher values (i.e. utility scores) in each dimension. Thus, the

best or most preferred choice would be that which maximizes the value function (e.g.

utility function or overall evaluation function).

6.1.1 Creation of a Canonical Decision Space

In order to clearly describe and visualize the process of various steps in the method-

ology tested in later sections a simplified set of candidate design points in three di-

mensions is created. A set of 2000 points were randomly selected on the unit sphere

with the constraints for each of the three dimensions (x1, x2 and x3 test) are be-

tween 0 and 1, inclusive, and defining xj = u(xj), or the utility score for the jth

dimension for increased readability. Although many steps of the algorithm presented

do not depend on the number of initial points or designs, the arbitrarily selected

2000 was considered sufficient to illustrate various features of the algorithm without

significantly complicating the visualizations associated with each step.

With these above constraints applied, each point is considered Pareto-optimal in

that each point could be the optimal design based upon the weightings for each di-

mension (in this case three) and the associated utility function or overall evaluation

criterion used to quantify the utility or value of each design. Research in identify-

ing, classifying, and describing the Pareto frontier and Pareto-optimal points is also

outside the intended scope of this work but the reader is referred to [136] for recent

efforts in this domain. However, the current research will assume that this subset of

Pareto-optimal points is known, and the respective dimension values are available to

the decision makers for application of preferences and ultimate design selection.

The 2000 non-dominated (or Pareto-optimal) points are illustrated in Figure 52.

In the 3D graph on the left, the points are relatively equally distributed across the

design space showing the shape of the Pareto frontier, extending from 0 to 1 in each

dimension, x1, x2, and x3. On the right are the histogram plots of the frequencies
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Figure 52: 2000 Points representing a Pareto set of possible decisions illustrated with
scatterplot and multivariate Plots

of each value for each of the three dimensions. Furthermore, 2D scatterplots are

positioned within the multivariate plot to illustrate the near equal and symmetric

distributions of the points in each of the 2-dimensional combinations.

This data set or design space will be referred to numerous times throughout the

analysis and explanations of future sections. In general, the terms design space,

decision space or candidates will refer to this 2000 multi-dimensional set of points

previously described.

6.1.2 Creation of a Set of All Possible Weights

Since the ultimate decision and selected design for a particular problem is so heavily

dependent on the importance a decision maker gives to the various objectives or

dimensions of a design, care must be taken to truly extract the real decision makers’

preference or weights which will be eventually assigned to each objective. Therefore,

the set of all possible weights as a starting point is required, and this set is further

reduce as additional information is acquired or provided by the decision maker. In

this way, the decision maker is not asked to arbitrarily assign values for the objective’s
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importance but respond to comparisons of final designs that are either attractive and

selected or repulsive and rejected.

The complete set of weights (W ) can be defined by:

W =



W1

W2

...

Wm


(5)

where:

m : Total number of possible weighting vectors

Wj : jth possible weighting vector

and

Wj =

[
wj1 wj2 . . . wjn

]
(6)

where:

n : Total number of objectives

subject to:
∑n

k=1wjk = 1, for all j = 1, . . . ,m.

This results in the full W matrix of:

W =



w11 w12 . . . w1n

w21 w22 . . . w2n

...
...

. . .
...

wm1 wm2 . . . wmn


(7)
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The number of rows, m, of W is dependent on the discretization of the range

available, [0, 1] for the weights, since there is an infinite number of combinations

or weighting vectors that satisfy the constraint
∑n

k=1wjk = 1 and the number of

objectives n. If, for example, it is assumed there are three objectives and the range is

discretized into increments of c = 0.5, such that wmn can take on any of three values

0, 0.5 or 1, all six possible weighting vectors are easily computed and are listed in

Table 4.

Table 4: All possible weighting vectors with n = 3 and c = 1
2

j wj1 wj2 wj3

1 1 0 0
2 0.5 0.5 0
3 0 1 0
4 0.5 0 0.5
5 0 0.5 0.5
6 0 0 1

Every row must satisfy the constraint condition above (
∑n

k=1wjk = 1). An equal

number of each of the individual values (0, 0.5 or 1) will occur in each column of the

table or matrix W .

The effect of halving the increment size and thus increasing the number of discrete

weight levels from three (i.e. 0, 0.5, and 1) to five (i.e. 0, 0.25, 0.5, 0.75, and 1)

increases the number of possible weighting vectors from six to 15, as shown in Figure

53, with the associated histogram for each dimension.

The number of occurrences or frequencies in each of the five bins (or discretization

levels) is equal for each dimension but the number of counts of zero is the highest,

since a large number of combinations of weighting values can exist when one of the

n dimension is at zero. Likewise, at the highest bin or discretization level (i.e. 1)

only one weighting vectors exists with that dimension taking on a weighting value of

1 (e.g. [1, 0, 0]).

By increasing the number of discretization levels from 3 to 20, (or similarly, by
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j wj1 wj2 wj3

1 1 0 0
2 0.75 0.25 0
3 0.5 0.5 0
4 0.25 0.75 0
5 0 1 0
6 0.75 0 0.25
7 0.5 0.25 0.25
8 0.25 0.5 0.25
9 0 0.75 0.25
10 0.5 0 0.5
11 0.25 0.25 0.5
12 0 0.5 0.5
13 0.25 0 0.75
14 0 0.25 0.75
15 0 0 1

Figure 53: All possible weighting vectors with n = 3 and c = 0.25 with associated
histogram

decreasing c from 1
2

to 1
3
, and so on, to 1

19
) the relationship between the increment

c and the number of weighting vectors m can be identified and is presented in the

upper left graph of Figure 54 where n is held constant at 3. As the increment size

decreases, m increases evidently faster than exponentially after converting the y-axis

to a logarithmic scale in the upper right graph.

When holding the number of discretization levels constant at 3 (i.e. c = 0.5) while

increasing the number of dimensions n from 3 to 20, the number of possible weighting

vectors increases rapidly (bottom left), but slightly slower than exponentially, as

shown in the logarithmic y-axis of the bottom right figure.

When varying both n and c over the same ranges (i.e. 3 to 10), the tabulated

results of m in Table 5 shows that the number of possible weightings will be symmetric

about the diagonal of the table or matrix.

Plotting these values shows the increase in m when the number of dimensions

increases and when the increment size decreases shown in Figure 55. The lowest line,

where the number of discretization levels is three, is the same from Figure 54. The
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Figure 54: Number of weighting vectors over a range of c while n = 3 (top), and over
a range of n while c = 0.5 (bottom)

Table 5: Number of Possible Weighting Vectors with n = 3, ..., 9 and c = 1
2
, 1
3
, ..., 1

9

Number
of Disc.
Levels

c n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10

3 0.5 6 10 15 21 28 36 45 55
4 0.333 10 20 35 56 84 120 165 220
5 0.25 15 35 70 126 210 330 495 715
6 0.2 21 56 126 252 462 792 1287 2002
7 0.167 28 84 210 462 924 1716 3003 5005
8 0.147 36 120 330 792 1716 3432 6435 11440
9 0.125 45 165 495 1287 3003 6435 12870 24310
10 0.111 55 220 715 2002 5005 11440 24310 48620
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Figure 55: Number of possible weighting vectors for n and c (both varied from 3 to
9)

additional lines are for smaller values of c (or a larger number of discretization levels).

The increment value is labeled on the graph for when n=9, and the legend indicates

the color associated with each value for the number of levels.

Lastly, since Table 5 was symmetric about the diagonal for similar ranges, the

current x-axis variable n can be traded with the c (or more specifically with the

number of discretization levels) without changing the exact values in the graph, with

the exception of the labels which would then be applied along the top most line

associated with n = 9.

A recognition of this rapid increase in the size of W is crucial for further steps since

its size has a large impact on the required computational expense. If the set of all

possible weighting vectors is too large, the available memory for computer simulations

can be insufficient and its computational speed can be prohibitively slow.
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Figure 56: Histograms for the frequency of values of discretized levels in W for: n = 5
and c = 0.2 (top), n = 7 and c = 0.2 (middle), and n = 7 and c = 0.1 (bottom)

6.1.3 Visualizing the Set of Possible Weighting Vectors

The histogram introduced in Figure 53 will be one way to visualize W in explaining

how discrete choices affect the decision space through the preference space. The

particular shape of the histogram is likewise dependent on the values for c and n.

A few different combinations are presented in Figure 56. Regardless of the number

of dimensions, the most common value will be zero with only one occurrence of the

value 1 contained within the respective dimension column (i.e. the standard basis

vectors, ei [25], for the axes in a generalized Cartesian coordinate system).

Similarly, a plot visualizing all the individual weighting vectors in n-space will

facilitate the identification of regions or clusters of vectors that approach the true

decision makers preference. Figure 57 created for n=3 at different increment values
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Figure 57: Weighting vectors (from W ) where n=3: c=0.5 (top left), c=0.25 (top
right), c=0.2 (bottom left), c=0.1 (bottom right)

illustrates the effect on the number of possible weighting vectors as m increases (or c

decreases) and where they are located in a 3D graph. For n=2, the weighting vectors

would be distributed equally along a line from [1, 0] to [0, 1] shown by the “lowest

layer” in Figure 57 when wx3 = 0. All but the bottom right plot in Figure 57 have

an equivalent point in Figure 55.

For three dimensions (n=3), all of the weighting vectors will lie on a plane defined

by the three points [1, 0, 0], [0, 1, 0], and [0, 0, 1]. In general, for n-dimensions, the

weighting vectors from columns in the n-dimensional identity matrix (I) will define
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Figure 58: Two views of a discretized preference space of a 4-dimensional design
space, c = 0.1

the hyper-volume within which all rows of W will be contained.

Four dimensions can be visualized since the preference space falls onto a n-1

dimensional space without overlap, as shown from two angles in Figure 58: one from

the front and one from the side (turned 90◦ clockwise as viewed from the top). Also,

the points have been given additional shading and size to help illustrate the depth or

the extent of the volume when filled.

Making use of these visualizations can assist in understanding how a decision

maker converges upon a preference for multi-dimensional design spaces without any

explicit objective comparisons such as that required by other methods (e.g. AHP

[141]).

6.1.4 Design Space Knowledge from a Single Discrete Choice

Under the assumption that a particular decision rule and associated utility function

can be either explicitly or implicitly applied across the decision space, the first step

in identifying a decision maker’s preferences for the objectives themselves (i.e. the

weighting distributions) and thus the more preferred designs, is by eliciting infor-

mation through a discrete choice. This elicitation is described as a discrete choice
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Which design do you prefer?

Design 1
x1 = 0.571
x2 = 0.765
x3 = 0.297

Design 2
x1 = 0.266
x2 = 0.832
x3 = 0.486

Figure 59: Example of a Discrete Choice Experiment of the Canonical Design Data
Set

experiment summarized in a previous chapter 3.10.

By asking the decision maker to compare two from the 2000 candidate designs

(such as that in Figure 59), and selecting the preferred one, information about the

preferences or weightings can be extracted by eliminating weightings which are not

consistent with the discrete choice. This, in turn, reduces the uncertainty about the

preference structure or importance weighting on any one objective.

After only one discrete choice (between randomly selected designs #1569 and

#946) the possible or feasible weights that correspond with this revealed preference

are reduced by almost half as shown in Figure 60. In this figure (and in similar figures

throughout the following discussion), the solid blue markers (i.e.•) indicate possible

weighting combinations, whereas the red open circle markers (i.e.◦) indicate weights

that are not possible under the assumed discrete choices made, or in other words,

the preferences revealed through these preference decisions between two individual

designs.

For example, the weighting vector w52 = [0.4, 0, 0.6] which is located at the upper

most solid circle in the current orientation of Figure 60, remains a potential weighting

combination which could still represent the decision maker’s true preferences. At this

weighting, w52 = [0.4, 0, 0.6], design #1569 has a utility values of 0.402 and design

#946 has a utility values of 0.398. The response of the discrete choice is consistent

with the possibility that the decision maker’s true preference is [0.4, 0, 0.6]. After
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Figure 60: Feasible Weights (solid blue circle) After One Discrete Choice Comparing
Design #1569 and #946
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all, the vector does result in a higher utility value (i.e. 0.402) and the decision

maker preferred it over design #946 suggesting this vector may yet represent their

true preference. Thus, w52 is kept within the set of possible weighting vectors (and

displayed with a blue solid circle in this and other later figures).

Table 6: Summary of Data from One Discrete Choice for Two Weighting Vectors

wj
Weighting

Vector
Design

A
Design

B
U(A) U(B)

Design
Prefer-
ence?

Possible
w?

...
...

...
...

...
...

...
...

w52 [0.4, 0, 0.6] 1569 946 0.402 0.398 1569 "
...

...
...

...
...

...
...

...

w57 [0.3, 0, 0.7] 1569 946 0.375 0.42 1569 %
...

...
...

...
...

...
...

...

On the other hand, the weighting vector of [0.3, 0, 0.7] (the red open circle marker

just above and to the right of the previously discussed vector) is not possible in

representing the decision maker’s true preference. At this weighting, the utility values

are 0.375 and 0.420 for design #1569 and design #946, respectively. Since the decision

maker chose design #1569 as better, this weighting vector is inconsistent with the

revealed preference and cannot be used as a potential or possible weighting vector.

Hence, it is removed from the set of possible weightings.

These two particular weighting vectors from W and the related discrete choice

data are shown in Table 6.

If the decision maker instead preferred design #946 over #1569 then the inverse

is true. That is, the weighting vector [0.4, 0, 0.6] is not possible and the weighting

vector [0.3, 0, 0.7] would be. This would of course flip the designations of each of

these points in Table 6 and Figure 60 would be converted to the image on the right

hand side of Figure 61.

Returning to original discrete choice (#1569 � #946), an associated plot of the
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Figure 61: Feasible Weighting Vectors (filled in circles) After One Discrete Choice of
Preferring Design #1569 Over #946 (left), and vice versa (right)

design space can now be updated to reflect the preference applied. (See Figure 62 in

which design #1569 is indicated with a black square while design candidate #946 is

a black triangle.)

The designs or points which are likely not to be desirable based on this discrete

choice have been changed to unfilled circles colored in red, similar to the prefer-

ence graph on the left of Figure 62. Since, from the preceding discussion, some of

the weighting vectors cannot represent the decision maker’s true preference they are

eliminated. The corresponding designs which are optimal for those “now infeasible”

weightings are similarly removed from the set of candidate designs. The apparent line

of demarcation separating the feasible and infeasible designs represents the extent of

information gleaned from one discrete choice.

Consider the previous example of investigating the weighting vectors w52 = [0.4, 0,

0.6] and w57 = [0.3, 0, 0.7], where the former w52 was kept as feasible. Two other points

#296 [0.56, 0.047, 0.825] (feasible) and #1968 [0.520, 0.055, 0.853] (rejected) are

relatively close to each other in terms of their objectives’ values. Table 7 summarizes

the utility values at the two weighting vectors for these two points.
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Figure 62: Feasible Weighting Vectors (filled in circles) After One Discrete Choice of
Preferring Design #1569 Over #946 (left), and Preference Mapped to Design Space
(right)

Table 7: Utility Values for Two Design Points for w52 and w57

Design
ID

Design Vector
U() with

w52 =[0.4, 0, 0.6]
U() with

w57 =[0.3, 0, 0.7]

#269 [0.56, 0.047, 0.825] 0.720 0.746
#1968 [0.520, 0.055, 0.853] 0.719 0.753
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From the utility values from Table 7, if one’s preference was w52 then #269 is

preferred, but if w57 is the true preference then #1968 is preferred. However, since

the discrete choice made previously already ruled out w57 as a possible weighting

vector one can similarly rule out design #1968. The underlying assumption in this is

that one’s preferences must take on the values available to the weighting vectors at

increment of c. In reality, there exists a weighting vector such that the utility values

are identical for any two designs. In this instance, the weighting vector would clearly

fall between the two points [0.4, 0, 0.6] and [0.3, 0, 0.7], and is solved with the system

of equations:

U(d269)− U(d1968) = 0 (8)

dT269(w)− dT1968(w) = 0

(for simple additive weight method)

subject to:
∑n

k=1wk = 1,

where:

w : A weighting vector

n : Total number of objectives.

In this simplified case discussed here, the weighting vector which satisfies the

above equation is approximately [0.3879, 0, 0.6121], which is “between” the two

previous weighting vectors above. If the increment value c was much smaller (as it

is in Figure 63), then the preference space would have shown all weighting vectors

in between [0.3879, 0, 0.6121] and [0.4, 0, 0.6] as feasible and those between [0.3879,

0, 0.6121] and [0.3, 0, 0.7] as infeasible. Not surprisingly, the highest accepted point

and nearest the rejected weighting vector in Figure 63 are [0.4, 0, 0.6] and [0.39, 0,

0.61] respectively. The further refinement of the preference space will be performed

on local regions about which additional discretization will be warranted.
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Figure 63: Feasible Weights (solid blue circles) After One Discrete Choice Comparing
Design #1569 and #946 with c=0.01
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To reduce the whole set of candidate designs, this process amounts conceptually

to identifying the hyperplane normal to the vector between the two designs (from

the discrete choice experiment) which also bisects the same vector. Any design point

closer to the preferred option is still feasible, while any point closer to the rejected

design is similarly rejected. This explains the apparent straight line along the Pareto

frontier in Figure 62 separating blue and red points, or acceptable and rejected de-

signs, respectively.

After one simple discrete choice, a large portion of the feasible design space has

been removed. In fact, the number of feasible designs drops almost by 50% from the

initial 2000 to 1098. Similarly, the number of possible weighting vectors, originally

at 66 when c=0.1, is now reduced to 33, exactly half.

To complement Figure 62 a histogram of the weighting vectors can show this

reduction where the highlighted or darker areas represent when wj is feasible. Based

upon the ranges of the highlighted bins, the data suggests that the first objective (i.e.

x1) could be more important than the others because most vectors with a wx1 value

less than 0.3 has been rejected. The word “could” is essential since there exists the

possibility that the true preference of objective 1 is less than the others but never

can wx1 take on a value less than 0.2 based upon this one discrete choice. In fact, of

the remaining 33 vectors possible, 24 of them have a wx1 greater than the value of

wx2 , and 28 of them greater than wx3 , suggesting that already some useful preference

information is available after one simple discrete choice, in at least a simplified 3-

dimensional design space.

6.1.5 Design Space Knowledge from Multiple Discrete Choices

In the previous sections, the canonical problem introduced has thus far only included

one discrete choice - essentially a judgment about which of two designs is more pre-

ferred. All the preference information was inferred from this decision of a simple
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Figure 64: Histogram of Feasible Weighting Vectors (highlighted)

proposition, “which one is better?” resulting in some very rudimentary findings.

With additional discrete choice experiments, this greater knowledge is expressed

as a reduction in uncertainty about the true preferences of a particular decision maker.

Of course, this added information comes at a cost in terms of additional judgments

or comparisons between designs by the design maker. Thus, the first occasion to

implement a satisficing strategy has arisen. If sufficient certainty about the decision

space has already been acquired, then there is no need for further discrete choices,

and a “good enough” state has already been obtained. An example of this could

be a decision-making technique that only requires the various objectives ordered in

terms of most to least important. Although there remains large uncertainty about the

order a rough estimate may be sufficient. Furthermore, if multiple decision makers are

each asked one discrete choice, the distributions of ordered objectives for all decision

makers might be insightful.

Still, a research question is needed to identify the relationship between how many

discrete choices are needed and what level of accuracy is acceptable.

Research Question: How many discrete choice experiments are needed to reach

a particular level of certainty about the true preferences of a decision maker?

The answer to this question is clearly dependent on some of the factors introduced

in the previous sections including the number of objectives n, the size of the increment
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c, the decision rules and potentially the number of candidate designs and shape of

the Pareto frontier.

Consider for example four random discrete choices on the same design data set

previously described, which are illustrated in Figure 65.

Figure 65: Feasible and Infeasible Designs and Weighting Vectors for four Different
Randomly Selected Discrete Choices (one for each column)

The top row shows the designs which have been rejected (empty circles) and

feasible (solid circles) based on the preferred design. The matching graph directly

below shows the associated preference space for each discrete choice.

These examples all show a different portion of the design space excluded from

further consideration. Furthermore, the number of feasible designs (from the original

2000) are different based upon the two randomly selected choice designs, with some

including a large majority while others include a minority of the points. The choice

represented in the second to last set of graphs has a subset of feasible points completely

“inside” the last set of graphs. This means that no new useful information would have

been acquired had the choices been asked in a left to right order. In other words, all

the feasible vectors remain feasible after the last discrete choice. The assumption is

that effort is wasted, in the form of useless experiments, if purely random discrete
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choices are made without accounting for their capacity (or lack thereof) to provide

more information.

6.1.6 Experiment to Test Effects of Methods on Randomly Selected Dis-
crete Choices

In order to test the above assumption, two methods to establish a sequence of discrete

choices was performed drawing from the pool of 2000 candidate design points.

In the first method, two randomly selected designs are drawn from the full set

of candidate designs in each iteration (i.e. discrete choices from any 2 of the 2000).

The second method is identical to the first except that the pool of candidate designs

decreases with each iteration after applying the filtering process of removing infeasible

designs from previous discrete choices.

Figure 66: Method 1. Sequence of eight discrete choice experiments applied to the
design space. Feasible Designs - filled in blue circles, Infeasible designs - open red
circles. Axes removed for readability.

In Figure 66, method 1 is implemented with two designs randomly selected from

the full set of candidate designs, both feasible and infeasible. Interestingly, after the

first three discrete choices, no improvement in terms of reducing the set of feasible

designs is observed until the 8th discrete choice. Although, the first three discrete
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choice experiments made large reductions in the feasible set, the first method fails

to reduce the set for three iterations in a row, signifying wasted efforts in terms of

unnecessary discrete choices or decisions. For method 1, after eight discrete choice

experiments, the number of feasible designs has been reduced to 37.

Figure 67: Method 2. Sequence of eight discrete choice experiments applied to the
design space. Feasible Designs - filled in blue circles, Infeasible designs - open red
circles. Axes removed for readability.

Figure 67 show a sequence of eight discrete choice experiments also mapped to

the design space where the infeasible designs have been removed as they would not

be preferred based on upon the responses from previous discrete choices. This figure

is a representation of method 2 where randomly selecting designs within the feasible

set is implemented as evident from the dark triangle and square (i.e. the two designs

compared) both falling within the feasible region of the previous iteration. In other

words, the ‘i + 1’th iteration will take feasible designs from the ith iteration to ran-

domly select two designs. For method 2, after eight discrete choice experiments, the

number of feasible designs has been reduced down to 19.

The difference between these two methods is most apparent when comparing the

number of feasible designs for each iteration as shown in Figure 68.
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Figure 68: Reduction in feasible designs, Method 1 (red) vs. Method 2 (blue)

The lack of improvement from iterations 4 to 7 for method 1 is contrasted against

the guaranteed reduction of method 2. With fewer than 6 iterations, method 1 appears

to be better at reducing the feasible set, but since only one execution will not account

for random effects, multiple repetitions are required to compare the difference more

accurately when investigating this stochastic nature of the two methods.

A set of 1000 repetitions for the same two methods were executed and the results

are shown in Figures 69 and 70. For method 1, after only two discrete choices,

six of the total simulations (i.e. 0.6%) resulted in a feasible number of designs of

just 1, but almost 15% of the simulations (146/1000) still had 100 or more feasible

designs. Method 2 on the other hand required 4 iterations at a minimum to reach

only 1 feasible design but with 10 iterations the greatest number of feasible designs

remaining was 39.

The equivalent statistical figure on the right hand side of Figures 69 and 70 are

more revealing, showing the minimum, maximum and mean number of feasible designs
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per iteration for each method. The approximately straight line in Figure 70 for

iterations less than 8 suggest that on average the number of feasible designs will

be halved, or, in other words decreases exponentially with approximately the decay

constant of ln(2) or 0.693. Fitting the model with such an exponential, results in

a calculated λ of 0.688. Method 1 apparently does not decay exponentially (i.e.

sublinearly) and on average after 20 iterations will still have almost 15 feasible designs.

Figure 69: 1000 Executions of Method 1

Figure 70: 1000 Executions of Method 2
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Figure 71: Comparing Method 1 and Method 2 for n = 3 to 6

An obvious question can be asked if these trends hold for more than three dimen-

sions (n > 3).

Research Question: What is the effect of increasing the number of dimensions

on how discrete choices are selected?

Repeating this same experiment for n = 3 to 6 results in Figure 71 where there is

no increase in performance for method 2, where the three sets of points (i.e. n = 3,

4 and 5) directly overlap the red line (where n = 6). However, method 1 does show

improvement with increased n, in that a fewer number of feasible designs are kept for

a fewer number of discrete choices (or iterations). Still, method 2 is superior for all

dimensions tested and likely only as n approaches very large numbers would method

1 asymptotically approach the behavior for method 2.

The results suggests that with more dimensions the likelihood that two randomly

selected designs from the entire pool or set of designs will reject at least some designs

is higher. That is, the chance that one of four numbers (a 4-dimensional design point)
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for example, is significantly different from the associated objective in a separate 4-

dimensional design is higher than with 3 dimensions. But even this result could vary

with a different Pareto frontier or design space, where grouping of designs and other

concave/convex areas are possible.

6.1.7 Effects of Selection Method on Preference Space

Following the previous section’s discussion on the reduction of feasible designs for

every discrete choice, the equivalent preference space and possible weighting vectors

are similarly reduced.

While considering method 2 as more efficient, as established from the analysis

from the previous section, and applying the same set of discrete choices from before,

results in Figure 72 shown across the preference space. For this set, only one possible

weighting vector has not been rejected after 6 discrete choices. However, on the design

side, 49 candidate designs remain as potentially the “best” design. In this example,

the last remaining weighting vector, w25, is [0.5, 0.3, 0.2]. Applying w25 to the design

space results in the one optimal design point d162 = [0.813 0.485 0.323], which, not

surprisingly, has a fairly large x1 value (i.e. the 83rd percentile) and decreasing in

value for x2 and x3 in that order, for a utility score of 0.616.

To illustrate the same narrowing of the preference space for each of the dimensions,

the histograms of only the feasible weight vectors are shown at the beginning and after

each discrete choice in order from left to right in Figure 73. In this illustration the

x1 objective is set at the top followed by x2 in the middle row and then x3 across the

bottom. For each objective the possible weighting vectors slowly coalesce around the

weighting of w25 = [0.5, 0.3, 0.2].

Of course, one could stop the algorithm at this stage and take d162 as the final

solution but since there are 48 other designs which haven’t been rejected and the

increment value c was only set at 0.1, there remains uncertainty that w25 represents
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Figure 72: Possible weighting vectors after each discrete choice in the series

wx1

wx2

wx3

Figure 73: Histograms of possible weighting vectors after each discrete choice in order
for x1, x2 and x3
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the true decision maker’s preference and that d162 is their true optimum.

This leads to the next research question:

Research Question: How can the preference space be further specified to guar-

antee that only one design choice is optimal based upon a set of discrete choices while

minimizing the number of discrete choices?

The initial answer to this question can of course be to decrease c from the very

outset such as that in Figure 63. With c = 0.01 implementing the same of number

discrete choices from the previous example (i.e. 6), m decreases to 49, but 76 possible

weight vectors remain. An additional 7 more discrete choices are needed to reduce

W to keep one valid w and one remaining design (i.e. d877). This last w, with

values [0.44, 0.28, 0.28], is expectedly close to the wc=0.1
25 = [0.5, 0.3, 0.2], but clearly,

greater precision about the preference space has been obtained (at the cost of more

discrete choices). This results in the optimum design at point d877 which contains

values [0.736, 0.475, 0.482]. Although, only one design remained for one possible w,

a similar situation could arise where even an increment value of 0.01 was too large

to completely specify on optimal design. However, this would unnecessarily increase

the computational requirements for each step and, in addition, increase the number

of discrete choices needed for low uncertainty about the true preference.

An experiment to test these opposing effects of reducing the number of discrete

choices for minimizing the computational load while reaching as rapidly as possible

a narrow distribution for w was performed. This experiment began with a “coarse”

W (i.e. with c = 0.25) and then further refined W (i.e. local c < 0.25) after each

discrete choice.

The series of discrete choices followed by a refining step of the feasible weighting

vectors is show in Figure 74.
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After Discrete Choice #1

⇒

After Refinement #1

After Discrete Choice #2

⇒

After Refinement #2

After Discrete Choice #3

⇒

After Refinement #3

Figure 74: Three discrete choices each followed by a refinement step with c = 0.1,

0.05 and 0.025 respectively from top to bottom. (Marker size is reduced after each

step to show detail.)
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Expectedly, the total number of weighting vectors increase at each refinement

step while the total possible weighting vectors can fluctuate based upon when, in

a series of discrete choices, a refinement step is executed. This is shown in Figure

75 where, for the same set of discrete choices, the first five iterations are followed

by a refinement step as indicated by the red line jumping up to a larger number of

weighting vectors. The blue line represents the number of possible weighting vectors

after the refinement process, which is in agreement with the previous discrete choices.

The difference between these lines directly after the refinement step (i.e. the “vertical”

portions) is equal to the number of weighting vectors before and after the refinement

step which can appears differently on the logarithmic y-scale figure. For example,

before refinement step #5: the number of possible w is 724 while the total number of

w is 2052 (a difference of 1328). After refinement step #5: the number of possible w

is 7195 and the total number of w is 8523 (the difference is again 1328). This confirms

what the refinement algorithm is design to accomplish by only adding valid weighting

vectors, which was also visible before in Figure 74.

Figure 75: Number of iterations versus number of total weighting vectors, possible
weighting vectors and remaining feasible designs with associated scatterplot repre-
sentation

Also, in this example, after 5 refinement steps, the increment c has decreased
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initially from 0.1 to 0.003125 ( 0.1(1
2
)ir , where ir is the number of refinement steps.

Since the refinement algorithm takes into consideration the ranges of the acceptable

weighting vectors in each dimension and with increasingly smaller values of c, the

number of added possible weighting vectors could increase exponentially as well. This

is also evident by the general positive slope of the “stair case” line of the total number

of weighting vectors on a logarithmic y-axis.

Finally, with just over 8500 weighting vectors, only 99 remain possible or valid in

a very small range for wx1 , wx2 , and wx3 as shown by the very small blue region in

the same figure. (Figure 75.)

The equivalent histogram for each iteration is shown in Figure 76 from top left to

bottom right.

Figure 76: Histograms of possible weighting vectors (only for wx1) after each of 10

discrete choices with refinement steps between the first five in the series

Since multiple histograms are difficult to interpret for each iteration, the equivalent

data is presented on the left side in Figure 77 but with all dimensions overlaid for the

same iteration history.
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Figure 77: Number of iterations versus the overlapping range of possible weighting

vectors

The thick colored solid lines in Figure 77 indicate the median value of the weighting

vector for that particular dimension. In this example, each dimension started at a

median value of 0.29 when c = 0.1, or, in other words, the centroid of the histogram

from the full set of initial weighting vectors lies at a value of 0.29. This value will

increase or decrease per iteration based upon the results of the previous discrete

choice experiments and the weighting vectors that will be eventually removed from

the feasible set.

Each dimension also shows the equivalent minimum and maximum value for each

iteration. Therefore, the three points provide some statistical detail as to the shape

of the histogram without recording it at each iteration for each dimension. The solid

black line at the bottom indicates the increment size at each iteration. This values

starts at c = 0.1 and is halved at each refinement step. On the right hand side of

Figure 77, refinement steps are similarly applied after each of the first five discrete

choices (with evidently different preferences responded to the discrete choices, such

that the x2 is most important followed by x1 and then x3). Interestingly, even after

five discrete choices the potential for the x2 objective to be the only objective remains
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possible (i.e. wx2 = 1, when i = 1...5).

6.1.8 Analysis of Stopping Criteria on Preference Extraction

Another key difference between the two simulations in Figure 77 is the total number

of iterations before the algorithm stopped based on the designs currently remaining

and the random selection of those remaining designs. Referring back to Figure 70

(where on average 11 or more iterations are required to reduce the feasible design set

to two or less), in the right hand side of Figure 77, the simulation required exactly 11

for the algorithm to conclude while the left hand side required 13. Since the number

of feasible designs is not influenced by the increment value, this behavior is expected

regardless of the number of refinement steps and at point in the series these steps are

applied. The matrix of simulations in Figure 78 show the variability in the number

of iterations needed for convergence of the weighting ranges and when, in terms of

iterations, refinement steps are executed.

In the plots of Figure 78, the algorithm continued until no more feasible designs

were available for discrete choices. However, the stopping criterion does not neces-

sarily need to be the number of feasible designs remaining. In fact, since the decision

maker’s preference space is the real goal that this step seeks to define in the overall

methodology, a more useful criterion could be a threshold on the ranges of the re-

maining weighting vectors (e.g. when each range per dimension for W is less than

0.1), or when a ranked order of the dimensions is evident (i.e. no overlap between

ranges of dimensions of W ), or, of course, simply setting the total number of discrete

choices (i.e. total number of iterations) at a predetermined value which the decision

maker is willing to consider. For example, if the decision maker has time to only

answer 5 discrete choice experiments then this clearly would be the limiting factor in

reducing the ranges of W .

A research question at this point is posed regarding the stopping criterion for this
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Figure 78: Matrix of 9 sample simulations of Step 1
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step in the methodology.

Research Question: What stopping criterion for discrete choice experiments

should be used to extract the preferences of a decision maker?

As mentioned, the answer for this is of course dependent on the number of dis-

crete choices a decision maker is willing to consider. However, if a decision maker’s

“resources” are effectively unlimited, or in essence, the comparisons are relatively

inexpensive and any number can be performed (within reason), the two other afore-

mentioned possibilities can be subject to comparison (i.e. W ranges are less than x,

or dimension order is identified) in experiments.

Simulating the above discrete choice experiments 1000 times, with the same 2000

candidate designs for each of these two stopping criteria, creates the outputs displayed

in Figure 79. The minimum number of iterations to obtain a determined ordered

preference is shown in a histogram on the left. However, slightly more than 10%

of the simulations never reached sufficient separation in terms of the ranges for W

suggesting that for some preferences, especially if two or more objectives have equal

or near equal importance values, the ranges will be expectedly coincident and thus

no true order can be ascertained. Still, since some decision-making techniques use

preference order as opposed to preference weightings (or importance values for the

objectives), this may be a more useful and efficient way to stop the algorithm.

On the right of Figure 79, the heat map illustrates when the stopping criteria is

set for different range values, showing that the number of iterations required to reach

increased levels of certainty in the ranges must likewise increase. The mean lines for

the range of wx1 , wx2 and wx3 are almost over top of one another indicating that each

of the three dimensions follow similar behavior.

179



Figure 79: Number of required iterations for, 1) the preference order to be completely

specified (top), and, 2) certain range values for wxj (bottom)

A related topic is when and how the refinement steps should be applied. Refine-

ment steps come at a cost computationally, but are essential to differentiate prefer-

ences when importance values for two or more objectives are equal or, at least, close

in value (e.g. the left simulation example of Figure 77). In the previous simulations,

a refinement step was executed when the number of possible weighting vectors was

less than the arbitrarily set value of 100 weighting vectors (a number somewhat con-

servative for only 3 dimensions). This allows a trade between setting the increment

c too small early in the simulation and the computation expense required for smaller

values of c.

Further, in the above simulations, to guarantee that a weighting vector is always

possible, the discrete choice experiments are selected based on halving the preference

space in each iteration for the largest range of the n dimensions. Thus, if the range

for wx1 is currently from 0.3 to 0.6, a discrete choice will be given to make the range

from 0.3 to 0.45 or from 0.45 to 0.6 after the decision maker’s response. The range of
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the other dimensions will also likely be reduced but not to such an extent. If, after

the discrete choice, one of the other ranges are now larger than 0.15, then the next

discrete choice experiment would focus on that dimension to “halve.”

6.1.9 Visualizing N-decision makers’ preferences

Since the overall objective is to facilitate and accelerate group decision making, the

desire is to have each decision maker, in parallel, perform a similar set of responses

to a series of discrete choice experiments. This enables the rapid extraction of the

individual preferences and allows for the execution of future steps (i.e. Steps 2 and

3) in the methodology which will use this information for power relationships and

reaching consensus.

Since each decision maker will in general face a different series of discrete choices

revealing their preferences, a useful graphic indicated which areas of the design space

are more readily accepted or rejected is presented in Figure 80.
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Figure 80: Three decision makers’ revealed preferences and associated acceptable or

rejected designs

The top row of plots in Figure 80 shows the histogram ranges and median weight-

ing vector for each iteration. Decision Maker #2 responded to 10 while #3 responded

to 13 discrete choices respectively. The bottom row illustrates the regions where de-

signs would have been rejected more often based upon the responses of each decision

maker. Therefore, the red regions or patches are designs rejected in a large majority

of the discrete choices (i.e. 8 or more of the discrete choices), while the blue/purple

patches suggest more acceptable or feasible designs according to the given prefer-

ences. (The dark purple markers indicate regions that have never been rejected in

all discrete choices). The lines of demarcation are clearly visible for each additional

discrete choice that removed a particular design from candidacy.

Of course, for consensus reaching in group decisions, investigating the design re-

gions where the group has universally rejected designs can be useful. In Figure 81,
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the preference space applied to the design space is combined to identify design regions

which together the group considered feasible or infeasible. These rejected design re-

gions are again shown in red. In this figure, no decision maker was weighted more

heavily than another. However, it is interesting to note that the random selection of

feasible designs in the discrete choices result in a possible region of feasibility near

the preferred regions of decision makers #1 and #3.

Figure 81: Combination (simple addition) of the three patch plots from Figure 80

and the removing (gray areas) of regions with greater than 10 “rejections” across all

discrete choices for all three decision makers

Furthermore, the “path” each decision maker takes in revealing his or her prefer-

ences can be depicted using the median weighting vectors calculated at each iteration

for each dimension. In Figure 82, this vector for each decision maker at each iteration

is mapped to the design space and connected to the series of “optimal” designs for

each median value of W .

The first decision maker is in blue, followed by the second in green and the third

in red (contrast this to the previous two figures). The final “optimal” design, after

the last discrete choice, is indicated with a large circular marker respectively. The
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intermediate designs are labeled as diamonds and the initial design in black is expect-

edly the “median” design near the point [0.577, 0.577, 0.577], which is initially the

same for each decision maker.

Figure 82: The optimal design for the median weighting vector for each decision

maker after each iteration

Finally, the set of “optimal” or best designs can be calculated from all the remain-

ing possible weighting vectors at a particular iteration and projected onto a Pareto

frontier to compare closeness and potential overlap of designs deemed acceptable by

the revealed preferences for each decision maker.
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Acceptable designs after 4 iterations Acceptable designs after 5 iterations

Acceptable designs after 6 iterations Acceptable designs after 10 iterations

Figure 83: Three decision makers’ revealed preferences and associated acceptable

designs after i = 4, 5, 6, and 10.

In general, this process will hold for more than three dimensions. Figure 84

illustrates the overlap in each dimension for the three decision makers (red, blue and

green) across the scatterplot showing a 4-dimensional design space. Each one of the
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points is Pareto optimal and colored points indicate a design which is potentially the

global optimal design for that particular decision maker based on the responses of the

discrete choice experiments.

Figure 84: A four dimensional representation of possible candidate designs for three

decision makers (red, green and blue) after seven discrete choice experiments.

6.2 Step 2: Extracting Power Relationships

Once the set of weighting vectors or weighting distributions are generally determined

from the previous step for each decision maker, a process to extract the power rela-

tionships or amount of influence between decision makers is necessary.
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The following discussion will make use of the identical set of candidate designs

and the weighting vectors from Step 1 which represent the possible true preferences

for each decision maker as illustrated in figures 80 and 83 in the previous section.

Also, to facilitate discussion, the first decision maker will be designated as DMA

(or A), and similarly, the second and third decision makers as DMB and DMC (or B

and C) respectively. Table 8 summarizes the preferences of all three decision makers

with the mean weighting value for each of the three dimensions after 10 discrete

choices.

Table 8: Mean Values of Weighting Vectors for Each Decision Maker

Decision Maker w̄j1 w̄j2 w̄j3

A 0.092 0.639 0.268
B 0.391 0.205 0.404
C 0.219 0.345 0.436

Decision Maker A has a much larger preference for x2, while DMB prefers x1 and

x3 almost equally and DMC prefers x3 slightly more than x2.

6.2.1 Power Assumptions and Constraints

For each of the three relationships among the three combinations (i.e. A ↔ B,

A ↔ C, and B ↔ C), the total power in each relationship is shared between the

two decision makers. If, for example, DMA has full control or influence on DMB’s

decisions, the power that A has over B is set at 1 or 100% (i.e. PA→B = 1). This, of

course, would require that the power B has over A is zero, or PB→A = 0, If the total

power is shared equally between A and B then PA→B = PB→A = 0.5, suggesting that

A cannot impose their preferences onto B any more than B can onto A. The share

of power between two decision makers can thus take on any split or division of 1 (or

100%).

This results in a set of three power constraints equations:
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PA→B + PB→A = 1

PA→C + PC→A = 1

PB→C + PC→B = 1 (9)

Knowledge about these 6 unknowns could then be used to calculate the power of

any one decision maker over the entire group in aggregate.

Assuming that there is a finite amount of power for the entire group normalized

to 1 and shared across all decision makers (potentially asymmetrically), results in the

simple equation:

PA + PB + PC = 1 (10)

where PA is the power held by DMA, or more generally,

k∑
i=1

Pi = 1 (11)

where k is the total number of decision makers in the group.

The total power DMA holds for the group can be defined as:

PA =
PA→B + PA→C

3
(12)

and more generally (for three decision makers),

Pi =

k∑
j=1

Pi→j

k
, i 6= j, k = 3 (13)

which, if completely defined, would satisfy Step 2 in the overall methodology.

However, with only three equations available for the six unknowns, additional

information must be acquired to solve this system of equations. Research Question
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#4 and its associated hypothesis, repeated below, form the appropriate inquiry at

this point in the analysis.

Research Question #4: How can the influence relationships between decision

makers be identified and quantified?

Hypothesis #4: Discrete choice experiments between designs, and with whom,

an agent will form a coalition in the decision space will identify relationships of influ-

ence between decision makers, under the power constraints equations between decision

makers.

6.2.2 Power Information from one Discrete Choice Experiment

The hypothesis in response to Research Question #4 proposed that discrete choice

experiments can recover the influence of one decision maker over another. These dis-

crete choices must be sufficiently simple so as to not cognitively overload the decision

maker and likewise take a small amount of time so that multiple discrete choices can

be proposes to the same agent over a short time span.

The methodology presented in this research makes use of the preference infor-

mation from the previous step, by establishing discrete choices between sub-optimal

designs but with similar utility scores as established from the preference structures.

For example, starting with DMA’s preferences, which were summarized in Table

8, and calculating A’s utility for each of the 2000 candidate designs using the mean

weighting vector, wmean = [0.092, 0.639, 0.268], A’s preferred region within the design

space can be illustrated in the dark red region on the far right of Figure 85. This

“mean weighting vector” was calculated after 10 discrete choices from Step 1 in the

methodology.

The “best” design, after wmean is applied, results in d462 = [0.12, 0.920, 0.372]

being selected with a total utility score of 0.6995 and indicated in black on Figure 85.

Not surprisingly, since DMA prefers x2 to the other two dimensions a design with a
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Figure 85: Candidate designs colored by utility value from DMA’s mean values of
possible weighting vectors

very large score of x2 is selected. Although there exists multiple weighting vectors

which could represent DMA’s true preferences, the mean vector will serve currently

as a “typical” weighting vector even though it may not even exists in the actual

W matrix. Furthermore, the mean weighting vector would be clearly be different if

i 6= 10, as it does in this example.

Each one of the apparent color bands in Figure 85 represents similar values or

utility scores, informally described as “utility bands” here. The utility scores are in

general continuous from the highest to the lowest utility score, and fall in the interval

[0.1097, 0.6995]. A discrete choice between two designs within the same utility band

for a particular decision maker (in this case DMA) could be expectedly difficult to

select the preferred design since the utility scores are so similar or close to the same

value. That is, d954 (with a utility of 0.6107) and d1592 (with a utility of 0.6105)
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If you had to form a coalition at one of
the following two designs, whose design

do you prefer?

Decision Maker B
x1 = 0.563
x2 = 0.672
x3 = 0.481

Decision Maker C
x1 = 0.390
x2 = 0.609
x3 = 0.691

Figure 86: Example #1 of a Discrete Choice Presented to Decision Maker A

could potentially achieve an indifference response from DMA in a discrete choice

experiment, since for these designs U(d954) ≈ U(d1592). A table of these two designs

is found below:

Table 9: Scores for Two Designs in the Same Utility Band from DMA’s Perspective

Design ID U(d?) x1 x2 x3 wj3 wj3 wj3

954 0.6107 0.5630 0.6719 0.4812 0.092 0.639 0.268
1592 0.6105 0.3896 0.6085 0.6913 0.092 0.639 0.268

Since there remains uncertainty in the true preference, (i.e. DMA mathematically

only slightly prefers d954 with the mean weighting vector as indicated over d1592), the

other design could easily be preferred with a different weighting vector other than the

mean vector, which has not been invalidated from previous discrete choices in Step

1. Therefore, with the assumption that these two designs are approximately equal in

utility from A’s perspective, comparing them side by side should elicit an indifference

preference response. This indifference can be leveraged to identify a hypothetical

difference attached to each design. Thus, if DMB is associated with d954 and DMC

is associated with d1592, a discrete choice can be asked as to which design or, more

precisely, with whom DMA is more likely to join and form a coalition. One potential

layout of the discrete choice presented to DMA is shown in Figure 86.

Since the utility values are approximately equal in the discrete choice presented,
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DMA is “forced” to choose between the decision makers, which, from the utility

based perspective, is the only real difference between these designs. In making this

selection, a decision maker is likely to choose the design, that, in their perspective,

will still somehow benefit them the most. For example, DMA may chose to team

up with DMC as they may think DMC has greater influence over others and will

likely be able to maintain their position, increasing the probability that DMA will

also obtain at relatively high utility. Joining DMB may be less certain in their ability

to maintain the utility score of 0.6107. Also, there may be a historical precedent for

working with DMC based on past agreements, contracts or performance suggesting

to DMA that it is in their best interest to unite with the decision maker with the

“better” record. Furthermore, a personal or private reason such as a desire to impress

someone else, a need to avoid confrontation, or a penchant for risky actions can also

exist. There are clearly a variety of reasons why one decision maker would prefer to

work with, team up with, or form a coalition with someone else. The exact reason

is not necessarily important, nor could it always be identified. Wagner even suggests

that ”[i]ndividuals may, in fact, be unaware of the exact values of these parameters

[of power or influence]” [183]. However, recognizing the existence of such reasons,

and considering the influence over another as an expression of those reasons, can be

useful for improving group decision making.

One can make the assumption that if DMC is preferred from the foregoing dis-

cussion then potentially:

PB→A ≤ PC→A. (14)

Of course, outside of the above causes or reasons, the decision maker is free to

choose based on self-interest and their own preferences on just the objectives, effec-

tively ignoring the associated decision makers. In this case, the two designs presented

would essentially be an additional discrete choice of the type from Step 1.
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To identify if this is the case, additional discrete choices are required to test out

the strength or magnitude of DMA desire to chose based on self-interest or based on

the influence one of the other decision makers may have over DMA.

For example, assume that DMA chose DMB’s point but was too focused on the

higher value of x2 and made the decision based on the values of the design and not

the decision maker. This could be tested by selecting two other designs with similar

utility scores, but different values for the objectives, as shown in Figure 87 assuming

DMA did in fact choose DMB in the first discrete choice.

Would you still form a coalition with
Decision Maker B if only the following two

designs were permitted?

Decision Maker B
x1 = 0.504
x2 = 0.597
x3 = 0.624

(UB
DMA

= 0.5958)

Decision Maker C
x1 = 0.633
x2 = 0.719
x3 = 0.288

(UC
DMA

= 0.5953)

Figure 87: Example #2 of a discrete choice presented to DMA. Utility scores (in-
side parentheses for each design) would not be included or presented in an actual
experiment.

In Figure 87 the utility scores are shown for each one of the designs in a smaller

font and within parentheses, shown here for purposes of discussion but would not be

shown in an actual discrete choice experiment.

If DMA continues to select “DMB’s” design, then perhaps the evidence would

suggest that DMB has some influence over DMA or at least some attractive or ad-

vantageous attribute with which to form a coalition. On the other hand, if DMC

is now chosen, the evidence could suggest that neither decision maker has relatively

more influence or power over DMA. Additional information from discrete choices

would be needed.
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6.2.3 Power Information from Multiple Discrete Choice Experiments

To further identify or quantify the potential existence of influence over DMA, a third

type of discrete choice is available where the utility scores are different.

Assuming you must choose to form a coalition at
one of the two designs, with whom would you

chose? Decision Maker A or Decision Maker B?

Decision Maker B
x1 = 0.703
x2 = 0.635
x3 = 0.320

(UB
DMA

= 0.5568)

Decision Maker C
x1 = 0.605
x2 = 0.756
x3 = 0.248

(UC
DMA

= 0.6060)

Figure 88: Example #3 of a discrete choice presented to DMA. Utility scores (in-
side parentheses for each design) would not be included or presented in an actual
experiment.

This type of discrete choice experiment, an example of which is shown in Figure

88, is useful in determining the strength of the influence that one of the decision

makers may have over DMA. If, in previous experiments, it is known that DMA

tends to form coalitions with DMB and therefore likely has some sort of power or

influence over DMA, then a discrete choice can be presented where the utility value

for “DMB’s design” is lower (0.5568) than that of “DMC ’s design” (0.6060) some

value (e.g. 0.05 or 0.6060-0.5568 = 0.0492 ≈ 0.05).

If DMA still chooses to form a coalition with DMB even with a lower utility

value, then the assumption that the relationship between DMB and DMA, and more

specifically that the benefit of agreeing with DMB, must be at least equal to trading or

giving up 0.05 of utility from DMA’s perspective. After another discrete choice, where

DMB had an even lower utility (e.g. 0.01) as compared to DMC (i.e. uBDMA
+ 0.1 =

uCDMA
), but instead DMA chooses DMC ’s design, the amount of influence that B has

over A (i.e. PB→A) is known to fall within 0.05 and 0.1 utils (units of utility). In

194



equation form, this results in:

PB→A = PC→A + f(∆uDMA
) (15)

where,

f : ∆U → P (16)

and,

0.05 ≥ ∆uDMA
= uBDMA

− uCDMA
≤ 0.10, (17)

for this example. The function f is a transformation of utility difference into an

influence or power.

A valid function could be a proportional transformation across the entire utility

space range. For example, the “best” point when the mean weighting vector is set at

[0.092, 0.639, 0.268] is d462 with utility score, u462DMA
= 0.6995, while the “worst” is d889

with u889DMA
= 0.1097 (assuming that w = wmean discussed above). The entire utility

range for DMA would then be urangeDMA
= u462DMA

− u889DMA
= 0.6995 − 0.1097 = 0.5898.

If a discrete choice was presented to DMA, with DMB’s design at the “worst” point,

and DMC at the “best” point, and DMA still chose DMB as the decision maker to

form a coalition with, then B would clearly have 100% of the influence over A (i.e.

PB→A = 1) and conversely A would have no power over B (i.e. PA→B = 0). Using

this proportional ratio, results in a transformation of:

f(∆uDMA
) =

∆uDMA

urangeDMA

= ∆PB∼C
DMA

. (18)

where ∆PB∼C
DMA

is the difference in power or influence and is positive since ∆uDMA

is always positive (or can be made positive by reversing DMB and DMC if needed).

This ∆P is only the difference in power of DMB and DMC over A. For example, if
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∆PB∼C
DMA

= 0.2 and PB→A = 0.45 then, PC→A = 0.25. Similarly, if PB→A = 0.95, then

PC→A = 0.75, or in general,

PB→A − PC→A = ∆PB∼C
DMA

. (19)

Since the value of ∆uDMA
is actually only known to within a range, 0.05 ≤

∆uDMA
≤ 0.10, the power difference can similarly only be known to within a range,

0.085 ≤ ∆PB∼C
DMA

≤ 0.17, unless additional discrete choices are executed. These dis-

crete choices can identify to a higher precision the values of ∆uDMA
and thus ∆PB∼C

DMA
.

The following table show a series of discrete choices and the bounded range of ∆P as

a result of the difference in utility of the two designs and the selected decision maker

with whom DMA forms a coalition.

Table 10: Series of Discrete Choices Between DMB and DMC with Utility Values
and Known Range of ∆P

Iter.
#

Design #
for DMB

Design#
for DMC

uBDMA
uCDMA

Selected
DM

∆uDMA
∆PB∼C

DMA

1 1292 1481 0.625 0.625 B 0 0 ≤ · ≤ 1
2 442 217 0.69 0.69 B 0 0 ≤ · ≤ 1
3 892 672 0.468 0.568 B 0.1 0.17 ≤ · ≤ 1
4 1055 1575 0.485 0.685 C 0.2 0.17 ≤ · ≤ 0.34
5 10 1911 0.421 0.571 C 0.15 0.17 ≤ · ≤ 0.25
6 1814 1267 0.527 0.652 B 0.125 0.21 ≤ · ≤ 0.25
7 55 48 0.442 0.579 C 0.1375 0.21 ≤ · ≤ 0.23

After the first two discrete choices (#1 and #2 in Table 10), the only information

is that DMA prefers DMB when the utility scores are identical which may suggest

that DMB has influence over A’s decisions, and that DMB has some ∆P greater than

zero relative to DMC over A. To confirm this, the next discrete choice (#3) offers a

considerably lower utility value for B’s design. In this case, DMA again chose B over

C. This means that ∆PB∼C
DMA

is at least 0.17 and could be greater. The next discrete

choice (#4 in Table 10) tests this possibility, but the difference is too extreme and A

decides to select DMC ’s design. This response places an upper bound on the influence

of B onto A and thus the upper limit of ∆PB∼C
DMA

becomes 0.34.
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Continuing this process by asking additional discrete choices with appropriately

selected values of ∆uDMA
, each successive discrete choice will decrease the range of

the possible difference in power or influence. For instance, after seven discrete choice,

DMA has revealed that B has more influence (over A) than C by about 0.21 to 0.23.

The absolute power relationships are not known from this experiment alone but only

the difference. However, this process provides an additional equation to the previous

three, with all four reproduced below;

PA→B + PB→A = 1

PA→C + PC→A = 1

PB→C + PC→B = 1

PB→A − PC→A = [0.21, 0.23] (20)

6.2.4 Identifying the Required Discrete Choices for Power Information

Since a number of discrete choices will be required to reduce the possible range on

PB→A − PC→A, a related research question was posed to further explore this inquiry:

Research Question: How many discrete choice experiments are needed to ex-

tract the power or influence difference between two decision makers?

To answer this question, a number of experiments were conducted to explore

potential answers.

For each series of discrete choices such as that presented in Table 10, a figure can

be created from the range of possible ∆uDMA
over the number of iterations. Figure

89 illustrates the range of possible ∆uDMA
over 10 iterations of discrete choices on

a logarithmic y-axis. The blue points and line indicate the upper bound on the

maximum difference possible based on responses. This upper bound starts at 1 since

in this formulation utility scores are normalized to a range of 0 to 1. This is, in

fact, a wider range than necessary since the maximum utility range is only 0.5898,
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found by taking the difference between the largest and smallest utility score for all

2000 candidate designs. The green triangles and line indicate the lower bound on the

utility difference after each successive discrete choice. The red circles indicate the

utility score difference for the current discrete choice.

Figure 89: Range of utility difference versus number of discrete choices when ∆uDMA

= 0.13

The first discrete choice has a current difference in utility score of 0 (not shown

on the logarithmically scaled y-axis) since the first discrete choice asks the decision

maker to make a choice between two designs within the same utility band. However,

for the second discrete choice, two designs with a utility difference of 0.1 are presented

(shown by the first red circle at discrete choice #2 in Figure 89). The range at each

successive discrete choice will contract based on the decision of each discrete choice.

For example, after the decision maker chooses the design suggesting that the influence

difference is larger than a utility difference of 0.1, the minimum value on the range

takes on the previous current value (i.e. the green triangle for discrete choice #3).

Similarly, the maximum value takes on the previous current value when the opposite

design is selected (i.e. the blue line transition from discrete choice #3 to #4). Over

multiple discrete choices the range will narrow in on the true influence difference (i.e.
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utility difference) of the other two decision makers In this example and figure, ∆uDMA

is set to 0.13.

After 6 discrete choices the range in utility scores is quite small (i.e. max ∆uDMA
−

min ∆uDMA
≈ 0.01). This range is likely sufficiently narrow, or even excessively

narrow, especially in the view that the uncertainty in the mean weighting vector used

for the above discrete choices in calculating the utility bands and representing the

true weighting could be much larger than 0.01.

To further analyze this relationship, multiple simulations were conducted where

the true utility difference was randomly selected between the values of 0 and 0.5898

(equivalent to an influence difference range of 0 to 1) and the starting difference

for discrete choices was varied with discrete values 0.05, 0.1, 0.15 and 0.20. The

simulations are shown in Figure 90 with the minimum and maximum for each first

utility difference connected through the iterations of discrete choices, with a normal

y-axis and logarithmic y-axis for the left and right figures respectively.

Figure 90: Multiple simulations of Step 2 showing the number of discrete choices to
reach specified ranges on the utility score difference

When the first utility difference is set at 0.05, the range shrinks very quickly if

the actual influence difference is very small (i.e. ∆uDMA
≤ 0.05). On the other hand,
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starting with an initial value of 0.05 when the actual influence difference is much

larger results in many more discrete choices required to reach a certain threshold

(i.e. 0.01). For the worst case, it requires 10 or more discrete choices, to reach a

range of 0.01 and in the best case only 5. For the other values of the first utility

difference, the best and worst cases are closer to each other (e.g. when ∆uDMA
= 0.1

best case is ≈ 6 and worst case is ≈ 9 discrete choices). In both these cases, the

number of discrete choices approach the same value when the first utility difference

is half the total range, and in this case, 0.5898/2, or ≈ 0.295. This means that each

successive discrete choice can halve the previous range and thus a certain threshold

on the range of ∆uDMA
can be defined by the number of discrete choices (when using

this [particular strategy for defining the first utility difference) as:

max ∆uDMA
−min ∆uDMA

= urangeDMA
(
1

2
)n−ne . (21)

where, n is the number of discrete choices, ne is the number of discrete choices

with identical utility scores, and urangeDMA
is the full range of utility values according

to the mean weighting vector of DMA. The “n − ne” is to account for the first ne

discrete choices being used as to only identify which decision maker may have more

influence, such that the first ne discrete choices do not produce any knowledge on the

range of ∆uDMA
. (In the above figures, ne was set at 1 but was previously discussed

with values of greater than 1 if needed.

This equation illustrates another potential use of a satisficing strategy. If time or

resources are not abundantly available, and a relatively wide range about the influence

of one decision maker over another is sufficient, then just a few discrete choices may

allow some indication as to who is more likely to persuade or influence DMA to change

their preference. For example, if time only permits 5 discrete choices, and 2 of those

are used as checks (i.e. ne = 2) then the expected knowledge on the range of ∆uDMA

would be 0.074, and hence ∆PB∼C
DMA

= 0.125, which could still be useful in determining
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influence relationships in solving equations (20).

6.2.5 Additional Steps to Solve for Power Relationships

Additional information necessary to solve the system in equations (9) or (20) can be

obtained in at least two ways: 1) using discrete choices involving DMA, or, 2) using

power information from other decision makers.

The first strategy involves performing the similar types of discrete choice exper-

iments as above but with the same decision maker making the choice (in this case

DMA) associated to one of the two options, such as in the following discrete choice:

If only these two designs were available, would
you be more able to convince Decision Maker B

to select yours, or would you select theirs?

Decision Maker A
x1 = 0.252
x2 = 0.949
x3 = 0.192

(UDMA
= 0.6812)

(UDMB
= 0.3706)

Decision Maker B
x1 = 0.172
x2 = 0.799
x3 = 0.576

(UDMA
= 0.6814)

(UDMB
= 0.4642)

Figure 91: Example #4 of a discrete choice presented to DMA, where DMA is asso-
ciated with one of the designs. Utility Scores for each of the decision makers (inside
parentheses for each design) are also shown.

In this example, the utility scores are shown for DMA (who is also presented this

particular choice) and DMB using the mean weighting vector from Step 1 of the

potential valid vectors from DMB’s responses.

Since the utility scores are effectively the same from A’s perspective, the answer

to this discrete choice provides insight as to how A views the power relationship

between A and B. If DMA chooses their own design, then a similar process from

that described above can be initiated with successive discrete choices always involving

Decision Makers A and B until the knowledge about the utility difference and therefore
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the difference in power or influence has reached a sufficiently tight range.

For example, DMB would have to be convince to give up ∆uDMA
= U2

DMB
−U1

DMB

= 0.4642 - 0.3706 = 0.0936, or almost 0.1 utils, if, in fact, DMA was able to convince

B to select A’s design. This is of course viewed as A’s influence or power over B

(from A’s perspective). Since, DMA may not know, however, even an estimate on

the weighting vector of DMB, the opposite possibility can be tested, where B’s utility

score for the design associated with DMA can be larger. Decision Maker A’s choices

for these experiments will suggest the initial view of who potentially maintains greater

power over the other from DMA’s perspective.

This above process when after reaching the stopping criterion, provides the fifth

equation below:

PA→B − PB→A = [min∆PA∼B
DMA

,max∆PA∼B
DMA

] (22)

and also, a sixth equation, when a similar process is perform involving Decision

Makers A and C:

PA→C − PC→A = [min∆PA∼C
DMA

,max∆PA∼C
DMA

] (23)

Note that the two decision makers involved in the discrete choice are labeled in the

power superscripts where the responding decision maker is located in the subscript.

This results in the full set of equations:
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PA→B + PB→A = 1

PA→C + PC→A = 1

PB→C + PC→B = 1

PB→A − PC→A = [min∆PB∼C
DMA

,max∆PB∼C
DMA

]

PA→B − PB→A = [min∆PA∼B
DMA

,max∆PA∼B
DMA

]

PA→C − PC→A = [min∆PA∼C
DMA

,max∆PA∼C
DMA

] (24)

and in matrix form:



1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

0 1 0 −1 0 0

1 −1 0 0 0 0

0 0 1 −1 0 0





PA→B

PB→A

PA→C

PC→A

PB→C

PC→B


=



1

1

1

[min∆PB∼C
DMA

,max∆PB∼C
DMA

]

[min∆PA∼B
DMA

,max∆PA∼B
DMA

]

[min∆PA∼C
DMA

,max∆PA∼C
DMA

]


. (25)

The 6x6 matrix above is not invertible as the 5th and 6th column vectors are not

linearly independent, resulting in a matrix rank of 5 (which is less than the number of

columns). However, the subset of equations involving PA→B and PB→A can be solved:

1 1

1 −1


PA→B

PB→A

 =

 1

[min∆PA∼B
DMA

,max∆PA∼B
DMA

]

 , (26)

and similarly, the values PA→C and PC→A are solved via:

1 1

1 −1


PA→C

PC→A

 =

 1

[min∆PA∼C
DMA

,max∆PA∼C
DMA

]

 . (27)

The fourth row or equation from (25) was never used in the above two solutions.

It can be used as a check for consistency after the above systems have been solved or
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included in the system to solve the first two unknowns (i.e. PB→C and PC→B) have

been excluded resulting in the solvable system:



1 1 0 0

0 0 1 1

0 1 0 −1

1 −1 0 0

0 0 1 −1





PA→B

PB→A

PA→C

PC→A


=



1

1

0.2

0.3

0.4


. (28)

where the ranges have been replaced with an arbitrary single value (where the

minimum and maximum values are the same) for purposes of illustration.

This system of equations is overdetermined and thus constitutes a general linear

least squares problem [168]. Performing this operation using the unique solution:

x = (A∗A)−1A∗b (29)

where A is the 5x4 matrix above from equation (28), A∗ is the Hermitian transpose

of A, b is the vector of values on the right hand side and x represents the vector of

unknowns (i.e. the power relationships).

The solution of this system becomes:

x =



0.65

0.3875

0.7

0.2625


. (30)

If one of the last three equations is removed from this same system, then the A

matrix becomes 4x4 and x takes on respective values of:
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x =



0.65

0.35

0.85

0.15


,



0.5

0.5

0.7

0.3


or



0.65

0.35

0.7

0.3


. (31)

With three different answers (and four with the least squares result), the arbitrary

values for the b vector, are inconsistent. For example, if b =[1, 1, 0.1, 0.2, 0.4]

(a consistent answer) then x = [0.6, 0.4, 0.7, 0.3] for all four systems. Although

this inconsistency is not desirable, it is quite likely since a decision maker may be

potentially inconsistent through at least some of the discrete choices presented and

across the various comparisons, such as the difference in influence between A and B,

A and C, etc.

However, with only four unknowns, it is not required to ask at least one of the

series of discrete choices that provided one of the last three equations. In terms of a

satisficing strategy, two would have been sufficient. However, if time and resources

permit additional testing than additional discrete choices can be performed, and

consistency checks or least squares algorithms can be applied.

In fact, the last two unknowns, PB→C and PC→B could be estimated by DMA by

answering similar questions about whose design would win out in a tournament style

decision between those two decision makers, similar to Figure 91 (but with DMB and

DMC involved). This particular type of discrete choice is further removed from the

knowledge of DMA since they may known nothing or little about the relationship

between two other individuals, but it at least can provide an estimate for PB→C and

PC→B from the perspective of DMA.

Similarly, one can ask DMA about the responses that DMB and DMC would

provide in other situations such as that in the initial discrete choice from Figures 87

and 88. These would obviously include a relatively high amount of uncertainty for
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the aforementioned reasons, but could still be useful in analyzing consistency in the

responses of DMA.

Therefore, the full set of possible equations in matrix form, solely from the per-

spective of Decision Maker A can be written as:



1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

1 −1 0 0 0 0

0 0 1 −1 0 0

0 0 0 0 1 −1

0 1 0 −1 0 0

1 0 0 0 0 −1

0 0 −1 0 1 0





PA→B

PB→A

PA→C

PC→A

PB→C

PC→B


=



1

1

1

[min∆PA∼B
DMA

,max∆PA∼B
DMA

]

[min∆PA∼C
DMA

,max∆PA∼C
DMA

]

[min∆PB∼C
DM• ,max∆PB∼C

DM• ]

[min∆PB∼C
DMA

,max∆PB∼C
DMA

]

[min∆PA∼C
DM• ,max∆PA∼C

DM• ]

[min∆PA∼B
DM• ,max∆PA∼B

DM• ]



, (32)

where the DM• in the 6th, 8th and 9th elements in the b vector indicates those

equations whereDMA is making an estimate on how the others will respond to discrete

choices, that is, from their perspective. For example, ∆PB∼C
DM• is the estimate for how

DMB or DMC will answer a discrete choice when they are given a particular discrete

choice. In other words, DMA acts as if they were DMB or DMC in responding to the

discrete choice to give these equations.

The order in the above matrix has changed slightly from previous equations in

that the first three rows are the constraint equations, the next three involve the

tournament style discrete choices (where the decision maker given the discrete choice

is associated with one of the designs) and the last three are those discrete choices

where a particular decision maker identifies who of the other two decision makers

has more power or influence over themselves. As mentioned above, only a subset of

these nine equations is needed to solve the 6 unknowns, but additional ones could be
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helpful in applying checks or implementing a least squares approach to the solution.

In Figure 92, the power relationships are indicated with arrows and the circled

numbers indicate the equation number (row number) in the above matrix that rep-

resents the power relationships with the related unknown power variables.

C

1

4

2

5

36

7

8

9

A

B

Figure 92: Diagram of potential power relationships equations

Since DMA really only has some intimation of knowledge about equations 4©,

5© and 7©, the discrete choices that provide this information would be uncertain.

Equations 1©, 2© and 3© are the known constraints. Next, equations 8© and 9©

could be investigated through discrete choices presented to DMA with even more

uncertainty and lastly equation 6© could be estimated with the most uncertainty

(which only involves the other two decision makers).

Clearly, 9 equations (and even 6 equations) with 6 or more series of discrete choices

to extract the ranges for each of them is significant effort for one decision maker.

Furthermore, the number of equations and effort only increases when more than 3

decision makers are involved. For example, four decision makers would result in 6

constraint equations and 12 other equations available for the 12 power relationship

variables that need to be defined. This would indubitably require even more time

and effort on the part of the decision maker.

To accelerate the process of extracting power relationships, the second method is
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more efficient by using the power information from multiple decision makers simul-

taneously. Up to this point, only DMA’s choices were used to define the 6 unknown

power relationships. Understandably, each of the decision makers would seek to de-

fine their own influence (or perceived influence) over each other. This could result in

additional inconsistencies which would likewise be interesting and useful to analyze

but in order to simply satisfy the required number of equations (i.e. 6), only one

equation provided by each of the three decision makers is necessary.

Since a decision maker is more likely to know the influence that others have on

themselves, equations 7©, 8©, and 9© provided from discrete choices given to Decision

Makers A, B and C respectively are all that are needed. Note that the above process

will make use of the mean weighting vector for the other respective decision makers

and not DMA’s mean weighting vector.

The system of equations, after these series of discrete choices are complete, now

looks like:



1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

0 1 0 −1 0 0

1 0 0 0 0 −1

0 0 −1 0 1 0





PA→B

PB→A

PA→C

PC→A

PB→C

PC→B


=



1

1

1

[min∆PB∼C
DMA

,max∆PB∼C
DMA

]

[min∆PA∼C
DMB

,max∆PA∼C
DMB

]

[min∆PA∼B
DMC

,max∆PA∼B
DMC

]


, (33)

where the subscripts on the right hand side (e.g. •DMB
) indicate from whose

perspective that particular vector element was provided (Decision Maker A, B or C).

Assuming an arbitrary right hand side b vector of [1, 1, 1, 0.3, 0.1, 0.2], the solution is

calculated via x = A−1b (since A is invertible) and results in:
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x =



0.3

0.7

0.6

0.4

0.8

0.2


. (34)

This is illustrated in Figure 93 where arrows are scaled and shaded by the relative

values for the power associated for each relationship. Reading this figure is done by

considering that the decision maker at the arrow’s tail has power over the decision

maker at the head of the arrow according to the value indicated. In this figure,

Decision Maker B appears to have a significant high amount of power in the entire

group with a power over A set at 0.7 and power over C at 0.8.

Figure 93: Illustration of power relationships between decision makers. Arrow color
and thickness are scaled by power value.

Both the constraints, and similarly, the other equations are satisfied in the above

solution and related figure, and no one decision maker was required to respond to

more than one set of discrete choices for sufficient convergence. If more series of
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discrete choices are provided by one or more decision makers, making the matrix no

longer square, then the strategy for solving the now overdetermined problem using a

least squares method can be implemented.

6.2.6 Distributions of Power Relationships

The preceding discussion, however, ignored the fact that specific values are not given

as elements in the b vector but instead as ranges (i.e. [min∆PB∼C
DMA

,max∆PB∼C
DMA

]

). Since each decision maker reveals a range of influence differences for each of the

equations, transforming these into the ranges for the actual power relationships is

still needed.

This is done by taking the various combinations of minimum and maximum values

(in this case, 23 = 8) and solving the system of equations multiple times for each one.

For example, if the b vector is:

b =



1

1

1

[0.3, 0.4]

[0.05, 0.15]

[0.2, 0.35]


. (35)

then the resultant solutions for x will be:

x =



PA→B

PB→A

PA→C

PC→A

PB→C

PC→B


=



[0.15, 0.325]

[0.675, 0.85]

[0.5, 0.675]

[0.325, 0.5]

[0.775, 0.95]

[0.05, 0.225]


. (36)
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Of the eight solutions these ranges contain, selecting all the minimum values would

clearly not be a valid solution since each set of two rows (with the first row number

of a set being odd) must sum to 1. Furthermore, assigning one to the minimum and

one to the maximum values in each set would also not provide a valid answer since

the values are highly interdependent. For example, if PA→B = 0.15 (minimum) and

PB→A = 0.85 (maximum), the other four values cannot lie at any of the extremes (in

at least this example). Thus, since the ranges displayed above are only the minimum

and maximum values of x, a more precise and useful set of solutions to the system of

equations is through distributions shown in Figure 94.

PA→B PB→A PA→C PC→A PB→C PC→B

Figure 94: Distributions for decision maker power relationships generated by the
execution of 10000 Monte Carlo simulations

These power distributions are created with a histogram of the solutions of x for

10000 randomly selected combinations of values within the appropriate ranges for

the b vector in Equation (35). The distributions approach a normal distribution

shape with a standard deviation close to 0.03, however, the tails are truncated at the
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maximum and minimum possible values listed above.

It is interesting to note that although the ranges are expectedly different (e.g.

[0.15,0.325] vs. [0.675,0.85]), the difference between the maximum and minimum

values for each of the ranges are the same (e.g. 0.325 - 0.15 = 0.175 = 0.85 - 0.675).

This is tied to the size of the range for the values in b. The relative differences in the

range for b in this example are 0.1, 0.1 and 0.15 respectively for the three last elements

of this vector (see Equation (35)). In other words, the discrete choices presented to

and answered by Decision Maker C have greater uncertainty than that of DMA or

DMB.

Research Question: What is the impact on the certainty of power relationships

when decision makers respond to different numbers of discrete choices and provided

different ranges?

The experiment to answer this question involves simulating the above steps for

multiple ranges for b and investigating the sensitivities of these ranges to the certainty

in the power distributions.

The first range sweep will be by holding the range from DMA and DMB constant

as above (i.e. max(b[4])−min(b[4]) = max(b[5])−min(b[5]) = 0.1) and sweeping the

value of max(b[6])−min(b[6]) from 0 to 0.8.

The one highlighted point in Figure 95 indicates the ranges in the b vector

b[4] = 0.1, b[5] = 0.1 and b[6] = 0.15 which result in the power distribution range

of 0.175. Expectedly, a higher uncertainty in b[6] results in higher uncertainty in

the distribution ranges. The same point (b[4] = 0.1, b[5] = 0.1 and b[6] = 0.15) is

highlighted in Figure 96 but with the values for b[5] also varied between 0 and 0.95.

Not surprisingly, the uncertainty increases when two decision makers are uncertain

themselves about influence differences between decision makers. Finally, varying or

sweeping all of the values from the b vector for each of the decision makers would

produce a similar trend where each of the lines from Figure 96 is shifted even higher.
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Figure 95: Range sweep of max(b[6]) − min(b[6]) from 0 to 0.8 while holding
max(b[4])−min(b[4]) = max(b[5])−min(b[5]) = 0.1

Figure 96: Range sweep for b[5] and b[6] while holding b[4] at 0.1
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An interesting result occurs if the sum of the uncertainties from the decision

makers is greater than 2 (i.e. b[4]+b[5]+b[6] > 2). In this case, the ranges for the

distributions of power relationships is always greater than 1, an impossible solution

based upon the implicit constraints that 0 ≤ PA→B ≤ 1, 0 ≤ PB→A ≤ 1, etc. or that

Px is always non-negative and less than 1.

Moreover, when the sum is greater than 1 (but less than 2), solutions can likewise

result with ranges greater than 1 but can also reach ranges as low as 0.5. For example,

if b[4] = 0.677, b[5] = 0.286 and b[6] = 0.038, and therefore b[4] + b[5] + b[6] = 1.001,

the ranges for the distributions are only 0.501 and the solutions for Px are all between

0 and 1. However, if b[4] = 0.869, b[5] = 0.002 and b[6] = 0.166, and therefore b[4] +

b[5]+b[6] = 1.037, the ranges span 0.519 but the values of Px are greater than 1 or less

than 0 such as PC→B = 1.019 and PB→C = −0.019 in this example. This would seem

to indicate that in this particular relationship, DMA holds all the power overDMB. In

these types of outcomes the power relationships are adjusted such that a value greater

than 1 is set at 1 and values less than 0 are set at 0, such that PC→B = 1 and PB→C = 0

for this case. This same result occurs when the last three b vector elements are

normalized such that when b[4] = 0.869, b[5] = 0.002 and b[6] = 0.166, they become

b[4] = 0.869/sum(b[4], b[5], b[6]) = 0.837, b[5] = 0.002/sum(b[4], b[5], b[6]) = 0.0019

and b[6] = 0.166/sum(b[4], b[5], b[6]) = 0.160 which then provides the constrained

values for the power relationships Px to be non-negative as required.

With the normalization applied, the bottom half of Figure 95 will have a number

of simulations which will be normalized due to b[5] + b[6] > 1. Those points will be

normalized and recalculated with the updated values. The result appears in Figure

97 where the top portion with b[5]+b[6] > 1 is shifted or folded back onto the feasible

region. The colors are again set to correspond with the range on b[5], such that the

darkest red point corresponds to a b[5] value of 0.9 and a b[6] value of 0 (b[4] is held

constant at 0.1). As a consequence, any increase in the range of b[6] will result in a
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normalization process with the portion of the triangle shape above 0.5 skewed to the

left and resulting in ranges of the distributions as indicated on the y-axis for PA→B

for example.

Figure 98 shows the aforementioned normalization process when b[4] is swept

across discrete values of 0.1, 0.35, 0.6 and 0.85. The top left section is identical to

the entire top graph discussed above. The other three show increasing values of the

distribution range of the power with increasing amounts of folding as normalization

is required when the sum of the three b vector elements is greater than 1.

Figure 97: Normalized b vector values. Range sweep for b[5] and b[6] while holding
b[4] at 0.1

Under normalization, the power distributions can take on difference ranges. If the

normalization is required, the following b⇔ x pair exist:
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Figure 98: Normalized b vector values. Range sweep for b[4], b[5] and b[6]

b =



1

1

1

[0.7, 0.8]

[0.05, 0.15]

[0.2, 0.35]


x =



PA→B

PB→A

PA→C

PC→A

PB→C

PC→B


=



[0.042, 0.143]

[0.857, 0.958]

[0.682, 0.826]

[0.174, 0.318]

[0.975, 1]

[0, 0.025]


which has different ranges for the six elements of x namely 0.101 for the first two,

0.144 for the next two and 0.025 for the last two. The uncertainty is smallest for

PB→C and its complement due to the large difference in influence that DMA reported

between B and C each had over A (i.e. PB→A > PC→A). With such a large influence

difference, in connection with the other values reported, there is strong evidence that

PB→C may be equal to 1. Of course this can be tempered significantly, if DMC had
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responded with little or no difference between A and B within the b[6] element or

even a reversal of who had a majority of that relationship’s power. For example, if,

instead of [0.2, 0.35], b[6] = [-0.35, -0.2], then PB→C would have a min and max of

[0.68, 0.82], with a range of 0.14 (much greater than 0.025). However, at the same

time, this combination would potentially make PA→C = 1. Thus the uncertainty in Px

is ultimately highly dependent on the absolute values for the ranges but assuming all

the values are relatively small such that the maximum extremes do not sum to greater

than 1, the relationship between the uncertainty on the b vector and the uncertainty

on the range x is linear through the summation of b. Therefore, halving the ranges of

b will halve the range on x as shown in Figure 99 on the bottom (after halving). Since

one more discrete choice will halve the uncertainty in the power difference, the power

distribution uncertainty will halve with each successive discrete choice (assuming one

more for each decision maker).

PA→B PB→A PA→C PC→A PB→C PC→B

Figure 99: Before (top) and after (bottom) halving the uncertainty on the power
distributions by halving the uncertainty on b

Of course, if only one decision maker responds to one more discrete choice, then
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the effect observed on the distribution may or may not be comparably significant.

Ideally the decision maker with the largest uncertainty should be first to apply an

additional discrete choice so as to maximize the benefits of one more experiment.

Lastly, although the range will contract (or expand) with b the overall shape of the

histogram can also vary with the portion of uncertainty between the decision makers.

For example, the left side of Figure 100 shows relatively equally uncertain ranges (r),

rb[4] = 0.165, rb[5] = 0.165 and rb[6] = 0.17, which is generally expected with a similar

number of discrete choices, while the right hand side shows highly dissimilar ranges

such that rb[4] = 0.45, rb[5] = 0.025 and rb[6] = 0.025.

Figure 100: Examples of the effect of range differences on the distribution shape of

power relationships

With this additional step of normalization required (i.e. the values given by the

discrete choices when b[4] + b[5] + b[6] > 1), the full set of ranges for the b vector

with 10000 Monte Carlo simulations can be executed and analyzed. Figure 101 shows

the three power relationships and their complements in the upper 3x3 matrix. The

correlation is exactly -1 for complementary power relationships as shown in the first

three diagonal scatterplots. The last row and column illustrate the sum of the last

three elements in b versus these same power relationships. All points are again colored
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by this same summation value.

Figure 101: Monte Carlo Simulations for Power Relationships

Firstly, all combinations of power relationship are possible, which is to be expected

with a simple MC covering the entire range of power or influence differences. Secondly,

when the sum of the last three elements in b is small, the power relationships are more

similar or at least some of them will be close to equal power (e.g. PA→B = 0.49 and

PB→A = 0.51. Finally, when the sum of the last three elements in b approaches 1,

possible combinations can exist across the entire “power space”.

Technically, this “power space”, is composed of all the possible combinations of

power relationships that can exist. However, since the A matrix could be one of eight
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types below:



1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

0 1 0 −1 0 0

1 0 0 0 0 −1

0 0 1 0 −1 0





1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

0 −1 0 1 0 0

1 0 0 0 0 −1

0 0 1 0 −1 0





1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

0 1 0 −1 0 0

−1 0 0 0 0 1

0 0 1 0 −1 0





1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

0 1 0 −1 0 0

1 0 0 0 0 −1

0 0 −1 0 1 0





1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

0 −1 0 1 0 0

−1 0 0 0 0 1

0 0 1 0 −1 0





1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

0 −1 0 1 0 0

1 0 0 0 0 −1

0 0 −1 0 1 0





1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

0 1 0 −1 0 0

−1 0 0 0 0 1

0 0 −1 0 1 0





1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

0 −1 0 1 0 0

−1 0 0 0 0 1

0 0 −1 0 1 0



after the range for the b vector is made such that it is always non-negative, the

power space is divided into these eight regions to which a particular A matrix can

be mapped (through A−1). Figure 102 shows the region or range (in a vector math

sense) of the second type of the A matrix above.

In this figure, the power combinations suggest, for example, that:

PB→C + PC→A ≤ 1 (37)

and thus,

PB→C ≤ 1− PC→A (38)

and finally:

PB→C ≤ PA→C , (39)

as suggested by the last row (sixth equation) from A when b is non-negative. The

other inequalities established from the discrete choices with A would further define
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Figure 102: Type 2 of A matrix used for Monte Carlo Simulations and resultant
power relationships

the other possible regions for power combinations. The total power space is the

union of these spaces, so that the entire space as depicted in Figure 101 can capture

completely all the possible power structures between decision makers.

6.2.7 Application of Vectors Other than the Mean Weighting Vector

Another factor initially overlooked in the above discussion was the use of the mean

weighting vector for all of the comparisons. Extracting the power relationships as-

sumes that this is in fact the weighting by which all comparisons can be referenced.

In reality, it is known only to a certain level based on the set of all possible true

weighting vectors as discussed in the previous section from the discrete choices in

Step 1.

This suggests, therefore, that the ranges on the power relationships are likely

less certain than originally presumed. For example, in Table 11, two designs which
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could be compared in a discrete choice, have a nearly equal utility value when using

the mean weighting vector as above. This set could be used in a discrete choice to

identify the initial power relationship between two decision makers. That is, if DMB

were attached to d35 and DMC were assigned to d1481, the respondent DMA would

likely not cognitively apply the mean weighting vector, but perhaps the wmax from

d35. When this different weighting vector is applied, the comparison is now between

designs in different utility bands, namely between 0.6704 and 0.6197 (see the wmax

for d35 and w35max for d1481), which is significantly different than the expected 0.6257

versus 0.6254.

Table 11: Mean Weighting Vector Contrasted Against Possible Minimum and Maxi-
mum Weighting Vectors

Design #35: [0.3899, 0.9209, 0.0033] U() wj1 wj2 wj3

wmean 0.6257 0.092 0.639 0.268
wmin 0.5925 0.1 0.6 0.3
wmax 0.6704 0.094 0.687 0.219
w1481min

0.6522 0.106 0.662 0.231
w1481max 0.6034 0.069 0.625 0.306

Design #1481: [0.2297, 0.6356, 0.737] U() wj1 wj2 wj3

wmean 0.6254 0.092 0.639 0.268
wmin 0.6388 0.106 0.662 0.231
wmax 0.616 0.069 0.625 0.306
w35min

0.6254 0.1 0.6 0.3
w35max 0.6197 0.094 0.687 0.219

To account for this source of uncertainty, the conservative or worst case for the

upper and lower bounds can be propagated throughout the algorithm. In imple-

menting this consideration, for each discrete choice, the range is now not necessarily

halved but reduced by some amount less than half. For example, as in Figure 89,

which is repeated on the top of Figure 103 but with a larger amount of iterations,

the uncertainty in the utility difference slowly collapses around the particular power

or influence difference (via utility). The bottom of Figure 103 shows the corrected

minimum and maximum values for the difference in utility score implementing this
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conservative approach of only reducing the range down to the worst case.

Figure 103: Accounting for uncertainty in using the mean weighting vector by prop-

agating the worst case upper and lower bound throughout the set of discrete choices

As is visible on the far right of Figure 103, an increase in the number of discrete

choices does not necessarily further reduce this range. This provides a potential

stopping criterion for this step as no additional discrete choices are needed if the range

is no longer reduced with another discrete choice. The reason for this originates in

the random selection of the two designs in a specific utility band based on the mean

weighting vector. If, in Step 1, a decision maker made fewer discrete choices, and

thus the preference uncertainty is higher, the difference in the mean, maximum and
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minimum weighting vectors would also be much higher. An example of this is shown

in Figure 104 when Step 1 only contained 5 discrete choices.

Figure 104: Example of erratic collapsing on the difference in utility score when Step
1 contains only 5 discrete choices

6.2.8 More than Three Decision Makers

To extract power relationships or distributions between more than three decision

makers the above algorithm can be likewise implemented with additional discrete

choice responses from each of the agents.

With four decision makers, 12 unknown power relationships can be identified but

with six constraint equations already defined. The additional six equations can be

acquired in a similar fashion as above by comparing two designs assigned to other

decision makers and then requesting a third decision maker to choose with whom they

are more likely to form a coalition. With four decision makers, two of them would be

required to perform this process twice, while the others only once. However, a variety

of combinations or series of discrete choices are available as discussed previously.

For example, valid equations could be obtained from DMA choosing between 1) B

and C, 2) B and D, or 3) C and D. Only a sufficient number (i.e. 6) are necessary to

solve the system of equations, such as the example system below, where the A matrix
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is invertible:



1 1 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 1 1

0 1 0 0 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 −1 0 0

0 0 1 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 −1 0

0 1 0 −1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 −1 0 0





PA→B

PB→A

PA→C

PC→A

PA→D

PD→A

PB→C

PC→B

PB→D

PD→B

PC→D

PD→C



=



1

1

1

1

1

1

[min∆PB∼D
DMA

,max∆PB∼D
DMA

]

[min∆PC∼D
DMB

,max∆PC∼D
DMB

]

[min∆PA∼B
DMC

,max∆PA∼B
DMC

]

[min∆PB∼C
DMD

,max∆PB∼C
DMD

]

[min∆PB∼C
DMA

,max∆PB∼C
DMA

]

[min∆PA∼D
DMB

,max∆PA∼D
DMB

]



,

(40)

As with the case described previously with three decision makers, if more equations

are available than unknowns, such that m > n (i.e. the number of rows (m) is greater

than the number of columns (n)) a linear least squares solution can be implemented.

This process may even be desirable to equalize the contributions of the four decisions

makers since one or more agents may consider it unfair if two of them are fortunate

to define more than one equation. On the other hand, minimizing the effort or time

required to answer multiple discrete choice questions may be an equally valid reason

to answer as little as possible.

6.2.9 Total Power Indices

With the power relationships defined (for three decision makers) in terms of distri-

butions, the overall total power index for each decision maker is readily available.

For three decision makers the simple equation for the power or influence DMA

has in the entire group can be defined as:
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PA =
PA→B + PA→C

PA→B + PB→A + PA→C + PC→A + PB→C + PC→B

(41)

with similar equations for DMB and DMC . More generally this is defined as:

Pi =

k∑
j=1

Pi→j

k(k−1)
2

, i 6= j (42)

where k is the number of decision makers and i (or j) is the ith (or jth) decision

maker, and Pi is the total power for DMi within the group.

Assuming the ranges from equation (36), in a previous example, the total power

for DMA,DMB, and DMC is:

PA =
[0.15, 0.325] + [0.5, 0.675]

3
= [0.217, 0.333]

PB =
[0.675, 0.85] + [0.775, 0.95]

3
= [0.483, 0.6]

PC =
[0.325, 0.5] + [0.05, 0.225]

3
= [0.125, 0.242]. (43)

Since PA + PB + PC = 1, only certain combinations of total power indices exist

similar to the previous constraints placed upon the distributions of power for each

relationship. The three maximum values cannot all be simultaneously retained nor

can the three minimum values. The usefulness of these ranges allows for the testing

of various scenarios involving power such as “best and worst outcome with power

pessimism” or “coalition and majority forming” in Step 3 of the methodology de-

scribed next when the decision makers must reach agreement on the preferences and,

ultimately, on the design.

6.3 Step 3: Reaching Preference Consensus

Steps 1 and 2 described in the previous two sections respectively, and applied to the

canonical problem, provided the two essential sets of data required to perform the
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proposed algorithm to calculated the regions where consensus is more likely to be

reached.

In Step 1, the possible weighting vectors that could represent each decision maker’s

true preference was obtained. Each decision maker involved in a particular decision

was required to respond to discrete choices between two designs. After a number of

discrete choices the preference space representing the entire set of preferences was

slowly reduced to a set of possible weighting vectors for each decision maker.

The output of this step, shown in Figure 105, summarizes the responses described

in the previous sections from the canonical problem. Decision Maker A placed a high

weighting on the second dimension (i.e. x2), followed by x3 and lastly by x1. Decision

Maker B’s preference are in the exact opposite, preferring first x1 and x3 (at about the

same weight of 0.4) and then x2 (with wx2 in a distribution grouped closely around

0.2). Lastly, Decision Maker C’s preferences are also different with preferences for

objective x3 followed by x2 and then x1.

Possible
Weighting

Vectors for DMA

Possible
Weighting

Vectors for DMB

Possible
Weighting

Vectors for DMC

Figure 105: Output from Step 1: Possible Weighting Vectors for each Decision Maker

In Step 2, the power or influence relationships were extracted from between the

decision makers. These relationships were expressed as the difference in influence

that one of two other decision makers could potentially impose upon the responding
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decision maker. After a number of discrete choices, each which would slowly reduce

the range of the power difference until the stopping criterion is reached, the equa-

tion produced from the difference in influence could then be combined with other

constraint equations to solve for the power of each decision maker over the others.

The results of this step are shown in Figure 106, which illustrates, on the top half,

that for each pair of decision makers, the total power sums to 1. Furthermore, on

the bottom, the total power for each individual decision maker or the distribution of

power shared for the entire group, is similarly represented, where DMA likely holds

the most influence with a mean power near 0.45, followed by DMB (P̄B ≈ 0.4) and

then lastly by DMC (P̄C ≈ 0.15).

Since A and B have greater influence than C, the expected set of designs where

consensus is more likely to be reached will be close to the preferred designs of A or B.

However, to what degree this is the case can be determined by the process of Step 3

after reaching consensus through multiple ultimatum games between decision makers.

PA→B PB→A PA→C PC→A PB→C PC→B

Figure 106: Output from Step 2: Distributions for Decision Makers’ Power Relation-
ships
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6.3.1 The Ultimatum Game Between Decision Makers

Conceptually, the ultimatum game is played between two decision makers (or groups

of decision makers) to identify the designs or rather the preferences at which the

decision makers will reach consensus. The utility score or value of a proposed design

will be lower than the “ideal” design for the preferences of both decision makers.

Since both decision makers seek to maximize utility through their own preferences

but recognize the requirement for reaching a compromise, they will trade utility value

for cooperation or consensus, but only up to the amount that they cannot persuade

the other to accept a preference closer to their own. This “willingness” to accept

someone else’s preferences (or a portion thereof) can be expressed in terms of the

power relationships discussed in previous sections.

For example, in a particular encounter or game between A and B, decision maker

A may assume any power from the distributions of P
′
A→B from Figure 106 (where the

prime on P
′

indicates a “perceived” power, which may or may not reflect reality). If

they are optimistic in their ability to persuade, apply their reputation, or any other

reason for exercising greater power, they may assume a value higher than the mean

of 0.55, such as 0.65 for example. On the other hand, DMB can be equally optimistic

about their influence over A and assume a power index of 0.55 for P
′
B→A

Assuming DMA proposes to reach agreement at a design (or preference) 15%

closer (0.65-0.5=0.15) to A’s design (or preference), B will reject the offer because

they would only accept offers at values closer to their preferences by 5% (i.e. 0.55-0.5

= 0.05). After all, they assume that they can negotiate, persuade, hold out for, etc.

a design that at least required A to come slightly more than half way to their own

perspective and preferences. This will be called the over-constrained power condition.

If DMB’s perceived power over A was only 0.3 (again, see Figure 106), then
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B would consider the offer advantageous to themselves, as they were offered some-

thing better than what they normally would accept on average. This is the under-

constrained power condition.

Lastly, when P
′
B→A is exactly 0.35, as perceived by DMB (while the power index

for A over B remains at 0.65), the offer is likewise accepted since B could not on

average expect a more favorable offer. This is the constrained power condition.

These three situations or conditions are illustrated in Figure 107. In the top or

over-constrained condition, the total perceived power for both follows the inequality

P
′
A→B +P

′
B→A > 1. They both think that the other will concede more “ground” than

what will occur in reality. In other words, the point proposed by A (small green circle)

is “too far away” from an acceptable location (small blue circle) from B’s perspective.

This is equally true if the proposer and responder are reversed.

Preferred Design 
or Preference of A

Preferred Design 
or Preference of B

Acceptable Design/
Preference by B

Proposed Design/
Preference by A

1-0.55=0.451-0.65=0.35

Overconstrained

Acceptable Design/
Preference by B

Proposed Design/
Preference by A

1-0.65=0.35 1-0.3=0.7

Underconstrained

Proposed Design/
Preference by A

Acceptable Design/
Preference by B

1-0.35=0.65
1-0.65=0.35

Constrained

Figure 107: Examples of the Three Power Constraint Conditions
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Table 12: Examples of Ultimatum Game Outcomes Between Decision Makers with
Different Perceptions of Power Relationships

Description Design [wx1
, wx2

, wx3
] uA uB P

′

A→B P
′

B→A

P
′

A→B

+
P

′

B→A

accept
or

reject

Pref. by A 705 [0.125, 0.6, 0.275] 0.672 0.416 n/a n/a n/a n/a
Pref. by B 1038 [0.388, 0.2, 0.412] 0.466 0.600 n/a n/a n/a n/a

Prop. by A 293 [0.217, 0.46, 0.323] 0.649 0.516 0.65 0.35 1 accept
Prop. by A 293 [0.217, 0.46, 0.323] 0.611 0.560 0.65 0.55 1.2 reject
Prop. by A 293 [0.217, 0.46, 0.323] 0.654 0.507 0.65 0.3 0.95 accept

In the middle or under-constrained condition, the inequality describing the total

perceived power is P
′
A→B+P

′
B→A < 1. They are both willing to give up more “ground”

than what is necessary. Agreement in these situations will be quick or highly prob-

able. The proposed design or preference is closer to the responder’s preferred design

than what would be generally accepted. The outcome of proposed designs in these

situations often results in agreement.

Finally, for the constrained condition, when P
′
A→B + P

′
B→A = 1, the proposed de-

sign lies exactly on the point which would satisfy the associated constraint equation.

The responding decision maker could accept the design, since at this power relation-

ship, they cannot expected to obtain a better design more than half the time, under

the situation’s perceived power assumptions.

A more concrete example is show in Table 12, where DMA proposes design #293 to

the responder (DMB) who has assumed different influences onto A (i.e. P
′
B→A). The

first two rows indicate the preferred design and utility scores before any consensus.

The utility score for A’s design is much larger than B’s utility score of the same

design, and vice versa for the other design.

The third row in the table shows the constrained condition where the sum of

P
′
A→B and P

′
B→A equals 1. In this case, DMB accepts this design since they will not

expect to convince DMA to approach or come closer to their preferred design (i.e.

d1038) any more than the design or preferences listed in row #3. The utility columns

231



show that for this design, both decision makers concede some utility value. DMA’s

utility dropped from 0.672 to 0.649 while DMB’s utility dropped from 0.6 to 0.516.

Although both experienced a reduction in utility, the benefits of cooperation might

compensate for the lower utility. In other words, before consensus was reached, both

of their utility values were effectively zero if cooperation is essential (an assumption

throughout this research). That is, without each other and a final agreement, no

design can be selected, and thus no benefit or utility can be achieved for either one.

Although, neither decision maker was able to achieve their own individual best value,

both are able to gain from the relationship by finding at least one consensus point and

by so doing potentially “pooling” their power over other decision makers, discussed

later.

The fourth row in Table 12 shows when the over-constrained condition occurs

and the sum of the powers over each other is greater than 1. DMB expects that

disagreeing will result in DMA moving to a position more closely aligned with DMB’s

preferred point. From the opposite perspective, DMA might take a similar view that

eventually DMB will concede more as well. Regardless of the proposer or responder,

the responder will reject the offer and wait for a new or counter-offer which is more

acceptable.

Lastly, the fifth row shows the under-constrained case where both decision makers

underestimate their influence over the other such that P
′
A→B + P

′
B→A < 1. In this

case the responder will readily accept offers, since they view the proposed design as

much better than they could have expected under the power assumptions made about

relationship.

In all cases, if the utility value is equal or greater compared to the constrained

case’s utility value, the assumption is made that the responder will accept the pro-

posed design or preference. (i.e. 0.56 > 0.516 from the uB column in Table 12).
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6.3.2 Multiple Ultimatum Games Between Decision Makers

The limitation in the one game presented in Table 12 is that the actual preferred de-

sign is unknown, since only a range on the possible valid weighting vectors is known for

each decision maker. Therefore, the above ultimatum game must be played multiple

times from multiple initial weighting vectors.

Furthermore, only three combinations of power relationships were tabulated in

Table 12. In fact, the power indices are also not precisely known with only a distribu-

tion of influence defining the relationships between the various decision makers. For

this reason, the ultimatum game must be played multiple times across the various

weighting vectors and concurrently with all the potential perceived power relationship

combinations.

Consider two decision makers (A and B) both seeking to reach agreement on a

design, with the set of feasible weighting vectors expressed in the design space as

illustrated in Figure 108. Each design labeled with an A or B on the left and right

of Figure 108, respectively, represents a “best” design associated with one or more

of the feasible weighting vectors. These designs represent the mapped set of feasible

weighting vectors onto the design space as the true preference from each of the decision

makers from previous discrete choices in Step 1.

From before, DMA prefers x2 much more than x1 with x3 in between. DMB has

a near opposite perspective from that of DMA. However, under the assumption that

both prefer an agreement over no agreement both are willing, to different degrees, to

reach consensus on some design likely in between their preferred regions.

To analyze at which designs reaching consensus is most likely, the initial prefer-

ence vectors are randomly selected from among the set of weighting vectors whose

corresponding designs are pictured in Figure 108. Concurrently, random values from

the two related distributions of power relationships, namely from PA→B and PB→A in

Figure 106, are selected providing the perceived power indices P
′
A→B and P

′
B→A.
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Figure 108: Feasible weighting vectors mapped to the design space for Decision Mak-
ers A and B

With the perceived power indices, one of the decision makers will propose to the

other a mapped weighting vector (or a design) at which they would be in agreement.

By assumption, the proposing decision maker will only propose a design which they

would accept had the other proposed it. The other decision maker then evaluates the

utility value (or the reduction in utility value) from their initial weighting vector and

corresponding perceived power relationship. If the utility value is greater than what

they can reasonably expect from the relationship (i.e. the offer exactly associated with

the constraining power condition), they will accept the proposition and the consensus

is reached.

This above process is repeated multiple times for randomly selected initial weight-

ing vectors and power relationship indices. The count of how often each design be-

comes the point at which consensus was reached is recorded. Visualize these designs

colored by the occurrences of consensus reached is illustrated in Figure 109. Designs

which were never selected in the consensus reaching process are shown as small dark

points. The designs with the highest number of occurrences where the two decision
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makers reached consensus (“consensus occurrence”) are colored in red, with decreas-

ing occurrences through a gradient of red, green and then blue.

Figure 109: Left: Region of Design Space with consensus reaching. Right: Design
Space Projected onto the x1-x2 plane vs. consensus occurrence number

The set of designs with consensus occurrence greater than one will generally fall

between the designs representing the possible best weighting vector of each decision

maker (compare Figure 108 to the left side of Figure 109). By projecting all the

designs onto the x1-x2 plane, the consensus occurrence can be visualized in a type

of 3-dimensional histogram using the third axis as the occurrence number (right side

of Figure 109). The taller the vertical bars (or “redder”), the higher the probability

that consensus is reached at that design (and thus at the complementary preference

or weighting vector).

The one dimensional bar chart of the same data is shown in Figure 110, ordered

by consensus occurrence. For these two decision makers, 60 designs were reached

during the ultimatum game simulations, but only 30 labels (every other design) are

listed on the x-axis. However, nearly 30% of all agreements are reached on only

5 of the designs. These are expectedly near the middle of the cloud of designs as

shown in Figure 109. Statistics on the associated preferences relating to these designs
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Figure 110: Designs sorted by the percent of all consensus occurrences between DMA

and DMB after 5000 MC simulations

can suggest where preferences are most likely to coincide between these two decision

makers.

As mentioned, these points fall between the initial set of designs preferred by

DMA and DMB, but slightly closer to A’s preferred designs. This is, of course, a

consequence of the difference in power or influence these two decision makers have

over each other. DMA is able to convince or persuade DMB to reach consensus on

designs slightly closer to A’s initial preferences. Although both must “give up” some

utility in order to reach agreement, DMA evidently will sacrifice less utility in terms

of percentage compared to B.

If the ultimatum game was played between DMA and DMC , the shift would be

even more skewed towards A’s designs, since the influence of A over C is greater

than that over B. The graph on the bottom of Figure 111 shows the output between

these two decision makers. The top side of Figure 111 shows the respective regions

that DMA (top left) and DMC (bottom left) preferred before reaching consensus is

attempted.

The previous few figures only show the consensus region in terms of the design

space. In the preference space, similar and additional observations can be made about
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Figure 111: Region of design space with consensus reached between DMA and DMC
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regions where consensus is most likely to occur. Figure 112 illustrates an example

of the consensus region in the preference space. The original weighting vectors used

for discrete choices from Step 1 in the methodology are shown as a reference plane.

The two red regions on this plane indicate the set of weighting vectors that could

represent the true preference of DMA (right) and DMB (left). The black cloud in

the middle represent the set of weighting vectors at which decision makers reached

agreement for at least one of the ultimatum games. As expected this cloud of points

is close to the middle but slightly shifted towards A’s preference weighting vectors. A

magnified view of the same three regions with the reference plane removed is shown on

the right of Figure 112. The discrete levels in the weighting vectors are visible along

with the more random consensus region between them showing the lower density of

points on the outer edges of the region. As mentioned, this set of 5000 weighting

vectors converts to only 60 designs in the design space above. This is a consequence

of multiple weighting vectors resulting in the same design point, since the resolution

on the preference space can be much higher than the “resolution” ore density of the

design space. If more than 2000 points existed in the design space or on the Pareto-

front, then likely more than 60 designs would share in the points at which consensus

occurred.

For the current example with three decision makers, the potential to form a coali-

tion between any two decision makers is possible. Thus, the ultimatum game can

be played between A and C or between B and C with different resultant regions of

consensus. In Figure 113, these two other combinations are illustrated. Since both

DMA and DMB have significantly more influence than DMC the consensus region is

much closer to A’s (left hand side) or B’s (right hand side) preferred region.

Comparing Figure 113 to the left hand side of figure 112, the three possible re-

gions of consensus between any two of the decision makers take on different shapes

and locations. As discussed previously, the power relationships will heavily influence
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Figure 112: Consensus region in the preference space between decision makers A and
B, with magnified view on the right.

Figure 113: Region of consensus between DMA and DMC (left) and between DMB

and DMC (right)
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the relative “distance” between the initially preferred regions, but the shape and ex-

tent (or “size”) of the consensus region is dependent on the range or uncertainty of

the weighting vectors, which is in turn dependent on the number of discrete choices

that each decision maker responded to within Step 1. If the randomly selected initial

weighting vector comes from a smaller range, the consensus region will be expectedly

smaller as well. In the current example the number of discrete choices presented to

DMA, DMB and DMC were 7, 5 and 8 respectively, which in part explains the dif-

ferences in the “size” of the preferred regions but also the discretization or resolution

of the set of weighting vector. However, the 7 randomly generated discrete choices

for DMA seemed to be, by chance, less effective in reducing the range of the weight-

ing vectors compared to the 5 for DMB when comparing the number of potential

weighting vectors.

6.3.3 Sequence of N-player Consensus Reaching

The previous section discussed the points or rather the weighting vectors at which

two decision makers will reach consensus. Although, only one weighting vector will be

ultimately assumed and applied to a particular decision-making problem, identifying

the range of these possible vectors allows one to analyze which vectors and thus which

designs are more likely to be selected. This would not only potentially facilitate and

accelerate decision making but also allow one to develop strategies for negotiating,

cooperate more effectively or more precisely manage expectations.

After two decision makers have reached consensus, they have effectively traded

utility for cooperation. In essence, they have become a unified decision maker with

an updated set of vectors which represent their (now) new preferences. In other

words, the consensus region between DMA and DMB becomes the preferences of the

coalition DMAB which now must reach consensus with the last decision maker DMC .

Figure 114 shows this sequence pictorially where the consensus region between A
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and B is first evaluated and then that region (designated as AB) is used to reach

consensus with C.

C

A

B

C

AB

ABC

Figure 114: Pictorial example of sequence of regions through a consensus reaching
process

With only three decision makers, there are only three sequences (with two con-

sensus reaching stages) possible, namely: 1) A and B first reach consensus followed

by AB with C, 2) A and C reach consensus followed by AC with B, and 3) B and C

first reach consensus followed by BC with A.

Table 13: All Possible Sequences with Four Decision Makers

Sequence # Stage 1 Stage 2 Stage 3

1 A—B AB—C ABC—D
2 A—B AB—D ABD—C
3 A—B C—D AB—CD
4 A—C AC—B ACB—D
5 A—C AC—D ACD—B
6 A—C B—D AC—BD
7 A—D AD—C ADC—B
8 A—D AD—B ADB—C
9 A—D B—C AD—BC
10 B—C BC—A BCA—D
11 B—C BC—D BCD—A
12 B—C A—D BC—AD
13 B—D BD—A BDA—C
14 B—D BD—C BDC—A
15 B—D A—C BD—AC
16 C—D CD—A CDA—B
17 C—D CD—B CDB—A
18 C—D A—B CD—AB

With four decision makers involved the number of sequences expands to 15 as
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many more combinations of coalitions are possible with additional sequences from the

various orders. Table 13 shows the 15 sequences, each with three stages of consensus

reaching. The symbol “—” separates the two decision makers or coalitions in each

stage. Sequences 12, 15 and 18 are crossed off as they are repeated sequences of

respective rows 9, 6 and 3. Therefore the 18-3 possible sequences accounts for the 15

unique sequences. Regardless of the number of decision makers, the number of stages

is always k − 1, where k is the number of decision makers. The number of sequences

increases much more quickly as a result of the various ways that 2, 3, ... k−1 decision

makers can form coalitions in various orders.

Returning to the case with three decision makers, Figure 115 illustrates on the

top one sequence (with stages B—C and then BC—A) within the preference space.

The black consensus region of the upper left graph (representing the stage B—C)

becomes the preference region (in red) in the upper right graph (representing the

stage BC—A).

On the bottom of Figure 115, the final set of design points upon which the entire

group has reached agreement, is indicated on the bottom left, and the consensus

occurrence is shown in the projected design space on the bottom right.

Assuming this “B—C, BC—A” sequence was in fact executed by the decision

makers, the resultant design points of the final consensus region provide a set of

designs from which these decision makers will “eventually” select. As mentioned

above, this can potentially reduce the time needed to reach a decision as individuals

realize that after multiple iterations, discussions, or negotiations, they still may “end

up” in this region and so efforts may be more fruitful by only considering this smaller

subset of designs, beginning at the designs most often reached during the consensus

reaching simulation process.

Overlaying this consensus region with the mapped initial weighting vectors onto

the design space of all of the decision makers results in Figure 116. Similar to previous
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Figure 115: Consensus reaching sequence for “B—C, BC—A”. Preference space of
initial weighting vectors and consensus regions (top). Design space consensus region
and number of occurrences onto projected design space (bottom).
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Figure 116: Consensus Region of sequence “B—C, BC—A”, overlaid with initial
weighting vectors of all three decision makers

244



figures, the points that are most red are those designs at which consensus was reached

most often.

This figure is contrasted against the other two consensus sequences in Figure 117

(i.e. “A—C, AC—B” and “A—B, AB—C”).

Figure 117: Consensus Region of sequences “A—C, AC—B” (left) and “A—B,
AB—C” (right), overlaid with initial weighting vectors of all three decision makers

There are slight differences between the three sequences on account of the pooling

and/or loss of power or influence over other decision makers through the appropriate

consensus stages. Up until this point, the benefit of forming a coalition has been

discussed only in terms of a requirement to eventually cooperate. However, combin-

ing a group’s collective power to influence another decision maker is an even more

motivating reason to cooperate and form coalitions.

In the first sequence (i.e. “B—C, BC—A”), DMB and DMC decide to form a

coalition before either one of them does so with DMA. If this is not in either of their

best interests they would likely wait or seek some other combination (perhaps with

A) resulting in a benefit to themselves individually. Since the desire for the overall

methodology is to encourage cooperation and accelerate the decision-making processes

through facilitating consensus reaching, the requirement that forming coalitions is
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desirable is needed. The appropriate research question follows:

Research Question: How should power or influence be combined during the

consensus reaching stage such that forming coalitions are advantageous to the indi-

viduals?

The reversed question would be how to avoid penalizing a group for forming

a coalition? Ideally, a reduction in influence of the group (or coalition) over the

individual should not be possible. Similarly, some benefit of an increase in power

over others should come as a result of, or an incentive for, forming a coalition.

In this current example, when DMB and DMC are unified and form a coalition, the

power or influence relationships between them becomes irrelevant and are effectively

removed from any further analysis. Assume that the power relationships for this

example take on the values listed in Table 14.

Table 14: Power Relationships Between Three Decision Makers

Relationship Value

PA→B 0.472
PB→A 0.528
PA→C 0.785
PC→A 0.215
PB→C 0.679
PC→B 0.324

If DMB joined DMC , together they would look to DMB to influence DMA since

the influence that DMC has over DMA is minimal (0.215). The power relationship

of B over A is PB→A = 0.528 which is much greater than 0.215. Therefore, after the

stage one consensus, the relationships becomes PBC→A = 0.528 and PA→BC = 0.472.

DMA loses their opportunity to influence DMC , by remaining outside the coali-

tion. DMC reaps the benefits of joining DMA which is having more influence over

DMA (through DMB). Lastly, DMB is able to express their entire influence onto

DMC (PB→C = 0.679) while removing the influence that DMA would have on DMB.

If DMB failed to form a coalition with DMC , and instead DMA and DMC united,
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DMA would have been able to persuade DMC to a region closer to DMA than DMB.

Thus the consensus reaching in stage 2 would favor DMA. The last sequence pools

the influence of DMA and DMB, which together they would apply DMA’s influence

over C more since PA→C > PB→C . Figure 118 summaries these three sequences.

A

BC

0.472

A

B C

0.785

0.679

0.215

0.528

0.324

0.472

A

B C

0.785

0.679

0.215

0.528

0.324

0.472

A

B C

0.785

0.679

0.215

0.528

0.324

B AC
0.528

0.472

AB

C

0.785

0.215

0.472

0.528

Figure 118: Three sequences with the power relationships indicated after stage 1.
Left: “B—C, BC—A”, Middle: “A—C, AC—B”, Right: “A—B, AB—C”

6.3.4 Sequences with More than Three Decision Makers

More interesting combinations exist with more than three decision makers, since many

more orders and coalitions can be formed. An experiment testing the impact of the

order or sequence of forming coalitions with more than three decisions makers was

performed.

While keeping the power relationships in Table 15 constant for more than one

sequence, the consensus region was evaluated and visualized.

Even with the same power structure, based on the sequence the decision makers

executed, the consensus region can be in significantly different areas. For example,

if the sequences follow row 3 from Table 13 (i.e. “A—B , C—D , AB—CD”) then

the final consensus region for the group falls near DMD’s initially preferred region

as shown in the left side of Figure 119. If the sequence executed is that from row 1
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Table 15: Power Relationships Between Four Decision Makers

Relationship Value

PA→B 0.890
PB→A 0.110
PA→C 0.380
PC→A 0.620
PA→D 0.871
PD→A 0.129

Relationship Value

PB→C 0.321
PC→B 0.679
PB→D 0.230
PD→B 0.770
PC→D 0.109
PD→C 0.891

(i.e. “A—B , AB—C , ABC—D”) of Table 13, then the consensus region touches and

even overlaps some of the designs that DMC initially preferred, as shown on the right

hand side of Figure 119. As before the decision makers initially preferred regions or

designs are labeled with the respective letter and colored accordingly.

Figure 119: Consensus region of sequences “A—B , C—D , AB—CD” (left) and
“A—B , AB—C , ABC—D” (right), overlaid with initial weighting vectors of all four
decision makers

This experiment illustrates how the order of forming coalitions can result in dif-

ferent final consensus regions. Furthermore, analyzing the intermediate interactions

is useful in understanding the dynamics within the group.

In the first sequence, DMA and DMB formed a coalition with DMA having sig-

nificant influence over B (PA→B = 0.890). The other two decision makers, DMC and
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DMD formed a coalition with DMD dominating the relationship (PD→C = 0.891).

The benefit to DMB in forming the coalition is the removal of both DMC and DMD

influences over them. DMB is relatively weak over all, but uniting with another de-

cision maker early may help the final decision fall closer to their preferences and give

them a little more “say” within their coalition. DMC is the next weakest and formed

a coalition with DMD even though in this example DMD’s preferred region was the

“furthest” away. The advantage in this relationship is more towards DMD since DMC

holds a majority of the power between A and C. Since DMD seeks this benefit, they

quickly form a coalition (perhaps as a result of the influence D has over C) and then as-

sume a power together over A of 0.620 (i.e. since, PC→A = 0.620 => PCD→A = 0.620).

The final consensus stage has DMAB with only 38% of the power over DMCD and

therefore the final consensus region is near DMD’s initially preferred region.

However, DMC could have refused to form a coalition with D and instead unite

with A, whose preference region is much “closer” to its own. This would have severe

implications for the relationship between DMAC and DMD since PA→D = 0.871. No

longer would DMD have power over DMC and therefore they would be required to

concede significantly in the final consensus stage. This is in fact seen in the second

sequence (right side of 119. As mentioned, DMB is effectively a non-player in that

their power over each of the others is less than 0.33 and thus they would likely

join either A during stage 1 or AC during stage 2 without significantly altering the

final result (which was shown to be true upon further experimentation). Since, the

final consensus region lies very close to the initial preferred region of DMC with the

second sequence, and DMC is aware of this, they will more readily form a coalition

with DMA before DMD. Still, there are clearly reasons, events or additional factors

for incentivizing DMC to join D, but they would need to be significantly stronger

than the benefits from joining A.

In general, however, coalitions are more likely to be formed with decision makers
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closer in terms of preferences (but not always) and with deceasing probabilities as the

differences in the mean weighting vectors, and thus the difference in utility between

decision makers, increases. The consequence of this assumption is that the above

sequences will have different probabilities of being executed. For example, DMC may

be more likely to form a coalition with A than with D.

In the Step 3 algorithm for this methodology, the probability to initiate a coalition,

or in other words to propose (in an ultimatum game) a design or preference to one

of the other decision makers, is dependent on the utility of the designs of the others’

mean weighting vectors, such that the probability:

P (DMi(proposer) proposes to DMj(responder)) =
U(w̄j)

k∑
m=1

U(w̄m)

, i 6= m (44)

where k is the number of decision makers, and i and j are the ith and jth decision

maker respectively. In the above example, with four decision makers, the probability

that C would propose to, and potentially form a coalition with D, evaluates to:

P (DMC proposes to DMD) =
U(w̄D)

U(w̄A) + U(w̄B) + U(w̄D)
(45)

=
0.416

0.585 + 0.454 + 0.416

= 0.286.

A variety of other formulations are possible when defining a probability of selecting

another decision maker such as a probability dependent on 1) the distance between

weighting vectors, 2) the distance between the nearest design points of two preferred

regions, or 3) the total group power at each consensus stage.
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6.3.5 Effects of Power Relationship Changes on Consensus Reaching

Holding the power distributions constant and changing the sequence from above

can also be reversed by investigating the effect when power distributions themselves

change. This can occur when a decision maker is replaced by someone at some point

during the decision-making process, who may have a different reputation, skill set,

resource, etc. which changes the balance of power between decision makers.

For example, decision maker B was considered weak in terms of power over the

other three decision makers in the previous section. If DMB is replaced with DM ′
B

whose individual influence (for some reason) is greater than DMB over the others, the

results will be expectantly different even if the sequence executed is kept the same.

The two graphs in Figure 120 show the same sequence but with different power

relationships for the four decision makers. On the left, DMB is considered very weak

and does not influence any decision maker more than 0.33 as described above. On the

right, DMB has significantly more influence only over DMA but little on DMC and

DMD. However, since the sequence under consideration has DMA and DMB forming

a coalition in stage 1, the remaining stages are dominated by this partnership and

therefore influence that DMA has on the other two.

A recent example of changing decision makers and therefore changing power net-

works or relationships, in the middle of a decision process is the delay of the “se-

questration” until March 2013 as part of the American Taxpayer Relief Act of 2012

passed on January 1, 2013 to avoid the so called “fiscal cliff” [161]. Since 33% of

the US Senate and all 435 seats from the US House of Representatives were up for

reelection in November 2012 many new individuals will became a part of the 113th

United States Congress. Since the 112th United States Congress passed the Taxpayer

Relief Act of 2012 two days before it ended, a new set of decision makers were put in

place to grapple with major parts of the act currently used as negotiation tactics. A

high chance exists that the influence or power relationships between individuals and
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Figure 120: Consensus region of sequences “A—B , C—D , AB—CD” with DMB

“weak” (left) and “strong” (right)

across parties collectively had been altered significantly from 2012 to 2013.

Similar changes in power occur often on companies’ board of directors or on en-

gineering project teams. Therefore accounting for changes in group decision making

methodologies is requisite.

6.3.6 Multi-Dimensional Decisions with N-Players

Of course, in reality, problems will sometimes much larger than N-players or decision

makers and the potential for many more dimensions than three. Both of these problem

characteristics have the potential to change the accuracy and/or suitability of the

methodology.

Research Question: What is the impact of higher dimensional data sets with

larger numbers of decision makers?

In response to this question, and to support the overall hypothesis that this

methodology is a valid process to facilitate decision making for multi-agents multi-

objective decision making, the final set of experiments involves testing a similar

canonical problem with 1) more than four decision makers and 2) more than a three
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dimensions.

Results from the first of these experiments are shown in the two figures on the

next page. Figure 121 shows two simulation results with 10 different decision makers.

Although the sequence executed by the collective decision makers is identical (i.e. the

simple sequence “A—B , AB—C , ABC—D ...”) the power relationships between the

two simulations have been shuffled. The distribution means of the power relationships

vary over a range from 0.5 to 0.95 in both simulations, but the assignments of these

distributions to decision makers have been shuffled relative to each other.

In the first simulation (top of Figure 121), DMI maintains a relatively high amount

of influence despite the large group of 8 decision makers (A through H) with whom

DMI participates in a consensus stage close to the end of the sequence. In the

second simulation (bottom of Figure 121), DMI has significantly lower influence on

the group DMA−H at the second to last consensus stage and impacts very little the

final consensus region. A similar situation is found for DMJ who has little influence

at the end of the same sequence.

The last experiments explore higher dimensional data sets or design spaces. Most

likely a real decision problem will include more than three objectives and thus testing

if the methodology scales with dimensions or objectives is required.

Initially, the set of designs on the Pareto frontier assume points on a four dimen-

sional hypersphere, where x1...x4 > 0. For the 4D case, the initial preferred regions

along with the consensus region can still be partially visible in some visualizations of

the design space. In Figure 122, three decision makers (A,B and C) reach consensus

as indicated in the central region highlighted in dark blue. The other three initially

preferred regions are similarly highlighted, with points as indicated from before. The

graph in the top left shows the 4-dimensional design space in the x1 − x2 − x3 coor-

dinate system. The other three graphs show the same data and regions from three

additional perspectives, namely, the top (along the x3 axis), the left (along the x1
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Figure 121: Consensus Reaching Examples with 10 Decision Makers (A-J). Power
relationships for the two above simulations are the same relative values between the
range of 0.5 and 0.95 but are shuffled with respect to each other.
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Figure 122: Consensus reaching examples with four dimensions in a 3-view visualiza-
tion.
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axis and the right (along the x2 axis) as indicated. Since all points lie on the 4D

Pareto frontier, the consensus region will not lie on the 3D Pareto frontier of only x1,

x2 and x3 as illustrated by a difference or offset from the “apparent 3D frontier” to

the consensus region.

In general, more than 4 objectives could be included in the decision problems and

therefore the application of a scatterplot matrix illustrating the same features but

from a full set of 2D scatterplots as shown in Figure 123 is often more insightful.

(Decision maker labels but not colors have been removed for clarity).

Similar to the apparent offset in Figure 122, in every individual scatterplot, the

consensus region lies away from the local 2D Pareto frontier. If the consensus region

falls onto a local lower level Pareto frontier the region would suggest that potentially

one of the objectives is sufficiently insignificant and can be removed from the analysis

with an effective weight of 0.
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Figure 123: Consensus Reaching Examples with Four dimensions in a Scatterplot
Matrix Visualization.
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CHAPTER VII

CASE STUDY: IMPLEMENTATION OF MACRO TO AIR

MOBILITY FUTURE SYSTEMS

This chapter implements and applies the MACRO methodology to a data set of future

air mobility solutions generated by AirMOD. A case study is used to demonstrate

and test the methodology on a notional example with five decision makers seeking

to reach consensus on the requirements for a large future air mobility system. Each

decision maker possesses differing views and preferences on the objective space and

each hold varying levels of power or influence over the others.

7.1 Converting AirMOD Metrics to Utilities

In preparation for the application of the MACRO methodology, an essential step

of processing the AirMOD simulation data involves converting the various metrics

to a common or commensurate unit such that they can be combined for an overall

evaluation or utility function.

The simplest approach involves non-dimensionalizing each metric of interest after

which a simple additive function can be formulated. Equation (47) below shows one

such method for non-dimensionalizing the variables and combining them into an OEC.

OECi = α[ MTTCi

max(MTTC)−min(MTTC)
] + (46)

β[ SDTTCi

max(SDTTC)−min(SDTTC)
] +

γ[ TFHi

max(TFH)−min(TFH)
] + ...

where i is the ith design or solution point, the coefficients α, β, γ... are the weight-

ings for each dimensions and sum to 1, MTTCi, SDTTCi, ... etc. are the ith values
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for that dimension, and the denominators in each term represent the range from

the lowest to the highest value of that dimension. Dividing by the same units as

the numerator will non-dimensionalize each term such that the addition becomes a

commensurate operation.

If a decision maker prefers reducing the time to close more than reducing the total

flight hours, they would set α > γ in the above OEC. Since, for the three dimensions

shown above, a decision maker would likely seek to minimize all of them, the operation

design with the lowest OEC would be the best. If the decision maker sought to

maximize one of the objectives, say payload per flight, then the ratio would be inverted

such that another term in the equation would be ... + δmax(PPF )−min(PPF )
PPFi

+ ... and

the OEC could continue to function as a minimization problem.

The full OEC minimization problem becomes:
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min{OECi = wMTTC [ MTTCi

max(MTTC)−min(MTTC)
] + (47)

wSDTTC [ SDTTCi

max(SDTTC)−min(SDTTC)
] +

wTFH [ TFHi

max(TFH)−min(TFH)
] +

wF [ Fi

max(F )−min(F )
] +

wBR[ BRi

max(BR)−min(BR)
] +

wPPF [max(PPF )−min(PPF )
PPFi

] +

wNA[ NAi

max(NA)−min(NA)
] +

wMP [ MPi

max(MP )−min(MP )
] +

wOC [ OCi

max(OC)−min(OC)
] +

wAC [ ACi

max(AC)−min(AC)
] +

wBRC [ BRCi

max(BRC)−min(BRC)
] +

wUT [ |(UTtarget−UTi)|
max(UT )−min(UT )

] +

wER[F (ERi)]},

where, MTTC is the Mean Time to Close, SDTTC is the Standard Deviation on

the Time to Close, TFH is the Total Flight Hours F is the Fuel Consumption, BR is

the Break Rate, PPF is the Payload Per Flight, NA is the Number of Aircraft, MP is

the Maximum Payload, OC is the Operating Cost, AC is the Acquisition Cost, BRC

is the Cost to Reduce the Break Rate, UT is the Utilization, and ER is the En Route

Type Selection.

Of the 13 objectives, only one, PPF, is inverted such that the larger the PPF the

better. This may not necessarily be true since one may prefer smaller aircraft (i.e.

perhaps because of the smaller unit cost). This objective illustrates that some of the

potential objectives are not completely independent since PPF is clearly correlated

with AC.
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In fact, many of the objectives are dependent on another dimension. Although,

an OEC can arbitrarily keep correlated objectives at the same time it is desirable

to minimize the set of objectives to the least number while still capturing the most

significant trades in the decision space. This can keep the problems manageable,

especially when human decision makers involved who struggle to process multiple

dimensions at the same time [108].

A correlation matrix was analyzed and PPF was found to be highly correlated

to MP with ρ = 0.85. Furthermore, AC was correlated exactly with both PPF and

MP since this CER uses the weight ratios directly. TFH was also highly correlated

to OC and fuel consumption (ρ = 0.94) so only one of these three is really essential

for a comprehensive equation. This reduces the equation by 4 terms to a set of

8 which include all costs, namely, MTTC, SDTTC, BR, OC, AC, BRC, UT, and

ER. Although, these dimensions can be considered from one perspective unessential

in calculating the OEC, the display of this information will be significantly more

important within discrete choice experiments given to decision makers discussed later.

The term which includes Utilization (second to last) illustrates a slight difference

in comparison to the other terms. A target utilization is established (i.e. UT = 8)

and any solution which varies significantly away from the target value is considered

a worse design (within that dimension).

Another problem from Equation (48) is found in the last term which can be

understood as some mapping function that converts the selection of En Route Type

used (i.e. no refueling, en route refueling, retro en route refueling) to some value

based on the preferences of the decision maker. For example, if a decision maker

prefers longer hauls, (i.e. a preference for Type 1) then the function output for a

Type 2 or Type 4 design would be higher:
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F (ERi) = A, if ERi = 1, (48)

B, if ERi = 2,

C, if ERi = 3,

D, if ERi = 4,

where, A < C < B < D and 0 ≥ A,B,C,D ≥ 1.

Lastly, the normalization itself is somewhat unsatisfying. For example, completing

the mission in a time to close of 20 days may be good whereas a time to close of 40

is unacceptable. On the other hand, reducing the time to close by 5 (i.e. reducing

MTTC to 15) is much better but reducing it another 5 days may not be as useful

compared to the first “5 day reduction.” In the equation discussed above, a “5 day”

reduction will contribute to the OEC in equal amounts regardless of the initial MTTC.

Whether it is from 65 to 60 days or from 10 to 5 days, the OEC will decrease by the

same absolute amount. However, often those two situations are drastically different,

the former may be unacceptable before and after the reduction, while the latter is

unnecessary or perhaps even too optimistic.

Many of these problems can be solved by converting the various objective ranges

into utility curves which can capture other effects such as the law of diminishing

returns or utility along some of the objectives.

For a particular mission payload, a constraint can be assumed that any time to

close greater than 30 days is unacceptable. Consider, for example, a situation where

significant amounts of supplies are needed in the few weeks after a major natural

disaster in a highly populated area and that supplies (after 30 days) will be too late

to help. From this perspective the utility is maximized (i.e. 1) at the minimum

amount of time to close. The utility will likewise be 0 for MTTC of 30 days and later.

In between these extremes the utility curve for MTTC will likely take on a concave
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shape as shown in Figure 124, where a decrease in the same amount of MTTC maps

to a decreasing rate of utility increases (e.g. for 30 days to 20 days the utility may

jump from 0 to 0.7, but from 20 days to 10 days, utility would increase from 0.7 to

0.8). The straight diagonal line would represent the utility of implementing the OEC

equation described above with a constant slope between MTTC and the OEC value

(utility).

MTTC = 30 daysmin(MTTC)

Utility(MTTC)

1

0

Figure 124: Notional Utility Function for the MTTC Objective

The details for this process to define utility functions are not included here but

are documented in other sources such as [86]. However, a summary of the functions

used to transform the above objectives into utility curves for this research is found in

Table 16 and in the subplots of Figure 125.

Uncertainty in the time to close (SDTTC) would likely exhibit the same trend as

the utility function for MTTC. That is, the marginal utility after the first improve-

ments for the same change in SDTTC may not be as valuable. Furthermore, if the

MTTC has already decreased by a significant amount, say by a full standard devi-

ation lower, the decision maker may become less concerned about meeting the time

constraint regardless of any improvements in SDTTC, resulting in a less amplified

utility curve (in terms of concavity) for SDTTC.

For the cost objectives, utility (U()) will surely decrease as cost increases with the
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Figure 125: Utility Curve/Functions for the Operational Objectives
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Table 16: Operational Objective Utility Functions

Variable Variable Name Utility Function

MTTC Mean Time to Close 1− ( MTTC−min(MTTC)
max(MTTC)−min(MTTC)

)2.5

SDTTC Std. Dev. of Time to Close 1− ( SDTTC−min(SDTTC)
max(SDTTC)−min(SDTTC)

)2

BR Break Rate 1− ( BR−min(BR)
max(BR)−min(BR)

)2.5

OC Operational Cost 1− ( OC−min(OC)
max(OC)−min(OC)

)3

AC Acquisition Cost 1− ( AC−min(AC)
max(AC)−min(AC)

)1.4

BRC Cost to Reduce Break Rate 1− ( BRC−min(BRC)
max(BRC)−min(BRC)

)2.5

UT Utilization 1− 0.015625(UT − 8)2

ER En Route Selection Type 1 if Type = 1,
0.8 if Type = 2,
0.9 if Type = 3,
0.7 if Type = 4

similar concave shape again but to a different degree. Since AC (acquisition cost) is

so large compared to OC (Operating Cost) in absolute terms, the concavity is likely

to be less than that of U(OC). Regardless of the current price, reducing it by a million

dollars translates to an almost equal marginal utility since the unit price is so large

(e.g. $250 million). Operating Cost, on the other hand, has significant impacts

throughout the life of the aircraft beyond the mission operating cost considered in

this model. Therefore, a small decrease in OC, would have large benefits into the

future over many years, resulting in a utility curve with high concavity. The cost to

reduce the break rate also has long term benefits but likely not as extensive as the

operating cost.

The break rate will follow this established pattern as well, but the utility for

utilization will differ in that a target utilization may be preferred over simple mini-

mization. In this case, the utility is maximized at the target utilization and falls off

quickly at UT values greater than 16 or less than 1 (underused and overused condi-

tions respectively). The utility function for the en route selection type is even more

unique. With the assumption that less flights, more direct paths, and less stops are

preferred over the other options, the general utility function will take on particular
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values for each of the 4 types.

These equations will be applied to calculate the utility for each design, by combin-

ing the individual objectives (transformed into utilities) in an additive weighted sum

similar to the example problem from the previous chapter. The equation becomes:

Ui = wMTTCU(MTTCi) + (49)

wSDTTCU(SDTTCi) +

wBRU(BRi) +

wOCU(OCi) +

wACU(ACi) +

wBRCU(BRCi) +

wUTU(UTi) +

wERU(ERi)

where, in this formulation, the decision maker seeks to maximize their utility (Ui).

7.2 Step 0: Decision Maker Definition

With the final utility maximization problem established in the previous section, the

final step before implementation of the consensus reaching methodology is to define

the decision makers themselves by designating the truth model of their individual

preferences across the 8 objectives.

In selecting a program or solution to replace or enhance the current heavy airlift

US military fleet of aircraft, a variety of key stakeholders would be heavily involved

in the process to make decision worth billions of dollars over the life of the program.

In creating this scenario, an arbitrary number of five individual players or agents

have been identified that would need to agree upon the ultimate solution and reach

consensus. Although more decision makers could be included within the analysis,
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the approach itself is not limited in this regard and these five represent a sufficiently

diverse set of backgrounds, desires, expertise, and view points within the context of

the problem to demonstrate the methodology.

The five agents or decision makers are as follows:

1. Chair of the Joint Requirements Oversight Council (JROC)

2. Representative of the Government (GOV)

3. Operations Director from USTRANCOM (OPS)

4. Industry Partner/Prime Contractor(IND)

5. Chief Technology Officer of the Prime Contractor(CTO)

Other stakeholders are clearly involved in the process, albeit in different roles,

of selecting a design or defining requirements for such a program but some of these

could be understandably grouped with one of the five “individuals” listed above, and

would act in concert with them to a large degree.

The following descriptions summarize some of the backgrounds and perspectives

these individuals may possess and thus what might be preferred by these five decision

makers. These descriptions are purely for illustrative purposes only and should be

considered notional, but have been established to provide a sense of reality to the

problem. Similarly, the preference model they provide, (i.e. weighting vectors repre-

senting their true preferences), will be assumed, by mapping the subjective goals and

ideals of each decision maker to the weights in each of the 8 objectives required by

the analysis performed in the succeeding sections.

1. Council Members of JROC, (Vice Chiefs, Generals, etc.) from the various mil-

itary services would likely take a mission-focused view in comparing various

solutions. Completing the mission proficiently and following commands from

267



the commander-in-chief would dominate their preferences. As a result, time to

close (mapped to MTTC importance) and the certainty that the mission could

be achieved (SDTTC becomes important) within a particular time constraint

would be of the utmost importance from their perspective. Clearly, doing so

efficiently and inexpensively (i.e. cost metrics are important) would be accom-

panying goals to the capability priorities. Safety of the service men and women

would also be high on the list of objectives which would translate to secure

flights paths of various missions (i.e. ER metric) to avoid non-allied airspaces.

2. A representative from the government (GOV) , such as a congressman sitting on

the U.S. Senate Appropriations Subcommittee on Defense or even the Secretary

of the State, would potentially have a much wider set of objectives as compared

to the JROC or other military officers. Since they represent the people of

the United States, a more intense cost to benefit analysis would be required.

Careful accounting of how tax dollar brought in are spent on defense spending

has ramifications on other social programs and even on individual political ca-

reers, and therefore the costs (i.e. Acquisition Cost - AC and Operating Cost

- OC become important) would likely be the most important objectives from

a governmental point of view. Sensitivity to this bottom line will therefore be

high, but the details about how the mission is accomplished may be less impor-

tant to the public sector (lower important on Utilization, Break Rate, Repair

Times). Lastly, supporting the troops during wartime and responding quickly

(importance mapped to MTTC and SDTTC metrics) to natural disasters with

strategic airlift capabilities is not only philanthropic but also politically wise.

3. An Operations Director (OPS) at USTRACOM or AMC would be in charge

of the logistics surrounding the completion of a mission - where the aircraft

are stationed, how quickly they can respond and how many are needed for each
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mission. Fulfilling these goals requires properly using aircraft which have a high

availability and reliability (importance mapped to UT and BR). In performing

their duties, having extra aircraft can act as a safety net with low reliability

aircraft. Not only can inherent redundancy improve with larger fleet sizes,

but under extreme shortages cannibalization of parts can be less detrimental.

Furthermore, larger aircraft might also be preferred. Reducing the flights and

the flight hours, the associated crew costs, maintenance costs and in general,

the operating cost without sacrificing throughput capacity would certainly be

one goal for an operations planner or analyst. These ideals translate to setting

a high importance on objectives related to completing the mission (importance

mapped to MTTD and ER) and keeping the operating costs down (importance

of OC).

4. In industry (IND), where shareholders ultimately defining the one governing

objective of a company, profit, maximizing the objectives aligned with that one

goal are likely to be heavily weighted, namely, the acquisition cost (AC) and

the number of aircraft (This equates to a high cost/profit, which is mapped to

a high capacity and throughput, and thus low importance on the price). Since

the company will design, build, upgrade, manufacture, maintain, etc. the new

C-X platform, the desire to maximize both revenue and profits can be expected.

This type of preference structure would, of course, favors large purchase orders

(i.e. high number of aircraft) with an ideally accompanying as high a unit price

as possible (mapped to AC). Furthermore, training, maintenance and other

life cycle contracts (mapped to OC) could be sought which would also help the

bottom line if a desire existed on the side of the government to outsource some or

many of these operating costs. Finally, since carrying capacity and performance

is the ultimate product offered by the company, the weighting on the activities

of research and development mapped through improving the reliability would
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be high, such that the importance on the BR metric is also high.

5. Finally, the CTO, Chief Scientist or some other technologist from within the

company or another subcontractor may prefer the challenge of designing, build-

ing and flying a new, larger and more reliable aircraft. Likely the design would

require research and technological breakthroughs, and provide security to a

plethora of other engineering, scientific and research jobs for the near future.

From this technologist standpoint, the RDT&E funds which invest in reliabil-

ity research and subsystem improvements would be most attractive (i.e. im-

portance mapped to Break Rate - BR and the cost to improve reliability -

BRC). Furthermore, implementing these new technologies without significantly

increasing the unit price would also be of importance (importance mapped to

AC).

Taking the above descriptions into consideration, and translating goals and desires

into weights of the 8 objectives, the preference structure for each of the decision

makers can be defined as shown in Table 17.

Table 17: Decision Makers’ Preference Truth Model

The above table will be assumed to represent the preference truth model required

from a simulation perspective for Step 1. The responses to discrete choices will be

in accordance with these weightings even though the agents would not necessarily be

able to reproduce these themselves without considerable difficulties or uncertainty. If

Step 1 were to be performed in reality, the preferences would, of course, be derived
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from the discrete choices themselves and there would be no need for a simulation

truth model.

The MC simulations for the 8 dimensional decision space are shown in Figure 126,

with the solutions colored by the total utility using the function coefficients with the

truth weights of DMGOV . The point with the highest utility is selected and colored in

black with decreasing utility values colored across a gradient from dark red to blue.

Figure 126: AirMOD Decision Space colored by utility from truth weights of DMGOV
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Figure 126 actually only shows 7 dimensions since the 8th (i.e. Type) was de-

faulted or filtered to only Type 1 mission scenarios. Also, the individual metric

ranges have been normalized to a range of 0 to 1 within the particular APOE-APOD

Type 1 mission scenario which includes post-processing and removal of all MTTC

designs with values greater than 40 days to close. Since DMGOV has a relatively

uniform preference structure (i.e. [0.15 0.05 0.1 0.2 0.25 0.05 0.05 0.15]) compared

to the other decision makers, the solutions or designs with the highest utility are not

generally found on the edges of the 8D space.

An example of this occurs when the preference structure or weighting vector favors

one, or just a few, of the objectives. For example, if “money was no object” and the

decision maker only cared about completing the mission as quickly as possible (low

MTTC) and with as little uncertainty as possible (low SDTTC), the weighting vector

would be [0.5 0.5 0 0 0 0 0 0]. This would result in Figure 127 where the 8D utility

space is shown and the U(MTTC) is almost 1 and the U(SDTTC) = 1. Interestingly,

this also results in a very low break rate (i.e. high U(BR)) but an associated very

expensive cost to improve this Break Rate. (In fact, the point selected has a BRC

of $46 billion dollars!) Of course, spending a lot of money on increasing reliability

has a direct impact on reducing MTTC and SDTTC, so those output metrics are

consistent. In terms of the other costs, they take on extreme values as well. Having

a larger and more expensive aircraft (made even more expensive with a larger fleet

size) also helps with completing the mission more quickly. Again, costs are high for

exceptional performance. This is acceptable if one was not to weight AC or OC very

important, but those, in reality, drive or often constrain the performance metrics.

Turning now to the requirements of Step 2, additional inputs are needed only

within the simulation mode of this methodology. Or, in other words, computer sim-

ulation requires these inputs whereas actual human responses to the Step 2 discrete

choice experiments would provide this data.
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Figure 127: AirMOD Decision Space colored by utility for equal importance only on
MTTC and SDTTC

273



Since universal cooperation is a key assumption for any solution in the current

scope of this research, if any one of the players disagree with the final decision the

program would not be considered “selected”. That is, agreement must be reached

by all parties to adequately define the region or points of consensus. For example,

it is unlikely the CEO of the prime contractor will agree to a requirement if internal

experts (e.g. CTO) do not think a particular requirement is possible at the negotiated

price. Similarly, a congressman is unlikely to allocate funds if a military general or

other JROC official does not approve of, or will not use, a specific design.

These relationships between the decision makers are an essential component to

quantifying the power or influence that one may have on another in Step 2 of the

approach. Since the decision makers and thus their perceived influence on each other

must be modeled as inputs to the simulation, the following table. (Table 18 will serve

as the perceived influence truth model in the methodology.)

Table 18: Decision Makers’ Perceived Influence Truth Model

The table is read by selecting a decision maker down the rows, and then identifying

the perceived influence they think they have over each of the other four in the table

columns. Therefore, DMJROC (military decision makers) has a perceived influence

over the government official. DMJROC may rationalize that since they with the

services are the actual users of the asset and may know more about what level of

capacity is truly needed, DMGOV would be more willing to listen to their opinions.

On the other hand, DMGOV considers themselves as in control of the budget and

may expect DMJROC to “fall in line” as the defense arm (i.e. an appendage) of the
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government.

The other indices of power or influence could be defended with other notional

explanations: Considering themselves as the customer, DMGOV would perceive a

high level of influence over DMIND, but perhaps not so much over the contractor

technical employees DMCTO. DMCTO might view themselves as able to persuade

their CEO or DMIND to consider things their way, but probably none of the other

three. Lastly, DMOPS would likely be able to persuade, remind, or convince the

DMJROC regarding their own military logistics and operations preferences but would

not necessarily have as much influence over the others.

Table 18 contains examples for all three of the “constrained” (e.g. POPS→GOV +

PGOV→OPS = 1, “over-constrained” (e.g. PJROC→GOV +PGOV→JROC > 1) and “under-

constrained” (e.g. PIND→OPS + POPS→IND < 1) power conditions established in the

previous chapter.

7.3 Step 1 Results: Calculating Weighting Distributions

The notional decision makers defined in the previous section are now given a set

of discrete choices and required to designate which one they prefer to extract the

weighting distributions. An example discrete choice experiment for this test problem

is found in Figure 128.

In general, some of the same scenario parameters will be similar for a valid discrete

choice such that a decision maker can more easily make a comparison and select a

preferred design. Therefore, in the discrete choice of Figure 128, the Mission payload

is set to 20 million pounds for each and the APOE-APOD combination is the same as

well. However, the types between two discrete choices need not be identical. In order

to compare one’s preferences for types across mission and the example in Figure 128

shows a discrete choice comparing a Type 1 solution to a Type 4 solution.
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Which design do you prefer? A or B?

Solution/Design A Solution/Design B

Metric Design A Design B Units

Mission Payload 20 20 million lbs
Mean Time to Close (MTTC) 35.75 8.95 days

Std. Dev. TTC 7.8 8.1 days
Utilization 11.2 5.6 hours/day

Break Rate 21.3 20.7 %
Cost to Reduce Break Rate 13.2 13.5 $billion

Flight Hours 6027.3 2066 hours
Total Operating Cost 126.3 43.3 $million

Payload per Flight 47602 271628 lbs
Empty Weight 444758 386803 lbs

Fleet Size 15 41
Acquisition Cost (per unit) 282.9 246 $million

Total Acquisition Cost 4.24 10.09 $billion
Design A? Design B?

Preferred Design? X� � �

Figure 128: Air Mobility Example of a Discrete Choice from Step 1
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If the mission payload is not similar, additional adjustments to the metrics them-

selves are required. For example, if the mission payload was 30 million pounds for

one and 20 million pounds for the other, some of the metrics would have to normal-

ized based on these different mission payloads. Thus, the time to close would be

expressed in a “time to close per million pounds” or the flights hours would need to

be expressed in “flight hours per million pounds,” etc. This could cause unnecessary

cognitive burden on decision makers trying to balance and make trades across these

normalized or ratio-based metrics.

Thus, for any one discrete choice the scenario will be identical for the APOE-

APOD combination and the mission payload. However, it is still valid to vary those

parameters from discrete choice to discrete choice since extraction of weighting dis-

tributions is the intermediate objective for Step 1, and not necessarily to identify the

precise solution.

The design parameters at the bottom illustrate some of the trades discussed in

previous sections. The fleet size is 15 to 41 for Design A and B respectively and so

total acquisition price is almost $6 billion greater for design B.

In fact, for Design A the aircraft individually are much larger and more expensive

by about $37 million. They also carry much less payload per flight (almost one sixth

that of Design B) as a result of an extremely long mission leg with no refueling stops.

Since the flight hours are almost triple, the operating costs are correspondingly about

three times as much. The break rate is approximately the same with the same level

of investment for higher reliability. The SDTTC is also about the same on account of

the comparable break rate, but the MTTC is much longer for Design A (36 days vs.

9 days). If time to close does not matter, then saving money with a smaller fleet size

is attractive. But if a time constraint does exist, and funds are available to reduce

meet this time target, then a larger fleet is an valid option. Of course, one major

down side to Design B is the multiple stops in two other countries. Although Design
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Figure 129: Reduction in Weighting Vector Ranges for all Objectives through a Series
of Discrete Choices in Step 1

B closes the mission much more quickly, the cost associated with maintaining bases

overseas may further add to the already more expensive design of the two solutions.

The general trade is relatively clear: increased performance is more expensive. By

responding to a set of these discrete choices, however, the preference of the decision

maker between performance and cost can be obtained.

The outputs from Step 1 when the decision makers have responded to a set of

discrete choices are the distributions of the weightings for each of the 8 objectives.

When simulating Step 1 with a set of discrete choices with DMJROC the weighting

distributions are summarized in Figure 129.

The range for each of the 8 objectives starts from 0 to 1 as in the canonical

problem from the previous chapter. The increment value starts very large (0.5) but

immediately after the first iteration a refinement step is executed with four more
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throughout the full set of 25 discrete choice experiments. Although wx1 is clearly the

most important objective as discovered by the simulation with a median weighting

value near 0.45 after 25 discrete choices, the other 7 objectives occlude each other,

and in particular the ones which end with lower weightings. To remedy this problem,

these range histories are translated along the y-axis for easier comparison in Figure

130 on the following page. The objectives from x1 to x8 follow the same order as

above such that x1 = MTTC, x2 = SDTTC, x3 = BR, x4 = OC, x5 = AC, x6 =

BRC, x7 = UT, and x8 = ER.

Step 1 in the methodology appears to accurately predict the weighting distri-

butions of JROC decision maker, DMJROC , where the median of wx1 (wMTTC) is

the largest of the 8 objectives (≈0.45), followed by a relatively wide range for wx2

(wSDTTC), wx4 (wOC) and wx8 (wER). This generally coincides with the largest values

for DMJROC ’s preference truth model. However, the median value for wx1 (≈0.45)

appears larger than that expected (0.3) while the other three are lower.

To aid in analyzing these findings, for any particular simulation, the maximum,

median and minimum values for each objective are contrasted with the preference

truth model used to model the decision maker. Figure 131 illustrates how the weight-

ing distribution range spans the truth model for all objectives. The predicted (P)

range on the left hand side of each objective in Figure 131 contains the three values,

maximum, median and minimum in a boxplot with the mean for only those three

points designated with the horizontal line. On the truth (T) side for each objec-

tive, the boxplot is compressed down to the one data point with the mean value

designated as well. Comparing the median values to the truth data point with a

correlation value provides a ρ = 0.8, suggesting that for at least this decision maker,

Step 1 of the methodology functions reasonably well in predicting their preference

structure.

To confirm this, Step 1 was executed multiple times for DMJROC . A similar
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Figure 130: Reduction in Weighting Vector Ranges for all Objectives through a Series
of Discrete Choices in Step 1 (separated by objective)
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Figure 131: Variability Chart of Predictive accuracy of Step 1 from simulation using
DMJROC model with minimum, maximum and median values for each objective,
compared to truth model
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variability chart was created by showing the distribution of the median values from

the 25 simulations as shown in Figure 132. The boxplots again show the range of the

median values while the diamond plots span the 95% confidence interval of the mean.

Figure 132: Variability Chart of 25 simulations of Step 1 for DMJROC showing the
median values for each weighting distribution

Plotting the possible weighting vectors for all the decision makers is shown in

Figure 133 rotated 90 degrees counterclockwise. The 8-dimensional preference space

is shown along the x-axis for each of the 5 decision makers DMJROC , DMGOV , etc.

along the y-axis.

The top row (i.e. DMJROC) shows a preference for good performance where the

mean weighting vectors are higher for U(MTTC), U(SDTTC), and to a lesser extent

U(ER) which is consistent with the preference truth model above for DMJROC . The

5th objective for DMGOV in the second row also appears shifted to higher importance

values than the others and this too is consistent with DMGOV ’s preference for a lower

cost followed by a preference for good performance for the weights of U(MTTC)

and U(SDTTC). DMOPS, according to the simulation, values U(ER) and U(UT) but

does not set the weight for U(OC) as high as expected as defined in the truth model.
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Figure 133: Possible Weighting Vectors (8-dimensional space along columns) for each
of the 5 decisions maker (along rows)
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DMIND and DMCTO show relative consistency in weighting heavily a more expensive

but more capable design, with DMCTO also valuing a more reliable design, which

closely resembles the truth preference model for these last two decision makers.

The three tables (Tables 19, 20 and 21) assist in comparing the results of the

simulation to the preference truth model. Table 19 is repeated from above with

the preferences from the truth model used for the simulation of the discrete choice

experiments. Table 20 is the predictive mean value of the weighting vectors for all 8

dimensions for each of the five decision makers. Comparing Tables 19 and 19 visually

shows fairly good predictive capabilities for Step 1 in the methodology. To analyze

this difference more fully, Table 21 shows the difference between the truth model

and the predicted values. The various cells for each decision maker’s preference on

each of the 8 objectives are colored based on the absolute difference between the

truth and simulation preference models. For a majority of the weighting values, the

mean weighting vector is within 0.1 of the true preference. However, there are four

weighting values where the absolute difference are larger than 0.1, namely DMJROC ’s

mean value for U(ER), DMGOV ’s mean value for U(SDTTC), DMIND’s mean value

for U(MTTC), and DMOPS’s mean value for U(OC).

Table 19: Decision Makers’ Preference Truth Model (repeated)

This last value in particular is the largest error with a difference of more than 0.2

between the truth and simulation preference models. A possible cause of this large

error, is supported by the correlation matrix between the 8 objectives of the design

space presented in Table 22. The U(OC) objective is correlated with U(MTTC). This

means that by placing a high weighting on the mean time to close (which DMOPS
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Table 20: Simulation Preference Model - Mean Weighting Value

Table 21: Difference Between Preference Truth Model and Simulation Preference
Model

does with a value of 0.15), one also values a lower operating cost, and vice versa

with a correlation value of almost 0.4. Even more interestingly is the correlation

between U(SDTTC) and both U(MTTC) and U(BR). As mentioned before, a more

reliable aircraft (i.e. with low BR) directly relates to faster close times and less time

uncertainty. Since these three are also correlated with each other, placing impor-

tance on one of them, also places importance on the others. With DMOPS weighing

all three “performance” objectives U(MTTC), U(SDTTC), and U(BR) with a total

importance of 0.35 and U(OC) at 0.3, the model seems to result in favor of the perfor-

mance objectives, and this is further suggested by the over-estimation of weights for

U(MTTC), U(SDTTC), and U(BR) of 0.059, 0.05 and 0.096 respectively for DMOPS.

Table 22: Correlation Matrix Between Objectives
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Furthermore, Table 22 also suggests a high correlation between U(UT) and U(AC).

The higher the total cost of the fleet, the better one can match a desirable utilization

value. With a fleet size which is too low, the utilization would be undesirably high

since over taxing one’s aircraft would be the only way to meet a target time to close.

Lastly, this correlation matrix provides evidence that the 8 dimensions or objectives

are not all completely orthogonal or independent one from another. Thus, the mean

time to close, MTTC, or the variance on the time to close, SDTTC, might be beneficial

to reduce the dimensionality without sacrificing too much fidelity in terms of design

space coverage.

7.4 Step 2 Results: Extracting Power Relationships

In Step 2 of the methodology the discrete choice experiments are provided to allow

the responding decision maker to quantify the difference in power than two other

decision makers may have over the former.

A set of two designs are presented and the responding decision maker is required

to make a choice with whom they are more willing to form a coalition. For example,

Figure 134 illustrates one possible format for the discrete choice given to DMJROC

with scenario parameters (i.e. mapped flight paths) removed as compared to Figure

128. With most of the various parameters or objectives close to one another and

assuming an almost comparable total utility score for each design, DMJROC would

potentially consider with which decision maker they would want to form a coalition.

This in turn would provide information about the difference in influence between

DMGOV and DMOPS have over DMJROC .

A similar set of output graphs showing the converging process of the perceived

influence difference of PGOV→JROC − PIND→JROC is presented in Figure 135.
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With whose design would you chose to form a
coalition? DMGOV ’s Design or DMIND’s Design ?

Metric
Design of
DMGOV

Design of
DMIND

Units

Mission Payload 20 20 million lbs
Time to Close (TTC) 27.69 24.19 days

Std. Dev. TTC 11.8 11.4 days
Utilization 9.8 9.9 hours/day

Break Rate 28 27 %
Cost to Reduce Break Rate 11.4 11.8 $billion

Flight Hours 3251.4 2876.5 hours
Total Operating Cost 68.1 60.3 $million

Payload per Flight 173897 194210 lbs
Empty Weight 352975 397452 lbs

Fleet Size 12 12
Acquisition Cost (per unit) 224.5 252.8 $million

Total Acquisition Cost 2.69 3.03 $billion
DMGOV ? DMIND?

Form a Coalition With? X� � �

Figure 134: Air Mobility Example of a Discrete Choice from Step 2
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Figure 135: Converging Process of DMJROC ’s Perceived Influence difference between

two other Decision Makers (DMGOV and DMIND)

The expected perceived influence difference of PGOV→JROC − PIND→JROC is 0.1,

(i.e. 0.6 - 0.5 = 0.1, taken from the “...on JROC” column from Table 18). This

is converted to the utility difference of 0.065 in Figure 135 since the range of u is

≈ 0.65. In other words, DMJROC is willing to form a coalition with DMGOV with

utility scores 0.065 less than a design potentially offered by DMIND. In reality,

DMIND might never position themselves at a design that much better than DMGOV
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from DMJROC perspective, but the influence or power difference between these two

decision makers is the sole goal of this step.

As described in previous sections, since a range of possible weighting vectors exists,

one of which will represent the true DMJROC weighting vector, the additional bounds

are added above and below the range for the perceive influence difference as depicted

on the bottom of Figure 135. This, of course, is dependent on the certainty in the

ranges of weighting vectors from Step 1. If little or no certainty exists in predicting

the weighting distributions, the corrections to the perceived influence differences will

be minimized.

To quantify the methodology’s ability to predict the power or influence differences,

comparisons between the perceived influence truth model and the simulations outputs

can be performed. Figure 136 shows the range of the perceived influence difference

as calculated by the algorithm in step 2 of the methodology and the discrete choices

(labeled as a P for predicted) and the true value (labeled with a T) taken from the

perceived influence truth model from Table 18. In all of the discrete choices (i.e.

two per decision maker), the model is able to bound the true perceived influence

difference. However, there is significant uncertainty in some of the discrete choices.

The next substep is creating the A matrix and b vector to solve the system of

equations, Ax = b, for Pi→j, where i 6= j and i, j = DMJROC , DMGOV , DMOPS,

DMIND, or DMCTO. The upper half of the b vector is defined by the power con-

straint equations for the 10 relationships, which each taking on the value of 1. The

bottom half of the b vector assumes the ranges from the outputs of the 10 perceived

influence discrete choices, two from each decision maker. These ranges are shown in

the variability chart from Figure 136. For example, DMJROC provides a response of

the relative influence difference that DMGOV and DMCTO has on DMJROC in the

first discrete choice resulting in a range of influence difference between 0.049 and

0.105. This range is used in the ‘10+1’th element in the b vector and similarly for
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Figure 136: Variability Chart of Methodology’s ability to Predict Perceived Influence
Differences

the next 9 discrete choice output ranges. The set of discrete choices also define the A

matrix with a 1 for the more influential decision maker and a -1 for the less influen-

tial decision maker for each row depending on who responded to the discrete choice

experiments. Although two sets of discrete choices are given to each decision maker,

unequal numbers of discrete choice per decision maker are possible but the A Matrix

must be full rank or invertible in order to solve for x the power relationships. (Of

course, more equations than unknowns are permissible, and in such cases, a linear

least squares approximation is used, as described in the previous chapter.) For this

particular example problem, the system of equations Ax = b is defined as:
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

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 − 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 − 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 − 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 − 1 0

0 0 0 1 0 − 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 − 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 0 1 0 0

0 0 0 0 − 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 − 1 0 0 0 0 0 0 0





PJROC→GOV

PGOV→JROC

PJROC→OPS

POPS→JROC

PJROC→IND

PIND→JROC

PJROC→CTO

PCTO→JROC

PGOV→OPS

POPS→GOV

PGOV→IND

PIND→GOV

PGOV→CTO

PCTO→GOV

POPS→IND

PIND→OPS

POPS→CTO

PCTO→OPS

PIND→CTO

PCTO→IND



=



1

1

1

1

1

1

1

1

1

1

[0.049, 0.105]

[0.066, 0.101]

[0.077, 0.204]

[0.154, 0.247]

[0.205, 0.427]

[0.001, 0.062]

[0.178, 0.255]

[0.082, 0.153]

[0.094, 0.143]

[0.001, 0.021]



(50)

and the solution with 5000 evaluations takes on the following ranges:

291



x =



PJROC→GOV

PGOV→JROC

PJROC→OPS

POPS→JROC

PJROC→IND

PIND→JROC

PJROC→CTO

PCTO→JROC

PGOV→OPS

POPS→GOV

PGOV→IND

PIND→GOV

PGOV→CTO

PCTO→GOV

POPS→IND

PIND→OPS

POPS→CTO

PCTO→OPS

PIND→CTO

PCTO→IND



=



[0.471, 0.534]

[0.466, 0.529]

[0.338, 0.659]

[0.341, 0.662]

[0.362, 0.67]

[0.33, 0.638]

[0.391, 0.467]

[0.533, 0.609]

[0.53, 0.779]

[0.221, 0.47]

[0.726, 0.891]

[0.109, 0.274]

[0.36, 0.448]

[0.552, 0.64]

[0.429, 0.746]

[0.254, 0.571]

[0.338, 0.655]

[0.345, 0.662]

[0.204, 0.446]

[0.554, 0.796]



. (51)

A more useful graphic depicting additional information is found in the histograms

of Figure 137 with the possible power relationships for each decision maker pair and its

inverse directly beside it. The power that DMJROC has over DMGOV is near 0.50 and

thus similarly for DMGOV over DMJROC . In fact, this first histogram suggests that

neither DMJROC or DMGOV has significant influence over the other. The variance of

these to mirrored distributions is also quite small suggesting that this state of nearly

equal power between these two decision makers seems to be quite certain. On the

other hand, the influence or power between DMJROC or DMOPS is less certain (top

292



right histograms of Figure 137). Although the mean values are near 0.5, the potential

for one (or the other) to be persuaded or influenced by the other decision maker is

clearly possible.

Figure 137: Step 2 Output Summarizing All 10 Decision Maker Power Relationships

Placing the mean influence values for each of the 10 relationships into a matrix, as

in Table 23, illustrates additional results. The “row” decision maker, has an influence

on the “column” decision maker at the value specified. For example, DMJROC has

a slight influence over DMGOV of 0.502, and slightly more than that over DMIND of

0.511. The cells are shaded based on the relative value from 0.5, such that 0 is red,

0.5 is white and 1 is green.

The most prominent relationship is that between DMGOV and DMIND. DMGOV
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has significant influence over the preferences of DMIND. This is expected since “the

customer” often drives the requirements or product’s design and the ultimate choice

whereas the “producer” is willing to concede some objectives to maximize profits or

revenue. Interestingly, the DMCTO has some influence over all other decision makers.

Of course, the largest influence is over the DMIND who would clearly seek approval or

agreement on technical feasibility with their own technical experts. The other three

might also be persuade by the assumed expertise about aircraft design or on other

technical objectives, albeit at a significantly lower value compared to DMIND. Lastly,

DMIND has power or influence of less than 0.5 over all the others. This again shows

how the demand in any market (in this case the preferences of DMGOV or DMJROC)

more or less “defining the agenda” or product requirements and designs.

Table 23: Actual Influence Relationships from Step 2

Comparing this to the perceived influence model results in Table 24.

Table 24: Difference Between Evaluated and Perceived Influence Relationships

The color scheme in Table 24 is similar in that a lower value compared to the

perceived influence is in red while the opposite is in green. In other words, over
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estimating one’s influence is highlighted in red and underestimate one’s influence is

in green. DMIND appears to over-estimate their influence while DMCTO was much

more humble in estimating their influence over others. Likewise, DMJROC slightly

overestimated and DMOPS underestimated their own power over others.

7.5 Step 3 Results: Reaching Preference Consensus

The final step in the overall methodology is identifying the region of consensus and

evaluating where the group is likely to reach agreement in the preference space, and

then mapped this to the consensus region or designs in the design space.

Using the weighting vector distributions from Step 1 as initial preferences, and

then the power relationship distributions from Step 2, the ultimatum game can be

played multiple times to identify the regions of consensus between two decision mak-

ers, after which that region becomes the preference structure of the coalition for later

agreement with the other decision makers.

Although the sequence of coalitions formed can take on a variety of possible paths,

the particular consensus sequence applied to the current simulations follows DMIND

with DMCTO, then DMJROC with DMGOV , then DMJROC−GOV with DMOPS, then

finally, DMJROC−GOV−OPS with DMIND−CTO.

This is depicted in Figure 138 where for each objective the sequence is repeated

in the aforementioned order. The consensus at each stage is represent when two

decision makers reach agreement about their preference structure as a coalition, and

the lines will coincide for the remainder of the process. Only the mean weighting

vector for the set of all potential consensus weighting vectors is shown. The degree to

which one influences another in forming a coalition is represent by how “far away” a

coalition weight vector is from one’s initial preferred weighting vector. For example,

the output from Step 2 revealed that DMCTO had more than half the influence over

DMIND and as a result, the red line (the path for IND) reaches consensus with the
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blue line (the path for CTO) much closer to CTO’s preferred weights. This is seen

most strongly in the BR objective sequence at the top right of Figure 138. Different

power relationships would result in a different final consensus mean weight vector as

would a different sequence of coalitions.

Figure 138: Mean weighting vector for each consensus sequence broken out by objec-
tive

The final consensus preference region after agreement of DMJROC−GOV−OPS and

DMIND−CTO is of course in 8 dimensional space but illustrating a subset of those

dimensions (i.e. 3 or less) can assist in visualizing this region. In Figure 139 shows
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the final group consensus region for the three dimensions wMTTC , wSDTTC , and wBR.

This is consistent with the previous figure where the dimension requiring the most

compromise is wBR. The weighting vectors for wMTTC and wSDTTC were already

relatively in agreement as indicated by both Figures 138 and 139 by the last step in

the coalition forming sequence. The small gray points show the original discretized

preference space used for the first discrete choice in Step 1 of the methodology and

is shown only for reference purposes.

Figure 139: Final Group Consensus Region (black) with initial preference regions
for DMJROC−GOV−OPS (blue) and DMIND−CTO (red) for only 3 dimensions wMTTC ,
wSDTTC , and wBR

To visualize all the dimensions, a scatterplot such as that found in Figure 140

shows the 2D projections for all objective pair combinations. As in the previous

figures, the objective with the greatest difference between the two coalitions for the
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fourth consensus step was wBR. This is also shown by the relatively large separation

of the blue and red preference clouds in the second row and third column of Figure

140.

Figure 140: Final Group Consensus Region (black) with initial preference regions for
DMJROC−GOV−OPS (blue) and DMIND−CTO (red) for all 8 objectives

The statistics on the final consensus region (the black points) are shown in Table

25. Interestingly, wBR takes on the largest mean value of 0.245. Since, performance

wMTTC was heavily weighed by DMJROC and DMIND, and since wMTTC is further

correlated with a low break rate (i.e. high wBR), these two objectives were likely
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Table 25: Statistics on Objective Weighting Values for Final Group Consensus Region

Objective Mean Weighting Std. Dev.

wMTTC 0.236 0.04
wSDTTC 0.149 0.054
wBR 0.245 0.048
wOC 0.084 0.036
wAC 0.099 0.018
wBRC 0.063 0.012
wUT 0.05 0.018
wER 0.075 0.028

amplified in the final result. Furthermore, this high value in wBR is also likely due to

the influence DMCTO has over DMIND at the first consensus reaching stage but also

over the others at the last stage (see Figure 138).

The final action in the overall methodology is applying or mapping the group

preference consensus region to the design space to identify the design parameters

most likely to be preferred by the group. Analyzing the “best” design for each one of

the weighting vectors in the final consensus preference space, results in only 19 designs

that would potentially be selected from the full feasible set of 518000 designs. These

are summarized in Table 26. Interestingly, all 19 designs were of Type 3 which made

use of the fact that the Dover to Kandahar APOE-APOD combination was less than

6100 nmi and thus was in the range for the direct return flights for large aircraft

with no payload. These designs dominated the Type 2 and Type 4 simulations since

stopping over retro en route, to refuel penalized the time to close and other output

metrics. Type 1 simulations are feasible, but for such a far distance, a low payload

per weight would be required and thus many more flights and therefore flight hours

would be needed. Furthermore, a large fleet size would be required to make up for

a lower throughput capacity for long distances. The en route location, Ramstein Air

Base, was also identical for all of the 19 “best” designs. Of the 23 candidate en route

locations, Ramstein Air Base was closest to the midpoint on the great circle path

from Dover to Kandahar Airfield, resulting in shorter flight times while maximizing
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Table 26: Summary of the 19 “Best” Designs After Mapping the Group Preference
Consensus Region to the Design Space

# ID We MTTC SDTTC BR OC AC BRC UT

- lbs days days % $M $M $B /24hrs

1 137046 433139 10.94 5.64 15.4 29.16 3856.67 20.09 9.09
2 171131 424680 10.47 5.59 15.23 29.6 4051.44 20.55 8.99
3 154610 407377 11.41 5.71 15.59 30.93 3627.28 19.61 9.24
4 88967 490360 10.66 5.6 16.02 25.63 4054.3 18.63 8.83
5 145856 490131 11.25 5.57 14.43 25.63 3740.68 23.05 9.06
6 92207 432824 11.53 5.64 14.83 29.16 3578.59 21.72 9.29
7 166303 474406 10.18 5.5 15.05 26.51 4224.11 21.06 8.88
8 102926 380144 11.38 5.72 15.23 33.14 3626.57 20.54 9.27
9 130590 418850 11.81 5.7 15.07 30.04 3463.05 21 9.34
10 151019 457009 11.2 5.63 15.14 27.83 3778.55 20.79 9.13
11 99299 401989 10.85 5.61 14.64 31.37 3834.98 22.32 9.2
12 97768 431580 10.4 5.6 15.65 29.16 4117.27 19.47 8.92
13 91327 356491 10.38 5.72 15.23 35.35 4307.83 20.55 8.56
14 114164 361664 11.29 5.72 14.95 34.9 3680.3 21.34 9.23
15 93417 463154 11.84 5.69 15.02 27.39 3534.79 21.15 9.21
16 116317 420073 10.61 5.63 15.48 30.04 4007.5 19.89 9.01
17 126094 415202 11.19 5.62 14.6 30.49 3696.96 22.46 9.29
18 133637 356873 11.86 5.74 14.7 35.35 3404.57 22.14 9.48
19 145961 415343 11.15 5.59 14.38 30.49 3698.21 23.23 9.32

µ: n/a 422699 11.07 5.64 15.1 30.11 3804.40 21.03 9.12

the payload capacity for each leg of the flight, which in turn translates to higher

utility scores for those designs.

The mean aircraft empty weight was slightly larger than the C-5 (just over 422000

pounds vs. 380000), but the reliability was much higher compared to current mission

capable rates of the C-5 (15% vs. 40% in terms of break rates). Although obtaining

the lower break rates were significant, averaging just over 21 $billion, the benefits

in a low time to close were nevertheless considered substantial. In fact, relatively

small fleet sizes were common in the 19 solutions, with the mean number of aircraft

employed of 14.26 with the minimum and maximum of 12 and 19 respectively. With

a worse break rate, the number of aircraft required to meet the same MTTC would

be expectedly larger resulting in a higher acquisition cost, but a compensating lower

cost for the higher break rate. The utilization values (mean of 9.12) are all close to
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the target of 8 hours per day established in this example. The acquisition cost per

aircraft for the 19 designs had a mean value of just under $269 million. Since the

average number of aircraft used in the 19 simulations was slightly greater than 14,

the product of these two results in the average total acquisitions cost of slightly over

$3.8 Billion.

Figure 141: Design Space of Model Simulations with the 19 Final Group Consensus
Designs shown in red (MTTC vs. AC vs. SDTTC)

These same 19 designs can be visualized in a similar manner as the preference

space weighting vectors. In 3D graphs as in Figure 141, the designs (colored in red)

can be shown to lie on the Pareto frontier of a cloud of points of MTTC, SDTTC and

AC. As discussed previously, some solutions may close more quickly but would cost

more (i.e. larger fleet size and AC).
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In Figure 142, the designs are against displayed in the 3D graph but with axes

replaced by the mean time to close, the utilization and the total operating cost.

The cloud of designs representing the “best” designs as evaluated from the consensus

preference region are located near the utilization values of 9 (i.e. 8 was the target

value) and lower operating costs as expected. Lower MTTC values are possible (as

shown in the previous figure as well), and might even lower the operating costs due

to fewer flight hours, but the real trade is not visible in this graphic, since MTTC

can be traded with AC or BRC more directly.

Figure 142: Design Space of Model Simulations with the 19 Final Group Consensus
Designs shown in red (UT vs. OC vs. MTTC)
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Figure 143: Design Space of Model Simulations with the 19 Final Group Consensus
Designs shown in red. (All objectives shown except En Route Type Selection))

To help with these additional trades and to investigate more easily the designs

in the multi-dimensional solution space, employing a scatterplot matrix as shown in

Figure 143 is useful. The en route Type selection or U(ER) objective is not shown,

resulting in only 7 of 8 objectives represented. The trade between MTTC and AC are

again shown in the fourth row from the top and the explicitly defined trade between

cost to lower BR and the break rate itself are also clearly visible. The cost to lowering

the break rate is particularly interesting because the importance weighting on U(BR)

was relatively high. Even though the cost increases exponentially below BR values
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of 25% the sequence taken by the decision makers and the influence relationships

established by the step 2 discrete choices results in a higher break rate cost than

the flat part of the curve. At some point the marginal improvement in break rate

reduction is no longer attractive past this point in the curve for this group of decision

makers. The other subplots show values in the middle of their ranges, suggesting and

coinciding with the Step 3 results that these objectives have lower relative importance

compared to the most important three objectives from Table 25, wMTTC , wSDTTC ,

and wBR.

The final analysis of these solutions can be the percentage or number of occur-

rences for each of the 19 designs. Since two (similar) weighting vectors applied to the

design space can be mapped to the same “best” design, the number of occurrences

that the weighting vectors from the consensus reaching process is mapped to each

design can be insightful. This metric is important because it can suggest that from a

range of importance weighting vectors the same design will be ultimately considered

the “best”. It may also mean that the design space is not “saturated” enough to

discriminate between two almost equal weighting vectors. However, this problem can

be readily overcome by executing additional model simulations within the appropri-

ate range of inputs, a process which may be computationally expensive without the

implementation of surrogate model techniques.

The number of occurrences of the 19 designs is shown in the vertical axis of

Figure 144. The other two dimensions are the mean time to close and the total

acquisition cost similar to Figure 141 above. As shown, two designs, in particular,

have a consensus occurrence number of more than 200 (i.e. d137046 has 214 and d171131

has 205) and together they make up 40% of the entire consensus occurrences. This

means that to properly predict the expected design parameters such as that from

Table 26, the mean values should be weighted by the number of occurrences.
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Figure 144: Design Space Projected onto MTTC-AC plane versus the consensus
occurrence number. (Designs colored by number of occurrences)
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Table 27 considers the effects of the occurrences of consensus on each the objec-

tives for each of the 19 designs, which provide a more likely expected design across

the consensus region. The difference between the “mean” and “weighted mean” val-

ues suggests a slightly larger (3.53% heavier) aircraft than originally predicted, but

slightly less expensive in terms of operational cost (-3.89%). The cost associated

with improving the break rate also goes down slightly because of a higher break rate

accepted for the “weighted means” design.

Table 27: Weighted Mean Summary of the 19 “Best” Designs After Mapping the
Group Preference Consensus Region to the Design Space

We MTTC SDTTC BR OC AC BRC UT

Units: lbs days days % $M $M $B /24hrs

Mean: 422699 11.07 5.64 15.1 30.11 3804.4 21.03 9.12

Weighted
Mean:

437615 10.95 5.62 15.24 28.94 3856.5 20.58 9.08

% Differ-
ence

3.53% -1.08% -0.35% 0.93% -3.89% 1.37% -2.14% -0.44%

In predicting or forecasting how a group of decision makers will decide, the se-

quence of consensus stages can have a large impact on which design or solution the

group will ultimately select. However, since the sequence cannot be determined a

priori, all or at least many of the combinations of sequences can be executed with the

distributions and power relationships from Step 1 and 2 respectively. The union of all

the sets of designs at which consensus could be made (i.e. not just for one sequence

but for all possible sequences) results in the superset of solutions at which the group

could reach consensus. This combined set, much fewer than the original number of

candidate designs, become the condensed list of candidates solutions from which the

decision makers can collectively select.

In the above examples, the Step 3 sequence executed results in the 19 designs

described previously. When focusing on only the Type 1, 2, and 3 solutions (177173

designs) all making use of the Ramstein Air Base (for Type 2 and 3), by repeating this
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process 100 times and allowing the sequence to be randomly assigned, the superset of

designs will expand with the union of designs from each successive consensus sequence.

For example, as shown in Figure 145, in a series of consensus sequences, the first

sequence resulted in 15 different designs from the mapped grouped preference region.

The second sequence resulted in 23 different designs but only 12 of them were unique

as compared to the first sequence and thus the cumulative number of consensus

designs is 27. The third sequence produced 20 designs but only two of those are

unique. Thus, after three consensus designs, the cumulative number of consensus

designs is 29. This process is repeated 100 times representing 100 randomly selected

sequences for a total cumulative number of consensus designs of 71. The trend line

approaches some absolute number of designs that could be possibly reached from

an exhaustive combination of all weighting vectors, for all power relationships with

all possible sequences. With additional computation time and resources, this upper

limit could be calculated but reaching that point becomes too time-consuming as the

additional consensus designs requires an increasing number of sequence simulations.

An example of this is shown from sequences 69 to 90 in Figure 145 where no additional

unique designs were reached. The 91st sequence reached one unique design and the

92nd reached three, but in general the trend where the number of sequences will

exponentially increase per new unique design reached is evident.

Furthermore, discovering this upper limit is unnecessary from a practical stand-

point. Since most of the later sequence are reaching the same designs, the cumulative

number consensus at each of the designs will also increase, and the few designs which

are reached in almost every sequence is of most interest.

Figure 146 projects the number of consensus occurrences for each of the 71 different

designs from the 100 sequences. The design number is sorted by the total number

of consensus occurrences after the 100 sequences. Therefore, design #157931 (in

the current set of designs) was reached almost 7000 times across all sequences, more
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Figure 145: Cumulative number of unique designs at which consensus was reached
for 100 randomly defined sequences

than any other design. The next highest was design #88967 with just under 5200

occurrences. Each successive design has a lower number of occurrences after the 100th

sequence. The individual points and bars are colored by the cumulative number of

occurrences. Interestingly, every sequence reached design #157931 at least once.

For comparison, six different sequences never reached design #88967 in a consensus.

The number of sequences that did not reach the various designs increases along the

nominal axis of “Design Number” from left to right. Furthermore, 12 different unique

designs are only reached once by one sequence (located at the far right of “Design

Number’” axis, such as design #172980. These designs, of course, do not represent a

high probability at which the group of design makers will reach agreement.

Lastly, Figure 146 shows that three designs #157931, #88967 and #154610 were

most likely to be reached across all simulations. These same three account for over

60% of all simulations. In terms of predicting a design which is most likely to be

collectively agreed upon, choosing one of these three, (and more specifically design

#157931 which is reached by 27% of the simulations) would be the best strategy.

Having decision makers discuss and contemplate this specific design (or similar ones)
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could then result in significant time savings from the reduction in less useful negoti-

ations, deliberations, etc.

Figure 146: Cumulative number of occurrences at each of the 71 designs in Figure
145 for the 100 randomly defined sequences, sorted by total occurrence

These three particular designs are shown in Table 28 sorted by the cumulative

occurrence number. As before, the decision makers as a group tend to prefer a slightly

heavier and more capable aircraft, are willing to invest substantial amounts to make

the fleet reliable so as to reduce the number or aircraft needed for a given level of

performance with relatively low operation cost. However, with multiple sequences
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Table 28: Summary of the 3 “Best” Designs After Mapping the Group Preference
Consensus Region to the Design Space from Multiple Sequence Simulations

ID We MTTC SDTTC BR OC AC BRC UT

Units: lbs days days % $M $M $B /24hrs

1 157931 482152 12.55 5.87 16.02 26.07 3373.14 18.65 9.02
2 88967 490360 10.66 5.6 16.02 25.63 4054.3 18.63 8.83
3 154610 407376 11.41 5.71 15.59 30.93 3627.28 19.61 9.24

confirming similar results, the confidence one can have that one of these three designs

could be ultimately selected is higher.
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CHAPTER VIII

CONCLUSION

8.1 Summary of Findings

The MACRO methodology was found overall to function properly and was able to

demonstrate in the proof of concept or air mobility problem from the previous chapter,

that the original candidate design space was reduced from more than 500000 designs

or solutions down to just 19. These 19 designs reflect the consensus region where the 5

stakeholders or decision makers would be expected to cooperate in reaching agreement

for design selection. Since this consensus region depends on a specific sequence of

coalition forming stages, multiple simulations were executed, covering a majority of

the possible sequences. This analysis found that only 71 possible candidate designs

exist in the superset of designs where consensus is possible. Furthermore, 3 specific

designs were found to occur most often in the consensus regions from all simulations,

suggesting an even smaller subset of designs at which the decision makers would likely

reach consensus. (See Figure 143.)

The ratio of the number of designs in the consensus region to the initial design

space (the metric for evaluating Hypothesis #2) is much less than 1% (in fact less than

0.1% in the proof of concept problem) suggesting that Hypothesis #2 should not be

rejected. Since Step 3 in the methodology was directly related to testing Hypothesis

1, and Step 3 required the inputs from the other two steps, the successful results lends

support that those proposed hypotheses (related to Steps 1 and 2) should also not be

rejected.

More specifically, the difference between the truth model and predicted means of

the weighting distributions (metric for evaluating Hypothesis #3) was found to be
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low, with the worse case difference calculated at 0.2 (the predicted weight for OC

for DMOPS). It was predicted that this discrepancy was due to a high correlation

of OC with MTTC, which suggests, in general, that the methodology is likely more

accurate for orthogonal and non-correlated objectives. (See Table 21.)

Comparing the perceived influence truth model to the predicted power relation-

ships (metric for Hypothesis #4) also shows relatively good closeness. The few large

differences were likely due to the original perceived influence truth model which con-

tained over- and under- constrained power conditions. This resulted in the surprising

results that the influence of DMCTO was found to be larger than that expected, and

that DMIND significantly overestimated their own influence over DMGOV . (See Table

24.)

The methodology, at least in part, and within the scope of the analyzed problems,

fulfills the research objective in that it can significantly reduce the set of designs which

a group of decisions makers should consider as most likely to ultimately be selected.

This, of course, has the potential to reduce the time required to reach consensus by

showing all decision makers where potential future actions, discussions, negotiations,

and compromises will eventually bring the group to collectively agree within the

decision space. Concurrently, the development of AirMOD was a successful response

to the need of better defining the operational design space with more design solutions

in shorter time frames. Almost 1 million points were generated across the design

space in approximately 50 minutes. This not only facilitates additional analysis in

bulk of the design space, but increases the decision makers’ confidence that sufficient

solutions have been modeled and are available for down selection and other decision-

making activities.

The overall hypothesis that such a model and methodology will be able to assist

a group of decision makers in reaching agreement about the requirements of a future

air mobility system is promising. Compared to a “business as usual” approach, which
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often is lengthy and costly (in terms of opportunity costs, delayed implementation,

etc.), together AirMOD and MACRO methodology offer a significantly better way

of achieving cooperation between group members than simply waiting for the ex-

ternal pressure and forced “11th hour” decision making before finally beginning to

concede in reaching a compromised solution. Furthermore, increased transparency is

offered as a complementary benefit. Recording how the decision makers responded

to discrete choices in revealing their preferences can be archived and used later on to

contrast again current preferences, analyze requirements creep (and prepare action if

observed), or provide guidance when new decision makers enter the group who may

have their own agenda but are too late in being part of the initial decision making

and requirements definition phases.

8.2 Research Questions and Hypotheses Revisited

Table 29 summarizes the research questions and how they were addressed throughout

this dissertation. During the methodology development, additional research questions

were posed and also addressed with various experimental tests and other investiga-

tions. These questions were posed during the development of the various methodology

steps and are thus related and categorized accordingly in Table 29.

The related hypotheses at the highest level research questions are summarized in

Table 30 with the key experimental observation supporting them.
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8.3 Suitability and Limitations of the MACRO Methodol-
ogy

As with all models, their sphere of applicability is always finite and the MACRO

methodology from this research is no exception. A number of inherit limitations have

been observed over the course of the research which need to be reviewed and under-

scored at this point in the dissertation. Not all of these limitations are insurmountable

but some require actions performed before execution of the MACRO methodology as

a whole.

First of all, the model assumption that cooperation by all agents is a necessary

requirement is in fact relatively limiting. If cooperation is not a key aspect of the

problem, or even desirable in the group decision-making process, determining the

consensus region is clearly unsuitable. When competition is the driver, there is often

no longer a state where all agents can benefit (i.e. zero-sum game). In such situations,

both decision makers cannot simultaneously increase their levels of utility to the same

amount (i.e. from 0 to x > 0) and one’s reduction in utility could be the other increase.

These competitive situations require a different set of game theoretic or simulation

techniques, and are likely not facilitated by the MACRO methodology.

Second, in group decision making if an individual is replaceable in the sense that

some other individual, company or entity could likely satisfy the particular expertise,

skill, or resource, possessed by the first individual, the first individual could have

little or no influence on decisions or over others. When this occurs in a group of two,

and the replaceable individual is removed, the situation falls back to single-agent

decision making and many of the techniques presented in this dissertation are no

longer necessary. However, many supposed “single-agent decision making situations”

have, in reality, more than one stakeholder or “decision maker.” Consider a manager

with a team of assistants and other coworkers trying to decide which strategy to

implement in a company. Although, the decision-making power may reside in just
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Table 29: Summary of How Research Questions were Addressed

Research Question Answer, Response or How Addressed

1.0 How can the number of operational design solu-
tions originally considered increase to include a
greater portion of the potential design space?

Surrogate models with Monte Carlo
simulations enables fast operational de-
sign space characterization

2.0 How can the feasible decision space be reduced to
facilitate decision makers in reaching consensus?

Step 3 in the MACRO Methodology

2.1 How should power or influence be combined dur-
ing the consensus reaching stage such that form-
ing coalitions are advantageous to the individu-
als?

A coalition assumes the highest power
index value of all members over another
decision maker (or coalition).

2.2 What is the impact of higher dimensional data
sets with larger numbers of decision makers?

Methodology is slower and requires
more work by individual decision mak-
ers but is still valid.

3.0 How can a decision maker’s preference informa-
tion, including the potential for changing pref-
erences, across all objectives be acquired more
quickly and accurately?

Step 1 in the MACRO Methodology

3.1 How many discrete choice experiments are
needed to reach a particular level of certainty
about the true preferences of a decision maker?

Depends on the number of dimensions
or objectives.

3.2 What is the effect of increasing the number of
dimensions on how discrete choices are selected?

Random selection (Selection method 1)
approaches selection method 2 as num-
ber of dimensions increases.

3.3 How can the preference space be further specified
to guarantee that only one design choice is op-
timal based upon a set of discrete choices while
minimizing the number of discrete choices?

Refining the total preference space
when necessary reduces the computa-
tional requirements and allows greater
precision on weighting distributions.

3.4 What stopping criterion for discrete choice ex-
periments should be used to extract the prefer-
ences of a decision maker?

Various, such as time available, vari-
ance of maximum distribution, estab-
lished rank order, etc., depends on par-
ticular problem requirements.

4.0 How can the influence relationships between de-
cision makers be identified and quantified?

Step 2 in the MACRO Methodology

4.1 How many discrete choice experiments are
needed to extract the power or influence differ-
ence between two decision makers?

Depends on the uncertainty on weight-
ing distributions, typically less than 10.

4.2 What is the impact on the certainty of power
relationships when decision makers respond to
different numbers of discrete choices and provide
different ranges?

Range on the power relationships de-
crease with discrete choices up to a
point related to the uncertainty in
weighting distributions from Step 1.
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Table 30: Summary of Experimental Results from Testing Hypotheses

Hypothesis Experimental Results
#1 Monte Carlo simulations of sur-

rogate models developed around
time-consuming operational mod-
els will provide capability to more
rapidly define the design space
by generating greater numbers of
candidate solutions in the same
time period.

The tested speed at which Air-
MOD can generate candidate so-
lutions was measured at 1 mil-
lion design solutions in 49.7 min-
utes or 2.98 ms/execution (on an
Intel R©CoreTM Duo CPU @2.20
Ghz). Individual SimPy model
runs required from one to more
than 30 seconds.

#2 Simulating the multi-agent
decision-making process with
an iterated ultimatum game
across all objectives, with the
application of the preference
distributions of, and power rela-
tionships between, agents, will
significantly reduce the decision
space and identify regions with
high probabilities of reaching
consensus.

In the experimental case study,
the methodology reduced the
500,000 designs down to 19 likely
designs at which consensus is
most probable. Further experi-
mentation reduced those down to
just 3 when the experiment in-
cluded multiple sequences.

#3 Infeasible design or preference fil-
tering on the range of possible
weightings combinations, from a
set of discrete choices employing
candidate solutions, will identify
a decision maker’s preferences by
providing feasible weighting dis-
tributions for each criterion or ob-
jective.

In the experimental case study,
MACRO predicted 40 (5x8)
weighting values within 0.041
on average (4% error) with two
outliers of 0.21 and 0.12.

#4 Discrete choice experiments be-
tween designs, and with whom an
agent will form a coalition in the
decision space, will identify rela-
tionships of influence, under the
power constraints equations, be-
tween decision makers.

In the experimental case study,
MACRO was able to predict
power relationships between all
decision makers with a certainty,
in terms of a maximum range,
near 0.3.
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one individual (the manager), power and influence reside in the others as well in

the form of persuasion from expertise, experience, or information. The MACRO

methodology is clearly applicable in these situations where power is more broadly

defined.

Third, extremely high-dimensional design spaces would likely be impossible to use

in such a methodology. Not only would the discrete choices be more challenging to

respond to with so many trades to contemplate by decision makers, but the range on

all preferences or the weighting distributions may all tightly hover near zero since so

many weights sum to the constraint value of 1. However, most design spaces likely

have a subset of objectives which capture a majority, if not all, of the key dimensions

necessary for decision makers to evaluate the designs. Initial discrete choices could

be used as tests to filter out objectives which have little or no impact on the utility

score (i.e. objectives are removed that are found to be weighted with a value of zero).

Fourth, a high number of candidate designs require large computer memory and

computational speed for storing and computing respectively the utility scores, inter-

mediate regions, etc. If the number of designs becomes too large, implementing the

methodology can be limited by external computer hardware or software constraints.

For example, in the proof of concept problem discussed previously, 0.5 million designs

were considered the maximum number of allowable designs that could be simultane-

ous processed in a reasonable amount of time without stalling or suspending the

methodology on available computer resources.

Fifth, large numbers of decision makers in a group would also slow down the

methodology and would require each to respond to a large number of discrete choices

of pairwise comparisons, which is an unacceptable requirement. In the extreme ex-

ample, every individual (i.e. citizen) could be modeled as agents (i.e. voter) in a

group decision-making activity (i.e. federal election) to pick the design or solution

(i.e. President), but many discrete choice experiments would be required to solve for
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the individual power relationships between each one. In such a case, the numerous

agents would be “categorized” or “grouped together” and would be expected to de-

cide (or vote) with similar preferences as a unit. This is essentially what the MACRO

methodology does more formally, but with specific data from which to increase the

confidence and accuracy of the output.

8.4 Summary of Contributions

The first major contribution of this research is the ability to more fully described and

define the entire design space of an operational model. The AirMOD model enables

rapid evaluation of the design space, extending the SACT tool for MC simulations,

additional operational metrics including costs, and improved visualization of the sce-

nario and logistical and operational metrics of interest. The analysis of such a design

space was performed and observations and findings about the design space were only

possible with a sufficient number of solutions compared and contrasted in a variety

of visualizations.

The second major contribution is the MACRO methodology, a process to facili-

tate cooperative decision making within groups by identifying the candidate designs

or solution and thus the region at which consensus is more likely to occur. The

methodology itself was broken down into three major steps, each which offer unique

contributions to the field of group decision making.

In Step 1, the application of discrete choices to extract preferences across the

objective space was introduced, reflecting more realistic decisions as opposed to unre-

alistic objective comparisons out of context. This contribution allows one to identify

the distributions of the preferences instead of deterministic weights of the objective

space. It accounts for the fact that decision makers are likely to change preferences

over time due to internal and external factors and are willing to concede their own

preferences, to some degree, if cooperation is incentivized, either through time savings
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or benefits from forming coalitions with others.

The contributions from Step 2 provide a process to obtain the power indices,

scaling factors or strength of the decision makers themselves using the same discrete

choice technique as in Step 1 but with hypothetical design point associations to the

other decision makers. The result from sufficient responses enables the evaluation of

the power or influence relationships between decision makers. These indices can then

be used to various consensus reaching algorithms to calculate the various willingness

of decision makers to concede on the objective space with each other. As with Step 1,

the power relationships are expressed as distributions between each pair of decision

makers to account for the uncertainty and dynamic influence levels possible between

them.

Step 3 contributions offer a unique consensus reaching algorithm implementing

ultimatum game theoretic principles. Furthermore, the analysis of sequences in how

decision makers form coalitions was conducted allowing one to compute the region

in which the group is most likely to reach consensus across many sequences. Playing

out the combination of sequences with the Step 1 distributions of weighting vectors

and Step 2 influence relationships provides insight into candidate design points which

should be initially considered as the subset of solutions for additional analysis and

more formal negotiation.

Overall, the overall methodology with the two elements, AirMOD and MACRO,

contribute to the conflicting requirements in air mobility operational problems of

increasing the number of candidate designs more quickly and determining the set of

design points at which consensus is probable for group decisions, thereby allowing a

more expeditious and transparent requirements definition phase.

319



8.5 Future Research

A number of extensions to the research discussed in this dissertation have been iden-

tified as areas of potential future research.

Additional and alternative methods for the Design of Experiments, in particular

for choice designs, could be explored and tested to evaluate their performance against

the methods explored in this dissertation. This would be most applicable if the

decision makers knew in advance how many discrete choices to which they are willing

to respond or have time to complete. Knowing this constraint, the set of discrete

choice experiments to maximize the information gained could then be designed.

A more detailed look into the sources of influence and in particular the influence

differences among the objectives for different decision makers could be explored. For

example, one decision maker may only have more influence over another in a subset

of the objective space. In other words, their influence might extend to only 2 or 3

objectives and not across the whole space. Such an algorithm would potentially offer

intermediate consensus regions on objective subsets with more complicated processes

for reaching agreement. Furthermore, testing the methodology with real human sub-

jects in group settings to evaluate the predictive capability of the methodology based

on different influence relationships could also be investigated.

Reciprocity could also be explored in more detail, by analyzing the change in

willingness of one decision maker to concede based on action or inaction of other

decision makers. Similarly, metrics to track this willingness to concede over time as

the “moment of decision” approaches, could reveal the impacts, both positive and

negative, of constraining decision times. Penalty functions for not cooperating (or

rewards for cooperating) could likewise be analyzed to identify strategies to accelerate

decision making. These would be compared to studies into how the quality of the

decision changes based on the level of reward or punishment.

The bilateral consensus reaching explored in this research could be expanded to
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account for trilateral, quadrilateral, etc. decision making or intermediate agreements

throughout the sequence. In such a situation, the proposing decision maker might

propose a design point or preference weighting vector somewhere between the 3 or

more decision makers and any one of them can reject the proposal. As the inter-

mediate coalition size approached the full group size the benefits would potentially

decrease or at least take longer to reach consensus. However, coalitions with just a

few more than two might be able to cooperate in more interesting ways than studied

in this research.

Lastly, the effect of team or group structure could also be further investigated,

especially on engineering project teams where managers may have more decisional

power based on position but less expertise power. The ramifications between these

and other factors for groups involved in decision making for system engineering ap-

plications would be similarly interesting.

8.6 Final Thoughts

It is important to note in the final analysis that this dissertation and the research

herein never explicitly decides for the group of decision makers. No computer model

ever “makes the decision.” The best it can do is rank order, evaluate, suggest, or

list the “best” designs or solutions according to specified assumptions and an objec-

tive function, provided by a human or other external source. However, simulating

group decision-making with the appropriate data and assumptions, can make large

advancements in assisting a group of decision makers in accelerating and facilitating

the process saving both time and resources. Whether early in a system’s life cycle,

such as in the requirements definition phase, or in later phases, such as final design

selection, this research is relevant by reducing the uncertainty about how a group

of decision makers, seeking to cooperate, will act, by providing a design space or

preference space region in which they are most likely to reach consensus.
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APPENDIX A

VOTING METHODS

A common implementation of group decision making is voting, most often associated

with political elections. Many different voting methods have been proposed for vari-

ous situations such as plurality voting, Borda count, the Condorcet Method, instant

runoff, etc. In describing and explaining the limitations of this partial list of voting

methods, an example presented in [162] will be used.

Four cities are physically situated as shown in Figure 147 and will share one

hospital. A vote is established to decide in which town the hospital should be located.

Each town, and all individuals in each town, would prefer the hospital to be located

as close as possible.

Figure 147: City Locations and Populations for a Vote (from [162])
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A.1 Plurality Voting

With plurality voting, each individual in each town gets one vote and as a result

Southville will win the vote since it has the largest population of 65 individuals. The

other 135 people, however, would prefer a location other than Southville. Therefore,

more than 2/3 of the towns combined population would receive their last choice.

This simple example quickly shows one weakness of plurality voting when there

are more than two alternatives: a third alternative can change the ultimate winner.

In terms of elections, suppose one candidate has 40% of the plural vote, a second has

35% and a third has 25%. If everyone who supports the third candidate also prefers

the second candidate to the first, they would actually be indirectly supporting the

candidate they least prefer, by taking “votes” away from a candidate (i.e. the second

place winner) that would have won the election had the third candidate not run [106].

A.2 Borda Count

The Borda Count, named after Jean-Charles de Borda, is also vulnerable to manipu-

lation [139]. Using a Borda mechanism, voters rank all the candidates or alternatives.

The least desirable candidate receives 0 points, the next to last 1 point, the second to

last 2 points, and so on. The scores for each candidate are added up and the winner

is the one with the most points. The winner in the hospital example above would be

Easton with 375 points followed by Westlake, Northview and Southville, with 365,

265, and 195 points, respectively, as summarized in Table 31.

Table 31: Borda Count for Each of the Four Candidate Hospital Locations

Candidate Location and Borda rank
City Pop. Northview Easton Southville Westlake

Northview 45 3 2 0 1
Easton 40 2 3 0 1

Southville 65 0 1 3 2
Westlake 50 1 2 0 3

Total - 265 375 195 365
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Interestingly, if the exact Borda count process were repeated after removing

Northview as one of the candidates (knowing a priori that it would not win any-

way), Westlake wins with 250 points, followed by Easton at 220 and Southville with

130. The results are tabulated in Table 32.

Table 32: Borda Count for Each of the Three Remaining Candidate Hospital Loca-
tions After Northview Drops Out

Candidate Location and Borda rank
City Pop. Northview Easton Southville Westlake

Northview 45 - 2 0 1
Easton 40 - 2 0 1

Southville 65 - 0 2 1
Westlake 50 - 1 0 2

Total - - 220 130 250

This illustrates a flaw in the Borda method. When a candidate considered an

irrelevant alternative is removed, the actual winner can change. This is problematic

since who wins is dependent on irrelevant alternatives that no one prefers. Fixes to

this problem using “measure of dissimilarity” have been proposed but do not always

work to remove the manipulation [54].

A.3 Condorcet Method

The Condorcet method applies the plurality voting method to each combination of

candidates. Thus, Northview faces off head to head against all the other three candi-

dates; Easton faces off against the remaining two as well, and so on. The candidate

that wins head to head against all the other candidates is the winner.

The issue with this method is that there does not have to be a Condorcet win-

ner. For example, applying the Condorcet method in a vote with three alternative,

if the total population prefers candidate X to Y, Y to Z and Z to X, the preferences

are cyclical resulting in the Condorcet Paradox [93]. In the example in Figure 147,
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Weston is the Condorcet winner, but with different populations, a cyclical popula-

tion preference could be possible, especially with voters acting strategically. This

Condorcet Paradox is more likely to occur with few voters as identified by [67].

A.4 Instant Runoff

In an instant runoff voting (IRV) method, the candidates with the fewest votes is

eliminated and then the vote is recounted with n − 1 candidates. This process is

repeated until a certain threshold (e.g. a majority) of the votes support one candidate,

is reached. In the hospital example above, Northview will win the IRV method.

As with the other methods, IRV has interesting characteristics as well, such as

a candidate losing the vote even though the popular opinion has moved closer to

his or her position [162]. Similarly, paradoxes and other problems can arise in some

situations of preferential voting discussed in [58].

A.5 Voting methods summary

From the foregoing sections, with Southville winning with plurality voting, Easton

winning the Borda count method, Westlake winning the Condorcet method, and

Northview taking the instant runoff election, voting methods clearly have serious lim-

itations to unravel. Many attempts to avoid some of these issues have been proposed

and currently two methods “approval voting” and “range voting” may be found to

be better options to reduce gaming and manipulation of the voting systems [23].
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APPENDIX B

COMPARING A SET OF THREE COMMON

DECISION-MAKING TECHNIQUES

B.1 Decision Making Using the Overall Evaluation Crite-
rion

Perhaps the most easy to understood and commonly used decision-making technique

is when simple attributes or objectives are combined mathematically with weightings

attached to each dimension as indicative of the importance or preferences of the

various criteria [7]. This type of decision-making technique is called by various names

including “parametric method”, “simple additive weighting method (SAW)”, “multi-

attribute value” or “weighted sum model (WSM)” [17]. A related technique called

the “weighted product model” (WPM) is very similar but the weighted objectives are

multiplied instead of summed as in WSM [27]. Regardless of the name, the problem

will seek to minimize (or maximize from the opposite perspective) the objectives

based on the weightings of the objectives or criteria.

For the weighted sum approach, the score or value vi for each alternative i takes

the form of:

vi =
∑n

j=1wjxij (52)

subject to
∑n

j=1wj = 1,

where wj is the weight for criterion j and xij is the value or score of alternative i

on criterion j, j = 1, ..., n.
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Recasting the same approach into an optimization problem with the goal of max-

imization, results in:

max
x
{

n∑
j=1

wjfj(x) = wTF (x)} (53)

where, fj(x) is the jth objective (i.e. criteria) and F (x) = [f1(x)f2(x) . . . fn(x)]T .

The optimization view is sometimes beneficial as the application of constraints, both

equality and inequality, can be readily applied to identify feasibility of particular

alternatives or designs [40].

The SAW formulation makes sense when the various criteria are of the same

units. For example, if every criterion (i.e. speed, cost, performance) is transformed

to constant units (i.e. “utils”) through decision maker defined utility functions, then

the above equation is valid.

With different dimensions, however, the WPM can often be more useful. It takes

the form of:

max
x
{vi =

∏n
j=1(xij)

wj∏n
j=1(x

∗
j)

wj
} (54)

where x∗j is “best” value for the jth criteria, dimension or attribute. By employing

these “best” values the upper-bound is established so that mapping all alternatives

to the interval [0,1] can be performed [9].

A combination of the aforementioned ideas and approaches is developed through

another weighted sum technique called the overall evaluation criterion (OEC), where

the criteria are added (as in SAW) but are normalized against a baseline design (as

in WPM), or other process, to established non-dimensional criteria. Equation 55

illustrates how the value in each criterion 1 through n for each alternative i is first

divided by the baseline value of that particular criterion and then multiplied by the

respective weighting factor wj, j = 1, ..., n before summation in the OEC. The best

design is simply the alternative with the highest OEC.
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max
x
{OECi = w1

xi1
xbaseline,1

+ w2
xi2

xbaseline,2
+ . . .+ wn

xin
xbaseline,n

} (55)

Equation 55 assumes that it is more desirable to maximize all criteria 1 through n

such that OEC scores of designs or alternatives with values greater than the baselines

values will be proportionally larger. If minimizing certain criteria is better, the OEC

formulation can be adjusted accordingly by inverting the fraction of the alternative’s

criterion value and baseline value as show in Equation 56.

max
x
{OECi = w1(

xi,1
xbaseline,1

)−1 + w2(
xi,2

xbaseline,2
)−1 + . . .+ wn(

xi,n
xbaseline,n

)−1} (56)

Therefore, an example OEC with a combination of criteria from Equations 55 and

56 for one alternative would be:

max
x
{OEC = wspeed

xspeed
xbaseline,speed

+ wcost(
xbaseline,cost

xcost
}, (57)

assuming one desires to minimize cost and maximize speed.

One of the limitations of the weighted sums is described proficiently in [40]. For

non-convex Pareto frontiers, certain points of the Pareto set cannot be solved for, and

thus no combinations of weightings will ever identify those points as optimal based

on a decision maker’s preference.

Other issues of using decision matrices and OEC type analyses “...suffers from two

major drawbacks; (i) some potentially optimal concepts may appear to be undesirable,

because they never receive the highest total score, and (ii) the typical construction

requires that the decision maker specify physically meaningless weights and ratings”

[112]. These weights and ratings are the manifestations of human decision makers’

preferences. In answer to these concerns, other methods have been developed to

addressed these limitations.
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The following sections will consider other techniques that are somewhat compara-

ble to, and potentially improve upon, the simple OEC model. Although, this research

is not intended to be a detailed analysis of different decision-making techniques, these

sections are presented to help justify why the methodology presented is valid for an

OEC model and could be applied to other decision-making techniques such as AHP

and TOPSIS described next. In general, the same steps in reaching consensus could

be technique independent under the assumption that preferences are an essential

part of the technique and that the agents within the system are permitted to change

preferences throughout the decision process.

B.2 AHP Compared to an OEC

In the AHP formulation [141], the weighting for each criterion (xj) is established with

a priority matrix which quantifies and tabulates pairwise comparisons of importance

between the different criteria (x1 to xn) shown below. A decision maker will designate

a value which represents the importance of one criterion with respect to another. For

example, if criterion i is considered fives time more important than criterion j, then

the aij element in the priority matrix will have a value of 5. Correspondingly, the

aji element will assume the inverse of aij. Therefore, aji = 1
5
, and mathematically,

aij = a−1ji . This reduces the number of importance pairwise comparisons in half.

However, this can leave ambiguous actions if the values of importance ratios are not

consistent. (If aij = 5 and ajk = 3, does this necessarily mean that aik = 15 or can

a pairwise comparison be valid for criteria i and k if it is different than 15? This is

one of the short comings of AHP.) All diagonal elements of the priority matrix aii are

intuitively given a value of one.
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x1 x2 · · · xn

x1 1 a12 · · · a1n

x2 a21 1 · · · a2n
...

...
...

. . .
...

xn an1 an2 · · · 1

(58)

Once the above matrix has been filled, the priority vector for criteria x1 through

xn can be calculated using the following equation in vector form:



w1

w2

...

wn


=



1
n

n∑
j=1

(
a1,j∑n
i=1 ai,1

)
1
n

n∑
j=1

(
a2,j∑n
i=1 ai,2

)
...

1
n

n∑
j=1

(
an,j∑n
i=1 ai,n

)


(59)

This equation is effectively an average of normalized pairwise comparisons between

each criterion. The above vector only provides the importance weightings of the

criteria (i.e. w1). A similar process can now be applied to the actual attributes of

each design, solution or choice for each criterion. Therefore, a matrix which contains

the pairwise comparison for each of the m designs with respect to each criterion must

be calculated.

x1

d1

d2
...

dm

d1 d2 · · · dm

a
(x1)
11 a

(x1)
12 · · · a

(x1)
1m

a
(x1)
21 a

(x1)
22 · · · a

(x1)
2m

...
...

. . .
...

a
(x1)
m1 a

(x1)
m2 · · · a

(x1)
mm ,

(60)

where, the superscript (x1) for each element designates the criterion to which

it corresponds. (Note, that there are ‘m’ designs, points or solutions that require
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pairwise comparison.)

Using the same format for the criteria importance vector above, the attribute

importance vector is calculated by:

~d(x1) =



d1(x1)

d2(x1)
...

dm(x1)


=



1
m

m∑
j=1

(
a
(x1)
1j∑m

i=1 a
(x1)
i1

)
1
m

m∑
j=1

(
a
(x1)
2j∑m

i=1 a
(x1)
i2

)
...

1
m

m∑
j=1

(
a
(x1)
mj∑m

i=1 a
(x1)
im

)


(61)

After performing this calculation for each criterion, the number of attribute impor-

tance vectors can be calculated and combined into the attribute importance matrix

shown below in element and vector forms:





d1(x1)

d2(x1)
...

dm(x1)





d1(x2)

d2(x2)
...

dm(x2)


· · ·



d1(xn)

d2(xn)

...

dm(xn)




m×n

=

[
~dx1

~dx2 · · · ~dxn

]
m×n

, (62)

where m is the number of design points to compare and n is the number of criteria.

This process can be quite lengthy if the m and n are large and if the attributes

are qualitative in nature, which requires a translation to a quantitative scale. (AHP

also suffers from other limitations such as not being able to identify if some designs

are infeasible due to constraints or other requirements [4].) Still, this process can be

accelerated if all of the attributes have been quantified and simple equations to make

these pairwise comparisons are implemented. (For example, if the range of a certain

attribute for all the designs is from 40 to 90, and larger values are always preferred,

linear comparisons are readily apparent (i.e. 90/40 = 2.25). However, if 80 is twice as
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good as 40 but 90 is twice as good as 80, more sophisticated nonlinear comparisons

are required.)

Once the attribute and criteria importance vectors are calculated, the evaluation

process for all the designs takes the form of a simple matrix-vector product:

[
~dx1

~dx2 · · · ~dxn

]
m×n



w1

w2

...

wn


n×1

= w1
~dx1 + w2

~dx2 + · · ·+ wn
~dxn , (63)

which takes the familiar form of a simple OEC calculation,

−−−→
OECm×1 = w1

~dx1 + w2
~dx2 + · · ·+ wn

~dxn (64)

or, separate OEC’s for each m design points:

OEC1 = w1d1x1 + w2d1x2 + · · ·+ wnd1xn (65)

OEC2 = w1d2x1 + w2d2x2 + · · ·+ wnd2xn

...

OECm = w1dmx1
+ w2dmx2

+ · · ·+ wndmxn

B.3 TOPSIS Compared to an OEC

The Technique for Ordered Preference by Similarity to Ideal Solution (TOPSIS) is

similar to AHP in that a process is used to quantify the score of a particular alternative

by applying weights to the various criteria and comparing the alternatives to two

idealize alternatives. Thus, the actual design points or alternatives are ordered in

terms of preference with respect to each other, not by pairwise comparison, as in

AHP, but by their relative distance to the absolute best (or worst) in each dimension
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or for each criterion [77]. These values are then multiplied by the weighting factors

(just like in basic OEC or AHP) and ordered based on a cardinal scale.

Since TOPSIS requires the n-dimensional Euclidean distance(s) to a positive ideal

and/or negative ideal solution, the first step in any TOPSIS algorithm is to define

the ideal solution or design. This is accomplished by normalizing the best value for

each criterion across all the solutions.

Starting with the decision matrix, D, defined as:

D =

x1 x2 x3 · · · xn

A1

A2

A3

...

Am



x11 x12 x13 . . . x1n

x21 x22 x23 . . . x2n

x31 x32 x33 . . . x3n

. . . . . . . . . . . . . . .

xm1 xm2 xm3 . . . xmn


(66)

where Ai is the alternative with xij as the values for alternative i in criteria j,

j = 1, ..., n. For this general decision matrixD, there are n criteria andm alternatives.

The positive ideal solution A+ is calculated by

A+ =

[
x∗1√∑m
i=1 x

2
i1

x∗2√∑m
i=1 x

2
i2

. . . x∗n√∑m
i=1 x

2
in

]
=

[
A+

1 A+
2 . . . A+

n

]
(67)

where, x∗i is defined as the best value in column i of matrix D. A+
j is normalized

by
√∑m

i=1 x
2
j1 in each column to non-dimensionalize the criteria. Since no indication

of whether the decision maker seeks to minimize or maximize the particular criteria,

the “best” value from each column will be the largest or smallest if he or she seeks

to maximize or minimize the appropriate criterion, respectively. For example, the

decision maker will take the lowest value for the cost criterion but the highest value

for a performance criterion (such as fuel efficiency) to compose the positive ideal

solution. Note that this positive ideal solution may not be itself a feasible solution
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within the design space.

The negative ideal A− is similarly calculated, with the worst values in matrix D

used after normalization:

A− =

[
x−1√∑m
i=1 x

2
i1

x−2√∑m
i=1 x

2
i2

. . . x−n√∑m
i=1 x

2
in

]
=

[
A−1 A−2 . . . A−n

]
(68)

The weighted Euclidean distance between each design alternative Ai and positive

ideal A+ is next calculated as:

S+
i =

√√√√ n∑
j=1

(wjxij − wjA
+
j )2 =

√√√√ n∑
j=1

w2
j (xij − A+

j )2 (69)

where wj is the weight for criteria j, with j = 1, ..., n. The distance to the negative

ideal is similarly evaluated:

S−i =

√√√√ n∑
j=1

(wjxij − wjA
−
j )2 =

√√√√ n∑
j=1

w2
j (xij − A−j )2 (70)

TOPSIS will typically use both distances (i.e. the distance to both the positive and

negative ideal solutions) to further differentiate between designs as shown in Figure

148. This is to maximize the distance to the negative ideal and, at the same time,

minimize the distance to the positive ideal. Furthermore, in general, if two designs

have the same distance to the positive ideal they will not have the same distance to

the negative ideal, thus including both in a relative closeness parameter is beneficial.

This relative closeness parameter, Ri is calculated as the fraction of the distance

to the negative ideal over the difference of the distances to the positive and negative

ideals as shown in the following equation:

Ri =
S−i

S+
i − S−i

(71)
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Figure 148: Euclidean Distances to Positive and Negative Ideals from Two Alterna-
tives [77]

Expanding this equation, results in:

Ri =

√∑n
j=1w

2
j (xij −

x−j√∑m
i=1 x

2
ij

)2√∑n
j=1w

2
j (xij −

x∗j√∑m
i=1 x

2
ij

)2 −
√∑n

j=1w
2
j (xij −

x−j√∑m
i=1 x

2
ij

)2
(72)

which is a function with the weights and elements from the original decision matrix

xij and more simply:

Ri = f(wj, xij), i = 1, ...,m, j = 1, ..., n (73)

What the above equation illustrates is that the TOPSIS technique is just an

additional combination of the same values and weights included in an OEC. Re-

gardless of the decision-making technique selected as the process for evaluating the

various alternatives, many of them can be compared to a process of weighting the

various dimensions or criteria and then combining them in some simple (or compli-

cated) form to extract the scores. The assumption that the OEC is representative of

what other decision-making techniques use is thus made. Thus, although the group

decision-making process, the MACRO methodology, proposed in this research can
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use potentially any preference-based decision-making technique, only a simple OEC

in the proof of concept has been demonstrated.
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