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Abstract 

Multi-objective optimization metaheuristics (MOMs) are powerful methods for solving 

complex optimization problems but can require a large number of function evaluations to 

find optimal solutions. Thus, an efficient multi-objective optimization method should 

generate accurate and diverse solutions in a timely manner. Improving MOMs convergence 

speed is an important and challenging research problem which is the scope of this thesis. 

This thesis conducted the most comprehensive comparative study ever in MOMs. 

Based on the results, multi-objective (MO) versions of particle swarm optimization (PSO) 

and differential evolution (DE) algorithms achieved the highest performances; therefore, 

these two MOMs have been selected as bases for further acceleration in this thesis. To 

accelerate the selected MOMs, this work focuses on the incorporation of leadership concept 

to MO variants of DE and PSO algorithms. Two complex case studies of MO design of 

renewable energy systems are proposed to demonstrate the efficiency of the proposed 

MOMs. 

This thesis proposes three new MOMs, namely, leader and speed constraint multi-

objective PSO (LSMPSO), opposition-based third evolution step of generalized DE 

(OGDE3), and multi-objective DE with leadership enhancement (MODEL) which are 

compared with seven state-of-the-art MOMS using various benchmark problems. LSMPSO 

was found to be the fastest MOM for the problem undertaken. Further, LSMPSO achieved 

the highest solutions accuracy for optimal design of a photovoltaic farm in Toronto area. 
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OGDE3 is the first successful application of OBL to a MOM with single population (no-

coevolution) using leadership and self-adaptive concepts; the convergence speed of OGDE3 

outperformed the other MOMs for the problems solved. MODEL embodies leadership 

concept into mutation operator of GDE3 algorithm. MODEL achieved the highest accuracy 

for the 30 studied benchmark problems. Furthermore, MODEL achieved the highest solution 

accuracy for a MO optimization problem of hydrogen infrastructures design across the 

province Ontario between 2008 and 2025 considering electricity infrastructure constraints.  
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 1 

Definitions 

Definitions are provided to clarify the meaning of some terminologies used in this thesis that 

could be interpreted differently in other fields than multi-objective optimization. 

 

Accuracy: Accuracy of solutions refers to a combination of strength of convergence and 

uniformity of distribution for solutions along the Pareto front. 

 

Convergence: Closeness of Pareto optimal solutions the real Pareto front. 

 

Convergence speed: measure of number of function evaluations, not computation time, refers to 

the computational effort required to find accurate approximations of the Pareto front. 

 

Deceptive function: a function that deceives an optimizer by leading it away from the global 

optimum when located in the neighborhood of the global optimum 

 

Degenerate solutions: Unusual case where the dimensionality of Pareto optimal solutions is of a 

lower number than the number of objectives; for example, optima is only a single solution for a 

bi-objective problem. 

 

Experiments: In optimization field, it refers to a set of simulations in metaheuristics to solve 

either synthetic or real optimization problems. In other fields such as mechanical engineering it 
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refers to physical experiments but in computational context, the contributions are also 

computation therefore the word experiment is used 

 

Heuristic: an algorithm that is problem dependent.  

 

Metaheuristic: a computational method that optimizes a problem by iteratively improving a 

candidate solution. Contrary to heuristic, it can be applied to wide range of problems; it can also 

be tailored for specific types of problems. 

 

Robustness: is accuracy quality of an algorithm when solving optimization problems of variant 

complexities (features). 
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      Chapter 1 

 

Introduction 
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Real-world problems require optimization in multiplicity of conflicting objectives. For example, 

while designing a power system, electrical engineers are targeting competing objectives such as 

cost minimization, performance maximization, supply-demand balancing, pollution 

minimization, to name a few. Such problems are called multi-objective optimization problems 

(MOPs). Furthermore, real-world problems often encompass multiple complexities which make 

them non-solvable using classical optimization methods. Examples of such complexities are [1]: 

 Nonlinearity 

 No prior knowledge about the problem (black box problem) 

 Large dimensions 

 Non-differentiation 

 Non-convex  

 Highly multimodal 

 Multiple objectives 

 NP-Hard 

 Uncertainties in decision and problem parameters 

 Mixed-types decision variables 

 Discontinuity 

 Epistasis (complex variable |relationship) 

 Many-to-one mapping 
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1.1 Current Trends in Multi-Objective Research 

 Typically, due to the conflicting relationship among the objectives, there is no single 

optimal solution for all the objectives as for a single objective problem. Rather, for non-trivial 

MOPs, the generated solutions involve trade-offs. By compromising one objective, it is possible 

to improve another or other objective(s). For practical reasons, especially in real-world problems, 

decision makers are interested in having a variety of solutions in order to choose the most 

appropriate one based on their needs. The optimal solutions are called Pareto optimal set. The 

solutions belonging to a Pareto Optimal Set are called non-dominated solutions. The 

combination of the Pareto optimal sets are collectively known as the Pareto front (PF). There are 

two main objectives when using metaheuristics to solve MOPs. First, the solutions should be as 

close as possible to the PF. Second, the solutions should be uniformly distributed (diverse) so 

that the user can have a variety of choices [2]. Ideally, the Pareto set should capture the complete 

spectrum of the PF. Figure 1 illustrates three types of PF approximations. The first plot located in 

the left shows a well distributed front but the convergence is low. This front is deficient because 

it does not provide precise Pareto optimal solutions. The second plot located in the center shows 

strong convergence to the PF with a missing portion which could be critical for decision making 

and therefore is a deficient front. Finally, the last plot located in right has both desirable 

properties of strong convergence and good distribution which is the ideal front for decision 

making. 
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Several challenges in MOMs are still undergoing research. For example, convergence 

speed, solutions precision, solutions distribution, and scalable problems are some of the aspects 

that are the current focus of the MOO community. These criteria are further detailed below. 

 

Convergence speed: A challenging issue in MOO is the design of metaheuristics for reaching 

optimal solutions with a low number of function evaluations. State-of-the-art MOMs might 

require thousands to millions of function evaluations (FCs) to achieve high accuracy levels. 

Therefore, researchers are proposing strategies to speed-up the convergence towards the Pareto 

front [3], [4]. 

 

 

Figure 1: Examples of Pareto fronts for minimization bi-objective problems: poor convergence 

and good-distribution (left), strong convergence and poor distribution (center), strong 

convergence and uniform-distribution (accuracy) (right) [5]. 

 

Convergence: The convergence of solutions determines how close they are from the PF. The 

convergence is critical because a metaheuristic does not guarantee optimality; therefore, a 

solution should be as close as possible to the PF. Also, the accuracy level of a metaheuristic 
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depends on the complexity of problems. Some researchers are focusing on internal mechanisms 

of MOMs in order to enhance their convergence. For example in [4], authors studied the impact 

of the metaheuristic population size on the results‘ convergence. Also, [6] and [7] studied the 

precision of MOMs when solving complex MOPs. 

 

Distribution: In a MOO context, the distribution (variety) of solutions is important. MOM might 

generate a set of solutions that belong to the Pareto front; however, they might converge to only 

a specific portion of the PF. Consequently, the generated set of solutions will not provide the 

required variety of solutions which is often necessary in most real-life problems [8]. 

 

Scalability: In MOO context, a scalable problem can have two meanings: a problem having a 

large number of objectives or large number of decision variables. For example, most 

benchmarking problems have a limited number of variables lower than 30 variables. Some 

researchers have studied the extension of MO Metaheuristics (MOM) methods to handle large 

scale decision variables problems [9]. 

 

There are other open research problems that interest the MOM research community, such 

as interactive optimization, robust optimization, and computationally expensive optimization 

problems. More information about current MOM research trends can be found in [10], [1]. 
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1.2 Thesis Scope  

The scope of the thesis focuses on the acceleration of convergence speed of MOMs while 

preserving a good accuracy, i.e., good precision and distribution of solutions. Different 

taxonomies have been proposed for classifying optimization methods [11]. However, based on 

the suggested taxonomy proposed by Feoktistov [12] in Figure 2, as shown in dark grey the 

scope of this work is the acceleration of population-based non-linear continuous global 

optimization metaheuristics but with multi-objectives.  

 

 

Figure 2: Classification of optimization methods.  

The grey box is the focus of the current work. 
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1.3 Thesis Objective 

The objective of this thesis is to achieve fastest convergence of MO variants of DE and PSO by 

using the concepts of leadership. To evaluate the performance of the proposed methods, they are 

compared with state-of-the-art MOMs using comprehensive bi-objective benchmark problems. 

In addition, two real-life and complex case studies of optimal design of energy systems are used 

for the assessment of the proposed methods. 

By conducting a comparative study, it was found that a MO variant of PSO named 

SMPSO is faster than other MOMs, especially for two-objective problems. One of the 

particularities of SMPSO over other MOMs is the use of leadership which seems be the main 

reason of its fast convergence. As says an Arabic proverb "don‘t ask the one who failed how did 

he fail?, but ask the one who succeed how did he succeed ?". The selection of a leader is trivial 

in single objective space, but the generalization of the concept of leader selection for MOO is 

complex [13]. When leaders are not appropriately selected, e.g. there is a high concentration of 

leaders in a specific region of the objective space, particles (candidate solutions) might be pulled 

to that region which results in a poor distribution (diversity). The particles will prematurely 

converge towards a specific region of objective space where these groups of leaders are located; 

so, the MOM will be either trapped in local optima or will require additional computational 

overhead to redistribute the particles along the PF. Therefore, one objective of this thesis is the 

development of new leader selection mechanisms in order to select leaders in a more 

representative manner. For example, the use the sum of weighted ratios (SWR) for leader 

selection is incorporated into SMPSO as an additional selection mechanism. Furthermore, the 
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leadership concept is also incorporated into a MO variant of DE called GDE3. Another avenue 

that is considered for the acceleration of MOMs is the use of opposition-based learning (OBL) 

with incorporation of leadership concept. OBL was successfully incorporated into DE for single 

objective problems [14]. The straight forward incorporation of OBL into GDE3 did not show the 

expected improvements; however, by utilizing a self-adaptive scheme of OBL with leadership, 

GDE3 was improved; the proposed method was called opposition-based third evolution step of 

generalized DE (OGDE3) [15].  

Another objective of this thesis is the demonstration of MOMs practicality by solving 

real-world problems. One of the engineering fields that involve complex optimization problems 

is design of renewable energy systems. Two of the proposed MOMs, namely, LSMPSO and 

MODEL have been successfully used to solve respectively an optimal farm design problem and 

optimal design of a hydrogen network across Ontario. Both problems were highly complex 

because of mixed type variables, multimodality, constraints, and other complexities which 

challenge the efficiency of MOMs in general and the proposed methods in particular. 

1.4 Thesis Contributions 

The contributions of this thesis are as follows.  

 Conducting a comprehensive comparative study of state-of-the-art MOMs to select the 

most appropriate one and further enhance. 

 Conducting a survey of optimization methods applied to RESs, with a particular focus on 

MOMs. 
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 Proposition of three MOMs which are enhancements of MO variants of PSO (SMPSO) 

and DE (GDE3) using leadership concepts. 

o LSMPSO: Application of leadership to SMPSO 

o OGDE3: Application leadership and OBL to GDE3 

o MODEL: Application of leadership to GDE3 

 Case studies of optimal design of renewable energy systems. 

o Optimal MO design of a photovoltaic farm in Toronto, Canada area 

o Optimal MO design of a hydrogen distribution infrastructure across Ontario with 

consideration of electricity distribution network constraints  

1.5 Outline of Thesis 

The thesis is organized in ten chapters and three appendices. The first two chapters describe 

fundamental concepts of MOMs to facilitate the understanding of this work. Chapters three and 

four present literature review of optimization methods applied to RESs, and a comparative study 

of MOMs. Chapters five, seven and eight are dedicated to the description of the proposed 

MOMs. Chapters six and nine are devoted to the proposed case studies. Finally, the last chapter 

is dedicated to conclusions and recommendations. So, the detailed organization of the remainder 

of the document is as follows.  

Chapter 2 introduces the fundamental concepts of multi-objective optimization and the 

advantages of MOMs over classical optimization methods. 
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Chapter 3 presents a comprehensive comparative study of seven state-of-the-art MOMs 

using 53 well-known bi-objective and three-objective benchmark problems characterized by 

variant complexities. The robustness of the compared MOMs was the main focus of this study; 

the results are presented and discussed in detail. This study serves to find the most promising 

MOMs to be further improved in this thesis. 

Chapter 4 is a survey of applications of optimization methods to renewable energy 

systems. The survey describes previous works, findings, future perspectives, and potential 

applications in this thesis.  

Chapter 5 describes a proposed leader selection mechanism based on Weighted Sum Ratio 

method applied to a MO variant of PSO.  

Chapter 6 presents the first multi-objective optimization case study.  It presents findings 

for optimal designs of a photovoltaic farm in Toronto, Canada area. LSMPSO is compared with 

four others MOMs. 

Chapter 7 describes the proposed OGDE3 MOM which uses a self-adaptive version of 

OBL that uses leadership for MO variant of DE. 

Chapter 8 explains the proposed MODEL algorithm. Leadership concept has been 

successfully incorporated into a MO variant of DE. The leadership concept serves to accelerate 

the convergence speed and improve the accuracy of MODEL.  

Chapter 9 presents a case study of optimal design of a hydrogen distribution network 

across Ontario considering current and future plans of electricity network in Ontario.  The 

problem is complex due to multimodality, and mixed-type variables. The proposed MODEL 
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algorithm was compared to four other MOMs and the results, which are promising, are discussed 

in detail. 

Chapter 10 concludes this thesis with regards to the main contributions. Future 

perspectives and recommendations are also discussed. 

Appendix A provides details about multi-objective optimization benchmark problems 

used in the comparative study of Chapter 3. 

Appendix B describes the meteorological data of Toronto used in the photovoltaic design 

case study presented in Chapter 6. 

Appendix C contains electricity import/export information between Ontario zones and 

other provinces/states used in Chapter 9. 
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Multi-Objective Optimization: A Background Review 
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This chapter introduces the reader to basic concepts related to MOO and MOMs. The chapter 

also covers definitions, notations, and concepts used in the remainder of this thesis. 

2.1 Global Multi-Objective Optimization 

A MOP consists of multiple functions (problems) to be minimized or maximized. However, for 

the sake of simplicity without loss of generality, in this thesis, it is assumed that all problems are 

minimization ones Chapters except if stated otherwise. Also, a MOP can be subject to equality 

and inequality constraints and variable boundaries (sometimes called box-constraints). A MOP is 

formulated as follows:  

 

          [                   ],        (1) 

s.t. 

                                            (2) 

                                              (3) 

 

where   is a vector of decision variables for the optimization problem,       is k
th

 objective 

function,       is i
th

 inequality constraint, and       is i
th

 equality constraint. The constraints (2) 

and (3) determine the feasible region     .   

2.2 Concept of Optimality in Multi-Objective Space 

Some fundamental definitions related to Pareto-optimality are provided as follows. 
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Definition 1: Pareto dominance 

Given two candidate solutions        ,   dominates   (denoted by      ) iff      

                   and   one                     <      .  

i.e., a solution   Pareto dominates solution  , if   is at least as good as   in every objective and 

better than   in at least one objective. 

 

Definition 2: Pareto optimality 

Given a solution     ,    is Pareto Optimal solution if   y    such that      . 

    is Pareto optimal if it is not dominated by any other solution. 

 

Definition 3: Pareto optimal set 

A Pareto optimal set is defined by    {     |                                 

i.e., a Pareto set    is a set of non-dominated solutions. 

 

Definition 4: Pareto optimal front 

A Pareto optimal front is defined by     {     [                   ] |        

i.e., non-dominated solutions make up a Pareto-optimal front when visualized in the objective 

space. 

 

As shown in Figure 3, for example, an energy system design might involve two 

objectives, such as cost minimization and pollution minimization. One solution might be 

inexpensive but very polluting such as the solution f, while another solution can be affordable but 

more polluting such as the solutions c, d, or e. A last solution can be very expensive but with 
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very low level of pollution such as the solution a. The optimal solutions which are non-

dominated (a,b,c,d,e,f) represent the Pareto optimal set. The combined plot of Pareto optimal 

solutions in the objective space forms the Pareto front. 
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Figure 3: Pareto front schematic 

 

In real-life, MOMs are executed for a certain number of function evaluations predefined 

by the user [9]. As illustrated in Figure 3, there are two main targets when using MOM to solve 

MOPs. First, the solutions should be as close as possible to Pareto front of the MOP. Second, the 

solutions should be uniformly distributed (diverse) to cover the entire Pareto front so that the 

user can have a variety of choices [2]. Ideally, the Pareto set should capture the complete 
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spectrum of the Pareto front. However, despite the advantages of population-based 

metaheuristics, they can be computationally expensive for solving complex problems due to the 

slow nature of their iterative process. State-of-the-art algorithms may require thousands to 

million function evaluations to find the PF. In brief, an efficient MOM should cover these three 

aspects: strong convergence, good sparsity (diversity), and fast convergence.  

Another important quality of a MOM is that it should be robust enough in order to solve 

different types of problems. There are several benchmark problems known by the MOM 

community for comparing algorithms. The landscape has a major impact on the complexity of 

the problem. Figures 4 and 5 present some types of single objective optimization problems.  For 

example, the De Jong function is convex and a relatively easy to solve problem even by a 

classical approach; while Griewangk function is a more complex problem because of its high 

multimodality feature. 

 

 
Figure 4: De Jong is unimodal, scalable, 

convex, and relatively easy function [16]. 

 

 
Figure 5: Griewangk‘s function has many, 

regularly distributed local minima and hard to 

locate global minimum [16]. 
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2.3 Particularities of Multi-Objective Metaheuristics Over Single Objective 

Optimization Metaheuristics 

There are several differences between single and multi-objective optimization [17]. For instance, 

in single objective optimization, the decision space consists of relationship between variables 

and objectives which can be visualized as a landscape for low dimensions (if D < 3) in a single 

graph as shown in Figures 4, 5 and 6. But, in MOO the decision space consists of relationship 

among the variables themselves as shown in Figure 7. For example, one of the most complex 

benchmark MOPs are due to complex relationships among variables [18]. The objective space 

refers to relationship among objectives. For example, it is possible to have multimodal PFs shape 

and it is possible to have a multimodal relationship between a variable and an objective. So, 

visualization is an important challenge in MOO and it gets more challenging as the scalability of 

the problem increases. For example the visualization of scalable problems is an open problem 

when the number of variables or objectives is more than three.  

 

 

Figure 6: Illustration of relationships between variables and objectives in single objective space. 
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Figure 7: Illustration of relationships between variables and objectives in MO space. 

 

2.4 Problems with Transforming Multi-Objective Optimization Problem into 

Single Objective Problem 

Before the development of MOO methods, the classical approach consists of transforming a 

MOP into a single objective problem which is solved using a single objective metaheuristic. The 

main problem is that none of these single objective methods can generate a set of solutions to 

cover the PF in a single run. Generally speaking, several runs are required to generate the 

solutions. In addition, for every run some configuration parameters need to be modified to find a 

different solution which requires prior knowledge about the optimized MOP, that is not easy to 

apply to black-box problems. And, even then, a good distribution of the solutions is not 

guaranteed [18]. The following subsections explain these problems in detail by utilizing two 

well-known classical optimization methods: Weighted Sum Method and ɛ-Constraint method. 

Decision space 

x1 

x2 

 

x3 
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 Weighted Sum Method (WSM) 2.4.1

The most common way to handle multi-objective optimization problems as single objective ones 

is the use of the WSM method. It consists in summing weighted and usually normalized 

objective fitness values as follows. 

 

        
                               (4) 

 where          and they are supplied by the user and        = 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Weighted Sum Method. This example shows the importance of giving the right weights 

to find Pareto-optimal solutions. 

 

As shown in Figure 8, the use of WSM requires providing the weights. In other words, 

the user needs to have prior knowledge about the MOP; which is not available for a black-box 

problem and multiple runs are needed. There are other difficulties such as non-uniformity found 

in Pareto optimal solutions. In addition, as shown in Figure 9, the WSMs are unable to find 
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Pareto optimal solutions located in non-convex region of the PF [18]. Nevertheless, a solution of 

a WSM approach is always Pareto optimal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Difficulties associated with the WSM method such as not finding solutions in non-

convex region of the PF 

 

 ɛ-Constraint method 2.4.2

Another popular method for handling a MOP is to transform all the objectives except one into 

constraints. So, the problem is formulated as follows: 

 

 Min       (5) 

 s.t.  

              (6) 
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As for the WSM method, the ɛ-Constraint method requires several runs because the MOP 

is converted into a single objective problem, ɛ vectors need to be known (apriori), and the 

generated solutions are usually not well-distributed.  

There are other types of problems with other variants of classical method which are 

discussed in [2]. 

Overall, classical methods have multiple deficiencies when solving MOP. They require 

multiple runs to generate optimal solutions, parameter tuning for every run, and usually do not 

generate well distributed solutions. 

 

2.5  Summary 

This chapter covered important concepts related to MOO such as non-dominance relations, 

Pareto optimality, and Pareto fronts. In addition, the challenges of multi-objective optimization 

were discussed and compared to single objective optimization. Furthermore, the problems of 

transforming a multi-objective problem into a single objective were described. 

 Now that these fundamental concepts are reviewed, it is important to perform a 

comparative study among MOMs for the selection of the most promising MOMs for further 

improvement of speed convergence and accuracy using leadership concept. 
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Chapter 3 

 

Multi-Objective Optimization: A Comparative Study 
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This chapter presents a comprehensive comparative study of state-of-the-art MOMs in order to 

select the most promising MOMs for further improvement of convergence speed and accuracy. 

This study compares the robustness of seven state-of-the-art multi-objective optimization 

metaheuristics, namely, NSGA-II, SPEA2, GDE3, SMPSO, AbYSS, MOCell, and MOEA/D. 

For simulation experiments, five well-known test suites are used, namely, ZDT, DTLZ, WFG, 

Van Veldhuizen‘s test problems, and LZ_09 problems for a total of 53 benchmark problems 

including 33 bi-objective and 20 three-objective functions. This comparative study is the most 

comprehensive study of MOMs where they are compared using variant complexities such as 

complex Pareto front shapes, complex variable relationships shapes, and other complexities. In 

addition, an important number of three-objective functions are used whereas most previous 

studies focused on bi-objective problems.  The benchmarking settings are similar to a practical 

environment, i.e. the number of function evaluations are fixed to low limits for each test case in 

order to find the most robust and the fastest MOM. The IGD indicator is used for ranking the 

accuracy of the compared MO methods, and as a complement, the hypervolume ratio indicator 

and boxplots were also utilized for a comprehensive comparison. In total, 371 experiments have 

been conducted with 100 independent runs per algorithm per problem for a total of 37,100 runs. 

The results are presented and discussed in detail. 

3.1 Introduction 

The aim of this chapter is to perform an analysis of state-of-the-art MOMs in term of solving 

various types of MOPs. Putting aside the No Free Lunch Theorem [19] which says that "any two 

algorithms are similar when their performance is averaged across all possible problems" [20], a 

robust MOM should be able to generate accurate Pareto front approximations of variant types of 

problems in a timely manner.  Two and three objective problems are the most common MO 
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problems [21]. Therefore, this chapter studies seven state-of-the-art MOMs in solving 53 well-

known two and three objective benchmark problems. Other works which focused on more than 

three objective problems can be found in [22]. In this chapter, the stopping criteria is set to 

10,000 function evaluations for two-objective problems with a population size of 100, and 

because three-objective problems are more complex, the number of function evaluations is 

increased to 30,000 with a larger population size of 200. The Pareto fronts are known beforehand 

which allows the utilization of variant comparison measures. The inverse generational distance 

(IGD) [23] measure is used for comparing the generated solutions by the seven state-of-the-art 

MOMs. As complementary performance assessment measures, the hypervolume ratio (HVR) 

[24] based on the hypervolume measure [25] and boxplots are employed [26]. 

In this comparative study, the selected seven MOMs consisted  of genetic algorithms 

(NSGA-II [27] and SPEA2 [28]), a differential evolution algorithm (GDE3 [29]), a scatter search 

method (AbYSS [30]), a cellular genetic algorithm (MOCell [31]), a particle swarm algorithm 

(SMPSO) [32], and an evolutionary algorithm based on decomposition (MOEA/D) [6]. 

The benchmark problems were composed of 33 bi-objective problems and 20 three-

objective problems. These problems are taken from the Zitzler-Deb-Thiele (ZDT) problem 

family [33], the Deb-Thiele-Laumanns-Zitzler (DTLZ) problem family [34], the Walking-Fish-

Group (WFG) problem family [35], the Li-Zhang problem family (LZ_09) [7], and the Van 

Vedlhuizen test suite [36]. These problems have variant complexities which are described in 

Section 3.3. 

Overall, 53 multi-objective problems are utilized for the robustness and convergence 

comparison of seven state-of-the-art MOMs in solving complex MOPs using a low number of 

function evaluations. Every algorithm was executed independently 100 times for each problem. 
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3.2 Previous Comparative Studies: A Literature Review 

There have been several comparative studies on MOMs. Due to the rapid progress in MOMs 

developments, some of them are already outdated such as [25]. Some others focused on specific 

types of problems, for example [37] focused on shortest-path problems. Some other comparative 

studies were too specific such as [38] which focused on a selection of an investment portfolio. 

This section surveys only the recent (last decade: 2003-2013) unconstrained continuous MO 

comparative studies. 

Nebro et al. [3] studied the convergence speed of NSGA-II, SPEA2, PAES, OMOPSO 

[13], AbYSS, and MOCell. For their comparison, they used a benchmark of three well-known 

problem families: Zitzler-Deb-Thiele (ZDT) test suite, the Deb-Thiele-Laumanns-Zitzler 

(DTLZ) problem family [34], and the Walking-Fish-Group (WFG) test problems. The population 

was set to 100 and a stopping condition was based on the hypervolume rate (HVR) being equal 

to 98%. However, in this study only bi-objective problems have been considered. The results 

showed the last three metaheuristics (MOCell, OMOPSO, and AbYSS) achieved in average the 

fastest convergence speed. For ranking purposes, two aspects were considered: convergence 

speed and hit rate. The convergence speed refers to the number of evaluations required to obtain 

an accurate Pareto front. The hit rate was calculated at over 100 independent runs; it calculates 

the percentage of successful executions. An execution is considered successful if a metaheuristic 

reaches the HVR=98% before reaching 10
6
 function evaluations. 

In a more recent comparative study conducted by Durillo et al. [4], seven multi-objective 

metaheuristics were compared: two genetic algorithms (NSGA-II and SPEA2), an Evolution 

Strategy (PAES), a Scatter Search method (AbYSS), a cellular Genetic Algorithm (MOCell), a 

Differential Evolution algorithm (GDE3), and a particle swarm method (SMPSO). The tests were 
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conducted on ZDT and DTLZ bi-objective benchmarks for a total of 12 problems. The 

population size for all methods was set to 100. The convergence speed was the focus of this 

study. Three different types of stopping conditions were utilized: HVR equal to 98% and 99% of 

the Pareto front, the Epsilon measure equal to 0.1, 0.05 and 0.01, and a certain number of Pareto 

front approximation should belong to the Pareto front (1, 5, 10, 20, 50 and100). The numbers of 

function evaluations were counted for each test case. The SMPSO version of the MO PSO 

appeared to be the fastest overall. In contrast, NSGA-II and SPEA2 were found to provide the 

lowest performance among the seven compared methods for the studied bi-objective problems. 

Durillo et al. [9] did a comparative study with a focus on the scalability of the compared 

MO methods. Five unconstrained ZDT problems were used by varying the number of variables 

from (8, 16, …, 2048 variables). The stopping condition was set to HVR=98%; otherwise, the 

MO method is stopped after a maximum of 10
6 

function evaluations. The compared methods 

were NSGA-II, SPEA2, PAES, PESA-II, OMOPSO, GDE3, AbYSS, and MOCell. OMOPSO 

and GDE3 showed the highest accuracy.  

In CEC 2009 competition [39], 13 unconstrained and 7 constrained MO problems were 

used to compare 13 MOMs. The variables of these problems had complex relationships (high 

epistasis); some of them were taken from LZ_09. GDE3 and MOEA/D algorithms used in this 

chapter were also among the compared methods in the competitions. The maximum number of 

function evaluations was set to 300,000. The population size was set to 100 for bi-objective 

problems, 150 for three-objective problems, and 500 for five-objective problems. The IGD 

measure was used for results comparison. The results showed that MOEA/D followed by GDE3 

were the most accurate methods among the compared ones.      
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The conducted comparative study in this thesis is the most comprehensive one in the MO 

field. It uses the largest number of MOPs (53 problems) with variant complexities. For example, 

the studies [3], [9] focused only on bi-objective problems. In addition, they did not have 

problems with complex variable relationship landscape due to high epistasis as in [39]. On the 

other hand, the CEC competition [39] focused only on MOP with high epistasis, whereas other 

complexities such as complex shapes of Pareto fronts were not included. In addition, only seven 

unconstrained benchmark problems were used to compare MO methods in 2-objective, 3-

objective, and 5-objective spaces. This study incorporates large variant complexities in a single 

study. In addition, the most recent state-of-the-art methods are used such as MOEA/D and 

SMPSO. Finally, this study focuses on both the robustness and convergence speed of MO 

methods whereas, the previous studies focused only on the acceleration speed of MOMs. Based 

on [3] and [9], it has been shown that a good approximation of the real Pareto front is equal to 

HVR=98% and on average 10
4
 function evaluations are sufficient to find relatively simple Pareto 

front with such a precision for two-objective problems. That is why the number of function 

evaluations has been limited to 10
4
 which is more stringent. Let‘s assume that a function call 

requires one minute which is reasonable for a real world problem, so 10
4
 function evaluations 

will require almost a week of computation time. For three objective problems which are more 

complex, the stopping condition has been increased to 3*10
4 

function evaluations. 

3.3 Problems Description 

In order to analyze the robustness of the selected state-of-the-art MOMs in this section, 53 well-

known benchmark unconstrained continuous problems have been employed. These problems are 

composed of two and three objectives problems. Problems with a larger number of objectives 

(i.e., more than 3), are called many-objective problems and require significant modifications to 
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solve such problems. In fact, most existing MOMs face difficulties in solving many-objective 

problems [40]. It is known that the use of the concept of Pareto dominance for comparing 

candidate solutions loses its effectiveness when dealing with many-objective problems, because 

in such cases, the selection pressure gets quickly diluted and solutions are then selected at 

random.  In order to deal with many-objective optimization problems, different techniques are 

required, such as, dimensionality reduction or relaxed forms of Pareto dominance. Some density 

estimators such as the crowding operator of the NSGA-II are unable to maintain a diverse set of 

solutions in the objective space when dealing with many-objective problems. Among the 

selected problems, 33 problems are bi-objective problems and 20 are three objective problems. 

Several families of problems are used. The bi-objective family of problems are composed of 

Zitzler-Deb-Thiele (ZDT) problem family [33], the Deb-Thiele-Laumanns-Zitzler (DTLZ) 

problem family [34], the Walking-Fish-Group (WFG) problem family [35], Li-Zhang problem 

family (LZ09) [7], and some problems are taken from Van Vedlhuizen test suite [36], namely, 

Poloni [41], Kursawe [42],  Schaffer [43], and Fonseca [44]. Three objective problems are 

composed of three Viennet [45] problems taken from the Van Vedlhuizen test suite, DTLZ, and 

WFG family problems, and the LZ09_06 problem is taken from LZ_09 test suite. 

 Variant problem complexities 3.3.1

A detailed explanation of MO problems can be found in [35]. First, as shown in Figure 

10, the geometry of a Pareto front of a MO problem can be convex, concave, mixed (convex, 

concave), degenerate (Pareto of lower number of dimensions than the number of objectives), 

connected, and discontinuous (disconnected). 
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Figure 10: Pareto front geometries. The Pareto front is composed of mixed components, namely, 

convex, concave, connected, disconnected, and degenerate components. Degenerate is when the 

PF is of a dimension D – 1, e.g. for two objectives the solution is a single point. 

 

Furthermore, there are other complexities related to functions and parameters [35]. A 

problem having parameters which are extremal or medial are easier to solve. Extremal means the 

parameter is located at the extreme of the definition domain; whereas medial means the 

parameter is located in the middle of the definition domain. Also, similar parameters domain or 

similar trade-off ranges are easier to solve. The objective functions can be separable and non-

separable; non-separable functions are more complex to solve. Bias consists of having a higher 

concentration of solutions in a certain region of the objective space which makes the problem 

more complex. Also, a one-to-many or many-to-one mappings, flat regions, and isolated optima 

make a MO problem more difficult to solve. A multimodal objective function makes a MO 

problem more complex.  

All the described complexities are part of the selected problems as detailed in the 

following subsections. 

Feasible objective space 

f1 

f2 

Convex connected 

Convex connected 

Degenerate 

Convex disconnected 
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 The ZDT problems 3.3.2

As shown in Table 35 (Appendix A), the ZDT [33] test suite is composed of five problems. The 

ZDT5 problem has been omitted because it is a binary encoded problem. This test suite is one of 

the most popular ones. However, the ZDT test suite offers an average complexity because none 

of the ZDT problems is deceptive, non-separable, or degenerate. In addition, all the parameters 

are either distance or position parameters, and most of them are extremal. Furthermore, the 

parameters have all the same definition domain with the exception of one variable in the problem 

ZDT4.  

Figure 11 is an example of deceptive single objective problems with a single variable. It 

can be seen that most neighboring areas of the global optimum are deceiving optimization 

algorithms because they provide wrong information (f increases) as the algorithms get closer to 

the global optima. Deceptive problems are one of the most difficult features of an optimization 

problem which require strong exploration characteristics of an optimizer.  

 

 

Figure 11: Example of a deceptive function for single objective minimization problem 

 

x 

f(x) 
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 The DTLZ problems 3.3.3

The DTLZ test suite was developed by Deb et al. [34]; it is the second most commonly used test 

sets in the scientific literature. DTLZ is more complex than ZDT because all the objective 

functions are affected by both distance and distribution parameters; whereas, in ZDT only the 

second objective function is affected by both parameters, and the first one is affected only by a 

distance parameter. As shown in Table 36 (Appendix B), DTLZ is composed of nine problems 

having a scalable number of objectives. Therefore, in this study, the DTLZ problems have been 

used for both two and three objectives.  Only seven problems have been used in this study; the 

DTLZ8 and DTLZ9 problems are omitted because they have side constraints.  

DTLZ1 is linear and DTLZ2 and DTLZ3 are concave. DTLZ4, DTLZ5 and DTLZ6 are 

concave and degenerate when the number of objectives is greater than two. DTLZ7 is mixed 

convex/concave disconnected. Some limitations of this test suite are that none of the DTLZ 

problems have a flat fitness landscape region and none of them is deceptive or non-separable.  

 The Van Veldhuizen’s test suite 3.3.4

The Van Vedlhuizen test suite [36] is a compilation of different benchmark multi-objective 

problems.  

Van Vedlhuizen test suite is composed of seven problems, namely, Schaffer [43], 

Fonseca [44], Poloni [41], Kursawe [42], one problem taken from the Deb‘s test suite [46] , and 

two problems taken from Viennet [45]. In this study, the bi-objective problem taken from the 

Deb‘s test suite has been replaced by the three-objective problem Viennet4 from Ref. [45]. The 

geometries of the problems are described in Table 37 (Appendix A). 
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Most Van Vedlhuizen problems are composed of mixed parameters; i.e. very few 

parameters are either distance or position parameters, the number of parameters is small (1, 3), 

none of the problems is deceptive, has a flat region, or a many-to-one problem. However, some 

problems are of special interest such as Poloni and Viennet3 because both are non-separable and 

multimodal which makes them more representative of real-world problems [35]. It is worth 

mentioning the geometry of Viennet3 is complex and composed of mixed convex/concave 

curves. 

 The WFG problems 3.3.5

WFG [33] is composed of nine problems and it is overall more complex than the previous 

family of problems (ZDT and DTLZ). WFG incorporates non-separable problems that have 

multimodal objective functions. As shown in Table 38 (Appendix A), all variant geometrical 

shapes of a Pareto front are represented in WFG problems, namely, linear, convex, concave, 

mixed, and disconnected shapes. Furthermore, all the parameters are non-medial and non-

extremal which makes the WFG problems more difficult to solve. All the other parameter 

transformations such as linearity, deceptivety, flat region and others are also part of WFG 

problem and are presented in Table 39. 

.  Overall, WFG is a more complex family of problems due to the integration of variant 

complexities. Also, they are scalable parameter-wise and objective-wise. The description of the 

nine WFG problems can be found in Table 38 , 40, and 41 (Appendix A). 
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 The LZ_09 problems 3.3.6

The LZ_09 [7] is another complex family of problems. It emphases mainly the Pareto set shape. 

The Pareto sets refer to the parameters of a solution. For example, ZDT and DTLZ are relatively 

simple problems in this sense. For ZDT, all the parameters of a solution, except for the first, are 

in origin (0.0). For DTLZ, all the parameters of a solution, except for the two first, are equal: 

           . Such simple relationships are not usually really representative of real-world 

problems. That is why WFG have been designed with a higher complexity, especially the 

parameters features. However, the Pareto set shapes are not the emphasis of WFG; therefore, the 

shapes are difficult to describe due to the dynamic nature of the WFG problems which can be 

updated using variant shape functions (see Table 40 in Appendix A). The LZ_09 problems have 

complex Pareto set shapes (high epistasis) which makes it amongst the most difficult family of 

problems to be solved.  As shown in Figure 12 the Pareto set shapes are complex, however, the 

geometry of the Pareto fronts are simple as shown Table 41. Furthermore, not much attention has 

been given to other parameter complexities such as deceptiveness and flat regions.  

 

Figure 12: Projections of Pareto sets of F1–F9 onto the          space [7]. 
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3.4 Compared State-Of-The-Art Multi-Objective Metaheuristics 

This section describes the seven selected state-of-the-art MOMs for the current comparative 

study. The jMetal [47] multi-objective optimization framework has been used for conducting all 

the experiments. 

The Non-dominated Sorting Genetic Algorithm (NSGA-II) was proposed by Deb et al. 

[27] in 2002. This genetic algorithm consists in generating new populations from the original 

population by the use of classical genetic operators such as selection, crossover, and mutation. 

The individuals of the two populations are sorted according to their ranking. Then, the best 

solutions are recombined for the generation of the next population. In the case of having 

solutions with the same rank, a density estimation (crowding distance) is calculated with regards 

to the surrounding solutions for the selection of the most promising solutions.  

The Strength Pareto Evolutionary Algorithm (SPEA2) was proposed by Zitzler et al. [28] 

in 2002. In this MOEA, every candidate solution has a fitness value which equals to the sum of 

its strength raw fitness (solutions that dominates it) plus density estimation. SPEA2 uses the 

selection, crossover, and mutation operators for generating an archive of individuals. The non-

dominated solutions of both the original population and the archive are copied into a new 

population. In case the number of non-dominated solutions is larger to the population size, a 

truncation operator is used by calculating the distances among solutions. The most similar 

solutions are removed. 

The Speed Constrained Particle Swarm Optimization (SMPSO) algorithm was proposed 

by Nebro et al. in 2009. It is a particle swarm optimization algorithm for solving MO problems. 

This approach is based on OMOPSO [13], whose main features  are the use of the crowding 

distance concept adopted by NSGA-II for filtering leader solutions that are stored in an archive. 
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The SMPSO uses mutation operators for swarm speed convergence acceleration, and it uses the 

 -Dominace when generating new candidate solutions. Its main difference with respect to 

OMOPSO is that SMPSO incorporates a mechanism for velocity limitation and a polynomial 

mutation operator. 

The third version of the Generalized Differential Evolution algorithm (GDE3) was 

proposed by Kukkonen and Lampinen in [29]. GDE3 is an improved version of the GDE 

algorithm [46], which was originally proposed in 2005. It starts with a random solution 

population. In every iteration, a new offspring population is generated using the differential 

evolution operator. Both populations are combined; then, the size of the population is reduced 

using non-dominated sorting and a pruning method for diversity preservation as in NSGA-II.  

However, the GDE3 pruning method modifies the NSGA-II crowding distance in order to solve 

some GDE3 drawbacks when dealing with problems with more than two objectives. 

The cellular genetic algorithm (MOCell) was introduced by Nebro et al. [31] in 2006. 

Being a genetic algorithm, it uses selection, crossover, and mutation operators. Similar to many 

multi-objective metaheuristics, it includes an external archive for storing non-dominated 

solutions found so far. This archive is bounded by using NSGA-II‘s crowding distance in order 

to maintain diversity in the Pareto front. The selection is achieved by selecting a solution from 

the neighborhood of the current solution (called cell in cGAs) and another solution selected 

randomly from the archive. Then, the genetic crossover and mutation operators are applied for 

generating a new offspring which is compared to the current one. If the offspring is better, it 

replaces the current one. Otherwise, if both solutions are non-dominated, then the worst solution 

in the neighborhood is replaced by the current one and inserted into the archive. 
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AbYSS was introduced by Nebro et al. [30] in 2008; it is a multi-objective version of 

scatter search. It has an external archive similar to MoCell. AbYSS uses evolutionary operators 

such as polynomial mutation, binary crossover and solution combination.  

The Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D) [6] 

was proposed in 2007 and it consists of decomposing a MO problem into scalar sub-problems 

which are optimized in parallel. Each sub-problem is transformed into a scalar aggregation 

problem and is optimized using only neighborhood information. These neighborhood relations 

are determined by the calculation of distances among coefficient vectors. 

3.5 Parameter Settings 

The section covers the parameter settings for simulation experiments which include the 

algorithms parameter settings, the stopping conditions, and the performance measures for 

comparison of the MOMs. 

 Stopping criteria 3.5.1

In this chapter, the performances of the selected seven state-of-the-art MOMs are studied using 

53 well-known unconstrained benchmark problems. Every multi-objective optimizer was run 

independently 100 times to minimize the effect of stochastic behavior of the algorithms on the 

reported results. For every run, the maximum function evaluations are, respectively, 10,000 and 

30,000 for two-objective and three-objective problems, respectively. In order to assess the 

quality of a Pareto front generated by a MO metaheuristic, the average of the Inverse 

Generational Distance (IGD) [23] is utilized. The IGD indicator can measure both the spread and 

convergence of an approximation of a Pareto front. It is commonly used as in the CEC 

competitions [39]. Other measures are also used as a complement for our analysis such as 
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Hypervolume (HV) indicator [25], hypervolume ratio (HVR) [24] and boxplots [26]. The 

Wilcoxon statistical procedure was based on [49] to present results at a 0.05 significance level. 

 

Table 1: Control parameter settings (L= Number decision variables) 

 

NSGA-II 

Population size 

Selection  of parents 

Recombination 

Mutation 

100 / 200 Individuals 

Binary tournament + binary tournament 

Simulated binary, pc   = 0.9 

Polynomial, pm   = 1.0/L 

SPEA2 

Population size 

Selection  of parents 

Recombination 

Mutation 

100 / 200 Individuals 

Binary tournament + binary tournament 

Simulated binary, pc   = 0.9 

Polynomial, pm   = 1.0/L 

MOCell 

Population size 

 

Neighborhood 

Selection  of parents 

Recombination 

Mutation 

Archive size 

100 individuals (10 × 10) / 

196 individuals (14 × 14) / 

1-hop neighbors (8 surrounding 

solutions) 

Binary tournament + binary tournament 

Simulated binary, pc   = 0.9 

Polynomial, pm   = 1.0/L 

100 individuals 

SMPSO 

Particles/Leaders 

Mutation 

100 / 200 particles 

Polynomial 

GDE3 

Population size 

Recombination 

100 / 200 

Differential evolution,  

CR = 0.1, F  = 0.5 

MOEA/D 

Population size 

Recombination 

Mutation 

100 / 500 

Differential evolution,  

Polynomial 

AbYSS 

Population size 

Reference set size 

Recombination 

Mutation 

Archive size 

100 individuals 

10 + 10 

Simulated binary, pc   = 1.0 

Polynomial, pm   = 1.0/L 

100 individuals 
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 Parameters settings 3.5.2

Table 1 presents the parameters used for this comparative study. These parameters settings have 

been taken from the Refs. [9], [3] and [6]. NSGA-II, SPEA2, MOCell, AbYSS and GDE3 have a 

population size of 100 for bi-objective problems and 200 for three-objective problems (MOCell 

was set with a population size of 196 for the 3 objective problems). In the same manner, SMPSO 

has a configuration of 100 particles for the bi-objective, and 200 particles for three-objective 

problems, respectively. MOEA/D was used with a population size of 100 for bi-objective 

problems and 500 for three-objective problems. However, only the 200 most representative 

solutions are selected for each Pareto front approximation. The metaheuristics having an archive 

(SMPSO, GDE3, OGDE3, and MOCell) have also a maximum size of 100 and 200, respectively.  

 Performance measures 3.5.3

Variant measures can be utilized for evaluating the performance of MOMs. For example, some 

researchers have compared MOMs by examining how long (in terms of number of function 

evaluations) it takes to a MOM to produce an accurate approximation of the Pareto front [3]. 

Some other researchers examined the accuracy of metaheuristics with scalable parameter 

problems (high variables dimension) [9]. However, a desirable set of solutions, in the MOO 

context, should have high convergence, good diversity, and should be found in a timely manner. 

High convergence means the solutions should be as close as possible to the true Pareto front. 

Diversity means the solution should be distributed in a uniform pattern such that they completely 

cover the Pareto Front.  

A very common quality indicator that takes into consideration both the convergence of a 

solution set and the distribution of solutions along the Pareto front is the inverse generational 
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distance (IGD) indicator. IGD consists in measuring the average Euclidean distance between the 

true Pareto front and the approximation obtained by a multi-objective algorithm. Let‘s assume 

that P is a set of points representing the true Pareto front and S is a set of points representing the 

approximation obtained by a MOM. The average Euclidean distance in the objective space is 

calculated as follows: 

 

 
         

∑          

| |
 (7) 

 

where        is the minimum Euclidean distance between a point   belonging the true Pareto 

front and a point   belonging to the approximation obtained. | | is the number of selected points 

used to represent the Pareto front. When the value of the IGD is lower, a better approximation is 

achieved. 

HV, HVR, and boxplots are used as complementary information. HV is obtained by 

computing the volume of the non-dominated set of solutions Q for MO minimization problems. 

For every solution    Q, a hypercube vi is generated with a reference point W and the solution i 

as its diagonal corner. The reference point W can be generated by building a vector of worst 

possible objective function values. Then, HV is computed as a union of all the found hypercube 

as follows: 

 

          ( ⋃  

| |

   

 ) (8) 

 

The lower are the HV values, the better are the corresponding solutions because they are 

more precise and diverse for MO minimization problems. 
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HVR is the ratio of the approximation‘s HV (HVS) with regards to the true Pareto front‘s 

HV (HVPF) as follows. 

 

 
    

   

    
 (9) 

An ideal HVR is equal to 1, so the higher the value the better is the approximation 

obtained. 

Finally, the boxplots [26] are used to show graphically the found solutions using five 

number summaries: the minimum, lower quartile (Q1), median (Q2), upper quartile (Q3), and the 

maximum. Also, boxplots indicate solutions as outliers, i.e., solutions that are numerically distant 

from the rest of the data. 

3.6 Results  

An efficient multi-objective optimization metaheuristic method should generate accurate and 

diverse solutions in a timely manner. The aim of this section is to see which method is the most 

robust to solve benchmark problems in a timely manner.  

To facilitate the analysis of the results, they have been divided into three groups: the bi-

objective problems, the three-objective problems, and the LZ_09 problems. The LZ_09 problems 

have been grouped in Table 7 because their particularity from the rest of problems; the LZ_09 

problems emphasize on complex relationships among the variables. All the results are discussed 

in the following subsections. In order to compare the MO algorithms, a ranking system is 

proposed. Two points are given for the most accurate MO algorithm per problem and one point 

is given to the second most accurate algorithm. Then, the MO algorithms are ranked based on 
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their points. It is important to mention that the results are presented with a 0.05 confidence, and 

the boxplots can be found in Figures 57-63 of the Annex A.  

 Bi-objective problems 3.6.1

All the bi-objective problems results (IGD measures) have been grouped in  

 

Table 3. Complementary results can be found in Tables 42-43 (HV and HVR), Figures 59-60 

(IGD boxplots) of the Annex A.  The selected bi-objective problems have variant complexities as 

detailed before. The stopping condition is set to 10,000 function evaluations with a population 

size of 100. First, Van Vedlhuizen‘s bi-objective problems are Schaffer, Fonseca, Poloni, and 

Kursawe. These problems have a small number (i.e., 1 and 3) of mixed decision variables: 

distance and position. MOEA/D generated the most accurate solutions for Poloni‘s problem 

which is among the most difficult from this set because it is both non-separable and multimodal. 

Also, MOEA/D is the fastest for Fonseca‘s problem followed by SMPSO. SMPSO generated the 

most accurate solutions for the convex Schaffer problem followed closely by GDE3 and AbYSS. 

Finally, Kursawe‘s problem is a mixed, disconnected and degenerate problem that is best solved 

by MOCell followed by GDE3. 

In regards to the ZDT problems which are simpler than most of the other problems, 

GDE3 was the most accurate for ZDT1, ZDT3, ZDT6 and the second most accurate for ZDT2. 

MOCell and SMPSO were the most accurate for ZDT2 and ZDT4. NSGA-II, SMPSO, MOCell 

were the second best for ZDT3, ZDT6, ZDT4. There is no apparent pattern to explain the 

performance of the algorithms; for example, GDE3 is performing very well with four ZDT 

problems having completely different characteristics.  
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In regards to the DTLZ test suite, contrary to the ZDT problems, these problems have 

variables of mixed distance and position type which make the problems more difficult to solve. 

AbYSS has been the most accurate for DTLZ2, DTLZ4, DTLZ5, followed by SMPSO which has 

been the most accurate for DTLZ3, DTLZ7, followed by GDE3 which has been the most 

accurate for DTLZ1, DTLZ6. The second most accurate algorithm was MOCell with DTLZ2, 

DTLZ3, DTLZ5 followed by GDE3 which has been the second most accurate for DTLZ7, 

DTLZ4, followed by MOEA/D for DTLZ6. 

The WFG test suite is composed of nine bi-objective problems. The WFG problems are 

composed of both non-separable and multimodal objective functions. In addition, all the 

parameters are non-medial and non-extremal, so, they are more difficult to solve. GDE3 

achieved the highest accuracy by being the most accurate for 11 problems and the second most 

accurate for 6 problems. GDE3 offered a lower performance for WFG3 and WFG8 which are 

respectively linear degenerate and concave. Then, AbYSS was the best for WFG4 and WFG7, 

and it was second best for WFG3. Finally, SMPSO and MOEA/D presented the highest accuracy 

for WFG3 and WFG8. 

 

Table 2: Scores for bi-objective problems (1 point for the 2
nd

 position and 3 points for the 1
st 

position) 

 NSGA-II SPEA2 GDE3 SMPSO AbYSS MOCell MOEA/D 

First 0 0 0 0 11 22 5 10 5 10 2 4 3 6 

Second 3 3 2 6 6 6 6 6 1 1 5 5 2 2 

Overall 3 6 28 16 11 9 8 
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Based on the 25 bi-objective problems used in this section, GDE3 was the most accurate 

algorithm. SMPSO was the second most accurate algorithm. After them, close to each other, 

come AbYSS, MOCell and MOEA/D. The worst performances were achieved by SPEA2 and 

NSGA-II.  

By looking at the standard deviation and boxplots, it can be seen that GDE3‘s 

performance is relatively consistent. Also, SMPSO is consistent except for two problems namely 

WFG7 and DTLZ6 where there is a medium dispersion. 

In regards to HVR, a ratio equal to 98% of the real Pareto front is considered high 

accuracy [9]. It can be seen that in most cases, GDE3 achieved an HVR close to 98% except for 

Poloni, DTLZ3, ZDT3, DTLZ4 and WFG5. Among these bi-objective problems, Poloni and 

DTLZ3 are the most complex problems because they are not solved by most MOMs. In regards 

to ZDT4 and DTLZ3, although GDE3 had a low score, SMPSO achieved a high and relatively 

good accuracy. WFG8 is also relatively complex because the MOMs that achieved the highest 

average HVR reached a value of only 71%. 
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Table 3:  IGD, mean and standard deviation for bi-objective problems taken from ZDT, DTLZ, WFG, and Van Veldhuizen test suites 

after 10
4
 function evaluations. Dark grey is the algorithm having the best IGD results followed by a lighter grey indicating the second 

best IGD. 
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 Three-objective problems 3.6.2

All three-objective problems except one (LZ_06) have been grouped in Table 4 in which are 

shown the values corresponding to IGD performance. Complementary measures such as IGD 

boxplots can be found in Figures 61-63, HVR in Table 44, and HV in Table 45. There are 19 

problems of different complexities composed of DTLZ, WFG, and Vedlhuizen test suites. 

However, only the three-objective problems are taken from the Vedlhuizen test suite namely the 

Viennet2, Viennet3 and Viennet4 problems. The stopping conditions are set to 30,000 function 

evaluations with a population size of 200.  

As shown in Table 4, there is no best MO method; different DTLZ problems are solved 

by different algorithms. The highest accuracy in terms of the IGD measure is achieved by GDE3 

(DTLZ1, DTLZ3, DTLZ7), AbYSS (DTLZ4, DTLZ5), SMPSO (DTLZ6), and SPEA2 

(DTLZ2). Overall, the two most accurate algorithms to solve the DTLZ three-objective 

benchmark problems are respectively GDE3 and SMPSO. There is no apparent pattern of 

problems that these two MO algorithms can solve.  

For the WFG and Viennet problems, SPEA2 clearly achieved the highest accuracy by 

having the best IGD for nine out of 12 problems. GDE3 achieved the second best performance. 

The most difficult problems were DTLZ6 and DTLZ3; however, DTLZ6 has been well solved 

by GDE3 and SMPSO. Then, the second most difficult problems were WFG8, WFG1, WFG5, 

DTLZ2, and DTLZ3. Table 5 confirms these rankings. By looking at the boxplots, it can be seen 

that SPEA2 is always consistent.  It performs very well although it is not among the top two for 

the entire set of three-objective problems. It seems that the ranking scheme of SPEA2 is more 

efficient for three-objective problems than that of the NSGA-II which is used by most multi-

objective evolutionary algorithms. 
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Table 4: IGD mreasure, mean and standard deviation for three-objective problems taken from DTLZ, WFG, and Van Veldhuizen test 

suites after 10
4
 function evaluations. Dark grey is the algorithm having the best IGD results followed by a lighter grey indicating the 

second best IGD score. 

 



 

 49 

The most difficult problems were DTLZ6 and DTLZ3; however, DTLZ6 has been well 

solved by GDE3 and SMPSO. Then, the second most difficult problems were WFG8, WFG1, 

WFG5, DTLZ2, and DTLZ3. 

Table 5: Scores for three-objective problems (1 point for the 2
nd

 position and 3 points for the 1
st 

position) 

 NSGA-II SPEA2 GDE3 SMPSO AbYSS MOCell MOEA/D 

First 0 0 10 20 4 8 1 2 3 6 0 0 2 4 

Second 2 2 2 2 7 7 3 3 1 1 2 2 1 1 

Overall 2 22 15 5 7 2 5 

 

 LZ_09 problems 3.6.3

The LZ_09 test suite consists of nine problems composed mainly of two-objective functions 

except for F6 which is a three-objective problem. The main challenges of the LZ_09 problems 

reside in the complex relationships among the decision variables (high epistasis). They have 

different complex shapes as shown before. The results for the LZ_09 problems are compiled in 

Tables 6 and 7. Complementary results can be found in Annex A: HVR in Table 46, HV in Table 

47, and IGD boxplots in Figure 64. The MO algorithms that achieved the highest accuracy are 

NSGA-II and GDE3. Although SPEA2 is not ranked among top two for the LZ_09 problems, by 

looking at the boxplots, its performance is still close to the top two.  

Based on the HVR results, LZ_06 to LZ_09 are the most difficult problems whereas the 

remaining LZ_09 problems have average complexity. Overall, the LZ_09 test suite is among the 

most difficult problems because it has the highest number (four) of complex problems. 
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Table 6: Scores for LZ_09 objective problems (1 point for the 2
nd

 position and 3 points for the 1
st 

position) 

 NSGA-II SPEA2 GDE3 SMPSO AbYSS MOCell MOEA/D 

First 4 8 0 0 4 8 0 0 0 0 0 0 1 2 

Second 3 3 3 3 2 2 0 0 0 0 0 0 0 0 

Overall 11 3 10 0 0 0 2 

 

 

 

Table 7: IGD, mean and standard deviation LZ_09 Problems. 
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 Overall results 3.6.4

All the results are compiled in this subsection. All the bi-objective problems are examined first, 

followed by all the three-objective problems, followed by the entire 53 problems used in this 

comparative study. 

Table 8 shows that GDE3 is clearly the most accurate method for bi-objective problems followed 

by the SMPSO and NSGA-II methods. It is of interest to mention that SMPSO was capable of 

solving accurately very complex problems such as ZDT4 and DTLZ3 that were unsolved with 

good accuracy by any other method. NSGA-II had good performance with bi-objective problems 

with complex relationships among the variables such as LZ_09. 

As shown in Table 9, the most accurate MOMs for solving three-objective problems was 

the SPEA2 method followed by GDE3. All the remaining MO methods had a lower accuracy. 

Consequently, it can be said that SPEA2 is the most accurate in solving three-objective 

problems, followed by GDE3. 

Overall, as shown in Table 10, GDE3 is the most robust method for solving MO 

problems in a timely manner. It is very accurate for two-objective problems and offers good 

accuracy for three-objective problems with some weaknesses. In the second position, SPEA2 

offers high accuracy with three-objective problems; however, its accuracy drops when it comes 

to bi-objective problems. SMPSO is in the third position. SMPSO offers good accuracy for bi-

objective problems; however, its accuracy drops when it comes to solving three objective 

problems. It is important to mention that SMPSO was the only method capable of solving 

accurately the ZDT4 and DTLZ3 problems. The other methods ranked based on accuracy are 

AbYSS, NSGA-II, MOEA/D and MOCell. 
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Table 8: Overall score for all the bi-objective problems 

 NSGA-II SPEA2 GDE3 SMPSO AbYSS MOCell MOEA/D 

Overall 14 8 38 16 11 9 8 

 

Table 9: Overall score for all the three-objective problems 

 NSGA-II SPEA2 GDE3 SMPSO AbYSS MOCell MOEA/D 

Overall 2 23 15 5 7 2 7 

 

Table 10: Overall score for all the bi-objective and three-objective problems 

 NSGA-II SPEA2 GDE3 SMPSO AbYSS MOCell MOEA/D 

Overall 16 31 53 21 18 11 15 

 

3.7 Conclusions 

This chapter presented an extensive comparative study of multi-objective unconstrained 

continuous optimization using metaheuristics. In total, 53 well-known benchmark problems (33 

bi-objectives and 20 three-objectives) have been used to compare seven state-of-the-art MOMs. 

The benchmark problems were composed of five test suites namely ZDT, DTLZ, WFG, Van 

Veldhuizen and LZ_09. The metaheuristics were composed of NSGA-II, SPEA2, GDE3, 

SMPSO, AbYSS, MOCell and MOEA/D. In total, 371 experiments have been conducted with 

100 independent runs per function per problem for a total of 37,100 runs. For comparison 

purposes, this study used the Inverse Generational Distance (IGD) measure with complementary 

analysis from boxplots and a hypervolume ratio measure.  

For the bi-objective problems, GDE3, clearly outperformed the other MO methods 

followed by SMPSO. SMPSO was capable of solving accurately very complex problems such as 
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ZDT4 and DTLZ3 that were unsolved with a good accuracy by any other algorithm. It is 

important to mention that NSGA-II achieved a good accuracy with bi-objective problems with 

complex variable relationships such as LZ_09. In regards to three-objective problems, the most 

accurate MO metaheuristic was SPEA2 followed by GDE3.  

Overall, the results showed that GDE3 is the most robust method for solving MO 

problems in a timely manner. Its performance is very accurate for two-objective problems and 

offers good accuracy for three-objective problems with some weaknesses. In the second position, 

SPEA2 offers high accuracy for three-objective problems; however, its accuracy drops when it 

comes to solving bi-objective problems. SMPSO is in third position. SMPSO offers good 

accuracy for bi-objective problems; however, its accuracy drops when it comes to solving three 

objective problems.  

When examining the problem complexity, several of them appeared to be very complex 

because the HVR of all the MO methods was very low. Within the bi-objective problems, Poloni, 

DTLZ3, WFG1, WFG8 and ZDT4 are the most difficult to solve. Within the three-objective 

problems, DTLZ6, DTLZ3, LZ6, LZ7, LZ8 and LZ9 are the most difficult to solve.  

The purpose of this comparative study was to find the most robust MOMs in solving 

variant bi-objective problems in timely manner. This thesis focuses on multi-objective problems 

in general and on bi-objective problems in specific as both utilized case studies in this thesis are 

bi-objective problems. Consequently, based on the results presented in this chapter, GDE3 and 

SMPSO, the most robust MOM for bi-objective problems, and are selected for further 

improvement in the remaining chapters of this thesis. Now, to determine an unexplored 

applicative niche of MOMs in renewable energy systems design, the next chapter conducts a 

literature review of optimization applications for renewable energy systems design.  
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Design of optimal renewable energy systems (RESs) is a very active research field. The aim of 

this chapter is the review of previous RESs-related works in order to find RESs-related sub-areas 

where state-of-the-art MOMs were not used so far. Then, contribute to RES research community 

by proposing innovative RESs applications. 

4.1 Introduction 

Renewable and hybrid energy systems (HESs) are expanding due to environmental concerns of 

climate change, air pollution, and depleting fossil fuels. Moreover, HESs can be cost-effective in 

comparison with conventional power plants. This chapter reviews current methods for designing 

optimal HESs. The survey shows that these systems are often developed on a medium scale in 

remote areas and standalone, but there is a global growing interest for larger scale deployments 

that are grid-connected. Examples of hybrid energy systems are PV-Wind-Battery and PV-

Diesel-Battery. PV and wind energy sources are the most widely adopted. Diesel and batteries 

are often used but hydrogen is increasing as a clean energy carrier.  The design of an efficient 

HES is challenging because HES models are non-linear, non-convex, and composed of mixed-

type variables which cannot be solved by traditional optimization methods. Alternatively, two 

types of approaches are typically used for designing optimal HESs: simulation-based 

optimization and metaheuristic optimization methods. Simulation-based optimization methods 

are limited in view of human intervention which makes them tedious, time consuming, and error-

prone. Metaheuristics are more efficient because they can handle automatically a range of 

complexities. In particular, MOMs are the most appropriate for optimal HES because HES 

models involves multiple objectives at the same time such as cost, performance, supply / demand 

management, grid limitations, and so forth. This chapter shows that the energy research 
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community has not fully utilized state-of-the-art MOMs. More recent MOMs could be used such 

as robust and interactive optimizations. 

4.2 Types Renewable Hybrid Energy System 

Renewable energy systems are in expansion around the world because of the environmental 

concerns due to global warming, new carbon pricing regulations arising out of these concerns, 

and nuclear safety concerns especially after the Fukushima nuclear accident. For example, 

Germany declared that it plans to shut down the nuclear plants by 2022. In addition, the supply 

of fossil fuels is decreasing while the demand for energy is rapidly increasing. Consequently, 

energy systems such as photovoltaic (PV), wind, and fuel-cells are attractive alternatives because 

they are profuse, clean, and decentralized. A challenge with solar and wind resources is that they 

are intermittent and not constantly available. The combination of multiple RESs is a sustainable 

solution for developing persistent hybrid stand-alone energy systems, and also more reliable and 

lower cost systems [50], [51]. 

Several renewable energy projects have proven to be efficient and economically viable on 

a smaller scale, especially in remote areas such as: islands [52], [53] or desert areas [54], [55]. 

Usually, these energy systems are not fully implemented from RESs. Challenges include the high 

cost of the RES plants and storage [56], [57]. However, the RES-based systems are still being 

expanded faster than expected; by 2020, it is expected to be over 20% of Europe energy supply 

originating from pure RESs [58]. As the RES market grows, the prices of the components will 

decrease as a consequence of higher demand and technological advancements. Currently, RESs 

are still often combined with other conventional energy systems to form hybrid energy systems 

such as PV-Diesel-Battery or PV-Wind-Battery [57].   
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Designing optimal hybrid energy systems is a complex task because of the diffculty of 

accurately predicting the output of these hybrid energy systems. This optimization complexity 

arises for several reasons. First, there are a high number of variables involved in the energy 

design optimization problem. Second, there are conflicting objectives which make the 

optimization problem complex such as cost, performance, supply / demand management, grid 

limitations, and so forth. Also, coupled non-linearities, non-convexities, and mixed-type 

variables, often eliminate the possibility of using conventional optimization methods to solve 

such problems. This paper reviews the simulation and optimization techniques applied to RES-

based systems with a particular focus on renewable energy sources.  

4.3 Modeling Renewable Energy Systems  

The following subsections describe variant types of RESs commonly modeled such as 

photovoltaic (PV), wind, and Fuel-Cells. 

 Modeling of photovoltaic systems 4.3.1

Understanding factors that affect the performance of PV modules is of great importance 

in order to achieve a precise anticipation of the PV module performance under variable climatic 

conditions. Many researchers worked in this direction. Overstraeten and Mertens [59] developed 

the fundamental model of PV cells. Borowy and Salameh [60] introduced a simplified model that 

calculates the maximum power output for a PV module based on the solar radiation and the 

ambient temperature. Jones and Underwood [61] proposed a more complete model by 

calculating the PV power output efficiency model. Kerr and Cuevas [62] introduced a model for 

calculating current–voltage (I–V) of PV modules by measuring open-circuit voltage under 

variable light intensity. Nishioka et al. [63] studied the temperature impact on the PV system 
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annual output; it appears that the annual energy output of the PV system increases by about 1% 

for every 0.1%/C° improvement in temperature coefficient of the conversion efficiency. 

Stamenic et al. [64] examined low irradiance efficiency of PV modules installed on buildings. 

Zhou et al. [65] introduced a "simple" simulation model for PV array performance predictions 

under operating conditions, with limited data available from PV module manufacturers. Mondol 

et al. [66] developed a simulator for building integrated photovoltaic; the monthly average error 

between measured and predicted PV output was estimated to be 6.79%.  

 Modeling of wind systems 4.3.2

The modeling of wind energy systems includes wind turbine specifications and generator 

modeling. One of the simplest models to simulate the power output of a wind turbine was 

proposed by Ghali et al [67]; they used a probabilistic approach to simulate a hybrid PV-wind-

battery energy system. Borowy and Salameh [60], [68] used a statistical method for calculating 

the power output from a wind turbine; they assumed the wind speed distribution to be a Weibull 

distribution. Karaki et al. [69] proposed a probabilistic model to simulate an autonomous wind 

energy conversion system composed of several turbines connected to a battery. Lu et al. Nehrir 

et al. [70] developed an algorithm that simulates the power output from the wind turbine based 

on wind average speed, the electrical load, and the power curve.  The wind turbine power curves 

do not always represent wind turbine power output with exactitude because they neglect 

instantaneous wind speed variations, and therefore, undermine the wind turbine performance 

[71]. Therefore, Zamani and Riahy [72] introduced a new way for calculating the wind turbine 

output power by taking into consideration the wind speed variations.  
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 Modeling of hydrogen fuel cells 4.3.3

The hydrogen offers variant advantages when integrated to hybrid RESs because of several 

reasons [73]. It is decentralized and intermittent supply in similar fashion as the wind and PV 

RESs. Also, It can become economically more viable the predominant steam-methane reforming 

technology if merged properly with other RESs. In addition, the hydrogen can be reused as 

backup power generator, for regenerating electricity during peak hours, or used as is for 

transportation or other purposes.  

Once the hydrogen is generated, it can be reconverted to electricity using fuel-cell 

technology. A fuel-cell is an electrochemical mechanism to generate electrical DC current from 

hydrogen and oxygen. Initially, Vanhanen et al. proposed a simulation PV-hydrogen system that 

generates hydrogen for PV panels, and then it reconverts it back to electricity [74]. Then, 

Amphlett et al. [75], Kim et al. [76], and Lee et al. [77] worked on modeling of proton exchange 

membrane fuel-cell stack. Mann and Amphlett [78] [79] continued to work on more precise 

models such as the degradation effect on the fuel-cell performance. Later, Cheddie and Munroe 

[80] presented a review of on proton exchange membrane fuel cell modeling. In this review, they 

categorized the fuel-cell models as analytical, semi-empirical, and mechanistic. More recently, 

Mann and Amphlett [81] [82] emphasized on activation and concentration polarization. 

Another aspect regarding hydrogen that needs to be addressed is its storage. The hydrogen 

storage is even more critical in hybrid energy system because Solar and Wind energy sources are 

inconsistent. Deshmukh and Boehm [83] categorize current available hydrogen storage 

technologies as compressed hydrogen, liquid hydrogen, metal hydrides, and carbon-based 

materials (flullerenes, carbon nanotubes, activated carbons). An extensive literature review of 

PV, wind, and FC models can be found in [84]. 
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4.4 Simulation-Based Optimization of Energy System Components 

Currently, researchers working on RESs are mainly focusing on solar and wind energy sources. 

The photovoltaic array area, the specificities of wind turbines, and the storage capacity have an 

important role in operation of hybrid PV-wind energy systems, while satisfying load [85]. The 

most common renewable standalone hybrid energy systems are: PV-Wind-Battery, PV-Diesel-

Battery, and Hydroelectric-PV-Wind-Battery. None of these are completely benign renewable 

energy systems because of the battery component. The solar and wind systems are intermittent 

sources of energy which require storage like a battery to form a PV-wind-battery system [57], or 

a backup energy source such as diesel to form PV-wind-diesel systems [57]. In both cases, the 

hybrid energy system is not completely renewable. The most common RES-based systems are 

not completely sufficient by themselves because of the intermittence of the wind and solar 

sources. Hydrogen is a cleaner alternative for energy storage, and it can be used for regenerating 

electricity by using fuel-cells. 

The hybrid energy system designs are mainly dependent on the performance of their 

respective components. In order to forecast the system‘s performance, these components should 

be modeled and simulated. Then their combination could be evaluated to determine if it satisfies 

the demand load. If the power output estimation from these individual components is accurate 

enough, their combination can deliver power at the lowest cost. 

Most of the simulation papers for hybrid energy systems use the HOMER (Hybrid 

Optimization Model for Electric Renewables) tool [86], developed by NREL (National 

Renewable Energy Laboratory, USA) because of its capabilities and flexibility. It can optimize a 

wide range of energy components: photovoltaic generator, batteries, wind turbines, hydraulic 

turbines, AC generators, fuel cells, electrolyzers, hydrogen tanks, AC–DC bidirectional 
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converters, and boilers. The loads can be different types: AC, DC, and/or hydrogen or thermal 

loads. In addition, the tool is available free of charge.  

 Simulation-based optimization of photovoltaic systems 4.4.1

Shaahid and Elhadidy [87] used the HOMER tool for cost optimization of a PV–Diesel–Battery 

system to supply a shopping center in a desert area. The hybrid energy system reduced the diesel 

consumption and pollution by 27%. Shaahid and El-Amin [100] used HOMER for finding an 

optimal design of a PV–Diesel–Battery hybrid energy system, rather than diesel-only, for 

supplying a remote village in Saudi Arabia.  The study examined the effect of PV/battery 

penetration on the cost of electricity, the unmet load, the electricity excess generation, percentage 

of fuel savings, and reduction in carbon emissions. The results showed that the optimal 

combination is the PV-Diesel-Battery rather than Diesel-only or PV-Diesel. The percentage of 

fuel savings by using a hybrid PV–diesel–battery energy system (2.5 MW PV, 4.5 MW diesel 

system, 1 h storage, and 27% PV penetration) is 27% less than using diesel only. In addition, the 

carbon emissions decrease by 24% (1,005 tons/year) as compared to the diesel-only scenario. Li 

et al. [89] used simulation methods for the development of a standalone PV system. Due to the 

intermittent nature of the solar energy, they considered batteries and/or fuel cells (FC) for energy 

storage. The hybrid PV-battery-FC energy system appeared to be the cheapest, most efficient, 

and least demanding in terms of PV module numbers as compared to either single storage 

system. 

Wies et al. [90] simulated, with Simulink and HOMER, a real hybrid PV–Diesel–Battery 

energy system located in Alaska. They compared it with a system with only a diesel generator, 

and another Diesel–Battery system to supply energy for the same load. The results indicated that 
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the system with only a diesel generator had a lower installation cost, but higher operation and 

maintenance costs. 

 Simulation-based optimization of wind systems 4.4.2

Himri et al. [91] used the HOMER software tool for the optimization of energy 

production, life cycle cost, and the greenhouse gas emissions of a hybrid energy system. The 

hybrid wind-diesel energy system is a grid-connected power plant supplying energy to a remote 

village. The results show that the wind–diesel hybrid system becomes feasible when the wind 

speed reaches 5.48 m/s and the fuel price is $0.162/L or more. The maximum annual capacity 

shortage did not impact in any way on the system optimization. Lu et al. [92] used probabilistic 

models to select the optimal (maximum power output) turbine characteristics, depending on the 

yearly wind properties. They found that hub height is an important factor. At 37 m, the wind 

turbine can function for 6,820 hours (77.85%) a year and generate 32,400 kWh with a capacity 

factor of 0.387 for Waglan Island.   

 Simulation-based optimization of fuel-cell systems 4.4.3

The hydrogen FCs fit well with hybrid energy systems for several reasons [73]. First, FCs 

provide a decentralized supply in a similar fashion to wind and solar RESs. Second, hydrogen 

can be generated during off-peak periods where electricity prices are low. Third, the hydrogen 

FC can be reused as a backup power source; it can be used for regenerating electricity during 

peak hours. The FC mechanism generates Direct Current (DC) from hydrogen and oxygen.  

As mentioned previously, Li et al. [89] examined on a combination of FCs with PV-

battery systems.  
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 Simulation-based optimization of PV-wind systems 4.4.4

McGowan and Manwell [93] discussed PV–Wind–Diesel–Batteries hybrid energy systems in 

different locations in the world using the HYBRID2 tool [94]. They concluded that hybrid 

energy-related research should further examine the reliability of components and systems, 

improve the documentation and monitoring of system performance, and reduce the cost of the 

renewable energy components. Furthermore, they designed PV–Wind–Diesel–Battery systems 

for different locations in South America [95]. They found by comparing HYBRID2 and SOMES 

tools that they provide similar results, and they can be used to design and analyze such systems. 

However, there is no universal tool yet, and different types of problems need to be solved 

through the use of different approaches and tools. Karaki et al. [69] examine simulation 

algorithms for PV–Wind–Battery systems. They report on economics of hybrid PV–Wind–

Battery energy systems. However, the battery capacity is limited, depending on the required 

charging/discharging cycle time. Elhadidy [96], [55] studied the performance of possible 

variances of PV-wind-diesel systems. It has been found that PV panels are economically not yet 

viable for desert areas in Saudi Arabia. Nfah et al. [97] proposed a design for a PV–Wind–

Diesel–Battery system located in a remote area in the north of Cameroon. They demonstrated 

that the hybrid energy system can generate in a range of 70 – 2,585 kWh/year rather than 

extending the grid. 

Diaf et al. [98] studied the optimization of economic and technical performance of a 

stand-alone hybrid PV-wind-battery energy system on Corsica Island. They compared the 

optimum dimensions of the system in five sites on the island. The results showed the hybrid 

energy system offers a better performance than a single source system. The PV system was not 
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affected by changing sites; however, the wind system dropped from 40% power generation to 

20%, depending on site location.  
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Figure 13: Example of a hybrid PV-wind energy system 

 

Figure 13 presents an example of a hybrid PV-Wind system model with a battery to store 

electricity. 
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Dalton et al. [99] worked on the design optimization of a standalone renewable energy 

PV-Wind-battery-Diesel system, using HOMER and HYBRIDS tools, for a large hotel (4,100 

beds) located in a subtropical coastal area in Australia.  More specifically, they compared diesel 

generator-only, PV-Wind-Battery, and PV-Wind-Battery-Diesel hybrid technologies. Three 

objectives were considered: the Net Present Cost (NPC), renewable fraction (RF), and payback 

time. The result showed that it is possible to build a completely RES that meets the demand load. 

However, a hybrid diesel-Wind-battery configuration provides the lowest NPC result with a 

resultant RF of 76%. The NPC is reduced by 50%, and the greenhouse gas emissions by 65%.  

Mondal and Denich [100] studied the potential of PV, Wind, Biomass, and Hydro energy 

sources in Bangladesh. The results showed that PV grid-connected sources have the highest 

potential for the country. Prodromidis and Coutelieris [101] examined an existing RES installed 

in Leicestershire, UK. The system is a standalone PV-Wind-FC. By using the HOMER tool, it 

was determined how to optimize the use of the system and the cost impact of connecting the RES 

system to the grid. Results showed that in the long term, the connection to the grid will be costly. 

Balamurugan et al. [102] used the HOMER tool for designing an HES composed of 

biomass-PV-Wind-battery in a remote area. The objective was a combined maximization of the 

supply of energy to the loads and minimization of the supply of energy from the sources. A 

sensitivity analysis was performed for the load, wind speed, and solar radiation. The proposed 

system satisfied the load demand, nonlinear seasonal variations, and equipment constraints of 

three different typical villages in India. 
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 Simulation-based optimization of solar-wind-fuel-cell systems 4.4.5

Dufo-López et al. [103] worked firstly (case A) on the design and economic analysis of hybrid 

PV-Wind energy systems. In addition (case B), they considered the use of these systems for 

generating hydrogen when the amount of electricity is not needed by the demand load. Finally 

(case C), the reuse of hydrogen was considered for regenerating back electricity when the 

demand is high. The results (case A) showed that hybrid PV-Wind energy systems match well 

and they are more economical than the use of a unique energy source. For case B, the generation 

of hydrogen for selling purposes appeared to be economically viable only for locations having a 

high average wind speed (> 4.66 m/s). For case C, the use of hydrogen for regenerating 

electricity by fuel cells was not economically viable based on the electricity prices in Spain. The 

authors attribute this to a low energetic efficiency rate of the electricity-hydrogen-electricity 

process. However, if the electricity prices were higher or the energetic efficiency rate improved, 

the model would become viable. 

Figure 14 is an example of a PV-FC (hydrogen) model. 
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Figure 14: Example of modeling of a PV-hydrogen FC energy system 

 

 

Zervas et al. [104] developed a framework for HES that used hydrogen for energy 

storage. Thus, they tested the framework with a PV-FC system connected to a grid in Greece. 

The proposed tool is especially useful for HES that incorporate hydrogen systems.  

4.5 Optimization of Energy System Components 

Several papers have been published regarding the optimization of hybrid energy sources. 

However, this thesis focuses on recent studies published in the last decade. Usually, an optimum 

combination of hybrid energy sources needs to address several objectives. Among them, the 

system and the production costs should be minimal, the load demand should be met, and the 

power should be reliable. Sometimes, HES is optimized by taking all the objectives at the same 
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time. And sometimes, one objective is optimized whereas other objectives are transformed into 

constraints. Both approaches are described in the next subsections.  

 Mono objective optimization for hybrid energy systems design 4.5.1

Koutroulis et al. [105] worked on designing a standalone hybrid PV-wind-battery energy system 

by focusing on the minimization of a 20-year total system cost. This cost is the sum of the 

components of capital and the maintenance fees. In addition, the solution is constrained by the 

load energy requirements that need to be completely covered, i.e., a zero load rejection. A 

genetic algorithm (GA) was used and it attained the global optimum faster than conventional 

optimization methods such as dynamic programming and gradient techniques. In addition, the 

result showed that a standalone hybrid PV-Wind energy system is lower cost than the exclusive 

usage of one energy source. 

Sequentiel Quadratic Programming was used for the optimization of solar field design 

[106]. The system was divided into three sub-problems: energy maximization, minimization of 

the area field, and maximization of the solar unit area. They found that it is possible to increase 

the yearly energy by about 20% and a decrease of about 15% of the field area, compared to the 

current industrial standards in their area.   

Ashok [107] used Non-Linear optimization for the design of a PV-Wind-Micro-Hydro-

Diesel-battery system. They have found that a micro-hydro/wind hybrid energy system to be the 

most optimal combination from the cost perspective. In addition, it is the cleanest combination 

because of no diesel in the system. The system is tested in India (Western Ghats - Kerala). 

Yang et al. [108] studied the design of hybrid solar–wind-battery energy systems. It was 

possible to calculate the system‘s optimum configurations while minimizing the annualized cost 

of the system, with respect to the required loss of power supply probability (LPSP). Five 
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decision variables were considered in the optimization process: PV module number, PV module 

slope angle, wind turbine number, wind turbine installation height, and battery capacity. The 

results showed that it was possible for GA to attain the global optimum with relative 

computational simplicity. The proposed hybrid energy system served as a power supply for a 

telecommunication relay station located in the southeastern coast of China. 

Tina et al. [109] used a probabilistic approach based on a convolution technique for 

assessing long-term performance of a hybrid grid-connected PV-wind energy system. The 

system permitted the evaluation of different economic objectives such as electric contract 

demand, expected values of annual total cost, annual energy consumption, and others. The 

results of the analysis were not used only for the index of reliability calculation, but also allowed 

the documentation of other relationships among system parameters of interest. 

Dufo-López and Bernal-Agustín used Genetic Algorithms (GAs) for designing an 

optimal PV-Diesel-battery system [110]. GAs were used because of mixed type variables: 

Boolean, integer, discrete. One GA served for selecting the components, while the second served 

for handling electric dispatch strategy (Cycle Charging or Combined). They integrated the GAs 

into the HOGA tool. It appeared that the GA algorithm offered more precision than traditional 

methods because it was possible to get the number of PV panels, as well as their type, and the 

number of batteries in parallel, and their type. Also, HOGA was compared to the HOMER 

modeling tool [86], which they mentioned to be the best tool available. In addition, the tool is 

available free of charge. After the comparison, HOGA appeared to be faster and more precise 

than HOMER. This performance is attributed to the use of GAs by HOGA. 

Glover et al. [111] worked on the design of PV systems which are connected to storage 

units (compressed-air-energy-storage and super-capacitors), and also grid connected. They have 
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used the OptQuest [112] tool for the design, which incorporates two metaheuristics Scatter 

Search, Tabu Search, and Neural Networks. They successfully obtained an optimal mixture of 

required capacities of the systems. 

  Giannakoudis et al. [113] used the stochastic annealing optimization method for 

designing a PV-Wind-FC-Diesel system with consideration of the uncertainties. The resulting 

systems have a more robust response to external or system-inherent variations.  Kaabeche et al. 

[114] performed a case study on a PV-Wind-Battery system in Algeria. They have used a GA for 

system optimization. Zhao et al. [115] proposed a GA for designing a wind farm by optimizing 

the production cost and system reliability. Senjyu et al. [116] used a GA for the design of a PV-

Wind-battery-diesel system in Japanese islands. The results showed that HES systems reduce the 

cost by 10% in comparison with diesel generators.  

Kaviani et al. [117] used the Particle Swarm optimizer for the design of a PV-Wind-FC 

system. They demonstrated the importance of considering outage scenarios in the design. Hakimi 

et al. [118] used a PSO algorithm to optimize the design of a wind-FC system in a remote area in 

Iran. The designed system was sufficient to cover the demand of that area. 

A limitation of the previous studies is that all of these tools optimize a single objective. 

They consider other objectives as constraints or use weighted sum approach. Nevertheless, the 

design of hybrid energy systems (HESs) is a multi-objective problem, and it should be modeled 

accordingly. The next section reviews multi-objective optimization methods applied to the 

design of HES. 

 Multi-Objective optimization for hybrid energy systems design 4.5.2

Dufo-Lopez et al. were the first and only research group to the best our knowledge that have 

used multi-objective optimization (MO) metaheuristic methods for HES design [119], [120], 
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[121]. They developed a tool called HOGA [122]. According to their survey [57] , it appears that 

this is the only tool that uses a MO metaheuristic for HESs. It supports, according to the user 

manual, the following objectives: total cost (Net Present Cost (NPC)) versus CO2 Emissions, or 

total cost (NPC) versus unmet energy. It can handle various components: photovoltaic generator, 

batteries, wind turbines, hydraulic turbine, AC generators, fuel cells, electrolyzers, hydrogen 

tanks, rectifiers, and inverters. The loads can be AC, DC, and/or hydrogen.  

First, Dufo-Lopez et al. [119] worked on the design of PV–wind–diesel-battery using MO 

metaheuristic for the first time. The problem was composed of two objectives: minimization of 

cost through the useful life of the installation and the pollutant emissions while guaranteeing 

electrical energy supply at all times. The system generated a Pareto front composed of 50 

solutions. The designer could choose the most appropriate solution, considering the costs and 

pollutant emissions, which demonstrate the practicality of using MO methods. 

Then, they [120] used the same algorithm (SPEA) for the same problem by adding more 

real-world complexity. They used a GA for a control strategy. Also, they added unmet load as a 

third objective and Hydrogen-based Fuel-Cells as an additional type of storage component. They 

developed a triple multi-objective design of a standalone PV-Wind-Diesel-Hydrogen-Battery 

hybrid energy system. The system was located in Zaragoza, Spain. The SPEA algorithm was 

used for the simultaneous minimization of three objectives: the total net present cost, pollutant 

emissions (CO2), and the unmet load. The processing resulted in a Pareto front of 35 solutions 

from which the designer could select. Most of these solutions integrate Wind and PV panels, and 

batteries for storage. Due to the high cost of a hydrogen storage component at that time, most of 

the solutions incorporated the exclusive use of batteries. The diesel fuel is highly priced in that 

location, which is why it was not part of the solutions. 
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There are some past studies applied to HES design. Dipama et al. proposed a new variant 

of a GA for the optimization of two different power plant problems [123]. First, they worked on 

the design of a Cogeneration thermal plant. The objectives were the maximization of exergy 

efficiency and minimization of cost rate. Second, they worked on the design of an advanced 

steam power station. The objectives were the maximization of both, the efficiency and the net 

power output of the plant. For both designs, the proposed GA has appeared to be reliable, 

powerful, and robust when compared to previous research studies. 

Meza et al. [124] examined a power generation expansion planning optimization 

problem. They proposed a multi-objective evolutionary programming algorithm (MEPA) for 

determining which, when, and where new generation units should be installed. A unit can be any 

one of the following:  conventional steam units, coal units, combined cycle modules, nuclear 

plants, gas turbines, wind farms, and geothermal and hydro units.  First, two objectives were 

considered: the minimization of investment, operation costs, and the environmental impact. 

Then, they added two other types (imports of fuel, and fuel price risks of the whole system) for a 

total of four objectives. The problem was nonlinear, mixed-integer, and considered NP-Hard. 

They concluded that the system offered good quality solutions (close to the real Pareto set) when 

optimizing two objectives. Furthermore, the system was able to provide solutions when handling 

four objectives. However, it was not possible to compare the results with previous works because 

no past studies considered more than two objectives for these kinds of problems. 

Niknam et al. [125] proposed a new multi-objective modified honey bee mating 

optimization algorithm for the design of a PV-Wind-FC grid connected system. The proposed 

method showed better results than uni-objective optimization methods. 
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Ould e t al. [126] used a multi-objective GA for analyzing a hybrid PV–wind-battery 

energy system by minimizing the annualized cost system and the loss of power supply 

probability in remote areas in Senagal. They compared three configurations in their study. 

Katsigiannis [127] used the NSGA-II multi-objective algorithm to design a PV-Wind-FC-

Diesel-Battery system. The results showed that PV-Wind-Battery is the most attractive 

combination from the cost and environmental point of view in Greece. 

4.6 Summary and Future Trends 

 Energy system-related observations 4.6.1

As shown in Table 11, most of the systems are composed of PV and wind energy sources. These 

two energy sources match well together because both are intermittent and they complement each 

other. For example, sometimes there is no wind, but the weather is sunny and vice versa; PVs 

will compensate for such trends. However, their complementary roles are sometimes deficient 

especially at night-time because PV panels do not generate electricity. As a third component, 

hydrogen fuel cells are becoming more common within a standalone energy system framework. 

Previously, diesel and battery systems have been used, but fuel cells gained more popularity in 

the last couple of years because these are becoming more affordable, as well the technology is 

improving, and are more environmentally friendly than batteries and diesel. The unused 

electricity generated from PV-wind is converted into hydrogen as an energy storage medium, 

which serves for operating FCs to regenerate electricity when needed (e.g. night-time). 

Moreover, hydrogen surplus can be directly used for industrial or transportation purposes. Thus, 

PV and wind systems are the most common renewable systems; however, hydrogen systems are 

increasingly used in hybrid energy systems.  
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Almost all of the HES projects involved a PV component to convert the solar energy 

source into electricity. But PV has a lower conversion efficiency than solar thermal systems in 

high temperature areas. PV systems become less efficient in hot areas like deserts because of the 

high temperature. Consequently, studies should consider the use of solar thermal systems as an 

alternative to PV systems to benefit from solar energy sources in such areas. Another interesting 

observation is that previously HES was typically designed as standalone systems in remote areas. 

Currently, HES tends be integrated into existing grids which requires more complex models.  

Table 11 summarizes the simulation and optimization methods found for the design of 

HES.          

 Optimization-related observations 4.6.2

As shown in Table 11, simulation-based optimizations are declining because they require manual 

intervention for every run which is very time consuming, tedious, and error prone. On the other 

hand, metaheuristics such as genetic algorithms are more attractive for the design of HES for 

several reasons. They are intelligent and autonomous, can generate results in a much shorter 

time, and can handle complex non-linear models in an automated manner. 

The energy research community has not fully utilized the most recent discoveries in the 

optimization field. There is a gap among the energy and optimization communities that should be 

bridged. This bridging will have several positive impacts as follows when designing HES: First, 

HESs involve very complex optimization problems because of mixed type variables, non-

linearity, and non-convexity, which make them difficult to solve with classical optimization 

methods; consequently, optimization metaheuristics such as genetic algorithms are more 

appropriate for optimal design of HESs.  
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All HES design projects involve multi-objectives such as cost and pollution 

minimization, efficiency maximization, to name a few. Thus, multi-objective metaheuristics are 

more promising for these types of problems. Despite these advantages, only few studies have 

been completed with MOO metaheuristics methods for energy systems design. Even most of the 

state-of-the-art multi-objective optimization methods have not been fully utilized yet. 

Comparative studies of state-of-the-art multi-objective optimization methods can be found in [4] 

and [3]. Moreover, multi-objective metaheuristics offer HES designers multiple tradeoff 

solutions which are more practical and attractive for real-world engineering systems. The 

decision makers can select the solutions that best fit their needs.  
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Table 11: Résumé of reviewed HESs-related works 
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Furthermore, there are other newer MOO metaheuristics. For example, decision makers 

can be involved in the multi-objective optimization process by selecting intermediate solutions or 

adding prior knowledge to an HES problem. Consequently, the metaheuristic will converge 

faster, and generate solutions which will be more ad hoc to the needs of the decision makers. 

Such methods are called interactive optimization methods; more details can be found in [128]. 

Also, most past studies have not presented a comprehensive sensitivity analysis. 

HES designs involve several uncertainties such as weather conditions, variations in the 

demand, and others. Therefore, HES design should always incorporate a sensitivity study to test 

the robustness of the HES. Alternatively, robust optimization methods can be used; these 

methods look for the most robust and optimal solutions at the same time. An extensive study of 

such methods can be found in [129].  

4.7 Conclusions 

Hybrid energy systems are attracting greater attention because they can become more 

economical, environmentally cleaner, and can be installed in a distributed fashion. This literature 

review shows that most HESs are based on PV and wind energy sources because of their 

complementary roles. A challenge with solar and wind resources is their intermittency; usually, 

they are complemented by energy sources or carriers such as diesel or batteries. However, diesel 

and batteries are decreasing while hydrogen systems are increasing. Hydrogen is cleaner than 

diesel and batteries, is becoming cheaper, can be reused for energy storage and can regenerate 

electricity when needed. Another conclusion is that previous studies focused on standalone 

systems usually installed in remote areas. Currently, the tendency is to have grid-connected HES. 

The simulation tools are more mature. However, several HES systems connected to the grid can 

generate grid congestion during peak hours. These congestion issues should be also considered 
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when integrating multiple HES systems into a grid. Finding the optimal design of a hybrid 

energy system is a complex task because it involves multiple objectives, a large number of 

variables, heterogeneous energy technologies, uncertainties such as weather, demand, and other 

factors. 

This chapter has reviewed the current trends to designing optimal hybrid energy systems. 

There are two main approaches for designing optimal hybrid energy systems. The first is 

simulation-based optimization. It permits the variation of different variables or parameters of 

hybrid energy systems in order to find an "optimal solution". These approaches require a 

designer‘s interaction for setting the parameters in order to find an "optimal" design. Therefore, 

this approach is arduous and time consuming. Moreover, every simulation generates only one 

solution. Furthermore, there is no automated support for helping or guiding the designer towards 

the optimum solution. The second approach uses optimization methods for designing hybrid 

energy systems. The current trend is the use of metaheuristic algorithms for HES optimization 

design because they obtain automatically optimal or close to optimal solutions. They can handle 

a high number of mixed type variables (i.e., real vs. discrete variables).  Furthermore, 

metaheuristics can handle complex problems such as energy design systems which are not linear, 

nor convex. Therefore, metaheuristics are more suitable for solving hybrid design energy 

problems. In addition, all HES involve multiple competing objectives such as cost minimization 

and energy maximization which can be solved by multi-objective optimization metaheuristics. 

MOO metaheuristics generate multiple tradeoff solutions that are more practical and attractive 

for real-world engineering systems. Despite these advantages, this literature review has shown 

that very limited work has been conducted in the past with multi-objective optimization 

metaheuristics for energy systems design. Furthermore, the used multi-objective optimization 



 

 79 

metaheuristics were not state-of-the-art. Therefore, the design of optimal HESs requires more 

interaction between both energy and multi-objective optimization research communities to fill 

this gap. Other more recent MOO metaheuristics methods should be explored such as MOO 

robust optimization and MOO interactive optimization methods. Robust optimization targets 

optimal and robust solutions at the same time, while interactive optimization takes input from 

decision makers while searching optimal solutions.  

Based on the conclusions of this chapter, it is proposed to develop new MOMs with 

applications in RES. This way, state state-of-the-art MOMs can be used to solve RESs and 

demonstrate further their benefit for such applications. In addition, such proposed work can 

contribute to bridge the gap between MOM and RES research communities. In the following 

chapters, two models will be proposed for the reasons mentioned above. One of them should be 

related to optimal design of a grid-connected hydrogen energy system. Such a project will be 

very innovative and will demonstrate the efficiency of MOMs in solving even complex grid 

connected RES problems.  
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Chapter 5 

 

 

Leaders and Speed Constraint Multi-Objective Particle 

Swarm Optimization 
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Now that the base (parent) MOMs are determined, and renewable energy problems to be solved 

have been selected, it is proposed, as first fundamental contribution in this thesis, to improve 

leader selection mechanism in a multi-objective variant of particle swarm optimizer (PSO). 

Selection of representative particle swarm leaders in multi-objective optimization (MO) 

is a critical task because they influence the progress quality of the entire population. Most MO 

variants of PSOs use the concept of non-dominance to select leaders. The problem occurs when 

all or majority of leaders (non-dominated individuals) are concentrated in a specific region of the 

objective space. The leaders attract the particles to that specific area which impacts the uniform 

distribution of the population and leads to a slower explorative algorithmic ability. In this 

chapter, a second discriminative mechanism is proposed to support a more representative (well-

distributed) selection of leaders. The proposed algorithm, called leaders, and speed constrained 

multi-objective PSO (LSMPSO), is an extension of SMPSO. The convergence speed of 

LSMPSO is compared with seven state-of-the-art MOMs using the ZDT and DTLZ bi-objective 

benchmark family problems.  

 

 

 

 

 

 

 

 

 

 

Figure 15: Example of flock of birds [130]         Figure 16: Example of fish schools [131] 
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5.1 Particle Swarm Optimization  

Particle swarm optimization (PSO) is a population-based metaheuristic that has been very 

successful in many fields. PSO is a nature inspired metaheuristic simulating the social behavior 

of flock of birds or school of fish as shown in Figure 15 and 16. It was proposed by Kennedy and 

Eberhart [132] in 1995; Since then, PSO has been cited in over 20,000 papers. The description of 

PSO is provided in the remainder of this subsection. 

In PSOs, the movement of candidate solutions, called particles, is influenced by leaders. 

The entire population of particles is called a swarm. In PSO, a particle       is updated at a 

generation   as follows: 

 

                            (  ) 

where the       is the particle‘s velocity which is calculated as follows: 

 

                                                     ,       (11) 

 

where    is the personal best found by candidate solution   ,    is the global best found particle 

in the entire swarm, called leader. w is the particle inertia weight which controls exploration and 

exploitation (fine tuning) stages,    and    are random vector variables in the range [0,1],    and 

   are learning factors towards the particle‘s personal success and its neighbors success. 

 

Figure 17 illustrates the movement of a particle which is affected by its own best found 

solution and global best solution among the particles. 
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Figure 17: Movement of a particle and the velocity update. 

 

 

PSO Algorithm 
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5.2 Speed Constraints Multi-objective Particle Swarm Optimizer  

Since the invention of PSO, over 30 multi-objective variants of PSO have been proposed [32]. 

However, the most salient one is SMPSO [32]. SMPSO is an extension of OMOPSO [13]. Its 

main difference with respect to OMOPSO is the incorporation of a mechanism for velocity 

limitation and the introduction of a polynomial mutation operator.  

SMPSO has shown a high accuracy for MO optimization problems as reported in [32] 

and a high convergence speed as demonstrated in [4]. In PSOs, the movement of candidate 

solutions, called particles, is influenced by the leaders. However, our observations show that if 

the leaders are not appropriately selected, the particles might be attracted by a concentration of 

leaders in certain region of the objective space. Consequently, the entire particles movement will 

prematurely converge towards that specific objective space region where these groups of leaders 

are located. Additional computation overhead would be required to find the entire Pareto front or 

even worse, the SMPSO can be trapped in a local optimum.  

5.3 Leadership in PSO Related Work 

This section describes the most relevant PSO-based multi-objective algorithms work focused 

mainly on global leader selection mechanisms. Other types of surveys about MO versions of 

PSO can be found in Ref. [133]. 

The first MO variant of PSO has been proposed by Moore et al. [134]. The selection of 

leaders was scalar as in single objective optimization; however, the details of scalar ranking are 

not provided. Most MO variants of PSO use the non-dominance ranking similar to NSGA-II for 

selecting their leaders to the archive. Then, different selection schemes are used to select them 

from the archive as described in the remainder of this subsection.  
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In [135], a leader is randomly selected from the archive. The work focused essentially on 

the incorporation of an elitist-mutation to PSO. The proposed MO PSO-based algorithm showed 

promising results; however, it was compared only to NSGA-II using only the ZDT problems in 

addition to another problem for a total of six problems.  

Other approaches used the roulette-wheel which consists in prioritizing certain leaders 

over others assigning a probability of selection to every leader. In [136], a roulette-wheel and 

crowding distance were used to select a leader. The proposed algorithm outperformed four other 

MO PSOs; however, only the ZDT family of problems has been used. In [137], it was proposed 

to hybridize PSO with differential evolution (DE).  PSO served to accelerate the convergence 

speed whereas DE mutation properties were used for diversity maintenance. The selection of 

leaders is done using the non-dominance scheme. Thereafter, the centroid point of leaders is 

calculated and a roulette wheel mechanism is used to select leaders. The probability of a leader 

to be selected is proportional to the distance from the centroid; the further is a leader from the 

centroid point, the higher are the chances to be selected to encourage diversity. The proposed 

algorithm was compared with OMOPSO, SMPSO, NSGA-II and DEMO using the ZDT 

problems, and it converged faster for two problems out of five, namely, ZDT1 and ZDT2. 

Another approach consists in prioritizing leaders based on their previous performance. An initial 

proposal suggested giving points to leaders when they lead the generation of fitter new particles. 

The more points a leader accumulates, the chances of selection become higher [138]. A more 

recent contribution consisted in giving preference (roulette wheel) to leaders having lowest 

average distance to K-neighbors in the objective space [139]. 

Other approaches such as in [140] used a grid structure; the proposed method 

outperformed PAES and NSGA-II using two test functions. In [141], the sigma method is 
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proposed, which consists in selecting for every particle the closest leader in the objective space. 

The results were promising; however, the number of particles had to be increased to maintain a 

good distribution of particles and a turbulence parameter was added to do some abrupt changes 

in the population. 

In [142], five leader selection strategies have been compared using a multi-objective PSO 

namely, the random strategy, the sigma strategy, the nearest strategy, the grid strategy, and the 

non-dominated strategy. The WFG family problems were used for comparison purposes. The 

results showed that the classical non-dominance strategy generates the highest accuracy.  

Other leaders selection methods have been investigated for many-objective optimization 

(more than 3 objectives) problems in [143]. 

5.4 Description of the Proposed Leader Selection Approach 

In order to better understand the purpose of leader selection process, let us review the 

relationship among leaders and particles and how leaders influence particles movement during a 

convergence process. 

The main challenge of extending the PSO algorithm to MO space resides in the 

generalization of the concept of leader [13]. The most common approach consists in considering 

the non-dominated solutions as leaders. If the number of leaders exceeds the maximum size of an 

archive, then the crowding factor is used as a second discriminant, as in the NSGA-II [27].  As 

shown in Figure 18, the non-dominance discriminant can affect the distribution of the particles 

especially at early exploration stage. Sometimes, it is possible to have a concentration of leaders 

which are non-dominated, in a certain region of the objective space; consequently, the entire 

swarm movement will be predominantly affected by these leaders as shown in Figure 19. The 

particles will be covering a certain portion of the Pareto front rather than the entire Pareto front 
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(PF). So, additional computational overhead would be required to find the remaining portion of 

the PF or even worst a portion of the PF which can be valuable in  decision making will not be 

found because no leaders are located in the missing part of the PF.  

 

 

Figure 18: First iteration for the ZDT2 problem - The grey particles are leaders (non-dominated 

solutions), the black particles are the dominated particles and the grey curve represents the PF.  

 

In order to maintain a sound distribution of particles, especially during the early stages of 

the search process (i.e., exploration), it is proposed to select leaders in a more representative 

manner. Let us call these leaders in PSO context deputies. The number of deputies is restricted 

and they should be representative of the swarms by being more diversified (well-distributed). 

The selection of leaders is done using the classical non-dominance ranking. Thereafter, it is 

proposed to select deputies using the sum of weighted ratios (SWR) explained in the next 

section.  
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Figure 19: Iteration 15
th

 (1500 FCs) for the ZDT2 problem – One grey particle is a leader (non-

dominated solution), black markers are the remaining particles (dominated); and the grey line is 

the PF. 

 

5.5 Representative Non-Dominance Concept 

The SMPSO archive is the same used by NSGA-II which is commonly utilized by other MOMs. 

However, the proposed archive selects a more representative number of leaders using SWR, 

which are then used for the calculation of particle velocity. In SMPSO, in every iteration two 

leaders are selected randomly. The less crowded between the two leaders is selected for the 

calculation of the particle velocity. For the proposed LSMPSO algorithm, only the p% of the 

most representative leaders, to be referred as deputy leaders, are selected and used for particles 

velocity update as described in the next sub-section. Thereafter, in every iteration a deputy leader 

is selected randomly for the calculation of the particle velocity. 

For better clarity, the pseudocode of SMPSO algorithm is given next. As shown in bold, 

only the calculation of the particles speed has been modified. 
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1: initializeSwarm() 

2: initializeLeadersArchive() 

3: generation = 0 

4: while generation < maxGenerations do 

5:     computeSpeed() // MODIFIED 

6:     updatePosition() // Eq. 1 

7:     mutation() // Turbulence 

8:     evaluation() 

9:     updateLeadersArchive() 

10:   updateParticlesMemory() 

11:   generation ++ 

12: end while 

13: returnLeadersArchive() 

 

SMPSO Algorithm 
 
 
 
 
 
 
 
 

5.6 Selection Scheme of Deputy Leaders 

The selection of deputy leaders is based on the sum of weighted ratios (SWR). The fitness value 

of every objective    is converted into a ratio    in [0,1] range as follows: 

 

    
       

         
, (12) 

 

where      and      are the minimum and maximum values of the objective i.  

 

Then, the scaled fitness    of the particle x is calculated by summing all    : 

 

    ∑    
 
           ,   (13) 

 

where D is the number of objectives, and x is the current particle for whom    is calculated. 
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Begin 

maxDeputies=%p * MaxArchiveSize; 

i=0; 

 

If (ArchiveSize == 1) // There only one leader 

     Deputies=Leaders 

 

Else if (ArchiveSize  ≤ maxDeputies) //Nb. leaders < Max. allowed deputies 

       

     For each Leader  

 Deputies.add(Leader) 

      EndFor  

 

Else ArchiveSize  > maxDeputies 

      Sort (Leaders) // ascending sorting based on F measure 

 

      While Deputies not full and still Leaders 

    

   If (Leader.F < 1.0 Or Leader.Crowding == Infinity and Leader.F ==1.0 )

        Deputies.add(Leader) 

   EndIf 

        

      EndWhile 

EndIF 

 

End 

It should be noted that the lower the value of    , the closer is the point to the Pareto 

front. The lower values are selected rather than the larger among the leaders to promote a good 

distribution of solutions. The fitness values of extreme points of a Pareto front are usually equal 

to 1.0. Therefore, D extreme solutions are always kept among deputy leaders where D is the 

number of objectives. 

Deputies Selection Procedure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In every iteration, before the calculation of the particles‘ velocity, the SWR of the leaders are 

calculated. Thereafter, deputy leaders are determined as shown in the upper deputy selection. To 
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clarify the proposed approach, assume there are eight leaders as described in Table 12 and Figure 

20, and the maximum number of deputies allowed is four. The SWR measure is used to select 

representative deputies: two extreme leaders because the problem has two objectives and two 

other deputies located in the middle of the PF 

 

Table 12: Example of eight leaders in two-objective space 

In bold are the selected deputies. 

Objective 1 Objective 2 F 

2.2109 15.989 1.0 

3.7248 13.997 0.9681 

5.5071 9.3777 0.7640 

9.0128 6.2587 0.7997 

10.749 4.4470 0.7978 

12.0744 3.7935 0.8498 

13.6567 3.2865 0.9319 

15.4774 2.3427 1.0 

 

 

Figure 20: Example of four selected deputies (full particles) based on the SWR measure.  

 

f1 

f2 



 

 92 

The same leaders are plotted in Figure 20. As shown in bold in Table 12, two leaders 

having the lowest fitness value and two extreme leaders are selected. These deputies are 

represented in the graph with plain points whereas the other leaders are represented with empty 

points. It can be seen that the selected deputies represent well the full spectrum of the leaders. In 

addition, it can be seen that there is no concentration of leaders in a specific region of the 

objective space which affects particles distribution. 

 

5.7 Experiments Settings 

This section describes the settings for the experiments used in this chapter, namely, the 

description of the used benchmark problems, the compared MOMs with the proposed LSMPSO 

algorithm, and parameter settings such as population size and stopping criteria.  

 Benchmark problems 5.7.1

Table 13: Utilized bi-objective problems in LSMPSO comparison 

Problem Number Variables Geometries 

ZDT1 30 Convex 

ZDT2 30 Concave 

ZDT3 30 Convex, disconnected 

ZDT4 10 Convex 

ZDT6 10 Concave, non-uniformly spaced 

DTLZ1 7 Linear 

DTLZ2 12 Concave 

DTLZ3 12 Concave 

DTLZ4 12 Concave 

DTLZ5 12 Concave 

DTLZ6 12 Concave 

DTLZ7 22 Disconnected 

As shown in Table 13 two well-known families of problems are used for comparison purposes: 

the ZDT [33] and the DTLZ [34] family. These two families are the most commonly used ones 
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and are composed of different PF geometries, namely, convex, concave, disconnected, linear, 

and non-uniformly spaced. A more detailed description can be found in Tables 35 and 36 

(Appendix A). 

 Comparison of LSMPSO with other MOO algorithms 5.7.2

The proposed LSMPSO is compared with seven state-of-the-art MOMs which have been 

described earlier in Chapter 3. They are briefly presented in Table 14.  

 

Table 14: Algorithms compared with LSMPSO 

Algorithm Type Inventors Year 

SPEA2 Genetic Algorithm (GA) Zitzler et al. [28] 2001 

NSGA-II GA Deb et al. [27] 2002 

GDE3 Differential Evolution (DE) Kukkonen and Lampinen [29] 2005 

MOCell Cellular GA Nebro et al. [31] 2007 

AbySS Scatter Search Nebro et al. [30] 2008 

MOEAD Evolutionary  based on Decomposition Zhang and Li [6] 2008 

SMPSO Particle Swarm Optimization (PSO) Nebro et al. [32] 2009 

 

 Parameters settings 5.7.3

The parameters settings are the same for every MO metaheuristic. These parameter settings were 

taken from [9] and the same as in the comparative study presented in Chapter 3. 

NSGA-II, SPEA2, MOCell, AbYSS and GDE3 and MOEA/D have a population size of 

100. In the same manner, LSMPSO and SMPSO have a configuration of 100 particles. The 

metaheuristics having an archive such as NSGA-II, SPEA2 and others, have also a maximum 

size of 100. 
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In regards to the number of deputies set for LSMPSO, it is fixed to 10. In other words, 

only 10% of the maximum archive size can be used as deputies.  

 Given that the Pareto fronts of the problems used in this study are known beforehand, the 

algorithms are executed until sufficient approximation of the real Pareto fronts (i.e. HVR ≥ 98%) 

is reached as shown in Figure 21.  

Finding the Pareto front might not always be possible for some algorithms depending on 

the problem‘s complexity. In other words, some algorithms might perform well with some 

specific problems, but not able to find the Pareto front for other types of problems, or it might 

take too long to produce the Pareto front. Consequently, another stopping condition is added by 

allowing every metaheuristic to perform at most 10
6
 function evaluations as in [4]. 

 

 

Figure 21: Pareto fronts with different HV values obtained for the ZDT1 problem [3]. 
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5.8 Result Analysis 

Due the stochastic nature of metaheuristics, every algorithm was run 100 times independently. 

The results are reported in Table 15. The dark grey shows the fastest algorithm, while lighter 

grey shows the second fastest algorithm. 

The Wilcoxon statistical test is employed based on [49], to present results at a 0.05 

significance level. However, whenever the statistical test does shows no statistical difference 

between the two fastest algorithms, both of them ranked are first. For example, for the problems 

ZDT3, ZDT4, ZDT6 and DTLZ1 there was no significant statistical difference between the two 

fastest algorithms. So, the two fastest MOMs were ranked first for these specific cases. 

The hit rate means the number of runs where a MOM was able to find an accurate 

approximation of the Pareto front (HVR ≥ 98%). For example, 100 means an accurate 

approximation was found 100 out of 100 runs. A lower rate than 100 automatically disqualifies 

the algorithm from the comparison process for that specific optimization problem. 

It can be seen in Table 15 that the proposed algorithm LSMPSO, was on average, the 

fastest algorithm among all the compared algorithms for 10 out of 12 problems. The LSMPSO 

was the fastest algorithm for all the ZDT and DTLZ problems except for the DTLZ4 and DTLZ6 

problems. In addition, it achieved a hit rate of 100% for all the problems.  

When LSMPSO was compared to its parent algorithm the SMPSO, it is found that 

LSMPSO improved the convergence speed of SMPSO for 7 problems out of 12 namely for 

ZDT1, ZDT2, ZDT3, DTLZ2, DTLZ3, DTLZ5 and DTLZ7. LSMPSO had the same 

performance as SMPSO for the three problems ZDT4, ZDT6 and DTLZ1. And LSMPSO 

achieved a lower performance than SMPSO for only two problems DTLZ4 and DTLZ6. 

However, it is worth mentioning that SMPSO was not the fastest algorithm for the following two 
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problems: DTLZ4 and DTLZ6. Overall, LSMPSO improved SMPSO for 58.66% of the 

problems, they had both the same fastest performance for 25% of the problems, and LSMPSO 

had a lower performance that SMPSO for 16.33% of the problems. In brief, it can be said that 

LSMPSO improved the convergence speed of SMPSO algorithm to make it the fastest algortihm 

while maintaining consistently a high accuracy.  

The second performance was achieved by SMPSO. It was the fastest algorithm for three 

problems namely ZDT4, ZDT6 and DTLZ1 and the second fastest algorithm for six problems, 

namely, ZDT1, ZDT2, DTLZ3, DTLZ4, DTLZ6 and DTLZ7. SMPSO had a hit rate of 100% for 

all the problems. So, overall SMPSO offered the second best convergence speed. 

The third performance was achieved by GDE3. It was the fastest algorithm only for two 

problems ZDT3 and DTLZ6. GDE3 had a hit rate of 100% for all the problems. Overall, it had a 

good performance except for the problems ZDT2, ZDT4 and DTLZ2 where GDE3 had serious 

difficulties as compared to other fastest algorithms. 

 Furthermore, only LSMPSO, SMPSO and GDE3 achieved a hit rate of 100% for all the 

compared problems which demonstrate their consistency in the results as well as the robustness 

of these three algorithms. 

AbYSS comes in fourth position. AbYSS has been the fastest optimization algorithm for 

the DTLZ4 problem and the second fastest for two problems, namely, DTLZ2 and DTLZ5. 

However, AbYSS had difficulties with DTLZ6 and especially with DTLZ7 by having a hit rate 

of only 1%. 
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Table 15: Median and interquartile range (IQR) of the number of evaluations for reaching the Pareto front (HV ≥ 98%). The dark grey 

area shows the fastest algorithm, while the lighter grey area shows the second fastest algorithm. 
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Table 16: Average hit rate of the compared MO optimzation algorithms. 

In bold are low hit rate (low accuracy) 

 LSMPSO SPEA2 NSGAII GDE3 SMPSO AbYSS MOCell MOEAD 

ZDT1 100 100 100 100 100 100 100 100 

ZDT2 100 100 100 100 100 100 100 100 

ZDT3 100 100 100 100 100 100 100 100 

ZDT4 100 100 100 100 100 100 100 100 

ZDT6 100 100 100 100 100 100 100 100 

DTLZ1 100 100 100 100 100 100 100 100 

DTLZ2 100 100 100 100 100 100 100 100 

DTLZ3 100 100 100 100 100 100 100 100 

DTLZ4 100 72 82 100 100 100 44 100 

DTLZ5 100 100 100 100 100 100 100 100 

DTLZ6 100 48 34 100 100 1 9 100 

DTLZ7 100 100 100 100 100 82 88 76 

 

In order to rank the remaining multi-objective optimization algorithms, boxplots [26] are 

used. The boxplots allow a graphical analysis of the found solutions and show the consistency of 

the results by examining the IQR visually. 

In boxplots the conducted experiments are compiled respectively in Figure 22 for the ZDT 

family problems and in Figure 23 for the DTLZ family problems. It can be seen from the 

boxplots that MOCell achieves usually the fourth performance most of the time, followed by 

NSGA-II, followed by SPEA2, then finally by MOEA/D. As shown in Table 16, it is worth 
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mentioning that MOEA/D achieved a low hit rate only for one problem whereas the NSGA-II 

and SPEA2 algorithms achieved a low rate for two problems and MOCell achieved a low rate for 

three problems. 

By examining the boxplots, another interesting observation is that the proposed 

algorithm, LSMPSO, offered a consistent performance which for most of the time is better than 

its parent algorithm SMPSO. However, GDE3 achieved the highest consistency in the results. It 

might be interesting to analyze why GDE3 has a higher consistency in comparison with the other 

algorithms. Thus, LSMPSO could be further enhanced not only to be the fastest one but also to 

provide more consistent results. 
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Figure 22: Boxplots of the number of function evaluations to find the real Pareto front for the 

ZDT bi-objective problems.  
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Figure 23: Boxplots of the number of function evaluations to find the real Pareto front for the 

DTLZ bi-objective problems 
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5.9 Summary 

This chapter proposed an enhanced variant of multi-objective particle swarm optimization in 

order to accelerate its convergence speed. The proposed algorithm called LSMPSO incorporated 

a restriction mechanism on the leaders that are used for particle velocity calculation. Only the p% 

most representative leaders, called deputies, are selected using the SWR algorithm, for the 

particle velocity calculation. The proposed algorithm LSMPSO was compared to seven state-of-

the-art metaheuristics, namely, NSGA-II, SPEA2, GDE3, SMPSO, AbYSS, MOCell and 

MOEA/D using the ZDT and DTLZ family problems. The convergence speed of these 

algorithms was compared by counting the number of function evaluations required to find an 

accurate approximate of the Pareto front (HV≥98%) with a maximum of 10
6 

function evaluations 

allowed. 

The proposed LSMPSO algorithm was overall the fastest algorithm to find an accurate 

approximation of the Pareto front for 10 out 12 studied problems. In addition to its high 

convergence speed, LSMPSO achieved a hit rate of 100% for all the studied problems.  

In future work, we would like to study the proposed selection method on other multi-

objective metaheuristics. Also, it is proposed to utilize the proposed LSMPSO to solve a real 

MOP. In the next chapter, LSMPSO performance is compared with other MOMs to solve a 

photovoltaic farm design. 
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Chapter 6 

 

 

Case Study I: Optimal Photovoltaic System Design 

Using LSMPSO 
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It was found in the survey of optimal design of RESs presented in Chapter 4 that most MOPs 

related to RESs did not use recent state-of-the-art metaheuristics; there is a gap between the 

research communities of MOMs and RESs. This chapter tries to bridge between the two research 

communities by using state-of-the-art MOMs. In addition, this chapter serves to demonstrate the 

use of the proposed LSMPSO method presented in the previous chapter and compares it with 

four other MOMs to solve a MO photovoltaic farm design problem. 

6.1 Introduction 

Recently, several parts of the world suffered from electrical black-outs due to high 

electrical demands during peak hours. Stationary photovoltaic (PV) collector arrays produce 

clean and sustainable energy, especially if sunny, which is usually during peak hours. In 

addition, PVs do not emit any waste or emissions except during their production or disposal, and 

are silent in operation. The incident energy collected by PVs is mainly dependent on the number 

of collector rows, distance between collector rows, dimension of collectors, collectors angle of 

inclination, and collectors azimuth, which are all involved in the proposed modeling in this 

chapter. The objective is to achieve optimal design of a PV farm yielding two conflicting 

objectives, namely, maximum field incident energy and minimum cost of deployment. The 

proposed LSMPSO algorithm is compared with four state-of-the-art multi-objective evolutionary 

algorithms MOMs namely, GDE3, MOCell, AbYSS, and SMPSO to solve a PV farm design 

problem in Toronto, Canada area. These four algorithms have been selected because they 

showed the highest accuracy with identical experiment settings in the comparative study 

presented in Chapter 3. Simulation results are presented and discussed to illustrate the advantage 

of utilizing MOMs in PV farms design and other energy related real-world problems. 
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Solar energy systems are popular renewable energy systems because they are emission 

free and easily deployable. Multiple sun-based energy systems exist such as photovoltaic 

collectors (PV), concentrated solar power plants, and solar thermal electricity plants. These 

systems can be used for meeting the global energy crisis due to rising world-wide demands and 

insufficient supply of electricity throughout the world by deploying the appropriate systems in 

the required areas. For example, PV systems are inefficient in very hot areas, such as desert, but 

are more efficient in mild to cold areas. In this chapter, PV panels are selected because of mild-

cold weather conditions in the area of Toronto, Canada. Although Canada produces enough 

electricity to fulfill the national demand, nevertheless solar energy is of special interest due to PV 

non-polluting properties. 

There are several solar-related energy systems. Concentrated solar systems like the 

parabolic trough heat transfer fluid/steam systems can typically generate full rated electrical 

output for 10-12 hours a day [144]. Other solar power generation systems include large solar 

updraft towers which can produce large amounts of electricity via utilizing air flow created by 

heated air which drives pressure staged turbines [145].  

In spite of the above available large-scale technologies, photovoltaic panels are the most 

popular method for harvesting solar energy, because they directly convert the Sun‘s rays into 

electrical power. In addition, photovoltaic panels can be deployed anywhere and can provide a 

relatively stable electrical output. However, there are several drawbacks; they are subject to 

changing output efficiencies based on external factors such as shade, cloudy weather, covered by 

sands, and others. 

There are two types of solar radiations on the Earth: direct and diffuse radiation. The 

sunlight is filtered through the Earth's atmosphere. The solar radiation is received directly from 
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the Sun without having been dispersed by the atmosphere is called direct radiation. When the 

sun's radiation is changed by the atmosphere due to clouds, water vapour, and other molecules, it 

is called diffuse radiation. Therefore energy absorbed by the PV panels is the sum of the amount 

of direct and diffuse radiations received in a given day. 

In this case study, comparison is made between LSMPSO and the four fastest and most 

accurate found MOMs in the previous comparative study, namely, GDE3, MOCell, AbYSS and 

SMPSO, to optimize the deployment of solar PV farms.  

The objective is to maximize the total incident solar energy and minimize the cost of PV 

panel deployment in a specific field. As in [146] and [5] the cost was limited to initial investment 

because the papers focused only on the PV configuration setup. However, a real PV farm 

requires overhead costs such as maintenance costs, residual fees, and energy storage component 

fee. Six decision variables compose the optimization problem, namely, the number of collector 

rows, the distance among collector rows, the dimension of collectors, the collectors inclination 

angle, the collectors azimuth angle, and collector's clearance above ground. 

6.2 Related Works 

This section presents the most recent optimization works applied to design of solar energy 

systems. 

Varun [147] implemented a genetic algorithm for maximizing the thermal performance of 

flat plate solar air heaters to optimize various systems, and operating parameters. The basic 

values like number of glass covers, Irradiance and Reynolds, plate tilt angle, and emissivity of 

plate are optimized for maximizing thermal performance. 

Thiaux et al. [148] applied the NSGA-II algorithm to optimize the load profile impact on 

stand-alone photovoltaic system gross energy requirement. Yang et al. [149] developed a hybrid 
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optimized solar-wind system. They optimized the components' capacity sizes of hybrid solar-

wind power generation systems which employs a battery tank. Chang [150] attempted to 

maximize the electrical energy output of photovoltaic modules using a hybrid heuristic method. 

They combined PSO with nonlinear time-varying evolution to determine the optimal tilt angle of 

the modules. 

Recently, Deb et al. [40] have attempted to solve a four-objective optimization model of a 

solar thermal power plant operation system. The four objectives were profit, total investment 

costs, internal rate of return, and pollution. First, they have used clustered NSGA-II algorithm to 

find set of trade-off solutions over the entire Pareto-optimal front. Then, they used a reference 

point based on Multiple Criterion Decision Making (MCDM) approach with the clustered 

NSGA-II to find preferred solutions on some parts of the Pareto-optimal front. They have 

demonstrated the benefits of using multi-objective optimization procedure with user decision 

making interaction to find a single preferred solution. 

In a related study, the shading among solar panels was modeled and a simulation-based 

algorithm was developed to predict the loss of energy due to shade in three individual locations 

in Arizona [151]. Myers et al. [152] have proposed and simulated a theoretical solar cell by using 

a modified genetic optimization algorithm for shaping solar cells. The result of the optimization 

process is a 3D shape which fits within the area and volume of a conventional solar cell but it is 

drastically more efficient than regular rectangular shapes. 

O. Ekren and Y. Ekren [153] have used simulation and single-solution based 

metaheuristic algorithm, called simulated annealing (SA), for optimizing the size of a PV-wind 

integrated hybrid energy system with battery storage. The objective was to minimize of the 

hybrid energy system's total cost. They have demonstrated that the optimum result obtained by 
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the SA algorithm showed a 10.13% improvement on the objective value as compared to their 

simulation model. 

Appelbaum and Weinstock [154] worked on electrical output maximization for 

photovoltaic by concentrating on shading and spacing issues. They used Sequential Quadratic 

Programming for optimization. More recently, they [155] added the azimuth angle of a solar 

panel as variable to the problem. However, the variable is manipulated in a manual fashion, the 

system is optimized automatically. They reached 12% enhancement for a small scale 

photovoltaic array by reducing the amount of shading in order to increase the efficiency of array. 

Bourennani et al. [156] utilized Differential Evolution (DE) and simulation-based optimization 

methods to compare the maximum annual incident energy captured by solar collectors. The 

captured energy was close to the simulation approach and DE algorithm. This problem has been 

converted into a MOP and GDE3 and NSGA-II MOMs have been used to solve it [157]. NSGA-

II showed more accurate results than GDE3. 

6.3 Physical System Model 

The modelling of this case study is taken from our previous work in [157]; however, 

several additional algorithms have been tested, the PF has been generated and a more objective 

evaluation measure (IGD) has been utilized for comparison purposes. There has been a very 

limited use of multi-objective optimization methods in PV field. Thiaux et al. [148] used MO but 

they focused on the optimization of the entire solar farm assuming a certain static setup whereas 

this work focuses on the setup of PV panels which is composed of six decision variables namely, 

the number of collector rows (a discrete variable), distance among the collector rows, the 

inclination of the PV panels, the height of a PV panel, collector's azimuth due south, and 

collector's clearance above ground. Five MOMs are compared to solve this problem, namely 
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LSMPSO, SMPSO, GDE3, AbYSS and MOCell. The results are compared and discussed in 

detail in Section 6.4. 

The model to be optimized is composed of stationary PV panels. The objective is to 

capture the maximum solar radiation with minimal cost investment. The PV collectors are fixed 

in the field as shown in Figure 24. As it can be seen, the collectors are inclined at an angle   

facing roughly the south because they are located in the north hemisphere of the globe. The 

dimension of the collectors is referred as length   and as height  . The length of the collectors is 

fixed   and is equal to the length of the field whereas the width of field is  . There should be a 

minimum clearance of   above the ground to minimize the accumulation of dust, debris, or snow 

on the collectors. 

  Solar collector model 6.3.1

Collector maintenance requires the height above the ground E to be limited. The 

minimum distance   between two rows is limited to allow easy access between PV panels. 

Moreover, the height   of the collectors themselves is constrained by the manufacturer [154] 

[155]. Thus, 

 

            (14) 

        , (15) 

 

where          . 
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The configuration factors for un-shaded and shaded  collectors are given by as follow, 

respectively: 

 
       (

 

 
)  (16) 

 
  

       [      
 
    ]       (17) 

 

where   is the normalized distance between two rows given by       . 

 

 

Figure 24: Collectors arrangement in a stationary solar field,   indicates row number,   indicates 

length of PV,   indicates the width of the solar field, D indicates the distance between collector 

rows,   indicates PVs' inclination angle, and    indicates the perpendicular distance created by 

the PVs. 

 

The angle of incidence   is the angle between a normal to the collector face and the 

incoming solar beam, it depends on the solar angles (altitude and azimuth) and collector angles 

(azimuth and tilt, Figure 25). 

 

                                                (18) 

where   is the sun elevation angle;   is the collector inclination angle and         is the 

difference between the sun and collector azimuth with respect to south. 
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The relative shaded area is calculated as follows: 

 
   

  
 

 
  

 
 (19) 

 

where, 

 
     

           

  
 

|    |

                     
 (20) 

 

and 

 
   

          

     
        

    

 (21) 

 

         is the normalized collector length. 

 

The yearly direct      and diffuse      beam irradiations per unit area of an un-shaded 

collector (first row) are calculated as follows: 
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         (22) 

  

and 

 

     ∑ ∑   

  

  

     

   

    (23) 
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Figure 25. Angle of incidence : angle between a normal to the collector face and the incoming 

solar beam. 

 

The average yearly direct    
    and diffuse    

    beam irradiations per unit area of an 

un-shaded collector (      row) are given by: 

 

 

  
   ∑ ∑  

  

  

     

   

                 (24) 

 

and 

 

  
     

  ∑ ∑   

   

   

     

   

     (25) 

 

                 

where    is the summation time interval from sun rise    to sunset    on the collector for the 

beam irradiance, and from sun rise     to sun set     for the diffuse irradiance. The outer 
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summation represents one year term from January 1
st
       to December 31

st
        . 

Figure 26 shows the sixth decision variable     ; collectors azimuth with respect to the south 

and limited to [        ]. 

 

 

 

Figure 26: Collector azimuth with respect to south     . 

 System complexities 6.3.2

The current multi-objective optimization PV farm design is composed of several 

complexities that make it hard to solve. It is composed of mixed-type integer (number of PV 

collector rows) and continuous variables. The first objective is multimodal because it 

encompasses trigonometric functions which are hard to solve. The Pareto front geometry is 

linear. Some variables take widely different ranges of values, thereby making it difficult for the 

solvers to provide adequate emphasis to correct variable combinations.  

Despite the existence of only six variables (6D), this problem exhibits a wide and non-

uniform range of variable values. In addition, the non-dominated solutions' variables are 

composed of other complexities which are a) non-extremal, b) non-medial, having c) dissimilar 

parameter domains, and d) many-to-one mappings which make the problem more complicated to 

solve [35].  
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Dissimilar parameter domains consists of variables with heterogeneous parameters bounds; 

for example, the heterogeneous domains of height and inclination angle are defined respectively 

as follows         and          .  

Non-extremal and non-medial means the variables are neither located in the extreme nor 

middle of parameter domains. For example,      ,     and       (middle).  

Many-to-one mappings imply that different combination of parameters can generate 

exactly the same solutions (same fitness values). For example, two similar solutions on the PF 

have completely different parameter settings. One solution has six rows of PV panels with small 

dimensions, and another solution can have only two rows with very large panel dimensions. Both 

cases result roughly in the same cost and energy generation. 

 Objectives, variables, and constraints 6.3.3

As mentioned previously, the PV design optimization problem is composed of two objectives, 

six variables, and two constraints. A final optimal solution is composed of the following 

variables: the number of collector rows, distance between collector rows, dimension of 

collectors, collectors inclination angle, and collectors azimuth angle. The objectives, constraints, 

and variable domains are described in Equations 26-35. 

The two objectives are the maximization of incident energy and minimization of the 

installation and material cost. 

1) Incident energy: the yearly absorbed incident energy should be maximized in order to 

generate the maximum possible electricity. 

2) Cost: the cost of PV array collectors installation should be as low as possible. 
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The mathematical formulation of the optimization problem is defined as follows: 

           [           (  
     

  )] , (26) 

              , (27) 

         

                     (28) 

            (29) 

 

Variable bounds: 

        (30) 

         (31) 

           (32) 

           (33) 

              (34) 

         (35) 

 

Where: 

     

             

   is the price of PV panel per square meter.  

    is the yearly beam irradiation per unit area of an un-shaded collector (first row). 

    is the yearly diffuse irradiation per unit area of an un-shaded collector (first row). 

   
   is the average yearly beam irradiation per unit area of shaded collectors          . 

   
   is the average yearly diffuse irradiation per unit area of shaded collectors           . 
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 Climate information 6.3.4

The location selected for all the simulations is Toronto, Ontario, Canada (Latitude 43.45
o
/ 

Longitude -79.25
o
).  Table 48 (Appendix B), show 30 years of monthly averaged hourly direct 

normal beam irradiance and horizontal diffuse irradiance in KWh/m
2
 [158]. These datasets were 

generated by joining twelve Typical Meteorological Months taken from a database of 30 years of 

Canadian Weather Energy and Engineering Datasets (CWEEDS) data. Table 49 (Appendix B) 

shows the monthly average hourly diffuse irradiance (used in equations 9 to 12) and Table 51 

(Appendix B) shows 22 years monthly average hourly solar angles relative to the horizon, and 

Table 50 (Appendix B) solar azimuth angles due south in degrees (used in Equations 12 and 14). 

The solar datasets were taken from the NASA GEOS-4 [159]. 

 PV panel specification 6.3.5

There are numerous types of PV panels in the market. PV panels are priced based on their 

electrical characteristics (Rated power, Voltage, Current, Module efficiency, Short-circuit 

current, Open-circuit voltage, Maximum series fuse rating, Maximum system voltage) and 

mechanical characteristics (Dimensions, Weight, Frame, number of Solar Cells). In this case 

study, Ameresco Solar BP 90 Watt has been used, 12V solar panel priced at $616.59/m
2
 [160]. 

Please note that even though this specific solar panel was utilized for the experiments, the 

solution outcome would not necessarily be affected if other panels are used. Overall, the current 

PV panels' average price in Ontario is $4.50 per Kwh including all installation fees and required 

material. 
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6.4 Experimental simulations 

The parameter settings of the compared MOMs are the same as in the presented comparative 

study (Section 3.5.2). Due to the stochastic nature of MOMs, they were executed 100 times 

independently. The stopping criterion for all the algorithms was set to 10
4
 function evaluations. 

Their best and median solutions were compared graphically. In addition, the inverse generational 

distance (IGD) [23] measure was used for complementarity; the Wilcoxon statistical procedure 

was used to present the IGD results at a 0.05 significance level. In order to generate the IGD 

measure, the solution needs to be known beforehand. Therefore, all the algorithms have been 

executed for 10
6
 function evaluations several times; then, all the combined non-dominated 

solutions have been used to establish an approximation of the Pareto front which is linear and 

described as follows: 

 y = -0.4476x - 212.63,  (36) 

 

where x is the first objective and y is the second objective,   [                ]   

[               ].  

The synthetic solutions have been generated in such a way to be well distributed and 

equidistant from each other in the objective space.  

6.5 Discussion of the results 

The results can be divided into two groups. The first group is composed of GDE3, MOCell and 

AbYSS. They roughly found half of the Pareto front as shown respectively in Figure 27, 28, and 

29. The second group detected the full Pareto front and is composed of SMPSO and the proposed 

LSMPSO as shown in Figure 30 and 31. It is obvious that the second group generated more 
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accurate solutions than the first. The performance of the first group of algorithms over the second 

is confirmed by the respective compilation of the 100 runs in Tables 17 and 18. The mean and 

standard deviation of LSMPSO and SMPSO are clearly superior to GDE3, MOCell, and AbYSS. 

And, the results of LSMPSO and SMPSO have a high similarity to pass the statistical validation. 

Therefore LSMPSO and SMPSO are declared as equally the most accurate. 

 

Figure 27: Median (IGD) solutions found by MOCell 

 

 

Figure 28: Median (IGD) solutions found by AbYSS 
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Figure 29: Median (IGD) Solutions found by GDE3 

 

 

 

 

 

Figure 30: Median (IGD) Solutions found by SMPSO 
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Figure 31: Median (IGD) solutions found by LSMPSO 

 

 

The boxplots of the 100 runs are presented in Figure 32. It can be seen again that 

LSMPSO are SMPSO occupy the first position and have both similar accuracy with a high 

consistency which is confirmed by a low standard deviation. The second position is occupied by 

GDE3, followed by MOCell and AbYSS.  

It is important to mention that the proposed LSMPSO achieved a lower IGD median and 

a lower IQR than SMPSO but not sufficient to pass the Wilcox statistical test. In addition, the 

lowest IGD among all the compared MOMs is achieved by LSMPSO, the details of the solutions 

are shown in Table 52 in Appendix B. 

 

Table 17: IGD mean and standard deviation 
 LSMPSO GDE3 MoCell AbYSS SMPSO 

PV                                                                              

 

Table 18: IGD median and IQR 
 LSMPSO GDE3 MoCell AbYSS SMPSO 

PV                                                                              
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Figure 32: Boxplots of LSMPSO, SMPSO, GDE3, MOCell, and AbYSS over 100 runs to solve 

PV design problem 

 

One question needs to be addressed based on the results. Why GDE3, AbYSS and 

MOCell performed poorly when compared with SMPSO and LSMPSO? A possible answer is 

that the PV farm design problem can be classified as a many-to-one problem. It means that the 

same solutions in the objective space might be generated with different variables. For example, 

two rows of large PV panels might have the same cost and energy output as five rows of PV 

panels but of small size. So, when two heterogeneous solutions in the variable space and 

homogeneous in the objective space are combined, using evolutionary operators such crossover 

and mutation, the resulting new solutions might be of poor quality because of the high 

heterogeneity in the variable space. 

The first group of algorithms (GDE3, AbYSS and MOCell) found solutions varying from 

one to six rows which can generate up 100,000 MWh. The second group (LSMPSO and 

SMPSO) found solutions that cover the full spectrum: from one to ten rows that can generate up 

to 184,676 MWh. So, the lowest cost is of $925 which allows to absorb 2096 MWh per year with 

one row of solar panel having the smallest possible dimensions (0.2 m x 0.8 m) an inclination of 
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28º towards south-east direction (-5.6º). The maximum energy that could be generated is 184,676 

MWh per year with a cost of $88,116. This is the only solution with 10 rows collectors having a 

dimension of 1.91 m x 14.42 m with an inclination of 16.13º towards the south.  

6.6 Summary 

In this chapter, five state-of-the art MOMs, namely the proposed LSMPSO, the parent algorithm 

SMPSO, and AbYSS, MOCell and GDE3, were used for optimal design of solar farm in 

Toronto, Canada. These MOMs have been selected because they showed the highest accuracy in 

the previous comparative study. The objectives were the maximization of the total incident solar 

energy and the minimization of the cost of deployment for a specific field. The decision variables 

consisted in number of collector rows, distance between collector rows, dimension of collectors, 

collectors‘ inclination angle, collectors azimuth, and elevation above ground. 

The use of MOMs permitted to find a variety of optimal PV farm design solutions which 

would not be found using single objective solutions. For example, some intermediate solutions 

could be of interest with regards to other non-expressed objectives or secondary objectives such 

as space between solar panels or other technical aspects. Based on our result the maximum 

energy was       MWh/year when the number of rows      , the PV panel height    

      m, the PV inclination angle        , the distance between subsequent panels    

      , and the PV clearance above the ground        . 

The results showed that overall the LSMPSO and SMPSO algorithms achieved more 

accurate performance based on the IGD measure than GDE3, AbYSS and MOCell by 

discovering broader spectrum of the Pareto front. LSMPSO and SMPSO found a portion of the 

Pareto front that was not found by GDE3, AbYSS and MOCell because of the many-to-one 

mapping properties. For example, solutions having a number of rows from 7 to 10 were found 
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only by LSMPSO and SMPSO. Also, LSMPSO showed slightly better results than SMPSO by 

achieving a lower IGD median and IQR but that was not statistically significant. 

The generated solutions demonstrated the practicality of MOMs which generated 

interesting solutions with a higher ROI in the middle of the Pareto front which won't be 

generated using a single objective optimization method. 

As future work, we would like to extend the deployment of solar farms with tracking 

capability as supposed to stationary solar farms discussed in this chapter. Also, we would like to 

investigate gradual linear land inclination between rows to minimize the shadow on subsequent 

rows. Finally we would like investigate the use of ray focusing mirrors to direct the radiation 

when the sun's ray is not in the direction of the solar panels. 

This case study demonstrated the performance of MO variants PSO in solving a real-

world problem. This performance is due to leadership selection mechanism as all the other 

MOMs (GDE3, Abyss and MOCell) do not use the leadership concept. Since GDE3 showed the 

highest accuracy in the comparative study; it would be valuable to incorporate the concept of 

leadership into GDE3. 
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Chapter 7 

 

 

Opposition-Based Third Generalized Differential 

Evolution (OGDE3) 
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This chapter presents the second fundamental algorithmic contribution of this thesis. As 

shown in the comparative study presented in Chapter 3, the most accurate MOM is GDE3 

which is a MO variant of DE. Opposition-based learning (OBL) has been successfully used 

in the past for acceleration of single-objective metaheuristics, especially DE. The most 

successful example in this regard is the opposition-based differential evolution (ODE) [14]. 

However, OBL was not fully explored for MOMs. Therefore, in this chapter, for the first 

time, OBL is successfully adapted for a MOM by using a single population (no coevolution) 

[15]. The proposed MOM is based on the GDE3 method and is called opposition-based 

GDE3 (OGDE3). OGDE3 utilizes OBL for opposition-based population initialization and 

self-adaptive opposition-based generation jumping. Also, the concept of leadership is 

incorporated into OBL for faster convergence. The proposed OGDE3 algorithm is compared 

with seven state-of-the-art MOMs using the ZDT test suite. OGDE3 outperformed the other 

algorithms; the results are presented and discussed in detail. 

7.1 Introduction 

It is common to use MOMs to solve complex optimization problems which can take 

over million function evaluations to find the real front [9]. One reason for this convergence 

problem is due to metaheuristics generating initially random solutions. Then, they try to 

converge towards optimal solutions. If random points are generated close to the optimal 

solutions, it can result in a fast convergence. Otherwise, if random points are generated far 

from an existing solution, in a worst case, in the opposite location, then the convergence will 

become much slower or even intractable. Overall, in the absence of any prior knowledge 
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about the problem to optimize, it is not possible to make a good initial guess. Therefore, all 

directions should be considered simultaneously, or more practically, the opposite direction 

should be considered, based on opposition-based learning (OBL) concept. Rahnamayan et al. 

[161], [162] proved mathematically and experimentally that the use of opposite points is 

more efficient than a pure random point.  

In this chapter, OBL with leadership are applied to a state-of-the-art MOM called 

third generalized differentiation evolution (GDE3) to accelerate its convergence speed. The 

proposed algorithm, called an opposition-based third generalized differentiation evolution 

algorithm (OGDE3), is compared with seven state-of-the-art MOMs including its parent 

algorithm GDE3 using the ZDT test suite [33].  The results are promising and they are 

presented and discussed in detail in this chapter. 

7.2 Opposition-Based Learning (OBL) 

Opposition concepts have been used for decades in many fields. The following list gives 

some examples [16]: 

• Opposite particles/elements (physics) 

• Antonyms (language) 

• Antithetic variables (simulation) 

• Opposite proverbs (culture) 

• Complements (set theory) 

• Opposition party (politics) 

• Inverter (digital design) 
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• Dualism (philosophy and religion) 

• Classical elements (archetype) 

• If-then-else (algorithm) 

• Complement of an event (probability) 

• Revolution (social-political) 

In a similar way, the concept of OBL has been introduced by Tizhoosh [163] as a new 

concept in computational intelligence. Often a machine learning algorithm starts with initial 

random points then, the algorithm tries to enhance the candidate solution, hopefully, towards 

an existing optimum. For example, weights in neural networks, and initial population in 

genetic algorithms, are generated randomly. 

 Variants of opposition-based Schemes 7.2.1

There are several variants of opposition schemes [164]. The main types are described below: 

 

Definition (Type-I Opposite Points) [164]: Let x be a real number defined in the interval [a, 

b]. The opposite number  ̆, as illustrated in Figure 33, is defined as follows: 

  ̆       , (37) 

 

Figure 33: An opposite point in a one-dimensional search space 
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Figure 34: Illustration of an opposite point in 2D search space. 

 

Similarly, the opposite of x in a multidimensional search space can be defined as 

follows. Let                  be a point in an n-dimensional system with            

           [     ]. The opposite point  ̆ is defined by its coordinates  ̆       ̆  where 

 

  ̆                                 (38) 

 

Definition (Type-I Super-Opposite Points) [157]: Let                   be a point 

defined in n-dimensional space with     [    
      

 ] and  ̆    ̆   ̆       ̆ ) is its 

opposite point in the same space. Then, any point   ̆  is a type-I super-opposite of P 

if  ( ̆   )   ( ̆  ), where d(.,.) denotes a distance metric such as the Euclidean distance.  

 

 

 

X2 

X1 
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Definition (Type-I Quasi-Opposite Points) [157]: Let                   be a point 

defined in n-dimensional space with     [    
      

 ] and  ̆    ̆   ̆       ̆ ) are the 

opposite points in the same space. Then, any point   ̆  is a type-I super-opposite of P if 

 ( ̆   )   ( ̆  )  where d(.,.) denotes a metric such as the Euclidean distance. An 

illustration of the difference between the type-I super-opposite and quasi-opposite is shown 

in Figure 35. 

 

 

Figure 35: Simplified representation of quasi-opposites and super-opposites in 2D search 

space [164] 

 

Definition (Type-II Opposite Points) [164]: Assume                  is a known function, 

and           are given or they can be estimated. Let                     be an 

arbitrary function with   [         ]. For every point                 , define the 

type-II opposite point  ̆    ̆   ̆       ̆ ) under the following condition. 
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  ̆  {   ∣∣  ̆                   (39) 

 

An illustration of the difference between the type-I opposite and type-II opposite is 

shown in Figure 36. The type-I opposition points are calculated based on the input points, 

while the type-II opposition points are calculated based on fitness values. For example, the 

opposite (type-I) of the point x is  ̆ ; but the opposite (type-II) of x is  ̆   because f( ̆  ) is the 

opposite of f(  ̆  . 

 

 

Figure 36: Type-I versus type-II opposition  

 

 Opposition-based learning: Applications in optimization 7.2.2

Rahnamayan et al. [165] presented pioneering work in using the opposition-based 

learning concept in optimization. More specifically, the authors applied OBL to accelerate 

the differential evolution algorithm and called the new enhanced variant of the algorithm 
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opposition-based differential evolution (ODE) [14]. First, it enhanced the initial population, 

rather than only using a random initial population P(n), the algorithm generates also the 

corresponding opposite population OP(n). Thereafter, the fittest candidate solutions are 

selected from the union set of the two populations P(n) and OP(n). Furthermore, during the 

optimization process, an opposite population is generated for the current population, and the 

fittest candidate solutions are selected for the next generation. However, a jumping rate is 

used for controlling the number of times the opposition population is generated, and the 

interval of the search space is recalculated for opposition-based generation jumping. The 

proposed methods were tested extensively on 58 benchmarking functions for a comparison of 

DE, ODE, and FADE [166]. The results showed that ODE achieved superior results for high 

dimensional problems. The use of opposition points during the learning process accelerates 

the convergence rate by 57%. The jumping rate should be within the range of [0.1, 0.3] for 

unknown problems.  

Rahnamayan and Wang [167] studied the use of ODE for large scale optimization 

problems. ODE and DE were compared by using seven large scale benchmark functions (500 

and 1,000 dimensions). The results showed that ODE achieved higher accuracy and 

convergence speed compared to its parent algorithm, DE. Even an ODE variant was 

proposed for solving noisy problems efficiently [168].  

Rahnamayan et al. [169] enhanced ODE by using quasi-opposite points rather than 

opposite points with a lower generation jumping rate. They proved that quasi-opposite points 

have a higher probability of being closer to the real solution than opposite points. The 
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proposed method (QODE) was compared to ODE and DE methods by using 15 

benchmarking functions with two different dimensions for a total of 30 problems. The results 

showed that QODE required a lower number of function evaluations than DE and ODE, and 

achieved a higher success performance than DE and ODE.  However, DE achieved a slightly 

higher average success rate than QODE and ODE.  

In the previous methods, the jumping rate was constant (Jr =0.3 for ODE and Jr =0.05 

for QODE). Rahnamayan et al. [170] studied two varying jumping rates based on a linearly 

increasing or decreasing function. The latter has a higher jumping rate during exploration and 

lower jumping rate during exploitation, and vice-versa for the former. The tests were based 

on 15 benchmark problems; the results showed that the linearly decreasing jumping rate 

achieves better performance than constant or linearly increasing jumping rates because OBL 

is more useful in the exploration phase. 

Lin and Xingshi [18] developed an opposition particle swarm optimization (OPSO) 

algorithm by utilizing an OBL concept for the swarm initialization, and generation jumping 

for the best member during exploration phase. The swarms are initialized with random 

positions and velocities. The opposite swarms are calculated by computing their respective 

opposite positions and velocities. The fittest swarms are selected for the exploration phase. 

Then, the opposite of the current generation is generated using a jumping rate and a dynamic 

constriction factor (CF) as follows: 

 

                         (40) 
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where   

               , (41) 

 

where     is a Cauchy random number, and   starts at 1.0 and decreases every 50 generations. 

OPSO was compared to the PSO algorithm by using six benchmarking problems. OPSO 

achieved, on average, a faster convergence speed and stronger global search ability by 

escaping from local optima. 

Omran and al-Sharhan [171] introduced three variants of opposition-based PSO 

which are OPSO, iOPSO, and iPSO. OPSO used opposition concepts for population 

initialization similar to [166]. An improved OPSO named iOPSO used opposition for every 

iteration by replacing the particle with the lowest fitness value by its opposite. iPSO is 

similar to iOPSO but without opposition-based population initialization. The performance of 

the three proposed opposition variants of the PSO algorithm were compared with PSO using 

eight benchmark problems. The results showed that iOPSO and iPSO achieved better 

performance than PSO and OPSO in both accuracy and convergence speed. The results of 

iOPSO and iPSO were very close.  

A more extensive survey of the OBL applications to other machine learning methods 

can be found in Ref. [172]. Most of the papers related to opposition-based optimization have 

selected DE for their experiments, which appeared very efficient.  
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7.3 Opposition-based Learning for Multi-Objective Optimization 

Opposition-based multiobjective optimization (OB-MO) is a new research direction. OB-MO 

methods have been inspired from the Opposition Differential Evolution (ODE) algorithm 

[165]. This section reviews MOMs-related work that used the OBL concept. 

Peng el al. [173] developed an OB-MO algorithm inspired from ODE named the 

Opposition-based Multi-Objective Differential Evolution algorithm (OMODE). OMODE 

uses OBL for the generation of the initial population. Both the initial population and its 

opposite population are combined then sorted using the non-dominance sorting and crowding 

distance mechanisms. OMODE was compared to several MOMs such as NSGA-II [27] (real-

code), NSGA-II (binary-code), PAES [174], SPEA2 [28], IBEA [175], and IBEAHD. The 

benchmarking problems ZDT1, ZDT2, ZDT3, ZDT4, ZDT6 [33] were used for algorithms 

comparison in terms of convergence and diversity measures [27]. Furthermore, a space 

rendezvous problem was utilized for comparing OMODE and NSGA-II methods. The results 

showed that the OMODE Pareto solutions offered the best convergence and distribution 

(diversity) for all benchmarking problems. Regarding the space rendezvous problem, 

OMODE also performed better than NSGA-II. However, it is important to note that OMODE 

was not compared to GDE3. 

Dong and Wang [176] proposed a similar algorithm called Multi-objective 

Differential Evolution-based on Opposite Operations (MDEOO). MDEOO generates an 

opposite-based initial population in the same fashion as the OMDE optimization method 

described earlier. However, at every iteration, opposite offspring points are generated only 
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for the new non-dominated solutions. The new solutions are then filtered based on the non-

dominance sorting and crowding distance mechanisms in order to respect the population size 

limit. A plotting comparison was done with respect to PDE, SPEA, DEMO, RM-MEDA 

MOM methods using ZDT1, ZDT2, ZDT3, ZDT6 [33], and F1 [170] benchmarking 

problems. The authors concluded that the comparison confirmed the effectiveness of the 

algorithm in terms of precision and distribution. However, it is also important to note that 

MDEOO was not compared to GDE3. 

Coevolution is the simultaneous evolution of two or more species (populations) with 

a coupled fitness. Every species involves a number of individuals working together to solve 

the problem. Competitive coevolution involves individuals that compete against each other 

for dominance in the population. Tan and Teo [178] proposed two new opposition-based 

competitive coevolution algorithms for MOO called SPEA2-CE-HOF and SPEA2-CE-KR. 

These hybrid algorithms are the combination of SPEA2 [28] with two types of competitive 

fitness strategies, which are Hall of Fame (HOF) and K-Random Opponents (KR).  The 

original algorithm (SPEA2) was compared with the two new proposed algorithms using the 

DTLZ [34] benchmark problems with three to five objectives. Three measures used for the 

experiments are generational distance [23] (closeness), distribution [179] (diversity) and 

coverage metrics [33]. The results showed that SPEA2-CE-KR produced better results in 

terms of generational distance, spacing and coverage in almost all of the test problems. It 

significantly improved the results as the number of objectives increased. Therefore, SPEA2-

CE-KR has an enhanced capability of escaping sub-optimal local solutions during 
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exploration phase which results in more accurate Pareto optimal solutions. SPEA2-CE-HOF 

improved the performance of SPEA2 in some of the problems. Therefore, the use of 

opposition-based competitive coevolution for SPEA2 improved its performance for solving 

multi-objective optimization problems. 

In brief, as shown in this literature review, very little work related to MOM and OBL 

has been conducted. Also, based on a literature review, even the studies which combined 

MOM methods and OBL are relatively deficient, because they have not demonstrated that the 

opposition version of the MOM was better than the original MOM (parent algorithm). 

Rather, the opposition version of MOM was always compared with other metaheuristics such 

as NSGA-II which does not demonstrate any improvement of OBL to MOM. Based on our 

experience, classical OBL does not improve nor worsen the GDE3 performance. Therefore, 

this proposed research aims to develop a new opposition-based MOM with high accuracy 

that outperforms even GDE3 

7.4 Proposed Algorithm: Opposition-Based Third Generalized 

Differential Evolution Algorithm (OGDE3) 

This section describes the proposed MOM called opposition-based third generalized 

differential evolution algorithm (OGDE3). OGD3 utilizes OBL with leadership to enhance 

GDE3 proposed by Kukkonen and Lampinen [29]. GDE3 is one of the most efficient MOO 

algorithms as shown in the comparative study in Chapter 3 and other references such as [9].  
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 OBL was applied successfully with DE for single-objective problems as mentioned in 

section 7.2.2. It starts with an initial random population and in each iteration a new offspring 

population is generated using the differential evolution operator. Both populations are 

combined, then, the size of the population is reduced using the non-dominance sorting and a 

pruning method for diversity preservation as in NSGA-II. However, the GDE3 pruning 

method modifies the NSGA-II crowding distance in order to solve some GDE3 drawbacks 

when dealing with problems having more than two objectives. 

As shown in the pseudo code below, the proposed OGDE3 works similarly to GDE3, 

but during the exploration phase it generates the opposite population (with NP individuals); 

then, all candidate solutions (NP    OP) are sorted, and the best candidate solutions are 

selected based on the non-dominance sorting. The opposite candidate solution is calculated 

based on dynamic variation of variables, called dynamic opposition. The range (variable 

definition domain) of opposite variables shrinks for every iteration using the three best 

solutions (leaders) of the population. The following is a description of the procedure for 

updating the variable definition domain. Let                  be a point in an n-

dimensional system with                       [     ]. The opposite point  ̆ is defined 

by its coordinates  ̆       ̆  where 

 

  ̆                                         (42) 

where         and         are the minimum and maximum variables for the three best 

solutions (leaders) in the population, respectively.  
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OGDE3‘s Min and Max update based on three leader solutions at every iteration 

While j < 3        // j  is position of the leader 

    While i < n   //n is maximum number of variables. 

         if (        >     )             

         if (        <     )          =     

 

The following is the pseudocode of OGDE3 algorithm; the added portions to GDE3 

are highlighted by bold face.  

OGDE3 Algorithm 

1. Evaluate the initial population P of random individuals. 

2. While  stopping criterion not  met,  do: 

2.1. For  each individual Pi  (i = 1, . . ., popSize)  from P  repeat:   

(a)  Generate candidate C from parent Pi  

(b)  Evaluate the candidate C. 

(c)  If the candidate dominates the parent, the candidate replaces the parent. 

If the parent dominates the candidate, the candidate is discarded. Otherwise, the 

candidate is added in the population. 

2.2. If the population has more than popSize individuals, truncate it. 

2.3. Randomly enumerate the individuals in P. 

Opposition-based added section: 

2.4. If (random(0,1) <  JumpingRate)  // JumpingRate = 0.15 

(a) Calculate  ̆                         

(b) Generate candidates  ̆ for active candidate solutions pi  to form  ̆. 

(c) Discard identical solutions from      ̆. 

(d) Select best popSize solutions from      ̆.       
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7.5 Self-Adaptive Selection of Candidate Solutions for Opposition 

It should be noted that OBL-based acceleration scheme is not necesserly always beneficial; it 

is more beneficial during the exploration phase. The opposite of all candidate solutions will 

not necessarily generate better solutions for all of the population. Consequently, these 

obeservations generate some questions. When should the OBL mechanism be applied or 

stopped? Which candidate solutions should be selected as candidate for opposition? To 

answer these questions, a self adaptive version of OBL will be proposed. But, first, the 

definitions are given with regards to adaptivity.  

 

Parameter Seetings

Parameter controlParameter tuning

AdapativeDeterministic Self-adaptive

Before run During run

 

Figure 37: Taxonomy of parameter control for metaheuristics 

 

As shown in Figure 37, Eiben and Schut [180] classified the parameter setting 

methods into parameters tuning and control. Parameter tuning is defining parameter values 

before the execution of an algorithm. These values remain the same during the entire 
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execution of the algorithm. For example, the jumping rate is fixed at 0.15 for OGDE3. This is 

the simplest and most common form of parameter settings. However, it does not take into 

consideration the progress of an algorithm (e.g. exploration versus exploitation). Also, it does 

not consider any feedback such as the landscape or the progress of candidate solutions. 

Parameter control consists of modifying parameter values using a rule. This rule can be based 

on deterministic, adaptive, or self-adaptive approach. The deterministic approach modifies 

variables using a specific mechanism such as linear or any schedule-based mechanism. 

Conceptually, the deterministic approach is better than the parameter tuning approach 

because there is an adaptation depending on the progress of the algorithm. It is commonly 

used in machine learning algorithms such as PSO or self-organizing maps. However, some 

optimization problems are more complex and require more computational time than others. 

Use of the exact same deterministic approach for such different cases becomes inefficient. 

The adaptive and self-adaptive controls modify the parameter values based on some 

feedback. But the difference between them is that the adaptive control modifies one 

parameter for all of the population. The self-adaptive control modifies independent parameter 

values for every individual of the population. Usually, this parameter(s) is (are) encoded into 

chromosomes of solutions. Both the adaptive and self-adaptive approaches are 

computationally more expensive than the deterministic and parameter tuning approaches 

because the feedback values need to be compiled and analyzed. However, these adaptive and 

self-adaptive approaches make optimization algorithms more generic to different problems 

due to the adaptive mechanisms.  In addition, there is no need to tune algorithms as with the 
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parameter tuning approach. Intuitively, the self-adaptive approach can be more efficient 

because every candidate solution is analyzed independently but it can be computationally 

much more expensive than the adaptive approach if not designed appropriately. 

In this chapter, self-adaptive control is used for the determination of candidate 

solutions which are used for opposition-based generation. Also, it determines when a 

candidate solution is inactive, which means it is ineligible for opposition-based generation. 

Therefore, every individual has an integer variable initialized to two, i.e., every individual 

can fail at most twice consecutively before being inactive. If the opposite of a candidate 

solution does not improve the parent candidate solution two times in a row, then this 

candidate solution becomes ineligible (inactive) to generate opposite solutions. Finally, when 

all candidates are inactive, the OBL mechanism is completely stopped. 

As shown in Figure 38, OBL has been incorporated into GDE3 after the evolutionary 

process, i.e., the population has been generated. Then, at every iteration, the jumping rate 

condition is checked for every candidate solution to see whether to proceed with OBL or no. 

If the condition is positive, the opposition individuals are generated only for the individuals 

where the OBL is still active using the self-adaptive scheme. In the experiments, the 

condition of keeping OBL active is that an opposite candidate solution should not be 

dominated two times in a row by the parent candidate solution. 



 

 142 

Random Initialization 

of Population P(NP)

Evolutionary Phase

Termination Criteria 
Satisfied?

Stop
      Yes

No

If rand(0,1) < Jr

(A) Calculating opposite population OP(NAp)
(B) Non-Dominance Sorting
(C) Discard identical solutions from P U OP (NAp)
(D) Select best individuals

No      Yes

 

Figure 38: Incorporation of opposition based learning into GDE3.  

The grey boxes show where OBL has been applied, Np is the population size and NAp is the 

number of individuals where opposition is still active. 

 

7.6 Experiments 

This section describes the configuration of the simulation experiments, namely, the 

benchmark problems, the used MOMs, the evaluation methods, and the results. 
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 Benchmarking problems 7.6.1

The well-known Zitzler-Deb-Thiele (ZDT) test suite [33] was selected for the tests. These 

problems are commonly used for comparative studies such as Ref. [9]. Their description can 

be found in Table 36 (Appendix A). 

 Metaheuristics parameter settings 7.6.2

The parameter settings for the experiments as the same as the comparative study of Chapter 

3; they can be found in Table 1. These parameters have been taken from Refs. [3] and [9]. 

All of the genetic algorithms (NSGA-II, SPEA2, and MOCell) and evolutionary algorithms 

(GDE3 and OGDE3) have a population size of 100. In the same fashion, SMPSO has a 

configuration of 100 particles. The metaheuristics having an archive (SMPSO, NSGA-II, 

SPEA2, and MOCell) also have a maximum size of 100. 

In order to perform a fair comparison between OGDE3 and GDE3, it should be 

emphasized that OGDE3 and GDE3 have exactly the same configuration (CR = 0.1 and F = 

0.5). In this way, any improvement or degradation of OGDE3 over GDE3 will be attributed 

to the addition of the self-adaptive OBL mechanism with leadership to GDE3. 

 Evaluation measure 7.6.3

The convergence speed of OGDE and the seven state-of-the-art MOMs are analyzed for five 

well-known benchmark problems. In order to assess the quality of a Pareto front generated 

by a MO metaheuristic, the number of function evaluation is counted. The hypervolume rate 

(HVR) indicator [33] is used as stopping criteria. The stopping condition was fixed to 
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HVR≥98% or when reaching a maximum number of 10
6
 function evaluations, a criterion 

commonly used as per Ref. [9]. Every MO algorithm is independently executed 100 times for 

every problem. The algorithm requiring the lower number of function evaluations to find the 

real Pareto front is considered the fastest algorithm. The hit rate is then compiled, which 

refers to the number of times the algorithm was able to find (approximate with HVR≥98%) 

the real Pareto front. 

Given that the Pareto fronts of the problems used in this study are known beforehand, 

the algorithms are executed until approximating reasonably well the real Pareto fronts (HVR 

≥ 98%). However, finding the Pareto front might not be always possible for some algorithms, 

depending on the problem complexity. In other words, some algorithms might perform well 

with some specific problems, but not able to find the Pareto front for other types of problems. 

Or it might take too long to produce the Pareto Front. Consequently, another stopping 

condition is added by allowing every metaheuristic to perform at most 10
6
 function 

evaluations. 

For every problem, the metaheuristic is executed 100 times independently. The 

comparison of stochastic algorithms requires statistical analysis so that the results can be 

presented with a certain level of confidence. The Wilcoxon statistical test based on Ref. [181] 

is used to present results at a 0.05 significance level. 

 Experimental simulation results 7.6.4

As explained earlier, every algorithm has been executed 100 times per problem. Table 19 

shows the median of the number of function evaluations required to achieve an HVR=98%. 
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The dark grey area shows the fastest algorithm, while the light grey area indicates the second 

fastest algorithm. For the case where the fastest algorithm does not pass the statistical test 

with the subsequent algorithms, then all of them will be ranked equally. It can be seen that 

OGDE3 was the fastest algorithm for all the ZDT problems.  

Table 19: Median and IQR of the number of function evaluations for reaching the PF 
Problem NSGA-II SPEA2 PAES OGDE3 GDE3 OMOPSO AbYSS MOCell 

ZDT1 1.43e49.0e2 1.61e41.0e3 1.25e48.1e3 6.82e31.7e3 9.50e35.0e2 4.09e54.3e5 1.33e41.3e3 1.29e41.0e3 

ZDT2 2.43e41.6e3 2.49e41.8e3 1.03e51.2e5 1.26e49.9e5 1.13e46.0e2 5.35e55.6e5 1.76e41.8e3 1.40e45.1e3 

ZDT3 1.28e47.0e2 1.53e41.3e3 2.56e42.7e4 7.81e31.3e3 1.02e45.0e2 6.14e56.3e5 1.23e42.5e3 1.28e41.4e3 

ZDT4 2.24e45.7e3 2.61e45.7e3 4.41e41.9e4 1.62e41.2e3 1.63e41.0e3 – 2.11e49.2e3 1.72e44.6e3 

ZDT6 2.92e41.7e3 3.34e41.3e3 9.06e31.0e4 3.29e31.1e3 4.50e35.0e2 2.17e52.1e5 1.55e41.6e3 2.17e41.3e3 

 

 

Figure 39: Median and IQR of the number of function eveluations for ZDT1.  

OMOPSO IQR intentionally ommited for a better clarity of the figure. 
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Figure 40: Median and IQR of the number of function eveluations for ZDT2.  

OGDE3 and OMOPSO intentionally ommited for a better clarity of the figure 

 

 

Figure 41: Median and IQR of the number of function eveluations for ZDT3. 

OMOPSO IQR intentionally ommited for a better clarity of the figure 
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Figure 42: Median and IQR for ZDT4 

OMOPSO intentionally ommited because it did not find the PF 

 

 

Figure 43: Median and IQR for ZDT6 

OMOPSO IQR intentionally ommited for a better clarity of the figure 
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The results were plotted graphically for every benchmarking problem as shown in 

Figure 39 to 43. To make the graphs clearer, the histogram (median) of algorithms with a 

significantly higher median than the others were omitted for a better clarity of the graphs. 

The solid color in the histogram represents the median and the dashed portion of the 

histogram represents the interquartile (IQR). 

As shown in the results, OGDE3 was the fastest algorithm for 80% of the problems. 

OGDE3 was also faster than its parent algorithm. As shown in Table 20, on average, OGDE3 

was faster than the other seven algorithms by 50%. OGDE3 required only half of the function 

evaluations required by the average of all state-of-the-art algorithms and was 76% faster than 

the average algorithms for ZDT6. Average, OGDE3 was 26% to 76% faster than the average 

metaheuristics for solving the ZDT problems. It was especially (27% and 28%) faster than its 

parent algorithm (GDE3) for the problems ZDT1 and ZDT6. 

When OGDE3 is compared to its parent algorithm GDE3, it is found that OGDE3 

improved GDE by 13% on average for the ZDT problems. As explained earlier, the OGDE3 

had a high IQR for ZDT2 because of a lower hit rate (54%). The hit rates show how many 

times out of one hundred the metaheuristic was able to find the real Pareto front. If ZDT2 is 

excluded, OGDE3 is on average 20 % faster than GDE3 for the remaining ZDT problems. 

Also, it is important to mention that for ZDT4, the statistical test did not pass between GDE3 

and OGDE3; however, the test passed OGDE3 and the rest of the algorithms and GDE3 and 

the rest. 
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Table 20: Relative difference of the convergence speed between OGDE3 with the other 

MOMs 

e.g. OGDE3 required in average 50% less number of function evaluation to find the PF of ZD1 

 NSGAII SPEA2 PAES GDE3 OMOPSO AbYSS MOCell Average 

ZDT1 -52% -58% -45% -28% -98% -49% -47% -54% 

ZDT2 -48% -49% -88% +12% -98% -28% -10% -44% 

ZDT3 -39% -49% -69% -23% -99% -37% -39% -51% 

ZDT4 -28% -38% -63% -1% - -23% -6% -26% 

ZDT6 -89% -90% -64% -27% -98% -79% -85% -76% 

      Total Average 50% 

 

 

As mentioned earlier, OGDE3 performed well except for the problem ZDT2, where it  

came out as second best. OGDE3 had actually a very high IQR because of its low hit rate as 

shown in Table 21. OGDE3 was able to find the Pareto front of ZDT2 only 54% of the times. 

ZDT2 is a non-convex problem, but ZDT 4 and 6 are also non-convex. Therefore, the 

characteristics of the problem are not likely causing a lower rate. Also, it can be seen that for 

about 1% to 2% of the time, OGDE3 is unable to find the Pareto front. It is likely the same 

anomaly that causes OGDE3 to not converge is also contributing to the low hit rate for the 

ZDT2 problem. It might be the consequence of using only the three leaders to reduce the 

OBL domain of definition which might be located close to each other. This anomaly should 

be further investigated to eliminate this hit rate-related problem.  
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Table 21: Hit Rate of the compared MOMs 

 NSGA-II SPEA2 PAES OGDE3 GDE3 OMOPSO AbYSS MOCell 

ZDT1 100% 100% 100% 98% 100% 100% 100% 100% 

ZDT2 100% 100% 100% 54% 100% 90% 100% 100% 

ZDT3 100% 100% 100% 99% 100% 78% 100% 100% 

ZDT4 100% 100% 100% 100% 99% 0% 100% 100% 

ZDT6 100% 100% 100% 99% 100% 100% 100% 100% 

 

7.7 Conclusions 

This chapter has shown the first successful application of an opposition-based learning 

scheme to a multi-objective metaheuristic with a single population (no coevolution). The 

OBL was used for opposition-based initial population generation and opposition-based 

jumping generation. The OBL with leadership was applied to the differential evolution 

algorithm in a MO objective space for the acceleration of its convergence speed. The new 

proposed algorithm (OGDE3) uses a self-adaptive scheme for OBL activation/deactivation. 

In addition, the leadership concept is incorporated into OBL by using the three best solutions 

to calculated the respective minimum and maximum thresholds of every variable. 

The convergence speed of the OGDE3 was compared to seven state-of-the-art 

multiobjective metaheuristics, namely, NSGA-II, SPEA2, PAES, PESA-II, GDE3, 

OMOPSO, MoCell, and AbYSS. The ZDT benchmark test suite was used for the 

experimental verifications. Every metaheuristic was executed 100 times independently per 
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problem. The metaheuristics stopping criterion was fixed to 98% of the real hypervolume or 

a maximum of 10
6
 functions evaluations.  

This study also showed that the proposed OGDE3 was faster than all the 

metaheuristics in most of the cases. Hence, on average, OGDE3 required only half of the 

average number of function evaluations as compared to the other MOMs to find the Pareto 

front. OGDE3 required 26% to 76% less function evaluations than the average state-of-the-

art metaheuristics to converge towards the Pareto front, depending on the problem. In 

comparison with its parent and second best algorithm GDE3, OGDE3 was 20% faster than 

GDE3 excluding the ZDT2 problem. 

 Although, OBL has shown promising results in this chapter, nevertheless, it required 

complex adjustments of OBL such as self-adaptive selection and leadership.  

One of the OBL paths that remain unexplored in both single objective and multi-

objective fields is the use of OBL at operation level which might be more beneficial for 

multi-objective optimization algorithms. In the next chapter, it is proposed to explore the 

utilization of leadership without OBL with GDE3. 
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Chapter 8 

 

Multi-Objective Differential Evolution with 

Leadership Enhancement (MODEL) 
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In the comparative study of Chapter 3, GDE3 achieved highest robustness among all the 

compared state-of-the-art MOMs. Therefore, this chapter proposes to improve GDE3 

with the use of leadership as detailed in the next sections. 

8.1 Introduction 

It has been observed in the comparative study (Chapter 3), that GDE3 shows distributed 

movement of individuals compared to SMPSO. Usually, GDE3 preserves a uniform 

distribution of particles during the entire search process but does not converge as fast as 

the SMPSO. A probable reason is that PSOs use leaders to direct particles into most 

promising directions. Therefore, in this chapter it is proposed to incorporate the concept 

of leadership into the mutation operator because DE mutation operator is one of the main 

strengths of DE in single and multi-objective search space. However, the incorporation of 

leadership into MO-DE‘s mutation operator causes sometimes premature convergence. In 

order to solve this problem, it is proposed to change the sign of the control parameter F 

with a certain probability (prob=0.3) of DE which makes MODEL more robust and 

strengthens its capabilities to avoid premature convergence due to local optima. 

This chapter proposes the following contributions related to the differential 

mutation operator of GDE3. 

- Incorporation of leader selection mechanisms into GDE3. 

- Selection of more representative leaders, using stringent Non-dominance sorting. 

- Adaptation of single objective mutation scheme DE/best/1 to MOO providing 

GDE3/deputy/1 where deputy is a deputy leader. 

- Implementation of the non-dominance sorting in the difference vector. 

- Utilization of negation of control of parameter F with a certain probability. 
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8.2 Proposed Mutation Scheme 

The general convention used to represent mutation schemes in DE is DE/x/y/z, where x 

stands for the base vector to be perturbed, y is the number of difference vectors used for 

one perturbation of x, and z represents the type of crossover being used (exp: 

exponential; bin: binomial) [182]. 

The classical scheme in the single objective version of DE is DE/rand/1 [183]. 

"rand" means the three vectors used for mutation are randomly selected from population, 

"1" means there is only one difference vector. So, the mutation is done as follows: 

   
⃗⃗  ⃗         (       ), (43) 

    

where    ,    ,     are randomly selected vectors from the current population and      

    ,   is the current vector. 

 Use of leadership in the mutation (GDE3/best/1) 8.2.1

In single objective optimization, the DE/best/1 scheme works as follows 

 

   
⃗⃗  ⃗            (       )  (44) 

where        is the best found solution. 

 

The purpose of using the best solution is to achieve a faster convergence of the 

population as in PSO where the global best solution is used to the update the velocity of 

every particle. Now, the issue is that there is no best (fittest) solution in MOPs. A 

possible and logical alternative would be to select randomly one of the non-dominated 

solutions as in SMPSO. However, it has been shown recently [184] and in the previous 

chapter that if non-dominated solutions are located in the same area in the objective space 
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they will pull the entire population towards that specific region which affects the well-

distribution of the population. Consequently, the population will end-up either by a 

slower convergence speed or a premature convergence. As a solution, it is proposed to 

select more representative leaders, called deputy leaders, in a more representative (well-

distributed) manner as in [184]. So, it is proposed to use the GDE3/best/1 scheme where 

"best" are deputy leaders. This proposed scheme is the main cause of GDE3 performance 

improvement. But, the deputy leaders are selected differently than in LSMPSO which 

used the WSM for leader selection. Actually, p% of deputy leaders are selected using the 

classical non-dominance sorting which uses the non-dominance and crowding distance 

discriminants as follows: 

 

   
⃗⃗  ⃗              (       )  (45) 

 

where          is a p% "best" solutions selected using the Non-Dominance sorting. In this 

chapter, p = 10%. 

 

 Non-dominance sorting for the difference vector 8.2.2

To further accelerate the convergence speed; it is proposed to apply the same non-

dominance sorting between the vectors used to generate the difference vector. Intuitively, 

the difference vector should be, as in PSO, from a better solution to a lower quality 

solution to converge towards optimum. So, the proposed mutation scheme GDE3/best/1 

is described below. The bold sections are the modified portions of the difference vector. 
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Proposed (in bold) Difference Vector 

 

If (( ⃗⃗    ⃗⃗  )    (( ⃗⃗    ⃗⃗  )        ( ⃗⃗  )      ⃗⃗   )) 

       
⃗⃗  ⃗              ( ⃗⃗    ⃗⃗  ) 

Else 

       
⃗⃗ ⃗⃗              ( ⃗⃗    ⃗⃗  )  

EndIf 

where          is randomly selected among deputy leaders, and     and     are randomly 

selected from the population,              . 

CD: crowding distance. 

 

 

 Negation of Control Parameter F 8.2.3

The earlier proposed schemes, namely, the use of deputies and the use of non-dominance 

ranking in differential mutation serve to increase the convergence speed while preserving 

a uniform distribution [15]. However, our observations show in specific cases these 

modifications can lead to premature convergence. For example, the experiments show 

that premature convergence might happen when the search space is very large, i.e. there 

is a large distance between the initial population and the real Pareto optimal solutions in 

the objective space as illustrated in Figure 44 and 45.  

. 
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Figure 44: Example of a problem where the distance between the initial population and 

the PF is reasonable 

 

 

 

 

Figure 45: Example of a problem where the distance between the initial population and 

the PF is large 

 

f2 

f1 

f1 
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Therefore to solve this problem, it is proposed to use the negative of control 

parameter F with a certain probability which is fixed to 0.3 in our experiments similar to 

the jumping rate used in ODE [14]. Changing the sign of F serves to relax the 

convergence speed and maintain diversity in variable space to avoid premature 

convergence. 

 

Negation of the F Factor with Jumping 

Modified sections for inverse factor F are in red. 

If (rand(0, 1) <p){ //p=0.3 

  
⃗⃗  ⃗              (       ) 

} 

where  (       )   ((       )        (   )         )    

 

 

8.3 Multi-Objective Differential Evolution with Leadership  

By integrating the proposed mutation modifications, presented in previous section, into 

GDE3, a new MOM is proposed, called Multi-objective Differential Evolution with 

Leadership enhancement (MODEL). The details are described in the pseudocode. 
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MODEL Algorithm. In bold, the modification added to GDE3. 

1. Evaluate the initial population P of random individuals. 

2. While  stopping criterion not  met,  do: 

2.1. For  each individual Pi  (i = 1, . . ., popSize)  from P  repeat:   

(a)  Generate candidate t  from parent Pi as follows. 

If (( ⃗⃗    ⃗⃗  )   (( ⃗⃗    ⃗⃗  )        ( ⃗⃗  )      ⃗⃗   )) 

 ⃗⃗   ( ⃗⃗    ⃗⃗  ) 

}Else{ 

 ⃗⃗   ( ⃗⃗    ⃗⃗  ) 

} 

If (rand(0,1) <p){ //change sign of F 

  
⃗⃗⃗⃗   ⃗⃗            ⃗⃗   

}else{ 

  
⃗⃗⃗⃗   ⃗⃗            ⃗⃗   

} 

And               

(b)  Evaluate the candidate solution. 

(c)  If the candidate dominates the parent, the candidate replaces the 

parent. 

If the parent dominates the candidate, the candidate is discarded. 

Otherwise, the candidate is added in the population. 

2.2. If the population has more than popSize individuals, truncate it. 
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8.4 Experimental Results 

MODEL is compared to seven state-of-the-art metaheuristics, namely, SPEA2, NSGA-II, 

GDE3, SMPSO, AbYSS, MOCell and MOEAD as in all the previous studies in this 

thesis. The algorithms settings are similar to the comparative study in Chapter 3. The 

stopping criterion of MOMs is set 10
4
 functions evaluations for bi-objective problems 

and 3 x 10
4 

functions calls for three-objective problems. The population and archive sizes 

are set to 100. The IGD measure is used as comparative measure for rankings the 

algorithms. The bi-objective ZDT, DTLZ, WFG and LZ_09 problems are used for 

comparison purposes. 

 ZDT, DTLZ, and WFG problems 8.4.1

All the problems in Table 22 are bi-objective problems. It can be clearly seen that the 

proposed MODEL algorithm outperformed all the other state-of-the-art MOMs, followed 

by its parent algorithm GDE3.  

As shown in Table 23, MODEL is the most accurate for 12 problems (ZDT1-

ZDT3, ZDT6, DTLZ6-DTLZ7, WFG1-WFG2, WFG4, WFG6 and WFG9) and second 

most accurate for 3 problems (DTLZ1, DTLZ3 and WFG7). Overall, MODEL is in top 

two positions 15 out of 21 problems i.e. 71.5%. The second position is occupied by 

GDE3 which is the most accurate for four problems (ZDT6, DTLZ1, DTLZ6, and 

WFG4) and the second most accurate for nine problems (ZDT1, ZDT3, DTLZ4, WFG1-

WFG2, WFG5-WFG7, and WFG9). In addition, MODEL was more accurate or 

equivalently accurate to its parent algorithm GDE3 for 20 out 21 problems with the 
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exception of the DTLZ1 problem, which is a linear problem. Therefore, MODEL proves 

to be consistently outperforming GDE3 in variant complex problems. It can be seen from  

Table 22 that MODEL was not among the top two MOMs for the WFG3 which is also a 

linear problem; however, its performance was similar to GDE3. The performance of 

MODEL with linear problems needs to be further investigated.  
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Table 22: IGD, mean and standard deviation for bi-objective problems  

Dark grey is the algorithm having the best IGD results followed by light grey in the second position. 
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The third most robust MOM is AbYSS. It is the most accurate for five problems; 

which were all concave problems, although there are also several other problems 

characterized by concavity where AbYSS was not accurate. In brief, AbYSS seems to be 

advantageous when dealing with certain types of MO optimization concave problems. 

 

Table 23: Scores for bi-objective problems (1 point for the 2
nd

 position and 3 points for 

the 1
st 

position) 

 MODEL NSGA-II SPEA2 GDE3 SMPSO AbYSS MOCell MOEA/D 

1
st
 12 36 0 0 0 0 4 12 3 9 5 15 0 0 1 3 

2
nd

 3 3 1 1 2 6 9 9 1 1 1 1 1 5 0 0 

Total 39 1 6 21 10 16 5 3 

 
  

 

As shown in Figure 46, 47, 48 the MODEL algorithm is very consistent across 

variant problems in terms of accuracy using limited number of function evaluations. In 

addition, it can be seen that MODEL accuracy was significantly better than all other 

MOMs with the WFG problems which are known to be the most complex family of 

MOPs after LZ_09. 
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Figure 46: IGD boxplots for ZDT bi-objective problems 
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Figure 47: IGD boxplots for DTLZ bi-objective problems 
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Figure 48: IGD boxplots for WFG bi-objective problems 

 

 LZ_09 problems 8.4.2

The LZ_09 are the most complex family of problems. As shown in Figure 49: IGD 

boxplots for LZ_09 bi-objective problemsFigure 49, the proposed MODEL in six out of 

nine problems (F1-F4, F6 and F9) the most accurate MOM, and it occupies only once 

second position for F5. Overall, it is among top two most accurate MOMs seven out of 

nine problems i.e. 77.7%. 
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Table 24: IGD, mean and standard deviation for bi-objective problems.  

Dark grey is the algorithm having the best IGD results followed by light grey in the second position. 

 
 



 

 168 

 

The second position is occupied by GDE3 which is the most accurate for five 

problems (F2, F4-F6 and F9) and second most accurate for one problem which was F1. 

The accuracy of MODEL and GDE3 is comparable for LZ_09 family of problem. They 

both equally top one for four problems (F2, F4, F6 and F9), and MODEL achieved a 

higher accuracy than GDE3 for F3. Both MODEL and GDE3 did not perform well with 

F8 and F9 which have a have a simple curving shape relationship among the variables as 

shown in Figure 12 (Chapter 3), whereas all the other problems have a much more 

complex relationship. F1 has also a similar curvature but MODEL achieved the highest 

score. 

It is interesting to note that NSGA-II achieved a good accuracy with LZ_09 test 

suite by being thrice the most accurate (F4, F7 and F8) and the second most accurate (F1, 

F3 and F5). It seems that the cross-over of NSGA-II achieves better results with complex 

variable relationships. It would be interesting to investigate if by modifying the 

configuration parameters (CR and F), is it possible to enhance MODEL‘s accuracy. 

  

Table 25: Scores for LZ_09 problems (1 point for the 2
nd

 position and 3 points for the 1
st 

position) 

 MODEL SPEA2 NSGA-II  GDE3 SMPSO AbYSS MOCell MOEA/D 

1
st
 6 18 1 3 3 9 5 15 0 0 0 0 0 0 0 0 

2
nd

 1 1 1 1 3 3 1 1 0 0 0 0 0 0 1 1 

Total 19 4 12 16 0 0 0 1 
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As shown Figure 49, both MODEL and GDE3 provided consistent accuracy. Thus, based 

on the boxplots, there is four MOMs that achieved overall high accuracy which are: 

MODEL, SPEA2, NSGA-II and GDE3. 

 
 

Figure 49: IGD boxplots for LZ_09 bi-objective problems 
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8.5 Conclusions 

This chapter proposed a new MOM named MODEL based on a MO version of DE. 

MODEL incorporated the leadership concept into DE‘s mutation operator. The leadership 

served to accelerate GDE3 by adapting the DE/best/1 mutation scheme to multi-objective 

space as GDE3/deputy/1. In addition, the non-dominance concept was used to determine 

the leader among the two vectors that generate the mutant vectors. Finally, the negation 

of the control factor F with probability was used to avoid premature convergence. 

 The proposed MODEL has been compared to seven state-of-the-art metaheuristics 

using 30 bi-objective problems taken from ZDT, DTLZ, WFG, and LZ_09. It was the 

most accurate one for 18 out 30 problems. For the first group of problems (ZDT, DTLZ, 

WFG), MODEL outperformed its parent algorithms most of the time and Abyss also 

showed good accuracy for certain concave problems. For the LZ_09 problems which are 

the considered to be among the most complex problems, MODEL was the most accurate 

MOM, performing slightly better than GDE3. Both of these algorithms seemed to have 

lower accuracy with problems having curvature landscape among variables. NSGA-II 

showed a good accuracy possibly because of the crossover mechanism. 

 In future, we would like to test the proposed method on many-objective problems. 

It is also important to examine the performance of MODEL by varying the configuration 

parameters for problems with high epistasis.  

 To demonstrate the performance of the proposed MODEL MOM, it would be 

valuable to apply the MODEL algorithm on a real case study. The next chapter presents a 

complex RES-related case study. 
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Chapter 9 

 

 

Case Study II: Optimization of Transition to 

Hydrogen-Fuelled Vehicles in Ontario, Canada 

Considering Electricity Grid Constraints 
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For optimal design of RESs, as stated in Chapter 4, MOO methods are rarely used, and 

even when they are used, state-of-the-art MOMs are rarely utilized because of 

miscommunication between RES and MOM research communities. Also, most works 

focused on wind and solar RESs, and all the projects were standalone. Therefore, this 

case study addresses these challenges by utilizing state-of-the-art MOO methods to 

design a hydrogen energy system which is grid-connected. In reality, the proposed model 

in the case study consists of an integrated hydrogen infrastructure with the electrical grid 

in Ontario, Canada which has a larger superficies than any European country. The 

developed MODEL algorithm presented in the previous chapter is compared with four 

other MOMs to solve the proposed case study. 

9.1 Introduction 

The rapidly increasing population and the booming economy of Canada are posing a 

serious challenge to its energy sector. The "Natural Resources Canada" estimates a 

projected growth of 1.3% per year for total energy demand and a 1.6% per year increase 

for transportation demand [185]. This challenge is exacerbated when factors such as 

environmental impact and global warming taken into consideration. To meet the future 

energy needs and environmental expectations, different levels of government in Canada 

are devising new policies and programs. To alleviate this future energy challenges, this 

chapter seeks to design optimal hydrogen distribution network for hydrogen-fuel vehicles 

(HFVs) that considers the Ontario‘s Integrated Power System Plan [186]. More 

specifically, this chapter investigates the development of electrolytic hydrogen 

production for HFVs during off-peak hours in the province of Ontario considering the 

existing and the future plan for the Ontario electricity transmission network between the 
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periods of 2008 to 2025. The model considers the effective generation capacity of every 

zone which contributes to base-load energy. The bi-objective hydrogen infrastructure 

model is optimized using the proposed MOM described in the previous chapter called 

MODEL, targeting the maximization of the HFVs penetration while minimizing the 

investments for hydrogen distribution network. The solutions provide the size of the 

hydrogen productions plans as well as the distribution network of hydrogen among the 

zones. This problem is innovative as it was found in RES-related literature reviews [187], 

[188] that state-of-the-art MOMs were not used in RESs and most RESs systems were 

standalone. The proposed case study uses a new MOM to optimize not only a grid 

connected energy system but two integrated systems: Electricity and Hydrogen 

distribution networks. 

9.2 Hydrogen-Fueled Vehicles in Canada 

The world demand of energy is expected to increase by 50% in the next 25 years 

[189]. The combination of this important energy demand increase and fossil fuels 

decrease pose very serious problems for worldwide energy supply in general, and for 

transportation sector in particular. Transportation is the lifeblood of any economy. In 

Canada, 35% of the total energy demand is related to transportation, and it is the second 

largest contributor to greenhouse gases [190] [191]. Today‘s oil prices are also much 

higher and are expected to increase, placing additional burden on the energy and 

transportation demands [185]. Therefore, looking for alternative forms of energy sources 

is necessary from the economical and the pollution points of view. In comparison to 

‗zero-emission‘ electric vehicles, which are costly, and do not provide quick recharge 

solutions, with limited battery life, the hydrogen powered vehicles (HFVs) or fuel cell 
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vehicles provide the advantages of zero emission and rapid refueling. A switch to HFVs 

to a large extent would significantly reduce urban pollutants such as NOx, SOx, and CO2 

[192]. 

The concept of the hydrogen economy is not new, it was originally proposed in 

the early 1970s [193]. It reduces our dependence on the depleting wells of oil and makes 

a transition into an era of more environmentally friendly energy utilization. Hydrogen‘s 

ability to act as an energy carrier makes it even more favorable. Electrolysis, which is a 

non-spontaneous process of generating hydrogen from water using electricity, is 

approximately 80% efficient [193], [194] which allows hydrogen to be stored and 

transported as an alternative to electrical energy. However, currently the production of 

hydrogen is more expensive than oil. As an alternative, it is proposed to base hydrogen 

economy on exploiting the fluctuating prices of electricity generation plants that have on-

peak and off-peak periods [186], [195].  All generators are rated, especially nuclear, at 

certain levels, where they perform optimally. However, during off-peak periods the rated 

levels may not be required, which results in reduced efficiency. Likewise, shutting down 

power plants for a few hours is not desirable either, as it could be quiet costly in the case 

of nuclear plants [196] and thus be prohibitive. 

In principle, during off-peak periods, when the electricity prices are low, electrical 

energy could be converted into hydrogen and used as an alternative emission-free fuel. 

This fuel could also be transported to other regions where hydrogen demand is high, 

eliminating losses due to congestion in the grid during on-peak hours. The goal of the 

present case study examines the feasibility of transitioning to a hydrogen economy in 

Ontario by extending the work in [197] but by targeting multiple objectives: 1) to 
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maximize the penetration of hydrogen vehicles in Ontario, and 2) to minimize the total 

cost of electricity generation, transportation and conversion. The optimization is done 

considering the constraints of existing and future plans of the electrical distribution 

network and hydrogen network constraints. 

9.3 Electricity Model of Ontario 

This section provides details about the electrical modeling in Ontario such as the power 

transmission system, the power generation sources, the possibilities of importations and 

exportations, the zonal electricity demand. 

 Power Transmission 9.3.1

 
 

Figure 50: Simplified model of Ontario‘s gird zones  
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The Independent Electricity System Operator (IESO) has divided Ontario into ten 

zones that are significant for their electricity generation and demands.  

Figure 50 depicts ten different zones and the power transmission grid of Ontario. 

It also shows the power sharing between Ontario and its neighboring regions. This grid is 

mainly composed of 500 kV electricity transportation networks, except for the NE-NW 

interconnection, which is a 230 kV network. The parameters used to model the electricity 

grid are determined using the typical values based on the distances among zones and 

transmission capacities as per the Independent Electricity System Operator [198] which 

specify the line loading limits for each corridor as summarized in Table 26. Moreover, 

these corridors are enhanced over the study period considered as outlined in Table 27 

based on the data provided by OPA [198], [199]. 

 

Table 26: Line loading limits of the transmission grid 

 

From  

Zone i 

To 

Zone j 

    
̅̅ ̅̅ ̅̅   

[  ] 

     
̅̅ ̅̅ ̅̅ ̅ 

 [  ] 

1 2 1940 9999 

1 3 2560 9999 

2 3 1560 1560 

3 4 9999 1750 

3 5 3212 9999 

3 8 2488 9999 

5 6 9999 9999 

5 8 2000 1000 

6 7 1900 9999 

8 9 1900 1400 

9 10 350 325 
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Table 27: Transmission corridor enhancements during the study period considered. 

Year Corridor  Current MW Planned MW 

2012 Bruce-SW (1-3) 2560 4560 

2012 SW-Toronto (3-5) 3212 5212 

2013 NE-NW (9-10) 350 550 

2015 Bruce-West (1-2) 1940 2440 

2017 Toronto-Essa (5-8) 2000 2500 

2017 Essa-NE (8-9) 1900 2400 

 

 Power generation 9.3.2

According to the latest directives from the Ministry of Energy to Ontario Power 

Authority (OPA), the Integrated Power System Plan (IPSP) [200], [197] contains several 

planned power generating units to the existing ones. The main energy resources in 

Ontario that are considered in this study are nuclear, wind, hydro, Combined Heat and 

Power (CHP) and coal. While natural gas is also important to satisfy Ontario electricity 

demands, it is ignored in this study because it only contributes during peak-loads as 

specified by the municipal government‘s 2006 Supply Mix Directive [200], [197]. 

Additionally, the conserved power over the study period from the Conservation and 

Demand Management (CDM) program is also considered as a resource in this study.  

Figure 51 gives an overview of the expected distribution of power capacity in different 

zones of Ontario. 
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Figure 51: Overview of the expected distribution of power capacity in different zones of 

Ontario 

 

 Import and export of power 9.3.3

As mentioned previously, Ontario‘s power transmission grid is interconnected with its 

neighboring regions from where it can import or export electricity. The excess of power 

in the Bruce zone makes it ideal to export electricity to Michigan via West zone. 

Likewise, imports are also considered from New York, Quebec, Manitoba and 

Minnesota. The maximum limits for imports and exports for each zone in Ontario are 

given in Table 53-54 (Appendix C), respectively. 
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 Zonal electricity demand 9.3.4

The base-load demand for each zone was calculated using the zonal peak-load growth 

rate, given in Table 28, and Ontario‘s overall base-load growth rate is 1.11% [201] [202], 

using the following equation: 

 

     (
  ∑    

∑      
), (46) 

 

where    is the base-load growth rate of zone i,    is the peak-load growth rate of zone i, 

  is the annual overall base-load growth rate of Ontario, and    is the base-load value in 

zone as shown in Table 29. 

 

Table 28: Estimated zonal peak-load growth rate 
Zone Bruce West SW Niagara Toronto East Ottawa Essa NE NW 

Ann. Growth % 0.78 1.14 1.28 0.41 0.77 0.71 1.42 1.17 -0.33 0.10 

 

 

Table 29: Zonal base-load electricity demand [MWh] 
Zone Bruce West SW Niagara Toronto East Ottawa Essa NE NW Total 

Weekdays 
12 am - 7 am 

(8 h) 

71.02 1667.65 2982.16 593.62 5038.52 943.34 1097.99 805.83 1353.97 634.05 15188.15 

Weekdays 
12 am-7 am 

(14 h) 

71.63 1615.37 2915.64 558.82 4995.19 961.15 1156.18 845.11 1375.36 630.44 15124.88 
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9.4 Hydrogen Infrastructure Model 

The following subsections provide details about the hydrogen infrastructure modeling 

such as hydrogen generation, hydrogen demand, and hydrogen transportation. 

 Hydrogen generation 9.4.1

During off-peak hours, demand for electricity falls. As a result, utility companies are 

forced to significantly reduce the consumer‘s ‗Hourly Ontario Energy Price‘ (HOEP), 

because shutting down or switching a plant to standby mode is undesirable for its optimal 

performance [203]. IESO defines the on-peak hours from 7 am to 11 pm [204]. 

Therefore, off-peak hours, for this study, are considered to be between 12 am to 7 am for 

weekdays, and 12 am to 1 pm for weekends. HOEP was averaged for weekdays and 

weekends, at $31.95 and $32.73, respectively, for the first year of study. The following 

expressions capture the cost of electricity usage during off-peak hours in Ontario, when 

electricity could be utilized to produce hydrogen: 

 

   
     

          (47) 

   
     

            (48) 

 

where   
   and   

   are the yearly electricity costs for weekdays and weekends, 

respectively. And   
  and   

   are the HOEP for weekdays and weekends. 

 Installing and operating hydrogen production plants (HPP) requires a large 

economic investment. The costs of HPP (electrolyzer) with 70% efficiency requires 

approximately $1,736 CAD/KWe of investment which is calculated based on a unit of 60 
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Nm
3
/h (5.38kh/h): the cost of electrolyzer and compressor ($84,500 CAD), $4,500 CAD 

per kg/h of hydrogen flow, and $600 CAD/kg for the storage, for a total of $504,767 

[190]. They also estimated 3% of this amount will be spent on the insurance, operations 

and maintenance costs of the plant [198] [199]. The resulting expression that accounts for 

all of the HPP costs is: 

 

     
      

                       (49) 

 

where     
  is the total yearly investment for HPP in zone i, and     

    is the size of the 

installed plant in megawatts (MW).  

 Hydrogen demand 9.4.2

The demand for hydrogen was determined by estimating the number of HFVs expected to 

operate in Ontario each year. According to the Natural Resources of Canada, Ontario is 

estimated to have 0.55 vehicles per capita [207]. A reliable model of the hydrogen 

demand was developed by first studying the population size of each zone as posted by 

Statistics Canada [208], and then estimating the number of vehicles in each zone in 

Figure 53. These numbers were projected into the future, as the base-load growth was 

expected to increase over the period of study. A transition to HFVs over the study period 

is assumed to increase linearly as illustrated in percentage in Figure 52, with no HFV 

expected in the first year and K% expected in the last year. The expression that yield the 

expected number of zonal HFVs in a year is 
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  (50) 

 

where     
 

 represents the yearly population size of zone i, K stands for the total 

penetration of hydrogen HFVs in the year   , the last year of study, and    stands for the 

first year of study. 

 

 

Figure 52: Estimated penetration of HFVs in Ontario 

 

The fuel economy of HFVs is known to be around 100 km/kg [205], [209], with 

an average annual mileage of 20,000 km, the yearly demand for hydrogen was 

determined to be 200 kg/ HFV. The yearly total hydrogen demand of each zone i is 

therefore, 200    
    (kg). The corresponding electrical capacity that could produce the 

required hydrogen during the off-peak duration of 68 hours a week was determined by 

relating the size of the HPP (in MW) to the amount of hydrogen production. Hajimiragha 
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et al. [197] suggested that a plant of size 5.8 MW is capable of producing one ton of 

hydrogen per day.  

 

 
    

        
        

   

        
                 

      (51) 

 

   

 

 

Figure 53: Projected number of light-duty vehicles in 18 years period in the ten zones of 

Ontario  

 

 Hydrogen transportation 9.4.3

Ideally, each zone should have a large enough HPP that could fulfill its own hydrogen 

demands. However, when the electricity capacity for a zone is low it may not be able to 

support its own HPP or the needed amount of hydrogen is not sufficient to justify the 
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installation of a new HPP. Under these circumstances, it may be favorable for the zone to 

import hydrogen from its neighbouring zones. Although this method eliminates the power 

loss due to power transfer in the grid, it does introduce additional costs associated with 

the investment and maintenance of the trucks used to transfer hydrogen. These costs 

include the capital costs of the trucks         and the truck tubes          over their 

lifetime (t) at a discount rate (r) of 8%. The initial operational costs    
    were estimated 

to be $1.1212 CAD/km and expected to increase by 2.5% per year  [206], [203]. The total 

costs related to the trucks could be expressed as follows: 

 

  
  ∑      

  ,  
   [              ]        

      

            
 

       

             
-             (52) 

 

where      
  stands for the number of trucks required in year y between corridors ( ) of 

zone i and j, and     is the distance between them. The capacity ( ) of each tube is 0.4 

tons, and the number of trucks could be determined by the following equation: 

 

 

 
     

      (
∑      

 
   

 
) , (53) 

 

 

9.5 Optimization Model 

The focus of the current study is to optimize the costs associated with power generation 

while maximizing the potential for HFVs in Ontario by the last year of the study. Costs 

associated with hydrogen production and installing HPP are considered above. However, 

the cost of power generation, import, and export require further scrutiny, since power loss 
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is an intrinsic property of power transmission that strongly depends on the amount of 

power transferred, and the physical properties of the grid lines. The task is further 

exacerbated because of the non-linear properties of power transmission and loss 

(equation 9 and 10). The power loss in the grid between zone i and j is expressed as 

follows [211]: 

 

      
           [     (      )]  (54) 

 

   

where      is the conductance of the line between buses i and j, and   is the bus voltage 

angle in the corresponding zone. Therefore, the net power injected at the i
th

 zone is given 

by 

      ∑ [    [     (     )]         (     )]
       

 (55) 

 

where      is the susceptance of line (i,j) in the year y, and   is the bus voltage angle in 

the corresponding zone. 

 Traditionally, optimization problems are simplified by using linear models to 

approximate non-linear behaviours, such as the piece-wise approximation of line losses 

and power transmission in [197]. These approximations could introduce several 

constraints on the optimizer, increasing the chances of misleading results. Metaheuristics, 

on the other hand, are capable of dealing with non-linear models, making it an attractive 

alternative to classical methods such as the Simplex method. 
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 Objective Functions 9.5.1

In this chapter, the two considered objectives are inversely correlated. In other words, as 

the number of HFVs increases, it will require more capital investment and more power to 

operate the HPPs. Consequently, the cost of electricity, HPP installation, and most likely 

line losses and the cost of hydrogen transfer via trucks will also increase. The two 

objectives invested for the hydrogen economy are explicitly stated as follows: 

 

1) Maximize the percentage of hydrogen vehicles in Ontario by the year 2025 

2) Minimize the total cost of electricity generation, transportation and conversion 

 

The first objective of maximizing hydrogen penetration of hydrogen economic is 

transformed into a minimization problem as follows: 

 

              , (56) 

 

where K is the percentage of HFVs in the last year of study as a measure of hydrogen 

penetration in the Ontario economy. 

The second objective function consists of costs pertaining to power generation, 

export, and import, and hydrogen transportation between different zones (Z) in all the 

years (Y).  It is expressed as follows: 

 

Min    ∑ ∑ {
  

   (    
    

     
         

    )

    
   (    

    
     

         
    )    

 
}      ,  (57) 
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where     
    

,     
    

, and     
    

 are the components of the yearly power generated, 

imported and exported, respectively, in zone i during the weekdays. Likewise,     
    

, 

    
    

, and     
    

 are the components of the yearly power generated, imported and 

exported, respectively, in zone i during the weekends. 

 Variable Bounds 9.5.2

The current problem is composed of 63 variables resumed in Table 30: 18 variables for 

bus angles, 44 for hydrogen transport, and HFV percentage. Each zone has a bus angle 

( ) associated with it. However, one of the bus angles could be taken as a reference, 

leaving nine unknown angles for weekdays and nine for weekends in a year. 

Furthermore, each connected zone is restricted to be within 30 degrees of each other: 

 

       |     |                        (58) 

 

Hydrogen Transport (    
 ) among corridors were restricted to a reasonable number 

to make sure an unrealistic number of trucks are not used in a certain corridor that could 

cause traffic congestion or produce other unfavorable consequences. For ten zones, 45 

corridors exist that require optimizing 44 variables per year. A limit corresponding to ten 

trucks (23MW) per corridor was imposed on the hydrogen transport. 

 

         
                            (59) 
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Finally, a single continuous variable that represents the penetration of the 

hydrogen economy in Ontario by the year 2025 (K%) should also be optimized. The 

limits imposed on K are as follows: 

 

        (60) 

 

Table 30: Details of the case study model variables  
Variable Number Type 

Bus Angles ( ) 18 Continuous 

Hydrogen Transport (    
 ) 44 Continuous 

Hydrogen Penetration (K%) 1 Continuous 

Total 63  

 

 

Hydrogen economy penetration is assumed to be a linear function of time, which 

allows the calculation of the cost of electricity in the previous years as a function of the 

cost of last year and the percentage of hydrogen penetration of the corresponding year. 

The following equation is used to calculate the total cost of electricity in 18 years: 

 

        ∑ [  
 

   
 (

    

     
)]     (61) 

 

where     is the cost of electricity in the 18
th

 year alone. 
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 Constraints 9.5.3

Table 31: Case study model constraints description 

Constraint Equation Number Quantity Type 

Power Balance 46 20 Equality 

Power Generation 47 20 Inequality 

Power Import 48 20 Inequality 

Power Export 49 20 Inequality 

Direct Transmission 50 22 Inequality 

Reverse Transmission 51 22 Inequality 

Hydrogen Balance 52 10 Equality 

Total  134  

 

As shown Table 31, the problem composed of equality constraints which are more 

complex than inequality constraints. The constraints are described as follows: 20 

constraints for power balance, 20 constraints for power generation, 20 constraints for 

import, 20 constraints for export, 22 constraints for direct and 22 constraints for reverse 

transmissions, and 10 constraints for hydrogen balance, making a total of 134 constraints 

summarized in Table 31. The power balance constraint is an equality constraint that 

ensures each zone meets its local needs after line losses and export, every year. It is 

expressed as: 

 

    
    

     
        

  
     

    
     

    
  ∑ *

 

 
    

    (     )         (     )+             (62) 

 

where   is the set containing weekdays and weekends.  
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      and     

    
  are also bounded: 

 

       
    

     
   ̅̅ ̅̅ ̅̅   (63) 

   

       
         

   ̅̅ ̅̅ ̅̅ , (64) 

   

       
         

   ̅̅ ̅̅ ̅̅   (65) 

   

   

where     
   ̅̅ ̅̅ ̅̅  is the maximum power generation capacity given in Figure 51, and     

   ̅̅ ̅̅ ̅̅  and 

    
   ̅̅ ̅̅ ̅̅  are the import and export upper limits, given in Table 53-54, respectively. Likewise, 

11 transmission corridors have upper bounds that are applied to both, weekdays and 

weekends, in all the studied years: 

 

          (     )       [     (     )]       
 ̅̅ ̅̅   (66) 

   

          (     )       [     (     )]       ̅̅ ̅̅   (67) 

 

where     
 ̅̅ ̅̅  and      ̅̅ ̅̅   are the maximum power allowed in the direct and reverse directions, 

respectively, given in Table 26. Note, these transmission upper bounds are increased over 

the years as mentioned previously in Table 27.  
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Finally, the total amount of hydrogen required      
   and exported  ∑      

 
     by 

a zone must be fulfilled by the total installed plant capacity  ∑      
    

      and the 

imported hydrogen  ∑      
 

    . This constraint applied to each zone, and every year is 

expressed as: 

 

     
  ∑      

    
     ∑      

 
    ∑      

 
      (68) 

 

9.6 Experimental Simulations 

This section describes the experimental simulation settings and the results of the 

hydrogen infrastructure design case study. 

 Parameter settings 9.6.1

For all the experiments, MODEL algorithm is compared with the four most accurate 

MOMs based on the comparative study conducted in Chapter 3, namely GDE3, SMPSO, 

AbYSS and MOCell. The algorithms parameter settings are the same as in the 

comparative study, and the MODEL parameter settings are the same as its parent 

algorithm GDE3. The population sizes are set to 100 for all the compared MOMs. The 

stopping criterion (FCs) is increased to 50,000 function evaluations because this problem 

is a more complex problem due to large number of constraints. All the compared MOMs 

are executed 100 times independently. The IGD measure is used to compare the results. 
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 Discussion of the results 9.6.2

As shown in Table 32, MODEL outperformed all the other MOMs. Figure 54 further 

shows that the accuracy of MODEL is better than the other compared MOMs for the 

hydrogen economy problem. Please note that the SMPSO was not plotted because none 

of the found solutions was feasible. 

 

Table 32: Median and IQR IGD measures for the hydrogen economy problem  

Dark grey is the MOM with the best IGD results followed by light grey in the second 

position 

MODEL GDE3 SMPSO AbYSS MOCell 

2.54e-02 1.3e-02 2.88e- 021.6e-02 1.60e- 015.6e-02 3.99e - 022.2e-02 3.22e- 021.6e-02 

 

 

Figure 54: Boxplots for the IGD measures for the hydrogen economy problem. 

 

The Pareto optimal sets achieving median IGDs of the compared MOMs are 

plotted in Figure 55. It can be seen that in reality AbYSS and MOCell achieved 
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respectively the best and second best convergence. However, AbYSS and MOCell found 

approximately only a third and roughly a half of the PF compared to that of MODEL. 

Thus, MODEL achieved a significantly better distribution of solutions with a lower 

accuracy than both AbYSS and MOCell. Furthermore, MODEL achieved a better 

convergence compared to its parent algorithm GDE3. Overall, it can be stated that 

MODEL achieved the highest accuracy (strong convergence + uniform distribution). It 

would be interesting to investigate why AbYSS achieved a better convergence for this 

case study to try to further enhance MODEL properties. 

To illustrate the advantage of variety of solutions provided by MOMs, the details 

of two solutions are provided in Table 33. It can be seem that it costs roughly $250M to 

increase the ratio of HFVs by 1% per year. Overall, it can be seen that Toronto is has the 

largest hydrogen demand in Ontario with 46.36% of total demand as shown in Figure 52.  

 

Table 33: Details of two optimal solutions found by the MODEL algorithm.  

The hydrogen is represented in [MW].  

 

Bruce West SW Niagara Toronto East Ottawa Essa NE NW Cost $Millions H2  % 

Production 6.55 126.37 231.59 25.17 640.44 78.04 113.67 90.35 49.17 13.18 40536 5% 

Demand 2.96 127.77 230.37 44.62 637.18 56.44 118.34 94.81 50.20 11.85 - - 

Shipments 3.59 -1.40 1.23 -19.45 3.26 21.60 -4.68 -4.46 -1.03 1.33 - - 

Production 4.47 79.57 139.81 6.37 396.85 50.27 69.09 59.65 32.67 5.17 40003 3% 

Demand 1.82 78.45 141.44 27.39 391.21 34.65 72.66 58.21 30.82 7.27 - - 

Shipments 2.65 1.13 -1.63 -21.03 5.64 15.62 -3.57 1.44 1.85 -2.10 - - 

  

 

In general, it can be seen that the optimizer tries to install the hydrogen power 

plants in the zones themselves to reduce hydrogen transportation. Zones such as the 

Niagara, which have limited electrical production capacities, become importation zones. 
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On the contrary, Bruce which has a large nuclear power plant with a small population 

becomes a hydrogen exportation zone. Other zones depend on their specific scenarios. 

For example, in the first case the West zone is importing hydrogen (-1.4 MW) and the 

SW zone is exporting (1.23 MW). In the second case, the West zone exports (1.13 MW) 

and SW imports (1.63 MW). These kinds of options can be advantageous to users 

because often certain decision factors are expressed by users and therefore not 

represented in the modeling.  
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Figure 55: Pareto optimal sets of median IGDs found for simplified version of the hydrogen economy problem 
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Figure 56: Details of an optimal solution found by MODEL with a cost of  $40.5 billion 

and 5% of  hydrogen-fuled vehicles. The upper number represents the  ratio of the 

respective demand in the zone wheras the second represents ratio of exportation with 

regards to zone production of hydrogen. 

 

It can be seen from Figure 56 that most zones are self-sufficient with the 

exception of three zones: Bruce, East, and Niagara. Bruce and East zones export 121.4% 

(21.4% above self-consumption) and 38.3% of the hydrogen produced in their zones, 

respectively. The Niagara zone imports 43.6% of the hydrogen to fulfill its base-load 

hydrogen.  
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Table 34: Number of HFVs in every zone based on the solution with a cost of 40.536 

$Million and a ratio of 5% of HFVs. 

 

 

Bruce   West SW Niagara  Toronto  East Ottawa Essa NE NW Total 

NB. of HFVs 825 35620 64222 12439 177634 15734 32992 26432 13994 33037 412929 

 

As shown in Table 34, it is possible to achieve up to 412929 light duty vehicles 

which represents 5% of total number of vehicles) running on hydrogen by 2025 based on 

the results.  

9.7 Conclusions 

This chapter studied an integrated model of electrolytic hydrogen production during off-

peak hours considering the existing and planned electricity infrastructure in Ontario. To 

solve this problem five MOMs have been compared: the proposed MODEL, GDE3, 

AbYSS, SMPSO and MOCell. Two objectives were targeted, namely, the hydrogen 

production cost minimization and maximization of the number of HFV over a 18 year 

period. The optimization problem of 63 dimension with 134 equality and inequality 

constraints.  

 The proposed MODEL algorithm achieved overall the highest accuracy; however, 

by examining the Pareto fronts, it was found the AbYSS and MOCell found solutions 

with slightly higher convergence than MODEL, but MODEL achieved a much better 

Pareto set distribution. It would be interesting to investigate how to further improve the 

precision of the MODEL algorithm while preserving well-distributed solutions. In 

regards to the solutions, it was found that it is possible to have solutions between 5% of 

the vehicles running on hydrogen with a cost of $40.5 billion and 0% of HFVs and a cost 
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of $38.8 billion for just electricity productions. In general, the optimizer seemed to 

prefere to have self-sufficient zones in terms of hydrogen with the exception of two 

majors exporters Bruce and East Zone, and a major importer Niagara zone.  

 There are certain limitation of the current model such as absence of the 

envirenmatal impacts and theirs costs, the absence of industrial demand of hydrogen, and 

the assumption of a uniform price of electricity across the zones. Usually sensitivity 

analysis is performed, but since there is a multitude of solutions, it is more appropriate to 

peform the sensitivity analysis once a solution is selected. Furthermore a linear growth is 

assumed for increase of hydrogen economy; therefore optimizing just the last year was 

sufficient. In future, we would like to solve with more than 1000 variables and study the 

peformance of MODEL algorithm with such large scale variables. 
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Chapter 10 

 

 

Conclusions and Recommendations 
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This thesis made several contributions: conducted a multi-objective optimization 

comparative study, surveyed works related to optimization of renewable energy systems 

modeling, proposed three new multi-objective metaheuristics, and performed two cases 

studies where multi-objective optimization methods are applied to renewable energy 

systems design. The conclusions and recommendations of future works are described in 

the following subsections. 

10.1 Conclusions 

Multi-Objective metaheuristics are powerful tools to solve complex multi-objective 

optimization problems. However, it is desirable to have faster and more accurate 

algorithms. This thesis focused on enhancement of state-of-the-art MOMs using 

leadership concepts.  Both leadership and OBL approaches have been investigated for 

single objective problems, but their use in multi-objective optimization is not a trivial 

task. In this thesis, three new multi-objective metaheuristics (MOMs) are proposed based 

on these two concepts, for which findings are explained and discussed in detail. 

Furthermore, in addition to well-known benchmark problems, two energy-related case 

studies are utilized to demonstrate the performance of the presented methods to solve 

real-world problems. The main contributions of this thesis are as follows. 

 This thesis conducted the most comprehensive comparative study ever in multi-

objective optimization by focusing on robustness of MOMs under stringent 

number for function evaluations. As our case studies are bi-objective problems, 

the analysis of the results focused in particular on bi-objective problems. The 

highest performance for bi-objective problems was achieve respectively by multi-
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objective versions of differential evolution (GDE3) and particle swarm 

optimization (SMPSO), although NSGA-II showed good performance with 

problems having high epistasis. Overall, it is impossible to design an algorithm 

that can handle variant complexities with a static mechanism, rather a dynamic 

mechanism needs to be considered. Example of such dynamic mechanisms is 

hybridization, adaptive parameter control, and self-adaptive parameter control. In 

regards to three-objective problems, SPEA2 showed the highest accuracy 

probably due to its different method of solution ranking. In this thesis, it has been 

shown that the non-dominance sorting has serious deficiencies, especially during 

the exploration phase and it seems to offer lower performance as the number of 

objectives increases.  

 

 To demonstrate the performance of the proposed MOMs, complex optimal design 

problems of renewable energy systems had to be found. A survey of applications 

of optimization in design of energy systems has been conducted. The results 

showed that most previous works considered only standalone problems (not grid-

connected), using single objective optimization algorithms, and focused mainly 

on solar and wind energy. Furthermore, the existing research conducted on MOPs 

did not use state-of-the MOMs. Therefore, one of the proposed case studies in this 

thesis focused on a complex multi-objective design of an original hydrogen 

energy infrastructure, which integrates two networks, namely, hydrogen and 

electrical, and uses a state-of-the-art MOM. Thus, the MOM field is growing fast 

but there is a gap between the MOM research community and other research 
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communities such as energy system design community. If this gap is bridged 

many real-world problems could be solved.  

 

 The first proposed MOM consisted enhancing the leadership concept of SMPSO. 

It is proposed to select leaders using the Sum of Weighted Ratios (SWR) method. 

The purpose of using SWR is to make sure that the selected leaders remain well-

distributed during the entire search process especially during the exploration 

phase. When leaders are concentrated in a narrow region of the objective space, it 

leads to either a premature convergence (trapped in local optima) or requires 

additional computational overhead to redistribute the particles across the PF once 

a portion of it is found. The proposed method called LSMPSO was compared to 

seven state-of-the-art metaheuristics, namely, NSGA-II, SPEA2, GDE3, SMPSO, 

AbYSS, MOCell and MOEA/D using the ZDT and DTLZ bi-objective family 

problems. The convergence speed of these MOMS was compared and the 

proposed LSMPSO was found to be the fastest MOM for 10 out 12 problems. The 

performance of LSMPSO is due to two particularities: use of leadership and the 

proposed enhanced leader ranking mechanism. Most algorithms do not take 

advantage of leadership concept to accelerate the convergence speed despite the 

available information. Further, the non-dominance mechanism needs to be 

seriously reviewed or enhanced especially at exploration phase. The use of SWR 

is an example of such enhancement as part of this thesis. LSMPSO is 

recommended for bi-objective energy designs problem or other real problems 

with two objectives, and limited time constraints as LSMPSO achieved the 
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highest performance for the compared problems MOM with a limited number of 

function evaluations (10
6
). 

 

 As a demonstration of the performance for the proposed LSMPSO, it was 

compared to the four most accurate MOMs, based on the presented comparative 

study, for bi-objective problems, namely, SMPSO, AbYSS, MOCell and GDE3 to 

solve a MO optimal photovoltaic farm design problem in Toronto, Ontario area 

yielding the objectives of total incident solar energy maximization and the cost of 

deployment minimization. Configuration variables consisted of number of 

collector rows, distance between collector rows, dimension of collectors, 

collectors‘ inclination angle, collectors‘ azimuth, and elevation above ground. The 

proposed problem is complex because of multimodality, mixed-type variables, 

and many-to-one mapping. Only LSMPSO and SMPSO were able to find the 

entire PF. Despite the appearance of this problem being of average complexity 

with five mixed-type variables and two inequality constraints, it was a complex 

problem especially due to the many-to-one mapping feature. Problems with 

complex variable relationship such as many-to-one should be given a special 

attention by the research community. 

 

 The second proposed MOM consisted in using the opposition-based learning 

concept in multi-objective optimization metaheuristics. The proposed opposition-

based GDE3 (OGDE3) was the first successful application of OBL into MOM 

with single population (no coevolution) due to leadership and self-adaptive 
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mechanism. The convergence speed of OGDE3 outperformed seven other state-

of-the-art MOMs for ZDT problems by using a self-adaptive version of OBL. The 

use of OBL when appropriate can have important acceleration of the convergence 

speed of MOMs; for the studied problems OGDE3 required only half of function 

evaluations when compared with other MOMs. Other stochastic mechanisms for 

activation/deactivation of OBL should be explored for multi-objective problems. 

 

 The third proposed MOM used the leadership concept for enhancing a multi-

objective variant of DE (GDE3). The leadership improved both the convergence 

speed and the convergence of GDE3 by incorporating it into the mutation 

operator. Sometimes, when the search space in the objective space is very large, 

the proposed algorithm results in premature convergence. To avoid a premature 

convergence, the factor F was negated using probabilistic factor to maintain 

diversity in the variable space. The proposed MOM called MODEL achieved the 

highest accuracy with a low number of function evaluations when compared to 

seven other MOMs using 30 comprehensive benchmark problems. Therefore, the 

robustness and fast convergence speed of MODEL make it an attractive 

alternative MOM to solve bi-objective real world optimization problems. It 

should be further studied for larger dimensional problems in both objective and 

variable spaces. 

 

 To demonstrate the performance of MODEL in solving real-world problems, 

MODEL has been compared with SMPSO, AbYSS, MOCell and GDE3 MOMs 
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to solve a complex and large hydrogen design infrastructure integrated with 

existing and planned electrical network in the province of Ontario, Canada which 

is larger in superficies than any European country. MODEL outperformed the 

other MOMs by generating a larger variety of designs for the hydrogen 

infrastructure model.  

 

10.2 Future Work and Recommendations 

This thesis proposed new MOMs based on the leadership concept which achieved 

promising results. In addition, this work contributed to share knowledge between 

the optimization and energy research communities. However, there are several 

promising avenues that remain to be explored; some of them are described as 

follows: 

 Improving leadership selection.  

- The non-dominance ranking has serious deficiencies in maintaining a 

good diversity in the population especially at early stage which affects 

the performance of MOMs. So, new ranking methods should be 

investigated and this should be even more useful for larger dimension 

problems (> 3 objectives). For example, it has been shown that SPEA2 

achieved a better accuracy than the compared methods for three-

objective problems due to its different ranking mechanism. 

- The ratio of leader selected among population was set to 10% in this 

thesis. This threshold should be further investigated. Another possibility 
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is the use of an adaptive/self-adaptive threshold depending on the 

progress of the algorithm. 

- Examination of the performance of leadership selection on large scale 

problems with decision variables dimension set to more than a thousand 

should be studied. 

 Extension of OBL. 

- Very limited work has been done with OBL in MOO field as a 

straightforward application is not efficient for MOMs. A successful self-

adaptive variant of OBL was proposed which demonstrates OBL 

potential in MOO field. Adaptive and self-adaptive OBL is one 

interesting research direction. In general, adaptive and self-adaptive 

mechanisms should be the focus of future research works related to 

OBL. 

 Extension to the proposed case studies models 

- Optimization of the hydrogen distribution infrastructure focused only on 

the last year. The consideration of the full 18 years would be a valuable 

attempt but it is a time consuming experiment due to large 

dimensionality.  

- The proposed case studies‘ design models can be used for energy 

systems design at macro level for the development of more integrated 

models such as wind / photovoltaic / hydrogen which can be grid-

connected. Such designs were previously avoided buy the energy 
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research community due to lack of awareness with regards to the 

available algorithms. Therefore, stronger collaboration between MOO 

and other research communities such as energy design community is 

mandated. 

- Use of MOM for optimal control of the energy power plants. 

- Test the proposed MOMs at micro level rather than macro level as it 

was done in the PV design problem. 

- More accurate and realistic models are required giving consideration to 

real life factors. For example, in the photovoltaic problem, the 

maintenance fees were not considered. In both proposed models, the 

price of the land used for power plants was again not considered. The 

incorporation of such variables makes the problem and the solutions 

more realistic and predictable.  

 Other general recommendations 

- Based on the comparative study and the case studies conducted in this 

thesis, problems with complex variable relationship e.g. high epistasis, 

many-to-one mapping are the hardest to solve; therefore, the MOMs 

community should further focus on such problems as many real life 

problems have complex variable relationship. 

- Large scale optimization problems as the hydrogen problem are an 

important research direction which needs to be further investigated. For 

example, the performance of proposed MOMs should be further 
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investigated when solving large scale problems, the development of 

parallel and distributed multi-objective optimization frameworks should 

be considered to encourage stronger collaboration among MOM 

research community, and also meta-modeling methods can be 

interesting avenues for large scale problems.  

- In general multi-objective optimization problems can be composed of 

heterogeneous complexities. It is impossible to develop a robust 

metaheuristic implementation using static mechanisms; therefore, 

dynamic mechanisms should be further explored such as hybridization, 

adaptive and self-adaptive mechanisms.   
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Appendix A: Multi-Objective Benchmark Problems Description 

 

 

 This appendix describes the benchmark functions used in the comparative study 

in Chapter 3. The details of the following problems are provided: Zitzler-Deb-Thiele 

(ZDT) problem family [33], the Deb-Thiele-Laumanns-Zitzler (DTLZ) problem family 

[34], the Walking-Fish-Group (WFG) problem family [35], the Li-Zhang problem family 

(LZ_09) [7], and the Van Vedlhuizen test suite [36]. Also, the IGD boxplots, the HV and 

HVR results of the experiments are presented as complementary information. 
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Table 35: ZDT test functions (all minimization problems) 

 

Problem Objective Functions 
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b
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Pareto Front Geometry 

ZDT1 

          

            *  √       ⁄ + 

           ∑   

 

   
      ⁄   

 

 

 

0 ≤    ≤ 1 

 

 

2 

 

 

30 

 

 

Convex 

 

ZDT2 

          

            [            ⁄ ] 

           ∑   

 

   
      ⁄   

 

 

 

0 ≤    ≤ 1 

 

 

2 
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Concave 
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ZDT3 

          

            0  √
  

     
  

  

     
           1 

           ∑   

 

   
      ⁄   

 

 

 

0 ≤    ≤ 1 
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30 

 

Convex 

Disconnected 
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                 ∑ [  
              ]
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            [               ⁄ ] 

         [ ∑          ]    
 

   
 

 

 

 

 

0 ≤    ≤ 1 

 

 

2 

 

 

10 

Concave, 

Non-uniformly spaced 
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Table 36: DTLZ M-objectives minimization problems 

 

P
ro
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lem

 

Objective Functions 
Variable 

Bounds 
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Pareto front geometry 

DTLZ1 

       (       )   ∏   

   

   
 

 

    :        (       )   ∏   

   

   
           

 

                          

 

         [  ∑                              ]
 

   
 

 

 

0 ≤    ≤ 1 2/3 7 Linear 
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DTLZ2 
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 214 

DTLZ4 
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DTLZ5 Idem DTLZ2, except     ,…,        are replaced by 
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when (M > 2) 
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DTLZ6 Idem DTLZ5, except       ∑   
    

    

 

 

0 ≤    ≤ 1 

 

 

2/3 

 

12 

 

Concave, 

Degenerate 
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    :           
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Table 37: Van Vedlhuizen test suite (with Viennet4 added) 

Problem Objective Functions Variable Bounds 

N
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jectiv
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N
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Pareto front geometry 

Schaffer 
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Poloni 
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Viennet3 

           
    

         
    

   
 

        
            

 
 

           

  
    

 

        
 

   
    

    
        

    
 
 

 

-3 ≤    ≤ 3 

 

3 2 Disconnected, mixed 
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Table 38: WFG suite, shape functions of the Pareto front.  

In all cases,           [   ]. A,          are constants. 

Linear 

                   ∏   

   

   

 

         :                ∏              
   

   

 

                        

When     : =        , the Pareto optimal front is a linear hyperplane, where ∑      
    

Convex 

                   ∏            ⁄   
   

   

 

         :                ∏            ⁄                  ⁄  
   

   

  

                              ⁄   

When     : =        , the Pareto optimal front is purely convex. 

Concave 

                    ∏         ⁄  
   

   

 

          :                ∏         ⁄               ⁄  
   

   

 

                             ⁄   

When     : =          , the Pareto optimal front is purely concave, and a region of hyper-sphere of radius one centred at 

the origin, where ∑   
    

    

Mixed convex/concave (      {      ) 

                        
             ⁄  

   
  

Causes the Pareto optimal front to contain both convex and concave segments, the number of which is controlled by A. The 

overall shape is controlled by  : when     or when    , the overall shape is convex or concave respectively. When 

   , the overall shape is linear. 

Disconnected (        {      ) 

                      
 
          

 
      

Causes the Pareto optimal front to have disconnected regions, the number of which is controlled by A. The overall shape is 

controlled by  : when     or when    , the overall shape is convex or concave respectively. When    , the overall 

shape is linear.   influences the location of the disconnected regions (Larger values push the location of the disconnected 

regions towards larges values of   , and vice versa). 
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Table 39: WFG Suite, Transformation Functions (bias, shift, reduction) 

All parameters  [   ]. A,          are constants. u is a reduction function. 

 
Bias: Polynomial (       ) 

        b_poly(   ) =    

when     or when    , y is biased towards zero or towards one respectively. 

Bias: Flat Region (      [   ]      ,B=0                   ) 

        b_param (          ) =          [   ] 
      

 
-min(0,[C-y])

          

   
 

Values of y between   and   (the area of the flat region) are all mapped to the value A. 

Bias: Parameter Dependent (              

        b_param (          ) =  
        ( (  ))

 

v(u(  )) = A-(1-2u(  ))│ ⌊      ⌋     

A,B,C and the secondary parameter vector    together determine the degree to which y is biased by being 

raised to an associated power: values of u(  ) [      ] are mapped linearly onto [B,B+(C-B)A], and 

values of u(  ) [     ] are mapped linearly onto [B+(C-B)A,C]. 

Shift: linear (A      ) 

s_linear(y, A)=
|   |

|⌊   ⌋  |
 

A is the value for which y is mapped to zero. 

Shift: Deceptive (A                              ) 

s_decept (y, A, B, C)=   |   |     
⌊     ⌋(    

   

 
)

    
 
⌊     ⌋(    

     

 
)

     
 

 

 
  

A is the value at which y is mapper to zero, and the global minimum of the transformation. B is the 

―aperture‖ size of the well/basin leading to the global minimum at A, and C is the value of the deceptive 

minima (there are always two deceptive minima). 

 

Shift: Multi-Modal (A {                             ) 

s_multi (y, A, B, C)=
     [       (    

     

  ⌊   ⌋   
)]    

     

  ⌊   ⌋   
 

    
 

A controls the number of minima, B controls the magnitude of the ―hill sizes‖ of the multi-modality, and C 

is the value for which y is mapped to zero. When B=0, 2A+1 values of y (one at C) are mapped to zero, and 

when B 0, there are 2A local minima, and one global minimum at C. Larger values of A and smaller 

values of B generate more challenging problems. 

Reduction: Weighted Sum (| |  | |       | |    

r_sum (y, w)= ∑     
| |
     ∑   

| |
    

By varying the constants of the weight vector w, EAs can be forced to treat parameters differently. 

Reduction: Non-separable (  {    | |  | |        

r_sum (y, A)=
∑    
| |
     ∑ |  

   
               | |

| |
 

⌈
 

 
⌉       ⌈   ⌉ 

 

A controls the degree of non-separability (noting that r_nonsep (y, 1) = r_sum(y,{1,...,1}). 
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Table 40: WFG test suite 
The number of position-related parameters k must be divisible by the number of underlying position parameters M-1. For WFG2 and WFG2, l must be a multiple 

of two. For readability, let‘s define a transition vector y=     . For       [   ]  {                

 

Problem Type Settings Obj Var. Geometry 

All Constants 

    :      

     

      

  :     {
           
           

 

The settings for   :  ensures the Pareto optimal fronts have dissimilar 

tradeoff magnitudes, and the settings for   :   ensures the Pareto 

optimal fronts are not degenerate, except in the case of WFG3 which 

has a one dimensional Pareto optimal front. 

    

All Domains 
    :          

The working parameters have domains of dissimilar magnitude. 
    

WFG1 Shape 

    :             

           (with α=1and A=5) 

    : 
     

      : 
                   

    : 
     

      : 
                          

    : 
                

    :   
        {            ⁄              ⁄  } 

{ (           ⁄   )                

  
        {            {              

2/3 6 

Convex   

concave 

mixed 
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WFG2 
 

    :             

          (with α=β=1and A=5) 

As   from WFG1. (linear shift) 

      :     
           {                   }    

    :   
        {            ⁄              ⁄  } {        

  
        {              } {        

2/3 6 
Convex, 

disconnected 

 

 

WFG3  

    :                       

As   :  from WFG2. (linear shift, non-separable reduction, and 

weighted sum reduction) 

2/3 6 
Linear, 

degenerate 
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WFG4  

    :            

    : 
                         

    :   
        {            ⁄              ⁄  } {        

  
        {            {        

2/3 6 Concave 

 

 

WFG5  

    :            

As   from WFG1. (linear shift) 

    : 
                               

As   from WFG4. (weighted sum reduction) 

2/3 6 Concave 
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WFG6  

    :            

As   from WFG1. (linear shift) 

    :   
           {            ⁄              ⁄  }       ⁄   

  
        {               

2/3 6 Concave 

 

 

WFG7  

    :            

    : 
         (         {            ⁄              ⁄  } 

{       
    

     
         ) 

      : 
     

As   from WFG1. (linear shift) 

As   from WFG4. (weighted sum reduction) 

2/3 6 Concave 
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WFG8  

    :            

    : 
     

    : 
         (         {            ⁄              ⁄  } 

{       
    

     
         ) 

As   from WFG1. (linear shift) 

As   from WFG4. (weighted sum reduction) 

2/3 6 Concave 
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    :            

    :   
         (         {            ⁄              ⁄  } 

{       
    

     
         ) 

  
     

    : 
                               

      : 
                         

As   from WFG6. (Non-separable reduction) 

2/3 6 Concave 
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Table 41: LZ_09 test suite 
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Figure 57: IGD boxplots for DTLZ bi-objective problems 
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Figure 58: IGD boxplots for WFG bi-objective problems 
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Figure 59: IGD boxplots for ZDT bi-objective problems 
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Figure 60: IGD boxplots for Van Veldhuizen‘s Bi-Objective problems 

 

 
 

Figure 61: IGD boxplots for the Viennet three-objective problems 
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Figure 62: IGD boxplots for DTLZ three-objective problems 
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Figure 63: IGD boxplots for WFG three-objective problems 
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Figure 64: IGD boxplots of LZ_09 problems



 237 

 

 

Table 42: HV. Mean and standard deviation for bi-objective problems 
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Table 43: HVR. Mean and standard deviation for bi-objective problems 
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Table 44: Hypervolume Ratio Mean and Standard Deviation for Three-Objective Problems 
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Table 45: HV Mean and Standard Deviation for Three-Objective Problems 
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Table 46: Hypervolume Ratio Mean and Standard Deviation for LZ_09 Problems 

 

 

 

 

 

Table 47: Hypervolume Mean and Standard Deviation for LZ_09 Problems 
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Appendix B: Meteorological Data for Toronto Area Used in the 

Photovoltaic Energy System Design Case Study 
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Table 48: Monthly average hourly direct normal beam irradiance: Latitude 43.45º / 

Longitude  -79.25º (kWh/m
2
) 

Time   Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec 
0:00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
1:00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
2:00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
3:00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
4:00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
5:00 0.0000 0.0000 0.0000 0.0047 0.1467 0.1583 0.1481 0.0153 0.0000 0.0000 0.0000 0.0000 
6:00 0.0000 0.0000 0.0157 0.1577 0.3369 0.2626 0.3119 0.2088 0.1339 0.0018 0.0000 0.0000 
7:00 0.0000 0.0234 0.2203 0.2634 0.4185 0.3398 0.3781 0.3113 0.3508 0.1634 0.0173 0.0000 
8:00 0.0939 0.1708 0.3429 0.3327 0.4887 0.3896 0.4438 0.3813 0.4098 0.2218 0.0572 0.0659 
9:00 0.1796 0.2569 0.3795 0.3745 0.4609 0.4468 0.4807 0.4104 0.4506 0.2570 0.1045 0.1436 

10:00 0.2627 0.3035 0.3546 0.4053 0.4430 0.4467 0.5061 0.4117 0.4401 0.3320 0.1753 0.2243 
11:00 0.3075 0.3277 0.3287 0.4304 0.4369 0.4531 0.5313 0.3910 0.4126 0.3312 0.1804 0.2444 
12:00 0.3193 0.3500 0.3615 0.4094 0.4189 0.4398 0.5115 0.4044 0.4388 0.3034 0.2146 0.2718 
13:00 0.3112 0.3291 0.3097 0.3829 0.3665 0.4108 0.4417 0.3821 0.4557 0.2903 0.2041 0.2671 
14:00 0.2777 0.3139 0.2867 0.3373 0.3548 0.3649 0.3760 0.3616 0.4058 0.3043 0.1816 0.1803 
15:00 0.2312 0.3128 0.2617 0.3486 0.3073 0.3333 0.3492 0.3488 0.3314 0.2685 0.0903 0.1191 
16:00 0.1149 0.2586 0.2118 0.3050 0.2622 0.3139 0.3437 0.3249 0.2570 0.1759 0.0244 0.0029 
17:00 0.0000 0.0565 0.1342 0.2282 0.1894 0.2753 0.2803 0.2428 0.1505 0.0139 0.0000 0.0000 
18:00 0.0000 0.0000 0.0000 0.0610 0.0922 0.1934 0.2078 0.1399 0.0143 0.0000 0.0000 0.0000 
19:00 0.0000 0.0000 0.0000 0.0000 0.0055 0.0903 0.0740 0.0016 0.0000 0.0000 0.0000 0.0000 
20:00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
21:00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
22:00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
23:00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

Table 49: Monthly average hourly horizontal diffuse irradiance: Latitude 43.45º / Longitude  

-79.25º (kWh/m
2
) 

Time   Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec 
0:00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
1:00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
2:00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
3:00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
4:00 0.0000 0.0000 0.0000 0.0001 0.0012 0.0079 0.0048 0.0005 0.0000 0.0000 0.0000 0.0000 
5:00 0.0000 0.0000 0.0004 0.0086 0.0281 0.0389 0.0322 0.0190 0.0029 0.0000 0.0000 0.0000 
6:00 0.0000 0.0017 0.0156 0.0411 0.0701 0.0816 0.0647 0.0591 0.0368 0.0088 0.0003 0.0000 
7:00 0.0049 0.0199 0.0483 0.0957 0.1220 0.1354 0.1033 0.1118 0.0786 0.0444 0.0156 0.0013 
8:00 0.0280 0.0556 0.0967 0.1378 0.1657 0.1902 0.1443 0.1609 0.1160 0.0921 0.0526 0.0197 
9:00 0.0686 0.0960 0.1439 0.1843 0.2215 0.2298 0.1782 0.2155 0.1595 0.1415 0.0986 0.0610 

10:00 0.1056 0.1267 0.1752 0.2339 0.2605 0.2803 0.2083 0.2637 0.1977 0.1802 0.1278 0.0943 
11:00 0.1282 0.1522 0.2018 0.2314 0.2779 0.3088 0.2373 0.2937 0.2267 0.1920 0.1351 0.1016 
12:00 0.1331 0.1699 0.1868 0.2255 0.2909 0.3202 0.2673 0.2943 0.2199 0.2039 0.1316 0.0993 
13:00 0.1223 0.1817 0.1875 0.2105 0.2927 0.3171 0.2858 0.2796 0.2015 0.1868 0.1128 0.0892 
14:00 0.0936 0.1507 0.1721 0.1915 0.2654 0.2889 0.2783 0.2463 0.1907 0.1427 0.0813 0.0755 
15:00 0.0608 0.1040 0.1390 0.1498 0.2040 0.2339 0.2409 0.1998 0.1535 0.1018 0.0460 0.0415 
16:00 0.0320 0.0596 0.0930 0.1078 0.1601 0.1715 0.1764 0.1511 0.1008 0.0532 0.0156 0.0073 
17:00 0.0063 0.0293 0.0393 0.0597 0.1022 0.1190 0.1194 0.0992 0.0493 0.0103 0.0012 0.0006 
18:00 0.0000 0.0032 0.0068 0.0190 0.0475 0.0660 0.0682 0.0461 0.0098 0.0007 0.0000 0.0000 
19:00 0.0000 0.0000 0.0002 0.0029 0.0030 0.0245 0.0279 0.0123 0.0009 0.0000 0.0000 0.0000 
20:00 0.0000 0.0000 0.0000 0.0000 0.0001 0.0036 0.0038 0.0003 0.0000 0.0000 0.0000 0.0000 
21:00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
22:00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
23:00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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Table 50: Monthly averaged hourly solar azimuth angles due south (degrees 43.45º / 

Longitude  -79.25º) 
Time   Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec 

0:00  n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

1:00 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

2:00 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

3:00 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

4:00 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

5:00 n/a n/a n/a n/a -116.0 -119.5 -119.4 n/a n/a n/a n/a n/a 

6:00 n/a n/a n/a -100.0 -106.1 -109.8 -109.5 -103.8 n/a n/a n/a n/a 

7:00 n/a n/a -82.8 -89.8 -96.3 -100.4 -99.9 -93.8 -84.1 -75.0 n/a n/a 

8:00 -60.0 -66.0 -72.0 -80.0 -86.1 -90.6 -90.1 -83.3 -74.0 -64.0 -57.0 -55.0 

9:00 -49.0 -55.0 -60.0 -67.0 -75.0 -80.0 -79.0 -72.0 -61.0 -51.0 -45.0 -44.0 

10:00 -36.0 -42.0 -46.0 -52.0 -60.0 -66.0 -65.0 -57.0 -46.0 -37.0 -32.0 -32.0 

11:00 -23.0 -27.0 -29.0 -33.0 -38.0 -44.0 -45.0 -37.0 -27.0 -20.0 -17.0 -18.0 

12:00 -7.0 -10.0 -10.0 -8.0 -8.0 -11.0 -15.0 -11.0 -5.0 -1.0 -1.0 -3.0 

13:00 8.0 8.0 11.0 18.0 25.0 27.0 21.0 18.0 18.0 17.0 15.0 12.0 

14:00 23.0 25.0 31.0 41.0 50.0 54.0 49.0 43.0 38.0 34.0 30.0 26.0 

15:00 37.0 40.0 48.0 58.0 68.0 72.0 68.0 61.0 54.0 49.0 43.0 39.0 

15:00 49.0 53.0 61.0 72.0 81.0 84.0 81.0 74.0 68.0 61.0 55.0 51.0 

17:00 60.0 65.0 73.0 83.0 91.0 95.0 92.0 86.0 79.0 72.0 n/a n/a 

18:00 n/a n/a 84.0 94.0 101.0 104.0 102.0 96.0 90.0 n/a n/a n/a 

19:00 n/a n/a n/a n/a 111.0 114.0 111.0 106.0 n/a n/a n/a n/a 

20:00 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

21:00 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

22:00 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

23:00 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

Table 51: Monthly averaged hourly solar Angles relative to the horizon (degrees): 43.45º / 

Longitude  -79.25º  

 

Time  

 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec 
0:00  n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a 
1:00  n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a 
2:00  n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a 
3:00  n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a 
4:00  n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a 
5:00  n/a   n/a   n/a   n/a  0.3 2.9 0.6  n/a   n/a   n/a   n/a  n/a 
6:00  n/a   n/a   n/a  3.5 10.4 12.7 10.4 5.7  n/a  n/a  n/a  n/a 
7:00  n/a   n/a  4.9 14.3 21.1 23.2 20.9 16.4 10.8 4.4  n/a  n/a 
8:00 1.4 6.9 15.5 25.1 32.0 34.1 31.8 27.2 21.4 14.5 7.3 2.4 
9:00 10.1 16.3 25.4 35.6 42.7 44.9 42.6 37.8 31.4 23.6 15.7 10.6 

10:00 17.4 24.3 34.1 44.9 52.7 55.3 52.9 47.6 40.1 31.1 22.3 17.2 
11:00 22.7 30.3 40.8 52.2 60.9 64.2 61.8 55.6 46.5 36.1 26.7 21.7 
12:00 25.4 33.7 44.3 56.0 65.2 69.3 67.2 59.9 49.5 38.0 28.3 23.6 
13:00 25.3 33.7 44.1 55.0 63.4 67.7 66.4 59.1 48.2 36.4 26.9 22.6 
14:00 22.3 30.6 40.0 49.5 56.7 60.5 60.0 53.5 43.0 31.6 22.6 18.9 
15:00 16.8 24.6 33.1 41.2 47.3 50.7 50.6 44.9 35.1 24.3 16.0 12.9 
16:00 9.4 16.7 24.2 31.3 36.8 40.1 40.1 34.8 25.5 15.3 7.7 5.2 
17:00 0.5 7.3 14.1 20.6 26.0 29.2 29.2 24.0 15.1 5.3 n/a  n/a 
18:00 n/a  n/a  3.5 9.8 15.2 18.5 18.4 13.2 4.3 n/a  n/a  n/a 
19:00 n/a  n/a  n/a  n/a  4.8 8.3 8.0 2.5 n/a  n/a  n/a  n/a 
20:00  n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a 
21:00  n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a 
22:00  n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a 
23:00  n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a   n/a 



 

 245 

Table 52: The solutions having achieved the lowest (best) IGD found by LSMPSO. 
  

 

  

    
  

    
  

    
  

    
  

    
Absorbed light 

        
Installation cost  

C ($) 

1 0.20 27.99 0.80 -5.60 1.60 2096.65 924.88 

2 0.20 1.00 2.50 -6.15 2.00 3815.93 1849.76 

1 0.51 22.58 0.80 -3.49 0.57 5368.79 2378.47 

1 0.71 26.85 2.44 -1.26 1.38 7403.44 3273.18 

1 0.83 25.07 2.31 -1.44 1.49 8662.61 3832.38 

1 0.97 24.63 1.21 -8.39 1.25 10168.81 4497.36 

1 1.11 29.51 0.87 -19.49 0.96 11559.18 5143.03 

2 0.63 29.20 1.03 -3.52 1.25 13000.40 5787.78 

1 1.41 22.36 1.04 6.58 0.77 14478.91 6505.77 

2 0.77 29.80 1.76 -4.59 1.19 16059.47 7133.96 

1 1.77 22.80 0.87 10.64 0.50 17944.05 8182.17 

2 0.97 24.39 1.34 -9.87 0.80 19967.88 8957.01 

3 0.70 17.92 0.80 -4.53 0.67 21707.83 9759.59 

3 0.76 36.96 1.42 -4.54 1.07 23234.71 10504.09 

2 1.22 24.60 1.24 -6.74 1.00 25237.36 11256.60 

2 1.31 19.29 1.77 9.60 1.08 26489.56 12079.14 

4 0.69 32.52 1.49 -19.89 0.94 28562.13 12840.05 

5 0.58 24.66 0.87 -17.96 1.10 30097.73 13475.27 

3 1.03 32.47 1.50 -23.35 1.17 31350.21 14276.49 

3 1.07 34.00 2.13 -17.02 1.54 32995.91 14795.13 

5 0.67 31.89 1.63 -22.76 0.92 34149.94 15486.95 

4 0.88 18.04 0.80 -5.38 0.61 36217.93 16315.34 

4 0.92 27.72 1.31 -0.04 0.93 37571.92 16983.11 

3 1.27 29.20 1.47 -4.26 0.80 39268.07 17596.30 

2 2.00 23.71 1.12 -19.58 0.53 40828.55 18497.64 

3 1.38 20.22 0.86 -9.34 0.55 42175.48 19179.96 

4 1.08 31.12 1.63 -11.39 1.31 44522.33 19985.25 

5 0.89 20.71 0.92 -2.84 0.91 46051.59 20687.16 

5 0.92 22.51 1.14 -1.72 0.81 47654.75 21356.02 

4 1.20 27.09 1.00 -6.73 0.57 49234.81 22173.53 

4 1.24 20.80 1.34 -17.61 0.73 51052.72 22972.20 

5 1.02 24.31 0.92 -8.65 0.81 52460.23 23591.23 

5 1.05 21.05 0.89 -14.85 0.51 53707.01 24185.71 

5 1.07 27.01 1.65 -0.58 1.25 55132.25 24780.00 

5 1.10 23.82 1.65 -8.95 0.52 56921.83 25434.26 

4 1.42 26.02 1.40 -4.64 0.74 58442.40 26215.61 

6 0.97 31.07 1.09 -7.65 0.83 59494.66 26880.17 

4 1.49 21.28 1.37 -8.89 0.88 61262.14 27528.40 

5 1.22 17.51 1.50 -14.57 0.61 62371.42 28130.27 

5 1.24 28.28 1.31 -17.95 0.95 63808.04 28724.45 

4 1.59 22.12 1.21 -7.22 0.80 65168.39 29360.00 

6 1.10 18.03 0.93 -14.73 0.77 67507.80 30521.11 

5 1.36 25.49 1.24 2.02 0.60 69505.86 31533.07 

5 1.40 22.03 0.93 -8.57 0.54 71722.93 32406.32 

5 1.44 25.78 1.36 -4.70 0.93 73892.39 33197.91 

5 1.47 25.64 1.21 -3.86 0.62 75392.47 33896.72 

5 1.51 26.54 1.23 -2.88 0.89 77391.28 34915.10 

6 1.29 25.17 0.88 -11.47 0.62 78733.19 35695.55 

5 1.58 21.98 1.30 -6.03 0.87 80828.29 36487.44 
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6 1.35 25.49 0.90 -12.19 0.61 82541.77 37428.63 

5 1.66 25.58 1.14 -11.16 0.59 84629.14 38330.87 

5 1.70 23.07 1.20 -11.21 0.63 86696.78 39194.14 

5 1.72 20.89 1.23 -6.84 0.62 88363.43 39844.72 

8 1.10 30.92 1.16 -9.02 0.61 89270.11 40694.82 

5 1.79 23.16 1.17 -9.86 0.56 90940.58 41403.50 

6 1.51 20.12 1.35 -8.25 0.92 93125.54 41961.29 

5 1.85 28.77 1.65 -6.05 0.58 94581.89 42814.91 

5 1.88 23.46 1.32 -11.17 0.68 96303.39 43545.52 

6 1.60 22.09 1.21 -3.14 0.82 98326.04 44332.76 

6 1.63 20.88 1.00 -6.60 0.67 99924.07 45201.85 

6 1.66 23.06 1.18 -15.50 0.69 101930.40 46008.35 

6 1.69 23.23 1.00 -11.21 0.57 103305.00 46900.85 

7 1.48 22.79 1.14 -13.42 0.59 105843.80 47796.70 

6 1.75 23.81 1.76 -3.99 0.60 108220.70 48480.48 

7 1.54 20.41 1.39 -8.45 0.96 110941.40 49985.71 

6 1.82 21.69 1.12 -5.74 0.64 111576.80 50439.03 

7 1.58 20.16 1.40 -8.65 0.94 113826.90 51300.28 

6 1.89 23.18 1.33 -8.42 0.54 115856.10 52331.06 

6 1.93 19.64 1.20 -10.92 0.50 117915.60 53462.56 

6 1.96 21.25 1.23 -11.08 0.50 120230.40 54516.23 

6 1.99 20.31 1.49 -8.39 0.50 122571.00 55335.11 

7 1.76 24.07 1.12 8.20 0.83 123131.30 56840.10 

7 1.76 18.83 0.98 -7.23 0.55 125596.40 57057.91 

7 1.78 27.37 0.99 -7.35 0.97 126387.90 57729.43 

7 1.80 25.60 0.98 -8.94 0.94 128236.60 58402.99 

7 1.82 21.16 1.53 -12.29 0.58 130430.30 58863.70 

7 1.85 21.28 1.26 -6.75 0.57 132295.00 59757.17 

7 1.90 14.80 1.09 -19.38 0.53 133104.80 61474.28 

7 1.91 19.00 1.03 -0.86 0.72 136048.00 61801.25 

7 1.93 23.12 1.34 -7.54 0.53 138072.90 62436.63 

7 1.98 20.66 1.30 -3.00 0.50 141755.60 64098.10 

7 2.00 26.72 1.49 -2.38 0.50 142966.00 64741.76 

8 1.80 23.13 1.10 5.67 0.90 145174.00 66656.12 

8 1.82 23.08 1.08 6.46 0.90 146283.30 67273.02 

8 1.85 17.38 1.16 -22.21 0.52 147766.30 68553.70 

8 1.89 16.48 0.80 -7.83 0.50 152689.00 69798.92 

8 1.91 15.94 0.80 -8.55 0.50 154142.10 70497.19 

8 1.95 16.67 1.13 -23.16 0.50 154830.70 71970.45 

8 1.95 17.53 0.86 -12.53 0.57 157725.40 72097.10 

8 1.97 21.67 1.23 -6.65 0.50 160795.80 72768.46 

9 1.77 19.07 0.89 -3.23 0.54 161563.20 73467.99 

8 2.00 21.64 1.31 -0.83 0.50 163402.80 73990.58 

9 1.87 10.98 0.80 -2.87 0.50 169285.30 78024.63 

9 1.90 10.41 1.28 -11.96 1.10 171353.60 79236.14 

9 1.94 14.19 0.80 -8.51 0.50 175850.30 80655.51 

9 2.00 34.92 1.14 0.00 0.50 176145.40 83191.66 

9 2.00 21.14 1.20 -8.28 0.50 183542.70 83239.40 

10 1.91 14.42 1.11 16.13 0.58 184676.00 88116.69 
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Appendix C: Electricity Import/Export Capacities in the Province of 

Ontario 
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Table 53: Zonal electricity maximum import (MWh) 

 
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Bruce 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

West 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 

SW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Niagara 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 

Toronto 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

East 800 800 800 1550 1550 1550 1550 1550 1550 1550 1550 800 800 800 

Ottawa 1200 1200 1200 1950 1950 1950 1950 1950 1950 1950 1950 1200 1200 1200 

Essa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

NE 70 70 70 570 570 570 570 570 570 570 570 70 70 70 

NW 300 300 300 500 500 500 500 500 500 500 500 300 300 300 

 

 

Table 54: Zonal electricity maximum export (MWh) 

 
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

Bruce 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

West 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 

SW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Niagara 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 

Toronto 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

East 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 

Ottawa 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 

Essa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

NE 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 

NW 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 
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