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SUMMARY

A cyber-security problem is a conflict-resolution scenario that typically consists of a

security system and at least two decision makers (e.g. attacker and defender) that can

each have competing objectives. For example, the objective of one decision maker (e.g.

defender) could be to ensure that the security system operates at or above some threshold

level of performance, while another decision maker’s (e.g. attacker) objective could be to

ensure that the system operates below this threshold. From the standpoint of a security

researcher or practitioner, some questions of interest about the system are the following.

How will the security system perform over time? What will be the likely behavior of the

key decision makers that control/influence the system? How does information asymmetry

affect the behaviors of each decision maker? Answers to these questions can lead to better

system designs, better understanding of the system itself, and improved decision making

ability by security professionals.

In this thesis, we are interested in cyber-security problems where one decision maker

has superior or better information. Game theory is a well-established mathematical tool

that can be used to analyze such problems and will be our tool of choice. In particular, we

will formulate cyber-security problems as asymmetric information games, where game-

theoretic methods can then be applied to the problems to derive optimal policies for each

decision maker. We will consider asymmetric games where the state of the world remains

fixed over time (repeated games) as well as games where the state of the world can change

from stage to stage according to a transition that is dependent on the current state and

the moves of both players (stochastic games). These optimal policies can then be used to

predict the likely behavior of the decision makers and the performance of the system.

A severe limitation of considering optimal policies is that these policies are computa-

tionally prohibitive for repeated and stochastic asymmetric information games. In asym-

metric information games, the computational complexity grows exponentially with respect

x



to the number of game stages. We address the computational limitations for repeated games

and stochastic games in Chapters 3 and 4 respectively by considering suboptimal policies

based on the ideas of model predictive control. A key property of the policies is that they

remain computationally tractable as the number of game stages increase.

The contributions of this thesis are the following. For the repeated games, we intro-

duce policy improvement methods for computing suboptimal policies that have tight per-

formance bounds. We prove that the method’s performance converges asymptotically to

optimal with respect to the number of game stages. We also show that the improved policy

can be computed by solving a linear program online whose complexity is constant with

respect to the game length. Similarly, for the stochastic games, we derive bounds on the

performance of the policy improvement methods and show that the policy can also be com-

puted by solving a linear program online. We then demonstrate in Chapter 5 how the policy

improvement methods can be applied to cyber-security problems to reduce the computa-

tional complexity of forecasting cyber attacks.

xi



CHAPTER 1

INTRODUCTION

Society’s critical infrastructure, which include its government, its military, and its busi-

nesses, rely on networked systems to function in a satisfactory manner. As a result of this

reliance, networked systems have been a target of social groups that include criminals, for-

eign countries, and “hactivists1.” Before these groups began to proliferate in the digital

era and before networked systems became the lifeline of modern civilization, there were

hackers whose objective was to break into computer systems for the challenge; there were

no profit motives in it for them. As a consequence, companies and industries placed few if

any resources into cyber security. In fact, one of the few areas where substantial resources

were placed was cryptography.

Modern cryptography is a subset of cyber security that has since its infancy been math-

ematically grounded. A particular example is a public key encryption algorithm developed

by three professors (Rivest, Shamir, and Aldeman) at MIT [1]. 2 The encryption algorithm,

RSA, is based on number theory and relies on the premise that it is computationally in-

feasible to factor large prime numbers. Cryptography has progressed to a point that cyber

hackers almost aways avoid attacking the algorithms directly [2]. Instead, hackers seek out

alternative attack vectors that they are more likely to attack successfully. These alternative

attack vectors consist of targeting aspects of the security system that are often based on

heuristics instead of established mathematical theory. In light of the recent security threats

that have impacted governments as well as businesses, an increasing emphasis has been

placed on finding ways to mathematically ground other aspects of security outside of cryp-

tography [3]. It is hoped that through this process security systems will be more secure and

predictable.

1Anonymous is an example of a hactivist group whose goal is to attack cyber systems to make political
statements.

2Diffie and Helman were the first to publish the public key encryption concept.
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In this thesis, we consider developing mathematical models of security systems to an-

alyze the system’s performance and to predict the likely behavior of key decision makers

that influence/control the system.3 In particular, we are interested in the scenario where one

decision maker (e.g. attacker ) has superior information and seeks to actively conceal his

knowledge when it is optimal to exploit the uncertainty of the other decision maker (e.g.

defender). The uninformed decision must therefore use her current observations to improve

her uncertainty so that she can make better decisions going forward into the future.

A mathematical model of a given cyber system can be used to formulate a security

scenario into a strategic game with asymmetric information. Game-theoretic methods can

then be used to derive optimal policies for each decision maker under zero-sum assump-

tions, and these policies can be used to predict the likely behavior of the decision makers

and the performance of the system [4]. Since the derivation of optimal policies is computa-

tionally prohibitive [5], the theoretical contribution of this thesis is to consider suboptimal

policies that are based on the ideas of model predictive control. Specifically, we establish

tight lower bounds on the performance of the suboptimal polices, and we show that these

policies are computationally feasible4.

In the first half of the thesis we will discuss asymmetric information games. This dis-

cussion will include both repeated games and stochastic games, where the state of the world

remains fixed in repeated games and the state can change during game play in stochastic

games. In the second half we will discuss actionable cyber-attack forecasting. The objec-

tives of actionable cyber-attack forecasting are to learn an attacker’s behavioral model, to

predict future attacks, and to select appropriate countermeasures to prevent future attacks.

We will also demonstrate in the second half of the thesis how the computational results

of the first half of the thesis can be used to reduce the complexity of cyber-attack forecast

models.
3These decision makers are typically attackers and defenders.
4The computationally complexity of the optimal policies grows exponentially with respect to the number

of stages of the game. In contrast, the complexity of the suboptimal policies remains constant.
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1.1 Asymmetric Information Games
1.1.1 Repeated Games

In repeated zero-sum games, two players repeatedly play the same zero-sum game over

several stages [6], [7], [8]. We assume that while both players can observe the actions

of the other, only one player knows the actual game, which was randomly selected from

a set of possible games according to a known distribution. The dilemma faced by the

informed player is how to trade off the short-term reward versus long-term consequences

for exploiting her private information, since exploitation can reveal the true state of the

world [9]. Seminal work by Aumann and Maschler [10] derives a formulation for the value

of the game, which quantifies the exploitation tradeoff, and also derives optimal policies

for the informed player. Using this formulation to compute explicit optimal policies for

games with multiple stages is computationally prohibitive.

We address the complexity issues of repeated games by deriving a suboptimal policy

based on the concept of policy improvement. Policy improvement consists of first consid-

ering a policy whose performance is known or can be readily computed. This initial policy

is sometimes referred to as a baseline policy. Next, a candidate policy is selected from

some policy set. If the current candidate policy performs better than the baseline policy,

the candidate policy becomes the new baseline policy. This knew baseline policy is an

improvement over the previous baseline policy, hence a policy improvement. This process

can continue in an iterative manner. If the policy set is finite, then an optimal policy with

respect to the set can be found in a finite amount of time.

The baseline policy we consider for asymmetric games is a non-revealing policy, i.e.,

one that completes ignores superior information. An important characteristic of the non-

revealing policy is that it is readily computable. The improved policy, which is imple-

mented in a receding horizon manner, strategizes for the current stage while assuming a

non-revealing policy for future stages. We derive bounds on the guaranteed performance of

3



the improved policy and establish that the bounds are tight. We then prove that the perfor-

mance of the policy improvement methods converge asymptotically to optimal with respect

to the number of game stages. Last, we show that the improved policy can be computed by

solving a linear program whose complexity is constant with respect to the game length.

1.1.2 Stochastic Games

A stochastic game is a repeated game where the state can change from stage to stage ac-

cording to a transition that is dependent on the current state and the moves of both players

[11]. Of interest, is the scenario where one of the players has superior information in

the stochastic game and also solely controls the state transitions. This scenario creates a

complication for the informed player. The complication is that she must decide when and

how to use her private information. Note that by using her private information, she also

reveals that information to player II, the uninformed player. In their seminal work, Au-

mann and Maschler studied the special case, repeated games with asymmetric information,

where every state is absorbing. This work provides insights into the issues that an informed

player must address when playing against an opponent that can observe moves and use that

information to better estimate the state of the world.

Although stochastic games with asymmetric information are more general than the re-

peated case, the ideas and formulations that Aumann and Maschler introduce extend to the

stochastic case [9]. The computational challenges of computing an optimal strategy for the

repeated case also extend to the more general stochastic case. We address the complex-

ity issues of stochastic game in a similar manner to that of repeated games. Specifically,

we consider applying approximate dynamic programming methods, which includes model

predictive control, to yield computable suboptimal policies with guarantees

1.2 Cyber-Attack Forecast Modeling

The security community has placed a significant emphasis on developing tools and tech-

niques to address known security issues. Some examples of this emphasis include security

4



tools such as anti-virus software and Intrusion Detection Systems (IDS). This reactive ap-

proach to security is effective against novice adversaries (e.g. script kiddies) because they

typically use off-the-shelf tools and popular techniques to conduct their attacks [12]. In

contrast, the innovative adversaries often devise novel attack vectors and methodologies

that can render reactive measures inadequate. These pioneering adversaries have contin-

ually pushed the security frontier forward and motivate a need for proactive security ap-

proaches.

A proactive approach that we pursue in Chapter 5 is actionable cyber-attack forecasting.

The objectives of actionable cyber-attack forecasting are to learn an attacker’s behavioral

model, to predict future attacks, and to select appropriate countermeasures [13]. The com-

putational complexity of analyzing attacker models has been an impediment to the realiza-

tion of reliable cyber-attack forecasting. We address this complexity issue by developing

adversary models and corresponding complexity reduction techniques. We then introduce

a heuristic for learning behavioral models of potentially deceptive adversaries online. Last,

we consider a capture-the-flag problem, formulate the problem as a cyber-security game

with asymmetric information, and demonstrate how the models and techniques developed

in this chapter can be used to forecast a cyber-attack and recommend appropriate counter-

measures.

1.3 Outline

This thesis is organized as follows. It is divided into three chapters, where the first two

chapters cover repeated and stochastic games with asymmetric information, and the last

chapter discusses cyber-attack forecast modeling. Each of these chapters is intended to be

self-contained apart from some general mathematical preliminaries reviewed in the next

chapter. Therefore a reader interested in only one of these three areas can pick up the nec-

essary background in the next chapter and then skip to the chapter of interest. Readers
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that have a solid understanding of asymmetric information games and dynamic program-

ming can proceed directly to the chapter of interest. The last chapter summarizes the key

concepts and ideas of applying the computational results of this thesis to cyber security

games.
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CHAPTER 2

MATHEMATICAL PRELIMINARIES

2.1 Game Theory

Game Theory provides methods to model decision problems as games, where each decision

maker can have competing objectives; these methods can enable the interactions among

decision makers to be studied. Although game theory has seen widespread applications in

economics, it has also been used as a tool to study social and behavioral phenomena that

include conflict resolution scenarios. Cyber security is a conflict resolution scenario that

has recently garnered much attention from businesses and governments [14]. Since cyber

security typically includes at least two decision makers (e.g. defender and attacker) with

contradictory objectives who are competing with each other, game theory can provide a

way to model this scenario as a strategic game to predict the likely behaviors/actions of the

defenders and attackers.

A strategic game consists of a set of players {1, . . . , P}, a set of actions Ai for each

player i, and preferences over action profiles characterized by a function ui : A 7→ R

[15], [16], [17]. An example of a conflict resolution scenario modeled as a game is the

well-known Prisoner’s Dilemma. In this scenario, there are two players, a set of actions

Ai = {Cooperate, Defect} for player i, and a utility function represented by the matrix

C D

C 2, 2 0, 3

D 3, 0 1, 1

(1)

Note that player I is the row player and player II is the column player. The best outcome

for player I is if player II cooperates because player I can then achieve a payoff of 3 if she

defects. This scenario (D,C) is an unlikely outcome because each player has a dominant

strategy, which is to defect. Note that a strategy is dominant if there exists no other strategy

that can achieve a better payoff for all choices of the opponent. Since defect is a dominant
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strategy, a rational player will always select this action. Therefore, the likely outcome for

the game is (D,D) with a payoff of 1 for each player. However, the best outcome for both

players collectively is collaborate as (C,C) yields a payoff of 2. The dilemma is then if

each player decides to cooperate in order to achieve the best payoff for the group, he/she

risks the other player defecting and therefore receiving a payoff of 0.

2.1.1 Nash Equilibrium

The action profile a∗ is a pure Nash equilibrium if for every player i

ui(a∗) ≥ ui(ai, a∗−i)

for every ai ∈ Ai, where a−i denotes the collective actions of every decision maker except i

(i.e. a−i = (a1, a2, ai−1, . . . , ai+1, ...aN)). Prisoner’s Dilemma has a pure Nash Equilibrium,

which is the action profile (D,D). Each player in a Nash equilibrium does not have a

unilateral incentive to deviate from their current selected action. However, it need not be

the case that there is a unique Nash equilibrium or that an equilibrium exists at all. The

following game, Matching pennies with payoff matrix

H T

H 1,−1 −1, 1

T −1, 1 1,−1

(2)

is an example of a game that does not have a pure Nash equilibrium.

A more generalized concept of equilibrium in strategic games is a mixed Nash Equi-

librium. In his famous Ph.D. thesis [18], John Nash proved that every game with a finite

number of players in which each player can choose from finitely many pure strategies has

at least one mixed Nash equilibrium. Nash’s work generalized the equilibrium concept of

John Von Neumann. Von Neumann showed that a special class of games, zero-sum games,

had at least one equilibrium [19]. A mixed strategy of a player in a strategic game is a

probability distribution over the player’s actions. Let α denote a mixed strategy profile.
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The mixed strategy profile α∗ is a mixed Nash equilibrium if for every player i

Ui(α∗) ≥ Ui(αi, α
∗
−i),

where Ui(α) is player i’s expected payoff when all players randomize according to the

mixed strategy profile α. In matching pennies, the mixed Nash Equilibrium is the following.

Each player chooses an action of Heads or Tails with probability 1
2 . In general, a Nash

equilibrium does not guarantee that the equilibrium strategies the players select are optimal.

However, for zero-sum games, which is a subclass of games that includes matching pennies,

the Nash equilibrium strategy is optimal.

2.1.2 Zero-sum Games

A zero-sum game is defined as a game where the payoff functions u1 and u2 of players I

and II respectively are such that

u1(a1, a2) + u2(a1, a2) = 0

for every pair (a1, a2) of actions. In words, the players’ interests in these games are dia-

metrically opposed as what is the best outcome for one player is the worst outcome for the

other. The payoff matrix for a zero-sum game has the form

L R

T A,−A B,−B

B C,−C D,−D

(3)

and can be represented in short-hand form as

L R

T A B

B C D

, (4)

where player I’s payoff is represented in equation (4) and player II’s payoff is the inverse.

Note that player I is the row player and maximizer and player II is the column player and

minimizer.
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2.1.2.1 Minimax theorem

The celebrated Minimax Theorem that was introduced by Von Neumann proved that every

zero-sum game has a Nash Equilibrium and that the Nash equilibrium strategy is optimal

for the two players. The formal theorem is presented below:

Theorem 1 (Minimax Theorem) [20] For every two-person, zero-sum game, there exists

a mixed strategy for each player, such that the expected payoff for both is the same value

V when the players use these strategies. Furthermore, V is the best guarantee that each

player can expect to receive from a play of the game; that is, these mixed strategies are the

optimal strategies for the two players.

The proof of the minimax theorem provides insights into how to solve zero-sum games

by formulating the game as a linear program. To prove the minimax theorem, it is sufficient

show that the following expressions

payoff of row player = max
x

min
y

x′My (5)

payoff of column player = min
y

max
x

x′My (6)

are equal in value, where M is the payoff matrix, x is the mixed strategy of the row player

and y is the mixed strategy of the column player. It can be proved that equation (6) is the

dual of equation (5). Therefore, by duality theory, the optimal objectives of the two LPs

are the same.

2.1.2.2 LP formulation

The Nash Equilibrium for the zero-sum game can be computed by solving the following

linear program [21]:
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min
u

|I|∑
i=1

ui

s.t. Mu ≥ 1′

u ≥ 0

(7)

Let β = (
∑|I|

i=1 u∗i )−1, then the value V is equal to β and the optimal mixed strategy x∗ of

player is x∗ = βu∗.

2.1.3 Repeated Games

In a repeated game, a set of players play the same strategic game G over several stages.

Each player can perfectly observe the moves of the other players and also keeps a history

of the moves of the players for each stage of the game. Strategies in these games are

mappings from histories to actions. The key difference between a one-shot game and a

repeated game is that in a repeated game, each player has to take into account the impact

of his/her current action on the future actions of the other players [22]. In other words,

her previous actions can have a direct impact on her reputation and how the other players

respond/retaliate. Repeated games can be divided into two subclasses, finitely and infinitely

repeated games.

2.1.3.1 Finitely Repeated Games

A finitely repeated game is played over N stages. An example repeated game that will be

considered is Prisoner’s Dilemma [23]. To evaluate the Nash equilibrium of this game,

it is useful to consider the last stage N. Observe that the actions of player i at this stage

has no future consequence as the other players cannot punish player i because the game

will have ended. Therefore, each player can view the last stage of the game as a one-

shot game. In a one-shot game, each player will choose to defect, as this is a dominant

strategy. Consider stage N − 1. Both players know that their opponent will defect at
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stage N. Therefore, regardless of what actions are played at stage N − 1, these actions

will not impact the outcome of stage N and conversely the actions will also not lead to any

punishment. Continuing this line of reasoning, it can be concluded that the optimal strategy

for both players at each stage is (D,D) and this is also the Nash Equilibrium.

2.1.3.2 Infinitely Repeated Games

The infinitely repeated game of G has a payoff that is the discounted average

(1 − δ)
N∑

m=1

δm−1ui(am).

A key feature of infinitely repeated games is that there is no final stage. Therefore, there

is always a threat of future punishment for both players. This is in stark contrast to finitely

repeated games where it was demonstrated in the Prisoner’s Dilemma example that reputa-

tion did not matter as neither player could punish the other in the future. There are several

strategies that can be employed in the infinitely repeated Prisoner’s Dilemma, and each

strategy relies on the threat of future punishment to influence the other players move at the

current stage [15].

The first strategy to be considered is Grim trigger. This strategy is defined as follows:

si(∅) = C and

si(a1, ...., an) =


C if (a1

j , . . . , a
n
j) = (C, . . . ,C)

D otherwise
(8)

for every history (a1, . . . , an), where j is the other player. In words, player i will cooperate

at each stage until player j defects. Once player j defects, player i will defect forever

going forward. The main idea is that any short-term gain that one of players can receive for

defecting at stage m will be negligible if the discount factor δ is sufficiently close to 1. This

is because the other player will defect for all time after and the most the defecting player

can achieve is a payoff of 1. Therefore, if both players select a Grim trigger strategy when

δ is sufficiently close to 1, they each have no unilateral incentive to deviate and thus are in

an equilibrium.
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Tit-for-tat is another strategy that will be considered. The strategy is as follows. Let

n be the first period that player II chooses D. Then player I chooses D in period n+1,

and continues to choose D until player II reverts to C. It can be shown that if each player

uses tit-for-tat when δ is sufficiently close to 1, then tit-for-tat is a Nash equilibrium in the

infinitely repeated game.

2.1.4 Bayesian Games

In many conflict-resolution scenarios, each decision maker can have uncertainty about the

preferences or intentions of the other decision maker. An example of such a scenario is

poker, where each player has some uncertainty about their opponent’s cards. The avail-

able information each player has is their cards and this information can be used to make

probabilistic inferences about the opponent’s cards. Bayesian games are a branch of game

theory that considers scenarios where each decision maker has some uncertainty about the

underlying state of the world [24]. In these games, each decision maker can observe signals

that are correlated to the state and use their observations to update their beliefs about the

underlying state. In the previously mentioned poker example, the state of the world is the

opponent’s card and the signal is the players own cards.

A Bayesian game consists of i) a set of players ii) a set of states iii) a set of signals for

each player iv) a set of actions for each player v) a belief about the state, which are after-

the-fact probabilities on the state given signals observed for each player vi) a Bernoulli

payoff function over pairs (a, ω) , where a is an action profile and ω is a state [25]. Note

the following. vNM preferences are preferences regarding lotteries represented by the ex-

pected value of a payoff function over deterministic outcomes. A Bernoulli payoff function

is a payoff function over deterministic outcomes whose expected value represents vNM

preferences. In the situation where one decision maker is privy to the underlying state,

these games are referred to as asymmetric information games. For illustrative purposes,

consider Battle of the sexes (BoS), a complete information game. Now suppose that the

row player has uncertainty about the game payoffs. This modified BoS game is an example
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of an asymmetric information game. It can be useful to interpret the game as the row player

having uncertainty about the type of column player they face. Example payoff matrices for

the BoS with two types of column player are

B S

B 2, 1 0, 0

S 0, 0 1, 2

State α

B S

B 2, 0 0, 2

S 0, 1 1, 0

State β

(9)

where α and β are the types of the column player.

A Bayes-Nash equilibrium is the Nash equilibrium of the Bayesian game [16]. Note

that a Bayesian game can be formulated as a game with complete information. In the

complete information formulation, each type of column player is modeled as a distinct

player. Therefore, if there are N types of column players in the Bayesian game, there will

be N + 1 distinct players in the complete information game formulation.

2.2 Dynamic Programming

Dynamic programming describes the process of solving multistage decision problems,

where the goal is to find the best decisions in succession that minimize a certain cost

[26], [27], [28]. An important characteristic of these decision problems is that decisions

at each stage cannot be viewed in isolation because of the need to trade off short-term and

long-term costs. The dynamic programming method captures this tradeoff by breaking the

decision problem into smaller subproblems [29]. At each stage, decisions are ranked based

on the sum of the present cost and the expected future cost, assuming optimal decision

making for subsequent stages. Richard Bellman pioneered this idea, which is referred to as

the Principle of Optimality [28].

The systems that will be considered in this dissertation are discrete-time dynamic sys-

tems that have a cost function that is additive over time. Notation in this chapter will be
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consistent with that of Bertsekas in [26]. This work ([26]) provides more in-depth coverage

of the Dynamic Programing material. The general form of the system is

xk+1 = fk(xk, µk, ωk), k = 0, 1, . . . ,N − 1

where k indexes discrete time, xk is the state of the system, µk is the decision variable to be

selected at time k, and ωk is the disturbance. The total cost can be expressed as

gN(xN) +

N−1∑
k=0

gk(xk, µk, ωk), (10)

where gN(xN) is a terminal cost incurred at the end of the process.

2.2.1 Imperfect State Information Problems

In a dynamic system, it often happens that there can exist uncertainty about the exact value

of the current state xk. This uncertainty can be attributed to the inaccessibility of some

state variables, sensor error, or the cost of obtaining the exact value of the state [30]. These

situations are modeled by assuming that the controller receives some observations about the

value of the current state xk at stage k. Problems where observations are used in place of

the state are called imperfect state information problems. It turns out that imperfect state

information problems can be reformulated as a perfect state information problems [26].

Therefore, tools and approaches that are used to solve perfect state information problems

can be also used to solve these problems. An example problem will be presented next to

demonstrate this reformulation.

Consider the following problem where the controller only has access to observations zk

of the form

z0 = h0(x0, v0), zk = hk(xk, µk−1, vk), k = 1, 2, . . . ,N − 1

where vk is the observation disturbance and is characterized by a given probability distri-

bution

Pvk(· | xk, . . . , x0, µk−1, . . . , µ0, ωk−1, . . . , ω0, vk−1, . . . , v0).
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Denote Ik to be the information available to the controller at time k, where

Ik = (z0, z1, . . . , zk, µ0, µ1, . . . , µk−1), k = 1, 2, . . . ,N − 1

The cost function of this problem is then expressed as

Jπ = E
gN(xN) +

N−1∑
k=0

gk(xk, µk(Ik), ωk)


x0,ωk ,vk ,

(11)

where each function µk maps the information vector Ik into the control space Ck and

µk(Ik) ∈ Uk ∀Ik, k = 0, 1, . . . ,N − 1

To reformulate the problem as a perfect information problem, it is necessary to define

a new system whose state at time k is the set of all information Ik that the controller has

available. Note that Ik+1 = (Ik, zk+1, µk). Therefore,

P(zK+1 | Ik, µk) = P(zk+1 | Ik, µk, z0, z1, . . . , zk).

Observe that the probability distribution of zk+1 depends explicitly on the state Ik and control

µk of the new system. The cost function can be reformulated by writing

E
[
gk(xk, µk, ωk)

]
= E

[
E

[
gk(xk, µk, ωk) | Ik, µk

]
xk ,ωk

]
that leads to the new cost function

g̃k(Ik, µk) = E
[
gk(xk, µk, ωk)

]
xk ,ωk

The problem has now been reformulated as a perfect information problem.

2.2.2 Approximate Dynamic Programming

Obtaining an optimal policy from the dynamic programing (DP) algorithm can often be

computationally prohibitive. In many instances, as the size of the DP increases, the compu-

tational complexity increases exponentially; this phenomena is called the “curse of dimen-

sionality [28].” In fact, even for a perfect state information problem with Euclidean state
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and control spaces, DP can only be applied numerically if the dimensions of the spaces are

relatively small [26]. Since imperfect state problems are more complex than their perfect

state counterparts, only in special cases can a numerical solution be computed. To ad-

dress the complexity issues that DP presents, methods for computing suboptimal policies

are considered in the ensuing sections. Depending on the problem, some methods can be

more appropriate than others in the since that those methods strike a better balance between

convenient implementation and adequate performance. The methods that will be discussed

in this section are limited lookahead, policy improvement, and model predictive control as

these methods play a significant role in the derivation of the main theoretical results of this

dissertation.

2.2.2.1 Limited Lookahead

Given an N-stage decision problem, the DP algorithm requires computation of optimal

policies for stages k = k′ + 1, k′ + 2, . . . ,N to evaluate the performance of the policies at

stage k = k′. This computation is expensive and becomes increasingly prohibitive as N

grows large. An approach to simplify the computation needed to evaluate the policies at

stage k′ is to truncate the time horizon and use at each stage a decision based on lookahead

of a small number of stages [31]. The simplest approach is to consider looking ahead only

one step into the future.

Let µ̄k(xk) denote the control at stage k and state xk that implements a one-step looka-

head policy. The expression

min
uk∈Uk(xk)

E
[
gk(xk, uk, ωk + J̃k+1( fk(xk, uk, ωk))

]
(12)

then represents the minimum cost for such a policy where J̃k+1 is an approximation of the

actual cost-to-go function Jk+1. Similarly, one can consider policies that look a fixed m

steps into the future or consider a policy where the lookahead horizon recedes over time.

The following theorem presented in [26] provides conditions under which the one-step

lookahead policy achieves a cost J̄k(xk) that is better than the approximation J̃k(xk).
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Theorem 2 [26] Assume that for all xk and k, we have

min
uk∈Ūk(xk)

E
[
gk(xk, uk, ωk) + J̃k+1( fk(xk, uk, ωk))

]
≤ J̃k(xk). (13)

Then the cost-to-go functions J̄k corresponding to a one-step lookahead policy that uses J̃k

and Ūk(xk) satisfy for all xk and k

J̄k(xk) ≤ min
uk∈Ūk(xk)

E
[
gk(xk, uk, ωk) + J̃k+1( fk(xk, uk, ωk))

]
. (14)

It is worth pointing out that incrementing the lookahead steps can increase the perfor-

mance of the policy, but it can also increase the computation substantially. Therefore, a key

design decision is determining how many lookahead steps into the future is best. For a given

J̃k(xk) and a given process, there can be a significant diminishing return on performance as

the lookahead horizon increases. The discussion has been centered around applying this

policy to finite horizon problems, but this policy is equally applicable/relevant to infinite

horizon problems.

2.2.2.2 Policy Improvement (Rollout policies)

Let a suboptimal policy π = {µ0, . . . , µN−1} be referred to as a base policy. Note that the

base policy is typically a policy that is easily implementable. Then the rollout algorithm

can be viewed as a single step of the classical policy iteration method that starts from the

base policy and yields an improved policy called the rollout policy [32]. Alternatively,

one can view the rollout policy as a one-step lookahead policy, with the optimal cost-to-go

approximated by the cost-to-go of the base policy. The policy improvement mechanism of

the underlying policy iteration process generally allows rollout algorithms to magnify the

effectiveness of any given heuristic through sequential application [33].

To speed up the computation of the rollout policy, one can restrict the set of controls

to a subset Û ⊂ U. Also, one can consider an approximation Ĵk+1 of J̃k+1 to simplify

computation. These modifications yield a minimization of the form

min
uk∈Ûk(xk)

E
[
gk(xk, uk, ωk + Ĵk+1( fk(xk, uk, ωk))

]
(15)
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that is more computationally tractable then the original minimization problem. The im-

provement in the speed of computation, however, generally comes at the expense of per-

formance.

2.2.2.3 Model Predictive Control

Model predictive control (MPC), also known as receding horizon control, is a form of

control in which the current action is determined by solving a finite horizon open-loop

optimal control problem online at each sampling instant [34]. MPC combines elements

of several ideas, rollout algorithms and limited lookahead, that have been discussed in the

previous sections. The general process for MPC can be summarized as the following:

1. Obtain estimates of the current state of the system

2. Calculate optimal input minimizing the desired cost function over the prediction hori-

zon using the system model and the current state estate for prediction

3. Implement the first part of the optimal input and discard the remaining parts of the

input

4. Continue with 1.

Note that a key difference between MPC and conventional control is that conventional

control uses a pre-computed control law [35]. A key point to emphasize is that although

an open loop control problem is being solved at each time step k, there is still an implicit

feedback mechanism. This mechanism is the new state xk+1, which embodies all current

and relevant information about system, that is fed back into the control problem to compute

control actions for time step k + 1.

A key objective of MPC is to obtain a stable closed-loop system. However, it can be the

case that the implementation of this control approach drives the closed-loop system outside

the feasible region. Consider the following as an example. Suppose that MPC is used to

compute control actions µk at time k and those actions are applied to the system. Since
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the horizon of the control problem solved at time k is based on a prediction, a disturbance

during time k can make the optimization problem infeasible. As a consequence, the system

will then be unstable if control action µk is applied. Therefore it is important to analyze

under what conditions will the application of MPC make the system unstable. This example

highlights another issue that is the length l of the horizon to consider. Considering a longer

horizon does not necessarily guarantee improved performance. In fact, it can happen that a

shorter horizon improves the system’s performance.
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CHAPTER 3

REPEATED GAMES WITH ASYMMETRIC INFORMATION

3.1 Introduction

Repeated incomplete information games are a branch of game theory that considers the sce-

nario where each decision maker has private information about the state of the world and

must decide how to best use that information throughout a period of repeated interactions

with other decision makers. Of interest in this research is the asymmetric case, where only

one decision maker has private information. Since all other information is assumed public,

private information implies superior information in this context. The dilemma faced by the

informed decision maker is how to trade off the short-term reward versus long-term conse-

quences for exploiting her1 private information, since exploitation can reveal the true state

of the world to the other decision makers; in the zero-sum games we consider, revelation

costs her in the long-run. Seminal work by Aumann and Maschler [10] derives a recur-

sive formula for the value of the zero-sum game, which quantifies the exploitation tradeoff,

and also derives the optimal policy for the informed decision maker. Using Aumann and

Maschlers’ model for explicit computations of optimal policies is prohibitive for games

with multiple stages.

3.1.1 Previous Work

Previous work to address complexity issues of computing optimal policies has been mostly

limited to special cases of the simplest zero-sum games. Heur [36] derives optimal polices

for a specific 2 × 2 matrix game with two states. Domansky and Kreps [5] expand on

the work of Heur by considering a subclass of 2 × 2 matrix games with two states, where

Heur’s zero-sum game is contained within that subclass. They show that the games in their

subclass satisfy a special condition, which allows them to derive optimal policies for the

1In this chapter, we will refer to the informed player as “she” and the uninformed player as “he”. The
assignment of “he” and “she” was arbitrary and was done for the purpose of clarity.
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games. There is work that considers using suboptimal strategies to address the complex-

ity issue for all classes of games [6]. In this work, the informed player never uses his

information throughout the game, and accordingly is “non-revealing.” While the subopti-

mal strategies are readily computable, only under special circumstances do these strategies

offer strong suboptimal payoffs. In contrast to the previously mentioned work, Gilpin and

Sandholm [37] consider computing optimal policies for the infinite horizon games by using

a discritization technique to approximately solve a non-convex optimization problem.

3.1.2 Contributions of the Work

We address the complexity issues for both finite horizon and infinite horizon zero-sum re-

peated games by deriving a suboptimal policy based on the concept of policy improvement.

Policy improvement is a dynamic programming technique that first considers an initial pol-

icy, referred to as a baseline policy, that is easily implementable. Through an iterative

process, the performance of the baseline policy is compared to that of other policies from a

set of candidate policies. If a candidate policy performs better, it becomes the new baseline

policy. The baseline policy we consider is a non-revealing policy, i.e., one that completes

ignores superior information. The improved policy, which is implemented in a receding

horizon manner, strategizes for the current stage while assuming a non-revealing policy for

future stages. We derive bounds on the guaranteed performance of the improved policy and

establish that the bounds are tight. We show that the performance of the policy improveme-

ment methods converge asymptotically to optimal with respect to the number of stages in

the game. As a result of the convergence result, policy improvement is optimal for infinitely

repeated zero-sum games. Last, we show that the improved policy can be computed by

solving a linear program whose complexity is constant with respect to the game length.

3.1.3 Outline

The outline for the rest of this chapter is as follows. In Section 3.2, we discuss fundamental

zero-sum game definitions and concepts. This discussion will include both the repeated and
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stochastic zero-sum games. Next, in Section 3.3, we present Aumann and Maschler’s dy-

namic programming formulation for deriving optimal policies in zero-sum repeated games,

and discuss the complexity issues of this formualtion. In Section 3.4, we discuss previous

work on addressing the complexity issues of computing optimal policies. We then present

the main results of this chapter in Sections 3.5 and 3.6. In Section 3.5, we introduce policy

improvement methods to compute suboptimal strategies and derive bounds on the perfor-

mance of the methods. In Section 3.6, we show how the policy improvement methods

can be computed by solving a LP whose complexity is invariant with respect to the game

length. Simulations that demonstrate the performance of the policy improvement methods

are presented in Section 5.8. Last, we conclude with a brief summary of the chapter.

3.2 Preliminaries on Zero-sum Games with Asymmetric Information

Optimal information exploitation is a key issue in zero-sum games with asymmetric infor-

mation. In these games, player I is informed about the current state of the world at each

stage, while player II is not. The simplest case, repeated games, is where the state of world

is chosen by nature before the initial stage of the game and remains fixed over all stages.

An illustration of a two state repeated game is depicted in Figure 1a. The general case,

stochastic games, is where the state of the world can change at each stage. An illustration

of a two state stochastic game where the state transitions are independent of the player’s

actions is depicted in Figure 1b. In either case, each player’s knowledge about the other’s

past actions changes over time, affects their beliefs, and introduces a dynamic aspect to the

games. Specifically, player II can use his observations of player I’s past actions to build

beliefs about the current state of the world. Therefore, player I must strategically select an

appropriate action at each stage that transmits the desired information or misinformation

to player II. In this section, we will present models, definitions, and concepts for both re-

peated and stochastic games. We will also present examples that illustrate the information

exploitation issues that player I experiences.
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(a) Repeated Game (b) Stochastic Game

Figure 1: Repeated games are a special case of stochastic games where all states are said to be
absorbing.

3.2.1 Repeated Games

Two players repeatedly play a zero-sum matrix game over stages m = 1, 2, ...,N. The row

player is the maximizer, and the column player is the minimizer. The specific game is

selected from a finite set of possible games (or states of the world), K. Let ∆(B) denote the

set of probability distributions over some finite set, B. Define S to be the set of pure actions

of the row player and similarly define T to be the set of pure actions of the column player.

The game matrix at state k ∈ K is denoted Mk ∈ R|S |×|T |. Before the initial stage m = 1,

nature selects the specific game according to a probability distribution p ∈ ∆(K), which

is common knowledge. The outcome of this selection is not revealed to the uninformed

player. Once selected, the game remains fixed over all stages. The n-stage game is denoted

as Γn(p). Similarly, the discounted and infinitely repeated games are denoted as Γλ(p) and

Γ∞(p) respectively.

3.2.1.1 Strategies

For n = 1, 2, . . . , let Hn=[S × T ]n−1 be the set of possible histories at stage n. Then hn ∈ Hn

is a sequence (s1, t1; s2, t2; . . . ; sn−1, tn−1) of moves of the two players in the first n−1 stages

of the game. Let X = ∆(S ) and Y = ∆(T ) denote the mixed moves of player I and player

II respectively where xk
n = (xk

n(s))s∈S . Let ζn : k × hn 7→ S denote a pure strategy for

player I and define ζ = (ζ1, ζ2, . . . , ζn). Similarly let ψn : hn 7→ T denote a pure strategy

of player II and define ψ = (ψ1, ψ2, . . . , ψn). Mixed strategies are probability distributions

24



over pure strategies. Behavior strategies are sequences of mappings from K × Hn to X and

mappings from Hn to Y for player I and player II respectively. Aumann [8] showed that

mixed strategies can be equivalently represented as behavior strategies for the zero-sum

games considered in this paper. Therefore, the terms behavior strategy and mixed strategy

will be used interchangeably. Let σ and τ denote the behavior strategies of players I and

II respectively. Also let σ(hn) = (xk
n)k∈K ∈ X be defined as the vector of mixed moves of

player I at stage n.

3.2.1.2 Payoffs

Let Mk
i, j denote element (i, j) of payoff matrix Mk and also denote gm = Mk

im, jm
to be the

random payoff at stage m. Let γp
m(σ, τ)=E

[
gm

]
p,σ,τ denote the expected payoff for the pair

of behavioral strategies (σ, τ) at stage m. The payoff for the n-stage game is then defined

as

γ̄p
n (σ, τ) =

1
n

n∑
m=1

γp
m(σ, τ). (16)

Similarly the payoff for the λ-discounted game is defined as

γ̄
p
λ(σ, τ) =

∞∑
m=1

λ(1 − λ)m−1γp
m(σ, τ). (17)

Definition 1 Player I can guarantee φ ∈ R in the game Γn(p) if, for every ε > 0 there exists

a strategy σ of player I and N ∈ N such that

∀τ,∀n ≥ N, γ̄p
n (σ, τ) ≥ φ − ε

Definition 2 Player II can defend φ ∈ R in the game Γn(p) if, for every ε > 0 and every

strategy σ of player 1, there exists a strategy τ of player II and N ∈ N such that

∀n ≥ N, γ̄p
n (σ, τ) ≤ φ + ε.

3.2.1.3 Beliefs

Since player II is not informed of the selected state k, he can build beliefs on which state

was selected. These beliefs are a function of the initial distribution p and his observed
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moves of player I. Therefore, player I must carefully consider her actions at each stage as

they could potentially reveal the true state of the world to player II. In order to get a worse

case estimate of how much information player I transmits through her moves, she models

player II as a Bayesian player and assumes that player II knows her behavior strategy. The

updated belief p+ is computed as

p+(p, x, s) =
pkxk(s)

x̄(p, x, s)
, (18)

where x̄(p, x, s) :=
∑

k∈K pkxk(s) .

3.2.1.4 Non-revealing Strategies

Revealing information is defined as using a different mixed strategy in each state k at stage

m. From (69), it follows that a mixed strategy xm at stage m does not change the current

beliefs of the row player if xk
m = xk′

m ∀ k, k′. As a consequence, not revealing information

is equivalent to not changing the column player’s beliefs about the true state of the world.

In stochastic games, it is possible for the column player’s beliefs to change even if the row

player uses an identical mixed strategy for each state k.

An optimal non-revealing strategy can be computed by solving

u(p) = max
x∈NR

min
y

∑
pkxkMky, (19)

where the set of non-revealing strategies is defined as NR = {xm | xk
m = xk′

m ∀k, k′ ∈ K}. By

playing an optimal non-revealing strategy at each stage of the game, the row player can

guarantee a game payoff of u(p). Note that the optimal game payoff for the n-stage game,

vn(p), is equal to u(p) only under special conditions.

Definition 3 Let Cav[u(p)] be the point-wise smallest concave function g on ∆(K) satisfy-

ing g(p) ≥ u(p) ∀p ∈ ∆(K).

In words, Cav[u(p)] can be guaranteed for any repeated game with asymmetric infor-

mation.

26



3.2.1.5 Signals

As discussed in Section 3.2.1.3, player II can build beliefs about the state of the world based

on his observations of player I. Since each player’s actions are observable by the other

player, player I can use her actions in such a manner to influence player II’s beliefs about

the true state of the world. Player I can also influence her opponent’s beliefs by introducing

auxiliary signals into the game to communicate additional information or misinformation

about the true state. These signal can be correlated with the state of the world and are

announced by player I and observed by player II.

Let L be the set of auxiliary signals and let l be a signal contained within the set.

Denote µk(l) to be the probability that player I selects signal l in state k. The following

lemma provides a method that allows player I to construct a specific µ to change the beliefs

of player II in a desired direction. Note that the auxiliary signal is also a signal to player I

and influences her move selection.

Lemma 3.2.1 [7] Let L be a finite set and p =
∑

l∈L αl pl with α ∈ ∆(L) , and p,pl ∈ ∆(K)

for all l in L. Then there exists a µ that changes the beliefs of player II from (K, p) to L

between the transition from the current stage and the next stage such that

P(l) = αl and P(·|l) = pl

where P = p · x is the probability induced by p and µ on K × L : P(k, l) = pkµk(l).

Proof: Let

µk(l) = αl
pk

l

pk ,

for k in the support of p. Then

P(l) =
∑
k∈K

pkµk(l) = αl

and

P(k|l) =
pkµk(l)
αl

= pk
l .
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3.2.1.6 Examples

In this section, we will consider three examples that illustrate the ways player I can exploit

her information. In the first example, there are two states of the world and each state is

equally likely to be selected. Player I is told before the start of the game whether the state

is α or β. The payoff matrices for this game are

L R

T 1 0

B 0 0

State α

L R

T 0 0

B 0 1

State β

(20)

She has a choice of selecting move T or move B in each state. However, she favors selecting

T in state α and B in state β because this is a dominant strategy. A standard approach to

evaluate the performance of a given strategy is to assume player II is told the strategy.

Suppose player I plays her dominant strategy. Upon seeing T, player II will immediately

know the state is α. Similarly, upon seeing B, he will know the state is β. This is why the

dominant strategy is said to be completely revealing in this example. After stage 1, player

II will play R if state α and L in state β, which will net player I an expected stage payoff

of 0 from stage 2 onward. The payoff for player I with respect to n would be 1
2n and so the

immediate gain for exploiting information diminishes for games with large n.

Another possible strategy that player I can consider is a non-revealing strategy. In this

strategy, player I plays as if she is oblivious of the state of the world. This situation is

equivalent to playing the average matrix game M̄ =

L R

T 1
2 0

B 0 1
2

(21)

where M̄ = pαMα + pβMβ. A solution to the average game can be computed by solving

u(p). If player I plays T and B with equal probability independent of the state, she can
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guarantee a payoff of 1
4 . Therefore player I is better off not using her information in the

long-run.

The second example has the same parameters as the previous example, except for the

payoff matrices that are

L R

T −1 0

B 0 0

State α

L R

T 0 0

B 0 −1

State β

(22)

If player I uses her dominant strategy, she will guarantee an expected payoff of 0. This

dominant strategy, which is to play B in state α and T in state β, is completely revealing

and optimal for all n. This is because the best payoff player I can achieve is 0 in either

state. The average game payoff matrix is

L R

T −1
2 0

B 0 −1
2

(23)

and the expected payoff for the average game is −1
4 . Whereas not using information was

the best long-term decision for player I in the first example, in this example exploiting

information is optimal for the short and long term.

The last example we will consider has payoff matrices

L M R

T 4 0 2

B 4 0 −2

State α

L M R

T 0 4 −2

B 0 4 2

State β

Similarly to the previous examples, the other parameters of the game are the same as in the

previous examples. Also similar to previous examples is that playing a dominant strategy
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is completely revealing and achieves a payoff of 0 in the long-run. If player I decides to

not use her information, she will be playing the non-revealing game

L M R

T 0 4 −2

B 0 4 2

that also achieves a long-term payoff of 0. In all of the examples that we have presented so

far, we have only considered completely revealing and non-revealing strategies. There is

another strategy that player I can consider, which is a partially revealing strategy. The main

idea of partially revealing strategies is that this strategy is partially correlated with the true

state of the world. Instead of player I playing T in state α with probability 1 and B in state

β with probability 1, she does the following. If the state is α play T with probability 3
4 at

stage 1. If the state is β, play B with probability 3
4 at stage 1. Player I’s mixed actions at

stage m = 1 are then x̃1
1 = [.75, .25] and x̃2

1 = [.25, .75]. From stage 2 onward, she will then

play nonrevealing.

To evaluate the performance of this strategy, we will assume player II knows it. In the

first stage player I can guarantee an expected stage payoff of 1 by playing x̃. Suppose that

T is selected by player I at the first stage, then the beliefs of player II will be

pT = [.75, .25] = p+(p, x̃,T ),

where his beliefs about state α are 3
4 . Similary players II’s beliefs upon seeing B are

pB = [.25, .75] = p+(p, x̃, B).

By playing non-revealing from stage 2 going forward, players I’s long-term payoff will

either be u(pT ) or u(pB). In this example

u(pT ) = u(pT ) = 1.

Therefore player I can guarantee an expected game payoff of at least 1, independent of what

player II does. The idea of using signals, which in this example are players I’s actions, to
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change the beliefs of player II is the heart of asymmetric information games. This is also

an idea we will exploit in the policy improvement methods we present later in the paper.

3.2.2 Remarks

The primary focus of this chapter is to address the challenges that an informed player faces

with regard to information exploitation and computation of optimal policies. An interesting

aspect of incomplete information games that we do not address is the challenges that an

uninformed player faces learning the actual state of the world. We will devote this section

to discussing these issues for repeated games. Player II experiences similar issues in the

stochastic games also. We will also present a heuristic for computing a suboptimal strategy

that is inspired by a central idea used to construct optimal policies for player II in the finite

and infinite horizon games. This idea involves considering the actual payouts that player I

would receive for each state of the world. Since player II can observe the moves of player I,

he can construct a vector of payoffs, where the kth element corresponds to player I’s payoff

if the state was k. Player II’s strategy is then to ensure that the payoff vector remains within

some bounds. Heur in [36] discusses how to enforce bounds on vector payoffs for the game

with payoff matrices

L R

T 3 −1

B −3 1

State α

L R

T 2 −2

B −2 2

State β

These results, however do not extend to the general n-stage game. In [6], a method to

enforce vector payoffs is discussed that guarantees an optimal payoff to player I for the

infinitely repeated games. This method incorporates Blackwell’s approachability theorem

to enforce payoffs and guarantee an expected payout of Cav[u(p)])
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3.2.2.1 Challenges of learning the true state

Learning the true state of the world is challenging for player II because player I can play in

a deceptive manner [36]. If player II new the mixed actions xk that player I would use for

each state k, then learning player I’s type would be straightforward because the defender

could follow the standard Bayesian update approach. Unfortunately, in the actual play of

the game, he does not know her mixed strategy as this information is private. Another ap-

proach that the he can consider is solving a linear program to compute an optimal defensive

strategy. However, the complexity of the LP is exponential with respect to n, the number of

stages of the game. We will now introduce a payoff-based heuristic for learning player I’s

type that is computationally tractable for arbitrary n and only depends on the information

that the defender has. This information is namely the history of player I’s actions.

3.2.2.2 Heuristic

The main idea behind the payoff-based heuristic is as follows. Player II’s belief of a player

I of type k will be correlated with the actual game payoff of player I. After each stage,

player II keeps track of what the overall game payoff would be for each type of player I.

The game payoff for a player I of type k at stage n, given history hn will be denoted γ̃k
n(hn).

The game payoff γ̃k
n(hn) for a player I of type k will be compared to the best possible payoff

that a type k player I can achieve. We will denote the best possible payoff by |Mk|, where

|Mk| := max
i, j

Mk
i, j.

2 Let

ξk(hn) ∝
γ̃k

n(hn)
|Mk|

(24)

be a measure of the likelihood that an attacker is of type k given history hn. The belief

update procedure is then

p̃k
n+1(hn) = p̃k

n
ξk(hn)
ξ̄(hn)

(25)

where ξ̄(hn) =
∑

k∈K p̃k
nξ

k(hn). To compute a best response strategy ỹ∗ for player II given the

2Without loss of generality, we will assume in this section that each matrix Mk is scaled with values
ranging from 0 to 1.
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approximate belief p̃n at stage m, solve the optimization equation

ỹ∗m = arg min
ym

max
xm

∑
k∈K

p̃k
mxk

mMkym. (26)

The goal of the heuristic is to allow player II to estimate the probability that player I is of

a particular type by using only the information available during the play of the game. This

information is namely the history of moves and the payoff matrices. Recall that in order

for player II to perform Bayesian inference, player II needs to know the mixed strategy of

player I. In the actual play of the game, player II does not have access to this information.

By doing an analysis of the payoffs of each type of player I given the current history, player

II can observe which types currently have the best average payoffs up to the current stage.

The underlying assumption behind the heuristic is that the types that are achieving the best

possible payoff given their type are more likely to be the opponent player II is facing in the

game. Once player II computes an estimate of player I’s type using the heuristic, player II

can then play a best response given current beliefs.

3.3 Dynamic Programing Formulation for Optimal Policies
3.3.1 Finite Horizon Games

The seminal work of Aumann and Maschler [10] introduced a dynamic programing formu-

lation

vn+1(p) =
1

n + 1

[
max

x1
min

y1

∑
k∈K

pkxk
1Mky1 + n

∑
s∈S

x̄svn

(
p+(p, x1, s)

)]
, (27)

that characterizes the value of n-stage zero-sum repeated games with asymmetric informa-

tion. This formulation can also be interpreted as modeling player I’s tradeoff between the

short-term gain and the long-term informational advantage. Consider the case where n = 1

as a first example to illustrate the exploitation tradeoff. The formulation for n = 1 is then

v1(p) = max
x1

min
y1

∑
k∈K

pkxk
1Mky1. (28)

Since this is a one-shot game, there are no future consequences for exploiting information

at the first stage. Therefore playing greedy is optimal. In games where n ≥ 2, vn(p) is a
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Bellman’s equation with a stage cost of
∑

k∈K pkxk
1Mky1 and a cost-to-go of

n
∑
s∈S

x̄svn

(
p+(p, x1, s)

)
.

The cost-to-go function characterizes how information that is exploited by player I at the

current stage will cost him in the future. It is the cost-to-go function that makes explicit

computation of vn(p) prohibitive. This is because this function is recursive, and as a con-

sequence, the number decision variables grows exponentially with respect to game length.

One of the goals of this research is to present policy improvement methods to compute

suboptimal polices that have a computational complexity that is invariant with respect to

the length of the game.

Aumann and Maschlers formulation has the following bound

vn(p) ≥ Cav[u(p)].

As a a result, player I can guarante a payoff of Cav[u(p)] for the n-stage game. Another

result of Aumann and Maschler is the rate that the n-stage game converges to Cav[u(p)].

Specifically, the convergence of vn(p) to Cav[u(p)] is

Cav[u(p)] ≤ vn(p) ≤ Cav[u(p)] +
C
√

n

∑
k∈K

√
pk(1 − pk)

where C = max
i, j,k

Mk
i, j.

3.3.2 Infinite Horizon Games

Similar to n-stage games, the dynamic programming formulation for the λ-discounted re-

peated game is

vλ(p) = max
x1

min
y1

λ
∑
k∈K

pkxk
1Mky1 + (1 − λ)

∑
s∈S

x̄(s)vλ
(
p+(p, x1, s)

)
. (29)

A relationship between the infinitely repeated games v∞(p) and vλ(p) is the following.

Lemma 3.3.1 [6] v∞(p) and vλ(p) converge uniformly (as n→ ∞ and λ→ 0, respectively)

to the same limit, Cav[u(p)], which can be defended by player II in the infinitely repeated

game.
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Also similar to the n stage game, the bound on the rate that vλ converges to Cav[u(p)] is

Cav[u(p)] ≤ vλ(p) ≤ Cav[u(p)] + C

√
λ

2 − λ

∑
k∈K

√
pk(1 − pk)

3.4 Previous Work
3.4.1 Finite Horizon Repeated Games

Heur [36] analyzed the game with payoff matrices

L R

T 3 −1

B −3 1

State α

L R

T 2 −2

B −2 2

State β

(30)

and showed how to explicitly compute optimal strategies for both players in this game. Do-

mansky and Kreps [5] considered two-state zero-sum games with matrices Mα and Mβ that

represents payoffs for states α and β respectively. Domansky and Kreps provide optimal

strategies for games where the condition

val[pM1 + (1 − p)M2] = pval[M1] + (1 − p)val[M2] (31)

holds. Note that val[M] denotes the value of a zero sum matrix game M. They show that

(31) holds for games with mixed-type payoff structure

L R

T a 0

B 0 −b

State α

L R

T −λa 0

B 0 λb

State β

(32)

and saddle-point type payoff structure
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L R

T 1 0

B 0 −(1 − a)

State α

L R

T −1 0

B 0 (1 − a)

State β

(33)

It happens that (30) is an example of a saddle-point type game. Although Domansky and

Kreps expands upon the work of Heur by generalizing optimal-policy computation results

for a subclass of 2 × 2 matrix games, this subclass comprises only a small portion of the

general class of 2 × 2 matrix games.

Zamir [38] considers classifying games in terms of the rate at which the games con-

verges from v1 to v∞ and then constructing essentially-optimal policies whose payoff also

converge at such a rate. As an example, Zamir showed that the game with payoff matrices

L R

T 1 0

B 0 −0

State α

L R

T 0 0

B 0 1

State β

has a convergence rate of O( log(n)
n ). Knowing the convergence rate of this game suggests a

method to derive an essentially optimal policy. Zamir notes, however, that determining the

convergence rate for an arbitrary game is an open question. Therefore, deriving essentially

optimal methods is challenging in general.

3.4.2 Infinite Horizon Repeated Games

Gilpin and Sandholm [37] consider infinitely-repeated zero-sum games with asymmetric

information. They first present an optimization problem

max
p,α

∑
l∈L

αlu(pl)
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s.t.
∑
l∈L

αl pl = p (34)

where

pl ∈ ∆(K) for l ∈ L and α ∈ ∆(L)

for computing Cav[u(p)]. Gilpin et. al then apply basic convex analsysis results to show

that it is sufficient to set |L| = K + 1 to compute Cav[u(p)]. Next they approximately solve

(34) by using discretization methods. Last, they show how optimal strategies for player I

for the infinitely repeated games can be derived from the solved optimization problem (34).

Specifically, let α∗ and p∗l ∈ ∆(K) be solutions to (34), then player I’s optimal strategy is to

choose l with probability α∗l pk∗
l

pk and play the optimal mixed actions for u(pl).

3.4.3 Receding Horizon Control

In this section we will briefly summarize the main idea of receding horizon optimization

and then proceed to discuss applications of this optimization technique in game settings.

We will begin by considering the following Bellman’s equation

J(x0) = max
a0∈Γ(x0)

{g(x0, a0) + βJ(T (x0, a0))}

where x0 denotes the initial state of the system, J denotes the system’s performance, a0 is

the control input for state x0, and T is the transition function that maps the current input

and state to the next state. Observe that if the cost-to-go function is difficult to compute,

then computing the optimal cost can be prohibitive. In situations where the optimal cost J

is difficult to compute, an approximate Bellman’s equation of the form

J̄(x0) = max
a0∈Γ(x0)

{g(x0, a0) + βJ̃(T (x0, a0))} (35)

can be considered, where J̃ is an approximate cost-to-go function that can be readily com-

puted.

Given the above setup, receding horizon optimization can be leveraged to derive sub-

optimal controls for the system at each state. The process of receding horizon optimization
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can be summarized as follows. First, obtain the estimate of the current state x of the system.

Next, calculate the optimal input maximizing the desired objective function. Then, imple-

ment the first part of the input a and discard the remain parts of the input. Next, continue

with the first step.

Receding Horizon optimization has been applied to various game settings. Cruz et. al.

[39] studied a military operation game with one and two step receding horizon. Van den

Broek [40] considered applying a receding horizon approach for non zero-sum differential

games. Chang and Markus [41] consider a receding horizon approach for two-person zero-

sum Markov Games. In their work, the minimizing player selects a “small” horizon and

solves the game with the finite horizon (called the subgame) under the assumption that the

maximizer makes her decision based on her best performance of the subgame.

3.5 Policy Improvement Methods

Policy improvement is a dynamic programing approach that consists of first considering

an initial policy whose performance is known or can be readily computed. We will select

a non-revealing policy, i.e. one that ignores superior information, as our initial policy in

this section and will refer to this policy as the baseline policy. Next, a candidate policy is

selected from some policy set. If the current candidate policy performs better than the base-

line policy, the candidate policy becomes the new baseline policy. This new baseline policy

is an improvement over the previous baseline policy, and therefore a policy improvement.

This process can then repeated in an iterative manner.

The policy improvement methods presented in this section are based on the ideas of re-

ceding horizon optimization. In the n-stage game, player I solves an optimization problem

over the interval [m, n], where m is the current stage and n is the total number of stages.

We assume that in the future stages, she will only consider non-revealing strategies. This

assumption is key to reducing the complexity of the original dynamic programing formu-

lation vn(p) because of the following idea. By playing non-revealing in all future stages,
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player II’s beliefs p̃m+1, p̃m+2, . . . , p̃n at stages m + 1,m + 2, . . . , n respectively, remain

constant. As a consequence, her expected future payout over the interval [m + 1, n] can be

computed exactly by solving the optimization problem u( p̃). Similarly in infinite horizon

games, the expected stage payout for all future stages is u(p̃), assuming player I plays non-

revealing over all stages in the future. Note that u(p̃) can itself be computed by solving a

linear program whose complexity is invariant with respect to n.

3.5.1 Finite Horizon
3.5.1.1 One-time policy improvement

In one-time policy improvement, player I strategizes for the first stage of the game while

assuming that she will play in a non-revealing manner in all future stages. A dynamic

programming formulation for this policy is

ṽn(p) = max
x,µ

min
y

[1
n

∑
k∈K

∑
l∈L

µk(l)pkxkMky +
n − 1

n

∑
s∈S

∑
l∈L

x̄µ(s, l)u
(
p̃+(p, µ, x, s, l)

)]
where x̄µ(s, l) =

∑
k∈K pkxk(s)uk(l) and the kth component of p̃+ is

pkµk(l)xk(s)∑
k∈K pkxk(s)µk(l)

for the n-stage game. We will show that ṽn(p) guarantees a payoff to player I of Cav[u(p)].

Theorem 3 One-time policy improvement guarantees a payoff of at least Cav[u(p)] for the

n-stage repeated game.

Proof: First note that Cav[u(p)] can be expressed as
∑

l∈L αlu(pl), where α ∈ ∆(L) ,

|L| < ∞, p, pl ∈ ∆(K), and p =
∑

l∈L αl pl. Also note that Cav[u(p)] can be computed by

solving the following optimization problem

max
p,α

∑
l∈L

αlu(pl)

s.t.
∑
l∈L

αl pl = p (36)
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where the constraint
∑

l∈L αl pl = p is nonlinear and nonconvex. In this proof, we will

show an equivalent representation of this problem that allows us to relax the nonlinear

constraint. This relaxation is critical for a key result of this chapter, which is a linear

programing formulation to compute policy-improvement strategies. Observe that Equation

36 can be rewritten as

max
p,α

[
1
n

∑
l∈L

αlu(pl) +
n − 1

n

∑
l∈L

αlu(pl)
]

s.t.
∑
l∈L

αl pl = p (37)

where n ≥ 1. Next, through algebraic manipulation (37) can be equivalently expressed as

max
x,µ

min
y

[1
n

∑
k∈K

∑
l∈L

µk(l)pkxkMky +
n − 1

n

∑
l∈L

µ̄(l)u
(
p̃+(p, µ, l)

)]
s.t.

∑
l∈L

pkµk(l) = pk ∀ k

xk = xk′ ∀k, k′ (38)

where µ̄(l) =
∑

k∈K µ
k(l). Observe that the constraint

∑
l∈L

pkµk(l) = pk ∀ k

in (38) can be relaxed because it is trivially satisfied and can then be equivalently expressed

as

max
x,µ

min
y

[1
n

∑
k∈K

∑
l∈L

µk(l)pkxkMky +
n − 1

n

∑
s∈S

∑
l∈L

x̄µ(s, l)
(
p̃+(p, µ, x, s, l)

)]
s.t. xk = xk′ ∀k, k′ (39)

by algebraic manipulation. Observe that the constraints are linear in this formulation of

the optimization problem. Last note that the optimal value of ṽn(p) is at least that of (39)

because the feasible set of (39) is a subset of ṽn(p).
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A game theoretic interpretation of the previous result for the case where constraint

xk = xk′∀k, k′ is enforced, as in (38), is the following. In a one-time policy-improvement

strategy, the mixed strategy that player I plays, is a function of the state k, which she is

informed of prior to the first stage of the game. To learn the state k, player II can use her

observation of actions and auxiliary signals to build beliefs since the actions and signals

are correlated with the true state. When the constraint xk = xk′∀k, k′ is enforced, player I’s

mixed actions do not transmit any information about the current state,but the signals can

transmit information. Therefore it is sufficient for player II to consider only the signals as a

means to infer the actual state of the world. With one-time policy improvement, at the first

stage, player I decides on the signal probabilities µk(l) for each state k. She then randomly

selects a signal based on µk(l) and then plays an optimal strategy of u(pl), denoted x∗l , for

all stages. From the perspective of player II, by Lemma 3.2.1, the best case is that he can

observe signal l. His beliefs upon observation of l become pl and the game that is being

played at stage 1 is then u(pl). Since this is the only signal emitted in this game, then the

game payoff for seeing l is then u(pl). Since the overall likelihood of player I selecting l

based on the mixture uk(l) is αl,where αl = ū(l), then player I can guarantee an overall game

payoff of
∑

l∈L αlu(pl). It then follows that if player I uses µ∗, she can guarantee Cav[u(p)].

She will play with the mixed actions xk
opt at each stage where xk

opt =
∑

l∈L µ
k(l)x∗l . Relaxing

the constraint allows for a richer set of strategies for player I to be considered (i.e., a strategy

where beliefs are dependent on signals and moves).

3.5.1.2 Perpetual policy improvement

Similar to one-time policy improvement, in the perpetual policy improvement method,

player I strategizes for the first stage while assuming a non-revealing strategy in all future

stages. In contrast, once player I arrives at the next stage m′ = m + 1, she can reevaluate

her decision to continue playing the game u(pls) based on the signal l and the action s she

observed in the previous stage. She does this by setting p = pls and implementing the

one-time policy improvement strategy at stage m′.
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Corollary 1 Perpetual policy improvement guarantees a payoff of at least Cav[u(p)] for

the n-stage repeated game.

Proof: We will prove by construction. First, consider stage m = 1 and implement a

one-time policy-improvement strategy. By Theorem 3, there exists a mixed action x∗ and

a mixed signal µ∗ that guarantees a stage payoff of at least Cav[u(p)] and a future payoff

of at least Cav[u(p)]. The future payoff can be expressed as
∑

l∈L α
∗
lsu(p∗ls). Next consider

stage m = 2. Suppose signal l and move s were observed in stage 1, then the belief are

pls at stage 2 and the payoff for playing a non-revealing strategy is u(pls). If player I plays

non-revealing over the next n − 1 stages, she can guarantee an expected payoff of u(pls).

Suppose however that player I implements a one-time policy-improvement strategy at stage

m = 2. Note a key observation, which is that

ṽn(p) ≥ u(p) ∀n ≥ 1, k ∈ K.

This implies that

ṽn−1(p∗ls) ≥
n∑

m=2

1
n − 1

u(p∗ls).

Therefore, the worst that can happen to player I if she decides to implement a one-time

policy improvement at stage m = 2 is that she gets the same payoff u(p∗ls) she would have

received if she hadn’t deviated from the original policy decided at stage m = 1. Consider

stage m. By a similar argument, perpetual policy improvement up to stage m guarantees an

expected payoff of at least Cav[u(p)].
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Algorithm 1 Perpetual policy improvement
1: procedure PERPPOLICYIMPROVE

2: initialize: set p1 = p

3: for m = 1→ N do

4: compute x̂m by solving one-time policy improvement LP with pm

5: select a move s for attacker type k using mixed strategy x̂k
m

6: update beliefs vector (i.e.pm+1 = p+(p, x̂, s))

7: end for

8: end procedure

3.5.2 Infinite Horizon
3.5.2.1 λ-discounted games

A dynamic programming formulation for one-time policy improvement in the λ-discounted

repeated game is

ṽλ(p) = max
x,µ

min
y

[
λ
∑
k∈K

∑
l∈L

µk(l)pkxkMky +

∞∑
m=2

(1 − λ)m(∑
s∈S

∑
l∈L

x̄µ(s, l)u
(
p̃+(p, µ, x, s, l)

))]
(40)

Theorem 4 One-time policy improvement guarantees a payoff of at least Cav[u(p)] for

λ-discounted infinite-horizon repeated games.

Proof: We will prove by construction the existence of a one-time policy improvement

strategy that guarantees Cav[u(p)]. First note that by applying a basic infinite geometric

series result, (40) can be equivalently represented as

ṽλ(p) = max
x,µ

min
y

[
λ
∑
k∈K

∑
l∈L

µk(l)pkxkMky + (1 − λ)
∑
s∈S

∑
l∈L

x̄µ(s, l)u
(
p̃+(p, µ, x, s, l)

)]
. (41)

This is because the expression

∑
s∈S

∑
l∈L

x̄µ(s, l)u
(
p̃+(p, µ, x, s, l)

)
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remains constant for all n ≥ 2. Therefore (41) can equivalently be expressed as

max
x,µ

min
y

[
λ
∑
k∈K

∑
l∈L

µk(l)pkxkMky +

∞∑
m=2

(1 − λ)mα
]

where

α =
∑
s∈S

∑
l∈L

x̄µ(s, l)u
(
p̃+(p, µ, x, s, l)

)
.

Second, fix λ ∈ (0, 1) arbitrarily, and consider a n′ such that λ > 1
n′ . Set λ̂ = 1

n′ . Invoking

Theorem 6 yields ṽn′ ≥ Cav[u(p)]. Third, denote x∗ as the optimal stage m = 1 mixed

action of ṽn′ , and similarly denote µ∗ as the optimal mixed signal. Since

ṽλ̃ ≥ Cav[u(p)]

and ∑
s∈S

∑
l∈L

x̄µ(s, l)u
(
p̃+(p, µ, x, s, l)

)
≤ Cav[u(p)],

it follows that the optimal stage m = 1 strategy (x∗, µ∗) has the following lower bound

∑
k∈K

∑
l∈L

µk∗(l)pkxk∗Mky ≥ Cav[u(p)].

We then have the following:

λ
∑
k∈K

∑
l∈L

µk∗(l)pkxk∗Mky + (1 − λ)
∑
s∈S

∑
l∈L

x̄µ(s, l)u
(
p̃+(p, µ, x, s, l)

)

≥ λ̂
∑
k∈K

∑
l∈L

µk∗(l)pkxk∗Mky + (1 − λ̃)
∑
s∈S

∑
l∈L

x̄µ(s, l)u
(
p̃+(p, µ, x, s, l)

)]

≥ Cav[u(p)].

Therefore, by considering mixed action x∗ and mixed signal µ∗ at stage m = 1 and playing

non-revealing going forward, player I can guarantee a payoff of Cav[u(p)] by playing an

optimal one-time policy improvement strategy ṽλ(p).
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Corollary 2 Perpetual policy improvement guarantees a payoff of at least Cav[u(p)] for

the λ-discounted infinite horizon game.

Proof: By a similar argument used in Corollary 1, we can show that an optimal perpetual-

policy improvement strategy guarantees Cav[u(p)].

3.5.2.2 Infinitely repeated games

Theorem 5 One-time policy improvement is optimal for infinitely repeated games with

asymmetric information.

Proof: We will prove optimality by considering the performance of one-time policy im-

provement strategies as n grows large. Specifically, we will show that the performance of

these strategies converges asymptotically to optimal. Observe that

lim
n→∞

ṽn(p) = max
x,µ

[∑
s∈S

∑
l∈L

x̄µ(s, l)u
(
p̃+(p, µ, x, s, l)

)]
(42)

can equivalently be expressed as

max
p,α

∑
l∈L

αlu(pl) (43)

s.t.
∑
l∈L

αl pl = p

by algebraic manipulation. Since the optimal value of (43) is Cav[u(p)], which is also the

optimal value of the infinitely repeated games, this concludes the proof.

3.6 LP Formulation
3.6.1 LP Formulation of Incomplete Information Games

Ponssard and Sorin [42] consider the general case of incomplete information games where

both players have private information. They showed that finite zero-sum games with incom-

plete information can be formulated as a linear program (LP) to compute optimal strategies.

Let K and R be finite sets. Similar to the asymmetric case, nature chooses k ∈ K according
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to p ∈ ∆(K). Since player II also has private information, nature also chooses r ∈ R ac-

cording to q ∈ ∆(R). Player I and player II can consider pure Bayesian strategies ζ and ψ

respectively. Let ζ(i) be a specific behavior strategy for player I where i ∈ I. Similarly let

ψ( j) be a specific behavior strategy for player II. In this section we will denote x(i) to be the

probability that pure behavior strategy η(i) is selected. Similarly, we will denote y( j) to be

the probability strategy ψ j is selected. Let M̃(ζ, ψ) denote the game payoff to the players

for playing the strategy pair (ζ, ψ). The value of the game is V(p,q) and can be computed

by solving the following linear program

min
u

|I|∑
i=1

ui

s.t. M̃u ≥ 1′

u ≥ 0

(44)

Let β = (
∑|I|

i=1 u∗i )−1, then V(p, q) = β and x∗ = βu∗. Observe that the number of

strategies for players I and II are a function of n. Specifically for player

|S |(K×
∏N

n=0[S×T ]n)

and for player II

|I| = |S |(R×
∏N

n=0[S×T ]n).

For the asymmetric case, the following lemmas will be used to derive the minimal number

of pure strategies necessary for each player to compute optimal policies.

Lemma 3.6.1 [7] Player I has an optimal strategy in the n-stage and λ-discounted game

that depends only, at each m, on m and his beliefs pm at stage m. In particular, her strategy

is independent of the moves of player II.

Lemma 3.6.2 [7] Player II has an optimal strategy in the n-stage game and λ-discounted

game that depends only, at each m, on m and (s1, s2, . . . , sm−1). In particular, his strategy is

independent of his own moves.
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Therefore, by the previous lemmas, we have the following. The minimum number of

pure strategies necessary to compute optimal strategies for players I and player II are

|S |(K×
∏N

n=0[S ]n)

and

|T |(
∏N

n=0[S ]n)

respectively.

3.6.2 LP Formulation of Policy Improvement

Theorem 6 A one-time policy-improvement strategy that guarantees Cav[u(p)]) can be

computed by solving a linear programing problem, and the computational complexity of

the linear program is constant with respect to the number of stages of the game.

Proof: We established in Theorem 3 the existence of a behavior strategy σ̃∗ that guaran-

tees a payoff to player I of Cav[u(p)]), where σ̃1 : k 7→ ∆(L) × ∆(X), σ̃m≥2 : h̃1 7→ ∆(X),

and h̃1 is the history at stage m = 1 that include the observed signal and actions. Note

that we assume the worst case at stage 1, with respect to signal l, which is that player II

can also observe signal l and his strategy at stage m = 1 can be dependent on the sig-

nal. Recall that if player I uses behavior strategy σ̃∗, the best player II can do is also

use a strategy τ̃∗ that has the form τ̃1 : l 7→ ∆(Y) and τ̃m≥2 : h̃1 7→ ∆(Y). Observe that

γ
p
m(σ̃∗, τ̃∗) ≥ Cav[u(p)]) ∀m ≥ 1 and σ̃∗m = σ̃∗m′ ∀m,m′ ≥ 2. Therefore we can express the

game payoff as

γ̃
p
λ(σ̃∗, τ̃∗) = (λ)γp

1 (σ̃∗, τ̃∗) + (1 − λ)γp
2 (σ̃∗, τ̃∗),

where λ = 1
n . It is sufficient then to solve for the weighted two-stage game, where λ = 1

n ,

to compute a strategy for the n-stage game that guarantees Cav[u(p)]. For the optimal

strategy at stage m ≥ 3, let σ̃∗m = σ̃∗2. Since this game has perfect recall (e.g. Past histories

are perfectly remembered by each player), we can use Aumann’s result on the equivalence
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of behavior and mixed strategies. Specifically, the behavior strategy σ̃∗ of player I can be

equivalently represented as probabilities on pure strategies ζ̃ where ζ̃1 : k 7→ l × s, and

ζ̃m ≥ 2 : h̃1 7→ s are pure strategies for player I at stage 1 and stage m ≥ 2 respectively.

It follows that by considering a matrix M̃ where element(i, j) denotes the game payoff

γ̃
p
λ(ζ̃ i, ψ̃ j) for strategy pair (ζ̃ i, ψ̃ j), we can solve for the zero-sum game M̃ using linear

programming methods and derive a behavior strategy σ̃∗ that guarantees player I Cav[u(p)].

Equally important is that the size of the strategy sets for both players are independent of the

stages n of the game. Therefore M̃ is invariant with respect to n and so is the computational

complexity of the linear program.

Corollary 3 An optimal strategy for the infinitely repeated game can be computed by solv-

ing a LP, and the computational complexity of the LP remains constant with respect to the

number of stages of the game.

Proof: Construct a matrix M̃ as in Theorem 6 with λ = 1. After solving M̃ using LP

methods, an optimal behavior strategy σ̃ can then be derived that guarantees an optimal

payoff of Cav[u(p)] for infinitely repeated games.

3.6.3 Perpetual Policy Improvement

Perpetual policy improvement consists of repeatedly implementing the one-time policy im-

provement method at every stage of the game. Note that this process is essentially receding

horizon optimization. In this section, we will prove that the repeated application of one-

time policy improvement also guarantees a payoff of at least Cav[u(p)]) in the following

theorem.

Theorem 7 A perpetual policy-improvement strategy that guarantees Cav[u(p)]) can be

computed by solving a linear programing problem online at each stage m, and the compu-

tational complexity of the linear program is constant with respect to the number of stages

of the game.
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Proof: Construct a matrix M̃ as in Theorem 6. For the n-stage game, set λ = 1
n . For the

infinitely repeated game, set λ ≈ 1. Solve the zero sum game M̃ and let the optimal prob-

ability distribution of pure strategies ζ be equivalently represented as an optimal behavior

strategy σ̃. Let x∗ and µ∗ denote the optimal mixed action and mixed signal respectively

derived from σ̃ for stage m = 1. Consider the signal l and action s realized at stage m = 1

and let

pm=2 = p̃+(x∗, µ∗, s, l).

To compute the beliefs at stage m = 2, consider the n−1 stage game with initial probability

pm=2. Follow the same process as outlined at stage m = 1. Repeat this process for stage m.

3.7 Simulation
3.7.1 Game Setup

As usual, this game consists of two players. We will denote player I as the defender and

player II as the attacker. The defender is the row player and maximizer and the attacker is

the column player and minimizer. In this example, we assume that the defender knows the

type of security system she is defending, and their are two types of security systems (i.e.

type I and type II). The probability distribution of the type of security system the defender

is defending is uniform (i.e. pk = 1
2 for k = 1, 2), and there are two stages in this game.

Matrix payoffs for the players are

BRI BRII

DCI 23 375

DCII −92 69

Type I

BRI BRII

DCI −6 −28

DCII 128 −20

Type II

(45)

The defender has the option of choosing a defensive configuration that is the best con-

figuration for the security system she is defending. The defensive configurations will be

denoted as DCI and DCII . Note that the defender has the option of behaving deceptively
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by selecting a defensive configuration that is best suited for a different security system. An

attacker’s actions are to select an attack that is optimized for each possible security system.

His actions for this game are BRI and BRII .

3.7.2 Discussion

We will discuss the performance of four defensive strategies in this section. These strategies

are dominant strategy, non-revealing strategy, one-time policy improvement, and perpetual

policy improvement. In the one-shot game, the optimal strategy for an defender is to choose

the defensive configuration that corresponds to the security system type she is defending.

However, for games where n > 1, this can be a suboptimal strategy because it can reveal the

type of security system to the defender and cost the defender the informational advantage.

Specifically, in the two stage game, the defender can achieve a better payoff by selecting the

perpetual policy improvement strategy. For games where N is large, the dominant strategy

has the worst performance out of the four strategies and the policy improvement strategies

have the best performance.

3.7.2.1 Two-stage game

An optimal non-revealing strategy requires the defender, regardless of the type of security,

to play as if the system is of type I with probability .70 and to play as if the system is type

II with probability .30 at each stage. A graph of the optimal payoff for a non-revealing

strategy with respect to p can be seen in Figure 2. This strategy rewards the defender

with a payoff of 18 and has the worst performance of the four strategies in the two-stage

game.3 One-time policy improvement performs better by guaranteeing an expected payoff

of 27. The two strategies differ conceptually only at the first stage as how she plays when

using a one-time policy improvement strategy is dependent on type of security system. If

the security system is of type I, she selects DCII with probability .92. If the security system

3There are games where playing non-revealing is optimal for all n.
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is of type II, she selects DCII with probability 1 . At stage two, she selects the config-

uration DCII with probability .96, which is independent of the actual type of the system.

An defender that chooses to use her dominant strategy, which requires her to play hon-

estly, at each stage of the game yields her an expected payoff of 39, which outperforms

the two previously mentioned strategies. Perpetual policy improvement yields the defender

the highest reward, 53, of the four strategies in consideration. At the first stage of perpet-

ual policy improvement, the defender plays the same way she would have played had she

chosen one-time policy improvement. However, the key difference is at the second stage.

Instead of playing non-revealing as with the former strategy, the defender selects the defen-

sive configuration that corresponds to the actual system type she is defending. The optimal

payoff for this game is 63.

Figure 2: Non-revealing strategy payoff u(p) for security game

3.7.2.2 N-stage game

We discussed the performance of the four strategies in the two-stage case in the previous

section and will now examine their performance as N grows large. The expected payoff

for the dominant strategy converges asymptotically to 2 and has the worst performance of

the four strategies for large N. This is because the attacker can readily learn the type of

security system as the defender does not play deceptively. The attacker can then use this
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knowledge to select an attack action that is best suited for to the actual type of the system..

An optimal non-revealing strategy performs better than the dominant strategy because the

attacker is unable to learn any additional information about the system by observing the

defender’s action at each stage. As a consequence, the attacker has uncertainty on the most

suitable attack action. An defender who chooses this strategy can therefore guarantee a

payoff of 18 at every stage. An immediate consequence of this guarantee is that an defender

can achieve a game payoff of 18 for games of any length. Policy improvement methods

have the best performance of the four strategies for large N. Both methods have identical

behavior and converge asymptotically to optimal and yields a payoff of 23. At stage one of

the policy improvement methods, the defender behaves deceptively with some probability

that dependent on the type of security system. For all stages thereafter, the defender plays

a non-revealing strategy that is independent of the security system’s type.

3.8 Conclusion

In this chapter, we assume that once the state of the world is selected, the selection remains

fixed throughout the duration of the game. Since the players can observe the moves of the

other player, each player’s knowledge about the past actions of the other changes. This

introduces a dynamic aspect to the game as the changing knowledge affects each player’s

beliefs about the fixed state of the world. Due to the difficulty of computing optimal policies

for the informed player, who knows the state, we introduce policy improvement methods

based on the ideas of receding horizon control to compute suboptimal strategies. We show

that the methods have tight lower bounds and can be computed by solving a linear program

whose complexity remains constant with respect to the number of game stages.

Stochastic games with asymmetric information are more general as the state of the

world can change during game play. These transitions can be controlled by either player or

both. In contrast to repeated games, where the value of the game always exists, the value

may not exist in stochastic games when the uninformed player controls the transitions.
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However, the key issues and ideas of information exploitation and revelation discussed

in the special case, repeated games, are relevant to stochastic games. In particular, com-

puting optimal policies to determine the optimal amount of information to exploit is also

prohibitive in stochastic games.

We extend the policy improvement concepts that we applied to repeated games to

stochastic games in the next chapter to address the complexity issues in that setting. We

were able to incorporate the ideas of non-revelation in our policy improvement methods for

the repeated games. However, a key non-revelation result that we exploited is that if the

informed player plays non-revealing, the uninformed player’s beliefs about the state of the

world does not change. In stochastic games, the beliefs can change even when the informed

player uses a non-revealing strategy. Therefore, we will explore the concept of minimally

revealing strategies and use this strategy as a baseline policy for policy improvement meth-

ods for stochastic games. Similar to the repeated games, we are interested in establishing

bounds on the performance of these methods.
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CHAPTER 4

STOCHASTIC GAMES WITH ASYMMETRIC INFORMATION

4.1 Introduction

In a repeated game, the state of the world is randomly selected by nature and remains fixed

throughout the duration of the game. A stochastic game is a repeated game where the state

can change from stage to stage according to a transition that is dependent on the current

state and the moves of both players. Of interest, in this chapter is the scenario where one of

the players has superior information in the stochastic game and also solely controls the state

transitions. This scenario creates a complication for the informed player. The complication

is that she1 must decide when and how to use her private information. Note that by using her

private information, she also reveals that information to player II, the uninformed player.

In their seminal work, Aumann and Maschler studied the special case, repeated games with

asymmetric information, where every state is absorbing. This work provides insights into

the issues that an informed player must address when playing against an opponent that can

observe moves and use that information to better estimate the state of the world. Although

stochastic games with asymmetric information are more general than the repeated case, the

ideas and formulations that Aumann and Maschler introduce extend to the stochastic case.

The computational challenges of computing an optimal strategy for the repeated case also

extend to the more general stochastic case.

4.1.1 Related Work

Since computing optimal policies for stochastic games with asymmetric information is

prohibitive, there is work that considers computing suboptimal policies. Chang and Markus

[41] consider a receding horizon approach for two-person zero-sum Markov Games. In

their work, the minimizing player selects a “small” horizon and solves the game with the

1In this chapter, we will refer to the informed player as “she” and the uninformed player as “he”. The
assignment of “he” and “she” was arbitrary and was done for the purpose of clarity.
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finite horizon (called the subgame) under the assumption that the maximizer makes her

decision based on her best performance of the subgame. In [43], Raghavan and Syed

consider applying a policy-improvement algorithm to a special class of stochastic games

that have additive reward and additive transition structure. They show that for these games,

the policy improvement algorithm can generate optimal pure stationary strategies if they

exist. In [44] Raghavan explores single-controller stochastic games, where the transition

probabilities depend on the actions of the same player in all states. Raghavan shows that

non-zero-sum single-controller games can be reduced to linear complementary problems

and Lemke’s algorithm can be used to find a Nash equilibrium. In [45], Lakshmivarahan

investigate conditions under which two learning algorithms playing a zero-sum sequential

stochastic game arrives at optimal pure strategies. The algorithms are shown to converge

to the optimal pure strategies when they exist with probabilities as close to 1 as desired. In

[46], a decentralized learning algorithm is introduced. It is shown that all stable stationary

points of the algorithm are Nash equilibrium for the game. For two special cases it is shown

that the algorithm always converges to a desirable solution.

4.1.2 Contributions of the Work

We consider single-controller stochastic games with asymmetric information and address

the complexity issues for both finite horizon and infinite horizon games by deriving a sub-

optimal policy based on the concept of policy improvement. Policy improvement is a dy-

namic programming technique that first considers an initial policy, referred to as a baseline

policy, that is easily implementable. Through an iterative process, the performance of the

baseline policy is compared to that of other policies from a set of candidate policies. If a

candidate policy performs better, it becomes the new baseline policy. The baseline policy

we consider is a minimally revealing policy, i.e., one that completes ignores superior infor-

mation. The improved policy, which is implemented in a receding horizon manner, strate-

gies for the current stage while assuming a minimally-revealing policy for future stages.

We derive bounds on the guaranteed performance of the improved policy. Last, we show
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that the improved policy can be computed by solving a linear program whose complexity

is constant with respect to the game length.

4.1.3 Outline

The outline for the rest of this chapter is as follows. In Section 4.2, we review basic def-

initions, concepts, and results for stochastic games. In Section 4.3 we introduce single-

controller stochastic games with asymmetric information. We consider two classes of

these stochastic games in this section, where the player who has superior information also

controls the state transitions. In Section 4.4 we present the main results of this chapter.

Specifically, we show how policy improvement methods can be applied to single-controller

stochastic games with asymmetric information and can provide guarantees on the expected

payoff of player I. In Section 4.5 we present receding horizon heuristics and discuss the

performance of the heuristics. Last, we present simulations in Section 4.6 that demonstrate

the main results of this chapter.

4.2 Preliminaries on Stochastic Games
4.2.1 The Model

A zero-sum stochastic game G is specified by a finite state space Ω, action sets S and J, a

map q : Ω×S×J 7→ ∆(Ω), and a reward function g : Ω×S×J 7→ R. The standard hypothesis

that will be assumed is that the play, including the current state, is public. Therefore, the

initial state ω1 and the subsequent states are known by both players. It is assumed that both

players can observe the moves of the other and that each player has perfect recall about the

previous history hn. At each stage, both players select a move, sn ∈ S for player I, jn ∈ J

for player 2. The next state ωn+1 is selected according to the distribution q(· | sn, jn, ωn) on

Ω.

4.2.2 Strategies

For n = 1, 2, . . . , let Hn=[Ω × S × T ]n−1 × Ω be the set of possible histories at stage n.

Then hn ∈ Hn is a sequence (ω1, s1, t1; s2, t2; . . . ;ωn−1, sn−1, tn−1;ωn) of moves of the two
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players in the first n − 1 stages of the game and the states. Let X = ∆(S ) and Y = ∆(T )

denote the mixed moves of player I and player II respectively where xk
n = (xk

n(s))s∈S . Let

ζn : hn 7→ S denote a pure strategy for player I and define ζ = (ζ1, ζ2, . . . , ζn). Simi-

larly let ψn : hn 7→ T denote a pure strategy of player II and define ψ = (ψ1, ψ2, . . . , ψn).

Mixed strategies are probability distributions over pure strategies. Behavior strategies are

sequences of mappings from Hn to X and mappings from Hn to Y for player I and player II

respectively. Aumann [8] showed that mixed strategies can be equivalently represented as

behavior strategies for the stochastic games considered in this chapter. Therefore, the terms

behavior strategy and mixed strategy will be used interchangeably. Let σ and τ denote the

behavior strategies of players I and II respectively. Also let σ(hn) = (xn) ∈ X be defined as

the vector of mixed moves of player I at stage n.

Definition 4 A strategy is Markov if it depends only on the stage and on the current state.

Definition 5 A strategy is stationary if it depends only on the current state.

4.2.3 Payoffs

The payoff at stage n is denoted by gn, where gn = g(sn, jn, ωn). Let the game payoff

for the n-stage stochastic game be the average of the stage payoffs, denoted by Gn(ω).

Likewise, the payoff for the λ-discounted game and infinite game is denoted by Gλ and G∞

respectively.

4.2.4 Value of the Game

In [47], Shapley proved that the λ-discounted game has a value and that both players have

optimal stationary strategies. Kohlberg [48] then proved that all games with absobing states

have a value. Mertens and Neyman [49] introduced the following theorem which states that

all stochastic games have a value.

Theorem 8 [49] For every stochastic game and for every ε > 0, there exists a strategy σ

of player I and N > 0 such that for every n,n = N,N + 1, . . . ,∞ and for every strategy τ of
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player II,

Eσ,τ(x̄n) ≥ v∞ − ε (46)

where x̄∞ denotes limn→∞ inf x̄n.

As a consequence of the previous theorem, the strategy σ is ε−optimal in both the infinite

game and in all sufficiently long finite games.

4.2.5 Example: “Big Match”

A game that has played a fundamental role in the development of the stochastic game theory

is called “Big Match” and has the following payoff matrix:

L R

T 1∗ 0∗

B 0 1

Player I has a choice of playing T or B. However, as soon as she plays T the payoff

(with a “*”) is absorbing. Whatever the payoff receives at the first stage she plays T is the

payoff she receives for the remainder of the stages of the game, and therefore, the game is

essentially over. If player I plays B, the game is repeated and the stage payoff is given by

the entries of the matrix.

The recursive formula vn for this game is the following:

(n + 1)vn+1 = val

 n + 1 0

nvn 1 + nvn

 (47)

An optimal strategy for player I is to play T with probability 1
n+1 at the first stage in Gn.

The recursive formula for vλ is the following:

vλ = val

 1 0

n = (1 − λ)vλ λ + (1 − λ)vλ

 (48)

The optimal payoff for the discounted game is vλ = 1
2 for all λ. Player I’s optimal strategy

is to play T with probability λ
1+λ

in Gλ. The optimal strategy for player II is to play (1
2 ,

1
2 ) in

both Gn and Gλ.
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4.3 Preliminaries on Stochastic games with Asymmetric Information

In this section, we will consider stochastic zero-sum games where player I controls the

transitions. Player I controls the transitions if, for every ω ∈ Ω and every s ∈ S , the tran-

sition q(· | ω, s, j) does not depend on j. Player II controls the transitions if the symmetric

property holds. The two classes of games we will consider are the following. The first class

is a family of stochastic games where each game has the same Markov chain, but different

payoffs. In these stochastic games, player I is informed of the specific stochastic game

that is selected by nature. Player II only knows the probability p of the finite family Gk,

k ∈ K, of stochastic games on the same state space. In the second class of games, player I

is informed of the initial start state ω and the subsequent states during the stochastic game.

Player II only knows the transition probabilities q of the Markov chain and the probability

distribution p of the initial starting state ω. The expected average payoff up to stage N for

these stochastic games with asymmetric information is defined by

γN(p, ω, σ, τ) = Ep,ω,σ,τ[ḡN],

where ḡN = 1
N

∑N
n=1 gk(ωn, in, jn) for the first class of games and ḡN = 1

N

∑N
n=1 g(ωn, in, jn)

for the second class of games.

4.3.1 Definitions and Concepts
4.3.1.1 Concavification

Consider a continous function u : ∆(K) 7→ R, and let Cav[u(p)]) denote the functions

concavification. Specifically, let Cav[u(p)]) be the point-wise smallest concave function g

on ∆(K) satisfying g(p) ≥ u(p) ∀p ∈ ∆(K). In other words, g is the least concave function

over ∆(K).

4.3.1.2 Communication sets

For ω ∈ Ω denote

rω = min{n ∈ N, ωn = ω}

to represent the first visit to ω.
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Definition 6 Let ω1, ω2 ∈ Ω. ω1 leads to ω2 if ω1 = ω2 or if Pω1,σ(rω2 < +∞) = 1 for some

strategy σ of player I.

Definition 7 ω←→ ω′ iff ω leads to ω′ and ω′ leads to ω

Given ω ∈ Ω, denote Cω to be the communicating set that contains ω and define

S ω = {s ∈ S : q(Cω | ω, s) = 1}

Also define

S̃ ω = {s ∈ S : q(ω | ω, s) = 1}.

Actions in S ω (respectively S̃ ω) are called stay actions, and any state ω such that S ω = ∅ is

a null state. Denote the set of non-null states as Ωc.

Lemma 4.3.1 [9] ω ∈ Ωc if and only if there is a stationary strategy xCω
such that Cω is a

recurrent set for x

Proof: First start with direct implication. Let ω ∈ Ωc. For ω′ ∈ Cω, define xω′ ∈ ∆(A) by

xω′ =


0 s < S ω′

1/|S ω′ | s ∈ S ω′

(49)

and let x be any stationary strategy that coincides with xω′ in each state ω′ ∈ Cω.

Lemma 4.3.2 [9] Assume player I controls the transitions. Let ω ∈ Ω and ω′ ∈ Cω. If

one of the players can achieve a payoff φ in Γ(p, ω), they can also achieve a payoff of φ in

Γ(p, ω′).

Proof: Assume first that player I can guarantee φ in Γ(p, ω). Let σ be a strategy that

guarantees φ− ε in Γ(p, ω′), and let σ∗ be the strategy that plays xCω
until rω, then switches

to σ. In the game Γ(p, ω′), the strategy σ∗ guarantees φ − ε′ for each ε′ > ε.
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Now assume that player II can guarantee φ in Γ(p, ω), but assume to the contrary that

he cannot guarantee φ in Γ(p, ω′) for some ω′ ∈ Cω. Since player II cannot guarantee φ in

φ in Γ(p, ω′), there is ε > 0 such that for every strategy τ of player II and every N there

is a strategy στ,N of player I and an integer nτ,N such that γnτ,N(p, ω′, στ,N, τ) > φ + ε.

Let τand N be given. Let σ∗ be the strategy of player I defined as follows. Play xCω
until

stage rω′ , then switch to στν,M, where τν is the strategy induced by τ after stage ν, and M is

sufficiently large so that Pω,xCω
(rω′ < M) > 1 − ε

2 . Since there exists an n′ ≥ N such that

γnτ,N(p, ω, σ∗, τ) > φ + ε/2, there is a contradiction.

4.3.1.3 Minimally revealing strategies

Denote Γ̂R(p, ω) to be the stochastic zero-sum game with initial state ω, state space Cω,

reward function
∑

k pkgk, action sets S ω at each state ω′ ∈ Cω and transition function in-

duced by q. Similarly denote Γ̃R(p, ω) to be the n-stage stochastic zero-sum game with

initial state ω, state space Cω, reward function
∑

k pkgk and action sets S̃ ω. Note that the

action set consists of stay actions. Therefore, the game play never leaves ω. For the games

Γ̂R(p, ω) and Γ̃R(p, ω), if ω is a null state (e.g. the action set is empty), set û(p, ω) = −∞

and ũ(p, ω) = −∞ respectively.

4.3.2 Family of Stochastic Games (Level 2)
4.3.2.1 The Model

A zero-sum stochastic game with asymmetric information is described by a finite collection

Gk, k ∈ K of stochastic games on the same state space with a probability distribution

p ∈ ∆(K). pk denotes the probability stochastic game Gk is selected. We assume that both

players are told the next state ωn+1 and the move of the other player. The specific game Gk

is chosen by nature from the probability distribution p and the outcome of the selection is

told only to player I. We assume that the probability distribution p is public knowledge. The

game is then played over several stages. At each stage n ∈ N, the players simultaneously

choose an action s ∈ S and j ∈ J. ωn+1 is drawn according to q(· | ωn, in, jn). Note that

since the transition are determined by qk, player II’s beliefs about k can change even if
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player I uses a non-revealing strategy (i.e. xk = xk′ ∀ k, k′) The game will be parametrized

by the initial distribution p and the initial state ω, and will be denoted by Γ(p, ω)

Definition 8 Player I can guarantee φ ∈ R in the game Γ(p, ω) if, for every ε > 0 there

exists a strategy σ of player I and N ∈ N such that

∀τ,∀n ≥ N, γn(p, ω, σ, τ) ≥ φ − ε

Definition 9 Player II can defend φ ∈ R in the game Γ(p, ω) if, for every ε > 0 and every

strategy σ of player 1, there exists a strategy τ of player II and N ∈ N such that

∀n ≥ N, γn(p, ω, σ, τ) ≤ φ + ε.

4.3.2.2 Optimal strategies

Let the value of the infinite game be denoted by v. Also let (p, ω) ∈ ∆(K) × Ω be given.

The recursive formula is then

v(pn) =
∑

e

αe max
{
ũ, max

ω′∈Cωn ,s<Sω′

E
[
v | ω′, s

] }
(p̃e, ωn), (50)

where p̃e ∈ ∆(K), αe ∈ [0, 1], for e = 1, . . . , |K| + 1, such that
∑

e αe = 1 and
∑

e αe p̃e = pn

[9]. An optimal strategy for player I is then the following. If Gk is the game that was

selected by nature, player I chooses e according to a state-dependent lottery µk, where

µk(e) = αe
p̃k

e

pk
n
. Player I plays a stationary strategy that guarantees ũ(pe, ωn) in the restricted

game Γ̃R(pe, ωn) if

max{ũ, max
ω′∈Cωn ,s<Sω′

E
[
v | ω′, s

]
}( p̃e, ωn) = ũ(pe, ωn)

If

max{ũ, max
ω′∈Cωn ,s<Sω′

E
[
v | ω′, s

]
}( p̃e, ωn) = E

[
v(pe, ·) | ω′, s

]
for some ω′ ∈ Cωn and s < S ′ω, player I plays the stationary strategy xCωn

until the game

reaches the state ω′. At ω′, he plays the actions s, and then he recursively switches to a

strategy that guarantees v(pe, ·).
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4.3.2.3 Value of the Game

In repeated games, there exists a value V that can be guaranteed by player I and defended

by player II. However, in stochastic games this value does not always exist. Specifically,

both the min-max and max-min value can exist but may differ. In [9] it was shown for

the case where player I controls the transitions, a value always exists. However, for games

where player II controls the state transitions, their are cases where the value does not exist.

4.3.2.4 Example

We will now consider examples of stochastic games that were presented and analyzed in

[9]. The first game has three states Ω = {ω1, ω2, ω3} and two payoff functions K = {1, 2}.

The states ω2 and ω3 are absorbing. Player I can transition from ω1 to either ω2 and ω3

with equal probability by playing the move B. Let pω1 = 1
8 , where pω1 is the probability

that the initial starting state is ω1. The payoff matrices for the stochastic game are

k = 1

L M R

T 2/3 2/3 2/3

B 2/3 2/3 2/3

k = 2

L M R

T 2/3 2/3 2/3

B 2/3 2/3 2/3

ω1

L M R

T 1 1 1

B −1 −1 −1

L M R

T −1 −1 −1

B 1 1 1
ω2

L M R

T 4 0 2

B 4 0 −2

L M R

T 0 4 −2

B 4 0 2
ω3
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Let uωi(p) denote the one-stage optimal non-revealing payoff for stateωi. The non-revealing

payoffs in state ωi are then

u1(p) = 2/3

u2(p) = max{1 − 2p, 2p − 1}

u3(p) =



4p 0 ≤ p ≤ 1/4

2 − 4p 1/4 ≤ p ≤ 1/2

4p − 2 1/2 ≤ p ≤ 3/4

4 − 4p 3/4 ≤ p ≤ 1

Assume that the game starts in ω1. If player I chooses a completely revealing strategy

that exploits her information, her long-term payoff is 1
2 . This is because the probability

that she ends up in state ω3 is .50 and since player II will learn k, he can ensure that she

receives a payoff of no more than 0 in that state. Note that regardless of what action player

II selects in ω2, player I can guarantee a payoff of 1. Player I can do better by choosing

a non-revealing strategy. If player I plays the move T independent of k for all stages, the

state will remain in ω1 and player can achieve a payoff of 2
3 . A partially revealing strategy

yields player I the best long-term payout of 5
6

In the previous example, player I controls the transitions. If she plays T, she can remain

in state ω1. If she plays B, she will transition to either ω2 or ω3 with equal probability. We

will now consider an example where player II controls the transitions. As we will see in

this example, min-max is not equal to max-min, and therefore this particular game does not

have a value. The payoff matrices for this game are

k = 1

j1 j2 j3 j4 j5

T 4 0 0 0 0

B 0 0 0 0 0

k = 2

j1 j2 j3 j4 j5

T 0 0 0 0 0

B 0 4 4 4 4

ω2
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k = 1

j1 j2 j3 j4 j5

T 0 1 1 3 0

B 0 1 0 3 0

k = 2

j1 j2 j3 j4 j5

T 3 0 1 0 0

B 3 1 1 0 0

ω2

Note that |Ω| = |K| = 2, |I| = 2, and |J| = 5 for this example. The player II controlled

transitions are as follows. If he is in state ]omega1 and plays j5, the game will transition

to state ω2, where ω2 is absorbing. All other actions in state w1 are stay actions, where the

state does not change.

f (p) = uω1(p) =



3p 0 ≤ p ≤ 2 −
√

3

1 − p(1 − p) 2 −
√

3 ≤ p ≤
√

3 − 1

3(1 − p)
√

3 − 1 ≤ p ≤ 1

(51)

and let

g(p) = uω2(p) = 4p(1 − p). (52)

where uω1(p) and uω1(p) are the optimal non-revealing payoff for the game in states w1 and

w2 respectively. The max-min value for this game is Cav[min{ f , g})] when the initial state

is w1, while the min-max value is min{Cav f , g}. If we consider the game with p = 1/2, the

max-min is equal to 3(2 −
√

3), while the min-max is equal to 4/5. Therefore, this game

does not have a value when p = 1/2.

4.3.3 Unknown Initial State
4.3.3.1 The Model

The game is specified by a state space Ω and a map q. p is a vector that denotes the

probability that ω′ ∈ Ω is selected as the initial state. The initial state ω′ is announced to

Player I, while player 2 knows only p. Denote gn to be the payoff at stage n, where

gn = g(ωn, sn, jn),
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ωn is the current state, and sn and jn are the moves of Players I and II respectively at stage

n. Let Gn(p) and Gλ(p) denote the n-stage and λ-discounted games respectively.

Let xω ∈ ∆(S ) denote a one-stage strategy. Let A denote the set of public signals and

define the conditional probability on Ω given a by:

p̃ω(a) = Prob(ω|a),

where

Prob(w, a) =
∑
ω′,s

pω
′

xω
′

(s)q(ω, a|ω′, s)

and

Prob(a) =
∑

w

Prob(ω, a).

A recursive formula for the n-stage game is then

vn(p) = max
XΩ

min
Y

1
n

∑
ω,s

pωxω(s)g(ω, s, j) +
n − 1

n
E

[
vn−1( p̃(a))

]
p,x . (53)

Note that (66) implies that player I has an optimal Markov strategy in Gn(p) and an optimal

Markov stationary in Gλ(p), where the state space is ∆(Ω). Also note that the recursive

formula does not allow player II to recursively construct optimal strategies because com-

putation requires knowledge of x, which is not known to player II, to compute the posterior

distribution.

4.4 Policy Improvement (Main Results)

Policy improvement is a dynamic programing approach that consists of first considering an

initial policy whose performance is known or can be readily computed. We will select a

minimally-revealing policy as our initial policy in this section and will refer to this policy as

the baseline policy. Next, a candidate policy is selected from some policy set. If the current

candidate policy performs better than the baseline policy, the candidate policy becomes the

new baseline policy. This new baseline policy is an improvement over the previous baseline
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policy, and therefore a policy improvement. This process can then repeated in an iterative

manner.

The policy improvement methods presented in this section are based on the ideas of re-

ceding horizon optimization. In the n-stage game, player I solves an optimization problem

over the interval [m, n], where m is the current stage and n is the total number of stages. We

assume that in the future stages, she will only consider minimally revealing strategies. This

assumption is key to reducing the complexity of the original dynamic programing formu-

lation vn(p, ω) because of the following idea. By playing a minimally revealing strategy in

all future stages, a lower bound on her expected future payout over the interval [m + 1, n]

can be computed by solving the optimization problem ũ(p, ω). Similarly in infinite horizon

games, the lower bound on the expected stage payout for all future stages is ũ(p, ω), assum-

ing player I plays minimally-revealing over all stages in the future. Note that ũ(p, ω) can

itself be computed by solving a linear program whose complexity is invariant with respect

to n.

Definition 10 In one-time policy improvement, player I strategizes for the first stage of the

game while assuming that she will play in a non-revealing manner in all future stages.

Theorem 9 The dynamic programing formulation for one-time policy improvement for

zero-sum stochastic games where player I controls the transitions is

ṽn(p, ω) = max
x,µ

min
y

[1
n

∑
k,s, j,l

µk(l)pkxk,ω(s)yω( j)gk(ω, s, j)

+
n − 1

n

∑
s,l,ω′

xµq(s, l, ω′)ũ
(
p̃+(p, µ, x, s, l, q, ω, ω′), ω′

)]
(54)

where xµq(s, l, ω′) =
∑

k∈K pkxk(s)uk(l)qk(ω′
∣∣∣ ω, s) and the kth component of p̃+ is

pkµk(l)xk(s)qk(ω′
∣∣∣ ω, s)∑

k∈K pkxk(s)µk(l)qk(ω′
∣∣∣ ω, s)

for the n-stage game.
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Theorem 10 One-time policy improvement guarantees a payoff of Cav[ũ(p, ω)] for the n-

stage game. Equivalently ṽn(p, ω) ≥ Cav[ũ(p, ω)]

Proof:

First note that if the constraints xk,ω = xk′,ω ∀k, k′ and s ∈ S̃ w are enforced then

ṽn(p, ω) = max
x,µ

min
y

[1
n

∑
k,s, j,l

µk(l)pkxk,ω(s)yω( j)gk(ω, s, j)

+
n − 1

n

∑
s,l,ω′

xµq(s, l, ω′)ũ
(
p̃+(p, µ, x, s, l, q, ω, ω′), ω′

)]
(55)

≥ max
x,µ

min
y

[1
n

∑
k,s, j,l

µk(l)pkxk,ω(s)yω( j)gk(ω, s, j)

+
n − 1

n

∑
s,l,ω′

xµq(s, l, ω′)ũ
(
p̃+(p, µ, x, s, l, q, ω, ω′), ω′

)]
s.t. xk = xk′ ∀k, k′

s ∈ S̃ ω (56)

= max
x,µ

min
y

[1
n

∑
k,s, j,l

µk(l)pkxω(s)yω( j)gk(ω, s, j)

+
n − 1

n

∑
s,l

xµ(s, l)ũ
(
p̃+(p, µ, x, s, l), ω

)]
s.t. xk = xk′ ∀k, k′

s ∈ S̃ ω (57)

= max
x,µ

min
y

[1
n

∑
l∈L

µ(l)ũ
(
p̃+(p, µ, l), ω

)
+

n − 1
n

∑
l∈L

µ(l)ũ
(
p̃+(p, µ, l), ω

)]
(58)

= max
x,µ

min
y

[∑
l∈L

µ(l)ũ
(
p̃+(p, µ, l), ω

)]
(59)
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Through algebraic manipulation (59) can be equivalently represented as

= max
p,α

∑
l∈L

αlũ(pl, ω)

s.t.
∑
l∈L

αl pl = p (60)

Note that the optimal value of (60) is Cav[ũ(p, ω)]. Therefore

ṽn(p, ω) ≥ Cav[ũ(p, ω)].

Q.E.D.

Algorithm 2 Perpetual policy improvement
1: procedure PERPPOLICYIMPROVE

2: initialize: set p1 = p

3: for m = 1→ N do

4: compute x̂m and µ̂ by solving one-time policy improvement LP with pm

5: select a move s for type k player using mixed strategy x̂k
m

6: select a signal l for type kplayer using mixed signal µ̂

7: update beliefs vector (i.e. pm+1 = p+(p, x̂, µ̂, s, l, ω))

8: end for

9: end procedure

Definition 11 In the perpetual policy improvement method, player I strategizes for the first

stage while assuming a non-revealing strategy in all future stages.

Corollary 4 Perpetual policy improvement guarantees a payoff of Cav[ũ(p, ω)] for the n-

stage game.

Proof: We will prove by construction. First, consider stage m = 1 and implement a one-

time policy-improvement strategy. By Theorem 10, there exists a mixed action x∗ and a

mixed signal µ∗ that guarantees a stage payoff of at least Cav[ũ(p, ω)] and a future payoff
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of at least Cav[ũ(p, ω)]. The future payoff can be expressed as
∑

l∈L α
∗
lsũ(p∗lsω, ω). Next

consider stage m = 2. Suppose signal l, move s, and state ω were observed at stage 1,

then the belief are plsω at stage 2 and the payoff for playing a non-revealing strategy is

u(plsω, ω). If player I plays non-revealing over the next n − 1 stages, she can guarantee

an expected payoff of u(plsω, ω). Suppose however that player I implements a one-time

policy-improvement strategy at stage m = 2. Note a key observation, which is that

ṽn(p, ω) ≥ ũ(p, ω) ∀n ≥ 1, k ∈ K.

This implies that

ṽn−1(p∗ls, ω) ≥
n∑

m=2

1
n − 1

ũ(p∗lsω, ω).

Therefore, the worst that can happen to player I if she decides to implement a one-time pol-

icy improvement at stage m = 2 is that she gets the same payoff ũ(p∗lsω, ω) she would have

received if she hadn’t deviated from the original policy decided at stage m = 1. Consider

stage m. By a similar argument, perpetual policy improvement up to stage m guarantees an

expected payoff of at least Cav[ũ(p, ω)].

Theorem 11 One-time policy improvement guarantees a payoff of Cav[u(p, ω)] for the λ-

discounted game. Equivalently ṽλ(p, ω) ≥ Cav[u(p, ω)], where

ṽλ(p, ω) = max
x,µ

min
y

[
λ

∑
k,s, j,l

µk(l)pkxk,ω(s)yω( j)gk(ω, s, j)

+

∞∑
m=2

(1 − λ)m
∑
s,l,ω′

xµq(s, l, ω′)u
(
p̃+(p, µ, x, s, l, q, ω, ω′), ω′

)]
(61)

Proof:

First observe that by applying a basic infinite geometric series result, (61) can be equiv-

alently represented as
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max
x,µ

min
y

[
λ

∑
k,s, j,l

µk(l)pkxk,ω(s)yω( j)gk(ω, s, j)

+ (1 − λ)
∑
s,l,ω′

xµq(s, l, ω′)ũ
(
p̃+(p, µ, x, s, l, q, ω, ω′), ω′

)]
(62)

because the expression∑
s,l,ω′

xµq(s, l, ω′)ũ
(
p̃+(p, µ, x, s, l, q, ω, ω′), ω′

)
remains constant for all n ≥ 2.

Note that if the constraints xk,ω = xk′,ω ∀k, k′ and s ∈ S w are enforced then

max
x,µ

min
y

[
λ

∑
k,s, j,l

µk(l)pkxk,ω(s)yω( j)gk(ω, s, j)

+ (1 − λ)
∑
s,l,ω′

xµq(s, l, ω′)ũ
(
p̃+(p, µ, x, s, l, q, ω, ω′), ω′

)]

≥ max
x,µ

min
y

[
λ

∑
k,s, j,l

µk(l)pkxk,ω(s)yω( j)gk(ω, s, j)

+ (1 − λ)
∑
s,l,ω′

xµq(s, l, ω′)ũ
(
p̃+(p, µ, x, s, l, q, ω, ω′), ω′

)]

s.t. xk = xk′ ∀k, k′

s ∈ S ω (63)

The constraints imply the following:∑
k,s, j,l

µk(l)pkxk,ω(s)yω( j)gk(ω, s, j) =
∑

l

µ̄(l)u(p+(p, µ, l), ω)

Therefore (63) can be equivalently expressed as

max
x,µ

min
y

[
λ
∑

l

µ̄(l)u
(
p̃+(p, µ, x, s, l, q, ω, ω′), ω

)
+ (1 − λ)

∑
s,l,ω′

xµq(s, l, ω′)u
(
p̃+(p, µ, x, s, l, q, ω, ω′), ω′

)]
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= max
x,µ

min
y

[
λ
∑

l

µ̄(l)u
(
p̃+(p, µ, x, s, l, q, ω, ω′), ω

)
+ (1 − λ)

∑
s,l,ω′

µ(l)u
(
p̃+(p, µ, x, s, l, q, ω, ω′), ω′

)]

= max
x,µ

min
y

[∑
l

µ̄(l)u
(
p̃+(p, µ, x, s, l, q, ω, ω′), ω

)]
(64)

Through algebraic manipulation (64) can be equivalently represented as

= max
p,α

∑
l∈L

αlũ(pl, ω)

s.t.
∑
l∈L

αl pl = p (65)

Q.E.D.

Corollary 5 Perpetual policy improvement guarantees a payoff of Cav[u(p, ω)] for the λ-

discounted game.

Proof: By a similar argument used in Corollary 4, we can show that an optimal perpetual-

policy improvement strategy guarantees Cav[u(p, ω)].

Theorem 12 A one-time policy-improvement strategy that guarantees Cav[ũ(p, ω)]) can

be computed by solving a linear programing problem, and the computational complexity of

the linear program is constant with respect to the number of stages of the game.

Proof: We established in Theorem 10 the existence of a behavior strategy σ̃∗ that guaran-

tees a payoff to player I of Cav[u(p)]), where σ̃1 : k × ω 7→ ∆(L) × ∆(X), σ̃m≥2 : h̃1 × ω 7→

∆(X), and h̃1 is the history at stage m = 1 that include the observed signal and actions. Note

that we assume the worst case at stage 1, with respect to signal l, which is that player II can

also observe signal l and his strategy at stage m = 1 can be dependent on the signal. Recall
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that if player I uses behavior strategy σ̃∗, the best player II can do is also use a strategy τ̃∗

that has the form τ̃1 : l 7→ ∆(Y) and τ̃m≥2 : h̃1 × ω 7→ ∆(Y). Observe that γp
m(σ̃∗, τ̃∗) ≥

Cav[ũ(p)]) ∀m ≥ 1 and σ̃∗m = σ̃∗m′ ∀m,m′ ≥ 2. Therefore we can express the game payoff

as

γ̃
p
λ(σ̃∗, τ̃∗) = (λ)γp

1 (σ̃∗, τ̃∗) + (1 − λ)γp
2 (σ̃∗, τ̃∗),

where λ = 1
n . It is sufficient then to solve for the weighted two-stage game, where λ = 1

n ,

to compute a strategy for the n-stage game that guarantees Cav[ũ(p)]. For the optimal

strategy at stage m ≥ 3, let σ̃∗m = σ̃∗2. Since this game has perfect recall (e.g. Past histories

are perfectly remembered by each player), we can use Aumann’s result on the equivalence

of behavior and mixed strategies. Specifically, the behavior strategy σ̃∗ of player I can be

equivalently represented as probabilities on pure strategies ζ̃ where ζ̃1 : k × ω 7→ l × s, and

ζ̃m ≥ 2 : h̃1 ×ω 7→ s are pure strategies for player I at stage 1 and stage m ≥ 2 respectively.

It follows that by considering a matrix M̃ where element(i, j) denotes the game payoff

γ̃
p
λ(ζ̃ i, ψ̃ j) for strategy pair (ζ̃ i, ψ̃ j), we can solve for the zero-sum game M̃ using linear

programming methods and derive a behavior strategy σ̃∗ that guarantees player I Cav[ũ(p)].

Equally important is that the size of the strategy sets for both players are independent of the

stages n of the game. Therefore M̃ is invariant with respect to n and so is the computational

complexity of the linear program.

Corollary 6 An optimal strategy for the infinitely repeated game can be computed by solv-

ing a LP.

Proof: Construct a matrix M̃ as in Theorem 12 with λ = 1. After solving M̃ using LP

methods, an optimal behavior strategy σ̃ can then be derived that guarantees an optimal

payoff of Cav[u(p)] for infinitely repeated games.

4.5 Heuristic Receding Horizon Policies

In this section, we consider applying receding horizon optimization methods to the class

of stochastic games where player II has uncertainty about the current state of the world ω.
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Note that these games were discussed in Section 4.3.3. Recall that the recursive formulation

for the value of the game is

vn(p) = max
XΩ

min
Y

1
n

∑
ω,s

pωxω(s)g(ω, s, j) +
n − 1

n
E

[
vn−1( p̃(a))

]
p,x . (66)

Similar to the repeated games, the complexity of evaluating the Bellman’s equation can be

attributed to the recursive nature of the cost-to-go function E
[
vn−1( p̃(a))

]
p,x. By assuming

minimally revealing policies for the informed player, we were able to achieve an exact,

non-recursive, and non-trivial function to compute the cost-to-go for repeated games and

a non-trivial lower bound estimate for the level 2 class of stochastic games discussed in

Section 4.3.2.

Unfortunately the technique of assuming minimally revealing policies does not provide

us with a reasonable and non-trivial cost-to-go function for the class of games considered

in section. However, we can still apply the ideas of receding horizon optimization to this

problem. We can make the following assumption. We will assume that the payoff player I

receives for playing a minimally revealing policy from stage m + 1, she also receives that

payoffs for stages m + 2, m + 3, . . .N. This assumption does not hold generally because

player II’s beliefs pm at stage m can change significantly even if player I plays minimally

revealing. Consider the stochastic game illustrated in Figure 3 as an example of such a

scenario. Observe that for any distribution p of initial states, the beliefs of player II from

stages m ≥ 2 onward will be p(ω2) = 1. This change in beliefs of player II occurs because

of the transition probability q for the game. No matter where the game starts at stage m = 1,

the game will transition and remain in state ω2 in all future stages. Therefore, player II’s

beliefs can change significantly even when player I uses a minimally revealing strategy.

4.5.1 Receding Horizon Formulation

A formulation for a 1-step receding horizon formulation is the following:

ṽn(p) = max
XΩ

min
Y

[1
n

∑
ω,s

pωxω(s)g(ω, s, j) +
n − 1

n
E

[
ũ( p̃(a))

]
p,x

]
. (67)
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Figure 3: Stochastic game where player II’s beliefs can change significantly even when player
I uses a minimally revealing strategy

Observe that the key difference between equations (66) and (67) is the cost-to-go function,

where the cost-to-go function is E
[
ũ( p̃(a))

]
p,x for the receding horizon formulation. Note

that we can also consider a m-step receding horizon formulation. Similar to the 1-step

formulation, the m-step formulation would approximate the future payoffs as the average

of the next m stages where we assume that a minimally revealing strategy is played dur-

ing those stages. Although an m-step formulation can be more favorable than the 1-step

formulation and offers significant computational savings with respect to the computation

of optimal policies, the computational complexity still grows substantially with each addi-

tional “look-ahead step” in the future.

4.5.2 LP Formulation of Receding Horizon Optimization

The m-step receding horizon optimization problem (i.e. equation (67)) can be formulated

as a linear program. We will consider the case where m = 1. However, a similar process

can be followed for arbitrary m. The formulation is similar to that of Theorem 12. The

strategies for player I are σ̃1 : ω 7→ ∆(X) and σ̃m≥2 : h̃1 × ω 7→ ∆(X), and the strategy for

player II is τ̃m : h̃1 7→ ∆(Y).
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4.6 Simulation
4.6.1 Game Setup

The following example demonstrates how policy improvement can be applied to stochastic

games with asymmetric information to compute suboptimal solutions that have guarantees.

As usual, player I is the row player and maximizer, and player II is the column player

and minimizer. In policy improvement, player I’s objective is to strategic for the current

stage of the stochastic game, while assuming a non-revealing payoff in future stages. We

will consider the n-stage stochastic game where the game payoff is an average of the stage

payoffs. The game has two states Ω = {ω1, ω2}. there are two possible payoff functions

(e.g. K = 1, 2). The probability distribution over K is initially assumed to be uniform.
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Payoff structure for the game is the following:

k = 1

L C R ω+

T 4 0 2 −

M 4 0 −2 −

B 1/3 1/3 1/3 ω2

k = 2

L C R ω+

T 0 4 −2 −

M 0 4 2 −

B 1/3 1/3 1/3 ω2

ω1

L C R ω+

T 5 5 0 −

M 1/4 1/4 1/3 −

B 0 0 0 −

L C R ω+

T 0 0 0 −

M 1/3 1/4 1/4 −

B 0 5 5 −

ω2

In this game, player I has two stay actions in ω1 , which are T and B. Recall that playing a

stay action keeps the game in the current state with probability 1. Selecting action M will

transition the game to state ω2 with probability 1. In state ω2, all actions are stay actions

and ω2. Therefore, ω2 is said to be absorbing.

4.6.2 Discussion

We will discuss the performance of four possible strategies in this section. These strategies

are dominant strategy, non-revealing strategy, one-time policy improvement, and perpetual

policy improvement. We will first consider the case where N = 2 and then proceed to

discuss the performance of these strategies as N grows large. We will assume that the game

starts at state ω1.

4.6.2.1 Two-stage game

A strategy that player I can consider is to play an optimal non-revealing strategy. This

strategy consists of player I selecting action B at stage m = 1 for a stage payoff of 1/3 and

selecting actions T and B with equal probability for stage m = 2 that has a stage payoff

of 1.25. The expected game payoff for non-revealing is .7917. Player I can achieve a
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game payoff of 1 for playing her dominant strategy. Note that in this context, the dominant

strategy is a greedy strategy. In state ω1, she will play T if k = 1 and B if k = 2 and

will achieve a stage payoff of 2. With this strategy the game remains in state ω1 at stage 2

and since the dominant strategy if fully revealing, player II will know whether the payoffs

are of type 1 or 2 and can ensure that player I achieves a stage payoff of 0 and a game

payoff of 1. Policy improvement also guarantees a game payoff of 1. At stage 1, player I

plays T with probability .75 if k=1 and B with probability .75 if k=2. At stages 2 she plays

non-revealing, which guarantees a stage payoff of 1.

4.6.2.2 N-stage game

The dominant strategy has the worst performance and converges asymptotically to 0 with

respect to the number of stages in the game. The non-revealing strategy performs better by

guaranteeing a game payoff of .7917. Policy improvement performs the best by guarantee-

ing a game payoff of 1.
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CHAPTER 5

CYBER ATTACK FORECAST MODELING USING A
GAME-THEORETIC FRAMEWORK

5.1 Introduction

A reactive mindset is often the status-quo in the security community. Consider popular se-

curity products that include intrusion detection systems (i.e. Snort) and anti-virus software

as examples.1 In the case of anti-virus (AV) software, the typical scenario is the following.

First, new malware is developed by cyber hackers and then tested against popular versions

of AV software tools.2 Testing malware against AV tools virtually guarantees that new mal-

ware will initially go undetected. Next, the malware infects computing devices, and after

some period of time has elapsed, which can range from days to years, AV signatures are de-

veloped by the AV vendors (i.e Symantec, Kaspersky, and McAfee).3 This cat-and-mouse

pattern then repeats itself and can be observed within and across the security community.

Reactive security methodologies are effective against novice adversaries because these

adversaries typically use off-the-shelf tools and implement popular hacking techniques.

In contrast, the pioneering adversaries are able to push both cyber-hacking and security

frontiers forward by developing new malware, designing advanced hacking techniques and

methodologies, and challenging security researchers and practitioners to match their inge-

nuity.4 Measures and approaches that are forward looking and predictive are needed to

combat these adept adversaries and to address advanced persistent threats (APTs). Proac-

tive security is an approach that has the potential to address the problems that adept and

well funded adversaries present.

1A consequence of reactive security tools is that once a threat has been detected, damage has been done
and costs have been incurred.

2Websites such as http://www.virustotal.com can test malware against over 44 different AV
tools. Although these sites are intended for security professionals, they can also be used by hackers.

3Flame malware that was discovered in May 2012 had been operating in the wild since February 2010.
4Malware developers have introduced polymorphic viruses that mutate the machine code of the virus

after each execution. This polymorphism feature is designed to defeat AV tools that look for patterns in new
viruses that match older versions of the viruses.
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Actionable cyber-attack forecasting is a proactive approach that is considered in this

thesis. The objectives of actionable cyber-attack forecasting are to learn an attacker’s be-

havioral model, to predict future attacks, and to select appropriate countermeasures to pre-

vent future attacks. Impediments that have prevented the realization of reliable cyber-attack

forecasting include, but are not limited to, difficulty in modeling the adversary in an an-

alytical framework and the computational complexity of analyzing the model to forecast

attacks. Computational complexity issues will be addressed in this chapter.

5.2 Related Work

Previous work to address forecasting challenges, where uncertainty exists about the capa-

bilities of an attacker includes the work of Alpcan et al. and You et al. In [50], Alpcan et

al. model the interaction between attackers and an Intrusion Detection System (IDS) us-

ing a stochastic (Markov) game. The defender operates the IDS and has uncertainty about

the attacker’s intent. Tools that include value iteration are used to solve Markov Decision

Processes. In [51], You et al. describe how to model cyber-security problems that consider

the interaction between an attacker and a defender in a two-player zero-sum game. They

illustrate how the Nash and Bayesian Equilibria can be used to predict the behavior of an

attacker and to analyze the interaction between attacker and defender. You et al. suggest

that linear programs could be used to solve these problems.

Similar to You et al., cyber-security problems are also modeled as Bayesian zero-sum

games in this chapter. Computational methods are introduced to approximate solution to

cyber-security problems. A key feature of these methods is that the solution can be com-

puted by solving a linear program whose complexity is invariant with respect to the number

of stages of the zero-sum game. These computational methods also have tight lower bounds

on their performance that converge asymptotically to optimal with respect to the number of

stages of the game.
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5.3 Outline

The outline of the remainder of this chapter is as follows. In Section 5.4, iCTF20105, a

cyber-security challenge problem, will be discussed. In Section 5.5, asymmetric informa-

tion games6 will be introduced and basic concepts and definitions will then be discussed.

In Section 5.6, adversarial models for capture-the-flag (CTF) will be developed and tech-

niques to reduce the complexity of the models will be explored. The CTF problem will

then be formulated as a security game with asymmetric information in Section 5.7. Last,

simulations will be used to demonstrate how the models and techniques developed in this

chapter can be used to learn the behavioral model of an adversary, to predict future attacks,

and to launch appropriate countermeasures.

5.4 iCTF2010
5.4.1 Overview

Security researchers at the University of California Santa Barbara (UCSB) host a live

capture-the-flag tournament each year [52]. The 2010 version of this tournament, called

iCTF2010, will be considered in this chapter. There are typically over 900 participants in

the tournament, and the participants are hackers from the international community. The

purpose of the tournament is to observe and analyze strategies and techniques of real hack-

ers and collect datasets that can be used in security research projects. iCTF2010 is designed

as an abstraction of real-word cyber-security scenarios. For instance, consider the security

system at Georgia Tech as a target. The various departments of Georgia Tech (i.e. ECE,

ME, etc.) are subsystems that are required to run certain services such as ssh, smtp, citrix,

to facilitate the computing needs of faculty, staff and students.7 The attacker’s objective is

5This challenge problem will be modeled as a strategic game.
6This game theoretic framework will be used later in the chapter to model the capture-the-flag (CTF)

problem as a security game.
7An operational state of each subsystem in this example can be defined as the services that are not offline

because of maintenance. Maintenance could consist of security patch updates and/or server upgrades that
effect a particular service.
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to successfully disrupt critical services based on partial information he8 receives about the

operational state of the system.9

The CTF challenge problem is abstracted as a controlled partially-observable stochastic

system, and each subsystem is modeled as a Markov chain. A complication for the attacker

is that he does not have full knowledge of the operational state. However, he can estimate

the state based on a subset of emitted signals that are correlated with the state transitions.

Given those estimates, he can then chooses an appropriate action that corresponds to the

critical services he desires to disrupt. The objective of the attacker is to cause maximal dis-

ruption to the overall system. In the proceeding section, a formal description of iCTF2010

will be presented. The original CTF challenge problem was modified in this chapter, and

these modifications will be discussed. The original CTF formulation captures aspects of

real-world cyber-security problems that include a dynamic security system whose behavior

is at least partially observable and an adversary that can potentially learn and predict the

system’s behavior. The modifications presented in this chapter incorporate an additional

characteristic of real-world cyber-security problems. This characteristic is a defender who

initially has some uncertainy about the capabilities and behavior of an attacker, but who

can potentially learn an attacker’s capabilities and predict his behavior by using previous

observations.

5.4.2 Model description
5.4.2.1 Target System

The target system is abstracted as a discrete-time finite state, finite output Hidden Markov

Model (HMM). The target system will be referred to as T composed of N subsystems

T(1),T(2), ...,T(N). The operational states of subsystem Ti are denoted by

A(i) = {a(i)1 , a(i)2 . . . , a(i)ni
}.

8The attacker will be referred to as “he,” and the defender will be referred to as “she.” The assignment of
“he” and “she” was arbitrary and was done for the purpose of clarity.

9It will be assumed that each subsystem hosts its own services and is therefore not impacted by service
disruptions in other subsystems.
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The state space of the target system is

A = A(1) × A(2) × . . . × A(N).

The set of observation signals of subsystem Ti is denoted by

B(i) = {b(i)1 , b(i)2 . . . , b(i)mi
}.

The observation signal of the attacker at every instant is an unordered N-tuple of output

symbols generated by the subsystems. Given the observation signal B̄ = {b̄1, . . . , b̄N} at

some instant, the attacker knows that there exists an ordering of the elements of the signal,

say (b̄σ(1), . . . , b̄σ(N)), where σ : {1, . . . ,N} → {1, . . . ,N} is a bijection, such that

(b̄σ(1), . . . , b̄σ(N)) ∈ B(1) × B(2) × . . . × B(N).

He may not know the particular ordering, but he can always perform some probabilistic

inference given the HMM abstraction. The output space of the target system is denoted by

B. After the states and outputs have been relabeled, they are denoted by A = {a1, . . . , an}

and B = {b1, . . . , bm}, where n =
∏N

i=1 ni and m is the number of unordered N-tuples of

output symbols generated by the subsystems.

It is assumed that the state transitions of each subsystem are independent from each

other. Let {(Xt,Yt)}t∈Z+
denote the state and output process of the given HMM. The statisti-

cal description of the model is then given by an initial distribution vector π, where

πi = Pr[Xt = ai], i ∈ {1, . . . , n},

and a set of m transition matrices {M[y1], . . . ,M[ym]} where

M[yk]i j = Pr[Yt+1 = bk, Xt+1 = ai | at = x j],

where k ∈ {1, . . . ,m}, i, j ∈ {1, . . . , n}.
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5.4.2.2 Attacker

The action set of the attacker is denoted by

S = S(1) × . . . × S(N)

and corresponds to the set of services he disrupts in each subsystem. A payoff structure

rµ,λ : X×S→ R is associated with the action pairs of the state. This payoff structure reflects

whether an attacker, based on his information, chose to disrupt a service that is relevant to

the current operational state of the system. The subscript µ reflects the skill level of the

attacker and λ is associated with the resources that the defender allocates to the system.

The notion of probing10 is relevant to the attacker’s problem. The payoff incurred at each

time step provides the attacker with additional information that can be used to estimate the

current operational state. Therefore, the attacker is faced with the problem of leveraging

short term payoff versus obtaining more accurate information about the current state that

will prove beneficial in the long run.

5.4.2.3 Defender

The defender’s objective in the challenge problem is to minimize the cost of an attack by

an adversary on the target system. Since an attacker’s goal is to target critical services,

the defender can allocate resources to protect these critical services from being disrupted.

Let λ j represent the amount of resources that the defender allocates to protecting service

s j. The likelihood of a successful attack on s j decreases as λ j increases. Deciding how

to allocate resources among the services can be challenging for the defender because of

her uncertainty about an attacker’s type. This resource allocation issue is discussed in

Section 5.7.2.2.
10The idea of optimal probing is an interesting topic that will be considered in future research.
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5.5 Asymmetric Information Games
5.5.1 Overview

In a repeated zero-sum game, two players (defender and attacker) repeatedly play the same

zero-sum game over several stages. It is assumed that while both players can observe the

actions of the other, only the attacker knows the specific opponent he is playing against.

Although the defender has uncertainty about the type of attacker she faces, she has a prob-

ability distribution of attacker types and can use her observation of the attacker’s actions

during game play to eventually learn the attacker’s type. The dilemma faced by an attacker

is how should he trade off the short-term reward by exploiting his private information ver-

sus the long-term consequences resulting from revelation of his type.

Classic work by Aumann and Maschler [10] derives a recursive formula for the value of

the game, which quantifies the exploitation tradeoff, and also derives the optimal policy for

the attacker. Aumann and Maschlers’ model for explicit computations of optimal policies is

prohibitive for games with multiple stages. In [53], this computational issue is addressed by

introducing methods to compute suboptimal strategies by solving linear programs whose

complexity is constant with respect to the number of stages. The methods from [53] are

discussed in Section 5.7.2.

5.5.2 Game Setup
5.5.2.1 Game Play

Two players repeatedly play a zero-sum matrix game over N stages. The attacker is the

row player and maximizer, and the defender is the column player and minimizer. There are

a finite set K of possible attacker types that the defender can face. A specific attacker is

chosen from this set to play against the defender. Let S be the set of pure strategies of an

attacker, and similarly define J to be the set of pure strategies of the defender. The payoff

matrix for an attacker of type k will be denoted as Mk ∈ R|S |×|J|. Before the initial stage

m = 1, nature selects an attacker type according to a probability distribution p ∈ ∆(K),

which is common knowledge. The outcome of this selection is not revealed to the defender.
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Once selected, the attacker’s type remains fixed over all stages of the game.

5.5.2.2 Strategies

Mixed strategies correspond to distributions over pure strategies. Let xk
m ∈ ∆(S ) denote the

mixed strategy of an attacker of type k at stage m. In repeated play, this strategy can be a

function of the actions of both players during stages 1, ...,N. Likewise, let ym ∈ ∆(J) denote

the mixed strategy of the defender at stage m, which again can depend on player actions

over stages m=1,...,N. Let xm =
{
x1

m, ..., x
K
m

}
denote the collection of mixed strategies for all

attacker types and for all states at stage m, and x = {x1, ..., xN} denote mixed strategies over

all states and stages. Likewise, let y = {y1, .., yN} denote the defender’s mixed strategies

over all stages.

5.5.2.3 Payoffs

Let

γp
m(x, y) =

∑
k∈K

pkxk
mMkym

denote the expected payoff for the pair of mixed strategies (x, y) at stage m. The payoff for

the n-stage game is then defined as

γ̄p
n (x, y) =

1
n

n∑
m=1

γp
m(x, y). (68)

5.5.3 Concepts and Definitions
5.5.3.1 Beliefs

Since the defender is not informed of the attacker’s type k, she can build beliefs on the type.

These beliefs are a function of the initial distribution p of attacker types and the observed

moves of an attacker. An attacker must therefore carefully consider his actions at each stage

as they could potentially reveal his type to the defender. To get a worse case estimate of

how much information an attacker transmits about his type through his actions, he models

the defender as a Bayesian player and assumes that the defender knows his mixed strategy.
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The updated belief p+ is computed as

p+(p, x, s) =
pkxk(s)
x̄(p, s)

(69)

where x̄(p, s) :=
∑

k∈K pkxk(s) and xk(s) is the probability that an attacker of type k plays

pure action s.

5.5.3.2 Non-revealing strategies

Revealing information is defined as an attacker selecting a mixed strategy that is dependent

on his type k. From (69), it follows that a mixed strategy xm at stage m does not change

the current beliefs of the defender if xk
m = xk′

m ∀ k, k′. As a consequences, an attacker who

plays as if he is oblivious of his type, ensures that his opponents beliefs about his type do

not change.11

An optimal non-revealing strategy can be computed by solving

u(p) = max
x∈NR

min
y

∑
pkxkMky, (70)

where

NR = {xm | xk
m = xk′

m ∀k, k′ ∈ K}

is the set of non-revealing strategies [6]. By playing an optimal non-revealing strategy at

each stage of the game, an attacker can guarantee a game payoff of u(p).12

Definition 12 Let Cav[u(p)] denote the point-wise smallest concave function g on ∆(K)

satisfying g(p) ≥ u(p) ∀p ∈ ∆(K).

5.5.3.3 Short-term vs. long-term payoffs

The dynamic programming recursive formula

vn+1(p) = max
x1

min
y1

[
1

n + 1

∑
k∈K

pkxk
1Mky1 + n

∑
s∈S

x̄svn

(
p+(p, x1, s)

)]
, (71)

11In stochastic games, it is possible for the defender’s beliefs about an attacker’s type to change even if an
attacker plays as if it is oblivious of its type.

12In [53], this idea of non-revelation was exploited to reduce the complexity of Aumann and Maschler’s
formulation.

87



introduced by Aumann and Maschler [10], characterizes the value of repeated zero-sum

games with asymmetric information. Note that n is a non-negative integer. When n = 0,

the problem reduces to

v1(p) = max
x1

min
y1

∑
k∈K

pkxk
1Mky1, (72)

which is the value of the one-shot zero-sum game.

A key interpretation of this formulation is that it also serves as a model of the tradeoff

between short-term gains and the long-term informational advantage. For each decision x1

of an attacker, the model evaluates the payoff for the current stage, which is represented by

the expression
∑

k∈K pkxk
1Mky1, and the long-term cost for decision x1, which is represented

by n
∑

s∈S x̄svn

(
p+(p, x1, s)

)
.

It is worth pointing out that the computational complexity of finding the optimal deci-

sion x1 can be attributed to the cost of calculating the long-term payoff. Since the long-term

payoff is a recursive optimization problem that grows with respect to the game length, it

can be difficult to find optimal strategies for games of arbitrary length. This difficulty

is because the number of decision variables in the recursive optimization problem grows

exponentially with respect to the game length. A revised formulation

v̂n(p) = max
x1

min
y1

[
1
n

∑
pkxk

1Mky1 + (n − 1)
∑
s∈S

x̄su
(
p+(p, x1, s)

)]
(73)

was introduced in [53] to address a complexity issue of the recursive formulation of the

value of the game. In this formulation, it is assumed that the informed player uses optimal

non-revealing strategies (i.e. u(p)) for all future stages. Therefore, the cost-to-go function

vn(p) in (71) can be expressed as u(p) in (73). As a consequence of the non-revealing

assumption, the computational complexity remains constant with respect to the number of

stages of the game.

Theorem 13 [53] A perpetual policy improvement strategy can be computed by solving a

linear program online at each stage of the game, and the computational complexity of the

linear program is constant with respect to the number of stages of the game.
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In [53], lower bounds on v̂n(p) were established. It was also shown that the lower bounds

were tight, and it was proved that v̂n(p) has asymptotic convergence to optimality with

respect to the number of stages n.

Theorem 14 [53] One-time policy improvement and perpetual policy improvement achieve

Cav[u(p)] and the optimality bounds are

Cav[u(p)] ≤ v̂n(p) ≤ vn(p) ≤ Cav[u(p)] +
C
√

n

∑
k∈K

√
pk(1 − pk) (74)

The computational complexity of the attacker models will be reduced by using the v̂n(p)

formulation described in Section 5.5.3.3.

5.6 Attacker Modeling and Complexity Reduction

A basic adversarial model should addresses the following questions about a specific adver-

sary:

1. What are its skills? (Skillset/Capabilites)

Since each critical service can require specific technical skills to be disrupted, what

is the probability that an attacker can successfully disrupt service s j?

2. What is its intent? (Intent)

Is the ultimate goal of an adversary to prevent the success of the security system

under consideration or just to create general disruption?

3. How patient is the adversary? (Patience)

Is the attacker greedy, or is it patient and willing to forgo an immediate gain to

maximize its long-term payoff?

4. How does it build beliefs about the system’s current state? (Beliefs)

Is computing the system’s belief function computationally prohibitive? If so, what

technique does the adversary use to approximate the belief function?
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5. How does it make decisions based on its state estimates? (Strategies)

Given an estimate of the system, will an adversary disrupt critical services of the

most likely operational state or disrupt services that maximize its expected payoff?

In the adversarial models developed in this section, assumptions will be made that allow

the main ideas of attacker modeling and complexity reduction techniques to be conveyed in

a clear and accessible manner. These assumptions serve as intermediate steps that enable

the exploration of the prominent issues in modeling an adversary. The assumptions are

as follows: 1) Available actions of the attacker and the probability distribution of attacker

skill types are public knowledge. 2) Intents of the attacker are zero-sum. 3) The Attacker is

greedy. 4) The worst case with respect to the attacker’s computational ability is considered

(i.e. it is only prohibitive for the defender to computer the belief function of the system).

5.6.1 Capabilities

An attacker’s type will be defined as his skill level at disrupting a set of services. The skill

level will be represented as a vector, where the jth component of the vector represents the

attackers ability to disrupt service j. The values of the skill vector are in the range between

0 and 1, where 1 is expert skill and 0 is no skill at disrupting service s j.

5.6.2 Intent

The ultimate objective of the adversary may be unknown. Although many cyber hackers

aim to profit from their attacks, other hacker groups such as Anonymous employ denial of

service attacks to make political statements and to seek publicity. Therefore, an approach

that is used in this chapter to address the uncertainty of the adversaries objective is to con-

sider the worst case with respect to the defender. In particular, the problem is modeled as a

zero-sum game (i.e. a reward α for the attacker is a corresponding cost α to the defender).

This zero-sum assumption allows performance guarantees to be made on security policies.
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5.6.3 Patience

One can model an adversary as having a discount factor λ on its future payoff. A discount

factor of λ ≈ 0 would then indicate a greedy adversary that heavily discounts the future,

while λ ≈ 1 would be indicative of an adversary that is a long-term player that heavily dis-

counts the present. An alternative interpretation of the discount factor is the patience of the

adversary. Modeling a patient adversary introduces a probing complication that is absent

in the greedy models considered in this chapter. Since a patient attacker may be willing to

defer an immediate reward, he can consider choosing actions that may provide him with

a better estimate of the current state of the security system. This improved estimate along

with the adversaries knowledge of the HMM can then be used to make a better prediction

of the future behavior of the system. The question that follows is when should he probe

and when should he attack. This is an interesting question that will be considered in future

research.

5.6.4 Beliefs & Strategies

An adversary’s decision to disrupt a particular service s j can be dependent on his ability

to disrupt service s j (i.e. his skill set), his payoff for disrupting service s j, and his beliefs

about the current operational state of each subsystem Ti. Computing the belief function

of the current state of the system T is prohibitive. Consider the following example as an

illustration. Suppose that a system T ′ is composed of N′ subsystems that each have 10 op-

erational states. The size of the state space of the system T ′ is the product of the individual

subsystems and is equal to 10N′ , and the beliefs are probabilities of state combinations of

the subsystems, e.g. ∆(10N′). The worst case is assumed about the adversaries capabilities,

which is that he can compute the belief function of the system, while the defender can only

compute an estimate. Two techniques, quasi-beliefs and belief compression, will be intro-

duced in the subsequent sections to address the computational challenges of the defender.

These techniques can be used to calculate estimates of the belief function of the system T.
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5.6.4.1 Quasi-beliefs

The main idea of quasi-beliefs (QB) is the following. Instead of computing the true beliefs

of system T, e.g. ∆(10N), an estimate of the beliefs of each subsystem Ti can be computed

independently of the other subsystems T−i. An issue that arises with computing indepen-

dent beliefs of each subsystem is signal assignment. Recall that the attacker only observes

the collection of signals emitted from the subsystems. Therefore, he has uncertainty about

the mapping between each signal and the subsystem that emitted the signal. Algorithm 3,

detailed below, provides a method for estimating the likely mapping between signals and

subsystems.

Algorithm 3 Signal assignment
1: procedure SIGNALASSIGN

2: initialize matrix PS

3: while size(PS ) > 0 do

4: find the maximum element of PS

5: denote (i∗,m∗) as the position of the max element

6: assign signal ym∗ to subsystem Ti∗

7: remove row i∗ and column m∗ from matrix PS

8: end while

9: end procedure

Note that for the matrix PS at step 2 of Algorithm 3, each column corresponds to a signal ym,

each row corresponds to a subsystem Ti, and element (i,m) represents the probability that

signal ym was emitted from subsystem Ti. Also note that if there are more than one maximum

element at step 4, the tie is broken by randomly selecting a maximum element. The signal

assignment method is used in the quasi-belief greedy (QBG) algorithm ( Algorithm 4) that

is described below.
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Algorithm 4 QBG Strategy
1: procedure QBGSTRATEGY

2: start with set of individual subsystem beliefs

3: run procedure SIGNALASSIGN

4: update individual beliefs using assignment

5: attack services with highest expected reward

6: re-normalize beliefs given success/failure of attack

7: end procedure

5.6.4.2 Belief Compression

The point of departure is the statistical description of the HMM abstraction of the target

system. Let A = {a1, . . . , an}, B = {b1, . . . , bm} denote the state and output space respec-

tively. The statistics of the joint state and output process {(Xt,Yt)}t∈Z+
are encoded by the

initial distribution vector π, where

πi = Pr[Xt = ai], i ∈ {1, . . . , n},

and a set of m transition matrices {M[y1], . . . ,M[ym]} where

M[yk]i j = Pr[Yt+1 = bk, Xt+1 = ai | Xt = a j],

for k ∈ {1, . . . ,m} and i, j ∈ {1, . . . , n}. Let B∗ denote the set of all emitted finite strings

of observation signals including the empty sting ∅. Let v = vk . . . v1 stand for a string of

length k. Let 1n ∈ R
n denote the vector whose entries are all 1. Introduce the function

p : B∗ × Rn
+ → [0, 1],

where

p[(v, π)] = 1T
n M[vk] . . . M[v1]π.

The function p is referred to as the probability function. It is used to compute the probabil-

ity of observing a particular under initial distribution π, i.e.

p[(v, π)] =
∑

i∈{1,...,n}

Pr[Yk = vk, . . . ,Y1 = v1 | Xo = ai] πi.
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The value p[(v, π)] is computed recursively using the rule

p[(v, π)] = 1T
n Hk,

where Ht = M[vt] Ht−1, t ∈ {1, . . . , k}, and H0 = π. Consider also the functions

pco : Y × Y∗ × Rn
+ → [0, 1], pcs : X × Y∗ × Rn

+ → [0, 1],

referred to as the conditional output probability and conditional state probability function.

The value pco[(b, v, π)] corresponds to the conditional probability of emitting the signal b

given that the signal v has been observed under the initial distribution π, i.e.

pco[(b, v, π)] =
∑

i∈{1,...,n}

Pr[Yk+1 = b | Yk = vk, . . . ,Y1 = v1, X0 = ai] πi.

Similarly the value pcs[(a, v, π)] corresponds to the conditional probability of being at state

a given that the signal v has been observed under the initial distribution π, i.e.

pcs[(a, v, π)] =
∑

i∈{1,...,n}

Pr[Xk = a | Yk = vk, . . . ,Y1 = v1, X0 = ai] πi.

The belief function is

Π : Y∗ × Rn
+ → R

n
+,

where

Π[v, π]i = pcs[(ai, v, π)], i ∈ {1, . . . , n}.

The value of the belief function is computed recursively by using the rule

Π[v, π] =
Hk

1T
n Hk

.

At every time step the attacker chooses an action to maximize his instantaneous expected

reward. For s ∈ S let g[s] ∈ Rn where g[s]i = r[s, ai], i ∈ {1, . . . , n}. Having observed the

signal v and following a greedy strategy the attacker is faced with the optimization problem

max
s∈S

< g[s],Π[v, π] > .
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The notion of belief compression is associated with projecting the dynamics of the given

HMM onto a lower dimensional manifold. Let n̂ < n, V ∈ Rn×n̂, U ∈ Rn̂×n with U V = In̂,

so that V U is a projection matrix. The parameters of a reduced complexity model are given

by

ĉT = 1T
n V, b̂ = U π,

Â[y] = U M[y] V, y ∈ Y.

Using the reduced complexity model one can determine a greedy strategy while performing

the relevant calculations on a n̂ dimensional space with obvious computational and storage

advantages. In particular, consider the function

p̂ : Y∗ × Rn → R,

where

p̂[(v, b̂)] = ĉT Â[vk] . . . Â[v1]b̂.

The value p̂[(v, b̂)] is computed recursively using the rule

p̂[(v, b̂)] = ĉT Ĥk,

where Ĥt = Â[vt] Ĥt−1, t ∈ {1, . . . , k}, and Ĥ0 = b̂. The function p̂ is a low complexity

surrogate for the probability function of the given HMM. Similarly consider the function

Π̂ : Y∗ × Rn̂ → Rn̂,

where

Π̂[v, b̂] =
Ĥk

1T
n Ĥk

.

Let ĝ[s] = VT g[s], when employing the low complexity model the attacker is faced with

the optimization problem

max
s∈S

< ĝ[s], Π̂[v, π] > .
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The balanced truncation algorithm developed for HMM’s in [54] will be employed to

compute the compression matrix U and dilation matrix V . The reduction method is based

on stable numerical linear algebra tools employing the singular value decomposition and is

accompanied by an a priori bound to the approximation error. In other words, it leverages

the favorable features of Hankel norm based reduction techniques for linear time invariant

systems.

First one solves linear algebraic equations to obtain “gramian like” quantities Wc,Wo ∈

Rn×n where Wc,Wo � 0,

Wo =
∑
y∈Y

M[y]T Wo M[y] + 1T
n 1n, Wc =

∑
y∈Y

M[y] Wc M[y]T + π πT . (75)

Denote by Lo, Lc the Cholesky factors of Wo = LT
o Lo and Wc = Lc LT

c and consider the

SVD of LT
c LT

o ,

LT
c LT

o =

[
Ψ(1) Ψ(2)

]  Σ(1) 0

0 Σ(2)


 Ξ(1)T

Ξ(2)T

 .
where Σ(1) = diag[σ1, . . . , σn̂], Σ(2) = diag[σn̂+1, . . . , σn] and σ1 ≥ . . . ≥ σn̂ > σn̂+1 ≥ . . . ≥

σn > 0. In the above notation

V = Lc[ψ
(1)
1

1
√
σ1
, . . . , ψ(1)

n̂
1
√
σn̂

], U =


1
√
σ1
ξ(1)T

1

...

1
√
σn̂
ξ(1)T

n̂

 Lo.

The following error bound controls the approximation of the given probability function:√∑
v∈Y∗

(p[v, π] − p̂[v, b̂])2 ≤ 2(σn̂+1 + ... + σn).

The algorithm is demonstrated on a target system comprised from 3 subsystems used in the

iCTF, with |A| = 1331 and |B| = 680. The singular values σ1, . . . , σ1331 that control the

error bound are illustrated in Figure 4. There is a clear cut-off behavior indicating that a

choice of a reduced complexity model with 286 states is appropriate.
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Figure 4: Singular values σ1, . . . , σ1331 control the error bound.

Next it is demonstrated that the reduced complexity model delivers a very accurate

approximation to the conditional output probability function. The vector

(pco[b1, vk . . . v1, π], . . . , pco[b680, vk . . . v1, π])

conditioned on two trajectories vk . . . v1 of length 1000 is depicted in Figure 5. The bot-

tom row of Figure 5 corresponds to the exact model and the rows above it correspond to

approximations computed using the reduced order model. In both cases a reduced order

model of at most 286 states approximates this conditional probability within 0.1%.

One can use the reduced order model also to compute an approximation to the belief

function of the system and subsequently solve the attacker’s greedy optimization problem.

A reduced order model of 499 states depicted in Figure 6 delivers a very accurate approx-

imation to the belief function within 0.1% error. The belief function was computed for a

trajectory vk . . . v1 of length 1000. The bottom row corresponds to the exact model and the

rows above it correspond to approximations computed using the reduced order model. The

reduced order model led to the same choice of action in 96% of the instances when using

greedy optimization.
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Figure 5: A comparison of the conditional probability of the approximate systems (first three
rows) with respect to the exact system (bottom row).

5.7 CTF Security Game Formulation

In this section, iCTF will be formulated as a security game with asymmetric information.

Recall that these games were discussed in Section 5.5. In the formulation that will be in-

troduced in this section, it is assumed that only the attacker knows his opponent’s type.

Therefore, the information asymmetry of the iCTF security game is on the side of the

attacker. The next section will proceed with a discussion of the game play. Strategies avail-

able to the players will then be discussed. Last, prominent issues that each must consider

will be covered along with approaches to address those issues.
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Figure 6: A reduced order model of 499 states delivers a very accurate approximation to the
belief function within 0.1% error.

5.7.1 Game Play
5.7.1.1 One-shot game formulation

The one-shot game formulation of iCTF consists of two players, an attacker and the de-

fender. An attacker of type k is selected by nature before the start of the game from a

known distribution p of attacker types.13 The attacker’s objective in this game is to max-

imize his reward for attacking the security system T that was defined in Section 5.4.2.1.14

The attacker maximizes his reward by disrupting critical services that are needed by the

individual subsystems Ti of T . The attacker knows the specific services that are critical for

each state of the subsystem. However, he has uncertainty about the current state of each

subsystem Ti.

13Attackers differ in their ability to disrupt services, and an attacker’s type is defined by its skill vector.
14Conversely, the defender’s objective is to minimize its costs incurred by the attacker.
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An attacker can improve his estimate of each subsystem’s state by computing the belief

function of the system T . Since computing the belief function is computationally pro-

hibitive for systems with large state spaces, the defender can approximate the true belief

function by considering a state estimation technique discussed in Section 5.6.4. It is as-

sumed that the defender uses the quasi-beliefs in this chapter, although she could also use

an alternative technique (i.e. belief compression). A particular greedy strategy that an at-

tacker can consider is to disrupt services that maximize the expected payoff of an attacker

of his type. This greedy strategy will be referred to as the honest strategy. Alternatively,

an attacker can disrupt services that maximizes the payoffs of an attacker of another type.

This strategy will be referred to as the dishonest strategy. It may initially seem irrational

for an attacker to select a dishonest strategy because this strategy does not maximize his

immediate payoff. However, it will be demonstrated in the next section that choosing a

dishonest strategy can be rational and optimal.

The defender has finite resources that she can allocate to maintain the availability of

critical services. Dedicating more resources to a particular service s j decreases the likeli-

hood that service s j will be disrupted in the event that an attacker targets that service. At

the start of iCTF, she can select how these resources are allocated, and the resource alloca-

tion decision remains fixed until the completion of iCTF. This resource allocation decision

can be a function of the defender’s belief about an attacker’s type. In particular, she can

chose to do a best response allocation with respect to an attacker’s type or best respond to

an attacker’s type with some probability.

5.7.1.2 Repeated game formulation

It was assumed in the one-shot formulation that once a QBG policy is chosen by the attacker

and a resource allocation technique is chosen by the defender at the beginning of the game,

the selections by both players remain fixed throughout the duration of iCTF. In the repeated

game formulation, however, both players can reevaluate their decisions at specific intervals.

These intervals will be referred to as stages. At each stage, the security system S is reset
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to its initial state. However, each player’s knowledge about the other player’s past actions

is not reset. In fact, each player’s knowledge changes over time, affects his/her beliefs, and

introduces a dynamic aspect to this security game.

5.7.2 Player Concerns

In the previous section, it was discussed that each player’s knowledge is dynamic and

changes in time. An important objective of the attacker is to control the beliefs of the

defender about his type because knowledge of the attacker’s type can allow the defender

to make decisions that cost the attacker. Controlling the defender’s beliefs often involves

deceptive play by the attacker. An attacker of type k can elect to select a QBG strategy

of an attacker of a different type. (i.e. QBGk′ where k , k′). Because of the potential

for deception, it can be difficult for the defender to learn the attacker’s true type. In the

preceding sections, approaches for addressing each players concerns will be discussed.

5.7.2.1 Attacker

Recall that in Section 5.5.3.3 a formulation introduced by Aumann ad Maschler was dis-

cussed. This formulation can be used to model an attacker that optimally controls the

beliefs of the defender and to determine the optimal game payoff. As part of the discus-

sion, complexity issues that arose with using this formulation were mentioned. Policy-

improvement strategies will be used to address the complexity issues by approximating

the strategy selection of an optimal attacker. These policy-improvement strategies have

error bounds on their performance with respect to optimal strategies, and the performance

of the policy improvement methods converge asymptotically to optimal with respect to n,

the number of stages in the game. The one-time policy-improvement method will first be

discussed and then will be preceded by a discussion of the perpetual policy-improvement

method.

In one-time policy improvement, an attacker strategizes for the first stage of the iCTF

game while assuming that he will play in a non-revealing manner in all future stages.
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Perpetual policy improvement is an extension of one-time policy improvement. In the

perpetual policy-improvement method, the attacker strategizes for the current stage while

assuming a non-revealing strategy in all future stages at every stage. The perpetual policy-

improvement method involves solving an LP online, and the computational complexity of

the LP is constant with respect tho the number of stages of the game. Below is the perpetual

policy improvement algorithm.

Algorithm 5 Perpetual policy improvement
1: procedure PERPPOLICYIMPROVE

2: initialize: set p1 = p

3: for m = 1→ N do

4: compute x̂m by solving one-time policy improvement LP with pm

5: select a move s for attacker type k using mixed strategy x̂k
m

6: update beliefs vector (i.e.pm+1 = p+(p, x̂, s))

7: end for

8: end procedure

5.7.2.2 Defender

Learning an attacker’s true type can be challenging because he can play in a deceptive

manner [36]. If the defender knew the mixed strategy xk for each type of attacker k, then

learning an attacker’s type would be straightforward because the defender could follow

a standard Bayesian-update approach. Unfortunately, in the actual play of the game, the

defender does not know each attacker’s mixed strategy because this information is private.

Another approach that the defender can consider is solving a linear program to compute an

optimal defensive strategy.15 However, the complexity of the LP is exponential with respect

to n, the number of stages of the game. A payoff-based heuristic for learning an attacker’s

type will be introduced that is computationally tractable for arbitrary n and only depends

15Ponssard and Sorin [42] showed that zero-sum repeated games of incomplete information can be formu-
lated as linear programing problems to compute optimal strategies.
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on the information that is available to the defender. This information is namely the history

of the attacker’s actions.

The main idea behind the payoff-based heuristic is as follows. The defender’s belief of

an attacker of type k will be correlated with the actual game payoff of the attacker. After

each stage, the defender keeps track of what the overall game payoff would be for each

type of attacker. The game payoff for an attacker of type k at stage n, given history hn

will be denoted γ̃k
n(hn). This payoff γ̃k

n(hn) will be compared to the best possible payoff

that a type k attacker can achieve. The best possible payoff will be denoted by |Mk|, where

|Mk| := max
i, j

Mk
i, j. Without loss of generality, it will be assumed that each matrix Mk is

scaled with values ranging from 0 to 1. Let

ξk(hn) =
γ̃k

n(hn)
|Mk|

(76)

be a measure of the likelihood that an attacker is of type k given history hn. The belief

update procedure is then

p̃k
n+1(hn) = p̃k

n
ξk(hn)
ξ̄(hn)

, (77)

where ξ̄(hn) =
∑

k∈K p̃k
nξ

k(hn). To compute a best response strategy ỹ∗ for the defender given

the approximate belief p̃n at stage m, solve the optimization equation

ỹ∗m = arg min
ym

max
xm

∑
k∈K

p̃k
mxk

mMkym. (78)

5.8 Simulation
5.8.1 Game Setup

As usual, this game consists of two players, an attacker and a defender. In this example, it

is assumed that there are two types of attackers (i.e. type I and type II) and each attacker

is uniquely defined by his skill vector. The probability distribution of attacker types is

uniform (i.e. pk = 1
2 for k = 1, 2), and there are two stages in this game. Matrix payoffs for

the attacker types are
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BR1 BR2

QBG1 23 375

QBG2 −92 69

Type I

BR1 BR2

QBG1 −6 −28

QBG2 128 −20

Type II

(79)

Note that an attacker of type I has the option of playing as his type by selecting QBGI

or playing deceptively by selecting QBGII . Similarly, a type II attacker can opt to play

either honestly or deceptively. The defenders available actions are to play a best-response

resource-allocation strategy for a specific attacker type (i.e BRI or BRII).

5.8.2 Discussion

The performance of four attacker strategies will be discussed in this section. These strate-

gies are dominant strategy, non-revealing strategy, one-time policy improvement, and per-

petual policy improvement. In the one-shot game, the optimal strategy for an attacker is to

behave as his type by selecting his dominant strategy. However, for games where n > 1,

this can be a suboptimal strategy because it can reveal the attackers true type to the defender

and cost the attacker the informational advantage. Specifically, in the two stage game, the

attacker can achieve a better payoff by selecting the perpetual policy-improvement strategy.

For games where N is large, the dominant strategy has the worst performance out of the

four strategies and the policy improvement strategies have the best performance.

5.8.2.1 Two-stage game

An optimal non-revealing strategy requires the attacker, regardless of his type, to play as

a type I attacker with probability .70 and to play as a type II attacker with probability .30

at each stage. This strategy rewards the attacker with a payoff of 18 and has the worst

performance of the four strategies in the two-stage game.16 One-time policy improvement

16There are games where playing non-revealing is optimal for all n.
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performs better by guaranteeing an expected payoff of 27. The two strategies differ concep-

tually only at the first stage, where the one-time policy-improvement strategy is dependent

on the attacker’s type. A type I attacker plays deceptively at stage m = 1 with probability

.92, while a type II attacker plays honestly with probability 1. At m = 2, an attacker plays

as a type II attacker with probability .96, which is independent of his type. An attacker that

chooses to use his dominant strategy, which requires him to play honestly, at each stage of

the game yields the attacker an expected payoff of 39, which outperforms the two previ-

ously mentioned strategies. Perpetual policy improvement yields the attacker the highest

reward, 53, of the four strategies in consideration. At the first stage of perpetual policy im-

provement, the attacker plays the same way he would have played had he chosen one-time

policy improvement. However, the key difference is at the second stage. Instead of playing

non-revealing as with the former strategy, the attacker behaves as his type in the second

stage of perpetual policy improvement.

5.8.2.2 N-stage game

The performance of the four strategies in the two-stage case was discussed in the previous

section. The performance of these strategies as N grows large will now be examined. The

expected payoff for the dominant strategy converges asymptotically to 2 and has the worst

performance of the four strategies for large N. This asymptotic converge happens because

the defender can readily learn the attacker’s type, since the attacker does not play decep-

tively. The defender can then use this knowledge to select a resource allocation scheme that

is a best response to his type. An optimal non-revealing strategy performs better than the

dominant strategy because the defender is unable to learn any additional information about

the attacker after observing his action at each stage. As a consequence, the defender has

uncertainty about which resource allocation scheme will perform best against the attacker.

An attacker who chooses this strategy can therefore guarantee a payoff of 18 at every stage.

An immediate consequence of this guarantee is that an attacker can achieve a game payoff

of 18 for games of any length. Policy improvement methods have the best performance of
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the four strategies for large N. Both methods have identical behavior and converge asymp-

totically to optimal and yields a payoff of 23. At stage one of the policy improvement

methods, the attacker behaves deceptively with some probability that is type dependent.

For all stages thereafter, the attacker plays a non-revealing strategy that is independent of

his type.

5.9 Remarks (Stochastic Game Extensions)

So far we have considered the cyber scenario where an attacker is randomly selected by

nature. The attacker selection along with the corresponding skill set of the attacker remains

fixed over all stages. We will now consider the scenario where the attacker’s skill set can

change during game play. Specifically, we will formulate the iCTF problem as a stochastic

game and use the results of Chapter 4 to analyze the problem.17

5.9.1 Stochastic game formulation

The scenario we will consider is the following. In state ω1, each attacker will have the

identical skill sets that was presented in the repeated game. The key difference between

that example and this example is that the skill set of the type I attacker will improve if he

selects the action QBG1; his skill at attacking service S 0 will improve from .15 to 1. This

skill change will be represented by the game transitioning from state ω1 to ω2. The Payoff

structure for the stochastic cyber-security game is the following:

17Explicit knowledge of the stochastic game results are not necessary for this section. We will use the
results to compute the performance, but we will not go into any detail about the specific computation.
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k = 1

BR1 BR2 ω+

QBG1 23 375 ω2

QBG2 −92 69 −

k = 2

BR1 BR2 ω+

QBG1 −6 −28 ω2

QBG2 128 −20 −

ω1

BR1 BR2 ω+

QBG1 275 607 −

QBG2 −23 121 −

BR1 BR2 ω+

QBG1 −15 −17 −

QBG2 167 −15 −
ω2

5.9.2 Discussion

We will consider a setup with the following paramters. The probability that an attacker of

a particular type is selected will be assumed to be uniform. The game will be over two

stages. In the game with these parameters, an attacker can guranatee an expected payoff of

9 if he plays an action (QBG2) that keeps him in state ω1. Alternatively, the attacker can

change the state to ω2 by choosing the action QBG1. He can gurantee a payoff of at least

87. Note that the specific policy to achieve this payoff is perpetual policy improvement. For

games where the number of stages N is large, the payoff for policy improvement converges

to 173.
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CHAPTER 6

CONCLUSION

The overarching theme of this thesis is to address computational complexity issues in the

domains of Game Theory and cyber security. In Game Theory, computing optimal policies

for asymmetric games are prohibitive. In cyber security, computational challenges have

inhibited the realization of reliable cyber-attack forecasting. We address these issues by

considering computable suboptimal polices with provable performance guarantees that are

based on the concepts of model predictive control.

6.1 Asymmetric Information Games

Game theory has seen wide-spread adoption as a tool to model conflict-resolution scenarios

and predict the likely strategies of decision makers. A classic conflict-resolution scenario is

the Prisoner’s dilemma, which captures how rational decision makers can resolve a conflict

by choosing actions that serve there selfish interest. It is assumed in the classic version

of Prisoner’s dilemma that all information is public, but what happens when one of the

decision makers has private information about the underlying state of the world? Works

that includes [10], [24] have been highly influential in formulating this scenario as a strate-

gic game and characterizing the equilibrium. Unfortunately, computing the equilibrium

strategy for these games is computational prohibitive because of the exponential growth in

complexity as the number of game stages increases.

The computational complexity problems that this class of games presents has not been

adequately addressed in the literature. Work that includes [36], [5], [6], [37] makes some

headway but is largely limited to exploring special cases. We address the complexity is-

sues of stochastic and repeated games by revisiting the dynamic programing formulation,

introduced by Aumann and Maschler, to pinpoint the cause of the complexity and consider
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ways of reducing it. A key observation is that the cost-to-go function of the DP is the pri-

mary contributor to the exponential computational growth. We reduce the complexity of

the cost-to-go by assuming non-revealing policies going forward instead of assuming opti-

mal policies. We then apply model predictive control concepts to the problem that enable

us to solve the problem as a linear program online at each stage of the game, where the

complexity of the LP remains constant for arbitrary game stages. We are then able to prove

that the suboptimal policies have bounds on their performance.

6.2 Cyber Security

Much research has been dedicated to formulating cyber-security problems as strategic

games to forecast a cyber-attack and predict the likely behavior of key decision makers.

This research includes the work of [55], [56], [57], [58], [59], [60], [61]. Impediments to

the realization of cyber-attack forecasting includes modeling and computational challenges.

Specifically, it is unclear of what the appropriate method for formulating a cyber security

problem as a game should be [52]. It can also be computationally difficult to analyze a

strategic game because of the complexity challenges of computing equilibrium strategies.

6.2.1 Modeling Cyber-security Problems

Our work in this thesis largely involves addressing computational challenges. However,

in Chapter 5, we consider a capture-the-flag challenge problem developed by security

researches at UCSB [52] and formulate this cyber-security scenario in a game theoretic

framework. The approaches that we used to frame the problem as a strategic game could

also be used for other problems. Since how something is modeled can significantly be in-

fluential in how difficult it is to analyze the model, choosing an appropriate model is also

very important with respect to computational considerations.
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6.2.2 Complexity Reduction

As was pointed out previously, there can be an intimate relationship between a particular

model that is chosen to model a security system and the computation required to analyze

the model. Therefore, how much one can reduce the overall computational complexity

is a function of the model. Given a game-theoretic formulation of the model, however,

we introduce methods in this thesis that can be applied to the strategic game formulation

that yields suboptimal policies that can approximate the behavior of an optimal attacker.

Having the ability to to predict an attacker’s behavior can better assist security researchers

in discovering vulnerabilities in security systems. This ability can also enable security

professionals and practitioners to be more proactive instead of reactive with respect to

cyber security.

6.3 Future Work

In this dissertation, we address the complexity challenges of forecasting a cyber-attack

by introducing complexity reduction techniques. The security system model that we used

for the cyber-attack forecasting was an experimental model constructed by security re-

searchers. We would like to next consider a real-world security system and model the

system in a game-theoretic framework. Although taking this next step in modeling a real-

world system is also challenging, this next step can potentially provide rich insights into

the performance of the system and unearth system vulnerabilities that may have been pre-

viously unknown and perhaps not considered. Modeling a real-world system could also

provide security researchers with tangible proof that formulating cyber-security problems

in an analytical framework has significant value to security practitioners. Incorporating the

reduction techniques presented in this research on a real-world system can make significant

inroads in demonstrating that cyber-attack forecasting can be a practical proactive security

approach.
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