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SUMMARY 

 

As demand for real-time image processing increases, the need to improve the 

efficiency of image processing systems is growing. The process of image segmentation is 

often used in preprocessing stages of computer vision systems to reduce image data and 

increase processing efficiency. This dissertation introduces a novel image segmentation 

approach known as leap segmentation, which applies a flexible definition of adjacency to 

allow groupings of pixels into segments which need not be spatially contiguous and thus 

can more accurately correspond to large surfaces in the scene. Experiments show that 

leap segmentation correctly preserves an average of 20% more original scene pixels than 

traditional approaches, while using the same number of segments, and significantly 

improves execution performance (executing 10x - 15x faster than leading approaches). 

Further, leap segmentation is shown to improve the efficiency of a high-level vision 

application for scene layout analysis within 3D scene reconstruction.  

The benefits of applying image segmentation in preprocessing are not limited to 

single-frame image processing. Segmentation is also often applied in the preprocessing 

stages of video analysis applications. In the second contribution of this dissertation, the 

fast, single-frame leap segmentation approach is extended into the temporal domain to 

develop a highly-efficient method for multiple-frame segmentation, called video leap 

segmentation. This approach is evaluated for use on mobile platforms where processing 

speed is critical using moving-camera traffic sequences captured on busy, multi-lane 

highways. Video leap segmentation accurately tracks segments across temporal bounds, 

maintaining temporal coherence between the input sequence frames. It is shown that 



 

xv 

 

video leap segmentation can be applied with high accuracy to the task of salient segment 

transformation detection for alerting drivers to important scene changes that may affect 

future steering decisions.  

Finally, while research efforts in the field of image segmentation have often 

recognized the need for efficient implementations for real-time processing, many of 

today’s leading image segmentation approaches exhibit processing times which exceed 

their camera frame periods, making them infeasible for use in real-time applications. The 

third research contribution of this dissertation focuses on developing fast 

implementations of the single-frame leap segmentation approach for use on both single-

core and multi-core platforms as well as on both high-performance and resource-

constrained systems. While the design of leap segmentation lends itself to efficient 

implementations, the efficiency achieved by this algorithm, as in any algorithm, is can be 

improved with careful implementation optimizations. The leap segmentation approach is 

analyzed in detail and highly optimized implementations of the approach are presented 

with in-depth studies, ranging from storage considerations to realizing parallel processing 

potential. The final implementations of leap segmentation for both serial and parallel 

platforms are shown to achieve real-time frame rates even when processing very high 

resolution input images.  

Leap segmentation’s accuracy and speed make it a highly competitive alternative 

to today’s leading segmentation approaches for modern, real-time computer vision 

systems. 
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CHAPTER 1 

INTRODUCTION 

 

Over the past decade, the pervasiveness of cameras in almost all areas of modern 

life has created a growing need for efficient image analysis and understanding 

techniques. Camera use is ubiquitous: 

 in “smart” cell phones [73] for image capture and minor image editing, 

 in factories [87] for real-time monitoring and inspection of products, 

 on streets [16] for catching traffic violations and illegal parking, 

 in cars [38], [81] for improving highway safety, 

 in hospital rooms [82] for remote monitoring of patient vital signs.  

One of the more prevalent uses of cameras today is in video surveillance to 

monitor areas in combating crime. Surveillance cameras have become common in 

airports, businesses, and homes to identify and track suspicious behavior. Self-guided 

cameras have also been developed for use in combat environments for automated 

reporting of combat situations [29]. Often, surveillance cameras operate on mobile, 

resource-constrained systems, requiring image analysis methods to rapidly process 

images for conclusive identification of significant activity in real-time (e.g. [6], [8], [9]).  

Employing vision processing in intelligent vehicle systems has also grown 

extensively over the past several years. Cameras have been placed in mobile vehicles for 

use in driver aid and alert systems [38], [48], and, in some developing car designs, in 

automatic steering systems [81]. Computer vision systems can be used to analyze traffic 
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scenes and alert drivers of potentially dangerous events as they occur in real time, thus 

increasing the safety of road ways. Prototype intelligent vehicle systems have already 

been demonstrated on highways across the country [54]. Due to their operating 

environment, intelligent vehicle systems are inherently mobile, requiring vision 

applications to be both accurate and efficient in their implementation for successful 

operation in this resource-constrained, real-time environment. 

All these applications are driving ground-breaking research in embedded image 

processing to develop novel methods for image analysis and understanding. An important 

early step in most of these vision applications is image segmentation, which is critical in 

reducing image data and enabling efficient execution. Image segmentation separates an 

image into homogeneous, perceptually significant regions of pixels that can each be 

processed as a group. Segmentation is often used in vision applications to preprocess 

pixel data prior to image analysis methods, such as edge detection, stereo matching, and 

object tracking. For many segmentation approaches the primary objective is to accurately 

detect whole object positions and boundaries in an image, a process referred to as under-

segmentation. However, under-segmentation often causes enormous loss of image detail 

as pixels are grouped to form overly-large segments. While these identified primitives are 

often useful for high-level visual processing tasks, there exists a separate class of high-

level vision applications which instead require an over-segmentation of the input image. 

In over-segmentation, segments correspond not with whole image objects, but with 

homogeneous regions of pixels within image objects that can be similarly processed 

because of their affinity. High-level vision applications incorporate image over-

segmentation techniques into their preprocessing stages primarily to reduce the image 
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data which must be processed by the vision system, thus improving overall execution 

efficiency. However, in many such applications, the resulting image blurring and loss of 

detail can be detrimental to the accuracy of the functioning system. For example, if one 

were to segment a photograph before performing facial recognition, the human facial 

features must remain discernible or the recognition accuracy would suffer. For a highway 

surveillance system to identify specific vehicles, the vehicle license plates must remain 

legible after segmentation. An intelligent vehicle vision system may require street sign 

and road marking information to autonomously make steering decisions. While small, 

these details cannot be blurred during segmentation without reducing the accuracy of the 

high-level steering system, which would have life-threatening ramifications. 

Developing a New Segmentation Approach 

The goal of this research is to develop a novel over-segmentation approach for the 

preprocessing stages of real-time vision applications that require salient-feature 

preservation to achieve accuracy. This specific class of vision applications is one for 

which traditional approaches, both under-segmentation and even over-segmentation, have 

proven inadequate due to loss of detail and blurring. In particular, this application class 

requires the following:  

1. Efficiency. Demand is steadily growing for image processing on portable, low 

power devices. Efficient implementations of computer-vision techniques are 

needed for computing on mobile systems such as cell phones and digital cameras. 

To meet this demand, an embedded-computing trend is emerging in the field of 

computer vision [50]. Recently, many traditional image-processing techniques 

have been revisited to develop faster, more efficient implementations that can 
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function in an embedded environment. Real-time, high-level vision applications 

apply image over-segmentation during preprocessing to improve their overall 

execution efficiency. The over-segmentation technique must therefore be efficient 

in its own execution to avoid counteracting any system performance 

improvement. Meeting performance requirements in this area has proven 

challenging. Existing segmentation approaches often fail to meet real-time 

processing standards, particularly when applied to high-resolution images. 

Research in novel over-segmentation approaches is needed that focuses on highly-

efficient preprocessing of input image data for real-time applications. 

 

2. Salient-Feature Preservation. The question of how much detail should be 

preserved during segmentation depends on the target application. Many current 

high-level applications that apply image-segmentation techniques in 

preprocessing expect a certain degree of image blurring and detail loss when 

applying existing segmentation algorithms in their preprocessing stages. This 

detail loss is expected and useful in those applications which favor treating whole 

image objects as single entities, rather than several pieces forming a whole 

(segments). However, scene-interpretation applications (such as those for natural 

scene reconstruction, human facial recognition, and highway scene 

understanding) require a higher degree of salient-feature preservation during 

segmentation preprocessing for reliable performance. Excessive blurring of input 

images or loss of salient detail (e.g. street sign lettering, lane markings, or facial 

features) during segment formation is detrimental. A lack of detail preservation in 

preprocessing would greatly reduce the utility of these vision applications. The 
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specific class of applications of interest in this research requires a segmentation 

approach that balances salient-detail preservation with the reduction of image 

data. 

In this dissertation, a novel approach, called leap segmentation, is developed that 

focuses on this task of improving segmentation preprocessing both in efficiency and 

feature preservation (Forsthoefel et al.) [34]. This approach efficiently transforms raw 

pixel data into feature preserving, palletized, color-similar and illumination-similar 

regions for use in preprocessing to facilitate performance improvements in high-level 

vision systems. 

Leap segmentation is so named because the approach allows grouping of adjacent 

but non-neighboring pixel values. Pixels can “leap” across segmentation boundaries to 

join nearby chromatic and luminance-similar segments. This technique preserves salient 

scene details during segmentation as shown in Figure 1. The leap-segmented image on 

the right strongly resembles the original image on the left with little loss in detail. 

However, 154,401 pixels in the original image are now replaced by 132 regions, which 

 

 

                                     (a)                                                          (b) 

Figure 1. Leap segmentation output example (Planes). (a) Original image 481x321 

pixels. (b) Image segmented using leap segmentation with 132 segments. 
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can be more efficiently processed. 

Segmentation algorithms typically partition an image into regions, often referred 

to as “superpixels” [66], which can be processed together because of their affinity (based 

on color, texture, intensity, etc.). Leap segmentation removes unimportant image features 

and minute pixel variations (such as texture and minor chromatic variations), while better 

preserving fine detail (such as vehicle license plate lettering or highway scene markings), 

than existing segmentation approaches. By relaxing strict adjacency constraints, leap 

segmentation produces larger groupings of similar pixels. In practice, this novel approach 

is able to produce perceptually correct groupings of non-contiguous regions such as 

stripes, as shown in Figure 2. Traditional segmentation approaches often needlessly 

segment each stripe into a separate segment, an inefficient use of resources.  

Similarly, traditional segmentation approaches often have difficulty processing 

high-variation or porous regions, such as trees and grass. A traditional segmentation 

approach which builds only contiguous segments will attempt to segment each tree leaf 

 

  

                                       (a)                                                     (b) 

 

Figure 2. Leap segmentation groups together non-contiguous segments such as 

stripes. (a) Original image. (b) Colorized representation of the image segmented 

using leap segmentation. 
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as a separate segment, a tremendous waste of resources. This method of processing also 

burdens high-level applications with the need to perform additional steps to group these 

leaf segments into a “tree” object. The leap segmentation approach groups pixels in high-

variation regions such as sparse vegetation together within a specified adjacency 

neighborhood into a small number of segments representing the color information in 

these regions, thus eliminating the need for additional steps in high-level vision 

applications and reducing the resources required to represent the segmented image scene.  

Admittedly, existing segmentation approaches could be redesigned to allow the 

grouping of non-contiguous pixels into their segmentations. However, such adjustments 

to these algorithms would dramatically increase their complexity, making them 

computationally infeasible for real-time applications. Leap segmentation is designed 

specifically to produce such output and thus is capable of doing so with reduced time and 

storage resources. 

Multiple-Frame (Video) Segmentation 

In addition to the challenges of single-frame image segmentation (efficiency and 

salient-feature preservation), this dissertation explores ways of meeting segmentation 

challenges in multiple-frame (video) applications. Video segmentation has been applied 

in many vision applications including video compression and video indexing and 

retrieval [39]. Many video segmentation techniques are designed to operate off-line, 

requiring all frames in the input video sequence as input [41]. Since future frames must 

be known, these approaches are not feasible for real-time applications where only current 

and past frames are available. A few on-line approaches exist in the literature, but they 

are limited in accuracy. Meeting both high accuracy and high efficiency requirements in 
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video segmentation is a challenging task, and further research in this field is needed to 

meet real-time processing standards. 

Parallelizing Leap Segmentation 

Finally, this dissertation explores the potential for parallelizing leap segmentation 

on multi-core hardware platforms. Modern demand for real-time image processing 

algorithms has inspired several research efforts in fast, multi-core image segmentation. 

However, contemporary approaches often require specialized hardware and achieve only 

moderate frame rates on low-resolution images and exhibit extremely slow frame rates 

when applied to high resolution images [1], [43], [58]. Real-time, multi-core 

implementations have not been fully realized. There remains much room for 

improvement to achieve real-time (>25 fps) image segmentation executions on 

commercially-available CPUs with multiple processing cores that do not require special 

hardware. 

1.1. Problem Statement and Research Contributions 

The goal of this research is to provide vision applications with a faster, more 

accurate image segmentation approach that is robust enough to be used in both single and 

multiple-frame scene analysis and efficient enough for embedded and mobile platforms. 

This goal will be achieved through the following contributions:  

1. A novel, single-frame segmentation approach, called leap segmentation, is 

presented that efficiently reduces and restructures image data into regions while 

preserving the salient features in the image that are needed in scene analysis 

applications (Forsthoefel et al.) [31], (Forsthoefel et al.) [34].  
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2. The single-frame leap segmentation algorithm is extended to efficiently process 

video—multiple, consecutive frames in time—while maintaining region boundary 

continuity between image frames. Temporal analysis of the multiple-frame leap 

segmentation algorithm is performed to evaluate segmentation stability over time 

in video sequences from moving camera traffic scenes (Forsthoefel et al.) [32], 

(Forsthoefel et al.) [33].  

3. Single-frame leap segmentation is parallelized in a multi-core implementation of 

the approach that achieves real-time frame rates when segmenting high-resolution 

input images on embedded, mobile platforms (Forsthoefel et al.) [35].  

These three contributions to the image segmentation field are evaluated further in 

the following subsections. 

1.1.1. Contribution 1: Single-Frame Leap Segmentation 

The first contribution of this dissertation introduces leap segmentation, a highly-

efficient, non-contiguous segmentation approach designed to reduce and restructure 

image information while accurately preserving salient details in the scene. Leap 

segmentation builds a new image representation, replacing individual pixel data with a 

map-indexed palette of chroma-luminance-similar regions that are adjacent but not 

necessarily contiguous. High-level algorithms can process this compact image 

representation for efficient execution. Leap segmentation is evaluated using both the 

Berkeley Segmentation Dataset and new, publicly available datasets that target real-time 

vision applications, such as those used in intelligent vehicle systems. In experiments, leap 

segmentation demonstrates high region-assignment accuracy and, compared to other 
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approaches, preserves a higher level of scene integrity (up to 30-40% higher) using a 

given storage resource (Forsthoefel et al.) [34].  

In addition, it is demonstrated that this novel segmentation technique can 

significantly improve scene layout analysis within 3D scene reconstruction (Forsthoefel 

et al.) [31]. Leap segmentation can be used in preprocessing to form homogeneous 

regions of pixels that need not be spatially contiguous and can thus more accurately 

correspond to larger surfaces in the scene. In this way, leap segmentation provides more 

meaningful spatial support to scene layout analysis methods. A detailed evaluation of the 

leap segmentation approach and comparisons with related, existing segmentation 

methods are provided. The presented implementation is computationally efficient, 

exhibiting execution time improvements of 10x - 15x over traditional approaches. The 

diagram in Figure 3 provides a full, graphical summary of this contribution. 

 

 
 

Figure 3. Graphical summary of the first dissertation contribution: single-frame 

leap segmentation. 
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1.1.2. Contribution 2: Leap Segmentation in Video Analysis 

Multiple-frame (video) segmentation is an important step in many video analysis 

applications for identifying and tracking specific features as they move through a scene. 

In a mobile, resource-constrained environment, such as an intelligent vehicle system, 

video segmentation can be used to reduce image information and increase processing 

efficiency for high-level scene understanding applications. The second contribution of 

this dissertation introduces video leap segmentation, a highly efficient multiple-frame 

segmentation approach for use on embedded and mobile platforms where processing 

speed is critical. This novel video segmentation method is demonstrated to successfully 

track segments across spatial and temporal bounds, generating fast, stable segmentations 

of images from moving-camera video sequences (Forsthoefel et al.) [33]. Video leap 

segmentation is applied to the task of salient segment transformation detection for 

alerting potential drivers of critical scene changes that may affect steering decisions. Trial 

results demonstrate that video leap segmentation enables coarse detection of salient 

region transformations in traffic scenes, correctly detecting 80% of salient segment 

transformations in trial scenes with less than 5% false positives. Reducing high-level 

processing to salient areas using this approach can significantly improve the processing 

efficiency of scene interpretation applications in intelligent vehicle systems. The diagram 

in Figure 4 provides a graphical summary of this contribution. 

A supplementary contribution of this research is the development of a publicly 

available image dataset called the GTTraffic Dataset (Forsthoefel et al.) [32]. GTTraffic 

is a collection of moving-camera traffic sequences captured at Georgia Tech for use in 

vision evaluation experiments. The sequences contain fast-moving traffic events, such as 



 

12 

 

vehicles quickly swerving into the driver’s lane. These sequences are made publicly 

available as part of this research to motivate and evaluate vision-based approaches to 

improving highway safety.  

1.1.3. Contribution 3: Embedded, Multi-Core Leap Segmentation 

Existing segmentation approaches often fail to meet real-time processing 

standards and exhibit extremely slow frame rates when applied to high resolution images. 

The third contribution of this dissertation first presents a highly optimized serial 

implementation of the leap segmentation approach. This serial implementation is 

demonstrated to achieve frame rates exceeding that of the state-of-the art (it segments 

more than 80 fps on 640x360 images and more than 20 fps on high resolution (1280x720) 

images). Leap segmentation is then analyzed further for its inherent parallelism and 

restructured for use on a multi-core system to achieve additional speed-up (Forsthoefel et 

al.) [35]. On a multi-core, mobile processing system with four threads, multi-core leap 

 
 

Figure 4. Graphical summary of the second dissertation contribution: video leap 

segmentation with salient transformation detection identifies salient foreground 

objects when everything is moving, including the camera. Color indicates segment 

direction relative to the camera. 
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segmentation achieves frame rates of over 114 fps on 640x360 images and more than 31 

fps on 1280x720 images, thus easily exceeding real-time processing standards. The 

diagram in Figure 5 graphically summarizes this contribution. 

1.2. Summary of Results 

The key results of this dissertation are as follows:  

 An efficient, non-contiguous segmentation approach designed to reduce and 

restructure image information while accurately preserving salient details in the 

scene is presented (Forsthoefel et al.) [34]. This leap segmentation approach 

demonstrates high region assignment accuracy and, compared to other 

approaches, preserves a higher level of scene integrity (up to 30-40% higher) 

using a given storage resource. The approach is also computationally efficient, 

exhibiting execution time improvements of 10x - 15x over traditional approaches. 

 
 

Figure 5. Graphical summary of the third dissertation contribution: embedded, 

multi-core leap segmentation. 
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 The leap segmentation approach is comprehensively evaluated in a 3D scene 

reconstruction application (Forsthoefel et al.) [31]. Leap segmentation can be used 

in preprocessing to form perceptually significant regions of pixels that need not be 

spatially contiguous and can thus more accurately correspond to larger surfaces in 

the scene. In this way, leap segmentation provides more meaningful spatial 

support to scene layout analysis methods. 

 A highly efficient multiple-frame segmentation approach for use on embedded 

and mobile platforms where processing speed is critical is presented (Forsthoefel 

et al.) [33]. This novel video leap segmentation method is demonstrated to 

successfully track segments across spatial and temporal bounds, generating fast, 

stable segmentations of images from captured moving-camera video sequences. 

 Video leap segmentation is applied to the task of salient segment transformation 

detection for alerting potential drivers of critical scene changes that may affect 

steering decisions (Forsthoefel et al.) [33]. Trial results demonstrate that with 

little added computation, video leap segmentation enables course detection of 

salient region transformations in traffic scenes, correctly detecting 80% of pixels 

in salient segment transformations with less than 5% false positives. 

 A publicly available dataset of moving-camera traffic sequences (GTTraffic) 

collected at Georgia Tech is developed and presented for use in vision evaluation 

experiments (Forsthoefel et al.) [32].  

 A highly optimized serial implementation of single-frame leap segmentation is 

given in (Forsthoefel et al.) [35]. This serial implementation is demonstrated to 
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achieve frame rates of more than 80 fps on 640x360 images and more than 20 fps 

on high resolution (1280x720) images, far exceeding the state-of-the art in 

execution. 

 A parallel implementation of the single-frame leap segmentation algorithm is 

developed for use on embedded, multi-core platforms (Forsthoefel et al.) [35]. On 

a multi-core, mobile processing system with 4 threads, this multi-core leap 

segmentation implementation achieves frame rates of over 114 fps on 640x360 

images and more than 31 fps on 1280x720 images, easily meeting real-time 

processing standards. 

1.3. Overview of Content 

This dissertation is organized as follows. Chapter 2 outlines the novel, leap 

segmentation approach and presents the results of experiments that test leap segmentation 

using both classical and newly developed accuracy metrics. This chapter also presents 

comparisons with other well-known segmentation approaches and evaluates the use of 

leap segmentation in the preprocessing of a high-level 3D reconstruction application. In 

Chapter 3, leap segmentation is extended into a real-time, video segmentation approach. 

Video leap segmentation is then applied in the application of salient segment 

transformation detection in a mobile, intelligent vehicle vision application. A detailed 

analysis of video leap segmentation performance in this context is given. Chapter 4 

outlines two highly efficient implementations of the leap segmentation approach for use 

on single-core and multi-core platforms and gives detailed performance analyses on both 

high-performance and resource-constrained hardware. Chapter 5 concludes this 

dissertation and discusses future work. 
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CHAPTER 2 

SINGLE-FRAME LEAP SEGMENTATION 

 

2.1.  Introduction 

Image segmentation is the process of separating an image into perceptually 

significant regions of pixels that can each be processed as a group. Segmentation 

algorithms have been widely researched and are used in many vision applications to 

preprocess pixel data prior to image analysis methods, such as edge detection, stereo 

matching, and object tracking. Separating an image into segments of pixels for processing 

can significantly reduce the amount of computational resources needed to analyze an 

image in a high-level vision system. This reduction of resource usage has the potential to 

increase algorithmic processing speed.  

This chapter presents a highly-efficient image segmentation approach, called leap 

segmentation (Forsthoefel et al.) [34], that focuses on the task of improving segmentation 

preprocessing both in efficiency and feature preservation to facilitate performance 

improvements in high-level vision systems. A primary objective for most existing 

segmentation approaches is to accurately detect object positions and boundaries in an 

image. Leap segmentation has a different emphasis: to efficiently transform raw pixel 

data into feature preserving, palletized, color-similar and illumination-similar regions for 

improved scene analysis. Rather than process each image pixel individually, vision 

applications can use leap segmentation to preprocess image pixels into groups that can be 

processed more rapidly. An example of leap segmentation output is shown in Figure 6. 
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Vision applications rely on preprocessing segmentations to accurately maintain 

important image features while reducing the data in the image. In addition, many 

applications require their segmentation preprocessing steps to perform quickly and 

efficiently. Leap segmentation is applicable to a broad range of segmentation tasks and is 

especially appropriate for embedded and mobile platforms where processing speed is 

critical. Traditional image segmentation approaches often blend or remove small image 

details when building contiguous regions, and processing time often exceeds the camera 

frame period. Leap segmentation better preserves salient features while achieving a 

significant improvement (> 10x the state of the art) in execution performance. 

In this chapter, leap segmentation is evaluated using images from the well-known 

Berkeley Segmentation Dataset. Its use in real-time applications, such as intelligent-

vehicle vision systems where detailed feature preservation is vital, is also evaluated. In 

experiments, leap segmentation demonstrates high region-assignment accuracy and, 

compared to other approaches, preserves a higher level of scene integrity using a given 

storage resource.  

  

                                     (a)                                                          (b) 

Figure 6. Leap segmentation output example (Polo). (a) Original image 481x321 

pixels. (b) Image segmented using leap segmentation (Forsthoefel et al.) [34] with 

180 segments. 
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To further demonstrate the benefits of leap segmentation, it is used to improve the 

performance of a high-level vision task for 3D scene reconstruction (Forsthoefel et al.) 

[31]. Surface-layout analysis applications for 3D scene reconstruction often evaluate 

complex geometric cues over large regions to determine the orientations of large surfaces 

within the scene. These regions can contain contiguous pixels, such as those in solid 

walls, or non-contiguous pixels such as those in tree leaves or shrubs. Traditional 

segmentation approaches partition homogeneous, non-contiguous pixels into many 

smaller segments that must then be further analyzed and grouped by the high-level layout 

application. Leap segmentation can form homogeneous regions of pixels that need not be 

spatially contiguous and can thus more accurately correspond to larger surfaces in the 

scene. In this way, leap segmentation provides more meaningful spatial support to scene 

layout analysis methods, significantly improving processing efficiency.  

This chapter is organized as follows. Related work in image segmentation is 

summarized in Section 2.2. Section 2.3 presents the novel, leap segmentation approach. 

Section 2.4 discusses the fast leap segmentation implementation. Section 2.5 shows a 

detailed parameter evaluation and sensitivity analysis. Section 2.6 compares the accuracy 

and efficiency of leap segmentation with other well-known segmentation approaches 

when applied to intelligent vehicle highway scenes and on diverse Berkeley 

Segmentation Dataset images. Section 2.7 evaluates leap segmentation using several 

well-known, classical accuracy metrics. Section 2.8 describes a popular high-level vision 

application for image labeling and reconstruction and demonstrates the benefits of 

applying leap segmentation to this task. Experiments show that leap segmentation 

correctly maintains an average of 20% more original scene pixels than traditional 
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approaches while using the same number of segments and significantly improving 

execution speed (>10x faster than existing approaches). Section 2.9 concludes this 

chapter and discusses future work. 

2.2. Related Work 

Image segmentation has been explored in many previous research efforts, 

resulting in several broad classes of algorithms, including region-based, feature-space 

clustering, and graph-based segmentation. Early image segmentation approaches 

typically use region-based segmentation. These region-growing [2], [19] and split-and-

merge [46] methods are conceptually simple. They typically rely heavily on input 

threshold parameters and they often have trouble processing regions of high variation 

[61]. The watershed approach [77] is a popular example of region-based segmentation. In 

general, watershed transformation-based algorithms [10], [61] are fast and efficient with 

time complexities linear in the number of pixels [67]. However, they are sensitive to 

noise and highly-textured regions and often require extra, costly preprocessing steps to 

produce useful gradient input [78]. 

Finally, the jump connection approach [68] is a region-grouping approach 

recently applied in color segmentation with mathematical morphology operators [5]. 

While it closely resembles leap segmentation in name, the two approaches are very 

different in operation. The jump connection approach assesses jumps in color space 

between neighboring image pixels and, unlike leap segmentation, the jump connection 

approach requires segments to be spatially contiguous.  

Segmentation methods that use feature-space clustering attempt to find modes 

(clusters) in a distribution by using each image pixel's features as sampled data from the 
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distribution's probability density function. The k-means clustering method [52], while 

simple and well-known, relies heavily on correct user input of cluster count and initial 

cluster center placements to produce a good segmentation [47]. Mixture of Gaussians 

(MoG) clustering with Expectation Maximization (EM) [26] has been used in 

preprocessing for recent applications [11], [18]. However, EM calculations are vulnerable 

to becoming stuck in local minima and can be slow to converge [85]. The MoG with EM 

approach also relies heavily on its input parameters, such as an accurate estimate of 

cluster count, to provide a useful solution. 

The mean-shift technique [21], [22] also uses feature-space clustering. According 

to Pantofaru and Hebert [63], output segmentations from mean-shift correspond well to 

human perception. A disadvantage is its sensitivity to parameter change and the necessity 

for input parameter tuning to obtain good segmentations [86]. In addition, mean-shift 

suffers from being computationally expensive making it too slow for real-time 

applications. This is due in part to the expensive sliding-window approach it applies to 

image pixels during processing. Several techniques for improving mean-shift have been 

proposed [17], [20], [37], [80]. For example, Christodias et al. [20] proposed combining 

mean-shift with edge detection to increase segmentation accuracy in EDISON. However, 

there is still room for improvement as these algorithms require on the order of minutes to 

process one second of video [65]. 

In graph-based segmentation an image is represented as a weighted, undirected 

graph. Graph-based segmentation based on minimum cuts was first introduced by Wu 

and Leahy [84]. Shi and Malik [71] then introduced the normalized cut (NC) criterion to 

avoid the bias for partitioning undersized segments that plagued Wu and Leahy's earlier 
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approach. The NC algorithm requires few input parameters from the user when compared 

to mean-shift [86]. However, NC is expensive to run and is too slow to be used in real-

time applications; finding the minimum NC based on Shi and Malik's proposed criterion 

is an NP-hard problem [30]. They present methods to approximate the calculation but 

these methods still prove computationally intensive. Several improvements to the NC 

approach have been proposed [53], [60] such as adding a boundary detector to reduce 

clutter and enhance segmentation performance. Cour et al. [24] focus on the 

parallelization of the existing normalized cuts approach for speed gain and propose an 

efficient multiscale variant of the normalized cuts approach that runs in linear time. 

However, these algorithms are still many times too slow for use in real-time applications, 

requiring at least several seconds to process a single frame [24].  

Segmentation by weighted aggregation (SWA) [69] is a recent multiscale 

approach that reduces the normalized cut minimization problem using algebraic 

multigrids [15]. SWA preserves image boundaries more accurately in output 

segmentations and is more efficient than the original NC approach, possessing linear time 

complexity in the number of input image pixels. Despite these improvements, the SWA 

approach and a recently proposed improvement known as the probabilistic aggregation 

approach (PA) [4] which eliminates user-defined parameter reliance, are still slow, 

requiring tens of seconds to process a single image frame [28].  

A popular graph-based segmentation technique, EGBIS [30], is considered to be 

state of the art in computational efficiency [28], [65]. It uses pair-wise component 

comparisons to segment an image in O(mlogm) time, where m is the number of graph 

edges. A drawback to this method is its sensitivity to its input parameter k and its 
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tendency to create small, unneeded regions at the borders of valid image segments. In 

addition, the graph cuts segmentation approach [13], [14] is a popular graph-based 

method that uses Markov random fields [40]. However, this technique is primarily 

applied to binary segmentation, which is outside the scope of this research. 

In the next section presents the novel leap segmentation technique. The leap 

segmentation algorithm is first defined and then evaluated for efficiency and accuracy 

performance using images from publicly available segmentation datasets. In this 

evaluation, leap segmentation performance and segmentation results are compared to two 

widely known segmentation approaches: a mean-shift segmentation approach (EDISON) 

and a graph-based segmentation approach (EGBIS). 

2.3. Leap Segmentation Algorithm 

 The leap segmentation approach (Forsthoefel et al.) [34] identifies pixels that are 

related by adjacency within a specified neighborhood constraint and by a given chroma-

luminance affinity metric. The reflexive, symmetric, transitive closure of these pixel 

relations provides equivalence groupings of adjacent, but not necessarily contiguous, 

pixels that are similar in chromaticity and luminance. The final segmentation includes 

each such grouping that satisfies a minimum size constraint requiring its area to be 

greater than a minimum-size threshold α. 

 In particular, the equivalence relation region-equivalent is defined to capture the 

relationship between all pixels in the same segment. It is the reflexive, symmetric, 

transitive closure of the binary relation adjacent-matches between pairs of pixels. Pixel 

P1 adjacent-matches P2 iff 
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a.) P1 and P2 are CL-similar (chroma-luminance affinity defined below) and 

b.) P1 and P2 are adjacent within a specified neighborhood (not necessarily 

nearest neighbors). 

2.3.1. Chroma-Luminance Affinity 

 Two pixels are CL-similar if their chroma-luminance difference is within a given 

threshold, ε. The measure of difference depends on the image color model (e.g., YCrCb, 

HSI, etc.). While luminance and chromaticity participate in the relation, they need not be 

orthogonally represented in the color model. In the leap segmentation implementation, 

described in Section 2.4, a red-green-blue component (RGB) color model is used to 

eliminate translation time. The CL-similar relation is defined using the maximum 

component difference (MCD): P1 and P2 are CL-similar iff 

   (

|     |

|     |

|     |
)       (1) 

2.3.2. Adjacency 

While existing segmentation algorithms require member pixels to be spatially 

contiguous, leap segmentation allows member pixels to be separated by a pixel adjacency 

parameter, λ. For a given pixel P, the neighborhood of P, n(P), is defined as all pixels 

within a λxλ square window centered around P. Figure 7 shows examples with λ=1 and 

λ=2. Two pixels P1 and P2 are adjacent iff )( 21 PnP   equivalently )( 12 PnP  . P1 and 

P2 need not be nearest neighbors.  
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2.3.3.  Region Equivalence 

 Region equivalence, which relates all pixels grouped into the same segment, is 

the reflexive, symmetric, transitive closure of the adjacent-matches relation. Pixels that 

are region-equivalent (i.e., in the same segment) are not required to be directly connected 

with immediate neighbors or even to be reachable through a chain of contiguous pixels. 

For example, in Figure 8, multiple contiguous regions (on left) are within a λxλ 

neighborhood and are grouped as a single segment B. A diagonal occlusion (on right) 

does not fragment segment A into two segments. This allows segments to span large 

regions of an image by connecting pixels through multiple “leaps” over other segments in 

the image with the restriction that no leap can be greater than λ. 

 Traditional image segmentation approaches could, potentially, be redesigned to 

allow the grouping of non-contiguous pixels into their segmentations. However, such 

adjustments to these algorithms cause dramatic increases in complexity. For example, the 

popular graph-based EGBIS approach [30] can be adjusted to include edges between non-

adjacent pixels. However, this would require an exponential increase in the number of 

edges of the manipulated graph, in turn causing a marked decrease in the approach's 

 

 

Figure 7. Definition of the neighborhood of P, n(P), for λ = {1, 2}. 
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execution performance. Conversely, the innovative leap segmentation approach is 

designed specifically to produce such non-contiguous segment output and thus is capable 

of doing so with reduced time and resources. 

2.4.  Leap Segmentation Implementation 

 This section presents a fast and resource-efficient implementation of the leap 

segmentation algorithm. The workflow is shown in Figure 9. 

2.4.1. Segmentation Constraints 

 To begin, the input image is discretized using the adjacency parameter, λ, by 

dividing it into non-overlapping λxλ square regions called tiles. Each tile is then scanned 

using the CL-similar constraint to locate candidate regions in each tile. If a pixel is CL-

similar to pixels within an existing region, it is added to that region. Otherwise, it forms a 

new candidate region. 

 Pixels within a region contribute their component values to a ratiometric mean via 

component sums and a pixel count, shown in Figure 10. Each scanned pixel in a region is 

 

 

Figure 8. The leap segmentation adjacency definition allows more flexibility, 

eliminating noise (left) and occlusion (right) problems. 
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compared to the mean component values (e.g. R, G, and B) of each candidate region. 

After identifying candidate regions within each tile, these regions are compared between 

neighboring, contiguous tiles. Regions whose mean component values satisfy the CL-

similar relation are merged into a mega-region. This process continues until a final set of 

candidate mega-regions are identified. At this point, all ratiometric component means are 

locked to fixed component averages that no longer depend on member pixels. 

 

 

Figure 9. Workflow of resource-efficient leap segmentation algorithm. 
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2.4.2. Region Adjustment and Size Analysis  

 When a pixel joins a candidate region, it adds its component values to the region's 

pixel component sums. Certain scene features such as large, slowly changing gradients 

can cause region component means to drift, occasionally leaving some member pixels 

outside of the CL-similar bounds.  

This is corrected in a post-process region-adjustment step. Pixels are scanned for 

incorrect assignments in region membership. If a large number of incorrectly assigned 

pixels are identified, a new mega-region is created. The effect of region adjustment is 

examined in Section 2.6.4. This step also applies the minimum-size constraint to mega-

regions, appropriately assimilating small regions to nearby mega-regions based on spatial 

and color similarities. The resulting mega-region list becomes the final segmentation. 

2.5. Parameter Variation and Analysis 

 Leap segmentation input parameters include an adjacency parameter λ, an 

equivalence threshold ε, and a minimum size threshold α. The optimal parameter choice 

is determined by evaluating accuracy and compression objective functions across a 

 

 

Figure 10. Efficient storage of region member-pixel information. 
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diverse collection of datasets. In this parameter assessment, both quantitative assessment 

and qualitative assessment are considered. While the optimization is performed primarily 

through the minimization of quantitative objective functions (e.g., number of segments), 

qualitative assessments (e.g., appropriate scene feature preservation), are also used to 

select the best parameters. In this section, evaluation metrics are defined, an optimal 

parameter set is presented, and parameter variation sensitivity analysis is explored.  

2.5.1. Objective Functions 

 In this evaluation, two quantitative objective functions are used to assess 

compression and accuracy performance. The first metric, number of segments assesses 

image compression. One goal of leap segmentation is to transform pixel data into a much 

smaller number of similar regions that are more easily processed. The number of 

segments produced by an algorithm is a measure of how well it meets this objective. 

However, used alone, pursuit of compression would result in an undesirable loss of 

salient image features. 

The second metric, nonmatching pixel percentage assesses segmentation 

accuracy. It measures the percentage of image pixels in the segmentation output that are 

not CL-similar to their original image color. Calculation of the nonmatching pixel 

percentage is shown in Equations 2-4. The equivalence function E applies the CL-similar 

relation (Equation 1) to assess pixel affinity. PNM is the number of pixels in the final 

segmentation which are not CL-similar within the matching threshold τ to their original 

image (τ = 30 was used in all experiments) and PTOTAL is the total number of pixels in the 

image. PORIG holds the original input image, and PSEG holds the pixels in the output 

segmentation. 
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A high accuracy image segmentation result achieves a low nonmatching pixel 

percentage, indicating that a small number of pixels have been assigned to a region color 

that is significantly different from their original color. This metric is a good measure of 

the preservation of scene integrity during the segmentation process. 

Alternative quantitative metrics of image quality include mean squared error loss 

(MSE) and other cumulative pixel error measures. However, leap segmentation strives to 

preserve the maximum number of pixels in the original image, rather than assess the 

magnitude of distortion of disrupted pixels. Qualitative assessment is also used to adjust 

parameters near the quantitative optimum. Inspection of segmentation output reveals 

small adjustments of the parameters that improve the perseveration of important scene 

features. However these adjustments must benefit the process across a wide range of 

scene collections. 

This section assesses the sensitivity of the algorithm parameters to scene 

composition, chromaticity, and illumination, to evaluate its applicability to a wide range 

of different scenes. For each parameter variation experiment, both the cumulative 

nonmatching pixel percentage and the cumulative number of segments are evaluated and 

compared using eight different scene collections, each containing 300 images. These 

collections include the Berkeley Segmentation Dataset [55], [56] (see Figure 11 for 

sample images) and seven mobile camera sequence collections captured at Georgia Tech 
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as part of the GTTraffic dataset [32] (discussed in Section 3.4). When computing the 

cumulative nonmatching pixel percentage and cumulative number of segments, all eight 

datasets are evaluated separately, each generating an average objective function value 

over each frame in the collection. The cumulative nonmatching pixel percentage and 

cumulative number of segments are the sum of the average values in each of the eight 

collections. The dataset scene diversity tests the generality of parameter values. 

  

  

   

 

Figure 11. Sample images from the Berkeley segmentation dataset [55], [56] for use 

in segmentation evaluation experiments. 
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Each leap segmentation parameter is varied across a wide range of values, shown 

in Table 1, to generate approximately 720 parameter combinations for evaluation. This 

bracketing assures that the best parameters are captured. Both accuracy and compression 

objective functions contribute to overall segmentation quality. While the relative benefits 

of each function are dependent on the application, an aggregate objective function (AOF) 

is useful in optimizing segmentation parameters. The AOF is defined as the normalized 

sum of the accuracy and compression objective functions. This equality weighting 

preserves the convexity of the objective functions and simplifies optimization. 

To explore parameter sensitivity near the optimum, the best assessed parameters 

are defined (λ = 8, ε = 20, and α = 50) and each parameter is independently varied about 

this point. The following sections present the results. 

2.5.2. Adjacency 

 The adjacency parameter, λ gives the maximum spatial extent that a pixel can be 

separated from an existing segment and still be eligible for membership. The value of λ is 

varied between 2 and 32 pixels. The effect of adjacency on nonmatching pixel percentage 

is shown in Figure 12a. As λ is reduced, more pixels match their original color following 

segmentation. For λ between 2 and 8, the cumulative nonmatching percentage remains 

Table 1 

Leap Segmentation Parameter Variation 

 
 

 

 

 Adjacency Equivalence Size

Symbol  λ  ε  

Range of Values 2 to 32 2 to 32 10 to 90

Optimal Value 8 20 50



 

32 

 

below 10% over all eight scenes. However, as λ increases above 8 pixels the cumulative 

nonmatching pixel percentage increases linearly.  

An opposite trend occurs in the analysis of the cumulative number of segments 

produced, shown in Figure 12b. As λ increases, the number of segments produced by leap 

segmentation dramatically decreases as pixels are more readily grouped into segments 

that span large areas in the image. For λ values of 4 or less, the large cumulative segment 

 

   

 

 

Figure 12. Analysis over several mobile camera scene runs for the adjacency 

parameter (λ) varying between 2 and 32 pixels. (a) The cumulative nonmatching 

pixel percentage increases as λ increases. (b) The cumulative number of segments 

decreases as λ increases. The aggregate objective function is overlaid in black. 

a) 

b) 



 

33 

 

counts diminish the compression effect, as shown in Figure 13a. The individual scene 

collection performances in Figure 12b show that the effect of λ is similar across diverse 

scenes. 

Increased λ has two effects. Locally, segments are less affected by noise and 

small occlusions that disrupt growth; regions are able to leap over non-similar obstacles. 

At a larger scale, increased λ allows segments to extend across greater areas in the image, 

further reducing similar but spatially disjoint segments. 

Excessively large values of λ adversely affect segmentation quality. As segments 

encompass a larger number of pixels, the mean color components of the region can drift, 

and no longer match member pixels. While this is corrected in a post-process region 

adjustment, it can distort segment boundaries, as shown in Figure 13b. 

 

 

 (a)                                         (b) 

 

Figure 13. Qualitative image comparison, adjacency parameter (λ). Segmentation 

visual quality decreases as adjacency constraints are relaxed from a) λ = 2 (1219 

regions) to (b) λ = 32 (25 regions). 
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The aggregate objective function (AOF), overlaid on the results in Figure 12, 

shows an optimum near λ = 8, which corresponds to the value of the best assessed 

parameter set.  

2.5.3. Equivalence Threshold 

 The equivalence threshold parameter, ε, defines how color- and luminance-similar 

 

   

 

 

Figure 14. Analysis over several mobile scene runs for equivalence thresholds (ε) 

varying between 2 and 32. (a) The cumulative nonmatching pixel percentage first 

decreases as ε increases, then increases as ε increases. (b) The cumulative number of 

segments decreases as ε increases. The aggregate objective function is overlaid in 

black. 

a) 

b) 
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a pixel must be to gain membership in a segment. Equivalence is defined as the CL-

similar relation, shown in Equation 1. The value of ε is varied between 2 and 32. 

The effect of equivalence threshold on cumulative nonmatching pixel percentages 

is shown in Figure 14a. For ε values between 12 and 20, cumulative nonmatching pixel 

percentages remain below 10% across the eight scene collections. Outside of this range, 

cumulative nonmatching pixel percentages increase rapidly. This is expected; more color 

diverse pixels are admitted into segments as ε increases. The reduction in accuracy when 

ε falls below 12 occurs for a different reason. This stricter requirement for equivalence 

reduces segment size, which increases the area of the image represented by segments that 

are below the minimum segment size. Since these small segments are assimilated into 

 

 

                                           (a)                     (b)                     (c) 

 

Figure 15. Qualitative image comparison, equivalence threshold (ε). (a) Over-

segmentation, ε = 2 (2035 regions). (b) Optimal segmentation, ε = 20 (330 regions). 

(c) Under-segmentation, ε = 32 (125 regions). 
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larger ones (with resulting color distortion), the overall segmentation accuracy is reduced. 

The impact of the equivalence threshold on compression is shown in Figure 14b. 

The cumulative number of segments increases as ε is reduced. A small ε results in over-

segmentation: scene features are transformed into many small, similar segments, as 

shown in Figure 15a. A large ε produces under-segmentation: multiple scene features are 

merged into a segment, distorting object boundaries, as shown in Figure 15c. 

The normalized sum of accuracy and compression objective functions is overlaid 

on the results in Figure 14. It suggests an optimum near ε = 20. A qualitative study of 

leap segmentation supports this equivalence threshold value. At this value of ε, the over- 

and under-segmentation of key scene features is minimized. 

2.5.4. Minimum Size Threshold 

 The minimum size threshold parameter, α, determines the minimum area of an 

independent segment. It is defined as the ratio of segment area, c to the corresponding 

adjacency neighborhood area (λ x λ): 

        
 

(     )
   (5) 

 Segment area is significantly affected by adjacency. The adjacency area specifies 

a maximum ignorable occlusion size. Defining the minimum segment area in terms of the 

adjacency area maintains segment size discrimination as adjacency changes. Increasing 

or decreasing adjacency provides a corresponding increase or decrease in minimum 

segment area. The minimum segment size threshold is evaluated for values between 10 

and 90. The cumulative nonmatching pixel percentage increases with increasing α, as 

shown in Figure 16a. This contrasts with the compression trend, in Figure 16b, where the 
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cumulative number of segments decreases as α is increased. For large values of α, fine 

scene details are lost as small segments are assimilated into larger nearby segments. 

Small values of α preserve insignificant scene details, and reduce scene compression.  

Evaluation of the minimum size threshold is dependent on qualitative assessment 

of appropriate scene details, shown in Figure 17. The AOF has the least pronounced 

   

 

 

Figure 16. Analysis over several mobile scene runs for minimum size thresholds (α) 

varying between 10 and 90 percent. (a) The cumulative nonmatching pixel 

percentage increases as α increases. (b) The cumulative number of segments 

decreases as α increases. The aggregate objective function is overlaid in black. 

 

 

 

a) 

b) 
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optimum in the minimum size threshold, near α = 40. The overall change in the accuracy 

and compression objective functions is small across this range α. In the qualitative 

analysis of diverse scene types, especially from the Berkeley Segmentation Dataset, the 

human assessed quality improvement near the AOF optimum is almost unperceivable. 

When assessing the appropriate segmentation of fine scene details, the best algorithm 

performance occurred at α = 50. This minimum size threshold improves scene 

compression by approximately 10% over the AOF optimum. 

The parameter values (λ = 8, ε = 20, and α = 50) combine accuracy and 

compression objective functions and qualitative assessment to achieve optimal 

segmentation across diverse scene types. 

 

 

 

Figure 17. Qualitative image comparison, minimum size threshold (α). Significant 

blurring occurs over traffic scene details such as headlights and street signs from 

range (a) α = 10 (1659 regions) to (b) α = 90 (527 regions). 

 

 

 

a) 

b) 
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2.6. Experimental Results: Intelligent Vehicle Traffic Scenes 

and the Berkeley Segmentation Dataset 

 This section evaluates the quality and performance of leap segmentation 

compared with two well-known image segmentation algorithms: Mean-Shift Clustering 

with Edge Detection (EDISON) [20], and Efficient Graph-Based Image Segmentation 

(EGBIS) [30]. All three segmentation algorithms are implemented in C and executed in a 

Linux environment. 

The primary dataset used for this comparison is 300 images from the Berkeley 

Segmentation Dataset [55], [56]. This provides a diverse collection of scene types with 

varying feature sizes and scales. Additional scene collections at Georgia Tech (the 

GTTraffic dataset [32] (discussed in detail in Section 3.4)) were captured using a 

forward-mounted Kodak Zi6 on an automobile dashboard. This camera provides a fixed 

focus, fixed aperture, and fixed field of view with electrically controlled gain and 

sensitively. The images extracted from the captured mpeg4 videos are at a resolution of 

1280 x 720 pixels. To ensure a consistent comparison, all algorithms were adjusted to 

produce similar levels of segmentation.  

Figure 18 shows a collection of segmentation results.
1
 The figure displays 

segmentation output for each technique and is labeled with segment count information. 

These segmentation results consistently show that leap segmentation is able to preserve 

significantly more detail from the input scenes than the EGBIS and EDISON approaches  

                                                 

 

 

 
1
 Complete tables of segmentation comparison results are available at: 

<www.ece.gatech.edu/research/pica/pdf/LeapFullResults.pdf>. 
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while using the same number of segments. See the Appendix for additional comparison 

results. 

To the human eye, the leap segmentation results are difficult to differentiate from 

their corresponding original images. The approach is able to significantly reduce and 

restructure the information needed to represent an image while still preserving salient 

features that are necessary for scene analysis. 

2.6.1. Segmentation Comparison – Traffic Scene 

 The quantitative objective functions introduced in Section 2.5.1, the number of 

segments (to evaluate compression) and the nonmatching pixel percentage (to assess 

segmentation accuracy), are applied in the segmentation approach comparison. In Figure 

19, the resulting segmentations of a traffic scene (1280x720 pixels) are shown for each 

technique. The three techniques are adjusted to produce similar segment counts (~800 

segments) for comparison. The nonmatching pixel percentages are listed above each 

segmentation output. Figure 19a shows the merged segmentation output for each 

technique. Figure 19b shows a binary matching map for the final segmentation, where 

nonmatching pixels are plotted in white.  

Of the three approaches, leap segmentation provides the highest accuracy with a 

low nonmatching pixel percentage (3.1%). EDISON and EGBIS exhibit larger 

nonmatching percentages of 14.0% and 29.8%, respectively. The non-matching maps in 

Figure 19b suggest that leap segmentation achieves greater accuracy in high variability 

regions like trees and grass, even when they cover a large portion of the image. Leap 

segmentation benefits from non-contiguous adjacency, allowing pixels within an 

adjacency threshold to be joined in a segment. 
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(a)                                                (b) 

 

 

Figure 19. Segmentation comparison images, traffic scene (1280x720 pixels). (a) The 

merged segmentation output for each technique. (b) A binary map of nonmatching 

pixels in the output segmentation. 

 

 

 

 

 Original Image 

 

Leap Segmentation (802 Regions, 3.1% Non-Matching Pixels) 

 

EDISON (853 Regions, 14.0% Non-Matching Pixels) 

 

EGBIS (838 Regions, 29.8% Non-Matching Pixels) 
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2.6.2. Segmentation Comparison – Animal Scene 

In Figure 20, the resulting segmentations of a zebra scene (481x321 pixels) are 

shown for each approach. As before, the three approaches are adjusted to produce similar 

segment counts (~80 segments). Figure 20a shows the merged segmentation output for 

each technique. To help discern region membership in the merged image, an artificially 

colorized segmentation is given in Figure 20b. Contrasting color assignments show 

region pixel membership. Figure 20c shows a binary map of nonmatching pixels in the 

final segmentation. Leap segmentation is the most accurate at maintaining original image 

information, providing the lowest nonmatching pixel percentage (5.9%) of the three 

approaches. EDISON and EGBIS produce more than five times more nonmatching 

pixels. 

Images with stripes often present a problem for classical segmentation algorithms. 

While similar colors may exist within the stripes, these colors are not directly connected 

in the image and so cannot be grouped by traditional techniques. Ideally, a segmentation 

technique would require only two segments to cover a zebra. In the colorized images in 

Figure 20b, EDISON and EGBIS assign each zebra stripe to a different segment. Leap 

segmentation allows same-color stripes to be grouped even when they are not touching. 

Leap segmentation achieves an efficient two color segmentation of each zebra. 

The three approaches produce a substantial variation in preserved detail, shown in 

Figure 20a. By achieving greater pixel coverage with each segment, leap segmentation 

captures more detail from the original image. If the purpose of segmentation output is to 

identify object boundaries, this detail may be irrelevant. However if segmentation is 

being used for feature recognition, salient details are valuable in the process. 
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                       (a)                                          (b)                                           (c) 

 

 

Figure 20. Segmentation comparison images, animal scene (481x321 pixels). (a) The 

merged segmentation output for each technique. (b) A colorized representation of 

the segmentation to show region membership clearly. (c) A binary map of 

nonmatching pixels in the output segmentation. 

 

 

 

 

 Original Image 

 

 Leap Segmentation (85 Regions, 5.9% Non-Matching Pixels) 

   

 EDISON (81 Regions, 35.1% Non-Matching Pixels) 

 

 EGBIS (87 Regions, 40.3% Non-Matching Pixels) 
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2.6.3. Detail Preservation Experiment 

 Leap segmentation strives to identify regions of homogeneous pixels in an image 

and to remove unimportant image features, such as texture and minor chromatic 

variations, thus reducing the amount of information necessary to represent a scene. It also 

avoids removing scene information that is important for analysis, such as road sign 

lettering, lane markers and facial features. This section presents an evaluation of the three 

segmentation approaches based on their ability to preserve these salient details. 

Each technique's segmentation of road sign images are shown in Figure 21. For 

scene understanding, the letters on each sign should be preserved in the segmentation 

output with minimal blurring and distortion. The EGBIS approach does not preserve 

details, and often blocks lettering into more convex segments. EDISON preserves some 

letters, but blurs others limiting text recognition. Leap segmentation provides the most 

accurate lettering representation. In each example, sign letters are visible with minimal 

 

 

Figure 21. Lettering on street signs is processed using different segmentation 

approaches for detail preservation comparison. 

 

Original Image Leap Segmentation EDISON EGBIS 
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blurring and distortion.  

2.6.4. Image Gradient Evaluation 

 All segmentation approaches strive to group color-similar pixels into a large 

region. Slow-changing gradients allow a region's color to drift, expanding the tolerated 

variance during the segmentation process. The lack of contrasting edges to limit a 

region's extent can result in decreased color accuracy. When processing gradients, a 

balance must be struck between segment area and color accuracy. 

Initially, leap segmentation, EDISON, and EGBIS produce similar results for 

gradient images, shown in Figure 22. Road and sky gradients produce large-area regions 

that capture these scene elements well. But the increased range in member colors 

produces lower matching accuracy with the resulting segment color. This is seen in both  

the nonmatching pixel percentages (24.4%, 25.9%, and 18.9% for EDISON, EGBIS, and 

Leap) and the nonmatching binary images in Figure 22b. 

Leap completes the segmentation process with a post-process region adjustment 

step (described in Section 2.4.2) that divides gradient regions into multiple segments. 

While this reduces the resulting segment size and typically fractures a single object (e.g., 

road, sky) into multiple segments, it dramatically improves the color accuracy, from an 

18.9% nonmatching percentage to a 1.7% nonmatching percentage. 

While some applications favor minimizing the number of segments and the 

fractionation of objects (e.g., identifying object boundaries), these algorithms must still 

handle this segmentation condition for objects that are composed of high-contrast color 

elements. 
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                                         (a)                                                      (b) 

 

Figure 22. Image gradients evaluation, EDISON, EGBIS and Leap Segmentation. 

(a) The merged segmentation output for each technique. (b) A binary map of 

nonmatching pixels in the final segmentation. 

 Original Image 

 

EDISON (519 Regions, 24.4% Non-Matching Pixels) 

 

EGBIS (541 Regions, 25.9% Non-Matching Pixels) 

 

Leap Segmentation, (408 Regions, 18.9% Non-Matching Pixels) 

 

Leap Segmentation w/ Region Adjustment, (493 Regions, 1.7% Non-Matching Pixels) 
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2.6.5. Matching Accuracy and Run-Time Analysis 

The approaches are evaluated using a 2.13 GHz Intel Core I3-330M processor 

running 64-bit Ubuntu 10.04. The algorithms were not parallelized or otherwise altered 

for the platform. Figure 23 presents a reference table containing sub-images to identify 

the actual images used during testing. The full-size versions of these reference images are 

used in the evaluation. The left four images are from the Berkeley Dataset [55], [56] and 

are of size 481x321 pixels. The remaining three images are from mobile camera traffic 

sequences captured at Georgia Tech and are 1280x720 pixels in size. 

Leap segmentation produces superior accuracy results over the EGBIS and 

EDISON approaches. Figure 23a lists the tabulated nonmatching pixel percentage results 

for each approach. In all trial runs, the leap segmentation approach exhibits lower 

 

Figure 23. Segmentation accuracy, compression, and run-time analysis. (top) A table 

of reference images and their IDs. (a) The nonmatching pixel percentages for each 

test image segmentation. (b) The total number of segments in each output 

segmentation. (c) The execution times required to produce each segmentation 

output. 

 

 

Red Hat Striped Shirt Zebras Tiger Highway Two Cars Rural Road 

481x321 481x321 481x321 481x321 1280x720 1280x720 1280x720 

       

 

Non-Matching Pixel Percentage (%) 

 Red Hat Striped Shirt Zebras Tiger Highway Two Cars Rural Road 

LEAP   1.1   0.8   3.9   4.0   1.7   1.4   3.1 

EDISON 13.1 15.1 35.1 18.4 24.4 10.7 14.0 

EGBIS 32.8 20.3 40.3 23.5 25.9 12.2 29.8 

 

Number of Segments 

 Red Hat Striped Shirt Zebras Tiger Highway Two Cars Rural Road 

LEAP  85 114 86 181 493 621 802 

EDISON 91 112 81 183 519 617 853 

EGBIS 87 114 87 181 541 605 838 

 

Run Time (ms) 

 Red Hat Striped Shirt Zebras Tiger Highway Two Cars Rural Road 

LEAP        11.6        13.3        14.4        15.4          77.9          75.7          92.4 

EDISON 12,360.0 13,850.0 15,950.0 13,990.0 534,550.0 535,100.0 827,730.0 

EGBIS       144.2      127.2      150.6      145.8     1,262.5     1,230.1     1,271.4 

 

a) 

b) 

c) 
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nonmatching pixel percentages than the classical approaches with varied input image 

scenes.  

In addition, leap segmentation is computationally more efficient than the EGBIS 

and EDISON approaches. Figure 23c lists the tabulated algorithm run-times for each 

approach. An analysis of the trial results reveals that leap segmentation, in all runs, is 

over 900x faster than EDISON and 10x-15x faster than EGBIS, the current state of the 

art.  

In this section, an extensive comparison of leap segmentation with two classical 

segmentation approaches reveals that leap segmentation is both highly accurate, detail 

preserving, and computationally efficient. These qualities make the successful utilization 

of the leap segmentation approach highly promising. 

2.7. Classical Performance Metrics 

In addition to the detailed performance evaluations presented in this section, 

investigations of two classical, human-based metrics were also performed to further 

evaluate leap segmentation accuracy: the F-measure [76] and the Probabilistic Rand 

Index (PRI) [75]. Accuracy measures based on human-labeled ground truths such as 

these tend to discount segmentation approaches that maintain image detail despite any 

corresponding reductions in image data. This is because humans tend to segment whole 

image objects into large segments, resulting in a very low segment count. Because of this, 

the author notes that these human-based metrics are more appropriate for evaluating 

boundary detection or under-segmentation approaches than for evaluating preprocessing 

over-segmentations such as the approach outlined in this chapter. Despite this, the author 

found that leap segmentation provided performance numbers comparable to classical 
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segmentation approaches using these metrics, consistently showing F-measure and PRI 

scores equal to or only slightly lower than classical methods. The following sections 

provide a detailed analysis of all experiments performed using these classical 

performance metrics and a discussion of relevant findings. 

2.7.1. Experimental Setup 

 The accuracy of classical segmentation approaches is typically evaluated with 

comparisons to human-labeled ground truth images. Humans tend to segment whole 

image objects into large segments, resulting in a very low segment count. An example 

human segmentation is shown in Figure 24b. The entire tiger in the image is grouped into 

one segment in the human segmentation. The average human-labeled ground truth 

segmentation from the Berkeley dataset is composed of only ~18 segments.  

Comparing with human segmentations is a good strategy for evaluating classical 

segmentation approaches because the two share similar goals. However, the objectives of 

classical segmentation and leap segmentation differ. Classic segmentation approaches 

attempt to accurately detect object boundaries in a scene. Leap segmentation focuses on 

 

     

                                          (a)                                                   (b) 

 

Figure 24. Example of a human segmentation. (a) Original Image. (b) Human 

segmentation output. 
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eliminating less significant detail in the image, such as texture and minor chromatic 

variations, while accurately representing essential scene content. Leap segmentation 

results are therefore not directly comparable with classical segmentations results.  

Nevertheless, leap segmentation is evaluated using two classical, human-based 

accuracy metrics to determine if leap segmentation, while not designed for classical 

segmentation uses, can still provide accuracy results that are comparable to classical 

approaches. The following two widely-known, classical, human-based metrics are used to 

evaluate leap segmentation accuracy: the F-measure [76] and the Probabilistic Rand 

Index (PRI) [75]. 

The evaluation is performed in a similar manner as Hanbury and Stöttinger [42] in 

their paper on segmentation evaluation metrics. The EGBIS and EDISON approaches are 

executed over specific parameter ranges. For the EDISON approach, a spatial bandwidth 

of hs = 12 is used, chosen according to the size of the input image. The range bandwidth, 

hr, is evaluated for values between 4 and 20. For the EDISON approach, a Gaussian 

smoothing input value of σ = 0.8 is used and the threshold k is evaluated for values 

between 50 and 1050. The leap segmentation approach is evaluated using the optimal 

parameters for the adjacency threshold, λ = 8, and the minimum region size, α = 50. The 

equivalence threshold, ε, is evaluated for values between 8 and 64. The F-measure is 

evaluated using the resources from the Berkeley Segmentation Dataset and Benchmark 

[55], [56]. The Probabilistic Rand Index is evaluated using the resources from the Image 

Segmentation Benchmark Indices Package [83]. It is important to recall that leap 

segmentation is penalized by these benchmarks for its alternative segmentation 

objectives. 
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2.7.2. Boundary Precision-Recall 

The F-measure [76] is used to compare the output of boundary detection (or 

segmentation) algorithms with human-segmentation ground truths. The F-measure, 

shown in Equation 6, is computed using both the precision (P) and the recall (R) of a 

boundary image and outputs a measure of algorithm performance. Precision is the 

fraction of boundary pixels in the output segmentation that correctly match boundary 

pixels in the human segmentation. If a large amount of noise is present in the output 

segmentation, its precision score will be low. Recall is the fraction of boundary pixels in 

the human segmentation that are correctly identified by the output segmentation. Recall 

represents the portion of the human segmentation ground truth that is correctly detected. 

  
     

   
   (6) 

Ideally, both the precision and recall of a segmentation are high, near a value of 

one. The range of the F-measure is from zero to one, with higher values indicating better, 

more accurate segmentations.  

The precision-recall curves for each approach are presented in Figure 25. The 

figure legend lists the value of the optimal F-measure achieved for each precision-recall 

curve. The EGBIS approach yields the highest F-measure over all approaches (F=0.61). 

The mean-shift-based EDISON approach’s F-measure is lower (F=0.55). This is likely 

due to a lack of attention to texture cues by the EDISON approach. Other evaluations of 

mean-shift from the literature report higher F-measures (F=0.64) [42] due to 

implementation differences.  

The leap segmentation approach yields F-measure scores that are lower, but 
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comparable to the other approaches (F=0.48). This is due to leap segmentation’s 

consistently low precision scores. These low precision scores are due to the large amount 

of boundary detail maintained by leap segmentation when it applies its flexible adjacency 

constraint. While this allows the approach to create segmentations that very accurately 

represent the original image using a small amount of information, it lowers the average 

precision of the approach as this extra detail is viewed as noise when compared to human 

segmentation ground truths. 

2.7.3. Probabilistic Rand Index 

 The probabilistic rand index (PRI) [75] operates under the assumption that if two 

pixels in the human segmentation are identified as part of the same segment, then this 

pixel pair should also be a part of the same segment in the output segmentation. The PRI 

     
 

Figure 25. Boundary precision-recall curves with corresponding F-measure results 

for each segmentation approach. 
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measures the fraction of pixel pairs whose segmentation membership corresponds 

correctly between the human segmentation and the segmentation being tested. The PRI 

range is from 0 to 1. A higher PRI indicates a more accurate segmentation. To provide a 

fair method of comparing performance with this metric, the PRI must be evaluated with 

respect to the number of segmentation regions used. In Figure 26, the average PRI for 

each segmentation approach is plotted against the average number of segmentation 

regions produced to provide a fair method of comparing performance with this metric.  

 The EDISON approach yields the highest PR index for greater numbers of 

segments. However, the EGBIS approach performs slightly better for region counts near 

100 regions. The leap segmentation approach provides comparable performance 

numbers, consistently showing a PRI only slightly lower than or equal to the other 

methods. 

 

 
 

Figure 26. Average Probabilistic Rand Index (PRI) versus the average number of 

regions in the output for each segmentation approach. 
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2.8. Experimental Results: Image Labeling and 3D Reconstruction 

 To further demonstrate the performance benefits of leap segmentation, the 

following section shows that applying the novel leap segmentation technique 

significantly improves the efficiency of a 3D scene reconstruction task (Forsthoefel et al.) 

[31]. The scene layout reconstruction approach developed by Hoiem et al. [45] is used as 

a representative approach in the task of automatic scene labeling and 3D reconstruction 

from a single image. Figure 27 and Figure 28 give examples of automatic 3D scene 

reconstruction based on surface layout using this approach. This application is used to 

demonstrate the performance benefits achieved when leap segmentation is used in the 

preprocessing stages of a high-level vision application.  

2.8.1. Application Background 

 Recovering the surface layout of a scene is an important step in scene 

understanding research. The addition of object orientation and depth information to 

automated vision systems can drastically improve their scene perception and analysis 

 

 

     

                              (a)                                                              (b) 

Figure 27. Example output of automatic 3D reconstruction using Hoiem et al.'s 

approach. (a) Original input image by Liebowitz et al. [51]. (b) Novel 3D view from 

[44]. 
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performance, allowing these systems to better understand and operate in their 3D 

environment. Like many high-level vision tasks, 3D scene layout applications often use 

image segmentation techniques to preprocess pixel data prior to image analysis. Rather 

than processing each pixel individually, these vision applications use segmentation to 

group image pixels into segments that can be processed more rapidly. 

Several approaches to the challenge of 3D layout reconstruction exist. A general 

survey of 3D modeling research is given by Besl and Jain [12]. Many early 3D modeling 

approaches use photometric stereo to estimate scene depth, in which multiple views of a 

scene are collected and analyzed for scene depth information. For the purposes of this 

research, the use of monocular vision to achieve accurate 3D scene reconstruction is of 

the most interest. A recent survey of 3D reconstruction techniques from single images is 

  

  

                               (a)                                                                 (b) 

Figure 28. More example outputs of automatic 3D reconstruction using Hoiem et 

al.'s approach. (a) Original input image. (b) Novel 3D view from [44]. 
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provided by Mohan and Mani [59]. The described approaches vary in their appropriate 

applications. Some approaches perform best on structured objects such as faces, while 

others are more amenable to unstructured scenes.  

2.8.2. Representative Approach 

 The 3D scene reconstruction approach developed by Hoiem et al. [45] is used as a 

representative approach in the task of automatic scene labeling and reconstruction from a 

single image. Hoiem et al.'s approach classifies outdoor scene surfaces into three main 

geometric classes: ground, vertical, and sky. Surfaces that are parallel to the ground (i.e., 

roads) fall into the ground class. Surfaces that stick up from the ground (i.e., walls) 

become part of the vertical class. Sky pixels are grouped together to form the final 

geometric class. The vertical class pixels are further classified into several subclasses. A 

planar surface, such as a wall, is classified as “left,” “center, or “right” depending on its 

orientation. Non-planar surfaces, such as tree leaves or wires, are classified as either 

“porous” or “solid.” 

Hoiem et al.'s technique involves gradually building knowledge of scene 

structure. First, a segmentation pre-processing step is used to divide input image pixels 

into groups called “superpixels.” Next, superpixels are grouped into larger sets called 

constellations. Constellations of superpixel regions are homogeneous (all member 

superpixels have same-label assignments), but need not be spatially contiguous. Multiple 

segmentations of superpixels into constellations are evaluated and the best configuration 

is selected. Statistical learning is then applied to compute the geometric label for each 

constellation from training data. This procedure incorporates location, color, texture, and 

perspective statistics for classification. It demonstrates that a 3D model of the scene can 
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be easily reconstructed from these geometric surface labels. 

Hoiem et al. incorporate image segmentation into the preprocessing stages of their 

layout technique to improve the computational efficiency of their overall approach. In 

their implementation, the authors selected the EGBIS approach [30] for segmentation 

preprocessing. The EGBIS approach is state of the art in computational efficiency [65], 

making it a common choice for vision application developers. In the following sections 

the use of alternative segmentation approaches in this labeling procedure, including the 

developed leap segmentation approach, is investigated to identify all possible 

performance benefits. 

2.8.3. Dataset and Evaluation Method 

 The framework for comparison of image segmentation techniques in scene 

labeling preprocessing procedures consists of three stages: segmentation, labeling, and 

analysis [31]. In the segmentation stage an image is preprocessed using one of the three 

candidate image segmentation techniques described in Section 2.6. The segmentation 

results are then passed into the labeling stage, in which Hoiem et al.'s automatic scene 

labeling approach [45] is performed on the input segmentation. The final labeling results 

from each candidate segmentation technique are then compared using both accuracy and 

efficiency performance metrics. 

The dataset used for comparison is Hoiem et al.'s publicly available library of 

ground truth images for evaluating the accuracy of labeling tasks. The library consists of 

300 outdoor images of various sizes and scales. Ground truth labels have been manually 

assigned to each library image. The accuracy of classification for both main class and 

subclass labeling is measured as the fraction of image pixels whose labels match ground 
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truth assignments. 

Many vision applications apply image segmentation during preprocessing to 

improve their execution efficiency. The applied segmentation technique must therefore 

be efficient in its own execution; a slow execution could counteract any facilitated system 

performance improvement. Therefore, the speed of the segmentation procedure when 

used in preprocessing is used to assess segmentation performance. Efficiency is measured 

as the average execution time of segmentation preprocessing procedures over 300 dataset 

images. The diverse collection of image sizes present in the evaluation dataset allows 

rigorous testing of algorithmic execution efficiency and scaling.  

As in previous experiments, an aggregate objective function (AOF) is useful in 

determining overall segmentation performance. The AOF is defined as sum of the 

normalized accuracy and efficiency objective functions. Divide-by-maximum 

normalization is used to scale the efficiency objective function for comparison. The 

efficiency performance ceiling is evaluated at 32 fps to approximate real-time processing 

efficiency standards. 

2.8.4. Results 

In Figure 29, the accuracy and efficiency performance results for both main class 

(left) and vertical subclass (right) labeling are shown for each segmentation technique. 

The three segmentation approaches produce very similar accuracy results for main class 

labeling (~87%), differing by less than 2%, as shown in Figure 29(top). The subclass 

labeling accuracy results are also comparable (~69%), differing by less than 3%. 

However, leap segmentation processing proves significantly more computationally 

efficient (at least 10x faster) than both the EGBIS and EDISON approaches, as shown in 
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Figure 29. Performance results for both main class (left) and vertical subclass 

(right) labeling. (top) Labeling accuracy performance. (center) Segmentation 

processing efficiency performance. (bottom) Overall performance results using AOF 

normalized sum. 
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the execution efficiency plots in Figure 29(center).  

Overall performance is illustrated using the AOF plots shown in Figure 

29(bottom). Of the three approaches, leap segmentation yields the highest performance 

results by far. This is due to the huge improvements in computational efficiency achieved 

by leap segmentation over both the EGBIS and EDISON approaches while maintaining 

comparable labeling accuracy performance. Examples of labeling results for each 

segmentation technique along with their ground truth labeling assignments are shown in 

Figure 30 for qualitative comparison.  

 The equality weighting used to compute overall performance is appropriate for 

those applications that require both accuracy and efficiency performance considerations 

and may not be appropriate for applications that are purely accuracy driven and that lack 

efficiency standards. Those vision applications that require preprocessing to perform 

 

 
Input Ground Truth Leap EDISON EGBIS 

     

     

     

Figure 30. Scene labeling results for qualitative comparison of segmentation 

performance. Main class labels are indicated by color (green=support, red=vertical, 

blue=sky). Subclass labels are indicated by symbols (planar surfaces use arrows left, 

up (center), and right to indicate surface orientation, non-planar surfaces use 'O' for 

porous and 'X' for solid). 
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both accurately and efficiently, such as the labeling procedure used in these experiments, 

can achieve significant improvement in performance by applying leap segmentation in 

preprocessing. 

2.9. Conclusion 

This chapter introduces leap segmentation, an efficient, non-contiguous image 

segmentation approach that employs novel techniques to use resources efficiently and to 

produce output segmentations that accurately represent salient features from input image 

scenes. In experiments, leap segmentation demonstrates high region-assignment accuracy 

and, compared to other approaches, preserves more scene details using a given storage 

resource. Leap segmentation's ability to maintain salient image details during 

segmentation sets it apart from traditional approaches which tend to blur or discard these 

important details. Experiments show that leap segmentation is able to correctly maintain 

an average of 20% more original scene pixels than traditional approaches despite using 

the same number of segments and while exhibiting a significant improvement in 

execution speed (> 10x faster than the state of the art). The salient features maintained by 

leap segmentation could be used in mobile traffic scene applications for improved scene 

analysis.  

The usefulness of applying this novel view of image segmentation in the 

preprocessing stages of a high-level vision application was evaluated and compared with 

existing segmentation approaches. Through the evaluation of both accuracy and 

efficiency objective functions, it was demonstrated that the performance of a high-level 

image layout reconstruction task can be dramatically improved by applying the leap 

segmentation technique during preprocessing. Leap segmentation provides layout 
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applications with reliable segmentations into fewer regions that are unconstrained by 

noise and provide meaningful spatial support for scene layout analysis, allowing more 

efficient estimation of overall scene structure. In addition, leap segmentation exhibits 

execution times 10x-15x times faster than the state of the art.  

The next contribution of this research extends the leap segmentation algorithm to 

process multiple consecutive frames in time (video) with the goal of maintaining region 

boundary continuity between image frames. A temporal analysis study of this multiple-

frame leap segmentation is essential in evaluating region continuity and segmentation 

stability over time. 
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CHAPTER 3 

LEAP SEGMENTATION IN VIDEO ANALYSIS 

 

3.1. Introduction and Related Work 

Over the past decade research into employing vision processing in intelligent 

vehicle systems has grown extensively. Computer vision systems can be used to analyze 

traffic scenes and alert drivers of potentially dangerous events as they occur in real time, 

thus increasing the safety of road ways. Intelligent vehicle systems are mobile, requiring 

vision applications to be both accurate and efficient in their implementation for 

successful operation in this resource-constrained, real-time environment. 

Many vision applications apply image segmentation techniques during 

preprocessing to reduce image information for increased processing efficiency. Multiple-

frame segmentation, also referred to as spatio-temporal or video segmentation, has been 

studied a great deal and is an important step in many video analysis applications for 

identifying and tracking specific features as they move through a scene. In its most 

simple form, multiple-frame segmentation can be achieved by applying a traditional 

single-frame segmentation approach to each individual frame in a sequence. Each frame 

is segmented separately and the segments mapped between frames. However, 

segmentation results could vary drastically between frames, making it difficult to 

maintain temporal continuity from one frame to the next with this approach [64]. 

Video segmentation has been applied in many vision applications including video 

compression and video indexing and retrieval [39]. Many video segmentation techniques 

are designed to operate off-line, requiring all frames in the input video sequence as input 
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[41]. Since future frames must be known, these approaches cannot be applied in real-time 

applications where only current and past frames are available. On-line approaches exist in 

the literature, but are fewer in number. These methods are limited to processing past 

frames and often use Kalman filtering to track segments over time [49]. Paris et al. [64] 

use isotropic diffusion and Gaussian convolution to achieve real-time performance using 

only past frame data. However, this approach has limited accuracy when segmenting fast-

moving objects. 

Methods for multiple-frame segmentation, surveyed in [57], can largely be 

grouped into three categories regardless of their on-line or off-line behavior: spatial-then-

temporal methods, temporal-then-spatial methods, and joint spatial-temporal methods. 

Spatial-then-temporal methods [27], [36], [72], [79] first segment a frame spatially. They 

then track regions in the segmentation over time. These methods conceptually extend 

single-frame segmentation to operate in the temporal domain. Methods in this category 

can operate either on-line or off-line. Temporal-then-spatial methods [3], [7], [23], 

perform temporal segmentation first by monitoring several points to obtain their 

movement trajectories in the image sequence. These trajectories are then grouped 

together using spatial motion segmentation. Methods in this category require information 

from future frames for processing and thus must be implemented off-line. Lastly, joint 

spatial-temporal methods [25], [39], [70] study the spatial and temporal dimensions 

jointly as a single volume for segmentation. Methods in this category are also inherently 

off-line because they require knowledge of future frames. 

A highly efficient, on-line method for multiple-frame segmentation, called video 

leap segmentation, is presented for use on embedded and mobile platforms where 
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processing speed is critical (Forsthoefel et al.) [33]. This novel approach extends the fast, 

single-frame leap segmentation approach presented in Chapter 2 to develop an efficient, 

multiple-frame segmentation approach that accurately tracks segments between 

consecutive input frames and successfully maintains temporal segmentation continuity. 

With this approach, segmentations for each frame are generated quickly without 

segmenting each frame individually, which is computationally expensive. As each 

consecutive image frame is processed, the scene’s segmentation is evolved to 

continuously track objects as they move through the mobile scene. This approach is 

evaluated using moving-camera traffic sequences captured on congested, multi-lane 

highways. The captured GTTraffic dataset sequences (Forsthoefel et al.) [32] contain 

fast-moving traffic events, such as vehicles quickly swerving into the driver’s lane. These 

sequences are made publicly available as part of this research to motivate and evaluate 

vision-based approaches to improving highway safety. 

In this chapter, the video leap segmentation approach is introduced for generating 

fast, stable segmentations of images in mobile video sequences. This chapter is organized 

as follows. First the fast video leap segmentation approach is described in Section 3.2. 

Then the application of the video leap segmentation approach to the task of salient 

segment transformation detection is demonstrated in Section 3.3. Quick detection of 

salient segment transformations in mobile scenes could be highly useful in an intelligent 

vehicle system, aiding driver alert systems in quickly detecting dangerous traffic 

situations that may require immediate driver attention. Trial results, discussed in Section 

3.4, demonstrate that with little added computation, video leap segmentation can be used 
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for salient region detection in traffic scenes with high accuracy. Section 3.5 concludes 

this chapter and discusses future work.  

3.2. Fast Video Leap Segmentation 

The fast, multiple-frame leap segmentation approach (Forsthoefel et al.) [33] is an 

extension of the single-frame leap segmentation approach presented in Chapter 2. In the 

video leap segmentation method, the initial leap segmentation data structures are 

exploited for efficient detection of segment changes in subsequent frames. Specifically, 

structured lists of tile sets indicating tile cell membership are used to quickly compare 

pixels with surrounding segmentation cell assignments to detect slight segment shifts 

between frames. This reduces comparisons between pixels in consecutive frames to be on 

the order of the number of cells in a tile set which concisely represents the color 

neighborhood of a pixel instead of on the order of the total size of the pixel 

neighborhood. This significantly reduces the number of comparisons required to 

determine overall segment movement between frames.  

 

 

     

Figure 31. The initial leap segmentation passes a global cell list (right) and a list of 

tile cell sets (left) for each tile in the discretized image. 
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After the initial leap segmentation step is completed, the segmentation results are 

passed to subsequent frames in the form of three data structures: a global cell list, a 

region map, and a comprehensive list of tile cell sets. The global cell list, shown in Figure 

31 (right), contains the color information (RGB) and presence count for each color 

segment (cell) identified in the image. The region map contains a mapping from each 

pixel in the image segmentation to its corresponding color cell on the global cell list. 

Lastly, the list of tile cell sets generated during leap segmentation and shown in Figure 31 

(left), contains, for each discretized tile in the image, a set of cell pointers to the global 

cell list to indicate cell membership of CL-similar pixels within tiles. Cell pointers are not 

duplicated in individual tile sets, so that a single tile set contains a condensed list of cell 

pointers to the global cell list. 

The data structures provided by leap segmentation are leveraged to yield a fast, 

resource-efficient approach to the temporal tracking of regions in subsequent frames as 

follows. Let f(x, y, t) denote a frame in the input video sequence at time t. Let s(x, y, t-1) 

denote the video sequence segmentation cell assignments obtained from processing the 

previous sequence frame (held in the region map of the segmentation). Note that f 

contains all pixels in the current input frame (f(x,y,t) = pixelx,y,t) while s holds the global 

segmentation cell assignment for each pixel location (s(x,y,t) = cellID,t). Let Nx and Ny 

denote the number of horizontal and vertical tiles in the discretized image, respectively. 

Then for pixel location (x,y) one can define: 

 (   )   (     )                 
 

 
          

 

 
     (7) 
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where Tx and Ty are the horizontal and vertical tile indices for the chosen pixel location, 

respectively, and I(x,y) holds the computed tile index, pointing to the tile covering pixel 

location (x,y) in the image. Let E(PA,PB,τ) (Equation 2) define the CL-similar relation 

(Equation 1) between two RGB values (PA, PB) for some chosen threshold τ (τ = 30 was 

chosen in the current implementation). A review of Equations 1 and 2 from Chapter 2 is 

given below for clarity: 

   (

|     |

|     |

|     |
)       (1) 

 (       )  {
                           
                                     

  (2) 

Let T(I(x,y), t-1) be the complete list of tile cell sets obtained during segmentation 

of the previous frame. To begin, set T(I(x,y), t) = T(I(x,y), t-1). The segmentation of the 

current video sequence frame s(x,y,t) is obtained using the following three-step method. 

First, the current frame is directly compared with previous segmentation cell assignments 

for matching within some threshold τ: 

 (     )   (       )        ( (       )  (     )  )    (8) 

If a match is not obtained from this initial comparison, then the search window is 

widened to include those cells, Z, in the tile set of the segmentation, T
C
(Z), which 

contains the current pixel location (x,y): 

  ( )     ( (   )  )     (9) 
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then, 

 (     )    ( )                 (  ( )  (     )  )      (10) 

If a match with the previous segmentation is still not forthcoming, the search is again 

widened to include those pixels in the tile sets of the tiles in the neighborhood of the 

current tile. Define T
N
(Z) as the list of cells, Z, in a neighboring tile that contains the 

neighboring pixel locations (x
N
, y
N
): 

  ( )     ( (     )  )     (11) 

then, 

 (     )    ( )                 (  ( )  (     )  )      (12) 

If a cell match is detected in a neighboring tile set, the current tile set is updated to 

include a pointer to the matched global list cell for fast future comparisons. 

The implementation workflow for video leap segmentation is shown in Figure 32. 

The three step method makes use of the data structures provided from the initial leap 

segmentation and updates these structures to represent changes to the segmentation that 

occur between consecutive image frames. In a post-processing step, groups of pixels that 

do not match between the frames are labeled as new object candidates. If a sufficiently 

large and chromatically similar group of nonmatching pixels is present, a new segment is 

created for these pixels to represent the new scene object. The implementation data 

structures passed between frames during segmentation of the video sequence are 

designed for optimal resource usage. The segmentation region map and list of tile cell 

sets contain only pointers to the global cell list. Therefore, segment information is stored 
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only once in the global cell list, while the region map and list of tile cell sets convey 

segmentation structure using lightweight pointers. 

The three step method allows for fast comparisons between the current frame and 

the previously obtained segmentation with an increasingly large search space. The search 

space can be easily constrained with this design to conform to specific application goals. 

In the current implementation, the search space is limited to tiles directly neighboring the 

current tile set to reduce computation time. The ability of this segmentation procedure to 

produce stable segmentations of video sequences is evaluated in Section 3.4.1 over 

various traffic scenes. 

     

Figure 32. Workflow of the fast, resource-efficient video leap segmentation 

algorithm. 
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3.3. Recognition of Salient Segment Transformations 

In addition to generating fast, stable segmentations of images in video sequences, 

the presented method for video leap segmentation can be applied to the task of rough 

salient segment transformation detection for alerting potential drivers of important scene 

changes that may affect future steering decisions.  

Salient transformation detection is performed using a fast, two-frame 

segmentation comparison. Comparing segmentation assignments between frames can be 

a slow task if performed on the pixel level. Instead, a cell-level comparison is performed 

using the region map cell assignments obtained during video leap segmentation. As 

described in Section 3.2, the video leap segmentation approach quickly identifies shifted 

segments between frames using the tile set data structures introduced by leap 

segmentation. Using this video leap segmentation approach, segment movement is 

quickly identified over a large search window without the onerous step of directly 

comparing each pixel in the search window. Video leap segmentation outputs a region 

map of cell assignments at each pixel location. These outputted cell assignments correctly 

model the positions of shifted segments and accurately represent overall scene structure 

despite scene changes between frames. The successful utilization of the video leap 

segmentation approach in a simple recognition task is demonstrated with the following 

approach for recognition of salient segment transformations. 

Let rt(x,y) denote a region map at time t containing the segmentation cell 

assignments as indices into the global cell list. Let rt-1(x,y) denote the region map cell 

assignments for the previous sequence frame segmentation. These two region maps are 

compared to determine the locations of salient segment transformations in the scene. 



 

73 

 

First, the direct spatial neighborhood of each pixel is evaluated to form a movement 

vector mv(x,y,t) for each pixel location (x,y) at time t. Let n(P) represent the 

neighborhood of pixel P. The cell assignments of all pixels in n(P) are compared to P to 

form the movement vector for P. Movement vector assignments are binary indicators of 

cell assignment comparisons. The movement vector for P holds a binary value for each 

pixel in n(P). If neighboring cell assignments match P, the movement vector is assigned a 

binary 0 for those locations. Otherwise, the movement vector is assigned a binary 1 for 

those non-matching cell assignments in the neighborhood of P.  

The computed movement vectors are compared between consecutive image 

segmentation region maps (rt , rt-1) in the sequence for fast segment transformation 

detection. Figure 33 shows an example of movement vector assignments for two 

consecutive image frames at various pixel locations. The binary movement vector 

assignments are evaluated in clockwise order (i.e. N,E,S,W). A nonzero movement vector 

denotes an edge pixel in the segmentation. Cell movement is detected by comparing the 

movement vectors for edge pixels in the consecutive frames. These calculations are 

performed using quick binary comparisons of vector values. A change in movement 

vector assignments from 1 to 0 in the East direction indicates movement has occurred 

East. However, a change in the movement vector assignments from 0 to 1 in the East 

direction would indicate movement has occurred in the West direction. If the consecutive 

movement vectors for a pixel are nonzero and unchanging between frames, this indicates 

a stable edge pixel in the scene.  
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In the example in Figure 33 (top), the movement vectors indicate that a Cell A 

pixel moves East between frames t-1 and t. Another pixel in Figure 33 (middle) changes 

cell membership between frames (from Cell B to Cell A) so the computed movement 

vectors are ignored and no movement is recorded for either cell. Lastly, in Figure 33 

(bottom) a Cell B pixel is detected moving in the East direction. These directional 

classifications are recorded for each cell in the segmentation. The overall direction of 

transformation of a segmentation cell is calculated as the maximum present 

transformation direction detected in the cell over all cell pixels. Furthermore, a cell is 

identified as “stable” if the detected number of stable edge pixels in the cell exceeds the 

     

 

Figure 33. Example of binary movement vector assignments at various pixel 

locations. Assignments are evaluated in clockwise order (i.e. N,E,S,W). 
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total number of non-stable edge pixels present in the cell. 

This simple calculation and binary comparison of movement vector assignments 

allows for a quick and comprehensive assessment of cell transformations between 

consecutive frames. The presented method evaluates cell transformations only at the 

edges of segmentation cells where cell movement is most identifiable and avoids the 

complicated and cost-inefficient method of determining total cell movement over all cell 

member pixels. This simple, binary method can be implemented using low-cost integer 

operations. The utilization of video leap segmentation at the base of this approach for the 

detection of segment shifts across temporal and spatial bounds facilitates the fast and 

efficient detection of salient segment transformations in video scenes. 

3.4. Experimental Results 

The discussed multiple-frame leap segmentation approach is implemented in the C 

programming language and is developed in a Linux environment. A publicly available set 

of moving-camera traffic scene sequences collected at Georgia Tech is used in these 

evaluation experiments (see Figure 34). The captured GTTraffic dataset sequences 

(Forsthoefel et al.) [32] contain fast-moving traffic events such as vehicles quickly 

swerving into the driver’s lane. These sequences are being made publicly available as 

part of this research to motivate and evaluate vision-based approaches to improving 

highway safety.  

These scene collections were captured at Georgia Tech using a forward-mounted 

Kodak Zi6 on an automobile dashboard. This camera provides a fixed focus, fixed 

aperture, and fixed field-of-view with electrically controlled gain and sensitivity. The 
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images extracted from the captured mpeg4 videos are at a resolution of 1280 x 720 

pixels. The sequences were collected at a frame rate of 32 fps. 

3.4.1. Video Leap Segmentation Stability 

In this evaluation, the quantitative objective function nonmatching pixel 

percentage is used to assess segmentation stability. It is measured as the percentage of 

image pixels in the video segmentation output that are not CL-similar to their original 

image color. Let us recall Equations 3 and 4 from Chapter 2: 

             [∑ (     [ ]     [ ]  )

 

]   
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Figure 34. Sample images from the GTTraffic dataset [32]. 
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Calculation of the nonmatching pixel percentage is shown above in the review of 

Equations 3 and 4. The equivalence function E is given in Equation 2 and applies the CL-

similar relation in Equation 1 to assess pixel affinity. PNM is the number of pixels in the 

final segmentation which are not CL-similar within the matching threshold τ to their 

original image color (τ = 30 was used in all experiments) and PTOTAL is the total number 

of pixels in the image. PORIG holds the original input image, and PSEG holds the pixels in 

the output segmentation. 

 

 
     

 

Figure 35. Video leap segmentation results for two consecutive image frames. A 

colorized representation of segmentations is given to show region membership 

more clearly. A frame by frame approach (middle) produces segmentations that 

change rapidly between frames. Applying the video leap segmentation approach 

(bottom) allows easy maintenance of temporal coherence between frames. 
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A high accuracy image segmentation result achieves a low nonmatching pixel 

percentage, indicating that a small number of pixels have been assigned to a region color 

that is significantly different from their original color. This metric is a good measure of 

the preservation of scene integrity during the segmentation process. 

Figure 35 qualitatively displays the stability of video leap segmentation results 

when compared to a frame-by-frame segmentation approach (in which each frame is 

segmented separately). To help discern region membership, artificially colorized 

segmentation images are given. Contrasting color assignments show region pixel 

membership. With a frame-by-frame segmentation approach, segmentation results can 

vary drastically between frames, making it infeasible to maintain segment continuity 

from one frame to the next. The video leap segmentation approach successfully matches 

segments across temporal bounds, maintaining temporal coherence between the input 

sequence frames.  

The input parameters used to generate the initial leap segmentation at the base of 

the video leap segmentation approach are λ=2, ε=20, and α=50. The equivalence (ε) and 

minimum size (α) parameters are chosen based on optimal performance determined 

previously in Section 2.5. A minimal adjacency parameter is chosen (λ=2) in order to 

better facilitate salient segment transformation detection, discussed in Section 3.3, on the 

collected traffic scenes. A larger adjacency parameter input would allow larger changes 

in segment movement between frames to be detected, but may reduce the accuracy of 

detection of small segment shifts between frames. If input frames are spaced far apart in 

time, the use of a larger tile size may be appropriate. However, as proof of concept, a 

minimal adjacency parameter was chosen for these experiments because GTTraffic 
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dataset images were collected at a high frame rate, causing small segment shifts to 

dominate these scenes. A full video leap segmentation parameter variation assessment is 

planned. 

To quantitatively assess the stability of video leap segmentation over time, the 

nonmatching pixel percentage is calculated over all image frames in several GTTraffic 

sequences. Table 2 shows the average nonmatching pixel percentages over six different 

traffic sequences, each containing 200 frames. Each of the chosen input sequences 

contains substantial scene changes, such as the introduction of new vehicles into the 

scene. Video leap segmentation produces nonmatching pixel percentages of less than 4% 

and as low as 0.7% when processing these input image sequences despite the long 

sequence length and the frequent introduction of new objects into the scenes. The 

developed approach is able to maintain this high level of stability by adapting the 

sequence segmentation at each new input frame and by carefully introducing new scene 

segments when new objects appear in the scene. 

3.4.2. Salient Segment Transformation Detection 

The salient segment transformation detection approach outlined in this chapter is 

designed to be very fast in its execution, using the output from the provided video leap 

segmentation approach to quickly determine rough areas of saliency in an input image 

Table 2 

Video Leap Segmentation Stability 

Average Nonmatching Pixel Percentages Over 200 Frames 

Traffic1 Traffic2 Traffic3 Traffic4 Traffic5 Traffic6 

1.817% 1.424% 0.896% 0.716% 3.829% 2.075% 
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scene. No statistical processing or high-level model development is performed to produce 

these results. Those more computationally expensive approaches for tracking regions 

could later be added on top of this approach to clean up the detection process and remove 

noise.  

Figure 36 shows the approach output for recognition of salient segment 

 

 

     

Figure 36. Salient segment transformation recognition results for two frames of an 

input video sequence. Top: Input frame. Middle: A colorized representation of 

detected salient segment transformations in the scene (White = Stable, Red = North, 

Green = South, Blue = East, Orange = West, Black = Movement detected in all 

directions (segment grew in size in the scene). Bottom: Ground truth images, salient 

pixels plotted in white. 
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transformations. The salient transformation result images in Figure 36 (middle) show 

those pixels that were identified as salient by the developed algorithm. Stable pixels are 

shown in white, while salient pixels are colored based on their detected direction of 

transformation. Corresponding ground truth images are also given in Figure 36 (bottom), 

with salient pixels shown in white. These results demonstrate that with little added 

computation, the video leap segmentation results can be used for rough salient region 

detection in traffic scenes with surprising accuracy. The salient detected areas can be 

passed to a higher-level vision system for determining the appropriate response to the 

detected salient regions. Reducing higher-level processing to the detected salient areas 

using this quick approach has the potential to significantly reduce the processing time of 

scene understanding approaches. 

Due to the rough nature of the developed method for detection of salient 

transformations, the results can contain some noise. This is to be expected, and further 

research will explore post-processing schemes to alleviate this. Several ground truth 

images were created and compared with the salient transformation detection output to 

quantify the accuracy of this approach. On average, the developed approach correctly 

identifies ~80% of salient ground truth pixels as salient in the output. In addition, the 

approach correctly identifies over 95% of non-salient ground truth pixels as non-salient in 

the output. This indicates that developed approach achieves a false negative rate of about 

20% while keeping the false positive rate below 5%. The accuracy achieved by the 

presented algorithm is acceptable in achieving the proposed goal of a rough salient 

transformation detection system. Post-processing steps can be taken to improve the 

transformation image and further reduce false positives and false negatives. In particular, 
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false negatives arise most often in the reflective windows of vehicles in the scene. These 

could be removed with the implementation of a post-processing region-fill step to detect 

and correct these holes in the recognition output.  

Figure 37 shows an example sequence of frames of a vehicle rapidly swerving 

into a driver’s lane. The developed salient transformation recognition technique is able to 

quickly identify and track the rapidly moving car. This technique could be used in 

 

     

Figure 37. Salient segment transformation detection results for a video scene in 

which a vehicle rapidly enters the driver’s lane. 
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preprocessing to aid driver alert systems in quickly detecting dangerous traffic situations 

such as these that may require immediate driver attention.  

3.4.3. Run-Time Analysis 

The outlined video leap segmentation approach and salient transformation 

detection system are evaluated using a 2.13 GHz Intel Core I3–330M processor running 

64-bit Ubuntu 10.04. The algorithms were not parallelized or otherwise altered for the 

platform. Sequences from the GTTraffic dataset which contain images 1280x720 pixels 

in size are used in this evaluation.  

The implementations of the discussed algorithms have not yet been fully 

optimized for efficient execution. A preliminary investigation of execution performance 

is presented here, pending a complete review of optimization capability. Even without an 

in-depth optimization of implementation, the video leap segmentation approach proves 

computationally efficient. An analysis of trial results reveals that the current 

implementation runs at an average ~90 ms per frame, or over 11 fps. The salient 

transformation detection system also shows excellent execution efficiency in preliminary 

tests, executing in an average time of ~20 ms per frame.  

There are several possible avenues for optimization of the presented approach, 

including converting the single-core video leap segmentation approach to a multi-core 

platform using parallel processing. An investigation of this, along with additional 

optimization techniques is planned for future work. 

3.5. Conclusion 

This chapter presents a novel approach to multiple-frame segmentation, called 

video leap segmentation, for use on embedded and mobile platforms where processing 
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speed is critical. Through the evaluation of both accuracy and efficiency objective 

functions, it was demonstrated that the provided approach successfully tracks segments 

across spatial and temporal bounds, generating fast, stable segmentations of images from 

moving-camera video sequences. The approach was then applied to the task of salient 

segment transformation detection. The resulting salient transformation recognition 

technique is able to quickly identify and track the rapidly moving, salient objects in input 

video scenes. This technique could be applied in preprocessing to aid collision avoidance 

systems in quickly detecting dangerous traffic situations that may require immediate 

driver attention.  

Several possible avenues of future work have been identified, including an in-

depth parameter variation analysis of video leap segmentation parameters, a full 

optimization of the video leap segmentation approach implementation, and parallelization 

of the approach, targeting a multi-core platform.  
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CHAPTER 4 

EMBEDDED, MULTI-CORE LEAP SEGMENTATION 

 

4.1. Introduction 

Many vision applications apply image segmentation techniques during 

preprocessing to reduce image information for increased processing efficiency. However, 

the processing times of most existing single-frame image segmentation approaches 

exceed input camera frame periods when processing high-resolution images, making 

them impractical for use in real-time environments. 

The goal of this research is to achieve real-time (>25 fps) image segmentation 

execution performance on a commercially-available CPU with multiple processing cores 

that does not require specialized hardware. To that end, this chapter first introduces a 

highly optimized serial implementation of the leap segmentation approach developed in 

Chapter 2. Numerous parallelization techniques are then applied to different portions of 

this segmentation approach to achieve further speed-up on a multi-core system. The final, 

parallel leap segmentation implementation easily achieves real-time execution when 

processing high-resolution images. 

This chapter builds directly upon the results of previous chapters. Leap 

segmentation, developed in Chapter 2, is a novel approach to single-frame segmentation 

which forms homogeneous regions of pixels that need not be spatially contiguous. Leap 

segmentation is designed for use in embedded, resource-constrained environments while 

maintaining accuracy comparable to traditional approaches. The design of leap 

segmentation lends itself to an efficient implementation as shown in Chapter 2, but can 
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be optimized further. This chapter outlines an optimized serial implementation of leap 

segmentation which achieves frame rates of more than 80 fps on 640x360 images and 

more than 20 fps on high resolution (1280x720) images (Forsthoefel et al.) [35]. 

This serial implementation of leap segmentation proves useful in many 

embedded, resource-constrained environments where processing speed is critical. 

However, “real-time” processing standards in image processing vary widely. More 

stringent standards on real-time frame-rates typically enforce matching to collection 

frame-rates without frame-skipping (processing every other frame or every third frame). 

Under these standards, an approach must run at the least at the image collection rate of 

the source camera. Therefore real-time processing frame rates typically range from 25 to 

30 fps at a minimum. The highly optimized serial implementation of leap segmentation 

presented in this chapter achieves real-time processing on 640x360 images (80 fps) but 

falls short of these real-time standards on high resolution (1280x720) images, processing 

at just 20 fps.  

To achieve real-time execution of leap segmentation on high-resolution images, a 

multi-core leap segmentation implementation is developed in this chapter. Numerous 

parallelization techniques are applied to different portions of the leap segmentation 

algorithm to achieve further speed-up. The steps taken to parallelize each leap 

segmentation subtask are described in detail. The developed multi-core leap segmentation 

implementation achieves frame rates on commodity hardware of more than 29 fps on 

1280x720 images using two threads and more than 31 fps when using four threads, thus 

meeting even the more stringent real-time processing standards (Forsthoefel et al.) [35]. 
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This chapter is organized as follows. Related work in the field of image 

segmentation is outlined in Section 4.2, including information on real-time segmentation 

efforts. Section 4.3 discusses overall leap segmentation implementation workflow and the 

framework of leap segmentation resources. Both the highly optimized serial and parallel 

implementations of leap segmentation are presented and analyzed in Section 4.4. 

Performance evaluations of the developed implementations on both high performance 

and resource-constrained platforms are presented and discussed in detail in Section 4.5. 

Section 4.6 concludes this chapter. 

4.2. Related Work 

This section summarizes related work in the field of image segmentation and then 

describes recent advancements in fast, multi-core image segmentation. For a more in-

depth description of general single-frame image segmentation related work, please refer 

back to Chapter 2.  

Image segmentation has been widely researched, resulting in several broad classes 

of algorithms including region-based, feature-space clustering, and graph-based 

segmentation. The region-based segmentation category includes all “region-growing” and 

“split-and-merge” techniques. The watershed approach [77] is a popular example of 

region-based segmentation. Segmentation methods that use feature-space clustering 

attempt to find modes (clusters) in a distribution by using each image pixel’s features as 

sampled data from the distribution’s probability density function. Mixture of Gaussians 

clustering with expectation maximization [26] and mean-shift clustering [22] fall into this 

category. In graph-based segmentation, an image is represented as a weighted, undirected 

graph. Popular graph-based approaches include normalized cuts [71] and efficient graph-



 

88 

 

based image segmentation (EGBIS) [30]. A detailed review of image segmentation 

research can be found in [74].  

The mean-shift clustering technique [22] and the efficient graph-based image 

segmentation technique (EGBIS) [30] mentioned above are two well-known and popular 

segmentation algorithms. According to Pantofaru and Hebert [63], output segmentations 

from mean-shift correspond well to human perception. A disadvantage is its sensitivity to 

parameter change and the necessity for input parameter tuning to obtain good 

segmentations [86]. In addition, mean-shift is computationally expensive making it too 

slow for real-time applications. This is due in part to the expensive sliding-window 

approach it applies to image pixels during processing. Several techniques for improving 

mean-shift have been proposed [17], [20], [80]. For example, Christodias et al. [20] 

proposed combining mean-shift with edge detection to increase segmentation accuracy in 

EDISON. However, these algorithms often require on the order of minutes to process one 

second of video [65]. The popular graph-based segmentation technique, EGBIS [30], is 

considered to be state of the art in computational efficiency [28], [65]. It uses pair-wise 

component comparisons to segment an image in O(mlogm) time, where m is the number 

of graph edges. A drawback to this method is its sensitivity to its input parameter k and 

its tendency to create small, unneeded regions at the borders of valid image segments. 

Modern demand for real-time image processing algorithms has inspired several 

research efforts in fast, multi-core image segmentation. In recent research, Abramov et al. 

[1] use a GPU for parallel image segmentation but achieve just 30 fps frame rates on 

small (256x320) images. In [58], Meribout and Nakanishi present an approach which 

requires a dedicated parallel hardware architecture to achieve real-time segmentation 
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performance. In [43], Happ et al. propose a multi-core region-growing approach for use 

on high resolution images. However, there is still room for improvement as this approach 

requires on the order of tens of seconds to process a single image. In this chapter, the goal 

is to achieve real-time (>25 fps) image segmentation execution on a commercially-

available CPU with multiple processing cores that does not require special hardware. 

 

     

 

Figure 38. Workflow of the leap segmentation algorithm broken down into three 

subtasks for parallelization: 1. region building, 2. region adjustment, 3. size 

analysis.  
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4.3. Leap Segmentation Implementation 

The leap segmentation implementation workflow, shown in Figure 38, is 

partitioned into three main subtasks: region building, region adjustment, and size 

analysis. In region building, input image pixels are grouped based on leap segmentation 

adjacency and equivalence constraints to form mega-regions of pixels. During region 

adjustment, the segmentation output from the region building subtask is evaluated for 

possible irregular pixel assignments and new regions are synthesized to represent any 

new scene objects that arise in this evaluation. Size analysis applies the minimum size 

constraint to mega-regions, appropriately assimilating small regions to nearby mega-

regions based on spatial and color similarities. The resulting mega-region list becomes 

the final segmentation. 

A high-level analysis of leap segmentation execution performance can be seen in 

Figure 39. The chart shows the percentage of processing time consumed by each of the 

three main subtasks. Region building is by far the most expensive subtask, encompassing 

 

     

Figure 39. A processing usage chart indicating percentages of leap segmentation 

time dedicated to each of the three main subtasks: region building, region 

adjustment, and size analysis. 
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70% of the leap segmentation execution time. The next subtask, region adjustment, 

requires 23% of the total processing time. This subtask can be further broken down into 

its child methods and analyzed separately (as discussed in Section 4.4.2). The third 

subtask, size analysis, consumes just 7% of the total execution time.  

The leap segmentation data structures, displayed in Figure 40 and mentioned 

previously in Section 3.2, are designed for optimal resource usage. Three structures are 

used. The Global Cell List (middle) contains the color information (RGB) and presence 

count for each color segment identified in the image. The Region Map (right) contains a 

mapping from each pixel in the image segmentation to its corresponding color cell on the 

global cell list. The Comprehensive List of Tile Cell Sets (left) contains, for each 

discretized tile in the image, a set of cell pointers to the global cell list to indicate cell 

membership of CL-similar pixels within tiles. 

Segment information is stored only once in the global cell list, while the region 

map and comprehensive list of tile cell sets convey segmentation structure using 

lightweight pointers. In addition, as discussed in Chapter 2, pixels within a region 

contribute their component values to a ratiometric mean via component sums and a pixel 

 

 

Figure 40. The leap segmentation data structures are designed for optimal resource 

usage. 
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count, shown in Figure 10. During segmentation, pixels are compared to the mean 

component values (e.g. R, G, and B) of candidate regions for rapid analysis of affinity. 

See Chapter 2 for further leap segmentation algorithm details along with a detailed 

parameter sensitivity analysis and full comparisons with leading approaches. 

In the following sections, highly optimized leap segmentation subtask 

implementations are presented for single-core platforms. Further research then tests the 

hypothesis that these subtasks can achieve high speed-up when their base algorithms are 

parallelized and ported to a multi-core platform (Forsthoefel et al.) [35]. An analysis of 

each subtask’s potential for parallelization is provided along with detailed before-and-

after comparisons of the execution rates of these subtasks before and after parallelization. 

4.4. Implementation Analysis 

This section contains an analysis of the developed fast and resource efficient 

implementations (both single-core and multi-core) of the leap segmentation algorithm. 

Each of the three leap segmentation subtasks is analyzed and discussed. Any single-core 

optimizations within the subtasks are described in detail. Then, each subtask is analyzed 

for opportunities for parallelization and restructuring for use on a parallel processing 

system. 

4.4.1. Subtask 1: Region Building 

As shown in Figure 39, the region building subtask requires the highest 

percentage of processing time. Since this is also the first task performed in leap 

segmentation, it is an ideal place to begin the performance analysis. 
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Serial Implementation 

In the developed serial implementation of the region building subtask, the input 

image is discretized using the adjacency parameter, λ, by dividing it into non-overlapping 

λxλ square regions called tiles. Each tile is scanned using the CL-similar constraint 

(Equation 1) to locate candidate regions within each tile. If a pixel is CL-similar to pixels 

within an existing region, it is added to that region. Otherwise, it forms a new candidate 

region. After identifying candidate regions within each tile, these regions are compared 

between neighboring, contiguous tiles. Regions whose mean component values satisfy 

the CL-similar relation are merged into a mega-region. This process continues until a 

final set of candidate mega-regions are identified. At this point, all ratiometric component 

means are locked to fixed component averages that no longer depend on member pixels. 

To optimize this serial approach, first the implementation structure must be 

designed for optimal segment evolution during execution. A two-dimensional image 

cannot simply be processed for segmentation in row-column order, though this would 

have promising cache efficiency implications. The segmentation process itself is widely 

viewed as an inherently sequential mechanism in which segments grow and evolve as 

more pixels in the image are processed. Pixels within the same image neighborhood 

depend on each other during segment formation. Therefore, the two dimensions of the 

image should be traversed at a comparable rate to ensure the highest accuracy in segment 

growth across the image. 

In order to address this issue, the image is traversed and processed along image 

diagonals starting from the top left corner (origin) of the image to the bottom right corner 

(see Figure 41). By evaluating tiles in diagonal order, the segmented area of the image 
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grows in two dimensions simultaneously, facilitating a quick and comprehensive 

evaluation of pixel adjacency in the image during segmentation.  

Parallel Implementation 

Within this framework of image discretization and diagonalization, one can 

identify the dependencies present within the algorithm and determine the best method for 

tile-level parallelization.  

Let Dj be the current diagonal in which tiles are being evaluated for segmentation. 

Tiles in Dj will compare with neighboring tiles in diagonal Dj-1 for matching CL-similar 

regions. In this way, regions are able to move seamlessly across the image as they are 

pulled from diagonal to diagonal during segmentation. Comparisons with neighboring 

tiles are performed on those tiles to the north and west of the current tile being processed, 

as these are the tiles located along a previously evaluated image diagonal. An illustration 

of tile dependencies is displayed in Figure 42. One can see in this graph that 

     

Figure 41. Serial leap segmentation image traversal; the image is processed in 

diagonal order. The image tile traversal is shown with arrows. 
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dependencies in execution arise between image diagonals. However, no data-flow 

dependency exists between tiles within the same diagonal. For example, the shaded 

diagonal in Figure 42 (D3) includes the set of tiles {4,5,6}. According to this dependency 

graph, before processing tile 4 information is needed from tile 2. Similarly, tile 5 needs 

information from tiles {2,3} before it can be processed.  

Tiles within image diagonals can be processed in parallel with low contention. Let 

NX be the number of image tiles in the x direction and NY be the number of image tiles in 

the y direction. As described above, the discretized global image domain D is split into 

image diagonal sub-domains Dj , j = 0:(NX - 1)+(NY - 1). Let i be the number of tiles in 

subdomain Dj: 

                                  (13) 

Tiles within each subdomain are processed in parallel. In tests, this form of 

parallelization does not adversely affect the accuracy of the segmentation output and 

     

Figure 42. Leap segmentation diagonal dependencies are shown using arrows. In 

order to process the shaded diagonal tiles, all tiles in the previous diagonal must 

first be completely processed. 
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avoids the costly contention of threads on resources. It is important to emphasize, as 

stated before, that diagonals must be processed sequentially; Dj-1 must be processed 

before Dj. This level of sequential processing is expected and largely unavoidable, as leap 

segmentation contains an inherently sequential process in which comparisons between 

tiles are required to grow segments across adjacency bounds. 

Performance evaluations for the region building subtask are given in Section 4.5.3 

for both the presented serial and parallel implementations of leap segmentation. 

4.4.2. Subtask 2: Region Adjustment 

During region adjustment, the segmentation output from the region building 

subtask is evaluated for possible outliers within regions and new regions are synthesized 

to represent any new scene objects that arise in this evaluation. An outlier can arise 

during region building in several situations. In most cases, slow-changing gradients cause 

region component means to drift, allowing some pixels to fall out of segment CL-similar 

bounds. This behavior is desired for some applications which favor minimizing the 

number of segments and the fractionalization of objects (e.g. for the identification of 

object boundaries). However, this is not the case for applications which require reliable 

original pixel color representation in the segmentation model. Region adjustment is 

implemented in order to maintain a standard level of accuracy in leap segmentation 

output over all scenes. 

This section first presents a highly optimized serial implementation of the region 

adjustment subtask of leap segmentation. Then, the steps required to retarget this 

approach for use on a parallel processing system are described in detail. 
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Serial Implementation 

The region adjustment subtask is divided into three distinct stages shown in 

Figure 43: saliency evaluation, density analysis, and region synthesis. During region 

adjustment, pixels are scanned for outliers in region membership. If a large number of 

outliers are identified, a new mega-region is created to represent the new scene object.  

Let f(x,y) denote an input image frame submitted for segmentation. Let s(x,y) 

denote the output from the region building subtask before region adjustment procedures 

have been executed. During the saliency evaluation stage of region adjustment, the 

original image and the output segmentation are compared to determine the measure of 

CL-similarity present in the frame. This saliency evaluation encompasses about 11% of 

the total leap segmentation processing time (see Figure 39). 

Recall Equations 1 and 2 from Chapter 2. Let E(PA,PB,τ) (Equation 2) define the 

CL-similar relation (Equation 1) between two RGB values (PA, PB) for some chosen 

threshold τ:  

   (

|     |

|     |

|     |
)       (1) 

 (       )  {
                    -       
                                      

 .  (2) 

    

Figure 43. Region adjustment workflow. The region adjustment subtask is 

comprised of three stages: saliency evaluation, density analysis, and region 

synthesis. 
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During saliency evaluation, the input frame is directly compared with the output of leap 

segmentation for matching within some threshold τ (τ = 30 was chosen in the current 

implementation). This comparison is performed to locate the salient portions of the image 

which potentially contain new scene objects: 

       (     )  {
       ( (   )  (   )  )
                                  

  . (14) 

This new, saliency map identifies those frame locations that were assigned segment 

colors that were not CL-similar to their original image color during the leap segmentation 

procedure.  

 The second stage of region adjustment (density analysis) accounts for 7% of the 

total leap segmentation execution time. In this stage, once a saliency map has been 

generated, the density of the map is computed to determine the locations of contiguous 

salient pixels. The density analysis map is computed as follows for a search feature size 

of ρ: 

          (   )  ∑        (         )
   

  

                                              . 
(15) 

To better exploit locality in the data cache during density analysis, the image is 

scanned in row-column order. Each pixel location is read from the cache only once, and 

its saliency is calculated. If the pixel is deemed salient, those pixels in the ρxρ 

neighborhood surrounding that pixel are each incremented in the density map. This 

implementation makes the following assumption on neighborhood symmetry: 

                  (  )                     (  )    (16) 
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This is a reasonable assumption when implementing rectangular search neighborhoods. 

This ‘neighborhood-incremental’ approach in which densities are accumulated over time 

is far more efficient than a naïve density calculation approach, in which the density of 

each pixel location is calculated in-full and in-order, requiring multiple reads of the same 

pixel locations. In contrast, the incremental density calculation requires pixel locations to 

be read only once, and quick, atomic instructions can be used to increment the 

corresponding density map neighborhood locations. This reduces the number of 

comparisons required to perform this density analysis calculation from N*ρ
2
 comparisons 

where N is the number of pixels in the image and ρ is the search feature size, to just N 

comparisons in the incremental approach. In performance trials, this incremental 

approach for density analysis enabled a more than 20x speed-up in density analysis 

execution over the naïve approach. 

 Region synthesis is the third and final stage of region adjustment and consumes 

just 5% of the total leap segmentation processing time. In this stage, the density map 

provided during density analysis is scanned for possible new object candidates. Once 

these object candidates have been identified, they are analyzed and added to the global 

cell list to represent new scene objects. 

Parallel Implementation 

The identification and classification of new object candidates in image scenes is 

often a computationally heavy procedure, requiring multiple searches across the input 

frame to determine the locations and sizes of new object candidates accurately. Several 

portions of the region adjustment subtask are amenable to parallelization. The saliency 

evaluation stage, which performs the image comparison for salient pixel detection, can be 
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processed in parallel fully (each pixel in parallel) as there are no data dependencies 

between computations in this stage. Pixel locations are simply divided among the 

available processors for processing.  

In addition, the incremental approach for density analysis can also be parallelized 

for speed-up. In a parallel implementation, pixel locations can be processed in parallel 

with marked speed-up as long as their ρxρ search neighborhoods do not overlap, causing 

threads to stall as they wait for density map locations to be freed for updating. This 

separation of the image into non-overlapping portions for density analysis parallelization 

is trivial with the assumption that the feature size ρ << N, where N is the number of 

pixels in the input image (ρ = 5 was chosen in the current implementation) and the thread 

count t << N which is a reasonable assumption on commodity CPUs. 

Performance evaluations for the region adjustment subtask are given in Section 

4.5.3 for both the presented serial and parallel implementations of leap segmentation. 

4.4.3. Subtask 3: Size Analysis 

The final leap segmentation subtask, size analysis, applies the minimum size 

constraint to mega-regions, appropriately assimilating small regions into nearby mega-

regions based on spatial and color similarities. The resulting mega-region list becomes 

the final segmentation. 

Serial Implementation 

Size analysis begins with a scan of the global cell list for cells that are too small to 

form their own segments. These cells are marked as garbage. As described in Section 4.3, 

the leap segmentation region map contains pointers onto the global cell list to convey 

segment membership at each pixel location (see Figure 40). Once garbage cells have been 
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identified in the global list, the region map is scanned for the presence of pointers to these 

garbage cells. If a pointer to a garbage cell is found, the adjacency neighborhood 

surrounding that pixel location is scanned for a possible replacement segment. The 

replacement segment is selected based on a minimum sum of absolute differences (SAD) 

comparison with the original cell assignment. The sum of absolution differences 

calculation is as follows: 

     ∑{

|     | 
|      | 
|     |

}   (17) 

In this way, collections of pixels that are too small to form their own segmentation 

regions are assimilated into larger, spatially-similar and chromatically-similar regions 

which meet required size constraints. 

Parallel Implementation 

The presented serial implementation of the size analysis subtask lends itself to a 

couple forms of parallelization. The global list scan to identify garbage cells can be 

performed completely in parallel without contention as there are no dependencies 

between cells during garbage classification. In addition, the region map scan, including 

the minimum sum of absolute differences calculations, is also highly parallelizable. Each 

pixel location can be evaluated in parallel, as this scan largely requires reads from the 

global list. However, updates to cell counts in the global list as garbage cells are 

assimilated into new regions must be performed atomically to ensure correctness, a 

limitation which has the potential to reduce parallel processing efficiency in this stage of 

execution. 
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Performance evaluations for the size analysis subtask are given in Section 4.5.3 

for both the presented serial and parallel implementations of leap segmentation. 

4.4.4. Storage Implementation Considerations 

Implementation-specific storage control mechanisms applied in both serial and 

parallel implementations of the leap segmentation algorithm have the potential to highly 

affect leap segmentation performance in execution. This section describes, in detail, these 

storage implementation considerations for both the developed serial and parallel 

implementations of leap segmentation. 

Serial Implementation 

For the highly-optimized serial implementation of leap segmentation, a large 

support storage framework for fast allocation/de-allocation of leap segmentation 

resources has been developed. Examples of highly used leap segmentation resources 

include the cells contained in the global cell list and the tile sets contained in each 

discretized image tile. These resources are repeatedly allocated, accessed, and de-

allocated during leap segmentation processing, prompting a need for an efficient storage 

control framework for these particular resources. In the developed serial implementation 

of leap segmentation, these resources are allocated as part of an initialization procedure in 

large blocks on the heap and passed to the segmentation procedure whenever a resource 

is needed during execution. This ensures that the program memory remains roughly 

contiguous on the heap and allows for faster memory accesses in the data cache.  

All freed leap segmentation resources are added to a free list which is maintained 

during program execution. When a leap segmentation resource is required, the free list is 

consulted first for any possible previously-allocated resources. If none are available, a 
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large, new resource block is allocated on the heap and resources are distributed from that 

block as processing moves forward.  

Parallel Implementation 

The storage control framework used in the presented serial implementation, while 

highly efficient for sequential processing, is not ideal in a parallel environment. A central 

free list would become a highly contended resource during execution and would create a 

bottleneck in processing. In addition, whereas the spatial locality of cells in the data 

cache is desired in sequential processing, this is not always the case in a parallel 

environment. Two threads (t1, t2) operating on different resources in the same cache line 

(r1, r2) can be affected by false sharing. For example, if t1 modifies its resource r1, the 

entire cache line will be invalidated, causing interference with t2 which cannot access its 

unmodified resource r2 until the cache line has been updated. 

 Because of these limitations, the novel serial leap segmentation run-time storage 

control framework is removed in the developed parallel implementation of leap 

segmentation in order to reduce contention among threads. 

4.5. Experimental Results 

Both the described serial and parallel leap segmentation approaches are 

implemented in the C programming language and developed in a Linux environment. The 

input parameters chosen for use in leap segmentation are λ=8, ε=20, and α=50. These 

adjacency (λ), equivalence (ε), and minimum size (α) parameters are chosen based on 

optimal performance obtained from the full parameter evaluation based on compression 

and accuracy objective functions given in Section 2.5. 
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The parallel implementation of leap segmentation is built using the OpenMP API 

[62] on a shared memory architecture. The OpenMP API allows for quick parallelization 

of existing C code. In addition, the POSIX threads (Pthreads) API is used to enforce spin 

lock implementations where explicit locks are required for critical section locking. 

A set of moving-camera traffic scene sequences collected at Georgia Tech is used 

in evaluation experiments (discussed in Section 3.4). The captured GTTraffic dataset 

sequences [32] contain fast-moving traffic events such as vehicles swerving into visible 

lanes and thus provide highly diverse scenes for analysis. These scene collections were 

captured at 32 fps using a forward-mounted Kodak Zi6 on an automobile dashboard. 

Over 3,000 images were selected from the GTTraffic dataset for use in these 

experiments. In addition, scaled versions of these 1280x720 images were created at 

several resolutions (960x540, 640x360, and 320x180) for use in evaluation experiments. 

The following sections contain detailed performance evaluations of the presented 

serial and parallel leap segmentation implementations. First, it is demonstrated that leap 

segmentation accuracy is consistent in the serial and parallel implementations developed 

in this chapter. Next, an overall execution performance analysis is presented for 

experimental trials on both high-performance and resource-constrained hardware. Then, 

each leap segmentation subtask is evaluated separately on resource-constrained hardware 

in order to outline the performance benefits of retargeting leap segmentation to a multi-

core platform. 

4.5.1. Serial vs. Parallel Implementation Accuracy 

In Section 2.6, the accuracy of the leap segmentation approach was discussed and 

compared with two well-known segmentation approaches from the literature (see Figure 
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20). The original, single-core leap segmentation approach was shown to maintain a high 

level of scene integrity when compared to traditional approaches. In this section, it is 

further demonstrated that leap segmentation accuracy is consistent in the developed serial 

and parallel leap segmentation implementations.  

The quantitative objective functions introduced in Section 2.5.1, the number of 

segments (to evaluate compression) and the nonmatching pixel percentage (to assess 

segmentation accuracy), are applied in this comparison (see Equations 1-4). In Figure 44, 

the resulting serial and parallel leap segmentation implementation outputs of a zebra 

scene (481x321 pixels) are shown. The nonmatching pixel percentages are listed above 

each segmentation output. Figure 44a shows the merged segmentation outputs. To help 

discern region membership in the merged image, an artificially colorized segmentation is 

 

 

                       (a)                                          (b)                                           (c) 

Figure 44. Serial vs. parallel leap segmentation accuracy comparison images 

(481x321 pixels). (a) The merged segmentation output. (b) A colorized 

representation of the segmentation to show region membership clearly. (c) A binary 

map of nonmatching pixels in the output segmentation. 

 

 Serial Leap Segmentation (85 Regions, 5.9% Non-Matching Pixels) 

 

 Parallel Leap Segmentation (82 Regions, 5.4% Non-Matching Pixels) 
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shown in Figure 44b. Contrasting color assignments show region pixel membership. 

Figure 44c shows a binary matching map for the final segmentation, where nonmatching 

pixels are plotted in white. 

Both implementations maintain similar levels of scene integrity during 

segmentation, as shown in Figure 44a. The serial leap segmentation implementation 

achieves a very low nonmatching pixel percentage (5.9%). The parallel leap 

segmentation implementation produces an even lower nonmatching pixel percentage 

(5.4%) indicating that, for this scene, segmentation accuracy slightly improves when 

moving to a parallel implementation. 

 Analysis of trial runs on over 3000 dataset images indicate that overall 

segmentation accuracy changes little between the described serial and parallel 

implementations. This was to be expected, as no sacrifices were made to the core leap 

segmentation algorithm to parallelize the approach. In addition, slight changes to segment 

structure are possible when moving to a parallelized approach as the order in which pixel 

locations are processed may change (see Figure 44b). However, in trials these segment 

structure changes were not shown to affect segmentation accuracy. 

4.5.2. Overall Performance Analysis 

In the following sections, two systems are used during evaluation experiments to 

assess implementation performance. The first system contains high-performance 

hardware and is used to analyze parallel leap segmentation performance at high thread 

counts. The second system contains embedded hardware and is used to evaluate overall 

performance under resource-constrained conditions. 
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High-Performance Hardware 

In these experiments, a pair of Intel Xeon E5-2670 (20M cache) processors 

running at 2.60 GHz with a total of 16 Sandy Bridge-EP cores with TDP of 115 watts is 

used to evaluate parallel leap segmentation performance. During all trials this system is 

operating using Red Hat Fedora release 17. 

The effect of image size on the frame rate of execution of parallel leap 

segmentation can be seen in Figure 45 for a wide range of thread counts. As expected, 

decreasing the image size significantly increases the frame rate at which parallel leap 

segmentation executes. A more interesting trend is also visible regarding thread count 

and its effect on execution rates. For most frame sizes, the rate of execution is highest 

when using four threads and drops off linearly as the number of threads increases or 

decreases from that value. This indicates an optimal execution state at a thread count of 

 

Figure 45. Plot of the effect of image size on frame rate for various thread counts 

on a pair of Intel Xeon E5-2670 processors 
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four. An increase in frame rate as the available thread-count increases is to be expected as 

more threads share the work load. However, the corresponding decrease from an optimal 

thread count is also to be expected. This is the point at which resource contention among 

threads causes performance to suffer and eventually bottom-out. 

This phenomenon occurs more rapidly in smaller images. In Figure 45, the very 

small 320x180 image shows an optimum thread-count of only two threads. In tests, this 

contention on resources arises primarily in the region building stage of leap 

segmentation. The image is discretized into tiles, and tiles along the same image diagonal 

are distributed between the available threads for processing. If one assumes tile sizes are 

fixed, a smaller image results in fewer tiles along the image diagonal, and thus fewer tiles 

to distribute among threads for processing. This facilitates the hazardous operating 

condition in which threads operate on tiles either directly neighboring or nearby each 

other along the image diagonal. The closer tiles are within the image space, the more 

likely they are to share pixels within the same segment, causing contention between 

threads as they attempt to simultaneously update the same locations on the shared global 

cell list of image segments. 

One can improve upon this discovered optimum by simply restricting thread 

count in the region building subtask of leap segmentation to four, while allowing higher 

thread counts in the less contention-prone regions of the approach. As just 30% of the 

approach is affected by the additional threads when region building is fixed, only a small 

level of speed-up is to be expected (see Figure 39). The results of this experiment are 

shown in Figure 46 for large images in which the effects of this operating condition can 

be seen more clearly. Restricting thread count in the region building subtask while 
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increasing thread counts in the other subtasks does facilitate additional speed-up. When 

processing 1280x720 images, the overall rate of execution increases 4.5% with 8 threads 

and over 6.5% with 16 threads.  

Resource-Constrained Hardware 

The analysis of parallel leap segmentation execution with up to 16 cores on a 

high-performance machine given in the previous section is useful in theory. However, the 

leap segmentation approach was designed specifically for use in an embedded, resource-

constrained environment. Such an environment will likely provide only a fraction of this 

number of processing cores. Therefore, the leap segmentation optimum processing state 

at four cores is, in fact, ideal for the desired execution environment where four cores are 

likely the most one will have ready access to. 

 
 

Figure 46. Plot of the percentage speed-up in frame rate as overall thread count 

increases above four while keeping region building subtask thread count fixed at 

four to limit resource contention on an a pair of Intel Xeon E5-2670 processors. 
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The overall performance of the developed leap segmentation approach 

implementations (both serial and parallel) is further tested using a mobile Intel Core I3–

330M processor (3M cache, 2.13 GHz) running 64-bit Ubuntu 12.04. The I3-330M is a 

mobile processor with 2 Nehalem cores (4 hyperthreaded cores) with TDP of 35 watts. It 

is important to note that this is a dual core machine with hyperthreading to provide four 

threads for execution. As this is not a four core machine, full performance scaling to four 

hardware cores is not expected. 

The averaged frame rates for trials of more than 3000 test frames for both the 

serial and parallel leap segmentation implementations are given in Table 3. The highly-

optimized serial leap segmentation implementation achieves execution rates of more than 

80 fps on 640x360 images and more than 20 fps on high resolution (1280x720) images. 

Furthermore, the multi-core leap segmentation implementation achieves frame rates of 

more than 29 fps on 1280x720 images using two threads and more than 31 fps when 

using four threads, thus easily meeting real-time processing standards. Frame rates for 

both the serial and parallel implementations increase exponentially as image sizes 

decrease. Parallel leap segmentation tests with four threads exhibit frame rates up to 55 

fps on 960x540 images, up to 115 fps on 640x360 images and even 370 fps on 320x180 

 
Size 

320x180 

Size 

640x360 

Size 

960x540 

Size 

1280x720 

Serial 314.71 81.44 36.53 20.41 

1 Thread 286.16 74.83 33.59 18.71 

2 Threads 390.38 113.34 52.66 29.83 

4 Threads 370.59 114.51 54.98 31.71 

Table 3 

Resource Constrained Hardware Execution Rates (FPS) 
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images. These very high frame rates exhibited by both the serial and parallel leap 

segmentation implementations are state-of-the-art execution performance on both low 

and high resolution images. 

Figure 47 includes plots of performance speed-up of the parallel leap 

segmentation implementation over the serial implementation when executing on 

resource-constrained hardware. The parallel implementation is evaluated for threads 

counts of 1, 2, and 4. As frame sizes increase, the percentage speed-up of execution 

 

     

     

Figure 47. Percentage speed-up of parallel leap segmentation over serial leap 

segmentation on an Intel Core I3-330M processor for 1, 2, and 4 thread counts and 

at various frame sizes. 
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increases across the board. At a thread count of one, the negative speed-up percentages 

exhibited by the parallel leap segmentation implementation are due to the high overhead 

of parallelization associated with Open-MP (thread creation, initialization, scheduling, 

assignment, etc.). At thread counts of two and four, consistent speed-up is achieved over 

the serial leap segmentation approach. Once again, it must be noted that the platform used 

in these trials contains a dual-core processor with hyperthreading to provide four threads 

for execution. Because of this, performance is not expected to scale as if four hardware 

cores were available.  

For 1280x720 frame sizes, parallel leap segmentation achieves a 46% speed-up 

over the serial implementation with two threads and 55% speed-up when four threads are 

used. These results with high resolution images on resource-constrained hardware are 

highly promising and show enormous potential for the use of the developed parallel leap 

segmentation implementation in the preprocessing stages of high level vision applications 

operating in real-time, embedded environments. 

4.5.3. Subtask Performance Analysis 

In the following sections, performance evaluations on the resource-constrained 

Intel Core I3-330M mobile processor described previously are presented for each leap 

segmentation subtask for both the serial and parallel implementations of leap 

segmentation presented in this chapter. A detailed comparison of execution rates is given 

both before and after parallelization for each subtask. A high resolution image size was 

chosen for all subtask performance experiments (1280x720) in order to push the limits of 

the algorithms and better assess algorithmic performance. 
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Subtask 1: Region Building 

The execution performance of the leap segmentation region building subtask is 

displayed for both the developed serial and parallel implementations in Table 4. Recall 

that this subtask is parallelized along image diagonals to avoid data dependencies 

between threads. The results in Table 4 indicate that a thread count of two is required for 

speed-up of the parallel approach over the highly-optimized serial approach due to the 

high overhead of parallelization with OpenMP (thread creation, initialization, scheduling, 

assignment, etc.). When four threads are available for execution, parallel leap 

segmentation achieves ~15 fps speed-up over the serial approach (an almost 50% speed-

up in execution performance). 

Subtask 2: Region Adjustment 

Table 5 displays execution rates for assessment of the saliency evaluation portion 

of the region adjustment subtask for both the serial and parallel implementations of leap 

segmentation developed in this chapter. Recall that this portion of the subtask can be 

fully parallelized, as no data dependencies exist between pixels. The results in Table 5 

show that an over 100% speed-up is achieved after adding just one thread to the 

execution for a total of two available threads. However additional threads do not yield as 

much performance improvement. When operating with four available threads, the parallel 

 Serial 1 Thread 2 Threads 4 Threads 

FPS 30.80 27.61 39.71 45.98 

% Speed Up - -10.33% 28.93% 49.30% 

Table 4 

Region Building Execution Performance 

 



 

114 

 

leap segmentation saliency evaluation speed-up over serial leap segmentation is ~127%. 

This may be due to the fact that the experimental setup contains just two hardware cores 

and the execution of four threads is achieved with hyperthreading. 

Table 6 shows execution rates for trial runs of the density analysis stage of the 

region adjustment subtask. This stage implements an incremental approach to density 

analysis and is able to be fully parallelized with each pixel location in parallel. Therefore, 

pixel locations are divided equally among the available threads for execution. With four 

cores, an over 115% speed-up is achieved by parallelizing this computation. The 

comparably minor speed-up results exhibited in this stage are most likely due to the high 

overhead of OpenMP scheduling dominating the processing of an already proportionally 

low computation portion of leap segmentation.  

 The third and final stage of the region adjustment subtask, region synthesis, does 

 Serial 1 Thread 2 Threads 4 Threads 

FPS 184.91 160.60 372.36 421.31 

% Speed Up - -13.15% 101.37% 127.84% 

Table 5 

Saliency Evaluation Execution Performance 

 

 

 Serial 1 Thread 2 Threads 4 Threads 

FPS 228.36 188.22 387.37 491.36 

% Speed Up - -17.58% 69.63% 115.17% 

Table 6 

Density Analysis Execution Performance 
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not prove amenable to parallelization with the high overhead cost of OpenMP as it 

encompasses only 5% of total leap segmentation processing. Therefore, this stage of 

region adjustment is left to function sequentially. 

Subtask 3: Size Analysis 

In Table 7, the execution performance for the size analysis subtask for both the 

serial and parallel leap segmentation implementations developed in this chapter is shown. 

Recall that each image location can be evaluated in parallel during this subtask and that 

the task largely requires only reads from shared memory. However, shared memory 

writes, while infrequent during this subtask, must be performed atomically and therefore 

could hinder performance on a parallel processing system. Despite these synchronization 

concerns, Table 7 shows that significant speed-up occurs after adding just one thread to 

the execution. With four threads, a ~73% speed-up of the size analysis subtask execution 

is achieved over the serial approach. 

4.6. Conclusion 

The goal of this research is to achieve real-time (>25 fps) image segmentation 

execution performance on a commercially-available CPU with multiple processing cores 

that does not require special hardware. To that end, first a highly optimized serial 

 Serial 1 Thread 2 Threads 4 Threads 

FPS 420.69 358.59 580.53 728.68 

% Speed Up - -14.76% 38.00% 73.21% 

Table 7 

Size Analysis Execution Performance 
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implementation of the leap segmentation algorithm is introduced. This highly-optimized 

serial approach is shown to achieve frame rates of more than 80 fps on 640x360 images 

and more than 20 fps on high resolution (1280x720) images. This serial implementation 

of leap segmentation will prove useful in many embedded, resource-constrained 

environments where processing speed is critical. 

To achieve real-time execution of leap segmentation on high-resolution images, a 

multi-core leap segmentation implementation is presented. Numerous parallelization 

techniques are applied to different portions of the leap segmentation algorithm to achieve 

further speed-up over the serial implementation. The steps taken to parallelize each leap 

segmentation subtask are described in detail. In experiments, the developed parallel 

implementation of leap segmentation executes at over 114 fps on 640x360 images and 

over 31 fps on high-resolution, 1280x720 images, easily meeting real-time processing 

standards (and achieving a 55% speed-up over the serial approach).  

The original leap segmentation approach (Chapter 2) was designed for use in 

embedded, resource-constrained environments. An embedded platform may be limited to 

a single processing core, in which case this chapter’s highly optimized serial leap 

segmentation implementation is ideal and achieves real-time behavior on a wide range of 

image sizes. Embedded platforms with multiple available processing cores can make use 

of this chapter’s parallel implementation of leap segmentation. This parallel 

implementation executes in real-time on high resolution images with peak performance at 

a thread count of four. With the frame rates exhibited in performance trials, both of the 

presented approaches show enormous potential for use in real-time, embedded 

environments with high-resolution input images. 
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CHAPTER 5 

CONCLUSION AND SUMMARY OF RESULTS 

 

This dissertation investigates image segmentation in embedded, real-time 

applications. It presents a novel approach, called leap segmentation, that efficiently 

reduces and restructures image data into regions while preserving necessary salient 

features in the image (Forsthoefel et al.) [34]. Leap segmentation is evaluated using both 

standard datasets from the literature [55], [56] and the new, GTTraffic dataset: 

 GTTraffic, a publicly available dataset of moving-camera traffic sequences 

collected at Georgia Tech (Forsthoefel et al.) [32], is developed and presented 

for use in vision evaluation experiments.  

The leap segmentation approach is extensively compared with prior efforts using 

both classical metrics of performance (e.g. the F-measure [76], the probabilistic rand 

index (PRI) [75]) and other, newly developed metrics designed for more extensive 

evaluations (e.g. the non-matching pixel percentage (Forsthoefel et al.) [34]). 

 Leap segmentation demonstrates high region-assignment accuracy and, 

compared to other approaches, preserves a higher level of scene integrity (up 

to 30-40% higher) using a given storage resource. 

 In experiments, this approach exhibits execution time improvements of 10x-

15x over traditional approaches. 
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In addition, the usefulness of applying this novel method of image segmentation 

in the preprocessing stages of a high-level vision application for image labeling and 3D 

reconstruction is evaluated and compared with existing segmentation approaches 

(Forsthoefel et al.) [31]. 

 The efficiency of a high-level image layout and 3D reconstruction task can be 

dramatically improved by applying the leap segmentation technique during 

preprocessing.  

 In the second contribution of this dissertation, the single-frame leap segmentation 

algorithm is extended to efficiently process video while maintaining region boundary 

continuity between image frames. Temporal analysis of this video leap segmentation 

algorithm is performed to evaluate segmentation stability over time in video sequences 

from moving camera scenes (Forsthoefel et al.) [32], (Forsthoefel et al.) [33].  

 Video leap segmentation successfully tracks segments across spatial and 

temporal bounds, generating fast, stable segmentations of images from 

moving-camera video sequences. 

Video leap segmentation is then applied to the task of salient segment 

transformation detection for alerting drivers of critical scene changes that may affect 

steering decisions. The resulting salient transformation recognition technique quickly 

identifies and tracks rapidly moving, salient objects in traffic video sequences 

(Forsthoefel et al.) [33]. 
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 Trial results demonstrate that with little added computation, video leap 

segmentation can detect salient regions in traffic scenes with high accuracy, 

correctly detecting 80% of salient segment transformations in trial scenes with 

less than 5% false positives. 

In the third contribution of this dissertation, a parallel, multi-core implementation 

of leap segmentation is presented (Forsthoefel et al.) [35]. The goal is to achieve real-

time (>25 fps) segmentation performance on a commercially-available CPU with 

multiple processing cores that does not require special hardware. To that end, a highly 

optimized serial implementation of the leap segmentation algorithm is introduced. All 

optimizations built into this serial implementation are described in detail including those 

optimizations made to leap segmentation data structures.  

 This optimized serial implementation is demonstrated to achieve frame rates 

of more than 80 fps on 640x360 images and more than 20 fps on high 

resolution (1280x720) images, thus far exceeding the state-of-the art in 

execution speed. 

To achieve real-time execution of leap segmentation on high-resolution images, a 

multi-core leap segmentation implementation is then presented. Numerous parallelization 

techniques were applied to different portions of the leap segmentation algorithm to 

achieve further speed-up over a serial implementation. The steps taken to parallelize each 

leap segmentation subtask are described in detail. 
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 On a multi-core, mobile processing system with four threads, this multi-core 

leap segmentation implementation achieves frame rates of over 114 fps on 

640x360 images and more than 31 fps on 1280x720 images, thus easily 

meeting real-time processing standards. 

The experiments to evaluate the performance of both the highly optimized serial 

implementation and the parallel implementation of leap segmentation are performed on 

various image sizes and under various operating conditions. With the execution frame 

rates exhibited in these performance trials, both of the developed approaches show 

enormous potential for use in real-time, embedded environments with high-resolution 

input images. 

5.1. Future Work 

Several avenues of future work are possible, particularly in video leap 

segmentation. These include an in-depth parameter variation analysis of video leap 

segmentation parameters and its optimization and parallelization on multi-core, mobile 

platforms. Parallelization of this approach targeting a multi-core platform, such as a 

GPU, appears highly promising because most comparisons between pixels occur across 

frames in time. Therefore, operations performed on each pixel location within a frame 

have the potential to be performed in parallel. The larger the input frame, the more 

opportunities for parallelism, particularly on systems which are able to provide high 

thread counts to their vision processing procedures. 

 Other avenues of future work will explore additional real-world applications of 

both single-frame leap segmentation and video leap segmentation. These include high-
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level image correspondence and image registration applications, especially for use on 

high resolution input images, and content-based image retrieval (CBIR) applications. 

As camera usage on mobile devices increases, the demand for fast, accurate image 

processing techniques will continue to drive computer vision researchers to develop new 

and innovative methods for improving the efficiency of the modern image processing 

pipeline. This dissertation explores the challenging field of image segmentation and 

proposes techniques for segmentation preprocessing that can provide much-needed 

speed-up when used as part of contemporary high-level image analysis and interpretation 

systems. 
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APPENDIX 

ADDITIONAL LEAP SEGMENTATION RESULTS 

 

This appendix includes comparison tables of segmentation output images from 

three segmentation approaches: the Leap Segmentation approach introduced in Chapter 2 

of this dissertation (Forsthoefel et al.) [34], the Mean-Shift Clustering with Edge 

Detection (EDISON) approach [20], and the Efficient Graph-Based Image Segmentation 

(EGBIS) approach [30]. These evaluation experiments are extended from those 

introduced in Section 2.6. The dataset used for these extended comparisons is 300 images 

from the Berkeley Segmentation Dataset [55], [56]. This dataset provides a diverse 

collection of scene types with varying feature sizes and scales. To ensure a consistent 

comparison, all algorithms were adjusted to produce similar levels of segmentation. The 

following figures display segmentation output for each technique and are labeled with 

segment count information and non-matching pixel percentages (see Equations 2-4 from 

Chapter 2 for more details). 
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(a)                        (b)                       (c) 

Figure 48. Segmentation comparison images, human face (321x481 pixels). (a) The 

merged segmentation output for each technique. (b) A colorized representation of 

the segmentation to show region membership clearly. (c) A binary map of 

nonmatching pixels in the output segmentation. 

Original Image 

 

Leap Segmentation (85 Regions, 1.1% Non-Matching Pixels) 

 

EDISON (91 Regions, 13.1% Non-Matching Pixels) 

 

EGBIS (87 Regions, 32.8% Non-Matching Pixels) 
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                                          (a)                        (b)                        (c) 

Figure 49. Segmentation comparison images, human striped shirt (321x481 pixels). 

(a) The merged segmentation output for each technique. (b) A colorized 

representation of the segmentation to show region membership clearly. (c) A binary 

map of nonmatching pixels in the output segmentation. 

Original Image 

 

Leap Segmentation (114 Regions, 0.8% Non-Matching Pixels) 

 

EDISON (112 Cells, 15.1% Non-Matching Pixels) 

 

EGBIS (114 Regions, 20.3% Non-Matching Pixels) 
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