
LEAP SEGMENTATION IN MOBILE IMAGE AND VIDEO

ANALYSIS

A Dissertation

Presented to

The Academic Faculty

by

Dana Forsthoefel

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy in the

School of Electrical and Computer Engineering

Georgia Institute of Technology

December 2013

Copyright © Dana Forsthoefel 2013

LEAP SEGMENTATION IN MOBILE IMAGE AND VIDEO

ANALYSIS

Approved by:

Dr. Linda M. Wills, Advisor

School of Electrical and Computer

Engineering

Georgia Institute of Technology

 Dr. Aaron Lanterman

School of Electrical and Computer

Engineering

Georgia Institute of Technology

Dr. D. Scott Wills, Co-Advisor

(Posthumous)

School of Electrical and Computer

Engineering

Georgia Institute of Technology

 Dr. Doug Blough

School of Electrical and Computer

Engineering

Georgia Institute of Technology

Dr. Jongman Kim

School of Electrical and Computer

Engineering

Georgia Institute of Technology

 Dr. Andrea Thomaz

College of Computing

Georgia Institute of Technology

 Date Approved: August 23, 2013

In memory of Dr. Scott Wills, an exceptional teacher, mentor, and friend.

iv

ACKNOWLEDGEMENTS

First, I wish to thank my advisor, Dr. Linda Wills, for taking me in as an

undergraduate researcher and working tirelessly to turn me into the PhD candidate I am

today. I would never have made it through this experience without her patience,

guidance, encouragement, and friendship. Working for the past eight years in her lab, she

has acted as mentor, advisor, and sometimes, surrogate mom. Thank you Linda, for

sticking with me this long and for making this a wonderful experience I will never forget.

I also wish to thank my late advisor Dr. Scott Wills for all of our research conversations.

I will especially remember those times when we disagreed, because I loved the challenge

of convincing you of my correctness… though you invariably proved to be right in the

end. I like to think, had we had more time, I would have won one someday. Scott, I didn’t

know I’d lose you so soon, but I’m grateful for the time I had to learn from you.

I also appreciate Dr. Jongman Kim, Dr. Aaron Lanterman, Dr. Doug Blough, Dr.

Andrea Thomaz, and Dr. Anthony Yezzi for serving on my committee and providing

their helpful insights and feedback. Their input has helped to strengthen my research for

which I am grateful. I would like to thank Dr. Doug Blough and Dr. John Peatman for

their continued support and guidance during my career at Georgia Tech, ever since my

first classes with them as an undergraduate. I would also like to thank my MoVES lab

colleagues over the years, including Ryan Bales, Shoaib Azmat, Qianao Ju, Brian

Valentine, and Senyo Apewokin. Against all odds, they made those long hours in the lab

enjoyable and I thank them for all their helpful discussions and contributions to my

research.

v

I wish to thank my family, especially my Mom and Dad for all their unwavering

support during my academic career. Though in the beginning they had no idea what an

electrical and computer engineering degree entailed, they never hesitated to support me

through almost a decade in pursuit of one. Mom and Dad, I wouldn’t have made it here

without your encouragement and support. Thank you for being the best parents anyone

could ask for.

 Most of all, I wish to thank my fiancé Adam. Through all the sleepless nights, the

frantic revisions, the hours in the lab, and the frustration at the hands of this doctoral

program, he maintained absolute certainty that I would complete my dissertation before I

turned 80. Adam, without you, I would be lost. I could never have done this without you.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iv

LIST OF TABLES ... ix

LIST OF FIGURES .. x

LIST OF SYMBOLS AND ABBREVIATIONS ... xiii

SUMMARY .. xiv

CHAPTER 1 INTRODUCTION ... 1

1.1. Problem Statement and Research Contributions .. 8

1.1.1. Contribution 1: Single-Frame Leap Segmentation 9

1.1.2. Contribution 2: Leap Segmentation in Video Analysis 11

1.1.3. Contribution 3: Embedded, Multi-Core Leap Segmentation 12

1.2. Summary of Results ... 13

1.3. Overview of Content .. 15

CHAPTER 2 SINGLE-FRAME LEAP SEGMENTATION 16

2.1. Introduction .. 16

2.2. Related Work.. 19

2.3. Leap Segmentation Algorithm ... 22

2.3.1. Chroma-Luminance Affinity .. 23

2.3.2. Adjacency ... 23

2.3.3. Region Equivalence .. 24

2.4. Leap Segmentation Implementation... 25

2.4.1. Segmentation Constraints ... 25

2.4.2. Region Adjustment and Size Analysis .. 27

2.5. Parameter Variation and Analysis .. 27

2.5.1. Objective Functions .. 28

2.5.2. Adjacency ... 31

2.5.3. Equivalence Threshold.. 34

2.5.4. Minimum Size Threshold ... 36

vii

2.6. Experimental Results: Intelligent Vehicle Traffic Scenes and the Berkeley

Segmentation Dataset.. 39

2.6.1. Segmentation Comparison – Traffic Scene .. 41

2.6.2. Segmentation Comparison – Animal Scene ... 43

2.6.3. Detail Preservation Experiment .. 45

2.6.4. Image Gradient Evaluation ... 46

2.6.5. Matching Accuracy and Run-Time Analysis .. 48

2.7. Classical Performance Metrics ... 49

2.7.1. Experimental Setup ... 50

2.7.2. Boundary Precision-Recall ... 52

2.7.3. Probabilistic Rand Index ... 53

2.8. Experimental Results: Image Labeling and 3D Reconstruction 55

2.8.1. Application Background ... 55

2.8.2. Representative Approach .. 57

2.8.3. Dataset and Evaluation Method .. 58

2.8.4. Results ... 59

2.9. Conclusion .. 62

CHAPTER 3 LEAP SEGMENTATION IN VIDEO ANALYSIS 64

3.1. Introduction and Related Work .. 64

3.2. Fast Video Leap Segmentation .. 67

3.3. Recognition of Salient Segment Transformations ... 72

3.4. Experimental Results.. 75

3.4.1. Video Leap Segmentation Stability .. 76

3.4.2. Salient Segment Transformation Detection .. 79

3.4.3. Run-Time Analysis ... 83

3.5. Conclusion .. 83

CHAPTER 4 EMBEDDED, MULTI-CORE LEAP SEGMENTATION 85

4.1. Introduction .. 85

4.2. Related Work.. 87

4.3. Leap Segmentation Implementation... 90

4.4. Implementation Analysis.. 92

4.4.1. Subtask 1: Region Building .. 92

viii

4.4.2. Subtask 2: Region Adjustment.. 96

4.4.3. Subtask 3: Size Analysis ... 100

4.4.4. Storage Implementation Considerations ... 102

4.5. Experimental Results.. 103

4.5.1. Serial vs. Parallel Implementation Accuracy .. 104

4.5.2. Overall Performance Analysis .. 106

4.5.3. Subtask Performance Analysis ... 112

4.6. Conclusion .. 115

CHAPTER 5 CONCLUSION AND SUMMARY OF RESULTS 117

5.1. Future Work ... 120

APPENDIX ADDITIONAL LEAP SEGMENTATION RESULTS 122

REFERENCES .. 125

VITA... 132

ix

LIST OF TABLES

Page

Table 1: Leap Segmentation Parameter Variation 31

Table 2: Video Leap Segmentation Stability 79

Table 3: Resource Constrained Hardware Execution Rates (FPS) 110

Table 4: Region Building Execution Performance 113

Table 5: Saliency Evaluation Execution Performance 114

Table 6: Density Analysis Execution Performance 114

Table 7: Size Analysis Execution Performance 115

x

LIST OF FIGURES

Page

Figure 1: Leap segmentation output example (Planes). 5

Figure 2: Leap segmentation groups together non-contiguous segments. 6

Figure 3: Graphical summary of the first dissertation contribution: single-frame

leap segmentation. 10

Figure 4: Graphical summary of the second dissertation contribution: video leap

segmentation with salient transformation detection. 12

Figure 5: Graphical summary of the third dissertation contribution: embedded,

multi-core leap segmentation. 13

Figure 6: Leap segmentation output example (Polo). 17

Figure 7: Definition of the neighborhood of P, n(P), for λ = {1, 2}. 24

Figure 8: The leap segmentation adjacency definition allows more flexibility,

eliminating noise and occlusion problems. 25

Figure 9: Workflow of resource-efficient leap segmentation algorithm. 26

Figure 10: Efficient storage of region member-pixel information. 27

Figure 11: Sample images from the Berkeley segmentation dataset. 30

Figure 12: Analysis over several mobile camera scene runs for the adjacency

parameter (λ) varying between 2 and 32 pixels. 32

Figure 13: Qualitative image comparison, adjacency parameter (λ). 33

Figure 14: Analysis over several mobile scene runs for equivalence thresholds (ε)

varying between 2 and 32. 34

Figure 15: Qualitative image comparison, equivalence threshold (ε). 35

Figure 16: Analysis over several mobile scene runs for minimum size thresholds

(α) varying between 10 and 90 percent. 37

Figure 17: Qualitative image comparison, minimum size threshold (α). 38

Figure 18: The segmentation output images for each approach for comparison. 40

Figure 19: Segmentation comparison images, traffic scene (1280x720 pixels). 42

xi

Figure 20: Segmentation comparison images, animal scene (481x321 pixels). 44

Figure 21: Lettering on street signs is processed using different segmentation

approaches for detail preservation comparison. 45

Figure 22: Image gradients evaluation, EDISON, EGBIS and Leap Segmentation. 47

Figure 23: Segmentation accuracy, compression, and run-time analysis. 48

Figure 24: Example of a human segmentation. 50

Figure 25: Boundary precision-recall curves with corresponding F-measure

results for each segmentation approach. 53

Figure 26: Average Probabilistic Rand Index (PRI) versus the average number of

regions in the output for each segmentation approach. 54

Figure 27: Example output of automatic 3D reconstruction using Hoiem et al.'s

approach. 55

Figure 28: More example outputs of automatic 3D reconstruction using Hoiem et

al.'s approach. 56

Figure 29: Performance results for both main class and vertical subclass labeling. 60

Figure 30: Scene labeling results for qualitative comparison of segmentation

performance. 61

Figure 31: The initial leap segmentation passes a global cell list and a list of tile

cell sets for each tile in the discretized image. 67

Figure 32: Workflow of the fast, resource-efficient video leap segmentation

algorithm. 71

Figure 33: Example of binary movement vector assignments at various pixel

locations. 74

Figure 34: Sample images from the GTTraffic dataset. 76

Figure 35: Video leap segmentation results for two consecutive image frames. 77

Figure 36: Salient segment transformation recognition results for two frames of

an input video sequence. 80

Figure 37: Salient segment transformation detection results for a video scene in

which a vehicle rapidly enters the driver’s lane. 82

Figure 38: Workflow of the leap segmentation algorithm broken down into three

subtasks for parallelization. 89

xii

Figure 39: A leap processing usage chart indicating percentages of processing

time dedicated to each of the three main subtasks. 90

Figure 40: The leap segmentation data structures are designed for optimal

resource usage. 91

Figure 41: Serial leap segmentation image traversal. 94

Figure 42: Leap segmentation diagonal dependencies. 95

Figure 43: Region adjustment workflow. 97

Figure 44: Serial vs. parallel leap segmentation accuracy comparison images

(481x321 pixels). 105

Figure 45: Plot of the effect of image size on frame rate for various thread counts

on a pair of Intel Xeon E5-2670 processors. 107

Figure 46: Plot of the percentage speed-up in frame rate as overall thread count

increases. 109

Figure 47: Percentage speed-up of parallel leap segmentation over serial leap

segmentation on an Intel Core I3-330M processor. 111

Figure 48: Segmentation comparison images, human face (321x481 pixels). 123

Figure 49: Segmentation comparison images, human striped shirt (321x481

pixels). 124

xiii

LIST OF SYMBOLS AND ABBREVIATIONS

λ Leap Segmentation adjacency parameter

ε Leap segmentation equivalence parameter

 Leap segmentation minimum size parameter

AOF Aggregate Objective Function

CL Chroma-Luminance

EDISON Edge Detection and Image Segmentation

EGBIS Efficient Graph-Based Image Segmentation

FPS Frames Per Second

HSI Hue, Saturation, Intensity

MCD Maximum Component Difference

PRI Probabilistic Rand Index

RGB Red, Green, Blue

SAD Sum of Absolute Differences

TDP Thermal Design Power

xiv

SUMMARY

As demand for real-time image processing increases, the need to improve the

efficiency of image processing systems is growing. The process of image segmentation is

often used in preprocessing stages of computer vision systems to reduce image data and

increase processing efficiency. This dissertation introduces a novel image segmentation

approach known as leap segmentation, which applies a flexible definition of adjacency to

allow groupings of pixels into segments which need not be spatially contiguous and thus

can more accurately correspond to large surfaces in the scene. Experiments show that

leap segmentation correctly preserves an average of 20% more original scene pixels than

traditional approaches, while using the same number of segments, and significantly

improves execution performance (executing 10x - 15x faster than leading approaches).

Further, leap segmentation is shown to improve the efficiency of a high-level vision

application for scene layout analysis within 3D scene reconstruction.

The benefits of applying image segmentation in preprocessing are not limited to

single-frame image processing. Segmentation is also often applied in the preprocessing

stages of video analysis applications. In the second contribution of this dissertation, the

fast, single-frame leap segmentation approach is extended into the temporal domain to

develop a highly-efficient method for multiple-frame segmentation, called video leap

segmentation. This approach is evaluated for use on mobile platforms where processing

speed is critical using moving-camera traffic sequences captured on busy, multi-lane

highways. Video leap segmentation accurately tracks segments across temporal bounds,

maintaining temporal coherence between the input sequence frames. It is shown that

xv

video leap segmentation can be applied with high accuracy to the task of salient segment

transformation detection for alerting drivers to important scene changes that may affect

future steering decisions.

Finally, while research efforts in the field of image segmentation have often

recognized the need for efficient implementations for real-time processing, many of

today’s leading image segmentation approaches exhibit processing times which exceed

their camera frame periods, making them infeasible for use in real-time applications. The

third research contribution of this dissertation focuses on developing fast

implementations of the single-frame leap segmentation approach for use on both single-

core and multi-core platforms as well as on both high-performance and resource-

constrained systems. While the design of leap segmentation lends itself to efficient

implementations, the efficiency achieved by this algorithm, as in any algorithm, is can be

improved with careful implementation optimizations. The leap segmentation approach is

analyzed in detail and highly optimized implementations of the approach are presented

with in-depth studies, ranging from storage considerations to realizing parallel processing

potential. The final implementations of leap segmentation for both serial and parallel

platforms are shown to achieve real-time frame rates even when processing very high

resolution input images.

Leap segmentation’s accuracy and speed make it a highly competitive alternative

to today’s leading segmentation approaches for modern, real-time computer vision

systems.

1

CHAPTER 1

INTRODUCTION

Over the past decade, the pervasiveness of cameras in almost all areas of modern

life has created a growing need for efficient image analysis and understanding

techniques. Camera use is ubiquitous:

 in “smart” cell phones [73] for image capture and minor image editing,

 in factories [87] for real-time monitoring and inspection of products,

 on streets [16] for catching traffic violations and illegal parking,

 in cars [38], [81] for improving highway safety,

 in hospital rooms [82] for remote monitoring of patient vital signs.

One of the more prevalent uses of cameras today is in video surveillance to

monitor areas in combating crime. Surveillance cameras have become common in

airports, businesses, and homes to identify and track suspicious behavior. Self-guided

cameras have also been developed for use in combat environments for automated

reporting of combat situations [29]. Often, surveillance cameras operate on mobile,

resource-constrained systems, requiring image analysis methods to rapidly process

images for conclusive identification of significant activity in real-time (e.g. [6], [8], [9]).

Employing vision processing in intelligent vehicle systems has also grown

extensively over the past several years. Cameras have been placed in mobile vehicles for

use in driver aid and alert systems [38], [48], and, in some developing car designs, in

automatic steering systems [81]. Computer vision systems can be used to analyze traffic

2

scenes and alert drivers of potentially dangerous events as they occur in real time, thus

increasing the safety of road ways. Prototype intelligent vehicle systems have already

been demonstrated on highways across the country [54]. Due to their operating

environment, intelligent vehicle systems are inherently mobile, requiring vision

applications to be both accurate and efficient in their implementation for successful

operation in this resource-constrained, real-time environment.

All these applications are driving ground-breaking research in embedded image

processing to develop novel methods for image analysis and understanding. An important

early step in most of these vision applications is image segmentation, which is critical in

reducing image data and enabling efficient execution. Image segmentation separates an

image into homogeneous, perceptually significant regions of pixels that can each be

processed as a group. Segmentation is often used in vision applications to preprocess

pixel data prior to image analysis methods, such as edge detection, stereo matching, and

object tracking. For many segmentation approaches the primary objective is to accurately

detect whole object positions and boundaries in an image, a process referred to as under-

segmentation. However, under-segmentation often causes enormous loss of image detail

as pixels are grouped to form overly-large segments. While these identified primitives are

often useful for high-level visual processing tasks, there exists a separate class of high-

level vision applications which instead require an over-segmentation of the input image.

In over-segmentation, segments correspond not with whole image objects, but with

homogeneous regions of pixels within image objects that can be similarly processed

because of their affinity. High-level vision applications incorporate image over-

segmentation techniques into their preprocessing stages primarily to reduce the image

3

data which must be processed by the vision system, thus improving overall execution

efficiency. However, in many such applications, the resulting image blurring and loss of

detail can be detrimental to the accuracy of the functioning system. For example, if one

were to segment a photograph before performing facial recognition, the human facial

features must remain discernible or the recognition accuracy would suffer. For a highway

surveillance system to identify specific vehicles, the vehicle license plates must remain

legible after segmentation. An intelligent vehicle vision system may require street sign

and road marking information to autonomously make steering decisions. While small,

these details cannot be blurred during segmentation without reducing the accuracy of the

high-level steering system, which would have life-threatening ramifications.

Developing a New Segmentation Approach

The goal of this research is to develop a novel over-segmentation approach for the

preprocessing stages of real-time vision applications that require salient-feature

preservation to achieve accuracy. This specific class of vision applications is one for

which traditional approaches, both under-segmentation and even over-segmentation, have

proven inadequate due to loss of detail and blurring. In particular, this application class

requires the following:

1. Efficiency. Demand is steadily growing for image processing on portable, low

power devices. Efficient implementations of computer-vision techniques are

needed for computing on mobile systems such as cell phones and digital cameras.

To meet this demand, an embedded-computing trend is emerging in the field of

computer vision [50]. Recently, many traditional image-processing techniques

have been revisited to develop faster, more efficient implementations that can

4

function in an embedded environment. Real-time, high-level vision applications

apply image over-segmentation during preprocessing to improve their overall

execution efficiency. The over-segmentation technique must therefore be efficient

in its own execution to avoid counteracting any system performance

improvement. Meeting performance requirements in this area has proven

challenging. Existing segmentation approaches often fail to meet real-time

processing standards, particularly when applied to high-resolution images.

Research in novel over-segmentation approaches is needed that focuses on highly-

efficient preprocessing of input image data for real-time applications.

2. Salient-Feature Preservation. The question of how much detail should be

preserved during segmentation depends on the target application. Many current

high-level applications that apply image-segmentation techniques in

preprocessing expect a certain degree of image blurring and detail loss when

applying existing segmentation algorithms in their preprocessing stages. This

detail loss is expected and useful in those applications which favor treating whole

image objects as single entities, rather than several pieces forming a whole

(segments). However, scene-interpretation applications (such as those for natural

scene reconstruction, human facial recognition, and highway scene

understanding) require a higher degree of salient-feature preservation during

segmentation preprocessing for reliable performance. Excessive blurring of input

images or loss of salient detail (e.g. street sign lettering, lane markings, or facial

features) during segment formation is detrimental. A lack of detail preservation in

preprocessing would greatly reduce the utility of these vision applications. The

5

specific class of applications of interest in this research requires a segmentation

approach that balances salient-detail preservation with the reduction of image

data.

In this dissertation, a novel approach, called leap segmentation, is developed that

focuses on this task of improving segmentation preprocessing both in efficiency and

feature preservation (Forsthoefel et al.) [34]. This approach efficiently transforms raw

pixel data into feature preserving, palletized, color-similar and illumination-similar

regions for use in preprocessing to facilitate performance improvements in high-level

vision systems.

Leap segmentation is so named because the approach allows grouping of adjacent

but non-neighboring pixel values. Pixels can “leap” across segmentation boundaries to

join nearby chromatic and luminance-similar segments. This technique preserves salient

scene details during segmentation as shown in Figure 1. The leap-segmented image on

the right strongly resembles the original image on the left with little loss in detail.

However, 154,401 pixels in the original image are now replaced by 132 regions, which

 (a) (b)

Figure 1. Leap segmentation output example (Planes). (a) Original image 481x321

pixels. (b) Image segmented using leap segmentation with 132 segments.

6

can be more efficiently processed.

Segmentation algorithms typically partition an image into regions, often referred

to as “superpixels” [66], which can be processed together because of their affinity (based

on color, texture, intensity, etc.). Leap segmentation removes unimportant image features

and minute pixel variations (such as texture and minor chromatic variations), while better

preserving fine detail (such as vehicle license plate lettering or highway scene markings),

than existing segmentation approaches. By relaxing strict adjacency constraints, leap

segmentation produces larger groupings of similar pixels. In practice, this novel approach

is able to produce perceptually correct groupings of non-contiguous regions such as

stripes, as shown in Figure 2. Traditional segmentation approaches often needlessly

segment each stripe into a separate segment, an inefficient use of resources.

Similarly, traditional segmentation approaches often have difficulty processing

high-variation or porous regions, such as trees and grass. A traditional segmentation

approach which builds only contiguous segments will attempt to segment each tree leaf

 (a) (b)

Figure 2. Leap segmentation groups together non-contiguous segments such as

stripes. (a) Original image. (b) Colorized representation of the image segmented

using leap segmentation.

7

as a separate segment, a tremendous waste of resources. This method of processing also

burdens high-level applications with the need to perform additional steps to group these

leaf segments into a “tree” object. The leap segmentation approach groups pixels in high-

variation regions such as sparse vegetation together within a specified adjacency

neighborhood into a small number of segments representing the color information in

these regions, thus eliminating the need for additional steps in high-level vision

applications and reducing the resources required to represent the segmented image scene.

Admittedly, existing segmentation approaches could be redesigned to allow the

grouping of non-contiguous pixels into their segmentations. However, such adjustments

to these algorithms would dramatically increase their complexity, making them

computationally infeasible for real-time applications. Leap segmentation is designed

specifically to produce such output and thus is capable of doing so with reduced time and

storage resources.

Multiple-Frame (Video) Segmentation

In addition to the challenges of single-frame image segmentation (efficiency and

salient-feature preservation), this dissertation explores ways of meeting segmentation

challenges in multiple-frame (video) applications. Video segmentation has been applied

in many vision applications including video compression and video indexing and

retrieval [39]. Many video segmentation techniques are designed to operate off-line,

requiring all frames in the input video sequence as input [41]. Since future frames must

be known, these approaches are not feasible for real-time applications where only current

and past frames are available. A few on-line approaches exist in the literature, but they

are limited in accuracy. Meeting both high accuracy and high efficiency requirements in

8

video segmentation is a challenging task, and further research in this field is needed to

meet real-time processing standards.

Parallelizing Leap Segmentation

Finally, this dissertation explores the potential for parallelizing leap segmentation

on multi-core hardware platforms. Modern demand for real-time image processing

algorithms has inspired several research efforts in fast, multi-core image segmentation.

However, contemporary approaches often require specialized hardware and achieve only

moderate frame rates on low-resolution images and exhibit extremely slow frame rates

when applied to high resolution images [1], [43], [58]. Real-time, multi-core

implementations have not been fully realized. There remains much room for

improvement to achieve real-time (>25 fps) image segmentation executions on

commercially-available CPUs with multiple processing cores that do not require special

hardware.

1.1. Problem Statement and Research Contributions

The goal of this research is to provide vision applications with a faster, more

accurate image segmentation approach that is robust enough to be used in both single and

multiple-frame scene analysis and efficient enough for embedded and mobile platforms.

This goal will be achieved through the following contributions:

1. A novel, single-frame segmentation approach, called leap segmentation, is

presented that efficiently reduces and restructures image data into regions while

preserving the salient features in the image that are needed in scene analysis

applications (Forsthoefel et al.) [31], (Forsthoefel et al.) [34].

9

2. The single-frame leap segmentation algorithm is extended to efficiently process

video—multiple, consecutive frames in time—while maintaining region boundary

continuity between image frames. Temporal analysis of the multiple-frame leap

segmentation algorithm is performed to evaluate segmentation stability over time

in video sequences from moving camera traffic scenes (Forsthoefel et al.) [32],

(Forsthoefel et al.) [33].

3. Single-frame leap segmentation is parallelized in a multi-core implementation of

the approach that achieves real-time frame rates when segmenting high-resolution

input images on embedded, mobile platforms (Forsthoefel et al.) [35].

These three contributions to the image segmentation field are evaluated further in

the following subsections.

1.1.1. Contribution 1: Single-Frame Leap Segmentation

The first contribution of this dissertation introduces leap segmentation, a highly-

efficient, non-contiguous segmentation approach designed to reduce and restructure

image information while accurately preserving salient details in the scene. Leap

segmentation builds a new image representation, replacing individual pixel data with a

map-indexed palette of chroma-luminance-similar regions that are adjacent but not

necessarily contiguous. High-level algorithms can process this compact image

representation for efficient execution. Leap segmentation is evaluated using both the

Berkeley Segmentation Dataset and new, publicly available datasets that target real-time

vision applications, such as those used in intelligent vehicle systems. In experiments, leap

segmentation demonstrates high region-assignment accuracy and, compared to other

10

approaches, preserves a higher level of scene integrity (up to 30-40% higher) using a

given storage resource (Forsthoefel et al.) [34].

In addition, it is demonstrated that this novel segmentation technique can

significantly improve scene layout analysis within 3D scene reconstruction (Forsthoefel

et al.) [31]. Leap segmentation can be used in preprocessing to form homogeneous

regions of pixels that need not be spatially contiguous and can thus more accurately

correspond to larger surfaces in the scene. In this way, leap segmentation provides more

meaningful spatial support to scene layout analysis methods. A detailed evaluation of the

leap segmentation approach and comparisons with related, existing segmentation

methods are provided. The presented implementation is computationally efficient,

exhibiting execution time improvements of 10x - 15x over traditional approaches. The

diagram in Figure 3 provides a full, graphical summary of this contribution.

Figure 3. Graphical summary of the first dissertation contribution: single-frame

leap segmentation.

11

1.1.2. Contribution 2: Leap Segmentation in Video Analysis

Multiple-frame (video) segmentation is an important step in many video analysis

applications for identifying and tracking specific features as they move through a scene.

In a mobile, resource-constrained environment, such as an intelligent vehicle system,

video segmentation can be used to reduce image information and increase processing

efficiency for high-level scene understanding applications. The second contribution of

this dissertation introduces video leap segmentation, a highly efficient multiple-frame

segmentation approach for use on embedded and mobile platforms where processing

speed is critical. This novel video segmentation method is demonstrated to successfully

track segments across spatial and temporal bounds, generating fast, stable segmentations

of images from moving-camera video sequences (Forsthoefel et al.) [33]. Video leap

segmentation is applied to the task of salient segment transformation detection for

alerting potential drivers of critical scene changes that may affect steering decisions. Trial

results demonstrate that video leap segmentation enables coarse detection of salient

region transformations in traffic scenes, correctly detecting 80% of salient segment

transformations in trial scenes with less than 5% false positives. Reducing high-level

processing to salient areas using this approach can significantly improve the processing

efficiency of scene interpretation applications in intelligent vehicle systems. The diagram

in Figure 4 provides a graphical summary of this contribution.

A supplementary contribution of this research is the development of a publicly

available image dataset called the GTTraffic Dataset (Forsthoefel et al.) [32]. GTTraffic

is a collection of moving-camera traffic sequences captured at Georgia Tech for use in

vision evaluation experiments. The sequences contain fast-moving traffic events, such as

12

vehicles quickly swerving into the driver’s lane. These sequences are made publicly

available as part of this research to motivate and evaluate vision-based approaches to

improving highway safety.

1.1.3. Contribution 3: Embedded, Multi-Core Leap Segmentation

Existing segmentation approaches often fail to meet real-time processing

standards and exhibit extremely slow frame rates when applied to high resolution images.

The third contribution of this dissertation first presents a highly optimized serial

implementation of the leap segmentation approach. This serial implementation is

demonstrated to achieve frame rates exceeding that of the state-of-the art (it segments

more than 80 fps on 640x360 images and more than 20 fps on high resolution (1280x720)

images). Leap segmentation is then analyzed further for its inherent parallelism and

restructured for use on a multi-core system to achieve additional speed-up (Forsthoefel et

al.) [35]. On a multi-core, mobile processing system with four threads, multi-core leap

Figure 4. Graphical summary of the second dissertation contribution: video leap

segmentation with salient transformation detection identifies salient foreground

objects when everything is moving, including the camera. Color indicates segment

direction relative to the camera.

13

segmentation achieves frame rates of over 114 fps on 640x360 images and more than 31

fps on 1280x720 images, thus easily exceeding real-time processing standards. The

diagram in Figure 5 graphically summarizes this contribution.

1.2. Summary of Results

The key results of this dissertation are as follows:

 An efficient, non-contiguous segmentation approach designed to reduce and

restructure image information while accurately preserving salient details in the

scene is presented (Forsthoefel et al.) [34]. This leap segmentation approach

demonstrates high region assignment accuracy and, compared to other

approaches, preserves a higher level of scene integrity (up to 30-40% higher)

using a given storage resource. The approach is also computationally efficient,

exhibiting execution time improvements of 10x - 15x over traditional approaches.

Figure 5. Graphical summary of the third dissertation contribution: embedded,

multi-core leap segmentation.

14

 The leap segmentation approach is comprehensively evaluated in a 3D scene

reconstruction application (Forsthoefel et al.) [31]. Leap segmentation can be used

in preprocessing to form perceptually significant regions of pixels that need not be

spatially contiguous and can thus more accurately correspond to larger surfaces in

the scene. In this way, leap segmentation provides more meaningful spatial

support to scene layout analysis methods.

 A highly efficient multiple-frame segmentation approach for use on embedded

and mobile platforms where processing speed is critical is presented (Forsthoefel

et al.) [33]. This novel video leap segmentation method is demonstrated to

successfully track segments across spatial and temporal bounds, generating fast,

stable segmentations of images from captured moving-camera video sequences.

 Video leap segmentation is applied to the task of salient segment transformation

detection for alerting potential drivers of critical scene changes that may affect

steering decisions (Forsthoefel et al.) [33]. Trial results demonstrate that with

little added computation, video leap segmentation enables course detection of

salient region transformations in traffic scenes, correctly detecting 80% of pixels

in salient segment transformations with less than 5% false positives.

 A publicly available dataset of moving-camera traffic sequences (GTTraffic)

collected at Georgia Tech is developed and presented for use in vision evaluation

experiments (Forsthoefel et al.) [32].

 A highly optimized serial implementation of single-frame leap segmentation is

given in (Forsthoefel et al.) [35]. This serial implementation is demonstrated to

15

achieve frame rates of more than 80 fps on 640x360 images and more than 20 fps

on high resolution (1280x720) images, far exceeding the state-of-the art in

execution.

 A parallel implementation of the single-frame leap segmentation algorithm is

developed for use on embedded, multi-core platforms (Forsthoefel et al.) [35]. On

a multi-core, mobile processing system with 4 threads, this multi-core leap

segmentation implementation achieves frame rates of over 114 fps on 640x360

images and more than 31 fps on 1280x720 images, easily meeting real-time

processing standards.

1.3. Overview of Content

This dissertation is organized as follows. Chapter 2 outlines the novel, leap

segmentation approach and presents the results of experiments that test leap segmentation

using both classical and newly developed accuracy metrics. This chapter also presents

comparisons with other well-known segmentation approaches and evaluates the use of

leap segmentation in the preprocessing of a high-level 3D reconstruction application. In

Chapter 3, leap segmentation is extended into a real-time, video segmentation approach.

Video leap segmentation is then applied in the application of salient segment

transformation detection in a mobile, intelligent vehicle vision application. A detailed

analysis of video leap segmentation performance in this context is given. Chapter 4

outlines two highly efficient implementations of the leap segmentation approach for use

on single-core and multi-core platforms and gives detailed performance analyses on both

high-performance and resource-constrained hardware. Chapter 5 concludes this

dissertation and discusses future work.

16

CHAPTER 2

SINGLE-FRAME LEAP SEGMENTATION

2.1. Introduction

Image segmentation is the process of separating an image into perceptually

significant regions of pixels that can each be processed as a group. Segmentation

algorithms have been widely researched and are used in many vision applications to

preprocess pixel data prior to image analysis methods, such as edge detection, stereo

matching, and object tracking. Separating an image into segments of pixels for processing

can significantly reduce the amount of computational resources needed to analyze an

image in a high-level vision system. This reduction of resource usage has the potential to

increase algorithmic processing speed.

This chapter presents a highly-efficient image segmentation approach, called leap

segmentation (Forsthoefel et al.) [34], that focuses on the task of improving segmentation

preprocessing both in efficiency and feature preservation to facilitate performance

improvements in high-level vision systems. A primary objective for most existing

segmentation approaches is to accurately detect object positions and boundaries in an

image. Leap segmentation has a different emphasis: to efficiently transform raw pixel

data into feature preserving, palletized, color-similar and illumination-similar regions for

improved scene analysis. Rather than process each image pixel individually, vision

applications can use leap segmentation to preprocess image pixels into groups that can be

processed more rapidly. An example of leap segmentation output is shown in Figure 6.

17

Vision applications rely on preprocessing segmentations to accurately maintain

important image features while reducing the data in the image. In addition, many

applications require their segmentation preprocessing steps to perform quickly and

efficiently. Leap segmentation is applicable to a broad range of segmentation tasks and is

especially appropriate for embedded and mobile platforms where processing speed is

critical. Traditional image segmentation approaches often blend or remove small image

details when building contiguous regions, and processing time often exceeds the camera

frame period. Leap segmentation better preserves salient features while achieving a

significant improvement (> 10x the state of the art) in execution performance.

In this chapter, leap segmentation is evaluated using images from the well-known

Berkeley Segmentation Dataset. Its use in real-time applications, such as intelligent-

vehicle vision systems where detailed feature preservation is vital, is also evaluated. In

experiments, leap segmentation demonstrates high region-assignment accuracy and,

compared to other approaches, preserves a higher level of scene integrity using a given

storage resource.

 (a) (b)

Figure 6. Leap segmentation output example (Polo). (a) Original image 481x321

pixels. (b) Image segmented using leap segmentation (Forsthoefel et al.) [34] with

180 segments.

18

To further demonstrate the benefits of leap segmentation, it is used to improve the

performance of a high-level vision task for 3D scene reconstruction (Forsthoefel et al.)

[31]. Surface-layout analysis applications for 3D scene reconstruction often evaluate

complex geometric cues over large regions to determine the orientations of large surfaces

within the scene. These regions can contain contiguous pixels, such as those in solid

walls, or non-contiguous pixels such as those in tree leaves or shrubs. Traditional

segmentation approaches partition homogeneous, non-contiguous pixels into many

smaller segments that must then be further analyzed and grouped by the high-level layout

application. Leap segmentation can form homogeneous regions of pixels that need not be

spatially contiguous and can thus more accurately correspond to larger surfaces in the

scene. In this way, leap segmentation provides more meaningful spatial support to scene

layout analysis methods, significantly improving processing efficiency.

This chapter is organized as follows. Related work in image segmentation is

summarized in Section 2.2. Section 2.3 presents the novel, leap segmentation approach.

Section 2.4 discusses the fast leap segmentation implementation. Section 2.5 shows a

detailed parameter evaluation and sensitivity analysis. Section 2.6 compares the accuracy

and efficiency of leap segmentation with other well-known segmentation approaches

when applied to intelligent vehicle highway scenes and on diverse Berkeley

Segmentation Dataset images. Section 2.7 evaluates leap segmentation using several

well-known, classical accuracy metrics. Section 2.8 describes a popular high-level vision

application for image labeling and reconstruction and demonstrates the benefits of

applying leap segmentation to this task. Experiments show that leap segmentation

correctly maintains an average of 20% more original scene pixels than traditional

19

approaches while using the same number of segments and significantly improving

execution speed (>10x faster than existing approaches). Section 2.9 concludes this

chapter and discusses future work.

2.2. Related Work

Image segmentation has been explored in many previous research efforts,

resulting in several broad classes of algorithms, including region-based, feature-space

clustering, and graph-based segmentation. Early image segmentation approaches

typically use region-based segmentation. These region-growing [2], [19] and split-and-

merge [46] methods are conceptually simple. They typically rely heavily on input

threshold parameters and they often have trouble processing regions of high variation

[61]. The watershed approach [77] is a popular example of region-based segmentation. In

general, watershed transformation-based algorithms [10], [61] are fast and efficient with

time complexities linear in the number of pixels [67]. However, they are sensitive to

noise and highly-textured regions and often require extra, costly preprocessing steps to

produce useful gradient input [78].

Finally, the jump connection approach [68] is a region-grouping approach

recently applied in color segmentation with mathematical morphology operators [5].

While it closely resembles leap segmentation in name, the two approaches are very

different in operation. The jump connection approach assesses jumps in color space

between neighboring image pixels and, unlike leap segmentation, the jump connection

approach requires segments to be spatially contiguous.

Segmentation methods that use feature-space clustering attempt to find modes

(clusters) in a distribution by using each image pixel's features as sampled data from the

20

distribution's probability density function. The k-means clustering method [52], while

simple and well-known, relies heavily on correct user input of cluster count and initial

cluster center placements to produce a good segmentation [47]. Mixture of Gaussians

(MoG) clustering with Expectation Maximization (EM) [26] has been used in

preprocessing for recent applications [11], [18]. However, EM calculations are vulnerable

to becoming stuck in local minima and can be slow to converge [85]. The MoG with EM

approach also relies heavily on its input parameters, such as an accurate estimate of

cluster count, to provide a useful solution.

The mean-shift technique [21], [22] also uses feature-space clustering. According

to Pantofaru and Hebert [63], output segmentations from mean-shift correspond well to

human perception. A disadvantage is its sensitivity to parameter change and the necessity

for input parameter tuning to obtain good segmentations [86]. In addition, mean-shift

suffers from being computationally expensive making it too slow for real-time

applications. This is due in part to the expensive sliding-window approach it applies to

image pixels during processing. Several techniques for improving mean-shift have been

proposed [17], [20], [37], [80]. For example, Christodias et al. [20] proposed combining

mean-shift with edge detection to increase segmentation accuracy in EDISON. However,

there is still room for improvement as these algorithms require on the order of minutes to

process one second of video [65].

In graph-based segmentation an image is represented as a weighted, undirected

graph. Graph-based segmentation based on minimum cuts was first introduced by Wu

and Leahy [84]. Shi and Malik [71] then introduced the normalized cut (NC) criterion to

avoid the bias for partitioning undersized segments that plagued Wu and Leahy's earlier

21

approach. The NC algorithm requires few input parameters from the user when compared

to mean-shift [86]. However, NC is expensive to run and is too slow to be used in real-

time applications; finding the minimum NC based on Shi and Malik's proposed criterion

is an NP-hard problem [30]. They present methods to approximate the calculation but

these methods still prove computationally intensive. Several improvements to the NC

approach have been proposed [53], [60] such as adding a boundary detector to reduce

clutter and enhance segmentation performance. Cour et al. [24] focus on the

parallelization of the existing normalized cuts approach for speed gain and propose an

efficient multiscale variant of the normalized cuts approach that runs in linear time.

However, these algorithms are still many times too slow for use in real-time applications,

requiring at least several seconds to process a single frame [24].

Segmentation by weighted aggregation (SWA) [69] is a recent multiscale

approach that reduces the normalized cut minimization problem using algebraic

multigrids [15]. SWA preserves image boundaries more accurately in output

segmentations and is more efficient than the original NC approach, possessing linear time

complexity in the number of input image pixels. Despite these improvements, the SWA

approach and a recently proposed improvement known as the probabilistic aggregation

approach (PA) [4] which eliminates user-defined parameter reliance, are still slow,

requiring tens of seconds to process a single image frame [28].

A popular graph-based segmentation technique, EGBIS [30], is considered to be

state of the art in computational efficiency [28], [65]. It uses pair-wise component

comparisons to segment an image in O(mlogm) time, where m is the number of graph

edges. A drawback to this method is its sensitivity to its input parameter k and its

22

tendency to create small, unneeded regions at the borders of valid image segments. In

addition, the graph cuts segmentation approach [13], [14] is a popular graph-based

method that uses Markov random fields [40]. However, this technique is primarily

applied to binary segmentation, which is outside the scope of this research.

In the next section presents the novel leap segmentation technique. The leap

segmentation algorithm is first defined and then evaluated for efficiency and accuracy

performance using images from publicly available segmentation datasets. In this

evaluation, leap segmentation performance and segmentation results are compared to two

widely known segmentation approaches: a mean-shift segmentation approach (EDISON)

and a graph-based segmentation approach (EGBIS).

2.3. Leap Segmentation Algorithm

 The leap segmentation approach (Forsthoefel et al.) [34] identifies pixels that are

related by adjacency within a specified neighborhood constraint and by a given chroma-

luminance affinity metric. The reflexive, symmetric, transitive closure of these pixel

relations provides equivalence groupings of adjacent, but not necessarily contiguous,

pixels that are similar in chromaticity and luminance. The final segmentation includes

each such grouping that satisfies a minimum size constraint requiring its area to be

greater than a minimum-size threshold α.

 In particular, the equivalence relation region-equivalent is defined to capture the

relationship between all pixels in the same segment. It is the reflexive, symmetric,

transitive closure of the binary relation adjacent-matches between pairs of pixels. Pixel

P1 adjacent-matches P2 iff

23

a.) P1 and P2 are CL-similar (chroma-luminance affinity defined below) and

b.) P1 and P2 are adjacent within a specified neighborhood (not necessarily

nearest neighbors).

2.3.1. Chroma-Luminance Affinity

 Two pixels are CL-similar if their chroma-luminance difference is within a given

threshold, ε. The measure of difference depends on the image color model (e.g., YCrCb,

HSI, etc.). While luminance and chromaticity participate in the relation, they need not be

orthogonally represented in the color model. In the leap segmentation implementation,

described in Section 2.4, a red-green-blue component (RGB) color model is used to

eliminate translation time. The CL-similar relation is defined using the maximum

component difference (MCD): P1 and P2 are CL-similar iff

 (

| |

| |

| |
) (1)

2.3.2. Adjacency

While existing segmentation algorithms require member pixels to be spatially

contiguous, leap segmentation allows member pixels to be separated by a pixel adjacency

parameter, λ. For a given pixel P, the neighborhood of P, n(P), is defined as all pixels

within a λxλ square window centered around P. Figure 7 shows examples with λ=1 and

λ=2. Two pixels P1 and P2 are adjacent iff)(21 PnP equivalently)(12 PnP . P1 and

P2 need not be nearest neighbors.

24

2.3.3. Region Equivalence

 Region equivalence, which relates all pixels grouped into the same segment, is

the reflexive, symmetric, transitive closure of the adjacent-matches relation. Pixels that

are region-equivalent (i.e., in the same segment) are not required to be directly connected

with immediate neighbors or even to be reachable through a chain of contiguous pixels.

For example, in Figure 8, multiple contiguous regions (on left) are within a λxλ

neighborhood and are grouped as a single segment B. A diagonal occlusion (on right)

does not fragment segment A into two segments. This allows segments to span large

regions of an image by connecting pixels through multiple “leaps” over other segments in

the image with the restriction that no leap can be greater than λ.

 Traditional image segmentation approaches could, potentially, be redesigned to

allow the grouping of non-contiguous pixels into their segmentations. However, such

adjustments to these algorithms cause dramatic increases in complexity. For example, the

popular graph-based EGBIS approach [30] can be adjusted to include edges between non-

adjacent pixels. However, this would require an exponential increase in the number of

edges of the manipulated graph, in turn causing a marked decrease in the approach's

Figure 7. Definition of the neighborhood of P, n(P), for λ = {1, 2}.

25

execution performance. Conversely, the innovative leap segmentation approach is

designed specifically to produce such non-contiguous segment output and thus is capable

of doing so with reduced time and resources.

2.4. Leap Segmentation Implementation

 This section presents a fast and resource-efficient implementation of the leap

segmentation algorithm. The workflow is shown in Figure 9.

2.4.1. Segmentation Constraints

 To begin, the input image is discretized using the adjacency parameter, λ, by

dividing it into non-overlapping λxλ square regions called tiles. Each tile is then scanned

using the CL-similar constraint to locate candidate regions in each tile. If a pixel is CL-

similar to pixels within an existing region, it is added to that region. Otherwise, it forms a

new candidate region.

 Pixels within a region contribute their component values to a ratiometric mean via

component sums and a pixel count, shown in Figure 10. Each scanned pixel in a region is

Figure 8. The leap segmentation adjacency definition allows more flexibility,

eliminating noise (left) and occlusion (right) problems.

26

compared to the mean component values (e.g. R, G, and B) of each candidate region.

After identifying candidate regions within each tile, these regions are compared between

neighboring, contiguous tiles. Regions whose mean component values satisfy the CL-

similar relation are merged into a mega-region. This process continues until a final set of

candidate mega-regions are identified. At this point, all ratiometric component means are

locked to fixed component averages that no longer depend on member pixels.

Figure 9. Workflow of resource-efficient leap segmentation algorithm.

Discretize ImageAdjacency

Constraint

Scan for

CL-Similar Pixels

Within Each Tile

Equivalence

Constraint

Scan for

CL-Similar Regions

Between Tiles

Tile

Adjacency

Equivalence

Constraint

Merge

Candidate

Regions

Image Frame

Image Tiles

Sets of

Candidate

Regions

List of Candidate

Regions for

Each Tile

Mega-Regions

Region

Adjustment

Size Analysis

Equivalence

Constraint

Refined

Mega-Regions

Final

Segmentation
Size

Constraint

27

2.4.2. Region Adjustment and Size Analysis

 When a pixel joins a candidate region, it adds its component values to the region's

pixel component sums. Certain scene features such as large, slowly changing gradients

can cause region component means to drift, occasionally leaving some member pixels

outside of the CL-similar bounds.

This is corrected in a post-process region-adjustment step. Pixels are scanned for

incorrect assignments in region membership. If a large number of incorrectly assigned

pixels are identified, a new mega-region is created. The effect of region adjustment is

examined in Section 2.6.4. This step also applies the minimum-size constraint to mega-

regions, appropriately assimilating small regions to nearby mega-regions based on spatial

and color similarities. The resulting mega-region list becomes the final segmentation.

2.5. Parameter Variation and Analysis

 Leap segmentation input parameters include an adjacency parameter λ, an

equivalence threshold ε, and a minimum size threshold α. The optimal parameter choice

is determined by evaluating accuracy and compression objective functions across a

Figure 10. Efficient storage of region member-pixel information.

28

diverse collection of datasets. In this parameter assessment, both quantitative assessment

and qualitative assessment are considered. While the optimization is performed primarily

through the minimization of quantitative objective functions (e.g., number of segments),

qualitative assessments (e.g., appropriate scene feature preservation), are also used to

select the best parameters. In this section, evaluation metrics are defined, an optimal

parameter set is presented, and parameter variation sensitivity analysis is explored.

2.5.1. Objective Functions

 In this evaluation, two quantitative objective functions are used to assess

compression and accuracy performance. The first metric, number of segments assesses

image compression. One goal of leap segmentation is to transform pixel data into a much

smaller number of similar regions that are more easily processed. The number of

segments produced by an algorithm is a measure of how well it meets this objective.

However, used alone, pursuit of compression would result in an undesirable loss of

salient image features.

The second metric, nonmatching pixel percentage assesses segmentation

accuracy. It measures the percentage of image pixels in the segmentation output that are

not CL-similar to their original image color. Calculation of the nonmatching pixel

percentage is shown in Equations 2-4. The equivalence function E applies the CL-similar

relation (Equation 1) to assess pixel affinity. PNM is the number of pixels in the final

segmentation which are not CL-similar within the matching threshold τ to their original

image (τ = 30 was used in all experiments) and PTOTAL is the total number of pixels in the

image. PORIG holds the original input image, and PSEG holds the pixels in the output

segmentation.

29

 () {

 [∑ ([] [])

]

(2)

(3)

(4)

A high accuracy image segmentation result achieves a low nonmatching pixel

percentage, indicating that a small number of pixels have been assigned to a region color

that is significantly different from their original color. This metric is a good measure of

the preservation of scene integrity during the segmentation process.

Alternative quantitative metrics of image quality include mean squared error loss

(MSE) and other cumulative pixel error measures. However, leap segmentation strives to

preserve the maximum number of pixels in the original image, rather than assess the

magnitude of distortion of disrupted pixels. Qualitative assessment is also used to adjust

parameters near the quantitative optimum. Inspection of segmentation output reveals

small adjustments of the parameters that improve the perseveration of important scene

features. However these adjustments must benefit the process across a wide range of

scene collections.

This section assesses the sensitivity of the algorithm parameters to scene

composition, chromaticity, and illumination, to evaluate its applicability to a wide range

of different scenes. For each parameter variation experiment, both the cumulative

nonmatching pixel percentage and the cumulative number of segments are evaluated and

compared using eight different scene collections, each containing 300 images. These

collections include the Berkeley Segmentation Dataset [55], [56] (see Figure 11 for

sample images) and seven mobile camera sequence collections captured at Georgia Tech

30

as part of the GTTraffic dataset [32] (discussed in Section 3.4). When computing the

cumulative nonmatching pixel percentage and cumulative number of segments, all eight

datasets are evaluated separately, each generating an average objective function value

over each frame in the collection. The cumulative nonmatching pixel percentage and

cumulative number of segments are the sum of the average values in each of the eight

collections. The dataset scene diversity tests the generality of parameter values.

Figure 11. Sample images from the Berkeley segmentation dataset [55], [56] for use

in segmentation evaluation experiments.

31

Each leap segmentation parameter is varied across a wide range of values, shown

in Table 1, to generate approximately 720 parameter combinations for evaluation. This

bracketing assures that the best parameters are captured. Both accuracy and compression

objective functions contribute to overall segmentation quality. While the relative benefits

of each function are dependent on the application, an aggregate objective function (AOF)

is useful in optimizing segmentation parameters. The AOF is defined as the normalized

sum of the accuracy and compression objective functions. This equality weighting

preserves the convexity of the objective functions and simplifies optimization.

To explore parameter sensitivity near the optimum, the best assessed parameters

are defined (λ = 8, ε = 20, and α = 50) and each parameter is independently varied about

this point. The following sections present the results.

2.5.2. Adjacency

 The adjacency parameter, λ gives the maximum spatial extent that a pixel can be

separated from an existing segment and still be eligible for membership. The value of λ is

varied between 2 and 32 pixels. The effect of adjacency on nonmatching pixel percentage

is shown in Figure 12a. As λ is reduced, more pixels match their original color following

segmentation. For λ between 2 and 8, the cumulative nonmatching percentage remains

Table 1

Leap Segmentation Parameter Variation

 Adjacency Equivalence Size

Symbol λ ε

Range of Values 2 to 32 2 to 32 10 to 90

Optimal Value 8 20 50

32

below 10% over all eight scenes. However, as λ increases above 8 pixels the cumulative

nonmatching pixel percentage increases linearly.

An opposite trend occurs in the analysis of the cumulative number of segments

produced, shown in Figure 12b. As λ increases, the number of segments produced by leap

segmentation dramatically decreases as pixels are more readily grouped into segments

that span large areas in the image. For λ values of 4 or less, the large cumulative segment

Figure 12. Analysis over several mobile camera scene runs for the adjacency

parameter (λ) varying between 2 and 32 pixels. (a) The cumulative nonmatching

pixel percentage increases as λ increases. (b) The cumulative number of segments

decreases as λ increases. The aggregate objective function is overlaid in black.

a)

b)

33

counts diminish the compression effect, as shown in Figure 13a. The individual scene

collection performances in Figure 12b show that the effect of λ is similar across diverse

scenes.

Increased λ has two effects. Locally, segments are less affected by noise and

small occlusions that disrupt growth; regions are able to leap over non-similar obstacles.

At a larger scale, increased λ allows segments to extend across greater areas in the image,

further reducing similar but spatially disjoint segments.

Excessively large values of λ adversely affect segmentation quality. As segments

encompass a larger number of pixels, the mean color components of the region can drift,

and no longer match member pixels. While this is corrected in a post-process region

adjustment, it can distort segment boundaries, as shown in Figure 13b.

 (a) (b)

Figure 13. Qualitative image comparison, adjacency parameter (λ). Segmentation

visual quality decreases as adjacency constraints are relaxed from a) λ = 2 (1219

regions) to (b) λ = 32 (25 regions).

34

The aggregate objective function (AOF), overlaid on the results in Figure 12,

shows an optimum near λ = 8, which corresponds to the value of the best assessed

parameter set.

2.5.3. Equivalence Threshold

 The equivalence threshold parameter, ε, defines how color- and luminance-similar

Figure 14. Analysis over several mobile scene runs for equivalence thresholds (ε)

varying between 2 and 32. (a) The cumulative nonmatching pixel percentage first

decreases as ε increases, then increases as ε increases. (b) The cumulative number of

segments decreases as ε increases. The aggregate objective function is overlaid in

black.

a)

b)

35

a pixel must be to gain membership in a segment. Equivalence is defined as the CL-

similar relation, shown in Equation 1. The value of ε is varied between 2 and 32.

The effect of equivalence threshold on cumulative nonmatching pixel percentages

is shown in Figure 14a. For ε values between 12 and 20, cumulative nonmatching pixel

percentages remain below 10% across the eight scene collections. Outside of this range,

cumulative nonmatching pixel percentages increase rapidly. This is expected; more color

diverse pixels are admitted into segments as ε increases. The reduction in accuracy when

ε falls below 12 occurs for a different reason. This stricter requirement for equivalence

reduces segment size, which increases the area of the image represented by segments that

are below the minimum segment size. Since these small segments are assimilated into

 (a) (b) (c)

Figure 15. Qualitative image comparison, equivalence threshold (ε). (a) Over-

segmentation, ε = 2 (2035 regions). (b) Optimal segmentation, ε = 20 (330 regions).

(c) Under-segmentation, ε = 32 (125 regions).

36

larger ones (with resulting color distortion), the overall segmentation accuracy is reduced.

The impact of the equivalence threshold on compression is shown in Figure 14b.

The cumulative number of segments increases as ε is reduced. A small ε results in over-

segmentation: scene features are transformed into many small, similar segments, as

shown in Figure 15a. A large ε produces under-segmentation: multiple scene features are

merged into a segment, distorting object boundaries, as shown in Figure 15c.

The normalized sum of accuracy and compression objective functions is overlaid

on the results in Figure 14. It suggests an optimum near ε = 20. A qualitative study of

leap segmentation supports this equivalence threshold value. At this value of ε, the over-

and under-segmentation of key scene features is minimized.

2.5.4. Minimum Size Threshold

 The minimum size threshold parameter, α, determines the minimum area of an

independent segment. It is defined as the ratio of segment area, c to the corresponding

adjacency neighborhood area (λ x λ):

()
 (5)

 Segment area is significantly affected by adjacency. The adjacency area specifies

a maximum ignorable occlusion size. Defining the minimum segment area in terms of the

adjacency area maintains segment size discrimination as adjacency changes. Increasing

or decreasing adjacency provides a corresponding increase or decrease in minimum

segment area. The minimum segment size threshold is evaluated for values between 10

and 90. The cumulative nonmatching pixel percentage increases with increasing α, as

shown in Figure 16a. This contrasts with the compression trend, in Figure 16b, where the

37

cumulative number of segments decreases as α is increased. For large values of α, fine

scene details are lost as small segments are assimilated into larger nearby segments.

Small values of α preserve insignificant scene details, and reduce scene compression.

Evaluation of the minimum size threshold is dependent on qualitative assessment

of appropriate scene details, shown in Figure 17. The AOF has the least pronounced

Figure 16. Analysis over several mobile scene runs for minimum size thresholds (α)

varying between 10 and 90 percent. (a) The cumulative nonmatching pixel

percentage increases as α increases. (b) The cumulative number of segments

decreases as α increases. The aggregate objective function is overlaid in black.

a)

b)

38

optimum in the minimum size threshold, near α = 40. The overall change in the accuracy

and compression objective functions is small across this range α. In the qualitative

analysis of diverse scene types, especially from the Berkeley Segmentation Dataset, the

human assessed quality improvement near the AOF optimum is almost unperceivable.

When assessing the appropriate segmentation of fine scene details, the best algorithm

performance occurred at α = 50. This minimum size threshold improves scene

compression by approximately 10% over the AOF optimum.

The parameter values (λ = 8, ε = 20, and α = 50) combine accuracy and

compression objective functions and qualitative assessment to achieve optimal

segmentation across diverse scene types.

Figure 17. Qualitative image comparison, minimum size threshold (α). Significant

blurring occurs over traffic scene details such as headlights and street signs from

range (a) α = 10 (1659 regions) to (b) α = 90 (527 regions).

a)

b)

39

2.6. Experimental Results: Intelligent Vehicle Traffic Scenes

and the Berkeley Segmentation Dataset

 This section evaluates the quality and performance of leap segmentation

compared with two well-known image segmentation algorithms: Mean-Shift Clustering

with Edge Detection (EDISON) [20], and Efficient Graph-Based Image Segmentation

(EGBIS) [30]. All three segmentation algorithms are implemented in C and executed in a

Linux environment.

The primary dataset used for this comparison is 300 images from the Berkeley

Segmentation Dataset [55], [56]. This provides a diverse collection of scene types with

varying feature sizes and scales. Additional scene collections at Georgia Tech (the

GTTraffic dataset [32] (discussed in detail in Section 3.4)) were captured using a

forward-mounted Kodak Zi6 on an automobile dashboard. This camera provides a fixed

focus, fixed aperture, and fixed field of view with electrically controlled gain and

sensitively. The images extracted from the captured mpeg4 videos are at a resolution of

1280 x 720 pixels. To ensure a consistent comparison, all algorithms were adjusted to

produce similar levels of segmentation.

Figure 18 shows a collection of segmentation results.
1
 The figure displays

segmentation output for each technique and is labeled with segment count information.

These segmentation results consistently show that leap segmentation is able to preserve

significantly more detail from the input scenes than the EGBIS and EDISON approaches

1
 Complete tables of segmentation comparison results are available at:

<www.ece.gatech.edu/research/pica/pdf/LeapFullResults.pdf>.

40

 F
ig

u
re

 1
8
.

T
h

e
se

g
m

en
ta

ti
o
n

 o
u

tp
u

t
im

a
g
es

 f
o
r

ea
ch

 a
p

p
ro

a
ch

 f
o
r

co
m

p
a
ri

so
n

.
T

h
e

n
u

m
b

er
 o

f
se

g
m

en
ts

 f
o
r

ea
ch

o
u

tp
u

t
is

 l
a
b

el
ed

.
F

o
r

a
 g

iv
en

 s
ce

n
e,

 t
h

e
o
u

tp
u

ts
 f

ro
m

 t
h

e
se

g
m

en
ta

ti
o
n

 a
p

p
ro

a
ch

es
 a

re
 v

er
y
 s

im
il

a
r

in
 s

eg
m

en
t

co
u

n
t

so
 t

h
a
t

th
ey

 m
a
y
 b

e
co

m
p

a
re

d
 f

a
ir

ly
.

O
ri

g
in

al
 I

m
a
g
e

L
ea

p
 S

eg
m

e
n
ta

ti
o

n

E
D

IS
O

N

E
G

B
IS

1
8
1

1
8
3

1
8
1

1
6
1

1
6
6

1
6
1

1
2
1

1
2
2

1
2
1

9
3

9
8

9
5

41

while using the same number of segments. See the Appendix for additional comparison

results.

To the human eye, the leap segmentation results are difficult to differentiate from

their corresponding original images. The approach is able to significantly reduce and

restructure the information needed to represent an image while still preserving salient

features that are necessary for scene analysis.

2.6.1. Segmentation Comparison – Traffic Scene

 The quantitative objective functions introduced in Section 2.5.1, the number of

segments (to evaluate compression) and the nonmatching pixel percentage (to assess

segmentation accuracy), are applied in the segmentation approach comparison. In Figure

19, the resulting segmentations of a traffic scene (1280x720 pixels) are shown for each

technique. The three techniques are adjusted to produce similar segment counts (~800

segments) for comparison. The nonmatching pixel percentages are listed above each

segmentation output. Figure 19a shows the merged segmentation output for each

technique. Figure 19b shows a binary matching map for the final segmentation, where

nonmatching pixels are plotted in white.

Of the three approaches, leap segmentation provides the highest accuracy with a

low nonmatching pixel percentage (3.1%). EDISON and EGBIS exhibit larger

nonmatching percentages of 14.0% and 29.8%, respectively. The non-matching maps in

Figure 19b suggest that leap segmentation achieves greater accuracy in high variability

regions like trees and grass, even when they cover a large portion of the image. Leap

segmentation benefits from non-contiguous adjacency, allowing pixels within an

adjacency threshold to be joined in a segment.

42

(a) (b)

Figure 19. Segmentation comparison images, traffic scene (1280x720 pixels). (a) The

merged segmentation output for each technique. (b) A binary map of nonmatching

pixels in the output segmentation.

 Original Image

Leap Segmentation (802 Regions, 3.1% Non-Matching Pixels)

EDISON (853 Regions, 14.0% Non-Matching Pixels)

EGBIS (838 Regions, 29.8% Non-Matching Pixels)

43

2.6.2. Segmentation Comparison – Animal Scene

In Figure 20, the resulting segmentations of a zebra scene (481x321 pixels) are

shown for each approach. As before, the three approaches are adjusted to produce similar

segment counts (~80 segments). Figure 20a shows the merged segmentation output for

each technique. To help discern region membership in the merged image, an artificially

colorized segmentation is given in Figure 20b. Contrasting color assignments show

region pixel membership. Figure 20c shows a binary map of nonmatching pixels in the

final segmentation. Leap segmentation is the most accurate at maintaining original image

information, providing the lowest nonmatching pixel percentage (5.9%) of the three

approaches. EDISON and EGBIS produce more than five times more nonmatching

pixels.

Images with stripes often present a problem for classical segmentation algorithms.

While similar colors may exist within the stripes, these colors are not directly connected

in the image and so cannot be grouped by traditional techniques. Ideally, a segmentation

technique would require only two segments to cover a zebra. In the colorized images in

Figure 20b, EDISON and EGBIS assign each zebra stripe to a different segment. Leap

segmentation allows same-color stripes to be grouped even when they are not touching.

Leap segmentation achieves an efficient two color segmentation of each zebra.

The three approaches produce a substantial variation in preserved detail, shown in

Figure 20a. By achieving greater pixel coverage with each segment, leap segmentation

captures more detail from the original image. If the purpose of segmentation output is to

identify object boundaries, this detail may be irrelevant. However if segmentation is

being used for feature recognition, salient details are valuable in the process.

44

 (a) (b) (c)

Figure 20. Segmentation comparison images, animal scene (481x321 pixels). (a) The

merged segmentation output for each technique. (b) A colorized representation of

the segmentation to show region membership clearly. (c) A binary map of

nonmatching pixels in the output segmentation.

 Original Image

 Leap Segmentation (85 Regions, 5.9% Non-Matching Pixels)

 EDISON (81 Regions, 35.1% Non-Matching Pixels)

 EGBIS (87 Regions, 40.3% Non-Matching Pixels)

45

2.6.3. Detail Preservation Experiment

 Leap segmentation strives to identify regions of homogeneous pixels in an image

and to remove unimportant image features, such as texture and minor chromatic

variations, thus reducing the amount of information necessary to represent a scene. It also

avoids removing scene information that is important for analysis, such as road sign

lettering, lane markers and facial features. This section presents an evaluation of the three

segmentation approaches based on their ability to preserve these salient details.

Each technique's segmentation of road sign images are shown in Figure 21. For

scene understanding, the letters on each sign should be preserved in the segmentation

output with minimal blurring and distortion. The EGBIS approach does not preserve

details, and often blocks lettering into more convex segments. EDISON preserves some

letters, but blurs others limiting text recognition. Leap segmentation provides the most

accurate lettering representation. In each example, sign letters are visible with minimal

Figure 21. Lettering on street signs is processed using different segmentation

approaches for detail preservation comparison.

Original Image Leap Segmentation EDISON EGBIS

46

blurring and distortion.

2.6.4. Image Gradient Evaluation

 All segmentation approaches strive to group color-similar pixels into a large

region. Slow-changing gradients allow a region's color to drift, expanding the tolerated

variance during the segmentation process. The lack of contrasting edges to limit a

region's extent can result in decreased color accuracy. When processing gradients, a

balance must be struck between segment area and color accuracy.

Initially, leap segmentation, EDISON, and EGBIS produce similar results for

gradient images, shown in Figure 22. Road and sky gradients produce large-area regions

that capture these scene elements well. But the increased range in member colors

produces lower matching accuracy with the resulting segment color. This is seen in both

the nonmatching pixel percentages (24.4%, 25.9%, and 18.9% for EDISON, EGBIS, and

Leap) and the nonmatching binary images in Figure 22b.

Leap completes the segmentation process with a post-process region adjustment

step (described in Section 2.4.2) that divides gradient regions into multiple segments.

While this reduces the resulting segment size and typically fractures a single object (e.g.,

road, sky) into multiple segments, it dramatically improves the color accuracy, from an

18.9% nonmatching percentage to a 1.7% nonmatching percentage.

While some applications favor minimizing the number of segments and the

fractionation of objects (e.g., identifying object boundaries), these algorithms must still

handle this segmentation condition for objects that are composed of high-contrast color

elements.

47

 (a) (b)

Figure 22. Image gradients evaluation, EDISON, EGBIS and Leap Segmentation.

(a) The merged segmentation output for each technique. (b) A binary map of

nonmatching pixels in the final segmentation.

 Original Image

EDISON (519 Regions, 24.4% Non-Matching Pixels)

EGBIS (541 Regions, 25.9% Non-Matching Pixels)

Leap Segmentation, (408 Regions, 18.9% Non-Matching Pixels)

Leap Segmentation w/ Region Adjustment, (493 Regions, 1.7% Non-Matching Pixels)

48

2.6.5. Matching Accuracy and Run-Time Analysis

The approaches are evaluated using a 2.13 GHz Intel Core I3-330M processor

running 64-bit Ubuntu 10.04. The algorithms were not parallelized or otherwise altered

for the platform. Figure 23 presents a reference table containing sub-images to identify

the actual images used during testing. The full-size versions of these reference images are

used in the evaluation. The left four images are from the Berkeley Dataset [55], [56] and

are of size 481x321 pixels. The remaining three images are from mobile camera traffic

sequences captured at Georgia Tech and are 1280x720 pixels in size.

Leap segmentation produces superior accuracy results over the EGBIS and

EDISON approaches. Figure 23a lists the tabulated nonmatching pixel percentage results

for each approach. In all trial runs, the leap segmentation approach exhibits lower

Figure 23. Segmentation accuracy, compression, and run-time analysis. (top) A table

of reference images and their IDs. (a) The nonmatching pixel percentages for each

test image segmentation. (b) The total number of segments in each output

segmentation. (c) The execution times required to produce each segmentation

output.

Red Hat Striped Shirt Zebras Tiger Highway Two Cars Rural Road

481x321 481x321 481x321 481x321 1280x720 1280x720 1280x720

Non-Matching Pixel Percentage (%)

 Red Hat Striped Shirt Zebras Tiger Highway Two Cars Rural Road

LEAP 1.1 0.8 3.9 4.0 1.7 1.4 3.1

EDISON 13.1 15.1 35.1 18.4 24.4 10.7 14.0

EGBIS 32.8 20.3 40.3 23.5 25.9 12.2 29.8

Number of Segments

 Red Hat Striped Shirt Zebras Tiger Highway Two Cars Rural Road

LEAP 85 114 86 181 493 621 802

EDISON 91 112 81 183 519 617 853

EGBIS 87 114 87 181 541 605 838

Run Time (ms)

 Red Hat Striped Shirt Zebras Tiger Highway Two Cars Rural Road

LEAP 11.6 13.3 14.4 15.4 77.9 75.7 92.4

EDISON 12,360.0 13,850.0 15,950.0 13,990.0 534,550.0 535,100.0 827,730.0

EGBIS 144.2 127.2 150.6 145.8 1,262.5 1,230.1 1,271.4

a)

b)

c)

49

nonmatching pixel percentages than the classical approaches with varied input image

scenes.

In addition, leap segmentation is computationally more efficient than the EGBIS

and EDISON approaches. Figure 23c lists the tabulated algorithm run-times for each

approach. An analysis of the trial results reveals that leap segmentation, in all runs, is

over 900x faster than EDISON and 10x-15x faster than EGBIS, the current state of the

art.

In this section, an extensive comparison of leap segmentation with two classical

segmentation approaches reveals that leap segmentation is both highly accurate, detail

preserving, and computationally efficient. These qualities make the successful utilization

of the leap segmentation approach highly promising.

2.7. Classical Performance Metrics

In addition to the detailed performance evaluations presented in this section,

investigations of two classical, human-based metrics were also performed to further

evaluate leap segmentation accuracy: the F-measure [76] and the Probabilistic Rand

Index (PRI) [75]. Accuracy measures based on human-labeled ground truths such as

these tend to discount segmentation approaches that maintain image detail despite any

corresponding reductions in image data. This is because humans tend to segment whole

image objects into large segments, resulting in a very low segment count. Because of this,

the author notes that these human-based metrics are more appropriate for evaluating

boundary detection or under-segmentation approaches than for evaluating preprocessing

over-segmentations such as the approach outlined in this chapter. Despite this, the author

found that leap segmentation provided performance numbers comparable to classical

50

segmentation approaches using these metrics, consistently showing F-measure and PRI

scores equal to or only slightly lower than classical methods. The following sections

provide a detailed analysis of all experiments performed using these classical

performance metrics and a discussion of relevant findings.

2.7.1. Experimental Setup

 The accuracy of classical segmentation approaches is typically evaluated with

comparisons to human-labeled ground truth images. Humans tend to segment whole

image objects into large segments, resulting in a very low segment count. An example

human segmentation is shown in Figure 24b. The entire tiger in the image is grouped into

one segment in the human segmentation. The average human-labeled ground truth

segmentation from the Berkeley dataset is composed of only ~18 segments.

Comparing with human segmentations is a good strategy for evaluating classical

segmentation approaches because the two share similar goals. However, the objectives of

classical segmentation and leap segmentation differ. Classic segmentation approaches

attempt to accurately detect object boundaries in a scene. Leap segmentation focuses on

 (a) (b)

Figure 24. Example of a human segmentation. (a) Original Image. (b) Human

segmentation output.

51

eliminating less significant detail in the image, such as texture and minor chromatic

variations, while accurately representing essential scene content. Leap segmentation

results are therefore not directly comparable with classical segmentations results.

Nevertheless, leap segmentation is evaluated using two classical, human-based

accuracy metrics to determine if leap segmentation, while not designed for classical

segmentation uses, can still provide accuracy results that are comparable to classical

approaches. The following two widely-known, classical, human-based metrics are used to

evaluate leap segmentation accuracy: the F-measure [76] and the Probabilistic Rand

Index (PRI) [75].

The evaluation is performed in a similar manner as Hanbury and Stöttinger [42] in

their paper on segmentation evaluation metrics. The EGBIS and EDISON approaches are

executed over specific parameter ranges. For the EDISON approach, a spatial bandwidth

of hs = 12 is used, chosen according to the size of the input image. The range bandwidth,

hr, is evaluated for values between 4 and 20. For the EDISON approach, a Gaussian

smoothing input value of σ = 0.8 is used and the threshold k is evaluated for values

between 50 and 1050. The leap segmentation approach is evaluated using the optimal

parameters for the adjacency threshold, λ = 8, and the minimum region size, α = 50. The

equivalence threshold, ε, is evaluated for values between 8 and 64. The F-measure is

evaluated using the resources from the Berkeley Segmentation Dataset and Benchmark

[55], [56]. The Probabilistic Rand Index is evaluated using the resources from the Image

Segmentation Benchmark Indices Package [83]. It is important to recall that leap

segmentation is penalized by these benchmarks for its alternative segmentation

objectives.

52

2.7.2. Boundary Precision-Recall

The F-measure [76] is used to compare the output of boundary detection (or

segmentation) algorithms with human-segmentation ground truths. The F-measure,

shown in Equation 6, is computed using both the precision (P) and the recall (R) of a

boundary image and outputs a measure of algorithm performance. Precision is the

fraction of boundary pixels in the output segmentation that correctly match boundary

pixels in the human segmentation. If a large amount of noise is present in the output

segmentation, its precision score will be low. Recall is the fraction of boundary pixels in

the human segmentation that are correctly identified by the output segmentation. Recall

represents the portion of the human segmentation ground truth that is correctly detected.

 (6)

Ideally, both the precision and recall of a segmentation are high, near a value of

one. The range of the F-measure is from zero to one, with higher values indicating better,

more accurate segmentations.

The precision-recall curves for each approach are presented in Figure 25. The

figure legend lists the value of the optimal F-measure achieved for each precision-recall

curve. The EGBIS approach yields the highest F-measure over all approaches (F=0.61).

The mean-shift-based EDISON approach’s F-measure is lower (F=0.55). This is likely

due to a lack of attention to texture cues by the EDISON approach. Other evaluations of

mean-shift from the literature report higher F-measures (F=0.64) [42] due to

implementation differences.

The leap segmentation approach yields F-measure scores that are lower, but

53

comparable to the other approaches (F=0.48). This is due to leap segmentation’s

consistently low precision scores. These low precision scores are due to the large amount

of boundary detail maintained by leap segmentation when it applies its flexible adjacency

constraint. While this allows the approach to create segmentations that very accurately

represent the original image using a small amount of information, it lowers the average

precision of the approach as this extra detail is viewed as noise when compared to human

segmentation ground truths.

2.7.3. Probabilistic Rand Index

 The probabilistic rand index (PRI) [75] operates under the assumption that if two

pixels in the human segmentation are identified as part of the same segment, then this

pixel pair should also be a part of the same segment in the output segmentation. The PRI

Figure 25. Boundary precision-recall curves with corresponding F-measure results

for each segmentation approach.

54

measures the fraction of pixel pairs whose segmentation membership corresponds

correctly between the human segmentation and the segmentation being tested. The PRI

range is from 0 to 1. A higher PRI indicates a more accurate segmentation. To provide a

fair method of comparing performance with this metric, the PRI must be evaluated with

respect to the number of segmentation regions used. In Figure 26, the average PRI for

each segmentation approach is plotted against the average number of segmentation

regions produced to provide a fair method of comparing performance with this metric.

 The EDISON approach yields the highest PR index for greater numbers of

segments. However, the EGBIS approach performs slightly better for region counts near

100 regions. The leap segmentation approach provides comparable performance

numbers, consistently showing a PRI only slightly lower than or equal to the other

methods.

Figure 26. Average Probabilistic Rand Index (PRI) versus the average number of

regions in the output for each segmentation approach.

55

2.8. Experimental Results: Image Labeling and 3D Reconstruction

 To further demonstrate the performance benefits of leap segmentation, the

following section shows that applying the novel leap segmentation technique

significantly improves the efficiency of a 3D scene reconstruction task (Forsthoefel et al.)

[31]. The scene layout reconstruction approach developed by Hoiem et al. [45] is used as

a representative approach in the task of automatic scene labeling and 3D reconstruction

from a single image. Figure 27 and Figure 28 give examples of automatic 3D scene

reconstruction based on surface layout using this approach. This application is used to

demonstrate the performance benefits achieved when leap segmentation is used in the

preprocessing stages of a high-level vision application.

2.8.1. Application Background

 Recovering the surface layout of a scene is an important step in scene

understanding research. The addition of object orientation and depth information to

automated vision systems can drastically improve their scene perception and analysis

 (a) (b)

Figure 27. Example output of automatic 3D reconstruction using Hoiem et al.'s

approach. (a) Original input image by Liebowitz et al. [51]. (b) Novel 3D view from

[44].

56

performance, allowing these systems to better understand and operate in their 3D

environment. Like many high-level vision tasks, 3D scene layout applications often use

image segmentation techniques to preprocess pixel data prior to image analysis. Rather

than processing each pixel individually, these vision applications use segmentation to

group image pixels into segments that can be processed more rapidly.

Several approaches to the challenge of 3D layout reconstruction exist. A general

survey of 3D modeling research is given by Besl and Jain [12]. Many early 3D modeling

approaches use photometric stereo to estimate scene depth, in which multiple views of a

scene are collected and analyzed for scene depth information. For the purposes of this

research, the use of monocular vision to achieve accurate 3D scene reconstruction is of

the most interest. A recent survey of 3D reconstruction techniques from single images is

 (a) (b)

Figure 28. More example outputs of automatic 3D reconstruction using Hoiem et

al.'s approach. (a) Original input image. (b) Novel 3D view from [44].

57

provided by Mohan and Mani [59]. The described approaches vary in their appropriate

applications. Some approaches perform best on structured objects such as faces, while

others are more amenable to unstructured scenes.

2.8.2. Representative Approach

 The 3D scene reconstruction approach developed by Hoiem et al. [45] is used as a

representative approach in the task of automatic scene labeling and reconstruction from a

single image. Hoiem et al.'s approach classifies outdoor scene surfaces into three main

geometric classes: ground, vertical, and sky. Surfaces that are parallel to the ground (i.e.,

roads) fall into the ground class. Surfaces that stick up from the ground (i.e., walls)

become part of the vertical class. Sky pixels are grouped together to form the final

geometric class. The vertical class pixels are further classified into several subclasses. A

planar surface, such as a wall, is classified as “left,” “center, or “right” depending on its

orientation. Non-planar surfaces, such as tree leaves or wires, are classified as either

“porous” or “solid.”

Hoiem et al.'s technique involves gradually building knowledge of scene

structure. First, a segmentation pre-processing step is used to divide input image pixels

into groups called “superpixels.” Next, superpixels are grouped into larger sets called

constellations. Constellations of superpixel regions are homogeneous (all member

superpixels have same-label assignments), but need not be spatially contiguous. Multiple

segmentations of superpixels into constellations are evaluated and the best configuration

is selected. Statistical learning is then applied to compute the geometric label for each

constellation from training data. This procedure incorporates location, color, texture, and

perspective statistics for classification. It demonstrates that a 3D model of the scene can

58

be easily reconstructed from these geometric surface labels.

Hoiem et al. incorporate image segmentation into the preprocessing stages of their

layout technique to improve the computational efficiency of their overall approach. In

their implementation, the authors selected the EGBIS approach [30] for segmentation

preprocessing. The EGBIS approach is state of the art in computational efficiency [65],

making it a common choice for vision application developers. In the following sections

the use of alternative segmentation approaches in this labeling procedure, including the

developed leap segmentation approach, is investigated to identify all possible

performance benefits.

2.8.3. Dataset and Evaluation Method

 The framework for comparison of image segmentation techniques in scene

labeling preprocessing procedures consists of three stages: segmentation, labeling, and

analysis [31]. In the segmentation stage an image is preprocessed using one of the three

candidate image segmentation techniques described in Section 2.6. The segmentation

results are then passed into the labeling stage, in which Hoiem et al.'s automatic scene

labeling approach [45] is performed on the input segmentation. The final labeling results

from each candidate segmentation technique are then compared using both accuracy and

efficiency performance metrics.

The dataset used for comparison is Hoiem et al.'s publicly available library of

ground truth images for evaluating the accuracy of labeling tasks. The library consists of

300 outdoor images of various sizes and scales. Ground truth labels have been manually

assigned to each library image. The accuracy of classification for both main class and

subclass labeling is measured as the fraction of image pixels whose labels match ground

59

truth assignments.

Many vision applications apply image segmentation during preprocessing to

improve their execution efficiency. The applied segmentation technique must therefore

be efficient in its own execution; a slow execution could counteract any facilitated system

performance improvement. Therefore, the speed of the segmentation procedure when

used in preprocessing is used to assess segmentation performance. Efficiency is measured

as the average execution time of segmentation preprocessing procedures over 300 dataset

images. The diverse collection of image sizes present in the evaluation dataset allows

rigorous testing of algorithmic execution efficiency and scaling.

As in previous experiments, an aggregate objective function (AOF) is useful in

determining overall segmentation performance. The AOF is defined as sum of the

normalized accuracy and efficiency objective functions. Divide-by-maximum

normalization is used to scale the efficiency objective function for comparison. The

efficiency performance ceiling is evaluated at 32 fps to approximate real-time processing

efficiency standards.

2.8.4. Results

In Figure 29, the accuracy and efficiency performance results for both main class

(left) and vertical subclass (right) labeling are shown for each segmentation technique.

The three segmentation approaches produce very similar accuracy results for main class

labeling (~87%), differing by less than 2%, as shown in Figure 29(top). The subclass

labeling accuracy results are also comparable (~69%), differing by less than 3%.

However, leap segmentation processing proves significantly more computationally

efficient (at least 10x faster) than both the EGBIS and EDISON approaches, as shown in

60

Figure 29. Performance results for both main class (left) and vertical subclass

(right) labeling. (top) Labeling accuracy performance. (center) Segmentation

processing efficiency performance. (bottom) Overall performance results using AOF

normalized sum.

0.871 0.863 0.886

0

0.2

0.4

0.6

0.8

1

Leap EDISON EGBIS

M
ai

n
 C

la
ss

 A
cc

u
ra

cy 0.685 0.680 0.705

0

0.2

0.4

0.6

0.8

1

Leap EDISON EGBIS

Su
b

cl
as

s
 A

cc
u

ra
cy

14.525

0.006
1.416

0

4

8

12

16

20

Leap EDISON EGBIS

P
ro

ce
ss

in
g

Ef
fi

ci
e

n
cy

 (
fp

s)

14.525

0.006
1.416

0

4

8

12

16

20

Leap EDISON EGBIS

P
ro

ce
ss

in
g

Ef
fi

ci
e

n
cy

 (
fp

s)

1.325

0.863 0.930

0

0.3

0.6

0.9

1.2

1.5

Leap EDISON EGBIS

A
O

F
N

o
rm

al
iz

e
d

 S
u

m

Normalized Efficiency
Main Class Accuracy

1.139

0.681
0.749

0

0.3

0.6

0.9

1.2

1.5

Leap EDISON EGBIS

A
O

F
N

o
rm

al
iz

e
d

 S
u

m

Normalized Efficiency
Subclass Accuracy

61

the execution efficiency plots in Figure 29(center).

Overall performance is illustrated using the AOF plots shown in Figure

29(bottom). Of the three approaches, leap segmentation yields the highest performance

results by far. This is due to the huge improvements in computational efficiency achieved

by leap segmentation over both the EGBIS and EDISON approaches while maintaining

comparable labeling accuracy performance. Examples of labeling results for each

segmentation technique along with their ground truth labeling assignments are shown in

Figure 30 for qualitative comparison.

 The equality weighting used to compute overall performance is appropriate for

those applications that require both accuracy and efficiency performance considerations

and may not be appropriate for applications that are purely accuracy driven and that lack

efficiency standards. Those vision applications that require preprocessing to perform

Input Ground Truth Leap EDISON EGBIS

Figure 30. Scene labeling results for qualitative comparison of segmentation

performance. Main class labels are indicated by color (green=support, red=vertical,

blue=sky). Subclass labels are indicated by symbols (planar surfaces use arrows left,

up (center), and right to indicate surface orientation, non-planar surfaces use 'O' for

porous and 'X' for solid).

62

both accurately and efficiently, such as the labeling procedure used in these experiments,

can achieve significant improvement in performance by applying leap segmentation in

preprocessing.

2.9. Conclusion

This chapter introduces leap segmentation, an efficient, non-contiguous image

segmentation approach that employs novel techniques to use resources efficiently and to

produce output segmentations that accurately represent salient features from input image

scenes. In experiments, leap segmentation demonstrates high region-assignment accuracy

and, compared to other approaches, preserves more scene details using a given storage

resource. Leap segmentation's ability to maintain salient image details during

segmentation sets it apart from traditional approaches which tend to blur or discard these

important details. Experiments show that leap segmentation is able to correctly maintain

an average of 20% more original scene pixels than traditional approaches despite using

the same number of segments and while exhibiting a significant improvement in

execution speed (> 10x faster than the state of the art). The salient features maintained by

leap segmentation could be used in mobile traffic scene applications for improved scene

analysis.

The usefulness of applying this novel view of image segmentation in the

preprocessing stages of a high-level vision application was evaluated and compared with

existing segmentation approaches. Through the evaluation of both accuracy and

efficiency objective functions, it was demonstrated that the performance of a high-level

image layout reconstruction task can be dramatically improved by applying the leap

segmentation technique during preprocessing. Leap segmentation provides layout

63

applications with reliable segmentations into fewer regions that are unconstrained by

noise and provide meaningful spatial support for scene layout analysis, allowing more

efficient estimation of overall scene structure. In addition, leap segmentation exhibits

execution times 10x-15x times faster than the state of the art.

The next contribution of this research extends the leap segmentation algorithm to

process multiple consecutive frames in time (video) with the goal of maintaining region

boundary continuity between image frames. A temporal analysis study of this multiple-

frame leap segmentation is essential in evaluating region continuity and segmentation

stability over time.

64

CHAPTER 3

LEAP SEGMENTATION IN VIDEO ANALYSIS

3.1. Introduction and Related Work

Over the past decade research into employing vision processing in intelligent

vehicle systems has grown extensively. Computer vision systems can be used to analyze

traffic scenes and alert drivers of potentially dangerous events as they occur in real time,

thus increasing the safety of road ways. Intelligent vehicle systems are mobile, requiring

vision applications to be both accurate and efficient in their implementation for

successful operation in this resource-constrained, real-time environment.

Many vision applications apply image segmentation techniques during

preprocessing to reduce image information for increased processing efficiency. Multiple-

frame segmentation, also referred to as spatio-temporal or video segmentation, has been

studied a great deal and is an important step in many video analysis applications for

identifying and tracking specific features as they move through a scene. In its most

simple form, multiple-frame segmentation can be achieved by applying a traditional

single-frame segmentation approach to each individual frame in a sequence. Each frame

is segmented separately and the segments mapped between frames. However,

segmentation results could vary drastically between frames, making it difficult to

maintain temporal continuity from one frame to the next with this approach [64].

Video segmentation has been applied in many vision applications including video

compression and video indexing and retrieval [39]. Many video segmentation techniques

are designed to operate off-line, requiring all frames in the input video sequence as input

65

[41]. Since future frames must be known, these approaches cannot be applied in real-time

applications where only current and past frames are available. On-line approaches exist in

the literature, but are fewer in number. These methods are limited to processing past

frames and often use Kalman filtering to track segments over time [49]. Paris et al. [64]

use isotropic diffusion and Gaussian convolution to achieve real-time performance using

only past frame data. However, this approach has limited accuracy when segmenting fast-

moving objects.

Methods for multiple-frame segmentation, surveyed in [57], can largely be

grouped into three categories regardless of their on-line or off-line behavior: spatial-then-

temporal methods, temporal-then-spatial methods, and joint spatial-temporal methods.

Spatial-then-temporal methods [27], [36], [72], [79] first segment a frame spatially. They

then track regions in the segmentation over time. These methods conceptually extend

single-frame segmentation to operate in the temporal domain. Methods in this category

can operate either on-line or off-line. Temporal-then-spatial methods [3], [7], [23],

perform temporal segmentation first by monitoring several points to obtain their

movement trajectories in the image sequence. These trajectories are then grouped

together using spatial motion segmentation. Methods in this category require information

from future frames for processing and thus must be implemented off-line. Lastly, joint

spatial-temporal methods [25], [39], [70] study the spatial and temporal dimensions

jointly as a single volume for segmentation. Methods in this category are also inherently

off-line because they require knowledge of future frames.

A highly efficient, on-line method for multiple-frame segmentation, called video

leap segmentation, is presented for use on embedded and mobile platforms where

66

processing speed is critical (Forsthoefel et al.) [33]. This novel approach extends the fast,

single-frame leap segmentation approach presented in Chapter 2 to develop an efficient,

multiple-frame segmentation approach that accurately tracks segments between

consecutive input frames and successfully maintains temporal segmentation continuity.

With this approach, segmentations for each frame are generated quickly without

segmenting each frame individually, which is computationally expensive. As each

consecutive image frame is processed, the scene’s segmentation is evolved to

continuously track objects as they move through the mobile scene. This approach is

evaluated using moving-camera traffic sequences captured on congested, multi-lane

highways. The captured GTTraffic dataset sequences (Forsthoefel et al.) [32] contain

fast-moving traffic events, such as vehicles quickly swerving into the driver’s lane. These

sequences are made publicly available as part of this research to motivate and evaluate

vision-based approaches to improving highway safety.

In this chapter, the video leap segmentation approach is introduced for generating

fast, stable segmentations of images in mobile video sequences. This chapter is organized

as follows. First the fast video leap segmentation approach is described in Section 3.2.

Then the application of the video leap segmentation approach to the task of salient

segment transformation detection is demonstrated in Section 3.3. Quick detection of

salient segment transformations in mobile scenes could be highly useful in an intelligent

vehicle system, aiding driver alert systems in quickly detecting dangerous traffic

situations that may require immediate driver attention. Trial results, discussed in Section

3.4, demonstrate that with little added computation, video leap segmentation can be used

67

for salient region detection in traffic scenes with high accuracy. Section 3.5 concludes

this chapter and discusses future work.

3.2. Fast Video Leap Segmentation

The fast, multiple-frame leap segmentation approach (Forsthoefel et al.) [33] is an

extension of the single-frame leap segmentation approach presented in Chapter 2. In the

video leap segmentation method, the initial leap segmentation data structures are

exploited for efficient detection of segment changes in subsequent frames. Specifically,

structured lists of tile sets indicating tile cell membership are used to quickly compare

pixels with surrounding segmentation cell assignments to detect slight segment shifts

between frames. This reduces comparisons between pixels in consecutive frames to be on

the order of the number of cells in a tile set which concisely represents the color

neighborhood of a pixel instead of on the order of the total size of the pixel

neighborhood. This significantly reduces the number of comparisons required to

determine overall segment movement between frames.

Figure 31. The initial leap segmentation passes a global cell list (right) and a list of

tile cell sets (left) for each tile in the discretized image.

Tile 1 Tile 2 Tile 3

Tile X Tile X Tile X

Tile X Tile X Tile X

...

…

Input Frame

Global Cell List

CellA :
{ID, R, G, B, Count}

CellB :
{ID, R, G, B, Count}

...

Tile Set X
Cell Ptr1

Cell Ptr2

...

68

After the initial leap segmentation step is completed, the segmentation results are

passed to subsequent frames in the form of three data structures: a global cell list, a

region map, and a comprehensive list of tile cell sets. The global cell list, shown in Figure

31 (right), contains the color information (RGB) and presence count for each color

segment (cell) identified in the image. The region map contains a mapping from each

pixel in the image segmentation to its corresponding color cell on the global cell list.

Lastly, the list of tile cell sets generated during leap segmentation and shown in Figure 31

(left), contains, for each discretized tile in the image, a set of cell pointers to the global

cell list to indicate cell membership of CL-similar pixels within tiles. Cell pointers are not

duplicated in individual tile sets, so that a single tile set contains a condensed list of cell

pointers to the global cell list.

The data structures provided by leap segmentation are leveraged to yield a fast,

resource-efficient approach to the temporal tracking of regions in subsequent frames as

follows. Let f(x, y, t) denote a frame in the input video sequence at time t. Let s(x, y, t-1)

denote the video sequence segmentation cell assignments obtained from processing the

previous sequence frame (held in the region map of the segmentation). Note that f

contains all pixels in the current input frame (f(x,y,t) = pixelx,y,t) while s holds the global

segmentation cell assignment for each pixel location (s(x,y,t) = cellID,t). Let Nx and Ny

denote the number of horizontal and vertical tiles in the discretized image, respectively.

Then for pixel location (x,y) one can define:

 () ()

 (7)

69

where Tx and Ty are the horizontal and vertical tile indices for the chosen pixel location,

respectively, and I(x,y) holds the computed tile index, pointing to the tile covering pixel

location (x,y) in the image. Let E(PA,PB,τ) (Equation 2) define the CL-similar relation

(Equation 1) between two RGB values (PA, PB) for some chosen threshold τ (τ = 30 was

chosen in the current implementation). A review of Equations 1 and 2 from Chapter 2 is

given below for clarity:

 (

| |

| |

| |
) (1)

 () {

 (2)

Let T(I(x,y), t-1) be the complete list of tile cell sets obtained during segmentation

of the previous frame. To begin, set T(I(x,y), t) = T(I(x,y), t-1). The segmentation of the

current video sequence frame s(x,y,t) is obtained using the following three-step method.

First, the current frame is directly compared with previous segmentation cell assignments

for matching within some threshold τ:

 () () (() ()) (8)

If a match is not obtained from this initial comparison, then the search window is

widened to include those cells, Z, in the tile set of the segmentation, T
C
(Z), which

contains the current pixel location (x,y):

 () (()) (9)

70

then,

 () () (() ()) (10)

If a match with the previous segmentation is still not forthcoming, the search is again

widened to include those pixels in the tile sets of the tiles in the neighborhood of the

current tile. Define T
N
(Z) as the list of cells, Z, in a neighboring tile that contains the

neighboring pixel locations (x
N
, y
N
):

 () (()) (11)

then,

 () () (() ()) (12)

If a cell match is detected in a neighboring tile set, the current tile set is updated to

include a pointer to the matched global list cell for fast future comparisons.

The implementation workflow for video leap segmentation is shown in Figure 32.

The three step method makes use of the data structures provided from the initial leap

segmentation and updates these structures to represent changes to the segmentation that

occur between consecutive image frames. In a post-processing step, groups of pixels that

do not match between the frames are labeled as new object candidates. If a sufficiently

large and chromatically similar group of nonmatching pixels is present, a new segment is

created for these pixels to represent the new scene object. The implementation data

structures passed between frames during segmentation of the video sequence are

designed for optimal resource usage. The segmentation region map and list of tile cell

sets contain only pointers to the global cell list. Therefore, segment information is stored

71

only once in the global cell list, while the region map and list of tile cell sets convey

segmentation structure using lightweight pointers.

The three step method allows for fast comparisons between the current frame and

the previously obtained segmentation with an increasingly large search space. The search

space can be easily constrained with this design to conform to specific application goals.

In the current implementation, the search space is limited to tiles directly neighboring the

current tile set to reduce computation time. The ability of this segmentation procedure to

produce stable segmentations of video sequences is evaluated in Section 3.4.1 over

various traffic scenes.

Figure 32. Workflow of the fast, resource-efficient video leap segmentation

algorithm.

Compare with

Segmentation

Region Map

Compare with

Cells in the Current

Tile Set

Image Frame

Compare with

Cells in Neighboring

Tile Sets

Generate New

Segments

Update Region Map,

Global Cell List

Update Region Map,

Global Cell List

Update Region Map,

Current Tile Set,

Global Cell List

Update Region Map,

Current Tile Set,

Global Cell List

Input Region Map,

Global Cell List

Input Current Tile Set,

Global Cell List

Input Neighbor Tile Sets,

Global Cell List

72

3.3. Recognition of Salient Segment Transformations

In addition to generating fast, stable segmentations of images in video sequences,

the presented method for video leap segmentation can be applied to the task of rough

salient segment transformation detection for alerting potential drivers of important scene

changes that may affect future steering decisions.

Salient transformation detection is performed using a fast, two-frame

segmentation comparison. Comparing segmentation assignments between frames can be

a slow task if performed on the pixel level. Instead, a cell-level comparison is performed

using the region map cell assignments obtained during video leap segmentation. As

described in Section 3.2, the video leap segmentation approach quickly identifies shifted

segments between frames using the tile set data structures introduced by leap

segmentation. Using this video leap segmentation approach, segment movement is

quickly identified over a large search window without the onerous step of directly

comparing each pixel in the search window. Video leap segmentation outputs a region

map of cell assignments at each pixel location. These outputted cell assignments correctly

model the positions of shifted segments and accurately represent overall scene structure

despite scene changes between frames. The successful utilization of the video leap

segmentation approach in a simple recognition task is demonstrated with the following

approach for recognition of salient segment transformations.

Let rt(x,y) denote a region map at time t containing the segmentation cell

assignments as indices into the global cell list. Let rt-1(x,y) denote the region map cell

assignments for the previous sequence frame segmentation. These two region maps are

compared to determine the locations of salient segment transformations in the scene.

73

First, the direct spatial neighborhood of each pixel is evaluated to form a movement

vector mv(x,y,t) for each pixel location (x,y) at time t. Let n(P) represent the

neighborhood of pixel P. The cell assignments of all pixels in n(P) are compared to P to

form the movement vector for P. Movement vector assignments are binary indicators of

cell assignment comparisons. The movement vector for P holds a binary value for each

pixel in n(P). If neighboring cell assignments match P, the movement vector is assigned a

binary 0 for those locations. Otherwise, the movement vector is assigned a binary 1 for

those non-matching cell assignments in the neighborhood of P.

The computed movement vectors are compared between consecutive image

segmentation region maps (rt , rt-1) in the sequence for fast segment transformation

detection. Figure 33 shows an example of movement vector assignments for two

consecutive image frames at various pixel locations. The binary movement vector

assignments are evaluated in clockwise order (i.e. N,E,S,W). A nonzero movement vector

denotes an edge pixel in the segmentation. Cell movement is detected by comparing the

movement vectors for edge pixels in the consecutive frames. These calculations are

performed using quick binary comparisons of vector values. A change in movement

vector assignments from 1 to 0 in the East direction indicates movement has occurred

East. However, a change in the movement vector assignments from 0 to 1 in the East

direction would indicate movement has occurred in the West direction. If the consecutive

movement vectors for a pixel are nonzero and unchanging between frames, this indicates

a stable edge pixel in the scene.

74

In the example in Figure 33 (top), the movement vectors indicate that a Cell A

pixel moves East between frames t-1 and t. Another pixel in Figure 33 (middle) changes

cell membership between frames (from Cell B to Cell A) so the computed movement

vectors are ignored and no movement is recorded for either cell. Lastly, in Figure 33

(bottom) a Cell B pixel is detected moving in the East direction. These directional

classifications are recorded for each cell in the segmentation. The overall direction of

transformation of a segmentation cell is calculated as the maximum present

transformation direction detected in the cell over all cell pixels. Furthermore, a cell is

identified as “stable” if the detected number of stable edge pixels in the cell exceeds the

Figure 33. Example of binary movement vector assignments at various pixel

locations. Assignments are evaluated in clockwise order (i.e. N,E,S,W).

Time t-1 Time t

0 1 2 3 4 0 1 2 3 4

0 A A B B B 0 A A B B B

1 A A B B B 1 A A A B B

2 A A B B B 2 A A B B B

mv(1,1,t-1) = 0 1 0 0 mv(1,1,t) = 0 0 0 0

Indicates Cell A movement EAST

0 1 2 3 4 0 1 2 3 4

0 A A B B B 0 A A B B B

1 A A B B B 1 A A A B B

2 A A B B B 2 A A B B B

mv(2,1,t-1) = 0 0 0 1 mv(2,1,t) = 1 1 1 0

Nonmatching Cell IDs indicate NULL movement

0 1 2 3 4 0 1 2 3 4

0 A A B B B 0 A A B B B

1 A A B B B 1 A A A B B

2 A A B B B 2 A A B B B

mv(3,1,t-1) = 0 0 0 0 mv(3,1,t) = 0 0 0 1

Indicates Cell B movement EAST

75

total number of non-stable edge pixels present in the cell.

This simple calculation and binary comparison of movement vector assignments

allows for a quick and comprehensive assessment of cell transformations between

consecutive frames. The presented method evaluates cell transformations only at the

edges of segmentation cells where cell movement is most identifiable and avoids the

complicated and cost-inefficient method of determining total cell movement over all cell

member pixels. This simple, binary method can be implemented using low-cost integer

operations. The utilization of video leap segmentation at the base of this approach for the

detection of segment shifts across temporal and spatial bounds facilitates the fast and

efficient detection of salient segment transformations in video scenes.

3.4. Experimental Results

The discussed multiple-frame leap segmentation approach is implemented in the C

programming language and is developed in a Linux environment. A publicly available set

of moving-camera traffic scene sequences collected at Georgia Tech is used in these

evaluation experiments (see Figure 34). The captured GTTraffic dataset sequences

(Forsthoefel et al.) [32] contain fast-moving traffic events such as vehicles quickly

swerving into the driver’s lane. These sequences are being made publicly available as

part of this research to motivate and evaluate vision-based approaches to improving

highway safety.

These scene collections were captured at Georgia Tech using a forward-mounted

Kodak Zi6 on an automobile dashboard. This camera provides a fixed focus, fixed

aperture, and fixed field-of-view with electrically controlled gain and sensitivity. The

76

images extracted from the captured mpeg4 videos are at a resolution of 1280 x 720

pixels. The sequences were collected at a frame rate of 32 fps.

3.4.1. Video Leap Segmentation Stability

In this evaluation, the quantitative objective function nonmatching pixel

percentage is used to assess segmentation stability. It is measured as the percentage of

image pixels in the video segmentation output that are not CL-similar to their original

image color. Let us recall Equations 3 and 4 from Chapter 2:

 [∑ ([] [])

]

(3)

(4)

Figure 34. Sample images from the GTTraffic dataset [32].

77

Calculation of the nonmatching pixel percentage is shown above in the review of

Equations 3 and 4. The equivalence function E is given in Equation 2 and applies the CL-

similar relation in Equation 1 to assess pixel affinity. PNM is the number of pixels in the

final segmentation which are not CL-similar within the matching threshold τ to their

original image color (τ = 30 was used in all experiments) and PTOTAL is the total number

of pixels in the image. PORIG holds the original input image, and PSEG holds the pixels in

the output segmentation.

Figure 35. Video leap segmentation results for two consecutive image frames. A

colorized representation of segmentations is given to show region membership

more clearly. A frame by frame approach (middle) produces segmentations that

change rapidly between frames. Applying the video leap segmentation approach

(bottom) allows easy maintenance of temporal coherence between frames.

 Frame 14 Frame 15

In
p

u
t

Fr
am

e

Fr
am

e
b

y
Fr

am
e

Se
gm

en
ta

ti
o

n

V
id

eo
 L

ea
p

Se

gm
en

ta
ti

o
n

78

A high accuracy image segmentation result achieves a low nonmatching pixel

percentage, indicating that a small number of pixels have been assigned to a region color

that is significantly different from their original color. This metric is a good measure of

the preservation of scene integrity during the segmentation process.

Figure 35 qualitatively displays the stability of video leap segmentation results

when compared to a frame-by-frame segmentation approach (in which each frame is

segmented separately). To help discern region membership, artificially colorized

segmentation images are given. Contrasting color assignments show region pixel

membership. With a frame-by-frame segmentation approach, segmentation results can

vary drastically between frames, making it infeasible to maintain segment continuity

from one frame to the next. The video leap segmentation approach successfully matches

segments across temporal bounds, maintaining temporal coherence between the input

sequence frames.

The input parameters used to generate the initial leap segmentation at the base of

the video leap segmentation approach are λ=2, ε=20, and α=50. The equivalence (ε) and

minimum size (α) parameters are chosen based on optimal performance determined

previously in Section 2.5. A minimal adjacency parameter is chosen (λ=2) in order to

better facilitate salient segment transformation detection, discussed in Section 3.3, on the

collected traffic scenes. A larger adjacency parameter input would allow larger changes

in segment movement between frames to be detected, but may reduce the accuracy of

detection of small segment shifts between frames. If input frames are spaced far apart in

time, the use of a larger tile size may be appropriate. However, as proof of concept, a

minimal adjacency parameter was chosen for these experiments because GTTraffic

79

dataset images were collected at a high frame rate, causing small segment shifts to

dominate these scenes. A full video leap segmentation parameter variation assessment is

planned.

To quantitatively assess the stability of video leap segmentation over time, the

nonmatching pixel percentage is calculated over all image frames in several GTTraffic

sequences. Table 2 shows the average nonmatching pixel percentages over six different

traffic sequences, each containing 200 frames. Each of the chosen input sequences

contains substantial scene changes, such as the introduction of new vehicles into the

scene. Video leap segmentation produces nonmatching pixel percentages of less than 4%

and as low as 0.7% when processing these input image sequences despite the long

sequence length and the frequent introduction of new objects into the scenes. The

developed approach is able to maintain this high level of stability by adapting the

sequence segmentation at each new input frame and by carefully introducing new scene

segments when new objects appear in the scene.

3.4.2. Salient Segment Transformation Detection

The salient segment transformation detection approach outlined in this chapter is

designed to be very fast in its execution, using the output from the provided video leap

segmentation approach to quickly determine rough areas of saliency in an input image

Table 2

Video Leap Segmentation Stability

Average Nonmatching Pixel Percentages Over 200 Frames

Traffic1 Traffic2 Traffic3 Traffic4 Traffic5 Traffic6

1.817% 1.424% 0.896% 0.716% 3.829% 2.075%

80

scene. No statistical processing or high-level model development is performed to produce

these results. Those more computationally expensive approaches for tracking regions

could later be added on top of this approach to clean up the detection process and remove

noise.

Figure 36 shows the approach output for recognition of salient segment

Figure 36. Salient segment transformation recognition results for two frames of an

input video sequence. Top: Input frame. Middle: A colorized representation of

detected salient segment transformations in the scene (White = Stable, Red = North,

Green = South, Blue = East, Orange = West, Black = Movement detected in all

directions (segment grew in size in the scene). Bottom: Ground truth images, salient

pixels plotted in white.

 Frame 65 Frame 95

In
p

u
t

Fr
am

e

Sa
lie

n
t

Tr
an

sf
o

rm
at

io
n

R
ec

o
gn

it
io

n

G
ro

u
n

d
 T

ru
th

81

transformations. The salient transformation result images in Figure 36 (middle) show

those pixels that were identified as salient by the developed algorithm. Stable pixels are

shown in white, while salient pixels are colored based on their detected direction of

transformation. Corresponding ground truth images are also given in Figure 36 (bottom),

with salient pixels shown in white. These results demonstrate that with little added

computation, the video leap segmentation results can be used for rough salient region

detection in traffic scenes with surprising accuracy. The salient detected areas can be

passed to a higher-level vision system for determining the appropriate response to the

detected salient regions. Reducing higher-level processing to the detected salient areas

using this quick approach has the potential to significantly reduce the processing time of

scene understanding approaches.

Due to the rough nature of the developed method for detection of salient

transformations, the results can contain some noise. This is to be expected, and further

research will explore post-processing schemes to alleviate this. Several ground truth

images were created and compared with the salient transformation detection output to

quantify the accuracy of this approach. On average, the developed approach correctly

identifies ~80% of salient ground truth pixels as salient in the output. In addition, the

approach correctly identifies over 95% of non-salient ground truth pixels as non-salient in

the output. This indicates that developed approach achieves a false negative rate of about

20% while keeping the false positive rate below 5%. The accuracy achieved by the

presented algorithm is acceptable in achieving the proposed goal of a rough salient

transformation detection system. Post-processing steps can be taken to improve the

transformation image and further reduce false positives and false negatives. In particular,

82

false negatives arise most often in the reflective windows of vehicles in the scene. These

could be removed with the implementation of a post-processing region-fill step to detect

and correct these holes in the recognition output.

Figure 37 shows an example sequence of frames of a vehicle rapidly swerving

into a driver’s lane. The developed salient transformation recognition technique is able to

quickly identify and track the rapidly moving car. This technique could be used in

Figure 37. Salient segment transformation detection results for a video scene in

which a vehicle rapidly enters the driver’s lane.

 Input Frame Salient Transformation Recognition

Fr
am

e
4

0

Fr
am

e
7

0

Fr
am

e
1

0
0

83

preprocessing to aid driver alert systems in quickly detecting dangerous traffic situations

such as these that may require immediate driver attention.

3.4.3. Run-Time Analysis

The outlined video leap segmentation approach and salient transformation

detection system are evaluated using a 2.13 GHz Intel Core I3–330M processor running

64-bit Ubuntu 10.04. The algorithms were not parallelized or otherwise altered for the

platform. Sequences from the GTTraffic dataset which contain images 1280x720 pixels

in size are used in this evaluation.

The implementations of the discussed algorithms have not yet been fully

optimized for efficient execution. A preliminary investigation of execution performance

is presented here, pending a complete review of optimization capability. Even without an

in-depth optimization of implementation, the video leap segmentation approach proves

computationally efficient. An analysis of trial results reveals that the current

implementation runs at an average ~90 ms per frame, or over 11 fps. The salient

transformation detection system also shows excellent execution efficiency in preliminary

tests, executing in an average time of ~20 ms per frame.

There are several possible avenues for optimization of the presented approach,

including converting the single-core video leap segmentation approach to a multi-core

platform using parallel processing. An investigation of this, along with additional

optimization techniques is planned for future work.

3.5. Conclusion

This chapter presents a novel approach to multiple-frame segmentation, called

video leap segmentation, for use on embedded and mobile platforms where processing

84

speed is critical. Through the evaluation of both accuracy and efficiency objective

functions, it was demonstrated that the provided approach successfully tracks segments

across spatial and temporal bounds, generating fast, stable segmentations of images from

moving-camera video sequences. The approach was then applied to the task of salient

segment transformation detection. The resulting salient transformation recognition

technique is able to quickly identify and track the rapidly moving, salient objects in input

video scenes. This technique could be applied in preprocessing to aid collision avoidance

systems in quickly detecting dangerous traffic situations that may require immediate

driver attention.

Several possible avenues of future work have been identified, including an in-

depth parameter variation analysis of video leap segmentation parameters, a full

optimization of the video leap segmentation approach implementation, and parallelization

of the approach, targeting a multi-core platform.

85

CHAPTER 4

EMBEDDED, MULTI-CORE LEAP SEGMENTATION

4.1. Introduction

Many vision applications apply image segmentation techniques during

preprocessing to reduce image information for increased processing efficiency. However,

the processing times of most existing single-frame image segmentation approaches

exceed input camera frame periods when processing high-resolution images, making

them impractical for use in real-time environments.

The goal of this research is to achieve real-time (>25 fps) image segmentation

execution performance on a commercially-available CPU with multiple processing cores

that does not require specialized hardware. To that end, this chapter first introduces a

highly optimized serial implementation of the leap segmentation approach developed in

Chapter 2. Numerous parallelization techniques are then applied to different portions of

this segmentation approach to achieve further speed-up on a multi-core system. The final,

parallel leap segmentation implementation easily achieves real-time execution when

processing high-resolution images.

This chapter builds directly upon the results of previous chapters. Leap

segmentation, developed in Chapter 2, is a novel approach to single-frame segmentation

which forms homogeneous regions of pixels that need not be spatially contiguous. Leap

segmentation is designed for use in embedded, resource-constrained environments while

maintaining accuracy comparable to traditional approaches. The design of leap

segmentation lends itself to an efficient implementation as shown in Chapter 2, but can

86

be optimized further. This chapter outlines an optimized serial implementation of leap

segmentation which achieves frame rates of more than 80 fps on 640x360 images and

more than 20 fps on high resolution (1280x720) images (Forsthoefel et al.) [35].

This serial implementation of leap segmentation proves useful in many

embedded, resource-constrained environments where processing speed is critical.

However, “real-time” processing standards in image processing vary widely. More

stringent standards on real-time frame-rates typically enforce matching to collection

frame-rates without frame-skipping (processing every other frame or every third frame).

Under these standards, an approach must run at the least at the image collection rate of

the source camera. Therefore real-time processing frame rates typically range from 25 to

30 fps at a minimum. The highly optimized serial implementation of leap segmentation

presented in this chapter achieves real-time processing on 640x360 images (80 fps) but

falls short of these real-time standards on high resolution (1280x720) images, processing

at just 20 fps.

To achieve real-time execution of leap segmentation on high-resolution images, a

multi-core leap segmentation implementation is developed in this chapter. Numerous

parallelization techniques are applied to different portions of the leap segmentation

algorithm to achieve further speed-up. The steps taken to parallelize each leap

segmentation subtask are described in detail. The developed multi-core leap segmentation

implementation achieves frame rates on commodity hardware of more than 29 fps on

1280x720 images using two threads and more than 31 fps when using four threads, thus

meeting even the more stringent real-time processing standards (Forsthoefel et al.) [35].

87

This chapter is organized as follows. Related work in the field of image

segmentation is outlined in Section 4.2, including information on real-time segmentation

efforts. Section 4.3 discusses overall leap segmentation implementation workflow and the

framework of leap segmentation resources. Both the highly optimized serial and parallel

implementations of leap segmentation are presented and analyzed in Section 4.4.

Performance evaluations of the developed implementations on both high performance

and resource-constrained platforms are presented and discussed in detail in Section 4.5.

Section 4.6 concludes this chapter.

4.2. Related Work

This section summarizes related work in the field of image segmentation and then

describes recent advancements in fast, multi-core image segmentation. For a more in-

depth description of general single-frame image segmentation related work, please refer

back to Chapter 2.

Image segmentation has been widely researched, resulting in several broad classes

of algorithms including region-based, feature-space clustering, and graph-based

segmentation. The region-based segmentation category includes all “region-growing” and

“split-and-merge” techniques. The watershed approach [77] is a popular example of

region-based segmentation. Segmentation methods that use feature-space clustering

attempt to find modes (clusters) in a distribution by using each image pixel’s features as

sampled data from the distribution’s probability density function. Mixture of Gaussians

clustering with expectation maximization [26] and mean-shift clustering [22] fall into this

category. In graph-based segmentation, an image is represented as a weighted, undirected

graph. Popular graph-based approaches include normalized cuts [71] and efficient graph-

88

based image segmentation (EGBIS) [30]. A detailed review of image segmentation

research can be found in [74].

The mean-shift clustering technique [22] and the efficient graph-based image

segmentation technique (EGBIS) [30] mentioned above are two well-known and popular

segmentation algorithms. According to Pantofaru and Hebert [63], output segmentations

from mean-shift correspond well to human perception. A disadvantage is its sensitivity to

parameter change and the necessity for input parameter tuning to obtain good

segmentations [86]. In addition, mean-shift is computationally expensive making it too

slow for real-time applications. This is due in part to the expensive sliding-window

approach it applies to image pixels during processing. Several techniques for improving

mean-shift have been proposed [17], [20], [80]. For example, Christodias et al. [20]

proposed combining mean-shift with edge detection to increase segmentation accuracy in

EDISON. However, these algorithms often require on the order of minutes to process one

second of video [65]. The popular graph-based segmentation technique, EGBIS [30], is

considered to be state of the art in computational efficiency [28], [65]. It uses pair-wise

component comparisons to segment an image in O(mlogm) time, where m is the number

of graph edges. A drawback to this method is its sensitivity to its input parameter k and

its tendency to create small, unneeded regions at the borders of valid image segments.

Modern demand for real-time image processing algorithms has inspired several

research efforts in fast, multi-core image segmentation. In recent research, Abramov et al.

[1] use a GPU for parallel image segmentation but achieve just 30 fps frame rates on

small (256x320) images. In [58], Meribout and Nakanishi present an approach which

requires a dedicated parallel hardware architecture to achieve real-time segmentation

89

performance. In [43], Happ et al. propose a multi-core region-growing approach for use

on high resolution images. However, there is still room for improvement as this approach

requires on the order of tens of seconds to process a single image. In this chapter, the goal

is to achieve real-time (>25 fps) image segmentation execution on a commercially-

available CPU with multiple processing cores that does not require special hardware.

Figure 38. Workflow of the leap segmentation algorithm broken down into three

subtasks for parallelization: 1. region building, 2. region adjustment, 3. size

analysis.

90

4.3. Leap Segmentation Implementation

The leap segmentation implementation workflow, shown in Figure 38, is

partitioned into three main subtasks: region building, region adjustment, and size

analysis. In region building, input image pixels are grouped based on leap segmentation

adjacency and equivalence constraints to form mega-regions of pixels. During region

adjustment, the segmentation output from the region building subtask is evaluated for

possible irregular pixel assignments and new regions are synthesized to represent any

new scene objects that arise in this evaluation. Size analysis applies the minimum size

constraint to mega-regions, appropriately assimilating small regions to nearby mega-

regions based on spatial and color similarities. The resulting mega-region list becomes

the final segmentation.

A high-level analysis of leap segmentation execution performance can be seen in

Figure 39. The chart shows the percentage of processing time consumed by each of the

three main subtasks. Region building is by far the most expensive subtask, encompassing

Figure 39. A processing usage chart indicating percentages of leap segmentation

time dedicated to each of the three main subtasks: region building, region

adjustment, and size analysis.

91

70% of the leap segmentation execution time. The next subtask, region adjustment,

requires 23% of the total processing time. This subtask can be further broken down into

its child methods and analyzed separately (as discussed in Section 4.4.2). The third

subtask, size analysis, consumes just 7% of the total execution time.

The leap segmentation data structures, displayed in Figure 40 and mentioned

previously in Section 3.2, are designed for optimal resource usage. Three structures are

used. The Global Cell List (middle) contains the color information (RGB) and presence

count for each color segment identified in the image. The Region Map (right) contains a

mapping from each pixel in the image segmentation to its corresponding color cell on the

global cell list. The Comprehensive List of Tile Cell Sets (left) contains, for each

discretized tile in the image, a set of cell pointers to the global cell list to indicate cell

membership of CL-similar pixels within tiles.

Segment information is stored only once in the global cell list, while the region

map and comprehensive list of tile cell sets convey segmentation structure using

lightweight pointers. In addition, as discussed in Chapter 2, pixels within a region

contribute their component values to a ratiometric mean via component sums and a pixel

Figure 40. The leap segmentation data structures are designed for optimal resource

usage.

92

count, shown in Figure 10. During segmentation, pixels are compared to the mean

component values (e.g. R, G, and B) of candidate regions for rapid analysis of affinity.

See Chapter 2 for further leap segmentation algorithm details along with a detailed

parameter sensitivity analysis and full comparisons with leading approaches.

In the following sections, highly optimized leap segmentation subtask

implementations are presented for single-core platforms. Further research then tests the

hypothesis that these subtasks can achieve high speed-up when their base algorithms are

parallelized and ported to a multi-core platform (Forsthoefel et al.) [35]. An analysis of

each subtask’s potential for parallelization is provided along with detailed before-and-

after comparisons of the execution rates of these subtasks before and after parallelization.

4.4. Implementation Analysis

This section contains an analysis of the developed fast and resource efficient

implementations (both single-core and multi-core) of the leap segmentation algorithm.

Each of the three leap segmentation subtasks is analyzed and discussed. Any single-core

optimizations within the subtasks are described in detail. Then, each subtask is analyzed

for opportunities for parallelization and restructuring for use on a parallel processing

system.

4.4.1. Subtask 1: Region Building

As shown in Figure 39, the region building subtask requires the highest

percentage of processing time. Since this is also the first task performed in leap

segmentation, it is an ideal place to begin the performance analysis.

93

Serial Implementation

In the developed serial implementation of the region building subtask, the input

image is discretized using the adjacency parameter, λ, by dividing it into non-overlapping

λxλ square regions called tiles. Each tile is scanned using the CL-similar constraint

(Equation 1) to locate candidate regions within each tile. If a pixel is CL-similar to pixels

within an existing region, it is added to that region. Otherwise, it forms a new candidate

region. After identifying candidate regions within each tile, these regions are compared

between neighboring, contiguous tiles. Regions whose mean component values satisfy

the CL-similar relation are merged into a mega-region. This process continues until a

final set of candidate mega-regions are identified. At this point, all ratiometric component

means are locked to fixed component averages that no longer depend on member pixels.

To optimize this serial approach, first the implementation structure must be

designed for optimal segment evolution during execution. A two-dimensional image

cannot simply be processed for segmentation in row-column order, though this would

have promising cache efficiency implications. The segmentation process itself is widely

viewed as an inherently sequential mechanism in which segments grow and evolve as

more pixels in the image are processed. Pixels within the same image neighborhood

depend on each other during segment formation. Therefore, the two dimensions of the

image should be traversed at a comparable rate to ensure the highest accuracy in segment

growth across the image.

In order to address this issue, the image is traversed and processed along image

diagonals starting from the top left corner (origin) of the image to the bottom right corner

(see Figure 41). By evaluating tiles in diagonal order, the segmented area of the image

94

grows in two dimensions simultaneously, facilitating a quick and comprehensive

evaluation of pixel adjacency in the image during segmentation.

Parallel Implementation

Within this framework of image discretization and diagonalization, one can

identify the dependencies present within the algorithm and determine the best method for

tile-level parallelization.

Let Dj be the current diagonal in which tiles are being evaluated for segmentation.

Tiles in Dj will compare with neighboring tiles in diagonal Dj-1 for matching CL-similar

regions. In this way, regions are able to move seamlessly across the image as they are

pulled from diagonal to diagonal during segmentation. Comparisons with neighboring

tiles are performed on those tiles to the north and west of the current tile being processed,

as these are the tiles located along a previously evaluated image diagonal. An illustration

of tile dependencies is displayed in Figure 42. One can see in this graph that

Figure 41. Serial leap segmentation image traversal; the image is processed in

diagonal order. The image tile traversal is shown with arrows.

95

dependencies in execution arise between image diagonals. However, no data-flow

dependency exists between tiles within the same diagonal. For example, the shaded

diagonal in Figure 42 (D3) includes the set of tiles {4,5,6}. According to this dependency

graph, before processing tile 4 information is needed from tile 2. Similarly, tile 5 needs

information from tiles {2,3} before it can be processed.

Tiles within image diagonals can be processed in parallel with low contention. Let

NX be the number of image tiles in the x direction and NY be the number of image tiles in

the y direction. As described above, the discretized global image domain D is split into

image diagonal sub-domains Dj , j = 0:(NX - 1)+(NY - 1). Let i be the number of tiles in

subdomain Dj:

 (13)

Tiles within each subdomain are processed in parallel. In tests, this form of

parallelization does not adversely affect the accuracy of the segmentation output and

Figure 42. Leap segmentation diagonal dependencies are shown using arrows. In

order to process the shaded diagonal tiles, all tiles in the previous diagonal must

first be completely processed.

96

avoids the costly contention of threads on resources. It is important to emphasize, as

stated before, that diagonals must be processed sequentially; Dj-1 must be processed

before Dj. This level of sequential processing is expected and largely unavoidable, as leap

segmentation contains an inherently sequential process in which comparisons between

tiles are required to grow segments across adjacency bounds.

Performance evaluations for the region building subtask are given in Section 4.5.3

for both the presented serial and parallel implementations of leap segmentation.

4.4.2. Subtask 2: Region Adjustment

During region adjustment, the segmentation output from the region building

subtask is evaluated for possible outliers within regions and new regions are synthesized

to represent any new scene objects that arise in this evaluation. An outlier can arise

during region building in several situations. In most cases, slow-changing gradients cause

region component means to drift, allowing some pixels to fall out of segment CL-similar

bounds. This behavior is desired for some applications which favor minimizing the

number of segments and the fractionalization of objects (e.g. for the identification of

object boundaries). However, this is not the case for applications which require reliable

original pixel color representation in the segmentation model. Region adjustment is

implemented in order to maintain a standard level of accuracy in leap segmentation

output over all scenes.

This section first presents a highly optimized serial implementation of the region

adjustment subtask of leap segmentation. Then, the steps required to retarget this

approach for use on a parallel processing system are described in detail.

97

Serial Implementation

The region adjustment subtask is divided into three distinct stages shown in

Figure 43: saliency evaluation, density analysis, and region synthesis. During region

adjustment, pixels are scanned for outliers in region membership. If a large number of

outliers are identified, a new mega-region is created to represent the new scene object.

Let f(x,y) denote an input image frame submitted for segmentation. Let s(x,y)

denote the output from the region building subtask before region adjustment procedures

have been executed. During the saliency evaluation stage of region adjustment, the

original image and the output segmentation are compared to determine the measure of

CL-similarity present in the frame. This saliency evaluation encompasses about 11% of

the total leap segmentation processing time (see Figure 39).

Recall Equations 1 and 2 from Chapter 2. Let E(PA,PB,τ) (Equation 2) define the

CL-similar relation (Equation 1) between two RGB values (PA, PB) for some chosen

threshold τ:

 (

| |

| |

| |
) (1)

 () {
 -

 . (2)

Figure 43. Region adjustment workflow. The region adjustment subtask is

comprised of three stages: saliency evaluation, density analysis, and region

synthesis.

98

During saliency evaluation, the input frame is directly compared with the output of leap

segmentation for matching within some threshold τ (τ = 30 was chosen in the current

implementation). This comparison is performed to locate the salient portions of the image

which potentially contain new scene objects:

 () {
 (() ())

 . (14)

This new, saliency map identifies those frame locations that were assigned segment

colors that were not CL-similar to their original image color during the leap segmentation

procedure.

 The second stage of region adjustment (density analysis) accounts for 7% of the

total leap segmentation execution time. In this stage, once a saliency map has been

generated, the density of the map is computed to determine the locations of contiguous

salient pixels. The density analysis map is computed as follows for a search feature size

of ρ:

 () ∑ ()

 .
(15)

To better exploit locality in the data cache during density analysis, the image is

scanned in row-column order. Each pixel location is read from the cache only once, and

its saliency is calculated. If the pixel is deemed salient, those pixels in the ρxρ

neighborhood surrounding that pixel are each incremented in the density map. This

implementation makes the following assumption on neighborhood symmetry:

 () () (16)

99

This is a reasonable assumption when implementing rectangular search neighborhoods.

This ‘neighborhood-incremental’ approach in which densities are accumulated over time

is far more efficient than a naïve density calculation approach, in which the density of

each pixel location is calculated in-full and in-order, requiring multiple reads of the same

pixel locations. In contrast, the incremental density calculation requires pixel locations to

be read only once, and quick, atomic instructions can be used to increment the

corresponding density map neighborhood locations. This reduces the number of

comparisons required to perform this density analysis calculation from N*ρ
2
 comparisons

where N is the number of pixels in the image and ρ is the search feature size, to just N

comparisons in the incremental approach. In performance trials, this incremental

approach for density analysis enabled a more than 20x speed-up in density analysis

execution over the naïve approach.

 Region synthesis is the third and final stage of region adjustment and consumes

just 5% of the total leap segmentation processing time. In this stage, the density map

provided during density analysis is scanned for possible new object candidates. Once

these object candidates have been identified, they are analyzed and added to the global

cell list to represent new scene objects.

Parallel Implementation

The identification and classification of new object candidates in image scenes is

often a computationally heavy procedure, requiring multiple searches across the input

frame to determine the locations and sizes of new object candidates accurately. Several

portions of the region adjustment subtask are amenable to parallelization. The saliency

evaluation stage, which performs the image comparison for salient pixel detection, can be

100

processed in parallel fully (each pixel in parallel) as there are no data dependencies

between computations in this stage. Pixel locations are simply divided among the

available processors for processing.

In addition, the incremental approach for density analysis can also be parallelized

for speed-up. In a parallel implementation, pixel locations can be processed in parallel

with marked speed-up as long as their ρxρ search neighborhoods do not overlap, causing

threads to stall as they wait for density map locations to be freed for updating. This

separation of the image into non-overlapping portions for density analysis parallelization

is trivial with the assumption that the feature size ρ << N, where N is the number of

pixels in the input image (ρ = 5 was chosen in the current implementation) and the thread

count t << N which is a reasonable assumption on commodity CPUs.

Performance evaluations for the region adjustment subtask are given in Section

4.5.3 for both the presented serial and parallel implementations of leap segmentation.

4.4.3. Subtask 3: Size Analysis

The final leap segmentation subtask, size analysis, applies the minimum size

constraint to mega-regions, appropriately assimilating small regions into nearby mega-

regions based on spatial and color similarities. The resulting mega-region list becomes

the final segmentation.

Serial Implementation

Size analysis begins with a scan of the global cell list for cells that are too small to

form their own segments. These cells are marked as garbage. As described in Section 4.3,

the leap segmentation region map contains pointers onto the global cell list to convey

segment membership at each pixel location (see Figure 40). Once garbage cells have been

101

identified in the global list, the region map is scanned for the presence of pointers to these

garbage cells. If a pointer to a garbage cell is found, the adjacency neighborhood

surrounding that pixel location is scanned for a possible replacement segment. The

replacement segment is selected based on a minimum sum of absolute differences (SAD)

comparison with the original cell assignment. The sum of absolution differences

calculation is as follows:

 ∑{

| |
| |
| |

} (17)

In this way, collections of pixels that are too small to form their own segmentation

regions are assimilated into larger, spatially-similar and chromatically-similar regions

which meet required size constraints.

Parallel Implementation

The presented serial implementation of the size analysis subtask lends itself to a

couple forms of parallelization. The global list scan to identify garbage cells can be

performed completely in parallel without contention as there are no dependencies

between cells during garbage classification. In addition, the region map scan, including

the minimum sum of absolute differences calculations, is also highly parallelizable. Each

pixel location can be evaluated in parallel, as this scan largely requires reads from the

global list. However, updates to cell counts in the global list as garbage cells are

assimilated into new regions must be performed atomically to ensure correctness, a

limitation which has the potential to reduce parallel processing efficiency in this stage of

execution.

102

Performance evaluations for the size analysis subtask are given in Section 4.5.3

for both the presented serial and parallel implementations of leap segmentation.

4.4.4. Storage Implementation Considerations

Implementation-specific storage control mechanisms applied in both serial and

parallel implementations of the leap segmentation algorithm have the potential to highly

affect leap segmentation performance in execution. This section describes, in detail, these

storage implementation considerations for both the developed serial and parallel

implementations of leap segmentation.

Serial Implementation

For the highly-optimized serial implementation of leap segmentation, a large

support storage framework for fast allocation/de-allocation of leap segmentation

resources has been developed. Examples of highly used leap segmentation resources

include the cells contained in the global cell list and the tile sets contained in each

discretized image tile. These resources are repeatedly allocated, accessed, and de-

allocated during leap segmentation processing, prompting a need for an efficient storage

control framework for these particular resources. In the developed serial implementation

of leap segmentation, these resources are allocated as part of an initialization procedure in

large blocks on the heap and passed to the segmentation procedure whenever a resource

is needed during execution. This ensures that the program memory remains roughly

contiguous on the heap and allows for faster memory accesses in the data cache.

All freed leap segmentation resources are added to a free list which is maintained

during program execution. When a leap segmentation resource is required, the free list is

consulted first for any possible previously-allocated resources. If none are available, a

103

large, new resource block is allocated on the heap and resources are distributed from that

block as processing moves forward.

Parallel Implementation

The storage control framework used in the presented serial implementation, while

highly efficient for sequential processing, is not ideal in a parallel environment. A central

free list would become a highly contended resource during execution and would create a

bottleneck in processing. In addition, whereas the spatial locality of cells in the data

cache is desired in sequential processing, this is not always the case in a parallel

environment. Two threads (t1, t2) operating on different resources in the same cache line

(r1, r2) can be affected by false sharing. For example, if t1 modifies its resource r1, the

entire cache line will be invalidated, causing interference with t2 which cannot access its

unmodified resource r2 until the cache line has been updated.

 Because of these limitations, the novel serial leap segmentation run-time storage

control framework is removed in the developed parallel implementation of leap

segmentation in order to reduce contention among threads.

4.5. Experimental Results

Both the described serial and parallel leap segmentation approaches are

implemented in the C programming language and developed in a Linux environment. The

input parameters chosen for use in leap segmentation are λ=8, ε=20, and α=50. These

adjacency (λ), equivalence (ε), and minimum size (α) parameters are chosen based on

optimal performance obtained from the full parameter evaluation based on compression

and accuracy objective functions given in Section 2.5.

104

The parallel implementation of leap segmentation is built using the OpenMP API

[62] on a shared memory architecture. The OpenMP API allows for quick parallelization

of existing C code. In addition, the POSIX threads (Pthreads) API is used to enforce spin

lock implementations where explicit locks are required for critical section locking.

A set of moving-camera traffic scene sequences collected at Georgia Tech is used

in evaluation experiments (discussed in Section 3.4). The captured GTTraffic dataset

sequences [32] contain fast-moving traffic events such as vehicles swerving into visible

lanes and thus provide highly diverse scenes for analysis. These scene collections were

captured at 32 fps using a forward-mounted Kodak Zi6 on an automobile dashboard.

Over 3,000 images were selected from the GTTraffic dataset for use in these

experiments. In addition, scaled versions of these 1280x720 images were created at

several resolutions (960x540, 640x360, and 320x180) for use in evaluation experiments.

The following sections contain detailed performance evaluations of the presented

serial and parallel leap segmentation implementations. First, it is demonstrated that leap

segmentation accuracy is consistent in the serial and parallel implementations developed

in this chapter. Next, an overall execution performance analysis is presented for

experimental trials on both high-performance and resource-constrained hardware. Then,

each leap segmentation subtask is evaluated separately on resource-constrained hardware

in order to outline the performance benefits of retargeting leap segmentation to a multi-

core platform.

4.5.1. Serial vs. Parallel Implementation Accuracy

In Section 2.6, the accuracy of the leap segmentation approach was discussed and

compared with two well-known segmentation approaches from the literature (see Figure

105

20). The original, single-core leap segmentation approach was shown to maintain a high

level of scene integrity when compared to traditional approaches. In this section, it is

further demonstrated that leap segmentation accuracy is consistent in the developed serial

and parallel leap segmentation implementations.

The quantitative objective functions introduced in Section 2.5.1, the number of

segments (to evaluate compression) and the nonmatching pixel percentage (to assess

segmentation accuracy), are applied in this comparison (see Equations 1-4). In Figure 44,

the resulting serial and parallel leap segmentation implementation outputs of a zebra

scene (481x321 pixels) are shown. The nonmatching pixel percentages are listed above

each segmentation output. Figure 44a shows the merged segmentation outputs. To help

discern region membership in the merged image, an artificially colorized segmentation is

 (a) (b) (c)

Figure 44. Serial vs. parallel leap segmentation accuracy comparison images

(481x321 pixels). (a) The merged segmentation output. (b) A colorized

representation of the segmentation to show region membership clearly. (c) A binary

map of nonmatching pixels in the output segmentation.

 Serial Leap Segmentation (85 Regions, 5.9% Non-Matching Pixels)

 Parallel Leap Segmentation (82 Regions, 5.4% Non-Matching Pixels)

106

shown in Figure 44b. Contrasting color assignments show region pixel membership.

Figure 44c shows a binary matching map for the final segmentation, where nonmatching

pixels are plotted in white.

Both implementations maintain similar levels of scene integrity during

segmentation, as shown in Figure 44a. The serial leap segmentation implementation

achieves a very low nonmatching pixel percentage (5.9%). The parallel leap

segmentation implementation produces an even lower nonmatching pixel percentage

(5.4%) indicating that, for this scene, segmentation accuracy slightly improves when

moving to a parallel implementation.

 Analysis of trial runs on over 3000 dataset images indicate that overall

segmentation accuracy changes little between the described serial and parallel

implementations. This was to be expected, as no sacrifices were made to the core leap

segmentation algorithm to parallelize the approach. In addition, slight changes to segment

structure are possible when moving to a parallelized approach as the order in which pixel

locations are processed may change (see Figure 44b). However, in trials these segment

structure changes were not shown to affect segmentation accuracy.

4.5.2. Overall Performance Analysis

In the following sections, two systems are used during evaluation experiments to

assess implementation performance. The first system contains high-performance

hardware and is used to analyze parallel leap segmentation performance at high thread

counts. The second system contains embedded hardware and is used to evaluate overall

performance under resource-constrained conditions.

107

High-Performance Hardware

In these experiments, a pair of Intel Xeon E5-2670 (20M cache) processors

running at 2.60 GHz with a total of 16 Sandy Bridge-EP cores with TDP of 115 watts is

used to evaluate parallel leap segmentation performance. During all trials this system is

operating using Red Hat Fedora release 17.

The effect of image size on the frame rate of execution of parallel leap

segmentation can be seen in Figure 45 for a wide range of thread counts. As expected,

decreasing the image size significantly increases the frame rate at which parallel leap

segmentation executes. A more interesting trend is also visible regarding thread count

and its effect on execution rates. For most frame sizes, the rate of execution is highest

when using four threads and drops off linearly as the number of threads increases or

decreases from that value. This indicates an optimal execution state at a thread count of

Figure 45. Plot of the effect of image size on frame rate for various thread counts

on a pair of Intel Xeon E5-2670 processors

108

four. An increase in frame rate as the available thread-count increases is to be expected as

more threads share the work load. However, the corresponding decrease from an optimal

thread count is also to be expected. This is the point at which resource contention among

threads causes performance to suffer and eventually bottom-out.

This phenomenon occurs more rapidly in smaller images. In Figure 45, the very

small 320x180 image shows an optimum thread-count of only two threads. In tests, this

contention on resources arises primarily in the region building stage of leap

segmentation. The image is discretized into tiles, and tiles along the same image diagonal

are distributed between the available threads for processing. If one assumes tile sizes are

fixed, a smaller image results in fewer tiles along the image diagonal, and thus fewer tiles

to distribute among threads for processing. This facilitates the hazardous operating

condition in which threads operate on tiles either directly neighboring or nearby each

other along the image diagonal. The closer tiles are within the image space, the more

likely they are to share pixels within the same segment, causing contention between

threads as they attempt to simultaneously update the same locations on the shared global

cell list of image segments.

One can improve upon this discovered optimum by simply restricting thread

count in the region building subtask of leap segmentation to four, while allowing higher

thread counts in the less contention-prone regions of the approach. As just 30% of the

approach is affected by the additional threads when region building is fixed, only a small

level of speed-up is to be expected (see Figure 39). The results of this experiment are

shown in Figure 46 for large images in which the effects of this operating condition can

be seen more clearly. Restricting thread count in the region building subtask while

109

increasing thread counts in the other subtasks does facilitate additional speed-up. When

processing 1280x720 images, the overall rate of execution increases 4.5% with 8 threads

and over 6.5% with 16 threads.

Resource-Constrained Hardware

The analysis of parallel leap segmentation execution with up to 16 cores on a

high-performance machine given in the previous section is useful in theory. However, the

leap segmentation approach was designed specifically for use in an embedded, resource-

constrained environment. Such an environment will likely provide only a fraction of this

number of processing cores. Therefore, the leap segmentation optimum processing state

at four cores is, in fact, ideal for the desired execution environment where four cores are

likely the most one will have ready access to.

Figure 46. Plot of the percentage speed-up in frame rate as overall thread count

increases above four while keeping region building subtask thread count fixed at

four to limit resource contention on an a pair of Intel Xeon E5-2670 processors.

110

The overall performance of the developed leap segmentation approach

implementations (both serial and parallel) is further tested using a mobile Intel Core I3–

330M processor (3M cache, 2.13 GHz) running 64-bit Ubuntu 12.04. The I3-330M is a

mobile processor with 2 Nehalem cores (4 hyperthreaded cores) with TDP of 35 watts. It

is important to note that this is a dual core machine with hyperthreading to provide four

threads for execution. As this is not a four core machine, full performance scaling to four

hardware cores is not expected.

The averaged frame rates for trials of more than 3000 test frames for both the

serial and parallel leap segmentation implementations are given in Table 3. The highly-

optimized serial leap segmentation implementation achieves execution rates of more than

80 fps on 640x360 images and more than 20 fps on high resolution (1280x720) images.

Furthermore, the multi-core leap segmentation implementation achieves frame rates of

more than 29 fps on 1280x720 images using two threads and more than 31 fps when

using four threads, thus easily meeting real-time processing standards. Frame rates for

both the serial and parallel implementations increase exponentially as image sizes

decrease. Parallel leap segmentation tests with four threads exhibit frame rates up to 55

fps on 960x540 images, up to 115 fps on 640x360 images and even 370 fps on 320x180

Size

320x180

Size

640x360

Size

960x540

Size

1280x720

Serial 314.71 81.44 36.53 20.41

1 Thread 286.16 74.83 33.59 18.71

2 Threads 390.38 113.34 52.66 29.83

4 Threads 370.59 114.51 54.98 31.71

Table 3

Resource Constrained Hardware Execution Rates (FPS)

111

images. These very high frame rates exhibited by both the serial and parallel leap

segmentation implementations are state-of-the-art execution performance on both low

and high resolution images.

Figure 47 includes plots of performance speed-up of the parallel leap

segmentation implementation over the serial implementation when executing on

resource-constrained hardware. The parallel implementation is evaluated for threads

counts of 1, 2, and 4. As frame sizes increase, the percentage speed-up of execution

Figure 47. Percentage speed-up of parallel leap segmentation over serial leap

segmentation on an Intel Core I3-330M processor for 1, 2, and 4 thread counts and

at various frame sizes.

112

increases across the board. At a thread count of one, the negative speed-up percentages

exhibited by the parallel leap segmentation implementation are due to the high overhead

of parallelization associated with Open-MP (thread creation, initialization, scheduling,

assignment, etc.). At thread counts of two and four, consistent speed-up is achieved over

the serial leap segmentation approach. Once again, it must be noted that the platform used

in these trials contains a dual-core processor with hyperthreading to provide four threads

for execution. Because of this, performance is not expected to scale as if four hardware

cores were available.

For 1280x720 frame sizes, parallel leap segmentation achieves a 46% speed-up

over the serial implementation with two threads and 55% speed-up when four threads are

used. These results with high resolution images on resource-constrained hardware are

highly promising and show enormous potential for the use of the developed parallel leap

segmentation implementation in the preprocessing stages of high level vision applications

operating in real-time, embedded environments.

4.5.3. Subtask Performance Analysis

In the following sections, performance evaluations on the resource-constrained

Intel Core I3-330M mobile processor described previously are presented for each leap

segmentation subtask for both the serial and parallel implementations of leap

segmentation presented in this chapter. A detailed comparison of execution rates is given

both before and after parallelization for each subtask. A high resolution image size was

chosen for all subtask performance experiments (1280x720) in order to push the limits of

the algorithms and better assess algorithmic performance.

113

Subtask 1: Region Building

The execution performance of the leap segmentation region building subtask is

displayed for both the developed serial and parallel implementations in Table 4. Recall

that this subtask is parallelized along image diagonals to avoid data dependencies

between threads. The results in Table 4 indicate that a thread count of two is required for

speed-up of the parallel approach over the highly-optimized serial approach due to the

high overhead of parallelization with OpenMP (thread creation, initialization, scheduling,

assignment, etc.). When four threads are available for execution, parallel leap

segmentation achieves ~15 fps speed-up over the serial approach (an almost 50% speed-

up in execution performance).

Subtask 2: Region Adjustment

Table 5 displays execution rates for assessment of the saliency evaluation portion

of the region adjustment subtask for both the serial and parallel implementations of leap

segmentation developed in this chapter. Recall that this portion of the subtask can be

fully parallelized, as no data dependencies exist between pixels. The results in Table 5

show that an over 100% speed-up is achieved after adding just one thread to the

execution for a total of two available threads. However additional threads do not yield as

much performance improvement. When operating with four available threads, the parallel

 Serial 1 Thread 2 Threads 4 Threads

FPS 30.80 27.61 39.71 45.98

% Speed Up - -10.33% 28.93% 49.30%

Table 4

Region Building Execution Performance

114

leap segmentation saliency evaluation speed-up over serial leap segmentation is ~127%.

This may be due to the fact that the experimental setup contains just two hardware cores

and the execution of four threads is achieved with hyperthreading.

Table 6 shows execution rates for trial runs of the density analysis stage of the

region adjustment subtask. This stage implements an incremental approach to density

analysis and is able to be fully parallelized with each pixel location in parallel. Therefore,

pixel locations are divided equally among the available threads for execution. With four

cores, an over 115% speed-up is achieved by parallelizing this computation. The

comparably minor speed-up results exhibited in this stage are most likely due to the high

overhead of OpenMP scheduling dominating the processing of an already proportionally

low computation portion of leap segmentation.

 The third and final stage of the region adjustment subtask, region synthesis, does

 Serial 1 Thread 2 Threads 4 Threads

FPS 184.91 160.60 372.36 421.31

% Speed Up - -13.15% 101.37% 127.84%

Table 5

Saliency Evaluation Execution Performance

 Serial 1 Thread 2 Threads 4 Threads

FPS 228.36 188.22 387.37 491.36

% Speed Up - -17.58% 69.63% 115.17%

Table 6

Density Analysis Execution Performance

115

not prove amenable to parallelization with the high overhead cost of OpenMP as it

encompasses only 5% of total leap segmentation processing. Therefore, this stage of

region adjustment is left to function sequentially.

Subtask 3: Size Analysis

In Table 7, the execution performance for the size analysis subtask for both the

serial and parallel leap segmentation implementations developed in this chapter is shown.

Recall that each image location can be evaluated in parallel during this subtask and that

the task largely requires only reads from shared memory. However, shared memory

writes, while infrequent during this subtask, must be performed atomically and therefore

could hinder performance on a parallel processing system. Despite these synchronization

concerns, Table 7 shows that significant speed-up occurs after adding just one thread to

the execution. With four threads, a ~73% speed-up of the size analysis subtask execution

is achieved over the serial approach.

4.6. Conclusion

The goal of this research is to achieve real-time (>25 fps) image segmentation

execution performance on a commercially-available CPU with multiple processing cores

that does not require special hardware. To that end, first a highly optimized serial

 Serial 1 Thread 2 Threads 4 Threads

FPS 420.69 358.59 580.53 728.68

% Speed Up - -14.76% 38.00% 73.21%

Table 7

Size Analysis Execution Performance

116

implementation of the leap segmentation algorithm is introduced. This highly-optimized

serial approach is shown to achieve frame rates of more than 80 fps on 640x360 images

and more than 20 fps on high resolution (1280x720) images. This serial implementation

of leap segmentation will prove useful in many embedded, resource-constrained

environments where processing speed is critical.

To achieve real-time execution of leap segmentation on high-resolution images, a

multi-core leap segmentation implementation is presented. Numerous parallelization

techniques are applied to different portions of the leap segmentation algorithm to achieve

further speed-up over the serial implementation. The steps taken to parallelize each leap

segmentation subtask are described in detail. In experiments, the developed parallel

implementation of leap segmentation executes at over 114 fps on 640x360 images and

over 31 fps on high-resolution, 1280x720 images, easily meeting real-time processing

standards (and achieving a 55% speed-up over the serial approach).

The original leap segmentation approach (Chapter 2) was designed for use in

embedded, resource-constrained environments. An embedded platform may be limited to

a single processing core, in which case this chapter’s highly optimized serial leap

segmentation implementation is ideal and achieves real-time behavior on a wide range of

image sizes. Embedded platforms with multiple available processing cores can make use

of this chapter’s parallel implementation of leap segmentation. This parallel

implementation executes in real-time on high resolution images with peak performance at

a thread count of four. With the frame rates exhibited in performance trials, both of the

presented approaches show enormous potential for use in real-time, embedded

environments with high-resolution input images.

117

CHAPTER 5

CONCLUSION AND SUMMARY OF RESULTS

This dissertation investigates image segmentation in embedded, real-time

applications. It presents a novel approach, called leap segmentation, that efficiently

reduces and restructures image data into regions while preserving necessary salient

features in the image (Forsthoefel et al.) [34]. Leap segmentation is evaluated using both

standard datasets from the literature [55], [56] and the new, GTTraffic dataset:

 GTTraffic, a publicly available dataset of moving-camera traffic sequences

collected at Georgia Tech (Forsthoefel et al.) [32], is developed and presented

for use in vision evaluation experiments.

The leap segmentation approach is extensively compared with prior efforts using

both classical metrics of performance (e.g. the F-measure [76], the probabilistic rand

index (PRI) [75]) and other, newly developed metrics designed for more extensive

evaluations (e.g. the non-matching pixel percentage (Forsthoefel et al.) [34]).

 Leap segmentation demonstrates high region-assignment accuracy and,

compared to other approaches, preserves a higher level of scene integrity (up

to 30-40% higher) using a given storage resource.

 In experiments, this approach exhibits execution time improvements of 10x-

15x over traditional approaches.

118

In addition, the usefulness of applying this novel method of image segmentation

in the preprocessing stages of a high-level vision application for image labeling and 3D

reconstruction is evaluated and compared with existing segmentation approaches

(Forsthoefel et al.) [31].

 The efficiency of a high-level image layout and 3D reconstruction task can be

dramatically improved by applying the leap segmentation technique during

preprocessing.

 In the second contribution of this dissertation, the single-frame leap segmentation

algorithm is extended to efficiently process video while maintaining region boundary

continuity between image frames. Temporal analysis of this video leap segmentation

algorithm is performed to evaluate segmentation stability over time in video sequences

from moving camera scenes (Forsthoefel et al.) [32], (Forsthoefel et al.) [33].

 Video leap segmentation successfully tracks segments across spatial and

temporal bounds, generating fast, stable segmentations of images from

moving-camera video sequences.

Video leap segmentation is then applied to the task of salient segment

transformation detection for alerting drivers of critical scene changes that may affect

steering decisions. The resulting salient transformation recognition technique quickly

identifies and tracks rapidly moving, salient objects in traffic video sequences

(Forsthoefel et al.) [33].

119

 Trial results demonstrate that with little added computation, video leap

segmentation can detect salient regions in traffic scenes with high accuracy,

correctly detecting 80% of salient segment transformations in trial scenes with

less than 5% false positives.

In the third contribution of this dissertation, a parallel, multi-core implementation

of leap segmentation is presented (Forsthoefel et al.) [35]. The goal is to achieve real-

time (>25 fps) segmentation performance on a commercially-available CPU with

multiple processing cores that does not require special hardware. To that end, a highly

optimized serial implementation of the leap segmentation algorithm is introduced. All

optimizations built into this serial implementation are described in detail including those

optimizations made to leap segmentation data structures.

 This optimized serial implementation is demonstrated to achieve frame rates

of more than 80 fps on 640x360 images and more than 20 fps on high

resolution (1280x720) images, thus far exceeding the state-of-the art in

execution speed.

To achieve real-time execution of leap segmentation on high-resolution images, a

multi-core leap segmentation implementation is then presented. Numerous parallelization

techniques were applied to different portions of the leap segmentation algorithm to

achieve further speed-up over a serial implementation. The steps taken to parallelize each

leap segmentation subtask are described in detail.

120

 On a multi-core, mobile processing system with four threads, this multi-core

leap segmentation implementation achieves frame rates of over 114 fps on

640x360 images and more than 31 fps on 1280x720 images, thus easily

meeting real-time processing standards.

The experiments to evaluate the performance of both the highly optimized serial

implementation and the parallel implementation of leap segmentation are performed on

various image sizes and under various operating conditions. With the execution frame

rates exhibited in these performance trials, both of the developed approaches show

enormous potential for use in real-time, embedded environments with high-resolution

input images.

5.1. Future Work

Several avenues of future work are possible, particularly in video leap

segmentation. These include an in-depth parameter variation analysis of video leap

segmentation parameters and its optimization and parallelization on multi-core, mobile

platforms. Parallelization of this approach targeting a multi-core platform, such as a

GPU, appears highly promising because most comparisons between pixels occur across

frames in time. Therefore, operations performed on each pixel location within a frame

have the potential to be performed in parallel. The larger the input frame, the more

opportunities for parallelism, particularly on systems which are able to provide high

thread counts to their vision processing procedures.

 Other avenues of future work will explore additional real-world applications of

both single-frame leap segmentation and video leap segmentation. These include high-

121

level image correspondence and image registration applications, especially for use on

high resolution input images, and content-based image retrieval (CBIR) applications.

As camera usage on mobile devices increases, the demand for fast, accurate image

processing techniques will continue to drive computer vision researchers to develop new

and innovative methods for improving the efficiency of the modern image processing

pipeline. This dissertation explores the challenging field of image segmentation and

proposes techniques for segmentation preprocessing that can provide much-needed

speed-up when used as part of contemporary high-level image analysis and interpretation

systems.

122

APPENDIX

ADDITIONAL LEAP SEGMENTATION RESULTS

This appendix includes comparison tables of segmentation output images from

three segmentation approaches: the Leap Segmentation approach introduced in Chapter 2

of this dissertation (Forsthoefel et al.) [34], the Mean-Shift Clustering with Edge

Detection (EDISON) approach [20], and the Efficient Graph-Based Image Segmentation

(EGBIS) approach [30]. These evaluation experiments are extended from those

introduced in Section 2.6. The dataset used for these extended comparisons is 300 images

from the Berkeley Segmentation Dataset [55], [56]. This dataset provides a diverse

collection of scene types with varying feature sizes and scales. To ensure a consistent

comparison, all algorithms were adjusted to produce similar levels of segmentation. The

following figures display segmentation output for each technique and are labeled with

segment count information and non-matching pixel percentages (see Equations 2-4 from

Chapter 2 for more details).

123

(a) (b) (c)

Figure 48. Segmentation comparison images, human face (321x481 pixels). (a) The

merged segmentation output for each technique. (b) A colorized representation of

the segmentation to show region membership clearly. (c) A binary map of

nonmatching pixels in the output segmentation.

Original Image

Leap Segmentation (85 Regions, 1.1% Non-Matching Pixels)

EDISON (91 Regions, 13.1% Non-Matching Pixels)

EGBIS (87 Regions, 32.8% Non-Matching Pixels)

124

 (a) (b) (c)

Figure 49. Segmentation comparison images, human striped shirt (321x481 pixels).

(a) The merged segmentation output for each technique. (b) A colorized

representation of the segmentation to show region membership clearly. (c) A binary

map of nonmatching pixels in the output segmentation.

Original Image

Leap Segmentation (114 Regions, 0.8% Non-Matching Pixels)

EDISON (112 Cells, 15.1% Non-Matching Pixels)

EGBIS (114 Regions, 20.3% Non-Matching Pixels)

125

REFERENCES

[1] A. Abramov, T. Kulvicius, F. Wörgötter, and B. Dellen, “Real-time image

segmentation on a GPU,” Proc. Facing the Multicore-Challenge, pp. 131-142,

2011.

[2] R. Adams and L. Bischof, “Seeded region growing,” IEEE Trans. Pattern

Analysis and Machine Intel1ligence, vol. 16, no. 6, pp. 641-647, June 1994.

[3] M. Allmen and C.R. Dyer, “Computing spatiotemporal relations for dynamic

perceptual organization,” CVGIP: Image Understanding, vol. 3, no. 58, pp. 338-

351, 1993.

[4] S. Alpert, M. Galun, R. Basri, and A. Brandt, “Image segmentation by

probabilistic bottom-up aggregation and cue integration,” Proc. IEEE Int’l Conf.

Computer Vision and Pattern Recognition, 2007.

[5] J. Angulo, J. Serra, “Color segmentation by ordered mergings,” Proc. IEEE Int.

Conf. Image Process., vol. 2, pp. 125-128, 2004.

[6] S. Apewokin, B. Valentine, D. Forsthoefel, D.S. Wills, L.M. Wills, and A.

Gentile, “Embedded Real-Time Surveillance Using Multimodal Mean

Background Modeling”, Embedded Computer Vision, (B. Kisacanin and S.

Bhattacharyya and S. Chai, eds.), Springer, pp. 163-175, 2009.

[7] G. Baldi, C. Colombo, and A. Del Bimbo, “A compact and retrieval-oriented

video representation using mosaics,” Proc. 3
rd

 Int’l Conf. Visual Information

Systems, LNCS 1614, Springer: Amsterdam, The Netherlands, pp. 171-178, June

1999.

[8] M.R. Bales, D. Forsthoefel, B. Valentine, D.S. Wills, and L.M. Wills,

“BigBackground-Based Illumination Compensation for Surveillance Video”,

EURASIP Journal on Image and Video Processing, vol. 2011, Article ID

171363, 22 pages, 2011.

[9] M.R. Bales, D. Forsthoefel, D.S. Wills, and L.M. Wills, “Illumination Change

Compensation Techniques to Improve Kinematic Tracking”, Proc. IEEE

Workshop on Applications of Computer Vision, pp. 434–439, 2011.

[10] R. Beare, “A locally constrained watershed transform,” IEEE Trans. Pattern

Analysis and Machine Intelligence, vol. 28, no. 7, pp. 1063–1074, 2006.

[11] S. Belongie, C. Carson, H. Greenspan, and J. Malik, “Color and texture-based

image segmentation using EM and its application to content-based image

retrieval,” Proc. 6th IEEE Int’l Conf. Computer Vision, pp. 675-682, 1998.

126

[12] P. Besl and R. Jain, “Three dimensional object recognition,” ACM Comput. Surv.,

vol. 17, no. 1, pp. 75-145, 1985.

[13] Y. Boykov and G. Funka-Lea, “Graph cuts and efficient N-D image

segmentation,” Int’l Journal of Computer Vision, vol. 70, no. 2, pp. 109-131,

2006.

[14] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via

graph cuts,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23, no.

11, pp. 1222-1239, 2001.

[15] A. Brandt, “Algebraic multigrid theory: the symmetric case,” Applied

Mathematics and Computation, vol. 19, no. 1-4, pp. 23-56, July 1986.

[16] M. Brockway, “Red Light Cameras to Spot Parking Violators? City Asks Bidders

For Details,” DNAinfo, http://www.dnainfo.com/chicago/20130311/chicago/red-

light-cameras-issuing-parking-tickets-city-asks-bidders-for-details, 11 March

2013.

[17] M.Á. Carreira-Perpiñán, “Acceleration strategies for Gaussian mean-shift image

segmentation,” Proc. IEEE Int’l Conf. Computer Vision and Pattern Recognition,

2006.

[18] C. Carson, S. Belongie, H. Greenspan, and J. Malik, “Blobworld: image

segmentation using expectation-maximization and its application to image

querying,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 8,

pp. 1026–1038, 2002.

[19] Y.-L. Chang and X. Li, “Adaptive image region-growing,” IEEE Trans. Image

Processing, vol. 3, no. 6, pp. 868-872, 1994.

[20] C.M. Christoudias, B. Georgescu, and P. Meer, “Synergism in low level vision,”

Proc. 16th Int’l Conf. Pattern Recognition, Quebec City, Canada, vol. 4, pp. 150–

155, August 2002.

[21] D. Comaniciu and P. Meer, “Mean shift analysis and applications,” Proc. IEEE

Int’l Conf. Computer Vision, vol. 2, pp. 1197-1203, 1999.

[22] D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature space

analysis,” IEEE Trans. Pattern Analysis Machine Intelligence, vol. 24, no. 5, pp.

603-619, May 2002.

[23] J. Costeira and T. Kanade, “A multi-body factorization method for motion

analysis,” Proc. IEEE Int’l Conf. Computer Vision, pp. 1071-1076, 1995.

[24] T. Cour, F. Benezit, and J. Shi, “Spectral segmentation with multiscale graph

decomposition,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol.

2, pp. 1124-1131, 2005.

127

[25] D. DeMenthon, “Spatio-temporal segmentation of video by hierarchical mean

shift analysis,” Proc. Statistical Methods in Video Processing Workshop, June

2002.

[26] A. Dempster, N.M. Laird, and D.B. Rubin, “Maximum likelihood from

incomplete data via the EM algorithm,” Journal of the Royal Statistical Society,

Series B, vol. 39, no. 1, pp. 1–38, 1977.

[27] Y. Deng and B. Manjunath, “Unsupervised segmentation of color-texture regions

in images and video,” IEEE Trans. Pattern Analysis and Machine Intelligence,

vol. 23, no. 8, pp. 800-810, 2001.

[28] F. Drucker and J. MacCormick, “Fast superpixels for video analysis,” Proc. IEEE

Workshop on Motion and Video Computing, pp. 1-8, 2009.

[29] K. Drummond, “Darpa Wants Self-Guiding, Storytelling Cameras,” Wired,

http://www.wired.com/dangerroom/2010/03/darpa-wants-self-guiding-storytelling

-cameras/, 17 March 2010.

[30] P. Felzenszwalb and D. Huttenlocher, “Efficient graph-based image

segmentation,” Int’l Journal of Computer Vision, vol. 59, no. 2, pp. 167–181,

2004.

[31] D. Forsthoefel, D.S. Wills, and L.M. Wills, “Leap segmentation for

recovering image surface layout,” Proc. IEEE Southwest Symp. Image Anal.

Interp., Santa Fe, NM, April 2012.

[32] D. Forsthoefel, D.S. Wills, and L.M. Wills, "The GTTraffic dataset," Mobile

Vision Embedded Systems Lab (MoVES), Georgia Institute of Technology,

http://www.ece.gatech.edu/research/labs/pica/, April 2012.

[33] D. Forsthoefel, D.S. Wills, and L.M. Wills, "Unsupervised video leap

segmentation for fast detection of salient segment transformations in mobile

sequences," Proc. 15th IEEE Int’l Conf. Intelligent Transportation Systems

(ITSC), pp.728-733, 16-19 September 2012.

[34] D. Forsthoefel, D.S. Wills and L.M. Wills, “Fast leap segmentation,” Image

and Vision Computing, under review, 17 pages, submitted May 2013.

[35] D. Forsthoefel, D.S. Wills, and L.M. Wills, “Real-Time, parallel segmentation

of high resolution images on multi-core platforms,” Journal of Real-Time

Image Processing, under review, 15 pages, submitted May 2013.

[36] M. Gelgon and P. Bouthemy, “A region-level motion-based graph representation

and labeling for tracking a spatial image partition,” Pattern Recognition, vol. 33,

no. 4, pp. 725-740, 2000.

128

[37] B. Georgescu, I. Shimshoni, and P. Meer, “Mean shift based clustering in high

dimensions: a texture classification example,” Proc. 9th IEEE Int’l Conf.

Computer Vision, pp. 456-463, 2003.

[38] L. Greenemeier, “Smart Headlights Can See through Rain, Sleet and Snow,”

Scientific American, http://www.scientificamerican.com/article.cfm?id=smart-

headlights-see-through-rain-sleet-snow, 1 September 2012.

[39] H. Greenspan, J. Goldberger, and A. Mayer, “Probabilistic space-time video

modeling via piecewise GMM,” IEEE Trans. Pattern Analysis and Machine

Intelligence, vol. 26, no. 3, pp. 364-396, March 2004.

[40] D. Greig, B. Porteous, and A. Seheult, “Exact maximum a posteriori estimation

for binary images,” Journal of the Royal Statistical Society, Series B, vol. 51, no.

2, pp. 271-279, 1989.

[41] M. Grundmann, V. Kwatra, M. Han, and I. Essa. “Efficient hierarchical graph-

based video segmentation,” Proc. IEEE Int’l Conf. Computer Vision and Pattern

Recognition, 2010.

[42] A. Hanbury and J. Stöttinger, “On segmentation evaluation metrics and region

counts,” Proc. 19th Int’l Conf. Pattern Recognition, pp. 1-4, December 2008.

[43] P.N. Happ, R.S. Ferreira, C. Bentes, G.A.O.P Costa, and R.Q. Feitosa,

“Multiresolution segmentation: a parallel approach for high resolution image

segmentation in multicore architectures,” The International Archives of the

Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 38, no.

4, 2010.

[44] D. Hoiem, A.A. Efros, and M. Hebert, “Automatic photo pop-up,” ACM

SIGGRAPH, 2005.

[45] D. Hoiem, A.A. Efros, and M. Hebert. “Recovering surface layout from an

image,” Int’l Journal of Computer Vision, vol. 75, no. 1, pp. 151-172, 2007.

[46] S.L. Horowitz and T. Pavlidis, “Picture segmentation by a tree traversal

algorithm,” Journal of the Association for Computing Machinery, vol. 23, no. 2,

pp. 368-388, 1976.

[47] A. Jain, M. Murty, and P. Flynn, “Data clustering: a review,” ACM Computing

Surveys, vol. 31, no. 3, pp. 264-323, 1999.

[48] Q. Ju, D. Forsthoefel, S. Azmat, L.M. Wills, D.S. Wills, and R. Ying,

“PathMark: A Novel Fast Lane Detection Algorithm for Embedded

Systems”, Proc. 4th International Symposium on Information Science and

Engineering (ISISE 2012), Shanghai, China, December 2012.

129

[49] J. Kim and J.W. Woods, “Spatiotemporal adaptive 3-D Kalman filter for video,”

IEEE Trans. Image Processing, vol. 6, no. 3, pp. 414-424, 1997.

[50] B. Kisacanin, S. Bhattacharyya, and S. Chai, eds., Embedded Computer Vision

(Advances in Pattern Recognition), Springer, 2009.

[51] D. Liebowitz, A. Criminisi, and A. Zisserman, “Creating architectural models

from images,” Proc. Euro-Graphics, vol. 18, 1999.

[52] J. MacQueen, “Some methods for classification and analysis of multivariate

observations,” Proc. Fifth Berkeley Symp. Mathematical Statistics and

Probability, pp. 281-297, 1967.

[53] J. Malik, S. Belongie, T. Leung, and J. Shi, “Contour and texture analysis for

image segmentation,” Int’l Journal of Computer Vision, vol. 43, no. 1, pp. 7–27,

2001.

[54] J. Markoff, “Google Cars Drive Themselves, in Traffic,” The New York Times,

http://www.nytimes.com/2010/10/10/science/10google.html?_r=0, 9 October

2010.

[55] D. Martin and C. Fowlkes, “The Berkeley Segmentation Dataset and

Benchmark,” [Online], University of California, Berkeley,

http://www.cs.berkeley.edu/projects/vision/grouping/segbench, June 2007.

[56] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human segmented

natural images and its application to evaluating segmentation algorithms and

measuring ecological statistics,” Proc. 8th Int’l Conf. Computer Vision, vol. 2, pp.

416–423, July 2001.

[57] R. Megret and D. DeMenthon, “A survey of spatio-temporal grouping

techniques,” Technical Report CS-TR-4403, Language and Media Processing,

Univ. of Maryland, Aug. 2002.

[58] M. Meribout and M. Nakanishi. “A new real time object segmentation and

tracking algorithm and its parallel hardware architecture,” Journal of VLSI Signal

Processing, vol. 39, no. 3, pp. 249-266, 2005.

[59] S. Mohan and L. Mani, “Construction of 3d models from single view images: a

survey based on various approaches,” Proc. Int. Conf. Emerg. Trends Elec. Comp.

Tech., pp. 557–562, 2011.

[60] G. Mori, “Guiding model search using segmentation,” Proc. 10th Int’l Conf.

Computer Vision, vol. 2, pp. 1417–1423, 2005.

[61] E. Navon, O. Miller, and A. Averbuch, “Color image segmentation based on

adaptive local thresholds,” Image and Vision Computing, vol. 23, no. 1, pp. 69-85,

2005.

130

[62] OpenMP Architecture Review Board, “OpenMP Application Program Interface

Version 3.0,” http://www.openmp.org/mp-documents/spec30.pdf, May 2008.

[63] C. Pantofaru and M. Hebert, “A comparison of image segmentation algorithms,”

Technical Report CMU-RI-TR-05-40, The Robotics Institute, Carnegie Mellon

University, Sept. 2005.

[64] S. Paris, “Edge-preserving smoothing and mean-shift segmentation of video

streams,” Proc. European Conf. Computer Vision, pp. 460-473, 2008.

[65] S. Paris and F. Durand, “A topological approach to hierarchical segmentation

using mean shift,” Proc. IEEE Conf. Computer Vision and Pattern Recognition,

pp. 1-8, 2007.

[66] X. Ren and J. Malik, “Learning a classification model for segmentation,” Proc.

9th Int. Conf. Comp. Vision, vol. 1, pp. 10-17, 2003.

[67] J.B.T.M. Roerdink and A. Meijster, “The watershed transform: definitions,

algorithms, and parallelization strategies,” Fundamenta Informaticae, vol. 41, pp.

187-228, March 2000.

[68] J. Serra, “Connections for sets and functions,” Fundamenta Informatica, vol. 41,

pp. 147-186, 2000.

[69] E. Sharon, M. Galun, D. Sharon, R. Basri, and A. Brandt, “Hierarchy and

adaptivity in segmenting visual scenes,” Nature, vol. 442, no. 7104, pp. 810-813,

June 2006.

[70] J. Shi and J. Malik, “Motion segmentation and tracking using normalized cuts,”

Proc. 6th IEEE Int’l Conf. Computer Vision, pp. 1151-1160, 1998.

[71] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Trans.

Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 888-905, 2000.

[72] S.M. Smith and J.M. Brady, “ASSET-2: real-time motion segmentation and shape

tracking,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 17, no. 8,

pp. 814-820, 1995.

[73] C. Sorrel, “What’s Inside: The iPhone 4S Camera,” Wired, http://www.wired.com/

gadgetlab/2011/10/whats-inside-the-iphone-4s-camera/, 5 October 2011.

[74] R. Szeliski, Computer Vision: Algorithms and Applications, 1st edition, Springer,

2010.

[75] R. Unnikrishnan, C. Pantofaru, and M. Hebert, “Toward objective evaluation of

image segmentation algorithms,” IEEE Trans. Pattern Analysis and Machine

Intelligence, vol. 29, no. 6, pp. 929–944, 2007.

131

[76] C. Van Rijsbergen, Information Retrieval, 2nd edition, Department of Computer

Science, University of Glasgow, London: Butterworths, 1979.

[77] L. Vincent and P. Soille, “Watersheds in digital spaces: an efficient algorithm

based on immersion simulations,” IEEE Trans. Pattern Analysis and Machine

Intelligence, vol. 13, no. 6, pp. 583–598, 1991.

[78] D. Wang, “A multiscale gradient algorithm for image segmentation using

watersheds,” Pattern Recognition, vol. 30, no. 12, pp. 2043-2052, 1997.

[79] J. Wang and E. Adelson, “Representing moving images with layers,” IEEE Trans.

Image Processing, vol. 3, no. 5, pp. 625-638, 1994.

[80] J. Wang, P. Bhat, R.A. Colburn, M. Agrawala, and M.F. Cohen, “Interactive video

cutout,” ACM Trans. Graphics, vol. 24, no. 3, pp. 585–594, 2005.

[81] B. Wojdyla, “GM Puts the First Robotic Vision System in a Production Car,”

Popular Mechanics, http://www.popularmechanics.com/cars/news/industry/gm-

puts-the-first-robotic-vision-system-in-a-production-car?click=main_sr, 30

September 2011.

[82] T. Wolverton, “Monitoring your vitals with a webcam,” Lowell Sun,

http://www.lowellsun.com/tech/ci_22742589/wolverton-monitoring-your-vitals-

webcam, 11 March 2013.

[83] J. Wright and A. Yang, “Image Segmentation Benchmark Indices Package,”

University of California, Berkeley, http://www.eecs.berkeley.edu/~yang /software/

lossy_segmentation/SegmentationBenchmark.zip, March 2007.

[84] Z. Wu and R. Leahy, “An optimal graph theoretic approach to data clustering:

theory and its application to image segmentation,” IEEE Trans. Pattern Analysis

and Machine Intelligence, vol. 15, no. 11, pp. 1101-1113, Nov. 1993.

[85] L. Xu and M.I. Jordan, “On convergence properties of the EM algorithm for

Gaussian mixtures,” Neural Computation, vol. 8, pp. 129–151, 1996.

[86] A. Yilmaz, O. Javed, and M. Shah, "Object tracking: a survey," ACM Computing

Surveys, vol. 38, no. 4, article 13, pp. 1-45, Dec. 2006.

[87] R. Zurer, “Bun-Making Goes High Tech,” Wired, http://www.wired.com/

magazine/2011/09/st_perfectbuns/, 27 September 2011.

132

VITA

Dana Forsthoefel was born on November 17
th

, 1986 in Tallahassee, Florida. In

2004, she graduated one year early from John Paul II Catholic High School and went on

to attend the Georgia Institute of Technology. In May 2008, she graduated with Highest

Honor with a Bachelor of Science in Computer Engineering. She was accepted into the 5-

year joint BS/MS degree program for highly qualified students, allowing her to graduate

in 2009 with a Master of Science in Electrical and Computer Engineering from Georgia

Tech. During her Masters program, her primary technical focus was in Computer

Systems and Software with a minor in Computer Science. Her secondary technical

interest areas included VLSI Systems and Telecommunications. In August of 2009, she

began her doctoral program in Electrical and Computer Engineering at Georgia Tech in

the Mobile Vision and Embedded Systems (MoVES) Laboratory. While in pursuit of her

doctoral degree, she held research assistantships both in the MoVES lab and in the

Sensors and Electromagnetic Applications Lab (SEAL) at the Georgia Tech Research

Institute (GTRI). In addition, she solely taught a core computer engineering lab class for

a semester during her doctoral program.

 Dana was awarded the Google Anita Borg Memorial Scholarship in 2009 as

support for her continued graduate studies in computing and technology. In 2012, she

received a distinguished performance award from GTRI for her outstanding performance

and superior technical achievements. Her primary research interests include embedded

computer vision and fast, resource-efficient, automated image processing. She is a

member of IEEE, SWE, WECE, and Eta Kappa Nu.

