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SUMMARY 

The total electricity consumption of plugged- in electric loads (PELs) currently 

accounts for more usage than any other single end-use service in residential and 

commercial buildings. Compared with other categories of electric loads, PELs possess 

significant potential to be efficiently controlled and managed in buildings. There fore, 

accurate and reliable PEL identification methods that are used to collect identity and 

performance information are desired for many purposes. However, few existing electric 

load identification methods are designed for PELs to handle unique challenges such as 

the diversity within each type of PEL and similarity between different types of PELs 

equipped by similar front-end power supply units.  

The objective of this dissertation is to develop non- intrusive, accurate, robust, and 

applicable PEL identification algorithms utilizing voltage and current measurements. 

Based on the literature review of almost all existing features that describe electric loads 

and five types of existing methods for electric load identification, a two- level framework 

for PELs classification and identification is proposed.  

First, the supervised self-organizing map (SSOM) is adopted to classify a large 

number of PELs of different models and brands into several groups by their inherent 

similarities. Therefore, PELs with similar front-end power supply units or characteristics 

fall into the same group. The partitioned groups are verified by their power supply unit 

topology. That is, different groups should have different topologies. This dissertation 

proposes a novel combination of the SSOM framework and the Bayesian framework. 

Such a hybrid identifier can provide the probability of an unknown PEL belonging to a 

specific type of load. 



xxiii 

 

Within each classified group by the SSOM, both static and dynamic methods are 

proposed to distinguish PELs with similar characteristics. Static methods extract steady-

state features from the voltage and current waveforms to train different computational 

intelligence algorithms such as the SSOM itself and the support vector machine (SVM). 

An unknown PEL is then presented to the trained algorithm for identification. In contrast 

to static methods, dynamic methods take into consideration the dynamics of long-term 

(minutes instead of milliseconds) waveforms of PELs and extract elements such as 

spikes, oscillations, steady-state operations, as well as similarly repeated patterns.  
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CHAPTER 1  INTRODUCTION AND OBJECTIVES 

1.1 ELECTRICITY CONSUMPTION OF PLUGGED-IN ELECTRIC LOADS 

In the United States, electric loads in residential and commercial buildings accounted 

for around 75% of the total electricity consumption in 2012 [1]. Moreover, the total 

consumption by residential and commercial buildings has been increasing for the past six 

decades [1], as shown in the following figure. The economic, operational, and 

environmental impacts of increasing electric power consumption have drawn world-wide 

attention to the need for better energy consumption management and direct control of 

electric loads in not only residential houses but more importantly also commercial 

buildings such as hospitals, schools, and data centers.  

 

 

 

Figure 1.1 U.S. electricity retail sales by sectors from 1949 to 2009 [1]. 
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Electric loads in residential and commercial buildings are commonly divided into 

groups such as space conditioning, water heating, ventilation, lighting, major appliances, 

and miscellaneous [2]. Miscellaneous electrical loads (MELs) are the diverse collection 

of electricity-consuming devices including portable loads which are electronic appliances 

plugged into sockets, along with all hard-wired loads that do not fit into other major end-

use categories [3]. The suggested partition of all electric loads by [2], as well as some 

examples, is shown in the following figure.  

 

 

Figure 1.2 Classification of electric loads in buildings 

 

It is reported that MELs currently consume more electricity than any other single end-

use service in residential and commercial buildings [3]. Furthermore, a recent report from 

the United States Department of Energy (DOE) [4] indicates that “miscellaneous uses 

dominate growth in electricity demand” in residential buildings. For example, the 

electricity consumption of TV sets and set-top boxes surpassed that of refrigerators in 

2010. It is also predicted in [4] that MELs’ consumption (e.g., video displays and medical 
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devices) will increase by an average of 2.3 percent per year and, in 2035, will account for 

about 40 percent of total electricity consumption in the commercial sector. The rapid 

growth in both residential and commercial buildings is commonly considered to be driven 

by consumer electronics. It is predicted that the growth will continue and even accelerate 

due to network connections of MELs in the future [5].  

Portable MELs, which account for the majority of all MELs, are of special interest in 

this dissertation for the following several reasons. 

(1) Non-portable MELs, such as distribution transformers, non-road electric 

vechiles including electric trams, electric locomotives, and wheeled vehicles 

that are not intended for use on public roads (such as airport ground support 

equipment), magnetic resonence imaging (MRI), and elevators [5] are less 

frequently installed, not as easily accessible and controllable compared with 

portable MELs. Note that here “controllable” means real-time direct load 

control accordingly to different needs and scenarios.   

(2) A large number of electric loads in other categories are also portable, such as 

refrigerators, washers and driers, air conditioners, and lighting appliances. 

These portable loads can be controlled in the same manner as portable MELs.  

(3) A large number of portable electric loads are vampire loads [6, 7]. In other 

words, they are defined by DOE as “electronic devices which still consume 

electricity while in standby mode or being switched o ff” [7]. Such vampire 

energy should be efficiently managed to reduce the amount of wasted energy.  

This dissertation focuses on portable MELs and other portable major appliances, 

which will be referred to as plugged-in electric loads (PELs) within this dissertation. 
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Specifically, the PELs considered in this dissertation include, but are not limited to, the 

appliances listed in Table 1.1. 

Table 1.1 List of PELs considered in this dissertation 

 Residential Commercial 

Home 

entertainment 

TV: LED, LCD, plasma, and CRT 

   TV accessories: set-top box (STB), DVD player, video 

cassette recorder (VCR), and audio devices  

 

Video game consoles: P layStation,  Xbox, Wii, etc.  
 

Home 
appliances 

Washer and dryer, Portable Spa  
 

Public 

appliances 

Lighting: dimmer, incandescent, fluorescent, and compact fluorescent lamps  

 
Space conditioning: portable fan, space heater,  humidifier, dehumidifier, 

and portable air conditioner 

 Vending machine, Water  dispenser  

Network Modem, Router Server 

Kitchen 
appliances 

Cooker,  

Stove 
Dish washer 

 

Microwave oven 

Coffee brewer  

Portable refrigerator  
Toaster  

Hot water kettles  

Computer Desktop, laptop, and (external) monitor  

Office 
appliances 

Projector 

Fax machine 

Copy machine 
Multi-function device (MFD) 

Shredder 
Cordless phone and answering machine  

Other 

Charger: any with battery 
External hard drive 

Home security system 

Clock radio/small stereo 
Portable electric space decoration device 
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1.2 NEEDS AND OPPORTUNITIES FOR PLUGGED-IN LOAD MANAGEMENT 

The large portion of the total electricity consumption by PELs offers opportunities to 

manage PELs usage and consumption, reduce energy wasted by vampire loads, and 

regulate PELs operation for a sustainable future. Compared with other major high power 

electric loads such as water heating and space conditioning appliances, PELs possess 

great and unique potentials to be efficiently managed in buildings as they can be directly 

controlled (e.g., turned ON/OFF) by the switches in power strips, main sockets, and 

power outlets in which PELs are plugged into. Furthermore, the controllability of PELs 

results in a large number of ongoing work for many purposes including energy saving, 

building management, and demand response.  

1.2.1 Energy saving by regulations and direct PEL control 

Energy Star indicates that in United States on average it costs each household $100 

per year for PELs while they are off or in standby mode. On a national basis, standby 

PELs consumes more than 100 billion kilowatt hours annually and contributes to more 

than $10 billion in annual energy costs. Proper PELs consumption management can result 

in as much as 75% standby power savings [8] and 40 million tons of carbon emission 

reduction expected per year in United States [9].  

Current work on reducing the amount of energy consumed by vampire loads can be 

summarized as follows:  

(1) Introduction of regulations to reduce the energy consumption by PELs in 

standby or OFF mode. For example, Energy Star standard 5.1 requires that 

qualified TV sets must consume no more than one watt while in sleep mode 
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[10], which has been introduced as a regulation by the California Energy 

Commission in 2011 [11]. 

(2) Direct control (e.g., turned ON/OFF) of PELs when they are in standby or 

OFF mode. For example, a recent effort by DOE, Building America, has 

started to identify and reduce PELs consumption [12] and aims at 50% energy 

savings in new homes by 2015.  

1.2.2 Management of PELs in smart buildings 

For the purpose of a sustainable future, DOE has announced its goal of achieving 

market ready net-zero energy residential and commercial buildings by 2020 and 2025 

[13]. This requires a centralized management of electric loads, renewable energy sources, 

and possibly energy storages. The zero net energy consumption of these buildings are 

achieved by harvesting energy from renewable energy sources such as solar panels and 

wind generators, utilizing high-efficiency electric loads, and reducing the amount of 

wasted energy through proper load and building management.  

Recently, a new building management scheme called “appliance commitment” has 

been proposed in [14], which aims at scheduling thermostatically controlled household 

electric loads based on price and consumption forecasts to meet spec ified optimization 

objectives such as maximum users' comfort level. Similar electric load management 

schemes are investigated in [15] via binary on-off policies of the smart flexible devices 

with user’s comfort considered. Furthermore, with the expanding deployment of plugged-

in medical equipment  and electric vehicles [3, 16], certain types of PELs are expected to 

be managed with specific requirements.  
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Besides energy saving to achieve net zero energy consumption, PEL management can 

also enhance the capability of building management systems (BMS), introduce more 

intelligence into PEL operations, and improve building occupant experience. For 

instance, the protection device on an uninterruptible power supply (UPS) or a power strip 

cuts off all connection when over-current happens but such an unexpected power cutoff 

will cause a plugged- in desktop computer to loss all its current work. In this case of over-

current event, proper load management should disconnect/turn off noncritical loads and 

keep the desktop computer on. This example can be extended to a more general 

application to keep a selected set of critical loads (such as network servers and 

computers) on under all circumstances. These two examples illustrate that incorporation 

of more intelligence into load management can help to improve building occupant 

experience and enhance BMS capabilities.  

1.2.3 PEL management for demand response 

For the purpose of demand response, many efforts have been devoted by others to the 

demand-side management (DSM) of electric loads in residential and commercial 

buildings [17-25]. DSM of electric loads typically aims at improving system reliability, 

dynamic pricing [26], reducing energy consumption [27, 28], and introducing advanced 

real-time control [29-31], and load balancing [32, 33]. With the fast deployment of 

plugged-in electric vehicles (PEVs), new demand response schemes [34] with large 

numbers of PEVs at homes as shiftable electric loads as well as energy s torages [35] are 

still under investigation.  

Typical demand response in buildings to reduce energy consumption during peak 

energy-consumption hours is achieved by a centralized building automation system with 
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time scheduling. A number of such building automation systems have been designed and 

are available, such as Siemens “Demand Response Solutions for Commercial Buildings” 

[36], Lawrence Berkeley National Laboratory’s automated demand response system [37],  

Pacific Northwest National Laboratory’s facility energy decision system (FEDS) [38]. 

A major problem within these automated building demand response system is that 

they highly rely on time signal from utilities to start and end demand responses. In other 

words, these systems do not perform load management and energy saving during normal 

hours. Therefore, besides centralized building- level building management system for 

demand response during certain peak hours, distributed outlet- level load management 

systems are also desired for building occupants to meet different occupants’ different 

individual needs. 

1.2.4   Needs for smart power outlets 

To summarize previous discussions, due to their special characteristics in 

universality, flexibility, and controllability, PELs possess unique potentials not only in 

energy saving but also in many other purposes such as intelligent building energy 

management, granular consumption information collection for building efficiency 

certification, and demand response for reliable and economical operation. Furthermore, a 

centralized building management system cannot meet the needs of PEL control and 

management in many cases. Therefore, smart power outlets (or smart power strips) are 

desired by many applications to collect usage information and perform control actions on 

individual PEL. The general framework of deploying smart outlets and smart power 

strips in a distributed manner is shown in the following figure. 
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Figure 1.3 Deploying smart outlets and smart power strips in buildings [39] 

Figure 1.3 shows that smart outlets and smart power strip can collect information of 

PELs plugged into them, communicate with either local- level or building- level 

management system, and perform control actions. Several examples of commercially 

available smart outlets and smart power strips are shown in the following figure.  

 

 
 

  

Figure 1.4  Commercially available smart outlets and smart power strips    
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 To summarize, most smart strips typically have controllable sockets and 

uncontrollable sockets. Users can plug the loads that they would like to manually control 

into controllable sockets and turn ON/OFF PELs through wireless communication 

between the remote and the power strip. Moreover, loads plugged- into the uncontrollable 

sockets stay connected to the utility network all the time as there are no switches in these 

sockets to control PELs.  

More intelligence is desired to be incorporated into current smart power outlets and 

smart power strips because all control actions need to be performed manually by users. 

Instead of manually control PELs every day, users may need to have programmable smart 

outlets such that they are define certain rules for the smart outlet to carry out in an 

automatic manner. In order to achieve automatic PEL management through smart power 

strips, it is necessary for the smart power strips to have the capability of knowing what is 

the identity (model, type, and operating status) of the plugged- in load, follow the pre-

defined management rules, and perform necessary actions to corresponding PELs. In 

other words, without knowing the PEL identity without ambiguity, smart power strips 

may perform undesired actions to PELs.   

1.3 NON-INTRUSIVE PELS IDENTIFICATION 

As discussed above, in order to achieve the various PELs management prospects 

discussed above, the information of PELs identity, consumption, and performance is 

required. Specifically, PELs identity information (i.e., the type or model of each PEL) is 

the most important part because the consumption and performance information should be 

credited to specific PELs and the building management system should know without 
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ambiguity which PELs are under control. Therefore, reliable and accurate PELs 

identification methods are the foundation of all PELs management prospects.  

However, the majority of electric loads in residential and commercial buildings still 

remain unidentified due to the lack of embedded identity labels inside electric loads as 

well as communication between electric loads and a building management system. This is 

particularly true for PELs due to their low costs, gigantic total-number, and dynamic 

portability. The relatively low costs of PELs make it not economic to embed internal 

identity signal generator with communication capability.  

There are two kinds of load identification approaches, intrusive and non- intrusive. A 

physically intrusive approach is proposed in [40] where sensors are installed on every 

electric load to monitor status of the loads, and signals are sent to data processor through 

a power line. However, the intrusive approach needs the cooperation of manufacturers 

and users. Furthermore, the communication of signals and information is also demanding.  

 As a result, it is more realistic to design a PELs identification algorithm in a non-

intrusive manner. In other words, installation of extra, interior, or intrusive wiring or 

sensors into any PELs or existing plugged- in sockets in buildings is not required.  

The only available information for non- intrusive PELs identification includes voltage 

and current waveforms collected from sockets or outlets. PELs often present unique 

characteristics in these electric signals, which are discussed in more details in later 

chapters. Such load characteristics provide a viable means to identify the type of a PEL 

(e.g., computer, TV, or lamp, etc.) and even possibly its operation status (e.g., startup, 

normal, standby, etc.) by analyzing these electric signals.  



12 

 

The general framework of the non- intrusive PELs identification problem is illustrated 

in the following figure. 

 

i(t)

v(t)

Power Outlet

..
.

PELs Type;

Operating status

PELs

PELs Identification

 

Figure 1.5 General framework of non- intrusive PELs identification 

 

Note that the PELs identification problem is non- intrusive because the voltage and 

current waveforms are measures externally without intrusive wiring or sensors into the 

PEL. Also, the only source of information for the non- intrusive PELs identification 

problem is contained in the voltage and current waveforms. 

1.4 CHALLENGES OF PLUGGED-IN ELECTRIC LOAD IDENTIFICATION 

Starting with the original idea of non- intrusive load monitoring (NILM) by Hart in 

the late 1980s [41], many methods have been proposed to monitor and identify electric 

loads over the past twenty years. A comprehensive review of existing work is provided in 

Chapter Two of this dissertation. However, few methods are designed specifically for 

PELs and have addressed the following challenges.  
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1.4.1 Diversity within each PELs type and similarity between different PELs types 

The fast development of front-end power supply units and wide deployment of 

personal electronic devices such as tablet computers and smart phones bring challenges to 

PELs identification. Some of the most challenging problems are listed as follows.  

(1) Different types of PEL are equipped with similar front-end power supply units 

and thus have similar characteristics; 

(2) Each type of PEL could be equipped with different front-end power supply 

units as more efforts have been devote to regulate PEL power consumption. 

Therefore, PELs of the same type may have quite different characteristics;  

(3) A PEL may show quite different characteristics in different operating modes. 

For example, current waveforms of a PEL with a power factor correct (PFC) 

unit are quite different when the PFC unit is turned on or off; 

(4) Intelligent PEL identification methods should have the capability of receiving 

inputs or feedback from users or building managers to improve their 

robustness. No identification method can guarantee 100% success rate or no 

error under all scenarios. However, inputs or feedback can help when 

identification algorithms cannot tell apart certain PELs without ambiguity.  

(5) Several PELs are typically connected into one power outlet. In this case a 

single current waveform would consist of mixed signals of multiple PELs.  

Several plots of real-world current waveforms are shown in the following figure to 

illustrate the above challenges. Three cases are considered including  

(1) Characteristics of a PEL can be different: an LED TV in active mode (a) and 

in energy saving mode (b); 
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(2) Characteristics within a type of PELs can be different: LED TVs of two 

different manufactures: (a, b) and (c);  

(3) Characteristics of different types of PELs can be similar: an LED TV (c) and a 

set-top box (d). 

 

 

                       (a)                                                         (b) 

 

                                 (c)                                                            (d) 

Figure 1.6 Current waveforms to illustrate the diversity in types and similarity between 

types of PELs 

 

The above example shows that the diversity within each type of PELs and the 

similarity between different types of PELs significantly complicate the identification. 

Few existing methods have addressed these challenges. As a result, available  commercial 

load identification and monitoring products have limited capabilities to consider only 

several PELs with quite different power ratings.  
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For example, the home energy management system developed by NavetasTM only 

considers coffeemakers, TVs, refrigerators, lamps, and vacuum sweepers, as shown in the 

following figure [42]. 

 

Figure 1.7 Illustration of the NavetasTM  energy management system 

Also, the home energy management system developed by enPowerMeTM cannot 

identify low-power (less than 100 W) loads, as illustrated in the following figure.  

 

 

Figure 1.8 The enPowerMeTM load monitoring system 
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1.4.2 Utilizing long-term waveforms for PEL identification 

As reviewed and summarized in Chapter Two, most existing load identification 

methods in literature utilize only short-term voltage and current waveforms (for instance, 

typically several electrical cycles), which is not so reliable in some cases when applied to 

PEL identification. For example, the following figures show the short-term (several 

electrical cycles) and long-term current waveforms (several seconds) of an LCD TV and 

a laptop computer. 

 

    

(a) Long-term current waveform of an LCD TV   (b) Long-term current waveform of a laptop  

         

(c)  Short-term current waveform of an LCD TV  (d) Short-term current waveform of a laptop 

Figure 1.9 Long-term and short-term current waveforms of an LCD TV and a laptop 

computer 

 

The short-term current waveforms of the LCD TV and laptop computer are quite 

similar, which makes it difficult to tell them apart. However, the long-term operating 
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current waveforms of these two PELs are quite different and should be used to get more 

accurate PEL identification. 

Thus, a reliable method is needed to model or represent the shapes of long-term 

voltage and current waveforms with the capability to extract information about the 

operating status of PELs for the purpose of PELs identification. Some recent work has 

started to identify operating modes from long-term (hours or days) waveforms utilizing 

the active power with a low resolution (e.g., one data point every hour) and it focuses on 

the total energy consumed over a given time period. However, the following issues still 

remain unsolved: 

(1) Identify load operating modes in real-time from high resolution data (e.g., 102-

103 data points per second) for real-time direct load control and energy 

management; 

(2) Identify the steady-state operation as well as the transient operating modes 

during startup in real- time; 

(3) Report not only the total amount of power consumed at each operating mode 

but also the total amount of time that the PEL is operating at this mode over a 

certain time period; 

(4) Detect certain operating modes in real-time from long-term voltage and 

current waveforms for the purpose of intelligent electric load identification. 

1.5 PROBLEM STATEMENT 

This dissertation aims at developing accurate, reliable, efficient, and robust PELs 

identification using load features extracted from electric signals such as voltage and 
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current measurements. The proposed research focuses on the following four aspects to 

provide solutions for advanced PEL identification.  

(1) Robustness: achieve meaningful classification and identification of PELs 

listed in Table 1.1 based on front-end power supply unit circuit topology and 

electrical operation principles to handle the diversity within each type of PELs 

and the similarity between different types of PELs; 

(2) Accuracy: achieve certain identification success rates under all scenarios and 

provide solutions when the identification cannot be made without ambiguity; 

(3) Adaptiveness: learn from user inputs or feedback, update classification and 

identification rules if necessary, and include a priori information and required 

identification granularity; 

(4) Intelligence: extract signatures/patterns when multiple PELs are connected 

into a single outlet or power strip such as startup transients and steady-state 

features, investigate the applicability of the extracted signatures/patterns for 

effective PELs activity recognition, and identify the unknown PELs to a 

certain level of granularity. 

1.6 HIERARCHICAL IDENTIFICATION FRAMEWORK 

Considering the diverse nature of PEL, the enormous number of PELs, and the 

challenging aspects of advanced PEL identification, this dissertation follows existing 

work [2, 43-45] which have developed meaningful taxonomy of typical PELs in 

commercial buildings, uses the suggested taxonomy in [43], and proposes a hierarchical 

PEL identification framework as shown in the following figure.  
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Figure 1.10 Hierarchical PEL identification framework 

 

As shown in Figure 1.8, the proposed hierarchical (multi- level) PEL identification 

framework consists of three steps: 

(1) (Top level) Classification of PELs into a number of categories based on their 

front-end power supply units topology. In this step, an unknown PEL is first 

specified into one of the PEL categories. 

(2) (Middle level) Within the specified PEL category classified by step (1), the 

next step is to indicate the actual identity (and operating status if possible) of 

the unknown PEL. 

(3) (Bottom level) If necessary, the proposed PEL identification framework could 

interact with users and receive inputs to update its identification rules.  
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1.7 DISSERTATION OUTLINE 

A comprehensive literature review of the existing methods and techniques pertinent 

to this dissertation is summarized in Chapter Two. Chapters Three to Seven constitute the 

main body of this dissertation, which can be divided into three parts: 

1.7.1 Feature extraction for PELs 

Chapter Three proposes a low computational-cost but yet efficient method to extract 

load signatures for PELs classification and identification. Instead of carrying out 

frequency domain analysis such as DFT and FFT, Chapter Three proposes to extract the 

similarity of voltage-current (V-I) trajectories between loads by mapping V-I trajectories 

to a grid of cells with binary cell values. A novel set of graphical signatures extracted 

from the grid cells with V-I trajectories mapped on is presented, which can be utilized  for 

many applications.  

1.7.2 Classification of PELs into categories 

Chapter Four introduces the fundamental framework of the self-organizing map 

(SOM) and the extension of SOM to a supervised manner for classification and 

identification of PELs. The supervised SOM (SSOM) can classify a large amount of 

PELs into several groups. Different sets of PEL features, including both time-domain and 

frequency-domain feature, are considered to be used in SSOM. Chapter Five presents a 

novel combination of the SSOM framework and the Bayesian identifier framework to 

function as a hybrid identifier and provide the probability of an unknown PEL belonging 

to a known category.  
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1.7.3 Identification of PELs in each category 

Chapters Six and Seven discuss in-category identification of PELs, i.e., identifying 

similar PELs within each PEL category.  

For static method, Chapter Six presents a novel hybrid SSOM/SVM identifier for the 

multi-class in-category PEL identification problem. The proposed hybrid identifier 

utilizes the power of previously supervised Self-Organizing Map (SSOM) classifier for 

PELs proposed in Chapters Four and Five to first classifie an unknown PEL into one of 

the seven PEL categories discussed in Chapter Three. Within each cluster, a more 

accurate identification decision is made by the well establish multi-class one-against-all 

SVM classifier. The results are satisfactory for the testing purpose. 

For dynamic methods, Chapter Seven proposes a novel finite-state-machine (FSM) 

representation of long-term operating waveforms for the purpose of indicating load 

identity and operating modes. The operating current or voltage waveform is co nverted 

into a quantized sequence of states. A set of elemental states and events are defined to 

reduce the number of states and extract numerical features to represent and identify PELs 

under different operating modes. Three major categories of repeating patterns in 

waveforms that correspond to repeating operating actions are summarized, and 

identification methods are proposed for each such category.  

Finally, Chapter Eight summarizes the main contributions and lists outcomes of this 

dissertation. 
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CHAPTER 2  LITERATURE REVIEW 

2.1 INTRODUCTION 

Started with its first introduction by Hart [41] in the late 1980’s, the non- intrusive 

load monitoring (NILM) problem has attracted wide range of attentions and interests 

globally. A large amount of work has been reported on electric load identification by 

worldwide researchers. Most existing work in the literature follows a common process 

which is summarized as a general framework and presented in section 2.2.  

This general framework for electric load identification contains three main 

modules/steps: event detection, feature extraction, and load identification using extracted 

features. The load identification process starts if a turn ON/OFF event is detected. How to 

detect ON/OFF events is reviewed in section 2.3.  

A set of features of an electric load is defined as its unique signature which can 

represent its characteristics. With an electric load with unknown identity represented by a 

pre-defined set of features, the identification decision is then made by comparing the 

features with a reference database and finding out a known load with most similar 

features. Major existing electric load features and feature comparison methods in the 

literature are reviewed in sections 2.4 and 2.5, respectively.  

Some recent work aims at determining not only the identity of electric loads but also 

the operating status of electric loads, which is not a part of the original NILM problem. 

Related work in the literature is discussed in section 2.6.   

Finally, section 2.7 summarizes this chapter.  
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2.2 GENERAL FRAMEWORK FOR ELECTRIC LOAD IDENTIFICATION SYSTEMS 

Starting with the original idea of non- intrusive load monitoring (NILM) by Hart in 

the 1990’s [41], many methods have been proposed to monitor and identify electric loads 

over the past 20 years. Many electric load identification systems have been proposed, 

built, and tested based on these methods. Most existing electric load identification 

systems follow the general framework shown in the following figure [46-48].  

Data Acquisition

Data Preprocessing

Event Detection

Feature Extraction

Load 

Feature

Database

Load Management

Electric System

(Home / Office)

Load Identification

 

Figure 2.1 General framework for electric load identification systems [42-44]. 

 

In Figure 2.1, the data acquisition (DAQ) module captures steady-state raw data as 

well as transient signals if necessary, and then the data preprocessing module carries out 

predefined data conditioning and processing actions such as filtering, normalization, and 

frequency spectrum calculation by the discrete Fourier transformation (DFT) or the fast 
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Fourier transformation (FFT). Some load identification methods depend on the event 

detection module to detect whether there is an actual electric load being switched on/off. 

The event detection module can be implemented by tr iggering simple thresholds such as 

instantaneous active power or sophisticated thresholds such as root-mean-square (RMS) 

values, harmonics, and/or transient values.  

The feature extraction module is the key part, which varies notably in different 

systems as it determines the accuracy and performance of the overall load identification 

system. Features can be either time-domain (from voltage and current waveforms) or 

frequency-domain (from harmonic spectrum of steady-state signals). The extracted 

features represent the characteristics of electric loads. The load identification module 

utilizes the extracted features, compares them with a database of features of known 

electric loads, and identifies the unknown load based on pre-defined rules such as 

maximum similarity. 

The load management module, usually decoupled from the load identification section 

composed of the previous five modules, utilizes the information generated from the load 

identification module and provides granular load energy consumption and perfo rmance 

details to drive various building energy management tasks such as energy intensity 

reduction, demand reduction, peak shaving, energy optimization, and proactive 

equipment maintenance. 

The major differences between the various load identification systems mainly fall into 

the so-called adopted features and feature comparison method reviewed in the rest of this 

chapter. 
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2.3 REVIEW OF EVENT DETECTION METHODS 

Event detection based methods have typically been adopted in the earlier load 

identification systems and have later been replaced by other more advanced load 

identification methods. 

2.3.1 Event detection using steady-state values 

Early work [49-51] proposes to continuously monitor the operation of electric loads 

and search for changes in steady-state active and reactive power. A significant change of 

exceeding a predefined threshold of adopted features is considered as an indication of an 

electric load being switched on/off and the differences in steady-state active and reactive 

power values are considered to be the distinguishing characteristics of that load. 

Subsequent identification is then made by comparing the distinguishing characteristics of 

that load with a library of known characteristics of typical loads.  

However, this method works only for a limited number of scenarios with only a few 

quite different electric loads. It is shown in [49] that this method can identify the 

switching of a refrigerator, an oven element, and a stove burner.  Furthermore, the steady- 

state real and reactive power are even less informative in commercial buildings where 

substantial efforts, such as power factor correction and load balancing, are made to 

homogenize the steady-state behavior of different loads. 

2.3.2 Event detection using transient characteristics 

In order to overcome the limitations of steady-state values, some later work suggest 

considering transient characteristics. In [52], a multi-scale transient event detection 

algorithm is introduced to identify individual loads in buildings by examining measured 
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transient profiles observed in the aggregated current waveforms availab le at the service 

entry. This algorithm can be used to identify observed transient waveforms even when 

multiple transients overlap. In [53], a transient event detection method using voltage 

distortion is proposed. The implementation of transient event detector using a 

multiprocessor is explained in [54]. However, these methods are designed for major 

appliances with distinguishing characteristics but cannot be directly applied to PELs with 

similar characteristics. 

The event detection module is typically not included in later load identification 

systems, the majority of which directly extract time-domain or frequency-domain electric 

features as the characteristics of electric loads. Compared with events, the electric 

features of electric loads are of higher dimension and thus possess a better descriptive 

capability. 

2.4 REVIEW OF FEATURES FOR ELECTRIC LOADS 

The performance of almost all existing load identification methods in the literature 

highly depends on the electrical features (also called signatures in some context) of the 

loads, which are defined to be “an electrical expression that a load device or appliance 

distinctly possesses” [44].  

Assume that the voltage and current waveforms can be represented by the following 

equations: 

 0

1

( ) sin( ),k k

k

V t V k t 




   (1) 

 0

1

( ) sin( ),k k

k

I t I k t 




   (2) 



27 

 

where 
0  is the fundamental frequency, 

kV  and 
k  denote the magnitude and phase 

angle of the k-th harmonic in voltage, and 
kI  and 

k denote the magnitude and phase 

angle of the k-th harmonic in current, respectively.  

The following steady-state features for electric loads [48-51, 55] can be deduced from 

the voltage and current waveforms and are widely used in various electric load 

identification systems. 

2.4.1 Active and reactive power 

The amount of active power an electric load consumes in real- time or the average 

amount of active power it consumes over a certain period of time is probably the most 

straightforward and intuitive feature of this load. Furthermore, the amount of reactive 

power can roughly indicate whether this load is resistive, inductive, or capacitive.  

2.4.2 Peak, average, and RMS current values 

Peak current and average current are proposed for load identification in [56]. 

Furthermore, the root mean square (RMS) value RMSI  of the current measurement is also 

considered [57, 58]. However, RMSI  gives equivalent information on the active power but 

needs no additional multiplication (with voltage).  

2.4.3 Instantaneous values 

Instantaneous values such as instantaneous active power instp  [59], current insti , and 

admittance insty   can serve as features. Some electronic converter connected loads may 

have huge spikes of instantaneous admittance, which separate them from other loads.  
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The main disadvantage of instantaneous values is that a proper time scale should be 

defined because there cannot be either too many or too few number of instantaneous 

features. 

2.4.4 Harmonics spectrum of the current waveform 

The harmonic spectrum of the current is proposed to identify loads in [47, 48, 50, 60] 

as the current waveform in the time domain provides one of the most complete sets of 

information to describe the behavior of electric loads. The main advantage of using 

current harmonics lies in the high resolution of the signal which can reflect detailed 

characteristics of the appliance.  

More specifically, the 3rd and 5th harmonics are more informative than others. Any 

single phase device (such as desktop, laptop, TV, and LCD monitor) which contains a 

switching mode power supply (SMPS) contains high percentages of the 3rd and 5th 

harmonics in the current waveform. Therefore, the magnitude and phase of the 3 rd and 5th 

harmonics in the current waveform can also be considered as features.  

2.4.5 Total harmonic distortion (THD) 

The total harmonic distortion of the current waveform is widely [59, 61, 62] adopted 

to describe the linearity of an electric load as well as power quality. Linear loads draw 

current that is sinusoidal while nonlinear loads draw a current that is not perfectly 

sinusoidal, i.e., distorted. With the harmonic components , 1,..., ,kI k   of the current 

waveform calculated by the Fourier transformation, the THD in the current waveform 

shown by equation (2) is defined as        
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2.4.6 Power factor 

There are several different power factor definitions available such as displacement 

power factor PFdisp, distortion power factor PFdist, and power factor PF [63, 64]. They 

provide equivalent information and are defined as follows.  
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where δ1 and θ1 are the fundamental voltage and current angles, respectively.  

Typically, only one or two of the above three definitions are used in one system to 

avoid redundancy. In this dissertation, two different definitions of the power factor by (4) 

and (5) are adopted.  

2.4.7 Crest factor or peak-to-average ratio 

The crest factor (CF), also called peak-to-average ratio, is defined to be the ratio of 

peak value to the RMS value of a certain waveform. For example, the crest factor for 

current CFI is defined as    
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2.4.8 Transient features 

The transient power is also used as a feature for variable electric loads [60, 65-67]. 

The following figure is taken from [65] as an example.   

 

(a)                                                         (b) 
 

Figure 2.2 Transient features in active power of (a) a lamp bank and (b) an induction 

motor [65]. 

 

The transient power is suggested in [53, 65] to be calculated for every half electric 

cycle (each electric cycle is 1/60 seconds in U.S.) and the resulting switching transient 

waveforms are shown in Figure 2.2. It is straightforward to observe that the active power 

transient of the lamp bank has a sharp rise to its peak value and then drops to its steady-

state value in less than 0.1 second. However, the active power transient of the induction 

motor drops much more slowly (in around one second).  
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Other work by Leeb and his team [52-54, 65] proposes to use shapes of the transient 

waveforms to distinguish different loads. This approach can identify simultaneously 

switched loads when the transients do not overlap. However, when the loads are switched 

on too frequently so that their transients overlap significantly, the loads may not be 

identified. 

The major problem of using transient features in real-world applications is that they 

may not be able to be observed or detected repetitively for different models or brands of a 

certain electric load because a type of electric loads may have similar not identical 

transient profiles. In other words, the transient feature of each load is typically concluded 

within a certain range instead of a certain value. Thus, the identification decision would 

be inaccurate if different electric loads have overlapping ranges of transient features. This 

issue has not been well addressed in the literature for the purpose of electric load 

identification. 

2.4.9 Graphical features 

Instead of using numerical values as features for electric loads, it is proposed in [44] 

to use graphical signatures in the two-dimensional voltage-current (V-I) trajectory as 

electric load features. A V-I trajectory is plotted in a two-dimensional figure with voltage 

values on the horizontal axis and current values on the vertical axis.  

It is claimed in [44, 68] that V-I trajectories of different types of electric loads have 

distinct graphical shapes, which are related to the operating characteristics of the loads. 

Two examples of V-I trajectories of different electric loads are shown in the following 

figure. 
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Figure 2.3 V-I trajectories of (a) a desktop computer and (b) a refrigerator [44]. 

 

It is summarized in [68] that there are eight shape features that can describe the V-I 

trajectory: asymmetry, looping direction, area, curvature of the mean line, self-

intersection, slope of middle segment, area of left and right segments, and peak of middle 

segment. For instance, the asymmetry property and the looping direction can be o bserved 

in Figure 2.3. Moreover, the following figure is taken from [68] to illustrate how to 

divide the V-I trajectories into several segments (left, middle, and right) and extract 

graphical features from each segment.  
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Figure 2.4 Illustration of V-I trajectory segments and measurements [68]. 

 

Furthermore, all loads are classified according to the shape features, and the 

taxonomy of all loads is constructed and then compared to the taxonomies based on 

traditional features such discussed above.  

Note that these graphical features proposed by [68] are extended and used in [69] to 

study the load disaggregation problem as shown in the following figure. The load 

disaggregation problem aims at identifying multiple electric loads (which are connected 

to the same power supply source and thus) from mixed voltage/current waveforms The 

load disaggregation problem does not fall into the scope of this dissertation and thus is 

not discussed in details. Some recent survey papers [70, 71] can be referred to as 

summaries of load disaggregation methods. 
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Figure 2.5 Using graphical features for load disaggregation [69] 

 

Like other features, different loads with similar front-end power supply units would 

possess similar V-I trajectories, especially after normalization on the voltage and current 

data. 
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2.4.10 Summary of features 

To summarize, many time-domain, frequency-domain, and graphical-based features 

have been proposed in the literature to characterize electric loads. The major source of 

information is the measured voltage and current waveforms for non- intrusive load 

identification. Therefore, some features provide similar information and characteristics as 

others and thus it is redundant to use all available existing features.  

Furthermore, the major criteria to evaluate different features include the complexity 

of computing features, the similarity between features of loads of the same type, and the 

diversity between features of loads of different types. Unfortunately, there is no existing 

set of features that can distinguish all electric loads without ambiguity. A comparison of 

existing features can be found in [12, 24, 26, 31, 42]. 

2.5 REVIEW OF IDENTIFICATION M ETHODS 

The load identification module takes extracted features as its inputs and compares the 

features of an unknown load to a database containing features of known loads. The 

general principle for identification is that the unknown load is identified as the one of the 

known loads when the unknown load has features that are most similar to those of one of 

the known library loads. Many methods have been proposed in the literature to describe 

how to measure the similarity between two sets of features, which are summarized as 

follows. 

2.5.1 P-Q plane 

Hart [49] proposes to use a two-dimensional complex power plane (P-Q plane) to 

locate relative positions of different appliances, as shown in the follow figure. The real 

and imaginary axes in the complex P-Q plane denote the value of active and reactive 
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power values, respectively. Loads that lie far away from each other in the plot can be 

identified using only real and reactive power, as shown in the following figure [49].   

 

Figure 2.6 Relative positions of a group of appliances in the complex P-Q plane [49]. 

 

This method has certain drawbacks as indicated in [60]. For example, this method 

only works for electric loads that are located far away from each other in the P-Q plane, 

which may not be true of all electric loads especially in commercial buildings. Also, the 

P-Q plane becomes crowded with indistinguishable loads as the number of loads 

increases. 

2.5.2 Decision tree 

Assume that a set of features has been chosen to set up a database of known loads, 

and that the value range of each feature of each load can be concluded from the database 

[43, 72]. When the features of an unknown load come in, an identification decision can 
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be done by comparing the incoming features with the value ranges of database features 

step by step, with one feature at each step.  

2.5.3 Optimization methods 

The similarity problem between unknown and known features is also formulated to be 

solved as an optimization problem in [47]. The objective function is defined as the 

minimum difference while comparing an electric load with unknown identity with a set 

of loads with known identity from a database, i.e., 

 2

( , )

1

ˆargmin  ( )
N

k k j k
j k

w y y


  (8)             

where ( , )
ˆ

k jy  is the k-th feature of the feature vector j in the known database of loads, ky  

is the k-th feature extracted from measurement of the unknown load, wk is the weight of 

feature k, N is the total number of feature. The weight wk can help to adjust the 

significance of each feature. 

2.5.4 Expert system 

It is proposed in [50] to utilize the expert system to identify different household 

appliances. The features adopted include current values, voltage values, active power, 

duration and shape of the current transient, and harmonics in the current waveform. The 

household appliances used for experiment are divided into categories such as resistive, 

pump-operated, motor-driven, electronically-fed, and fluorescent lighting. Test results for 

selected cases are acceptable.  
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The disadvantage of using the expert system for load identification is that the expert 

system depends on the engineer’s domain knowledge and requires accurate knowledge of 

the electric loads being considered. 

2.5.5 Artificial Neural Networks (ANNs) 

Artificial neural networks (ANNs) can be used to identify electric loads by training  

ANNs to learn features of known electric loads. Through the training process, the 

structure and parameters of ANNs are built to capture different features of loads [56, 73]. 

Different types of ANNs, such as multi- layer-perceptron (MLP), radial-basis-function 

(RBF), and support vector machines (SVM) are applied in [74, 75]. The ANN is first 

trained by a database of features of known loads. Once trained, the ANN can perform 

identification tasks when it is presented with the same set of features of the unknown load. 

A comparison of performance shows that MLP and SVM-based models are both able to 

determine the presence of particular devices based on their harmonic signatures [74].  

To summarize, the major advantage of ANNs lies in their capability to evolve and 

learn without extra knowledge. The training process of ANNs is statistical in nature. 

Therefore, the ANNs are able to extract the statistical information of features from the 

database and utilize this information to do identification.  

2.5.6 Summary of identification methods 

Existing methods can be divided into two major categories: methods comparing 

similarities between extracted steady-state or transient features and their variations with a 

predefined database as well as computational intelligence algorithms.  

Methods in the former category cannot distinguish between different electric loads 

without ambiguity when extracted features of the unknown load are very similar to 



39 

 

several known loads in the database. On the other hand, ANNs are powerful tools but 

they also suffer from problems including lack of knowledge during the training, 

computational cost, convergence criteria, and initial parameter selection.   

To summarize, most existing methods cannot efficiently handle the diversity within 

each type of loads and similarity between similar types of loads and thus cannot be 

directly applied to the identification of PELs. 

2.6 REVIEW OF OPERATING MODE IDENTIFICATION M ETHODS 

Instead of identifying electric loads based on features extracted from short-term 

waveforms, recent efforts have started to identify operating modes from long-term (hours 

or days) waveforms. A recent report by the German Federal Ministry [76] analyzed 4 

operating modes of communication devices: normal, standby, off-mode, and off.  

In the U.S., a study by the Lawrence Berkeley National Laboratory [77] employs a 

non- intrusive inventory-based method to study the power status of office appliances 

during night-time. It only considers snapshots at single points in time and thus does not 

provide the time spent in each power status. The National Renewable Energy Laboratory 

presented a histogram heuristic clustering technique to divide a data set of electric loads 

operation for several days into clusters based on similarity criteria and extracted 

operating modes [78]. 

To summarize, these efforts mainly utilize the active power with a low resolution 

(e.g., one data point every hour) and focus on the total energy consumed in a given time 

period. However, some technical problems still remain unsolved, such as identifying real-

time operating modes using high resolution data and reporting the total amount of time 

operating at a certain mode. 
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The following figure shows the current waveform (of 60 seconds) of two electric 

loads in offices. Figure 2.6(a) shows the transition from standby mode to faxing (active) 

mode of a fax machine, and Figure 2.6(b) represents a multi- functional device (MFD) in 

double sided photocopying mode.  

 

(a) Transition between operating modes of a fax machine 

 

(b) A multi- function-device in recurrent operating mode 

Figure 2.7 Current waveforms of office appliances in different operating modes  
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The detection of the transition from a standby to an active mode in Figure 2.6(a) is a 

crucial step for energy management, which should not only rely on detecting the change 

in power. Also, in Figure 2.6(b) the instantaneous peak current is time-varying and 

typical identifying features in the literature vary from cycle to cycle. Thus, existing 

methods may fail to correctly identify this multi- functional device (MFD). Therefore, a 

method is needed which can extract features from long-term and time-varying operations.  

2.7 SUMMARY OF CHAPTER 

This chapter first presents a general framework for the electric load identification 

problem, which has been widely used by most existing work in the literature. 

Furthermore, major existing methods for different modules in this framework, such as 

feature extraction, event detection,  and load identification are reviewed and compared. 

Advantages and disadvantages of most reviewed methods in this chapter have been 

presented. 
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CHAPTER 3  PLUGGED-IN ELECTRIC LOADS 

CLASSIFICATION BY FEATURES FROM V-I TRAJECTORIES 

3.1 INTRODUCTION 

As discussed in Chapters One and Two, a primary factor that determines the 

performance of any electric load identification system is the set of features selected to 

represent electric loads. Therefore, a large number of work on different electric load 

features in the literature has been reported by researchers as reviewed in section 2.4. 

This chapter proposes a set of computationally efficient but yet accurate features to 

represent PELs for the purpose of PEL classification. Section 3.2 presents a classification 

of PELs into seven categories by their front-end power supply circuit topology. Based on 

the power supply circuit topology, V-I trajectories of PELs within the same category are 

very similar in shape. Typical V-I trajectories of each PEL category are shown in section 

3.3.  

Based on the analysis in section 3.3, a set of graphical features are then proposed in 

section 3.4 by first mapping a V-I trajectory onto a grid of cells with binary values and 

then extract certain graphical features from the mapped cell grid.  

The computational cost of the proposed features is analyzed in section 3.5, which 

shows that they require less computational resources than features in the literature. 

Expected values of the proposed features for each PEL category are summarized in 

section 3.6 for the purpose of PEL classification.  

Finally, section 3.7 summarizes this chapter.  
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3.2 CLASSIFICATION OF PLUGGED-IN ELECTRIC LOADS BY FRONT-END POWER 

SUPPLY CIRCUIT TOPOLOGY  

The number of types and models of commercially available PELs currently used in 

residential and commercial buildings is enormous. Furthermore, considering the fact that 

voltage and current waveforms are the only source of information available for PELs 

feature extraction and identification, front-end power supply units of PELs play a key role 

as they directly determine the characteristics of the current waveform. For instance, as 

discussed in section 1.4.1, PELs within the same type (i.e., flat-panel TVs) could be 

equipped with different power supply units and thus present quite different current 

waveforms. On the other hand, different types of PELs may be equipped with similar 

power supply units.  

Therefore, it is neither feasible nor necessary to characterize and identify each PEL 

individually in many applications. Instead, it is sometimes more practical and robust to 

first classify all PELs into several categories by their front-end power supply topology 

and then extract common signatures for PELs in each category as shown in the 

hierarchical identification framework shown in Figure 1.8.  

Based on a study on over 95% of all commercially available front-end power supply 

topologies, it is proposed in [43] to divide PELs into the following seven categories based 

on their front-end power supply circuit topology:  

(1) Resistive loads (Category R): a typical PEL in this category contains a 

resistance directly connected to the front-end terminal and thus there is no 

phase angle difference between its current and voltage waveforms;  
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(2) Reactive loads (Category X): a typical PEL in this category contains an 

inductance directly connected to the front-end terminal through a rectifier and 

thus there is a large phase angle difference between its current and voltage 

waveforms;  

(3) Electronic loads without power factor correction (Category NP): a typical 

PEL in this category consists of a front-end electromagnetic interference 

(EMI) filter, a rectifier, a voltage or current filter, and a DC-DC converter. 

There is typically a very small phase angle difference (close to zero) between 

its current and voltage waveforms but the current waveform contains a notable 

amount of harmonics; 

(4) Electronic loads with power factor correction (Category P): a typical PEL in 

this category consists of a front-end EMI filter, a rectifier, a voltage regulator, 

a power factor correction (PFC) module, and a DC-DC converter. Its current 

waveform is similar to resistive loads, but notable current discontinuity and 

switching noise can be observed; 

(5) Complex structure loads (Category M): a typical PEL in this category consists 

of multiple circuits supplied by independent front-end power supply units and 

thus its overall current waveform is composed of current waveforms from one 

or more of the above four categories; 

(6) Linear loads (Category T): a typical PEL in this category consists of a 

transformer, a rectifier, and electronic components. Its current waveform is 

highly distorted due to transformer saturation. Notable phase angle difference 

can also be observed; 
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(7) Phase angle controllable loads (Category PAC): a typical PEL in this 

category continuously adjusts its current waveform by controlling the firing 

angle of a thyristor. 

Furthermore, category M loads also include PELs that operate at several different 

power levels and switch between these power levels repeatedly during usage. These PELs 

are programmed in a pre-defined manner to operate in this repeated switching-mode 

manner because their functional performance may require repeated processes in a certain 

sequence.  

For example, most high volume printers have two (or more) printing engines/motors 

in a single device and are able to print both sides of the paper in a single pass, i.e., 

double-sided printing. A double-sided printing job is a repeated process of feeding a sheet 

of paper, printing and rolling the paper forward, holding the paper for the ink to dry, 

reversing the paper to print on the other side, and then feeding the next sheet of paper. 

The two engines are programmed to operate in different combinations with different 

power consumption levels during this repeated process, and these combinations could fall 

into one or several other categories.   

Note that the front-end power supply circuit topology of categories T and PAC are no 

longer adopted in modern power supply industry, but these two categories are still 

included in this dissertation for completeness.  

3.3 TYPICAL V-I TRAJECTORIES OF EACH PEL CATEGORY 

In the literature, a large number of existing works on the characterization and 

identification of PELs use features extracted from the harmonic spectrum o f current 

waveforms derived by discrete Fourier transformation (DFT) or fast Fourier 
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transformation (FFT). However, for the purpose of practical applications with only 

limited computational capability or hardware capability, the computational cost of DFT 

or FFT is probably too high in some cases. For example, if a PEL identifier is desired in a 

power strip or a power outlet, these applications may only have a micro-processor with 

very limited amount of memory. Fourier transforms may not be desired in these 

applications. 

It is observed that the normalized V-I trajectories of PELs within each category share 

very similar shapes, which can be used to describe and represent PELs within each 

category. Furthermore, PELs of different categories possess quite different shapes of 

normalized V-I trajectories. In other words, normalized V-I trajectories described in a 

properly defined metric space can be used as features to distinguish different categories 

as they are close within-category but quite far away between-categories in the manner of 

distances. 

Typical normalized V-I trajectories of the seven load categories discussed above are 

shown in the following figure. 

 

 

     (1) Category R                                  (2) Category X 
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  (3) Category NP                                  (4) Category P 

  

  (5) Category M                         (6) Category T 

 

       (7) Category PAC 

Figure 3.1  Typical normalized V-I trajectories of the seven load categories 
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Note that here “normalized” means that the discrete-time sampling measurements of 

the voltage and current waveform are normalized by their maximum values. Figure 3.1 

shows that normalized V-I trajectories from different load categories appear different. 

Some recent studies focus on developing graphical (load) features from V-I trajectories to 

represent different loads whose voltage and current measurements form the 

corresponding V-I trajectories. A notable study based on 126 sets of operating data of 

different PEL types and modes summarizes that there are eight shape signa tures that can 

be considered to describe the V-I trajectory: asymmetry, looping direction, area, 

curvature of the mean line, self- intersection, slope of middle segment, area of left and 

right segments, and peak of middle segment [44].  

However, calculating these graphical features still requires a large amount of 

computational resources as the entire V-I trajectory needs to be traversed in a certain 

order or direction. Also, these features are designed for a taxonomy of loads that is 

similar to the load groups defined by IEC Standard 61000-3-2. Therefore, they are not 

suitable for the proposed seven PELs categories. For example, PELs from Category R 

and Category P have very similar such features and thus cannot be effectively 

distinguished without ambiguity.  

3.4 FEATURE EXTRACTION BY MAPPING V-I TRAJECTORIES TO CELL GRIDS WITH 

BINARY VALUES  

3.4.1 Limitation in performance of existing graphical load signatures 

The existing graphical load features discussed above are purely based on the shape of 

a V-I trajectory. However, as discussed in Chapter One, different models of PELs within 

the same category can be equipped with similar (but not identical) front-end power 
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supply topology. Therefore, such PELs present similar (but not identical) current 

waveforms as well as V-I trajectories. In this case, there can be significant differences in 

some of the existing graphical load features, which are supposed to be identical as these 

PELs belong to the same type or category. Moreover, some existing graphical features 

may no longer be true or useful.  

Several examples are presented in Figures 3.2(a) and 3.2(b), which show the V-I 

trajectories of two portable fans. These two V-I trajectories have similar shapes but quite 

different area values of both the entire V-I trajectory and of the left and right segments, as 

well as the peak values of the middle segments.  

As another example, Figures 3.2(c) and 3.2(d) show the V-I trajectories of two flat-

panel TV sets, which have similar shapes but quite different zero crossing times (and thus 

left, middle, and right segment values). Also, determining the asymmetry, looping 

direction, and area of Figure 3.2(c) is complicated and consumes much computation 

effort due to the oscillations in the V-I trajectory. 

 

 

 

       (a) A 32- inch portable fan             (b) A 9- inch portable fan 
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(c) An LED TV                                (d) An LCD TV 

Figure 3.2 Normalized V-I trajectories of four plugged- in electric loads to illustrate the 

limitation in performance of existing graphical load signatures 

 

3.4.2 Binary mapping from V-I trajectories to cell grids 

In order to effectively handle the variance in the current waveform as well as the 

difference between V-I trajectories of PELs within the same PELs category and reduce 

the error as well as computational cost as discussed earlier, this dissertation proposes to 

first map a V-I trajectory to a (square) grid of cells. Each cell is assigned a binary weight 

value.  

Furthermore, if the V-I trajectory crosses though a cell in the grid, this cell is 

considered to be occupied by this V-I trajectory and then assigns its binary weight value 

to be 1. An occupied cell is shown as a solid black cell as shown in Figure 3.3. If not, the 

cell is then assigned a binary weight value of 0 and shown as an empty cell as shown in 

Figure 3.3. 
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Figure 3.3 Mapping V-I trajectory to a binary cell grid 

 

The binary cell grid is a generalization of V-I trajectories. V-I trajectories with similar 

but not identical shapes can have identically mapped binary cell grids. This is because 

two V-I trajectories can pass through a cell along slightly different paths but the cell is 

yet considered as occupied and assigned a value of 1. Also, the distortion in a V-I 

trajectory that is caused by the harmonic present in the current waveforms can be 

smoothed out as the part within an occupied cell is represented by this cell, no matter 

how distorted this part of the V-I trajectory might be. For example, the V-I trajectory of a 

PEL from category P shown in Figure 3.2(c) is quite distorted. On the other hand, the V-I 

trajectories of other PELs from category P shown in Figure 3.2(d) and Figure 3.3 are 

much more smoother with no notable distortion. However, after mapping to a grid of 

cells, all of these three V-I trajectories look the same, i.e., similar (if not identical) to the 

mapped cell grid in Figure 3.3.   

The binary cell grid mapping algorithm is defined as follows.  
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(1) Load the voltage and current data: assume that there are a total of K data points 

of the form  ,k kv i , where  1, ,k K  . Also, 
kv  and 

ki  are the voltage and 

current values of sampled data point k, respectively;  

(2) Calculate  
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Note that in general max minv v  and max mini i . Thus ( 0v , 0i ) are used as the 

origin of the cell grid instead of (0, 0).  

(3) Read input N which defines the size of the grid in the horizontal direction and 

calculate  
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 and generate two sequences  

    0 0 0 0 0 0,  1 , , , , , 1 ,  v N v v N v v v v v v N v v N v             

 

  and 

 

    0 0 0 0 0 0,  1 , , , , , 1 ,  i N i i N i i i i i i N i i N i              , 
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which both have 2N elements. Note that the former sequence is from voltage 

sampling measurements and the latter one is from current. Also, both sequences 

use the same N because the V-I trajectory considered is normalized and the 

range of both horizontal and vertical direction are between [-1, 1] and 

symmetrical.  

(4) Define an 2 2N N square cell grid, and the  th th,  x y cell is assigned with a 

position value  0 0( ),  ( )v v x N i i y N         and a binary model value 

,x yB which is initialized to be 0; 

(5) Load data points of one-half cycle, starting from the zero crossing point from 

negative to positive to another zero crossing point from positive to negative;  

(6) Start with the first data point of the data points loaded in step (5), which is 

denoted by  1 1,h hv i , and execute the following loop (described in pseudo code): 

 for every cell  1,  ,N y y = 1N  , 2,N   …, 2N  

         if  1 0 
2

h v
v v


  and  1 0( ( ) )

2

h i
i i y N i


          

                         cell  1,  N y  is occupied and 1, 1yB  ; 

                          cell  1,  N y is stored as the winner of  1 1,h hv i ; 

                BREAK;  

         end 

          end 
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(7) For the remaining half-cycle data points from step (5), repeat step (6) but only 

search the 8 adjacent cells (as shown in the following Figure 3.4) of the 

previous winner indicated by the above pseudo code.  

 

 

Figure 3.4 Eight neighbors of a cell in the grid 

 

(8) Repeat from Step (6) for a pre-defined number of times.  

(9) End.               

                                                                                                   

Note that besides defining the size of the cell grid ( , =2N N N  ), the parameter N

can also be interpreted as the width of each cell because the cell grid is square,  

normalized, and defined over [-1, 1] by [-1, 1] (in other words fixed overall width). 

Therefore, N  should be carefully chosen based on different applications. If there are too 

many cells, the mapping of V-I trajectories to the binary cell grid may not effectively 

handle the variance of similar V-I trajectories. However, the mapped binary cell grid may 

not correctly represent the V-I trajectories if the number of cells is insufficient.   

An example is given in the following figures to illustrate the mapping of a V-I 

trajectory to a binary cell by the above algorithm. The voltage and current waveforms of 
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a portable fan in medium-speed steady operating state is shown first in Figure 3.5(a). The 

corresponding V-I trajectory from this set of voltage and current waveforms as well as 

how it is mapped to a cell grid are shown in Figure 3.5(b) and 3.5(c), respectively.  

 

(a) Voltage and current profile of a fan               (b)   Corresponding V-I trajectory 

 

(c)  The cell grid after mapping a V-I trajectory 

Figure 3.5 Illustration of mapping a V-I trajectory to a binary cell grid 
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In this example, sampled voltage and current measurements of one cycle (1/60 

seconds in U.S.) are mapped to a cell grid with binary values by the algorithm proposed 

above.  For the purpose of illustration, in Figure 3.5 the parameter N is set to be 8 and 

thus the generated cell grid is of the size 16 16 .  

From the sampled data for this example,  

max

min

max

min

0

0

 169.2 V,

   168.3 V,

 0.45 A,

   0.44 A,  

0.45 V,

0.05 A,

21.1 V,

0.05 A.

v

v

i

i

v

i

v

i













 

 

 

which can also observed in Figure 3.5(a) and are labeled in Figure 3.5(c).  

To illustrate the position value  0 0( ),  ( )v v x N i i y N         and the binary 

model value ,x yB of a cell  th th,  x y , the (12th, 1st) cell marked by the star in Figure 3.5 is 

selected as an example. It has the positional value (0.45+4  21.1, 0.05+4 0.05)=(84.85, 

0.25) and the binary model value 0 (i.e., not occupied).  

3.4.3 Application of proposed mapping algorithm to collected data 

In order to validate the techniques proposed in this dissertation, a lab environment has 

been setup with a set of data acquisition device, with details shown in Appendix A. Over 

200 real-world data files of over 50 PELs have been collected to form a database. A set of 
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46 representative V-I trajectories from this database and their mapped cell grids using the 

proposed algorithm above are shown in Appendix B.  

3.4.4 Features extracted from the binary cell grid 

Besides reducing the variance by the difference between V-I trajectories of PELs 

within the same load category, the mapping of V-I trajectories onto binary cell grids can 

also reduce the effect of distortion but preserve the graphical characteristics. For each 

category of PELs, a novel set of signatures that can be directly identified from the binary 

cell grid according to two key cells and three key lines, as shown in Figure 3.6. Note that 

compared with Figure 3.5, Figure 3.6 uses the same set of voltage and current 

measurements but the parameter N is now set to equal to 12 instead of 8 to illustrate the 

values of certain features. 

 

 

Figure 3.6 Two key cells (C1 and C2) and three key lines (L1-L3) in a cell grid 
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   The following set of signatures is proposed to represent each load category: 

(1) The binary value of the left horizontal cell  1, N , marked as cell “C1”. For 

instance, in Figure 3.6 the binary model value B1,12 of cell C1, i.e., cell (1, 12), is 

0.  

(2) The binary value of the central cell  ,N N , marked as cell “C2”. For instance, in 

Figure 3.6 the binary model value B12,12 of cell C2, i.e., cell (12, 12), is 1. 

(3) The multiplication of the binary values of all anti-diagonal grid cells, i.e., all cells 

traversed by line “L2”. This value is also a binary value and indicates whether the 

V-I trajectory is linear. For instance, in Figure 3.6 multiplication of the binary 

values of all anti-diagonal grid cells equals to 0 as some anti-diagonal cells are not 

occupied (and thus are of 0 value).  

(4) The number of continuums of occupied cells (i.e., with binary value 1) within all 

cells  ,[1: 2 ]N N , which indicates the number of intersections of the V-I 

trajectory and the base voltage 0v  line (marked as line “L1”).  

       Note that the notation [1: 2 ]N denotes all integers from 1 to 2N and a continuum 

of occupied cells means a set of cells that are occupied and adjacent to one 

another in the grid, as shown in the following figure. Also, the number of 

continuums of occupied cells, instead of the number of occupied cells, is counted 

to make the proposed PELs feature more robust to variations and measurement 

noise. 
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Figure 3.7 Example of a continuum of occupied cells in the grid  

 

(5) Whether there exist any self-crossing intersections of the V-I trajectory itself. As 

shown in Figure 3.1(5), there are self-crossing intersections in the V-I trajectory 

for PELs from Category M. On the other hand, there are no there are self-crossing 

intersections in the V-I trajectory for PELs from Categories R and X as shown in 

Figures 3.1(1) and 3.1(2). 

(6) The number of intersections of the V-I trajectory with the 0 0.2v N v   line 

(marked as line “L3”).  

      This feature is mainly designed for PELs in Category PAC as their V-I 

trajectories are basically an anti-diagonal straight line with triangles as shown in 

the following figure. Note that the representation of the triangles in the V-I 

trajectories of PELs in Category PAC by this feature is not unique. There can be 

other similar features. 
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Figure 3.8 Illustration of graphical features for PELs from Category PAC  

 

3.5 DETERMINING THE NUMBER OF SELF-CROSSING INTERSECTIONS 

The V-I trajectories of some electric loads cross- intersect themselves, as shown in 

Figure 3.1(7). It is suggested in [44] that the number of self-crossing intersections 

contained by a V-I trajectory could be related to the order of harmonics. A simulated load 

with a significant 3rd (or 5th) harmonic component in the current has two (or four) self-

crossing intersections. However, it can also be caused by loads in Category M, i.e., loads 

with multiple independent front-end power supply units.  

Therefore, this dissertation proposes a general but yet low-cost algorithm to 

determine the number of self-crossing intersections contained in a V-I trajectory, as 

shown in the following figure. 
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Figure 3.9 Determining the number of self-crossing intersections 

 

 

(1) Read one-half cycle (
1

120
seconds) of sampled data points [0-, 0+], starting with 

the zero-crossing data point from negative voltage values to positive voltage 

values (denoted by 0-) and ending with the zero-crossing data point from positive 

voltage values to negative voltage values (denoted by 0+); 

(2) For every data point j within the region [0-, peak+] where peak+ denotes data 

point in [0-, 0+] with the maximal positive voltage value, find the data point k 

whose voltage value is closest to point j; 

(3) Denoting a data point j with voltage value jv and current value ji  by a vector

( , )j jv ij
 

, check whether values of the sampled current sequence  -1, , 1j j j
 

 

and  1, , 1 k k k are monotonically increasing. If yes, go to step (4); if not, 

repeat step (3) and start with 1j ; 
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(4) Check whether data points 
1 1-1 ( , )k kv i k and 

1 11 ( , )v i
k+ k+

k + are on different 

sides of the line determined by 1 1-1 ( , )j jv i j and 1 11 ( , )j jv i j +  using the 

following criterion [79]: 

                    1 1 1 1 1 1 1 1 0       j + j - j + k - j + j - j + k +  (11) 

where  denotes the cross product and   denotes the dot product of two vectors. 

In other words, for any j and k, an instance when (11) is satisfied is considered as 

a self-crossing intersection. 

(5) End. 

 

3.6 COMPUTATIONAL COMPLEXITY ANALYSIS FOR PROPOSED SIGNATURES  

Most existing load signatures are extracted from the harmonic spectrums of the 

voltage and current waveforms, which require computing the discrete Fourier 

transformation (DFT) or the fast Fourier transformation as well as their inverse. Though 

many fast Fourier transform (FFT) algorithms [80, 81] have been proposed and 

implemented in practice to reduce the computational cost of computing the DFT [82, 83], 

computing the FFT may be still be too expensive in computing cost in many low-cost 

applications.  

The graphical features for PELs proposed in section 3.3, i.e., from the binary mapping 

of V-I trajectories, can greatly reduce the computational cost but nevertheless achieve 

more than an average of 99% accuracy in field tests.  
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The following table compares the number of real multiplications and real additions 

needed by the proposed binary mapping method, with several widely used DFT and FFT 

algorithms. 

 

Table 3.1 Comparison of the number of real multiplications and real additions 

needed by different algorithms 

Algorithms Goertzel [84] Radix-2 FFT [85] 
Proposed binary 

mapping 

 
N-point data 

M DFT terms 
N-point data 

N-point data 

Any size cell grid 

Complexity ( )O NM  2( log )O N N
 

( )O N  

Real 

multiplications 
(2 4)N M  22 logN N

 ~4N 

Real additions (4 4)N M  22 logN N
 ~8N 

 

 

 

Note that determining the minimum, maximum, and mean values in equation (9) does 

not require much computational effort as data points are proposed in this dissertation to 

be taken into computation half-cycle by half-cycle (corresponding to each electric cycle 

of 1/60 seconds in the U.S.) and within each half-cycle the data points are ordered by the 

magnitude of their voltage values.  

Furthermore, for the mapping to the binary grid, only one half-cycle data points are 

necessary, and each is compared with adjacent unoccupied cells in one direction, as 

shown in the following figure.  
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Figure 3.10 Checking adjacent unoccupied cells in one direction  

 

Note that in Figure 3.10 filled cells denote occupied cells with binary model value

1B  , while unfilled cells denote unoccupied cells with 0B  . In this case, each data 

point may compare with 0 to 5 adjacent cells as the algorithm searches in one direction. 

A rough estimate of the average numbers of cells that each data point checks would be 4 

cells. Furthermore, each such comparison needs 2 real multiplications and 4 real 

additions, which are independent of the grid size. In other words, the size of the cell grid 

has no impact on the complexity of the proposed mapping algorithm.  

In the extreme case of only computing the fundamental 1I and 1V  as well as the 3rd 

and 5th harmonics in current ( 3I and 5I ), i.e., M=4, the proposed algorithm still has 

computational advantages over Goertzel’s algorithm [84]. In typical cases that a fuller 



65 

 

harmonic spectrum is present, the proposed algorithm needs the same number of 

multiplications and additions when N=4. However, in practical cases N is much greater 

than 4 and thus the proposed set of features from V-I trajectories are expected to save a 

large amount of computation efforts. 

3.7 EXPECTED VALUES OF PROPOSED FEATURES FOR ALL PELS CATEGORIES  

The proposed graphical features from binary mapping of V-I trajectories for the 7 

categories of PELs are expected to have values in the following Table 3.2. It can be 

observed that the proposed set of features is distinct for each PEL category. Test results 

of the performance of the proposed set of features using real-world data are presented in 

later chapters of this dissertation, after the introduction of the supervised Self-Organizing 

Map (SSOM) in Chapter Four. 

Table 3.2 Expected signatures of all 7 PELs categories 

 

Category 

Feature 1 

 

value of 

left 

horizontal 

cell  

Feature 2 

 

value of  

central cell  

 

Feature 3 

 

multiplication 

of anti-

diagonal cells 

Feature 4 

 

number of 

continuums of 

occupied cells  

Feature 5 

 

self-

crossing 

intersections  

Feature 6 

 

number of 

intersections  

with line L3 

R 0 1 1 1 0 1 

X 0 0 0 2 0 2 

NP 1 1 0 1 0 1 

P 0 1 X 1 0 1 

M 0 X 0 2 1 or more 2 

T 0 0 0 2 0 2 

PAC X 1 1 1 0 2 
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where “X” means either 0 or 1.  

 

3.8 CHAPTER SUMMARY  

This chapter proposes a low computational-cost but yet accurate algorithm for 

signature extraction from the voltage and current waveforms of PELs for classification 

and identification. Instead of utilizing digital signal processing and frequency do main 

analysis, this dissertation abstracts the similarity of voltage-current (V-I) trajectories 

between loads and proposes to map the V-I trajectories to a cell grid with binary cell 

values. Graphical signatures can then be extracted for many purposes. The  proposed 

method significantly reduces the computational cost compared to existing frequency-

domain signature extraction and analysis methods. It is shown in Chapter Four that an 

average of over 99% of success rate can be achieved using the proposed features.  

The proposed graphical features from mapped cell grid are designed for PEL 

classification. In other words, the proposed features can achieve an average of over 99% 

of accuracy to assign an unknown PEL into one of the seven PEL categories. However, 

these features cannot be used to distinguish PELs that are in the same category with 

similar characteristics. Other features and methods are discussed in Chapters Six and 

Seven to identify PELs in the same category.  
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CHAPTER 4  SELF-ORGANIZING CLASSIFICATION AND 

IDENTIFICATION OF PLUGGED-IN ELECTRIC LOADS 

4.1 INTRODUCTION  

The diversity within each type of PEL and the similarity between different types of 

PELs significantly complicate the identification of PELs as shown by examples in 

Chapter One. However, very few existing methods have addressed these challenges as 

shown in Chapter Two. This chapter proposes to apply a supervised version of the Self-

Organizing Map (SOM) to classify and identify PELs. The SOM, invented by Kohonen 

[86], is an unsupervised artificial neural network (ANN) mapping from a high-

dimensional data space to a low-dimensional neuron grid while preserving statistical and 

topological information.  

A major advantage of the SOM is that it classifies all training data into several groups  

by their inherent relationships, known as “clustering by nature”. Therefore, for a large 

number of different PELs of different brands and models, an SOM can divide them into 

several groups such that PELs with a similar power supply and features are clustered into 

the same group. For the purpose of load identification, the basic SOM is extended to a 

supervised SOM (SSOM) in this dissertation to function as a classifier.  

4.2 SELF-ORGANIZING MAPS 

The SOM is an unsupervised ANN trained by competitive learning. Its output is a 

low-dimensional (typically two-dimensional), discretized grid of neurons with similar 

characteristics as the input data. Necessary notations and concepts are introduced as 

follows. 
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4.2.1 Neurons and their assigned values   

Consider an SOM with K neurons and a set of training data consisting of l-

dimensional vectors xq = [xq1, xq2, xq3 , ... , xql]. Each neuron ni is assigned with [86] the 

following values: 

(1) a time- invariant topological position (i.e., an two-dimensional coordinate in 

the output grid); 

(2) a time-varying parametric weight (also called reference, model or codebook) 

vector mi = [mi1, mi2, mi3 , ... , mil] of the same dimension as the input data;  

(3) a predefined function which defines a neighborhood (e.g., a circle or a square 

in two-dimensions) centered at the neuron. 

All neurons compete to respond to the input but only one neuron wins at each time  in 

the sense of minimum distance. Denoted by the subscript c, the winning neuron is called 

the Best Matching Unit (BMU):  

  argmin q i
i

c  x m  (12) 

where  is a distance function. In many applications, the Euclidean distance function d is 

used to measure closeness. 

 2

1

d ( , ) ( ) .
l

i qE ik qk

k

m x


 m x  (13) 

Furthermore, there are two types of training algorithms for the SOM: sequential and 

batch. Sequential training takes one single input vector at each training step and updates 

the weights, whereas the batch training presents all input data vectors to the neuron grid 

before any updates are made at each training step.  
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The processes of both sequential training and batch training are provided as follows.  

4.2.2 Sequential training algorithm 

The basic sequential SOM training algorithm is defined as follows [86]: 

(1) All neurons’ weight vectors mi, where i=1,2,…, K, are initialized; 

(2) A training data vector is chosen randomly from the training data and presented 

to all the neurons; 

(3) Find the Best Matching Unit (BMU) c to this input training vector; 

(4) Calculate the radius of the neighborhood Nc(t) of the BMU c according to the 

neighborhood function hci(t), where i denotes any other neuron than the BMU.     

Also, hc,i(t) is usually chosen as a function of the distance between rc and ri  

such that hc,i(t)→0 when t→∞.. For example, hc,i(t) can be in Gaussian form: 

 

2

, ( ) ( ) exp
2 ( )

c i

c i

r r
h t t

t




 
   
 
 

 (14) 

where α(t) is a scalar learning rate factor that is monotonically decreasing 

with time, which is usually set to a high value early in the training to produce 

a rough training phase. σ(t) defines the width of the kernel corresponding to 

the radius of the neighborhood Nc(t). 

(5) All neuron that has a Euclidean distance to the BMU less than the 

neighborhood radius update their weights. The closer a neuron is to the BMU, 

the more its weights get altered during the training process. That is,  

 ,( 1) ( ) ( )[ ( ) ( )]i i c i im t m t h t x t m t     (15) 

 



70 

 

where t = 0, 1, 2, … is an integer denoting the discrete time index.  

(6) Return to step 2 and repeat for N iterations where N is the total number of 

input training vectors presented to the SOM. N may exceed the number of data 

vectors in the data base, in which case the training vector is each time selected 

randomly from the data vector base. Past experience shows that for good 

performance N should be at least 500 times the number of neurons.  

 

Remark: one important property of the SOM is that it provides a topology preserving 

mapping from the input space to the two-dimensional neuron grid. This means that data 

points that are close or share many common features in the input space are mapped to 

neurons that are positioned close to one another to form a so-called cluster.  

The SOM therefore converts complex, nonlinear statistical relationships between 

high-dimensional data items into simple geometric relationships on a two-dimensional 

grid. As it thereby compresses information while preserving the most important 

topological and metric relationships, the SOM can also be considered to produce some 

degree of abstractions.  

4.2.3 Batch training algorithm 

Batch training is an improved version of the above sequential training algorithm. 

Instead of process input data vector one-by-one in a sequential manner, batch training is 

significantly faster, especially with MATLAB [86]. In this dissertation, the batch training 

is adopted using the MATLAB SOM toolbox [87]. Details on how to use this toolbox are 

provided in Appendix C. 

The batch SOM training algorithm proceeds as follows: 
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(1) Initialize weight vectors mi; 

(2) Partition the input data set into the Voronoi regions [86] of the weight vectors, 

i.e., each input vector xq belongs to the region of its closest neuron ni;  

(3) Update mi according to 

   

,1

,1

( )
( 1)

( )

N

q cq

q

q

i K

q c

h t
t

h t





 




x
m          (16) 

(4) where
 

c is the BMU of the input vector xq, hq,c(t) is the neighborhood 

function, and K is the number of neurons [86]. 

(5) Return to step (2) and repeat a number of times.                      ■       

Note that data vectors with similar values in the input space are mapped to neurons 

that are positioned close to one another and thus form a cluster. Thus, different brands 

and models of a type of PEL are mapped into the same cluster. Different types of PELs 

are expected to be mapped into different clusters.  

4.2.4 Representations of the SOM 

The unified distance matrix (U-matrix) [88] is widely used to represent an SOM. The 

U-matrix illustrates weight vectors by showing the distances between adjacent neurons. 

For each neuron, the distance between itself and its adjacent neurons (the number of 

which depends on its neighborhood topology) is calculated and presented with different 

colorings or with a gray scale image. Light colors depict the closely spaced neurons and 

darker colors indicate the more distant neurons. Groups of light colors can be roughly 

considered as clusters, with dark parts considered as the boundary regions.  
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As an example, the feature vectors of ten PELs from three PEL categories, including 

two set-top boxes (STBs), one DVD player, one space heater, one plasma TV, one LCD 

TV, one LED TV, one LCD monitor, one laptop computer, and one desktop computer, 

are presented to train a 50-by-50 SOM for classification. The corresponding U-matrix is 

shown in the following figure.  

 

 

 

Figure 4.1 The U-matrix visualizes distances between neighboring neurons, and helps to 

show the cluster structure. 
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These ten PELs are classified into four clusters. However, the U-matrix does not tell 

which PEL falls into which cluster, which is mainly because the training data is not 

labeled and the training is unsupervised. Other tools, such as the labeled neuron grid, are 

usually used together with the U-matrix to provide extra information.  

4.3 SUPERVIS ED SOM (SSOM) FOR PELS CLASSIFICATION AND IDENTIFICATION 

In this dissertation, the basic SOM is extended to a supervised SOM for PELs 

identification. The SSOM utilizes the SOM’s capability of clustering by similarities, 

preserves statistical structure, and uses the trained map to do identification.  

4.3.1 Supervised SOM 

The SOM introduced so far is unsupervised as the training vectors are not labeled and 

no class identity information is attached or used during the training. Such unsupervised 

SOMs are not intended for identification.  

Assume that there are M known classes, ω1, ω2, …, ωM, and each input feature vector 

xq is pre-assigned to one of the classes. Each xq remains unchanged in its numerical 

values but labeled by a string containing its pre-assigned class identity. Only the 

numerical values of xq are used in the training, and the BMU for each xq is labeled the 

same as xq. When the training is finished, neurons that have become the BMU to one or 

more input vectors are classified into one of the classes by a voting mechanism. That is, if 

a neuron has been the BMU to multiple input classes (each for probably multiple times), 

then it is classified into the class for which it has been the BMU for the greatest number 

of times. Neurons that have never been a BMU to any input vector are marked as 

“unclassified” after the training has been completed. 
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After labeling the training data and having completed the training, the SOM can be 

turned into a classifier or predictor by partitioning the grid neurons into clusters. Revisit 

the above example in section 4.2.3 with the PELs labeled as  

(1) two set-top boxes and 1 DVD player: labeled by “1”; 

(2) one Space heater: labeled by “2”; 

(3) one plasma TV: labeled by “3”; 

(4) one LCD TV, one LED TV, one LCD monitor, one laptop computer, and one  

desktop computer: labeled by “4”,  

and the labeled neuron grid of the trained SOM is shown in the following figure.  

 

 

Figure 4.2 Labeled neuron grid of the SOM representing ten PELs. 
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In Figrue 4.2, solid lines represent boundaries shown in Figure 4.1. Note that the 

observable clusters in the labeled neuron grid match the observable boundaries in the U-

matrix in Figure 4.1. Moreover, the labeled neuron grid or the U-matrix gets very 

crowded and the boundaries are difficult (if not impossible) to observe with large 

numbers of PELs, classes, or types. However, it does not affect the PELs identification as 

these representations are just for illustration and the identification is carried out using the 

trained weight vectors of the neurons.  

4.3.2 SSOM for PELs classification and identification 

After training, there are usually some neurons which have never been BMUs to any 

inputs and thus only a subset of Ks < K neurons are classified by the voting mechanism 

and classified into one of the pre-defined known classes. When an unknown feature 

vector x is presented to the SOM, x is compared to all Ks classified neurons and is 

classified to be within that same class as the neuron with the minimum distance to x in 

the vector space. The Euclidean distance is used in most applications of the SOM.  

The performance of the SSOM identifier can be verified by cross validation. The 

input data set is divided into two subsets, performing the classification on one subset 

(called the training set) and validating the identification on the other subset (called the 

testing set). Both subsets are labeled by class identity labels. A correct identification is 

said to be made if the actual class identity label of a testing feature vector matches the 

class identity label assigned by the SSOM identifier. Otherwise, it is an incorrect 

identification. The success rate is then defined as 

 
number of correct identifications 

number of te
 

sting vectors
 success rate   (17) 
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The cross-validation framework is shown in the following figure.  

 

Figure 4.3 The cross-validation framework of the SSOM identifier 

 

4.3.3 Discussion on performance of the SSOM identifier 

To summarize, the SSOM identifier is first trained by collected PELs data. Different 

brands and models of each type of PELs are classified together to form clusters. The 

SSOM identifier does not only achieve high accuracy when handling known PEL models 

but also performs well to identify unknown PEL models. An unknown model to the 

SSOM identifier falls into the cluster in which other models of this PEL type do. 

Therefore, the SSOM identifier extracts information contained in the large amount of 

training data and store simplified information in the trained neuron grid. For practical 

purposes, the trained neuron grid, instead of the training data set, is sufficient to be 

stored, updated, and used for identification. The only on-line computation required is to 

compute the feature vectors representing incoming unknown PELs.  
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The SSOM identifier presented so far can only identify PELs to a certain granularity 

because different types of PELs with similar features could also be clustered together. For 

example, in Figure 4.2, LCD TVs, LED TVs, and LCD monitors are labeled the same 

since most flat-panel display devices are equipped with front-end power supply units of 

similar design topology. An incoming unknown PEL which falls into this cluster is 

identified as an LCD TV, LED TV, or LCD monitor. It is sometimes difficult or 

unnecessary to distinguish LCD TVs from LED TVs. More discussions on how to 

achieve a finer granularity level are provided in later chapters.  

Furthermore, as shown in Figure 4.2, there are a number of neurons that have never 

been BMUs to any input and thus not labeled. During the test, similar to the training 

phase, there is a BMU to each testing feature vector. If some BMUs to the testing data are 

not labeled, identification decisions can be made based on those labeled BMUs. In the 

extreme case that all BMUs are not labeled, the unknown PEL would be identified as 

“New”. 

4.4 TESTS ON PERFORMANCE OF THE SSOM ON PELS CLASSIFICATION 

In this section, results of several tests on performance of the SSOM on PELs 

classification and identification are presented. A lab environment has been established to 

collect data from available commercial PELs in a non- intrusive manner. The data is 

collected using a printed circuit board (PCB) sensor module with current and voltage 

sensors and a set of data acquisition devices. The circuit schematic of the PCB sensor 

module is given in Appendix A. It is designed with the capability of being placed as 

accessories as well as the purpose of introducing no influence on the operation of PELs. 

For accuracy and convenience, the sampling frequency is set to 30.72 kS/s, i.e., 1024 
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sampled data points per electricity cycle (1/60 seconds in U.S.). Lower sampling 

frequencies such as 7.68 kS/sec and 3.84 kS/sec are also tested and the cross validation 

results of the SSOM identifier remain relatively the same.   

4.4.1 PELs features used in tests 

Besides the proposed graphical features from mapping of normalized V-I trajectories 

to cell grid as introduced in Chapter Three, another set of PEL features from harmonic 

analysis is also considered for the purpose of completeness and comparison. The 

proposed graphical features achieve an average of over 99% accuracy on PELs 

classification, but may need to be combined with other features for PELs identification. 

With the voltage and current waveforms given by equations (1) and (2) in Chapter Two, 

the following features can be utilized from harmonic analysis: 

(1) The RMS current IRMS; 

(2) The total harmonic distortion (THD) in current ITHD  as defined by Equation 

(3); 

(3) The power factor pf as defined by Equation (6); 

(4) The crest factor as defined by Equation (7) ; 

(5) The 3rd and 5th harmonics (amplitude and phase) in current; 

(6) Per-cycle difference in IRMS               

                        ? ) ? 1);
RMSI RMS RMSDIF T I T I T  

   
     (18) 

(7) Mean square error (MSE) in IRMS defined to be 
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T

I I IT DIMSE Trace DIF FT T 
 

  .      (19)                                      

where T denotes the index of cycles of voltage and current waveforms (i.e., each cycle is 

1/60 seconds in the U.S.).  

The per-cycle difference  
RMSIDIF T  in IRMS (as well as in other features) is 

equivalent to the first-order rate of change, and the MSE in IRMS (as well as in other 

features) is equivalent to the second-order rate of change. The 
RMSIMSE can be used to 

distinguish PELs have similar characteristics, as shown in the following example.  

Based on a state-of-the-art study, DVD players and set-top boxes (STBs) have similar 

features listed as follows: 

(1) A small power factor around 0.5. 

(2) The THD in the current varies between 1.5-1.8. 

(3) Similar power consumption between 25 to 50 W.  

(4) A high crest factor: around 3.5. 

(5) A very high ratio of 3rd harmonic amplitude compared to the 

fundamental: close to 1. 

(6) A very high ratio of 5rd harmonic amplitude compared to the 

fundamental: around 0.8-0.9. 

 

In other words, conventional features in literature cannot distinguish DVD players 

from STBs without ambiguity. However, the 
RMSIMSE values of DVD players and STBs 

are different as shown in Figure. The 
RMSIMSE of STB remains close to 0.1 without any 
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sudden spikes. On the other hand, for DVD players, spikes can be observed and detected 

in the
RMSIMSE .   

 

 

Figure 4.4 The comparison of 
RMSIMSE of a DVD player and a STB. 

 

Furthermore, features (6) and (7) in the above definition can be extended to any other 

features (1)-(5), such as, 
ITHDDIF , 3rd in currentDIF , and 5th in currentDIF . 

Note that insufficient number of features reduces the performance of the SSOM, but 

too many features also imply redundancy in information and extra computational cost. 

The above set of features was selected for best performance after many tests.  

Also, as the selected features have values of different ranges and the distance function 

used in forming the SOM clusters is Euclidean, features with large values may have a 

larger influence in the distance/difference function than features with small values, 

although this does not necessarily reflect their respective significance in the design of the 
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classifier. However, tests show that normalization of data significantly reduces the PELs 

identification accuracy. It is possibly because of the strong representation of certain PELs 

by several features. Therefore, in this dissertation all features are not normalized  

4.4.2 Test on the necessary amount of data to train SSOM 

One of the many advantages that the SSOM possesses is that it requires only a small 

amount of data to train compared with other ANNs [86], such as the Support Vector 

Machine (SVM) and Radial Basis Function (RBF) networks.  

Several scenarios are considered to investigate the amount of data necessary to train 

the SSOM. Test results of three typical PELs and different choices are shown in Test 

Success Rates of the SSOM Identifier. For all the tests presented in this Chapter, 512-

point FFTs are employed to calculate the features as there are 1024 samp led data points 

per cycle. Also, the total amount of feature vectors (for training and testing) for each 

tested PEL is 3600, as each data file is of time duration 60 seconds (i.e., 3600 cycles). 

Each row represents a different set of tests with different percentage of data used for 

training and testing. For example, 5%/95% means 5% of the available data is used for 

training and the remaining 95% is used for testing.  

Table 4.1 Test Success Rates of the SSOM Identifier 

 DVD TV Fan Overall 

5% / 95% 49.36% 81.99% 97.34% 76.23% 

10% / 90% 91.30% 87.81% 97.69% 92.26% 

20% / 80% 96.74% 94.03% 93.92% 94.90% 

67% / 33% 99.75% 99.83% 98.00% 99.19% 
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Table 4.1 shows that with sufficient training data, the SSOM identifier can reach a 99% 

success rate for PELs known to the SSOM. i.e., PELs whose data files have been used for 

training the SSOM. 

4.4.3 Performance of the proposed graphical features 

In this test, a 50-by-50 SSOM is first trained with a database of a total of 627 sets of 

real-world PELs data. For each set of PELs data, its steady-state current and voltage 

waveforms for 60 seconds are stored and converted to a set of graphical features as 

proposed in Chapter Three. For accuracy tests, a total of 75 sets of PELs (of 23 types) 

steady-state current and voltage waveforms are used,  converted to the proposed graphical 

features, and tested. For each testing data set, a total number of between 900 to 3000 V-I 

trajectories are selected and mapped to a 64-by-64 cell grid.   

Two tests of different scenarios are carried out and the results  are shown in the 

following tables.  

 

Table 4.2 Tests on the performance of the proposed graphical features  

Target Load 
Category 

Load Type 
Total 

Models 

Total 
Number of 

Tests 

Success Rate 
(%) 

NP 

Battery Charger 1 3000 83.4 

DVD Player 4 3000 100 

Desktop Computer 2 3000 99.8 

LCD Monitor 7 3000 99.5 

Printer 1 3000 99.9 

Electronic Circuit Board 1 3000 98.7 
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Table 4.2 continued 
 

P 

LCD TV 8 3000 98.5 

LED TV 3 3000 99.2 

Plasma TV 2 3000 99 

Multi Function Device 3 3000 93 

Projector 4 3000 99.9 

M Microwave Oven 4 1800 99 

R 

Space Heater 4 1800 93 

Coffee Maker 2 1800 98 

Incandescent Lamp 4 1800 99.2 

Electric Skillet 2 1800 98.6 

T 
Stapler 1 1800 98.9 

Adapters 5 1800 100 

X 

Fan 5 3600 98.5 

Refrigerator 4 3600 100 

Water Dispenser 1 3600 100 

Shredder 2 3600 65 

PAC 
Incandescent Lamp with 

Dimmer 
1 1800 50 

 

Table 4.2 validates that the proposed graphical features by binary mapping of V-I 

trajectories in Chapter Three used with the SSOM classifier can achieve an average of 

over a 90% success rate with a relatively large load set and with seven PELs categories.  

Furthermore, the major cases with low success rates are from some PELs in Category 

PAC; such PELs are mistakenly categorized as being in the Category R due to the 

similarity between their normalized V-I trajectories.  Increasing the sampling rate may 
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help to improve the performance. Meanwhile, from the application point of view if an 

incandescent lamp with dimmer with a relatively small phase angle is identified as a 

resistive load, then the resulting classification is still acceptable.  

The following table shows the results of another test to validate the performance of of 

the proposed graphical features in Chapter Three compared with conventional features 

from harmonic analysis. The same database from previous example is used to train a 50-

by-50 SSOM and a total of 30 sets of PELs (of 13 types) are tested. For each testing data 

set, 100 V-I trajectories are selected and mapped to a 256-by-256 cell grid.  

This test aims at comparing the performance of the SSOM used with proposed 

graphical features as well as the set of selected features defined in section 4.4.1. The 

comparison is shown in the following table.   

Table 4.3 Comparison of proposed graphical features and conventional features  

Test Loads 
Total 

Number of 
Loads 

Total 
Number of 

Tests 

Success Rate 
by Graphical 

Feature 

Success Rate 
by Conventional 

Feature 

LCD  TV 3 300 100% 100% 

Set-top Box 4 400 100% 100% 

Space Heater 2 200 99% 96% 

Laptop 2 200 99% 98.7% 

LED TV 2 200 99% 100% 

Microwave Oven 4 400 92% 91% 

Desktop 2 200 97% 47% 

Bluetooth Charger 1 100 99% 66.4% 

Multi-Function Device 3 300 100% 76.8% 

LED Light 1 100 99% 96% 
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Table 4.3 shows that the proposed graphical PELs features achieved greater accuracy 

on PELs classification (i.e., into one of the PEL categories) compared to conventional 

features from harmonic analysis that are designed for general electric loads.  

4.5 CHAPTER SUMMARY 

This chapter has explained the extension of the standard SOM to a supervised SOM 

to function as a classifier for PELs. With large amounts of real-world data, the supervised 

SOM (SSOM) identifier first classifies a large number of PELs into several clusters. An 

classification decision is made to locate the neuron which has the closest weights to an 

input feature vector within the trained neuron grid. The SSOM identifier has the 

advantage that it achieves high success rate in different cases: 

(1) If the testing PELs have been used for training the SSOM, the SSOM can 

achieve almost 100% success rate;  

(2) If the testing PELs have not been used for training but other similar PELs 

have, the SSOM can achieve an average of over 95% success rate.  

Moreover, the SSOM is robust to variance in features and requires limited online 

computational effort. 

Furthermore, the next chapter extends the SSOM framework presented in this chapter 

and combines it with the Bayesian identification framework. The proposed framework 

can indicate the probability of an unknown PEL belonging to each category as well as 

each type. 

Note that the SSOM is originally designed as a classification tool. Therefore, with 

selected sets of features, the SSOM classifier can achieve an average of over 95% success 

rate to assign an unknown PEL into one of the seven categories proposed in Chapter 
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Three. However, if directly applied to identification of PELs, in some cases the SSOM 

classifier can only achieve a success rate lower than 60% as PELs with similar 

characteristic fall into the same cluster and thus stay closely in the trained SSOM. Other 

features and methods are discussed in Chapters Six and Seven to identify PELs with 

similar characteristic. 
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CHAPTER 5  PROBABILISTIC IDENTIFICATION OF 

PLUGGED-IN ELECTRIC LOADS 

5.1 INTRODUCTION 

In the proposed PELs classification and identification framework, the identification 

decision made by the SSOM identifier discussed so far is hard or absolute. In other 

words, an unknown PEL is assigned into one (and only one) of the known classes. As 

discussed in Chapter One, the electrical signatures that represent PELs from the same 

class may have statistical variations. Therefore, an absolute decision is sometimes not a 

desired result as errors often exist and no classifier can give 100% success rate.  

Instead, a soft or probabilistic decision may be desired which indicates the probability 

of an unknown PEL belonging to a particular type. A hard decision can be made based on 

the probabilities if needed. That is, the task now is to design PEL identifiers that 

classifies an unknown PEL “in the most probable of classes” [89].   

This dissertation proposes to combine the SSOM with the Bayesian framework to 

estimate the a posterior probabilities by utilizing some information which is generally 

ignored in literature during the training of the SSOM. In the identification step, feature 

vectors of an unknown PEL are provided to the proposed identifier to get the probability 

of the unknown load belonging to a specific class of loads.  

5.2 OVERVIEW OF BAYES IAN DECISION THEORY AND PROBABILITY ESTIMATION  

The Bayesian decision theory is a statistical framework which takes variation of the 

patterns as well as costs and risks into consideration and then classifies an unknown 

pattern in the most probable sense. Specifically, given a classification task of M classes, 
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ω1, ω2, … , ωM, and an unknown PEL which is represented by a feature vector x, the 

Bayes classifier assigns x to be class ωj by maximizing the conditional a posteriori 

probabilities  Pr |i x  [89, 90] for all i. That is, 

                               argmax Pr | , 1,2,..., ,j i
i

i M  x  (20) 

in which each  Pr |i x represents the probability of the unknown PEL falls into each 

respective class ωi, given that the observed feature vector of the corresponding PEL takes 

the value x. Therefore, this type of Bayesian classifier is usually called a maximum a 

posteriori (MAP) classifier.  

Therefore, the problem of PEL classification and identification is converted to 

calculate the conditional probabilities. Unfortunately, the true values of Pr( | )j X are 

generally inaccessible [91] and thus are usually estimated from available feature vectors 

corresponding to the database of known PELs by methods such as  statistical learning [92, 

93] and ANNs [94, 95]. 

One of the most commonly encountered probability density functions in practice is 

the Gaussian or normal density function. The major reasons for its popularity are its 

computational tractability and the fact that it models adequately a large number of cases.  

In general, different methods for probability estimation can be divided into three 

types [89]: parametric, nonparametric, and semi-parametric. In the parametric method 

the probability density function (pdf) is assumed to be of a standard form (e.g., Gaussian 

or uniform) and its parameters can then be estimated either using maximum likelihood 

estimation (MLE) [96] or other methods. The nonparametric methods, such as histogram 

and Parzen’s windows [97], generally require large amounts of data and appropriate 
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parameters which are usually set by trial-and-error [89]. The semi parametric-methods, 

such as the mixture of known distributions [98], offer a tradeoff between the simple and 

limited parametric methods and the computational intensive nonparametric methods. For 

instance, the Gaussian mixture model (GMM) has been quite popular and widely used for 

speaker identification and face recognition for its simple but powerful setup [99]. The 

parameters of GMM can be estimated either using the gradient descent method or the 

expectation maximization (EM) algorithm [100]. 

Two scenarios, with an unknown PEL X represented by a single feature vector and by 

a set of feature vectors, are discussed as follows.  

5.3 PROBABILISTIC IDENTIFICATION OF AN UNKNOWN PEL REPRES ENTED BY A 

SINGLE FEATURE VECTOR 

Given an unknown feature vector xq = [xq1, xq2, xq3 , ... , xql], the Bayes’ theorem states 

that 

  
   

 

| Pr
Pr |

q j j

j q
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p

p

 
 

x
x

x
 (21) 

where Pr(ωj) denotes the a priori probability of class ωj and p(xq) is the probability 

density function (pdf) of xq. As data is digitally sampled and stored, it is not necessary to 

estimate a continuous pdf but rather the values of the pdf at given conditions, which is 

much faster and easier. That is,  
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The a priori probabilities Pr(ωj), j = 1, 2,…, M, can be estimated from the training 

data. If the total number of available feature vectors for training is N and Nj of them 

belong to the class ωj, then Pr(ωj) ≈ Nj / N, which is a widely used approximation in many 

applications [89]. For instance, if the training data set contains 18432 samples from class 

ω1 (for example, DVD players) and 55296 samples from class ω2 (for example, TVs), 

then Pr(ω1) ≈ 0.25 and Pr(ω2) ≈ 0.75. 

If the actual numerical value of each individual Pr(ωi | x), is not required, p(x) is not 

needed because it appears in every  Pr |i x , represented by (5.2), as the denominator. 

In other words, all  Pr |i x have the same denominator, which can be normalized and 

thus not taken into account during the classification. In this case, the maximum a 

posteriori (MAP) classifier returns the same identification result, which is the class that 

gives the maximum a posteriori probability  Pr |i x . The relative relationships or 

ranking based on numerical value of all  Pr |i x  remain the same, with and without the 

normalization by p(x). 

On the other hand, even if the actual numerical value of an individual Pr(ωi| x) is 

required, the common denominator p(x) can be calculated by (5.3), as shown in the 

following equation: 
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. (23) 

If an individual Pr( | )j q x is not required, Pr( )qx can be ignored. Otherwise, Pr( )qx  

is either still not needed as Pr( | )j q x can be normalized or Pr( )qx can be calculated by 
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1

Pr Pr |
M

q q jj



x x . Therefore, Pr( | )q jx is the only difficulty to estimate 

 Pr | .qj x  Note that this method should work with a sufficient amount of samples for 

adequate accuracy. 

Therefore, p(x|ωi), the likelihood function of x with respect to ωi, is the only 

difficulty in the MAP classifier. Note that when the feature vectors take only discrete 

values, the density function p(x |ωi) becomes probabilities and is usually denoted by 

Pr(x|ωi). In other words, an accurate estimation of the underlying environmental pdf 

needs to be derived from the available data.  

The probability Pr( | )q jx can be estimated from the training data. For each class ωj, 

suppose there are Tj feature vectors available for training and Yj(xq) denotes the set of 

training feature vectors that are close to xq  

   { , }j jq qY    y yx x  (24) 

where ξ is a pre-defined parameter describing the acceptable error in difference. Then 

 
 { }

Pr( | )
j

q j

j

qca d Yr

T
 

x
x  (25) 

where card denotes cardinality of a set.  

The accuracy of (25) depends on factors such as Tj, the resolution of features, and the 

parameter ξ. With a higher resolution (e.g., the power factor is stored to be 0.9088 instead 

of 0.91), the number of possible x increases exponentially fast. For instance, suppose that 

a set of 13 features is adopted and every feature is normalized to be within the range of 

[0,1] with the resolution equal to 10-2. In this case, there are 1026 possible values of x. 
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Even this number can be significant reduced by a proper ξ, but may still too large to 

handle. 

5.4 HYBRID SSOM / BAYESIAN CLASSIFIER  

Compared to utilizing the statistical information contained in the labeled training 

data, Pr( | )q jx can also be estimated using the statistical information contained in the 

SSOM neuron grid and the BMU history. As the SSOM has already extracted statistical 

information from the training data set during the training, the latter one greatly simplifies 

the estimation process while preserving the accuracy. In fact, there exists information in 

the training process of the SSOM that is generally ignored in literature.  

Recall that one neuron is selected to be the BMU at each training step and labeled to 

be the same class as the incoming feature vector. When the training is complete, each 

neuron could have been the BMU to feature vectors from several different pre-known 

classes and thus labeled differently or have never been a winner. This observation 

contains rich and important information which can be utilized to estimate the conditional 

probabilities. The reason lies in the fact that the voting mechanism is applied when the 

training is completed to determine each neuron’s final class label and thus the minorities 

are ignored. This dissertation proposes to include all information contained in the training 

process.  

Assume that there are T feature vectors used in the training, the activation Aj(ni) [101] 

for a neuron ni from the class ωj is defined as 

     | arg mini i
i

ij jA n ncard    x x m  (26) 
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which denotes how many times this neuron ni has been the BMU to training feature 

vectors from class ωj. Then 

 
 

 22 1

Pr( | )
j

q j M

jj

A c

A c







x ,  (27) 

where c is the BMU to xq.  

In the case that ni has never been the BMU to class ωj, Pr( | )q jx  is defined to be 0. 

5.5 ESTIMATION OF CONDITIONAL PROBABILITIES WITH AN UNKNOWN PEL 

REPRES ENTED BY A SET OF FEATURE VECTORS  

A more practical problem is to estimate Pr( | )j X  of an unknown PEL X represented 

by a set of feature vectors. As the number of testing samples increases, the estimation in 

this case becomes more precise. Under an analysis similar to Chapters 5.1 and 5.2, the 

identification is made by (21) and (22) and the problem can also be transformed into 

estimating Pr( | )jX   where X consists of a set of feature vectors xq, where q is an index. 

For each xq, the individual probability Pr( | )q jx can be estimated using statistical 

information contained in the labeled training data as shown in (24) and (25) or utilizing 

the SSOM neuron grid and BMU history as shown in (26) and (27).  

For the set of BMUs corresponding to X, let LK denote the number of neurons that are 

labeled during the training. For each labeled neuron ni that has been the BMU to X, it 

may have been the BMU to feature vectors from different classes during the training and 

thus labeled to be different classes for multiple times. The labels of each ni are stored and 

ordered according to their frequency (total number of times), which are reflected by its 

activations (26) from different classes. Furthermore, Pr( | )jX  can be the average, 
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maximum, or other function of all activations. A weighted average of all activations, 

defined as 
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  (28) 

is proposed and utilized in this dissertation, where  

   
  | arg mini ii

i

T ca nrd X   x x m         (29) 

denotes the frequency of ni being BMU to X.  

5.6 DIRECT ESTIMATION 

It is observed in a number of tests of training an SSOM with different data sets that 

with proper choice of features, most neurons have a surjective correspondence with 

classes. That is, each neuron has only been the BMU to one class. In this case, the 

probabilities (26) from activations would be 1 and a fast but accurate estimation of 

Pr( | )j X can be made by directly utilizing the distribution of all BMUs to the training 

feature vectors.  

Assume that the T BMUs appear T1 times as the BMU to class ω1, T2 times as the 

BMU to class ω2, …, and TM times as the BMU to class ωM, then (27) can be simplified 

as 

 Pr( | ) .
j

j

T
X

T
   (30) 
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These estimated probabilities are in fact percentages. If all BMUs are labeled, they 

are equivalent to the success rates. This estimation seems simple but quite accurate in 

tests where not all BMUs are labeled.  

5.7 TESTS ON THE HYBRID SSOM/BAYES IAN IDENTIFIER  

For practical purposes, the SSOM should be trained by sufficient amounts of data to 

minimize the chance of encountering unknown PELs types. However, for the purpose of 

illustration, in this test an SSOM is trained by the data of 48 representative PELs from 12 

types, which are labeled into 7 groups, listed as follows.       

(1) Cellphones; 

(2) Computers: desktop and laptop; 

(3) DVD players and Set-top boxes; 

(4) Resistive PELS: space heater and portable fan; 

(5) LCD TVs, LED TVs, and LCD Monitors; 

(6) Microwave ovens 

(7) Plasma TVs. 

The number of PELs models from each group is listed as follows, which is used for 

the estimation of Pr(ωj). 

Table 5.1 Number of PELs from each group 

Group 1 2 3 4 5 6 7 

Number of PELs 5 7 10 10 8 5 3 
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In this test, 8 PELs are used to provide three testing scenarios. For each PEL, 360 

independent tests are carried out.  

(1) Test PELs numbered by 1-4: data of these 4 PELs used in training. For this 

case, a 100% accuracy is expected because the statistical information of the 

data should have already been stored in the SSOM.  

(2) Test PELs numbered by 5 and 6: PELs included in the training but a different 

set of data of these 2 PELs not used in training are used for testing. For this 

case, a high accuracy (for example, greater than 90%) is expected because 

different samples of the same load may contain noise and fluctuations.  

(3) Test PELs numbered by 7 and 8: PELs whose models not considered in the 

training. 

Note that, due to space limitations, Scenario 3 considers only cases of unknown 

models. In other words, the test PELs types are assumed known to the proposed 

identifier. 

 The current waveforms of test PELs are as follows.  

 

 

       1. Cellphone                                                   2. Set-top box 
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                3. Type-A microwave                                     4. Space Heater         

 

 

  5. DVD player                                          6. Laptop computer 

 

 

                 7. Type-B LCD TV                                     8. Type-B microwave 

 

Figure 5.1 Current waveforms of test PELs 
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 The testing results are summarized in the Table 5.2. The actual label of each test PEL 

is shown in the 2nd column from the left. For each test PEL, the BMU history from the 

training is listed in the 3rd column from left. Based on the BMU history, the estimated 

probabilities by the hybrid SSOM/Bayesian method and the direct method are listed in 

the 4th and 5th columns from left, respectively. Based on the estimated probability, an 

absolute decision can be made based on the greatest probability, which is shown in the 

2nd column from the right. Finally, the most right column shows the success rate based on 

absolute decisions.  

Take test PEL 5 for example, for which the test PEL is labeled as group 3. For 360 

inputs, 329 BMUs are labeled and all of them are labeled as group 3. Therefore, the 

estimated probabilities by both methods are both 100% to be group 3, which is correct. 

Since not all neurons are labeled, the success rate based on individual decisions is 

329/360=91.39%. 

 

Table 5.2 Test results for 8 PELs in 3 Scenarios 

Test 
PEL 

index 

Test 
PEL 

group 

BMU history 

Estimated 
probability  

by  

hybrid  
classifier 

Estimated 
probability  

by 

direct 
method 

Decision 
based on 

estimated 
prob. 

Success 

rate  
based  

on  
absolute 
decision   

 

For 360 inputs: 
 

1 1 

 There are 360 BMUs 

 all BMUs are labeled 

to be Group 1 

100% in  
Group 1 

100% in 
Group 1 

Correct 100% 
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Table 5.2 continued 

 

2 3 

 all 360 BMUs are 

labeled.  

 

 all of them labeled as 

Group 3. 

100% in  

Group 3 

100% in 

Group 3 
Correct 100% 

3 6 

 all 360 BMUs are 

labeled.  

 

 all of them labeled as 

Group 6. 

100% in  

Group 6 

100% in 

Group 6 
Correct 100% 

4 4 

 all 360 BMUs are 

labeled.  

 

 all of them labeled as 

Group 4. 

100% in  
Group 4 

100% in 
Group 4 

Correct 100% 

5 3 

 329 BMUs are 

labeled.  

 

 all of them labeled as 

Group 3. 

100% in 
 Group 3 

100% in 
Group 3 

Correct 91.39% 

6 2 

 353 BMUs labeled.  

 304 BMUs labeled as 

Group 2; 

 48 BMUs labeled as 

Group 3; 

 1 BMU labeled as 

Group 5; 

81.4% in  
Group 2 

 
18.35% in  
Group 3 

 
0.25% in  

Group 5 

86.12% in 
Group 2 

 
13.6%  in 
Group 3 

 
0.28%  in 

Group 5 

Correct 94.44% 
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Table 5.2 continued 

 

7 5 

 88 BMUs are labeled.  

 

 1 BMU labeled as 

Group 4; 

 

 87 BMUs labeled as 

Group 5; 

95.24% in  
Group 5 

95.24% in 
Group 5 

Correct 24.17% 

8 6 

 all 334 BMUs are 

labeled.  

 

 11BMUs labeled as 

Group 9; 

 

 322 BMUs labeled as 

Group 6; 

96.58% in 
Group 6 

96.58% in 
Group 6 

Correct 86.39% 

 

 

Table 5.2 shows that  

(1) Tests 1-4 all have 100% success rate. Other tests also get satisfactory success 

rate except 7. The reason for low success rate (24.17%) based on absolute 

decisions for PEL 7 is that only a small number of BMUs are labeled and thus 

a large number of tests are identified as “new” as their BMUS are not labeled 

during training. 

(2) Estimation by the hybrid and the direct method are the same in cases where all 

BMUs are labeled; 
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(3) Test 7 has a low success rate as most BMUs are not labeled. Thus, a 

probabilistic decision becomes meaningful in this case to make identification 

decision. 

Furthermore, two representative examples are shown in the following table to explain 

details on estimation by the hybrid identifier.  

Table 5.3 How probabilities are estimated by the hybrid identifier 

Test 
BMU 
neuron 
Num* 

KL Ti 

Activation Aj(ni) 

‘group label 
(frequency)’  Pr | jX   

highest  

freq 
other 

freq 

3 

4 
198        

2400        
2500 

4 

339 
18 

1 
2 

'6(339)' ** 
'6(18)' 

'6(1)' 
'6(2)' 

 As all BMUs labeled as ‘6’,  

 

 6Pr | 1X    

6 

2016 
2065 

2066 
2120 
2259 

2260 
2261 
2262 

2267 
2309 

2310 
2311 
2312 

2313 
2361 

2363 
2364 
2422 

2473 
2474 

19 

2 
1 

7 
1 
4 

153 
21 
19 

1 
36 

2 
8 
6 

23 
4 

36 
10 
13 

11 
2 

2(1) 
5(18) 

Null 
'2(3)' 
'2(3)' 

'2(9)' 
'3(11)' 
'3(7)' 

'2(3)' 
'2(54)' 

'2(21)' 
'3(9)' 
'2(6)' 

'2(8)' 
'2(14)' 

'2(24)' 
'2(4)' 
'2(7)' 

'2(15)' 
'2(4)' 

 
'2(4)' 

Null 

 2

4
| (2 1 1 4 153

18 4

1 36 2 6 23

4 36 10 13 11 2) / 353

0.8617

Pr X       


    

     



 

 

 3| (21 19 8) / 3Pr 53 0.136X     
 

 

 5

18
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* The indexing number of neuron in the 50-by-50 neuron grid map, not related to 

other numerical values. 

** Note that for data that has been used in the training, the testing BMU frequencies 

for winning neurons are exactly the same as the those in the training. For example, 339 

matches 6(339). 

 

Note that in Table 5.3 the activation Aj(ni) is denoted in the format of ‘group label 

(frequency)’. For example, 6(339) corresponding to the neuron number 4 in the 2nd row 

of Table 5.3 means that the neuron number 4 has been BMU to group label 6 for a 

frequency of 339 times. 

5.8 CHAPTER SUMMARY 

This chapter proposes a simple yet efficient and practical method for the probabilistic 

identification of PELs. The SSOM is combined with the Bayesian decision making 

method to perform as a hybrid identifier. The history of the best matching units (BMUs) 

during the training is used to estimate the probability of an unknown PEL belonging to 

each known class and achieves high accuracy.  

The proposed hybrid classifier achieved correct classification decision in the tests. 

The proposed framework is also quite robust to how many BMUs are labeled. Remaining 

question related to the hybrid classifier is that the confidence level of the estimated 

probability, which requires another large set of data to calculate. Also, in all the tests the 

estimated a posterior probabilities are quite different in magnitudes. For instance, in 

Table 5.2 the estimated probabilities are 81.4% in Group 2, 18.35% in Group 3, and 

0.25% in Group 5. The errors in estimation have no impact on the hard decision based on 
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maximum  a posterior probabilities as 81.4% is much greater than 18.35%. However, if 

in some cases that the estimated  a posterior probabilities of several different categories 

are quite close,  the errors in estimation may cause incorrect hard decision.  
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CHAPTER 6  MULTI-CLASS IDENTIFICATION OF PLUGGED-

IN ELECTRIC LOADS BY SUPPORT VECTOR MACHINE 

6.1 INTRODUCTION 

As discussed earlier in Chapters Four and Five, the supervised SOM (SSOM) 

identifier can classify a large number of PELs into a number of clusters in its neuron grid. 

However, the SSOM framework has been originally designed as a data classification and 

visualization algorithm rather than an identification method. Therefore, the SSOM 

identifier could encounter problems to distinguish some PELs equipped by similar front-

end power supply units (and thus similar characteristics) within each of the seven PEL 

categories proposed in Chapter Three. For example, in Figure 4.2 an LCD TV and a 

desktop computer both belong to Category NP, are all labeled as “4”, and thus fall into 

the same cluster. In this case, the SSOM identifier has a low success rate in identifying 

each PEL within this cluster. Therefore, other methods are desired to solve the problem 

of identifying similar PELs within each category, referred to as the in-category PEL 

identification in this dissertation. 

In this dissertation, it is proposed to use two different methods for in-category PELs 

identification: namely static and dynamic. The static method is data-based. That is, the set 

of training data for the SSOM is again used for (steady-state or static) feature extraction 

and algorithm training to achieve more precise identification results. However, many 

PELs, such as office appliances and personal computers, exhibit time-varying operations 

with respect to time and usage. Therefore, these PELs may possess time-varying steady-

state features. Another case in which steady operating states are not well defined is 
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during the startup and transient operating modes. For example, the current waveform of a 

copier during the copying process is shown in Figure 6.1.  

 

 

Figure 6.1 Current waveform of a copier in operation for 60 seconds 

 
 

On the other hand, the dynamic method is more model-based rather than data-based. 

In other words, the in-category PELs identification is carried out based on the 

understanding of the operating principles and mechanisms of target PEL models. In this 

case, this dissertation proposes to model long-term (in minutes or hours, compared to 

short-term which is mainly in cycles or seconds) waveforms to extract information and 

patterns and perform identification.  

For the static method, the support vector machine (SVM) is considered for in-

category PELs identification and presented in this chapter. On the other hand, the 

proposed dynamic method is discussed in Chapter Seven.  
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6.2 IN-CATEGORY PEL IDENTIFICATION BY SVM 

6.2.1 Introduction to Support Vector Machine (SVM) 

The basic SVM [102] is inherently designed for classification of two classes, ω1 and 

ω2, of patterns which are represented by a dataset of labeled feature vectors. An SVM 

first train itself with the dataset, constructs hyperplanes in a high-dimensional (possibly 

infinite dimensional) vector space, and then assigns each input feature vector x with 

unknown identity into one of two known classes.  

Given a set of data in which the two classes ω1 and ω2 are assumed to be linearly 

separable, the first step an SVM carries out is to find a (linear) hyperplane that separates 

the training data, denoted by  

 

 ( ) 0Tg x x  
0

ω ω  (31) 

in which 
lx  is an l-dimensional feature vector in the training data set, 

lω  is 

known as the weight of the hyperplane, and 0ω  is the threshold of the hyperplane [89].  

Formally, a hyperplane g(x) (typically denoted by its parameters (ω, ω0)) separates 

the training dataset if feature vectors belong to ω1 fall into one side of (ω, ω0) and those 

feature vectors belong to ω2 fall into the other side. Such a separating hyperplane (ω, ω0) 

is not unique for a training dataset. Instead, there typically exist many such separating 

hyperplanes. Therefore, an SVM searches for pairs of separating hyperplanes such that 

they separate the training dataset and there are no training feature vectors fall between 

them. The region bounded by a pair of separating hyperplanes is called the margin of this 
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pair. The output of a basic SVM is a pair of separating hyperplanes with greatest 

distance, typically known as the maximum-margin hyperplanes. 

To summarize, the basic SVM is a linear classifier. When the dataset of two classes is 

not linear separable, it is proposed in 1992 [103] to extend the basic SVM to a nonlinear 

classifier by applying the kernel. First, an SVM utilizes a (typically nonlinear) mapping 

Φ to map the training dataset from the original feature vector space to a high-dimensional 

(possibly infinite dimensional) Euclidean space H:  

 ,: ( )l x Hx     (32) 

in which the two classes ω1 and ω2 of patterns can be separated by a hyperplane denoted 

by 

 ( ) .Tg x x 
0

ω ω  (33) 

Generally, the SVM only depends on the training dataset through inner products in H, 

i.e. on functions of the form 

 ( , ) ( ), ( ) .i j i jK x x x x    (34) 

where K is usually called a kernel function. It is common that only K needs to be 

specified instead of knowing the explicit form of Φ when training a SVM.  

Let , 1,2,...,ix i   be feature vectors in the training data. For each ix  denote the 

corresponding class indicator by iy (e.g., +1 for ω1 and -1 for ω2). Once an appropriate 

kernel has been selected, the optimal hyperplane (ω, ω0) can be determined by solving 

the constrained optimization problem  [89] 
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where λ is the vector of nonnegative Lagrange multipliers λi and C is a parameter to be 

chosen by the user with larger C corresponding to assigning a higher penalty to errors.  

The resulting classifier assigns x to ω1 (ω2) if  

 
0

1

( ) ( , ) ( ) 0
N

i i i

i

g x y K x x 


     (37) 

The SVM utilizing a kernel function K is shown in the following figure  [89]. 

 

 

Figure 6.2 The SVM framework utilizing kernel functions.  
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6.2.2 Multi-class identification by SVM 

The basic SVM introduced in section 6.2.1 is designed for two class identification 

problem, i.e., one-against-one. When the training dataset consists of feature vectors from 

a number of M classes (M is greater than two) and an input feature vector needs to be 

assigned into one of the classes, the basic SVM cannot be directly applied to this multi-

class identification problem. A recent empirical study [104] indicates that most efficient 

method for extending SVM to multi-class identification is to decompose it into 

multiple one-against-one problems which can be handled by basic SVMs. In an M-class 

identification problem, there are two common extensions of the SVM [105]: 

(1) The first extension considers the M-class identification problem as a set of M 

two-class problems, known as one-against-all.  

(2) The other extension aims at training M(M-1)/2 basic SVM classifiers, called 

one-against-one.  

Furthermore, researchers are also investigating other extensions of the basic SVM to 

efficiently handle the multi-class identification problem. For instance, Crammer and 

Singer [106] proposed a multiclass SVM method which casts the multiclass classification 

problem into a single optimization problem, rather than decomposing it into multiple 

binary classification problems. Other notable extensions of the binary SVM to multiclass 

identification problems include fuzzy logics [107, 108], decision tree architecture [109], 

and adaptive directed acyclic graph [110]. 

However, there is no conclusion yet in literature which extension works better. 

Different extension methods are used in different applications such as protein fold 
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identification [111], image classification [112], document categorization [113], and text 

classification [114, 115]. 

 In this dissertation, the one-against-all multi-class SVM is adopted. In other words, 

for each ωi of the M classes, the one-against-all SVM aims at determining optimal 

hyperplanes, gi(x), i =1,2,…,M, so that gi(x)> gj(x) for all j ≠ i and 
ix  . The 

classification rule is given by [89] 

 if argmax{ ( )}i k
k

x i g x   (38) 

Many kernels are available for use in an SVM, such as polynomials, radial basis 

function (RBF), and hyperbolic tangent kernels. In this dissertation the Gaussian RBF 

kernel [116] is selected, which is also the most commonly adopted kernel in pattern 

recognition problems. 

6.3 IN-CATEGORY PEL IDENTIFICATION BY ONE-AGAINST-ALL SVM 

As discussed above, the SVM identifier is known to perform well when handling 

similar but not identical sets of feature vectors [115] and thus can be applied to the in-

category PEL identification problem. Furthermore, the SVM can be either directly 

applied for multi-class in-category PEL identification or combined with the SSOM 

framework presented in Chapters Four and Five. The latter combination is expected to 

have better performance because it is based on the a priori category information and 

deals with fewer numbers of PELs to be identified. This combination of the SVM and the 

SSOM forms a hybrid SSOM/SVM framework which is studied and adopted in this 

dissertation for multi-class in-category PEL identification [117].  

The architecture of this hybrid SSOM/SVM PEL identifier is shown in the following 
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figure. 

 

 

Figure 6.3 The hybrid SSOM/SVM identifier framework 

 

Note that in Figure 6.3 steps 1 and 3 may use different sets of features because the 

SSOM and the SVM utilize different principles in the training process and thus the 

training outputs are also different. For instance, the training output of an SVM is a set of 

parameters describing a high-dimensional hyper-plane, which cannot be visualized in a 

two-dimensional as it can be in the SSOM framework. Therefore, a set of features that 
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works well for the SSOM may not achieve the same accuracy for the SVM.  

Based on the above discussion, it is necessary to compare the performance of 

different steady-state features in the SVM that are widely used in the literature. 

Considering the large number of available features as discussed in section 2.3 and the 

even larger number of combinations, it is unlikely and unnecessary to test all 

combinations. Furthermore, as discussed in Chapter Four, a set of time-domain features 

are selected for the SSOM after a number of tests.  

In the literature, several researchers [74, 75] have used the SVM for signature 

recognition and harmonic source identification in power distribution networks, in which 

the harmonic spectrum (i.e., frequency-domain features) is considered for SVM training 

and identification. Following these existing work using frequency-domain features and 

other work in the literature using time-domain features as reviewed in Chapter Two, this 

dissertation compares the performance of time-domain and frequency-domain features 

used in SVM for PEL identification.  

6.4 COMPARISON OF TIME-DOMAIN AND FREQUENCY-DOMAIN FEATURES FOR SVM 

This section compares two sets of features that have been widely used to represent 

PELs: 

(1) Time-domain features: as listed in section 4.4.1; 

(2) Frequency-domain features found in the harmonic spectrum of the current 

waveform. For example, the features used in this chapter are all the odd 

harmonics from the fundamental to the 25th. 

Consider a dataset consists of feature vectors for 3 selected PELs with quite different 

current waveform characteristics (such as shape, total harmonic distortion, power factor, 
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and real power). The three selected PELs include a DVD player (labeled as D), an LCD 

TV (labeled as T), and an oscillating fan (labeled as F). The length of measurement is 60 

seconds for all three PELs, i.e., 3600 electrical cycles of data for each PEL. Therefore, 

the total number of available feature vectors for each PEL for training and testing is 3600 

if harmonic components are calculated by an FFT for each cycle.  

Their current and voltage profiles are shown in the following figure.  

 

 

 

 

Figure 6.4 Current and voltage profiles of three PELs with quite different 

characteristics: Fan (top left), TV (top right), and DVD (bottom) 
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Figure 6.4 shows that the selected three PELs have quite d ifferent current 

characteristics: the current waveform shape of the fan (top left) is significantly different 

from the TV(top right) and the DVD player (bottom). Also, the peak current value of the 

TV (top right) is around 2 A, which is significantly greater than the fan (top left) and the 

DVD player (bottom). The purpose of selecting distinguishable PELs is to show that in 

this simple case the time-domain features with the SVM can guarantee 100% accuracy 

but the frequency-domain features cannot.  

Furthermore, three different cases with different ratios of training and testing data are 

tested and compared, and the testing results are shown in the following table. Note that 

the results are generated by solving multi-class one-against-all SVMs using the SVM-

KM toolbox [118] for MATLAB. More details on the inputs and outputs of the 

MATLAB program are provided in Appendix D.  

Note that the cross validation mechanism shown in Figure 4.3 is a lso adopted to test 

the performance of the one-against-all SVM identifier. The identification success rate is 

defined and calculated in a similar manner as in Figure 4.3.  

 

Table 6.1 Comparison of testing success rate of different feature sets using multi-

class one-against-all SVMs 

Success rate with different 

training/testing ratio and features 

270 points for 

training , 3330 

for testing 

540 points for 

training , 3060 

for testing 

1080 points for 

training , 2520 

for testing 

Time-domain features 100% 100% 100% 

Frequency-domain features 99.56% 99.53% 99.43% 
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Table 6.1 shows that simply using harmonics cannot guarantee a success rate of 100% 

even with only the three relatively distinct PELs with the quite different current 

waveform characteristics of Figure 6.4. In other words, errors may occur even for a 

simple case of multi-class PEL identification if PELs are represented by frequency-

domain features. Moreover, these errors can be avoided if the PELs are represented by 

time-domain features. Therefore, in this dissertation only the set of (time-domain) 

features listed in section 4.4.1 is used to represent PELs for in-category PEL 

identification by SVM, similar to what has been used for the SSOM.  

Furthermore, one well known advantage of the multi-class one-against-all SVM 

classifier is that it requires a relatively small amount of training data compared with other 

notable classifiers. Some test results for the three PELs shown in Figure 6.4 but with 

different choices of cross-validation are shown in the following table, in which the ratios 

between training data and testing data are indicated in the first column.  

In these tests, 512-point FFTs are carried out to calculate the harmonics if necessary.  

 

 

Table 6.2 Testing success rate of the multi-class one-against-all SVM and SSOM 

identifiers with different amount of data 

Success Rate DVD TV Fan Total 

SVM  (5% for training, 95% for test) 100% 93.77% 100% 97.92% 

SVM (10% for training, 90% for test) 100% 93.43% 100% 97.81% 

SVM (20% for training, 80% for test) 100% 100% 100% 100% 

SVM (30% for training, 70% for test) 100% 100% 100% 100% 
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Table 6.2 continued 

SSOM (5% for training, 95% for test) 49.36% 81.99% 97.34% 76.23% 

SSOM (10% for training, 90% for test) 91.30% 87.81% 97.69% 92.26% 

SSOM (20% for training, 80% for test) 96.74% 94.03% 93.92% 94.90% 

SSOM (67% for training, 33% for test) 99.75% 99.83% 98.00% 99.19% 

 

 

As another advantage of combining SSOM and SVM, it is clear in Table 6.2 that the 

multi-class one-against-all SVM classifier can get 100% success rate with only 20% of 

the total data. On the other hand, the SSOM identifier trained by the same amount of data 

only achieves an average success rate of 94.9%, which is much lower than the success 

rate of the SVM. 

6.5 TESTING THE PERFORMANCE OF THE HYBRID SSOM/SVM  CLASSIFIER ON A 

LARGE NUMBER OF PELS 

Two tests are carried out in this section to show the performance of proposed methods 

for multi-class in-category PELs identification. These two tests are carried out with the 

SSOM trained by feature vectors (as listed in section 4.4.1) from 32 different PELs of 12 

types mixed together. Moreover, each PEL has 3600 feature vectors.  

6.5.1 Comparison of performance of the SSOM identifier and the hybrid SSOM/SVM 

identifier on in-category PEL identification 

 In this case, three different types of TVs (one LCD TV, one LED TV, and one 

plasma TV) are tested. The voltage and current profiles of these three TVs are shown in 
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the following figure. These three PELs share similar front-end power supply units as well 

as feature vectors, and thus all belong to Category P. Therefore, this case represents a 

multi-class in-category PEL identification problem. Both the SSOM identifier and the 

hybrid SSOM/SVM identifier are used to compare their performance on this in-category 

PEL identification problem.  

 

 
 

 
 

Figure 6.5 Current and voltage profiles of LCD TV (top left), LED TV (top right), and 

plasma TV (bottom) 

 

       

Figure 6.5 shows that these three TVs have very similar current waveform 
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characteristics. In the trained SSOM, these three TVs fall into the same cluster and are 

thus very difficult to be identified without ambiguity using the SSOM identifier.  

The success rate of in-category PEL identification by the SSOM identifier and the 

hybrid SSOM/SVM identifier are listed in the following table. Table 6.3 shows that the 

SSOM identifier achieves an average success rate around only 85% to identify each type 

of TVs. On the other hand, the hybrid SSOM/SVM classifier can achieve an average 

testing success rate greater than 95%. 

 

Table 6.3 Testing success rate of the hybrid SSOM/SVM identifier and the SSOM 

identifier for in-category PELs  

Success Rate LCD TV LED TV Plasma TV Average 

SSOM identifier 80.17% 97.85% 85.25% 85.28% 

Hybrid SSOM/SVM 

identifier (20% data for 

training) 

98.30% 78.89% 98.96% 92.05% 

Hybrid SSOM/SVM 

identifier (30% data for 

training) 

95.99% 90.95% 98.85% 95.26% 

    

Furthermore, Table 6.3 shows that the more training data for the SVM in the hybrid 

SSOM/SVM identifier, the better performance it has. However, the SVM training in the 

hybrid SSOM/SVM identifier still requires far less data than the pure SSOM classifier as 

discussed in section 6.3. 
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6.5.2 Testing the performance of the hybrid SSOM/ SVM classifier on a large 

number of PELs 

The following Table 6.4 summarizes test results to show the performance of the 

hybrid SSOM/SVM identifier for in-category PEL identification. A SVM is first trained 

by the same data that is used to train the SSOM, and 13 PELs from 5 major categories are 

test to check the performance of the multi-class one-against-all SVM identifier.  

 

Table 6.4 Testing success rate of typical PELs using the multi-class one-against-all 

SVM identifier 

PEL Category Success Rate (%) 

Compact Fluorescent Lights P 98.67 

Fluorescent Lights R 100 

Incandescent Lights R 100 

Fan X 100 

Printer M 99.66 

Cellphone Charger NP 100 

DVD player NP 98.66 

Heater R 100 

LCD TV P 99.72 

LED TV P 93.33 

Microwave M 100 

Plasma TV P 89.66 

Set Top Box NP 100 
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6.6 DISCUSSION ON THE PERFORMANCE OF THE HYBRID SSOM/SVM  IDENTIFIER 

Compared with existing methods such as only SSOM or SVM identifiers, the 

proposed hybrid SSOM/SVM identifier performs better in the sense of accuracy, 

robustness, and applicability. The SSOM identifier first extracts information from the 

large amount of training data and store that simplified information in the trained neuron 

grid. When an input feature vector is presented, the hybrid SSOM/SVM identifier first 

determines which load category the input feature vector falls into and then utilizes the 

SVM discriminant function for each category to get a robust and correct identificat ion 

decision. Tests results based on real-world data show that an average accuracy of over 

99% can be achieved by the hybrid SSOM/SVM identifier.   

However, the in-category PEL identification by SVM (combined with the SSOM or 

not) is still based on the representation of PELs by steady-state (or static) features. The 

SVM identifier may have difficulty in handling PELs with highly dynamic activities over 

time. For instance, as shown in Table 6.3 the hybrid SSOM/SVM identifier achieved a 

lower success rate in identifying LED TVs (93.33%) and plasma TVs (89.66%). As 

shown in the Chapter Seven, the dynamic characteristics of some PELs should be 

addressed for reliable PEL identification as well as operating mode identification.  

6.7 CHAPTER SUMMARY 

This chapter presents a novel hybrid SSOM/SVM identifier for the multi-class in-

category PEL identification problem. The proposed hybrid identifier utilizes the power of 

previously supervised Self-Organizing Map (SSOM) classifier for PELs proposed in 

Chapters Four and Five to first classifier an unknown PEL into one of the seven PEL 

categories discussed in Chapter Three. Within each cluster, a more accurate identification 
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decision is made by the well establish multi-class one-against-all SVM classifier. The 

average success rate based on different tests is over 95%, which is satisfactory.  

The proposed hybrid SSOM/SVM identifier still suffers from several disadvantages, 

such as only handling steady-state conditions and still having a high computational cost 

especially with large number of classes in each category. Moreover, the features used for 

the hybrid SSOM/SVM are still extracted from cycle-by-cycle waveform, i.e., short-term 

observations. Chapter Seven proposes a method to extract features and information from 

long-term observations. 
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CHAPTER 7  IDENTIFICATION OF PLUGGED-IN ELECTRIC 

LOADS BY LONG-TERM WAVEFORMS  

7.1 INTRODUCTION 

As discussed in section 1.4.2, it is desired by various applications to have a reliable 

and efficient method to identify not only the type but also the operating mode of PELs. 

Since the introduction of non- intrusive load monitoring (NILM) [49] in the 1980s, much 

effort has been devoted to identify the type and model of different electric loads. A 

comprehensive survey of existing load identification methods can be found in [46]. 

However, very few existing work has considered identifying the operating status or 

modes (i.e., standby, active, or sleep) of loads in real-time; ignoring such information 

may lead to incorrect load identification as shown in section 2.5.  

Furthermore, without considering the operating modes and status of PELs, existing 

load identification methods may assign an incorrect identity to an electric load that 

exhibits different current waveforms (and thus different current characteristics) under 

different operating modes. The rapidly developing designs of front-end power supply 

units and worldwide implementation of regulations on energy efficiency further 

complicate the load identification. Moreover, many electronic appliances are currently 

equipped with power factor correction (PFC) units which may be turned on or off 

automatically while in different operating modes. Examples can be found in Figures 1.4 

and 1.7 in Chapter One. 

This chapter proposes a novel finite-state-machine (FSM) representation of long-term 

operating waveforms of electric loads for the purpose of indicating load identity and 

operating modes. The operating waveform is first converted into a quantized sequence of 
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states. Each state is assigned with two-dimensional numerical values: RMS current values 

and staying-time values. A set of elemental states and events are defined to reduce the 

number of states and extract numerical features to represent and identify electric loads 

under different operating modes. Three major categories of repeating patterns in 

waveforms that correspond to repeating operating actions are summarized, and 

identification methods are proposed for each such category.  

7.2 REPRES ENTING LONG-TERM WAVEFORM BY FINITE-STATE MACHINE 

7.2.1 Finite-state machines 

A finite-state machine (FSM) consists of a finite number of states, a set of actions, 

and a set of state transitions between states. A state transition is an action that starts from 

one state and ends in another state. If the start state and the end state are the same, it is 

called a self-state transition. A state transition is triggered by a pre-defined event or a 

condition. In some context, the FSM framework is also known as the automata theory 

[119]. 

Formally, a finite-state machine F is a 4-tuple where F is defined as 

                                                      0( , , , )F Q q   (39) 

where Q is the nonempty set of states,  is the set of events, : Q Q  is the state 

transition function, and 0q Q  is the initial state. Note that × denotes the Cartesian 

product of two sets and denotes an onto mapping. 

The following figure illustrates the elements of a FSM:  

http://en.wikipedia.org/wiki/State_(computer_science)
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Figure 7.1 An example of a FSM illustrating its elements  

 

 

In Figure 7.1, a FSM consists of the following elements: 

(1) A set of states 0 1{ , }Q q q ; 

(2) A initial state 0q ; 

(3) A set of events 00 01 10 11{ , , , }e e e e  ; 

(4) A state transition function   such that: 

0 00 0

0 01 1

1 10 0

1 11 1

0 10 0 11 1 01 1 00

( , ) ;

( , ) ;

( , ) ;

( , ) ;

( , ), ( , ), ( , ), ( , ) not defined

q e q

q e q

q e q

q e q

q e q e q e q e









   









 

 

In other words, starting from the initial state 0q , the FSM either transits to state 1q  as 

defined by 0 01( , )q e  or stays at 0q  as defined by the self-state-transition 0 00( , )q e . 

When the FSM is at state 1q , the FSM either transits to state 0q  as defined by 1 10( , )q e  
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or stays at 
1q  as defined by the self-state-transition 

1 11( , )q e . Other state transitions are 

not defined. 

7.2.2 Representation of long-term current waveforms  

Existing representation methods of operational waveforms do not perform well for 

the identification of electric load operating modes in real-time. For PELs identification, 

waveforms are typically represented by a set of time-domain or frequency-domain 

features, which requires high resolution data (e.g., at least 103 samples per second). 

However, recent efforts [76-78] represent long-term operation of electric loads only by 

very low resolution data (e.g., one active power measurement every 5 minutes or even an 

hour).  

This dissertation represents the long-term operation of any electric load by a sequence 

of RMS current values IRMS(  ) ,  where IRMS(n) denotes the RMS current value over a pre-

defined time window n. The length of the pre-defined time window can be from one 

cycle (e.g., 1/60 seconds in U.S.) to minutes or hours, depending on the purpose of 

different applications.  

The representation by IRMS has many advantages compared with other options. For 

instance, the sequence of peak current values can also represent long-term operations but 

a high sampling rate is typically required to maintain accurate measurement of peak 

values. Also, IRMS(n) provides equivalent information about the average active power at 

time window n but needs no additional multiplication (with RMS voltage) and thus 

reduces computational costs.  



126 

 

7.2.3 Definition of states  

For the purpose of real-time identification of operating modes, sequences of IRMS( ) 

representing long-term operation of electric loads are then sent into the proposed 

algorithm for real-time process and analysis. An IRMS(  ) sequence is transformed into an 

event sequence which is represented by a FSM, from which a set of features can be 

extracted to identify different operating modes. Besides the capability of extracting 

features from numerical variances in IRMS(  ) values, another advantage of FSM modeling 

is its capability to efficiently handle the concept of time. Specifically, if an electric load is 

in steady operating mode and consumes an almost constant amount of power, the 

corresponding FSM then stays at a certain state enabled by self-state transition as defined 

in section 7.1.1. In other words, the FSM representation also records how long it stays at 

each state.  

To summarize, the representation by IRMS(  ) is actually two-dimensional, i.e., includes 

time durations and values of current. Therefore, each state ( , )k k kS I T within an associated 

FSM is assigned two values, one corresponds to the current value (denoted by kI ) and 

the other one corresponds to the total amount of time (denoted by kT ), where k is an 

index for states.  

Let IRMS(i) be a sequence of RMS current values, where 1,2, ,i N  denotes an 

index for RMS current values and N is the total number of available RMS current values. 

A set of states ( , )k k kS I T  with assigned values kI and kT can be extracted from IRMS(i) by 

the following algorithm.   
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(1) Start with 1k  , assign  1k RMSI I , and let 1kT  ; 

(2) Continue with 1i  and compute the stepwise difference 

   

 i+1,i

1RMS RMS

RMS

I i I i

I i

 
   between IRMS(i+1) and IRMS(i). If 

1,i i   , 

where  is a pre-defined threshold value, then 1k k  and go to step (3). 

Otherwise 1i i  , 1k kT T  , and repeat step (2); 

(3) Assign  1k RMSI I i  , let 1kT  , and compute the stepwise difference 1,i i . 

If 1,i i   , then 1k k  and repeat step (3). Otherwise, 1i i   and 

1k kT T  , and repeat step (3); 

(4) Stop when i N , where N is the total number of RMS data points.  

 

 

Note that the above algorithm analyzes operating current waveforms in real- time. In 

other words, RMS values of current of each time window are analyzed and compared 

with those of a previous time window to represent the operating patterns with respect to 

time.  

The following figure shows an example. Consider the operating current waveform of 

a desktop computer for 60 seconds shown in the following figure, which includes the 

transient period from OFF to ON (from around 2 seconds to 3 seconds) as well as start-up 

period during active ON mode lasting for more than 55 seconds. The time window is set 

to be one cycle in this example (1/60 seconds in U.S.) and thus 3600N  . 
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Figure 7.2 Actual and quantized operating current waveforms of a plasma TV for 60 

seconds 

 

For comparison, the actual IRMS(i), 1,2, ,3600,i    are plotted as the dashed line (in 

red color) and the associated state values kT  are plotted as the solid line (in blue color) in 

Figure 7.2. Furthermore, extracted states ( , )k k kS I T are shown in the following figure. 

Note that k is typically far less than N (in this example 112k  ) because each state kS

corresponds to a total number of kT  RMS values of current that are within the region 

( , )k kI I   . 

Note that in Figure 7.3 the upper bars (above the zero-valued  horizontal axis) 

represent the values of  associated RMS current value kI  of each state and the lower bars 

(below the zero-valued  horizontal axis) represent the values of  associated staying-time 

kT  of each state. 
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Figure 7.3 Extracted states with associated current and time values from the operating 

waveform in Figure 7.2 

 

The start-up process of the desktop computer only takes a few seconds. The power 

consumption of the computer in active mode (when running) varies for a large part of 

time except the two time periods between around 15 to 20 seconds and between 45 and 

52 seconds. These shapes can be observed within the corresponding extracted states.   

However, the relevant FSM contains too many states and does not explicitly include 

the start-up transients such as spikes. The next section defines several elemental states 

and events to reduce the number of states, highlight states of interests, and extract 

describing features. 

7.3 REDUCTION OF STATES AND DEFINITION OF ELEMENTAL STATES AND EVENTS 

For the purpose of reducing the number of states and extracting useful information, 

the following four elemental states as well as the spike event are defined.  
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(1) Standby state: if the associated 
kI  value for a state 

kS is less than a predefined 

threshold value (e.g., 0.1A), then 
kS is defined as a standby state. Furthermore, 

if a standby state is the initial state (or the first state in sequence), it is called 

the start state. 

(2) Steady state: if a representing FSM stays at a certain state for at least 5 

seconds, then the state is defined to be a steady state; 

(3) Semi-steady state: if a representing FSM stays at a certain state for at least 1 

second but less than 5 seconds, then this state is called a semi-steady state 

(sometimes all called semi states for abbreviation in this dissertation); 

(4) Oscillation state: if a representing FSM stays at a certain state for less than 1 

second, then this state is called an oscillation state; 

(5) Spike event: if 
 

  1
1

RMS

RMS

I i

I i



and

 

  2
1

RMS

RMS

I i

I i



, where 

1 and
2 are pre-

defined threshold values, then a spike event is defined to occur at time step i. 

Note that a spike is actually an event instead of a state.  

 

Remark: Although the spike event is defined over RMS current values, it can be 

equivalently defined over kI values because each state kS corresponds to a total number 

of kT  sequential RMS current values with a small variance in magnitude. That is, a spike 

event does not occur between associated RMS current values of any state but only 

possibly occur between the -thkT kI  value of state kS  and the first 1kI   value of state 1kS  . 

Therefore, a spike event indeed triggers transition between states.  
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Remark: the threshold values 
1 and 

2 determine the performance of the proposed FSM 

presentation and thus should be properly selected according to applications and 

comparisons of different choices. The number of spike events decreases and some 

obvious spike events could be missed if 
1 and 

2 are too large. On the other hand, there 

might be too many spike events if 
1 and 

2 are too small. Therefore, selecting proper 

threshold values 
1 and 

2  is a trade-off between different factors. There is no general 

rule on how to select threshold values 
1 and 

2  but it is suggested to choose 
1 and 

2

between 1 and 3 based on a large number of trials and tests. 

Continuing with the above example in section 7.1.3, Figure 7.4 plots the peak-to-peak 

envelop of the operating current waveform of a plasma TV for 60 seconds. Furthermore, 

Figure 7.5 shows the corresponding extracted states with their associated current and 

staying-time values from the current waveform shown in Figure 7.4. 

 

 

Figure 7.4 Peak-to-peak operating current waveform of a plasma TV for 60 seconds 
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Figure 7.5 Corresponding states with associated values extracted from Figure 7.4  

 

The following figure illustrates corresponding spike events, semi-steady states, steady 

states, and oscillation states extracted from the operating current waveform in Figure 7.4.  

 

 

Figure 7.6 Corresponding spikes, semi-steady states, steady states, and oscillation states 

extracted from Figure 7.4 
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Note that the elemental states can be directly identified by the 
kT values shown in 

Figure 7.5. 

It can be observed in Figure 7.6 that there are several spikes when the plasma TV is 

turn on (between 0-15 seconds), which should be detected in order to correctly identify 

the startup mode. After a notable step raise of the RMS current from around 1 A to 3 A, 

the plasma TV gradually operates in active mode but the RMS current values vary with 

time. Accordingly, in Figure 7.5 the representing FSM stays in one steady state for over 

20 seconds, in 3 steady states for over 5 seconds, in 5 semi-steady states for over 1 

second, and in over 70 states for a very short period of time.  

The corresponding FSM representation of the operating waveform of the plasma TV 

is shown in the following figure.  

 

Figure 7.7 Corresponding spike events, semi-steady states, steady states, and oscillation 

states extracted from Figure 7.6 
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7.4 CLASSIFICATION AND IDENTIFICATION OF REPEATING ACTIONS AND MODES  

As illustrated in the above examples, many electric loads consume a time-varying 

amount of power in active mode, which poses challenges to the identification of electric 

loads from long-term operating waveforms. Furthermore, many electric loads repeat 

certain actions which are separated by time intervals with non- identical length. In other 

words, there exist repeating patterns that represent operating actions that are similar but 

not identical. For various applications discussed in Chapters One and Two, it is desired to 

have a comprehensive understanding of repeating actions and operating modes during 

PEL operations as well as an efficient method to classify and identify these repeating 

patterns. 

Several examples of repeating similar patterns in long-term operating waveforms are 

shown in the following figure. 

 

   

 (a) A microwave oven in reheat mode;    (b) A printer in double-sided printing mode; 
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(c) A multi- function-device in printing mode;     (d) A fax machine in faxing mode 

Figure 7.8  Current waveforms of four office appliances in different operating modes  

 

These results show that some electric loads possess almost identical waveforms when 

repeating certain operating actions or operating modes, such as the loads shown in 

Figures 7.8(a), 7.8(b), and 7.8(d). On the other hand, some electric loads repeat non-

identical but similar waveforms as well as patterns, such as shown in Figure 7.8(c). For 

the purpose of accurate identification of electric loads and their operating modes, it is 

necessary to develop a set of features as well as an identification mechanism to detect the 

existence or non-existence of repeating similar patterns (and possibly how many times 

they repeat). 

7.4.1 Repeating patterns in FSM representations 

In order to reliably identify repeating patterns, it is necessary to first understand how 

they are repeated in the form of states (as well as their associated values) and events in 

the FSM representations. To extract information from a large number of states with 
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different values, the following characteristics are useful based on a study of a large set of 

real-world operating waveforms. 

(1) The type of the states, i.e., semi-steady or steady. 

(2) Associated 
kI  values for all steady and semi-steady states. Repeating similar 

patterns are observed to have similar 
kI  values.  

(3) Associated 
kT  values for all steady and semi-steady states. Repeating similar 

patterns should spend similar amounts of time staying in each steady or semi-

steady state. 

(4) The occurrence of spikes before and after steady and semi-steady states. 

 

As an example, the operating waveform of a microwave oven in reheat mode as 

shown in Figure 7.8(a) can be represented by a FSM with 3 semi-steady states and 2 

steady states. The associated kI  (in A) and kT  (in seconds) are listed as follows: 

 

Table 7.1 Associated kI  and kT values of states in the FSM of operating waveform 

in Figure 7.8(a) 

State-Type kI  (A) kT  (s) 

Steady 15.36 25.1 

Semi-Steady 0.47 1.5 

Steady 15.37 27.6 

Semi-Steady 0.47 1.6 

Semi-Steady 14.6 2.1 
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The similar patterns “15.36-0.47” and “15.37-0.48” in 
kI can be considered to be 

candidates that represent repeated operating actions, which match the waveform shown in 

Figure 7.8(a). Moreover, these two candidate patterns also have similar staying-time 

“25.1-1.5” and “27.6-1.6”.  

To summarize, a pattern which repeats in a similar manner during a fixed time length 

of observation consists of a sequence of steady and semi-steady states, each of which has 

similar values of current and staying- time as well as the same state types. For example, a 

repeating pattern in a sequence of two states “steady (15.36 A, 25.1 s) – semi-steady 

(0.47 A, 1.5 s)” can be observed twice in Figure 7.8(a).  

Moreover, the spike events also play an important role in identifying repeating 

patterns as discussed in the next section.  

Based on evaluating a large number of real-world PEL current waveforms as well as 

a comprehensive study on the front-end power supply topology design of most 

commercially available PELs, it is observed that there are three types of repeating 

patterns, described as follows. 

7.4.2 Almost-identical repeating patterns 

This type of repeating patterns contain repeating semi-steady or steady states whose 

associated kI and kT  values have similar numerical values. In other words, a certain 

number of semi-steady or steady state repeats several times. Oscillation states and spike 

events may occur between these repeating semi-steady or steady states but they are not 

needed to identify this type of repeating patterns and thus generally not used for this 

pattern type. 
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A typical example is given in Figure 7.8(d), which can be modeled by a FSM with 1 

semi-steady and 6 steady states. The associated 
kI  (in A) and 

kT  (in seconds) are listed 

in the following table. 

Table 7.2 Associated kI  and kT values of states in the FSM of operating waveform 

in Figure 7.8(d) 

State Type 
kI  (A) 

kT  (s) 

Steady 0.33 19.7 

Semi 0.53 2.1 

Steady 0.66 5.8 

Steady 0.67 5.8 

Steady 0.67 5.8 

Steady 0.68 5.8 

Semi 0.67 3.7 

 

The results in Table 7.2 show that the steady state with kI  around 0.67 A and 

staying-time kT  around 5.78 seconds repeats four times. Note that the final steady state 

with peak current 0.67 A is not considered as repeated because its staying-time is only 

3.73 s, which is caused by the cutoff of the observation waveform.  

7.4.3 Step up/down repeating patterns 

This type of recurring similar patterns usually repeats in a sequence of step up/down 

waveforms which can be represented by a sequence of semi-steady and steady states with 

step up/down kI  and kT  values. Similar to the case of almost identical repeating patterns 
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discussed above, oscillation states and spike events may occur but they are not utilized 

for identification in this case. 

The operating waveform of a laser printer in double-sided printing mode shown in 

Figure 7.8(b) falls into this category, and can be modeled by a FSM with associated 
kI  

and 
kT  values listed in the following table.  

Table 7.3 Associated 
kI  and 

kT  values of states in the FSM of operating waveform 

in Figure 7.8(b) 

State 
Type 

 
After combining 

similar states 
Sub-sequence 

kI  (A) 
kT  (s) 

kI  (A) 
kT  (s)  

semi*  14.70 4.93 14.70 4.93 
Sub-sequence-1 

semi 1.96 1.23 1.96 1.23 

semi 13.96 1.1 
13.96 5.13 

Sub-sequence-2 semi 13.71 4.03 

semi 2.13 1.22 2.13 1.22 

semi 14.09 1.42 
14.09 5.17 

Sub-sequence-3 semi 12.58 3.75 

semi 2.00 1.47 2.00 1.47 

semi 13.72 4.22 13.72 4.22 
Sub-sequence-4 

semi 2.17 1.20 2.17 1.20 

semi 13.72 3.25 13.72 3.25 
Sub-sequence-5 

semi 1.88 1.17 1.88 1.17 

semi 13.54 3.2 13.54 3.2 
Sub-sequence-6 

semi 2.00 1.2 2.00 1.2 

semi 13.57 3.27 13.57 3.27 
Sub-sequence-7 

semi 1.98 1.23 1.98 1.23 

semi 13.42 3.2 13.42 3.2  
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       * semi denotes semi-steady states 

 

After combining adjacent semi-steady states with almost identical state values (i.e., 

semi-steady states with state values 13.96 A and 13.71 A), the repetitive sub-sequences of 

states indicated in Table 7.3 represent the recognizable repetitive patterns.  

In this example, seven sub-sequences with a step-down pattern in both state values 

and state durations can be observed and detected. The first several step-down sub-

sequences have relatively higher pre-step state values and state durations, i.e., 14.70 A, 

13.96 A, and 14.09 A, as the printer transits from standby mode to active mode. The 

latter three sub-sequences have relatively smaller but almost identical pre-step state 

values, 13.72 A/3.25 s, 13.54 A/3.2 s, and 13.57 A/3.27 s, as the printer is in a stable 

active mode.  The post-step state values remain close to 2 A and the post-step state 

durations remain close to 1.2 s.   

7.4.4 Spike-lead repeating patterns 

Some current waveforms include repeating similar pattern for which the “in-between” 

time durations of their occurrences are not uniform. These types of repeating patterns 

usually starts with a notable spike and thus can be detected by comparing the variance in 

the ratio of the step up/down current values of the semi-steady and steady states after 

spike events. 

An example of spike-lead repeating patterns is given in Figure 7.8(c), in which six 

printing jobs are performed during this observation. Accordingly, six repeating patterns 

can be detected in the representation of a sequence of a spike event followed by a semi-

steady state (with similar but not identical associated kI  and kT values).   
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Table 7.4 Associated kI  and kT values of states in the FSM of operating waveform 

in Figure 7.8(c) 

State-Type kI  
kT  

Repetitive 
Sub-sequences 

spike 23.21 0 

Subsequence-1 
semi*  11.08 2.87 

semi 11.02 1.07 

semi 2.98 2.18 

spike 20.32 0 

Subsequence-2 

semi 12.75 3.32 

semi 1.18 2.38 

semi 2.69 1.88 

semi 3.36 1.75 

semi 3.76 1.48 

spike 23.22 0 

Subsequence-3 semi 12.96 3.55 

semi 4.24 4.25 

spike 20.80 0 

 

Subsequence-4 

semi 13.04 2.38 

semi 4.08 2.45 

semi 4.50 2.53 

spike 21.97 0 

 
Subsequence-5 

semi 13.85 4.5 

semi 4.10 4.5 

semi 4.60 2.43 

spike 22.97 0 

Subsequence-6 semi 14.17 4.45 

semi 4.15 3.63 

                  

                  * semi denotes semi-steady states 
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7.4.5 Summary of repeating patterns 

To summarize, typical repeating similar patterns shown in Figure 7.9(a)-(d) illustrate 

cases from three major classes of patterns. The existence and non-existence of these three 

classes of repeating patterns can be accurately determined using 
kI  and 

kT  values of 

sequences of spike events, semi-steady and steady states. In this dissertation, it is 

proposed to start with each spike and check the existence of a repeated sequence of states. 

This method works well for most electric loads. For example, within the sequence “spike-

steady-spike-spike-spike-steady-spike-steady” the subsequence “spike-steady” occurs 

three times. In addition, to make sure that this repeated sequence of states is indeed 

generated from repeated operation of electric loads, the associated 
kI  and 

kT  values of 

each semi-steady or steady state are also compared.   

Several examples of operating waveforms that do not contain notable repeating 

pattern are given in the following figure.   

 

  

(a) A desktop computer in active mode;  (b) A laptop in active mode; 
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  (c) An LCD monitor in active mode;  (d) An LCD TV in active mode.                                                                        

Figure 7.9 Four PELs in active mode as examples of non-existence of repeating patterns  

7.5 FEATURES EXTRACTED FROM THE FSM REPRESENTATION 

The next problem is how to distinguish between different FSMs in a numerical way. 

Different FSM representations should preferably be converted into a set of numerical 

features that can be used to indicate the identity and operating modes of electric loads in 

real-time. A novel set of numerical features is proposed and listed as follows.  

(1) Number of spikes 

(2) Number of semi-steady states 

(3) Number of steady states 

(4) 

Total time in semi-steady states

Length of the operating waveform  

(5) 

Total time in steady states

Length of the operating waveform  

(6) Number of states per time window 

(7) Existence or non-existence of repeating patterns 
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In contrast with absolute values that are directly measured from relevant FSM 

representations such as features (1)-(3), features (4)-(6) are relative values that 

correspond to the intrinsic characteristics of the operating waveforms. Features (4) and 

(5) reflect how “steady” an operating waveform is. For an operating waveform that holds 

relatively constant values of RMS current, features (4) and (5) should be quite a small 

number. Otherwise, features (4) and (5) would be quite large. Moreover, feature (6) 

indicates how long oscillations last in an operating waveform. For a waveform that 

oscillates all the time, such as Figure 7.9(b), feature (6) would be a large number. 

The above seven features of a selected set of important office electric loads are 

summarized in the following table. Over 99% identification accuracy rate is achieved in 

tests using these proposed features.    

Table 7.5 Summary of Features of a selected set of important office electric loads 

 Computer 

Office appliance 

Microwave 

Monitors and 
TV 

Pattern 1 Pattern 2 
Start-up 
transient 

Steady- 
State 

Number of 
Spikes 

0-11 
Typically 

>10 
<10 <5 <5 

 

 

 

 

 

 

 

 

Only 

one 

state 

Number of 
Semi-steady 

states 

<25, 
nonzero 

Typically 
around 10 

1-16 1-5 5-10 

Number of 
Steady states 

<5, typically 
0 

0 1-10 1-5 0-2 

Time in semi-
steady/Total 

< 0.6 
Typically 

<0.7 
0.4 <0.2 <0.2 

Time in 
steady/Total 

<0.4 
Typically 0 

0 0.15-0.8 >0.8 >0.8 

Number of 
states per time 

window 
>5 

Typically  
6-10 

Typically 
<1.5 

<1 ~1 

Repeated 
Patterns 

None Yes 2-5 None 
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7.6 CHAPTER SUMMARY 

This chapter has proposed an efficient method to represent long-term operating 

waveforms of electric loads by finite-state machines (FSMs). The major advantage of a 

FSM representation lies in its capability to detect repeated patterns, reduce duplicate 

states and transitions by allowing self state transition, and extract time values associated 

with each state. Each repeated pattern may not be exactly the same and the time durations 

in-between the repeated patterns are also not exactly identical in practice, but the FSM 

representation can extract the common pattern by state transitions and eliminate the effect 

of time by self state transitions.  

A set of numerical features are proposed for indicating the identity and operating 

modes of electric loads in real-time. A high identification accuracy rate is achieved in 

tests on a large set of real-world date using the proposed features.  

There are two potential problems of the proposed state-machine representation of 

long-term waveforms. First, the performance of the proposed method may be affected by 

the accuracy of sampled data. For example, if the sampled data points are only with 

accuracy of one decimal place, the difference between adjacent RMS current values may 

be affected and the proposed algorithm may give a different set of states with different 

staying time values. Second, detecting spike events depends highly on parameters. In this 

dissertation, the ratio between two adjacent RMS current values is set to be 1.85 to detect 

spikes, which is based on trials. If this ratio is set to be much larger, there would be only 

a very small number of spikes detected and important spike events may be missed. On the 

other hand, if this ratio is set to be a smaller number, there could be too many spike 
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events. For a different data set, this ratio needs to be carefully selected based on trials and 

applications.    
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CHAPTER 8  CONCLUSIONS AND CONTRIBUTIONS  

8.1 INTRODUCTION 

This chapter concludes this dissertation by first reviewing the objective of this 

research and proposed solution framework, summarizing the technical development and 

major contributions of Chapters Three to Seven, and finally presenting the list of 

outcomes such as U.S. patent applications, journal papers, and conference papers directly 

contributed by Chapters Three to Seven of this dissertation.  

Finally, section 8.5 presents several future research directions that can extend the PEL 

identification problem as well as proposed techniques to other applications.  

8.2 CONCLUSIONS OF THIS DISSERTATION 

The objective of this dissertation is to develop non- intrusive, accurate, robust, and 

applicable PELs identification algorithms based on voltage and current measurements. A 

two-level framework for PELs identification is proposed: first classify an unknown PEL 

into one of the predefined classes and then identify the unknown PEL within this class.  

Chapter Three proposes a low computational-cost but yet accurate algorithm to 

extract features from the voltage and current waveforms of PELs for classification and 

identification. Instead of utilizing digital signal processing and frequency domain 

analysis, the proposed feature extraction algorithm first abstracts the similarity of 

voltage-current (V-I) trajectories between different PELs and then maps the V-I 

trajectories to cell grids with binary cell values. Graphical features can then be extracted 

for many purposes. The proposed method significantly reduces the computational cost 

compared to existing frequency-domain signature extraction and analysis methods. It is 
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shown in Chapter Four that an average of over 99% of success rate can be achieved using 

the proposed features. 

Chapter Four proposes the extension of the basic SOM to a supervised manner for 

classification of PELs. The supervised SOM (SSOM) can classify a large amount of 

PELs into several groups. Chapter Five extends the framework in Chapter Four and 

presents a novel combination of the SSOM and the Bayesian framework to function as a 

hybrid identifier and provide the probability of an unknown PEL belonging to a known 

group. Extensive research has been carried out to test the performance of PELs 

classification and identification using the SSOM, and the testing results are satisfactory.  

In Chapters Six and Seven, static and dynamic methods are considered for in-

category PEL identification, respectively. For the static method, a hybrid SSOM/SVM 

identifier is proposed. The proposed hybrid identifier utilizes the power of the supervised 

Self-Organizing Map (SSOM) classifier for PELs to first classify the large amount of 

PELs models into several clusters. Within each cluster, a more accurate identification 

decision is made by the well establish multi-class one-against-all SVM classifier. 

For dynamic modeling, a continuous current waveform is first converted into a quantized 

sequence of current values. This sequence is then transformed into a finite-state machine 

(FSM) consists of different types of states and transitions between states. A set of features 

can be extracted from the formulated finite-state machine, which is utilized to represent and 

identify electric appliances with different operating principles and modes. 

The overall testing results of different features and proposed methods are summarized in 

the following table.  
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Table 8.1 Summary of testing results in this dissertation 

Chapter Method Purpose Features 
Average Success 

Rate 

Chapter Four SSOM 
Classification 
into categories 

- Proposed graphical 
features in Chapter 
Three 

- A set of 13 selected 
features  

> 95% 

Chapter Five SSOM 
Probabilistic 

classification into 
categories 

- A set of 13 selected 
features 

>95% based on 
MAP 

Chapter Six SVM 
In-Category 
identification 

- A set of 13 selected 
features 

>95% 

Chapter Seven 
State 

Machine 
In-Category 
identification 

- A set of 7 features 
proposed in Chapter 
Seven  

>95% 

 

8.3 CONTRIBUTION OF THIS DISSERTATION 

The main contributions of this dissertation lie in several different aspects of a novel 

two- level PELs classification and identification algorithm, summarized as follows: 

(1) Robustness: the proposed SSOM identifier first classifies the large amount of 

real-world PELs into clusters and then identifies their types within each class. 

In this manner, the diversity within each type of PELs and the similarity 

between different types of PELs can be handled in a robust manner.  

Another contribution is a novel hybrid method by combining the SSOM 

framework and the Bayesian framework to utilize the training information to 

provide probabilistic identification results; 

(2) Accuracy: with each classified class, both static and dynamic methods are 

proposed to achieve high successful identification rates under all scenarios but 

modeling the steady-state characteristics as well as dynamic performance and 

operating principles of PELs; 
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(3) Adaptiveness: the proposed framework can learn from user inputs or 

feedback, update classification and identification rules if necessary, and 

include a priori information and required identification granularity; 

(4) Intelligence: the proposed method also has the capability to investigate the 

applicability of the extracted signatures/patterns for effective PELs 

disaggregation, and identifying an unknown PEL to a certain level of 

granularity. 

8.4 OUTCOMES OF THIS DISSERTATION 

The literature review and research work presented in Chapters Two to Seven of this 

dissertation have resulted in a number of publications and U.S. patent applications, listed 

as follows: 

8.4.1 U.S. Patents 

[1] Bin Lu, Ronald G. Harley, Liang Du, Yi Yang, and Sharma K. Santosh, Prachi 

Zambare, and Mayura Madane, U.S. Patent Application 13/304,758, Publication 

US20130138651, “System and method employing a self-organizing map load 

feature database to identify electric load types of different electric loads”, filed on 

November 28, 2011. Patent publication date: May 30, 2013. 

[2] Bin Lu, Ronald G. Harley, Liang Du, Yi Yang, and Sharma K. Santosh, Prachi 

Zambare, and Mayura Madane, U.S. Patent Application 13/597,324, “System and 

method for electric load identification and classification employing support 

vector machine”, filed on August 29, 2012. 
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[3] Yi Yang, Liang Du, and Dawei He, U.S. Patent Application 13/920,602, “System 

and method for instantaneous power decomposition and estimation”, filed on 

June 18, 2013 

[4] Yi Yang, Liang Du, and Dawei He, U.S. Patent Application 13/912,819,  “System 

and method employing graphical electric load categorization to identify one of a 

plurality of different electric load type”, filed on June 7, 2013  

[5] Liang Du, Yi Yang, Ronald G. Harley, Thomas G. Habetler, and Dawei He, U.S. 

Patent Application 13/908,263, "Method and system employing finite state 

machine modeling to identify one of a plurality of different electric load 

types", filed on June 3, 2013 

8.4.2 Journal Paper 

[1] Liang Du, Jose A. Restrepo, Yi Yang, Ronald G. Harley, and Thomas G. 

Habetler, “Nonintrusive, Self-Organizing, and Probabilistic Classification and 

Identification of Plugged-In Electric Loads”, IEEE Transactions on Smart 

Grid, vol. 4, issue 3, pp. 1371-1380, 2013 

[2] Dawei He, Liang Du, Yi Yang, Ronald G. Harley and Thomas G. Habetler, 

“Front-End Electronic Circuit Topology Analysis for Model-Driven Classification 

of Appliance Loads,” IEEE Transactions on Smart Grid, vol. 3, no. 4, pp.2286-

2293, Dec 2012 

[3] Liang Du, Yi Yang, Ronald G. Harley and Thomas G. Habetler, “Real-Time 

Identification of Electric Loads Using Long-Term Operating Waveforms,” under 

review,  IEEE Transactions on Smart Grid 
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[4] Liang Du, Yi Yang, Ronald G. Harley and Thomas G. Habetler, 

“Characterization and Identification of Electric Loads by Binary Voltage-Current 

Trajectory Mapping,”  to be submitted to IEEE Transactions on Smart Grid  

8.4.3 Conference Paper 

[1] Liang Du, Yi Yang, Dawei He, Ronald G. Harley, Thomas G. Habetler, and Bin 

Lu, “Support Vector Machine Based Methods For Non-Intrusive Identification of 

Miscellaneous Electric Loads”, In Proceedings of the 38th Annual Conference of 

the IEEE Industrial Electronics Society (IECON 2012), Oct 25-28, Montreal, 

Quebec, Canada 

[2] Dawei He, Liang Du, Yi Yang, Ronald G. Harley, and Thomas G. Habetler,, “A 

Model-Driven Taxonomy of Appliance Loads:  Front-End Electronic Circuit 

Topology Analysis”, In Proceedings of the IEEE Energy Conversion Congress and 

Exposition (ECCE), p.1228-1232, Raleigh, NC, USA, September 15-20, 2012 

[3] Liang Du, Dawei He, Yi Yang, Jose A. Restrepo, Ronald G. Harley, and Thomas 

G. Habetler, “Self-Organizing Classification and Identification of Miscellaneous 

Electric Loads”, In Proceedings of the IEEE Power & Energy Society General 

Meeting (PES-GM 2012), July 22-26, San Diego, CA,USA 

[4] Yi Du, Liang Du, Bin Lu, Ronald G. Harley, and Thomas G. Habetler, “A Review 

of Identification and Monitoring Methods for Electric Loads in Commercial and 

Residential Buildings”, In Proceedings of the IEEE Energy Conversion Congress 

and Exposition (ECCE 2010), p.4527-4533, Atlanta, GA, USA, September 12-16, 

2010 
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8.4.4 Contribution of chapters 

The contribution of each chapter of this dissertation is listed in the following table.  

Table 8.2 Contribution of each chapter of this dissertation 

Chapters 
Patents Listed in 

Section 8.4.1 

Journal Papers Listed in 

Section 8.4.2 

Conference Papers 

Listed in Section 8.4.3 

Two   Paper [2] 

Three Patents [3] and [4] Papers [2] and [4] Paper [4] 

Four 

Patent [1] Paper [1] 

Paper [3] 

Five  

Six Patent [2]  Paper [1] 

Seven Patent [5] Paper [3]  

 

8.4.5 Other Contribution 

The following journal and conference papers, as outcomes of class projects during my 

graduate study, have been published or under review. 

[1] Liang Du, Santiago Grijalva, and Ronald G. Harley,  “Distributed Potential-

Game Formulation of Constrained Economic Dispatch with Guaranteed 

Convergence”, under review, IEEE Transactions on Control of Network Systems 

[2] Liang Du, Lijun He, and Ronald G. Harley, “A Survey of Methods for Shunt 

Capacitor Banks Placement in a Distorted Power Network”,  In Proceedings of 
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The 38th Annual Conference of the IEEE Industrial Electronics Society (IECON 

2012), Oct 25-28, Montreal, Quebec, Canada [120] 

[3] Liang Du, Santiago Grijalva, and Ronald G. Harley,  “Potential-Game 

Formulation of Optimal Power Flow problems”, In Proceedings of the IEEE 

Power & Energy Society General Meeting (PES-GM 2012), July 22-26, San 

Diego, CA [121] 

8.5 FUTURE WORK 

8.5.1 Implementation and field tests 

Techniques proposed in Chapters Three, Four, and Seven have been implemented in 

different product prototypes developed at Eaton Global Research and Technology center. 

Field tests of prototypes with techniques from this dissertation have been scheduled to 

take place in the National Renewable Energy Laboratory (NREL). Test results and 

feedback can be analyzed to further improve the proposed framework.  

8.5.2 PEL disaggregation 

The PEL identification problem studied in this dissertation is based on the assumption 

that a set of voltage and current waveforms is available for each PEL. However, in some 

cases, such waveforms for each PEL are not available. For example, in the case of 

multiple PELs are plugged into the same outlet or strip, measured current waveform is an 

aggregated signal of multiple PELs. The problem of identifying multiple plugged- in 

electric loads from mixed voltage/current waveforms is typically known as “load 

disaggregation” in the literature [70, 71, 122]. Given only this aggregated current 

waveform, the PEL disaggregation problem differs from the (single) PEL identification 
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problem in the sense that it is not practical or possible to follow the PEL identification 

procedure as shown in Figure 2.1 to solve the PEL disaggregation problem due to the 

following reasons: 

(1) The number of commercial PELs being used in real-world is enormous. 

Moreover, the number of different combinations of PELs increases 

exponentially with the number of available PELs. Unlike in the PEL 

identification problem, it is impossible to build and maintain a database of 

aggregated waveforms of PELs with known identities (model and type) for the 

PEL disaggregation problem.  

(2) Continuing with the above discussion with database of PELs with known 

identities, this database provides a priori information which relates 

voltage/current waveforms to PEL identities. The solution to the PEL 

identification problem proposed in Chapters Three to Seven of this dissertation 

does not require other a priori information. 

 On the other hand, the PEL disaggregation problem does require other a priori 

information including, but not limited to, the number of PELs that are connected 

at a common supply source and which PELs are currently in active mode. 

Without this a priori information, it is not reasonable to adopt the techniques 

developed for the PEL identification, i.e., comparing with a database of PELs 

with known identities even if such a database exists.  

      For instance, an aggregated current waveform may be contributed by four PELs 

in active mode and two PELs in standby/sleep mode (and thus not contributing 

much). This aggregated waveform is then compared to a known database 
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(assume it exists) and found to be very similar to an aggregated current 

waveform consisting of five PELs in active modes. However, it is not a 

reasonable or convincing solution to match five PELs with known identities to 

six unknown PELs. 

(3) A unique difficulty in the PEL disaggregation problem is that it is sometimes 

not possible to identify several PELs of the same category which are plugged 

into a common supply source. 

 For example, considering the case that one space heater (500 W), one portable 

fan (60 W), and one incandescent light (100 W) are plugged into a common 

power strip. These three PELs all belong to category R, i.e., resistive or linear 

load. The aggregated current waveform is almost sinusoidal. In this case, it is 

not possible to tell whether it is a portable fan (60 W) or another incandescent 

light (60W) because either of them aggregated with the other two PELs would 

present the same sinusoidal aggregated current waveform. 

(4) Another difficulty in the PEL disaggregation problem is that some PELs that 

consume a small amount of power may be dominated by other PELs consuming 

much higher amount of power. 

 For instance, if a space heater (800 W) is aggregated with a cell phone (10 W) 

or a laptop computer (50 W), the aggregated waveform is dominated by the 

space heater (and thus almost sinusoidal). In this case it is nearly not possible to 

detect the existence of the cell phone or the laptop computer.  

To summarize, the PEL disaggregation problem is much more complicated and 

challenging than the PEL identification problem. As an extension of this dissertation, the 
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FSM modeling method proposed in Chapter Seven can be extended to a timed FSM for 

the purpose of event detection for PEL disaggregation, in which the starting time and 

ending time associated with each state are also recorded besides the overall staying-time 

in each state. An example of aggregated current waveform is given in the following 

figure. 

 

 

Figure 8.1 Measured aggregated current waveform 

 

Using the previously proposed FSM presentation of long-term observations in 

Chapter Seven, the above current waveform can be represented by a sequence of semi-

steady and steady states, whose associated current values and staying-time values are 

shown in the follow table.  

Note that the spike events are not shown in the following figure for notational 

convenience. 
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Table 8.3 Timed sequence of semi-steady and steady states represent Figure 8.1 

States 
Current 

(A) 

Staying-

time (s) 

Staying 

from (s) 

Staying 

until (s) 
Events 

standby 

semi 

semi 

semi 

steady 

semi 

semi 

semi 

semi 

semi 

semi 

semi 

semi 

semi 

semi 

semi 

semi 

steady 

semi 

semi 

semi 

steady 

steady 

steady 

semi 

semi 

semi 

steady 

semi 

semi 

n/a 

0.931 

3.364 

2.825 

2.82 

2.334 

2.434 

2.928 

3.115 

3.143 

3.122 

3.107 

3.096 

3.007 

3.85 

3.801 

3.805 

4.223 

4.091 

4.512 

4.978 

5.521 

4.963 

5.183 

5.183 

5.207 

5.169 

5.13 

5.649 

5.051 

11.88 

2.9 

1.467 

4.317 

8.25 

1.067 

1.383 

2.133 

1.817 

2.067 

1.183 

1.75 

1.083 

2.95 

2.25 

1.2 

2.883 

8.617 

4.567 

3.883 

2.033 

45.28 

6.867 

14.3 

1.317 

1.267 

3.567 

5.35 

1.183 

1.383 

0.017 

20.12 

26.22 

28.77 

33.95 

45.18 

46.55 

56.15 

61.75 

63.62 

66.15 

84.78 

89.73 

91.55 

96.67 

98.95 

100.2 

104.8 

113.5 

118.1 

122.0 

124.0 

169.3 

177.4 

191.7 

193.5 

194.8 

198.5 

203.8 

205.0 

11.9 

23.0 

27.67 

33.07 

42.18 

46.23 

47.92 

58.27 

63.55 

65.67 

67.32 

86.52 

90.8 

94.48 

98.9 

100.1 

103.1 

113.4 

118.1 

122.0 

124.0 

169.3 

176.1 

191.7 

193.0 

194.8 

198.4 

203.8 

205.0 

206.4 

<= At 11.9 s, LCD Monitor ON 

<= At 23.6 s, desktop computer ON 

 

 

 

 

<= At 50.3 s, lamp ON 

 

 

 

 

 

 

<= At 95.6 s, portable fan ON 

 

 

 

 

<= At 113.3 s, projector ON 
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Table 8.3 continued 

semi 

semi 

steady 

steady 

steady 

steady 

semi 

semi 

steady 

steady 

steady 

steady 

steady 

steady 

steady 

semi 

steady 

steady 

semi 

semi 

steady 

steady 

steady 

steady 

4.998 

3.209 

3.058 

3.012 

2.459 

2.424 

2.389 

14.31 

19.46 

2.482 

2.176 

2.265 

2.255 

2.382 

2.473 

3.321 

3.284 

3.651 

4.044 

4.509 

4.447 

5.208 

4.216 

2.33 

2.2 

1.517 

8.083 

36.68 

13.27 

9.983 

2.467 

1.533 

60.08 

14.65 

6.433 

6.817 

6.733 

14.52 

13.32 

3.867 

8.4 

5.4 

1.017 

1.4 

6.233 

39.27 

38.07 

11.33 

206.5 

208.7 

210.3 

218.4 

255.1 

268.4 

278.4 

281.0 

282.7 

342.8 

357.4 

363.9 

371.0 

377.8 

392.3 

407.5 

411.4 

419.8 

425.2 

426.2 

427.7 

434.0 

473.3 

511.3 

208.7 

210.2 

218.4 

255.1 

268.3 

278.4 

280.9 

282.5 

342.7 

357.4 

363.8 

370.7 

377.7 

392.2 

405.6 

411.4 

419.8 

425.2 

426.2 

427.6 

433.9 

473.2 

511.3 

522.7 

<= At 208.7 s, projector OFF 

 

<= LCD monitor OFF 

<= At 255.1 s, lamp OFF 

 

 

<= At 280.88 s, a microwave ON 

 

<= At 340.72 s, the microwave OFF 

<= At 357.4 s, the fan OFF 

 

 

 

<= At 398.9 s, LCD monitor ON 

<= At 405.6 s, fan ON 

 

<= At 419.8 s, projector ON 

 

 

 

 

<= At 473.2S, fan OFF 

<= At 511.3S, projector OFF 

 

Another possible extension of the features proposed in Chapter Three is to develop 

similar graphical features based on V-I trajectories to help to detect ON/OFF events for 

PELs disaggregation.  

More details on these extensions to study the PEL identification problem is currently 

under development and is expected to be reported in the near future.  
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APPENDIX A DATA ACQUISITION SYSTEM AND LAB 

ENVIRONMENT 

All the tests in this dissertation are based on real-world PEL data collected for this 

research. A data acquisition (DAQ) system designed with help from Dr. Jose A. Restrepo 

and built for data collection contains the following components:  

(1) A printed circuit board (PCB) sensors module with current and voltage 

sensors, which measures the actual voltage and current waveforms of 

connected PELs. The measurements of the PCB sensors module are sent out 

as outputs through two BNC (Bayonet Neill–Concelman) type connectors and 

two cables, one for the voltage waveform and the other one for the current 

waveform. 

(2) A set of National Instrument (NI) analog/digital data acquisition (DAQ) 

devices to sample the voltage and currents waveforms measured by the PCB 

sensors module in step (1). The input channels of the NI DAQ device are 

connected to the PCB sensors module through the two BNC cables. The 

output channels of the NI DAQ device are connected to computers through 

high-speed USB cables. 

(3) A National Instrument (NI) LabView program running on computers to store 

the sampled data in a pre-defined format. This LabView program also has the 

capability of plotting real-time waveforms in programmed user interfaces 

(UIs). 

 

 

http://en.wikipedia.org/wiki/Carl_Concelman
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A.1 PCB SENSORS MODULE 

Two figures of the PCB sensors module viewed from different angles are shown in 

Figure A.1. The design details of this PCB sensors module presented in this section are 

described by courtesy of Dr. Jose A. Restrepo. 

  

 

Figure A.1 Two views of the portable PCB sensors module 

 

The PCB sensors module is contained in a plexi-glass box for insulation, protection, 

and portability. It has one input cable which can be plugged into any 120 V outlet and 

one output electrical socket into which a load can be plugged-in. This permits data to be 

captured at any location. Also, the module has two BNC output connectors to the NI 

DAQ device. The left BNC connector provides the voltage waveform and the right one 

provides the current waveform. 

The PCB circuit schematic is given in the following figure. 
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Figure A.2 PCB circuit schematic 

 

A more detailed PCB design schematic is show in the following figure. 

 

 



163 

 

 

 

Figure A.3 PCB design schematic 

 

A list of components appears below:  
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 (1) Tamura 3FS-328 transformer   

 (2)73100-0069 BNC connector  

 The rectifier bridge is made with four diodes (1n4007) 

 (1) LEM LA-55P current sensor 

 (1) LEM LV-25P voltage sensor 

 (2) 100 Ohm ¼ W resistors 

 (2) 200 Ohm ¾ W multiturn trimming potentiometer.  

 (1) 18K, 3 W resistor 

 (2) 1000uF/25V radial capacitor 

 (2) 1uF/25V ceramic capacitor 

 (1) LM7805 (1A positive regulator) 

 (1) LM7905 (1A negative regulator) 

 (2) TERMINAL BLOCK 3.5MM 3POS PCB. 

 

Note that the wire through the current sensor has two loops or turns to increase the 

conversion ratio. 

A.2 BNC CONNECTOR AND CABLE 

The PCB sensors module and the NI DAQ device are connected through BNC 

connectors and cables, as shown in the following figure.  
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Figure A.4 BNC connectors and cables 

A.3 NI DAQ DEVICE 

Two different sets of NI DAQ devices have been used for data collection. In the early 

stage of this research, a set of NI SCXI-1000 DAQ system was used, which consists of 

the following three components: 

(1) NI SCXI-1000: compact 4-slot AC-powered chassis  

(2) NI SCXI-1305: 8 channel AC/DC coupling BNC terminal block 

(3) NI SCXI-1141: 8 channel elliptic low-pass filter 

The NI SCXI-1000 DAQ system is shown in the following figure.  

 

Figure A.5 NI SCXI-1000 DAQ system 
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Some of the target PELs are large in size and weight, such as household refrigerators 

and TVs over 40 inches. It turned out that the NI SCXI-1000 DAQ system was physically 

too large and too heavy to be carried to different test sites. Therefore, a mobile DAQ 

system (see Figure A.6), the NI USB-6008 DAQ system was acquired for convenience 

and mobility.  

 

   

Figure A.6 NI USB-6008 DAQ system 

 

The NI USB-6008 DAQ system has 12-bit accuracy with 8 analog inputs and 2 

analog outputs, an interface of 12 digital I/O slots, is powered by a USB cable from 

computers and is compatible with LabView. This USB DAQ device supports single 

channel (at 10000 samples per second) or multiple (up to 8) channels of sequential 

sampling, where each channel is sampled at 1250 samples per second. For example, for 

this dissertation, two channels (current and voltage waveforms) are used and thus each 

channel has a max sampling rate 5000 samples per second. The actual time difference 
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between sampling of the two channels is not given by NI but is suggested to be 

negligible. 

A.4 LABVIEW PROGRAM 

A program was written in the NI LabView software (version Professional 8.5) to 

configure and acquire current and voltage measurements from the PCB sensors module. 

The following figure shows the block diagram of the LabView program written for such 

purposes. The sampling frequency is chosen as 30.72 k-Hz and the data is saved to 

multiple files on the computer.  

 

Figure A.7 Block diagram of the LabView data acquisition program. 

 

There are usually two stages to sample the waveform. First the current and voltage 

are sampled for one minute to record the transition when the load is turned on. Then, after 

fifteen minutes, the current and voltage are sampled again for one minute to record the 

dynamic changes affected by any thermal or other issues.  
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A.5 CALIBRATION 

The calibration of this entire DAQ system was validated by connecting the PCB 

sensor module to the utility. The voltage output channel coming from the PCB sensor 

module through the LabView system on a computer was compared with a direct 

measurement of this same output voltage using a Tektronix differential voltage probe. 

Results agree well. 

The supplying voltage in calibration was provided by a calibrated FLUKE 177 True 

RMS multimeter which has an error of less that 1%, the offset of the current sensor was 

measured as -11mv with a maximum output capacity 7 V; the offset of the voltage sensor 

was measured as -6mv with a maximum output capacity 7 V. The final measuring scale 

of sensitivity is 1 V in the output for 5 A in the input of the current sensor, and 1 V in the 

output for 50 V in the input of the voltage sensor.  

A.6 HARMONICS IN THE SUPPLY VOLTAGE 

The 120 V ac utility power source in the lab testing environment contains noise and 

distortion, as shown in the following figure. 

 

 

Figure A.8 Utility single phase voltage waveform in the Lab  
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Figure A.8 shows that the single-phase voltage supplied by utilities is not pure 

sinusoidal and notable distortion can be observed in the voltage waveform. Therefore, it 

is necessary to verify that the harmonic distortion in the utility supply voltage is within a  

certain limit defined by utility standards (e.g., IEEE standards [123, 124]). 

A measurement of this voltage waveform without any load connected and using a 

Yokogawa WT1600 digital power meter revealed that the total background harmonic 

distortion (THD) is around 3.13%, as shown in the following figure.  

 

 

Figure A.9 Total harmonic distortion in voltage 

The harmonic spectrum of the distorted utility-supplied voltage waveform is shown in 

Figure A.10, in which the vertical axis is of logarithm scale to better show harmonics 

with small magnitudes. 
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Figure A.10 Harmonic spectrum of the distorted ac utility-supplied voltage waveform  

The following table summarizes Figures A.9 and A.10 and verifies that the harmonic 

distortion in utility supply voltage in the lab meets IEEE standards.  

Table A.1 Harmonics in utility single phase voltage in the lab  

Harmonic 

order 

Harmonic magnitude 

(V) 

Harmonic compared 

to RMS (%) 

Harmonic compared to 

fundamental (%) 

1st 119.19 99.95 100 

3rd 2.61 2.19 2.19 

5th 1.28 1.07 1.07 

7th 0.99 0.83 0.83 

9th 0.93 0.78 0.78 

11th 1.00 0.84 0.84 

13th 1.12 0.94 0.94 

15th 0.60 0.50 0.50 

17th 0.90 0.76 0.75 

19th 0.42 0.35 0.35 
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APPENDIX B MAPPING OF REPRESENTATIVE V-I 

TRAJECTORIES TO BINARY CELL GRIDS 

A set of V-I trajectories of 42 representative PELs from the database collected by the 

DAQ system presented in Appendix A and their mapped cell grids using the proposed 

algorithm in Chapter Three are shown in this section. 

Table B.1 42 representative V-I trajectories mapped to binary cell grids 

Number PEL V-I Trajectory Mapped Binary Cell Grid 

1 Space Heater 

 
 

2 Bread toaster 

 
 

3 Coffee Maker 
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Table B.1 continued 

4 

Space Heater 

2 

  

5 
Space Heater 

3 

  

6 

Space Heater 

4 

  

7 

9 Inch 

Portable Fan 

  

8 
32 Inch Tower 

Fan 
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Table B.1 continued 

9 
Portable 

Refrigerator 

  

10 Microwave 

  

11 Portable Fan 

  

12 

Vending 

Machine 

  

13 
Space Heater 

5 

  



174 

 

Table B.1 continued 

14 Portable Fan 2 

  

15 Shredder 

  

16 DVD Player 

  

17 Cellphone 

  

18 
Laptop 

Computer 
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Table B.1 continued 

19 
Laptop 

Computer 2 

  

20 DVD Player 2 

  

21 
Desktop 

Computer 

  

22 LED TV 

  

23 LCD Monitor 
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Table B.1 continued 

24 Cellphone 2 

  

25 Cellphone 3 

  

26 Set-Top Box 

  

27 DVD Player 3 

  

28 Set-Top Box 2 
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Table B.1 continued 

29 Electric Board 

  

30 Projector 

  

31 LCD TV 

  

32 LCD TV 2 

  

33 Projector 2 
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Table B.1 continued 

34 Plasma TV 

  

35 LED TV 2 

  

36 

LCD Monitor 

2 

  

37 Video Game 

  

38 LCD TV 3 
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Table B.1 continued 

39 
Microwave 2 

Defrost Mode 

 
 

40 
Microwave 3 

Defrost Mode 

 
 

41 
Microwave 4 

Reheat Mode 

 
 

42 
Microwave 5 

Reheat Mode 
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APPENDIX C SOM TOOLBOX FOR MATLAB 

This dissertation uses the MATLAB SOM toolbox developed by the the Laboratory 

of Information and Computer Science in the Helsinki University of Technology. This 

toolbox can be downloaded online and directly installed by placing the toolbox in the 

MATLAB toolboxes directory. This section only lists the key functions and necessary 

information to run tests. More details appear in the SOM toolbox tutorial and manual 

available at http://www.cis.hut.fi/somtoolbox/documentation.  

The training data for the SOM toolbox is in tabular format, as shown in the following 

figure. In other words, there can be any number of training feature vectors but the length 

of each feature vector is fixed. 

 

Figure C.1 Tabular format data for MATLAB SOM toolbox [87] 
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Figure C.1 shows that there can be many training feature vectors (called samples in 

Figure C.1) but each feature vector has only 4 features (called samples in Figure C.1), 

i.e., it has a length of 4. In this dissertation, the set of features listed in section 4.4.1 has 

13 features, and there can be any number of such 1-by-13 features vectors for training 

dependsingon the number of PELs available for training.  

Furthermore, the training data is converted to a so-called data struct, which is a 

MATLAB struct defined by the designers of this toolbox to group information together. 

Each such data struct has two major fields: numerical data (.data format) and label data 

(.labels format). Numerical data is the set of training feature vectors and the label data 

provides options to assign each training feature vector a label (or identity). The latter data 

format is very import for implementing the supervised SOM training and identification.  

Similarly, the cell grid of an SOM is implemented by a MATLAB struct called map 

struct. Details on the map struct are not included here due to limited space.  

There are many functions available in this toolbox, and the key ones that have been 

used are listed as follows. 

(1) som_set: create, set, and check values to data structs 

(2) som_data_struct: create and initialize a data struct 

(3) som_map_struct: create and initialize a map struct 

(4) som_normalize: normalize data set 

(5) som_make: create, initialize, and train a SOM 

(6) som_randinit: random initialization algorithm 

(7) som_lininit: linear initialization algorithm 

(8) som_seqtrain: sequential training algorithm 
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(9) som_batchtrain: batch training algorithm 

(10) som_quality: quantization and topographic error of SOM 

(11) som_bmus: calculates BMUs for given data vectors 

(12) som_label: give labels to map units 

(13) som_label2num: recodes string data labels to integer class labels 

(14) som_autolabel: automatically labels the SOM based on given data  

(15) som_neighborhood: calculates neighborhood matrix for the given map  

(16) som_neighbors: calculates different kinds of neighborhoods 

(17) som_show: basic visualization 

(18) som_show_add: add labels, hits and trajectories 

(19) som_show_clear: remove extra markers 

 

Finally, the overall process of training an SOM and doing identification using the 

toolbox is summarized as follows. 

(1) Read the input training data in a matrix D. Then call the som_data_struct 

function: 

sD = som_data_struct(D); 

where the output sD is a data struct containing the training data D. 

(2) Label the data struct sD using som_label or som_autolabel. 

(3) Update the data struct sD using som_set. 

(4) Pre-process the data struct if necessary, e.g. using som_normalize to 

normalize the training data. 

(5) Initialize and train the map using  
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sMap = som_make (sD); 

 

After training, the output is a map struct named by sMap. More options on 

how to initialize and train the map can be implemented by calling functions 

som_lininit, som_raninit, som_seqtrain, and som_batchtrain.  

(6) After training, read in the test data SOM_testData, find its BMUs according 

to the trained map 

[Bmus] = som_bmus(sMap,SOM_testData), 

and assign the labels of the BMUS sMap.labels(Bmus) to the test data, 

which completes the identification process.  

(7) Compare the assigned labels and the true labels to calculate the identification 

success rate. 
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APPENDIX D SVM TOOLBOX FOR MATLAB  

The SVM-KM toolbox for MATLAB was developed by Alain Rakotomamonjy from 

the University of Rouen, France. The toolbox can be downloaded online from the website 

http://asi.insa-rouen.fr/enseignants/~arakoto/toolbox/index.html and installed into the 

MATLAB toolboxes directory in a similar manner as the SOM toolbox.  

The input training data format is the same as in the SOM too lbox, i.e., in a matrix or 

tabular format. That is, there can be any number of training feature vectors but the length 

of each feature vector is fixed. 

The first step of training an SVM using the input data is to set the following 

parameters: 

(1) c: bound of the Lagrangian multipliers; 

(2) lambda: conditioning parameter for using quadratic programming (QP) 

method, typically very small;  

(3) kernel:  which kernel to use, e.g., 'poly' for polynomial kernel or 'gaussian' for 

Gaussian kernel; 

(4) kerneloption: parameters of the selected kernel, e.g., bandwidth if the 

Gaussian kernel is selected; 

(5) verbose: display outputs (default value is 0: no display); 

(6) nbclass:  the number of classes 

 

The training of an SVM starts with calling the following function 

svmmulticlassoneagainstall(SVM_trainData,SVM_trainDataLabel,nbclass,

c,lambda,kernel,kerneloption,verbose); 
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where 

 SVM_trainData: the training data 

 SVM_trainDataLabel: lables of the training data 

 

Other options include other functions such as svmmulticlassoneagainstone.  

Finally, read the testing dataset SVM_testData and call the function svmmultival. 

This function assigns a (predicted) identity label to each training feature vector based on 

the support vectors of the trained SVM. Thus the output of this function is the set of 

predicted identity labels of the testing dataset. The identification success rate can be 

calculated by comparing the assigned labels with the true identity labels.   
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