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SUMMARY

As the trends towards decentralization, miniaturization, and longevity of de-

ployment continue in many domains, power management has become increasingly

important. In sensing and communications networks, power management has long

been a part of the design paradigm. However, an underlying assumption in most

of the existing work is that the performance of the sensing devices remain the same

throughout their lifetime, which is not always true. Moreover, when mobility is added

to the mix, power management is not well understood. Thus, the research presented

in this thesis is focused on developing power-aware control strategies for maximizing

the lifetime of wireless sensor networks.

This research spans over two broad classes of wireless sensor networks, namely,

static networks (comprising of agents with no mobility) and mobile networks (com-

prising of agents with mobility). For the case of static networks, the problem of

the effects of power decay on the performance of an individual sensor and on the

entire network is identified and is addressed for networks in which sensing devices

are randomly deployed in a region of interest. In particular, networks comprising of

agents whose sensing range model is a function of available power akin to those of

RF- or radar-based sensors are examined and the performance of each sensor in these

networks is related to its available power. Moreover, to compensate for the effects

of decrease in available power on the global performance of the network, probabilis-

tic scheduling controllers are developed that maintain a desired probability of event

detection under two sensing models: Boolean and non-Boolean.

In addition to this problem of the effects of power decay on the performance

of a sensor network, a novel probabilistic sleep-scheduling scheme is proposed in

xiii



which neighboring sensors are only allowed minimum coordination with each other

for making intelligent switching decisions so that a desired level of partial coverage

can be achieved and energy can be conserved. This scheme is based on the concept

of a hard-core point process from stochastic geometry, in which neighboring points

are allowed to interact with each other through some predefined interaction laws.

For the case of mobile networks, the goal of this research is to propose a solid

framework for distributed power-aware mobility strategies that can achieve any de-

sired global objective while minimizing total energy consumption. This goal is achieved

by first exploring fundamental trade-offs among various modes of operations of mo-

bile devices and then exploiting these trade-offs for minimizing energy consumption.

The key idea is that different operating modes (e.g., low-power/high-power, on/off, or

mobile/static) have different performance and power characteristics and these char-

acteristics can be traded off by either optimally switching among these modes or

by assigning optimal weights to each of them. For instance, in the case of mobile

agents forming a relay network, the choice is typically between moving (higher power

consumption) to improve the sensing profile, or remaining in the same location and

transmitting data at higher power levels. Thus, the problem of minimizing energy

consumption is formulated as an optimal control problem and for solving this prob-

lem efficiently, numerical techniques are employed. Through this framework, a whole

class of power-aware controllers emerge for solving canonical problems in multi-agent

systems like connectivity maintenance, rendezvous, and coverage control in a decen-

tralized manner while minimizing power consumption.

xiv



CHAPTER I

INTRODUCTION

Wireless sensor networks are used in a wide range of applications such as detecting

intruders in restricted areas; monitoring hazardous and potentially hostile environ-

ments like detecting fires in a forest or oil spillage in the ocean; neutralizing threats

like land mines in war zones ; and performing search and rescue missions in the case

of disasters and natural calamities. To achieve desired objectives, a mature body

of work has emerged in the last decade on how to control both static and mobile

sensor networks in a distributed manner (see e.g., [2], [3], [5], [6], [7], [8], [10], [11],

[12], [13], [14], [16], [17], and [18]). However, one key limitation of such large-scale

systems is that they are inherently power sensitive. To deploy a large collection of

nodes in unknown territories as stand-alone units, payload issues (e.g., battery sizes)

become a significant problem. Therefore, a critical problem, which is a subject of

active research in the wireless sensor networks community, is power conservation.

In static sensor networks, power management has long been a part of the design

methodology and redundancy in sensor deployment is utilized to maximize the lifetime

of a network by developing intelligent switching schemes for turning the nodes on or

off (see e.g., [19], [20], [21], [22], [23], [24], [25], and [26]). However, because of the fact

that these networks are typically deployed for the purpose of monitoring critical areas

for long periods of time, and comprise of a large number of low-cost, low-power devices

with limited sensing, processing, and communication capabilities, there is an aspect

of power-awareness that is neglected in the existing literature. In most of the existing

sensor scheduling schemes, there is an inherent assumption that the performance

of sensing devices remain constant throughout the lifetime of a network and this
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assumption is not always true. Because of the low quality of the constituent devices

and the harshness of the environments in which they are deployed, the batteries of

these devices start to deteriorate as a result of which their available power decay with

time. This decrease in available power has a direct impact on the performance of these

devices, but the relationship between available power and performance depends on

the type of the sensor that is used. For instance, if a system consists of vision-based

sensors, power levels may be related to the maximally available frame rate; for RF-

or radar-based sensors, the footprint area may be reduced as the power decreases;

and in communication networks, latency issues may arise because of reduced power

levels.

To support this point, in the summer of year 2002, a wireless sensor network

comprising of approximately 50 nodes was deployed on an uninhabited island for

habitat monitoring. This was one of the first networks of this size that ran unattended

for a period of four months over which 1.1 million readings were received from the

network. Using this data, the designers analyzed the performance of the network to

deepen their understanding of the practical issues in the network design and later

published their findings in [9]. The crux of their analysis was that the performance of

the network was far below the level it was designed for. One important observation

that they made after analyzing the data was that the batteries of these nodes were

unable to maintain constant terminal voltage1. In fact, the terminal voltage decreased

continuously not just at the end but throughout the operational lifetime of a node.

Since the power that is delivered to a device is directly related to its terminal voltage,

this implies that for each node the available power decreased with time. This decrease

in available power must have a negative impact on the performance of sensing devices

which violates the assumption of constant performance and results in a mismatch

between the assumed system model and the actual system.

1The nodes were powered by two standard AA batteries
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Thus, the first contribution of the research presented in this thesis is to minimize

this mismatch between the actual system and its assumed model for a sensor network

comprising of sensing devices whose sensing range is a function of available power.

Note that this choice of sensors is made because of the fact that there is a large variety

of sensors that belong to this class. To achieve this objective, we explicitly couple

the global performance of a sensor network with available power. The relationship

between available power and the performance of a network is used during the network

design phase to ensure that a desired performance is maintained regardless of the

adverse effects of power consumption. The details of this work were published in

([35], [36], [37], and [38]).

The second contribution of this research is related with a more traditional aspect

of power-awareness, i.e., efficient utilization of available energy resources to maxi-

mize system lifetime. In this regard, a probabilistic power-efficient sensor scheduling

scheme is proposed that is based on the concept of a hard-core point process form

stochastic geometry to minimize communication among neighboring sensors in mak-

ing switching decisions. Most of the existing schemes that are available in the litera-

ture are designed to maintain complete coverage throughout the lifetime of a network

by ensuring that switching a particular sensor off does not deteriorate the coverage

profile of a network. Maintaining complete coverage is important especially for time

critical events that must be detected immediately. However, this complete coverage

is typically achieved at the expense of considerable control and communication over-

heads, and these overheads make this objective over restrictive for applications that

can tolerate partial coverage and some delay in the detection of an event. Thus, for

certain applications like environmental monitoring for precision agriculture or detec-

tion of mobile targets, power consumption can be reduced by relaxing the desired

performance criterion, which in this case is coverage. This tradeoff between power

3



consumption and desired performance criterion is exploited and a probabilistic switch-

ing scheme is proposed that can ensure a required level of partial coverage throughout

the lifetime of a network while minimizing the overhead involved in making switching

decisions. This work was published in [39].

The final contribution of this research is a framework for developing decentralized

energy-efficient mobility controllers for mobile sensor networks. With the development

of low-cost and fairly reliable mobile sensing devices like Packbot [59], Robomote

[60], and Khepera [61], mobility has become an integral component of wireless sensor

network. In recent years, a considerable amount of work has been done on utilizing

mobility for improving the performance of these networks (see e.g., [65], [69], [70],

[71], and [74]) without paying any serious attention to the added cost of mobility.

However, energy-efficiency is more important from mobility vantage point than from

a sensing vantage point because among the possible operations that can be performed

by an agent, it is generally estimated that sensing and communication consume orders

of magnitude more energy than processing while mobility is more expensive that all

of them [60]. Moreover, the fact that these devices are typically powered through

batteries that cannot be recharged in most of the cases makes power management

one of the most critical issues in the design of mobile sensor networks.

Despite the fact that available energy is a major bottleneck in the design of

mobile networks, very little work has been done on the design of energy-efficient

mobility strategies, and energy management is not well understood from mobility

vantage point. Thus, the framework that is presented in this thesis first explore fun-

damental trade-offs between different modes of operation of a mobile device (e.g.,

low-power/high-power or mobile/static). Then these trade-offs are exploited to min-

imize total energy-consumption because of both mobility and communication in a

mobile sensor network. Although the problems of minimizing energy consumption

due to either mobility or communication have been individually studied in the past,
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co-optimization of both mobility and communication to minimize the total energy

consumption started to receive attention just recently. Furthermore, when this prob-

lem is studied in the context of distributed systems, there is very little existing work.

Thus, the purpose of this research is to provide a framework that will provide a solid

foundation for thorough investigation of this problem in future. This work resulted

in ([40], [41], and [43]).

1.1 Background

To develop power-aware control strategies for both static and mobile networks, we

bring together ideas from the well-established fields of probability theory, stochastic

geometry, and algebraic graph theory. Therefore, in the following sections, we will

briefly introduce some fundamental concepts of these fields that are used in this work.

However, before that, we provide a brief overview of some of the important sensor

scheduling schemes that exist in the literature.

1.1.1 Sensor Switching Schemes

The need to minimize power consumption and enhance the lifetime of a sensor network

has motivated a huge body of research in the wireless sensor networks community. A

plethora of scheduling schemes have been proposed to minimize energy consumption

and maintain given performance criteria that can be coverage, connectivity, packet

delays, response time to an event, or a combination of any of these parameters.

However, in this work, we are primarily concerned with coverage. For any level of

required coverage, the objective is to propose a scheduling scheme that is scalable

and distributed in a sense that each sensor must make its decisions based on the

information of its neighbors only. The basic idea that is used in most of the existing

work is as follows. If the number of deployed sensors is equal to the minimum number

that is required to cover an area of interest, then to ensure coverage, all the sensors

must be active all the time. This means that the only way to conserve power is to
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design efficient hardware with low-power requirements. However, if there are redun-

dant sensors, then at any time instant, only such a subset of sensors is required to be

in the active state whose combined footprint 2 can cover the entire area of interest.

This problem of efficiently selecting the minimum subset of sensors that can cover

the entire area of interest at every decision time has inspired a lot of researchers and

a long list of sensor scheduling schemes is available in the literature to address this

problem.

One prevalent approach to efficiently select a subset of sensors is to use heuristics

to solve set-cover problem (see e.g., [19] and [20]). The idea is to divide the sensors

into disjoint sets such that each set can cover the entire area, and only one set of

sensors can be active at any particular time. The lifetime of a network in this case is

directly related to the number of sets. In another approach, sensors use some form of

information of their neighbors, like their IDs, exact locations, or transmission power

levels, to decide when they should switch to active state (see e.g., [27] and [28]).

The schemes that follow one of the above approaches are normally deterministic and

ensure complete coverage all the time.

In contrast to deterministic schemes, some probabilistic schemes also exist in the

literature. In one such scheme [22], which also ensures complete coverage, each sensor

turns on after a random wait time and probes its environment to check whether its

footprint is completely covered by its neighbors or not. A sensor remains on if its

sensing region is not completely covered, and it returns to the sleep state if the sensing

region is completely covered. Instead of complete coverage, some schemes ensure

partial coverage and are intended for applications like object tracking (see e.g., [23],

[26], and [29]) and rare event detection (see e.g., [24]) that can tolerate some delay

in event detection. Furthermore, in an effort to generalize system models, some work

2The combined footprint of a set of sensors is the union of the footprints of all the sensors of that
set.
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has been done to incorporate more elaborate models like non-symmetric footprints

and shadowing effects because of transmission channel and study their effects on the

coverage properties of a network (see e.g., [25]).

Next, we briefly present some of the concepts from stochastic geometry and alge-

braic graph theory that are important in the context of this work.

1.1.2 Stochastic Geometry

Definition 1.1.1. [31] “ Stochastic geometry is the study of random mechanism

governing the positioning and configuration of random sets on the line, or in the

plane, or indeed in any metric space.”

The history of stochastic geometry dates back to the early 19th century when

it was studied under the umbrella of probability theory. However, it was not until

1970s, when stochastic geometry started to develop as a separate field. The primary

motivation for the study of random patterns of geometrical objects originated from

problems in the fields of biology, physics, geology, and material research where there

was a need to develop mathematical models for the measurements of spatial data.

The fundamental object that is used in stochastic geometry is a point process, which

is a model of randomly distributed points in some space.

Definition 1.1.2. [30] A point process Φ on R
2 is a random sequence of points,

Φ = {x1, x2, . . .} xi ∈ R
2,

that is locally finite and simple.

Locally finite means that any bounded subset of R2 contains only a finite number

of points of Φ and simple means that two points cannot overlap, i.e., xi 6= xj if i 6= j.

In Definition 1.1.2, a point process is defined as a random set of discrete points. An

alternative is to define a point process as a random measure counting the number of

points in some spatial region.

7



Definition 1.1.3. [30] A point process Φ is a measurable mapping of a probability

space (Ω,A, P ) into (N,N ),

where (Ω,A, P ) is a probability space, N is the family of all sequences ϕ of points

in Rd that are locally finite and simple, and N is defined as the smallest σ-algebra

making all the mappings ϕ→ ϕ(B) measurable.

In this work, our field of interest is R2 because we are interested in sensors that

are randomly deployed in a planar region. The location of a sensor that is randomly

deployed in R2 can be viewed as a point in a point process. Thus, the theory of point

processes provides a natural platform for modeling randomly deployed networks. A

point process that is simplest to model is the one in which all the constituent points are

uniformly distributed in a compact set D ⊂ R2 and all these points are independent.

If such a process comprises a finite number of points, say N , then it is called a

binomial point process of N points. However, if the number of points increases (goes

to ∞ in the limiting case) in such a manner that N/‖D‖ → λ, where ‖D‖ is the area

of domain D and λ is the expected number of points per unit area, then we have a

Poisson point process.

Definition 1.1.4. [31] A point process Φ is a Poisson point process if it satisfies the

following two conditions:

1. P (
⋃

i

(ϕ(Bi) = ni)) =
∑

i

P (ϕ(Bi) = ni), where B1, B2, . . . are disjoint subsets

of R2 and ϕ(Bi) is the number of points of Φ in the set Bi.

2. For any set B ⊂ R2, ϕ(B) is Poisson distributed.

Moreover, if λ is constant throughout the area, then Poisson process is called

homogeneous Poisson process. In addition to Poisson and binomial processes, in which

all the points are independent, significant research efforts have been directed towards

modeling generic random patterns of points that have mutual dependences. These
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processes may contain clusters of points or enforce some restrictions on the distances

among the constituent points. Point processes that exhibit inter-point interactions

have great significance in the context of randomly deployed sensors since, depending

on the applications, these processes can be used to model various switching patterns

in a sensor network. However, Poisson and binomial processes are central to the

theory of point processes because they assume no interactions among the points and

are used as a reference against which the degree of interactions in a general point

process is measured. In fact, a number of point process models can be generated

from a Poisson process, and the analysis of these new processes is relatively simple

because of the fact that the newly generated point processes can be analyzed in terms

of the generating Poisson process. To produce new processes from a Poisson process

Φ with intensity λ, three fundamental operations can be performed:

• Thinning: Deletion of points from Φ.

• Clustering: Replacement of every point of Φ with cluster of points.

• Superposition: Union of point processes.

However, in this work we are only concerned with the first of the three operations,

i.e., thinning.

Definition 1.1.5. A thinning operation deletes points from the process Φ according

to some specified rule.

If each point of Φ is deleted randomly with probability 1 − p, in which p is the

retention probability, and the deletion of each point is independent of locations and

deletions of all the other points of Φ, then this operation is called p-thinning. The

resulting point process Φp is also a Poisson point process with intensity λp = pλ. A

generalization of p-thinning is p(x)-thinning, in which each point x of Φ is deleted

with probability 1 − p(x) and is retained with probability p(x), where 0 < p(x) < 1
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can be a deterministic function of x or a random function that is obtained from some

random field. The process resulting form p(x)-thinning is again a Poisson process

and its intensity measure is given by

Λ(B) =

∫

B

p(x)Λ(dx), (1.1)

where Λ is the intensity measure of Φ.

Definition 1.1.6. “The intensity measure of a point process Φ is defined as

Λ(B) = E(Φ(B)) =

∫

ϕ(B)P (dϕ) for Borel B, (1.2)

so Λ(B) is the expected number of points in B.

If the point process is stationary than Λ(B) = λ‖B‖, where ‖B‖ is the size of the

set B. In our case, ‖B‖ will be the area of the set B.

A process that results from either p-thinning or p(x)-thinning of a Poisson process

is still an independent process since there is no interaction between the points. Thus,

these operations are called independent thinning. In contrast, there is another class

of thinning operations called dependent thinning in which points of Φ are deleted

or retained depending on their configuration. A process that is obtained as a result

of dependent thinning is not Poisson because the constituent points are no longer

independent. One example of such a process is a hard-core point process.

Definition 1.1.7. [30] A hard-core point process is a point process in which the

distance between any pair of points cannot be less than some specified value.

A hard-core point process is important because it offers a basic framework for

designing coordinated scheduling schemes in which there cannot be more than a

specified number of active sensors in any given area.

Up till now, we have presented point processes from stochastic geometry that

can be used for modeling random deployment of sensors. In addition to modeling
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sensor deployment, we need to characterize the performance of a sensor network in

terms of a given performance criteria. Since we are interested in sensor networks that

are deployed for monitoring purposes, a natural performance criterion is the level of

coverage a network is required to maintain throughout its lifetime. To estimate the

performance of a sensor network in terms of its coverage level, we present coverage

processes that are defined on top of point processes.

Definition 1.1.8. Given a point process Φ = {x1, x2, . . .} and a countable collection

of sets S = {S1, S2, . . .} such that

xi + Si = {xi + y for all y ∈ Si}.

Then a coverage process is defined as

C , {xi + Si : i = 1, 2, . . .}.

All the elements of the set S are independent and identically distributed random

sets in Rd. Moreover, the set S is independent of the point process Φ. Next, we define

a Boolean model as

Definition 1.1.9. Given a coverage process C as defined in Definition 1.1.8, the

union of all the sets of C, i.e.,

S =
∞
⋃

i=1

(xi + Si) (1.3)

comprises a Boolean model.

A Boolean model is also referred to as a germ-grain model in the literature, where

the points (x1, x2, . . .) are called the germs and the sets (S1, S2, . . .) are called the

grains. Thus, in our case, the location of a sensor, which is modeled as a point in

a point process, corresponds to a germ, and its footprint corresponds to a grain, in

the germ-grain model. Therefore, by using the germ-grain model, we can completely
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characterize the coverage properties of a sensor network. Given a sensor network that

is represented by the germ-grain model, we are interested in determining whether any

given area is covered by the network or not. This is exactly what is represented by

vacancy in stochastic geometry. Given a set R ⊂ Rk, the vacancy V in the set R is

defined as the content of R that is not covered by the coverage process C. Formally

V = V (R) =

∫

R

1̄(x)dx, (1.4)

where 1̄(x) is defined as

1̄(x) =











1 if for all i, x /∈ xi + Si

0 otherwise

1.1.3 Algebraic Graph Theory–Basics

In this section we introduce some basic tools from algebraic graph theory that is

needed to formulate and analyze the problems in the later sections [33]. The basic

object under investigation is a graph G(V,E) with a vertex set V and an edge set

E ⊆ V ×V . If the edge set is unordered, i.e., (vi, vj) ∈ E ⇔ (vj , vi) ∈ E, we say that

the graph is undirected. An undirected graph in which a path exists between any pair

of vertices is called a connected graph, which is exactly what we need to establish

convergence in the majority of problems in the distributed multi-agent systems.

If the edge set is ordered, the graph is directed (referred to as a digraph) and

in this case, different types of connectivity related concepts will prove important. A

digraph is called

• weakly connected if its disoriented graph (the graph obtained by removing the

direction from the edges) is connected,

• rooted out-branching if it does not contain a directed cycle and has a vertex vr

(root) such that for every other vertex vi ∈ V , there is directed path from

vr to vi, and
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• balanced if degin(v) = degout(v), ∀v ∈ V , i.e., the number of edges going in to

any node is the same as the number of edges going out.

Consider an undirected graph G(V,E) and associate an arbitrary orientation to

its edges, σ : E(G) → {−1, 1}, such that σ(i, j) = −σ(j, i). As a result of assign-

ing orientation to each edge, a new digraph Gσ(V,E, σ) is generated, for which an

incidence matrix, I = [eij ], can be defined as

eij =























1 if vi is the head of the edge ej

−1 if vi is the tail of the edge ej

0 otherwise.

Using the incidence matrix, a new matrix called graph Laplacian is defined as L =

IIT , where L is independent of the choice of orientation σ, and is always sym-

metric and positive semi-definite. Let λ1, λ2, . . . , λN be the (non-negative and real)

eigenvalues of L, indexed such that λ1 ≤ λ2 ≤ · · · ≤ λN . Then the multiplicity

of zero eigenvalues of L is equal to the number of connected components of the

graph. For instance, if we have a connected graph, then the eigenvalues of L will

be 0 = λ1 < λ2 ≤ · · · ≤ λN , and the eigenvector corresponding to λ1 is 1, where 1

denotes a vector with all the entries equal to 1.

In this work, we are interested in dynamic graphs whose edge sets change as the

agents move in and out of the footprint of each other. In particular, we will study

∆-disk graphs where the vertex set V = {1, . . . , N} corresponds to the indices of the

different agents, and (vi, vj) ∈ E ⇔ ‖xi − xj‖ ≤ ∆, for some given ∆ > 0. If the

footprint radius is the same for all the agents, then these graphs are undirected. On

the other hand, if the footprint radius varies among the agents, then the graph is

directed, which means that (vi, vj) ∈ E ⇔ ‖xi − xj‖ ≤ ∆j . This expression implies

that information about agent i will be available to agent j if agent i is no further

than ∆j away from agent j, where ∆j > 0 is the footprint radius of agent j.
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CHAPTER II

POWER-AWARE SCHEDULING OF WIRELESS SENSOR

NETWORKS WITH DYNAMIC FOOTPRINTS

In this chapter we present power-aware scheduling schemes for sensor networks that

consist of sensing devices with dynamic footprints to maintain a desired event detec-

tion probability. The footprints of the sensors comprising these networks are dynamic

in nature because of the fact that variations in available power have a direct impact

on the performance of sensing devices. Therefore, we select the area of a sensor foot-

print as a performance metric and use explicit relationship between footprint area

and available power to quantify the effects of variation in available power on the per-

formance of sensing devices. To compensate for this variation in sensor performance

because of change in available power, we propose power-aware scheduling schemes

in which sensors use their available power to determine their performance metric at

each decision time and then update their control parameter accordingly such that

the desired event detection is maintained while consuming minimum power. The im-

pact of variations in available power on sensor performance was a missing link in the

existing literature, and is addressed in this work for the first time. Initially this prob-

lem is simplified by assuming a particular power-decay model and a sensor footprint

model. Later, these assumptions are removed and the derived results are extended

for generalized system models.

The schemes that we proposed in this work are random in nature, which implies

that we are interested in applications that can tolerate partial coverage of the area

of interest, and also some delay in event detection since random schemes cannot

ensure complete coverage (see e.g., [26], [10], and [23]). Therefore, if an application
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requires complete coverage, then random schemes are not an option, and there is a

plethora of coordinated schemes in the literature that can ensure complete coverage

of the area of interest (see e.g., [19], [20], [27], and [28]). However, this complete

coverage is achieved at the expense of additional cost in terms of power consumption

and relatively expensive devices because sensors either have to communicate with

other sensors or they require on-board GPS chips to get exact location information of

themselves and their neighbors before they can make switching decisions. Moreover,

there are applications which only require partial coverage. For instance, in the case of

environment monitoring for precision agriculture where the purpose of the network is

to monitor environmental factors like humidity and soil moisture level, the quantities

of interest are slowing varying over space, so we do not need to cover each and every

point of the area of interest. Similarly, if we are interested in detecting a moving

target, then with high probability the target will move to an area that is covered by

some sensors. Therefore, for such applications, even partial coverage is sufficient to

fulfill the objective.

2.1 Exponential Power-decay and Circular Footprint

2.1.1 System Description

Consider a domain D ⊂ R2 in which a large number of sensors are randomly deployed

for monitoring purposes. In random deployment, sensors can either be dropped from

a plane flying over the region of interest or any vehicle driving across it [1]. This

deployment scheme is preferred for large networks because it allows to deploy a large

number of nodes with minimum effort. However, random deployment does not pro-

vide any information about the particular locations of sensors which prohibits design

and analysis of such networks. Thus, the first task is to model this sensor deployment

in an efficient manner. By using the concepts from Stochastic Geometry presented

in Chapter 1, this random deployment is modeled as a homogeneous Poisson point
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process. Once it is established that the sensor deployment is modeled as a homoge-

neous Poisson point process with some intensity λ, then the number of sensors in any

region of area A is determined using Poisson distribution.

Pn(A) =
(λA)ne−λA

n!
, (2.1)

where Pn(A) is the probability of having n sensors in some area A.

Next, the model of the sensing agents considered in this work is specified. Each

sensing agent located at xi ∈ R2

• is a stationary device whose sensing range is a function of available power,

• is battery powered where the available power decreases with time, and

• has a circular disk of radius ∆i, centered at xi, as its sensing region called the

footprint of a sensor denoted as B∆i
(xi).

It is assumed that all the deployed sensors are initially identical, i.e., they have

same battery power and same sensing, processing and communication capabilities. To

conserve power, we let the sensors be on with probability q ∈ [0, 1]. Each sensor can

switch its state from on to off or vice versa only at discrete time instances k∆t (or

simply at instance k), where ∆t is the sample time. The activation (or lack thereof)

of a sensor at instance k is maintained throughout the interval [k, k + 1) of length

∆t. A sensor can sense only when it is on, and for an event to be detected, it must

be within the footprint of at least one on sensor. Moreover, when a sensor is on, it

consumes power. Using the discrete time version of the battery dynamics in [44], we

model the power levels of each sensor in the on state as

η(k + 1) = η(k)−∆tγη(k),

where γ is the decay constant and η(k) represents the battery power available for

sensing at time instant k. Let σ(k) be a switching signal for each sensor defined as
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σ(k) =











1 if a sensor is on at time instant k

0 if a sensor is off at time instant k

Since a sensor is on with probability q, the expected value of σ(k) is E{σ(k)} =

σ̂(k) = q(k), and because power is consumed only when a sensor is on, the power

decay model can be modified as

η(k + 1) = η(k)−∆tγσ(k)η(k), (2.2)

and the expected power level of each sensor is

η̂(k + 1) =

[

k
∏

i=0

(1−∆tγq(i))

]

η(0). (2.3)

Moreover, for all t ∈ [k, k + 1), simply set η(t) = η(k).1

2.1.2 Probability of Event Detection

Consider a non-persistent event that takes place at some point xe ∈ D at some

arbitrary time t ∈ [k, k + 1). A non-persistent event, which a sensor can detect only

at the time of its occurrence, does not leave a mark in the environment. Hence, this

event can be detected if it is within the footprint of at least one sensor in the on state

at time k. Detection probability of a non-persistent event that can occur uniformly

across the region of interest is equivalent to the expected coverage provided by the

network. The probability of an event going undetected by a non-decaying sensor

network (i.e., a network of sensors whose footprints and probabilities q do not change

with time) deployed randomly with intensity λ is

Pu = e−λAq, (2.4)

where A is the area of the sensor footprint with radius r and q is the probability of

a sensor being on [26]. The proof of Equation (2.4) is based on the observation that

1Note that in this analysis, potential power consumption resulting from switching between the
on and off states is not considered.
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the probability of an event going undetected is equal to the sum of probabilities of

the event being inside the range of n ∈ {0, . . . ,∞} sensors, all of which are off.

The next step is to investigate how this result changes in networks in which sensor

footprints are reduced because of power consumption when the sensors are on. In

[46], it was shown that if the sensor range model was based on the RF-power-density

function for an isotropic antenna, then the footprint of the sensor was proportional

to it available power, i.e.,

∆2(t) ∝ η(t), (2.5)

where ∆(t) is the radius of the sensor footprint at time t ∈ [k, k+1). Hence, the area

of the footprint of a sensor at time t is

A(t) = π∆2(t) = αη(t), (2.6)

where α = ζπ is a constant with ζ being the constant of proportionality in Equation

(2.5). If the power, η, in Equation (2.6) is substituted with the expected power, η̂,

from Equation (2.3), the expected footprint area of a sensor becomes

Â(k) = c

[

k−1
∏

i=0

(1−∆tγq(i))

]

, (2.7)

where c = αη(0) is a positive constant.

Lemma 2.1.1. The probability of an event being detected by a decaying sensor net-

work is given by

Pd(k) = 1− e−λÂ(k)q(k), (2.8)

where Â(k) is the expected footprint area of the sensors.

Proof. From Equation (2.4), it is known that an event at xe ∈ D is detected in a non-

decaying sensor network if atleast one sensor in the on state is present in B∆(xe), where

r is the radius of the sensor footprint. For a decaying network, this reasoning cannot
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be applied directly. Although all sensors are initially identical, there is no reason

to believe that the battery power and the footprint areas are the same throughout

the network at any time k 6= 0 because of individual sensor activations and resulting

power decays.

From stochastic geometry (e.g., [31]), the probability of any given point x ∈ D

not being covered by the set
⋃

i

B∆i
(xi) in the germ-grain model is

P (x not covered) = e−λÂ, (2.9)

where B∆i
(xi) is the grain corresponding to the germ xi with area Ai and Â is the

expected area of grains B∆i
(xi) over all i. The scenario under consideration slightly

differs from that in [31], since in this system, a sensor is on with probability q(k) at

time instance k. Therefore, even if x ∈ B∆i
(xi) for any arbitrary i, it may still not

be covered since that sensor can be off. As a result, the probability of an event being

undetected, Pu, can be obtained by updating Equation (2.4) as

Pu(k) = e−λÂ(k)q(k). (2.10)

Finally, to conclude the proof, substitute Â(k) in Equation (2.10) with Equation (2.7)

and use the relationship Pd = 1− Pu.

Equation (2.8) confirms that if the probability of sensors being on is constant then

the chance of an event being detected, Pd, decreases over time as the footprint area

decreases.

2.1.3 Duty Cycle Scheduling For Performance Maintenance

A key requirement in many practical applications of sensor networks is to maintain a

minimum satisfactory performance, which in this case is probability of event detection.

To maintain the desired probability of event detection, we propose a controller that

adjusts q(k), the probability of a sensor being on at time k, which is the main goal of
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this work. In other words, the objective is to find u(k) ∈ [0, 1] such that the discrete

time dynamical system

q(k + 1) = u(k) (2.11)

can be used as a controller for scheduling the duty cycle of sensors to maintain a

desired probability of event detection.

Definition 2.1.1. The desired network performance, Pdes, is the minimum satisfac-

tory probability of an event being detected.

Theorem 2.1.2. A feedback scheduling controller of the form

u(k) = min

{

1,
1

1−∆tγq(k)
q(k)

}

, (2.12)

will guarantee that the desired network performance is maintained for the lifetime of

the network from the initial conditions

q(0) =
ln( 1

1−Pdes
)

λc
. (2.13)

Proof. Using the result of Lemma 2.1.1, and prescribing that the probability of an

event being detected is given exactly by Pdes yields

[

k−1
∏

i=0

(1−∆tγq(i))

]

q(k) =
ln( 1

β
)

λc
, (2.14)

where β = 1− Pdes is the probability of an event going undetected.

Replacing the value of k in the above equation with zero, gives the initial value of

q which is

q(0) =
ln( 1

β
)

λc
. (2.15)

Rearranging the terms of Equation (2.14) results in a feedback controller for q(k) as

q(k + 1) =
1

1−∆tγq(k)
q(k). (2.16)
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Since the input of the controller is a probability, it cannot have a value greater than

one. Taking this fact into account, the proposed probabilistic scheduling controller

takes the form

u(k) = min

{

1,
1

1−∆tγq(k)
q(k)

}

.

As long as u(k) is less than one, q(k) evolves according to Equation (2.16) and the

desired performance is maintained. (Note that the lifetime of the sensor network is

over when u(k) reaches its maximum value, which is the topic of Lemma 2.1.4.)

Theorem 2.1.3. The maximum achievable event detection probability in a sensor

network with given spatial distribution intensity λ is 1− e(−λc).

Proof. Consider Equation (2.15), which yields the initial probability of a sensor being

in the on state. This probability should always be in [0, 1]. Since β ∈ [0, 1], it is

guaranteed that

0 ≤ q(0) =
ln( 1

β
)

λc
≤ 1,

for all given β, λ, and c. To ensure that q(0) ≤ 1, the condition

β ≥ e−λc

must be satisfied. Hence, Pdes ≤ 1− e−λc.

The next interesting question is to characterize the lifetime of a network, i.e.,

under the proposed feedback scheduling controller, how long a network can maintain

the desired event detection probability.

Definition 2.1.2. The lifetime of the sensor network is the time beyond which the

desired network performance cannot be achieved by the proposed controller.

By solving Equation (2.16) with initial condition (2.15) results in an expression

for q(k)

q(k) = min

{

1,
−1

γk∆t + λc
ln(β)

}

, (2.17)
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Figure 1: Evolution of the probability of a sensor being on for a given desired per-
formance Pdes when λ = 10, c = 1, and r(0) = 2. In each case, the lifetime of the
network is achieved when q = 1.

which can indeed be used to explicitly compute the lifetime of the network.

Lemma 2.1.4. The lifetime of the sensor network with desired event detection prob-

ability Pdes is given by

−1

γ

(

1 +
λc

ln(1− Pdes)

)

.

Proof. At the end of the lifetime of a sensor network, all sensors should be on, i.e.,

q(kf) = 1, where kf denotes the final time instance. Suppose q(kf) 6= 1, which

suggests that one of the sensors can still be in the off state. This implies that turning

this sensor on will increase the detection probability by an amount equal to the

probability of an event being in its footprint. This increase in the detection probability

will in turn increase the lifetime of the sensor network, which results in a contradiction

since we have already assumed that the lifetime of the network has ended. Therefore,

it follows that q(kf) = 1 at the end of the lifetime of a network. Substituting 1 for

q(kf) in Equation (2.17) yields kf∆t =
−1
γ

(

1 + λc
ln(1−Pdes)

)

.

The variation of duty cycle of a sensor (the probability of sensors being on) over
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time to maintain a constant event detection probability is depicted in Figure (1). For

a constant event detection probability, Pdes, the lifetime of the network is achieved

when all sensors are turned on, as is shown in the proof of Lemma 2.1.4. Moreover,

as Pdes increases, the lifetime of the network decreases.

Corollary 2.1.5. Given a desired lifetime of the sensor network, tf , the maximum

probability of event detection that can be maintained in time interval [0, kf ] is Pd =

1− e
−λc

1+γkf∆t , where tf ∈ [kf , kf + 1).

Proof. As in the proof of Lemma 2.1.4, at the end of the lifetime of a sensor net-

work, all nodes are on to maintain the desired network performance, i.e., q(kf) = 1.

Therefore, substituting q(kf) in Equation (2.17) with 1 results in

γkf∆t+
λc

ln(β)
= −1.

Finally, solving the above equation for β and replacing it with 1 − Pd concludes the

proof.

2.1.4 Simulations

To confirm the validity of the proposed duty cycle scheduling strategy, we implement

a Monte Carlo simulation of a sensor network that is deployed randomly. For this

simulation, the area of interest is a 10 by 10 unit rectangular area with Atotal = 100.

Sensors are deployed in this area according to a spatial stationary Poisson point

process with constant intensity per unit area of λ = 10, which implies that the

expected number of sensors in the area of interest is λAtotal = 1000. The initial

footprint of each sensor is set to be a closed ball of unit radius centered at the

position of the sensor. Events are generated randomly at each time instant with

uniform distribution throughout the area of interest. To increase the accuracy of the

results, we averaged each value of Pd over 100 iterations of simulation.

To ensure that a decaying network maintains the desired performance throughout

its lifetime, q is varied according to Equation (2.17) as is shown in Figure (1). The ef-
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Figure 2: Event detection probability Pd vs time t for decaying networks with the
scheduling scheme (solid line) and without the scheduling scheme (decaying dashed
line). In this simulation, Pdes = 0.63 (constant dashed line), λ = 10, A(0) = 1, γ = 1,
and c = 1.

fects of varying q according to Equation (2.17) are depicted in Figure (2), in which the

simulation results for a decaying network with and without the proposed scheduling

scheme are presented. We set the desired network performance Pdes = 0.63 (constant

dashed line). First, we simulate the system without applying the proposed scheduling

scheme and plot the probability of event detection (decaying dashed line). Then, we

apply the proposed scheduling scheme and simulate the system again. The results

for the later simulation (solid line) reveal that the probability of event detection is

Pd ≈ 0.62, which is very close to the desired performance, Pdes indicating the validity

of our scheme. Moreover, the improvement in performance is evident from comparing

the plots for the two simulations (solid line vs decaying dashed line).

2.1.5 Detection Probability For Persistent Events

Until now, we have analyzed non-persistent events, i.e., events which a sensor can

detect only when they occur. However, in practical scenarios, we regularly encounter

events that persist for some time duration tev. It is clear that the probability of
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detection of a persistent event is greater than for a non-persistent event, and this

probability must increase with the increase in tev. However, this relationship between

the probability of event detection and tev cannot be linear because of the shrinking

footprints. In this section, we find the corresponding event detection probability for

persistent events.

Let tev be the total time for which an event persists and Pdp be its detection

probability. If tev < ∆t and tev ⊂ [k, k + 1), then Pdp = Pd(k) because ∆t is the

sample time for which a sensor remains on or off. Now, consider a case in which an

event persists for two time slots. Then

Pdp = 1− P (event is undetected in both slots k and k+1)

= 1− Pu(k)Pu(k + 1|k),

where

Pu(k) =
∞
∑

n1=0

(1− q(k))n1
(λÂ(k))n1e−λÂ(k)

n1!
.

In the above equation, the number of sensors that can detect the event during interval

[k, k+1) is n1, which ranges from zero to infinity and cannot increase over subsequent

time intervals since the footprints of all sensors decrease with time. Therefore, the

number of sensors that can detect the event during interval [k+1, k+2) is at maximum

n1. As a result,

Pu(k + 1|k) =
n1
∑

n2=0

(1− q(k + 1))n2
(λÂ(k + 1))n2e−λÂ(k+1)

n2!
.

Now, we can generalize the above equation for j time slots

Pdp = 1−
j−1
∏

i=0

Pu(k + i|k + (i− 1)).

Thus,

Pdp = 1−
j−1
∏

i=0

[

ni−1
∑

ni=0

(1− q(k + i))niPni
(Â(k + i))

]

, (2.18)

where, from Equation (2.1), Pni
(Â(k + i)) is the probability of having ni sensors in

Â(k + i).
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2.1.6 Detection Probability For a Non-Boolean Sensing Model

All the results in the previous sections were derived for Boolean sensing models, i.e.,

an event is either detected with probability one, if it is within the footprint of a sensor

that is on, or is undetected. However, the Boolean sensing model is a relatively simple

model and it may not always be practically relevant. In this section we will analyze a

more realistic sensing scheme in which the probability of event detection is a function

of the distance from the sensor location.

Let l be the distance of an event from a sensor. Then, the probability of event

detection increases as l decreases and vice versa, i.e., Pd(k) ∝ α(l, k). Here, α(l, k)

relates the probability of event detection to the distance of an event from a sensor, l,

and the expected power level of a sensor at instance k, η̂(k). This relationship depends

on the type of the sensing devices being used and can be described in various forms.

In this work we define α(l, k) as

α(l, k) = e−
s

η̂(k)
l. (2.19)

According to this model, the probability of event detection decreases exponentially

as a result of increase in l or decrease in η̂. The third parameter in the model is

s, which is a constant defining the rate of decay of the event detection probability.

Even though, the model defined in Equation (2.19) is just one choice, it relates the

parameters of interest in an appropriate manner and is close to the behavior of many

sensors of interest.

We now design a scheduling scheme for non-Boolean sensing following the proce-

dures from previous sections. One possible solution is to use the controller in (2.12),

which was designed for Boolean sensing. This approach can be easily evaluated by in-

cluding non-Boolean sensing schemes in the Monte Carlo simulation of Section 2.1.4.

The results are illustrated in Figure (3), from which it is clear that the previous con-

troller does not maintain a constant event detection probability under non-Boolean
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Figure 3: Comparison of Boolean sensing (solid line) and non-Boolean sensing (decay-
ing dashed line) under the scheduling scheme of Equation (2.16). In this simulation,
Pdes = 0.63 (constant dashed line), λ = 10, A(0) = 1, γ = 1, and s = 2.

sensing. Using a similar concept as is proposed in [25], we develop a new scheme for

maintaining the desired performance under non-Boolean sensing conditions:

Theorem 2.1.6. For a non-Boolean sensing model with α(l, k) given in Equation

(2.19), the probability of event detection for a non-persistent event is

Pd(k) = 1− e−λŝ[
∏k−1

i=0 (1−∆tγq(i))]
2
q(k) (2.20)

where ŝ = 2πη(0)2

s2
.

Proof. Let xe be the point where an event occurs. Consider a circular ring of area

δA with centre at the xe such that δA = 2πlδl as depicted in Figure (4). Since the

sensor locations have Poisson distribution, from Equation (2.1),

Probality of n sensors in area δA =
(λδA)ne−λδA

n!
.

The probability that the event will be detected by the sensors in the ring of area δA

is

δPd(k) = 1− δPu(k),
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Figure 4: Illustration of non-Boolean sensing. xe is the location of the event. δPd is
the probability of detection of this event by the sensors in area δA.

δPu(k) =

∞
∑

n=0

[1− α(l, k)q(k)]n
(λδA)ne−λδA

n!
,

= e−(2πlδl)λα(l,k)q(k).

To find the total probability of detection, we first divide the whole region into

infinitesimal rings of area δA. Then, we find the corresponding δPu(k) for each ring,

multiply all these probabilities, and in the limiting case when δl → 0, we get the

probability of an event not being detected. By following this strategy, we can directly

compute detection probability.

Pu(k) = lim
δl→0

∞
∏

l=0

δPu(k),

= e−2πλq(k)
∫

∞

l=0 lα(l,k)dl.

Replacing α(l, k) in the above expression with the right hand side of Equation (2.19),

we get

Pd(k) = 1− e−2πλq(k)
∫

∞

l=0 le
−

s
η̂(k)

l
dl. (2.21)

Moreover, from Equation (2.3) we know that

η̂(k) =

[

k−1
∏

i=0

(1−∆tγq(i))

]

η(0).

Replacing η̂(k) in Equation (2.21) with the right hand side of the above equation
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and using the identity
∫ ∞

0

re−mrdr =
1

m2
,

concludes the proof.

By following the same technique as in Section 2.1.3, we can now design a controller

that maintains the desired network performance, Pdes, for non-Boolean sensing. In

fact, from Equation (2.20), we know that

[

k−1
∏

i=0

(1−∆tγq(i))

]2

q(k) =
ln( 1

β
)

λŝ
. (2.22)

From the above expression, we can find the initial value of q as

q(0) =
ln( 1

β
)

λŝ
.

Rearranging the terms in Equation (2.22) yields the dynamics of q(k) as

q(k + 1) =
1

(1−∆tγq(k))2
q(k). (2.23)

Hence, we have a non-linear control law for duty cycle scheduling that maintains the

desired performance measure throughout the lifetime. To verify the validity of this

scheme, we again run a series of Monte Carlo simulations with the same parameters

as in Section 2.1.4, and the result for non-Boolean sensing is demonstrated in Figure

(5). From this plot, we can see that the proposed scheme maintains the desired

performance throughout the lifetime of the network. The lifetime of the network in

this case also depends on the parameter s, which in this example was set to s = 2.
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Figure 5: Event detection probability Pd vs time t for a decaying network and non-
Boolean sensing (solid line) with given Pdes = 0.63 (constant dashed line). The values
of the parameters are s = 2, γ = 1, η(0) = 1.

2.2 Generalized System Model

In Section 2.1, we focused on the problem of the effects of decrease in available power

on network performance. However, the analysis and design in Section 2.1 was limited

to a scenario in which the available power was decreasing according to an exponential

decay law, and the sensing footprint of each sensor was a circular disk centered at the

location of the sensor. This footprint model is popular in wireless sensor networks

community because it makes the analysis and design of scheduling schemes relatively

simple. In this section we are extending the previous results for a generalized system

model and propose power-aware controllers to maintain desired performance. The

key novelty is that we do not assume any particular power-decay model in the design

and analysis of our proposed scheme. Moreover, we show that our results are valid

not only for a circular sensing model, but for any model as long as the footprint is

compact.

In addition to the generalized footprint and power-decay models, the proposed

scheme can handle increase in available power, which is important because of the two
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reasons. First, power delivered by batteries is affected by atmospheric temperature

implying that it may increase with the increase in temperature [55]. Secondly, with

the advancements in energy harvesting technologies, it is becoming common that

sensing nodes are equipped with small devices like solar panels to harvest energy

([66], [65], and [68]). In such scenarios, the available power may increase with time

and if each node does not incorporate this increase in power, the system will consume

more power than is required to maintain the desired performance. Our proposed

scheme takes into account this increase in available power and adjusts the control

parameter to reduce power consumption. Furthermore, the scheme we are proposing

in this section is robust to node failures. The scheduling controller adjusts the control

parameter to minimize the effects of node failures and maintain desired performance.

2.2.1 System Description

In this section, we consider the same setup as in Section 2.1 in which a large num-

ber of sensors were randomly deployed for monitoring a domain D ⊂ R2. Again,

this deployment is modeled as a stationary, homogeneous Poisson point process with

intensity λ. However, there is a fundamental difference in the model of the sensing

agents that are considered in this section. Each sensing agent located at xi ∈ R2

• is a stationary device whose sensing range model is a function of available power,

• is battery powered where the available power may increase or decrease with

time, and

• has a compact set as its sensing region called the footprint of a sensor, denoted

by Fxi
.

Notice that footprint of a sensor is no longer assumed to be circular. The only

restriction that needs to be satisfied is that the footprint must be compact, which

makes this system completely generalized in terms of footprint models. Next, we
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assume that all the sensors initially have the same footprint, i.e., for all i, we have

Fxi
(0) = F and Ai(0) = A, where Fxi

(0) and Ai(0) are the footprint and footprint

area of the ith sensor located at xi at time 0 respectively.

To conserve power, sensors are switched between on and off states. To simplify

the analysis, we assume that power is consumed only when a sensor is in the on state.

However, the results derived in the later sections can easily be extended for a more

generalized power model. We assume that sensors switch between on and off states

at discrete time instants k∆t, where ∆t is the length of an interval in which a sensor

maintains its state.2 At each switching time, a sensor decides to be in the on state

with probability qi(k) and in the off state with probability 1− qi(k).

2.2.2 Power-aware Scheduling

Let xe ∈ D be the location of a non-persistent event and we want to find the probabil-

ity of detection for this event.3. To find the event detection probability, Pd, we start

with the probability of an event not being detected, Pu. Event at xe is not detected

if either of the following two conditions is satisfied.

C1) xe does not belong to the footprint of any sensor.

C2) All the sensors such that xe belongs to their footprints are in the off state.

Using results from [30] and [26], we can write Pu as

Pu =

∞
∑

n=0

(λA)ne−λA

n!
(1− q)n,

where A is the area of the footprint of a sensor, and q is the probability of a sensor

being on, and both A and q are the same for all the sensors in the above expression.

In this expression, n = 0 corresponds to Condition (C1), while the summation of

terms having n 6= 0 corresponds to Condition (C2). Therefore, the event detection

2For brevity of notation, we will denote switching time by k instead of k∆t in the rest of this
work.

3A non-persistent event is one that does not leave a mark in the environment and can only be
detected at the time of its occurrence
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probability is

Pd = 1− e−λAq. (2.24)

To design power-aware controllers, we first need to establish a relationship between

power that is available to a sensor and the desired performance criterion. Here, event

detection probability is our desired performance criterion because for a randomly

deployed network in which sensors randomly switch between on and off states, event

detection probability provides a good measure of the expected coverage achieved by

the network, which makes it a natural performance criterion. From Equation (2.24),

we know that our performance criterion, i.e., detection probability, depends on the

area of the footprint of a sensor, which implies that our desired relationship between

available power and performance criterion is

Ai(k) = G(ηi(k)), (2.25)

where Ai(k) is the footprint area of the ith sensor at time k, ηi(k) is the available

power of the ith sensor at time k, and G is a non-decreasing function of available

power, which relates transmission power with area of the footprint. This function

depends on the type of the sensing devices used and can be found from the device

specifications provided by the manufacturer. For instance, in Section 2.1, we selected

sensors with circular footprints and for such devices

Ai(k) = αηi(k),

where α is a proportionality constant. Equation (2.25) provides an explicit relation-

ship between the performance of an individual sensor and its available power. How-

ever, we want to extend this relationship to the performance of the entire network,

i.e., event detection probability.

To find the relationship between available power and the performance of the en-

tire network when available power is varying with time, we start by modeling the
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variations in available power of any sensor by a difference equation.

ηi(k + 1) = ηi(k) + ∆tf(k, ηi(k)),

where f : N × R+ → R is a function of k and ηi(k). In the above model, power

variations are modeled by a function f which can be positive or negative, where

f ∈ R+ implies power gain which may be due to temperature variations or energy

harvesting where as f ∈ R− implies power decay due to deterioration in battery

performance. We define a switching function for each sensor

σi(k) =











1 if sensor i is on at time k.

0 if sensor i is off at time k.

Since we have assumed that power is only consumed when a sensor is on, we can

modify the power model as

ηi(k + 1) = ηi(k) + σi(k)∆tf(k, ηi(k)). (2.26)

Next we propose a power-aware scheduling scheme to maintain desired event de-

tection probability. In order to decide whether to be in the on or off state at some

time instant k, each sensor follows Scheme 1.
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Scheme 1. Sensor Scheduling Scheme

Given: Desired event detection probability, Pdes.

Sensor deployment intensity, λ.

G(.) : R → R.

At Step 0:

• Initializes its probability of being on

q(0) =
ln
(

1
1−Pdes

)

λA(0)
,

where A(0) = G(η(0)).

• Selects a number mi such that mi ∼ unif [0, 1].

• Turns on if mi < q(0).

At Step k:

• Selects a number mi such that mi ∼ unif [0, 1].

if mi < qi(k)

– Decides to be in the on state in interval [k, k + 1].

– At time k+1, measures its current power level ηi(k+1) and computes

qi(k + 1) =
A(0)

Ai(k + 1)
q(0),

where Ai(k + 1) = G(ηi(k + 1)).

else

– Decides to be in the off state in interval [k, k + 1].

qi(k + 1) = qi(k).

35



Theorem 2.2.1. If each sensor makes its switching decisions according to Scheme

1, i.e., updates its probability of being on according to the control law

qi(k) =
A(0)

Ai(k)
q(0), (2.27)

with initial condition

q(0) =
ln
(

1
1−Pdes

)

λA(0)
, (2.28)

where Pdes is the desired event detection probability, then the network maintains Pdes.

To prove this theorem, we first need to prove the following lemma.

Lemma 2.2.2. The event detection probability of a sensor network consisting of

sensing devices whose footprints are time varying and whose probability of being on

are function of footprint area is

Pd(k) = 1− e−λAvg(Ā(k)q̄(k)), (2.29)

where Ā(k) = {A1(k), A2(k), . . . , AM(k)} and q̄(k) = {q1(k), q2(k), . . . , qM(k)}. More-

over,

Avg(Ā(k)q̄(k)) =
1

M

M
∑

i=1

Ai(k)qi(k), (2.30)

where M ∼ Poi(λAdom) is the number of sensors in the network and Adom is the area

of D.

Proof. To prove this lemma, we will use standard results from stochastic geometry

[30]. At time k = 0, we assume that all the sensors are identical, i.e., all of them have

the same available power ηi(0) = η0, footprint area Ai(0) = A0, and on probability

qi(0) = q0. Then from Equation (2.24), the probability of an event not being detected

for this network is

Pu(0) = e−λA0q0 .
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At time k = 1, we have two classes of sensors. All the sensors that remained off during

the time interval [0,∆t], i.e., all i such that σi(0) = 0, belong to the first class and

for these sensors ηi(1) = η0, Ai(1) = A0, and qi(1) = q0. The sensors that turned on

during the interval [0,∆t], i.e., all i such that σi(0) = 1, belong to the second class and

for these sensors ηi(1) = η1, Ai(1) = A1, and qi(1) = q1, where η1 is governed by the

power variations model (2.26) and A1 is computed from Equation (2.25). Therefore,

at time k = 1, sensor deployment can be modeled as a superposition of two Poisson

processes Φ0 and Φ1 with intensities δ0λ and δ1λ, where

δl(k) =
number of sensors with footprint area Al(k)

total number of sensors
,

l ∈ {1, 2} and
∑

l δ
l = 1. For this case, event is not detected if it is not detected by

any sensor belonging to either of the two classes and this probability is the product

of the probabilities

Pu(1) =
2
∏

l=1

P l
u = e−δ0λA0q0e−δ1λA1q1.

At time k = 2, we have three classes of sensors corresponding to the switching com-

binations [(σi(0), σi(1)) : (0, 0), (1, 1), and {(1, 0), (0, 1)}], and using the same super-

position argument as before, the probability of event not being detected is

Pu(2) = e−λ
∑3

l=1(δ
lAlql).

Thus, generalizing this argument for any time instant k, the probability of an event

being undetected is

Pu(k) =
∏

l

P l
u = e

−λ

(

∑

l

δl(k)Al(k)ql(k)

)

. (2.31)

It is important to note that
∑

l

δl(k)Al(k)ql(k) is the weighted average, so the above

expression can be written as

∑

l

δl(k)Al(k)ql(k) =
1

M

M
∑

i=1

Ai(k)qi(k).
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Finally, updating Equation (2.31) according to above expression and using the fact

that Pd(k) = 1− Pu(k) concludes the proof of Lemma 2.2.2.

To prove Theorem 2.2.1 and to verify that Scheme 1 maintains Pdes, replace qi(k)

in Equation (2.30) with qi(k) from Equation (2.28) for k = 0 and Equation (2.27) for

all k > 0, which yields

Avg(Ā(k)q̄(k)) = A(0)q(0) =
ln
(

1
1−Pdes

)

λ
.

Replacing Avg(Ā(k)q̄(k)) in Equation (2.29) with the above expression shows that

Pd(k) = Pdes, which concludes the proof of Theorem 2.2.1.

Equation (2.27) is a power-aware controller that maintains desired event detec-

tion probability regardless of the variations in available power. The time for which

the proposed controller can maintain Pdes is the lifetime time of the network. It is

important to note that unlike Section 2.1, this controller is independent of the law

that dictates variations in available power, since the only quantity a sensor needs to

compute the control parameter, qi(k), is its available power at time instant k, which

can be computed.

The fact that each sensor requires its current power level only without any knowl-

edge of the power-decay model in (2.27) makes this controller attractive for practical

implementation even on the sensing devices that have low computational capabilities.

One key observation about the proposed controller is that it depends only on the area

of the footprint and the above scheme is valid as long as the footprint is compact [31].

There is absolutely no dependence on the shape of the footprint. Therefore, unlike

most of the existing literature on wireless sensor networks that deals with circular

footprints only, the results of this work are valid for any sensor footprint provided it

is compact.
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Figure 6: Depicted are the two footprint models that are simulated in this work.
In Figure 6(a), the footprint of a sensor is a circular region of radius r, where as in
Figure 6(b), the footprint is union of four sectors.

2.2.3 Simulation

To verify the performance of Scheme 1, we performed Monte Carlo simulations in

Matlab. We considered a rectangular domain of dimensions [30×30] in which sensors

were deployed randomly according to a Poisson point process of intensity λ = 10.

Each sensor had an initial footprint area A(0) = 1 and initial power level η(0) = 1.

To compare the performance of this scheme with the results in Section 2.1, we first

considered an exponential power decay law for each sensor given by

ηi(k) = ηi(k − 1)− γ∆tηi(k − 1), (2.32)

where γ is decay constant and for this simulation γ = 1. We also simulated a linear

power decay law

ηi(k) = ηi(k − 1)− γ∆t. (2.33)

We want to point out again that in Section 2.1, each sensor had a complete knowledge

of its power-decay law and it used this information to update its control parameter.

However, in this scheme, no sensor has any information about the decay law, which

makes this scheme more attractive for practical implementation. In addition to using

different power decay models, we also simulated multiple footprint models to validate

our claim that this scheme is valid for any footprint model as long as the footprint of

each sensor is compact and the sensors are deployed randomly. We start with circular
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(a) Circular footprint and exponential decay

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

P
d

(b) Circular footprint and linear decay

Figure 7: Event detection probability Pd vs time t for a sensor network with Scheme
1 (solid line) and given Pdes = 0.63 (constant dashed line) for circular footprint. Here
λ = 10, A(0) = 1, and γ = 1.

footprint model as shown in Figure 6(a) to compare it with our previous work. We

also simulated a more practical footprint model that is depicted in Figure 6(b). In

this model, each agent is equipped with four sensors that can sense a sector of radius

rs with central angle θs, where s ∈ {1, 2, 3, 4}. For each sensor

r2s(k) = αsηs(k),
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(a) Sector footprint and exponential decay
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(b) Sector footprint and linear decay

Figure 8: Event detection probability Pd vs time t for a sensor network with Scheme
1 (solid line) and given Pdes = 0.63 (constant dashed line) for sector footprint. Here
λ = 10, A(0) = 1, and γ = 1.

where αs is the constant of proportionality for the sth sensor. The total power con-

sumed is the sum of power consumed by all the sensors.

We ran the simulation 100 times with the settings described above and the event

detection probability averaged over all the runs of simulations under the proposed

scheme is demonstrated in Figures (7(a), 7(b), 8(a), and 8(b)) corresponding to the
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two power decay laws and the footprint models. In each figure, the dotted line corre-

sponds to the desired detection probability Pdes = 0.63. The figures show that after

the initial settling phase, the system maintains desired event detection probability for

all the cases.

2.2.4 Decentralized Scheduling Scheme

In the previous section, we proposed a probabilistic power-aware scheduling scheme

that can maintain desired event detection probability. One important aspect of this

scheme was that each sensor was making its switching decision completely indepen-

dent of all the other sensors. However, there was one global parameter that was

used by each sensor in making its switching decision and that parameter was λ, i.e.,

expected number of sensors per unit area. In general, if λ is initially unknown, it

can only be estimated in a centralized manner. However, if we have a sufficiently

dense deployment of sensors such that
M
⋃

i=1

Fxi
= D, which is normally the case in

the networks we are considering [1], then we can approximate λ in a decentralized

manner. Thus, in this section, we will update Scheme 1 to remove the dependence

on λ, which will make the updated scheme, Scheme 2, decentralized in true sense as

no global knowledge will be used to make switching decisions.

In Scheme 2, λi is the estimate of λ generated by sensor i and Ni(0) is the set of

sensors that belong to the footprint of sensor i at time 0. In this scheme, each sensor

uses its own estimate of λ to compute qi(0). We know that the detection probability

depends on

Avg(Ā(k)q̄(k)) =
1

M

M
∑

i=1

Ai(k)qi(k)

If we replace qi(k) in the above expression with Equation (2.27) for k > 0 and with
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Scheme 2. Updated Sensor Scheduling Scheme

Given: Desired event detection probability (Pdes)

G(.) : R → R.

nhops ∈ N.

At Step 0:

• Senses its footprint, Fxi
(0), having area Ai(0) and computes λi.

λi =
Number of sensors in Fxi

(0)

Ai(0)
.

• for l = 1 : nhops

Shares its estimate λi with its neighbors

and update its estimate

λi(l) = λi(l − 1) + ∆l





∑

j∈Ni(0)

(λj(l − 1)− λi(l − 1))



 (2.34)

where Ni(0) = {j s.t. xj ∈ Fxi
(0)}, and ∆l is the step size.

end

• Initializes its probability of being on

qi(0) =
ln
(

1
1−Pdes

)

λiA(0)
, (2.35)

where Ai(0) = G(ηi(0)).

• Selects a number mi such that mi ∼ unif [0, 1].

• Turns on if mi < qi(0).

At Step k:

• Follow Scheme 1
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Equation (2.35) for k = 0, then

Avg(Ā(k)q̄(k)) = Avg(h̄(.)),

where

h(λi) =
ln
(

1
1−Pdes

)

λi

is a convex function of λi, and h̄(.) = {h(λ1), h(λ2), . . . , h(λM)} for all i ∈ {1, 2, . . . ,M}.

If λ is initially known, i.e., λi = λ for all i, then the detection probability depends on

h(λ) = h(Avg(λ̄)), whereas if λ is unknown then the detection probability depends

on Avg(h̄(.)). Here λ̄ = {λ1, λ2, . . . , λM}. Since h(.) is a convex function of λi, from

Jensen’s inequality

h(Avg(λ̄)) ≤ Avg(h̄(.)).

The effect of this inequality can be observed from Figure (9), which demonstrates

event detection probability of the same network (comprising of sensors with circular

footprint and exponential power decay) as simulated in Section 2.2.3 but using Scheme

2. As shown in Figure (9), in the beginning, event detection probability is higher than

the desired value (dotted line), which seems good. However, to maintain a higher

detection probability than Pdes, more sensors have to remain on consuming more

power than is required to achieve objective. Consequently, the detection probability

falls below the desired level before the lifetime is over. This is the price we have to

pay for making the system decentralized.

In order to quantify the performance loss because of the approximation of λ, we

ran Monte Carlo simulations under the same setup as described in Section 2.2.3 100

times. As long as the detection probability remains greater than or equal to Pdes our

performance criterion is met. However, when it falls below Pdes, we have performance

loss, which is shown in Figure (4) . For each run of the simulation, Figure 10(a) shows

the percentage average performance loss while Figure 10(b) shows the percentage

maximum performance loss and the solid line in both the figures represent average of
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the 100 values. These figures show that the maximum performance loss is on average

11% where as the average performance loss is 4.5 % on average.

If the performance loss shown in Figures (10(a) and 10(b)) are acceptable, then

we can use Scheme 2 as described above in which there is no communication involved

in making switching decisions even at the local level. However, to reduce performance

decay, we can allow neighboring sensors to communicate with each other to improve

their estimate λi by following the update law (2.34). This equation is the discrete

time version of consensus equation, which will drive the estimates of all the sensors

towards their initial average ([15] and [49]), i.e., for all i,

λi → Avg(λ̄) =
1

M

M
∑

i=1

λi(0) as nhops → ∞,

where nhops is the number of iterations of the update law (2.34). Figure (11) shows the

performance of the system under Scheme 2 with nhops = 100, and it can be observed

that the network maintains a constant performance that is very close to the desired

value. One issue that we want to point out here is that Avg(λ̄) will always be a little

off than actual λ. The reason is that according to [30], the true estimate of λ is

λ =
Total number of deployed sensors

Total area of D
However, in the case of randomly deployed sensor networks, the footprints of the

sensors can overlap with each other and it is difficult to get an estimate of this overlap

in practical systems. The consequences of these overlapping footprints are twofold.

Firstly, with non-zero probability a sensor can be counted multiple times, which

makes the numerator in the above relation higher than the actual value. Secondly,

because of neglecting the overlap of the footprints, the total area of the domain D, i.e.,

the denominator in the above relations, becomes larger than its actual value. These

consequences of overlapping footprints results in Avg(λ̄) a little off than λ. However,

this effect will not cause sever problem since the size of footprint is typically extremely
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Figure 9: Event detection probability Pd vs time t (solid line) for a sensor network
under Scheme 2 with given Pdes = 0.63 (constant dashed line) . The sensors have
circular footprint and exponential power decay. Here nhops = 0, λ = 10, A(0) = 1,
and γ = 1.

small as compared to the total area of the domain D. For instance, in this simulation

Avg(λ̄) = 10.8 instead of the actual value λ = 10.
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Figure 10: Percentage performance loss under Scheme 2 for 100 iterations of simu-
lations

2.2.5 Robust and Decentralized Scheduling Scheme

Until now, we have assumed that all the sensors in a network remain operational

throughout the lifetime of the network. However, we are dealing with networks com-

prising of cheap and low quality devices that are dropped in the region of interest
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Figure 11: Event detection probability Pd vs time t for a sensor network (solid line)
with given Pdes = 0.63 (constant dashed line) and unknown intensity under Scheme
2. In this simulation sensors have circular footprint and exponential model. Here
λ = 10, A(0) = 1, nhops = 100, and γ = 1.

randomly. Therefore, it is possible that some of the sensors stop working unexpect-

edly before their operational lifetime is over. This will obviously have a negative

impact on the performance of the network since we have not incorporated failures

of the devices in the design of our scheduling scheme. There is also a possibility

that at some time, we want to deploy more sensors to improve the performance of

the network and reduce the workload of existing ones. Again, this is a scenario that

our proposed schemes cannot handle. Therefore, we propose Scheme 3 to detect the

failure of existing devices or addition of new devices and adjust the control parameter

in a manner so that the desired performance criterion is maintained while reducing

power consumption.

In this scheme, each sensor initializes its estimate of deployment intensity, λi, as

in Scheme 2 and based on this estimate computes its initial probability of being on,

i.e., qi(0). Then, at each step it follows the same control law to update its control

parameter, qi(k) as in Equation (2.27). However, after every m steps, each sensor

updates its estimate λi and uses this updated estimate to compute its probability

47



Scheme 3. Robust Sensor Scheduling Scheme

Given: Desired event detection probability (Pdes)

G : R → R.

At Step 0:

• Follow Scheme 2.

At Step k:

if mod (k,m) = 0

• Senses its footprint Fxi
(k) having area Ai(k) and computes λi.

λi =
Number of sensors in footprint Fxi

(k)

Ai(k)
.

• Updates its probability of being on

qi(k) =
ln
(

1
1−Pdes

)

λiAi(k)
(2.36)

• Set qi(0) = qi(k) and ηi(0) = ηi(k).

• Selects a number mi such that mi ∼ unif [0, 1].

• Turns on if mi < qi(k).

else

• Follow Scheme 1

of being on. This parameter m can either by given a priori based on the quality of

devices or can be selected randomly by each device itself. By updating λi, each sensor

takes into account the failure or addition of nodes in its sensing region and uses this

information to adjust its probability of being on. In the case of node failures, λi will

decrease which will force the sensor to increase qi(k) to maintain desired detection
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probability. Similarly, in the case of the addition of new nodes, λi will increase

which will allow the sensor to decrease qi(k) and reduce energy consumption while

maintaining desired detection probability. Thus, Scheme 3 is robust to node failures

and tries to maintain desired detection probability as long as a minimum number of

sensors is available.

The performance of a network simulated under the same settings as in Section

2.2.3 with circular footprint and exponential power decay except for γ = 0.4, is

shown in Figure (12). The detection probability for this network is shown in Figure

(12) as decaying solid line and it is apparent that the network cannot maintain Pdes.

To improve network performance, we apply Scheme 3 with m = 1 and nhops = 0,

where the value of the parameter m dictates how often each sensor in the network

updates its estimate of intensity, λi. The value of m equal to one implies that sensors

update their estimate at each decision time while nhops = 0 means that sensors do not

communicate with their neighbors to improve their estimate. By applying Scheme

3, the performance of the network clearly improves as shown in the dotted decaying

plot. However, the network is still unable to maintain Pdes throughout its lifetime

because of two reasons. Firstly, as discussed for Scheme 2, when sensors estimate

λ, there is always going to be a performance loss. Secondly, in this case, sensor are

failing constantly and after some time it becomes simply impossible for the network

to maintain Pdes because of insufficient sensor deployment.

2.3 Conclusions

In this chapter, we presented scheduling schemes for the duty cycle of dynamic sen-

sor networks comprising of sensors whose footprints shrink with decrease in available

power. In particular, we examined networks in which sensors were deployed ran-

domly according to a stationary spatial Poisson point process. Initially, we simplified

the problem by assuming an exponential power decay law and a circular footprint
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Figure 12: Event detection probability Pd vs time t for a sensor network with failing
nodes and no compensation (solid decaying line), sensor network with failing nodes
and Scheme 3 (dotted decaying line) with given Pdes = 0.63 (constant dashed line).
Here λ = 10, A(0) = 1, α = 1, γ = 0.4, m = 1, and nhops = 0

model. To establish the relationship between the desired performance criterion and

the lifetime of a network, we analyzed both persistent and non-persistent events and

proposed scheduling schemes for both of these scenarios to maintain desired network

performance. Moreover, we examined two sensing models, Boolean and non-Boolean,

to incorporate various physical sensing characteristics. Then we presented a similar

power-aware controller but for a generalized system, which was independent of the

of the power variation law as well as the shape of the sensor footprint. We proposed

a decentralized scheme in which sensors estimated the deployment intensity based

on their own observation of the environment and the observation of their immediate

neighbors. We also proposed adaptive and robust versions of the proposed scheme,

which can estimate the deployment intensity and can update the control law in the

case of the failure of deployed nodes or the addition of extra nodes. The results were

validated by Monte Carlo simulations of the proposed controllers, through which we

showed that the proposed schemes maintained the desired performance throughout

the lifetime of the network.
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CHAPTER III

SLEEP SCHEDULING OF WIRELESS SENSOR

NETWORKS USING HARD-CORE POINT PROCESSES

In this chapter, we deal with an other aspect of power-awareness that is related with

the efficient utilization of available energy resources through intelligent scheduling

schemes. This aspect of power-awareness is popular in wireless sensor networks com-

munity and a plethora of scheduling schemes have been proposed in the literature. A

common technique to conserve energy is to add redundancy by increasing the inten-

sity of sensor deployment such that only a subset of sensors is sufficient to maintain

the required coverage level [27]. Thus, it is not necessary for all the sensors to be

on in unison and we can switch sensors off in order to conserve energy. However, it

is important to schedule the sensor switching intelligently as critical events can be

missed if all the responsible sensors are off. There is a long list of such scheduling

schemes that are available in the literature, e.g., ([19, 21, 27, 26, 36, 20, 22, 24], and

[80]), just to name a few.

Most of the scheduling schemes that have been proposed can be divided into two

broad classes: random switching schemes and coordinated switching schemes (e.g.,

[27] and [24]). It is important to point out that comparing random and coordinated

switching schemes is rather difficult. In random switching, each sensor decides to

switch its state randomly according to some probabilistic rule regardless of the states

of the other sensors. The clocks of the sensors does not need to be synchronized and

there is no communication cost involved in scheduling, which makes these schemes

efficient in terms of power consumption. However, random switching schemes cannot

guarantee complete coverage unless all the sensors are on. In contrast, in coordinated
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switching schemes, sensors either communicate with their neighbors or acquire exact

information about the state and location of their neighbors in order to decide whether

to switch on or off. These schemes incur additional communication costs because

sensors have to communicate with each other to make switching decisions. However,

coordinated scheduling permits the designers to generate various sensor switching

patterns depending on the applications. Moreover, these schemes can generally ensure

complete coverage of the area of interest (e.g., [26] and [10]). In conclusion, both

schemes have their merits and demerits and the decision has to be made based on the

application.

In this work we propose a novel sleep scheduling scheme that is a compromise

between coordinated and random switching. The proposed scheme is coordinated

since sensors communicate with their neighbors for making switching decisions. In

order to introduce coordination among the neighboring sensors, we use the concept

of hard-core point processes from stochastic geometry, which are inhibition processes

that maintain a certain minimum distance, d, between the constituent points [30].

However, information that is communicated between sensors for coordination con-

sists of randomly generated numbers, which introduces randomness in the switching

decisions. By communicating random numbers between the neighboring sensors, we

can only achieve partial coverage. On the other hand, this coordination improves the

coverage as compared to random switching with little communication overhead. We

analyze the proposed scheme and derive an expression for the event detection prob-

ability for one particular case. We also perform extensive Monte Carlo simulations

and use numerical techniques to accurately model the coverage process that is gen-

erated from the hard-core process with controllable inhibition distance. We use the

proposed model to design our network for any desired detection probability and show

through Monte Carlo simulations that through our proposed model, we can achieve

the desired probability with average error of less that 1%.
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In the literature, several coordinated scheduling schemes are available (see. e.g.,

[73] and the references therein). In most of the existing schemes, a sensor decides

whether to turn on or off based on the exact location of itself and that of its neigh-

bors and this information is made available through a GPS. These schemes make

sure that turning a particular sensor off does not deteriorate the coverage, which is

important especially for time critical events that must be detected immediately. How-

ever, the exact information about the location of a sensor and its neighbors, which is

used to make decisions, is not always available. Even if this location information is

available, it is a strain on the battery of a system as GPS devices consume significant

power. In another approach, all the sensors in the network are assigned node IDs.

To make switching decisions, each sensor communicates its ID and other information

like its transmission power range and number of neighbors to its immediate neigh-

bors. Using this information, a sensor decides whether its contribution is essential for

ensuring coverage or not. However, assigning nodes IDs raises the issue of scalability

of network in these schemes. Moreover, the information exchange between neighbor-

ing sensors often make these schemes very complicated and inefficient in terms of

energy consumption which causes serious issues during practical implementation. In

contrast, our proposed scheme does not require any such information related to the

location of sensors, and it allows any level of partial coverage by varying the control

parameter d.

3.1 System Description

Consider a domain D ⊂ R
2 in which a large number of sensors are randomly deployed

for monitoring purposes. We assume that all the sensors are identical, i.e., they

have the same initial power levels and same sensing capabilities. The footprint of

each sensor is a ball of radius rs, B(x, rs), where x is the location of the sensor,

and a sensor can detect anything within its footprint, but nothing outside it. The
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communication range of each sensor is adjustable and is controlled by varying the

transmitted power level. The size of the domain, ‖D‖, is very large as compared to

the footprint of an individual sensor in order to avoid any boundary effects. Each

sensor can switch between on and off states only at discrete time instances k∆t, where

∆t is the sampling interval. A sensor can sense only when it is in the on state. Since

sensors are randomly deployed and we are assuming that the number of sensors is

large, from Chapter 2 this deployment can be modeled as a homogeneous Poisson

point process with intensity λ. Once it is established that the sensor deployment

forms a stationary Poisson point process with some intensity λ, then the number of

sensors in any region of area A can be determined using Poisson distribution.

Pn(A) =
(λA)ne−λA

n!
. (3.1)

Because sensor networks that we are studying are often deployed for monitoring

purposes, in this work we select coverage as our performance criterion. To be more

specific, we require a sensor network to maintain a desired level of partial coverage at

any particular time. Indeed, this relaxation of partial coverage is practical especially

in the case of persistent events or non-stationary events because probability of detec-

tion of these event keeps on increasing with time. In any case, the relaxation allows

us to design simple scheduling schemes with small communication cost and simplifies

the analysis of the system.

3.2 Problem Motivation

For maintaining partial coverage in an area of interest, a simple approach is random

switching in which each sensor randomly decides to be in the on state with some

given probability qr and in the off state with probability 1− qr. For this scheme, the

probability that a non-persistent event is detected is [26]

Pd = 1− e−λAqr , (3.2)
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(a) Poisson process qr = 0.125
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(b) Hard-core process qh = 0.125
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(d) Hard-core process qh = 0.4323

Figure 13: Comparison between possible realizations of a sensor network modeled as
a Poisson process with random switching (13(a) and 13(c))and a hard-core process
with coordinated switching (13(b) and 13(d)).

where A is the area of the sensing footprint of a sensor and qr is the probability of

a sensor to be in the on state. Here, we consider a non-persistent event as an event

that does not leave a mark in the environment and must be detected when it occurs.

Thus, Equation (3.2) is effectively the expected level of coverage that is provided by

the network. In Chapter 2, we proposed a random switching scheme using Equation

(3.2), in which given any desired coverage level, Pdes, we first computed the probability

of a sensor to be on, which was

qr =
ln( 1

1−Pdes
)

λA
. (3.3)

Then each sensor used this value of qr to decide whether to turn on or not and in

this way the network maintained the desired coverage. One characteristic of this

scheme was that each sensor made its switching decision randomly and completely
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independent of all the other sensors, which kept the analysis simple because of the

Poisson point process. However, this lack of communication between sensors in deci-

sion making typically results in more sensors to be on than are necessary to maintain

the desired coverage. Figures 13(a) and 13(c) depict possible realizations of a sen-

sor network simulated in MATLAB under random switching for two values of qr, in

which the circles represent the footprints of the sensors that are on. It can be ob-

served that the sensors that are on have formed clusters in certain areas leaving other

areas completely uncovered.

The clustering of the sensors in the on state can be avoided by inhibiting any

two sensors that are closer than a certain minimum distance to be on simultaneously.

We call this minimum allowed distance between the sensors in the on state as the

inhibition distance. Using this inhibition distance, we define the d-neighborhood of a

sensor as

Definition 3.2.1. The d-neighborhood of a sensor located at xi ∈ R2, is defined as

Nd(xi) = {j : xj ∈ B(xi, d) for all xj ∈ Φ},

where Φ is a set that contains the locations of all the sensors.

Given a sensor located at xi is on, we do not want any other sensor in its d-

neighborhood to be on at the same time, and the point process in which this inhibition

distance is enforced is a hard-core point process.

Definition 3.2.2. [30] A hard-core point process is a point process in which the

constituent points cannot lie together closer than a minimum specified distance.

Figures 13(b) and 13(d) demonstrate realizations of the same network as in Fig-

ures 13(a) and 13(c) but under the scheme using a hard-core process with inhibition

distances 2rs and rs. It is apparent that the level of coverage achieved by the same

number of sensors has improved in this case with the inhibition distance imposed.
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3.3 Probabilistic Sleep Scheduling Scheme

In this section, we present a novel switching scheme that we developed as part of this

work, in which sensors communicate with all the sensors in their d-neighborhood to

decide whether they should turn on or not. We derive analytical expression for event

detection probability Pd for the case when d = 2rs, and for all other cases we develop

a model for Pd using numerical techniques. For this scheme, we show that event

detection probability is higher than the random switching scheme that was discussed

in Section 3.2. The basic concept that we use is that of a hard-core point process.

In order to decide whether to be in the on or off state at some time instance k,

sensor i located at xi has to perform the following steps:

Scheme 4. Proposed scheduling scheme

1. Generate a number mi such that mi ∼ unif [0, 1].

2. Transmit mi to all the sensors in Nd(xi).

3. Turn on if mi < mj for all j ∈ Nd(xi).

In the literature on point processes ([30], [31], and [77]), mi is called a mark of a

point i. Under this scheme, two sensors cannot be on simultaneously if the distance

between them is less than d, which is the inhibition distance.

Lemma 3.3.1. Under Scheme 4, the probability of a sensor being on at some time

instance k is

qh =
1− e−λAd

λAd

, (3.4)

where Ad is the area of a ball with radius d.

Proof. This lemma follows directly from the results in [30], so we only give a sketch of

the proof. Since the switching decisions are made independent of time, k will have no

effect. Now, according to the proposed scheme, a sensor at xi with a mark mi remains
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on if no sensor in B(xi, d) has a mark lower than mi. Therefore, the probability qh(m)

that a sensor at location x with mark m remains on is

qh(m) =
∞
∑

n=0

(λAd)
ne−λAd

n!
(ph)

n,

where ph is the probability that a sensor located in B(x, d) has a mark greater than

m. As marks are uniformly distributed in [0, 1], so

ph =

∫ 1

m

dt = 1−m,

which yields

qh(m) = e−λAdm. (3.5)

Because m is uniformly distributed in [0, 1], integrating qh(m) from 0 to 1 produces

the desired result.

From [30], we know that the intensity of a hard-core process that is generated

from a Poisson process with intensity λ is

λh = qhλ, (3.6)

where qh is given by Equation (3.4). Figure (14) demonstrates the relationship be-

tween the probability of a sensor to be in the on state and the inhibition distance. It

is evident from the figure that increasing the inhibition distance decreases the prob-

ability of a sensor to be on which obviously decreases the coverage. Therefore, we

can use the inhibition distance as a control parameter to achieve any level of desired

coverage. However, to use d as a control parameter, we need to completely character-

ize the probability of detecting a non-persistent event Pd, which is directly related to

coverage, in terms of the inhibition distance. In the next section we will first present

a derivation of the expression for Pd under the proposed scheme for a special case

when d = 2rs. After this special case, we will present a general expression, relating

Pd and d, that we developed through Monte Carlo simulations.
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Figure 14: Variation in the probability of a sensor being on, q, with variation in the
inhibition distance, d. Here radius of the footprint of a sensor is r = 1.

3.4 Event Detection Probability: d = 2rs

The scheme that we presented in Section 3.3 is simple to implement, since each sensor

only transmits a random number to all its neighbors and makes its switching decision

based on the random numbers it receives from them. However, the primary challenge

in this work is the analysis of this scheme because to achieve any desired level of

partial coverage, we need an explicit relationship between detection probability, Pd,

and inhibition distance d. In the existing literature on spatial point processes and

sensor networks, no such relationship exists. The reason that makes this process

extremely hard to analyze is that the points in the point process formed by the sensors

that are in the on state are no longer independent. Moreover, by using the inhibition

distance as our control parameter, we allow the sensing footprints to overlap. The

coverage process that results from these overlapping disks no longer corresponds to

a standard hard-core process and is therefore not being studied in detail. Next, we

present the analysis of this scheme in which we derived relationship between Pd and

d for a particular case of d = 2rs. This value of d ensures that there is no overlap

between the footprints of sensors, so no redundancy.
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Theorem 3.4.1. Under Scheme 4 when d = 2rs, the probability of an event, located

at some point xe ∈ D, being detected is

Pd = −1

4
e−4λA −

∞
∑

n=1

(

−1

3

)n

e−λA

n−1
∑

k=0

(−3λA)k

k!
, (3.7)

where A is the area of the footprint of a sensor.

Proof. For the proof of this theorem we assumed that an event occurred at an arbi-

trary location xe and we want to find its detection probability. Let us define a random

variable Yi such that

Yi =











0 if sensor at xi is off

1 if sensor at xi is on
(3.8)

Let mi be the mark associated with the sensor at xi. We know that the event will

be detected if there is at least one sensor in the on state in B(xe, rs). Since, d =

2rs, it means that no two sensors having a mutual distance less than 2rs can be on

simultaneously. This implies that at most one sensor can be on in B(xe, rs), and this

will be the sensor having the lowest mark.

Pd =

∞
∑

n=1

(λA)ne−λA

n!
P (sensor with lowest mark is on). (3.9)

Since there are n sensors in the B(xe, rs), we define another random variable X such

that

X = i if mi = min{m1, m2, . . . , mn},

i.e., X is equal to the index of the sensor with the lowest mark in B(xe, rs). Since the

mark of any sensor in B(xe, rs) can be the smallest, so

Pd =
∞
∑

n=1

(λA)ne−λA

n!

n
∑

i=1

P (Yi = 1|X = i)P (X = i).

Now, the random variable X will be equal to i if the marks of all the other n − 1

sensors in B(xe, rs) are greater than mi. Thus,

P (Yi = 1|X = i)P (X = i) =

∫ 1

0

qh(mi)(1−mi)
n−1dmi,
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xe
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Figure 15: xe is the location of the event and xi is the location of the sensor with
lowest mark in the shaded region.

where qh(mi) is given by Equation (3.5). Figure (15) illustrates that for a sensor at

xi to be on there should be no sensor with a mark lower than mi in B(xi, 2rs). We

already know that the sensor at xi has the lowest mark in B(xe, rs), which is the

shaded region in Figure (15). Therefore, we only need to confirm that there does not

exist any sensor with a mark lower than mi in the unshaded region, whose area is

π(2r2s) − πr2s = 3A. Therefore, from Equation (3.5) the probability that a region of

area 3A has no mark less than mi is e
−3λAmi , which implies

Pd =
∞
∑

n=1

(λA)ne−λA

n!

n
∑

i=1

∫ 1

0

e−3λAmi(1−mi)
n−1dmi.

Integrating mi from 0 to 1 yields the same result for all i, indicating that the same

quantity is being added n times.

Pd =

∞
∑

n=1

(λA)ne−λA

n!
n

∫ 1

0

e−3λAt(1− t)n−1dt.

Solving this integral and performing some simple algebraic manipulations yields

the desired result.
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In the next section, we show through Monte Carlo simulations how different cov-

erage levels can be achieved by varying the inhibition distance.

3.4.1 Simulation

To validate the results proved in Section 3.3, we performed Monte-Carlo simulations

of the sensor network. For the simulations, we considered a rectangular domain of

dimensions [10 x 10] having an area Adom = 100. In this domain, sensors were

scattered with an intensity of 2 sensor per unit area, i.e., λ = 2, which implies that

the expected number of sensors in the total area is Λ = Adomλ. The footprint area

of each sensor was A = 1, so that it was very small as compared to the total area.

Events were generated randomly at each time instance throughout the domain and

we considered total of 20,000 events in a single iteration of the simulation. To increase

the accuracy of the results even further, the values of Pd and Pd were averaged over

100 iterations of the simulation. To ascertain the effects of the inhibition distance on

the coverage, we considered four different values of d, i.e., d ∈ {rs/2, rs, 3rs, 2rs}. For

each of these values of d, we computed the intensity of the corresponding hard-core

point process λh = qhλ, where qh is given by Equation (3.4).

We started by selecting d = rs/2, applied the coordinated switching scheme pro-

posed in Section 3.3, and measured the detection probability, Pd. Next, we used the

value of qr corresponding to d = rs/2 and measured the detection probability Pd

under random switching. The same process was repeated for the remaining values

of d. Figures (16(a) and 16(b)) show the results of the simulations. The simulations

demonstrate that as d increases, the detection probability decreases exactly as we ex-

pected. Moreover, for all the cases, detection probability under the proposed scheme

is better than the random scheme which validate our scheme. Finally, we consider

the special case of d = 2rs and compare the detection probability under proposed

scheme with the value computed analytically. The simulation yielded Pd = 0.2527,
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very close 0.2498, which is the value computed analytically, indicating the validity of

our analysis

3.5 Event Detection Probability: Generalized Case

The detection probability derived in Equation (3.7) is valid only when d = 2rs, i.e.,

when sensor footprints are not allowed to overlap. However, this is a restrictive

case because for a given deployment intensity, λ, and sensing radius, rs, we have no

control on the achievable coverage. Moreover, it can be observed from the simulation

results presented later in this section that we cannot ensure more than 25% coverage

for this case. Therefore, it is imperative to find a general relationship between Pd

and d to design for any desired coverage level. To derive this relationship, we have

to rely on numerical techniques because by using d as a control variable, we are

allowing the sensing footprints to overlap with each other. The coverage process that

results from these overlapping disks is complicated and the theoretical analysis of this

process presents enormous difficulties. This makes numerical techniques an attractive

approach for this problem.

3.5.0.1 Simulation Setup

In these simulations we consider a rectangular deployment region of dimensions [30×

30], in which sensors with footprint area A are randomly deployed with intensity

λ. The parameters that we vary over different simulations are λ, A, and d and for

each set of these values we simulate the network to find the corresponding detection

probability. We simulate the network for all the values of λ, A, and d belonging to

the sets λ̄, Ā, and Ω respectively, where

λ̄ = {1, 2, 3, 4, . . . , 14, 15},

Ā = {0.3, 0.5, 0.7, 1, 1.3, 1.5, 1.7, 1.9, 3, 4, 5},

Ω = {0.1r, 0.2r, 0.3r, . . . , 1.9r, 2r}.
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Figure 16: Comparison of event detection probability between the proposed scheme
(solid plot) and the random switching scheme (dashed plot) for different inhibition
distances. For this simulation λ = 2 and A = 1.
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Figure 17: Event detection probability under the proposed scheme for the case d =
2r. Pd = 0.2527 which is close to the analytical value 0.2498.

For each (λ,A) ∈ (λ̄× Ā) , we simulate the network 100 times for all d ∈ Ω, and

for each value of d, 10,000 events are randomly generated in the region of interest.

For each case, Pd is computed using the relative frequency definition of probability,

i.e.,

Pd =
Number of events detected

Total number of events

The results of this simulation are presented in Figure (18), in which each sub-figure

from parts (a) to (h) shows plots of Pd vs d for all the values of A ∈ Ā. Moreover,

each of these sub-plots correspond to one value of deployment intensity λ. Thus,

Figure (18) presents all the data that we require to model this process.
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Figure 18: Plots of simulated detection probability Pd vs inhibition distance d for

different values of footprint areas A and deployment intensities λ

After simulating the network for all the different combinations of the design pa-

rameters (λ, A, d), we develop a mathematical model to relate detection probability

with inhibition distance using the curve fitting tool of MATLAB. Based on the care-

ful examination of data and study of renewal process theory, we select the following

equation for modeling our data.

Pd = 1− c1 exp (−c2 exp(c3d))− c4. (3.10)

68



In the above equation, (c1, c2, c3, and c4) are the coefficients that uniquely correspond

to a Pd vs d curve. The results of using the above expression to model our data are

presented in Figure (19), and from the figure we can see that the results are remarkable

since the curves generated by Equation (3.10) accurately fit the simulated data. This

accuracy of the curve fitting clearly indicates that Equation (3.10) is a good choice

for modeling this data. Thus, we have a closed form expression relating detection

probability Pd and our control parameter d, using which we can find the value of d

that can maintain any desired detection probability, Pdes.

Theorem 3.5.1. Given any desired level of event detection probability, Pdes, the

inhibition distance that can guarantee to maintain Pdes is

d =
1

c3
ln

[

1

c2
ln

[

c1
(1− c4)− Pdes

]]

. (3.11)

Proof. From the simulation results presented in Figures (18 and 19), we have shown

that Equation (3.10) is a good choice for modeling the detection probability of this

coverage process. Therefore, Equation (3.10) is a closed form expression relating our

desired objective Pdes and our design parameter d. Using this equation and performing

simple algebraic manipulations yields Equation (3.11), which concludes the proof.

Thus, we can explicitly find out the value of d through Equation (3.11) that can

guarantee any given Pdes.
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Figure 19: Curve fitting on the simulated data of detection probability Pd vs inhibi-

tion distance d according to Equation (3.10).

However, this relationship between Pd and d is in terms of coefficients (c1, c2, c3, c4)

and for any deployment intensity λ and footprint area A, there is unique set of these

coefficients that relate d with Pd. For the simulated scenarios, the MATLAB curve

fitting tool generated the values of these coefficients that minimized the error between

the data observed through simulations and the curves obtained from Equation (3.10).

The values of these coefficients are plotted in Figure (20). To use these coefficients
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in the design phase, we consider their values as our data points and again fit curves

on these points. After carefully analyzing the data and trying various types of curves

and adjusting their parameters, the curves that best fit the data points with minimum

mean square errors are as follows

c1 =
ln(λ0.1808A0.1853) exp (λ−2.015A−2.259 − 0.301)− 0.1133

(λA)0.7147
+ 0.747

c2 = 18.81 exp
(

0.006558λ0.6213A0.4462
)

− 16 exp (−0.387λA) + 0.4462

c3 =
ln(λ−1.603A−1.621) exp(A0.5179λ0.6171 − 0.3833)− 2.506

λ−0.1546A0.3966
− 0.1546

c4 = 0.9788 exp(−0.9655λA) (3.12)

The curve fitting that resulted from the above equations is shown in Figure (20)

and it can be observed that the quality of fitting is very good. Although these

equations look complicated, for a deployed network with given λ and footprint area

A, it is a simple task to compute the four coefficients from the above expressions.

Once the coefficients are computed, there values are substituted in Equation (3.11)

to compute the design parameter d. Therefore, we have completely characterized

this process in terms of the parameters λ, A, and Pdes. For any given set of these

values, we can accurately find Pd under a hard-core point process, which is a major

contribution of this work.

After modeling the process, we verify its accuracy through Monte Carlo simula-

tions. The simulation setup is the same in which the region of interest is a rectangular

region of dimension [30×30] where sensors are randomly deployed. For this simulation

we sweep the values of λ from 5 to 20 with an increment of two where as the values of
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Figure 20: Curve fitting on the simulated data for coefficients c1, c2, c3, and c4

A are swept from 0.7 to 4 with an increment of 0.5. Moreover, for each combination

of the values of λ and A, we simulate the network to maintain detection probability

Pdes from 0.4 to 0.9 with increments of 0.1. For each case, network is simulated for ten

iterations and in each iteration 1000 events are randomly generated. The detection

probability for each run is computed using the relative frequency definition of the

probability and the total detection probability Pd for each case is the average value

of ten iterations. The results of this simulation are presented in Figure (21). Each

sub-figure corresponds to a single value of Pdes that is simulated for all the possible

combinations of λ and A. The two surfaces that are plotted are Pd (dark surface)

and Pdes (light surface). The important thing to observe is that in all the cases, the

maximum error between Pdes and Pd is less then 3% and the average percentage error

was then 1% which is phenomenal and proves the fact that the expressions we
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(a) Pdes = 0.4, Mean error = 0.9606%, Maximum

error = 2.94%’

(b) Pdes = 0.5, Mean error = 0.8564%, Maximum

error = 2.4%’

(c) Pdes = 0.6, Mean error = 0.7752%, Maximum

error = 2.38%’

(d) Pdes = 0.7, Mean error = 0.7942%, Maximum

error = 2.11%’

(e) Pdes = 0.8, Mean error = 0.6956%, Maximum

error = 1.87%’

(f) Pdes = 0.9, Mean error = 0.6805%, Maximum

error = 2.13%’

Figure 21: Comparison between desired performance Pdes and the actual per-

formance Pd obtained after designing d from the proposed model for parameters

A = {0.5, 1, 1.5, . . . , , 4.5, 5} and λ = {5, 7, 9, . . . , 18, 20}
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derived to model this process are accurate.

Although the modeling of the hard-core process we presented up till now is ac-

curate as shown from the simulations, a potential problem is that the quality of

modeling can deteriorate as we move away from the domain of the parameters that

were used in the simulation. For instance, in this simulation, our design parameters

were λ, A and d. As far as d is concerned, selecting it from 0.1rs to 2rs, covers all

the potentially useful values. For deployment intensity, we selected λ from 5 to 15,

which is also sufficient, since from Figure 22(a) it can be observed that the curves for

λ > 10 are very much the same. This leaves only A as the parameter that can cause

problems. It turns out that we do not even need to simulate all the different values

of sensing radii. In our implementation of this scheme, the inhibition distance was

basically a multiple of the sensing radius, i.e., d = ξrs, where ξ ∈ (0.1, 2) controls the

overlap of the sensing regions that is required to maintain Pdes. Thus, we refer to ξ

as the overlap coefficient. In Figure 22(b), we plotted the relationship between Pd

and ξ for a constant value of λ, from which we can see that except for small values of

sensing area, i.e., A < 1, the detection probability is independent of the sensing area.

This implies that for densely deployed networks consisting of sensors with reasonable

sensing area, the only thing that matters to maintain a given Pdes is the parameter

ξ, from which we can simply compute the inhibition distance by multiplying it with

the sensing radius, i.e., d = ξrs.

To verify the claim that Pd depends on the overlap coefficient only, we performed

further simulations for the values of footprint areas that were not used in modeling

the system. We selected A from 5.5 to 8 with increments of 0.5. For each of these

simulations, we selected Aref = 5 and using Aref and λ we computed the inhibition

distance, dref , from Equation (3.11) and the corresponding overlap coefficient

ξ =
dref
rref

,

where rref was the sensing radius correspond to area Aref . Finally, we computed the
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Figure 22: Part(a): Depicted are the plots of Pd vs d for all the values of λ =
{1, 2, . . . , 15} and fixed A = 5. Part(b): Depicted are the plots of Pd vs the overlap
coefficient ξ for different values of A.

desired inhibition distance d = ξrs, where rs is the sensing radius corresponding to

the simulated sensing area A. Figure (23) depicts the results of the simulation under

the setup described above for sensing areas A = {5.5, 6, . . . , 7.5, 8} and from these

plots we can observe that by using Aref = 5 and finding the overlap coefficient ξ, the
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average error between Pd and Pdes is still less than 1.35% in all the cases which shows

the validity of the proposed approach.

3.6 Comparison with Random Scheme

The purpose of studying the hard-core point process was to propose a switching

scheme for efficiently utilizing the available energy resources and increasing the life-

time of the network by improving its coverage profile and reducing the number of

redundant sensors that are in the on state because of random switching. After com-

pletely characterizing the coverage properties of this process, the next step is to

compare the performance of the proposed scheme with random scheme and verify

our claim that the proposed scheme is indeed energy efficient. In both the schemes,

we started with a Poisson point processs with intensity λ. Under random scheme,

each sensor switched on or off completely independent of all the other sensors. This

process of independently deleting points from a point process is called independent

thinning, and independent thinning of a Poisson process results in a Poisson process

with intensity qrλ, where qr is the probability of a point not deleted and is given by

qr =
ln
(

1
1−Pdes

)

λA
.

In the context of sensor networks, qr is the probability of a sensor being on. In

contrast, in a hard-core point process, points are not deleted independently from

the original Poisson process. Instead, points interact with each other to make this

decision, and the probability of a point not being detected qh is

qh =
1− exp(−λπd2)

λπd2
,

so the intensity of a hard-core point process is qhλ.
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(a) Pdes = 0.4, Mean error = 1.35%, Maximum

Error = 3.3%’

(b) Pdes = 0.5, Mean error = 1.3%, Maximum

Error = 2.4%’

(c) Pdes = 0.6, Mean error = 0.96%, Maximum

Error = 2.72%’

(d) Pdes = 0.7, Mean error = 0.92%, Maximum

Error = 2.89%’

(e) Pdes = 0.8, Mean error = 0.87%, Maximum Error

= 2.46%’

(f) Pdes = 0.9, Mean error = 0.5%, Maximum Er-

ror = 2.35%’

Figure 23: Comparison between desired performance Pdes and the actual per-

formance Pd obtained after designing d from the proposed model for parameters

A = {5.5, 6.0, . . . , 8} and λ = {5, 7, 9, . . . , 18, 20}
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If Npoi is the total number of sensors in the Poisson process, then to maintain Pdes

the expected number of sensors in the on state will be qrNpoi and qhNpoi under the

random schemes and the proposed scheme respectively. To compare these schemes,

we computed the percentage decrease in the number of sensors in the on state under

our proposed scheme using the expression

% decrease in number of sensors =
qr − qh
qr

100.

The results of this analysis are presented in Figure (24), from which it can be observed

that the expected number of sensors in the on state under the proposed scheme is

always less than the random scheme. Moreover, for all the cases, the percentage

decrease in the expected number of sensors start from 20% and went upto 38%.

Another important observation is that the percentage decrease in the number of

sensors increases as the deployment intensity λ increases. This result is intuitive

because with the increase in the number of deployed sensors, the redundancy in

the number of sensors that are on will also increase, which will result in a better

performance under the proposed scheme.

Although the expected number of sensors in the on state decreases by 20% to

38%, this improvement is achieved at the expense of sensors communicating with

their neighbors, whereas no communication is involved in random switching. For the

proposed scheme to be energy efficient, we have to show that even after the added

cost of communication, the total energy consumption under the proposed scheme is

less than the random scheme. For this analysis, we first select a sensing platform that

is commonly used in the wireless sensor networks for deploying the types of networks

we are considering in this work, i.e., networks comprising of large numbers of low cost,

low power devices with limited sensing, processing and communication capabilities.

This platform is the 3rd generation of Berkeley motes called MICA2 motes which

are most commonly used in wireless sensor networks community. These motes have

been used in a large number of practical systems for the purposes of surveillance,
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(b) Sensing Radius rs = 4
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(c) Sensing Radius rs = 5

0.5
0.6

0.7
0.8

0.9
1

5

10

15

20
20

25

30

35

40

Desired Detection Probability
Deployment Intensity λ

P
er

ce
nt

ag
e 

de
cr

es
e 

in
 N

um
be

r 
of

 S
en

so
rs

(d) Sensing Radius rs = 6
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(e) Sensing Radius rs = 7
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(f) Sensing Radius rs = 8

Figure 24: Comparison of expected number of sensors in the on state in random
scheme and the proposed scheme for various values of deployment intensity, λ, and
desired detection probability Pdes. Each sub plot corresponds to different value of
sensing range rs.
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environmental monitoring and precision agriculture (see e.g., [47], [48], and [9] and

the references therein).

A MICA2 mote is powered through two AA batteries that typically have a current

rating of 2200mAh. Each of these motes is equipped with a 433 MHz Chipcon radio

that can transmit at different power settings from -10dBm to 20dBm, and can provide

an effective data rate of 12.4Kbps [63]. Moreover, various sensor boards are available

for these motes that are connected through a surface mount on the motes. The sensors

that are available on various sensor boards for a MICA2 mote include photocells,

thermistors, microphones, sounder and magnetic sensors [62]. In this analysis we

considered magnetic sensor HMC1002 from Honeywell that detects magnetic field

from the nearby objects and has an omni-directional field of view. These sensors are

used to detect and track any metallic object like vehicles or weapons in their field of

view.

For this platform, we need to model the energy consumption owing to both data

communication and sensing, both of which are functions of distance. The model for

sensing is

ES(d) = αr2s , (3.13)

where α is a constant and rs is the sensing range of the sensor. When the magnetic

sensor HMC1002 is used to detect vehicles, its sensing range is between 4m - 8m and

its power density is 388µWm−2 [34]. Therefore, total energy consumed by this sensor

to monitor a circular area of radius rs for an interval of length T seconds is

ES(d) = 388× 10−6r2sT J.

The energy consumption model for data transmission according to [76] is

ET (d) = m(a+ bd2) J, (3.14)

where m is the number of bits transmitted, d is the distance over which data is

transmitted and a and b are constants depending on environment. For the Chipcon
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radio CC1000 that is available on MICA2 mote, the values for a and b are [76]

a = 0.3× 10−7J/bit,

b = 2× 10−10Jm−2/bit.

In the above models, we need to specify the exact number of bits that are transmit-

ted by each node. In our proposed scheme, each sensor transmits a random number,

which, in practical implementation, will require an infinite number of bits to encode

and is thus impractical. Therefore, in our simulations each agent generates an eight bit

number uniformly distributed between 0 and 255, which makes the proposed scheme

implementable on an eight bit processor. However, the question is how is this going

to effect the performance of the scheme. Fortunately, limiting the random number to

eight bits has no noticeable effect on the performance of the proposed scheme. The

only purpose of the random number is to assign a unique identifier to every sensor in

a circular disk of radius equal to the inhibition distance, d, such that only the sensor

with the lowest identifier can turn on. In the case when eight bit random numbers are

generated with uniform distribution, the probability that any two sensors generate

exactly equal number in the circular disk of radius d is 1
256

, which is very small. For

the rare event that two sensors generate exactly the same number, we updated the

proposed scheme as presented in Scheme (5).

Scheme 5. Proposed scheduling scheme

1. Generate a number mi such that mi ∼ unif [0, 1].

2. Transmit mi to all the sensors in Nd(xi).

3. Turn on if mi ≤ mj for all j ∈ Nd(xi).

In the updated scheme, if two sensors generate same number and that number is

minimum in the circular disk of radius d, then both the sensors will turn on. However,

this event will occur with probability 1
256

, so it will have no noticeable effect on energy
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consumption. Thus, with Scheme 5, we can put m = 8 in the energy consumption

model in Equation (3.14), which yields

ET (d) = (2.4× 10−7 + 16× 10−10d2) J

Since MICA2 motes are powered by two AA batteries, the total energy of the network

comprising of Npoi sensors is

Etot = Npoi(6.6× 3600)J. (3.15)

Next we consider energy consumption in the case of random switching scheme and the

proposed scheme separately. For random scheme, there is no communication involved

for making switching decision, so the only cost is that of sensing. Therefore, at the

kth decision time, energy available will be

Eav(k) = Eav(k − 1)− qrNpoiES(d), (3.16)

where Eav(k) is the expected energy available in the network at the kth decision time,

and T is the length of the time interval for which a sensor remains on for sensing. For

this simulation we select T = 10 minutes. Here, we want to point out that switching

itself is an expensive operation and for a network with lifetime of the orders of months,

switching every 10 minutes is a high switching rate. Rewriting the above expression

in terms of total energy.

Eav(k) = Etot − kqrNpoi(0.388× 10−3r2sT ),

= Npoi(6.6× 3600)− kqrNpoi(0.388× 10−3r2sT ).

The expected lifetime of the network is the minimum value of k times T such that

Eav(k) ≤ qrNpoiES(d)T . Using this fact in the above expression, the lifetime of the

network is over when

Etot − kqrNpoi(0.388× 10−3r2sT ) ≤ qrNpoi(0.388× 10−3r2sT ).
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By performing simple algebraic manipulations, the expected lifetime of the network

is

kr =

⌊

6.6× 3600

qr(0.388× 10−3r2sT )

⌋

. (3.17)

In comparison, in the proposed scheme, energy is consumed because of both sens-

ing and communication. At each decision time, all the Npoi sensors initially transmit

8 bits to all their neighbors in a disk of radius equal to the inhibition distance d. After

that, on average, qhNpoi sensors remain on for time interval of length T for sensing a

circular disk of radius rs. Therefore, under the proposed scheme, energy available at

the kth decision time is

Eav(k) = Eav(k − 1)−NpoiET (d)− qhNpoiES(d), (3.18)

where ET (d) is the energy consumption due to data transmission and ES(d) is the

energy consumption due to sensing. In terms of total energy,

Eav(k) = Etot − kNpoi(2.4× 10−7 + 16× 10−10d2)− kqhNpoi(0.388× 10−3r2T ).

To find the expected lifetime under the proposed scheme, we use the same argument

as for the random scheme and the expected lifetime is

kh =

⌊

6.6× 3600

(2.4× 10−7 + 16× 10−10d2) + (0.388× 10−3qhr2T )

⌋

, (3.19)

Based on the expressions for expected lifetime of the network under random and

proposed scheme, we present the comparison of both schemes in Figure (25), which

shows the percentage increase in the lifetime of the network under proposed scheme.

It is clear from this figure that under all the different scenarios of sensing ranges, the

lifetime of the network increased by 30% to 70% under the proposed scheme. More-

over, this improvement in the lifetime increased with the increase in the deployment

intensity and increase in Pdes. The reason is, higher Pdes means larger number of sen-

sors in the on state which implies higher level of clustering which resulted in higher

gain under the proposed scheme. The same is true for higher deployment intensity.
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(b) Sensing Radius rs = 4
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(c) Sensing Radius rs = 5
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(d) Sensing Radius rs = 6
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(e) Sensing Radius rs = 7
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(f) Sensing Radius rs = 8

Figure 25: Comparison of expected lifetime of a network under random scheme and
the proposed scheme for various values of deployment intensities and desired detection
probabilities. Each sub plot corresponds to different value of sensing range rs.
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3.7 Design of Different Hard-core Point Processes

In Section 3.5, we presented a model relating the detection probability Pd with the

inhibition distance d that we developed for a hard-core point process, and we showed

through extensive simulations that the developed model can accurately design a hard-

core process with desired properties. The process that we modeled is one of the three

processes that were initially presented by Matérn [32] as hard-core point processes, all

of which were obtained through dependent thinning of a Poisson process. In Matérn

I process, he started with a Poisson point process and deleted any two points if the

distance between them was less than the inhibition distance d. In Matérn II process,

he initially assigned a mark m ∈ unif[0, 1] to each point in the process. Then, a point

was retained only if no other point in the circular disk of radius d centered at the

point had a mark lower than the mark of that point. Therefore, in this model if the

distance between two points was less than d, only one of them was deleted. Matérn

II process is the model that we used for our sensor scheduling scheme. In Matérn

III process, starting again from a Poisson process he retained a point if its distance

from all the previously retained points was greater than d. All the three processes

that were presented by Matérn fulfilled the basic requirement that their constituent

points did not lie closer than d. However, the intensities of these processes are not

the same and it is known that the λI < λII < λIII , where λI , λII , and λIII are the

intensities for Matérn I, Matérn II, and Matérn III processes. These variations in

intensities imply that the coverage properties of these processes will also be different.

Matérn I, Matérn II, and Matérn III processes have been individually studied and

the first and second order properties of Matérn I and Matérn II processes have been

derived. However, there are no results in the existing literature relating the intensities

and coverage profile of these processes. These relationships can be useful because they

will allow us to use our developed model for Matérn II process to generate any required

type of hard-core process. It is also important to point out that the models proposed
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by Matérn are not the only ways of generating a hard-core point process. In fact,

in this work, we studied two different methods for generating this process. We are

interested in these processes because of their potential usefulness in the context of

mobile sensor networks and facility location problems. In order to design these two

point processes with desired coverage properties, we derived relationships between

the intensities of these processes and Matérn II process.

3.7.1 Simple Sequential Inhibition (SSI) Process

The first process that we studied in this work is a Simple Sequential Inhibition (SSI)

process that is a hard-core point process on a bounded region but with finite number

of points, and it does not require a Poisson process for its generation. In this model,

the first point is generated randomly in the region of interest D ⊂ R2. In each

subsequent step, a random point is generated and this point becomes a part of the

point process if its distance from all the previous points of the process is greater than

d. The steps for generating an SSI process are presented in Algorithm 1.

Given the number of points NSSI that we want to deploy in a region, Algorithm

1 outlines the steps that need to be followed to ensure that these points form a hard-

core process. However, in this work, the problem that we are interested in is slightly

different. In the problem that we are interested in, every point in the point process

is the center of two disks, one with radius r and the other with radius d. Our first

objective is to form a hard-core point process such that the disk of radius d associated

with each point does not contain any other point of the process. Our second objective

is that the coverage process

C =

NSSI
⋃

i=1

B(xi, r),

where xi is the lcoation of the ith point and B(xi, r) is a ball of radius r centered at

xi that results from this hard-core process ensures a desired level of coverage in the

domain D in which the points are deployed.
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Algorithm 1. Simple Sequential Inhibition (SSI) Process

Given: NSSI , d

Step 1:

• Generate a random point in the region of interest, i.e., x1 ∈ D.

for k = 2 : NSSI

pos = 0.

while (pos == 0)

• Generate a random point r ∈ D.

• Find dist(xi, r) for all i ∈ {1, 2, . . . , k − 1}.

if dist(xi, r) < d for all i ∈ {1, 2, . . . , k − 1}

xk = r, pos = 1.

end

end

The first objective can be accomplished from Algorithm 1, but for the second ob-

jective, we need to know the exact inhibition distance d and the number of points

that if deployed under SSI process with parameter d will ensure Pdes. In the existing

literature on point processes, no solutions exist for this problem. In this work, we

solved this problem by developing an explicit relationship between the intensities of

Matérn II process and SSI process. The rationale for this approach is that we have

already developed a relationship between d and Pdes for Matérn II process. Using this

relationship we can find the inhibition distance d and the number of points Nh that

will result in Pdes in the case of Matérn II process. However, for the same number

of points, the coverage of SSI process and Matérn II process is not guaranteed to be

same [30]. Thus, we need to find the number of points NSSI that can guarantee Pdes

for inhibition distance d.
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To find the number of point NSSI , we developed Algorithm 2, in which Pdes, Adom,

and r are the desired detection probability, total area of the domain of interest and

radius of the coverage disk of each point. In Step 1 of the algorithm, the inhibition

distance d is computed based on the proposed expressions for Matérn II process. Using

this inhibition distance, the intensity and the number of points Nh in the Matérn II

process are computed. In Step 2, Nh points are initially deployed according to SSI

process by following Algorithm 1 and for this process coverage is computed. If Pdes is

achieved, then the algorithm terminates. Otherwise, the number of deployed points

is incremented by ζ . The algorithm terminates when Pd becomes equal to or greater

than Pdes and the corresponding number of points are stored as NSSI .

In this work, we established a relationship between Nh and NSSI empirically using

extensive simulations and Algorithm 2. For these simulations, we considered a rectan-

gular area of dimensions [30×30] as D, and in this domain we deployed point process

for the cases when A = 5 and for Pdes = {0.40, 0.45, . . . , 0.95}, where A = πr2. These

point processes were deployed according to Algorithm 2, and from the data obtained

from these simulations, we found the relationship

NSSI = d1.119Nh − 0.1475e. (3.20)

Thus, Equation (3.20) gives a relationship between the number of points of a

Matérn II and an SSI process that can ensure Pdes. To verify the accuracy of this

relationship, we generated hard-core point processes from Algorithm 3 for Pdes =

{0.40, 0.45, . . . , 0.95} and A = {5.0, 6.0, . . . , 20}. The results of this process are pre-

sented in Figure (26), and from the figure we can see that maximum error between

Pdes and Pd was 3.22% and the mean error was 0.9% which proved that our modeling

of the process is quite accurate. In Figure (27) typical realizations of point processes

that were generated through the proposed model are presented for the cases of Pdes

equal to 0.5 and 0.75 respectively.
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Algorithm 2. Estimation of NSSI

Given: Pdes, Adom, and r

Step 1:

• Compute d from Equation (3.11).

• Compute Nh = qhNpoi,

where qh = 1−exp(λπd2)
λπd2

and Npoi ∼ Poi(λAdom)

• NSSI = Nh

Step 2:

• Deploy NSSI points according to Algorithm 1 in the domain D.

• Compute the detection probability Pd.

While Pd < Pdes

• NSSI = NSSI + ζ.

• Repeat Step 2.

end
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Algorithm 3. SSI Process for Pdes

Given: Pdes, r, Adom

Step 1:

• Compute d from Equation (3.11).

• Compute Nh = qhNpoi,

where qh = 1−exp(λπd2)
λπd2

and Npoi ∼ Poi(λAdom)

• Compute NSSI from Equation (3.20).

Step 2:

• Deploy NSSI points according to Algorithm 1 in the domain D.
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Figure 26: Detection Probability that is obtained after designing from our proposed
model. Max Modeling Error 3.22%. Average Modeling Error 0.9%
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(a) Pdes = 0.5, Pd = 0.5117, NSSI = 103
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(b) Pdes = 0.75, Pd = 0.7591, and NSSI = 182

Figure 27: Deployment of a network under the proposed scheme with Pdes = 0.7.
In part(a) exact inhibition distance d = 1.408 is enforced while in part (b) d + 0.5
distance is enforced.

3.7.2 Mobility Based Hard-core Point Process

In this section, we design and analyze a hard-core point process that is motivated from

the fact that the intensity of a hard-core process can be increased by introducing small

vibrations in the points of the process [51]. These vibrations, typically introduced

through a force-biased algorithm ([51], [54]) to increase the intensity of the process,

correspond to the mobility of agents in the case of mobile sensor networks. Since the

primary focus of this work is scheduling and coordination of wireless sensor networks,

so we used this process to propose a distributed coverage control algorithm for mobile

sensor networks.

Given d and Nm, Algorithm 4 deploys Nm points in a domain of interest D and

ensure that the distance between any two points is at least d. To achieve this point

process, in Step 1 of the algorithm, Nm points are uniformly distributed in D. Then

to enforce inhibition distance requirements, each point updates its location in Step 2.

The controllers in Step 2 are both repulsive controllers that push points away from

each other and from the boundary of the domain. In the first controller, a point

located at xi remains stationary if there are no other points in B(xi, d). However,
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Algorithm 4. Mobility-based Hard-core Point Process

Given: Nm and d

Step 1:

• Generate Nm random points in D ⊂ R
2 such that each point is uniformly dis-

tributed in D.

Step 2:

• Each point updates its location according to the following controller

ẋi =















∑

j∈Nd(xi)

(xi − xj) |Nd(xi)| 6= 0

0 otherwise

where Nd(xi) is the d-neighborhood of the ith agent located at xi.

• Points avoid leaving the boundary of D by the following control law

ẋi =











(xi − xbd) ‖xi − xbd‖ < δ

0 otherwise

where xbd is the point on the boundary of D closest to xi.

if the d-neighborhood of a point is not empty, then this controller forces the point to

move in a direction opposite to the average of the locations of all other points in its d-

neighborhood, and this repulsive controller remains active as long as d-neighborhood

of the point is not empty. The other controller in Step 2 avoids the boundaries

of the domain D. In the scenario where an agent is near boundary and has other

agents in its d-neighborhood, these two controllers can be combined to satisfy both

the constraints. The combined controller will be

ẋi =
∑

j∈Nd(xi)

(xi − xj) + (xi − xbd),

where xbd is the point on the boundary closest to xi. However, as in the case of SSI

process, our objective is to deploy a point process Φ = {x1, x2, . . . , xNm
} such that
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the corresponding coverage process

C =
Nm
⋃

i=1

B(xi, r),

can guarantee the desired coverage properties Pdes. Again it is important to point

out that the radii of the coverage disks and the inhibition disks, i.e., r and d are

different. This implies that agents are not allowed to be closer than a distance d but

there coverage disks are allowed to overlap since d can be less than r.

To ensure that any given Pdes is maintained, we need the inhibition distance d and

the exact number of points Nm that need to be deployed. To find these parameters,

we followed the same procedure that we followed for SSI process in Algorithm 2.

Algorithm 5 is used to relate the intensities of Matérn II process and the mobility

based process. In this algorithm, given Pdes, we first computed d and the number

of points Nh that would ensure that Matérn II process will maintain Pdes. In the

equation Nh = qhNpoi, Npoi is a Poisson distributed number with intensity λAdom,

where λ is the intensity of a Poisson process. For this model, any value of λ that is

sufficiently large will serve the purpose because we showed in Figure 22(a) that for

sufficiently large intensity, d becomes independent of λ. Therefore, for this simulation

we selected λ = 10, but any higher value of λ would have served the purpose. We

deployed Nh points according to Algorithm 4 and computed the detection probability.

Then we kept on increasing the number of deployed points by ζ = 5 until Pd was no

longer less than Pdes. We used Algorithm 5 to deploy a mobility based hard-core

process in a rectangular region of dimension [30×30] for Pdes = {0.40, 0.45, . . . , 0.95}

and A = {5.0, 6.0, . . . , 15}, where A = πr2. For each simulation, the values of Nh and

Nm are presented in Tables (28) and (29) respectively. We plotted Nh vs Nm for each

case separately and used linear fitting on the data, and by fitting linear curves for all

the cases, we found the following relationship between Nh and Nm
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Algorithm 5. Estimation of Nm

Given: Pdes, Adom, and r

Step 1:

• Compute d from Equation (3.11).

• Compute Nh = qhNpoi,

where qh = 1−exp(λπd2)
λπd2

and Npoi ∼ Poi(λAdom)

• Nm = Nh

Step 2:

• Deploy Nm points according to Algorithm 4 in the domain D.

• Compute the detection probability Pd.

While Pd < Pdes

• Nm = Nm + ζ.

• Repeat Step 2.

end

Nm = dcNh + 5e, (3.21)

where

c = 0.6944Pdes + 0.8048,

and Nm is the number of required agents.
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Area 5.0 6.0 7.0 8.0 9.0 10 11 12 13 14 15

Pdes = 0.40 72 61 52 45 41 37 33 30 29 26 24

Pdes = 0.45 81 69 58 53 47 42 38 34 32 30 28

Pdes = 0.50 93 78 68 58 51 47 43 40 35 34 31

Pdes = 0.55 104 87 76 68 58 52 49 44 40 37 35

Pdes = 0.60 116 96 84 72 64 59 54 49 44 41 40

Pdes = 0.65 131 108 92 81 72 65 59 54 51 46 43

Pdes = 0.70 145 122 104 92 80 73 66 61 56 52 49

Pdes = 0.75 164 134 116 103 90 80 74 67 63 58 55

Pdes = 0.80 183 154 131 115 103 93 85 77 71 68 63

Pdes = 0.85 210 179 156 136 117 106 96 90 82 77 72

Pdes = 0.90 251 216 180 165 144 127 118 107 100 92 86

Figure 28: Number of points required in the original hard-core process.

Area 5.0 6.0 7.0 8.0 9.0 10 11 12 13 14 15

Pdes = 0.40 82 67 60 52 51 44 39 35 34 31 29

Pdes = 0.45 97 80 71 63 57 49 48 44 37 40 38

Pdes = 0.50 111 94 80 73 66 58 53 50 45 44 41

Pdes = 0.55 127 112 94 83 73 66 60 58 52 50 45

Pdes = 0.60 146 124 112 94 81 75 69 64 60 56 55

Pdes = 0.65 166 143 124 108 97 85 80 74 67 62 61

Pdes = 0.70 190 162 144 123 115 104 89 84 76 73 65

Pdes = 0.75 222 184 161 141 127 114 106 98 89 86 77

Pdes = 0.80 258 219 188 165 148 135 124 110 103 98 90

Pdes = 0.85 306 255 223 188 170 166 144 132 128 115 113

Pdes = 0.90 371 315 267 246 205 189 174 166 161 142 125

Figure 29: Number of points required in the mobility based hard-core process.
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Algorithm 6. Distributed Coverage Control of Mobile Sensor Networks

Given: Pdes, r

Step 1:

• Compute d from Equation (3.11).

• Compute Nh = qhNpoi,

where qh = 1−exp(λπd2)
λπd2

and Npoi ∼ Poi(λAdom)

• Compute Nm from Equation (3.21).

Step 2:

• Deploy Nm sensors according to Algorithm 1 in the domain D.

To check the validity of relationship (3.21), we used it in the design of a distributed

coverage control algorithm for mobile sensor networks. The objective is to deploy

mobile sensors in a distributed manner such that the desired coverage level Pdes is

maintained. The steps for this scheme are outlined in Algorithm 6. We simulated

deployment of mobile sensor networks for the same values of Pdes and footprint areas

A as before and the results for these simulations are presented in Figure (30). We

were able to maintain Pdes quite accurately, since average error was 0.6553% which is

negligible. However, it is important to point out that for this algorithm, maximum

error is more important because once sensors reached their final locations, the network

is static. The maximum error for all the simulations we performed was 2.67%, which

is still very small and indicates the accuracy of our modeling.

The first step in Algorithm 4 requires randomly distributed points. For the case of

mobile sensor networks this can be achieved in different ways. One possible approach

is to drop the sensors randomly from some vehicle driving through the domain D and

this approach will result in a uniformly distributed configuration. The other approach
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Figure 30: Detection Probability that is obtained after designing from our proposed
model. Max Modeling Error 2.67%. Average Modeling Error 0.6553%

is that, all the sensors initially follow a random mobility model called random direc-

tion model presented in ([52] and [53]). In this model, each sensor randomly chooses

its direction uniformly from [0, 2π] and its velocity uniformly from [vmin, vmax]. Then

it starts moving in the chosen direction at the chosen speed for a random time that

is exponentially distributed. After that it selects a new direction and velocity and

repeats the same process. It has been shown that this mobility model results in uni-

form spatial distribution of nodes. We can further improve the coverage properties of

the network by increasing the separation between the sensors. To get this improve-

ment in coverage, the underlying idea is that by ensuring separation d between the

sensors, we have ensured Pdes. Now for the same number of agents, if we increase the

inter-agent separation from d to d′ = d+ ε, for some ε > 0, we can improve the level

of coverage. However, this ε has to be bounded from above because of the constraints

imposed by area of the domain and number of agents.
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Lemma 3.7.1. To maintain Pdes in a rectangular domain,

0 ≤ ε ≤ 1

2d

√

Adom

4NP2
.

Proof. To maintain Pdes, each agent has to maintain atleast distance d form its neig-

bors. Since ε < 0 will result in d′ < d which violates the inhibition distance require-

ments, which proves the first inequality. For the second inequality, consider the case

when domain has dimension [dim1 × dim2].For this case, the maximum number of

balls of radius ′d that can fit in this region is

N =
Adom

4d′2
.

In this case, the number of balls are given which is NP2. Thus, using simple algebraic

manipulations we can find the maximum radius of each ball such that NP2 balls can

fit in the domain, which concludes the proof.

Figure (31) shows typical realization of a sensor network under the proposed

algorithm for the case when Pdes = 0.8, A = 5, and dim = 30. In Figure 31(a),

there are NP2 = 254 sensors and ε = 0, and for this case Pd = 0.8011 as compared

to Pdes = 0.8. To maximize the coverage that can be obtained from these sensors,

Figure 31(b) corresponds to the case with ε = 0.7552 which is the upper bound for ε

in this case and we can see that Pd = 0.9736 which is almost complete coverage.

3.8 Conclusion

In this chapter we presented a novel sleep scheduling scheme for wireless sensor net-

works to conserve power while maintaining partial coverage. We introduced the con-

cept of inhibition distance as the minimum distance allowed between the sensors in

the on state and used it to control the number of redundant sensors in the on state

over the entire domain of interest. To enforce the inhibition distance with little com-

munication overhead, we used hard-core point processes from stochastic geometry
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(a) Pdes = 0.8, Pd = 0.8011, and Nm = 254
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(b) Pdes = 0.8, Pd = 0.9736, and Nm = 254

Figure 31: Deployment of a network under the proposed scheme with Pdes = 0.8.
In part(a) exact inhibition distance d = 1.408 is enforced while in part (b) distance
enforced is d+ ε where ε = 0.7552.

and proposed a simple sleep scheduling scheme, which accomplished the task. Then,

we considered one special case, in which the inhibition distance was twice the radius

of the sensor footprint and derived an expression for the event detection probability

in this particular case. For the generalized design of a system, we used Monte Carlo

simulations to model Matérn II hard-core point process and using the data from

these simulations we derived relationship between Pd and d. We showed through

simulations that the proposed model accurately modeled a hard-core point process.

Using this model, we designed energy efficient scheduling scheme and showed that

the proposed scheme improved the lifetime of the network from 40% to 70%.
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CHAPTER IV

POWER-AWARE MOBILITY STRATEGIES

4.1 Power-aware Rendezvous

In this section, we study the by-now classic rendezvous problem [13], i.e., the problem

of having all the nodes meet in a common, a priori unspecified location using only

relative position information. Our take on this problem is to use a sensor footprint

model that depends on the current power levels and that shrinks as the power level

decreases. Moreover, the rate at which the power level decreases is proportional to

the input to the system. As a result, the more the agents move, the less power they

have, and, subsequently, the smaller their sensor footprints become. The reason why

a shrinking sensor footprint is important is that the agents can only sense the relative

positions of other agents within their sensory range. This formulation of the power-

aware mobility problem thus affords a natural formulation of the trade-offs between

mobility and power consumption.

4.1.1 The Effect of Shrinking Footprints

To establish some of the implications that shrinking sensor footprints have on the

performance of the coordination algorithms, consider a system in which each agent

is a mobile sensing device that uses an omni-directional antenna for communication.

We define the footprint of a sensor as the region in which a sensor can detect any

event and can communicate with other sensors. The footprint of these sensors is a

disk of radius ∆, and if we assume that ∆ is fixed and same for all agents, we can

represent the interaction topology with an undirected ∆-disk graph ([2] and [5]), in

which an edge exists between two nodes if the distance between them is less than or

equal to ∆. We will use the notation Ni to denote the index of all agents that are
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inside the ∆-disk of agent i. Let xi ∈ R
2 be the location of each agent. Then we can

solve the rendezvous problem using the consensus equation

ẋi = −
∑

j∈N(i)

(xi − xj). (4.1)

It is known from ([2], [10], [14], and [49]) that if the graph remains connected for all

the time, then the dynamics in Equation (4.1) asymptotically drives all the agents to

the initial centroid x̄ = 1
N

∑N
i=1 xi(0).

Typically multi-agent systems comprise of agents that are battery powered and

the available power level decreases with time. For RF- or radar-based sensors that

are under investigation in this work, the area of the sensing region is directly related

to the available power [46]. Since the available battery power decreases as a result of

agents performing various tasks, the radius of the sensing disk also decreases, which

results in sensors having shrinking footprints. What if we want to achieve rendezvous

in such a system? Is it possible? How is the shrinking of the footprints going to effect

the system? Is the consensus equation still helpful in this scenario? In spite of the

importance of all these questions in many real life systems, they are still unanswered

and in this work, we lay down a basic framework for the analysis of such systems.

For the sake of argument, assume (this assumption will be relaxed in later sec-

tions) that the radius of the footprint of a sensor decreases according to the following

dynamics

∆̇(t) = −γ∆(t), (4.2)

with decay rate γ > 0. Since size of the footprint is directly related to power, the

radius of the footprint of a sensor is assumed to decay exponentially as a result of

power decay. Now, one can ask a question whether the linear consensus equation still

solves the rendezvous problem or not? To explore this scenario, a situation involving

two mobile sensors is demonstrated in Figure (32), in which we start with a connected

graph, but the decaying power levels cause the footprints of both the agents to shrink,
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Figure 32: Consensus algorithm on a network of two nodes with shrinking footprints.
The parameters used in this simulation are, γ = 5 and ∆(0) = 3. The straight line
between the nodes in the first two figures indicates that the nodes are connected.
However, as a result of the shrinking footprints, the eventually gets disconnected in
the last figure (no line between the two nodes).

and the distance between the two agents becomes greater than ∆(t). Consequently,

the connection between the agents is lost and the fundamental condition for the

convergence of consensus algorithm, i.e., connectivity, is violated. From this simple

simulation, we can conclude that the controller in Equation (4.1) cannot guarantee

to solve rendezvous problem.

Thus, in this work, we derive conditions that must be satisfied to achieve consen-

sus in the case of shrinking footprints, and propose controllers to solve rendezvous

problem for both undirected and directed graphs. We start with a simple system

model in which power decay is only a function of power that is transmitted to main-

tain a required footprint, and has nothing to do with mobility. Later in this section,

we generalize our model to include mobility as well.

4.1.2 The Weighted Consensus Equation

To solve the rendezvous problem for directed and undirected graphs, we know we can

use the controller

ẋi = −
∑

j∈Ni

(xi − xj),

as long as the graph remains connected for all the time. Suppose we have N agents

in R2, and let xTi = (xi,1, xi,2) be the location of agent i. Then we can produce a new
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vector c(x, j) as

c(x, j)T = (x1,j , x2,j, . . . , xN,j).

If we decompose the problem along each dimension, the consensus controller in Equa-

tion (4.1) can be written as

ċ(x, j) = −L(G)c(x, j) j = {1, 2}, (4.3)

where L(G) is the Laplacian matrix of the graph G. However, for ∆-disk graphs (even

without shrinking footprints), this condition on connectivity cannot be guaranteed,

as is illustrated in [58]. One solution is to introduce edge weights w(xi, xj) that turns

the linear consensus equation into a non-linear equation

ẋi = −
∑

j∈N(i)

w(xi, xj)(xi − xj), (4.4)

where w(xi, xj) : (R
2,R2) → R. The matrix form of the updated controller is

ċ(x, j) = −Lwc(x, j) ∀j = {1, 2}, (4.5)

where Lw = IWIT is the weighted Laplacian matrix. Moreover, W is a diagonal

matrix whose entry wkk is the weight of the kth edge, and whose dimensions are

(M ×M), where M is the number of edges in the graph.

For proper selection of these weights, an edge tension energy along each edge

(vi, vj) ∈ E(G) was defined in [58] as










Eij(x) > 0 if (vi, vj) ∈ E(G) and xi 6= xj ;

Eij(x) = 0 (vi, vj) /∈ E(G).

Then the total energy of the system is

E(x) =
N
∑

i=1

N
∑

j=1

1

2
Eij(x). (4.6)

In [58], it was proved that if the network topology is undirected, and is connected at

t = 0, and if the edge tension energy is

Eij(x) =
‖xi − xj‖2

∆− ‖xi − xj‖
, (4.7)
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then the controller

ẋi = − ∂E
∂xi

T

= −
∑

j∈N(i)

wi,j(xi, xj)(xi − xj) (4.8)

ensures that the graph remains connected for all the time and solves the rendezvous

problem for ∆-disk proximity graphs for a time-invariant ∆.

4.1.3 Power-aware Rendezvous: Undirected Graph Topologies

The weighted consensus equation solves the rendezvous problem under a somewhat

simplistic assumption. We have to assume that the radius of the sensor footprint, ∆,

is the same for all the agents, and that the radius remains constant with time. In

this section, we will relax this assumption by first incorporating a time varying ∆.

However, this ∆ will still be the same for all the agents. In the next section, we will

further relax this assumption and consider directed graphs in which each agent can

have different footprint radius.

Let us investigate undirected network topologies comprising of agents that use

omni-directional RF or radar based antennas for sensing and communications and

all the agents have the same footprint radius, ∆. For such systems, the size of the

footprint ∆(t) decreases over time with the decrease in available power. We model

this decrease as

∆̇ = f(∆), (4.9)

where f(∆) is a negative definite, Lipschitz continuous function, i.e.,

f(∆) < 0 ∀ ∆ > 0 and f(0) = 0.

In Equation (4.9), we have assumed that power decay depends only on the power that

is transmitted to maintain a footprint of radius ∆. This is an over-simplified power

decay model because in any real life system, power decay must also be a function

of mobility. However, being a first step in this direction, we have used a simplified

model and a more detailed model is presented in the following sections.
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Starting with the edge tension function that is presented in [58] (under the addi-

tional caveat that ∆ is now a function of time), we get

Eij(x) =
‖dij‖2

∆(t)− ‖dij‖
, (4.10)

where dij = xi − xj .

Following the procedure in [58], we have

Ė(t) = ∂E
∂x
ẋ+N

∂E
∂∆

∆̇.

By replacing ẋi in the above expression with the right hand side of Equation (4.8),

we get

Ė(t) = −
∥

∥

∥

∥

∂E
∂x

∥

∥

∥

∥

2

−N

(

‖dij‖2
(∆− ‖dij‖)2

)

f(∆).

Now, we need to show that Ė(t) < 0, for all t. Since f(∆) is negative definite, this

means the second term in the above expression has to be greater than
∥

∥

∂E
∂x

∥

∥

2
and it

should be true for all possible f(∆), which implies that the following should always

hold.

|f(∆)| ≤ 2∆− ‖dij‖
(∆− ‖dij‖)2

.

The right side of the above expression is a function of distance between the agents

and ∆ while the left side is function of ∆ only. Thus, we can not guarantee that the

energy is always decreasing (which is the key to the convergence argument) for all

negative definite f(∆), which means that we need to modify our controller. .

Theorem 4.1.1. Given an undirected ∆-disk graph G(V,E) that is connected at t = 0

in such a way that

‖xi(0)− xj(0)‖ < (∆(0)− ε)

for some ε > 0, and for all (vi, vj) ∈ E(0), then under the control law

ẋi = −







∂E
∂xi

T

+
∂E
∂xi

T ∂E
∂∆

∆̇
∥

∥

∥

∂E
∂xi

∥

∥

∥

2






, (4.11)

the graph G(V,E) remains connected for all the time.
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Proof. Consider the energy function in Equation (4.7). Then

Ė =
∂E
∂x
ẋ+N

∂E
∂∆

∆̇.

Using ẋi as defined in Equation (4.11), we obtain

∂E
∂x
ẋ = −

∥

∥

∥

∥

∂E
∂x

∥

∥

∥

∥

2

−N

(

∂E
∂∆

∆̇

)

,

which results in

Ė = −
∥

∥

∥

∥

∂E
∂x

∥

∥

∥

∥

2

≤ 0 ∀t > 0. (4.12)

The above equation indicates that the energy in the system is never increasing. Now,

suppose on the contrary that there exists an edge (vi, vj) such that at some time t̂

the corresponding length is ∆(t̂). We know that at t = 0 the edge length is less than

(∆(0)− ε) and the total energy E(0) of the system defined in Equation (4.6) is finite.

However, if at time t̂, the edge length is equal to ∆(t̂), then the energy is E(t̂) = ∞,

meaning that E(t̂) > E(0), which is a contradiction, and the lemma follows.

Theorem 4.1.2. Given an undirected ∆-disk graph that is connected at t = 0 with

edge lengths less than (∆(0) − ε) for some ε > 0. Under the controller in Equation

(4.11), the system converges asymptotically to the initial centroid of the network.

Proof. Rearranging the terms in Equation (4.11) yields

ẋi = −
∑

j∈Ni(t)






1 +

∂E
∂∆

∆̇
∥

∥

∥

∂E
∂xi

∥

∥

∥

2







∂Eij
∂xi

T

,

where Ni(t) is the neighborhood set of agent i at time t. This expression can be

formulated in the form of standard, weighted consensus equation

ẋi = −
∑

j∈Ni(t)

wij(xi, xj) (xi − xj) , (4.13)

with

wij(t) =






1 +

∂E
∂∆

∆̇
∥

∥

∥

∂E
∂xi

∥

∥

∥

2







2∆− dij
(∆− dij)2

. (4.14)
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We can also write this controller in terms of a weighted Laplacian.

c(x, j) = −Lwc(x, j) ∀j = {1, 2}. (4.15)

We already know that this controller drives all the agents asymptotically to initial

centroid as long as the network stays connected [58]. From Lemma 4.1.1, we know

that connectivity is preserved and the proof follows.

What this new controller allows us to do is to compensate for the effects of shrink-

ing footprints at the control design phase by explicitly taking into account the foot-

print shrinkage model. In Figure (33), a MATLAB simulation of the controller in

Equation (4.13) with weight function as in Equation (4.14) for an undirected graph is

shown. However, in this section, we still assumed that the footprints of all the agents

were the same. What remains to be done is to investigate what happens if they are

no longer the same, which is the topic in the next section.

4.1.4 Power-aware Rendezvous: Directed Graph Topologies

In this section, we explore the case in which size of the footprint can vary among

the agents, i.e., we no longer assume that ∆i = ∆j . However, for each agent, the

footprint decay model is still the same, i.e.,

∆̇i = f(∆i).

As a result, we have a directed graph because in this case, ‖dij‖ ≤ ∆j does not implies

that ‖dij‖ ≤ ∆i. Now, we need to show that our previously defined controller works

for directed graph topologies as well.
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Figure 33: Demonstration of consensus algorithm of Equation (4.11) on an undirected
network of 5 nodes with shrinking footprints, where the footprints shrink according
to the decay law in Equation (4.2). In this simulation, γ = 5, ∆(0) = 3, t1 = 0.0010
sec, t2 = 0.0490 sec, t3 = 0.0920 sec, t4 = 0.2140 sec.

Theorem 4.1.3. Given a directed disk graph G(V,E) of N agents with ∆̄(t)T =

[∆1(t), . . . ,∆N(t)]. If the initial graph is balanced and weakly connected and the length

of all the edges (vi, vj) at time t = 0 is less than min
i

(∆i(0)− ε) for some ε > 0, then

the control law

ẋi = −
∑

j∈Ni(0)

wij(xi, xj) (xi − xj)

with weight function wij given as

wij(t) =






1 +

∂E
∂∆i

∆̇i
∥

∥

∥

∂E
∂xi

∥

∥

∥

2







2∆i − dij
(∆i − dij)2

.

makes the multi-agent system converge asymptotically to initial centroid, i.e., the

rendezvous problem is solved

Proof. From the results proved in [5], we know that the agreement protocol ẋ = −Lwx
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over directed graph reaches average consensus if and only if the directed graph is

weakly connected and balanced. We have already shown in the previous section that

we can write our controller in terms of a weighted Laplacian (4.15), and also that this

controller does not loose any edges. Moreover, we have restricted the neighborhood set

to be equal to the initial neighborhood set Ni(0), which implies that if we start with

a balanced and weakly connected graph, then these characteristic will be maintained

and all the agents will drive asymptotically to initial centroid, which concludes the

proof.

This means that we have indeed solved the rendezvous problem for directed graphs

with shrinking footprints, which is demonstrated in Figure (34).

If we thoroughly analyze the weight function in Equation (4.14) for undirected

graphs, we find a potential problem. Consider two agents, i and j that are not neigh-

bours at time t = 0. Suppose at time t = t1, the separation between these agents

is exactly ∆(t1) and because of ∆-disk graph topology, these agents immediately be-

come neighbours with the edge tension energy as is given in Equation (4.7). However,

at this moment ‖dij‖ = ∆(t1), which results in infinite edge tension energy. To avoid

this situation, one simple solution is to introduce hysteresis by defining a function hij

such that

hij =











1, ‖dij‖ ≤ (∆− ε);

0 otherwise.

Adding this aspect to Equation (4.8), we get the following controller

ẋi = −
N
∑

j=1

hijwij (xi − xj) . (4.16)
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Figure 34: Demonstration of the consensus algorithm of Equation (4.11) on a directed
network of 5 nodes with shrinking footprints where the footprints shrink according to
the decay law in Equation (4.2). In this simulation, γ = 5, ∆̄(0) = [2, 2.5, 3, 3.5, 4],
t1 = 0.0010 sec, t2 = 0.0323 sec, t3 = 0.0741 sec, t4 = 0.1275 sec.

4.2 Power-aware Rendezvous for MoPS Agents

4.2.1 Power, Sensing, and Mobility Models

In the previous section, we assumed a model in which available power decreases as

a function of the radius of the footprint. This model is simplistic since it does not

assign any cost to mobility, which consumes a major portion of the power in most of

the systems. In this section, we propose a detailed model that includes both mobility

and power transmission and again investigate rendezvous problem under this model.

Consider a network of N planar, mobile agents, with positions x1, . . . , xN ∈ R2.

We assume that the dynamics of each of these agents is given by a single integrator,

i.e,

ẋi = ui, i = 1, . . . , N. (4.17)

Now, each of the agents has a corresponding non-negative power level pi ∈ R+, i =

112



1, . . . , N , and as the agents move around, this power level is depleted. In this work,

we simply assume a direct proportional decay rate

ṗi = −c‖ui‖, (4.18)

where c > 0 is the power loss coefficient [44]. It should be noted that much more

elaborate power loss models can be constructed (see e.g., [50], [56], and [55]), but for

the purpose of the initial developments in this work, we stick with this first order

model.

The way we tie the effect of the power levels to what the agents can do is by

relating the power levels to the sensor footprints. In fact, the way the agents interact

with each other is by measuring their displacements relative to neighboring agents,

i.e., agents that are in their sensor ranges. In other words, if we let ∆i be the sensor

range associated with agent i and if ‖xi−xj‖ ≤ ∆i, i.e., agent j is within the sensory

range of agent i, then ui is allowed to depend on the relative displacement xi − xj ,

which we assume is what the agents can in fact measure. Tallying up the contribution

from all agents within sensory range of agent i, the control law in Equation (4.17) is

assumed to be of the form

ui =
∑

j|‖xi−xj‖≤∆i

f(xi − xj)σij , (4.19)

for some interaction law f : R2 → R2. Here σij ∈ {0, 1} is an indicator function that

dictates whether or not agent j should be effecting the movement of agent i. (To

paraphrase [5], “just because you’re neighbors doesn’t mean you’re friends.”) Note,

by letting σij = 1 and f(xi−xj) = xj−xi, we recover the standard consensus equation

([2], [10], and [14]).

The final part of the construction relates the power levels to the effective sensor

footprint. This connection depends on what type of sensor is used and, for the purpose

of the discussion in this work, we follow the model developed in [46], as mentioned in

the previous sections. In this case, the sensor range model is based on the RF power
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density function for an isotropic antenna with the sensor footprint being proportional

to the available power of the sensor node. Since the footprint (disk) is quadratic in

the sensor range (radius), we get that

∆2
i = γipi, (4.20)

where γi > 0, i = {1, . . . , N}, is a constant that depends on various factors such

as the transmission medium and source. Putting all of these individual components

together, we obtain the main object of study in this work, namely an agent model

that we choose to call a MoPS (Mobility, Power, and Sensing) agent.

Definition 4.2.1 (MoPS Agent). A MoPS agent is a first-order Mobility, Power,

and Sensing agent, whose dynamics are given in Equation (4.17), whose power decay

is given in Equation (4.18), whose sensory footprint is given by Equation (4.20), and

whose control law satisfies the restrictions given in Equation (4.19).

The key question under investigation is what effects the shrinking footprints have

on the performance of the agent team. For instance, if two agents are to meet at a

common location, they need to be “visible” to each other (or at least one of them to

the other). Even though they may be within the sensing range of each other initially,

by moving around, the power consumption may cause the agents to lose track of each

other since the sensor ranges may become too small. This is also an issue in more

elaborate cooperative control scenarios and what is needed is a systematic approach to

designing coordinated controllers that take power consumption into account already

at the design stage.

4.2.2 Power-aware Rendezvous: Network of Two Agents

As already stated, the rendezvous problem involves moving a collection of mobile

agents to the same spatial location. Moreover, this task should be accomplished with

only local information given in terms of the relative inter-agent displacements.
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Figure 35: Rendezvous between two MoPS agents.

To start the discussion, we first study the rendezvous problem for a pair of MoPS

agents, and in particular, we investigate the implications in terms of power con-

sumption. We make two additional, simplifying assumptions about the two agents,

depicted in Figure (35), namely (1) that they do not act stupidly, in the sense that

they do indeed move towards each other, and (2) that they act symmetrically and

have the same initial power levels and power decay rates. A consequence of the first

assumption is that we can restrict the problem to a one-dimensional problem in which

the agents are moving on the line between them. The second assumption implies that

the two agents are executing the same anti-symmetric control strategy in that

ẋ1 = f(x1 − x2) = −f(x2 − x1) = ẋ2,

where f is the particular control strategy used.

If we assume, again, without loss of generality, that x1, x2 ∈ R and that x1 ≤ x2,

we can let u constitute the applied control action, in the sense that

ẋ1 = −u, ẋ2 = u,

where is u is some scalar. Under this formulation, with the assumption that the

agents do not act stupidly, we immediately see that u ≤ 0. As a consequence, we get

that the distance between the agents, d = x2 − x1, has the dynamics

ḋ = 2u, (4.21)

with solution

d(t) = d0 + 2

∫ t

0

u(s)ds = d0 − 2

∫ t

0

|u(s)|ds = d0 − 2Ut, (4.22)

115



where d0 is the initial distance between the two agents, and where Ut =
∫ t

0
|u(s)|ds is

the total control energy used by an agent over the interval [0, t].

Since we assume that the agents act symmetrically and have the same initial power

levels, we can use p(t) to denote this level, which satisfies

ṗ = cu. (4.23)

In light of Definition 4.2.1, we can observe that for rendezvous to be successfully

executed by these two agents, they need to be able to sense each other, i.e., we need

to ensure that

d2(t) ≤ γp(t) (4.24)

throughout the duration of the movement. We let e(t) denote the power gap, i.e.,

e(t) = γp(t)− d2(t), (4.25)

with the interpretation that e(t) ≥ 0 implies that the agents can sense each other

while e(t) < 0 implies that they are not within the range of each other. One natural

question to ask now is how much control energy can be injected into the system

without rendering e negative, i.e., without causing the underlying interaction network

to become disconnected.

Lemma 4.2.1. The maximum energy that can be injected into a two MoPS system,

whose initial separation and power satisfies γp0 − d20 > 0, over a given time interval

[0, t], without rendering the underlying network disconnected is

U?
t =

d0 − cγ/4

2
+

√

(

d0 − cγ/4

2

)2

+ e0, (4.26)

where e0 = γp0 − d20.

Proof. The solution to Equation (4.23) is given by

p(t) = p0 − cUt. (4.27)
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Replacing the expressions for d(t) and p(t) in Equation (4.25) with the explicit solu-

tions for p and d yields,

e(t) = γ(p0 − cUt)− (d0 − 2U)2.

To find the maximum energy that can be injected while maintaining connectivity, we

need to put e(t) = 0 and solve the resulting quadratic equation to find

U?
t =

d0 − cγ/4

2
+

√

(

d0 − cγ/4

2

)2

+ e0,

and the proof follows.

Now, we need to relate this maximal energy injection to the achievement of ren-

dezvous. In particular, we need to ensure that if the agents move as much as they

possibly can without causing the network to get disconnected, they do in fact end up

at the same location. The subsequent theorem establishes conditions on the initial

power level that ensures that this is in fact achievable.

Theorem 4.2.2. For a two MoPS system, rendezvous can be achieved if

p0 ≥
6d20 + γcd0

8γ
, (4.28)

Proof. At any time, the distance between the two agents is given by Equation (4.22).

If rendezvous is achieved at time t, then we have d(t) = 0, which, in the light of

Equation (4.22) implies that

d0 = 2Ut. (4.29)

Replacing Ut by U?
t in the above expression yields the most restrictive conditions

when rendezvous can in fact be achieved and straightforward algebraic manipulation

generates the condition on p0 that

p0 =
6d20 + γcd0

8γ
.
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Since U?
t is the maximum energy that can be injected without loosing connectivity,

which suggests that for any Ut ≤ U?
t , the inequality in (4.28) is satisfied.

One consequence of Lemma 4.2.1 and Theorem 4.2.2 is that for a system of two

MoPS agents in which the rendezvous problem is reduced to a one-dimensional prob-

lem, the type of the controller or the time needed to solve the problem, does not

matter. The only thing that matters is the total energy, Ut, supplied to the sys-

tem, which depends completely on the initial conditions. For example, if we want to

achieve rendezvous in T time units and the condition in Equation (4.28) is satisfied,

then a constant u given by

u(t) = − 1

T
U?
T

will solve the problem. This controller is used in Figure (36), where three different

initial power levels are used. In fact, we let

p0 =
6d20 + γcd0

8γ
+ ε.

In the left figure, ε < 0, which results in loss of connectivity before rendezvous is

achieved. In the middle figure ε = 0 and rendezvous is achieved exactly at the time

when footprint becomes zero, and in the right figure ε > 0 and rendezvous is achieved

with power left over.

From the above observations, one would be tempted to draw the conclusion that

the condition in Equation (4.28) is not only sufficient but also necessary. It is in

fact also necessary under the assumption that connectivity is maintained. But, the

agents may, by pure luck or in some other open-loop fashion, still be able to achieve

rendezvous despite not being able to “see” each other, which is why we formulate this

condition as a sufficient but not necessary condition. The rather surprising fact that

the actual control law does not matter in this case is of course not true in general. If

there are more than two agents (as we will see in the next section) or if the dynamics

is double integrator rather than single integrator, we are no longer this fortunate.
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(a) Rendezvous fails (b) Rendezvous barely succeeds

(c) Rendezvous succeeds

Figure 36: Depicted are the distance between agents (solid), the available power
(dotted), and e(t), i.e., the power gap (dashed-dotted) which corresponds to how
close agents are to becoming disconnected. In the left figure, e = 0 before rendezvous
is achieved. In the middle figure, rendezvous is achieved at the very moment when e
becomes zero. In the right figure, rendezvous is achieved with e > 0.

4.2.3 Power-aware Rendezvous: Directed Cycle Topologies

In this section, we consider a more involved situation in which we have a network of

N MoPS agents. We assume that the interaction topology, i.e., the underlying graph

that dictates the information flow, is given by a directed cycle that remains static

throughout the motion [57]. The number of agents, N , is greater than 2 and every

agent i ∈ {1, . . . , N}, with position xi is connected to (i+1)-th agent at position xi+1

(modulo N), as shown in Figure (37). Moreover, we assume that all the agents have

the same initial power levels.

Since the graph representing the system is balanced and has a rooted out branch-

ing, under the standard consensus algorithm, all the agents will meet at x̄ = 1
n

∑n

i=1 xi(0),
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i.e., centroid of their initial positions. However, for consensus algorithm to work in

the presence of decaying power levels, the graph must remain connected, which, from

Equation (4.24), implies that

‖xi(t)− xi+1(t)‖2 = d2i (t) ≤ γipi(t), (4.30)

for all time t. Here pi(t) is the power level of agent i at time t and di(t) is the distance

between agents i and i+ 1.

Since we can no longer hope for a situation where the results do not depend on

the particular control laws we use, we choose to work with the consensus equation

over a directed cycle, i.e., the interaction law executed by the MoPS agents in this

system is given by

ui = k(xi+1 − xi), (4.31)

where k > 0 is a constant. Using the notation from Equation (4.19), f(xi − xj) =

k(xj − xi) and σij = 1 ⇔ j = i+ 1 (modulo N) .

The overall system can be written as

ẋ = Ax,

where A is an N ×N circulant matrix,

A =

































−k k 0 · · · · · · 0

0 −k k 0 · · · 0

... 0
. . .

. . .
...

...
...

. . .
. . . 0

0 0 · · · 0 −k k

k 0 · · · · · · 0 −k

































The following result characterizes a sufficient condition that ensures that ren-

dezvous is achieved in the sense of all agents being within an ε distance of the initial
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Figure 37: System Model for Directed Cycle Graph

centroid without rendering the network disconnected. This result is slightly more

involved than the one in the previous section because of the fact that the network is

more complex.

Theorem 4.2.3. For a system consisting of N MoPS agents arranged in a directed

cycle topology and executing the control law (4.31), suppose that:

1. the power loss coefficient ci satisfies

ci ≤
2
√
2λe−λT (ε)

kγi
max

i∈{1,...,n}
‖xi(0)− x̄‖, (4.32)

where

T (ε) :=
1

λ
max

i∈{1,...,n}
ln

(‖xi(0)− x̄‖
ε

)

, (4.33)

and λ is the real component of the second largest eigenvalue of A, which is a

function of k, and

2. the initial power levels satisfy

pi(0) ≥
2

γi
max

i∈{1,...,n}
‖xi(0)− x̄‖2. (4.34)
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Then, the connectivity constraint (4.30) holds at all times t ∈ [0, T (ε)], and all agents

are within a distance ε of x̄ at time t = T (ε).

Proof. Recall that without the connectivity constraint, the control law (4.31) ensures

exponential convergence of all the agents at the centroid ([14], and [49]). Thus, there

exists a constant λ > 0 (the real component of the second largest eigenvalue of A),

so that for every i ∈ {1, . . . , N},

‖xi(t)− x̄‖ ≤ ‖xi(0)− x̄‖e−λt (4.35)

Therefore, given an ε > 0, after the time T (ε) satisfying Equation (4.33), all the

agents are within a distance ε of the centroid of the initial locations.

It now remains to show that under the conditions of this proposition, the connectivity

constraint (4.30) holds at all times t ∈ [0, T (ε)]. Now,

d2i = ‖xi − xi+1‖2 = ‖xi − x̄− (xi+1 − x̄)‖2,

≤ ‖xi − x̄‖2 + ‖xi+1 − x̄‖2,

Using (4.35)

d2i ≤ 2max
i

‖xi(0)− x̄‖2e−λt. (4.36)

Assuming Equation (4.32) holds then from Equation (4.36),

d2i ≤
16λ2e−4λt

γ2i c
2
ik

2
max

i
‖xi(0)− x̄‖4.

From the power decay model (4.18), the control law (4.31) and the above inequality

we get

ṗi ≥ −4λe−2λt

γi
max

i
‖xi(0)− x̄‖2,

After integrating the above inequality and using the condition (4.34)

pi(t) ≥
2e−2λt

γi
max

i
‖xi(0)− x̄‖2,
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Comparing this with Equation (4.36) results in

pi(t) ≥
d2i
γi
.

which proves that the connectivity constraint holds at all times t ∈ [0, T (ε)], thus

proving the theorem.

A couple of observations can be made from Theorem 4.2.3. Firstly, to satisfy the

condition on power loss coefficient (4.32), each agent needs to estimate the maxi-

mum initial distance of the centroid x̄ from an agent. Secondly, keeping all the other

parameters fixed, as ε becomes smaller, T (ε) becomes larger, and therefore the condi-

tion (4.32) implies that ci needs to be smaller. This is intuitive because with a longer

time to rendezvous, each agent is expected to spend more power, and therefore, the

power-loss coefficient must be smaller.

4.3 Distributed Framework for Energy-efficient

Mobility Controllers

Energy-efficient mobile sensor networks have been investigated extensively in the past

few years, where one of the main issues is how to use mobility to reduce the energy

required for sensing and communications; see [81] and references therein. Most of

these papers either ignore the cost of energy needed for mobility of the sensors, or

assume unlimited sources of such energy. However, lately the question of balancing the

energy costs of mobility and communication has begun to attract attention [83, 82, 76].

The development of inexpensive mobile, wireless sensing devices in the past few

years (e.g., [60, 61]) has suggested the eventual massive deployment of mobile sensor

networks in communication and control applications [76]. In many such applications

the devices (agents) are tasked with transmitting data from one or more source objects

to a remote station (controller), and to this end they have to arrange themselves

in a network configuration. However, the agents often are powered by on-board,

123



limited-energy sources such as batteries, which cannot be replenished during the

application’s lifetime. Therefore, the network has to be configured in a way that

balances, optimally, the energy required for communication and mobility.

The problem of optimizing mobility/communication energy tradeoffs has been for-

mulated only recently; please see [83, 82, 76] for surveys. Reference [82] considers a

robot tasked with transmitting a given number of bits while in motion on a predeter-

mined trajectory with variable degrees of channel fading. Using a realistic, detailed,

probabilistic model of the channel’s fading, that paper determines the robot’s speed,

transmission rate, and stopping times that minimize the total energy required for

mobility and communication. Reference [76] considers the task of distributing wire-

less mobile agents so as to provide transmission of sensor data from one or more

objects to a remote station, and doing it in a way that minimizes the total required

energy. That paper uses graph-theoretic techniques to compute an optimal strategy

comprised of the sequential scheduling of mobility followed by transmission. The

problem considered in this paper is stated in similar terms in an abstract context,

but it is defined in the dynamic setting of optimal control, where the agents carry out

their communication tasks while in motion. Furthermore, this paper is fundamentally

different from [76] in several other ways, as will be made clear in the sequel.

Consider a scenario in which a supervisory controller instructs a collection of

wireless mobile agents to form a tandem, point-to-point connection for transport-

ing sensory data from a given object to a remote station (controller). Sensing and

communication must commence immediately and be maintained for a given amount

of time. Meanwhile the agents are arranging themselves dynamically in a network

configuration where each one of them acts as a relay between a single downstream

node and a single upstream node, and they determine their trajectories in a way that

minimizes the energy spent on both communication and motion. The power required

for transmission on a link is related to the link’s length, and the motion energy is
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related to the distance traveled. We define the problem in the setting of optimal

control, and devise a highly-efficient algorithm for its solution, that lends itself to a

natural distributed implementation.

The above scenario is fairly generic, and although the power and energy models

that we use are similar to those in [76], our primary concern is not with specific

application problems. Instead, our objective is to propose a general-purpose compu-

tational framework for a general problem formulation and highlight its salient points

via analysis and simulation. We start our investigation for this problem for a simple

case of a single stationary object, a stationary remote station, and a one-dimensional

movement of the agents. Later on we will generalize our results for a complete class

of systems.

4.3.1 Problem Formulation

Consider the network shown in Figure (38), consisting ofN mobile agents, A1, . . . , AN ,

moving between an object and a remote controller station, denoted by O and C,

respectively. Let xk(t), k = 1, . . . , N , denote the relative position of Ak with respect

to the object, and let d denote the relative position of the controller with respect to

the object. Since we only consider motion in the line adjoining O to C, we have that

xk(t) ∈ R and d ∈ R as well. To simplify the notation we define x0 = 0 and xN+1 = d,

and we note that these are the positions of O and C; assuming that both the object

and the controller station are stationary, x0 and xN+1 are constants and not functions

of time. We define the vector notation x(t) := (x1(t), . . . , xN (t))
> ∈ RN to denote

the position of the agents, and assume that x(0) is given and fixed. Furthermore, we

define u(t) = (u1(t), . . . , uN(t))
> ∈ RN to be the vector of velocities of the agents,
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namely

ẋ = u, (4.37)

where the notational dependence on t is suppressed. The problem that we consider

is to determine the control u(t) and related state trajectory x(t) (via (4.37)) for a

given time-interval t ∈ [0, tf ], in a way that minimizes a weighted sum of the agents’

transmission energy and communication energy, subject to amplitude constraints on

the controls.

The power required for moving an agent is proportional to its speed [76], and hence

the associated performance-functional term is Jmobility :=
∑N

k=1

∫ tf
0

|uk(t)|dt. For the

transmission energy cost, let ψ(z) : R+ → R+ be a non-decreasing, continuously-

differentiable function representing the transmission power of each agent over a link

of length z. Commonly ψ(z) = a+bz2 for given constants a ≥ 0 and b > 0 [76], but we

consider a more general function ψ. Note that the transmission down the line is from

An to An+1, n = 0, . . . , N , and hence the total transmission energy can be represented

by the cost functional Jtrans :=
∑N+1

k=1

∫ tf
0

(

ψ(xn(t) − xn−1(t)
)

dt. The performance

function that we consider is a weighted sum of Jmobility and Jtrans, namely, for a given

C > 0,

J =
N+1
∑

k=1

∫ tf

0

ψ
(

xk(t)− xk−1(t)
)

dt

+C

N
∑

k=1

∫ tf

0

|uk(t)|dt. (4.38)

The constraints that we consider are |uk(t)| ≤ 1 for every k = 1, . . . , N and for all

t ∈ [0, tf ]. The problem that we solve is to minimize J subject to these constraints.

Let us denote by p(t) = (p1(t), . . . , pN(t))
> ∈ RN the costate (adjoint) variable.

Then by Equation (4.37), the costate equation is

ṗk =
dψ

dx
(xk+1 − xk)−

dψ

dx
(xk − xk−1), (4.39)
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k = 1, . . . , N , with the boundary condition pk(tf ) = 0. The Hamiltonian has the

following form,

H(x, u, p) =
N
∑

k=1

(

pkuk + C|uk|
)

+
N+1
∑

k=1

ψk(xk − xk−1), (4.40)

and this particular form is especially suitable for the algorithm that we used for

solving this problem.

The algorithm that we used, presented in [43], is a descent technique whose di-

rection is computed by minimizing the Hamiltonian at each time t. Obviously this is

often impossible, and hence impractical in the general setting of optimal control, but

the special structure of our problem makes it possible and even simple, and hence

yields effective descent directions. The step size of this algorithm is determined via

the Armijo procedure [85, 84] which, though having linear asymptotic convergence,

often has the practical advantage of rapid progress at the initial phases of the algo-

rithm’s runs. This point, demonstrated via simulations, is argued in [43] to suggest

the eventual use of the algorithm in real-time tuning of the agents’ trajectories.

We next describe the algorithm that we used for the general optimal control

problem described above.

For every λ ≥ 0, define the function J̃u,w(λ) : R
+ → R as

J̃u,w(λ) = J
(

(u+ λ(w − u)
)

. (4.41)

Given a control u, denote by T (u) the next iteration point that the algorithm com-

putes from u, and thus, ui+1 = T (ui). The formal computation of T (u), for a given

control u, is as follows.

Algorithm 1. Parameters: α ∈ (0, 1), β ∈ (0, 1).

Step 1: Compute the state trajectory x(t) and costate trajectory p(t), associated

with the control u.

Step 2: Compute a control w :=
(

w(t)
)∣

∣

t∈[0,tf ]
such that w(t) ∈ argmin

{

H(x(t), ·, p(t))
}

∀ t ∈

[0, tf ].
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Step 3: Compute

k′(u) :=

min
{

k′ = 0, 1, . . . , : J̃u,w(β
k′)− J̃u,w(0) ≤ αβk′θ(u)

}

. (4.42)

Step 4: Set the step size to be λ(u) := βk′(u), and set T (u) = u+ λ(u)(w − u).

4.3.2 Simulation Examples

In this section we present results of the application of Algorithm 1 to the problem

described in Section II. We start with the simplest problem where N = 2 in order to

highlight some properties of the algorithm, and then we present a more complicated

case where N = 6.

The case of two agents The problem in question is to minimize J as defined

in (4.38) subject to the dynamics in (4.37) and the constraints |ui(t)| ≤ 1. The

distance of the object from the controller is d = 10, and the final time is tf = 20.

The transmission power over a link of length z is ψ(z) = z2 and hence (see Equation

(4.38)) ψ(xk − xk−1) = (xk − xk−1)
2, and the constant C in (4.38) is C = 7. The

initial condition for the state equation (4.37) is x(0) = (1, 9)> for every control u.

Algorithm 1 was used with α = β = 0.5.

This problem can be solved analytically due to the particular form of the function

ψ(z), but we use the algorithm in order to examine its performance. The algorithm

was run for 200 iterations computing, recursively, controls ui, u = 1, . . . , 200. Note

that each control is two dimensional, ui = (ui,1, ui,2)
>, and we chose, arbitrarily, the

initial control to be u1,1(t) = 1.0 and u1,2(t) = sin(t/2). We used a uniform grid

overlaying the time-interval [0, tf ] with ∆t = 0.01, for the various computations in

Equations (4.37)-(4.40), and for the differential equations we used the forward Euler
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method. The minimizer of the Hamiltonian in (4.40) is known to be

wk(t) =























−1, pk(t) > C

0, −C < pk(t) < C

1, pk(t) > −C,

(4.43)

The results of this simulation are shown in Figure 39. Part (a) depicts the graphs

of the two components of the initial control, u1,1(t) and u1,2(t), while part (b) shows

the corresponding state trajectories, x1,1(t) and x1,2(t). This control obviously is far

off the optimum; the associated cost is J(u1) = 4, 012 and the value of the optimality

function is θ(u1) = −14, 910, where θ(u) ≤ 0 is the optimality function for every

control u, and if θ(u) = 0 then u satisfies the maximum principle [86]. After 200

iterations, the graphs of the controls u200,1(t) and u200,2(t) are shown in part (c) of

the figure, while the graphs of their corresponding state trajectories, x200,1(t) and

x200,2(t), are depicted in part (d). These graphs show quite clearly that the behavior

of the control u200 is compliant with Equation (13) which indicates a bang-off-bang

control. The associated cost is J(u200) = 724.5, and the proximity of u200 to an

optimum is evident from the optimality function, θ(u200) = −0.03265.

Throughout the course of 200 iterations the cost came down from J(u1) = 4, 012 to

J(u200) = 724.5, but this reduction is by no means linear in the number of iterations.

In fact, the graph of the cost J(ui) as a function of i, shown in part (e) of the

figure, shows a rapid decrease in a few iterations at the early part of the algorithm’s

run, followed by a relatively flat curve. 95% of the cost reduction was achieved by

5 iterations, while 98% was obtained by 8 iterations. The corresponding graph of

θ(ui) as a function of i is shown in part (f), and it exhibits a rapid ascent towards

0 in a handful of iterations. These graphs are consistent with cumulative experience

with gradient-descent algorithms with Armijo step sizes, which tend (in many cases)

to make most of their strides towards minimum-points in a handful of iterations.

This factor, together with the global stability of such algorithms, has made them
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Figure 39: Results of Algorithm 1: Two agents, ∆t = 0.01

attractive despite the fact that their asymptotic convergence is slower than that of

other techniques.
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The algorithm’s run of 200 iterations took 5.95 seconds of CPU time on a PC

laptop with Intel Core i7-2630QM (2.00 Gigahertz) processor. However, Figure 2(e)

indicates that fewer iterations would suffice while reducing the CPU times. For in-

stance, a run of 100 iterations takes 2.99 seconds of CPU times, and would produce

a final cost of J(u100) = 724.6 as compared to J(u200) = 724.5. Its final control and

state trajectory, depicted in parts (g) and (h) of the figure, are barely distinguishable

from those of u200 and x200. As few iterations as 20 may suffice as can be seen in

Figure 2(e).

To further reduce the execution time we increased the grid’s time interval ∆t

from 0.01 to 0.1. Remember that the CPU time for 200 iterations with ∆t = 0.01

was 5.95 seconds. However, the case with ∆t = 0.1 took 0.75 seconds of CPU time,

and the cost went down from J(u1) = 3, 743.4 to J(u200) = 726.2 (as compared to

724.5 when ∆t = 0.01), while the optimality function went up from θ(u1) = −13, 445

to θ(u200) = −0.0356. The results are shown in Figure 3 where part (a) and part (b)

depict u200 and x200, while part (c) shows the graph of J(ui) vs. i. Again, we see that

most of the decline in the cost is achieved in the first few iterations.

The case of six agents The system is similar to that of the last subsection except

that the distance of the object from the controller is d = 20, and there are six

agents and hence u ∈ R6 and x ∈ R6. The initial position of the agents is x(0) =

(1 2 7 9 12 19)>. The simulation was done under the same setup as before, i.e.,

tf = 20, ∆t = 0.01, and C = 7. The algorithm was run for 200 iterations, starting

from the initial input u1,k(t) = 1.0 for every k = 1, . . . , 6, and for all t ∈ [0, tf ]. The

execution CPU time was 8.67 seconds.

The results are shown in Figure 4, whose parts (a) and (b) depict the final input

and corresponding state trajectories, while parts (c) and (d) show the graphs of the

cost and optimality function as functions of the iteration count. Part (c) of the figure
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Figure 40: Results of Algorithm 1: Two agents, ∆t = 0.1

exhibits a similar pattern of rapid descent of the cost from J(u1) = 7, 969 to J(u200) =

1, 253.6, and it took 7 and 14 iterations to achieve 95% and 98% of the total cost

reduction, respectively. Correspondingly, the optimality function rises from θ(u1) =

−28, 537 to θ(u200) = −3.506. The proximity of u200 to the optimum, or at least a

local minimum, was tested by various runs of 400 iterations starting from different

initial inputs. The lowest value of J(u400) we obtained was 1, 252.3 as compared to

J(u200) = 1, 253.6, and the corresponding value of the optimality function was −0.805

as compared to θ(u200) = −3.506. Thus, we believe that the algorithm practically

converged, and by parts (c) and (d) of the figure, quite rapidly. The rapid convergence

of the algorithm is despite the fact that not all of the components of the input

variables, u200,k(t), k = 1, . . . , 6, resemble a bang-of-bang control. To explain this

phenomenon, we point out that there is a great degree of insensitivity of J to certain

variations in u. To see this point, recall that the chattering lemma implies that certain
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large L1 variations in u yield small variations in the corresponding state trajectory x.

Some such variations result in small variations in J . Figure 4(c) leads us to believe

that our algorithm drives the controls toward such a region containing the optimal

control, and that is why the computed cost-performance and state trajectories, but

not the controls, are close to those of the optimal ones. The effectiveness of the

algorithm is not in approximating the optimal control u? by a computed control uk, but

in approximating the optimal cost J(u?) by the cost of a computed control, J(uk).
1 The

above-reported run achieved that in 8.25 seconds, and further reduction in the CPU

time can be obtained by running fewer iterations: it takes CPU times of 0.8703, 1.669,

and 4.115 seconds to execute 20 iterations with J(u20) = 1335, 40 iterations with

J(u40) = 1, 284, and 100 iterations with J(u100) = 1, 257.5 respectively, as compared

to 200 iterations with J(u200) = 1, 253.6. Further reductions can be obtained by

increasing ∆t. In fact, we ran the algorithm with ∆t = 0.1, and the resulting values

were J(u20) = 1, 335.5 with CPU time of 0.178; J(u100 = 1, 259.4 with CPU time of

0.5741; and J(u200) = 1, 255 with CPU time of 1.077 seconds. These numbers are

quite close to those obtained with ∆t = 0.01, and further point to the effectiveness

of the algorithm.

4.3.3 Two-dimensional System

In this section, we extend the problem of forming a relay network between a transmit-

ter an a receiver to two dimensions. In addition to that, we propose a framework that

results in a whole class of energy-efficient distributed controllers that can be used for

solving classic problems in multi-agent systems like rendezvous, formation-control,

and coverage control in an energy efficient manner.

We start with the problem setup shown in Figure (42), in which N mobile agents

relay information between base stations B1 and B2 and they have to maintain this

1Practically, what may matter most in various applications is convergence in the weak topology
on the space of controls.
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Figure 41: Results of Algorithm 1: Six agents, ∆t = 0.01

network for time tf . Let zk ∈ R2, k = 1, . . . , N be the location of each agent where

zk , [xk yk]
T . For each agent, we assume single integrator dynamics

zk = uk. (4.44)

Our objective as before is to minimize total energy consumption over time interval

[0, tf ], and to achieve this objective agents can move around to balance out their

locations in order to reduce the distance over which they need to transmit data. We

assume that agents use broadcast model for data transmission in which each agent

broadcasts its data to all its neighbors. Therefore, to reduce transmission energy,

each agent tries to minimize its distance from the neighbor that is farthest away. As

a result, the cost function that we are trying to minimize is

J =
N
∑

k=1

∫ tf

0

[

C‖uk(t)‖+max
j∈Nk

‖zk − zj‖2
]

dt (4.45)
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Figure 42: Tandem network in two dimensions

The Hamiltonian has the following form,

H(x, u, p) =

N
∑

k=1

[

C‖uk(t)‖+ pTk uk +max
j∈Nk

‖zk − zj‖2
]

, (4.46)

where pk is the costate.

In one-dimensional case, the control uk was restricted to [−1, 1] which simplified

the problem because the optimal solution was a bang-off-bang control. However, in

two dimensions, we need to find optimal trajectories for each agent that minimize the

cost. Moreover, we want to present a formulation for a complete class of problems, in

which case, depending on the nature of the problem, there can be complex constraints

on the state like connectivity, obstacle avoidance or formation maintenance. Solving

optimal control problems with constraints is in general difficult and to propose a

generalized solution for a class of problems is an extremely challenging task.

To simplify this task, we formulate this problem as an optimal control problem

with no constraints, for which we have to define the state dynamics such that the

constraints are handled completely by these dynamics. For instance, in the problem

that we are trying to solve, we know that if there is no cost associated with mobility

then the optimal locations for the agents lie on the straight line between B1 and B2

such that the agents are distributed equidistantly. From ([14] and [16]), the agents are

guaranteed to reach optimal locations asymptotically if their dynamics are governed
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by consensus equation. Therefore, we define the following dynamics for each agent.

żk = u′k
∑

j∈Nk

(zj − zk), (4.47)

where u′k ∈ [0, 1] and Nk is the set of neighbors of agent k. Through above dynamics,

we have incorporated all the constraints for this problem in the state dynamics and

reduced our problem to finding optimal control u′k that minimizes the cost (4.45). For

a generalized formulation, we can use weighted consensus equation, through which,

by intelligently selecting weights, we can solve interesting multi-agent coordination

problems like connectivity maintenance, formation control, obstacle avoidance and

coverage control in a distributed manner. Let us define the switching signal

Sk(t) = C

∥

∥

∥

∥

∥

∑

j∈Nk

(zj(t)− zk(t))

∥

∥

∥

∥

∥

2

+ pTk (t)
∑

j∈Nk

(zj(t)− zk(t)) .

Then, the minimizer for the Hamiltonian (4.46) is

u′k(t) =











0, Sk(t) > 0

1, Sk(t) < 0,
(4.48)

Thus, the control u′k is simple a bang-off control that controls how much each agent

is allowed to move under the consensus dynamics depending on the cost of mobility.

Another major advantage of this problem formulation is that we can still use Algo-

rithm (1) for solving the optimal control problem since our state dynamics and cost

have the special structure that is required by this algorithm. To get a better insight

and to check the validity of the proposed framework, we simulated the network in

Figure (42) for N = 4 agents and tf = 20, and the results are presented in Figure

(43). Parts (a) and (b) of this figure correspond to final input and state of the agents

after 200 iterations of the algorithm when mobility cost C = 0. In this case, we can

see that the control u′200(t) = 1 for all t ∈ [0, tf ] and for all the agents. From the

state trajectories of each agent, represented by dotted lines, we can see that the final

location of the agents (represented by ‘×’ at the end of trajectories) lie on the straight
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Figure 43: Results of proposed framework for two dimensional system: Four agents,
∆t = 0.01

line between the base stations and the agents are equidistant. Next we simulated the

same system for C = 50, implying that mobility is 50 times more expensive then

data transmission. In this case, from part (d) of the figure, we can see that the final

location of the agents are still on the straight line between the base stations, but the

agents are no longer equidistant. Moreover, the corresponding optimal control for
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each agent, shown in part (c), is bang-off control, because after t = 5, input is zero

for all the agents. The cost associated with this problem is shown in part (e), and

we can see that the cost reduced from J(u′1) = 11116.4 to J(u′200) = 10872. The fact

that this cost is minimum is proved by the plot of θ(u′), which shows that after 200

iterations θ(u′200) = −0.0007501 which is almost equal to zero.

4.3.4 Real-time Implementation

The fast convergence in the initial phase and the low execution time requirements

of Algorithm 1 allows us to implement this algorithm in real time. In the real-time

implementation of the system described in Section 4.3.1 with six agents, each agent

solves the problem of optimizing its own cost, i.e., each agent minimizes the cost

J i
dist = J i

trans + J i
mobility, (4.49)

where

J i
trans = max

j∈Ni

∫ tf

0

‖xi − xj‖2dt,

and

J i
mobility = C

∫ tf

0

|ui(t)|dt.

To minimize this cost, agent i located at xi performs the following steps.

Algorithm 2. Parameters: k, ∆t, C, tf , ts.

for k1 = 0 : btf/tsc

Step 1: Assumes its neigbors, i.e., j such that j ∈ Ni, are stationary

Step 2: Applies Algorithm 1 to find optimal control ui that minimizes J i
dist over

time interval (k1ts, tf ).

Step 3: Uses the control ui to update its state according to system dynamics (4.37)

for time interval ((k1 − 1)ts, k1ts).

Step 4: k1 = k1 + 1.

end
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Figure 44: Results of Algorithm 2: Six agents, ∆t = 0.01, T = 20, k = 200, and
T1 = 1 second

Thus, for the scenario when Algorithm 2 is applied to a tandem network of six

agents (as in the previous example), each relay node effectively solves the optimal

control problem for one node only between a transmitter and a receiver, and for

k = 200 and ∆t = 0.01 this problem is solved in 1.89 seconds. Since all the relay nodes

will be solving this problem in parallel, the total computation time will still be 1.89

seconds. Each node will use this control for ts = 1 and then solve the optimal control

problem to find the cost to go.This means that for total time tf = 20, each node will

have to compute cost to go 20 times. The simulation results of the system with six

agents under real-time scheme are presented in Figure 44, where Figures 44(a) and

44(b) show the final states of the agents after k = 200 iterations and the cost of the

system at each iteration respectively. From Figure 44(b), J(u200) = 1279.3, which is

very close to the optimal cost for the centralized problem, which was J(u200) = 1253.6.

To improve the execution time, we reduced ∆t from 0.01 to 0.1. As a result the

execution time for solving the problem one time was reduced to 0.42 seconds from

1.89 seconds and the cost increased from 1279.3 to 1282.1. To further improve the

execution time, we showed in the previous section that for the case of six agents,

98% of the cost was reduced in 14 iterations. Therefore, we simulated the system

for k = 20 iterations which resulted in a final cost of J(u20) = 1286.6, where as the
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execution time now reduced to 0.04 seconds. Next, we reduced the time for which

each agent uses the control it computed from ts = 1 to ts = 0.1. In this case, the cost

is J(u20) = 1272.8 and J(u50) = 1267.4

Despite these promising simulation results, real-time algorithm still requires thor-

ough investigation. To make any claims regarding the performance of this algorithm,

we have to perform detailed convergence analysis of this algorithm and analytically

compare its performance with the centralized algorithm. The contribution of this

work is to propose a framework that has great potential for solving an interesting

and all important problem of minimizing total energy consumption in distributed

multi-agent systems. However, this framework still requires rigorous mathematical

treatment before it can be used for practical implementation.
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CHAPTER V

CONCLUSIONS

In this work, we presented power-aware scheduling schemes for wireless sensor net-

works, which were categorized into two broad categories, namely static networks and

mobile networks. Static networks comprised of agents with no mobility whereas mo-

bile networks comprised of agents with mobility. For both of these classes of sensor

networks, power management was shown to be major design consideration since lim-

itation of available power is a bottleneck in the design of these systems.

In the context of power management in randomly deployed wireless sensor net-

works, there are two different notions of power-awareness. The first notion of power-

awareness that we presented in this work is the effect of environmental factors and

ageing effect of power supplies on the performance of individual sensing devices and

on the performance of the entire network. We supported our claim from references

from the existing literature that this indeed is an important factor that can impede

the capacity of the network to ensure desired performance level. However this aspect

of power-awareness is completely missing from the literature on wireless sensor net-

works. Therefore, in Chapter 2, we considered this aspect of power-awareness, i.e.,

how does decrease in available power affects the performance of individual devices

and of the entire network.

To address this problem, we used area of the sensor footprint as a metric for

sensor performance and presented explicit relationship between expected footprint

area of a sensor in the network and the desired event detection probability, which

was our desired performance criterion. Using this relationship, we presented feedback

scheduling controllers that allowed sensors to update their control parameter based on
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their available power at the decision time. The strength of these controllers was that

they were completely decentralised since sensors did not have to communicate with

their neighbors to make switching decisions. Moreover, the controller only needed to

compute the ratio of current power to initial power to update the control parameter

which simplified the implementation of these controllers on cheap and low quality

sensing devices. For these controller, we considered Boolean sensing model in which

case the proposed scheme was shown to be applicable as long as the sensor footprint

was compact. We also proposed a non-Boolean sensing model in which event detection

probability was a function of the distance between an event and a sensor.

In Chapter 3, we considered the other notion of power-awareness which is related

with the efficient utilization of available energy resources to maximize the lifetime of

the network. This notion of power awareness is popular in sensor networks commu-

nity and a huge body of work exists on energy-efficient sensor scheduling schemes.

However, in this work, we proposed a novel sleep-scheduling scheme that was a mix

of random and deterministic schemes and we showed through extensive simulations

that the proposed scheme extended the lifetime of the network from 40% to 70% as

compared to random switching scheme. To propose this scheme, we borrowed the

concept of a hard-core point process form stochastic geometry, which is an inhibition

process that does not allow the constituent points to lie closer than certain minimum

distance. However, to enforce this inhibition distance in sensor networks, sensors had

to communicate with their neighbors. The information that sensors communicated

with their neighbors consisted of random numbers which made this scheme random.

Nevertheless, the major challenge was the modeling of the coverage properties of the

point process in the case of overlapping disks since no results were available in the

existing literature. Thus, we started with the mathematical analysis of this process

and derived an expression for event detection probability when the coverage process

formed by sensor network was a pure hard-core process, i.e., distance between sensors
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was twice their sensing radius.

Then to generalize our analysis so that we can design sensor scheduling scheme for

any desired level of coverage, we developed a complete model of the coverage process

of a hard-core point process in which the sensing disks were allowed to overlap. To

derive this model, we performed extensive Monte Carlo simulations and used curve

fitting toolbox from Matlab. The validity of the proposed model was shown through

designing a sensor network for various desired performance levels and it was shown

that the designed network maintained the performance with average error of less

than 1%. Later on we compared the performance of a sensor network comprising

of MICA2 motes installed with magnetic sensors for detecting the magnetic field of

vehicles in their footprint. For these devices we showed that even after the added

cost of communication, the proposed scheme extended the lifetime of the network by

40% to 70% as compared to random scheme.

We also studied different types of hard-core point process and developed relation-

ships between the intensities of these new hard-core processes and the process that we

modeled, which allowed us to design these additional types of hard-core processes us-

ing the model that we developed. Moreover, we used one of the hard-core processes, in

which points were vibrated to increase the intensity, to propose a distributed coverage

control algorithm that can guarantee partial coverage.

In Chapter 4 of this work, we dealt with mobile sensor networks. We started

by looking at the classic rendezvous problem and proposed power-aware controllers

that guaranteed to achieve global objective in the presence of shrinking footprints.

The work corresponded to the first notion of power-awareness, i.e., to be aware of the

power level that is available and adjust the control parameter according to compensate

for any negative effects because of variations in available power.

In the second half Chapter 4, we studied the problem of minimizing total en-

ergy consumption in network of mobile agents because of both mobility and data
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transmission. We formulated this problem in generalized optimal control setting and

identified an efficient numerical technique for solving this optimal control problem.

We started our analysis with a simplified problem in one dimension and applied the

selected numerical algorithm for solving it, and the results of the simulation showed

the efficacy of this scheme. The strength of this numerical algorithm was shown to

be the fact that it reduced around 95% of the cost in less than 20 iterations which

was extremely fast.

We extended our problem formulation for two-dimensional case. For problem

formulation in two-dimensions, we proposed to use consensus equation to govern

the state dynamics and introduced a switching signal whose purpose was simply

to control how long agents were allowed to move under these dynamics depending

on the cost associated with mobility. The advantage of this approach was that it

reduced a complex optimal control with complicated constraints on the state to a

simple bang-off control. Moreover, numerous variations of consensus equation exist

in the literature to solve canonical problems like flocking, formation control, obstacle

avoidance and coverage control. Therefore, the proposed framework led to a whole

class of power-aware controllers for solving canonical problems in multi-agent systems.

Finally, we also proposed framework for real-time implementation of these power-

aware controllers and showed its validity by simulating a simple system with six

agents. However, the real-time implementation of these controllers is still an open

problem since there is a need to provide analytical proofs for the convergence of

the algorithm under real-time implementation. Moreover, it will be instructive to

compare the performance of real-time algorithm with the centralized case that we

presented to check whether there are any performance compromises under real-time

implementation.

Following is a list of publications resulted from this work.
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