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SUMMARY 

 

Fluorescence Tomography (FT) is an optical imaging modality extensively used 

for non-invasive in vivo localization and quantification of the distribution of fluorophore-

tagged molecules and inclusions in animal and human subjects. This technology offers in 

vivo functional three-dimensional localization of fluorescence up to few centimeters 

under the skin using non-invasive optical measurements. Empowered by a host of 

targeted, activated, and vascular probe technologies, this imaging technique has found 

crucial applications in preclinical studies for cancer research, drug monitoring, and 

development. 

The performance of existing FT systems in accurately imaging and reconstructing 

the fluorescent agents inside optically turbid media such as tissue is severely hindered by 

the ill-posed nature of the reconstruction problem, modeling errors, and weak and noisy 

data. 

In this work, a multiplexed FT system is conceptualized and developed that has 

the potential to circumvent the limitations of existing single-point illumination FT 

systems. Accompanied by several novel reconstruction techniques as part of the 

preliminary research, the Hadamard multiplexed FT system shows great promise for 

enhancing the throughput in FT systems and adding robustness to 3D reconstructions in 

FT.   
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CHAPTER 1 
 

INTRODUCTION TO FLUORESCENCE TOMGORAPHY 

(FT) 
 
1.1 Background 
 

Medical and molecular imaging modalities have long been used for non-invasive 

three-dimensional (3D) localization and quantification of inclusions such as cancer 

lesions, test drugs, and reporter genes buried at different depths in biological tissue [1-5]. 

Every bio-imaging platform has unique advantages to offer and is primarily employed in 

areas where its advantages are of interest. Various bands of the electromagnetic spectrum 

have been extensively used for medical imaging purposes for decades, e.g., X-ray in 

computed tomography (CT), radio frequency (RF) in magnetic resonance imaging (MRI), 

and gamma radiation in positron emission tomography (PET). However, the use of 

visible and near infra-red light in in vivo imaging has only recently been explored [6-11]. 

Strong diffusion of the visible and near infra-red photons in biological tissue is the main 

reason behind the late arrival of deep tissue optical imaging. Modeling of light diffusion 

in turbid and highly scattering biological tissue is computationally costly and requires 

bulky data processing. Also, depth-resolved 3D localization of inclusions using non-

invasive surface density measurements of diffuse and scattered photons requires low-

noise detectors and high-precision hardware [6]. With the advent of high-speed 

processors and advancements in the field of optoelectronics in recent decades, the 

computational burden of optical tomography has become manageable, and highly 

accurate light measurements have become available, thus giving rise to widespread 

research on the topic of optical imaging. 
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Similar to various imaging modalities such as MRI or PET, the performance of 

optical imaging is greatly enhanced by contrast agents that are used to tag and track 

inclusions of interest [10, 11]. Moreover, in many cases where anatomical and 

physiological contrast is weak or does not exist, molecular probes must be employed to 

target and localize inclusions [12-15]. Fluorescent probes are the most popular contrast 

agents used in optical imaging and microscopy because of their widespread availability, 

increased versatility, and high efficiency [16]. They have been shown to label cancer 

lesions [16], test drugs [13], enzymes, and messenger proteins in vivo [10]. When used in 

deep tissue diffuse optical imaging, fluorescent agents provide the necessary contrast for 

early tumor detection, drug monitoring, drug discovery, and in vivo biology and genetics 

research. These contrast agents can be used in both animal and human subject. For 

example, a number of fluorescent probes belonging to the indocyanine green (ICG) 

family have recently been approved by the Food and Drug Administration (FDA) for 

low-dosage clinical applications and serve as the primary optical contrast agents for 

fluorescent enhanced optical mammography [17]. Moreover, a wide variety of rhodamine 

and cyanine dyes, such as Alexa Fluor
®

 [18], are widely used in fluorescence optical 

tomography for preclinical and small animal studies in cell biology and cancer research 

[19]. The variety and availability of fluorescent dyes for in vivo labeling and tracking of 

molecular and physiological processes are the significant advantages of fluorescence 

diffuse optical tomography over other in vivo imaging platforms.  

Fluorescence diffuse optical tomography, referred to as fluorescence tomography 

(FT) herein, is presently attracting extensive attention from pharmaceutical industries, 

biology researchers, and radiology community because of its unique capabilities. 
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However, this imaging technology suffers from drawbacks that impair its performance. 

To compete with other conventional diagnostic imaging platforms, the performance of FT 

must be improved and its drawbacks must be resolved. The major drawbacks of FT stem 

from the mathematically ill-posed and intractable problem of reconstructing the 

quantitative 3D distribution of administered fluorescent agents labeling inclusions of 

interest from the measured surface density of diffuse and scattered photons emitted by 

these agents. Therefore, the efficacy of the optical hardware used for the fluorescence 

tomographic scan and the quality of the post-processing inversion algorithms are 

extremely important and crucial in the successful performance of FT. This work is 

focused on the development and implementation of cost-effective high-throughput 

instrumentation and computational algorithms for improving the accuracy and robustness 

of FT systems. This work is aimed at circumventing the current limitations and 

drawbacks of FT by developing robust novel algorithms and system architecture that 

significantly improve the performance of FT.   

1.2 Modeling 

 
Fluorescence tomography (FT) aims at 3D localization and quantification of 

fluorescent agents buried deep in biological tissue. The optical absorption of biological 

tissue plummets in the near infra-red spectrum (wavelength range of 750-1000 nm) [2], 

as shown in Figure 1, allowing for light to diffuse through layers of tissue. The major 

chromophores in biological tissue, namely water, lipids, oxy- and deoxy-hemoglobin, 

demonstrate relatively low optical absorption in the NIR spectrum compared to visible 

and infra-red. Consequently, the NIR band provides a spectral window for photons to 

diffuse through layers of tissue before being entirely absorbed.  
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Figure 1: Spectra of optical absorption of major chromophores in tissue, water, lipid, oxy-

hemoglobin (HbO2) and deoxy-hemoglobin (HHb) plummet in the near infra-red window. 

 

Therefore, tissue can be regarded as a highly scattering low absorptive medium 

for near infra-red light propagation [6]. Reduced tissue absorption in the near infra-red 

window is exploited in many areas of biomedical optics including fluorescence 

tomography [6]; the fluorescent dyes used in FT are excited by and emit near infra-red 

radiation, e.g., Alexa Fluor
®
 750 (excitation 750 nm and emission 775 nm) and 

Indocyanine Green (excitation 800 nm and emission 840 nm).  

In FT, tissue surface is illuminated by near infra-red light directed from a laser or 

a light emitting diode (LED). The near infra-red wavelength used for illuminating the 

tissue matches the excitation wavelength of the administered fluorescent agents. The near 

infra-red radiation penetrates the tissue and excites the fluorophores distributed over its 

volume. The excited fluorophores emit near infra-red radiation at a higher wavelength 
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than their excitation wavelength. The emitted photons propagate to the surface of the 

tissue. By collecting the diffuse fluorescent photons on the tissue surface and measuring 

their surface intensity, the 3D distribution of the fluorescent dyes is estimated in FT. The 

propagation of light in highly scattering turbid media such as tissue is modeled by the 

radiative transport equation (RTE) [20] as formulated in Equation 1: 

 

 

 

  
 (   ̂  )   ̂   (   ̂  )  (     ) (   ̂  )    ∫ (   ̂  ) ( ̂  ̂ )  ̂   (   ̂  )   (1) 

where c is the speed of light in vacuum in meters per second,  ̂ is the unit vector in the 

direction of interest, and    and    are the scattering and absorption coefficients of the 

medium in inverse meters. The function  ( ̂  ̂ ) is the scattering phase function which 

quantifies the probability of a photon with initial direction  ̂  to be scattered off to 

direction  ̂. The function  (   ̂  ) is the source strength at location r in direction  ̂ at time 

t in Watts per steradian per cubic meter, and  (   ̂  ) is the radiance at location r in 

direction  ̂ at time t in Watts per steradian per square meter. In, Equation 1, the transport 

of light or radiative energy within a medium characterized by high optical scattering and 

an arbitrary level of optical absorption with radiative sources distributed over the volume 

of the medium is described.  

The right-hand side of Equation 1 contains the temporal change, spatial change, 

and loss from absorption and scattering in the radiance  (   ̂  ), and the left-hand side 

contains the source strength term in direction  ̂ that describes the local source 

contribution to  (   ̂  ) and the total contributions of photons scattered off to direction  ̂ 

from all other directions. Equation 1 accurately models the behavior of light in turbid 

media and is used for photon transport modeling in optical tomography by some 

researchers [21, 22]. However, it has been shown that a first-order approximation to 
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Equation 1 greatly reduces the computational complexity and numerical burden of 

modeling while maintaining a relatively high level of accuracy sufficient for optical 

imaging purposes [23]. The first-order approximation, which is broadly used by the 

optical tomography community [24], results in a first-order partial differential equation 

(PDE) called the diffusion equation as formulated below 

 

 

 

  
 (   )     ( )  (   )    ( ) (   )   (   )  (2) 

where  ( ) is the diffusion coefficient in meters,  (   ) is the average radiance or 

fluence in Watts per square meter, and  (   ) is the source power density in Watts per 

square meter. Mathematically, they can be defined as 

 ( )  
 

 (  
 ( )   ( ))  

 ,                                                 (3-5) 

 (   )  ∫ (   ̂  )  ̂   

 (   )  ∫ (   ̂  )  ̂   

In Equation 2, the time-domain diffusion equation is formulated. This equation is 

mainly used for fluorescence lifetime imaging and time-domain fluorescence tomography 

[25, 26]. In most applications of FT, however, the source intensity and hence the 

fluorescent signal intensity either remain constant over time or follow single frequency 

periodic oscillations. The frequency-domain diffusion equation, formulated as  

 

 
   (   )     ( )  ( )    ( ) ( )   ( )                           (6) 

is the broadly used form of the diffusion equation, since frequency-domain and 

continuous-wave (CW) systems are currently the most widely used FT platforms. It must 
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be noted that, as shown in Equations 1 and 2, the temporal derivative term represents the 

temporal change in the radiance or fluence rate and not the temporal change in the 

electromagnetic field intensity. In the context of optical imaging, the term frequency 

refers to the modulation frequency of the source intensity and not the frequency of the 

light wave propagating in the tissue. To avoid confusion, the term wavelength is only 

used to specify the electromagnetic wavelength of the visible or near infra-red light 

propagating in the tissue. The term frequency is used to specify the frequency of the 

intensity modulation of fluence. While frequency modulation can add some extra 

information to the collected data, it requires highly sensitive, complex, and costly 

hardware. Also, frequency modulation only makes a significant difference in the 

accuracy of the tomographic localization of deep sources embedded in very thick (5-6 

cm) tissues [27]. Hence, continuous-wave FT is preferred over frequency-domain FT in 

preclinical applications, e.g., small animal imaging, where the animal is at most two to 

three centimeters thick [28]. Continuous-wave FT is quite analogous to a direct-current 

(DC) system where quantities remain constant over time. The diffusion equation for CW 

FT is formulated in Equation 7:  

    ( )  ( )    ( ) ( )   ( )                                      (7) 

1.3 Methodology 

In Figure 2, a two-dimensional (2D) configuration for FT is depicted. The turbid 

medium or tissue is illuminated at a sequence of boundary points by laser or LED 

radiation at the excitation wavelength of the administered fluorescent agents that are 

distributed throughout the volume of the medium. The diffuse photons propagating 

through the tissue excite the fluorescent agents resulting in the emission of fluorescent 



8 

 

photons that travel to the tissue surface and are collected at several boundary locations by 

optical detectors.  

 

Figure 2: Fluorescence tomography (FT) is performed by illuminating the tissue at several source 

locations and measuring the emitted fluorescent signal at several boundary points using detectors.  

 

Therefore, two coupled diffusion equations describe the dynamics of a 

fluorescence tomographic scan; one is for the diffusion of excitation photons and the 

other is for the diffusion of fluorescent photons. The coupled equations are formulated as 

below  

    ( )     ( )    ( )    ( )      ( )                                       (8) 

    ( )    ( )    ( )   ( )       ( )    ( )                               (9) 

where     ( ) is the average fluence of excitation photons at location r,     ( ) is the 

power density of the excitation laser or LED source used for the illumination of the tissue 

at location r (as a result,     ( ) is zero inside the tissue and non-zero at the boundary 

source locations),    ( ) is the average fluence of the fluorescent light at location r,   is 

the dimensionless quantum efficiency of the fluorescent dye,     is the per-molar 

fluorescent absorption coefficient, and  ( ) is the molar concentration of the fluorescent 
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dye at location r. As formulated in the right-hand side of Equation 9, the source intensity 

term for the emission diffusion equation is the product of the quantum efficiency, the per-

molar fluorescent dye absorption, the fluorescent dye concentration, and the excitation 

fluence. The boundary conditions accompanying Equations 8 and 9 are modified Robin-

type boundary conditions [29] expressed as 

 ( )     ( ) ̂   ( )                                                 (10) 

where   is any given point on the boundary,  ̂ is the normal vector to the boundary 

surface at   , and A is a dimensionless constant that accounts for the index mismatch and 

internal reflection at the boundary. More mathematical details about Equation 10 and its 

variables can be found in Ref. [29]. The modified Robin condition sets the fluence 

directly below the surface equal to the surface optical flux which effectively models the 

tissue-air boundary condition [29].     

 In FT,  ( ) is estimated using the coupled excitation and emission diffusion 

equations, and the Robin-type boundary conditions. This is accomplished by varying 

    ( ) (through changing the boundary source location) and measuring     ( ) and 

   ( ) on the boundary of the medium while  ( ),   ( ),  , and     are either known a 

priori or determined using diffuse optical tomography (DOT) [6], and dye absorbance 

and efficiency measurements [30]. Finding  ( ) can be decomposed into two problems: 

the forward problem, and the inverse problem. The forward problem involves solving 

Equation 8 and finding     ( ) at every point inside and on the boundary of the tissue. 

The inverse problem involves finding  ( ) using     ( ), which is obtained from solving 

the forward problem, and boundary measurements of    ( ). The core step in solving 

the forward problem is finding the Green‟s functions of the excitation equation (Equation 
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8). A Green‟s function is the solution of an inhomogeneous partial differential equation 

(PDE) with a Dirac delta source term or inhomogeneity [31]. Solutions to linear PDEs 

with arbitrary source terms can be written as a linear convolution of the Green‟s functions 

with the source term [31]. 

 Depending on the parameters and the geometry of the problem, various techniques 

can be used to find the Green‟s functions and hence the solution of the forward problem. 

Analytical expressions are easily derived for infinite or semi-infinite media [32], 

however, real FT scenarios involve arbitrary and possibly irregular geometries, e.g., large 

rodents, and therefore analytical solutions derived for regular geometries cannot always 

be used. It has been shown, however, that for a homogeneous medium (i.e., a medium 

with spatially homogeneous optical absorption and scattering) with an arbitrary 

geometry, approximate semi-analytical expressions can be formulated as below [33] 

     
 

   
 ( 

   (         )

   
 

 

  
∫    (

  

  
)

   (      √(    )
 
    

 )

√(    )
 
    

 

 
 

 
  ) ,            (11) 

where    is the distance of the point indexed j from the plane tangent to the medium at the 

boundary point source indexed i and     is the distance of the source indexed i to a point 

on the tangent plane closest to the point indexed j. Hence,      √  
     

  while      

and    are parameters that depend on the geometry of the medium and its optical 

properties as described in detail in Ref. [33]. The semi-analytical expression given for     

in Equation 11 describes the fluence at a point inside the turbid medium indexed j when a 

point source indexed i is illuminating the medium on the boundary. This model provides 

a fast semi-analytical framework for finding the Green‟s functions of the excitation and 
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emission diffusion equations. However, it is limited to optically homogeneous media and 

cannot perform optimally when strong heterogeneities are present. 

Statistical methods have also been used to obtain the Green‟s functions of the 

diffusion equation. The most prominent statistical technique for photon transport in turbid 

media is the Monte Carlo method [34] where random trajectories of photons are traced 

until they either exit the medium at the boundary or get completely absorbed. This is 

continued until the required counting statistics are collected and solutions or data, with 

statistically low error, are simulated. While effective in modeling complex dynamics such 

as photon transport in highly scattering media, the Monte Carlo method is 

computationally very costly and is only used in cases where faster alternatives are not 

available, e.g., higher order approximations to RTE or complex heterogeneous media 

[34]. 

Numerical methods for solving the diffusion PDEs are the most commonly used 

approach for finding the Green‟s functions in FT. Finite element method (FEM) [29, 35] 

provides a fast, stable platform for solving the FT forward problem and it can be applied 

to heterogeneous media with arbitrary geometry. In Section 1.4, FEM and its application 

to FT are described in detail. 

1.4 Finite Element Formulation and Linear Model of FT 

 The finite element method (FEM) is the most commonly used numerical 

technique for solving the diffusion PDE in optical tomography [2, 6, 29]. In this method, 

the volume of the medium is discretized by a triangular (for 2D geometry) or a 

tetrahedral (for 3D geometry) mesh. Using the Galerkin formulation of FEM [29], 

piecewise linear functions centered on the nodes of the mesh are employed to establish a 
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basis for approximating the fluence and the source functions defined within the volume 

of the medium [29, 36]. Mathematically, the fluence function  ( ) is approximated by 

the finite element (FE) basis functions denoted    ,        , (where N is the number 

of mesh nodes and hence the number of basis functions) as follows 

  ( )  ∑     
 
 ( )                                                           (12) 

where    denotes the weight of the j-th basis function   ( ) in the expansion, and   ( ) 

is the projection of  ( ) onto the space spanned by the FE basis function. In applying the 

Galerkin approach to diffusion equation, the weak formulation of Equation 7 can be 

derived for each node indexed         as below [29] 

∫  ( )(    ( )    ( )) 
 ( )  ∫  ( ) ( )  (13) 

 Integration by parts and substitution of   ( ) from Equation 12 transforms 

Equation 13 to the following discrete matrix equation [29] 

[ ( )   (  )]                                                   (14) 

where 

    ∫ ( )   ( )    ( )    (15-18) 

    ∫  ( )  ( )  ( )    

   ∫  ( ) ( ) (  )  

   ∫  ( ) ( )    
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and    and  (  ) denote the differential elements for volume and boundary of the 

medium. Also,  ( ) is the surface exitance expressed mathematically as below and 

simplified using Robin boundary condition [29]  

 ( )      ( ) ̂   ( )  
  ( )

  
  (21) 

which when substituted in Equation 14 yields 

[ ( )   (  )   ( )]    ,                                               (20) 

where  

    
  

  
∫  ( )  ( ) (  )  (21) 

 Therefore, the expansion coefficients populated in the vector   can be obtained 

by solving the linear system expressed in Equation 20 and then substituted in Equation 12 

to get   ( ) that approximates the desired  ( ). In the case of FT, where there are two 

coupled diffusion equations for every source position, the FE formulation yields two 

matrix equations as below 

    
( )

   
( )

                                                 (22-23) 

    
( )

   
( )

                                                       

where   
( )

 (  
( )

) and   
( )

 (  
( )

) are the fluence and the source vectors at the excitation 

(emission) wavelength, respectively, when i-th source location is used. As described in 

Section 1.3, in FT only one source location is illuminated at a time. The matrix    (  ) is 

the system matrix obtained from the FEM formulation at the excitation (emission) 

wavelength. The excitation source vector,   
( )

, is non-zero only on the mesh nodes that 
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neighbor the i-th point source location. Equation 22 is the discrete FEM version of the 

forward problem and its solution for any given source location constitutes a Green‟s 

function. 

 The emission source vector,   
( )

, can be mathematically expressed as follows 

  
( )

         (  
( ))  ,                                                  (24) 

where for any     vector g, diag(g) is defined as an     diagonal matrix with 

elements of g populating its diagonal entries. Also,   represents the projection of 

fluorophore concentration function  ( ) onto the FEM basis functions, and therefore lists 

the fluorophore concentration at each node of the mesh. Let    and    denote the number 

of source locations and detector locations, respectively. Hence, for every source location, 

there are    measurements of   
( )

 on the boundary of the medium. Let y denote the 

       vector that lists the boundary measurements of   
( )

 for all source locations 

        . From Equations 22, 23, and 24, it follows that 

  [

 ̅ 
          (  

    
( )

)

 

 ̅ 
          (  

    
(  ))

]                                            (25) 

where  ̅ 
   is a sub-matrix of   

   that only includes the    rows that correspond to the 

detector locations. As a result, Equation 25 establishes a linear relationship between 

boundary detector measurements of emitted fluorescent signal and fluorophore 

distribution in the turbid medium. Considering detector noise, shot noise, and modeling 

errors present in FT, the linear model in Equation 25 can be expressed as below 

                                                              (26) 
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where e is the additive        error vector encompassing the modeling errors and 

noise, M is the        system matrix (N being the number of nodes as mentioned 

previously) formulated in Equation 25, x is the     fluorophore concentration vector, 

and y is the        measurement vector [37]. Solving for x in Equation 26 from 

measurements of y, prior knowledge of M, and statistical properties of e constitutes the 

inverse problem of FT.  

1.5 Framework for Simulation and FT Numerical Studies 

 In this section the general simulation framework and the platform used for FT 

numerical studies are discussed. The simulation framework can be divided into three 

modules: FE mesh generation, the forward solver, and the inverse solver. The finite 

element mesh generation consists of 2D triangular and 3D tetrahedral mesh creation over 

areas or volumes with arbitrary geometry. MATLAB PDE toolbox is used for 2D 

triangular mesh generation and COMSOL 3D mesh toolbox is used for tetrahedral FE 

mesh generation. COMSOL generated meshes can be exported to MATLAB so that both 

triangular and tetrahedral meshes are available in the MATLAB environment.  

 The forward solver module used in this work is based upon the publicly available 

Nirfast software [38] coded in MATLAB. It simulates the propagation of light in 2D and 

3D turbid media with known optical absorption and scattering using FE formulation of 

the diffusion equation as described in Section 1.4. In Figure 3, the diffusion of excitation 

and emission light in a rectangular turbid medium with two circular fluorescent blobs, 

which are simulated by the forward solver, are depicted. Figure 3 (a) shows the two 

fluorescent blobs in the turbid medium. Figures 3 (b) and 3 (d) show the diffusion of 

excitation light (that enters the medium from a boundary point), and Figures 3 (c) and 3 
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(e) show the emission of the fluorescent blobs diffusing through the turbid medium. The 

image in Figure 3 (d) is in log-scale and shows the diffusion of excitation light as it 

penetrates through the turbid medium and reaches the fluorescent blobs. As a result, the 

fluorescent blobs are excited and fluoresce. The emitted fluorescent radiation from these 

blobs diffuses through the medium as shown in the log-scale image in Figure 3 (e).    

The forward problem module yields the fluence distribution of the excitation light for 

each source location, the Green‟s functions of the emission diffusion equation, and the 

simulated data vector. These are fed to the inverse solver module where the system 

matrix   is constructed and the fluorophore distribution vector   is estimated using the 

system matrix and the data vector. More details regarding FT inverse solvers are 

presented in Chapters 2 and 3.    

 

Figure 3: A 2D FT configuration is simulated using the forward solver. a) Two circular fluorophore 

blobs are simulated in a rectangular turbid medium. b) Excitation light enters the medium from a 

boundary source point. c) Emission of the fluorescent blobs diffuses through the medium. d) Image 

from part (b) is plotted in log-scale. e) Image from part (c) is plotted in log-scale. 



17 

 

1.6 FT Experimental System 

 While fiber-based optical tomography systems are used extensively for non-

fluorescent platforms, e.g., diffuse optical tomography (DOT), these systems suffer from 

limitations in the size of acquired data. The fiber-based systems also suffer from 

geometry complications as fiber tips must be in full contact with the animal surface at all 

times during the experiment. Free-space non-contact systems are generally preferred in 

FT because of their large data capacity, high speed, and efficient data acquisition. In non-

contact FT, measurements are obtained using near infra-red charged coupled device 

(CCD) cameras focused on the animal surface. The first-generation FT system developed 

for this work was a cylindrical fiber-based system. Because of the limited number of 

measurements and calibration errors in this system, a non-contact continuous-wave (CW) 

trans-illumination phantom-based FT system was developed to replace the first-

generation system. In Figure 4, a schematic and a picture of this second-generation 

experimental system are displayed.  

 The non-contact FT system developed in this work consists of a light-generation 

chamber and an imaging chamber. The imaging chamber is housed in a completely light-

tight box that prevents outside radiation from interfering with the FT data acquisition 

devices. This separation of light generation and imaging functions also ensures that stray 

light and radiation noise from the light-generation devices do not contaminate the 

acquired FT images. The NIR radiation from the light-generation chamber is guided to 

the imaging chamber through a perforation in the light-tight box and using a multimode 

fiber, called the source fiber, whose distal end rests on a translation stage, as shown in 

Figure 4 (c). 
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Figure 4: A non-contact fluorescence tomography system was developed for this work. a) Outline of 

the FT system is depicted in a schematic. b) The light-generation section is the subsystem where laser 

radiation is coupled to a multi-mode fiber while attenuated by neutral-density filters and measured 

by a power detector. c) The imaging chamber is the section where the light from the source fiber 

illuminates the phantom and excites the fluorophores distributed over the volume of the phantom, 

and the fluorescence signal and trans-illumination of the excitation light are imaged by a cooled CCD 

camera. 

 As shown in Figures 4 (a) and 4 (b), a Helium-Neon (He-Ne) 20 mW cavity laser 

produces CW light at 632 nm. The power of this NIR radiation is adjusted and measured 

using neutral-density filters and a power detector. The laser light is coupled into a multi-

mode fiber whose distal end is mounted on a translation stage and lies in full contact with 

the tissue phantom. The fiber directs the laser light to a point on the phantom surface. 

Translation stages are used to change the position of the tip of the fiber on the surface of 

the tissue phantom to illuminate it at different locations and scan the source grid. The 

liquid phantom, which assumes the box shape of the phantom vessel, forms a slab with a 

thickness of 14 mm (which matches the average thickness of laboratory mice used in 

optical tomography experiments). As shown in Figure 4 (c), the phantom holder is a 

hollow box with two transparent plexi-glass sides that face one another. One side is 
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scanned by the source fiber and the other side is imaged by the cooled CCD camera for 

FT data acquisition as shown in Figure 4 (c).  

 Colored-glass filters mounted on a motorized filter wheel are used to allow for 

sequential imaging of the trans-illumination signal at the excitation wavelength, and the 

fluorescent signal at the emission wavelength. A 650 nm short-pass and a 700 nm long-

pass filter are used for separate imaging of the trans-illumination and fluorescent signals. 

The cooled CCD camera captures the filtered data images. The front phantom surface is 

imaged to the CCD using a convex camera lens. To minimize dark-current noise, the 

CCD is cooled down to -10 °C, and for every captured image a closed-shutter image 

(dark-frame image) is also taken and subtracted from the data image. This entire imaging 

chamber, which houses the CCD camera and the phantom, is optically insulated in a 

light-tight box, as mentioned previously. The entire FT scan, which consists of scanning 

the source grid using the source fiber and capturing filtered trans-illumination and 

fluorescent images, is automated using a LabView script. The planar source scan is 

carried out in an automated fashion using the pair of translation stages, and the filtered 

image acquisition is performed automatically using the motorized filter wheel and the 

CCD camera. Prior to running the FT scan, a calibrated grid is placed on the phantom 

holder‟s front panel, which faces the CCD, and is imaged by the camera. The grid image 

is later used for selection and calibration of the data points on the acquired FT images. 

The setup is carefully calibrated prior to the data acquisition. The calibration process 

consists of several steps as shown in Figure 5. The integration times for image acquisition 

in the excitation and emission bands and the laser power level must be adjusted to avoid 

saturation in the acquired images.  
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Figure 5: The calibration process of non-contact CCD-based FT system is detailed in a flowchart. 

 

 For precise quantification of fluorophore concentration, power loss from index 

mismatch, fiber coupling, and absorption and scattering in the optical components of the 

system must be corrected. By dividing the imaged fluorescent signal by the trans-

illumination signal in a Born normalization fashion, this correction can be implemented. 

Since both fluorescent and trans-illumination images share the same power loss factors 

arising from index mismatch, fiber coupling, and optical components, these power loss 

factors get canceled out by dividing the fluorescent image by the trans-illumination 

image. The normalized images are used in the reconstruction algorithm instead of the raw 
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data images. With Born normalization, quantification of fluorophore concentration can be 

performed accurately despite unknown levels of power loss in the system [39].   

1.7 Tissue Phantom Fabrication and Characterization 

 Controlled verifiable in vivo FT experiments are difficult to carry out because of 

unknown levels of modeling errors and complications associated with implanting 

fluorophore inclusions at fixed locations in live small animals. Instead, objects made 

from turbid materials that mimic the optical properties of biological tissue, called tissue 

phantoms, are used for testing theoretical methods and analysis of the performance of 

optical tomography systems. In this section, the recipe for development and the 

methodology for characterization of a liquid tissue phantom developed and used this 

work are reviewed. Tissue phantoms generally consist of a scattering or diffusive agent, 

an absorbing agent, and in the case of solid phantoms, a holding or hardening matrix. The 

holding matrix is usually either resin-based or gel-based. The scattering and absorptive 

agents are mixed according to proportions adjusted to achieve desirable scattering and 

absorption coefficients, and the holding matrix is added to harden the mixture. In the case 

of liquid tissue phantoms, liquid scattering and absorptive materials are used and there is 

no need for a hardening matrix. The main advantage of liquid tissue phantoms is their 

higher optical homogeneity compared to solid tissue phantoms. Also, liquid phantom 

recipes are very straightforward (as they mainly involve mixing two or more liquids with 

certain proportions) and hence easily repeatable.  

 The scattering agent of the liquid tissue phantom used in this work is diluted 

intralipid-20% fat emulsion, and the absorptive agent is India ink. Both materials are 

extensively used in solid and liquid tissue phantoms as they offer homogeneous optical 
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properties that match the optical properties of biological tissue [40, 41]. Also, intralipid 

has negligible optical absorption compared to India ink while India ink has almost no 

optical scattering. Therefore, by controlling the concentration of each agent, the optical 

scattering and absorption of the phantom can be adjusted. The scattering and absorption 

of the intralipid fat emulsion and the India ink samples used for making the tissue 

phantom must be measured precisely before each experiment as they may slightly differ 

under different conditions. Hence, a subsystem was developed in this work for systematic 

measurement of the optical absorption of India ink. Also, a separate subsystem was 

developed to measure the scattering and absorption of diluted intralipid-20% mixed with 

India ink. Figure 6 shows a schematic and pictures of the setup used for measurement of 

the optical absorption of India ink.  

 

Figure 6: Measurement of the absorption of India ink is performed using a cuvette-based setup. a) 

Outline of the setup is depicted in a schematic. b) Setup is imaged under normal lighting conditions. 

c) Setup is used under dark conditions to measure absorption. 
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 Water-based India ink solutions of varying concentrations are poured into a 

cuvette, as shown in Figure 6, and the transmittance of the laser light through the cuvette 

is measured. Hence, using the data points of the transmittance measurements, optical 

absorption of India ink is computed. These measurements indicated an absorption 

coefficient of 3.7 mm
-1

 for a diluted 10 mL/L (1% volume concentration) solution of 

India ink. While optical absorption may slightly differ from sample to sample, these 

results are in strong agreement with previously reported results [42].  

 To measure the scattering coefficient of intralipid, a second subsystem was 

developed as shown in Figure 7. Unlike the cuvette-based setup, the system shown in 

Figure 7 is designed for measurement of the scattering and absorption coefficients of 

highly scattering low absorptive liquids. As shown in Figure 7, the fiber tips are inserted 

in a big tank filled with a turbid liquid. The dimensions of the tank are chosen to be very 

large compared to the scattering and absorption lengths and the distance between the tips 

of the two fibers. The propagation of the diffuse light originating from the source fiber in 

the medium can be approximated by diffuse photon propagation in a homogeneous 

infinite medium. Hence, because of radial symmetry in the 3D infinite medium, the 

diffusion equation is simplified to the following form in spherical coordinates,  

 
 

     ( )  
  

 

 

  
 ( )     ( )   ( )                              (27) 

where   represents radial distance from the tip of the source fiber and  ( ) is the spatial 

Dirac delta function that models the tip of the source fiber. As a result, the propagation of 

diffuse photons is given by   
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where  ( ) denotes the Green‟s function of Equation 27 and models the diffusion of 

light from a point source (fiber tip).  

  

Figure 7: Measurement of the scattering of a mixture of diluted intralipid-20% fat emulsion and 

India ink is performed using a lock-in amplifier-based subsystem. 

 

 By changing the location of the source fiber and measuring the power transmitted 

from the source fiber to the detector fiber that is connected to a photo-multiplier tube 

(PMT), the rate of change in the transmitted power can be measured and therefore, the 

decay coefficient √
  

 
 , which can be approximated by √      (in highly scattering low 

absorptive materials) can be experimentally determined. By adding various levels of 

India ink to diluted intralipid-20% and performing these measurements, the decay 

coefficient √      of the turbid mixture can be experimentally determined. Meanwhile, 
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the absorption coefficient of the mixture is already known as India ink particles are the 

dominant absorbers, and their absorption coefficient had been already determined using 

the cuvette-based setup depicted in Figure 6. By combining the results from the two 

subsystems, the scattering and absorption of intralipid-20% fat emulsion diluted to 1% 

and India ink are determined and can be used towards the design of the liquid tissue 

phantom. On aggregate, these experiments indicated a scattering coefficient of 1.05 mm
-1

 

for intralipid-1%. These measurements are repeated for every new sample of India ink or 

intralipid before using them in the phantom recipe. In addition to scattering and 

absorption agents, the fluorescent dyes must be placed in the tissue phantom to mimic 

fluorophore-tagged inclusions in tissue. A DMSO-based (dimethyl sulfoxide) 100 µM 

solution of Oxazine-750 perchlorate fluorescent dye is used in the phantom-based FT 

experiments. Oxazine-750 is excited at 633 nm, and its emission peak is around 700 nm. 

The excitation band and emission spectrum of this dye were determined using a fiber-

based spectrometer as shown in Figure 8. The filters mounted in the filter wheel placed in 

front of the CCD camera are selected based on the excitation and emission bands of the 

dye.  

 

Figure 8: Emission of Oxazine-750 dissolved in DMSO peaks around 700 nm when excited at 633 nm.  
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 The DMSO-based Oxazine-750 dye is inserted into thin capillary glass tubes 

(inner diameter of 1 mm) that are in turn inserted in the liquid phantom with vertical 

orientation. The configuration depicted in Figure 9 involves a pair of fluorophore-filled 

glass tubes suspended vertically in the phantom vessel by a crane-type structure.  

 

Figure 9: A crane-type configuration is developed for insertion and suspension of fluorophore-filled 

tubes in the liquid phantom. a) Oxazine-filled capillary tubes are suspended using a crane-type 

configuration in the phantom holder. b) The crane-type configuration used for suspension of the dye-

filled tubes is mounted on a translation stage.  

 

 The crane-type configuration is used for suspension of the dye-filled tubes in the 

liquid tissue phantom as shown in Figure 9 (a). The crane-type structure is mounted on a 

translation stage as depicted in Figure 9 (b). The translation stage allows for positioning 

of the dye-filled tubes and adjusting their depths with respect to the front panel of the 

phantom vessel. After the capillary tubes are partially filled with DMSO-based Oxazine 
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dye, their lower ends are sealed while their top ends are attached to the horizontal optical 

post in the crane-type structure as shown in Figure 9 (b).  

 To summarize, a detailed synopsis of the experimental FT system developed in 

this work is listed in Table1.  

Table 1: Synopsis of the experimental FT system. 

 

Illumination Source 633 nm 10 mW He-Ne Laser 

Data Acquisition CCD cooled to -10 °C 

Automation Full LabView automation 

Phantom Material 

Phantom Dimensions 

Intralipid-1% + India ink liquid phantom 

120 mm by 90 mm by 14 mm 

Fluorescent Dye Oxazine-750 perchlorate in DMSO 

Total Acquisition Time 10 minutes 

Geometry 

Excitation Filter 

Emission Filter 

 

Non-contact trans-illumination 

650 nm short-pass 

700 nm long-pass 

 

1.7 Entropy-based Analysis and Optimization  

 To characterize and optimize data acquisition and sampling in FT, the information 

content of FT datasets and their contributions to the accuracy of the 3D reconstruction 

must be analyzed. The configuration of the data acquisition and sampling must be 

optimized by maximizing the information content of the acquired data. In this section, an 

information-theoretic analysis of the relationship between the information content of FT 

data and the data acquisition and sampling configuration is presented. As discussed in 

Section 1.4 and formulated in Equation 26, the FT 3D reconstruction problem can be 
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modeled as a linear equation, and so it can be viewed as a multiple input multiple output 

(MIMO) system.   

 The input to the system is the fluorophore distribution vector  , and the output is 

the FT data vector   acquired by the CCD camera or the detector array. In FT, the vector 

  is estimated from   using the linear relationship between them. Hence, for optimal data 

acquisition, the level of information or certainty that   provides about   must be 

maximized. The concept of mutual information in MIMO systems quantifies the level of 

information the output of the system (or linear channel) provides about its input [43]. 

This concept is used to quantify the information content of FT data.    

 The amount of information that is transferable through a linear system can be 

quantified given the system matrix and noise statistics. This quantity is called the mutual 

information and defined as 

 (   )    ( )   (   )                                                (29) 

where for a given random vector  ,  ( ) denotes its information-theoretic entropy, and 

for two random vectors x and y,  (   ) denotes their conditional entropy [43]. The 

mutual information is given in bits and can be interpreted as follows. Prior to observing 

the data vector y, there is a level of uncertainty associated with x given by  ( ). After 

observing the data vector y, some of this uncertainty is removed, thus, reducing the 

amount of uncertainty associated with the unknown vector x to  (   ). The amount of 

certainty that is obtained about the input vector after observing the data vector is defined 

as the mutual information denoted by  (   ). The maximum level of mutual information 

for a linear channel is called channel capacity and is reached when all entries of the 
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vector x have independent and identical Gaussian distributions. When entries of the input 

vector have independent identical distributions, the capacity   is given by [44] 

 ( )         (         ),                                           (30) 

where    is the identity matrix of size K, the asterisk denotes the conjugate transpose 

operation, and    is the input signal-to-noise ratio (SNR) formulated as 

    
   (   )

   (   )
    (31) 

where for a given input vector   of size K,  (   ) is the energy of the vector, and  (   ) 

is the energy level of the noise or error in the output. The input SNR    differs from the 

data SNR or the ratio of the measurement signal energy to the noise energy. A Gaussian 

noise with zero mean and a variance of   
  is assumed. The total number of measurements 

is denoted by L, and E denotes the mathematical expectation operator. 

 The information-theoretic measure of capacity is applied to the linear model of FT 

to optimize FT data acquisition configuration [45]. While the capacity formula as given 

in Equation 30 can be employed, a more accurate measure is obtained by considering a 

more realistic probability distribution for the input signal. Equation 30 is obtained 

assuming a zero-mean Gaussian distribution for the input vectors. Since the fluorophore 

distribution cannot be negative and is between 0 and a certain maximum level, a better 

statistical model for the fluorophore distribution is given by the uniform distribution on 

the unit interval, where the maximum possible fluorophore concentration on a given 

mesh node is normalized to 1. Therefore, it is assumed that the fluorophore 

concentrations on the mesh nodes are all independent and each has a uniform probability 

distribution on the unit interval.  
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 Furthermore, in real world scenarios only the measurement SNR is observable 

and quantifiable. Therefore, it needs to be translated to the measurement SNR, denoted 

here by    to the input SNR, denoted by   . This is accomplished using the uniform 

probability distribution model of the vector x as follows. The measurement signal-to-

noise ratio is given by 

       
 ((  )   )

 (   )
 

 (  (      ))

   
 

   (32) 

as the energy of a given column vector y can be alternatively expressed as  (  (   )), 

where tr denotes the matrix trace operator. Moving the expectation inside the trace 

operator the following is obtained: 

       
  (  (   )  )

   
 

        
(33) 

where for the uniform distribution of x, Ex is given by 

 (   )                                                           (34) 

where UK denotes the all-one K × K matrix. Therefore, the input SNR is given by  

          
   

    (  (   )  )
      

(35) 

 Substituting for    is Equation 30, the following is obtained 

     ( )      (   (      
   

    (  (   )  )
))    

(36) 

 The expression in Equation 36 is used for quantification of the system capacity of 

the FT linear model. Figure 10 depicts the results of applying the system capacity notion 

as formulated in Equations 30 and 36 to the FT experimental system described in Section 
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1.6. As shown in Figure 10, while system capacity increases remarkably with SNR, 

saturation occurs as the detector pitch decreases below a certain limit (or the number of 

detectors, and hence the number of measurements, increases beyond a certain limit). 

 

Figure 10: The FT system capacity is plotted for various detector grid sizes versus SNR assuming 

a Gaussian fluorophore distribution (green curves) and a uniform fluorophore distribution 

(black curves). 

 

The saturation of information depicted in the converging curves of Figure 10 

implies the saturation of the information content of FT measurements as the sampling of 

the data points from the surface of the phantom becomes dense. Based on this study and 

the presented results, the optimal sampling strategy in the FT system is to sample data 

points from a grid with a pitch of around 7 mm [45]. Beyond this sampling pitch, the 

increase in the FT data information content is merely incremental. This study renders the 

optimized sampling and binning for post-processing of FT data.  
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1.8 Ill-posed Nature of the FT Inverse Problem 

 The inverse problem in FT involves depth-resolved localization and quantification 

of the fluorophore distribution in biological tissue from surface measurements and 

therefore is a highly ill-conditioned problem by nature [2, 24]. As discussed in Section 

1.4, the inverse problem in FT can be expressed using a discrete linear model formulated 

in Equation 26. The system matrix   has a high condition number and is ill-conditioned. 

For example, the condition number of the system matrix corresponding to the 2D FT 

scenario described in Section 1.5 is around 1.31e9. Figure 11 shows a plot of the singular 

values of this matrix.  

 

Figure 11: Singular values of the system matrix of the 2D FT scenario described in Figure 10 (Section 

1.5) are plotted in a descending order. 
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 The singular values of   range from 1.11e-10 to 0.147 as plotted in Figure 11. 

The standard procedure for solving a linear system of equations with a non-square matrix 

is to normalize the equation and then invert the normalized symmetric equation to obtain 

the least-squares solution of the problem [46, 47]. The procedure described above can be 

mathematically formulated as below 

                                                                (37-39) 

          

     (   )     . 

 When applied to the linear inverse problem of FT, accurate computation of the 

inverse of     becomes intractable because of the high condition number of  . 

Numerical errors, such as round-off errors, become very large in the computation of 

(   )   [48]. Furthermore, modeling errors and noise, populated in the error vector  , 

as well as the numerical errors in the computation of  (   )  , become amplified when 

fed through the ill-conditioned linear operator of (   )   and create strong amplified 

errors and artifacts in the reconstructed fluorophore distribution vector       [49]. The 

amplification of errors in the solution space occurs because of the extremely small 

singular values (or eigenvalues) of     which become inverted in (   )   and turn 

into extremely large singular values. Therefore, when the matrix (   )   operates on a 

certain vector, those components of the operand vector lying along the singular vectors 

that correspond to large singular values will be strongly amplified, while components 

lying along singular vectors that correspond to singular values with moderate values are 

not amplified and retain their magnitude. In the linear model of FT, similar to many 

discrete inverse problems [50, 51], the singular vectors that correspond to small singular 
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values are oscillatory and possess high-frequency behavior while singular vectors that 

correspond to large singular values are smooth and non-oscillatory [52]. In the context of 

FT, this can be explained by the dynamics of the forward problem. Highly oscillatory 

components of the fluorophore distribution vector have negligible contributions to the 

surface measurements because the opposing half cycles of the oscillatory behavior cancel 

each other out, but smooth and non-varying components of the fluorophore distribution 

contribute significantly to the surface measurements. Therefore, highly oscillatory 

components of a fluorophore distribution produce diminished effects on the 

measurements while constant or smooth components significantly affect the 

measurements. Conversely, the dynamics of the inverse problem are the exact opposite; 

the system matrix is inverted and hence the singular values are inverted. As a result, the 

large singular values correspond to oscillatory vectors and amplify oscillatory 

components in the inverse problem, and so error and noise components present in the 

measurements or resulting from computational limitations, which possess oscillatory 

behavior because of their random nature, become amplified by the inverse operator in the 

solution space. Therefore, noise and error components cause significant harm to the 

quality of the reconstructions when fed through the inverse operator. For this reason, 

standard non-penalized least-squares techniques do not perform optimally in solving ill-

posed problems such as the FT inverse problem [53].       

 Various techniques have been developed to solve ill-posed inverse problems [54, 

55], but the most popular and notable among them are regularization methods [56]. 

Regularization methods stabilize the solutions of ill-posed problems by perturbing the 

system matrix to diminish its singularity and decrease its condition number. 
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Regularization methods stabilize the condition of the inverse problem at the expense of 

introducing inaccuracy in system modeling and modify the singular values of the system 

matrix, specifically the smaller singular values as perturbations have a more significant 

effect on them than on the larger singular values. The inverted modified system matrix 

(after perturbations are introduced) does not possess large singular values that correspond 

to oscillatory singular vectors and so does not amplify noise and error components. In 

regularization techniques, the inverted linear system in Equation 39 becomes 

     (      )    (   )                                             (40) 

where   is a non-singular full-rank matrix and   is a scalar called the regularization 

weight (or regularization parameter) that adjusts the strength of regularization [57]. The 

term    is the perturbation added to the normalized system matrix to filter out its small 

singular values. The choice of   and R determines the dynamics of the stability-accuracy 

trade-off offered by the regularization technique. The details of different regularization 

techniques and other inversion algorithms are discussed in Chapters 2 and 3.   
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CHAPTER 2 

LEAST-SQUARES RECONSTRUCTION ALGORITHMS 

2.1 L2 Regularization 

 As discussed in Section 1.8, non-penalized least-squares inversion techniques do 

not perform optimally in FT and produce artifact-contaminated reconstructions. Hence, 

FT inverse solvers resort to regularization algorithms to overcome the ill-posed nature of 

the FT inverse problem and stabilize the reconstructions. In regularization methods, 

accuracy is jeopardized in favor of stability. Also, unlike non-penalized least-squares 

techniques where only the data fidelity term is minimized, in regularization methods, a 

penalty term that depends on the solution is minimized along with data fidelity to avoid 

error-induced impulses in the solution. Mathematically, regularization of the linear 

system expressed in Equation 26 can be formulated as below 

     ‖    ‖    ‖  ‖                                             (41) 

where   is the regularization parameter and   is the regularization matrix. The norm used 

for the data fidelity term, ‖    ‖, is often chosen to be L2 to provide a least-squares fit 

to the data [58]. The norm for the penalty term,   ‖  ‖, is conventionally selected to be 

L2 in optical tomography [59, 60]. This is mainly because of the simplicity associated 

with solving L2 regularization problems and their effective regularizing power. 

Regularization of the FT inverse problem using penalty terms based on other Lp norms 

has also been a subject of study in recent years [61]. Among them, L1 regularization has 

been shown to perform optimally in reconstruction of sparse and localized fluorescent 

distributions in scenarios such as early-stage cancer detection [62]. Various 
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implementations of L1 regularization have been shown to improve 3D reconstructions in 

FT scenarios with sparse fluorophore distributions [62-65]. However, optimal 

performance of L1 regularization is limited to cases with sparsity priors, and L1 

regularization does not generally perform well in reconstructing non-localized extended 

fluorescent distributions. The L2 regularization is the most widely used and well-

established regularization method in optical tomography. As a result, this section is 

devoted to the study of this regularization technique.  

 The L2 regularization can be expressed as below 

     ‖    ‖ 
    ‖  ‖ 

                                                   (42) 

that is equivalent to  

  (         )                                                        (43) 

where, as discussed in Section 1.8, the matrix of the normalized linear system expressed 

in Equation 38 is regularized by      . The addition of       to the normalized system 

matrix makes the inversion non-singular and stable. Choice of the regularization matrix   

and the regularization parameter   determines the dynamics and strength of the 

regularization. Conventionally,   is chosen to be the identity matrix [28, 58] unless 

spatially non-uniform regularization is desired. Meanwhile,   is adjusted to yield an 

appropriate level of regularization. Optimal selection of   is critical to the successful 

performance of L2 regularization as it determines the cut-off below which singular values 

are considered too small and are filtered out to stabilize the inverse problem [58]. If   is 

too large, then the problem is over-regularized and its accuracy is excessively 

jeopardized. If   is too small, then the problem is under-regularized, and the 
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reconstructions are still noisy and artifact-contaminated since the inverse operator is still 

ill-conditioned and not fully stabilized. Therefore, finding the optimal   is crucial to the 

optimal performance of L2 regularization.  

2.2 L-curve 

As discussed in Section 2.1, optimal selection of the regularization parameter   

plays a key role in the successful performance of L2 regularization. In problems where 

noise or error statistics are known a priori,   can be determined based on Morozov‟s 

discrepancy principle [66]. However, the statistics of noise and errors in modeling and 

computation are unknown in FT. Generalized cross validation (GCV) technique is a 

computationally costly method that determines the optimal   without use of error 

statistics [67], but this method is mostly suited for statistical estimation problems rather 

than large-scale inverse problems like FT. L-curve is a computationally efficient 

algorithm developed for optimal selection of the regularization parameter in large-scale 

ill-posed problems [68]. Because of its computational efficiency, L-curve is the best 

technique for the selection of the regularization parameter in FT. L-curve simply graphs 

the accuracy-stability trade-off offered by L2 regularization, as discussed in Section 2.1, 

and picks the optimal middle point. Figure 12 shows the L-curve for a large-scale ill-

posed linear system with a condition number of 10
8
. As shown in Figure 12, the x-axis 

represents the data fidelity or L2 norm of the residual, ‖    ‖ , and the y-axis 

represents the L2 norm of the solution, ‖ ‖ . Each point on the curve corresponds to a 

solution of L2 regularization applied to the linear system using the regularization weight 

labeled on the curve at that point. For example, the solution of L2 regularization of the 

linear system with a regularization weight of 5.46e-5 has a norm of around 10
9
 and a 
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residual norm of around 10
5
 as marked on the curve in Figure 12. The trade-off between 

stability (norm of the solution) and data fidelity (norm of the residual) makes the curve L-

shaped, which explains the name L-curve. The middle point with the best trade-off 

between stability and accuracy is the corner of the L-curve which yields the optimal 

regularization weight. In Figure 12, the L-curve corner occurs around   = 4.9e-5.    

 

 

Figure 12: The L-curve of a linear ill-posed problem is plotted to find the optimal L2 regularization 

weight. The values on the graph represent the regularization weights that range from the smallest to 

the largest singular value of the system matrix (2.7e-11 to 3.3e-4).  

  

Obtaining the L-curve of a linear system does not require solving the L2 

regularization of the system for a wide range of regularization weights to obtain the 

solution and residual norms. It has been shown that the solution and residual norms of L2 
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regularization with a weight of   can be computed using the data vector and the singular 

value decomposition of the system matrix as shown below [68] 

‖ ‖ 
  ∑(  

  
  

  

)

 

  (44-45) 

‖    ‖ 
  ∑(    )  

  

 

   

where    represents the i-th singular value of the system matrix   (when sorted in a 

descending order),   
  represents the conjugate transpose of the i-th left singular vector of 

 , and    is the i-th Tikhonov filter factor as below   

   
  

 

  
    

   (46) 

Therefore, the solution and residual norms can be computed using Equations 44 

and 45 for any given regularization weight   by just computing the singular value 

decomposition of the system matrix. As a result, the computational cost of finding the L-

curve of ill-posed linear systems only involves finding the singular value decomposition 

of the system matrix, and singular value decomposition can be performed much faster 

than GCV [69]. Details regarding the performance of L2 regularization (with L-curve) in 

FT are presented in Section 2.4. 

2.3 Algebraic Reconstruction 

 While regularization methods are conventionally used to overcome the ill-posed 

nature of inverse problems, optimal selection of the regularization parameter is needed to 

avoid over-regularization or under-regularization as discussed in Sections 2.1 and 2.2. 

Also, the computational cost and memory requirements for the numerical implementation 
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of regularization-based reconstruction algorithms
 
become considerably high for large-

scale problems. Iterative row-action reconstruction methods are a widely used class of 

memory efficient, low-cost inverse solvers that avoid bulky matrix computations in large-

scale problems by iteratively updating the solution using only one equation at a time, and 

so only involve one dimensional vector computations [70, 71]. Of the most popular 

iterative row-action methods are algebraic reconstruction techniques (ART) that have 

recently found extensive applications in medical image reconstruction for various 

medical and molecular imaging modalities [72-74]. In conventional algebraic 

reconstruction technique, the solution is updated at each iteration through an orthogonal 

projection to the hyper-plane defined by the corresponding equation in the linear system 

of equations. Mathematically, given the system of equations defined in Equation 26, x is 

updated at the k-th iteration, which corresponds to the i-th row of the system of 

equations, as below 

 (   )     ‖       ‖
 
                

(   )      ,                        (47) 

where Mi: denotes the i-th row of the system matrix M, and yi is the i-th entry in the data 

vector. Solving for x
(k+1)

 while enforcing non-negativity (since x represents the non-

negative concentration of fluorophores at each voxel) yields 

 (   )   ( )  
       

( )

      
    

    (48-49) 

 (   )     ( (   )  )  

 Equations 48 and 49 constitute the non-negative conventional ART. It has been 

shown that the projection access order (order at which the equations are accessed and 
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used for updating the solution) plays an important role in the speed of convergence in 

ARTs [75-77]. Multi-level scheme algebraic reconstruction technique (MLS-ART) is a 

modification to conventional ART where the equations are accessed in an optimal order 

to ensure speedy convergence [75]. The equations are considered to be optimally ordered 

when hyper-planes corresponding to successive equations are orthogonal to each other or 

intersect at close-to-perpendicular angles. After the equations are re-ordered to ensure 

optimal convergence, they are accessed one by one for iterative projections, and this 

continues until each equation has been accessed P times (usually P~10). Figure 13 

provides a geometric insight into the dynamics of the MLS-ART algorithm for a 2D 

problem with two equations represented by the red lines. The progress of MLS-ART is 

represented by dark cross marks and gray arrow lines. As depicted in Figure 13, the 

points indicated with cross marks progress towards the solution (intersection of the two 

lines) with orthogonal successive projections.  

 

Figure 13: A geometric interpretation is established for MLS-ART and MLS-AART. Red lines 

represent two linear equations in the 2D space. Gray arrows and dark x-marks show the convergence 

of MLS-ART. Orange arrows and violet dots show the convergence of MLS-AART to the crossing 

point of two lines. 
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 To improve the speed and performance of MLS-ART, a modification has been 

proposed that smartly guides the projections towards the solution and increases the speed 

of convergence, and geometric proximity of the result to the true solution [78]. The 

proposed algorithm is called multi-level scheme adaptive algebraic reconstruction 

technique (MLS-AART) because it adapts the projections to the updates at every 

iteration. In Figure 14, the violet dots and orange arrows demonstrate the progression of 

MLS-AART algorithm towards the solution. As depicted in Figure 13, in adaptive 

algebraic reconstruction the direction of the projection in each iteration is inclined 

towards the crossing point of the two lines, making convergence towards the true solution 

faster. Mathematically, at the k-th iteration of MLS-AART, corresponding to the i-th row 

in the linear system of equations expressed in Equation 26, the solution is updated as 

follows, 

 (   )     ‖       ‖
                   

(   )      ,                        (50) 

where 

‖ ‖   
        (

 

 
)     [

 

  
  

   

  
 

  

]   . (51) 

 Solving for x
(k+1)

 using Lagrange multipliers [79] yields 

 (   )   ( )  
       

( )

       
     

    (52-53) 

 (   )     ( (   )   (   ))  

To illustrate the dynamics of MLS-AART, a 2D geometrical interpretation is 

presented as shown in Figure 13. The unit circle of the adaptive weighted L2 norm, 
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 ‖ ‖   , which is used in Equation 50, is an ellipse in two dimensions and an n-

dimensional ellipsoid in higher dimensions with its longest diameter lying along the 

coordinate axis corresponding to the largest entry in x. When projections are ordered in a 

multi-level scheme to maximize the independence (or the angle) between successive 

equations or hyper-planes, the ellipsoid representing the unit circle of the adaptive 

weighted norm lies inclined towards the meeting point of the hyper-planes as shown by 

the green ellipses in Figure 13. As a result, MLS-AART projects the updates closer to the 

true solution compared to MLS-ART, which uses orthogonal projections. In Figure 13, a 

geometrical justification is presented to show how the convergence of MLS-AART, 

represented by orange arrows and violet dots, is faster than MLS-ART convergence 

represented by gray arrows and dark cross marks. In MLS-AART, the inclined nature of 

the weighted norm quickly guides the updates to the solution. In MLS-ART, the 

orthogonal nature of the projections can make the convergence slow particularly when 

the angle between successive equations is highly acute.  

MLS-AART offers a fast, robust platform for solving large-scale linear systems of 

equations and is capable of stabilizing ill-conditioned systems because it minimizes the 

norm of the updates in each iteration and prevents the updates from blowing up in size. 

This stabilizing property and speedy convergence make MLS-AART very useful for 

medical image reconstruction purposes [78, 80]. However, while MLS-AART and 

similar row-action iterative algorithms offer stability and robustness in solving ill-posed 

problems, they do not possess the same level of noise robustness as regularization 

algorithms. As described above, ARTs possess a weakly regularizing effect. As a result, 

for problems or imaging scenarios involving high level of noise or error, they may not 



46 

 

produce robust results. More details regarding the performance of MLS-AART in FT are 

presented in Section 2.4.   

2.4 Numerical and In vivo Studies 

 To investigate the performance of the inversion algorithms discussed in this 

chapter, they are applied to 3D numerical and verifiable dual-modality in vivo FT studies 

whose results are presented and discussed in this section. The algorithms used for 

performing reconstructions were L2 regularization with L-curve (for parameter 

estimation) and MLS-AART.  

 The 3D numerical study is presented in Figure 14. The configuration of the 

simulated FT scenario involved a slab turbid medium with two AF680 spheres located in 

the central region. The scattering and absorption coefficients of the turbid medium were 

chosen to be spatially homogeneous and their values were selected to match the average 

optical properties of biological tissue (             and          ) [2]. In Figure 

14 (a), the configuration and geometry of the simulated FT scenario is depicted. In Figure 

14 (b), the data images are displayed. The data images are acquired at the emission 

wavelength (700 nm) of AF680 dye when excited at 640 nm. The source locations lie on 

a 10-by-8 grid. To observe the effect of the depth of the inclusions on the performance of 

the reconstruction algorithms, the fluorescent spheres were simulated at three different 

depths of 6 mm, 10 mm, and 14 mm. The forward simulation was performed by using the 

semi-analytical Green‟s function in Equation 11 on a 3D rectangular grid with a voxel 

size (volume) of 1 mm
3
.  
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Figure 14: In a 3D FT numerical study, two AF680 spheres buried in a turbid slab were simulated. a) 

The turbid box was 40 mm by 40 mm by 20 mm. The radius of each AF680 sphere was 2 mm and 

they were 2 mm apart. b) Data was simulated by the forward solver for 40 source locations.  
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 The turbid box was illuminated at 40 source locations in a trans-illumination 

geometry, and the surface intensity of fluorescent emission from the spheres was 

simulated by the forward solver for every source position. The data were contaminated 

with typical levels of Gaussian read-out (detector) noise and Poisson-distributed shot 

noise. Also, around 20% error was introduced in the optical properties estimates used in 

the reconstruction algorithms. Reconstructions were performed using L2 regularization 

(with L-curve) and MLS-AART for the three numerical studies (each corresponding to a 

different depth). The results for the 6 mm, 10 mm, and 14 mm deep spherical inclusions 

are presented in Figures 15, 16, and 17, respectively. Each figure depicts the L-curve, the 

L2 regularization reconstruction, and the MLS-AART reconstruction for the 

corresponding numerical study. Since the geometry and optical properties are the same 

for the three studies, the system matrix and the singular value decomposition are almost 

the same as well (they may differ slightly based on the location of sampled data points). 

The L-curve, however, depends on the data vector and therefore differs in each case as 

shown in Figures 15 (a), 16 (a), and 17 (a).         

 The reconstructions for the shallow-depth case (6 mm) are depicted in Figures 15 

(b) and 15 (c). Both L2 regularization and MLS-AART successfully reconstruct the two 

inclusions. However, the L2-regularized reconstruction is over-smoothed and possesses 

over-spreading as shown in Figure 15 (b). Additionally, MLS-AART reconstruction has 

sporadic artifacts throughout the volume of the turbid box as depicted in Figure 15 (c). 

The over-spreading of the L2 regularization is expected based on the discussions 

presented in Sections 2.1 and 2.2. The corner of the L-curve, as shown in Figure 15 (a), is 

considerably close to the highest singular value of the system matrix. Therefore, L-curve 
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selects a large regularization parameter and the reconstruction is strongly regularized, so 

a wide range of oscillatory singular vectors is damped out. As a result, the reconstruction 

possesses spreading as it lacks high-frequency components.   

 

Figure 15: 3D reconstructions were performed by L2 regularization and MLS-AART for the case of 

double spheres buried at 6 mm. a) L-curve was plotted to select the regularization parameter λ=378. 

b) 3D reconstruction was performed using L2 regularization. c) 3D reconstruction was performed 

using MLS-AART. 
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 MLS-AART reconstruction, as depicted in Figure 15 (c), has less spreading and is 

better localized around the corresponding depth of the inclusions, however, the 

reconstruction possesses artifacts scattered within the volume of the turbid medium. As 

discussed in Section 2.3, MLS-AART converges to a weakly regularized (owing to the 

norm minimization at every step) solution and is not as noise-robust as L2 regularization. 

Therefore, while MLS-AART reconstructs the high-frequency components, it does not 

damp out noise-induced artifacts and errors. Figure 15 (c) shows how the reconstruction 

by MLS-AART is well-localized but possesses artifacts. 

 As the depth of the spheres increases, stronger regularization is required as shown 

in the L-curves depicted in Figures 15 (a), 16 (a), and 17 (a). This is expected because 

photons from deeper sources are more diffuse, and reconstructing deep sources suffers 

from poorer conditioning compared to reconstructing shallow sources, and requires 

stronger regularization. Increasing the regularization strength results in more spreading in 

the reconstructed inclusions. This can be observed in the L2 regularization reconstructions 

depicted in Figures 15 (b), 16 (b), and 17 (b). As the depth of the inclusions increases, the 

L-curve corner value and the regularization parameter value rise, and as a result, the over-

spreading in the reconstructed inclusions increases. Meanwhile, MLS-AART does not 

possess strong regularizing power and so its reconstructions, as shown in Figures 15 (c), 

16 (c), and 17 (c), are better localized around the corresponding depths compared to L2 

regularization. However, as the depth of the inclusions increases, which makes the 

problem more poorly conditioned, the level of error-induced artifacts in the MLS-AART 

reconstructions rises which impairs the quality of the reconstructions. Overall, the 3D 
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numerical studies indicate that MLS-AART has a stronger resolving power and a weaker 

regularizing or stabilizing power compared to L2 regularization. 

 

Figure 16: 3D reconstructions were performed by L2 regularization and MLS-AART for the case of 

double spheres buried at 10 mm. a) L-curve was plotted to select the regularization parameter λ=381. 

b) 3D reconstruction was performed using L2 regularization. c) 3D reconstruction was performed 

using MLS-AART.  
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Figure 17: 3D reconstructions were performed by L2 regularization and MLS-AART for the case of 

double spheres buried at 14 mm. a) L-curve was plotted to select the regularization parameter λ=494. 

b) 3D reconstruction was performed using L2 regularization. c) 3D reconstruction was performed 

using MLS-AART. 
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 To study and compare the performance of the conventional reconstruction 

algorithms presented in this chapter in in vivo scenarios, they are applied to two verifiable 

FT/CT dual-modality in vivo studies. As discussed in Section 1.2.6, in vivo studies 

involving labeled cancer tumors or test drugs cannot be used for studying the 

performance of FT reconstruction algorithms as the actual distribution of the 

administered fluorophores cannot be known precisely. Therefore, the quality of the 

reconstructions cannot be assessed. The fluorescent inclusions used in the verifiable in 

vivo studies were selected to be glass tubes filled with AF680 fluorescent dye and 

surgically implanted inside laboratory. The implants can be imaged in a dual-modality 

CT/FT platform as shown in Figure 18. The implant tubes can be segmented out from the 

soft tissue surrounding them in the 3D CT reconstructions as they are made of glass 

which includes elements that have higher atomic numbers than elements in soft tissue 

(Si=14 versus C=6, N=7, and O=8). The 3D CT reconstruction yields a high resolution 

3D map of the location of the fluorophore-filled tubes. When co-registered with the 3D 

FT reconstruction, the CT map can be used for verification of the accuracy of the FT 

reconstruction. Figure 18 (a) depicts the 3D CT reconstruction of a nu/nu mouse with two 

cylindrical AF680-filled glass tubes surgically implanted in its intestines. The ventral side 

of the mouse is imaged by a trans-illumination CCD-based FT system, while the dorsal 

side is illuminated serially at 30 source locations as depicted in Figure 18 (b). The 

restraining bed used for housing and transporting the animal has fiduciary markers that 

are imaged by the CT system and are fixed within the coordinates of FT images. These 

markers are used for a fast automatic co-registration of the 3D CT map and FT 

reconstruction. The two in vivo studies presented in this section involved a pair of 
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cylindrical AF680-filled tubes surgically implanted in the intestines of a nu/nu mouse at 

different depths (3 mm and 6 mm) and imaged by a dual-modality FT/CT system.  

 

Figure 18: Dual-modality verifiable FT/CT in vivo studies are performed on a nu/nu mouse. a) 3D X-

ray CT reconstruction reveals the fluorophore-filled (AF680) implant tubes in the intestines of the 

nu/nu mouse. b) FT data are acquired using a trans-illumination CCD-based system at 30 source 

locations.  

 

 Reconstructions by L2 regularization and MLS-AART for the two in vivo studies 

are presented in Figures 19 and 20. The optical properties used in the reconstruction 

algorithms for the intestines of the nu/nu mice were statistical estimates derived from 

multiple measurements performed on nu/nu mice [33]. L-curves were plotted for the two 

studies to determine the corresponding optimal regularization parameters as shown in 

Figures 19 (a) and 20 (a). Similar to the numerical studies presented in this section, the 

singular value decomposition of the system matrices corresponding to the two in vivo 

scenarios are very similar as shown in the L-curves in Figures 19 (a) and 20 (a) because 
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of the similarity between the configurations and optical properties of the two 

experiments. Moreover, the value of the regularization parameter for the experiment with 

deep implants (6 mm) is higher than that of the experiment with shallow implants (3 

mm).   

 

Figure 19: Dual-modality FT/CT in vivo study is performed on a nu/nu mouse with two cylindrical 

AF680-filled tubes implanted 3 mm deep in the intestines. a) L-curve is plotted to select the 

regularization parameter λ=9.55e-6. b) L2 regularization FT reconstruction is overlaid with co-

registered 3D CT map. c) FT reconstruction is performed by L2 regularization. d) MLS-AART FT 

reconstruction is overlaid with co-registered 3D CT map. e) FT reconstruction is performed by MLS-

AART. 
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 L2 regularization reconstructions are depicted in Figures 19 (c) and 20 (c), and 

MLS-AART reconstructions are shown in Figures 19 (e) and 20 (e). Meanwhile, to verify 

the accuracy of the reconstructions, they are overlaid with the co-registered CT maps that 

indicate the exact location of the implants. Figures 19 (b) and 20 (b) depict the L2 

regularization reconstructions overlaid with the corresponding CT maps, and Figures 19 

(d) and 20 (d) show the MLS-AART reconstructions overlaid with the 3D CT maps. The 

L2 regularization reconstructions contain two inclusions and do not possess any artifacts 

since the regularization parameters picked by L-curve are relatively large in both cases. 

These reconstructions are both strongly regularized, and the reconstructed inclusions 

possess over-smoothing and over-spreading as shown in Figures 19 (b) and 20 (b). As 

described in Sections 2.1 and 2.2, the accuracy of reconstructed inclusions is jeopardized 

in L2 regularization to avoid noise-induced artifacts. Conversely, the MLS-AART 

reconstructions are contaminated with artifacts in both cases. In the shallow (3 mm) case, 

the inverse problem is less ill-conditioned than the deep (6 mm) case. Hence, the level of 

artifacts present in the MLS-AART reconstruction from the shallow scenario is much less 

than the deep scenario. As shown in Figures 19 (d) and 19 (e), the two implants 

reconstructed by MLS-AART are relatively well-localized around the corresponding 

tubes visualized in the co-registered CT map. The MLS-AART reconstruction has some 

sporadic artifacts distributed within the volume of the mouse, but they are not as bulky or 

intense as the reconstructed inclusions. However, in the deep (6 mm) scenario, the MLS-

AART reconstruction is highly artifact-contaminated and possesses poor accuracy as 

shown in Figures 20 (d) and 20 (e). As discussed in Section 2.3, MLS-AART provides 

well-resolved accurate reconstructions in scenarios with low error or noise. However, it 
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fails to perform accurately as the noise and error levels in the data and the model 

increase. This failure is primarily due to the weakly regularizing nature of MLS-AART.  

Overall, the in vivo studies show that both reconstruction algorithms perform relatively 

accurate in reconstructing shallow inclusions, but the reconstructions become either 

artifact-contaminated or poorly resolved for deep inclusions.     

 

Figure 20: Dual-modality FT/CT in vivo study is performed on a nu/nu mouse with two cylindrical 

AF680-filled tubes implanted 6 mm deep in the intestines. a) L-curve is plotted to select the 

regularization parameter λ=2.53e-5. b) L2 regularization FT reconstruction is overlaid with co-

registered 3D CT map. c) FT reconstruction is performed by L2 regularization. d) MLS-AART FT 

reconstruction is overlaid with co-registered 3D CT map. e) FT reconstruction is performed by MLS-

AART. 
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2.5 Limitations and Drawbacks 

 Based on the results and discussions presented in Section 2.4, the limitations and 

drawbacks of L2 regularization and MLS-AART can be summarized as follows. As 

presented in Section 2.4, the L2 regularization entails smoothing effects and results in 

continuous and spatially over-spread reconstructions while damping noise-induced 

artifacts. The L2 regularization filters out the high-frequency and edge-type features of 

the fluorescence distribution and impairs the resolution offered by FT reconstructions 

while removing artifacts caused by noise and modeling errors. Results reported for FT 

reconstructions using L2 regularization in Section 2.4 possess less spreading and are 

better resolved in shallow depths. However, as the depth of the fluorescent inclusions 

increases, the need for stronger regularization rises, resulting in high spatial spreading 

and poor resolution. Structural and anatomical priors have been used to improve the 

performance of L2 regularization and adapt the regularization parameters to the geometry 

and a priori information of the FT problem. This has been shown to greatly enhance the 

accuracy of 3D reconstructions in a few studies [81-84]. However, the performance of 

adaptive methods relies on the availability of priors and in problems with limited or error-

contaminated priors, adaptive methods cannot perform optimally.  

 The MLS-AART performed accurately for cases with low levels of noise or error 

contaminations. In general, ARTs are used extensively in imaging scenarios with 

accurate models and low-noise data. Nevertheless, the performance of MLS-AART 

deteriorates as modeling errors and data noise level increase. MLS-AART does not 

possess strong regularizing power. This makes MLS-AART unsuitable for performing 

reconstructions on noisy data and error contaminated models. As a result, the 



59 

 

reconstructions from MLS-AART had a higher level of artifact contamination compared 

to the L2 regularization. 
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CHAPTER 3 
 

TOTAL VARIATION REGULARIZATION 
 
3.1 Motivation 

 
 As discussed in Chapter 2, reconstructing the 3D fluorescent distribution in 

biological tissue from the fluorescent signal measured on the tissue boundary is a highly 

ill-conditioned problem as the depth information must be extracted from the data 

collected on the tissue surface. FT inverse solvers use regularization techniques to 

overcome the ill-posed nature of this problem and minimize the artifacts and errors 

contaminating the 3D reconstructions. Conventionally, as discussed in Chapter 3, the L2 

regularization method in which the L2 norm of the solution or a linear transformation of 

the solution is penalized has been used for 3D reconstructions in FT. As discussed in 

Sections 2.4 and 2.5, the spatial resolution of the reconstructions of the L2 regularization 

is poor. The low resolution is due to the smoothing nature of the L2 norm, and the bias of 

the L2 regularization towards spatially smooth inclusions. Also, as presented in Chapter 

2, non-regularizing algorithms such as the MLS-ART do not perform optimally in FT 

scenarios with high levels of error or noise contaminating the model and the data.   

 In this chapter, the use of the total variation (TV) regularization for performing FT 

reconstructions is described. In the TV regularization, the TV semi-norm of the solution 

is penalized to stabilize the reconstructions against artifacts and errors in the data and 

modeling. TV image reconstruction is widely used in image processing and has been 

shown to enhance the contrast and the resolution of image reconstruction over the 

existing L2 regularization technique in various medical and molecular imaging modalities 

such as bio-luminescence tomography and emission tomography [85, 86]. In this 
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regularization technique, the penalty term added to the least-squares data fidelity is the 

TV semi-norm of the solution as formulated in Equation 54: 

     ‖    ‖ 
     ‖ ‖   ,                                               (54) 

where the discretized 3D fluorescent distribution is stacked in a one-dimensional (1D) 

vector denoted by  . Assuming that the 3D continuous scalar function representing the 

fluorescent distribution is denoted by  , the TV semi-norm of   can be defined as 

  ‖ ‖   ∫       .                                                    (55) 

The integral in Equation 55 is taken across the space over which   is defined. In 

Equation 55, the differential element for volume is denoted by   , and the gradient of   

is denoted by   . The TV semi-norm can be interpreted as the L1 norm of the gradient of 

the 3D fluorescent distribution. Hence, in the TV regularization, the size of the variations 

in the solution is penalized, whereas in the L2 regularization, the size of the solution itself 

is penalized. 

3.2 Resolution of 3D Reconstructions: Total Variation versus L2 

 The major limitation of the L2 regularization stems from its over-smoothing 

property. Similar to low-pass filtering in the de-noising of 1D signals, the high-frequency 

components and edge-type features of the reconstructed inclusions are filtered out in the 

L2 regularization. This filtering is done to remove the noise and error-induced artifacts 

from the reconstructions. Therefore, the artifacts are removed and the solution is 

stabilized at the cost of over-smoothing the sharp transitions and well resolved inclusions. 

As a result, the spatial resolution of the reconstruction algorithm is impaired at the 

expense of securing stability in the solution.  



62 

 

 To provide a better insight into the spatial resolution of image reconstruction 

algorithms, their point spread functions (PSF) can be studied. PSF is a concept used in 

resolution studies for comparing the spatial resolving power of image reconstruction 

methods in linear problems [87]. Unlike the L2 regularization, the edges and sharp 

transitions are not smoothed out in the TV regularization. Only highly oscillatory 

components are filtered out. Therefore, the TV regularization is expected to yield a better 

spatial resolution compared to the L2 regularization. To compare the spatial resolution of 

the TV regularization and the L2 regularization, their corresponding PSFs were studied in 

a 2D numerical study.  

 In a given turbid medium and data acquisition geometry, the PSF is defined as the 

reconstruction of an image that contains only a single non-zero pixel or voxel without any 

noise or errors present in the data or modeling. In FT, an image reconstructed from 

noiseless data generated from a unit-impulse fluorescent distribution represents the PSF 

of that voxel. Various qualities of image reconstruction techniques can be studied by 

examining their PSFs. The distortions and artifacts generated in an image when projected 

to the data domain and back to the image domain through a reconstruction algorithm are 

revealed by examining the PSFs of that algorithm. In the L2 regularization, which is 

mathematically formulated as    

     ‖    ‖ 
    ‖ ‖ 

  ,                                                   (56) 

the reconstructed image      is directly related to the true image       through a linear 

system [87]. This system is derived by assuming theoretically perfect noiseless 

conditions, which are suitable for exploring the PSFs, as shown in Equation 57: 

(       )              .                                               (57) 
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The PSFs of the L2 regularization can be calculated by substituting       in 

Equation 57 by a vector with only one non-zero entry and solving for     . As a result, 

the columns of the resolution matrix formulated as   (       )      are the 

PSFs of the corresponding voxels (entries) in x. As the value of the parameter   in 

Equation 56 increases, i.e., the strength of regularization increases, the term     becomes 

larger. This increase in the regularization component      results in more non-zero off-

diagonal entries in the resolution matrix. Hence, the spatial resolution of the L2 

regularization decreases with increase in the regularization strength.  

In the TV regularization, the reconstructed fluorescent distribution      is related 

to the actual fluorescent distribution       by  

(        
 

    
)              ,                                     (58) 

which is derived by setting the derivative of the objective in Equation 54 to zero. Also in 

arriving at Equation 58, it is assumed that         |      | considering the edge-

preserving behavior of the TV regularization. To obtain the PSFs of the TV 

regularization,       is substituted by a vector with only one non-zero entry in Equation 

58, and      is computed.  

 In Figure 21, a comparison of the PSFs of the TV regularization and the L2 is 

depicted for a 2D numerical study. For an off-edge voxel, both regularization techniques 

result in spatial spreading around the corresponding voxel. However, for an on-edge 

voxel, the TV regularization has no spreading across the edge and does not diffuse nor 

smooth the edge. However, the L2 regularization results in spatial spreading in all 

directions.  
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Figure 21: The PSFs of the L2 regularization and the TV regularization are compared for (i) on-edge 

and (ii) off-edge voxels. (a) Original fluorescent distribution and voxels whose PSFs are being studied 

are plotted. (b) The PSFs of the L2 regularization of a moderate strength are plotted. (c) The PSFs of 

the TV regularization of a moderate level are plotted.  

 

 As observed in Figure 21, the PSF of the TV regularization has almost no 

smoothing or regularizing effect for on-edge voxels. Nevertheless, there is a moderate 

level of spreading for off-edge voxels. This edge-preserving adaptive nature of the TV 

regularization can be explained by the fact that, as expressed in Equation 58, the 

regularizing term or operator in the TV regularization, formulated as     
 

    
 , depends 

on the gradient of the reconstructed image. The denominator of the regularization term 

has an important role in the performance of the TV regularization. The denominator      

has large values on the edges of   and small values on the smooth regions of  . Hence, 

the operator     
 

    
 is small for voxels sitting on the edges and large for those away 

from the edges and sharp transitions.  



65 

 

 Therefore, the TV regularization can be viewed as an adaptive form of 

regularization. For the voxels sitting in smooth regions away from the edges, strong 

regularization filters out oscillations and high-frequency components. But for the voxels 

sitting on the edges, there is weak or no regularization. So the high-frequency 

components are not filtered out for on-edge voxels. The PSFs do not possess smoothing 

around the voxels sitting on the edges. The edges are preserved in the reconstruction 

process. This edge-preserving property of the TV regularization results in higher spatial 

resolution compared to the L2 regularization. 

3.3 Implementation of the TV regularization 

 To implement the TV regularization for FT, the minimization in Equation 54 

needs to be solved numerically. The minimization in Equation 54 is a nonlinear 

optimization problem. So it cannot be solved directly using linear solvers. Two different 

approaches are used to solve for   in the nonlinear optimization problem in Equation 54. 

A variational method inspired by the Rudin-Osher-Fatemi (ROF) TV de-noising 

technique [88], and an iterative method inspired by the linearized split Bregman iteration 

method [89] are used to solve the optimization problem in Equation 54. 

In the first approach, an ROF-based TV regularization algorithm is used to solve 

the minimization problem. Let   represent the combined continuous-to-discrete and 

reshape operators mapping the scalar function of 3D fluorescent distribution denoted by   

to the discretized 1D vector of fluorescent distribution denoted by  . Then, Equation 54 

can be written in terms   of as 

     ‖    ( )‖ 
    ∫                                                     (59) 
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where  is a scalar that controls the strength of the regularization. Equation 59 is a 

nonlinear minimization problem in the variable  . The gradient descent method is used to 

solve Equation 59 iteratively [88]. The gradient of the objective is set equal to the 

difference between successive iterations divided by the step size denoted by    as shown 

in Equation 60: 

 (   )  ( )

  
      (    ( ))       (

  

    
).                                   (60) 

The finite difference method is applied to Equation 60 to discretize and 

numerically solve for  . The volume over which   is defined is discretized by a uniform 

rectangular mesh and   and its spatial derivatives are approximated by finite difference 

equivalents [88]. To ensure fast convergence, the initial guess used in this iterative 

method is the solution of L2 regularization. The choice of   and    is fundamental to the 

convergence and optimal performance of the algorithm. The symbol    represents the 

time step in the numerical solver. This parameter should be optimized to obtain the 

highest possible rate of convergence to the steady-state solution while meeting certain 

constraints required for maintaining numerical stability, e.g.,    must be small enough to 

satisfy the Courant–Friedrichs–Lewy (CFL) condition [90]. The trade-off between the 

data fidelity and regularization strength is scaled using the parameter  . To ensure best 

performance, the values for these parameters are chosen empirically. 

In the second approach, the recently explored method of split Bregman iteration is 

used to solve the minimization problem in Equation 58. Detailed derivation of this 

heuristic algorithm for TV minimization can be found in Ref. [91]. Unlike L2 

regularization, the optimization problem of TV regularization often possesses several 

local minima. Only some of these minima correspond to the desirable solution. Under 
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certain conditions, any iterative solver may converge to the undesirable local minima. In 

the ROF approach, the undesirable minima were avoided by using the solution of L2 

regularization as an initial guess. For the Bregman iteration, an initial guess cannot be 

used. Therefore, the algorithm needs to be modified and biased away from undesirable 

local minima and towards the desired solution. This modification is done by adding an 

extra term to the objective of the minimization. This extra term has bias towards an initial 

guess that is the solution of L2 regularization. The modified biased minimization problem 

can be written as  

    ∫        
 

 
‖  ( )   ‖ 

  
 

 
‖     ‖ 

        (61) 

where, for the purpose of simplicity in the final form of the algorithm, the regularization 

parameter   is removed, and a positive weight denoted by 
 

 
 has been added to the data 

fidelity.  The relaxation parameter, which is denoted by α, controls the strength of the 

bias term that guides the algorithm to the vicinity of the least-squares solution to avoid 

convergence to unwanted local minima of the TV regularization. To solve the 

optimization problem in Equation 61, the concept of sub-gradient space is used in the 

split Bregman method [89, 91] to determine the direction of descent. This descent is 

repeated iteratively until the algorithm converges to a solution.  

Mathematically, the minimization in Equation 61 is relaxed to an iterative 

updating scheme by introducing auxiliary variables    and    that lie in the sub-gradient 

as formulated in Equation 62: 

         
 

 
‖  ( )   ‖ 

  
 

 
‖     ‖ 

   
 

 
 ‖        ‖

 

 
 .                (62) 



68 

 

where β is the relaxation weight of the sub-gradient term and determines the direction of 

the descent associated with each iteration. A large β would stipulate a descent in a 

direction very close to the gradient at the expense of jeopardizing the data fidelity. The 

parameters α, β, and µ are selected empirically by performing an exhaustive search. By 

setting the derivative of Equation 62 to zero, Equation 63 is obtained: 

(       ( )       )                    (     ) ,                 (63) 

where the symbol   denotes the Laplacian operator. The iteration described in Equation 

63 and the updates for the auxiliary variables as formulated in Ref. [91] summarize the 

core step of the split Bregman method for TV regularization of the FT inverse problem. 

The system of equations in Equation 63 is symmetric positive-definite. Therefore, 

Equation 63 can be solved using the preconditioned conjugate-gradient method in each 

iteration [92]. 

3.4 Numerical and Experimental Studies 

 To compare the performance of TV regularization with conventional L2 

regularization and MLS-ART, these methods were applied to 2D simulated FT data. The 

forward solver from the simulation platform described in Section 1.2.4 was used to 

simulate a 2D FT configuration. The simulated data were contaminated with different 

levels of noise. The 2D simulated FT configuration is depicted in Figure 22. The two 

white blobs represent fluorescent inclusions with unit quantum efficiency and 

fluorescence absorption     of          in a rectangular turbid medium with dimensions 

of 8 cm by 6 cm, absorption coefficient    of           , and scattering coefficient    

of        that mimic the optical properties of biological tissue. The blue squares and 

the red circles in Figure 22 represent sources and detectors. Eight sources and eight 



69 

 

detectors are used in the FT configuration as shown in Figure 22, so the data vector 

denoted by   has 64 entries. The data vector   is contaminated by three different levels of 

additive white Gaussian noise that result in SNRs of 50 dB, 40 dB, and 30 dB in the data. 

After the noise is added, the data vector   is fed to the reconstruction algorithms.  

 

Figure 22: In a 2D fluorescence tomography configuration, two fluorescent blobs are simulated in a 

turbid rectangle with eight sources and eight detectors for illumination and data acquisition. 

 

 

 The 3D reconstructions from the L2 regularization, the MLS-ART, and the two 

implementations of the proposed TV regularization are depicted in Figure 23 [93, 94]. 

The numerical studies presented in Figure 23 reveal the effect of noise on the 

performance of different reconstruction algorithms. MLS-ART is an unbiased and non-

regularized reconstruction technique. This algorithm does not converge to the solution for 

low-SNR FT data as shown in column (ii) of Figure 23. For L2 regularization, the two 

blobs are successfully reconstructed as depicted in column (i) of Figure 23. But the 

spreading and over-smoothing effects of L2 regularization are present, especially for the 

low-SNR cases. As shown in column (iii) of Figure 23, in the ROF-based TV 

regularization, the blobs are reconstructed with high resolution in high-SNR cases. 

 Nevertheless, in low-SNR scenarios, artifacts in the form of edge distortion and 

shifting are present in the reconstructions of the ROF-based TV regularization.  The 
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performance of the split Bregman-based TV regularization is also well for high-SNR 

cases. The high resolving power of the Bregman method can be observed in column (iv) 

of Figure 23. However, for low-SNR data, artifacts appear in the reconstructions, and the 

shapes of the reconstructed inclusions become distorted. So as presented in Figure 23, the 

L2 regularization reconstructions are robust but have poor spatial resolution, the MLS-

ART reconstructions are poor in accuracy and robustness, and the TV regularization 

reconstructions are robust and have high spatial resolution but are contaminated with 

edge distortions.   

 

Figure 23: Fluorescent inclusions are reconstructed from 2D simulated data with (a) 50dB SNR, (b) 

40dB SNR, and (c) 30dB SNR, by (i) L2 regularization, (ii) MLS-ART, (iii) time marching ROF TV 

regularization, and (iv) iterative Bregman TV regularization. 

The least-squares relative estimation error is calculated for each reconstruction 

and plotted in Figure 24. This error is defined in Equation 64: 

  
‖   ̂‖ 

‖ ‖ 
       (64) 
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where  ̂ represents the reconstructed solution. This error does not reflect the edge-

preserving advantage of reconstruction algorithms as effectively as visual inspection of 

the reconstructed inclusions. 

 

Figure 24: Relative estimation errors for reconstructed fluorescent distributions corresponding to L2 

regularization, algebraic reconstruction technique, and the proposed ROF and iterative Bregman TV 

regularization for data SNR= 30, 40, 50 dB. 

 

Also, the Michelson contrast [95] was computed and plotted for each 

reconstructed image, as formulated Equation 65, to provide a quantitative analysis on the 

resolution improvements offered by the TV regularization: 

  
         

         
 ,                                                         (65) 

where Imax represents the mean of the peak fluorophore concentrations in the two 

reconstructed blobs, and Imin is the minimum fluorophore concentration on the line 

segment connecting the location of the peaks. In Figure 25, plots of the contrast values 

for each reconstructed image are depicted. As shown in Figure 24, the accuracy of the TV 
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regularization reconstructions is better than ART and no less than the conventional L2 

regularization. Figure 25 indicates that the resolution offered by the TV regularization is 

higher compared to L2 regularization due to its edge-preserving property. 

 MLS-ART also provides a relatively high resolution for high-SNR data because 

of its weakly regularizing nature, but its performance degrades as the SNR is decreased. 

For low-SNR data, the TV regularization has higher resolution and accuracy compared to 

ART. Overall, it can be observed in Figures 24 and 25 that TV regularization is 

advantageous to the conventional ART and L2 regularization algorithms and performs 

better in terms of accuracy and resolution compared to ART and L2 regularization, 

respectively.  

 

Figure 25: The Michelson contrast, defined in Equation 15, is computed and plotted for the 

reconstructed fluorescent distributions corresponding to the L2 regularization, the MLS-ART, and 

the proposed ROF and iterative Bregman TV regularization for data SNR= 30, 40, 50 dB.  
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To compare the performance of the TV regularization with the L2 regularization 

in experimental settings, a phantom-based FT system was developed and calibrated as 

described in Sections 1.2.5 and 1.2.6. Two capillary tubes partially filled with Oxazine-

750 were suspended vertically in an intralipid-based slab liquid tissue phantom as 

depicted in Figure 9. One side of the phantom was illuminated at 36 source locations 

using an optical fiber that is coupled to a He-Ne laser (emission of 633 nm to excite the 

Oxazine-750 dye). The opposite side of the slab phantom was imaged by a cooled CCD 

camera to capture the trans-illumination and the fluorescent emission. A general 

schematic and three pictures of this FT phantom-based system are shown in Figure 4. As 

depicted in Figure 26, a total of 36 source locations and 81 detector locations were used 

for the illumination of the phantom and FT data acquisition, respectively.  

The tubes were immersed in the tissue phantom vertically at three different depths 

of 3 mm, 6 mm, and 9 mm from the front surface of the phantom facing the CCD camera. 

The camera is cooled down to -10 °C to minimize dark-current noise. Dark-frame images 

(images with laser being off) are taken along with each dataset and subtracted from the 

data images to remove contamination from stray light and other unwanted signals. A 

region of interest in the central part of the phantom with an area of 8 cm by 8 cm was 

selected for reconstruction. A tetrahedral mesh with 15394 nodes and 87671 voxels was 

used to discretize the selected volume. The acquired FT data are fed to the L2 

regularization and the TV regularization for reconstructing the two fluorescent inclusions 

within the tetrahedral mesh discretizing the central region of the phantom volume.      
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Figure 26: The configuration used for the experimental phantom-based FT studies consists of two 

fluorophore-filled capillary tubes inserted in an intralipid liquid phantom that is illuminated at 36 

source positions (circles) and imaged by a CCD camera that yields 81 data points (dots). 

 

 

 In Figure 27, the 3D reconstructions from the experimental data using the L2 

regularization and the two implementations for the proposed TV regularization are shown 

[96]. As the depth of the fluorescent inclusions increases, the fluorescent photons 

collected on the surface become diffuser and the error-sensitivity of the corresponding FT 

reconstruction increases. Therefore, stronger regularization is required as the depth of 

fluorescent inclusions increases. In row (a) of Figure 27, the performance of L2 

regularization in reconstructing the two fluorescent tubes at three different depths is 

shown. For shallow inclusions, the reconstructions do not possess much spreading. The 

over-smoothing and spatial spreading become very strong at higher depths as the need for 

strong regularization increases. The ROF-based and Bregman-based TV regularization, 

as depicted in rows (b) and (c) of Figure 27, perform better in reconstructing the two 

fluorescent inclusions compared to L2 regularization. 
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Figure 27: Fluorescent distributions are reconstructed from experimental data where fluorophore-filled 

tubes are located (i) 3 mm, (ii) 6 mm, and (iii) 9 mm deep using (a) L2 regularization, (b) time marching 

ROF-based TV regularization, and (c) iterative Bregman-based TV regularization. 

 

 

 The reconstructed tubes from the ROF-based TV regularization are well resolved 

and well localized. Reconstructions from the Bregman-based TV regularization also have 

high spatial resolution and accuracy. When compared to L2 regularization, results from 

the ROF-based and Bregman-based TV regularization have less spreading, and the 

reconstructed tubes are distinctly separated. The results in Figure 27 reveal the 
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advantages of the TV regularization over the L2 regularization in resolving fluorescent 

inclusions. While results from both methods possess artifacts, the TV regularization has 

better performance in recovering and separating lesions and inclusions over L2 

regularization. 

3.5 Advantages and Limitations  

The numerical and experimental results presented in this chapter indicate that the 

TV regularization has the potential to provide higher resolution and greater robustness 

compared to conventional L2 regularization and MLS-ART. As depicted in Figures 23 

and 26, the 2D and 3D reconstructions for both implementations of the proposed TV 

regularization algorithm are better localized around their corresponding coordinates and 

possess less spread compared to L2 regularization. The non-spreading and edge-

preserving nature of the TV regularization has been the subject of several studies [97, 

98]. The advantages of the TV regularization over L2 regularization are analogous to the 

advantages of wavelet-based de-noising [99] over low-pass filtering in image processing. 

Low-pass filtering can filter out the oscillatory image noise. However, low-pass filtering 

also diffuses the edges and sharp transitions and makes the image blurry and poorly 

resolved. De-noising through wavelet thresholding only filters out highly oscillatory 

components in the image while preserving the edges and sharp transitions.  

The optimization problem in the TV regularization is not as easily tractable as the 

one in the L2 regularization. The convergence time for the TV regularization is higher 

than that of the L2 regularization in almost all cases presented in this chapter. Among the 

two implementation of the TV regularization presented in this chapter, the split Bregman 

iteration provides a faster convergence compared to the ROF. This speed difference is 
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due to the time-marching property of ROF. It takes 100 or more iterations for ROF to 

converge even when started with a good initial guess. The split Bregman converges 

within 20 iterations. However, the time required for each step of the ROF is significantly 

less than the time needed for each step of the split Bregman where the preconditioned 

conjugate-gradient method needs to be implemented. Pre-conditioned conjugate-gradient 

method may converge fast or slow depending on the condition number of the symmetric 

positive-definite linear operator in Equation 63. In other words, in strongly regularized 

cases, the split Bregman iteration is considerably faster than the ROF while for weakly 

regularized cases the two approaches have similar convergence times.  

The difference between the ROF approach and the split Bregman iteration lies in 

the degrees of freedom associated with the gradient of the reconstructed image in each 

method. The split Bregman iteration is not biased towards certain edge directions because 

this algorithm operates on each gradient component separately. Conversely, the ROF 

method prefers circular and isotropic edges as the ROF method acts on the magnitude of 

the gradient vector and not its components. The ROF reconstructions tend to be circular 

or cylindrical in shape, or isotropic in a more general sense. However, the split Bregman 

reconstructions have edges and borders of various shapes. This unbiased property makes 

the split Bregman iteration better in reconstructing various fluorescent inclusions 

compared to the ROF. Nevertheless, this property also makes split Bregman more 

sensitive to error-induced edge distortions compared to the ROF. This inherent difference 

between the ROF and the split Bregman reveals the reason behind the difference between 

the reconstructions from these two implementations in the numerical and experimental 

studies.   
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Based on the results reported in Section 4.4, it is concluded that for performing 

3D reconstructions in FT, the L2 regularization is remarkably noise-robust and faster than 

the TV regularization. But the L2 regularization has poorer resolution compared to the TV 

regularization. For high-SNR data, the ROF-based TV regularization provides stable 

results with higher resolution compared to L2 regularization. But the accuracy of the ROF 

method diminishes with increase in the error and noise level. The split Bregman-based 

TV regularization performs faster than ROF and provides better resolution than L2 

regularization. However, for low-SNR data the performance of the split Bregman method 

is not as robust as either L2 regularization or the ROF-based TV regularization. Therefore, 

for high-SNR cases, split Bregman-based TV regularization can provide fast 

reconstructions with improved resolution, whereas the ROF-based TV regularization can 

be used for improving the reconstruction resolution in low-SNR cases. 

In conclusion, two implementations of the TV regularization were presented and 

investigated for 3D reconstructions in FT. The main advantage of the TV regularization 

over the conventional L2 regularization is that in the TV regularization the spatial 

resolution of the reconstruction is not jeopardized to secure reconstruction stability. In the 

L2 regularization, the resolution is compromised for stability. Weakly regularized 

reconstructions have artifacts such as oscillatory components and impulses contaminating 

the reconstructed inclusions. Strongly regularized reconstructions have smooth and 

spatially over-spread inclusions as depicted in column (i) of Figure 23 and row (a) in 

Figure 27. In the TV regularization, it is observed that the edge-preserving nature of the 

algorithm does not allow spatial spreading in the reconstruction. But the edges of the 

inclusions may shift as the noise and error levels increase. As can be observed in Figures 
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23 and 26, strongly TV-regularized reconstructions from low-SNR data do not possess 

spatial spreading and retain edges and sharp transitions. However, the presence of noise 

can affect the location of the edges and result in distortions in the shape of the inclusions. 

These distortions are evident in columns (iii) and (iv) of Figure 23. Consequently, the 

types of artifacts present in the reconstructions of the TV regularization are inherently 

different than those in the L2 regularization. In the L2 regularization, removal of artifacts 

results in poor resolution. In the TV regularization, artifact removal causes distortions in 

the borders of the reconstructed inclusions. Additionally, the form of noise-induced 

distortions in the reconstructions of the TV regularization differs between the two 

implementations. The ROF-based approach is biased towards circularly shaped 

reconstructions and is less prone to edge distortions as depicted in column (iii) of Figures 

23 and row (b) of Figure 27. The split Bregman iteration has more severe edge distortions 

compared to the ROF. The noise-induced distortions impair the shape and borders of the 

reconstructed inclusions, especially for low-SNR FT.  

To summarize, the resolution offered by the two approaches for the TV 

regularization is higher than the L2 regularization for high- and low-SNR data because 

the TV regularization does not compromise resolution to secure stability. The 

convergence times required for both implementations of the TV regularization are higher 

than the convergence time for L2 regularization. In low-SNR cases, the spatial resolution 

is jeopardized in the L2 regularization, and edge distortions contaminate the 

reconstructions of the TV regularization. 
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CHAPTER 4 
 

HADAMARD TRANSFORM APPROACH TO ROBUST 

FLUORESCENCE TOMGORAPHY 

As discussed in Chapters 2 and 3, the FT data SNR plays an important role in the 

quality of FT reconstructions. In this chapter, a system-level approach is presented for 

enhancing the FT data SNR without overcomplicating the hardware used in FT systems. 

A comprehensive numerical study is presented to validate the advantages of the proposed 

FT system architecture. 

4.1 Need for Higher Signal-to-Noise Ratio (SNR) 

The performance of various FT reconstruction algorithms and their advantages 

and limitations were discussed in Chapters 2 and 3. While each reconstruction method 

offers advantages over the others, performs optimally in certain aspects, and is well-

suited for some FT scenarios, none can be selected as the most effective method globally. 

Furthermore, as indicated by the results presented in Chapters 2 and 3, all the 

reconstruction methods discussed in Chapters 2 and 3 perform reasonably well in 

reconstructing shallow inclusions from high-SNR data. However, once the data is noisy 

(SNR < 30 dB or less) and the inverse problem is extremely ill-conditioned, the 

performance of the reconstruction algorithms deteriorates in various ways. Depending on 

the dynamics and nature of the reconstruction algorithm, artifacts and errors arise when 

reconstructing inclusions from noisy data. Table 2 summarizes the advantages and 

limitations of the algorithms discussed in Chapters 2 and 3 in performing reconstructions 

from noisy FT data.  
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Table 2: Performance of inverse solvers in reconstructing from low-SNR (30 dB or less) data in 

highly ill-posed FT scenarios. 

 

Method Resolution Robustness Speed 

L2 Regularization  Low High Low 

MLS-ART / MLS-AART Moderate Very Low Very High 

ROF-based TV Regularization High Moderate Very Low 

Bregman-based TV Regularization High Low Low 

 

As presented in Table 2, each of the four reconstruction methods suffer from 

certain limitations and drawbacks in reconstructing inclusions form noisy (or low-SNR) 

FT data. L2 regularization cannot perform robustly unless it strongly regularizes the 

inverse problem which, as discussed extensively in Chapter 3, will severely harm the 

resolution of its reconstructions. MLS-ART (or MLS-AART) is not noise-robust and its 

reconstructions can become severely contaminated by noise-induced artifacts when 

reconstructing from low-SNR data as discussed in Chapters 2 and 3. TV regularization is 

considerably more robust than MLS-ART, however, as discussed in Chapter 3, it does not 

regularize on-edge voxels so noise-induced artifacts contaminate its reconstructions in the 

form of edge distortions. ROF-based TV regularization has fewer degrees of freedom in 

reconstructing inclusions and therefore is less prone to edge distortions compared to 

Bregman-based TV regularization. Therefore, while both suffer from edge distortions in 

noisy FT scenarios, ROF-based TV regularization performance is more noise-robust yet 
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less accurate than Bregman-based TV regularization because it is biased towards 

isotropic shapes as discussed in Chapter 3.   

To summarize the information in Table 2, it can be concluded that all the 

available reconstruction algorithms, though optimal in certain FT scenarios, fail to 

provide robust high-resolution reconstructions in noisy and error-contaminated FT 

scenarios. Improvements in the conditioning of the inverse problem and modeling are of 

great help in enhancing the accuracy of the reconstructions. However, in many FT 

scenarios, e.g., imaging of highly heterogeneous regions of small animals, modeling 

errors cannot be controlled and, depending on the bulk and shape of the animal, the 

associated inverse problem can be extremely ill-conditioned. Hence, improving the SNR 

in the data acquisition module is of crucial importance in FT and strongly contributes to 

the quality of reconstructions regardless of the inversion algorithm being used.  

The SNR of FT data is affected by four parameters: sensitivity of the data 

acquisition system (CCD), absorption of the turbid medium, quantum efficiency of the 

fluorescent dye, and power of the illumination source. Existing FT systems are equipped 

with extremely costly, ultra-sensitive, cooled charge-coupled device (CCD) cameras to 

guarantee a high data-acquisition SNR. Disadvantages of ultra-sensitive CCD systems are 

two-fold; they are only available at high costs, and they require lengthy integration times 

for extremely low-noise data acquisition (resulting in extremely lengthy FT scan times). 

Absorption of the tissue sample being imaged and the quantum efficiency of the 

administered fluorescent dye vary from experiment to experiment and cannot be 

controlled in FT systems.  
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The power of the light source used for illumination of the medium and excitation 

of the fluorophores is bounded by the per area laser radiation injury thresholds for human 

skin and biological tissue [100]. Therefore, for conventional point-source FT 

configuration, which was described in Section 1.6, the power entering the medium is 

bounded by the skin maximum permissible exposure (MPE) [101] (~2 mW/mm
2
).  

However, if instead of single-point illumination, multiple points are illuminated 

simultaneously, more power can enter the medium. But the problem with multi-point 

illumination is that as the number of simultaneously illuminated points increases, the 

number of uncorrelated or minimally correlated measurements obtainable by changing 

the illumination points decreases. As an example, if all the sources are activated 

simultaneously, a tremendously high level of radiative power will enter the medium and 

excite the administered fluorophores, but the acquired data will not include the same level 

of information content offered by a series of single point illumination measurements. 

Hence, a trade-off exists between the average number of simultaneously illuminated 

points per measurement and the information content of the data acquired in that series of 

measurements. This trade-off can be optimized using Hadamard transform which will be 

discussed in Section 4.2.  

Additionally, in many wide-band FT systems, which offer tunable wavelength in 

the visible and NIR spectra for the excitation light, the illumination source being used is a 

filtered incandescent white light source. Considering their relatively low cost and easy 

maintenance, filtered incandescent sources are preferred over costly and complex tunable 

high-power lasers for wide-band FT systems. The main disadvantage of filtered 

incandescent sources is that their radiative power is considerably lower than lasers. As a 
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result, FT imaging of highly absorbing regions of animal or human subjects with these 

FT systems is not possible due to their low radiative power.   

4.2 Hadamard Transform 

Hadamard transform is a linear transform used for SNR enhancement in multi-

source (or multi-input) measurement systems. Instead of performing measurements with 

one source active at a time, measurements are acquired while a number of sources are on 

simultaneously [102]. As discussed in Section 4.1, a trade-off exists between the 

information content of acquired measurements and the average number of sources active 

during each measurement. The theory of Hadamard transform [102] provides the optimal 

multiplexing scheme for measurements that suffer from low SNR. This optimal (0, 1)-

weighing scheme is encoded in Hadamard S-matrix, which is a square matrix with entries 

that are either zero or one. The S-matrix is constructed such that each column (or row) 

has the maximum possible number of ones while the matrix maintains full rank and 

remains non-singular.  

The Hadamard S-matrix provides the optimal encoding scheme for multiplexing 

multi-source measurement systems. Each column of the S-matrix is used as a 

multiplexing scheme for its corresponding measurement and encodes the sources that are 

on and the sources that are off (with ones and zeros, respectively) in that measurement. 

As an example, a Hadamard S-matrix of size seven-by-seven is shown below   

            

[
 
 
 
 
 
 
       
       
       
       
       
       
       ]

 
 
 
 
 
 

.                                             (66) 
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The multiplexing scheme encoded in the first column of the S-matrix in Equation 

66 stipulates that sources numbered 1, 2, 3, and 5 to be on while sources numbered 4, 6, 

and 7 to be off in the first measurement. The matrix has seven columns so a total of seven 

measurements can be obtained matching the total number of measurements possible by 

single-source measurements (since there are seven sources). Moreover, in the 

measurements obtained using the S-matrix multiplexing scheme, an average of four 

sources are active during each measurement making the data SNR orders greater than that 

of single-source measurements. In general, in a measurement system with N sources, S-

matrix Hadamard multiplexing increases the SNR by a factor of √  approximately [102]. 

Therefore, Hadamard multiplexing becomes extremely advantageous in measurement 

systems with a high number of sources. 

In Figure 28, a system-level comparison of conventional single-source and 

Hadamard multiplexed architectures is presented. Each system has seven inputs or 

sources. The level of output (detector) noise contaminating the data is identical for both 

systems. The conventional single-source scheme, as depicted in Figure 28 (a), has a 

considerably lower output SNR compared to the multi-source Hadamard multiplexed 

scheme, as shown in Figure 28 (b). This output SNR advantage of Hadamard 

multiplexing is due to the overlap in the activation of the system inputs or sources. There 

are four simultaneously active sources at each time in the Hadamard multiplexed system, 

whereas in the conventional system, only one source is active at a time. This leads to the 

output signal in the Hadamard multiplexed architecture to be orders higher in intensity 

compared to the single-source architecture. The amplification order in the output of the 

Hadamard multiplexed architecture depends on the nonlinearity level of the system.    
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Figure 28: The conventional single-source and Hadamard multiplexed configurations are compared from a 

system-level approach. For a fixed level of detector or output noise, the Hadamard multiplexed scheme 

results in higher SNR in the output signal compared to the conventional scheme.       

 

 

4.3 Hadamard Multiplexing for Fluorescence Tomography 

As described in Section 4.1, SNR enhancement in FT greatly improves the 3D 

reconstructions irrespective of the inverse solver being used. In FT, multiple sources 

illuminate the medium at different boundary locations one at a time (as discussed in 

Section 1.6) and the power entering the medium is limited by the radiation injury 

threshold of skin. As discussed in Section 4.2, Hadamard multiplexing can be applied to 
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multi-source systems to enhance the SNR of the acquired data and hence is perfectly 

suitable for SNR enhancement in FT. Hadamard S-matrix encodings can be used for 

design of multi-source illumination schemes in FT to improve the SNR of the acquired 

data without jeopardizing the information content.  

In Figure 28, a graphical comparison of conventional FT and Hadamard 

multiplexed FT is presented. The multiplexing scheme of the S-matrix in Equation 66 is 

applied to an FT system with seven sources that illuminate a slab turbid medium with two 

cylindrical fluorescent inclusions. As shown in Figure 29, the radiative power level 

entering the slab and exciting the fluorescent rods is considerably higher in the case of 

Hadamard multiplexed FT. Meanwhile, Hadamard multiplexing does not require 

complex changes to the configuration of the conventional FT system. The only 

requirement is that the system must be modified so that simultaneous illumination of 

multiple source locations is possible.    

Figure 29: In conventional FT depicted in row (a), one source illuminates the turbid medium at a time. In 

Hadamard multiplexed FT depicted in row (b), multiple sources illuminate the medium simultaneously 

while resulting in the same number of measurements but with higher SNR. The S-matrix Hadamard 

encoding is based on the seven-by-seven S-matrix in Equation 66.     
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 The linear model of FT, as formulated in Equation 26, changes with Hadamard 

multiplexing. The Hadamard multiplexed FT is described using the modified linear 

model below [103], 

           ,                                                       (67) 

where M is the system matrix defined in Equation 25, and W is the multiplexing matrix 

constructed from Hadamard S-matrix entries as follows 

  *

      
(   )        

(    
)

   
      

(    )        
(     

)
+,                                     (68) 

where       
( ) represents the square diagonal matrix of size   -by-   having the scalar 

P as its diagonal entries. It must be noted that the Hadamard multiplexing scheme does 

not change the detector noise or modeling error statistics. According to Equation 67, the 

system matrix in the case of Hadamard multiplexed FT becomes WM. Therefore, as 

expected, the noise and error vector remains the same while the noiseless data vector,   , 

is amplified by W. This amplification in the noiseless data results in a boost in the data 

SNR. The multiplication of M by W also affects the condition number and singular 

values of the system matrix, which directly determine the condition of the ill-posed 3D 

reconstruction. However, Hadamard multiplexing is designed to have minimal effect on 

the condition number of the system matrix. More details regarding the conditioning of the 

Hadamard multiplexed FT inverse problem will be presented in Chapter 5.  

4.4 Numerical Studies 

To study the performance of Hadamard multiplexed FT, a set of 2D numerical 

studies (similar to the studies presented in Chapter 3) were performed. The 2D numerical 

studies are depicted in Figure 30. A rectangular 8 cm by 6 cm turbid medium (scattering 
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and absorption coefficients of 1 mm
-1 

and 0.01 mm
-1

, respectively) with two circular 

fluorescent inclusions was simulated using the forward solver described in Section 1.5. 

The turbid medium was illuminated with a varying number of sources distributed around 

its perimeter. The fluorescent signal is collected by 23 detectors. The acquired data was 

contaminated with various levels of noise resulting in data SNRs of 60, 50, 40, 30, 20, 10, 

and 0 dB to observe the effect of Hadamard multiplexing on the quality of FT 

reconstructions from high- to low-SNR data.  This study was performed for cases with 7, 

11, 15, 19, and 23 sources illuminating the medium, respectively, as shown in Figures 30 

(a-i),  30 (b-i),  30 (c-i),  30 (d-i),  and 30 (e-i) . This allows for investigation of the effect 

of the number of sources on the improvements offered by Hadamard multiplexed FT.  

The reconstructions were performed by the MLS-AART which, as described in 

Section 2.3, is weakly regularizing compared to other inversion methods [103]. As a 

result, the poor quality of a reconstruction can be easily observed by checking the 

accuracy and artifact contamination level of the reconstructed image. The rows labeled (i) 

in Figure 30 represent the actual location and size of the fluorescent inclusions. The rows 

labeled (ii) in Figure 30 show the reconstruction by MLS-AART from conventional 

single-source illumination data. The rows labeled (iii) in Figure 30 show the 

reconstructions by MLS-AART from Hadamard multiplexed data. For high SNRs (60-40 

dB), the reconstructions from single-source data and Hadamard multiplexed data are 

similar and the two blobs are successfully reconstructed from both datasets. As data SNR 

decreases below 40dB, the reconstructions from single-source data become inaccurate 

and contaminated with noise-induced impulses. However, the reconstructions from 

Hadamard multiplexed data remain considerably accurate down to 10 dB data SNR.  
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Figure 30: A 2D FT scenario with a) 7, b) 11, c) 15, d) 19, and e) 23 sources illuminating the medium is 

simulated to assess the performance of Hadamard multiplexed FT. Reconstructions from ii) conventional 

single-source illumination and iii) Hadamard multiplexed data were performed using MLS-AART for data 

SNRs of 60, 50, 40, 30, 20, 10, and 0 dB from left to right respectively. 



91 

 

Furthermore, the denoising power of Hadamard multiplexed FT increases when 

the number of sources illuminating the medium increases as suggested by the results 

presented in Figure 30. The reconstructions from Hadamard multiplexed data 

(corresponding to the study with 23 sources) presented in row (iii) of Figure 30 (e) 

demonstrate higher robustness to low SNR data compared to reconstructions presented in 

row (iii) of Figure 30 (b) (corresponding to the study with 11 sources) which lose 

accuracy below 30-20 dB SNRs. To compare the results presented in Figure 30 

quantitatively, the relative mean square error (MSE) defined in Equation 64 associated 

with each reconstruction is plotted in Figure 31 [103].    

 

Figure 31: The relative mean square errors (MSE) of the reconstructions in Figure 29 are plotted versus the 

data SNR. 
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As shown in Figure 31, relative errors higher than five are not included within the 

borders of the graph. Based on the data presented in Figure 31, Hadamard multiplexing 

becomes considerably advantageous to single-source illumination as data SNR drops and 

number of sources increase. This was predicted by the theoretical discussions presented 

in Sections 4.1 and 4.2. For high-SNR cases (>40 dB), the relative errors for single-

source studies are of the same order as that of Hadamard multiplexed studies. Meanwhile, 

in low-SNR studies, Hadamard multiplexed cases have relative errors below one down to 

SNRs of 10 dB and even 0 dB in some cases.  

In summary, it can be concluded that Hadamard multiplexing greatly improves 

the accuracy of FT reconstructions in low-SNR cases provided that the number of sources 

used for illumination is sufficiently large. Additionally, for high-SNR cases, Hadamard 

multiplexing does not harm the quality of reconstructions and yields datasets with high 

levels of information content similar to single-source illumination systems.  
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CHAPTER 5 

 

HADAMARD MULTIPLEXED FLUORESCENCE 

TOMOGRAPHY SYSTEM 
 

It was shown in Chapters 2 and 3 that enhancement in the signal-to-noise ratio 

(SNR) of FT data improves the accuracy of the 3D reconstructions. Additionally, it was 

demonstrated in Chapter 4 that Hadamard multiplexing results in a considerable increase 

in the FT data SNR without a compromise to the condition of the inverse problem and 

while maintaining the simple instrumentation used for point-source illumination. In this 

chapter, the development and performance of a phantom-based Hadamard multiplexed 

FT system is described.    

5.1 Noise in FT Systems 

As discussed in Chapter 4, improvements in the FT data SNR have multiple 

benefits. Most importantly, the resolution and robustness of the 3D FT reconstructions 

become considerably enhanced. Also, FT-based imaging of highly absorbing organs and 

regions of animal and human subjects, such as the chest cavity or skull, becomes feasible 

as the level of noise contaminating the weak surface photons detected by the CCD drops 

with increase in the FT data SNR. Additionally, increase in FT data SNR results in faster 

FT scans as the required integration times for CCD image acquisition will be lower. This 

speed improvement in FT scan times can greatly enhance the quality of biological or drug 

studies with short anesthesia durations or experiments involving fluorescent agents with 

rapidly changing agent uptake. 

Similar to other optical imaging and microscopy systems, FT systems are prone to 

different forms of noise and stray light interference and contamination. The noise in the 
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FT data can be caused by a variety of sources including the CCD noise, filter leakage, 

thermal radiation from system components such as motorized filter wheels, and auto-

fluorescence of optical instruments and components such as optical posts or stages. While 

the noise from most of these sources can be corrected or removed by image post-

processing or modifications to the system, the CCD noise is always present as it is caused 

by the internal dynamics of the CCD.  

There are three major types of noise in CCDs: 1) read-out noise, 2) dark-current 

noise, and 3) shot noise. Read-out noise is a result of imperfections in the device-level 

electronic operations that convert the photon-induced electrons to electric signal in the 

CCD. Since this noise is generated during the read-out of the image from the CCD pixels, 

it is expressed as the total number of electrons RMS. Dark-current noise is caused by 

thermally generated electrons that contaminate the CCD pixels. Dark-current noise is 

present whether the CCD is exposed to light or not. Dark-current noise is expressed in 

terms of electrons per second per pixel. Shot noise, also referred to as photon noise or 

image noise, is caused by the randomness in the arrival of photons on the CCD pixels. 

The probability distribution associated with shot noise is Poisson. Shot noise level is 

independent of internal CCD operations and is a function of the number of photons 

collected by each CCD pixel. Consequently, shot noise is directly depends on the 

integration or image acquisition time. 

Depending on various properties of an FT imaging scenario, all three major types 

of CCD noise can impair and limit the FT data SNR. The cooled CCD camera used in the 

experimental system described in Section 1.6 and depicted in Figure 4, which is a typical 

CCD camera used in FT systems, has the following noise statistics for a binning factor of 
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2x2 and exposure times of 0.11 sec to 3600 sec: the read-out noise is rated at 8.8 

electrons RMS, and the dark-current noise is rated at 0.9 electrons per second per pixel. 

Also, the quantum efficiency spectrum of this CCD camera is depicted in Figure 32. For 

the purposes of imaging the emission of Oxazine-750 Perchlorate, the quantum efficiency 

of the CCD is rated around 0.8 at 700 nm.  

 

Figure 32: The quantum efficiency (QE) spectrum of the CCD camera used in the FT system, which is 

described in Section 1.6 and depicted in Figure 4, peaks around 600 nm.  

 

Based on these CCD specifications and the Poisson distribution of shot noise, the 

CCD SNR can be computed as a function of exposure or integration time given the 

average radiance or maximum photon flux of the object being imaged. The graphs shown 

in Figure 33 contain plots of the CCD SNR as a function of the CCD integration time. 

The graph is Figure 33 (a) corresponds to imaging an object with photon flux of 50 

photons per pixel per second (~10
-17

 Watts/pixel at 700 nm). The graph in Figure 33 (b) 

corresponds to imaging an object with photon flux of 10
4
 photons per pixel per second 
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(~10
-17

 Watts/pixel at 700 nm). So based on the plot in Figure 33 (a), for integration times 

of 0.1 sec to 100 sec, the CCD SNR goes from ~1 dB to ~21 dB for an incident flux of 50 

photons/sec/pix. Similarly for the plot in Figure 33 (b), the CCD SNR goes from ~17 dB 

to ~31 dB for an incident flux of 10
4
 photons/sec/pix.  

 

Figure 33: The SNR of the CCD used in the FT system in Section 1.6 is plotted as a function of integration 

time for (a) image of an object with photon flux of 50 phot/sec/pix, and (b) image of an object with photon 

flux of 10000 phot/sec/pix.  
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To bring these numbers into the context of FT scenarios, the first case (50 

photons/sec/pix) corresponds to an FT scenario with single-point illumination irradiance 

of 1 mW/mm
2
 and tissue optical scattering and absorption of 5 mm

-1
 and 0.5 mm

-1
, 

respectively. The second case (10
4
 photons/sec/pix) corresponds to an FT scenario with 

single-point illumination irradiance of 1 mW/mm
2
 and tissue optical scattering and 

absorption of 1 mm
-1

 and 0.01 mm
-1

, respectively. In better terms, the SNR plot in Figure 

33 (a) corresponds to a typical FT imaging experiment in which maximum permissible 

illumination power is used to excite fluorophores in the chest cavity area of a small 

animal. The SNR plot in Figure 33 (b) corresponds to a typical FT imaging experiment in 

which maximum permissible illumination power is used to excite fluorophores in the 

thighs or abdominal area of a small animal. 

The plots in Figure 33 indicate that for typical FT scenarios involving imaging of 

fluorescent agents buried in various regions of small animals, the CCD SNR will be 

below or around 30 dB unless the integration time for each image is raised to above 100 

sec. As discussed in Chapters 3 and 4 and considering the reconstructions presented in 

Figures 23 and 30, the quality of FT reconstructions for SNRs of 30 dB or less are poor. 

Additionally, raising the image exposure time to above 100 sec results in very lengthy FT 

scan times that could outlast the effective anesthesia and dye uptake durations.   

The FT noise analysis presented above indicates that in typical single-point illumination 

FT systems the inherent CCD noise can strongly limit the quality of 3D reconstructions. 

The proposed Hadamard multiplexed FT, as presented in the remainder of this chapter, 

can circumvent these limitations. 
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5.2 Outline of the Multiplexed FT System 

Hadamard multiplexed FT, as described in Chapter 4, aims at increasing the SNR 

in FT data through replacing single-point illumination with multi-point illumination. The 

existing FT systems, as described in Section 1.6, employ translation stages to change the 

position of the tip of an optical fiber that is used to direct the laser or LED radiation to the 

turbid medium or animal subject. This configuration cannot be used for performing 

multi-point illumination. Although multi-point illumination is possible using a fiber 

bundle in contact with the turbid medium, such system can become complicated and 

costly as the number of source locations and the number of corresponding light sources 

coupled into the fibers increase. To realize Hadamard multiplexed FT, the translation 

stage-based FT scan must be replaced by a non-contact free-space design that allows for 

simultaneous illumination of source points.  

In this work, a simple non-contact illumination configuration that allows for 

simultaneously flooding light on multiple points in the source grid was developed. As 

presented in Figure 34, after collimating, the NIR radiation passes through a masked 

lenslet array. The masks block lenslets corresponding to zero entries of the Hadamard S-

matrix code while allowing radiation to pass through lenslets corresponding to unit 

entries. The image acquisition configuration is no different than existing non-contact 

systems in which the excitation trans-illumination and fluorescent emission are imaged to 

a cooled CCD by a lens and separated using a motorized filter wheel. 
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Figure 34: In the phantom-based Hadamard-multiplexed FT system, radiation from a near infra-red 

laser is collimated into a beam using a lens and directed to a masked lenslet array that generates an 

array of point sources to illuminate the tissue phantom and excite the fluorescent tubes. The trans-

illumination and the fluorescent signal are then collected by a CCD camera.  

As shown in Figure 34, laser radiation at the excitation wavelength of 

administered fluorophores is collimated into a beam with a waist of a few centimeters. 

The beam is directed at a rectangular lenslet array with lenslet dimensions of a few 

millimeters. Each lenslet focuses the beam on the surface of the small animal or phantom 

and so an array of point sources is generated. By sequential masking of the lenslet array, 

different Hadamard S-matrix codes can be realized. In addition to the advantages offered 

by Hadamard multiplexing, the non-contact illumination system has higher versatility, 

especially for non-flat geometries, compared to fiber-based systems. Furthermore, the 

proposed system possesses the same level of simplicity as point illumination FT systems 

and does not require complicated hardware such as spatial light modulators employed in 

surface illumination FT systems [104].  
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5.3 Masked Lenslet Array S-matrix Code Generation 

It was discussed in Chapter 4 that the advantages offered by Hadamard 

multiplexing become evident as the number of sources increases and the detector SNR 

drops. In experimental demonstration of Hadamard multiplexed FT, a masked lenslet 

array is used for Hadamard S-matrix code generation. The masked lenslet array provides 

a cost-effective scheme for non-contact multi-point illumination. Also, the number of 

source locations can be varied by simply reconfiguring the masks to cover more or less 

lenslets. The masked lenslet configuration can be used to create point illumination (used 

in single-point illumination FT systems described in Section 1.6). To compare the 

performance of Hadamard multiplexed FT and single-point illumination FT, the power 

per area at every point source must be of the same level. This can be realized using a 

masked lenslet configuration in both single-point illumination and Hadamard multiplexed 

FT. The S-matrix masks are made by printing Hadamard S-matrix codes on 

transparencies and mounting them on the lenslet array. In Figure 35, a Hadamard S-

matrix code of length 63 is used to make an FT Hadamard mask. The code is arranged in 

a 2D nine-by-seven array as shown in Figure 35 (a). The 2D array is printed on a 

transparency and mounted on an optical post to cover the lenslet array as shown in Figure 

35 (b). 

To construct and calibrate the lenslet-based multiplexing configuration, the 

configuration shown in Figure 35 (b) was illuminated using a laser to generate the 

corresponding masked multi-point illumination grid. A power detector was used to 

measure the radiative power in the illuminated points and the masked points. The module 



101 

 

was calibrated to avoid non-uniform distribution of radiative power among illuminated 

points while ensuring that the power leakage to masked points is negligible.   

 
Figure 35: An optical mask is made from a Hadamard S-matrix code. a) Hadamard S-matrix code of 

length 63 is arranged in a 9-by-7 2D mask. b) The Hadamard S-matrix code is printed on a 

transparency and mounted on an optical post for to function as a mask in a Hadamard multiplexed 

FT system. 

 

5.4 Phantom-based Experimental Studies 

The experimental studies performed to verify advantages of Hadamard 

multiplexed FT were carried out using a custom-built phantom-based system as shown in 

Figure 36. Collimated NIR beam of a 635 nm He:Ne continuous-wave laser passes 

through an engineered diffuser and an opening that functions as an aperture to limit the 

beam waist arriving at the lenslet array. The 9-by-7 unmasked lenslet array focuses the 

NIR beam into a grid of 63 points with a vertical pitch of 3 mm and horizontal pitch of 4 

mm. The liquid phantom vessel is placed at the focal plane of the lenslet array so that its 

focal grid functions as a multi-point illumination pattern. As presented in Figures 36 (b) 

and 36 (c), S-matrix masks are mounted on the lenslet array to create Hadamard-coded 

multi-point illumination patterns on the phantom. Given the number of source locations, 
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63 Hadamard codes are used sequentially for the multiplexed FT scan. The liquid 

phantom used in the experimental studies is a water-based mixture of Intralipid-1% and 

India ink with scattering and absorption coefficients of 0.8 mm
-1

 and 0.05 mm
-1

 [40, 41]. 

The mixture is poured into a rectangular vessel with transparent plexiglass sides and 

dimensions of 120 mm by 90 mm by 14 mm. The fluorescent dye used in the phantom 

experiments is a dimethyl sulfoxide (DMSO)-based 100 µM solution of Oxazine 750 

Perchlorate whose emission peaks around 700 nm when excited at 630 nm. Two capillary 

glass tubes with an inner diameter of 1 mm are partially filled with the fluorescent dye to 

form a pair of fluorescent cylinders with 1 mm diameter and 10 mm height.  

The dye-filled tubes are suspended in the center of the liquid phantom by an 

optical post mounted on a translation stage for accurate positioning as depicted in Figure 

36 (a). Using the translation stage, the dye-filled tubes are positioned at depths of 3 mm, 

6 mm, and 9 mm from the front surface of the phantom vessel facing the camera. The 

trans-illumination and fluorescent emission are imaged from the front side of the 

phantom to a cooled CCD camera through a motorized filter wheel for separate 

acquisition of trans-illumination and emission images. The image acquisition is 

performed at a field of view (FOV) of 12 degrees with a binning factor of 4 and average 

exposure time of 15 sec∕image. The CCD camera is cooled down to around −10 °C to 

minimize thermal noise effects. Dark-frame images (with laser off) are acquired in each 

measurement and subtracted from data images to correct for read-out noise, stray light 

effects, and other unwanted signals. 
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Figure 36: Phantom-based Hadamard Multiplexed FT system: a) Picture of the experimental system. b) A 

Hadamard S-matrix mask mounted on a lenslet array is illuminated with collimated beam of NIR laser 

radiation. c) The S-matrix mask produces the desired excitation source pattern on the phantom surface.  
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To compare the performance of the Hadamard-multiplexed FT architecture with 

existing single-point illumination systems, the phantom experiments were repeated with 

single-point illumination architecture by replacing the Hadamard coded masks with 

single-element masks to keep the per-point radiative illumination power constant between 

experiments. 3D reconstructions were performed on both sets of experimental studies by 

MLS-ART on a tetrahedral mesh discretizing the phantom volume with 132,325 nodes 

and 634,149 voxels. The results are presented in Figure 37 [105]. Rows labeled (a), (b), 

and (c) in Figure 37 correspond to inclusion depths of 3, 6, and 9 mm, respectively. 

Reconstructions from single-point illumination FT are presented in column (i), and those 

from Hadamard multiplexed FT in column (ii) of Figure 37.  

As expected, the quality of the reconstructions deteriorates as the depth of the 

inclusions increases.  While reconstructions of shallow inclusions (3 mm) from both 

single-illumination and multiplexed data have a reasonable level of accuracy as shown in 

Figure 37 (a), the advantage of Hadamard multiplexed FT in enhancing robustness 

becomes evident as the depth of inclusions increases. Similar to numerical studies, it can 

be observed that Hadamard multiplexing adds considerable robustness to 3D 

reconstructions particularly for deeper inclusions as the data will be more noise-sensitive.    
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Figure 37: Phantom-based experimental results: 3D reconstructions performed by MLS-ART on  i) 

conventional single-point illumination phantom FT data, and ii) Hadamard-multiplexed FT data when the 

depth of the pair of fluorescent tubes is a) 3 mm, b) 6 mm, and c) 9 mm from the phantom surface facing the 

camera.  
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5.5 Discussion  

In this work, a multiplexing scheme built upon Hadamard S-matrix codes was 

studied to replace the existing single-point illumination in FT with multi-point 

illumination to increase the SNR and throughput in FT systems and reduce the required 

tomographic scan times. The high cost of wide-band tunable high-power light sources 

and per-area illumination power limitations in in vivo optical imaging pose considerable 

challenges for developing high-throughput high-SNR FT systems. Hadamard 

multiplexing allows us to overcome these challenges without over-complicating the 

architecture of the FT system or making them significantly costlier. Hadamard 

multiplexing provides the optimal trade-off between the throughput (SNR) and 

information content of a set of measurements. As discussed in Chapter 4, single-

illumination FT measurements enjoy high information content because of their spatially 

disjoint sensitivity maps while suffering from low-throughput that limits their accuracy 

and optimal performance to scenarios with thin or low absorptive tissues. Hadamard 

multiplexed FT offers the optimal trade-off where by minimally jeopardizing the 

information content of the measurements, a considerable boost in the measurement SNR 

and throughput is obtained.  

As shown in Figures 30 and 37, the 2D and 3D FT reconstructions indicate that 

for low-noise FT scenarios with shallow inclusions, the performance of single-point 

illumination architecture is not significantly different from Hadamard-multiplexed 

architecture. Due to changes in the system matrix, its condition number, and singular 

values, along with changes in the experimental setup, the reconstructions from single-

point illumination data in both numerical and phantom studies differ from reconstructions 



107 

 

from Hadamard-multiplexed data, even for low-noise FT scenarios, as presented in 

Figures 30 and 37. The difference between the two, however, becomes more significant 

as the noise level and depth of the inclusions increases. The data from deeper inclusions 

is more diffuse and hence more sensitive to and affected by noise contamination. The 

accuracy of reconstructing shallow sources from low-noise data is high and in the same 

order of magnitude for both architectures as shown in the reconstruction error plots of 

Figure 31. This shows that though the condition of system matrix is affected by 

Hadamard multiplexing, the reconstruction accuracy is very little jeopardized if any. This 

is in part due to the low condition number of Hadamard S-matrices. The condition 

numbers corresponding to S-matrices of sizes 7, 15, 23, 31, and 63 are 2.82, 4, 4.89, 5.65, 

and 8, respectively. These condition numbers are significantly low compared to the 

typical condition number of the system matrix in FT, which can range from around 10
10

 

to above 10
20

 depending on the geometry and optical properties of the turbid medium. As 

a result, when multiplied by the multiplexing matrix, W, as formulated in Equations 67 

and 68, the condition and singular values of the FT system matrix M do not change 

significantly. Hence, the FT reconstruction accuracy is jeopardized quite insignificantly 

with Hadamard multiplexing.       

The advantage of Hadamard multiplexed FT becomes evident as the data noise 

level, inclusion depth, and number of FT sources increase. This can be observed in the 

comparative trend of 2D and 3D reconstructions and their relative errors in Figures 30, 

31, and 37. In numerical studies, as the FT data SNR decreases to ~30 dB and below, the 

reconstructions from single-point illumination data completely lose their accuracy and 

become dominated by artifacts. Meanwhile, reconstructions from Hadamard-multiplexed 
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data preserve their accuracy down to a noise level equivalent to ~10 dB single-point data 

SNR. In phantom studies, as the depth of the two fluorescent rods increases, the 

corresponding FT data becomes more diffuse, and hence the 3D reconstruction more ill-

posed and noise-sensitive. As a result, though the noise characteristics of the CCD remain 

approximately the same (dark, read-out, and image noise), artifact contamination in the 

reconstructions increases with depth. Hadamard multiplexing offers improved robustness 

in reconstructing the rods at 9 mm depth over single-point illumination architecture as 

shown in Figure 37.       

Consequently, Hadamard multiplexed FT can greatly enhance the performance of 

FT systems especially when suffering from limited illumination power or in imaging 

scenarios dealing with highly absorbing organs, such as the liver or the lungs in small 

animals. In this work, full Hadamard S-matrix multiplexing was proposed and studied for 

FT systems. Nevertheless, partial Hadamard multiplexing of the FT illumination 

architecture can also offer benefits over existing systems. In partial multiplexing, the 

illumination grid points are divided into groups (e.g., each grid line forms a group of 5 

points), and the S-matrix multiplexing is applied to these groups instead of individual 

illumination points. In FT systems with limited flexibility over modification of the 

illumination geometry and optics (such as commercial FT systems that use translation 

stage-based illumination raster scan), partial Hadamard multiplexing can be used to boost 

the throughput by simply adding one illumination (and a stage) per each line of the 

illumination grid. Depending on the degree of partial multiplexing (the total number of 

multiplexed entities or groups), the data SNR and system throughput can be improved 

over single-point illumination systems. In other FT systems where optical fiber bundles 
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are used for raster scanning the illumination points, full S-matrix multiplexing can be 

implemented by simply re-programming the illumination sequence of light sources 

coupled to the fibers.                    

In summary, it was shown that the proposed Hadamard multiplexed architecture 

greatly improves the accuracy and robustness of FT reconstructions in low-SNR 

scenarios provided that the number of sources used for illumination is sufficiently large. 

Additionally, for high-SNR cases, Hadamard multiplexing does not harm the quality of 

the reconstructions. Modifications to the existing FT system architecture required by full 

or partial Hadamard multiplexing do not add considerable complexity or cost to these 

systems, unlike recently explored surface illumination FT schemes [104]. These overall 

characteristics of Hadamard multiplexed FT, as demonstrated in this work, make it 

considerably advantageous over existing single-point illumination FT systems. 
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CHAPTER 6 
 

CONCLUSIONS AND SUGGESTED FUTURE WORK 

In this chapter, the major contributions and conclusions of this thesis are 

presented and summarized in Section 6.1. Additionally, the possible future directions and 

extensions to the research discussed in this thesis are discussed in Section 6.2. The 

suggested future extensions include further joint optimization, improvement, and 

enhancement of the reconstruction algorithm and the hardware of the non-contact 

fluorescence tomography system.      

6.1 Conclusions 

The main focus of this research has been the development and implementation of 

a robust Hadamard multiplexed fluorescence tomography (FT) system. The first course of 

action was the development and characterization of the software and hardware of a non-

contact continuous-wave trans-illumination fluorescence tomography system. The 

developed system was used to demonstrate the limitations of the existing FT 

reconstruction algorithms, namely L2 regularization and MLS-ART.  Additionally, two 

subsystems were developed to characterize the scattering and absorption agents used in 

the liquid tissue phantom employed in the non-contact FT system. An information-

theoretic approach was applied to the FT system to optimize the binning of the data 

images. 

The next step was the development of the TV regularization algorithm for 

performing edge-preserving 3D reconstructions in FT.  Two different implementations of 

the TV regularization were applied to 2D numerical studies and phantom-based 

experimental studies of FT. Using the concept of PSFs, I demonstrated that the edge-
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preserving property of the TV regularization results in higher spatial resolution in the 3D 

reconstructions compared to L2 regularization. I also demonstrated that the quality of 3D 

reconstructions from all inverse solvers deteriorates as the noise level in the FT data 

increases. This increase results in various forms of artifacts and errors contaminating the 

3D reconstructions of inverse solvers.  

To address the issue of artifact contamination in 3D reconstructions from noisy 

data, I developed and implemented a Hadamard multiplexed FT system that can increase 

the data SNR by orders of magnitude. I demonstrated that multiplexing the FT sources 

can add significant robustness in 3D reconstructions against data noise. To demonstrate 

the advantages of Hadamard multiplexed FT, I performed 2D numerical studies for a 

range of data SNRs and analyzed the reconstruction error. The Hadmard multiplexed 

reconstructions maintained accuracy for SNRs as low as 10 dB, whereas the single-point 

illumination reconstructions lost accuracy below 30 dB. Additionally, I developed a 

custom-build phantom-based Hadamard multiplexed FT system using a masked lenslet 

array architecture. The experimental studies performed using this system indicated that 

Hadamard multiplexing can significantly improve the reconstructions of deep sources in 

FT. 

A brief summary of my main contributions in this research is as follows: 

 I analyzed the limitations and drawbacks of ART and L2 regularization in performing 

3D FT reconstructions. 

 I developed, implemented, and applied the first TV regularization algorithm used for 

3D reconstructions in FT. 
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 I presented the first comparative analysis of the spatial resolution of reconstructions 

from L2 regularization and TV regularization using PSFs. 

 I developed the first Hadamard transform approach to multi-point illumination FT. 

 I developed and implemented the first Hadamard multiplexed FT system that offers 

the highest FT data SNR. 

6.1 Suggestions for Future Work 

Throughout this thesis, I have presented algorithmic and system improvements for the 

enhancement of the quality, accuracy, and resolution of the 3D reconstructions in FT. 

These improvements can result in a new range of applications and capabilities for FT, 

provided that they do not jeopardize the speed, complexity, and cost of the FT systems. 

The suggested future extensions of this research can potentially improve the speed, 

memory efficiency, and cost of the existing FT systems and the system developed in this 

work. 

In Chapters 2 and 3, the row-action memory efficient MLS-ART and the edge-preserving 

TV regularization algorithms were presented and studied. As discussed in Section 4.1, the 

advantage of MLS-ART is in speed, memory efficiency, and lack of parameter selection 

or optimization requirements. This speed and memory advantage is due to the row-action 

nature of MLS-ART. Unlike regularization techniques where matrix computations must 

be carried out, in MLS-ART only vector computations are performed in each step. 

Meanwhile, the TV regularization has the advantage of higher spatial resolution and 

robustness. This resolution advantage stems from the use of TV semi-norm as the penalty 

term in the optimization. However, the convergence time for TV regularization is 

considerably higher than that for MLS-ART. 
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Considering the advantages of these two algorithms, a future extension of this research 

can be the development of a row-action edge-preserving reconstruction algorithm. The 

development of an ART-type algorithm where only vector computations are carried out 

but the TV semi-norm is used instead of the L2 norm can lead to a speedy memory-

efficient edge-preserving inverse solver. Consequently, such algorithm can possess the 

combined advantages of MLS-ART and TV regularization. 

Furthermore, in many FT imaging scenarios, a priori information is available for 

improving the accuracy of the 3D reconstructions. A widely studied scenario is early 

cancer detection where lesions are small in size and hence sparsely distributed over the 

tissue. It has been shown that the sparsity-driven L1 regularization offers stable and 

accurate reconstructions in this scenario [62]. However, similar to TV regularization, 

solving the nonlinear optimization problem posed by L1 regularization can be 

computationally costly, often inaccurate due to multitude of local minima. As a result, 

developing an effective correction scheme to incorporate structural, anatomical, and 

spatial priors into regularized reconstruction algorithms can greatly improve the use of a 

priori information in FT reconstructions. The kernel correction approach has been shown 

to provide a framework within which constraints and priors can be incorporated into a 

regularization method without jeopardizing the data fidelity or the complexity of the 

problem [106]. As a future extension of this research, the kernel correction technique can 

be used to implement a joint TV, L2 and L1 regularization technique for robust edge-

preserved sparse FT reconstructions.  

In Section 5.1, the CCD noise contaminating the FT data was discussed and analyzed. It 

was shown that for high-SNR FT data acquisition, both the required cost and scan time 
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will become excessively high. Additionally, the bulk of data acquired in non-contact FT 

systems and used in reconstruction algorithms is tremendously large compared to fiber-

based systems. Similar to many imaging and microscopy systems, post-processing of the 

FT data images can further denoise and compress the data to enhance the SNR and 

decrease memory requirements. It has been shown that FT data are compressible in 

Battle-Lemarie wavelets [107, 108]. As a result, FT images can be compressed and 

represented in terms of the corresponding wavelet coefficients rather than pixel-by-pixel 

images. As a future extension of this research, this compression can be performed on 

acquired FT images, and the use of the wavelet coefficients in the FT reconstructions 

algorithm, instead of the pixel-by-pixel data vectors, can be studied. This approach can 

downsize the computational bulk of the reconstruction algorithm. Also, the data will be 

automatically denoised through the operation of compression, as the negligibly small 

wavelet coefficients, corresponding to non-smooth components of the data, will be 

filtered out. 
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APPENDIX A 

COMPUTATIONAL DETAILS OF TV REGUALRIZATION 

ALGORITHMS 

 

 

Iterative split Bregman total variation regularization algorithm pseudo-code is as follows: 
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Iterative ROF total variation regularization algorithm pseudo-code is as follows. 
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