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SUMMARY

Ultracold atoms provide a powerful tool for studying quantum control of in-

teracting many-body systems with well-characterized and controllable Hamiltonians.

In this thesis, we demonstrate quantum control of a many-body system consisting of

a ferromagnetic spin-1 Bose-Einstein condensate (BEC). By tuning the Hamiltonian

of the system, we can generate either a phase space with an unstable hyperbolic fixed

point or a phase space with an elliptical fixed point. A classical pendulum with a

stable oscillation about the “down” position and an inverted pendulum with unstable

non-equilibrium dynamics about the “up” position are classical analogs of the quan-

tum spin dynamics we investigate in this thesis. In one experiment, we dynamically

stabilize the system about an unstable hyperbolic fixed point, which is similar to

stabilizing an inverted pendulum. In a second experiment, we parametrically excite

the system by modulating the quadratic Zeeman energy. In addition, we demon-

strate rectifier phase control as a new method to manipulate the quantum states of

the many-body system. This is similar to parametric excitation and manipulation

of the oscillation angle of a classical pendulum. These experiments demonstrate the

ability to control a quantum system realized in a spinor BEC, and they also can

be applied to other quantum systems. In addition, we extend our studies to atoms

above the Bose-Einstein transition temperature, and we present results on thermal

spin relaxation processes and equilibrium spin populations.

xv



CHAPTER 1

INTRODUCTION

1.1 A Brief History of Bose-Einstein Condensate

The idea of Bose-Einstein condensation (BEC) was formulated about 100 years ago by

Satyendra Nath Bose and Albert Einstein in 1924-1925. In 1924, Bose sent Einstein

his paper, “Planck’s Law and the Hypothesis of Light Quanta,” which derived Plank’s

distribution of light quanta, or the statistics of photons. Earlier, he could not get his

paper published when he submitted it to Philosophical Magazine. Einstein translated

the paper into German, submitted it to Zeitschrift für Physik for Bose, and remarked

that Bose’s idea was an important step forward [1]. Einstein realized that Bose’s

idea also could be applied to an ideal gas. He developed the statistical theory for

monatomic gas that predicted that at low energy temperatures a part of an ideal gas

occupies a single quantum state of the lowest energy, later called the Bose-Einstein

condensate [2, 3].

It took about 70 years from the first theoretical prediction of Einstein to the first

observation of the Bose-Einstein condensate by groups at NIST-JILA, MIT, and Rice

[4, 5, 6]. The first BECs were created in magnetic traps [4, 5, 6]; Georgia Tech was

the first to create a BEC using an all optical trap [7].

Extending Bose’s work for massless photons, Einstein derived the statistics for a

Bose gas whose spin is an integer number. The prediction of Bose-Einstein conden-

sation comes from the equation of the average number of particles [2, 8]

〈N〉 = V

(
2πmkBT

h2

)3/2

g3/2(z) + 〈N0〉 (1.1)

where N is the total number of atoms, V is the volume, T is the temperature, kB is

the Boltzmann’s constant, h is the Planck’s constant, m is the mass of atom, 〈N0〉

1



is the number of particles in the ground state, and the function gν(z) called the

Bose-Einstein function [8], and is defined as

gν(z) =
1

Γ(ν)

∫ ∞
0

xν−1

z−1ex − 1
dx (1.2)

The integral part is a polylogarithm, a special function called Jonquière’s function

[9], the variable z is the fugacity of the gas, z = exp(µ/kBT ), and Γ(ν) is the Gamma

function.

For a real physical system, the function g3/2(z) is finite for any given N, V and

T ; hence the value of fugacity must be 0 ≤ z ≤ 1. This condition implies that the

function g3/2(z) is bounded and has its maximum at g3/2(1) = ζ(3/2). The Riemann

zeta function is approximated as ζ(3/2) = 2.612. Substitute back into Eqn 1.1,

〈N〉 ≤ V

(
2πmkBT

h2

)3/2

ζ(3/2) + 〈N0〉 (1.3)

In Eqn 1.3, when the number of particles N and the volume V are fixed, and the

temperature T is decreasing, at one point we have

〈N〉 ≥ V

(
2πmkBT

h2

)3/2

ζ(3/2) (1.4)

To satisfy the condition in Eqn 1.3, atoms must fall into the ground state; in

other words, a portion of atoms will form a Bose-Einstein condensate. When the

temperature is at absolute zero, all the atoms will remain in the BEC. A critical

temperature for BEC can be extracted from Eqn 1.4

Tc =

(
〈N〉

V ζ(3/2)

)2/3
h2

2πmkBT
(1.5)

In a unit of the thermal de Broglie wavelength λdB = h√
2πmkBT

, boson gas particles

start to form a BEC when the distance between particles is less than λdB. Rewriting

Eqn 1.4 in term of λdB, the relation between separation of particles and the thermal

de Broglie wavelength of the condensate is

〈N〉 ≥ V ζ(3/2)

λ3
dB

or nλ3
dB ≥ 2.612

2



The quest for the Bose-Einstein condensate was triggered in the 1970s by a number

of experimental groups [10]. BEC can be achieved by increasing the density of parti-

cles and reducing the temperature to give a longer de Broglie wavelength. However

for traditional gas at low temperatures, it would make the transition to liquid and

solid first. Liquid and solid have strong interactions between particles while the BEC

model is based on a non-interacting ideal gas and is also proposed as mechanism for

superfluidity in 4He [11]. For this reason, searching for a chemical substance that can

remain in the gas phase near zero temperature seemed to be the key to create a BEC.

Hecht (1959) and Stwalley-Nosanow (1976) suggested that spin-polarized hydrogen

gases would never become liquid, but remain as a gas at any temperature [12, 13].

Different groups started to search for the BEC by cooling hydrogen in a liquid helium

cell [14, 15, 16, 17] ; hydrogen atoms were cooled by exchanging heat with the liquid

helium wall. However, making the BEC in hydrogen atoms is extremely difficult.

Firstly, the density required for a hydrogen BEC is too high so that the three-body

recombination become dominant. Secondly, to create BEC at low density, the tem-

perature of the hydrogen gas must be reduced; however, this leads to three-body

recombination due to the high surface density of the hydrogen atoms [18]. Therefore,

a different approach is necessary to solve the problem.

With the breakthroughs in laser cooling developed by 1997 Nobel laureates Chu,

Cohen-Tannoudji, Phillips [19, 20, 21] , and others, lasers quickly became a workhorse

in the BEC quest. Laser cooling together with a magnetic coils trap, known as

a magneto optical trap (MOT), can trap and cool atoms to the mK regime [22].

To achieve a BEC, a technique called evaporative cooling is applied. During this

process, the potential well of the trap is adiabatically lowered such that hot atoms

with high kinetic energy escape from the trap, resulting in a Bose-Einstein condensate

of very cold atoms. In 1995, three groups reported the evidence of Bose-Einstein
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Figure 1.1: Momentum distribution of spinor BEC. Image of BEC after 22 ms
time of flight. Three peaks show the density plot of BEC components which separate
by Stern-Gerlach gradient.

condensate in rubidium, sodium, and lithium gases [4, 5, 6]. The problem of three-

body recombination was solved by using alkali gases at low density (1014 cm−3) in

ultrahigh vacuum. To account for the low density, the temperature of the gas was

cooled to the nK regime so that the thermal de Broglie wavelength was larger than the

separation between the atoms. Bose-Einstein condensate in hydrogen was eventually

achieved in 1998 [23]. The achievement of BEC was recognized by the Nobel prizes

for Cornell, Ketterle, and Wieman in 2001. An image of a spin-1 condensate of 87Rb

atoms from our lab is show in Figure 1.1. The three peaks correspond to the three

spin component, mff = 0,±1, which are separated by Stern-Gerlach fields following

a release from the trap.
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1.2 Early Bose-Einstein Condensate

The achievement of BEC opened up a new era for ultracold atomic research. Early

BECs were created in magnetic traps, later in an optical trap [24], and in all optical

trap in our lab [7]. In the trapping potential at the lowest energy state, the condensate

can be treated as a quantum harmonic oscillator. The condensate can be excited to

higher energy modes by modulating the trapping potential. The energy excitation in

the density oscillation is an analog of the phonon effect in superfluid helium or sound

waves [25] and parametric excitation of the spatial mode [26, 27] of a condensate.

Moreover, the fundamental phenomenon of liquid, and superfluid, vortices can exist

in the condensate. By stirring the condensate, angular momentum is added to the

condensate. The vortices corresponding to the quantized angular momentum can be

observed as empty holes in the middle of the condensate [28, 29, 30].

A BEC condensate lives in the quantum world where the wave function is sufficient

to describe all the quantum aspects of the condensate. An individual Bose condensate

atom has a wave function overlapping, and a system of many-body atoms superim-

poses the wave functions into a macroscopic quantum object. The comparable length

scale of de Broglie wavelength and the separation between atoms makes it a perfect

candidate for studying wave-particle duality. Made from atoms, the BEC inherits all

the physical properties of particles, for example, the mass and volume. The wavelike

properties of condensate come from the thermal de Broglie wavelength. The inter-

ference between two condensates was first observed at MIT [31], and the interference

of the double slit condensates was demonstrated at the Max Planck Institute [32].

The condensate with a same overall wave function is a macroscopic coherent source

of matter wave which suggests atom laser applications of the condensate [33, 34, 35].

The wave-like characteristics allow a condensate to overcome the limits set by classical

physics. The condensate can tunnel through a potential barrier which is prohibited

by the classical relation of potential and kinetic energy [36, 37].
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Like any other physical system, the quantum phase transitions in Bose-Einstein

condensate are fundamental phenomena. The quantum phase transitions, including

the transition from bose gas to Bose-Einstein condensate [8], the transition from

superfluid to Mott insulator [38], and the ground state phase transition [39, 40, 41],

allow the study of universality in a condensate.

1.3 Spinor BEC

One advantage of a BEC in an optical trap is the ability to confine multiple Zee-

man sub-level spin components [24]; this triggered some of the early work in spin

domains [42, 43], Feshbach resonances [44], and spin relaxation [45]. Later more

phenomena have been observed and investigated in spinor BECs including quantum

phase transitions by quenching magnetic fields [46, 47, 48] or tuning the interaction

strength [49], spinor population dynamics [50, 51, 52, 53, 54, 55], and spin squeezing

[56, 57, 58, 59, 60].

In this section, we introduce some of the background work related to the study of

this thesis including spin population dynamics and squeezing.

1.3.1 Spin Population Dynamics

In 2001, the first all optical BEC was created in our lab [7] by laser cooling rubidium

atoms to the mK regime and evaporative cooling to the nK regime in a CO2 laser

optical dipole trap. This method could possibly create a BEC for any species of atoms

possessing an electric dipole moment [7]. Also, the optical dipole trap enables the

study of spinor dynamics of the condensate [50, 51]. Similar works have also been

done by other groups for Rb and Na [52, 53, 54, 55].

For a spin-1 system, there are 3 possible Zeeman levels of spin states mf = 0,±1.

The spin exchange occurs through atom collisions as 2|0〉
 |1〉+ | − 1〉. The mag-

netic field contributes linear and quadratic Zeeman energy to the spinor Hamiltonian.

In order for spinor dynamics to happen, the spinor energy must be a dominant term;
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Figure 1.2: Spinor phase space. Spinor energy contours in spinor phase space
for B = 0.22 (G). The red curve represents the separatrix (zero energy contour).
Negative energy contours (blue region) are inside the separatrix, and positive energy
contours (red region) are outside.

otherwise the equilibrium ground state will be |f = 1,mf = 0〉 [50, 22] due to the

high magnetic field. For our condensate, the spinor energy is less than 10 Hz. In

order for spinor dynamics happens, the magnetic field should be in the µG regime

[50, 22]. Zeroing magnetic field to the µG regime is a technical challenge. However,

conservation of magnetization m = 0 cancels the linear Zeeman effect and leaves the

quadratic Zeeman. The quadratic Zeeman effect is much smaller compare to the lin-

ear effect. This allows the observation of spinor dynamics, spin mixing and coherent

oscillation in the mG to G regime [50, 22].

Spin mixing dynamics evolves along the separatrix (zero spinor energy contour,

red curve in Figure 1.2), and coherent oscillation dynamics evolves along the nonzero

energy contours on spinor phase space θsρ0. Here, the spinor phase is the relative

phase of spinor components, θs = θ1 +θ−1−2θ0. The example of population dynamics

ρ0 = N0

N
of spin mixing is shown in Figure 1.3. The condensate is initiated in mf = 0
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state at high magnetic field B = 2 G. The dynamics are triggered by lowering mag-

netic field to B = 0.22 G. In the spin-nematic phase sphere S⊥Q⊥x, the condensate

is initiated at the unstable hyperbolic fixed point Figure 1.4 (left). The uncertainties

in the distribution drive the condensate out of the equilibrium point by squeezing

along the separatrix Figure 1.4 (right). During the first 100 ms, the population ρ0

is paused, then it starts to oscillate. Moreover, the distribution of ρ0 population,

standard deviation δρ0, and it higher moments possess a non-Gaussian distribution

during spin mixing evolution [61].
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Figure 1.3: Quantum spin mixing. Dynamics of population ρ0 = N0/N during
spin mixing for B = 0.22 G.

1.3.2 Spin-Nematic Squeezing

In spin-1 system, beside three spin operators {Sx, Sy, Sz}, there are five other quadrupole

operators {Qxx, Qyy, Qzz, Qxy, Qxz, Qyz} in order to describe the system. We will dis-

cuss the details of these operators later; however, we can think of spin operator as

the magnetic dipole moment and quadrupole operator as the magnetic quadrupole

moment. Since the Hamiltonian matrix of the interaction is traceless and symmetric,

only five of those operators are linearly independent [56]. From these operators, there

are seven SU(2) subspaces [56]. For atoms in |mf = 0〉, there are only two subspaces

whose commutators has the non-zero expectation values. If the expectation values

of the commutators are zeros, the uncertainty would always be greater than or equal
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Figure 1.4: Spin-Nematic Phase Sphere. (Left) Initial distribution in spin-
nematic space with uncertainty equal to SQL (1/

√
N). (Right) Squeezing along

separatrix in spin-nematic phase space results in the uncertainty below SQL on the
axis perpendicular to the divergent separatrix.

to the standard quantum limit (Heisenberg uncertainty limit). Therefore, there is no

squeezing if the expectation value of the commutator is zero. We are only searching

for squeezing in the subspaces (Sx, Qyz, Qzz −Qyy) and (Sy, Qxz, Qxx −Qzz) where

the expectation values of commutators are non-zero. Since the dynamics in these two

spaces are degenerate, we introduce the variable S2
⊥ = S2

x + S2
y , Q

2
⊥ = Q2

xz +Q2
yz, and

x = 2ρ0 − 1 to reduce the dynamics into a single spin nematic S⊥Q⊥x space. The

cartoon demonstration for squeezing in the S⊥Q⊥x spin-nematic sphere is shown in

Figure 1.4.

An improvement of imaging detection and the studying of sub-Poissonian spin

correlation [62] show that the detection noise is below the standard quantum limit

(SQL). This enables the observation of spin-nematic squeezing [56] in a spin-1 sys-

tem. Squeezing happens during the first 100 ms pausing of spin mixing (Figure 1.3).

Initially the distribution of condensate has an uncertainty (
√
N atoms) at the SQL

located at an unstable hyperbolic fixed point on the top pole of the S⊥Q⊥x sphere as

shown in Figure 1.4 (left). As the dynamics freely evolve, the distribution squeezes

along the separatrix. The uncertainty grows on the divergent separatrix and squeezes

below the SQL on the transverse axis as shown in Figure 1.4 (right).
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1.3.2.1 Definition of Squeezing

The idea of squeezing is very easy to be misunderstood. In quantum optics, squeezed

states have been studied in an electromagnetic field [63]. In the second quantiza-

tion, the field can be represented as annihilation and creation operators âk and â†k

where k is a wave vector. The commutation of these operators follows the boson

relations [âk, â
†
k] = δk,k′ . The electromagnetic field can be decomposed into the real

and imaginary parts using the quadrature operators defined as [64, 65],

Q̂1 =
1√
2
â+ â† Q̂2 = − i√

2
(â− â†)

[
Q̂1, Q̂2

]
= i

The generalized uncertainty principle requires that

〈(∆Q̂1)2〉〈(∆Q̂2)2〉 ≥ 1

4
|〈[Q̂1, Q̂2〉|2 =

1

4

An electromagnetic field is said to be squeezed if the uncertainty in one of the

quadratures is less than the standard quantum limit (SQL) [66]

〈(∆Q̂1)2〉 ≤ 1

2
|〈[Q̂1, Q̂2〉| =

1

2

For a spin-1
2

system, one can reduce the uncertainty of the quadrature to less than

the SQL by choosing an appropriate coordinate system[67], for instance, rotating a

coherent spin state (CSS). As another example, a circle becomes ellipse if we look at

it from an angle. The circle itself does not squeeze. Therefore, solely based on the

uncertainty of quadrature will not be a fundamental definition of squeezing state.

To establish a more appropriate definition for a squeezed state, let look at a spin-S

system. A spin-S system can be thought as a set of 2 S elementary 1
2

spin [67]. The

commutation relations read [
Ŝi, Ŝj

]
= iεijkŜk

where the indices i, j, k denote the orthogonal spin directions. The generalized un-

certainty principle reads

〈(∆Ŝi)2〉〈(∆Ŝj)2〉 ≥ 1

4
|〈[Ŝi, Ŝj〉|2 =

1

4
|〈Ŝk〉|2
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Let k be the mean spin direction of the S-spin; the indices i, j thus become the

normal components. If all elementary 1
2

spins are uncorrelated, the spin variance of

the system is the sum of the individual variance of 1
2

elementary spin. The variance

is S
2

which is also a SQL. If there are correlations between the elementary 1
2

spins, the

uncertainty could be reduced less than the SQL in the one of the normal components

and grow in another component. The S-spin state then is the squeezed state. This

definition of a squeezed state requires a definite coordinate system where squeezing

quadrature axes are defined. In this case, one of the coordinate components is the

mean spin direction. For a spin-1
2

system, squeezing does not occur under the spin

rotational Hamiltonian. To create squeezing, the nonlinear interaction should be

added to the system [67].

1.4 Motivation and Contribution

Ultracold gases have shown to be one of the greatest candidates for studying quantum

control of interacting many-body systems with a well-characterized and controllable

Hamiltonian [68]. In a spin-1 ferromagnetic condensate, the quantum phase transition

tunable through the quadratic Zeeman energy of the magnetic field [46, 47, 48].

When the magnetic field B is small such that the quadratic Zeeman effect q =

qZB
2 < 2|c|, there exists an unstable equilibrium hyperbolic fixed point at the top

pole of the spin-nematic S⊥Q⊥x sphere. The dynamics of the condensate are an ana-

log of an inverted pendulum. Here, the quadratic Zeeman constant qZ ≈ 71.6 Hz/G2.

The non-equilibrium dynamics can generate squeezed states [56, 57, 58, 59, 60] which

preserve the uncertainty below the standard quantum limit (SQL). The non-Gaussian

states of non-equilibrium dynamics [61] are the potential resources for quantum en-

hanced measurements [69] and quantum information processing [70].

When the magnetic field is high such that the quadratic Zeeman effect q = qZB
2 >
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2|c|, there exists a stable equilibrium elliptic fixed point at the top pole of the spin-

nematic S⊥Q⊥x sphere and the dynamics of the condensate are an analog of a classical

pendulum. The coherent spinor dynamics [51] is the result of stable equilibrium about

elliptical fixed point.

The ability to control the quantum phase generates different scenarios of quan-

tum spin dynamics and is a great framework to study various control techniques in

a many-body system. In this thesis, we demonstrate the quantum control techniques

by stabilizing non-equilibrium dynamics, parametric exciting an equilibrium coherent

oscillation, and rectifier phase control of coherent oscillation explored in a spin-1 fer-

romagnetic Bose-Einstein condensate. In addition, we investigate the spin relaxation

in the finite temperature atoms above the BEC critical transition temperature.

1.4.1 Dynamic Stabilization

Stabilizing an unstable equilibrium system by external periodic forcing is a non-

intuitive physical phenomenon. This idea introduced a new concept of stabilization

method for a physical system, a dynamical stabilization instead of a static stabiliza-

tion. Over 100 years ago, the first demonstration was the stabilization of an inverted

pendulum (’Kapitza’s pendulum’) by vibrating its pivot point [71]. Understanding

the dynamic stabilization of an unstable system is an important area in control theory

not only for classical systems but also for quantum system. In atomic physics, the rf

ion traps, mass spectrometers [72], and particle synchrotron [73] all relate to the idea

of dynamical stabilization. In Bose-Einstein condensates, the non-equilibrium dynam-

ics can be stabilized by tuning the sign of the scalar [74, 75, 76] and spin-dependent

interaction strength [77]. In a double well BEC [78, 79, 80], the stabilization uses the

time-varying the trapping potential. The dynamic stabilization can also control the

superfluid-Mott insulator phase transition in the optical lattice systems [81].

In this thesis, we demonstrate the dynamic stabilization on the internal spin states
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of a strongly interacting quantum many-body system by periodic manipulation of the

spinor phase of a Bose-Einstein condensate [82]. The condensate is initial at the

unstable hyperbolic fixed point on the spin-nematic phase space. The uncertainty in

states distribution around the unstable hyperbolic fixed point leads to the evolution

dynamics of squeezing [83, 56] and quantum spin mixing [84, 50, 85, 61]. Periodic

microwave pulses are applied to rotate the phase of the states away from the divergent

separatrix to keep its dynamics about the hyperbolic fixed point. A similar experi-

mental concept was applied in nuclear magnetic resonance (NMR) [86] and bang-bang

control of non-interacting two-level quantum systems (qubits) [87].

1.4.2 Parametric Excitation

Parametric excitation phenomenon was first scientifically observed by Michael Fara-

day (1831) in vibrating fluid tanks [88] and was generalized by Lord Rayleigh (1883)

[89]. Parametric excitation occurs in oscillating systems where a parameter of the

dynamics are varied periodically [90]. It is observable in various systems from a child

on a swing, to the fifth century B.C. Tibetan singing bowls [91], to the collective

excitations of Bose-Einstein condensate density modes [26, 27]. In superconducting

systems, the Shapiro resonance [92] was suggested as a source for parametric amplifi-

cation in theory and experiment [93, 94], with the plasma oscillation of the Josephson

junction [95] as the input source and an external signal as a pump. Parametric phe-

nomena in atomic systems have also been observed in the photon-assisted tunneling

by modulating the local interaction-tunneling constant in optical lattices [96, 97], the

photon-assisted superexchange by modulating tunneling constant in double well sys-

tems [98], and the coherent super Bloch oscillations by modulating an optical lattice

potential [99, 100, 101, 102].

Parametric excitation is a primarily classical phenomena, but one wonders whether

it could be observed in a system where a quantum description is most applicable. In
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this thesis, we demonstrate parametric excitation in a quantum many-body system, a

spin-1 Bose-Einstein condensate. We will discuss the parametric excitation in terms

of the semi-classical theory and the quantum Fock state.

1.4.3 Rectifier Phase Control

There exists a stable elliptical fixed point in the spin-nematic S⊥Q⊥ phase space of

spinor condensate for q > 2|c|, and the coherent oscillation follows the elliptical energy

contours. In spinor phase space θsρ0, the population ρ0 dynamics can be decomposed

into an ac coherent oscillation with a dc offset. By applied the ∆θs = −π spinor phase

shift at the right moment during coherent oscillation, one can transfer a condensate

between energy contours. This is equivalent to changing the dc offset of the coherent

oscillation. The ability of moving a condensate across energy contours is another

method to control the state of spinor system. This technique is the rectifier control.

In electronics, a rectifier is the device which converts alternative current (ac) to direct

current (dc).

1.4.4 Thermal Spin Relaxation

There are several reasons that thermal atoms above BEC critical temperature are

interesting to us. Creating a thermal cloud at finite temperature is easier than making

a BEC. The trap lifetime of a thermal cloud is longer than that of a BEC; therefore,

the cold atoms could be practical in application. We have investigated different

aspects of spinor BEC but not on the thermal atoms. Understanding thermal spin

relaxation is one of first steps into the study of thermal atoms.
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CHAPTER 2

THEORY OF SPIN-1 CONDENSATES

The theory of Bose-Einstein condensation has a long history and evolves along with

the development of modern physics. At the beginning, the theory was based on

statistical mechanics and the idea of energy quantization [1, 2, 3]. The emergence of

quantum mechanics from classical mechanics introduced the idea of the Schrödinger

equation and the wave function. Consequently, Bose-Einstein condensate, a many-

body system in the presence of potential energy, is described by the Gross-Pitaevskii

equation [103, 104]. Furthermore, by adopting the idea of quantum field theory, the

Gross-Pitaevskii equation can be written in the second quantization form [105, 84, 106]

where the basis represents the number of particles in each state. For a spin-1 BEC,

second quantization enables us to write the Hamiltonian in terms of the spinor field

operators |mf = 0,±1〉 and separate the spin-independent and spin-dependent parts

of the Hamiltonian. The single mode approximation reduces the spatial mode and

simplifies the Hamiltonian into the internal spinor modes [107, 105, 84, 108]. Now the

Hamiltonian is simpler, and can be solved either by mean field theory [109, 51, 22]

or quantum approach [84, 110]. Moreover, it has been shown that spin-1 system

requires SU(3) group to describe the system [56]. In this thesis, we introduce another

approach to the dynamics of the system using the Heisenberg picture and make a

comparison between a spin-1 system and the double well condensates.

2.1 Gross-Pitaevskii Equation

In 1900, Planck proposed an revolutionary idea that blackbody radiation was emit-

ted by quantized vibrating resonators. The famous Bose statistics for photons were
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original developed to derive Planck’s law. According to Planck, the vibrational en-

ergy is discrete, quantized, and proportional to vibrational frequency ε = hν [111].

The constant h was later called Planck’s constant. The quantum energy of radiation

emitted is called a photon. Planck’s work triggered the eventual emergence of quan-

tum mechanics from whereby. Physical objects can be described at the microscopic

level using wave function representations. With new tools from quantum physics,

Bose-Einstein condensate can be studied deeper into the internal states.

Originally, a BEC was proposed in the context of a non-interacting gas. However,

the interactions of gas particles through elastic two-body collisions play a necessary

role for atoms to reach thermal equilibrium in the cooling process, in the characteri-

zation of the ground state [112, 113], and in spinor dynamics [50, 51, 52, 53, 54, 55].

The Hamiltonian of the condensate includes the kinetic energy, the potential energy

of the confined trap VT , and the two-body interaction energy,

H =
N∑
i=1

(
−∇

2

2m
+ VT (ri)

)
+
∑
i<j

gδ(ri − rj) (2.1)

Eqn 2.1 is called the Gross-Pitaevskii equation (or nonlinear Schrödinger equation)

[103, 104], and U(ri− rj) =
∑

i<j gδ(ri− rj) is the two-body interaction. During the

two-body collision, the total spin is the sum of individual spin, ~F = ~f1 + ~f2. Because

the wave functions of bosons are symmetric, the total spin during the collision must be

an even number. For spin-1 system, possible spin numbers are F = 0, 2. For a typical

BEC trap, the frequency of the trap is many orders of magnitude smaller than the

transition frequency between hyperfine levels. Therefore, two body collisions will not

change the hyperfine state of an individual atom [84]. An atomic BEC has low enough

energy to preclude collisions with higher order angular momentum configurations

(p, d, f, g...) which require overcoming the long-range van der Waals potential barrier

[114]. Therefore, the scattering length of BEC is dominated by s-wave scattering at

low energy. The s-wave dominance can also be obtained from the scattering cross
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section [103, p.109]:

σ =
4π

k2

∞∑
l=0

(2l + 1) sin2(δl)

Here, k is the wave number, δl is the phase shift of incoming and outgoing wave, and

l is angular momentum number of Legendre polynomials. For k → 0, the dominate

term is δl=0 or s-wave scattering [103, p.109]. The two-body collision term therefore

can be rewritten as [105, 84, 106],

U(ri − rj) = δ(ri − rj)
2∑

F=0

gF

F∑
mF=−F

|F,mF 〉〈F,MF |

The constant gF = 4π~2aF
m

is the two-body mean-field coupling strength and propor-

tional to s-wave scattering length of two bosons aF . In the basis of individual atom’s

hyperfine quantum number |f1,mf1; f2,mf2〉, one can write

|F,mF 〉 =

f1∑
mf1=−f1

f2∑
mf2=−f2

|f1,mf1; f2,mf2〉〈f1,mf1; f2,mf2|F,mF 〉

Where 〈f1,mf1; f2,mf2|F,mF 〉 is a Clebsch-Gordon coefficient. In the case of a spin-1

system f1 = f2 = 1, the two-body interaction operator can be written as [105, 84]

2∑
F=0

gF

F∑
mF=−F

|F,mF 〉〈F,mF |

= g0

(
4

3
ψ̂†1ψ̂

†
−1ψ̂1ψ̂−1 +

1

3
ψ̂†0ψ̂

†
0ψ̂0ψ̂0 −

2

3
ψ̂†1ψ̂

†
−1ψ̂0ψ̂0 −

2

3
ψ̂†0ψ̂

†
0ψ̂1ψ̂−1

)
+g2

(
ψ̂†1ψ̂

†
1ψ̂1ψ̂1 + 2ψ̂†1ψ̂

†
0ψ̂1ψ̂0 +

2

3
ψ̂†1ψ̂

†
−1ψ̂1ψ̂−1 +

2

3
ψ̂†0ψ̂

†
0ψ̂0ψ̂0

+
2

3
ψ̂†1ψ̂

†
−1ψ̂0ψ̂0 +

2

3
ψ̂†0ψ̂

†
0ψ̂1ψ̂−1 + 2ψ̂†0ψ̂

†
−1ψ̂0ψ̂−1 + ψ̂†−1ψ̂

†
−1ψ̂−1ψ̂−1

)
where the shorthand notation for field operator ψ̂†a → |f = 1,mf = a〉
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The second quantized Hamiltonian of the system can be decomposed into the spin-

independent symmetric and the spin-dependent asymmetric Hamiltonian [105, 84].

HS =
∑
i

∫
d3rψ̂†i

(
−∇

2

2m
+ VT

)
ψ̂i +

λs
2

∑
i,j

∫
d3rψ̂†i ψ̂

†
j ψ̂iψ̂j (2.2)

HA =
λa
2

∫
d3r
(
ψ̂†1ψ̂

†
1ψ̂1ψ̂1 + ψ̂†−1ψ̂

†
−1ψ̂−1ψ̂−1 + 2ψ̂†1ψ̂

†
0ψ̂1ψ̂0

+2ψ̂†−1ψ̂
†
0ψ̂−1ψ̂0 − 2ψ̂†1ψ̂

†
−1ψ̂1ψ̂−1 + 2ψ̂†0ψ̂

†
0ψ̂1ψ̂−1 + 2ψ̂†1ψ̂

†
−1ψ̂0ψ̂0

)
(2.3)

where λs = 2g2+g0
3

, λa = g2−g0
3

, and i = 0,±1.

The symmetric Hamiltonian HS does not change the spin components of the

system. The asymmetry Hamiltonian changes the spin components of the system.

2.2 Single Mode Approximation

The full Hamiltonian of the BEC includes the symmetric Hamiltonian HS of Eqn

2.2 and the asymmetric Hamiltonian HA of Eqn 2.3. The symmetric part of the

Hamiltonian, which includes the kinetic energy and the external potential, creates

the spatial structure and spatial energy of the condensate. In order to see the full

extent, we have to consider the coupling of spinor and spatial structure in the wave

functions. When the size of the condensate is smaller than the spin healing length

ξs = h/
√

2m|λa|n, where n is number density, the spin components have the same

spatial wave function [84, 107, 105] which leads to the single mode approximation

(SMA),

ψ̂i ≈ âiφ(r)

here, âi = |1, i〉 is the annihilation operator of the spin state of the wave function,

which obeys the bosonic commutation relation [ak, al] = 0 and
[
ak, a

†
l

]
= δkl. For

87Rb and 23Na, λs � |λa| [105], the symmetric Hamiltonian is the dominant term

and determines the partial wave function φ(r). In the SMA, φ(r) is the spatial wave

function of the condensate, which satisfie the Gross-Pitaevskii equation [84](
−∇

2

2m
+ VT + λsN |φ|2

)
φ = µφ (2.4)
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here, µ is the chemical potential of the condensate. Substituting into Eqn 2.2 and 2.3

yields

HS =
∑
i

∫
d3rψ̂†i

(
µ− λsN |φ|2

)
ψ̂i +

λs
2

∑
,j

∫
d3rψ̂†i ψ̂

†
j ψ̂iψ̂j

=
∑
i

â†i (µ− 2λ′sN) âi +
∑
i,j

â†i â
†
j âiâj

= µN̂ − λ′sN̂(N̂ + 1) (2.5)

HA = λ′a

(
â†1â

†
1â1â1 + â†−1â

†
−1â−1â−1 + 2â†1â

†
0â1â0

+2â†−1â
†
0â−1â0 − 2â†1â

†
−1â1â−1 + 2â†0â

†
0â1â−1 + 2â†1â

†
−1â0â0

)
(2.6)

where λ′k = λk
2

∫
d3r|φ|4. The symmetric Hamiltonian Eqn 2.5 is a constant thus does

not affect to the spinor dynamics of the system, which are governed by Eqn 2.6.

2.3 Mathematical Background

As discussed in the Section 2.2, the wave function can be decomposed into three

internal spinor modes of â1, â0, â−1 with the same overall spatial wave function.

Any Hermitian operator can be written as a linear combination of â†i âk for i, k =

0,±1, we thus have a total of 9 operators. The completeness relation 1
N

∑
i â
†
i âi = 1̂

reduces the number of linearly independent operators to 8. Using a SU(3) group

to describe the spinor-1 BEC was discussed by different groups [84, 83, 115] and

summarized in Refs. [56, 64]. In the quantum approach, the operators are represented

by second quantization operators [56], while in the mean field approach, the operators

are represented by 3× 3 matrices [116, 115]. In this section, we will derive the spin-1

operators in the quantum and mean field representations.

Let z be the quantization axis of the system. The spin operator Sz will have three

possible eigenvalues of 0,±1 corresponding to three eigenstates |f = 1,mf = 0,±1〉.

For the eigenstate |f = 1,mf = 1〉, all the atoms are in the mf = 1 state and

similarly for |f = 1,mf = 0〉, and |f = 1,mf = −1〉. In the mean field regime, the
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wave function can be represented by a vector of three complex numbers,

|1, 1〉 = (1, 0, 0)T ; |1, 0〉 = (0, 1, 0)T ; |1,−1〉 = (0, 0, 1)T

Using the eigenvalues and eigenstates of the spin operator, we have

Ŝz|1, 1〉 = 1|1, 1〉; Ŝz|1, 0〉 = 0|1, 0〉; Ŝz|1,−1〉 = −1|1,−1〉

hence

Ŝz|1, 1〉〈1, 1| = 1|1, 1〉〈1, 1|

Ŝz|1, 0〉〈1, 0| = 0|1, 0〉〈1, 0|

Ŝz|1,−1〉〈1,−1| = −1|1,−1〉〈1,−1|

Applying the completeness condition
∑

i |i〉〈i| = 1̂, the spin operator Sz can be written

as

Sz = |1, 1〉〈1, 1| − |1,−1〉〈1,−1|

The corresponding second quantization spin operator can be written as

Ŝz = â†1â1 − â†−1â−1

In the matrix representation, the spin operator can be written as

Sz = (1, 0, 0)T · (1, 0, 0)− (0, 0, 1)T · (0, 0, 1) =


1 0 0

0 0 0

0 0 −1


We can construct a raising and lowering spin operator using the relations

Ŝ±|f,mf〉 =
√
f(f + 1)−mf (mf ± 1)|f,mf ± 1〉 (2.7)

The other Cartesian spin operators Ŝx, Ŝy can be derived by the relations

Ŝ+ = Ŝx + iŜy Ŝ− = Ŝx − iŜy (2.8)
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From Eqn 2.7 and 2.8, we obtain the spin operators in matrix forms

S+ =
√

2


0 1 0

0 0 1

0 0 0

 , S− =
√

2


0 0 0

1 0 0

0 1 0



Sx =
1√
2


0 1 0

1 0 1

0 1 0

 , Sy =
i√
2


0 −1 0

1 0 −1

0 1 0


and in second quantization operator forms [56, 64]

Ŝ+ =
√

2(â†1â0 + â†0â−1)

Ŝ− =
√

2(â†0â1 + â†−1â0)

Ŝx =
1√
2

(
â†1â0 + â†0â−1 + â†0â1 + â†−1â0

)
Ŝy =

1√
2

(
−â†1â0 − â†0â−1 + â†0â1 + â†−1â0

)
The basis can be decomposed into dipole (spin operator) and quadrupole moments

[116]. In matrix form, the quadrupole moments can be generated by the combination

of two dipoles [115]

Qij = SiSj + SjSi −
4

3
δij (2.9)

In second quantization form, the quadrupole moments are formulated as [56, 64]

Q̂ij = −ĉij − ĉji +
2

3
δij ĉkk (2.10)

ĉij = b̂ib̂j b̂†x = (−â†1 + â†−1)/
√

2 b̂†y = i(â†1 + â†−1)/
√

2 b̂†z = â†0

With the spin operators obtained previously, and using the formulas in Eqn 2.9

and 2.10, we can obtain a representation for quadrupole operators in matrices and

second quantization form. The spin and quadrupole operators are shown in Table 2.1

and their commutators are shown in the Appendix Table B.1
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Table 2.1: Operators of spin-1 system. Matrices are in the spherical polar basis
|f,mf〉. [64]

Sx = 1√
2

 0 1 0
1 0 1
0 1 0

 Ŝx = 1√
2

(
â†1â0 + â†0â−1 + â†0â1 + â†−1â0

)

Sy = ı√
2

 0 −1 0
1 0 −1
0 1 0

 Ŝy = ı√
2

(
−â†1â0 − â†0â−1 + â†0â1 + â†−1â0

)

Sz =

 1 0 0
0 0 0
0 0 −1

 Ŝz =
(
â†1â1 − â†−1â−1

)

Qyz = ı√
2

 0 −1 0
1 0 1
0 −1 0

 Q̂yz = ı√
2

(
−â†1â0 + â†0â−1 + â†0â1 − â†−1â0

)

Qxz = 1√
2

 0 1 0
1 0 −1
0 −1 0

 Q̂xz = 1√
2

(
â†1â0 − â†0â−1 + â†0â1 − â†−1â0

)

Qxy = ı

 0 0 −1
0 0 0
1 0 0

 Q̂xy = ı
(
−â†1â−1 + â†−1â1

)

Qxx =

 −1
3

0 1
0 2

3
0

1 0 −1
3

 Q̂xx = −1
3
â†+1â+1 + 2

3
â†0â0 − 1

3
â†−1a−1 + â†+1â−1

+â†−1â+1

Qyy =

 −1
3

0 −1
0 2

3
0

−1 0 −1
3

 Q̂yy = −1
3
â†+1â+1 + 2

3
â†0â0 − 1

3
â†−1â−1 − â†+1â−1

−â†−1â+1

Qzz =

 2
3

0 0
0 −4

3
0

0 0 2
3

 Q̂zz = 2
3
â†+1â+1 − 4

3
â†0â0 + 2

3
â†−1â−1

2.4 Quantum Approach

Using second quantization operators, we can rewrite the asymmetric Hamiltonian

part of Eqn 2.6 in a simple form [84, 106, 56]

Ha = λ′a(Ŝ
2 − 2N̂) (2.11)
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The magnetic field introduces energy shifts to the Zeeman sub-levels of the hyperfine

state. The Zeeman energy for total atoms in each spinor state becomes [64]

EB1 = pN1 + qN1 +N1E0

EB0 = N0E0

EB−1 = −pN−1 + qN−1 +N1E0

where p = −µBBzgf is the linear Zeeman effect, q = µ2
BB

2
z/(~2EHFS) is the quadratic

Zeeman effect, gf is the Landé g-factor, µB is the Bohr magneton, and EHFS is the

ground state hyperfine splitting. The total magnetic field energy will then be

EB = p(N1 −N−1) + q(N1 +N−1) +NE0

The Hamiltonian of a spinor BEC in a finite magnetic field takes the form [110, 61]

Ha = λ′a(Ŝ
2 − 2N̂) + p(N̂1 − N̂−1) + q(N̂1 + N̂−1) + N̂E0

The last term N̂E0 is a constant; therefore in the Heisenberg picture, this will not

evolve and will not affect the dynamics of the system. Note that Ŝz = N̂1 − N̂−1. If

we ignore the constant term, the quadratic Zeeman operator can be represented by

the quadrupole moment

Qzz = 2(N̂1 + N̂−1)− 4

3
N̂

The Hamiltonian can thus take a simple form [84, 56]

Ha = λ′a(Ŝ
2 − 2N̂) + pŜz +

q

2
Q̂zz (2.12)

Since Q̂zz and Ŝ2 do not commute [64], it is non-trivial to find the common eigen-

state basis for all the operators. However, the Hamiltonian Eqn 2.6 has eigenstates

in the Fock states |N−1, N0, N1〉 or the equivalent representation |N,M, k〉 where N

is the total number of atoms, M is the magnetization, and k is the number of pairs of

atoms in the mf = ±1 state. Moreover, the Hamiltonian conserves the total number
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of atoms N = N−1 + N0 + N1 and the magnetization M = N1 − N−1; these two

constraints simplify the Fock state to a single parameter k. The Fock states basis of

the Hamiltonian has dimensions of N/2+1 and can be represented in the vector form

|k〉 = (0, 0, .., kth = 1, .., 0)T k ∈ [0,
N

2
]

The Hamiltonian in Eqn 2.12 can be written as [84, 110]

Ha = λ′a

(
(N̂1 − N̂−1)2 + (2N̂0 − 1)(N̂1 + N̂−1) + 2â†1â

†
−1â0â0 + 2â†0â

†
0â1â−1

)
+p(N̂1 − N̂−1) + q(N̂1 + N̂−1) + N̂E0

For an initial state where all atoms are in the state |f,mf = 0〉, the conservation of

magnetization reads that M = N1−N−1 = 0. The matrix element of the Hamiltonian

will take the form [110, 56]

Hk,k′ = (2λ′ak(2(N − 2k)− 1) + 2qk) δk,k′+1

+2λ′a

(
(k′ + 1)

√
(N − 2k′)(N − 2k′ − 1)δk,k′+1

+k
√

(N − 2k′ + 1)(N − 2k′ + 2)δk,k′−1

)
(2.13)

The exact Hamiltonian of the system in Eqn 2.13 (within SMA) is a symmetric

tridiagonal matrix. The dynamics of the system can be calculated by numerical in-

tegration of the Schrödinger equations, i~ ∂
∂t
ψ = Ĥψ. Even though the symmetric

tridiagonal characteristic of the matrix reduces the number of computational opera-

tors, this is still an intensive computation. The details of the computational method

are described in Appendix A.

2.5 Mean Field Approach

In the quantum approach, there are N/2 + 1 eigenstates for a system of N particles.

The mathematical abstraction of the quantum approach is beautiful; however, finding

an analytical solution is computationally intensive. For a typical condensate of 40, 000

atoms, 20, 001 parameters are required to describe the condensate. Using mean field
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theory for a system of identical particles with a reasonable large number of atoms,

the interaction between all particles can be described by an order parameter or a

macroscopic wave function determined by the average inter-particle interaction. For

a spin-1 Bose-Einstein condensates, all atoms have the same internal spinor wave

function given by the number of atoms in the spin projection and the definite phase:

âi =
√
N |ζi|eiθi for |ζi|2 = ρi = Ni/N [106]. This reduces the number of parameters

from N/2 + 1 to a few parameters ρi, θi for i = 0,±1. In this section, we revisit the

dynamics using the Schrödinger picture and introduce the Heisenberg picture into the

spinor system. We also make a direct comparison between the spin-1 system and the

double-well condensate system.

2.5.1 Schrödinger Picture

The single mode approximation decouples the spatial wave function from the internal

spinor state. The spatial part of the wave function is governed by the symmetric

Hamiltonian part. The asymmetric Hamiltonian governs the spinor dynamics of the

condensate. The spinor dynamics of the condensate can be derived using the Heisen-

berg equation of motion

i~
∂ψ̂i
∂t

=
[
ψ̂i,H

]
i = 0,±1 (2.14)

The equation of motion of the field operators in the Heisenberg picture can be

represented as a system of 3 coupled equations [105, 106, 108] by substituting Eqn

2.2 and Eqn 2.3 into Eqn 2.14, and applying the bosonic commutation relations
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[105, 84, 109]

i~
∂ψ̂1

∂t
=

(
−∇

2

2m
+ VT

)
ψ̂1 + λ′sψ̂

†
i ψ̂iψ̂1

+2λ′a

(
ψ̂†1ψ̂1ψ̂1 − ψ̂†−1ψ̂1ψ̂−1 + ψ̂†0ψ̂1ψ̂0 + ψ̂†−1ψ̂0ψ̂0

)
i~
∂ψ̂0

∂t
=

(
−∇

2

2m
+ VT

)
ψ̂0 + λ′sψ̂

†
i ψ̂iψ̂0

+2λ′a

(
ψ̂†1ψ̂1ψ̂0 + ψ̂†−1ψ̂0ψ̂−1 + 2ψ̂†0ψ̂1ψ̂−1

)
(2.15)

i~
∂ψ̂−1

∂t
=

(
−∇

2

2m
+ VT

)
ψ̂−1 + λ′sψ̂

†
i ψ̂iψ̂−1

+2λ′a

(
ψ̂†−1ψ̂−1ψ̂−1 − ψ̂†1ψ̂1ψ̂−1 + ψ̂†0ψ̂0ψ̂−1 + ψ̂†1ψ̂0ψ̂0

)
The time dependent field operator of the condensate can be written in the mean field

using the single mode approximation as ψ̂i ≈ φ(r)e−iµt/~âi =
√
Nφ(r)e−iµt/~|ζi|eiθi

[84]. Substituting back into Eqn 2.15 and using the relation in Eqn 2.4 we obtain the

coupled Gross-Pitaevskii equations [109],

i~
∂ζ1

∂t
= c

[
(ρ1 − ρ−1 + ρ0)ζ1 + ζ†−1ζ

2
0

]
i~
∂ζ0

∂t
= c

[
(ρ1 + ρ−1)ζ0 + 2ζ†0ζ1ζ−1

]
(2.16)

i~
∂ζ−1

∂t
= c

[
(ρ−1 − ρ1 + ρ0)ζ−1 + ζ†1ζ

2
0

]
where c = 2λ′aN is the spinor dynamical rate. The experiments occur at a finite

magnetic field which shifts the Zeeman energy of the spin projections. The energies

shift can be calculated from the Breit-Rabi formula [117]. The magnetic field shifts

spinor energy of mf = 0,±1 by an amount of Emf = −mfpZB + qZB
2. Here pZ is

the linear Zeeman effect, qZ is the quadratic Zeeman effect, and B is the magnetic

field. The symmetric Hamiltonian Eqn 2.2 then becomes [109]

HS =
∑
i

∫
d3rψ̂†i

(
−∇

2

2m
+ VT + Ei

)
ψ̂i +

λs
2

∑
i,j

∫
d3rψ̂†i ψ̂

†
j ψ̂iψ̂j
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The coupled Gross-Pitaevskii equations with the magnetic field thus becomes [109]

i~
∂ζ1

∂t
= E1ζ1 + c

[
(ρ1 − ρ−1 + ρ0)ζ1 + ζ†−1ζ

2
0

]
i~
∂ζ0

∂t
= E0ζ0 + c

[
(ρ1 + ρ−1)ζ0 + 2ζ†0ζ1ζ−1

]
(2.17)

i~
∂ζ−1

∂t
= E−1ζ−1 + c

[
(ρ−1 − ρ1 + ρ0)ζ−1 + ζ†1ζ

2
0

]
The wave function of condensate can be represented by a vector of three complex num-

bers ψ = (ζ1, ζ0, ζ−1)T . The normalization condition reads
∑3

i=1 ρi =
∑3

i=1 |ζi|2 = 1,

and the conservation of magnetization is m = ρ1 − ρ−1. Therefore the wave func-

tion becomes ψ = (
√

1−ρ0+m
2

eiχ+ , ρ0,
√

1−ρ0−m
2

eiχ−)T [109, 51, 64]. This reduces the

dynamical equations into a pair of equations in spinor phase space [109]

ρ̇0 =
2c

~
ρ0

√
(1− ρ0)2 −m2 sin θs (2.18)

θ̇s =
2c

~

[
(1− 2ρ0) +

(1− ρ0)(1− 2ρ0)−m2√
(1− ρ0)2 −m2

cos θs

]
− 2q

~

where χ± = θ±1−θ0 = θs±θm
2

is the phase of spin states, θs = θ+1+θ−1−2θ0 = χ+−χ−

is the spinor phase, and θm = θ+1 − θ−1 is the magnetization phase.

2.5.1.1 Spinor Phase Space

The spinor population dynamics occurs in the spinor phase space θsρ0. In the mean

field, the spinor energy is given by [118, 109]

E =
c

2
m2 + cρ0

[
(1− ρ0) +

√
(1− ρ0)2 −m2 cos θs

]
+ pm+ q(1− ρ0) (2.19)

For zero magnetization m = 0, which is similar to our experimental condition,

the spinor phase spaces for different magnetic fields are shown in Figure 2.1 (top

row). When the quadratic Zeeman q = qZB
2 = 0, there are no positive energy

contours, one separatrix energy contour, and the ground state has ρ0 = 0.5 as shown

in Figure 2.1 a. When q > 0, the separatrix separating negative and positive energy

contour appears (Figure 2.1 b). When q = 2|c|, the critical phase transition value, the
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Figure 2.1: The spinor phase and spin-nematic sphere for different magnetic
fields. Spinor energy contours in spinor phase space (top) and spin-nematic sphere
(bottom) for q = 0, q = 0.5|c|, q = 1.95|c|, q = 4|c| are shown in (a), (b), (c), and
(d). The red curve represents the separatrix (zero energy contour). Negative energy
contours (green) are inside the separatrix, and positive energy contours (blue) are
outside. The separatrix starts to appear at 2|c|.

separatrix disappears and the ground state becomes ρ0 = 1 (2.1 c). When q > 2|c|,

there are only positive energy contours (2.1 d). We will refer to the dynamics along

the separatrix as spin mixing, and the dynamics inside or outside the separatrix as

coherent oscillations.

2.5.1.2 Spin-Nematic Phase Space

The mean field expectation of the operators can be calculated from the matrix form

(Table 2.1) and the wave function ψ = (
√

1−ρ0+m
2

eiχ+ , ρ0,
√

1−ρ0−m
2

eiχ−)T for the case
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of zero magnetization m = 0,

Sx = 〈~ψ|Sx|~ψ〉 = 2
√
ρ0(1− ρ0) cos θ cos θL = S⊥ cos θL

Qyz = −2
√
ρ0(1− ρ0) sin θ cos θL = −Q⊥ cos θL

Sy = −2
√
ρ0(1− ρ0) cos θ sin θL = −S⊥ sin θL

Qxz = −2
√
ρ0(1− ρ0) sin θ sin θL = −Q⊥ sin θL

Q0+ +Q0− = Qxx −Qyy = 2(1− ρ0) cos(2θL) = 2Qq cos 2θL

Q0+ −Q0− = 3Qzz = 2− 6ρ0 = Q0

Qxy = (−1 + ρ0) sin(2θL) = −Qq sin 2θL

Here θ = θs/2 is the quadrature angle, and θL = θm/2 is the Larmor phase. Defining

x = 2ρ0 − 1, S2
⊥ = S2

x + S2
y and Q2

⊥ = Q2
x +Q2

y, we get the relation

S2
⊥ +Q2

⊥ + x2 = 1 (2.20)

From Eqn 2.20, we see that the mean field dynamics can be described in the Bloch

sphere representation [119]. In order to observe squeezing, we need to consider the dy-

namics in the spin-nematic space S⊥Q⊥. The spin-nematic phase spaces and spheres

for different quadratic Zeeman energies are shown in Figure 2.1 (second row and third

row).

2.5.2 Heisenberg Picture

The Hamiltonian of the system in the single mode approximation is given in Eqn 2.12

[84, 56]

H = λŜ2 + pŜz +
q

2
Q̂zz

where Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z and λ = λ′a. In order to simplify dynamics we use the

interaction picture to transform into a rotating frame synchronized with the Larmor
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precession,

H0 = pŜz

HI = Û †
(
λŜ2
⊥ + λŜ2

z +
q

2
Q̂zz

)
Û

= λŜ2
⊥ + λŜ2

z +
q

2
Q̂zz (2.21)

where Û = exp(− ıĤ0t
~ ) = exp(− ıpŜzt

~ ), and Ŝ2
⊥ = Ŝ2

x + Ŝ2
y . We define operators in the

rotating frame Â = Û †ÂÛ and using the Campbell-Hausdorff lemma, these operators

are explicitly

Ŝx = Ŝx cos(
pt

~
)− Ŝy sin(

pt

~
)

Ŝy = Ŝx sin(
pt

~
) + Ŝy cos(

pt

~
)

Q̂yz = Q̂xz sin(
pt

~
) + Q̂yz cos(

pt

~
)

Q̂xz = Q̂xz cos(
pt

~
)− Q̂yz sin(

pt

~
)

Q̂0+ = Q̂zz − Q̂yy =
1

2
(Q̂0+ − Q̂0−)

+
1

2
(Q̂0+ + Q̂0−) cos(

2pt

~
)− Q̂xy sin(

2pt

~
)

Q̂0− = Q̂xx − Q̂zz = −1

2
(Q̂0+ − Q̂0−)

+
1

2
(Q̂0+ + Q̂0−) cos(

2pt

~
)− Q̂xy sin(

2pt

~
)

Q̂xy = Q̂xy cos(
2pt

~
) +

1

2
(Q̂0+ + Q̂0−) sin(

2pt

~
)

The interaction picture does not change the commutator relations
[
Â, B̂

]
= Û †

[
Â, B̂

]
Û .

The evolution dynamics of operator can be obtained from Heisenberg equation of mo-

tion,
˙̂A = ı

~

[
HI , Â

]
˙̂Sx = − q

~
Q̂yz

˙̂Sy =
q

~
Q̂xz

˙̂Qyz = −λ
~

({Q̂0+, Ŝx}+ {Q̂xy, Ŝy}

−{Q̂xz, Ŝz}) +
q

~
Ŝx
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˙̂Qxz = −λ
~

({Q̂0−, Ŝy} − {Q̂xy, Ŝx}

+{Q̂yz, Ŝz})−
q

~
Ŝy (2.22)

˙̂Q0+ =
2λ

~
(2{Q̂yz, Ŝx} − {Q̂xz, Ŝy} − {Q̂xy, Ŝz})

˙̂Q0− =
2λ

~
(2{Q̂xz, Ŝy} − {Q̂yz, Ŝx} − {Q̂xy, Ŝz})

˙̂Qxy =
λ

~
({Q̂0+ + Q̂0−, Ŝz} − {Q̂xz, Ŝx}+ {Q̂yz, Ŝy})

Replacing the operators by the mean field expectation values, we have

Ṡx = − q
~
Qyz

Ṡy =
q

~
Qxz

Q̇yz = −λ
~

({Q0+,Sx}+ {Qxy,Sy}

−{Qxz,Sz}) +
q

~
Sx

Q̇xz = −λ
~

({Q0−,Sy} − {Qxy,Sx} (2.23)

+{Qyz,Sz})−
q

~
Sy

Q̇0+ =
2λ

~
(2{Qyz,Sx} − {Qxz,Sy} − {Qxy,Sz})

Q̇0− =
2λ

~
(2{Qxz,Sy} − {Qyz,Sx} − {Qxy,Sz})

Q̇xy =
λ

~
({Q0+ +Q0−,Sz} − {Qxz,Sx}+ {Qyz,Sy})

Since the dynamics in {Ŝx, Q̂yz, Q̂0+} and {Ŝy, Q̂xz, Q̂0−} are degenerate, we

can reduce the problem into a single space by using

S2
⊥ = S2

x + S2
y Q2

⊥ = Q2
yz +Q2

xz Q2
q =

1

4
(Q0+ +Q0−)2 +Q2

xy
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Since S2
⊥ and Q2

⊥ synchronize to Larmor precession, we can define

Sx = S⊥ cos(θm/2)t=0

Sy = −S⊥ sin(θm/2)t=0

Qyz = −Q⊥ cos(θm/2)t=0

Qxz = −Q⊥ sin(θm/2)t=0

Qxy = −Qq sin(2θm/2)t=0

Q0+ +Q0− = 2Qq cos(2θm/2)t=0

Q0+ −Q0− = Q0

Substitute back into Eqn 2.23

˙̂S⊥ cos(θm/2) =
q

~
Q⊥ cos(θm/2)

−Ṡ⊥ sin(θm/2) = − q
~
Q⊥ sin(θm/2)

−Q̇⊥ cos(θm/2) = −2λ

~
(Q0+S⊥ cos(θm/2)−QxyS⊥ sin(θm/2)

+Q⊥Sz sin(θm/2)) +
q

~
S⊥ cos(θm/2)

−Q̇⊥ sin(θm/2) = −2λ

~
(−Q0−S⊥ sin(θm/2)−QxyS⊥ cos(θm/2)

−Q⊥Sz cos(θm/2)) +
q

~
S⊥ sin(θm/2)

Q̇0+ =
4λ

~
(−2Q⊥S⊥ cos2(θm/2)−Q⊥S⊥ sin2(θm/2)−QxySz)

Q̇0− =
4λ

~
(2Q⊥S⊥ sin2(θm/2) +Q⊥S⊥ cos2(θm/2)−QxySz)

−Q̇q sin(2θm/2) =
λ

~
({Q0+ +Q0−,Sz}+ 2Q⊥S⊥ sin(θm/2) cos(θm/2)

+2Q⊥S⊥ sin(θm/2) cos(θm/2))

Thus the system can be reduced to the dynamics of S⊥, Q⊥, Qq, Q0. In the case

of zero magnetization, Sz = 0 then we are left with a system of 4 operators.

˙̂S⊥ =
q

~
Q⊥
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Q̇⊥ =
λ

~
(Q0S⊥ + 2QqS⊥)− q

~
S⊥

Q̇0 = −12
λ

~
Q⊥S⊥

Q̇q = −2
λ

~
Q⊥S⊥

Defining expectation of operator X = −1
4
(Q0 + 2Qq) = 2N0 −N , we are left with

system of 3 equations

Ṡ⊥ =
q

~
Q⊥

Q̇⊥ = −4
λ

~
XS⊥ −

q

~
S⊥ (2.24)

Ẋ = 4
λ

~
Q⊥S⊥

These dynamical equations of the spinor system are identical to the double-wells

[120, 121] and pseudo spin-1/2 system [122].

2.5.3 Analogy to a Double-Well and Bosonic Josephson Junction

Bose-Einstein condensate in a double-well trap is commonly called a Bosonic Joseph-

son junction (BJJ) [123, 124]. Comparing to double well, we can see the similarity

in dynamics and discuss the Bose Josephson junction in a spinor condensate. The

Hamiltonian of the BJJ in the second quantized form is given by [120, 121, 124]

H =
EI
8

(â†1â1 − â†2â2)2 − ∆µ

2
(â†1â1 − â†2â2)− ET

2
(â†1â2 + â†2â1)

=
EI
2
l̂2z −∆µl̂z − ET l̂x

here EI is the local two-body interaction coupling strength, ET is the tunneling cou-

pling strength between two condensate modes (tunneling), ∆µ is the detuning, and

l̂i (i = x, y, z) are defined as,

l̂x =
â†1â2 + â†2â1

2
l̂y =

â†1â2 − â†2â1

2i
l̂z =

â†1â1 − â†2â2

2
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where â†i , âi are the creation/annihilation operators for the number of atoms in each

well [121]. In the mean field regime, the equations 2.24 are exactly the same as the

Bloch equations for the BJJ [120, 121, 122]. The mean-field Bloch equations for the

BJJ are [120, 121]

ṡx = −κszsy ṡy = ET sz + κszsx ṡz = −ET sy

where si = 2〈li/N〉, κ = EIN
2

for N is the total number of atoms. The mapping

between the BJJ and the spin-1 dynamics based on Eqn 2.24 is

lx ↔ X (Fock) ly ↔ Q⊥ lz(Fock)↔ S⊥

ET ↔ q EI ↔ λ

In the BJJ, the Fock state basis is determined by l̂z, and in a spinor BEC, the Fock

state basis is determined by the X̂ terms.

2.5.3.1 Bosonic Josephson Junction

To show the connection between the BEC and the BJJ [95], we describe the dynam-

ics in an alternative phase space. To define the dynamics of the system, only two

parameters are needed to define the Hamiltonian in the mean-field [125]

HMF =
Λ

2
z2 −

√
1− z2 cos(ϕ)

where z = N2−N1

N2+N1
is the fractional imbalance, ϕ is the relative phase between two

wells about the lz axis, Λ = EIN/2ET . This leads to equations of motion [125]

ż(t) = −
√

1− z2 sin(ϕ)

ϕ̇(t) = Λz(t) +
z(t)√

1− z(t)2
cosϕ(t)

The Josephson current for the double well is I = ż(t). The tunneling of atoms

between double well results in an oscillation of the fractional population imbalance

that has been referred as Bose-Josephson junction [120, 126, 121, 123]. Depending on
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the order parameter Λ = EIN/2ET , the dynamics will be defined as Rabi, Josephson,

or Fock regime [124]. Those regimes are defined explicitly based on the eigenstates

[127].

• Rabi regime: EI/2ET � N−2. The two-body interactions are negligible, and the

tunneling between two well is strong. The number of atoms in each well is not well

defined. The tunneling oscillation is compared to Rabi oscillation. There are two

types of oscillations, π-oscillation on the pole where separatrix appears and plasma

oscillation on another pole on the lxlylz sphere.

• Josephson regime: N−2 � EI/2ET � 1. The two-body interactions and the

tunneling between two well are comparable. The dynamics are highly non-linear.

• Fock regime: 1� EI/2ET . The two-body interactions dominate the Hamilto-

nian, and the tunneling between two well is negligible. The number of atoms in each

well is well-defined.

To describe the spinor condensate in the language of Bose Josephson junction,

we need to use S⊥ and its associated phase φ. However it is not convenient to

describe the spinor dynamics in term of φS⊥. Instead, the spinor dynamics are often

studied in the spinor phase space θsρ0. Using the θsρ0 spinor phase space, we can

access the perpendicular axis to z axis of double well system. Therefore, we are

able to observe the Bose Josephson junction from a different perspective. The spinor

dynamics equation read [109, 51],

ρ̇0 =
2c

~
ρ0

√
(1− ρ0)2 −m2 sin θs

θ̇s =
2c

~

[
(1− 2ρ0) +

(1− ρ0)(1− 2ρ0)−m2√
(1− ρ0)2 −m2

cos θs

]
− 2q

~

In fact, the ratio q/|c| is treated as the order parameter Λ = EIN/2ET of double well

system in order to determine the Rabi, Josephson, and Fock regimes for the spinor

system.
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CHAPTER 3

EXPERIMENTAL APPARATUS

The current experimental apparatus was first assembled in 2007; however, a portion

of the apparatus dates back to the original BEC apparatus built in 2001. Several gen-

erations of graduate students have worked on expanding and improving the apparatus

as described in previous theses [128, 22, 129, 64, 130]. Here, I provide enough infor-

mation in order for the reader to have a general idea about the experiment conducted

in this thesis.

This work focuses on Bose-Einstein condensation in 87Rb gases. Therefore, this

experiment is designed to do three things: create a condensate, manipulate it, and

measure it.

3.1 Creating a BEC

We create Bose-Einstein condensates by using the combination of a magneto-optical

trap and a CO2 laser optical dipole force trap as shown in Figure 3.3. The magneto

optical trap (MOT) cools and traps rubidium gases inside a vacuum chamber (10−10 ∼

10−11 torr). The MOT uses three pairs of retro-reflected cycling transition laser

beams and two magnetic coils in a anti-Helmholtz configuration [131]. The typical

trap depth of a MOT is in the mK regime and hence only captures atoms from

the very low velocity tail of the Boltzmann distribution [22]. After initial loading,

atoms are loaded into the CO2 laser optical dipole trap with a trap depth of ∼100

µK. To achieve the temperature regime for BEC, we employ evaporative cooling that

involves reducing the CO2 laser beam waist and ramping down the power of CO2 laser

beam. Decreasing the power of the CO2 laser allows hot atoms to escape from the

trap; reducing the beam waist increases the density and hence collision rate between
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atoms. The Bose-Einstein condensate is formed at the focus of the optical dipole

trap. We now discuss the details of each component used to create a BEC.

3.1.1 Rubidium Atom 87Rb

Early BEC experiments demonstrated that that alkali gases are one of the best can-

didates for studying cold atoms [4, 5, 6]. Our lab created the first all optical BEC of

87Rb gas in 2001 [7]. To produce 87Rb atoms, we run a current of 3 ∼ 4 A through a

rubidium getter made of stainless steel. In addition, the blue uv lights kick out the

atoms stuck on the chamber window; it helps to enrich the rubidium source in the

chamber.

Rubidium has an atomic number of 37. Naturally rubidium mixture composes of

two isotopes 85Rb (72.2%) and 87Rb (27.8%) [135]. For 87Rb, the ground state electron

configuration is [Kr] 5s1 or 5 2S1/2. Recall that the conventional atomic symbol has

the form 2S+1LJ where J is the total angular momentum, S is electron spin, and L is

the electron orbital angular momentum. Promoting the valence electron from L = 0

to L = 1 (S shell to P shell) results in two possible excited states 5 2P1/2 and 5 2P3/2.

The optical transition from the ground state to these excited states are known as the

D1 and D2 lines. The D2 line is used as the cycling transition for laser cooling. The

hyperfine atomic spin for the ground state is ~f = ~I + ~J where the nuclear spin ~I = 3
2

and total angular momentum ~J = ~S + ~L = ~S + 0 = 1
2
. The hyperfine ground states

of 87Rb thus have doublet ground states,

flower =
3

2
− 1

2
= 1 and fupper =

3

2
+

1

2
= 2

Zeeman sublevels In the presence of a magnetic field, the hyperfine structure

atomic spin f will induce 2f + 1 Zeeman sublevels due to the projection of the

atomic spin on the magnetic quantization axis. These Zeeman sublevels are mf =

−f,−f+1, ..., f . For zero magnetic field, these Zeeman sublevels are degenerate. For
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Figure 3.1: Rubidium 87Rb D2 transition hyperfine structure [132, 133, 134].
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non-zero magnetic field, the Zeeman effect shifts the energy of these sublevels. The

Zeeman energy shift can be calculated using the Breit-Rabi formula [132, 22]

E|f,mf 〉 = −Ehfs
8
− gIµIBmf −

1

2
Ehfs

√
1 + xmf + x2

x =
(gJµB + gIµI)B

Ehfs

Here Ehfs is the hyperfine energy splitting, gI and gJ are the Landé g-factor of the

nucleus and the valance electron, µI and µB are the nuclear magnetic moment and

the Bohr magneton, and B is the magnetic field. The energy level diagram of 87Rb

is shown in Figure 3.1.
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Λ�4
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Figure 3.2: Diagram of the vacuum chamber.
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3.1.2 Vacuum Chamber System

The main chamber is an stainless stainless machined octagon from Kimball physics.

There are two anti-reflective 6” glass windows, five anti-reflective 2.75” glass windows

for laser beams, two 2.75” zinc selenide windows for CO2 laser beams, and one long

port with an anti-reflective 2.75” glass window for the imaging probe laser beam.

Inside the chamber, there are two zinc selenide focusing lenses of 3.8 cm focal length.

The first lens focuses the CO2 beam for the dipole trap, and the beam exits the

chamber through the second lens. Also, there is a 5 cm focusing lens to collect light

for imaging, and a rubidium getter source is inside the chamber. The pressure inside

the chamber is 10−10 − 10−11 torr and maintained by an ion pump and a titanium

sublimation pump.

3.1.3 Magneto Optical Trap (MOT)

The magneto optical trap follows the standard configuration with anti-Helmholtz

gradient magnetic coils and 3 pairs of retro-reflected laser beams [131](Figure 3.3).

The power of each laser beam is about 30 − 35 mW and the beam diameter is 1.0”.

The anti-Helmholtz coils create a spatial dependence in the Zeeman energy splitting

of atoms as shown in Figure 3.4. To describe the principle behind the MOT, let

us consider atoms with a ground state of spin |f = 0〉, and excited state of spin

|f = 1〉. The presence of a magnetic field shifts the energy of the Zeeman sub-levels

by an amount ∆E = µmfB, here µ is Zeeman energy splitting constant, mf is Zeeman

sublevels, and B is the magnetic field. The laser beams are red detuned, with circular

polarization σ+ and σ−. Atoms at z > 0 will absorb more σ− photons, and atoms at

z < 0 will absorb more σ+ photons due to spatial dependence of Zeeman energy [131].

As a result, the MOT confines atoms at the center of the trap (the zero magnetic

field position). The trap depth of a typical MOT is on the order of a few mK.
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Figure 3.3: Magneto optical trap and CO2 laser dipole force trap. The MOT
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retro-reflected laser beams.

3.1.4 MOT Laser

In the case of rubidium atoms (as seen in the energy level diagram Figure 3.1), its

simple hyperfine structure does not require a very complicated laser setup for cooling.

We can use 780 nm laser diodes for both the cycling and repump transitions and the

lasers can be fine-tuned to the specific wavelength for a desired transition.

The cycling transition transfers atoms between F = 2↔ F ′ = 3. Details about

the cycling transition laser setup are shown in Figure 3.5. The optical setup looks

complicated; however, its goal is simple. We aim for a power of order ∼ 100 mW
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Figure 3.4: Spatial energy dependent and MOT beam polarization. The
anti-Helmholtz coils create a spatial dependence in Zeeman energy for atoms. The
two circularly polarized beams with opposite helicity apply stronger pressure on atoms
as they move away from the center of the trap.

into the chamber and the ability to shift the laser beam frequency from −250 MHz to

within a few MHz of the cycling transition. The first goal is achieved using a tapered

amplifier (TA) which can emit up to 1 W of power. The frequency shifting is achieved

by passing the beam through a series of acousto optical modulators (AOM).

Repump transition : during the cycling transition, there is a possibility that

atoms jump from F = 2 → F ′ = 2, and fall back from F ′ = 2 → F = 1. We

need a repump laser to put atoms back to the cycling transition. This laser transfers

atoms between F = 1 ↔ F ′ = 2 if atoms fall back to F = 1. There is a possibility

that atoms will fall from F ′ = 2 → F = 2 which will place them back into the

cycling transition. The repump laser optical setup is less complicated than the cycling
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Figure 3.6: Laser locking set up. (a) Locking set up for the master laser, (b)
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because we only need 15− 20 mW into the chamber. The repump laser is locked at

the repump transition, and the frequency is shifted by an AOM which results in −80

MHz from the repump transition. The beam from the repump laser then is seeded
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into an injection locked laser by an optical fiber. The beam of the injection locked

laser passes through a second AOM which shifts the beam frequency +80 MHz. The

resulting beam, which is resonant with the repump transition, is coupled into the

chamber via an optical fiber.

In order to keep the frequency of laser light tuned to the atomic transitions, the

lasers are locked using a PID control. The locking signal for the cycling laser is

generated by modulating its current, and the locking signal for the repump laser

is generated by modulating the AOM frequency shift. The advantage of the latter

method is that modulating AOM frequency shift does not induce frequency sideband

on the main laser beam. Thus, no laser power is wasted in the sidebands. The laser

locking diagram is shown in Figure 3.6.

3.1.5 Magnetic Coils.

Magnetic coils are among the most important components of the BEC experiment.

All the coils are located outside the vacuum chamber (Figure 3.2). The magnetic

coils, depending on the configuration, play different roles in the experiment.

Gradient coils. In the experiment, there are 2 pairs of gradient coils. One pair of

gradient coils is for the magneto optical trap, and one pair of gradient coils is used to

purify the spin components of the condensate and as Stern-Gerlach coils to spatially

separate the spin components during imaging. Although, one gradient coil could do

all the work, the extra pair of coils gives us more flexibility in the experiment.

Bias magnetic coils. There are three pairs of bias coils used to cancel the external

magnetic field and set a desired magnetic field along the CO2 laser axis (quantization

axis). Three pairs of coils generate magnetic fields in three orthogonal directions:

along gravity, along the CO2 laser beam, and along the imaging directions.
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Figure 3.7: CO2 laser setup.

Gradient compensation coils The external magnetic gradient is approximately

100 mG/cm. There is a pair of small gradient coils attached to the ZnSe window.

These coils generate a magnetic field gradient to cancel the external magnetic gradient

along the CO2 laser beam at the location of the BEC.

3.1.6 CO2 Laser Dipole Trap

The CO2 laser dipole trap is a central component of the experiment; it relies on

the principle of an induce electric dipole moment interacting with the electric field

gradient of the laser beam. The Bose-Einstein condensate is formed and held at the

focus of the CO2 laser. The CO2 laser induces a dipole moment ~p = α~E in the atom,

where α is the atomic polarizability, and ~E is the electric field of laser. Consequently,

the induced dipole moment of the rubidium atoms are effectively trapped by the

potential of the laser’s electric field. The intensity gradient of the laser creates a

spatially dependent electric potential, U = −〈~p · d ~E〉 = −1
2
〈~p · ~E〉. Here, the brackets
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represent the time averaged potential. The CO2 laser was chosen to be the dipole

trap for two main reasons. First, the laser emits a wavelength of 10.6 µm which is

far detuned from any atomic transition of rubidium atoms; the radiation force due

to photon scattering is negligible as compared to the dipole force [136]. Second,

its effective short Rayleigh range allows a Bose-Einstein condensate to form and be

confined in a single focus beam.

A detailed discussion of the CO2 laser optical dipole force trap can be found in

Refs. [136, 128, 22]. In this section, we will provide some of the basic information

about the potential energy and the photon scattering rate of the dipole force trap.

The laser light is far detuned with |∆| = |ω − ω0|, where ω is the angular frequency of

the laser, and ω0 is the cycling resonance frequency of rubidium atoms. The potential

and the scattering rate in the case of a far-off resonance trap (FORT) are [136]

U(~r) = −3πc2

2ω3
0

Γ

ω0 − ω
I(~r) = −3πc2

2ω3
0

Γ

∆
I(~r)

Γsc(~r) =
3πc2

2~ω3
0

(
Γ

ω0 − ω

)2

I(~r) =
3πc2

2~ω3
0

(
Γ

∆

)2

I(~r) =
Γ

~∆
U(~r)

where the on resonance damping rate Γ = (ω0

ω
)2Γω and damping rate Γω = −Frad

me
=

e2ω2

6πε0mec3
. In fact, the wavelength of the CO2 laser is extremely off resonant ω � ω0.

In this scenario

U(~r) = −3πc2Γ

ω4
0

I(~r) = − αs
2ε0c

I(~r)

Γsc(~r) =
3πc2

2~ω3
0

(2
Γ

ω0

)2I(~r) = 2
Γ

~ω0

(
ω

ω0

)3U(~r)

where αs = 6πε0c3Γ
ω4
0

is the static polarizability. For a CO2 laser, the scattering rate is

1.1 photon per atom every hours![22]

The experimental CO2 laser setup is illustrated in Figure 3.7. The CO2 laser

outputs ∼100 W. It first passes through an AOM; the zero order diffraction goes to

a beam dump, and the +1 diffracted order is used for the experiment. The main

purpose of the AOM is to control the power of the laser beam. The beam then
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passes through the first set of 1:1 telescopes with the first focus lens motorized on a

translation stage (lens mover). The second set of 1:1 telescopes are fixed inside the

chamber. Moving the lens gives us the ability to change the focus of the beam inside

the vacuum chamber. Tightening the beam focus increases the trap depth and the

confinement of the trap. To load more atoms during initial trap loading, we us the

maximum power of the CO2 laser with a large beam waist inside chamber. To create

a BEC, we apply evaporative cooling by lowering CO2 laser power such that the hot

atoms escape, at the same time decreasing the trap volume by focusing the beam

to increase the density and thus the collision rate. In general, the first lens moves

forward 10 mm in order to decrease the beam waist inside chamber to about 25 µm.

3.2 Interacting with a BEC

Creating a Bose-Einstein condensate is only the first step of our investigation. In order

to prepare condensates in different experimental scenarios, we must interact with

the condensate. In the context of our experiment, we interact with the condensate

through a microwave horn, an rf coil, and the magnetic field coils. The microwave

transition works in the hyperfine regime, and the rf transition works in the Zeeman

sub-levels of the hyperfine states. The magnetic field introduces the quadratic Zeeman

energy into the spinor energy. The schematics of the microwave and rf system are

described in Figure 3.8 and the magnetic field is produced by the magnetic coils

previously discussed.

3.2.1 Microwave

A microwave transition transfers atoms between sub-levels of the hyperfine structure

of f = 1 and f = 2. In a large enough magnetic field to lift the degeneracy of the sub-

levels, the microwave transition can be approximated as a 2-level system, for instance,

microwave transition between |f = 1,mf = 0〉 and |f = 2,mf = 0〉. A sample of the

microwave Rabi flopping is shown in Figure 3.9 a; the microwave pulse transfers the
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Figure 3.8: Microwave and rf setup.

population N0 of atoms in mf = 0 state between f = 1 and f = 2.

The microwave manipulation is a very useful for our investigation. Microwave

spectroscopy is used to measure the magnetic field, zero the B-field, and shift the

phase of the condensate quantum states. The magnetic field splits energy of Zee-

man sub-level of hyperfine structure by ∆Em = mfpBz where ∆Em is energy shift,

mf = −f,−f + 1, ...f are the Zeeman sub-levels, p ≈ 700 Hz/mG is the linear Zee-

man effect, and Bz is the magnetic field. By measuring the frequency difference

between the transition from |f = 1,mf = 0〉 to |f = 2,mf = 0, 1〉, one can determine

the magnetic field Bz. By adjusting the currents in the three bias coils with the feed-

back from the magnetic field measurement, we can zero the magnetic field to within

a few mG.

Another important role of the microwave transition is to shift the phase of the

spinor condensate [64]. For a two-level system |g〉 = |f = 1,mf = 0〉 and |e〉 = |f =
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microwave Rabi rate |f = 1,mf = 0〉 and |f = 2,mf = 0〉. (b) Microwave phase shift
on |f = 1,mf = 0〉 quantum state for a detuning ∆ = δ/Ω normalized to resonance
Rabi rate.

2,mf = 0〉 [137], the wave function can be written as |ψ(t)〉 = cg(t)|g〉+ ce(t)|e〉. The

time evolution in the presence of the microwave field is

ce(t) = i
Ω

Ω′
sin

Ω′t

2
eiδt/2

cg(t) =

(
cos

Ω′t

2
− i δ

Ω′
sin

Ω′t

2

)
eiδt/2

where the effective Rabi rate Ω′ =
√

Ω2 + δ2, Ω is the Rabi rate, and δ is the detuning.

An off-resonance microwave transition with an effective 2π pulse length, T ′ = 2π
Ω′

,

induces a phase shift of the |f = 1,mf = 0〉 relative to the |f = 1,mf = ±1〉 state as

the atoms completely transfer from |f = 1,mf = 0〉 to near |f = 2,mf = 0〉 and back

to |f = 1,mf = 0〉. The phase of the mf = 0 component is shifted by an amount

∆θ0 = 2π if the detuning is zero. For a detuning of ∆ = δ
Ω

, the phase of mf = 0

atoms is shifted by an amount ∆θ0 = π(1+∆/
√

1 + ∆2). This results in a quadrature

phase shift of ∆θ = −∆θ0 [56]. The diagram for the off-resonant microwave phase

shift is shown in Figure 3.9 b.
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Figure 3.10: rf spectrum and rf Rabi. (a) rf spectrum, (b) rf Rabi rate between
|f = 1,mf = 0,±1〉

3.2.2 RF system

The RF transition transfers atoms between Zeeman sub-levels of given hyperfine

states. For the hyperfine state f = 1, RF transitions transfer atoms between the

3-level system of |f = 1,mf = 0,±1〉. Similar to microwave spectroscopy, RF spec-

troscopy can be used to measure the magnetic field. A sample of the RF spec-

trum used to determine the magnetic field is shown in Figure 3.10 (a). In the sam-

ple, the resonance frequency (center peak) is at 158.5 kHz which corresponds to

B = 158.5/p = 226 mG, here p is a linear Zeeman effect.

The RF transition is also used to prepare a coherent spin state with a fractional

population ρ0 = N0/N for initial state preparation by varying the pulse length as

shown in Figure 3.10 b.

3.2.3 Magnetic Field

Spinor condensates can also be controlled through the use of a magnetic field. The

magnetic field can control the phase transition [46, 47, 48] and modulate the spinor

energy of condensate. The magnetic field, as discussed previously, is generated by

the bias magnetic coils. The magnitude of the magnetic field is determined by the

voltage of power supply across the coils that is controlled by the analog outputs of the
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National Instruments (NI) cards. This enables us to modulate the voltage across the

coils to generate different wave forms scenarios for the magnetic fields, from sinusoidal,
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= N1 +N−1, thus the slope of the fit (95.6) is the conversion of counts
per atom (CPA). Correcting for the squeezing factor (0.15), CPA= 95.6/100.15 = 67.7
counts/atom.

linear ramping, to square pulses.

3.3 Data Acquisition

We acquire data by imaging the condensate and counting the number of atoms. There

are two primary techniques used in imaging, fluorescence and absorption. In fluores-

cence imaging, atoms are illuminated with laser beams from three retro-reflection

and orthogonal directions, and images are taking by collecting the scattered light the

from atoms. In absorption imaging, a probe beam is passed through the condensate

of atoms, and CCD camera acquires the image of the probe beam with the shadow

of the condensate. The diagrams of both imaging configurations and a sample of
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fluorescence image are shown in Figure 3.11. The CCD camera collects photons and

converts the number of photons into the number of electrons. By performing an

RF calibration, we can determine the number of atoms from the number of electron

counts given by the CCD images [62, 129].

RF transition is used to calibrate the electron counts into atom counts. Starting

from an initial state ofmf = 0, rotated with an RF transition, the Poissonian quantum

projection noise of magnetization is equal to the square root of total atom transfer

from mf = 0 to mf = ±1, ∆N1−N−1 =
√
N1 +N−1 [62]. The electron count per atoms

conversion can be obtain from the fit of the total transfer to mf = ±1 atom counts

C1 +C−1 and magnetization variance count ∆2
C1−C−1

. A sample of the RF calibration

is shown in Figure 3.12.

3.4 Control System

Two computers, a Labview computer and an Andor computer, are used to control

experimental procedure and acquire data. We use the Labview program to control

the experiment and the Andor BASIS program to acquire data images. The Labview

program controls experiment through multiple PCI cards in a PCI chassis and USB-

RS232 ports. The diagram of the control system and list of devices are shown in

Figure 3.13. The computer controls the microwave and RF system through GPIB,

acquires image from a COHU camera through a frame grabber PCI-1407, controls

24 analog voltage outputs and 16 digital voltage outputs through NI cards PCI-6733

and PCI-6534, and control the lens mover and the SmartArb pulse generator through

RS232 ports.
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CHAPTER 4

STABILIZATION THEORY

In spinor BEC, when the quadratic Zeeman effect q = qZB
2 < 2|c|, there exists an

unstable equilibrium hyperbolic fixed point at the top pole of spin-nematic S⊥Q⊥x

sphere, and the non-equilibrium quantum spin dynamics are an analog of an inverted

pendulum. The unstable equilibrium dynamics provide a great playground for the

studying quantum stabilization in a many-body system.
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Figure 4.1: Spinor phase and spin-nematic sphere. Dynamical evolution at
0 ms (a), 50 ms (b), 100 ms (c), and 150 ms (d) in spinor phase (top) and spin-
nematic phase (bottom) for 40,000 atoms. The condensate (orange) is initiated at
hyperbolic fixed point with uncertainty at the SQL level; the noise then squeezes
below the SQL, and evolve along separatrix.

4.1 Spinor Dynamics Picture

What happens when q < 2|c|? To answer this question, we first look at the spin-

nematic sphere S⊥Q⊥x, as shown in Figure 4.1 (bottom). The emergence of separatrix
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(zero energy contour) introduces different scenarios for the quantum spin dynamics.

The dynamics along the negative (green) and positive (blue) energy contours are the

orbiting and the phase winding coherent oscillations about the stable elliptical fixed

point. In comparison to the double well condensate, the phase winding is an analog

of plasma oscillations and the orbiting is the self-trapping oscillations [123, 124]. The

unstable equilibrium dynamics occur at the unstable hyperbolic fixed point at the

top pole of the sphere. For a condensate initiated at the hyperbolic fixed point, freely

evolution leads to squeezing and spinor population dynamics. In the spin-nematic

phase, the quantum uncertainty along the divergent separatrix grows above the SQL

and reduces below the SQL in the transverse direction. The continued development of

noise along the divergent separatrix leads to the evolution away from the hyperbolic

fixed point. In the spinor phase space θsρ0, the spinor phase is initial undefined, and

the ρ0 distribution is non-Gaussian with the mean value ρ0 ≈ 1 [61]. During the

squeezing period, the spinor phase approaches a definite value cos θs = − q
c
− 1

2
. After

the squeezing period, the quantum spin mixing of the condensate occurs along the

separatrix to value of ρ0 < 1. Stabilizing these unstable equilibrium dynamics are

our goal.

4.1.1 Classical Pendulum Analogy

The spinor energy of Eqn 2.19 can be written in the form of a non-rigid pendulum

[51, 109, 61]

Ha =
|c|
4

[
x2 − 1− (x2 − 1) cos θs

]
+
q

2
(1− x) (4.1)

This Hamiltonian is similar to the Bose-Hubbard model [125, 123] for the Bose-

Josephson junction [138, 37]. The Hamiltonian of a classical pendulum is described

by

E =
l2

2
(
dφ

dt
)2 + gl(1− cos(φ)) (4.2)
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Figure 4.2: Spin-nematic and phase space trajectory. The phase space tra-
jectory (a) of the pendulum with the hyperbolic fixed point at (π, 0), the separatrix
(red) separates the librational (green) from rotational (blue) motion. Spin nematic
(S⊥, Q⊥) space of spinor condensate (b) with the hyperbolic fixed point at (0,0),
separatrix (red), negative energy contour (green), and positive energy contour (blue).

The phase trajectories (φ, dφ
dt

), of the pendulum are shown in Figure 4.2 (a) by plotting

contours of Eqn 4.2. There exist 2 types of equilibrium fixed points, stable elliptic

fixed points at (0, 0) and (2π, 0) and an unstable hyperbolic fixed point at (π, 0).

They are periodic every 2π. The separatrices intersect at a hyperbolic fixed point

separating the librational oscillation and the rotational motion of the pendulum.

The spin-nematic phase space S⊥Q⊥ with the hyperbolic fixed point (Figure 4.2

a) of a spinor condensate has a similar structure to the phase trajectories of a classical

pendulum at its hyperbolic fixed point (0, π). The point (0, π) in the phase trajectories

corresponds to the inverted pendulum position.

4.2 Stabilization Concept

It has been known that unstable systems can be dynamically stabilized by applying

a periodic force [139]. The inverted pendulum stabilized by vertically vibrating the

pivot point, known as Kapitzas pendulum, is a classic example of this non-intuitive
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Figure 4.3: Stabilization concept. The condensate is initialized at the pole of the
spin-nematic sphere with Heisenberg-limited uncertainties in S⊥ and Q⊥ (upper left).
Initial evolution produces squeezing along the diverging manifold of the separatrix
(upper right). The quantum state is quickly rotated (blue arrow) to the converging
manifold of the separatrix using a microwave field pulse (lower right). Subsequent
the evolution of the rotated state (lower left) unsqueezes the condensate, returning it
close to the original state (upper left). Reproduced from [82]

phenomenon [71, 140]. In the spinor condensate, the non-equilibrium dynamics are

stabilized by periodically rotating its quadrature phase shift. The stabilization con-

cept is shown in Figure 4.3. The condensate is initialized at the pole of the spin-

nematic sphere with Heisenberg-limited uncertainties 1/
√
N in S⊥ and Q⊥. Initial

evolution produces squeezing along the diverging manifold of the separatrix, and sub-

sequently leads to the non-equilibrium dynamics. To stabilize the system, we need to

prevent the non-equilibrium dynamics from occurring. The quantum state is quickly

rotated (blue arrow) to the converging manifold of the separatrix using a microwave

field pulse. Subsequent evolution of the rotated state unsqueezes the condensate and

returns it close to the original state. Repeating these rotations periodically can keep

the condensate in the squeezing-unsqueezing loop and stabilize its dynamics about

the hyperbolic fixed point [82].
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4.3 Stabilization Theory

In the stabilization regime, the dynamics occur near the top of the spin-nematic

sphere. This is the low depletion limit where N̂0 ≈ N̂ . In order to linearize the

equations of motion, we expand the operators about the expectation values of this

initial state, Â = 〈A〉+ δÂ. The only nonzero expectation values are

〈Q̂0+〉 = −2N

〈Q̂0−〉 = 2N.

These expectation values also indicate quantum limited uncertainty of
√
N in Ŝx, Ŝy,

Q̂xz, and Q̂yz since these operators are the commutators of Ŝx with Q̂yz and Ŝy with

Q̂xz respectively. Keeping the terms linear in δÂ, and eliminating the higher order

terms of δÂ and the products of δÂ · δB̂, the dynamic equations of motion Eqn 2.22

become

δ
˙̂Sx = − q

~
δQ̂yz

δ
˙̂Sy =

q

~
δQ̂xz

δ
˙̂Qyz =

4Nλ

~
δŜx +

q

~
δŜx (4.3)

δ
˙̂Qxz = −4Nλ

~
δŜy −

q

~
δŜy

These equations describe the quantum dynamics in the neighborhood of the pole at

which squeezing happens. In order to determine the stability condition, we make a

mean-field approximation by replacing the operator δÂ with its expectation value

δA. Since 〈Â〉 = 0 for all the dynamical operators, we will drop the δ notation

of the expansion. Since the dynamics in {Ŝx, Q̂yz, Q̂0+} and {Ŝy, Q̂xz, Q̂0−} are

degenerate, we can reduce the problem into a single space by using

S2
⊥ = S2

x + S2
y Q2

⊥ = Q2
yz +Q2

xz
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Since S2
⊥ and Q2

⊥ synchronize to the Larmor precession, we can define

Sx = S⊥ cos(
θm
2

)t=0 Qyz = −Q⊥ cos(
θm
2

)t=0

Sy = −S⊥ sin(
θm
2

)t=0 Qxz = −Q⊥ sin(
θm
2

)t=0

The system of equations Eqn4.3 simplifies into [82]

Ṡ⊥ = q̃Q⊥

Q̇⊥ = − (2c̃+ q̃)S⊥

with spinor dynamical rate c = 2Nλ, where c̃ = c/~ and q̃ = q/~ are angular

frequencies.

4.3.1 Stabilization Condition

The dynamic equations can be written in a matrix form

 Ṡ⊥
Q̇⊥

 =


0 q̃

− (2c̃+ q̃) 0


 S⊥
Q⊥


Defining the above matrix as m, the time evolution is given by its exponenti-

ation. The quadrature phase shift used for stabilization is given by the operator

exp
(
−ı∆θQ̂zz

)
, which is a plane rotation in {S⊥,Q⊥} by an angle ∆θ. The full dy-

namics from one pulse to another, including the dynamics from m and the quadrature

phase shift, are given by

M = R[∆θ] · exp[τm]

where τ is the period between pulses, R is a 2-dimensional rotation matrix, and ∆θ

is the amount of the quadrature phase shift.

Using the same stability analysis technique employ in optical resonator theory,

we verify that the dynamics of S⊥ and Q⊥ stay bounded if the trace |Tr[M]| < 2.
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Evaluating this condition gives the inequality [82],

2

∣∣∣∣cos ∆θ cosh Γτ +
c̃+ q̃

Γ
sin ∆θ sinh Γτ

∣∣∣∣ < 2 (4.4)

with Γ =
√
q̃(2|c̃| − q̃). This inequality is used to mark the boundaries of the analytic

stability region, which is compared to simulations in Figure 4.4.

The stabilization can also be analyzed by using a magnetic field pulses with length

τ and amplitude q̃P repeated with period T with the interim field having amplitude

q̃0.

M = exp[(T − τ)m(q̃0)] · exp[τm(q̃P )]

In this form, the stabilization condition is given by

|2 cosh Γ0(T − τ) cosh ΓP τ − 2
q̃0q̃P + c̃(q̃0 + q̃P )

Γ0ΓP
sinh Γ0(T − τ) sinh ΓP τ | < 2 (4.5)

with Γ0/P =
√
−q0/P (2c+ q0/P )/~.
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4.3.2 Effective quadratic Zeeman analysis

For a ferromagnetic spinor BEC, the spinor dynamical rate c < 0. When the quadratic

Zeeman q > 2|c| or q < 0, the population does not evolve. The quadrature rotation

∆θ is the angle rotation about the x or −Qzz axis. In fact, the operator Q̂zz is the

rotation operator in the spin-nematic S⊥Q⊥ space.

|ψ(t)〉∆θ = e−i(−Q̂zz)∆θ/2|ψ(t)〉

The Hamiltonian of the system is H = λŜ2 +pŜz+ q
2
Q̂zz. The term responsible for

the quadrature rotation is q
2
Q̂zz. The evolution due to the quadratic Zeeman energy

alone is

|ψ(t)〉∆θ = eiqQ̂zzt/2~|ψ(t)〉

Therefore, the quadrature rotation due to the quadratic Zeeman energy is ∆θ =

qτ/~. This can also be seen from the dynamical matrix M. The microwave pulse

generates an instantaneous quadrature rotation of ∆θ. Therefore, over one period of

the periodic microwave pulse sequence we can calculate an effective quadratic Zeeman,

qeff = q + ~∆θ/τ . The spin-nematic phase space is cyclic with a period of π. So an

instantaneous phase shift of ∆θ is equivalent to a phase shift of ∆θ − π, which is

a negative contribution to qeff . Therefor qeff is double valued everywhere. For both

qeff > 2|c| and qeff < 0 there is no longer a hyperbolic fixed point centered on the

mf = 0 state [82]. Wherever these conditions are met for both of the qeff values, the

system is in the robust stable region. This region is bounded by the dashed lines in

the stability diagram 4.4.
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CHAPTER 5

STABILIZATION EXPERIMENT

In this chapter, we will describe our stabilization experiment in a Bose-Einstein con-

densate and discuss the experimental results. The stabilization concept relies on

rotating the phase of quantum states. In the context of this study, we will present

two different stabilization methods using the microwave pulse and the magnetic field

pulses.

What are our observables? The distribution of stabilized quantum states local-

izes about the hyperbolic fixed point on the top pole of the spin-nematic sphere. This

location corresponds to the spinor population ρ0 = 1; hence, the value ρ0 determines

whether the system is stable. Moreover, the uncertainty of the stabilized distribution

is bounded; we can use the transverse magnetization noise ∆S⊥ as an alternative

parameter to verify the dynamic stabilization.

5.1 Stabilization with Microwave Pulses First Attempt

The technique of using microwaves to rotate the phase of quantum states has been

proven to be a robust method in our spin-nematic squeezing experiment [56]. Once

again, the technique is applied in our stabilization experiment.

5.1.1 Experimental Method

The stabilization concept was described in Figure 4.3. The condensate is initialized

at the hyperbolic fixed point x = 1, S⊥ = Q⊥ = 0. The condensate has Heisenberg-

limited uncertainties in S⊥ and Q⊥. Initial free evolution of the condensate produces

spin-nematic squeezing along the diverging manifold of the separatrix and leads to the
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Figure 5.1: Microwave pulse stabilization experimental sequences. To initi-
ate the dynamics, the magnetic field is quenched from 2 G to 200 mG. Each microwave
pulse is separate by a period τ . (a) The imaging setup measures the spinor popula-
tion, and (b) measures the transverse magnetization by applying an RF field to rotate
Sx → Sz.

non-equilibrium spin mixing dynamics. To maintain the condensate in the equilibrium

position, the quantum state of the condensate is quickly rotated to the converging

manifold of the separatrix using a microwave field pulse. The subsequent free evo-

lution unsqueezes the condensate, returns it close to the original state, and squeeze

along the diverging manifold of the separatrix again. Periodic microwave pulses of

period τ are applied to rotate the quadrature phase by an amount ∆θ to keep the

condensate in a squeezing-unsqueezing loop, and stabilize the spinor dynamics about

the hyperbolic fixed point [82].

The experiment is performed with a condensate of N = 3× 104 atoms initiated in

the |f = 1,mf = 0〉 state at a high magnetic field 2 G. To initiate the dynamics, the
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magnetic field is quenched below the quantum critical point to 220 mG. A sequence

of microwave pulses of period τ is applied to stabilize the system. Finally, the spin

populations of the condensate are measured. This is executed by releasing the trap

and allowing the atoms to freely expand in a Stern-Gerlach magnetic field gradient

to separate the mf spin components. To measure the transverse magnetization S⊥,

an RF π/2 pulse is applied to rotate S⊥ → Sz before imaging. The experimental

sequence is shown in Figure 5.1.

5.1.1.1 Microwave phase shift

The microwave pulse transfer atoms between |f = 1,mf = 0〉 and |f = 2,mf = 0〉 and

back. A microwave pulse with detuning δ results in a phase shift ∆θ0 = π(1 + ∆√
1+∆2 )

in |mf = 0〉. Here, ∆ = δ/Ω is the normalized detuning to resonance Rabi rate

of the two level system. The quadrature phase shift in the spin-nematic space is

∆θ = −∆θ0. The detail microwave setup is described in Section 3.2.1.

5.1.2 Spinor Population

The population ρ0 is one of the observables for stabilization. The value of the sta-

bilized population ρ0 will stay close to 1 if the condensate remains localized on the

top pole of the S⊥Q⊥x sphere (Figure 4.3). To verify the stabilization dynamics, we

measure the evolution of population dynamics ρ0. The spinor dynamics of stabilized

condensates for different microwave pulse periods are demonstrated in Figure 5.2. For

unstabilized system (microwave pulses are off) Figure 5.2 a, the squeezing mechanics

pauses the spinor dynamics for about 100 ms, followed by a large amplitude oscil-

lation in the ρ0 spinor population. When the microwave pulses are turned on, the

spinor dynamics are stabilized. The results are shown for microwave pulses τ ranging

from 30− 60 ms. During first 500 ms of evolution, the stabilization is almost perfect

for τ ≤ 40 ms. For longer pulse periods, the system is still stabilized after a certain

time, then eventually evolves away from stabilization.
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Figure 5.2: Experimental demonstration of dynamic stabilization of spin
dynamics. (a) Free (unstabilized) evolution of the spin population, ρ0, due to quan-
tum spin mixing. (b)-(e) Stabilization of the spin dynamics to the ρ0 = 1 unstable
equilibrium using periodic rotations of the spin-nematic quadrature phase with the
periods indicated. In each case, microwave pulses are used to rotate the quadrature
phase through an amount ∆θ = −3

4
π rad. The open circles correspond to the mean

measured value and error bars indicate the measured standard deviation. The red
line and blue shaded region are smoothed interpolations to guide the eye. Note the
reduced vertical scale in (b) and (c).
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The spinor dynamics can be stabilized for a timescale comparable to the 1/e

lifetime of the condensate as shown in Figure 5.3. Because of the effect from periodic

microwave pulses, the lifetime of the condensate is reduced to 500 ms from 1.2 s

without microwave pulses. We later discovered that the high power microwave pulse

is not perfect and leaves some atoms in F = 2 which leads to atom loss and a reduced

trap lifetime.

The effect of microwave pulse periods on stabilization can be extracted from the

effective quadratic Zeeman qeff = q+~∆θ/τ and the stability mapping analysis. For a

fixed quadrature angle rotation ∆θ, the short period pulses τ tend to create effective

quadratic Zeeman in the region q > 2|c| and q < 0, a robust stabilized region. For

longer pulse periods, the system can still be stabilized but for a very narrow range

of values of quadrature phase shifts (Figure 5.5). Hence, stabilization is more robust

for short pulse periods than for long pulse periods.

5.1.3 Transverse Magnetization

Another observable of stabilization is the transverse magnetization noise ∆S⊥ which

is bounded for stabilized dynamics. During one microwave pulse cycle, the fluctua-

tion of transverse magnetization S⊥ increases and decreases because the condensate

undergoes a squeezing-unsqueezing loop in the spin-nematic space S⊥Q⊥. To measure

S⊥, a π
2

RF pulse is applied to rotate S⊥ into Sz before the trap is off. The π
2

RF

pulse completely transfers atoms in |f = 1,mf = 0〉 into |f = 1,mf = ±1〉.

The fluctuation dynamics of S⊥ is demonstrated in Figure 5.4. For an unstabilized

system (microwave pulses off), the fluctuation grows exponentially. The fluctuation

reaches the first local maximum about t = 190 ms, corresponding the moment of

maximum spin mixing (Figure 5.2a). The fluctuation of transverse magnetization

then undergoes oscillating (simulation in Figure 5.4 right). For a stabilized conden-

sate, the fluctuation increases until the first microwave pulse comes in and unsqueezes
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Figure 5.3: Long time stabilization dynamics of the BEC condensate. The
fractional population, ρ0, (red, left) is compared to the total population of the con-
densate (blue, right). The evolution of the condensate is stabilized for periods much
longer than the condensate lifetime of ∼ 500 ms.

the condensate. The fluctuation decreases as a result, then increases again until the

second microwave pulse, and so on. The experimental results (Figure 5.4 left) show

the expected periodic evolution of the fluctuation with a significant reduction of fluc-

tuation compared to unstabilized fluctuation. However the experimental fluctuations

are higher than the prediction from simulation. Probably the atom loss induced by

microwave pulses and some early quantum spin mixing play a role for this discrepancy.

5.1.4 Stability Diagram

Previously, we stabilized the system with a fixed quadrature phase shift ∆θ (exper-

imental angle between manifolds of separatrices). In fact, the condensate can be

stabilized with the different quadrature phase shifts and pulse periods (∆θ, τ). To
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Figure 5.4: Variance transverse magnetization. (left) The fluctuations of the
transverse magnetization, S⊥, are measured (solid lines) for both free evolution of the
condensate and for the dynamically stabilized dynamics for two different pulse peri-
ods. The results are compared to theoretical calculations. The 0 dB line corresponds
to the N−1/2 standard quantum limit. (right) The simulations of the transverse mag-
netization noise show the stabilized dynamics and the unstabilize dynamics up to
0.5 s.

study the stability region of the condensate in (∆θ, τ) diagram, the microwave pulse

periods of [5, 100] ms and a quadrature phase shift in [−π, 0] are applied to stabilize

the condensate. For each combination of (∆θ, τ), the ρ0 spinor population is measured

after 195 ms of evolution where the maximum spin-mixing occurs (Fig 5.2a). The

ρ0 population determines the stabilization of the system (close to one for stabilized,

otherwise unstabilized).

The average of three experimental runs (Figure 5.5) shows the stability diagram

of the condensate. For the short period pulses, the condensate is stabilized with a

wide range of quadrature angles. For longer period pulses, the stabilized range of

quadrature angles get narrower and approach the value close to the angle between

manifolds of separatrices ∆θ = arccos(−1− q
c
).

The experimental results are fitted to the analytical prediction shown in solid

lines. The stability region stays inside the boundary of Tr[M] < 2 (Eqn 4.4). Fitting
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analysis, while the dashed curves use a time-averaged Hamiltonian approach. The
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curves use Beff = 150 mG, c = −6.5× 2π Hz.

parameters, the spinor dynamical rate c = −6.5 × 2π Hz is determined by the mea-

surement of coherent oscillation and the magnetic field B = 220(10) mG is measured

by an RF spectroscopy. The experimental stability region agrees well with the theo-

retical envelope; however, there is an offset in the quadrature phase shift for a long

period pulse. This discrepancy is larger than the uncertainty in measurements of c

and q can account.

5.2 Stabilization with Microwave Pulses Second Attempt

The first attempt using microwave stabilization gives promising results. The spinor

population dynamics could be stabilized; however, the dynamics of transverse mag-

netization noise ∆S⊥ did not agree very well with the theory. It turns out that the
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microwave pulse is not perfect when operating at high power. At high power, the mi-

crowave pulse leaves some atoms in F = 2 state, which leads to atom loss. This atom

loss adds noise to the fluctuation of transverse magnetization S⊥ such that ∆S⊥ does

not goes below the standard quantum limit (SQL) and as low as theoretical prediction

(Figure 5.4). Using lower microwave pulses yields a better result in stabilization and

reduces the atom loss problem.

5.2.1 Experimental Method

The experimental method is similar to the first attempts. For the microwave pulse,

the first attempt uses the high power of microwave with a Rabi rate of ∼ 50 µs. The

second attempt reduces the power of the microwave pulse by 7 dB which yields a

Rabi rate of ∼ 170 µs. In this experiment, we use a condensate of 4.5 × 104 atoms

initiated in the |f = 1,mf =〉 state.

5.2.2 Spinor Population

Similarly, we study the evolution of ρ0 population to verify the stabilization. The

results of stabilization population are shown in Figure 5.6 a [82]. To stabilize the

system, the microwave pulses with a fixed period of 60 ms for different quadrature

phase shifts are applied to the condensate. Depending on the quadrature phase shift,

the spinor population can be perfectly stabilized (A), marginally unstable (B), and

unstable (C). Each data point is repeated for 10-15 times. In the case of free evolution

(red unstabilized), the population ρ0 starts at value of 1 and oscillates as quantum

spin mixing occurs. In case of perfect stabilization (A), the fractional population

ρ0 almost remain constant around 1. As the system become unstable (B and C) ρ0

decays away from 1.

To verify that microwave pulse stabilization still maintains the quantum behavior

of the system, we perform two other measurements. In the first measurement (Figure

5.7 a), we applied a quadrature phase shift ∆θ = −π with a period of 60 ms to the
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Figure 5.6: Stabilized dynamics and stability mapping. (a) Ideal stabilized
population ρ0 dynamics A(blue square) versus unstabilized (red circle), dynamics near
the stability edge where the dynamics eventually destabilize B (blue up triangle), and
dynamics outside the stability region C(blue down triangle). The letters A, B, and C
correspond to period and quadrature phase shifts (τ,∆θ) on stability mapping. Pulse
timings are shown as green ticks. The shaded region is derived from the standard
deviation to guide the eye. (b) Variance of the transverse magnetization (∆S⊥)2 for
A versus unstabilized (red circle), B, and C. Theory curve from simulation (solid
line) for A ∆θ = −0.65π, B ∆θ = −0.724π, and C ∆θ = −0.56π. (c) Map of the
experimental stability region (green) shown with the analytic solution (red solid line)
for ρ0 population after 185 ms of evolution. Also shown is the ‘robust’ region where
the mean effective q is stable (red dashed line). Point D(blue diamond) is at the
identity phase shift.

system. The result shows the condensate performs a normal quantum spin mixing.

This verifies that microwave pulse does not significantly perturb the quantum char-

acteristic of the system except by rotating the quadrature phase shift. In the second

measurement (Figure 5.7 b), we stabilize the system for 572 ms, and then let it freely
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evolve. The results show the condensate stabilized as expected when the microwave

pulses are on. When the pulses are off, the condensate perform a normal spin mix-

ing. These measurements verify that microwave pulse stabilization still maintains the

quantum features of the spinor condensate.

5.2.3 Transverse Magnetization

Solving the microwave pulse problem not only eliminates the atom loss but also

gives us an opportunity to access the low noise region (below the SQL) of transverse

magnetization. We perform the measurement of ∆S⊥ for a perfect stabilization (A)

compared to unstabilized dynamics (red circle), marginally unstable dynamics (B),

and unstable dynamics (C) as shown in Figure 5.6 b [82]. In the case of perfect

stabilized (A), the noise ∆S⊥ grows as the condensate squeezes until the microwave

pulse rotates the quadrature phase shift ∆θ to unsqueeze the condensate, and the

noise decays to the SQL. The process is repeated in each microwave pulse cycle.

In the case of marginally unstable dynamics (B), the noise undergoes the squeezing-

unsqueezing loops for a while and eventually grows to the limit of 40 dB. For a first few

cycles, the noise actually goes below SQL (−5.7 dB). In the case of unstable dynamics

(C), the noise exponentially grows similar to the unstabilized case (red circle). The

results are fitted to a quantum simulation, and they show good agreement with theory.
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Figure 5.8: Long timescale stabilization by microwave pulses. (a) The sta-
bilization dynamic population ρ0, plot legend refers to corresponding location in di-
agram 5.6 c. The shaded regions are derived from the standard deviation to guide
the eye. (b) The uncertainty of transverse magnetization ∆S⊥. Theory curve from
simulation (solid line) with spinor dynamical rate c = −2π × 7.2 Hz and magnetic
field B = 220 mG. Green ticks show the time where the microwave pulses are on.

Note that during stabilization dynamics, the condensate always squeezes. How-

ever, the measurements of the fluctuations do not fall below the SQL because the

principle axes (convergent separatrix) of the squeezing ellipse are never oriented along

the measurement axis S⊥ (shown in Figure 4.3).

5.2.4 Long Timescale Stabilization Dynamic

Since the stabilization method is very robust, we tried to stabilize the condensate until

we run out of atoms in the BEC. Figure 5.8 shows the condensate stabilized for up to

2 s. A typical trap life time is about 1.4-1.6 s. In Figure 5.8 a, the spinor population

ρ0 = 1 for almost 2 s; during this time, the unstabilized condensate undergoes 14

oscillation cycles. Figure 5.8 (b) shows transverse magnetization noise ∆S⊥ (blue

square A) oscillating around SQL up to 2 s. For an unstabilized condensate (red

circle) ∆S⊥ exponential grows up to 40 dB, oscillates around this level for a few

cycles and reaches a steady level of 35 dB.
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5.2.5 Stability Diagram

The stabilization dynamics depend on the amount of quadrature phase shift ∆θ and

the pulse period τ . To examine the stability condition, the population ρ0 is measured

at the maximum spin mixing moment (after 185 ms of evolution). The values of ρ0

determine the stability diagram of the condensate. The results are shown in Figure

5.6 c [82]. Each point on the stability map is the average of 3 runs. For short periods,

the condensate can be stabilized with a wide range of quadrature phase shifts. For

longer pulse periods, the condensate is stable if the amount of quadrature phase shift

is close to the angle between the convergent and divergent separatrix. The results are

fitted to the analytical solution from the Eqn 4.4 for the magnetic field of B = 220 mG

and the spinor dynamical rate c = −7.2×2π Hz. With the atom loss problem solved,

the result shows very good agreement with theory. The experiment seems to cover

a little wider area than the theory because after 185 ms of evolution, population ρ0

near the edge of stability does not have enough time to decay.

5.3 Stabilization with Magnetic Field Pulses

As an alternative method to using microwave rotations, we have effected quadrature

phase rotations with a magnetic field pulse. The magnetic field shifts quadrature

phase shift by [51]

∆θ = −qZB2∆t (5.1)

where ∆θ is the quadrature phase shift, qZ = 71.6Hz/G2 is the quadratic Zeeman

constant, and ∆t is the magnetic field pulse length.

5.3.1 Experimental Method

In general, the stabilization concept for a magnetic field pulse is similar to a microwave

pulse. Instead of using the microwave pulses, we apply magnetic field pulses. The

stabilization concept is described in Figure 5.9. The magnetic field pulses of period
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Figure 5.9: Illustration of the dynamic stabilization method. (a) The conden-
sate is initialized at the pole of the spin-nematic Bloch sphere, x = 1, S⊥ = Q⊥ = 0.
The condensate has Heisenberg-limited uncertainties in S⊥ and Q⊥. (b) Initial free
evolution of the condensate produces spin-nematic squeezing along the diverging man-
ifold of the separatrix. (c) The quantum state of the condensate is quickly rotated
to the converging manifold of the separatrix using a magnetic field pulse (low field
separatrix shown in red). (d) Subsequent free evolution unsqueezes the condensate,
returning it close to the original state. (e) Continued free evolution again gener-
ates spin-nematic squeezing. (f) Long term stabilization is achieved by repeating the
(c,d,e) sequence (blue line) whereas the unstabilized condensate rapidly evolves away
(red line).

τ rotates the condensate quadrature angle ∆θ away from its divergent separatrix to

maintain the condensate in the squeezing-unsqueezing loop.

An experiment is performed in a condensate of N = 4.5× 104 atoms initiated in

the |f = 1,mf = 0〉 state at high magnetic field of 2 G. To trigger the dynamics, the

magnetic field is quenched below the quantum critical point to 220 mG. A sequence

of magnetic field pulses of period τ is applied to stabilize the system. Finally, the spin

populations of the condensate are measured. This is executed by releasing the trap

and allowing the atoms to freely expand in a Stern-Gerlach magnetic field gradient

to separate the mf spin components. To measure the transverse magnetization S⊥,

an RF π/2 pulse is applied to rotate S⊥ → Sz before imaging. The experimental
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Figure 5.11: Magnetic field profile of 4 ms pulse length. (a) The pulse profile
for different magnetic field strength. (b) The quadrature phase shift by the magnetic
field fitted to a quadratic function.

sequence is shown in Figure 5.10.

5.3.1.1 Magnetic field phase shift

Because a magnetic field pulse needs a finite time to rise and decay, we tried to

perform the experiment with the shortest pulse length as possible. During a short

pulse length, we assume the dynamics are negligible, and the magnetic field pulse only

rotates the quadrature phase shift. The experiments are performed with a magnetic
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Figure 5.12: Stabilized dynamics vs. unstabilized dynamics (normal spin
mixing). (a) and (c) The short timescale, and (b) and (d) long timescale of spinor
dynamics and the uncertainty in quadrature ∆S⊥. The legends ◦ C and ◦ K refer
to locations on the stability map in Fig 5.15. Data are fitted to simulations (solid
line). Legend o K with magnetic pulse Bpulse = 1.315 G fitted with Bpulse = 1.26 G,
and legend o C with magnetic pulse Bpulse = 1.29 G fitted to Bpulse = 1.29 G. All are
fitted with spinor dynamical rate c = -8 ×2π Hz, and background magnetic field B
= 0.22 G.

pulse length of 4 ms. The magnetic pulse profiles are shown in Figure 5.11 a. The

quadrature phase shift is calculated by numerically integrating ∆θ = −
∫
qZB

2dt

for a given pulse as shown in Figure 5.11 b. The conversion from magnetic field

to quadrature phase shift is given by fitting the experimental data to a quadratic

function, ∆θ = −1.35B2 − 0.251B − 0.0792.

5.3.2 Stabilization Dynamic

The stabilization dynamics can be discussed in terms of ρ0 and ∆S⊥ evolutions. The

experimental magnetic stabilization is shown in Figure 5.12. To show the stabilization

effect, we compare the stabilized dynamics with the free evolutions (unstabilized). We
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demonstrate the ability to stabilize dynamics in a short timescale (K) and in a long

timescale (C).

The stabilized population ρ0 (a, b) stays constantly at value of 1, and we can

stabilize the dynamics up to 2 s. The free evolutions (unstabilized) go through many

of the large amplitude oscillations as the result of quantum spin mixing.

Figure 5.12 (c, d) shows the measurement of the evolution of the transverse

spin fluctuations. With no stabilization, the fluctuations ∆S⊥ grow exponentially

and eventually oscillates. When the condensate is stabilized, the simulations (solid

line) show that the fluctuation S⊥ increases and decreases during the squeezing-

unsqueezing loop as a result of the stabilization. In short timescale up to 0.4 s, the

data show the expected periodic evolution of the fluctuations and a significant re-

duction of the fluctuations compared with the unstabilized condensate, and the noise

even goes below the standard quantum limit (SQL) noise. The ∆S⊥ data stay at

the SQL level up to 2 s which agree with the theory. However, the overall level of

the measured fluctuations are higher than predicted, and minimum ∆S⊥ is around

−4 dB higher comparing to −10 dB from experiment.

In Figure 5.14, we show the results of the stabilization and evolution of transverse
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Figure 5.14: Stabilization by magnetic field pulses. The legend ◦ letters in
each plot refer to locations on the stability map in Figure 5.15. (a) The stabilization
dynamic population ρ0, plot legend refers to corresponding location in stability dia-
gram Figure 5.15. The shaded region are derived from standard deviation to guide
the eyes. (b) The uncertainty of transverse magnetization ∆S⊥. Legend o C with
magnetic pulse Bpulse = 1.29 G fitted to Bpulse = 1.29 G, legend o E with magnetic
pulse Bpulse = 1.24 G fitted with Bpulse = 1.22 G, legend o F with magnetic pulse
Bpulse = 1.29 G fitted with Bpulse = 1.255 G. All are fitted to spinor dynamical rate c
= -8 ×2π Hz, and background magnetic field B = 0.22 G.

spin fluctuations for pulse periods ranging from 30–90 ms for different quadrature ro-

tation angles. For a short pulse periods (τ ∼ 30 ms), the condensate can be stabilized

with a wide range of quadrature rotations. For the longer pulse periods τ , the stable

range of quadrature rotations is narrower. We show that the quantum spin dynamics

can be stabilized, and ∆S⊥ stays at the SQL level for a time scale comparable and

even longer than the 1/e lifetime of the condensate. The lifetime of the stabilized

condensate is ∼1.3–1.6 s while the lifetime of the unstabilized condensate is 1.8 s.
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Figure 5.15: Stability mapping for ρ0 population after 165 ms of evolution.
Figure a shows experimental stability region (green) fitted to the analytic solution
(dashed line). Figure b shows simulation of the stability region (green) fitted to the
analytic solution. Data are fitted to the spinor dynamical rate c = −8.0× 2π Hz and
B = 0.22 G. Quadrature phase shifts ∆θ = −

∫ ∆T

0
qB2

pulsedt.

5.3.2.1 Preservation of Quantum Coherent

We have performed two additional checks 5.13 (a, b) to verify that the magnetic field

stabilization maintains the coherent dynamics of the system. In the first, we have

studied the evolution of the condensate under periodic pulses with ∆θ = −π (the

periodicity of the phase space) and verified that the condensate undergoes normal

spin mixing (a). In the second, we have turned the stabilization pulses off after

580 ms and verified that the system again undergoes normal spin mixing (b).

5.3.3 Determining the Stability Region

We now turn to an investigation of the stability diagram for the condensate. Al-

though it is conceptually simplest to understand the stabilization in terms of periodic

evolutions along manifolds of the separatrix of the phase space; the condensate can

be stabilized with a range of phase shifts and periods (∆θ, τ). The range of stability
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is measured for the quadrature phase rotations ∆θ ∈ [−π, 0] and pulse period τ from

20 ms to 100 ms. For each combination of (∆θ, τ), the spinor population is measured

after 165 ms of evolution, where the unstabilized condensate shows the maximum spin

mixing (see Figure 5.12 a). The results of measurement are shown in Figure 5.15,

where each measurement point is the average of three experimental runs. By scan-

ning through quadrature phase shift (magnetic field pulse), we are able to observe

multiple stability regions. For shorter period pulses, the condensate is stabilized with

a wide range of quadrature phase shifts. For long period microwave pulses, the range

of quadrature phase shift capable of stabilizing the dynamics shrinks and reaches an

asymptotic value close to the angle between the separatrices, ∆θ = cos−1(−1 − q
c
).

The results are compared with a theoretical stability analysis shown in dashed lines

(|Tr[M]| < 2 in Eqn 4.5) and the simulation in Figure 5.15 b. The dashed lines

show the stability envelope using the spinor dynamical rate c = −2π × 8.0 Hz and

the magnetic field B = 220(10) mG that determines the quadratic Zeeman effect

q = 2π × 71.6 × B2 Hz/G2. The measured stability region is in a good qualitative

agreement with the theoretical envelope.
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CHAPTER 6

PARAMETRIC EXCITATION

In this chapter, we demonstrate the experimental parametric excitation in a spin-

1 Bose-Einstein condensate quantum many-body system and present a theoretical

description from semi-classical and quantum perspectives. The quadratic Zeeman

energy distinguishes the dynamics of spin-1 from spin-1/2 systems. In spin-1/2 sys-

tem, the quadratic Zeeman energy shifts are the same; the spin precession is solely

due to the linear Zeeman effect. In a spin-1 system, the quadratic Zeeman shift is

different for mf = 0 and mf = ±1; the spin vector not only precesses due to the

linear Zeeman energy but also its magnitude oscillates due to the quadratic Zeeman

energy, the same as a spin-1 nucleus in NMR [141]. We will first describe the system

using a semi-classical model of the spin-nematic phase space which is in line with the

standard classical understanding of parametric excitation. Then, we will present a

quantum interpretation of the same dynamics where the excitation drives transitions

between the many-body Fock states of the quantum system. This dual picture of

this system demonstrates a correspondence between the quantum and the classical

parametrically excited oscillator. Moreover, the mean-field dynamics of the spin-1

system exhibits dynamics similar to the Bose-Hubbard double-well condensate. In

the double-well system, Shapiro-like effects have been suggested by modulating the

tunneling constant of a Bose Josephson Junction [123]. By modulating the quadratic

Zeeman energy, we are able to observe similar dynamics with the integer divisor

frequencies of Shapiro-like resonances.
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6.1 High Magnetic Field Coherent Dynamics

The experiment is carried out in a small condensate within the single mode approxi-

mation, and the Hamiltonian is given by [84, 56]

H = λŜ2 + pŜz +
q

2
Q̂zz (6.1)

where Ŝ2 = Ŝ2
x+ Ŝ2

y + Ŝ2
z is the total spin operator with Ŝz its projection along B, Q̂zz

is the quadrupole moment of the spin-1 or quadrupole tensor, λ ∝ a2− a0 is the spin

interaction strength integrated over the condensate, p = pZB is the linear Zeeman

energy, and q = qZB
2 is the quadratic Zeeman energy. The linear and quadratic

Zeeman constants are pZ ≈ 700 Hz/mG and qZ ≈ 71.6 Hz/G2.

We study the dynamics at a magnetic field regime well above quantum critical

q > 2|c|. The spin-nematic phase space for q/|c| ∼ 10 is shown in Figure 6.1 a. The

experimental coherent oscillations for different initial ρ0 are shown in Figure 6.1 b.

The oscillation amplitudes and frequencies explicitly depend on the initial ρ0. The

period is approximately about 7 ms and increases from 2(q + c) to 2(q − c) as ρ0

goes from 1 to 0. The maximum oscillating amplitude ∆ρ0 = 2% for ρ0 = 0.5, and

∆ρ0 = 0 for ρ0 → 0 or 1.

6.2 Parametric Excitation Concept

The experiment is performed with a condensate of N = 4 × 104 atoms initiated in

the |f = 1,mf = 0〉 state with a high magnetic field B = 2 G. We lower the magnetic

field down to 1 G (q/|c| ∼ 10) for the parametric excitation. The population ρ0 or

transverse magnetization S⊥ are measured after a certain time. The experimental

sequence is shown in Figure 6.2. Parametric excitation is performed by modulating

the quadratic Zeeman term in the Hamiltonian

q(t) = q0 + qm sin(2πfmt− φ0)H[t− φ0/2πfm] (6.2)
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Figure 6.1: Illustration of phase space and coherent oscillation. (a) The
phase space at B0 = 1 (G), the sphere represents S⊥Q⊥x space. The spin-nematic
space is shown at the top, and the spinor phase space is shown at the bottom. The
black arrow presents the trail of dynamics along energy contour for an initial ρ0. (b)
Coherent oscillation at B = 1 (G) for an given initial population ρ0 prepared by RF
pulse. Coherent oscillation data (colored dots) are compare to simulation (line) for
spinor dynamical rate c = −7.2 × 2π Hz. (c) The phase space of the modulated
Zeeman energy, the contours are vibrating as a result of parametric excitation.

where q0 = qZB
2
0 , qm = qZB

2
m, Bm is the modulation magnetic field, fm is the modu-

lation frequency, and H[t− φ0/2πfm] is the Heaviside step function with the initial

modulation phase φ0. Since the magnetic field takes about 2 ms to reach the desired

value, for a typical fm ∼ 140 Hz (the period is 7 ms), the actual modulation magnetic

field is lower than the set value and estimated to be 0.85 Bm. Also, the hysteresis and

imperfectness of the magnetic field pulse can alter the amplitude of the magnetic field

by about 25 mG. The modulation of q(t) modulates the spinor energy contours as

shown in Figure 6.1 c. As the condensate evolves along the vibrating energy contours,

it can cross energy contours depending on the modulation frequency and the initial

modulation phase.
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Figure 6.2: Parametric excitation experimental sequences. To initiate the
dynamics, the magnetic field is quenched from 2 G to 1 G, and then the magnetic
field is modulated sinusoidally. The imaging setup capture the spinor population ρ0

or the transverse magnetization by applying an RF pulse to rotate Sx → Sz.

What are our observables? When the condensate crosses between energy con-

tours, the population ρ0 changes as a result. The effect of parametric excitation can

be determined by measuring the population ρ0.

6.3 Observation of Parametric Excitation

We first demonstrate the effect of parametric excitation on the coherent oscillation

previously shown in Figure 6.1 b. We prepare an initial ρ0 by an RF pulse with an

initial phase φ0 = π, and scan fm ∈ [100, 180] Hz. The population ρ0 is measured

40 ms after an RF pulse. The plot of ρ0 vs. fm is shown in 6.3 a. The hue colors of

initial values of ρ0 ∈ [0, 1] are the same scale as the coherent oscillation Figure 6.1 c.

The population ρ0 increases or decreases depending on fm; moreover, the amount of

change is larger than the coherent oscillation. This indicates parametric excitation of

the spinor population. The experimental data are compared to the simulation shown

in solid lines. The square markers indicate the approximate positions of the resonant

frequencies. The resonance frequency increases as ρ0 goes from 1 → 0. The data

show a good agreement to the simulation.
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Figure 6.3: Coherent oscillation and parametric excitation. (a) Population
ρ0 after 40 ms of parametric excitation for different initial ρ0. Quadratic Zeeman is
modulated with an initial phase of φ0 = π after RF pulse, forB0 = 1 G,Bm = 0.715 G.
(b) Resonance frequency spectrum for initial ρ0 = 0.5 after 100 ms of parametric
excitation with an initial phase φ0 = π, B0 = 1 G, and Bm = 0.715 G. (c) Population
ρ0 after 40 ms of parametric excitation for initial ρ0 = 0.5 for different modulation
amplitudes Bm with an initial phase φ0 = π and B0 = 1 G. (d) Red square shows the
evolution of (∆S⊥)2 for initial ρ0 = 0.5 prepared by RF pulse. Blue up triangle shows
evolution of (∆S⊥)2 for initial ρ0 = 0.5 prepared by 40 ms of parametric excitation
(bring ρ0 from 0.59 to 0.5) with B0 = 1 G and Bm = 0.744 G.

The excitation frequency spectrum is one of the signatures of parametric excita-

tion. To study the excitation spectrum, we prepare the initial state ρ0 = 0.5 by an

RF pulse with an initial phase φ0 = π, and vary fm ∈ [14, 314] Hz. The population

ρ0 is measured 100 ms after an initial RF pulse. The excitation spectrum is shown

in Figure 6.3 b. The data are compared to simulations. The strongest peak on the

spectrum corresponds to twice the natural frequency peak 2f0/1 = 142 Hz. Two

other smaller peaks near 2f0/2 and 2f0/3 also stand out. Other resonant frequencies

are too small to be detected for these excitation parameters.

Even though the modulation amplitude qm (∝ B2
m) does not give rise to parametric
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excitation, increasing qm can excite spinor population up or down faster. We prepare

an initial ρ0 = 0.5 with an initial phase φ0 = π, and vary fm ∈ [120, 170] Hz. The

population ρ0 is measured at 40 ms after an initial RF pulse for different qm (Bm). For

the same modulation frequency, a larger modulation amplitude changes the popula-

tion amplitude faster as shown in Figure 6.3 (c). The experimental data are compared

to the simulations. Since the magnetic field takes about 2 ms to reach the setting

value, for a typical fm ∼ 140 Hz (the period of 7 ms), the actual modulation magnetic

field is lower than the set value and estimated to be 0.85 Bm. The simulation uses

the modulation magnetic field of 0.85 Bm to compare to the data.

Since parametric modulation excites the condensate across energy contours, the

coherent spinor dynamics should still be preserved. To verify this, we apply 40 ms

of modulation to excite the initial population ρ0 = 0.59 → 0.5. To observe the co-

herent dynamics, we can either measure the ρ0 dynamics (as seen in Figure 6.1 b) or

the transverse magnetization S⊥. In the spin-nematic sphere S⊥Q⊥x, the measure-

ment of ρ0 corresponds to the projection of oscillation onto the x axis which yields a

smaller signal than projecting onto S⊥. The distribution of quantum states in S⊥Q⊥,

precessing about x due to quadratic Zeeman, produces a coherent oscillation of mag-

netization noise ∆S⊥ as shown in Figure 6.3 d. Comparing to the normal coherent

oscillation of initial ρ0 = 0.5 prepared by an RF pulse, the oscillation amplitude and

period are similar and indicate both methods bringing the condensate to a similar

energy contour. The difference in the phase is due to the hysteresis of magnetic field

modulation during parametric excitation (15 mG up compared to no modulation).

6.4 Excitation fmφ0 Phase Space for ρ0

The parametric excitation explicitly depends on the modulation frequency fm and

the initial phase φ0. Understanding the effect of fmφ0 on the parametric excita-

tion is necessary to control the quantum states of condensate. To study this effect,
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Figure 6.4: Excitation fmφ0 phase space for ρ0. An initial population
ρ0 ∼ 0.5 prepared with an RF pulse. Magnetic field is modulated by q =
q0 + qm sin (2πfmt− φ0), for B0 = 1 G, Bm = 0.715 G. The four parallel slices show
the map of ρ0 after 40 ms, 100 ms, 160 ms, and 220 ms of parametric excitation.
The horizontal slice shows the dynamics of ρ0 for the initial phase φ0 = 0. The inset
shows the dynamics of ρ0 for different points on the fmφ0 map. The labels of the plot
correspond to the markers on the map.

we prepare an initial population ρ0(0) = 0.5 by an RF pulse, vary the modulation

frequency in fm ∈ [120, 165] (Hz), and vary the initial phase φ0 ∈ [0, 2π]. The pop-

ulation ∆ρ0 = ρ0 − ρ0(0) is measured after each period of excitation 40 ms, 100 ms,

160 ms, and 220 ms as shown in Figure 6.4 (four parallel slides). The white (black)

regions represent the positive (negative) change in population ∆ρ0. These two re-

gions evolve and spiral to form a yin-yang like shape. At the center of the yin-yang

(fm, φ0) = (2f0, π) where 2f0 ≈ 143 Hz, the dynamic ∆ρ0 unchanges and the phase
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space is anti-symmetric about it. The inset Figure 6.4 shows the dynamics of dif-

ferent points about (2f0, π), after short modulation (ωm − 2ω0)t < π, ρ0 decreases

for φ0 < π or fm < 2f0 and increases for φ0 > π or fm > 2f0. The dynamics of

parametric excitation exhibits an oscillation with phase and amplitude depending on

excitation parameters. The markers of the plot correspond to the locations on the

modulation frequency phase map. In the case fm = 143 Hz and the phase φ = π, the

dynamics almost stays constant (square marker).

In addition, we show the details of the population dynamics for the initial phase

φ0 = 0 (Figure 6.4 horizontal projection). The two distinguishable domains separated

by a resonant frequency of parametric excitation. The population dynamics exhibit

an oscillation during the excitation process. Near the resonant frequency, both the

oscillating period and amplitude are getting larger.

6.5 Mean Field and Quantum Interpretation of Parametric
Excitation

6.5.1 Coherent Dynamics Oscillation

We first discuss the excitation using the semi-classical mean field approximation. At

first glance, the excitation occurs when the quadratic Zeeman energy is modulated at

the integers divisor of twice natural coherent oscillation in the θρ0 quadrature phase

space, here the quadrature angle θ = θs/2. The dynamics of the system are governed

by a set of differential equations of the fractional population and the phase from Eqn

2.18 [109, 51].

ρ̇0 =
2c

~
ρ0

√
(1− ρ0)2 −m2 sin 2θ (6.3)

θ̇ = − q
~

+
c

~
(1− 2ρ0) +

c

~
(1− ρ0)(1− 2ρ0)−m2√

(1− ρ0)2 −m2
cos 2θ

The spinor energy of the system is given by

E = cρ0{(1− ρ0) +
√

(1− ρ0)2 −m2 cos 2θ}+ q(1− ρ0)
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The spinor dynamics has an oscillation period [109] in the form

T = 2

√
2~√
−qc

K(
√

x2−x1
x3−x1 )

√
x3 − x1

(6.4)

where K(k) is the elliptic integral of the first kind, and xi are the roots of the differ-

ential equation of the fractional population ρ̇0 = 0 of

(ρ̇0)2 =
4

~2
([E − q(1− ρ0)][(2cρ0 + q)(1− ρ0)− E ]− (cρ0m)2)

For a condensate prepared in mf = 0 with magnetization conserved m = 0, the

roots xi are

xi ∈ {
2c− q +

√
4c2 − 8cE + 4cq + q2

4c
,
q − E
q

,
2c− q −

√
4c2 − 8cE + 4cq + q2

4c
}

The term of spinor energy, E is treated as a constant for a given initial averaged

population ρ̄0 with average quadrature phase θ = π/2 along a given energy contour

E ≈ q(1− ρ0)

The quadratic Zeeman regime q/|c| ∼ 10 permits simplification in the math-

ematical description of the system. The oscillation amplitude of ∆ρ0 is given by

∆ρ0 = x2 − x1 [109], and has its maximum approximately ∆ρ0 = 5% for ρ̄0 = 0.5, so

to the first order approximation, the population ρ0 is constant. To approximate the

period, we first calculate

√
−qc√
2~
√
x3 − x1 =

√
q (q2 + 4qc(2ρ0 − 1) + 4c2)

1/4

2~
≈

√
q2 + 2qcx(1 + c2(1−x2)

(q+2cx)2
)

2~

here x = 2ρ0 − 1. The elliptical integral part of the period is

K(
x2 − x1

x3 − x1

) ≈ K(0.01) ≈ π

2
(6.5)

Substituting back into the period equation, we have the frequency of the oscillation

in the quadrature phase θρ0

f0 =
1

T
=

√
q2 + 2qc(2ρ0 − 1)

4~
(1 +

c2(1− x2)

(q + 2cx)2
)
2

π
≈
√
q2 + 2qcx

h

≈ q + cx (6.6)

92



In general, we often discuss energy in terms of frequency. For simplicity, the Plank’s

constant will be h→ 1 throughout this discussion.

From the parametric excitation point of view, the modulation excites the dynamics

when the modulation frequency is an integer divisor of twice the natural frequency

of the system, f = 2f0
n

where n ∈ N. In our system, the coherent oscillation occurs

at magnetic field B = 1 G and spinor dynamical rate c = −7.2(5) Hz; therefore, the

natural frequency

f0 = 71.6× 12 − 7.2x ∈ [64.4, 78.8] Hz ∀ρ0 ∈ [0, 1] (6.7)

The resonant frequency for n = 1 is,

f =
2f0

1
∈ [128.8, 157.6] Hz ∀ρ0 ∈ [0, 1] (6.8)

Eqn 6.8 explains the relationship between the excitation frequency and the initial pop-

ulation ρ0 observed in Figure 6.3 a. The data show the resonant frequency increases

from 126 Hz to 152 Hz as ρ0 ∈ [0.96, 0.1].

6.5.2 Parametric Excitation Theory

In the high field regime q/|c| ∼ 10, the coherent oscillation frequency is obtained from

Eqn 6.6 as θ̇ ≈ −2π(q + cx). This simplifies the dynamical equations Eqn 6.3 into

ρ̇0 = 2cρ0(1− ρ0) sin 2θ (6.9)

θ̇ = −2π(q + c(2ρ0 − 1))

Parametric excitation is applied by modulating the quadratic Zeeman energy

q = q0 + qm sin(2πfmt− φ0)H[t− φ0/2πfm]

The Heaviside function implies that the modulation is only on after t = φ0/2πfm and

the modulation sinusoidal function always starts from zero. In reality, we prepare

an initial ρ0 by an RF pulse which yields an initial quadrature phase θ0 = π/2,
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then we let the system freely evolves for t = φ0/2πfm which changes the quadrature

phase by ∆θ = φ0, then turn on the modulation q. In other words, we can write

q = q0 + qm sin(2πfmt) and merge the initial modulation phase φq = φ0/2 into the

quadrature angle θ. Integrating the phase of Eqn 6.9 with an initial phase θ(0) =

θ0 − φ0/2 we thus have

θ =

∫
θ̇dθ = θ0 − φ0/2− ω0t+

2πqm
ωm

cos(ωmt)−
2πqm
ωm

(6.10)

here ωm = 2πfm, ω0 = 2π(q0 +c(2ρ0−1)). Substituting the phase into the population

dynamics Eqn 6.9, we obtain

ρ̇0 = 2cρ0(1− ρ0) sin

(
2θ0 − φ0 −

4πqm
ωm

− 2ω0t+
4πqm
ωm

cos(ωmt)

)
= 2cρ0(1− ρ0)

(
sin(2θ0 − φ0 −

4πqm
ωm

− 2ω0t) cos(
4πqm
ωm

sin(ωmt+ π/2))

+ cos(2θ0 − φ0 −
4πqm
ωm

− 2ω0t) sin(
4πqm
ωm

sin(ωmt+ π/2))

)
= 2cρ0(1− ρ0)

×
∑
n

Jn(
4πqm
ωm

) sin((nωm − 2ω0)t+ 2θ0 − φ0 −
4πqm
ωm

+ nπ/2) (6.11)

where we have used the Jacobi-Anger expansions

cos(z sinα) =
∞∑

n=−∞

Jn(z) cos(nα) sin(z sinα) =
∞∑

n=−∞

Jn(z) sin(nα)

Analyzing Eqn 6.11 explains a lot of properties of parametric excitation phe-

nomenon. When ωm 6= 2ω0/n the time-average of ρ̇0 is zero. When ωm = 2ω0/n, the

time average ρ̇0,n = 2cρ0(1−ρ0)Jn(4πqm
ωm

) sin(2θ0−φ0− 4πqm
ωm

+nπ/2) is non-zero. This

explains the integer divisor of twice the natural frequency signature of the parametric

excitation spectrum as seen Figure 6.3 b. The Bessel function Jn(4πqm/ωm) indicates

that larger modulation amplitude qm results in larger excitation amplitude ∆ρ0 as

seen in Figure 6.3 c.

Considering the case ωm = 2ω0, the higher order term n of Jn(4πqm
ωm

) is negligible,
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and we are left with

ρ̇0 = 2cρ0(1− ρ0)J−1(
4πqm
2ω0

) sin(−4ω0t+ 2θ0 − φ0 −
4πqm
2ω0

− π/2)

+2cρ0(1− ρ0)J0(
4πqm
2ω0

) sin(−2ω0t+ 2θ0 − φ0 −
4πqm
2ω0

)

+2cρ0(1− ρ0)J1(
4πqm
2ω0

) sin(2θ0 − φ0 −
4πqm
2ω0

+ π/2)

Integrating the derivative ρ̇0,

ρ0 = 2cρ0(1− ρ0)J−1(
4πqm
2ω0

)
1

4ω0

cos(−4ω0t+ 2θ0 − φ0 −
4πqm
2ω0

− π/2)

+2cρ0(1− ρ0)J0(
4πqm
2ω0

)
1

2ω0

cos(−2ω0t+ 2θ0 − φ0 −
4πqm
2ω0

)

+2cρ0(1− ρ0)J1(
4πqm
2ω0

) sin(2θ0 − φ0 −
4πqm
2ω0

+ π/2)t+ ρ0(0)

The population ρ0(t) ≈ ρ0(0) if φ0 ≈ 1.37π and ωm = 2ω0. Compared to data

in Figure 6.4, ρ0(t) ≈ ρ0(0) if φ0 ≈ π and ωm = 2ω0. The discrepancy in the

initial modulation phase between data and theory is 0.37π. This phase discrepancy

is equivalent to 1.3 ms of delay between the magnetic field pulse relative to an initial

RF pulse. From the experiment, we know that the first magnetic field pulse is delayed

about 0.5 ms. Probably the magnetic hysteresis causes the overall delay of 1.3 ms

during parametric excitation. In fact, the magnetic hysteresis of parametric excitation

increases the overall field by 15 mG compared to when there is no modulation.

6.5.3 Fock States

An alternative way to view the parametric excitation is as the transitions between

the eigenstates of the many-body Hamiltonian. The energy corresponding to the

oscillation frequency matches no single atom transition. Rather it approximately

matches the energy difference between two atoms in the mf = 0 state and two atoms

one each in the mf = ±1 states. These energy separations can be calculated by
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diagonalizing the tridiagonal matrix given by

Hk,k′ = {2λk(2(N − 2k)− 1) + 2qk}δk,k′

+ 2λ{(k′ + 1)
√

(N − 2k′)(N − 2k′ − 1)δk,k′+1

+ k′
√

(N − 2k′ + 1)(N − 2k′ + 2)δk,k′−1} (6.12)

where k is the number of pairs of mf = ±1 atoms in the enumeration of the Fock

basis. The Fock basis, |N,M, k〉, is also enumerated with N the total number of

atoms and M the magnetization, both of which are conserved by the Hamiltonian

leaving all dynamics in k. This variation of the drive frequency is due to the many

body interaction given by the λŜ2 term of the Hamiltonian which contribute the

off diagonal terms in Eqn 6.12. This interaction results in a slight mixing of the

Fock states, even in the high field limit. Without this interaction, there would be

no transitions since the magnetic interaction, both linear and quadratic Zeeman, is

diagonal in the Fock basis.

For the high field regime considered here (q/|c| 10), we can treat λ as a perturba-

tion, and H(0)
k,k′ = 2qk. The perturbation eigenenergy of the Fock state is

E
(0)
k = 2qk

E
(1)
k = 〈k|H′|k〉 = 2λk (2(N − 2k)− 1)

The eigenenergy of the system is thus

Ek = E
(0)
k + E

(1)
k +O(2)

The resonant frequency between Fock states is the energy difference between each

Fock state.

f =
∂Ek
∂k

= 2q + 2λ(2N − 8k − 1)

≈ 2q + 2c(2ρ0 − 1) = 2(q + cx)
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To the first order expansion, the resonant frequency between Fock states are the same

as the resonance frequency, 2f0/1, obtained from the mean field approach. In this

picture the integer divisor frequencies of the spectrum, 2f0/n, would correspond to a

many photon driving of the transition [142].
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CHAPTER 7

PARAMETRIC EXCITATION AND RECTIFIER PHASE

CONTROL

In the previous chapter, we demonstrated the coherent dynamics in the high magnetic

field regime and the parametric excitation. In this chapter, we will investigate the

quantum control technique using parametric excitation and the rectifier phase control.

7.1 Parametric at the Pole

Similar to a classical pendulum, if the initial oscillation amplitude is zero, the system

remains unperturbed by the parametric excitation. For a condensate initiated at the

top pole of the spin-nematic sphere S⊥Q⊥x (Figure 6.1), the oscillation amplitude

is zero. The oscillation amplitude should remain zero under parametric excitation.

However, the distribution of the initial states at the pole has a quantum uncertainty

1/
√
N in S⊥ and Q⊥ which results in a distribution of initial states at ρ0 ≈ 1.

This non-zero noise distribution of ρ0 generates a distribution of nonzero oscillation

amplitudes. When the parametric excitation is applied long enough, it can excite the

condensate away from the spin-nematic pole.

An experiment is performed with condensate of N = 4×104 atoms initiated in the

|f = 1,mf = 0〉 state at the high magnetic field B = 2 G. We apply a quench to bring

the magnetic field down to 1 G (q/|c| ∼ 10) then apply the parametric excitation.

The population ρ0 or transverse magnetization noise ∆Sx are measured after a certain

period.
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Figure 7.1: Parametric excitation at the pole. The dynamics evolution of ρ0

(a) and (∆S⊥)2 (b) for parametric excitation with initial ρ0 = 1. Magnetic field
is modulated by q = q0 + qm sin(2πfmt − φ0), for B0 = 1 G, Bm = 0.785 G, and
fm = 134 ∼ 134.5 (Hz).

7.1.1 Spinor Population Dynamics

Applying parametric excitation with modulation fm = 134 ∼ 134.5 (Hz), we measure

the population ρ0 during 1 s of excitation. If there is no noise in the initial distribution

of ρ0, there will be no excitation. Therefore, the dynamics of parametric excitation

at the pole is noise driven excitation. Unlike the normal parametric excitation that

happens right after the modulation is applied, the noise driven excitation experiences

an initial pause of 400 ms before evolving away from the pole (Figure 7.1 a). This is

similar to the initial pause of the quantum spin mixing where squeezing occurs [56, 50].

It turns out that squeezing also occurs in the noise driven excitation. During these

first 400 ms, the uncertainty of the transverse magnetization ∆S⊥ squeezes in one

quadrature axis and grows along the transverse axis, and then eventually evolves

away from the poles. The population dynamics of the noise driven excitation is

similar to quantum spin mixing; they both generate a large uncertainty in population

ρ0 [61]. This experiment demonstrates the ability to excite the condensate from the

pole ρ0 = 1; together with the parametric excitation for ρ0 < 1 demonstration, it is

possible to use parametric excitation to control condensate in the full range ρ0 ∈ [0, 1].
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7.1.2 Squeezing

As briefly mentioned earlier, the noise driven excitation generates squeezing in the

spin-nematic S⊥Q⊥ space. The distribution of condensate at the stable elliptical

fixed point in spin-nematic space has initial uncertainty of 1/
√
N (0 dB) [56] at the

SQL. During the parametric excitation, the squeezing develop along a given path

determined by the modulation settings. In simple language, you can think of the

initial distribution as a circle, and the squeezing process transforms the circle into an

ellipse. On one axis, the ellipse diameter is getting smaller than initial circle diameter,

and on the other axis the diameter is larger. Once the noise builds up enough, it

will drive the spinor population out of the pole, and the transverse magnetization

uncertainty grows above the SQL. This is similar to the quantum spin mixing where

the initial fluctuation is the key ingredient to trigger the dynamics [143, 56].

In the q/|c| ∼ 10 regime, the distribution in S⊥Q⊥ rotates as a result of a coherent

oscillation with f0 =
√
q2 + 2cqx. Due to the symmetry in the spin-nematic phase

space (a rotation of the ellipse about its center is π-periodic), the dynamics are peri-

odic every π instead of 2π. The uncertainty ∆S⊥, the projection of the distribution

on the S⊥ axis, thus oscillates with the same frequency - a typical oscillation period

is about 7 ms. For this reason, we do not need to do the quadrature phase rotation

in order measuring squeezing. We can measure ∆S⊥ every 1 ms in order to construct

the quantum state distribution in S⊥Q⊥. The overall distribution of the quantum

states is obtained by measuring ∆S⊥ at different times during a period 1/2f0 after

applying parametric excitation. The uncertainty ∆S⊥ depends on the orientation of

the condensate distribution with the S⊥ axis. The maximum and minimum squeezing

are extracted from the value of ∆S⊥ during one period of time 1/2f0.

In the experiment, we apply a modulation frequency of fm = 134.5 Hz to the

condensate. During the first 300 ms, the minimum uncertainty ∆S⊥ goes below

the SQL, and close to our detection limit as shown in Figure 7.1 b. The maximum

100



uncertainty grows exponentially above the SQL after that. The experimental data is

fitted to simulation. After 300 ms, the minimum and maximum uncertainty grows to

20∼30 dB which is about 100∼1,000 times larger than the SQL.

For a spin-1 system with q < 2|c|, the condensate squeezes naturally along the

divergent separatrix [56]. However, for q > 2|c|, there is no separatrix in the spin-

nematic phase space. The squeezing is the result of modulating the quadratic Zeeman

term in the spinor energy. This experiment demonstrates a quantum control method

to artificially generate the squeezing in a spin-1 system.

7.2 Parametric Excitation Controlling ρ0

We learned from the parametric excitation that the spinor quantum states or popu-

lation ρ0 responds differently depending on the modulation frequency and the initial

modulation phase. We have demonstrated the parametric excitation of ρ0 about

some fixed values, for example, ρ0 = 0.5. In this section, we will extend our model

to control ρ0 from 1 to 0. From the previous section on noise driven excitation, we

have shown that it is possible to parametrically excite the population out of the pole

ρ0 = 1. However, it would take so long for the dynamics to happen, about 400 ms. At

this time scale, the atom loss becomes significant, and we might loss atoms before ρ0

reaches our desired value. Therefore, we will start with an initial ρ0 ≈ 1, for instance,

ρ0 = 0.96.

7.2.1 Experimental Concept

The natural oscillation frequency of the system is f0 =
√
q2

0 + 2q0cx ≈ q0 + cx. The

first order resonance frequency f1 = 2f0/1 = 2q0+2cx. Some of the experimental tests

show that population ρ0 (or x = 2ρ0−1) follows a sinusoidal curve as it is driven down

by parametric excitation. Moreover, the modulation frequency explicitly depends

on the value of ρ0. Therefore, the modulation frequency is not fixed; instead, the

modulation frequency follow the sinusoidal function, fm(t) = 2q0 + 2c cos 2πfF t, as ρ0
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Figure 7.2: Parametric excitation control ρ0. (a) Control ρ0 by applied para-
metric excitation q = q0 + qm sin(2πfm(t)t − φ0) for magnetic field B0 = 1 G,
and Bm = 0.785 G. The modulation frequency fm(t) = 2qZB

2
0 + 2c cos 2πfF t and

fF = 0.25 Hz

changes. The modulation frequency will sinusoidally increase from 2q0 +2c→ 2q0−2c

after a half period of time t = 1/2fF , and the population ρ0 will goes down from 1→ 0.

Here, fF is the frequency of the modulation frequency. The quadratic Zeeman energy

is modulated by

q = qZB
2 = q0 + qm sin (2πfm(t)t− φ0)H[t− φ0/2πfm] (7.1)

The experiment follows the same procedure of the previous parametric excitation

experiments. We prepare the initial ρ = 0.96 by an RF pulse, then apply the para-

metric excitation by modulating the quadratic Zeeman. We try to transfer atoms

from ρ0 = 0.96 to ρ0 = 0 as close as possible.

7.2.2 Population Dynamics

This control is the search of two parameters, the frequency of the modulation fre-

quency fF and the initial modulation phase φ0. These two parameters depend explic-

itly on the trap life time and the magnetic field; therefore, the optimal values of fF

and φ0 vary depending on the conditions of the experiment. To search for the optimal

fF and φ0, we measure the population ρ0 after a period of excitation (for example

800 ms). The combination of (fF , φ0) yield the lowest value of ρ0 will be chosen. In

Figure 7.2 we show the result using fF = 0.25 (Hz) and φ0 = 0.86π. The modulation
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can excite atoms from ρ0 = 0.96 → 0.2 after 800 ms. The excitation time scale of

800 ms is comparable to the trap lifetime of 1.8 s. To make the parametric excitation

control more practical, we need to make to its dynamics happen faster. The simu-

lation shows that we should be able to bring ρ0 → 0.05; however, the experimental

result shows the limit of ρ0 = 0.2. We have tried different ramp curves (hyperbolic

tangent and exponential) for the modulation frequency function fm(t); however, the

cosine curve fm(t) gives the best result. It is possible that the atom loss (trap life

time is 1.8 s) and the magnetic field hysteresis due to the magnetic field modulation

significantly change the natural coherent frequency of the system during 800 ms of

modulation. This makes the system does not behave as well as the simulation pre-

dicts. Despite some of the limitations, the experimental data does demonstrate an

ability to prepare and control the population ρ0 within a wide range of values.

7.3 Rectifier Phase Control

The spinor coherent dynamics has been discussed previously in section 6.1. In the

high magnetic field regime q/|c| ∼ 10, the coherent oscillation on spinor phase θsρ0

space has a small oscillation amplitude in ρ0 [109],

∆ρ0 = −c(1− x2)/2(q + 2cx) (7.2)

The conceptual θsρ0 spinor phase space is shown in Figure 7.3 a. For a given initial

population ρ0 with an initial spinor phase θs = π, there is an unique energy contour

associated with it. There is a small depth on each energy contour which translates

into the oscillation of the population ρ0. We can think of the spinor dynamics ρ0 as

an ac oscillation on top of a dc offset. By applying the phase shift ∆θs, we can move

the condensate from one energy contour to another, and we effectively change the dc

offset of ρ0. The rectifier phase control relies on the spinor phase shift ∆θs to transfer

condensate across energy contour and change the dc offset of the coherent oscillation.
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7.3.1 Rectifier Phase Concept

A microwave phase pulse shifts the spinor phase of the condensate in spinor phase

θsρ0, effectively moving the condensate to a new energy contour. In theory, it is

possible to use any spinor phase shift ∆θs to control the condensate across the energy

contours. However, using the phase shift ∆θs = −π simplifies the control procedure.

As seen in Figure 7.3 a, the spinor phase difference between the highest and lowest

positions on a given energy contour is π. First of all, we choose a fixed microwave π

phase shift which corresponds to a microwave pulse of detuning δ = −Ω/
√

3 where Ω

is the Rabi rate of the microwave transition from |F = 1,mf = 0〉 → |F = 2,mf = 0〉.

Secondly, the π pulse transfers atoms from the lowest (highest) point of one contour

a

Θs

Ρ0

Π-Π 0 Π

2
-

Π

2

0.0

0.2

0.4

0.6

0.8

1.0

g

b

l

ΦA

Φ = ΦAcosHΩtL

Figure 7.3: Rectifier concept. (a) The condensate (blue dots) evolves along the
energy contours during the coherent oscillations (blue trails). Microwave pulse is
applied to shift the spinor phase by an amount ∆θs = −π (red dashed lines) to move
condensate from lowest (highest) positions of the current energy contours to highest
(lowest) positions of the new energy contours. (b) The classical pendulum analog of
rectifier phase control, φ = φA cos(ωt). The π microwave phase shift is equivalent to
a change of the rod length from l (length l/ cosφA) to l/ cosφA (length l), changing
the pendulum angle from the zero (angle −φA) to the angle −φA (angle zero), and
resetting the velocity to zero (

√
2gl(1− cosφA)/ cosφA).
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Figure 7.4: Coherent oscillation amplitude. The amplitude of coherent oscil-
lation depends on the initial value of ρ0. (a) The experimental data (squares) are
compared to the analytical form ∆ρ0 = −c(1− x2)/2(q + 2cx) for c = −7.2× 2π Hz
and q = qZ×B2

0 = 71.6×2π Hz (black dashed line), and fitted with c = −5.7×2π Hz
and fixed q = 71.6 × 2π Hz (red solid line). (b) The discrepancy of theory and
experimental pulse separation.

to the highest (lowest) of another contour; hence, the phase shift maximizes the

change of the dc offset of the population ρ0. Thirdly, it takes exactly a half of the

coherent oscillation period τ = 1/2f for the condensate to evolve from the highest

(lowest) location to the lowest (highest) location; therefore, we know exactly the time

separations τ between pulses. Here, f = 2q + 2c(2ρ0 − 1) is the frequency of the

coherent oscillation, q and c are quadratic Zeeman energy and spinor dynamical rate.

Applying the microwave pulses at the right time is crucial, and we will consider

the following simple case for some insight. Let us say that after an ith microwave

pulse, we have a population ρ0,i with the spinor phase π. The time τ0,i for condensate

evolving from highest (lowest) location to lowest (highest) location can be calculated

from ρ0,i, and the population difference between the highest to the lowest location on

the energy contour ∆ρ0 is given by

fi = 2(q + cxi) τi =
1

4(q + cxi)
∆ρ0,i =

−c(1− x2
i )

2(q + 2cxi)

Here xi = 2ρ0,i − 1. After the condensate evolves for a period of τ0,i, the π phase

shift pulse is applied at the population ρ0,i −∆ρ0,i. The new population is ρ0,i+1 =

ρ0,i − ∆ρ0,i, and the new spinor phase is π (same as −π since the dynamics are 2π
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periodic). Similarly, we have the new values of

fi+1 = 2(q + cxi+1) τi+1 =
1

4(q + cxi+1)
∆ρ0,i+1 =

−c(1− x2
i+1)

2(q + 2cxi+1)

Repeating this procedure, we can predict accurately the separation periods τ between

each π microwave pulse and the population ρ0 in order to control the condensate

crossing the energy contours.

In Figure 7.4 a, we show the data of coherent oscillation amplitude ∆ρ0 for different

initial population ρ0. The data are compared to the analytical solution in Eqn 7.2.

Using the experimental parameters of the spinor dynamical rate c = −7.2 × 2π Hz

(measured a couple months ago) and the quadratic Zeeman energy q = qzB
2
0 =

71.6× 2π Hz, the data agree quantitatively with the analytical solution with a small

discrepancy, possibly due to the uncertainty in the measurement of c and q. The data

fit best with c = −5.7 × 2π Hz and q = 71.6 × 2π Hz. Recently, our measurement

of the spinor dynamical rate using coherent oscillation yields c = 5 − 6 Hz. In the

experiment, we applied the sequence of pulses separated by the theoretical determined

periods of τ = 1/2(2q+ 2cx). Comparing to the experimental separation periods τexp

calculated from the data (from Figure 7.4 a), the discrepancy at maximum is 0.025 ms

or 0.7% at ρ0 = 0.5. For this reason, we should be able to generate a sequence of

microwave pulses separated by the analytical formula of τ = 1/4(q + cx) for the

rectifier control.

The classical pendulum analog of the rectifier control is shown in Figure 7.3 b.

Depending on whether we want to move the oscillation orbit up or down, we will

apply the rectifier phase shift at the different positions during the oscillation.

7.3.1.1 Experimental Method

An experiment was performed in a condensate of N = 4× 104 atoms initiated in the

|f = 1,mf = 0〉 state at high magnetic field of 2 G. To trigger the dynamics, the

magnetic field is quenched to 1 G. A sequence of π microwave pulses is applied to shift
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the spinor phase of the quantum states (see Sec. 3.2.1). Finally, the spin populations

of the condensate are measured. This is executed by releasing the trap and allowing

the atoms to freely expand in a Stern-Gerlach magnetic field gradient to separate the

mf spin components.

7.3.2 Rectifier Phase Population Control

Since the microwave pulse has a fixed π phase shift, the rectifier phase control is

simplified into one parameter search τ , the separation period between pulses. For

this reason, the rectifier control is very robust. We will demonstrate different ρ0

controlling scenarios. Each data point is only repeated 4 times because of the low

noise characteristics of the coherent oscillation.

In the first experiment, we demonstrate the ability to transfer initial population

ρ0 = 0.96 → 0. In Figure 7.6 a, the initial ρ0 = 0.96 is driven to ρ0 = 0.03 using a

sequence of π phase shift microwave pulses. Each pulse is separated by τ = 1/2f ,

which transfers the condensate from the lowest locations of current energy contours

to the highest locations of new contours. The result demonstrates that the rectifier

control is capable of controlling ρ0 and the quantum states of the system at almost a
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Figure 7.5: Rectifier experimental sequence. To initiate the dynamics, the
magnetic field is quenched from 2 G to 1 G. Each π microwave pulse is separated
by a period τ . The imaging setup captures the spinor population or the transverse
magnetization by applied an RF to rotate Sx → Sz.

107



ç ç
ç

ç
ç

ç

ç

ç

ç

ç

ç

ç
ç

ç
ç ç ç ç ç ç

Ρ0

a

0.0
0.2
0.4
0.6
0.8
1.0

ç ç
ç

ç
ç

ç

ç

ç
ç ç ç ç ç ç ç ç ç ç ç ç

Ρ0

b

0.0
0.2
0.4
0.6
0.8
1.0

ç ç
ç

ç
ç

ç
ç

ç
ç

ç
ç

ç
ç

ç ç ç ç ç ç ç

Time HsL

Ρ0

c

0.0 0.20.10.05 0.15
0.0
0.2
0.4
0.6
0.8
1.0

Figure 7.6: Rectifier control. (a) Rectifier phase controls population ρ0 : 1→ 0.

full range.

We can also transfer ρ0 to a desired value. In Figure 7.6 b, we demonstrate an

experiment to transfer ρ0 = 0.96→ 0.6 by a sequence of microwave pulses. The pulses

are turned off after ρ0 = 0.6. The data shows the population reaches 0.6 as desired,

and the ρ0 exhibits a very small amplitude (less than 0.02) coherent oscillation later.

Applying the rectifier control, we can move the condensate both ways to higher

or lower energy contours (Figure 7.3 a). To demonstrate this idea, we first transfer

ρ0 → 0.6 using a similar pulse sequence in Figure 7.3 b. Once ρ0 = 0.6, we send a

mirror of pulse sequence in Figure 7.6 b to bring the population up again. The result

is shown in Figure 7.6 c. Even though, ρ0 does not come all the way back to 0.96, it

still demonstrates the main effect.

Understanding the dynamics of the system enables us to reduce the complexity of

the controlling procedure into a single parameter. The rectifier phase control relies on

a simple phase shift technique; nevertheless, it has proven to be an effective control
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method for many body spin systems.
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CHAPTER 8

SPIN RELAXATION IN A THERMAL GAS

We have been focused on the spinor dynamics of Bose-Einstein condensates, but not

thermal gases above the BEC critical temperature. At one point, we are curious about

the spinor dynamics of the thermal gas and what would be the equilibrium for the

spinor population. For the thermal 87Rb atoms above the BEC critical temperature,

the theoretical prediction is ρ1 : ρ0 : ρ−1 = 1
3

: 1
3

: 1
3

[144]. The spinor dynamics of a

thermal gas have been studied in the finite temperature of Bose-Einstein condensates

[145] and coherent oscillation of antiferromagnetic spin-1 [146]. In this chapter, we

will discuss our preliminary results of studying spin relaxation in thermal gas for

different magnetic fields and the atom loss rates.

8.1 Basic Theory

The theory of a Bose gas above BEC temperature has been studied in great detail by

Yuki Endo and Tetsuru Nikuni [144, 147]. This section follows closely the derivation

procedure of spinor dynamics from Endo and Nikuni in order to understand the

experimental result of the spin relaxation dynamics later. The Hamiltonian of a Bose

gas can be described as [105, 84]

Ĥ =
∑
i,j

∫
drψ̂†i (~r, t)〈i|Ĥ0|j〉ψ̂j(~r, t)

+
g0

2

∑
i,j

∫
drψ̂†i (~r, t)ψ̂

†
j(~r, t)ψ̂j(~r, t)ψ̂i(~r, t)

+
g2

2

∑
i,j,i′,j′

∑
α

∫
drψ̂†i (~r, t)ψ̂

†
i′(~r, t)S

α
ijS

α
i′j′ψ̂j′(~r, t)ψ̂i′(~r, t) (8.1)
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where i, j are the Zeeman levels of the hyperfine state mf . The Hamiltonian of a

single atom is written as [147]

Ĥ0 =

[
− ~2

2m
∇2 + V (~r)

]
1 + gµB

∑
α

Bα(~r, t)Sα +
∑
α,β

Bαβ
q (~r, t)Qαβ (8.2)

The first term is the kinetic energy of the atoms and the potential energy of the

harmonic trap V (~r) = m
2

(ω2
xx

2 +ω2
yy

2 +ω2
zz

2). The second term is the linear Zeeman

effect where Bα is the magnetic field in a spin-α component, and Sα(α = x, y, z) is the

spin matrix. The third term is the quadratic Zeeman effect where Bαβ
q is the magnetic

field in quadratic αβ component, and Qαβ = (1 − 1
2
δαβ)(SαSβ + SβSα − δαβ)2

3
S2 is

the quadrupole matrix. The position vector is ~r, and the momentum vector is ~p,

here the bold notation A is the 3× 3 matrix operator. The Wigner quasiprobability

distribution [148] in the position-momentum phase space of the wave function is

written as

Ŵij(~p, ~r) =

∫
d~r′ei~p·~r/~〈ψ̂†j(~r + ~r′/2)ψ̂(~r − ~r′/2)〉 (8.3)

The semi-classical distribution function is

Wij(~p, ~r, t) = 〈i|W(~p, ~r)|j〉 = Trρ̂(t)Ŵij(~p, ~r) (8.4)

where ρ̂(t) =
∑

i pi|i〉〈j| is the density operator. The local number density of atoms

is given by

n(~r, t) =

∫
d~p

(2π~)3
W(~p, ~r, t) (8.5)

The dynamics of the Wigner distribution can be obtained from the Heisenberg equa-

tion of motion

∂

∂t
Wij(~p, ~r, t) =

1

~
Trρ̂(t)

[
Ŵij(~p, ~r), Ĥ(t)

]
Which leads to the semi-classical kinetic equation [147]

∂Wij

∂t
+
~p

m
· ∇rWij −

1

2
{∇rUij,∇pWij} −

i

~
[Wij, Uij] = Iij (8.6)
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Here the square brackets [, ] are the commutator operator, and curly brackets {, } are

the anti-commutator operator. The effective potential is defined as

U = V + g0n1 + g0n +
∑
α

{gµBBαSα + g2M
αSα + g2S

αnSα}+
∑
αβ

Bαβ
q Qαβ

and the magnetization Mα(~r, t) = Tr[n(~r, t)Sα]. The collision integral is Iij [147]

Iij =
1

i~
Trρ̂(t0)

[
Ŵij(~r, ~p, t), Ĥ′(t)

]
(8.7)

where Ĥ′(t) = Ĥ(t) − ĤMF (t) is the non-mean-field Hamiltonian term. This term

does not have the Zeeman effect. If the term Ŵij(~r, ~p, t) does not include the Zeeman

effect, the collision integral will be independent of the magnetic field.

The temperature of our Bose gas is in the µK regime, the phase density is low,

and the spin collision happens slowly. With this condition, we assume that at any

given time, the system is close to equilibrium. To first order, the Wigner distribution

W 0
ij = δijfi(~p, ~r, t) = δije

−βi(εi−µi) (8.8)

where fi(~p, ~r, t) is the equilibrium distribution, εi = p2/2m + Uii is the excitation

energy, and µi is the chemical potential of the Zeeman sub-levels of the hyperfine

state, and βi = 1/kBTi. Using this approximation and the expression for the non-

mean-field Hamiltonian, the collision integral thus becomes [147]

Iii =
π

~
∑
j,i′,j′

∑
αβ

∫
d~p2

(2π~)3

∫
d~p3

(2π~)3

∫
d~p4δ(~p+ ~p2 − ~p3 − ~p4)δ(εi~p + εj~p2 − εi′~p3 − εj′~p4)

×2g2
2

(
Sαii′S

β
i′iS

α
jj′S

β
j′j + Sαij′S

β
j′iS

α
ji′S

β
i′i

) (
fi′(~p3)fj′(~p4)− fi(~p)fj(~p2)

)
The number of atoms at the state i can be calculated from the local density Eqn 8.5

Ni(t) =

∫
dr nii =

∫
d~r

∫
dp

(2π~)3
Wii(~p, ~r) (8.9)

where nii(~r, t) = 〈i|n(~r, t)|j〉 = 〈ψ̂†j(~r, t)ψ̂i(~r, t)〉. Taking the time derivative of the

number of atoms we have

dNi

dt
=

∫
d~r

∫
d~p

(2π~)3

Wii(~p, ~r)

dt
(8.10)
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Since every term on the left of Eqn 8.6 except for the first term are odd functions,

the integral vanishes, therefore [144]

dNi

dt
=

∫
d~r

∫
d~p

(2π~)3
Iii(~p, ~r, t)

= 2
γi
βi

∑
ji′j′

∑
αβ

(
Sαii′S

β
i′iS

α
jj′S

β
jj′ + Sαij′S

β
j′jS

α
ji′S

β
ii′

)
×
{

β3
i′β

3
j′

[(βi′ + (βj′)/2]2
Ni′Nj′ −

β3
i β

3
j

[(βi′ + (βj′)/2]2
NiNj

}
(8.11)

where γi = g2
2
βi
~ (mω̄

2π~)3 is the spin relaxation rate, and ω̄ = (ωxωyωz)
1/3 is the mean

frequency of the trap. In reality, there is also atom loss due to the collision to the

background gases. Assuming the atom loss of all the spin components mf are the

same, we rewrite the rate equations for each spin component [144] and add the atom

loss into the system as

dN1

dt
= 4γ1

{
β0

β1

N0N0 −
β2

1β
3
−1

[(β1 + β−1)/2]5
N1N−1

}
− 1

τ
N1

dN0

dt
= 8γ0

{
−N0N0 +

β3
1β

3
−1

β0[(β1 + β−1)/2]5
N1N−1

}
− 1

τ
N0

dN−1

dt
= 4γ1

{
β0

β−1

N0N0 −
β3

1β
2
−1

[(β1 + β−1)/2]5
N1N−1

}
− 1

τ
N−1

This system of equations governs the spin population dynamics of the system. Even

though we can not solve for an exact solution, the equilibrium population can be

obtained by solving dN1

dt
= dN0

dt
dN−1

dt
= 0 which gives the solution N1 = N−1 =

√
N0+8γ0τN2

0√
8γ0τ

. In the case of no atom loss τ → ∞, the solution is N1 : N0 : N−1 =

1
3

: 1
3

: 1
3

. Numerical integration can be applied to predict the spin population

dynamics of the system. In Figure 8.2, we show the simulation comparison of the spin

relaxation with the atom loss included and no atom loss included in the simulation.

The simulation shows the discrepancy in equilibrium population of atom loss case

and no atom loss case.
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Figure 8.1: Thermal Spin Relaxation Atom Loss vs. No Loss Model. When
there is no atom loss (dots), the equilibrium population reaches ρ1 : ρ0 : ρ−1 = 1

3
: 1

3
: 1

3

. When the atom loss (solid line) is included in the model, the equilibrium population
for ρ0 shifts up, and ρ±1 shifts down. The population ρ0, ρ1, ρ−1 are shows in black,
blue, red colors.

8.2 Observation of Spin Relaxation

To observe spin relaxation, we prepare all atoms in the mf = 0 state at a high

magnetic field of 2 G. The temperature of the atoms is approximately 1.5 µK, above

the critical temperature for Bose-Einstein condensation. The magnetic field is then

lowered to mG regime for the spinor dynamics to freely evolve. The spinor dynamics

occur through the spin exchange of two-body collisions. Finally, the spin populations

are measured. This is executed by releasing the trap and allowing the atoms to

freely expand in a Stern-Gerlach magnetic field gradient to separate the mf spin

components. For a room temperature gas, the thermal energy is much higher than

the Zeeman energy thus the Zeeman sub-levels are degenerate. The spinor relaxation

equilibrium thus ρ1 : ρ0 : ρ−1 = 1
3

: 1
3

: 1
3
. For the thermal gas just above BEC

critical temperature, the equilibrium spinor population will be different if we take

into account of the Zeeman energy from the magnetic field.
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Figure 8.2: Thermal Spin Relaxation. Spin relaxation at (a) 0 mG, (b) 220 mG,
(c) and 350 mG. The experimental result of ρ0, ρ1, ρ−1 (black diamonds, blue squares,
red circles) are compared to simulation (same color solid lines).

The thermal spin relaxation for different magnetic fields is shown in Figure 8.2

for (a) 0 mG, (b) 220 mG, (c) and 350 mG. In the case of 0 mG, the equilibrium

population ρ1 : ρ0 : ρ−1 = 3
10

: 4
10

: 3
10

. This equilibrium is probably due to the

atom loss as discussed previously. The data shows encouraging agreement with the

simulation.

The spin relaxation equilibrium changes as we change the magnetic field. However,

it is too early to conclude the change in equilibrium population is due to the magnetic

field. For a magnetic field of 220 mG and 350 mG the trap lifetimes are 22.3 and

25.4 s; these trap lifetimes significantly change the theoretical equilibrium population

ρ0 → 0.6. For a magnetic field of 350 mG, the data match well to the theory; however,

it is not the case for a magnetic field of 220 mG. Note that the theory does not include

the effect of the Zeeman energy. The theoretical curves are differently solely due to the

trap life time. When the magnetic field is zero, there is no Zeeman energy shift. When

the magnetic field is greater than 10 mG, the linear Zeeman energy is comparable

to the kinetic energy kBT . However, spin relaxation occurs through spin collisions

2|0〉
 |1〉+ | − 1〉 which cancels linear Zeeman effect. We probably need to include

the quadratic Zeeman energy in the Wigner distribution function in Eqn 8.8 in order
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describe the thermal spin relaxation. We will revisit this theory in future studies of

spin relaxation.

Also, the relaxation rate is varying for different magnetic fields. Around 220 mG,

the spin relaxes quickly after 5 s. For a magnetic field of 0 mG and 350 mG, it takes

more than 40 s for the spin to reach equilibrium. For the Bose-Einstein condensate,

the effect of the magnetic field on the dynamical rate was observed in spin mixing

[50, 22, 109]. Whether the magnetic field plays any role in the relaxation rate, it

is an interesting question. More data would be necessary in order to have a better

understanding of thermal spin relaxation and to have conclusive results.

8.2.1 Technical Problems

Unfortunately, our experiment broke in the middle of the studies. In order to create

a pure mf = 0 condensate with the desired number of atoms (1.5 × 105), the gra-

dient coils of 500 A are on for 10 s to clear out unnecessary spin components every

experimental run of 30 s. Repeating this procedure (turn on/off high current coils)

for a long time probably damages the Insulated-gate bipolar transistor (IGBT) and

the control circuit of gradient coils. During my time as a graduate student, the IGBT

system has failed at least 3 times.

The IGBT is not the only story. The expansion rate of thermal atoms is unlike

a Bose-Einstein condensate; their size expands very large during the time-of-flight

(TOF) imaging. Our imaging system was originally designed for imaging the Bose-

Einstein condensate which is a very small cloud of atoms. The imaging system barely

captures the image of large thermal clouds of atoms. Solving the imaging problem

requires a change of the magnification of the imaging system (currently the mag-

nification is 5×) so that the whole thermal cloud can be captured on the camera

CCD.

Also, there are three different spin components of mf = 0,±1 which are separated
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by Stern-Gerlach gradient coil during imaging. These three clouds of spin components

almost overlap on the image. The cloud of atoms expands as fast as the separation

rate by the Stern-Gerlach coils. It takes at least 22 ms TOF to separate the spin

components; the size of each spin component cloud is large and overlaps each other.

To solve this problem, we need to increase the current of our Stern-Gerlach coils so

that we can separate the spin component cloud faster and farther. Right now the

power supply of the coils is at the limit of 500 A.

The preliminary data shows an interesting result on thermal spin relaxation. Im-

proving the experiment apparatus for thermal spin study is one of our future plans.
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CHAPTER 9

CONCLUSION AND FUTURE DIRECTION

We have been focused very deep into the theory and experiments of a spinor Bose-

Einstein condensate. In this chapter, we will look at our work from a broader per-

spective and look forward to the future directions.

9.1 Conclusion

The world has been changing faster than ever, thanks to the development of science

and technology. The birth of Newtonian physics in the 17th century has changed

how human perceive the world around us: from the apple falling to the Earth, to the

orbit of the Earth around the Sun, and even the industrial revolution that changed

the world forever. The understanding beyond Newtonian physics has enabled hu-

mans to reach further from the Earth, to outside the Solar system, to stars, galaxies

and beyond by Einstein’s theory of general relativity, and to reach deeper into the

smaller and smaller objects at the atom scale and beyond by the theory of quantum

physics. One of modern technology’s driving forces is to move towards controlling

systems at the quantum scale. The ability to control quantum systems is crucial in

order to study the system scientifically and extract useful and practical applications.

In this thesis, we have demonstrated different quantum control methods in a spin-1

Bose-Einstein condensate, from non-equilibrium dynamics stabilization, parametric

excitation, to rectifier phase control of many-body systems. We also extended our

study to thermal atoms above the Bose-Einstein transition temperature. They all

looked unrelated even to me when I first started the study. How do they combine

together to become a tool set for quantum control? The dynamics of a large number

of physical systems can be described as the dynamics of a pendulum. There are two
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dynamical configurations of a pendulum, an oscillation about the stable equilibrium

point (“down” position) called a classical pendulum and a motion about an unstable

equilibrium point(“up” position). The spinor dynamics of a condensate, depending

on the quadratic Zeeman energy (magnetic field strength), have coherent oscillation

dynamics like a classical pendulum and non-equilibrium dynamics like an inverted

pendulum. The dynamic stabilization controls the non-equilibrium dynamics of a

quantum many-body system; this is equivalent to stabilizing an inverted pendulum.

The parametric excitation, on the other hand, manipulates the coherent oscillation

of spinor condensates; this is equivalent to exciting the oscillation of a classical pen-

dulum. In addition, we demonstrated the rectifier phase method to control coherent

oscillations of spinor systems. In a classical pendulum, this is equivalent to the change

in the oscillation amplitude by changing the rod length and angle of a pendulum. In

many systems, the dynamics can be categorized as either equilibrium dynamics or

non-equilibrium dynamics; the control methods demonstrated in this thesis provide a

general framework to dynamically control quantum systems. Even though the experi-

ment is carried out in a spin-1 Bose-Einstein condensate, we would see no reason that

the idea of dynamical quantum control can not be applied to other systems and other

fields, for instance, our neighboring anti-ferromagnetic Bose-Einstein condensate in

Prof. Raman’s lab.

In addition to Bose-Einstein condensates, we also studied spin relaxation in ther-

mal atoms above the BEC transition temperature. Thermal atoms are easier to

produce and have a longer trap lifetime than Bose-Einstein condensates in our sys-

tem; therefore, the applications for thermal atoms are robust and practical. We are

looking forward to carrying on the study of thermal atoms in the future.
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9.2 Future Directions

9.2.1 Toward to Double Magneto-Optical Trap BEC

Our Bose-Einstein condensate is created by 3D magneto-optical trap (MOT) set up

which is described in the experimental apparatus chapter. One of the disadvantages

of the 3D MOT is the loading time. It takes approximate 15 s for the MOT to

accumulate enough atoms into the CO2 dipole trap to make a BEC. The long loading

time is due to the low density of gas in the ultra-high vacuum and the high velocity of

the gas. For experimental statistics, we normally have to repeat experiment hundreds

to thousands times depend on the procedure. The trap loading time adds up very

quickly and our data taking process can easily be 24 hours to 48 hours. These hours

are nothing if we had a large collaboration like Large Hadron Collide (LHC). However,

our experiment is normally run by 2–3 graduate students. If we can increase the data

taking speed, we can effectively “work less for more”. To improve the trap loading

time, we implement a double MOT-BEC [149]. The apparatus setup includes a 2D

MOT [150, 151, 152] and a 3D MOT [131]. The 2D MOT traps atoms along the

longitudinal axis of the glass rectangular tube acting as a slow atom source for the

3D MOT. The differential pressure hole connects the 2D and 3D MOTs to keep

the pressure at the 3D MOT lower than 2D MOT (vapor of atom source). It only

takes 1∼2 s to initial load atom into 3D MOT. The implementation of the double

MOT BEC thus significantly improves our speed of data taking; moreover, we can

implement other improvements learned from the previous setup.

9.2.2 Improve Squeezing

From the study of parametric excitation squeezing, we notice that our measurements

are limited by the detection limit which is about −6 dB. In the past, the detection

limit was −12 dB. However, due to the background scattering noise of a glowing

CO2 laser lens, the detection limit goes up. The experimental simulation shows
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that parametric excitation can generate squeezing up to −20 dB as shown in Figure

7.1. Improving the detection limit will enable us to examine the squeezing level and

generates squeezed states from parametric excitation.

9.2.3 Investigate Quantum Phase Transitions

In our study, we focus on two extreme regimes q < 2|c| and q > 2|c|. The quantum

phase transition (QPT) occurs at q = 2|c| where the ground state experiences an

abrupt change [39, 40, 41]. Tuning the value of quadratic Zeeman energy q around

the QPT critical point 2|c| (by quenching the magnetic field) will enable us to explore

the fundamental and universal physical phenomenon in a spinor BEC system.

9.2.4 Thermal Spin Relaxation and Beyond

The preliminary result in thermal spin relaxation has shown a promising result. The

dynamics of spin relaxation and the equilibrium population show the dependence on

the trap lifetime of condensate. Exploring the dynamics for different magnetic fields

would answer our question whether the magnetic fields play a significant role for

population equilibrium of the thermal gas above the BEC critical temperature. Since

creating a thermal gas above the BEC critical temperature is simpler than making

a BEC, it would be convenient to use a thermal gas as a tool to study quantum

phenomena and explore their applications.
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APPENDIX A

SIMULATION METHOD

The original simulation is written in Mathematica [64]. To increase the computational

speed, we rewrote the simulation in C++. Benjamin Land has done a great job in

optimizing the code. We will discuss how to perform the simulation.

A.1 Quantum Simulation

The Hamiltonian for spinor BEC can be written in the Fock basis [84, 64]

Hk,k′ =
(
λ′aM

2 + 2λ′ak(2(N − 2k)− 1) + q(2k + |M |)
)
δk,k′+1

+2λ′a

(
(k′ + 1)

√
(N − 2k′)(N − 2k′ − 1)δk,k′+1

+k
√

(N − 2k′ + 1)(N − 2k′ + 2)δk,k′−1

)
(A.1)

The Hamiltonian Ĥ is a symmetric diagonal matrix, everywhere is zero except

for the three diagonal terms. The basis of the wave function are represented in the

Fock state |ψ〉 = |N,M, k〉 where N is the total number of atom, M = N1 − N−1 is

the magnetization, and k is the number of pair mf = ±1. The wave function can

be presented as a vector of N
2

+ 1 components, which is the combination of linear

independent unit vectors |k〉.

|ψ〉 =

N
2

+1∑
k=0

ak(t)|k〉

|k〉 = (0, 0, .., kth = 1, .., 0)T k ∈ [0,
N

2
]

The time-dependent Shcrödinger equation reads

i~
∂

∂t
ψ = Ĥψ
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For the condensate where all the atoms are prepared at mf = 0 state, the initial

wave function is

ψ(0) = |1, 0, 0, .., 0〉

Applied fourth-order Runge-Kutta method, we can calculate the wave function

ψ(t+ dt) from ψ(t)

ψ(t+ dt) = ψ(t) +
1

6
dt(k1 + 2k2 + 2k3 + k4)

where

k1 =
1

i~
Ĥψ(t)

k2 =
1

i~
Ĥ(ψ(t) +

dt

2
k1)

k3 =
1

i~
Ĥ(ψ(t) +

dt

2
k2)

k4 =
1

i~
Ĥ(ψ(t) + dtk3)

The microwave phase shift rotates the quadrature phase of the condensate in spin-

nematic space about the x or Q̂zz axis. For a quadrature phase shift of ∆θ, the wave

function after phase shift is

|ψ(t)〉∆θ = e−iQ̂zz∆θ/2|ψ(t)〉 =

N/2∑
k=0

e−i2k∆θak(t)|k〉

The atom loss is taken into account by changing the spinor dynamical rate c =

c0(N(t)
N

)−2/5 = c0e
− 2

5
t
τ for trap life time τ and spinor dynamical rate c0 = 2λ′aN =

−7.2(5) Hz.
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A.2 Semi-Classical Simulation

The semi-classical equation is solved by numerical integrating the coupled Gross-

Pitaevskii equations [109].

i~
∂ζ1

∂t
= E1ζ1 + c

[
(ρ1 − ρ−1 + ρ0)ζ1 + ζ†−1ζ

2
0

]
i~
∂ζ0

∂t
= E0ζ0 + c

[
(ρ1 + ρ−1)ζ0 + 2ζ†0ζ1ζ−1

]
(A.2)

i~
∂ζ−1

∂t
= E−1ζ−1 + c

[
(ρ−1 − ρ1 + ρ0)ζ−1 + ζ†1ζ

2
0

]
The wave equation ψ = {ζ1, ζ0, ζ−1} = (

√
1−ρ0+m

2
eiχ+ , ρ0,

√
1−ρ0−m

2
eiχ−)T [109, 51, 64]

and ρi = ψ†iψi for i = 0,±1. To obtain the initial value for ρ0, m, χ+, χ−, we use

the expectation value of the spin and quadrature operators

〈Sx〉 =
√

2ρ0ρ+ cosχ+ +
√

2ρ0ρ− cosχ−

〈Qyz〉 = −
√

2ρ0ρ+ sinχ+ −
√

2ρ0ρ− sinχ−

〈Sy〉 = −
√

2ρ0ρ+ sinχ+ +
√

2ρ0ρ− sinχ−

〈Qxz〉 =
√

2ρ0ρ+ cosχ+ −
√

2ρ0ρ− cosχ−

〈Qzz −Qyy〉 = ρ+ + ρ− − 2ρ0 + 2
√
ρ+ρ− cos θm

〈Qxx −Qzz〉 = −ρ+ − ρ− + 2ρ0 + 2
√
ρ+ρ− cos θm

The magnetization m = ρ+ − ρ− = 0, thus ρ± = 1−ρ0
2

. These equations can be

simplified as

〈Sx〉 = 2
√
ρ0(1− ρ0) cos

θs
2

cos
θm
2

〈Qyz〉 = −2
√
ρ0(1− ρ0) sin

θs
2

cos
θm
2

〈Sy〉 = −2
√
ρ0(1− ρ0) cos

θs
2

sin
θm
2

〈Qxz〉 = −2
√
ρ0(1− ρ0) sin

θs
2

sin
θm
2

〈Qzz −Qyy〉 = ρ+ + ρ− − 2ρ0 + 2
√
ρ+ρ− cos θm

〈Qxx −Qzz〉 = −ρ+ − ρ− + 2ρ0 + 2
√
ρ+ρ− cos θm (A.3)
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Using these equation one can derive the conversion from Fock state for coherent

state distribution [64]

tanχ+ = −Sy +Qyz

Sx +Qyz

tanχ− =
Sy −Qyz

Sx −Qyz

ρ0 =
1

2
+

√
1

4
− 1

8

(
(
Sx +Qxz

cosχ+

)2 + (
Sy +Qyz

cosχ−
)2

)
m =

1

8ρ

(
(
Sx +Qxz

cosχ+

)2 − (
Sy +Qyz

cosχ−
)2

)
(A.4)

The expectation values of Sx, Qyz, Sy, Qyz are zeros, and the variance is N , if we

normalize the wave function to 1 the variance then 1
N

. From the spinor dynamic

equations, the spin mixing does not occur if we start with the initial state |mf = 0〉.

If there is some fluctuation in the expectation values of Sx, Qyz, Sy, Qyz, the initial

state will evolve.

Use this as initial condition, the spinor dynamics can be obtained by the numerical

integrating the system of the coupled Gross-Pitaevskii wave equation of Eqn A.2 using

fourth-order Runge-Kutta method.

∂ζ1

∂t
=

1

i~

(
E1ζ1 + c

[
(ρ1 − ρ−1 + ρ0)ζ1 + ζ†−1ζ

2
0

])
= f1(ζ1, ζ0, ζ−1)

∂ζ0

∂t
=

1

i~

(
E0ζ0 + c

[
(ρ1 + ρ−1)ζ0 + 2ζ†0ζ1ζ−1

])
= f0(ζ1, ζ0, ζ−1) (A.5)

∂ζ−1

∂t
=

1

i~

(
E−1ζ−1 + c

[
(ρ−1 − ρ1 + ρ0)ζ−1 + ζ†1ζ

2
0

])
= f−1(ζ1, ζ0, ζ−1)

For a condensate prepared in mf = 0, the initial wave function ψ(0) = {0, 1, 0}

which is equivalent to ζ0(0) = 1 and ζ±(0) = 0. We can calculate the wave function

ψ(t+ dt) from ψ(t)

ζi(t+ dt) = ζi(t) +
1

6
dt(ki,1 + 2ki,2 + 2ki,3 + ki,4)
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for i = 0,±1 and

ki,1 = fi(ζ1(t), ζ0(t), ζ−1(t))

ki,2 = fi(ζ1(t) +
dt

2
k1,1, ζ0(t) +

dt

2
k0,1, ζ−1(t) +

dt

2
k−1,1)

ki,3 = fi(ζ1(t) +
dt

2
k1,2, ζ0(t) +

dt

2
k0,2, ζ−1(t) +

dt

2
k−1,2)

ki,4 = fi(ζ1(t) +
dt

2
k1,3, ζ0(t) +

dt

2
k0,3, ζ−1(t) +

dt

2
k−1,3)

The atom loss is taken into account by changing the spinor dynamical rate c =

c0(N(t)
N

)−2/5 = c0e
− 2

5
t
τ for trap life time τ and spinor dynamical rate c0 = 2λ′aN =

−7.2(5) Hz.
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APPENDIX B

EXPERIMENTAL PARAMETERS

B.1 Table of Physical Constants

Table B.1: Fundamental physical constants (Source: 2010 CODATA)
Constant Symbol Value

Atomic Mass Unit mu 1.660538921(73)× 10−27 kg
Bohr Radius a0 0.52917721092(17)× 10−10 m

Boltzmann Constant kB 1.3806488(13)× 10−23 J/K
Bohr Magneton µB 9.27400968(20)× 10−24 J/K

Elementary Charge e 1.60217653(14)× 10−19 C
Permeability of Vacuum µ0 4π × 10−7 N/A2

Permittivity of Vacuum ε0 (µ0c
2)−1

Planck Constant h 6.62606957(29)× 10−34 J · s
Speed of Light c 299792458 m · s−1

Table B.2: Rubidium 87Rb Constants (Source: 2010 CODATA and collection from
Daniel A. Steck [132]

Constant Symbol Value
Atomic number Z 37

Atomic mass m 86.909180527(13) mu

Natural abundance 27.23 %
Nuclear spin I 3/2

Fine structure landé gJ 2.002 319 304 373 7(80)
Nuclear g-factor gI -0.000995 141 4(10)
D2 Wavelength λ 780.241 209 686(13) nm
D2 Lifetime τ 26.24(4) ns
D2 Decay rate Γ 2π · 6.6065(9) MHz

Linear Zeeman hyperfine F = 1 p1 702.4 Hz/mG
Linear Zeeman Hyperfine F = 2 p2 699.8 Hz/mG

Quadratic Zeeman hyperfine F = 1 qZ 71.6 Hz/G2
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Table B.3: Experimental Parameters
Parameter Symbol Value

Number of atom cross trap N 150× 103 atoms
Number of atom single focus N 40× 103 atoms

Spinor dynamical rate c −7.2(5)× 2π Hz
Trap life time τ 1.8(4) s

radial trap frequency fR 245∼ 260 Hz
Cross trap longitudinal trap frequency fL 250 Hz

Single focus longitudinal trap frequency fL 25 Hz
BEC temperature Tc < 300 nK

Table B.4: Formula Symbols
Symbol Description

â†i , âi creation/annihilation for mf = i
λ′i = λi

∫
|ψ(~r)d3r = 2cN Mean field two body coupling for channel i = 0, 2
ρi = Ni

N
Fractional population

θi Phase of mf = i
θs = 2θ = θ1 + θ−1 − 2θ0 Spinor phase/quadrature phase

aF=0 = 101.8(2)a0 Scattering length channel 0
aF=2 = 100.4(1)a0 Scattering length channel 2

g0 = 4π~2
m
a0 g Two-body coupling length channel 0

g2 = 4π~2
m
a2 g Two-body coupling length channel 2

λs = 2g2+g0
3

Density interaction
λa = g2−g0

3
Spin interaction
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