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ADFE and Affine ADE Bundles over Complex
Surfaces with p, = 0

Submitted by Chen,Yunxia
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We study ADFE and affine ADE bundles over complex surfaces X with p, = 0.

First, we suppose X admits an ADFE singularity. The exceptional locus of
this singularity in the minimal resolution ¥ is an ADFE curve of corresponding
type. Using this ADE curve and bundle extensions, we construct an ADFE bun-
dle over Y which can descend to X. Furthermore, we describe their minuscule
representation bundles in terms of configuration of (reducible) (—1)-curves.

Second, we assume X is an elliptic surface with a singular fiber of affine ADFE
type. Similar to above studies, we construct the affine ADE bundle over X which
is trivial on each irreducible component of the affine ADE curve.

Third, when X is the blowup of P? at n < 9 points, there is a canonical F,
bundle over it. We give a detailed study of the relationship between the geometry
of X and the deformability of this bundle.
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Introduction

It has long been known that there are deep connections between Lie theory and
the geometry of surfaces. A famous example is an amazing connection between
Lie groups of type E, and del Pezzo surfaces X of degree 9 —n for 1 < n < 8.
The root lattice of E, can be identified with K%, the orthogonal complement
to Ky in Pic(X). Furthermore, all the lines in X form a representation of E,.
Using the configuration of these lines, we can construct an E,, Lie algebra bundle
over X [22]. If we restrict it to the anti-canonical curve in X, which is an elliptic
curve Y, then we obtain an isomorphism between the moduli space of degree
9 — n del Pezzo surfaces which contain ¥ and the moduli space of E,-bundles
over . This work is motivated from string/F-theory duality, and it has been
studied extensively by Friedman-Morgan-Witten [12][13][14], Donagi [3][4][6][8],
Leung-Zhang [21]]22][23] and others [7][20][24][25].

In the first part of this thesis, we study the relationships between simply-laced,

or ADE, Lie theory and rational double points of surfaces. Suppose
m:Y = X

is the minimal resolution of a compact complex surface X with a rational dou-
ble point. Then the dual graph of the exceptional divisor > .  C; in Y is
an ADE Dynkin diagram. From this we have an ADFE root system ® := {a =
3" a;[Ci]|a? = —2} and we can construct an ADFE Lie algebra bundle over Y:

&8 = 0" & P Oy (a)

acd

7
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Even though this bundle can not descend to X, we show that it can be deformed

to one which can descend to X provided that p, (X) = 0.

Theorem 0.0.1. (Proposition 1.2.1, 1.2.2, Theorem 1.2.1 and Lemma 1.2.2)
Assume Y is the minimal resolution of a surface X with a rational double point
p of type g and C = X' ,C; is the exceptional divisor. If py (X) =0, then
(i) given any (pc,)t; € QY @), O(C)) with dpc, = 0 for every i, it can
be extended to ¢ = (pa)aco+ € QVNY, B, cp+ O()) such that J, := J + ad(yp)
is a holomorphic structure on E§. We denote this new holomorphic bundle as &g
i1) Such a 5@ 15 compatible with the Lie algebra structure.
o] #0e HYC;, Oc,(Cy)) = C.
ol # 0.
o] # 0 for every i.

(

(#4i) £ is trivial on C; if and only if [pc;

(iv) There exists [oc,] € H (Y, O(C;)) such that [pc,
(

v) Such a &Y can descend to X if and only if [pc,

Remark 0.0.1. Infinitesimal deformations of holomorphic bundle structures on
&Y are parametrized by H' (Y, End(&f)), and those which also preserve the Lie
algebra structure are parametrized by H' (Y, ad(&3)) = H' (Y, £J), since g is semi-
simple. If py (X) = q(X) = 0, e.g. rational surface, then for any o € @7,
H'(Y,0(a)) = 0. Hence H'(Y, &) = H(Y, @ co+ O(a)).

This generalizes the work of Friedman-Morgan [12], in which they considered
E,, bundles over generalized del Pezzo surfaces. In this thesis, we will also describe
the minuscule representation bundles of these Lie algebra bundles in terms of
(—1)-curves in Y.

Here is an outline of our results in Part I. We first study (—1)-curves in Y
which are (possibly reducible) rational curves with self intersection —1. If there
exists a (—1)-curve Cy in X passing through p with minuscule multiplicity Cy
(Definition 2.3.3), then (—1)-curves I’s in Y with 7(l) = Cj form the minuscule

representation! V' of g corresponding to Cj (Proposition 2.4.1). When V is the

'Here V is the lowest weight representation with lowest weight dual to —C}, i.e. V is dual

to the highest weight representation with highest weight dual to Cj.
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standard representation of g, the configuration of these (—1)-curves determines

a symmetric tensor f on V' such that g is the space of infinitesimal symmetries

of (V, f). We consider the bundle

= P ovl)

I:(—1)—curve

m(1)=Co
over Y constructed from these (—1)-curves I’s. This bundle can not descend to

X as it is not trivial over each C;.2

Theorem 0.0.2. (Theorem 2.5.1 and 2.5.2) For the bundle Qég’v) with the cor-
responding minuscule representation p : g — End(V'),
(i) there exists p = (0o )aca+ € QN Y, D, cqr O(a)) such that d, := Dy+p(¢p)

)

18 a holomorphic structure on 2(()9,\/ . We denote this new holomorphic bundle as

e,
(ii) £8Y) is trivial on C; if and only if [oc.|c,] #0 € HY(Y,Oc,(Cr)).
(7i1) When V is the standard representation of g, there exists a holomorphic

fiberwise symmetric multi-linear form
[ Qe — Oy(D)
withr = 0,2,3,4 when g = A,, Dy, Eg, E7 respectively such that £ = auto(Sg”v), f).

When V' is a minuscule representation of g, there exists a unique holomor-
phic structure on Eég’v) := P, O(l) such that the action of £ on this bundle is

holomorphic and it can descend to X as well.

In the second part of this thesis, we study the relationships between simply-
laced affine, or affine ADFE, Lie theory and singular fibers of relatively minimal
elliptic surfaces. When X is a relatively minimal elliptic surface, Kodaira classi-

fied all possible singular fibers (see e.g. [2]) and we call such a curve C' = UC;

2Unless specify otherwise, C; always refers to an irreducible component of C, i.e. i # 0.
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a Kodaira curve. Its irreducible components C;’s span a sublattice of Pic(X)
which is isomorphic to the root lattice of an affine root system ®; and therefore

we can construct an affine Lie algebra bundle 53 over X.

Theorem 0.0.3. (Lemma 1.2.1, Proposition 8.1.2 and Theorem 8.2.1) Given
any complex surface X with p; = 0. If X has a Kodaira curve C' = U]_,C; of
type g, then

(i) given any (pc,)i_g € Q"H(X, Bi_, O(Cy)) with dpc, = 0 for every i, it can
be extended to p = (apoé)aeq,%r € Q"NX, D, cp+ O()) such that , == d + ad(yp)
15 a holomorphic structure on Sg. We denote gthe new bundle as Sg.

(i) 0., is compatible with the Lie algebra structure on &8
o] #0€e€ HYC;,0c,(C;)) 2 C.
(iv) There exists [pc,] € HY(X,O(Cy)) such that [pc,|c,] # 0.

(131) 85 is trivial on C; if and only if ¢,

In the third part of this thesis, we explain how the geometry of Xg, a blowup
of P? at nine points, can be reflected by the deformability of the Eg—bundle st

over it. Among other things, we obtained the following results.

Theorem 0.0.4. (Theorem 9.2.1) 5(?8 is totally non-deformable if and only if

the nine blowup points in P? are in general position.

Theorem 0.0.5. (Theorem 9.2.2) Suppose —Kx, is nef, then

(1) Xo admits an elliptic fibration with a multiple fiber of multiplicity m
(m > 1) if and only if st is deformable in (—mK)-direction but not in (—m +
1) K -direction.

(i7) Xg has a (mazimal) ADE curve C of type g if and only ifé’fg is (mazimal)
g-deformable.

(i1) Xo has a (mazimal) Kodaira curve C' of type § if and only if 558 is

(mazimal) g-deformable.

The organization of this thesis is as follows. Section 1 gives the construction of

ADE Lie algebra bundles over Y directly. In section 2, we review the definition of
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minuscule representations and construct all minuscule representations using (—1)-
curves in Y. Using these, we construct the Lie algebra bundles and minuscule
representation bundles which can descend to X in A, D,, and E,, (n # 8) cases
separately in section 3, 4 and 5. The proofs of the main theorems in this thesis
are given in section 6.

In part two, section 7 gives the construction of the (affine) ADFE Lie algebra
bundles directly from (affine) ADE curves. In section 8, we assume p,(X) = 0.
We construct deformations of the holomorphic structures on these bundles such
that the new bundles are trivial over irreducible components of the curve.

We will consider the E,-bundle over a blowup of P? at n < 9 points in section
9 and show how the deformability of this bundle can reflect the geometry of the
underlying surface.

In the Appendix A, we construct surfaces with ADFE curves and a particular
(—1)-curve. In the Appendix B, we review the basic construction of affine Lie
algebras.

Notations: For a holomorphic bundle (Ey, 0y) with Ey = ®;0(D;), Jp means
the d-operator for the direct sum holomorphic structure. If we construct a new

holomorphic structure 5@ on FEjy, we denote the resulting bundle as E,.



Part 1

ADFE bundles
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Chapter 1

ADE Lie algebra bundles

1.1 ADF singularities

A rational double point p in a surface X can be described locally as a quotient
singularity C?/T" with T a finite subgroup of SL(2,C). It is also called a Kleinian
singularity or ADFE singularity [2].

Klein [19] determined the structure of the quotient space C?*/T". For each
subgroup I, the C-algebra Clu, v]" of I-invariant polynomials on C? is generated
by three fundamental generators x, y, z, satisfying a relation R(x,y, z) = 0, where

R is a polynomial on C3. We list these equations below:

Ap 2+ + 2" n>1 (1.1)
Dy:2®+y" ' +y* n>4 (1.2)
Ee:a® +1° 4+ 2* (1.3)
Er 2 +y° +y2? (1.4)
Eg:a? +1° + 2 (1.5)

They correspond to I' being a cyclic group, a dihedral group and the groups of
the tetrahedron, the octahedron, and the icosahedron respectively.

That means the quotient variety C?/T" may be viewed as a hypersurface in C?

13



given by the equation R(z,y,z) = 0:
C*/T = {(z,y,2) € C*|R(z,y,2) = 0}

The hypersurface C?/T has an isolated singularity at the origin, the corresponding
singularity is called of type A,, D,, Es, E7 or Eg respectively. The reason is if
we consider the minimal resolution Y of X, then every irreducible component
of the exceptional divisor C' = )" | C; is a smooth rational curve with normal
bundle Op:(—2), i.e. a (—2)-curve, and the dual graph of the exceptional divisor
is an ADE Dynkin diagram. The corresponding roots in the Dynkin diagrams

are labelled as follows:

@O— @cee@0— 0 —0O
01 C12 On—2 Cn—l Cn

Figure 1. The Dynkin diagram of A,

ICn
@ — @ ¢ o o

Cl C'2 Cn—3 On—2 On—l

Figure 2. The Dynkin diagram of Dy,

I Cn
@ ——©@¢° e @ @ ®
C’1 C12 Cn—4 On—?: Cn—? C1n—1

Figure 3. The Dynkin diagram of Ej,

There is a natural decomposition
H*(Y,Z) = H*(X,Z) ® A,

where A = {3 a;[Ci]la; € Z}. The set ® := {a € Ala® = —2} is a simply-laced
(i.e. ADE) root system of a simple Lie algebra g and A = {[C;]} is a base of ®.

14



For any o € ®, there exists a unique divisor D = ) a,C; with o = [D], and we

define a line bundle O(«) := O(D) over Y.

1.2 ADFE bundles

We define a Lie algebra bundle of type g over Y as follows:

For every open chart U of Y, we take 27 to be a nonvanishing holomorphic
section of Oy (a) and hY (i = 1,- -+ , n) nonvanishing holomorphic sections of OF™.

Define a Lie algebra structure [,] on & such that {zU’s, hY’s} is the Chevalley

basis [17], i.e.
(a) [, Y] =0,1 <14, j <n.
(b) [nf, 2g] = (o, Ci)ag, 1 <i<n, a€d
(c) [2Y, 2Y,] = hY is a Z-linear combination of hY.

(d) If «, B are independent roots, and  — ra, -+, + qo is the a-string
through 3, then [z, 2] = 0 if ¢ = 0, otherwise [z]], 2§] = +(r + 1)zl 4.

Since g is simply-laced, all its roots have the same length, we have any a-string
through 3 is of length at most 2. So (d) can be written as [z{], 5] = 14,520, 4,
where ny, g = £1 if a + 8 € @, otherwise n, 5 = 0. From the Jacobi identity,
we have for any «, 8,7 € ®, ng gNatsy + MeANa+y.0 + Nyayta,s = 0. This Lie
algebra structure is compatible with different trivializations of &£ [22].

By Friedman-Morgan [12], a bundle over Y can descend to X if and only

if its restriction to each irreducible component C; of the exceptional divisor is

trivial. But &f|c. is not trivial as O([C}])

o, = Op1(—2). We will construct a
new holomorphic structure on &£, which preserves the Lie algebra structure and
therefore the resulting bundle £ can descend to X.

As we have fixed a base A of ®, we have a decomposition ® = &+ U ®~ into

positive and negative roots.

15



Definition 1.2.1. Given any ¢ = (¢a)aco+ € QVNY, D o+ O(@)), we define
0, QMO(Y, E8) — QOL(Y, E8) by
9y 1= 0o+ ad(p) =do+ Y _ ad(pa),
acdt

where Oy is the standard holomorphic structure of ES. More explicitly, if we write

o = L 2¥ locally for some one form ¢V, then ad(¢s) = cYad(xY).

Proposition 1.2.1. 9, is compatible with the Lie algebra structure, i.e. 0,[,] =

0.
Proof. This follows directly from the Jacobi identity. m

For 5@ to define a holomorphic structure, we need
0=03,= > (Boc]+ > (ngycfc)ad(zl),
acdt B+y=a

that is Jowa + > pir—a(Narpspy) = 0 for any a € ®F. Explicitly:

oo, =0 i=1,2---.n

EOQOCZ.JFCj = Ng,,c;PCPC if C; + Cj c ot

Proposition 1.2.2. Given any (¢, € Q(Y, @i, O(C;)) with dopc, = 0
for every i, it can be extended to ¢ = (pa)ace+ € Q1 (Y, D, co+ O(ar)) such that

gi = 0. Namely we have a holomorphic vector bundle Ef over Y.

To prove this proposition, we need the following lemma. For any o = > | a;C;

®*, we define ht(o) == 1", a;.
Lemma 1.2.1. For any a € ®*, H*(Y,0(a)) = 0.

Proof. If ht(a) = 1, i.e. a = C;, H*(Y,O(C;)) = 0 follows from the long exact

sequence associated to 0 — Oy — Oy (C;) — O¢,(C;) — 0 and p, = 0.

16
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By induction, suppose the lemma is true for every g with ht(5) = m. Given
any o with ht(a) = m+1, by Lemma A in §10.2 of [17], there exists some C; such
that - C; = —1, i.e. f:= a— C; € &T with ht(5) = m. Using the long exact
sequence associated to 0 — Oy (f) — Oy(a) = O¢,(a) — 0, O¢,(a) = Op1(—1)
and H?(Y,0(8)) = 0 by induction, we have H*(Y,O(«a)) = 0. O

Proof. (of Proposition 1.2.2) We solve the equations dyp, = > Birma BN PEP
for p, € Q%(Y,O(a)) inductively on ht(a).

For ht(a) = 2, i.e. a = C;+C; with C;-C; = 1, since [p¢,pc,] € H*(Y,0(C;+
C;)) =0, we can find ¢c, ¢, satisfying dopc,+c, = toc, e,

Suppose that we have solved the equations for all z’s with ht(5) < m. For

Bopa = D MpAPaPy
Bty=a

with ht(a) = m + 1, we have ht(5), ht(y) < m. Using 50(26%:& N APaPy) =

D st nipma (MEATG 2+ M6 T Tuts ) 05020 = 0, D50 MaAPa0,] €

H?(Y,0(a)) = 0, we can solve for ¢,. O

Denote

Uy 2 {p = (pa)acor € (Y, @D O(a))|0, = 0},

acdt

and

\I]Xé{gpeq’ly“(pci Ci] 7é0f0fi:1727"' an}'

Theorem 1.2.1. £ is trivial on C; if and only if [pc,|c,] # 0 € H'(Y, O¢,(Cy)).

Proof. We will discuss the ADFE cases separately in Chapter 3, 4, 5 and the proof

will be completed in Chapter 6. m

The next lemma says that given any Cj, there always exists pco, € QU1 (Y,

O(Cy)) such that 0 # [pe,|c,] € H'(Y, Oc,(C) = C.

17
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Lemma 1.2.2. For any C; inY, the restriction homomorphism H' (Y, Oy (C;)) —
HY(Y, Oc,(C})) is surjective.

Proof. The above restriction homomorphism is part of a long exact sequence
induced by 0 — Oy — Oy (C;) — O¢,(C;) — 0. The lemma follows directly from
py(Y) = 0. [



Chapter 2

Minuscule representations and

(—1)-curves

2.1 Standard representations

For ADFE Lie algebras, A,, = sl (n + 1) is the space of tracefree endomorphisms of
C"™! and D, = 0(2n) is the space of infinitesimal automorphisms of C** which
preserve a non-degenerate quadratic form ¢ on C**. In fact, Eg (resp. Ey) is
the space of infinitesimal automorphisms of C?7 (resp. C°®) which preserve a
particular cubic form ¢ on C?7 (resp. quartic form ¢ on C%¢) [1]. We call the

above representation the standard representation of g, i.e.

g standard representation
A, =sl(n+1) crtt
D, =o0(2n) C*n
o 27
E. 56

Note all these standard representations are the fundamental representations cor-
responding to the left nodes (i.e. C}) in the corresponding Dynkin diagrams

(Figure 1, 2 and 3) and they are minuscule representations.

19



2.2 Minuscule representations

Definition 2.2.1. A minuscule (resp. quasi-minuscule) representation of a semi-
simple Lie algebra is an irreducible representation such that the Weyl group acts

transitively on all the weights (resp. non-zero weights).

Minuscule representations are always fundamental representations and quasi-

minuscule representations are either minuscule or adjoint representations.

g Miniscule representations
A, =sl(n+1) | ANC* ! for k=1,2,---,n
D, =o0(2n) c*, St S~
Eg c¥, C¥
E; (O

Note Eg has no minuscule representation.

2.3 Configurations of (—1)-curves

In this section, we describe (—1)-curves in X and Y.

Definition 2.3.1. A (—1)-curve in a surface Y is a genus zero (possibly reducible)

curve l in'Y withl- -1 = —1.

Remark 2.3.1. The genus zero condition can be replaced by | - Ky = —1 by the

genus formula, where Ky is the canonical divisor of Y .
Let Cy be a curve in X passing through p.

Definition 2.3.2. (i) Cy is called a (—1)-curve in X if there exists a (—1)-curve
L in'Y such that w(l) = Cy, or equivalently the strict transform of Cy is a (—1)-
curve Cy in Y. (1) The multiplicity of Cy at p is defined to be y ., a;[Ci] € A,

where a; = Cy - C;.

20



Recall from Lie theory, any irreducible representation of a simple Lie algebra
is determined by its lowest weight. The fundamental representations® are those
irreducible representations whose lowest weight is dual to the negative of some
simple root. If Cy C X has multiplicity C} at p whose dual weight determines a
minuscule representation V, then we use Cy to denote Co. The construction of

such X'’s and C’s can be found in the Appendix A.

Definition 2.3.3. (i) We call Cy has minuscule multiplicity Cy, € A at p if Cy has
multiplicity Cy, and the dual weight of —CY. determines a minuscule representation

V. (i) In this case, we denote I'®V) = {I : (=1)-curve in Y|r(l) = Cy}.

If there is no ambiguity, we will simply write I®®") as I. Note that I C
CY + Aso, where Asg = {> a;[Ci] : a; > 0}.

Lemma 2.3.1. In the above situation, the cardinality of I is given by |I| = dim V.

Proof. By the genus formula and every C; = P! being a (—2)-curve, we have
C;- Ky = 0. Since C§ - Ky = —1, each (—1)-curve has the form [ = C¥ + 3~ a,C;
with a;’s non-negative integers. From [- [ = —1, we can determine {a;}'s for [ to

be a (—1)-curve by direct computations. O

Remark 2.3.2. The intersection product is negative definite on the sublattice of

Pic(X) generated by C§,C,,- -, C,, and we use its negative as an inner product.
Lemma 2.3.2. In the above situation, for anyl € I, a € ®, we have |l - | < 1.

Proof. We claim that for any v € C§¥+ A, we have v-v < —1. We prove the claim
by direct computations. In (A,, A*C"*1) case:
(C5 + 2 aiCy)?
=—1+42a;— (a?+ (a1 —a2)*+ -+ (-1 — ar)?) — ((ar — ag41)* + -+ - +a2)
< -1.

!The usual definition for fundamental representations uses highest weight. But in this thesis,

we will use lowest weight for simplicity of notations.
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The other cases can be proven similarly.
Since I, I+a, [—a € C¥+ A by assumptions, we have [-l = —1 > (I+a)-(I+a),

hence [-a < 1. Alsol-l=-1>(—a) (Il —«), hence [ - a > —1. O

Lemma 2.3.3. In the above situation, for any | € I which is not CF, there exists

C; such thatl-C; = —1.

Proof. From | = C¥ + 3" a,C; # Cf (a; > 0), we have a;, > 1. From [ -] = —1,
we have (3 a;C;)? = —2ay. If there does not exist such an ¢ with [ - C; = —1,
then by Lemma 2.3.2, [ - C; > 0 for every i, [ - (> a;C;) > 0. But - (> a;C;) =

ap + (3" a;C)* = —ap < —1 leads to a contradiction. O
Lemma 2.3.4. In the above situation, for any l,I' € I, H*(Y,O(l = 1)) = 0.

Proof. Firstly, we prove H2(Y,O(Ck — 1)) = 0 for any | = C¥ + > a,C; € 1
inductively on ht(l) := > a;. If ht(l) = 0, i.e. [ is CF, the claim follows from p, =
0. Suppose the claim is true for any I’ € I with ht(l') < m—1. Then forany [ € [
with ht(l) = m, by Lemma 2.3.3, there exists i such that [-C; = —1. This implies
(I —C;) € I with ht(l — C;) = m — 1 and therefore H*(Y,0(Ct — (I — C;))) =0

by induction hypothesis. Using the long exact sequence induced from
0= Oy(CE—1) = Oy(CH — (I = C))) = O¢,(CE - (1—Cy)) =0

and O¢,(C¥ — (I — C;)) =2 Opi1(—1) or Op1, we have the claim.
If H*(Y,0(l — 1)) # 0, then there exists a section s € H°(Y, Ky (I' — 1)) by
Serre duality. Since there exists a nonzero section t € H(Y, O(l — C¥)), we have

st € HO(Y, Ky (I' — CF)) = H*(Y,0(Ct — 1)) = 0, which is a contradiction. [

2.4 Minuscule representations from (—1)-curves

Recall from the ADFE root system ®, we can recover the corresponding Lie algebra

g=0b® P, co8a- As before, we use {z,’s, h;’s} to denote its Chevalley basis. If
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Cp has minuscule multiplicity C}, we denote

Vo :=C' = @PC(w),

lel

where v; is the base vector of Vj generated by [. Then we define a bilinear map
[,]:9®Vy — Vy (possibly up to + signs) as follows:
(x, Dy, ifreh
[z, u] = Tua frz=2, l+a €1
0 fr=x, l+a ¢1
Proposition 2.4.1. The signs in the above bilinear map g ® Vo — Vi can be
chosen so that it defines an action of g on Vi. Moreover, Vi is isomorphic to the

minuscule representation V.

Proof. For the first part, similar to [27], we use Lemma 2.3.2 to show [[z, y],v,| =
[z, [y, vl] = [y, [z, vi]].

For the second part, since [z, vex] = 0 for any o € @7, vy is the lowest weight
vector of Vy with weight corresponding to —Cj. Also we know the fundamental
representation V' corresponding to —C', has the same dimension with Vj by lemma

2.3.1. Hence Vj is isomorphic to the minuscule representation V. O

Here we show how to determine the signs. Take any [ € I, v; is a weight vector
of the above action. For z = z, and v; with weight w, we define [z, v;] = 1 wVita,
where n,,, = £1 if [ + o € I, otherwise ny. = 0. By [[z,y],v] = [z, [y, v]] —
[y, [z, v]], we have ng gnassw — Ngwla,srw + Na,whsatw = 0.

Remark 2.4.1. Recall for any | = C§ + > a;,C; € I, we define ht(l) := > a;.
Using this, we can define a filtered structure for I : 1 =1y D Iy D --- D I,,, where
m = maxes ht(l), I; = {l € I|ht(l) < m—i} and I;\I;11 = {l € I|ht(l) = m —i}.
This ht(l) also enables us to define a partial order of I. Say |I| = N, we denote
Iy = C(’f since it is the only element with ht = 0. Similarly, Iy_1 = C(’)€ + C.
Of course, there are some ambiguity of this ordering, if so, we will just make a

choice to order these (—1)-curves.
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2.5 Bundles from (—1)-curves

The geometry of (—1)-curves in Y can be used to construct representation bundles
of £F for every minuscule representation of g. The proofs of theorems in this
section will be given in Chapter 6.

When Cy € X has minuscule multiplicity C} at p with the corresponding

minuscule representation V', we define?

Ségy) = @leﬂw) O<l)~

£9Y) has a natural filtration F*: £ = FO¢ 5 F1€ 5 ... 5 F™&, induced
from the flittered structure on I, namely Fig®") = @D, O(1).

£%Y) can not descend to X as O¢, (CF) = Opi(1) (because Cj - CF = 1 by
the definition of the minuscule multiplicity). For any C; and any [ € I, we have
Oc, (1) = Op1(£1) or Opr by Lemma 2.3.2. For every fixed Cj, if thereisal € [
such that O¢, (1) = Opi (1), then (I +C;)? = -1 = (1+C;) - Ky, ie. I +C; €1,
also O¢, (I+C;) = Op1(—1). That means among the direct summands of 2(()9 e

77

Op: (1) and Op1(—1) occur in pairs, and each pair is given by two (—1)-curves in
I whose difference is C;. This gives us a chance to deform Ség’v) to get another

bundle which can descend to X.

Theorem 2.5.1. [f there exists a (—1)-curve Cy in X with minuscule multiplicity
Cy atp and p: g — End(V) is the corresponding representation, then
(209 = D OW), B, =B+ pl))
lel
with ¢ € Wy s a holomorphic bundle over Y which preserves the filtration on

Qég’v) and it is a holomorphic representation bundle of £3. Moreover, 2&?’” 15

trivial on C; if and only if [pc,|c.] # 0 € HY(Y,Oc,(C})).

2When X is a del Pezzo surface, we use lines in X to construct bundles [FM]. So here we

use (—1)-curves in X to construct bundles.
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For C} with k& = 1, the corresponding minuscule representation V' is the
standard representation of g. When g = A, it is simply sl (n + 1) = auty(V).
When g = D,, (resp. Eg and E;), there exists a quadratic (resp. cubic and
quartic) form f on V such that g = aut(V, f). The next theorem tells us that we
can globalize this construction over Y to recover the Lie algebra bundle £ over

Y. But this does not work for 558 as Fg has no standard representation.

Theorem 2.5.2. Under the same assumptions as in theorem 2.5.1 with k = 1,

there exists a holomorphic fiberwise symmetric multi-linear form

f: Q)" — Oy(D)

25

withr = 0,2,3,4 when g = A, Dy, Eg, E7 respectively such that £ = auto(ﬁg’v), f).

It is obvious that £ does not depend on the existence of the (—1)-curve Cj,

for the minuscule representation bundles, we have the following results.

Theorem 2.5.3. There exists a divisor B in'Y and an integer k, such that the
bundle LEE’V) = Skﬂg’v) ® O(—B) with ¢ € Yx can descend to X and does not

depend on the existence of Cy.

2.6 Outline of Proofs for g #Fjs

When g #FEg, there exists a natural symmetric tensor f on its standard represen-
tation V such that g = auto(V, f). The set I® V) of (—1)-curves has cardinality
N =dimV. Given 1 :=(n;;)nxn with 7;; € QUNY, O(l; — [;)) for every [; # 1, €
I V) we consider the operator 9, := dy + 1 on £ég’ V)= D6 v) Oy (l). We
will look for n which satisfy:

(1) (filtration) n; ; = 0 for ¢ > j for the partial ordering introduced in §3.4.
)
(3)
(4) (descendent) For every Cy, if [;—1; = Cj, then 0 # [n; ;|¢,] € H* (Y, O, (Ck)

(holomorphic structure) (9o +7)* = 0.
(Lie algebra structure) 9, f = 0.

).



Remark 2.6.1. Property (2) implies that we can define a new holomorphic struc-
ture on Eég’ V). Properties (1) and (3) require that for any n;; # 0, n;; €
QVYY,O()) for some a € ®T. We will show that if n satisfies (1), (2) and

(g, V) c

(3), then (4) is equivalent to 2%9’ V) being trivial on every Cy, i.e. £y an

descend to X.

Denote
=% 2 Iy =(m;;)nxn|n satisfies (1), (2) and (3)},

and
=g A

=% = {n €Z5|n satisfies (4)},

V)

then each 7 in =§ determines a filtered holomorphic bundle 2%9’ over Y together

with a holomorphic tensor f on it. It can descend to X if n € =Z%.

Since g = aut(V, f), for any n €Z5., we have a holomorphic Lie algebra bundle
G = aut(&(f ’ V), f)over Y of type g, and ££,9’ V) is automatically a representation
bundle of (§. Furthermore, if 7 €Z%, then (y can descend to X.

For a general minuscule representation of g, given any n €=3,, we show that
there exists a unique holomorphic structure on Ség’v), such that the action of ¢}
on the new holomorphic bundle S%g’v) is holomorphic. Furthermore, if n €25,

then 2,(79"/) can descend to X.
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Chapter 3

A, case

We recall that A,, = sl(n+1,C) =auty(C"*!) (where auty means tracefree endo-
morphisms). The standard representation of A,, is C**! and minuscule represen-

tations of A, are AKC" ™! k=1,2,--- ,n.

. (Ap,CHY
3.1 A, standard representation bundle £,

We consider a surface X with an A,, singularity p and a (—1)-curve Cy passing
through p with multiplicity Cy, then [~ = {Cf + Zle Ci] 0 <k <n}
has cardinality n 4+ 1. We order these (—1)-curves: [y = Ci + S'77*C; for
1<k<n+1 Foranyl, #1; € I, ;- [; = 0. Fix any C};, we have
1, k=n+2-1
lp-Ci=q =1, k=n+1—1
0, otherwise.
Define SéA"’CnH) = @,; O(1) over Y, for simplicity, we write it as £5". £

can not descend to X, since for any C},

e, = 05"V ® Opi (1) ® Opa (—1).

Our aim is to find a new holomorphic structure on 264" such that the resulting

bundle can descend to X. First, we define 9, : Q%0(Y, £¢") — Q®1(Y, £5") on
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il = @ O(Iy) as follows:
d .2 M n+1
577 _ 0 0 M2,n+1
o 0 --- 0

where 1, ; € Q" (Y,0(l; — 1;)) for any j > i. When j >4, [; —[; € A is a positive
root because of [; - [; = 0 and our ordering of [};’s.

The integrability condition 5727 = 0 is equivalent to, for i =1,2,--- ,n,
i1 =0,
3 j—1 S
87]%] == Zin:i—i—l nﬁm'nm,j) j 2 1 + 2a

Note ;. ; € QUHY, O(l; — 1;)) = Q*(Y,O(«)) for some o € &*. From

j—1
> iy € H(Y,0(; — 1)) =0,
m=i+1
we can find 7; ;, such that 5771"]' = — zn_:lHl Nim M, ;- That is

Proposition 3.1.1. Given any ;41 € QUN(Y,0(l; — li11)) with On;i11 = 0 for
i =1,2,--n, there exists n;; € QOYY,0(l; — 1;)) for every j > i such that 0,

defines a holomorphic structure on 264”, i.e. 9,=0.

We want to prove that there exists 7 €Z4" such that £§" can descend to
X, ie. £§"|Ci is trivial for every C;. To prove this, we will construct n + 1
holomorphic sections of 2;;1" |c, which are linearly independent everywhere on C;.

The following lemma will be needed for all the ADE cases.

Lemma 3.1.1. Consider a vector bundle (£ := @~ O(l;), D¢ = Do+ (i) Nxn)
over Y with n; ; = 0 whenever i > j. Suppose C' is a smooth (—2)-curve in'Y

with HY(C,0¢c(l;)) = 0 for every i = 1,2,--- N, then for any fized i and any



29

s; € H(C,Oc(ly)), the following equation for sy, s, -+ s;_1 has a solution,

5} mz2lc 771,3|C 771,N|C S1
0 9 msle -+ - mwle
000 D e s |
' 0
0 0 0 0 0
Proof. The above equation is equivalent to:
0s; = 0, (1)
Mi—1,iS: + 532’—1 =0, (2)
M,iSi + -+ M8+ 0s1 = 0. (7)

Equation (1) is automatic as s; € H°(C,0¢(l;)). For equation (2), since
Oni_1; = 0 and ds; = 0, we have [1;,_1:8;] € H(C,0c(l;_1)) = 0, hence we can
find s;_; satisfying O0s,_; = —10i—1,i5-

Inductively, suppose we have found s;, - - - , s;_1 for the first (i — j) equations,

then for the (i — j + 1)-th equation: 1;;s; + - -+ + 1;, 115,41 + 0s; = 0, we have
Masi + -+ 080 € QHC, Oc(ly)).

From 53 = 0, we have

577k,m = — (Moot " Mt 1m + M2 - Met2m + - F Mesm—1 * Din—1,m)-

Then

a(sm) = _<77m,m+13m+1 + -+ nm,isi)

implies

Omjsi + -+ +njj418511) =0



Therefore ;8 + - +nj+1841] € H(C,0¢(l;)) = 0, hence we can find s; such
that 55]' = —(773'71'51' + -+ T}j,j+18j+1). ]

Let us recall a standard result which says that the only non-trivial extension
of Op1(1) by Op1(—1) is the trivial bundle. We will give an explicit construction

of this trivialization as we will need a generalization of it later.

Lemma 3.1.2. For an exact sequence over P! : 0 — Opi(—1) = E — Opi (1) —
0, the bundle E is determined by the extension class [¢] € Exty (O(1),0(—1)) =
C up to a scalar multiple. If [p] # 0, E is trivial, namely there exists two

holomorphic sections for E which are linearly independent at every point in P*.

Proof. With respect to the (topological) splitting £ = Opi(—1) @ Op1(1), the

holomorphic structure on E' is given by

Op =

o Ql
Ql 6

with ¢ € Extg, (O(1),0(—1))). Let ¢1,t be a base of HY(P', O(1)) = C2. Since
[pt;] € HY (P, O(—1)) = 0, we can find uy,uy € Q°(P',O(—1)), such that

o Ql
QI S

i.e. 81 = (uy,t1)" and sy = (ug, t2)" are two holomorphic sections of E. Explicitly,
we can take s; = (ﬁ, z)', s2 = (772, 1)" in the coordinate chart C C P! It

can be checked that s; and s, are linearly independent over P!. O
From the above lemma, we have the following result.

Lemma 3.1.3. Under the same assumption as in Lemma 3.1.1. Suppose £|c =
Og™ @ (Op1(1) ® Opi(—1))®"™ with each pair of Opi(£1) corresponding to two
(—=1)-curves l; and liyy with l; — l;;1 = C. Then £|¢ is trivial if and only if
[ii41lc] # 0 for every miia € Q¥(Y,0(C)).
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Proof. For simplicity, we assume m = n = 1 and Og(l;) = Opi, Oc(ly) =
Op1(—1), Oc(l3) = Opi(1) with Iy — I3 = C. If [mslc] # 0, by Lemma 3.1.1
and Lemma 3.1.2, there exists two holomorphic sections for £|c which are lin-
early independent at every point in C: s; = (21, u1,t1)" and sy = (22, ug, t2)" with
uy, t1, ug, ty given in the proof of Lemma 3.1.2. By H°(Y,O¢(l1)) = H°(P!, 0) =
C, there exists one holomorphic section for £|c which is nowhere zero on C":
s3 = (x3,0,0)". These s1, s9, 53 give a trivialization of £|c. If [es|c] = 0, then
Lnle is an extension of Opi(1) @ Op1(—1) by Opr and there is no such nontrivial

extension. O

Proposition 3.1.2. The bundle L over Y with 1 €= can descend to X if
) € HY(Y, Oc,(Cy)) for every i, i.e. n €Z§".

and only if 0 # [nn+1—i,n+2—i
Proof. Restricting QOA" to C}, the corresponding line bundle summands are
O]pl(l), k=n+2—7,
Oc,(le) 2 Opi(—1), k=n+1—i
Opr, otherwise.

By Lemma 3.1.3 and our assumption, we have the proposition. O

3.2 A, Lie algebra bundle C;74”

As A, = sl(n + 1,C) =auto(C"*), ¢ = auto(Lo™) (n €Z=4") is an A, Lie
algebra bundle over Y which can descend to X. This C;;‘” does not depend on

the existence of Cy. And 2;‘” is automatically a representation bundle of C,j‘".

. . (Ap ARCPHL
3.3 A, minuscule representation bundle £,

Consider a surface X with an A, singularity p and a (—1)-curve C passing
through p with multiplicity Cx. By Proposition 2.3.1, 1 (AnARC™) hag cardinality

k(cn+1)

(nil) Define £4" = @P,c; O(l) over Y.



Lemma 3.3.1. ¢ T = (Akgdny(ch — kCL — P Lk — §)0y).

J=1

Proof. The bundles on both sides have the same rank, so we only need to check

that every line bundle summand in the right-hand side is Oy(l) for [ a (—1)-

/\k(Cn+1) m(cn+1)

curve in (A For any k distinct elements [;, in [ (4 , we denote

l=1; +l,+ -+l +Ck—(ly+1y+--lt), then Oy(l) is a summand in the
right-hand side. Since the intersection number of any two distinct (—1)-curves in

T@AnC") s zero, we have 2 =1- Ky = —1. i.e. [ € [AnA"C™Y), O

From the above lemma and direct computations, for any Cj,

k—1

2L & (0 (1) @ Ops (—1))20).

(Ap,ARCrHLy
20 |C¢ = O[Pﬂ

Proposition 3.3.1. Fiz anyn EE{}”, there exists a unique holomorphic structure

A L,/\’“(C”“ /\k(cn+l .
on 28 ' ) Vi

such that the action of Cf” on the resulting bundle 25,’4”’ S

kron
holomorphic. Furthermore, if n GE’;‘(”, then 21(7’4”’/\ © can descend to X.

kron+1
Proof. As the action of (;‘" on 2;‘" is holomorphic, C,f" acts on S%A"’A R

(AFLa)(Ch — kCy — Z?;ll (k — 7)C;) holomorphically. The last assertion follows
from Proposition 3.1.2 and the fact that O(Cy —kC} — Z?;ll(k;—j)C’j)

¢, 1s trivial

for every Cj. [
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Chapter 4

D,, case

We recall that D,, = o(2n,C) =aut(C?", q) for a non-degenerate quadratic form
q on the standard representation C?>*. The other minuscule representations are

ST and S~ and the adjoint representation is A2C?".

4.1 D, standard representation bundle 27(7D”’C2n)
We consider a surface X with a D, singularity p and a (—1)-curve Cj pass-
ing through p with multiplicity 1, then IPnC") — [ U I, with I; = {C} +
SELCI0<k<n-—1}and I, = {F — |l € I}, where F = 2C} + 20, + --- +
2C, 5+ C,_1 + C,. We order these (—1)-curves: I, = F — C} — Zf:_ll C; and
lon g1 = CL+ 307 Cifor 1 <k <n.

For any l; # [; € I, we have [; - [; = 0 or 1. Given any [; € I, there exists a
unique [; € I such that [; - [; = 1. In this case, [; +1; = F.

Define EéD"’CQn) = @,.; O(l) over Y, for simplicity, we write it as £5". If we

ignore C),, then we recover the A, _; case as in the last section. They are related

by the following.
D Anfl Anfl *
Lemma 4.1.1. £ = £, @ (£5"1)*(F).
Proof. Since A,,_1 is a Lie subalgebra of D,,, we can decompose the representation
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of D, as sum of irreducible representations of A,,_;. By the branching rule, we
have 2n = n + n, that is C** = C" & (C")* with C*" and C" the standard
representations of D,, and A,,_; respectively. For I(PnC*") = [, U I,, I; forms the

standard representation C" of A,,_1, and I, forms the (C")*. O
From the above lemma and direct computations, for any Cj,

200, 2 05" @ (Opi (1) ® O (—1))22.

Similar to (4,, C"*!) case, we define 0, : Q*0(Y, £0") — Q% (Y, L") on
ehn = @ O(ly) by 0y = Do + (1i;)2nxan, Where 1;; € QOL(Y,0(l; — 1)) for
any j > i, otherwise n; ; = 0.

By Lemma 2.3.4 and arguments similar to the proof of Proposition 3.1.1 for
the A, case, given any 7,41 with On;;11 = 0 for every i, there exists Nij €
QOL(Y, O(l; — 1)) for every j > i such that 3., = 0.

From the configuration of these 2n (—1)-curves, we can define a quadratic

form ¢ on the vector space Vo = C' = @,;C(v;) spanned by these (—1)-curves,
q: ‘/0 & % — Ca Q(/Uliavlj) = l’L : l]

The D, Lie algebra is the space of infinitesimal automorphism of ¢, i.e. D, =
aut(Vo, q).

Correspondingly, we have a fiberwise quadratic form ¢ on the bundle ST’?":
q: L0 @ Ll — O (F).
Proposition 4.1.1. There exists n with 5727 = 0 such that 5,7(] = 0.

Proof. 0,q = 0 if and only if ¢(9,s:, 5;) + q(si, 0,s;) = 0 for any s; € H(Y, O(L;))
and s; € H°(Y,0(l;)). From the definition of ¢, this is equivalent to n2,41-j; +

Monti—ij = 0, 1.e. Mij = —Mong1—jont1i for any j > 4. From [; + lopi1-5 =

lj + l?n—l—l—j = F, we have

Nij € Qo’l(Y> O(l; = 1;)) = Qo’l(Ya O(lan+1-j — lont1-i)) D Nant1—j2n+1—i-
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. . =2 . . .
We construct n which satisfies 8n = 0 with 7; ; = —on41-j2n+1—; inductively
on j —i. For j —i =1, we can always take 7; ;11 = —12,—i2n11-i- Note we have

Mnnt1 = 0. For 7 —i =2, we have

377i,z‘+2 = N i+1Mi+1,i4+2,
anQn—i—1,2n—i+1 = —Mon—i—12n—i"2n—i2n—i+1 = —Ti+1,i+27ii+1 = —8le‘,z‘+2,
so we can take Nii+2 = —M2n—i—1,2n—i+1-
Repeat this process inductively on j — ¢, we can take 1;; = —Nont1—j2n+1-i
for any j > 4. So there exists 7 satisfying d,q¢ = 0. O]

Until now, we have proved Eg” is not empty.

Restricting 25) " to C,, the corresponding line bundle summands are:

Op:(l), j=n+lorn+2
Oc, (1) = Op1(—1), j=n—1orn

Op1, otherwise.

The pairs of Opi(£1) in £5"|¢, are given by {l,_1,l,41} and {l,, l,42}. To con-
struct a trivialization of 27? "|c,, we need the following generalizations of Lemma

3.1.2 and Lemma 3.1.3.

Lemma 4.1.2. Under the same assumption as in Lemma 3.1.1. Assume l; 1, liyo -+ liyor
satisfy liy; - C = =1 and lijprj = lig; — C for j =1,2,---k. If ispitq = 0 for
2<p<k, k+1<q<2k—1andq—p < k—1, 1.e. the corresponding submatriz

of D¢ given by L1, lizo, - liyor looks like

Mit1li+k+1 TMitlit+k+2 -0 Thit1i+2k
0 Ni+2,i+k+2  *°° i+2i+2k
*
0 0 T Mikit2k
Okxk *
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. - 1
With Nit1iykets Nivzitkr2 Mivkirar 0 QO1(Y,0(C)). Suppose [iy1ivrlc],
[Mit2ivkrelc)s - Mivkivor|c] are nonzero, we can construct 2k holomorphic sec-

tions of £|c which are linearly independent at every point in C'.

Proof. In order to keep our notations simpler, we assume k = 2. The above
matrix given by l;11,livo, li13, l;14 has the form

0 Ni+1,i+2 Ni+1,i+3 *

0 0 0 Mi42,i+4

0 1i4-3,i+4
O2x2

0 0

From H°(Y,0c¢(liy4)) = HO(P',O(1)) = C? and [n;12414|c] # 0, there exist two
holomorphic sections of £|c which are linearly independent at every point in C:
s1 = (y1,u1,x1,t1)" and sy = (yo, us, T, t2)" with wuy,t1, us,t2 given in Lemma
3.1.2. Similarly, from H*(Y,Oc(li3)) = C? and [mit1443lc] # 0, we also have
two holomorphic sections of £|- which are linearly independent at every point in
C: s3=(y3,0,23,0)" and sy = (y4,0,x4,0)". If there exist ay, as, az, ay such that
a181+ asss + azss + assy = 0 at some point in C', then we have ait;+ asty = 0
and aju;+ asus = 0 at some point, which is impossible by the explicit formulas

for uy,t1,us,ty in Lemma 3.1.2. Hence we have the lemma. O

Lemma 4.1.3. Under the same assumption as in Lemma 3.1.1, we assume £|c =
0" @ (Op1(1) ® Opr(—1))®™ with each pair of Op(£1) and the corresponding
holomorphic structure as in Lemma 4.1.2. Then £|c is trivial if and only if

[n:51c] # 0 for any m;; € Q¥ (Y, O(C)).
Proof. Same arguments as in the proof of Lemma 3.1.3 and Lemma 4.1.2. O]

Proposition 4.1.2. The bundle SnD" over Y with n €2y" can descend to X if
and only if for every Cy and n;; € QU1 (Y, 0(Cy)), Mijle.] #0, i.e. n €EX.
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Proof. Restricting SDD " to C; (1 <i<n—1), the line bundle summands are

Opi(l), j=i+1lor2n—i
OCi(lj) = Opl(—l), j =101 2n—1+1

Op1, otherwise.

By Lemma 3.1.3, 27177"\@ is trivial if and only if [1;:41]cy], [Men—i2nt1-ilc,] are
not zeros. For C,,, The pairs of Opi (41) in £5"|¢, are given by {l,_1, 1,41} and
{ln,lny2}. By Lemma 4.1.3 and 7y, 41 = 0 (Proposition 4.1.1), £0%|¢,, is trivial
if and only if [,—1ns1lc,], [nmt2lc,] are not zeros. In fact, this £ is just an

extension of 2?,"‘1 by (2;74,"‘1)*(]7) for some n’EE’;{”‘l with ' C 7. O

4.2 D, Lie algebra bundle CT?”

Note that ¢'» = aut(£)", q) is a D,, Lie algebra bundle over Y. In order for ¢’

. oD,
o &l

to descend to X as a Lie algebra bundle, we need to show that ¢
Dy,
L

both 27]73" and O(F) are trivial on all Cy’s and d,¢ = 0. From the construction,

c; ®

o, — Og, (F) is a constant map for every C;. This follows from the fact that

Dy ; : D,
£, is a representation bundle of ¢, .

. . Dy, S*
4.3 D, spinor representation bundles 27(7 nS™)
We will only deal with ST, as S~ case is analogous. Consider a surface X with
a D, singularity p and a (—1)-curve Cy passing through p with multiplicity C,.
By Proposition 2.3.1, [I(P»5")| = 20=1, Define £{7"") .= @D,c; O(l) over Y.

Lemma 4.3.1. SgD”’$+) yaE) AZP(LAm ) (mF 4 C).

m=0
Proof. First we check that every line bundle summand in the right-hand side is

Oy (1) for a (—1)-curve [ in I°»S7) For any [; € I4»1C") we have [; - Cf =0,

li - F=0and F'- FF =0, F'- Cy = 1. For any 2m distinct elements [;;’s in



[A=1.C" e denote | = — (I, + -+ -1, ) +mF + C&, then Oy (l) is a summand
in the right-hand side. Since > = —1 and |- Ky = —1, 1 € I(®»S") Also the
rank of these two bundles are the same which is 2"~ = (3) + (g) + -+ (2["2}).
2

Hence we have the lemma. O

From the above lemma and direct computations, for any Cj,

£(Dn78+)

& e, 2 05 @ (Op (1) © Opr (—1)%".

The D,, Lie algebra bundle ;"™ has a natural fiberwise action on 28 ”’S+),

pi G @ e — gt

which can be described easily using the reduction to A,_; (with the node C,

being removed): recall

G = (N (=F) @ (5" 7)" ® &) @ (WL )" (F)),

(5]
SéDn,S ) _ @/\Qm £On 1) (mF)

m=0

and p is given by interior and exterior multiplications for /\'S}g‘"‘1

Proposition 4.3.1. Fix any n EED" there exists a unique holomorphic struc-

ST) 2 (Dn,ST)

such that the action of (D" on the resulting bundle 18

Dn7
ture on 2((]

holomorphic. Furthermore, if n G:X”, then SnD"’S ) can descend to X.

Proof. First, we recall the holomorphic structure on ¢}». In I (On.C™) = 1, U I,
with [, = {l; = C+ 377 Cruln+1 <i < 2n}y and I, = {F —li|l; € I}, let s;, s
and f be local holomorphic sections of O(l;), O(F — l;) and O(—F) respectively.

By Proposition 4.1.1, we have

i—1

_§ : ok

Sl - 77pazf)}p
p=1

1For simplicity, we omit the CJ factor.
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and

n n
agf?n Si - npa2n+1_isp - ,r]iapsp'
p=1

p=i+1
Back to (23*) , we define s;,..5, = 8i, A+ A iy, @ [ € T(AZME0" " (—mF))

where 7; € {1,2,---n} and define 5(£<Dn,s+>)* as follows:

_4._§_p+q, . o~ - _EE
62511---12m_ ( 1) nlp:Qn‘H*lqSil---ip---iq---izm nzp,kszl---zp_1k1p+1---zgm7

P,q P k#ip

where ZAJ means deleting the 7; component. We verify 5)23 = 0 by direct computa-
tions.

We claim that Og is the unique holomorphic structure such that the action of

CnD" on (S%D"’Sﬂ) is holomorphic, i.e.

Jepa(9) @+ g- (Dgr) = Dslg - @) (+)

for any g € F(CWD”) and z € I’ <<£‘g+>*>

We prove the above claim by induction on m. When m = 0, z = 55 €
I'(A°£2" 1), by direct computations, (x) holds for any g € I'(¢P) if and only
if Deso = 0 and Desi; = —7i2nt1-j50 — Dop_ii1 NipSps — Dopeisr NipSip fOT any
Sij € I'(A2€0""). When m = 2, from the above formula for 0gsij, we can get the
formula for ggsijkl. Repeat this process inductively, we can get the above formula
for O¢si,...i,,, - Hence we have the first part of this proposition.

For the second part, we will rewrite g in matrix form. Firstly, we have

B (L, "))
2ny —
S%D"’C )

SAn— 1
0’

with 7" C 1 and the upper right block B has the following shape

B: 6 * y
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for [8] eHY(Y,O(C,,)).

In particular, we have an exact sequence of holomorphic bundles:

0— (L) (F) — &b — 2?,"*1 — 0. (A)

n

By tensoring (A) with 2?,"’1(—]7 ), we obtain a bundle S; as follows,
0— Oy — 5, — /\2£?,"*1(—F) -0,
with the induced holomorphic structure given by
0

B 0 14

Ap—
AOE /n 1
n

0o |0

Ap_
AOQ /n 1
n

551: —
K

A?)::,”*l (—F) /\22;‘,"*1(7F)

The occurrence of £ in that location is because [, 1 + Lo With 1,41, 1,400 €
I(PnC) s the largest element in JAn—1A?C") and F — lns1 — lpao = €, because
F=2C}+2C)+---2C, 5+ C,_1 + C,.

Similarly, we have an extension bundle

An,1 An—l
0= AL (—F) = Sy = A*E (=2F) — 0,

with
552 _ a/\2£:/n71(_F) — 82 ,
0 a/\‘*S:/"_l(—ZF)
where
+0
By = 0 4 )
0 0 - =+

for [5] GHI(Y, Hom(O(ll + lj + ln+1 + ln+2 — 2F>, O(ll + lj — F))) = HI(Y, O(Cn))
with i,7 € {n+3,n+4,---,2n}. And the number of £4’s is (";2)
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Inductively, we obtain 0 ( Dn’$+)>* as above which has the shape that satisfies
n

ol
Lemma 4.1.3:
/\OQ;?/H71 Bl
5 - 0 /\22:?,"—1(_}7) BQ
(25]Dn,s+))* - —
0 0 /\42:,"*1(72}«“)

s n—2 n—2 n—2 n—
The number of £0 EQl(Y;, O(Cy)) in dgis (%) + ("}°) + -+ (2[%2}) = 2n73,
To prove that (S‘f) can descend to X when n GE?”, we need to show
(2?) lc, is trivial for every C;. When ¢ # n, this follows from the fact that
2;‘,”‘1 is trivial (Proposition 3.1.2) and Extg, (O, O) = 0. When ¢ = n, this follows

from Lemma 4.1.3 and 8 = 9y, ni2 €Q(Y,0(C,)) with [-1n41]c,] #0. O



Chapter 5

E,, case

5.1 FEj case

We recall that [1] Es=aut(C*", c) for a non-degenerate cubic form ¢ on the stan-
dard representation C?". The other minuscule representation is C?7.

We consider a surface X with an Eg singularity p and a (—1)-curve Cy passing
through p with multiplicity C. By Proposition 2.3.1, T (Es.C*") has cardinality 27.
For any two distinct (—1)-curves [; and [; in I, we have [; - [; = 0 or 1.

Define EéEG’CW) = @,.; O(I) over Y, for simplicity, we write it as £7°. If we

ignore C, then we recover the As case as in section 3.1.

Lemma 5.1.1. £5% = £ @ (A2L)*(H) @ (A°L5°)*(2H), where H = 3C} +
3C1 + 30y +3C5 +2C, + C5 + G,

Proof. Eg has A as a Lie subalgebra, the branching rule is 27 = 6 + 15 4 6,
i.e. C*" = C%® A*(C®)* @ AS(C®)*. The first 6 (—1)-curves in I : I} = C}, I, =
Cl+C, - lg = C}+Cy+ Cy+ C3+Cy + Cs form the standard representation C°
of As. The next 15 (—1)-curves are given by H —[; —[; with i # j € {1,2,--- ,6}.

The remaining 6 (—1)-curves are given by 2H — 1 —ly — -+ — li——1lg. O
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From the above lemma and direct computations, for any Cj,
L%, =2 OZP @ (Op1 (1) @ Opr (—1))%5.

From Lemma 5.1.1, we can easily determine the configuration of these 27
(—1)-curves [29]: Fix any (—1)-curve, there are exactly 10 (—1)-curves intersect it,
together with the fixed (—1)-curve, they form 5 triangles. A triple l;,1;, [}, is called
atriangle if [;+1;+ 1, = K', where K’ = 3C§ +4C} 4+ 5C5+6C5 +4Cy +2C5+ 3C.

From the configuration of these 27 (—1)-curves in Y, we can define a cubic

form ¢ on the vector space Vy = C' = @,,C(v;) spanned by (—1)-curves,

c: ‘/0®%®% — C7 (Uli)vlj7vlk> —
0 otherwise.

The signs above can be determined explicitly [1][15] such that Es = aut(Vp, c).

Correspondingly, we have a fiberwise cubic form ¢ on the bundle SnEﬁ,
c: L@ el Ll — O(K).
Proposition 5.1.1. There exists n with 5727 = 0 such that 5,70 = 0.
Proof. Note 5770 = 0 if and only if
c(0y3i, 85, 8k) + (84, 0n84, 81) + (84,84, Opsy) = 0 (%)

for any s; € H(Y,0(l;)), s; € H*(Y,0(l;)) and s € H°(Y,0(l;)). From the
definition of ¢, if [;+;+1; = K’, then the above equation (x) holds automatically.
If l; + 1, + I # K', without loss of generality, we assume [; - [; = 0, then we have
the following four cases.

Case (i), if l; - I, = 0 and [; - [, = 0, then () holds automatically.

Case (i), if l; - I, = 0 and [; - [, = 1, then (*) holds if ny, gr—;,—;, =0 .

Case (7i4), if [; - [, = 1 and [; - [ = 0, then (*) holds if n;, g/—;,—;, = 0.
Case (iv), if [l = 1 and [;-I;, = 1, then (*) holds if ny, x+—y, 1, £, 57—1,-1, = 0,

here the sign is determined by the signs of cubic form.



In conclusion, for any I;,1; € I(FeC) if [; - 1; # 0, then 7, ; = 0. If [; - I; = 0,
then [; — I, = a (j > 1) for a € T, ie. n;; € Q% (Y,0(v)). And for any other
Npg € QVHY,0(a)), we have n;; £1,, = 0. From the signs of the cubic form
¢, we know that given any positive root «a, there exists 6 7, ;’s in Q' (Y, 0(«a)),
where 3 of them are the same and the other 3 different to the first three by a

sign. We use computer to prove we can find such 7; ;’s satisfying 5727 = 0. O
Until now, we have proved Efi"' is not empty.

Proposition 5.1.2. The bundle £nEG over Y with n EE}]”;G can descend to X if
and only if for every Cy and n;; € Q" (Y, 0(Cy)), iile] # 0, i.e. n €55,

Proof. From Lemma 5.1.1, Proposition 5.1.1 and the order of I(Es:C*")_for n EE{”;G,
L7 can be constructed from S;‘F’ for some 7/ €Z4* with 7' C n. Under the (non-
holomorphic) direct sum decomposition £56 = £a5®(A2L0%)* (H)D(A° L) *(2H),

5,7 for 256 has the following block decomposition:

— +5  x *
Dpssloy-om 0 45 *
0 0 =8
_ + * *
’ i |y Ly
0 0 =8
0 0 Dty

Here £8 €Q%(Y,O(Cs)), it is because the corresponding two (—1)-curves [ and
I satisfying | — I' = Cs. The signs of 3 can be determined by 9,c = 0.

From above, we know that £7%|¢, (k # 6) is trivial if and only if 2;‘,5 |, (k #6)
is trivial. From Proposition 3.1.2, we have the theorem for k& # 6. For Cg, from

Lemma 4.1.3, £%|¢, is trivial if and only if these +4’s satisfy [5|c,] # 0. O
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Note that ¢} = aut(£}*,c) is an Fg Lie algebra bundle over Y. In order
for (fﬁ to descend to X as a Lie algebra bundle, we need to show that c|¢, :
£71;-‘76 o ® ££6 c ® 256
follows from the fact that both 256 and O(K') are trivial on all C;’s and 9,,¢ = 0.

o, — Oc¢, (K') is a constant map for every C;. This

From the construction, 256 is a representation bundle of Cfﬁ.

The only other minuscule representation C27 of Eg is the dual of the standard

representation C27, therefore €570 = (E%EG’CW)) :

5.2 FE- case

We recall that [1] Ey=aut(C%,t) for a non-degenerate quartic form ¢ on the
standard representation C°. There is no other minuscule representation of E.
We consider a surface X with an E7 singularity p and a (—1)-curve Cj passing

E7,(C56

through p with multiplicity C;. By Proposition 2.3.1, I ) has cardinality 56.

For any two distinct (—1)-curves [; and [; in I, we have [; - [; = 0,1 or 2.
Define £(()E7’C56) = @,c; O(l) over Y, for simplicity, we write it as £)7. If we

ignore C'7, we recover the Ag case as in section 3.1.

Lemma 5.2.1. £57C) = gdo @ (A2826)*(H) @ (AP L2%)* (2H) @ (A5L29)*(3H),
where H = 30& + 301 + 302 + 303 + 304 + 205 + 06 + 07.

Proof. Similar to Eg case. O]

From the above lemma and direct computations, for any C},
Lo 2 052 @ (Op1 (1) ® Opi (—1)) "2

The configuration of these 56 (—1)-curves is as follows: Fix any (—1)-curve,
there are exactly 27 (—1)-curves intersect it once, 1 (—1)-curve intersects it twice.
Ifl;+1;+1,+1, = 2K’ with K’ = 2C} 4 3C; +4Cy+5C5+6C, 4+ 4C5 +2Cs + 3Cx,

the four (—1)-curves l;, [;, [, and [, will form a quadrangle.
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From this configuration, we can define a quartic form ¢ on the vector space

Vo = C' = @,.,C(v;) spanned by all the (—1)-curves,

+1 i+ +1,+ 1, = 2K
t: ‘/0®%®%®‘/0 — Ca (/Ulmvl]'a Ulpa Ulq) —
0 otherwise.

The signs above can be determined explicitly [1] such that E7 = aut(Vj,t).

Correspondingly, we have a fiberwise quartic form ¢ on the bundle 257,
. qE B E B
LT RLTRLETR LT — O((2K).
Proposition 5.2.1. There exists n with 5727 = 0 such that gnt = 0.

Proof. Similar to Eg case, but even more calculations involved. We will omit the
calculations here and only list the conditions for Ent = 0. From gnt = 0 we have
when [; - [; # 0, 7;; = 0. That means all the nonzero 7, ;’s are corresponding to
li-1; =0, then [; — [; = « for some root «, i.e. n;; € Q% (Y,0(a)). Conversely,
given any positive root «, there exists 12 7; ;’s in Q% (Y, O(«)), where 6 of them
are the same and the other 6 different to the first 6 by a sign. We use computer

)
to prove we can find such 7; ;s satisfying 9, = 0. O
Until now, we have proved 557 is not empty.

Proposition 5.2.2. The bundle £WE7 over Y with n 6557 can descend to X if
and only if for every Cy and n;; € QO (Y,0(Cy)), nijlc,] #0, i.e. n 65?{.

Proof. Similar to Eg case (Proposition 5.1.2). O

Note that (" = aut(£]7,t) is an E; Lie algebra bundle over Y. In order
for CWE? to descend to X as a Lie algebra bundle, we need to show that t|¢, :
27]757 c; @ 2,]757 c; @ £7}737 c; @ SnE7
This follows from the fact that both £77 and O(2K’) are trivial on all C;’s and

o, — O¢, (2K') is a constant map for every C;.

dnt = 0. It is obvious that £F7 is a representation bundle of ¢
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5.3 FEg case

Though FEg has no minuscule representation, the fundamental representation cor-
responding to C is the adjoint representation of Es.

We consider a surface X with an Ejg singularity p and a (—1)-curve Cj passing
through p with multiplicity C;. By direct computations, |/| = 240. In this case,
[ €Iifand only if I — K’ € ®, where K’ = C} + 2C, + 3Cy + 4C3 + 5Cy + 6Cs +
4Cs + 207 4+ 3Cg. So 5698 defined in section 1.2 can be written as follows:

&* =0 o @ 0(a) = (0K & P O)(-K').

acd lel

We will prove that (££%,0,) with ¢ = (pa)aco+ € VUx descends to X in

chapter 6.
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Chapter 6

Proof of Theorem 1.2.1

In the above three chapters, we have constructed and studied the Lie algebra
bundles and minuscule representation bundles in A,, D, and E, (n # 8) cases
separately. We will prove the holomorphic structures on these bundles can be

expressed by forms in the positive root classes and the representation actions.

Proof. (of Theorem 2.5.1 and 2.5.2) Recall that when p : ¢ — End(V') is the
standard representation, sﬁf”v) (n € Z¥) admits a holomorphic fiberwise symmet-
ric multi-linear form f. And 9, f = 0 implies that 7; ; = 0 unless [;—1; = a(j > i)
for some a € ®T. Thus n;; = v, € Q% (Y,0(«)). Furthermore, if 7; ; and ny
are in Q% (Y,0(«a)), then they are the same up to sign. Thus we can write
Mij = NawPa, Where ng,,’s are as in Chapter 2, since p preserves f. Namely,
Dy =00+ 2 pear CaP(Ta) = Do+ L ocar P(a) With 0o = ol

The holomorphic structure on the bundle ¢ := aut(&(f’v), f)is 0, = 0o +
Y aco+ Catd(xy), which is the same as 3, for &S in Chapter 1, i.e. (§ = &S,

The only minuscule representations (g, V') besides standard representations
are (A,, \FC™1), (D,,, S*) and (Eg, C¥7). We denote corresponding actions as p
as usual. In each case, for £ to act holomorphically on the corresponding vector
bundle, the holomorphic structure on 2(() ) can only be ap.

The filtration of 2(() ") gives one on Q;W), since it is constructed from exten-
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sions using elements in ;\ ;11 (section 2.4).
We note that all the above Lie algebra bundles and representation bundles

o] € HY(Y, Oc,(C))) for all Cy’s,

over Y can descend to X if and only if 0 # [pc,

ie. ¢ = (Va)aco+ € Ux. O

From the above arguments, Theorem 1.2.1 holds true for ADE except Ejg

case.

Proof. (of Theorem 1.2.1) It remains to prove the Eg case.

&* =0 o @ 0(a) = (0K & P O)(-K').

acd lel

We want to show that the bundle (558,5@ with ¢ = (pa)ace+ € ¥y can
descend to X, ie. E£%|¢, is trivial for i = 1,2,---8. Note O(K’)]¢, is trivial

for every i, but O(l)

¢, can be Op1(£2), hence Lemma 3.1.1 is not sufficient.
However, if we ignore Cy (resp. C7) in Y, then we recover the A; case (resp. D7
case). Our approach is to reduce the problem of trivializing £7*|¢, to one for a
representation bundle of A7 (resp. Dy).

Step one, as A7 is a Lie subalgebra of Fg, the adjoint representation of FEg
decomposes as a sum of irreducible representations of A;. The branching rule is
248 = 8 + 28 + 56 + 64 + 56 + 28 + 8, correspondingly, we have the following

decomposition of £4® over Y,
EP* = S7(—K") @ AX(LT) (H — K') & N (£7) (2H — K')&
£57 @ (£57)" & AN(ET) (H) & A°(L7)"(2H) & (£57)"(K),
where H = 3C) + 3C; + 3Cs + 3C3 + 3Cy + 3C5 + 2Cs + C7 + Cs and K' =

Co +2C) + 3Cy + 4C3 + 5Cy + 605 + 4Cs + 2C7 + 3C5.

Step two, instead of SOA T, we use 227 which is trivial on C; for i # 8. We
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consider the bundle

£ = 87~ K') @ ALY (H — K') & A(827)° (2H — K')

L0 @ (L57)" & AY(L07)(H) @ A°(£27)"(2H) & (£57)"(K).

We have 0,5, = 0+ ZQEQ’L ad(pq). Since O(K') and O(H) are both trivial on
C; for i # 8, £'7 is trivial on C; for i # 8.

Step three, we compare £ with 558. Topologically they are the same.
Holomorphically,

5558 =0y + Z ad(po) = Ogrpg + Z ad(pey)-

+ + gt
acf ag®p \OY

If we write the holomorphic structure of 558 as a 248 x 248 matrix, then ¢, with
o € @Eg\@L must appear at those positions (,v) with § — v = «, where
has at least one more Cg than v. That means, after taking extensions between
the summands of €%, we can get 858. Since £'7# is trivial on C; for i # 8 and
Extp, (0,0) =0, we have £Z* trivial on C; for i # 8.

Similarly, if we consider the reduction of Eg to D7, from the branching rule

248 = 14 4+ 64 4+ 1 + 91 4 64 + 14, we have the following decomposition of 8(?8,
EPs = el (- K@) (Cr—CQ @0l @ (£ ) (CS - Cr)m(e8T) (K).

Instead of Eéj T, we consider 25 7. Similar to the reduction to A7 case as above, we

¢,) # 0, then £J% is trivial on C; for i # 7.

will get for (£2%,9,,), if we take [¢c,
Hence we have proved Theorem 1.2.1 for type Fk. O

Proof. (of Theorem 2.5.3) We only need to find a divisor B in Y such that (7)
B is a combination of C;’s and Cy with the coefficient of Cy not zero, and )
O(B) can descend to X. Then if we take k to be the coefficient of Co in B,
Lff’v) = Sk&(og’v) ® O(—B) with ¢ € Ux can descend to X and does not depend

on the existence of Cj.
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(A, C™Y) case, B = (n41)Co+nCy + (n—1)Co+ -+ Cp.

(A, NFC™ 1) case, B = (n+1)Co+ (n—k+1)C1+- - (k—1)(n—k—1)Ch_y +
k(n — K)Cr + - - k.

(D,,, C*") case, B=F = 200 +2C1 4+ -+ 2C, o+ C,_1 + C,,.

(D,,ST) case, B = 4Co+201 +4Cy+- - +2(n—2)C, o+ (n—2)Cp_1 +nC,,.

(Eg, C¥7) case, B = 3Cqy + 4C, + 5Cs + 6C5 + 4Cy + 2C5 + 3Cs.

(Ex, C%) case, B = 2Cy + 3C, + 4Cs + 5C5 + 6Cy + 4C5 + 2C5 + 3C;. O

Remark 6.0.1. We can determine Chern classes of the Lie algebra bundles
and minuscule representation bundles. For any minuscule representation bun-
dle £V,

a(eeV) = > [ € HX(Y,Z).

le1(asV)

For any Lie algebra bundle £, we have
C1 (53) =0
and

&)= D al0@)a(0(B) = Y c(0(a))er(0(—a)) = dim(g)—rank(g).

a#£BED acd+

In particular, the bundles we defined above are not trivial.

Remark 6.0.2. There are choices in the construction of our Lie algebra bun-

dles and minuscule representation bundles, we will see that these bundles are not

unique. Take £3> (p = (Pa)acat € ¥x) as an example. The holomorphic
2

structure on 2?2 15 as follows:

5 PCy  PC1+Co
590 - 0 5 Yoy
0 0 0

with [9001|01] 7£ 0 and [@CQ|C2] 7é 0. We replace PC1+Cs by Pci+Cy T ¥, where
Y€ HY(Y,0(Cy + C2)) # 0. If [)] # 0, then 0,yy is not isomorphic to d,,.



Remark 6.0.3. Our g-bundle &} over Y is given by aut(&(f’v),f) with [ :
X" S%g’v) — Oy (D). If O(D) = O(rD’) for some divisor D', then

f: QL (=D') — Oy.

And Aut(S,ggy)(—D’), f) is a Lie group bundle over Y lifting £3. In general, we
only have a G X Z.-bundle, or so-called conformal G-bundle in [12].
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Affine ADFE bundles
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Chapter 7

Affine ADFE Lie algebra bundles

7.1 Affine ADE curves

Definition 7.1.1. A curve C = UC; in a surface X is called an ADE (resp.
affine ADE) curve of type g (resp. @) if each C; is a smooth (—2)-curve in X
and the dual graph of C is a Dynkin diagram of the corresponding type.

It is known that C' is an ADE curve if and only if C' can be contracted to a
rational double point. In this case, the intersection matrix (C; - C;) < 0 [2].

If C is an affine ADE curve, then the intersection matrix (C; - C;) < 0 and
there exists unique n;’s up to overall scalings such that F' := ) n,;C; satisfies
F - F = 0. Dynkin diagrams of affine ADFE types are drawn as follows and the
corresponding n;C;’s are labelled in the pictures. ADFE Dynkin diagrams can be

obtained by removing the node corresponding to Cj.

1Cy

An . K
1C7 10y  1C,.,1C,41C,

o4
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1Cy 1C,
Dn3 b—I-o-»—I—o

1Cy 20y 2C,-32C, 51C, 4

1Cy
2Cs
E@' .
101 202 303 204 105
2C;
E7 : [ ° ® ® o o
1C7 20y 3Cs 4Cy; 3C5 2Cs 10
3Cs
Eg .

1Cy 20, 30y 4C5 5C, 6C5 4Cs 2C;

Figure 4. Dynkin diagrams of affine ADFE types

Remark 7.1.1. We will also call a nodal or cuspidal rational curve with trivial

normal bundle an Ay curve.

Remark 7.1.2. By Kodaira’s classification of fibers of relative minimal elliptic
surfaces [2], every singular fiber is an affine ADE curve unless it is rational with
a cusp, tacnode or triplepoint (corresponding to type 11 or II[(El) or VI(EQ)
in Kodaira’s notations), which can also be regarded as a degenerated affine ADE
curve of type 121\0, 121\1 or 121\2 respectively. In this thesis, we will not distinguish
affine ADE curves from their degenerated forms since they have the same inter-

section matrices. We also call the affine ADE curves as Kodaira curves.



Definition 7.1.2. A bundle E is called an ADE (resp. affine ADE) bundle of

type g (resp. @) if E has a fiberwise Lie algebra structure of the corresponding

type.

In the following section, we will recall an explicit construction of the loop Lie
algebra Lg-bundles and the affine Lie algebra g-bundles from affine ADE curves
in X.

7.2 Affine ADE bundles

Suppose C' = Ul_,C; is an affine ADE curve of type g in X, we will construct
the corresponding affine ADFE bundle 5§ of type g over X as follows.

First, we choose an extended root of g, say Cp, then g is corresponding to the
Dynkin diagram consists of those C; with i # 0, i.e. @ := {a = [}, aCi] €
H?*(X,Z)|a? = —2} is the root system of g. As above, we have a g-bundle
g = 0% g @D.co O(a). We define

£ = PESY ® O(nF)) and EF = PEFY ® O(nF)) @ O.

nez nez
We know &5 := {a+nFla € ®,n € Z} U{nF|n € Z,n # 0} is an affine
root system and it decomposes into union of positive and negative roots, i.e.
P; = @g U @7, where @; = {>a,C; € P4la; > 0 for all i} = {a+nFla €
" n€ZsotU{a+nFla € ®™,n€Zsi} U{nk|n € Z>:} and &7 = —@g.
To describe the Lie algebra structures, we proceed as before, for every open
chart U of X, we take a local basis e! of Eég’cb)\y (ef is just hY or zf as above),

eV of O(nF)|y, eV of O|y, compatible with the tensor product, for example,

U U _ .U
nr @ €p = €y myp- Then define
U.U UU U U U
e enrs €5 emplLes = € 1 €5 ]<I>e(n+m)Fv (7.1)

e+ Al el el = 60 ¥ Loy + 1 oh(el  el)e. (7.2)

o6



Here [, | is the Lie bracket on Eég’q)) and k(z,y) = Tr(adz ady) is the Killing

form on g.

Lemma 7.2.1. (1) (resp. (2)) defines a fiberwise loop (resp. affine) Lie algebra

structure which is compatible with any trivialization of EéLg’(D) (resp. Eéﬁ’q))).
Proof. See Proposition 23 of [21]. O

From the above lemma, we have the following result.

Proposition 7.2.1. If C is an affine ADE curve of type g in X, then EéLg’q))

(resp. Séﬁ’q))) is a loop (resp. affine) Lie algebra bundle of type Lg (resp. @) over
X.

Note any C; with n; = 1 can be chosen as the extended root (Appendix B).

Proposition 7.2.2. The loop Lie algebra bundle (EéLg’q)), [, ]Lg) does not depend

on the choice of the extended root.

Proof. Suppose Cy, (k # 0) is another root with ny = 1, we denote ¥ = {5 =
> 0iCi] € H*(X,Z)|3* = —2}, then W is a root system of g. As before, we
construct the Lie algebra bundle %% and £"*") from W.

We denote o := Z#O n;C; = F — Cy, the longest root in ®. For any a =
> iz0@i(a)Ci € @, ag(a) can only be 0, 1. Hence there is a bijection between
¢ and VU given by o — = a — ag(«)F. Then from the definitions of SéLg7q>) and

SéLg’\p), we know they are the same as holomorphic vector bundles.

We compare the Lie brackets on them. We choose a local basis of SéLg’\I’)
compatible with those of SéLg’cb) and define [, g v similarly as [, |0, i-e.

(i) when f=a € ®N W, we take x5 = x,;

(i7) when = a+ F € U\, we take x5 = xqeF;

(i77) when f = a — F € U~\®, we take x5 = x4e_p;

(

iv) take h; (i # 0, k) as before, take hg = —hy, as we want [z¢,, T_c,|rgv =

[x—ao-&-Fa xag—F]Lg,CI)-

o7



It is obvious |, |rgw = [, |Lge OR géLg,\I/) ~ géLg,@)‘ -

For the affine case, we recall that the Killing form of g is the symmetric
bilinear map k : g x g —C defined by k(x,y) = Tr(adx ady). It is ad-invariant,
that is for z,y,z € g, k([z,y], 2) = k(z, [y, 2]).

Lemma 7.2.2. For any simple simply-laced Lie algebra g with a Chavelly basis
{Zo,a € ®;h;, 1 < i <r} and m*(g) the dual Coxeter number of g, we have

(1) k(hiyxo) =0 for any i and o;

(17) k(zq,z8) =0 for any a4+ B #0;

(i24) k(hi, h;) = 2m*(g)(Ci, Cj);

(1) k(xo,x_o) = 2m*(g) for any .

Proof. Directly from the Killing form k being ad-invariant or see [28]. O

Proposition 7.2.3. The affine Lie algebra bundle (Séa’q)), [, lg.@) does not depend

on the choice of the extended root.

Proof. Follow the notations in Proposition 7.2.2, but we will take hg = —hq, +
2m*(g)e.. We will check that [, |4 = [, |50 on Eéa’q/) = géﬁ,¢>):
(a) when 51 =y + F,fa = as+ F € UN\D, oy, ap € D7\ we have

[h,Bl EnF, hﬁg emF]ﬁ,\I/ = n5n+m,0k(hﬁ1v hﬁz)em
which is the same with
[h—alenFa h—ag emF]ﬁ,Cb = n5n+m,0k(ha17 hoez)eca

since k(hﬁv hﬁ2) = 2m*<g) <B1762> = 2m*(9)<F —o, F— 042> = k(ha17 hOQ)’
(b) For [hienp, Taemrlg e, automatically from k(h;, z,) = 0 and loop case.

(¢c) When S =a+ F € UM\®, a € &7\,

[wgenr, T_pemrlgw = hgenim)F + Nonimok(s, T_p)ee,

o8



which is the same with

[xfae(n—i-l)F’ xae(m—l)F]’g\,é = _hae(n+m)F + (n + 1)5n+m,0k<xaa xfa)eca

by considering m + n = 0 and m + n # 0 separately.
(d) For [Za,€np, Tasemplge With a1 +ay # 0, automatically from k(zq,, Za,) =

0 and loop case. O

For simplicity, we will omit ® in (g,®), (Lg, ®) and (g, ®) when there is no

confusion.
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Chapter 8

Trivialization of 88 over (;’s after

deformations

If C = UC; is an affine ADE curve in X, then the corresponding F' = ) n;C;
satisfies F'- F' = 0, i.e. Op(F) is a topologically trivial bundle. If Op(F) is trivial
holomorphically and ¢(X) = 0, then from the long exact sequence of cohomologies
induced by 0 = Ox — Ox(F) — Op(F) — 0, we know H°(X,Ox(F)) = C2
Hence F'is a fiber of an elliptic fibration on X.

Suppose X is an elliptic surface, i.e. there is a smooth curve B and a surjective
morphism 7 : X — B whose generic fiber F}, (b € B) is an elliptic curve. Assume
7 is singular at by € B and Fy, = > n;C; is a singular fiber of type g. Hence,
we have a g-bundle Sg over X. The restriction of Sg to any fiber Fj, other than
F,, is trivial because F, N C; = & for any 7. However, 505 | F,, 1s not trivial, for
instance O(—C})|¢, = Op1(2). Nevertheless, we will show that after deformations
of holomorphic structures, Eg will become trivial on every irreducible component

of Fbo-
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8.1 Trivializations in loop ADFE cases

In part I, we showed how to take successive extensions to make the g-bundle £§
trivial on every component C; of the ADE curve C' = U]_,C;. We will use the

similar method in loop ADFE case.

Definition 8.1.1. Given any ¢ = (o) 4eqr € QN (X, Pcor O(@)), we define
gyt WUX, E%) — QOUX, E5%) by Do) := Do + ad(y).

More explicitly, similarly as explained in section 1.2, we have

5(%‘1’) = 50 + Z Z (Catnrenrad(xs) + Cfa+(n+1)Fe(n+1)Fad(5U—a))

nEZzo acdt

+ Z ZC%H+1)F€(n+1)F6Ld(hZ‘>,

ne€Lsg i=1

Proposition 8.1.1. 5(%@ 1s compatible with the Lie algebra structure on SOLQ.

Proof. 5(%@)[ , |g,e = 0 follows directly from the Jacobi identity. ]
For 5(%@ to define a holomorphic structure, we need 5?@@) = 0, which is

equivalent to the following equations:

(

50902F = Zp+q:n Za€¢'+ +0;(ha)Patpr-atqr,

50¢O¢+NF = Zp+q:n(2al+o¢2:a :lzgoal"‘stooQ"FqF + Z::1 <O[7 CZ> SOO"HDF('D;L'ZF)’

50907a+nF = Zp+q:n(2a2_a1:a T Pa; 1pFP—artqr + Zle <_O‘7 Ci> (p*aJrPFSDfJF)’

\

where a;(h,) is the coefficient of h; in h,,.

Proposition 8.1.2. Given any (pc,)i_y € Q"H(X,P._, O(Cy)) with dpc, = 0
for every i, it can be extended to ¢ = (¢a)pecor € LN (X, B, cor O(a)) satisfying
g g

53) = 0. Namely we have a holomorphic Lg-bundle 5:;49 over X.

In order to prove this proposition, we need the following lemma.
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Lemma 8.1.1. If p,(X) = 0, then for any o € &%, n € Zso, H*(X,0(nF)),
H*(X,0(a+nkF)) and H*(X,0(—a + (n+ 1)F)) are zeros.

Proof. Since F is an effective divisor and H(X, Kx) = 0, we have for any n > 0,
H°(X, Kx(—nF)) = 0. This is equivalent to H*(X,0(nF)) = 0 by Serre duality.
Similarly, H?(X, O(a+nF)) = 0 follows from H°(X, Kx(—«a)) = H*(X,0(«a)) =
0 (Lemma 1.2.1). The proof of H*(X,0(—a + (n+ 1)F)) = 0 uses the fact that

F — « is an effective divisor for any oo € 7. O

Proof. (of Proposition 8.1.2): the equation 5?%4,) = 0 can be rewritten as follows:

(

Oopo, =0fori=1,2--- 7,

D0Pa = D taraEPar Paz)s
00P—aogrr = Oopcy =0,

D0P-atF = 2 ay—ar—aTPar Pzt F);
0% = Y aear (£i(ha) Patp—arr),

where ag = F — C is the longest root in ®.

Firstly, we can solve for all the p,’s, @ € ®* from H?*(X, O(«)) = 0 (Proposition
1.2.2). Secondly, we get all the p_, r’s, @ € & from H*(X,0(—a + F)) = 0.
Thirdly, since we have all the ¢,’s and ¢_,4r’s, we can solve for all the ¢%.’s for
1 < i <rfrom H*(X,O(F)) = 0. Do this process for ¢oinr, Y—atm+nr and

30’(',1 HDF inductively on n. 0

By Lemma 1.2.1, there always exists pc, € Q%(X, O(C;)) such that 0 #
o] € HY(X, O¢,(C;)) = C for each 1 = 0,1,---7.

[9001'

Theorem 8.1.1. For any given i, the holomorphic Lg-bundle 559 over X s
trivial on C; if and only if [pc;|c;] # 0.



Proof. The proof will be given in section 8.3 and 8.4. In section 8.3, we deal with
all the loop ADE cases except loop Eg case which will be analyzed in section

8.4. [l

8.2 Trivializations in affine ADFE cases

Follow the notations in section 8.1, we define 5(%@ := 0y +ad(p) on 53, note the

adjoint action here is defined using the affine Lie bracket.
Proposition 8.2.1. 5(%(@) 1s compatible with the Lie algebra structure on 8g.

Proof. d(ya)| , lz0 = 0 follows directly from the Jacobi identity and the Killing

from being invariant under the adjoint action. m

It is easy to see that 5?%@) = 0 in the affine case is equivalent to 5?%@ =01in

the loop case. Hence we have a new holomorphic structure 5(@@) on Soa :

Theorem 8.2.1. For any given i, the holomorphic g-bundle Sg over X 1s trivial

Ci] 7é 0.

on C; if and only if [pc,

Proof. This follows from Theorem 8.1.1, 0 — O — EI — EL — 0 and

8.3 Proof (except the loop Es case)

In this section, we use the symmetry of the affine ADE Dynkin diagram (except

Recall, topologically, £ is £° = @nez(ﬁég’qh) ® O(nF)), but with a holo-

Ey) to show that EL9 is trivial on Cj if an only if [,
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morphic structure 5(%@) of the following upper triangular block shape:

0

* k
£8P @O((n+1)F)

Ql
€

I
o
S5

£8P go(mF) *

0 0 0

e8P @o((n-1)F)

i.e. £% is constructed from successive extensions of &E,g’q)) ® O(nkF)’s.
Note 00|00 = o + 2 e+ ad(pa). By Theorem 1.2.1, for every i # 0,
o] # 0. We also know O(F)|c, is trivial

£ is trivial on C; if and only if [pc,
for every ¢ because F' - C; = 0. Thus, when i # 0, 5£Q|Ci is constructed from

successive extensions of trivial vector bundles over C; & P!. This implies that

o] # 0 as Exty, (0,0) = 0.

£, is trivial if and only if [,

Now we consider 7 = 0. Since g # Eg, the affine Dynkin diagram always
admits a diagram automorphism, that means we can write EOL ? as @nez(&gg @
O(nF)) (see Proposition 7.2.2). Suppose the extended root corresponding to ¥
is C}, and the longest root in WU is f.

We will rewrite the holomorphic structure 9, ¢) in terms of the ¥ root system.
Note 5(%@ is determined by the loop Lie algebra structure which is independent of
the choice of the extended root. We choose a local base of Ség "*) as in Proposition
7.2.2 and define 5@,7\1,) to be the same with 5(%@), then obviously ¢p = pp when
D # nF.

Because (SSS,LB’@),E(%@) = (Sq(fg’q}),g(w,\p)) as a holomorphic vector bundle,

similar to the arguments in (£, 9,)) case, we have when i # k, EL is

trivial on C; if and only if [¢¢,|c,] # 0. Note Yoy = @—aetr = Pc,- S0 we have

Theorem 8.1.1 when g # Eg.
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8.4 Proof for the loop Eg case

Similar to the above section, we have when ¢+ = 1,2,---8, 5£E8 is trivial on Cj if
and only if [¢¢;|c,] # 0. The question is what about Cy?

We recall £% 1= 0% & @, O(a). For any o € @, we write a;(a) as the
coefficient of Cy in «, then O(a)|c, = Opi(a;()). Among &, there are 63 roots
with a1(a) = 0, corresponding to the positive roots of the Lie sub-algebra Ex;
56 roots with a1 (a) = 1, corresponding to weights of the standard representation
of Er; 1 root with a;(«) = 2, which is just the longest root oy = F — Cy. We
denote 557 209 g @aé@,al(a)ZOO(a)’ V0+ = ®ae¢,a1(a):10(a) and Vi~ =
Doc ay(@)=—1 Oa), then

EF=E" @08V, @ Vy @ O0(ag) & O(—a).

When O(a) is a summand of Vi, ie. O(a)|lg, & Opi(1), we have O(a +
Co)lcy = Opr(—1) and o + Cy = F — (ap — «) with (ag — ) € &7, that is
O(a + Cp) is a summand of V (F). Since F' = ag + Cj satisfies F'- F' = 0, we
have O(F)|¢, = Op1, O(ap)|c, = Op1(2) and O(2F — )|y = Opr(—2).

For the loop Eg-bundle, we have

& = PE™©0omF)

= DUET @0V @V @ O(an) ® O(~ap)) ® O(nF))
= P(ET D0V @Vy (F)®O(ag — F) @ O(F — ap)) @ O(nF)).

We denote L2 2 £ 0 0@ Vit @ Vi (F) @ O(ag — F) ® O(F — ap). From

definition of 0, £5% is built from successive extensions of L2 ® O(nF)’s, i.c.

5L348®0((n+1)F) *

Ql
€
I

0 5@48@0@@




248
®

(ELPs,9,) is also trivial over Cy because of Exty, (O, 0) = 0. Note

So if we can prove [¢c,|c,] # 0 implies (L2809, rzss) is trivial over Cp, then

L(2)48|CO o~ O§1133 ® Opr @ (Opl(l) ) O]}Dl(—l))@E)G ® Opr (2) &) O[pvl(—Q).

In this decomposition, any of the 56 pairs of {Opi(—1),Op1(1)} is the restriction
of {O(a),O(a+ Cy) = O(F — (ag — @) } to Cy for some o with a1(a) = 1 and
the triple {Op1(2), Op1, Op1(—2)} is the restriction of {O(—Cy), O,0(Cy)} to Cy.
We will show that the restriction of 5¢| 2 0 Cy gives a non-trivial extension for
each of these pairs {Op1(—1), Op1(1)}’s and the triple {Op:(—2), Op1, Op1(2)}.

In order to write 0| s in matrix form, we need to decompose EF™ into pos-
itive parts and non-positive parts, i.e. we denote SéE“Jr) = @aeqﬁ,al(a)zo O(a)
and SéE"*) = 0% @ Doco- a1 (=0 Oa). Then 5¢]L304s can be written as follows:
(0, r2s is a upper triangle matrix since 0| rzss maps any line bundle summand to
other more ”positive” line bundle summands, i.e. d, : O(D) — O(D’) is nonzero
only if D" — D > 0)

v (k) Arz A | Au | A | As Az
0 Do(F—ag) | Ass Agy | Ags | Ags Ay
0 0 EVJ Ay | Ass | Asg Asz
Dyl p2s = 0 0 0 EELEW Ags | A Asr
0 0 0 0 do | Asg Asz
0 0 0 0 0 5&(&&,,) Agr
0 0 0 0 0 0 | 9o(ar-F)

Now we restrict this to Cp, the 56 pairs {Opi(—1), Op1(1)}’s are in Vy (F)|c, @
Vo'ley- Since Agz = (0,0, -+, 0)56x1 and

:l:()OC() * Ce *
0 4po - %
A13 - . %CO . )
0 0 e Epq

56 x 56
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if [pcy|c,] # 0, then we have a trivialization of the 56 pairs {Opi(—1),Op1(1)}’s
over Cy by Lemma 3.1.3 in section 3.1.

For the triple {Op1(—2), Op1, Op1(2)}, we review the trivialization of A; Lie
algebra bundle. In A; case, we have an A;-bundle 5;‘1, which topologically is

EM =0 @ O(C) ® O(—C), but with a holomorphic structure as follows:

80 :t(pc 0
do=1 01| 8y |+pc |
0 0 o

where oo € H*'(X,0(C)). From Part I, we know if [pc|c] # 0, then 2 is trivial
on C. Back to our case, the triple {Opi(—2), Op1, Op1(2)} has the corresponding
submatrices Ass = (@, )1x1, As7 = (pcy)1x1 and Ay = (0)1x1. Since Aag,
Aoy, Asg, Ayr and Agr are all zero matrices, from the trivialization of A; Lie
algebra bundle, we know if [¢c,|c,] # 0, then we have a trivialization of the

triple {Op1(—2), Op1, Op1(2)} over Cy.
Hence if [pc,|c,] # 0, then (L2®

5 1 0p|r21s) is trivial on Cp, which implies

(5£E8>5¢) is also trivial on C. Hence, we have Theorem 8.1.1 for LEy case.
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Part 111

Deformability
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Chapter 9

E,-bundle over X,, with n <9

When X = X, is a blowup of P? at n points z1,--- ,x, with n < 9, there is a
canonical (affine) Lie algebra bundle £ over it, where Ey is the affine Es. In
this chapter, we will give a detail study of the relationship between the geometry

of X,, and the deformability of &2

9.1 E,-bundle over X, with n <9

The Picard group Pic(X,,) = H?*(X,,Z) is a rank n + 1 lattice with generators
h,ly, -+ ,l,, where h is the class of lines in P? and [; is the exceptional class
of the blow-up at z;. Soh? =1 = —? and h-1l; =0 = [; - l;, © # j. Thus
H?(X,,7) = Z"". The canonical class is Kx, = —3h + 1, +--- + I,,. Denote

®, = {a € H*(X,,Z)|a* = —2,a - K = 0}.

Then &, is a root system of type E, when n < 8 and ®q is an affine real root
system of Ey (also denoted as Ey). More explicitly, ® 5 = Qo U {mKx,|m #
0,m € Z} forms a root system of (untwisted) affine Eg-type (that is, Eg-type)
with @7 := @y the set of real roots and @%’; = {mKx,|m # 0,m € Z} the set
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of imaginary roots (see [16] or [21]). We have an Es-bundle 5(’)@8 over Xy:

el =0" e @ o) @ o)

aced”e im
5 peain

The Lie algebra structure on st is explained in [21]. When n < 8, & =
O%" @ P, eq, O(a) is an E,-bundle over X,.

Suppose C' = UC; is an (affine) ADE curve of type g in X,,, then C;’s gen-
erates a subroot system & inside ®,, since C; - K = 0 for every i. Therefore the
corresponding bundle &f is a Lie algebra subbundle of EOE”.

Suppose & is a g-bundle over a surface X corresponding to a root system

Ay C Pic(X) of type g.

Definition 9.1.1. A Lie algebra sub-bundle F of £ is called strict if there exists
a sub-root lattice A of Ay such that F is a direct sum of line bundles corresponding

to the roots 1 A.

In order to describe EOE** as a central extension of a loop Lie algebra bundle
over Xg, we pick any smooth (—1)-curve [ in Xy, then we have

£ = & & (@ Omkx,) @ O,

nez

where 8538 is the pull-back of the Eg-bundle over Xg via 7 : Xg — X, the blow

down map of [. The next proposition describes the converse.

Proposition 9.1.1. When 8(?8 15 a central extension of a loop FEg-sub-bundle
over X for some strict Eg-bundle .7-—0E8 over Xg, 1.e.
& = Fi* @ (P O(nkx,) @0,
neZ
as a Lie algebra bundle isomorphism, then there is a unique (possibly reducible)

(—=1)-curve I in X such that ffg s constructed from those v € AN'¢ satisfying

a-1=0.
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Proof. Denote Ag, = {ai, -+ ,ag} as a root base of the corresponding Eg Lie
algebra from F2*®, we need to find a unique (—1)-curve [ in X such that I-a; =0
for any a; in Apg,. Since {£1} x W (Es) acts on the set of all root bases of Eg
simply transitively [18] and W (Es) acts on the set of (—1)-curves [21], we only
need to find [ for one particular root base of any Fg in ES and show that such a [ is
unique. For example, if we take oy = h—1l1 —ly—I3,ap, = lp_1— Il for k=2,---8,
then we can take | = lg and by the condition that - o; =0, 2 = -1 =1- K, we

know such a [ is unique. O

9.2 Deformability of such é'OE s

In this section, we will describe relationships between the geometry of Xy and
the deformability of 5(? 8. Similar results for X,, and £ with n < 8 can be easily
deduced from this case.

Recall when Pic(X) contains a lattice A isomorphic to a root lattice Ay, then

we have a g-bundle £ over X ([8][13]]22][23][21]).

£:=0"aH0(a).

acd
Infinitesimal deformations of holomorphic structures on £ are parametrized by
HY(X,End(£)), and those which also preserve the Lie algebra structure are
parametrized by H'(X,ad(€)) = H'(X,E) since g is simple. Hence we intro-

duce the following definitions.

Definition 9.2.1. (i) &£ is called fully deformable if there exists a base A C &
such that H'(X,O(a)) # 0 for any o € A.

(13) & is called h-deformable if there exists a strict b Lie algebra sub-bundle
EY C & which is fully deformable.

(i) &€ is called deformable in a-direction for a € ® if H'(X,O(a)) # 0.

(iv) & is called totally non-deformable if H'(X,0(a)) =0 for any o € ®.
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Recall the holomorphic structure 9, or d(, ) defined as before on € ad-
mits a filtration determined by the height of the roots (if the root base A =
{a1,as,- -+, .}, then for any o € ®, we have o = ) a;cy; and the height of « is

defined to be ht(a) := > a;).

Remark 9.2.1. When & is fully deformable and if for every simple root a € A,
O(a) = O(C,) for some smooth irreducible curve Cy, then C' = UyeaCy is an
ADE or affine ADE curve in X . In this case, we can show that H*(X,0(«a)) =0
for any a € ® and the g org bundle £ admits a deformation into a filtrated bundle

which s trivial on every C,. When & s totally non-deformable, 5@ can only be

Jo.-
The main results of this section are the followings.

Theorem 9.2.1. 5(?8 over Xg s totally non-deformable if and only if the nine

blowup points in P? are in general position.

Let us recall some facts about elliptic fibrations on Xg [30][32]. Any elliptic
fibration on Xo must be relatively minimal, i.e. there is no (—1)-curves in any
of its fibrations, as there is no elliptic fibration on Xg, this is because the Euler
characteristic of any elliptic surface is a multiple of 12 [10] and also x(Xy) = 12.
There is at most one multiple fiber [11], say of multiplicity m. This happens
precisely when there exists an irreducible pencil of degree 3m in P? with 9 base
points, each of multiplicity m and Xg is the blow up of P? at these 9 points.
We can characterize the existence of such an elliptic fibration on Xy in terms
of deformability of ng along imaginary root directions. For instance, Xo with
— K x, nef admits an elliptic fibration (without multiple fiber) if and only if st
is deformable in (—mK)-direction for some m € N (with m = 1). Deformability

of EF® can also detect the existence of ADE or Kodaira curves in X.

Theorem 9.2.2. Suppose —Kx, is nef, then
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(1) Xo admits an elliptic fibration with a multiple fiber of multiplicity m
(m > 1) if and only if 8(?8 is deformable in (—mK)-direction but not in (—m +
1) K -direction.

(1) X9 has an (mazimal) ADE curve C of type g if and only if 56@8 is
(mazximal) g-deformable.

(111) Xo has a (mazimal) Kodaira curve C of type @ if and only if 558 is

(maximal) g-deformable.

Here we say an ADFE or Kodaira curve C' is maximal if it is not proper
contained in another ADE or Kodaira curve. We say 5(? ® is maximal g (or @)
deformable if there does not exist another fully deformable (affine) Lie algebra

sub-bundle of st containing this g (or g) bundle.

9.3 Negative curves in X

In this section, we study negative rational curves in Xy. We can get corresponding
results for X,, with n < 8 from this n = 9 case.

A divisor D in X is called a (—m)-class if D- D = —m and D - K =m — 2.
An effective (—m)-class is called a (—m)-curve. Note when D = > n,C; is a
(—m)-curve, we will also denote the corresponding curve UC; as D.

Use the notations in the above section, every effective divisor D = ah —
S ail; € Pic(Xy) must have a = D - h > 0. Tt is well-known that all (—1)-
classes are effective, and there are infinite number of them in Xgy. There are also
infinite number of (—2)-classes, but whether they are effective or not depends on

the positions of the 9 blow-up points.

Definition 9.3.1. Let x;,--- ,x, be n distinct points in P?. These n points are
said to be non-special with respect to Cremona transformations if for any Cremona

transformation T with centers within x;’s, the points yy,--- ,y, corresponding to



x;’s under T' are distinct points such that no three points among yy,--- ,y, are

collinear.

Definition 9.3.2. (/21]) Let xy,--- ,x9 be 9 points in P2, we say they are in
general position if they satisfy the following three conditions:

(i) they are distinct points in P?;

(13) they are non-special with respect to Cremona transformations;

(i) there is a unique cubic curve passing through all of them.

The conditions (i) and (ii) mean that any 8 of these 9 points are in general
position. That is, no lines pass through three of them, no conics pass through six
of them, and no cubic curves pass through eight of them with one of the eight
points being a double point.

If the 9 blowing up points are in general position, then there is no effective
(—2)-class in Xy [21]. In general, there are at most finite number of (—m)-curves

with m > 3.

Lemma 9.3.1. Let D = ah— ", a;l; be a (—m)-curve in Xo with m > 3, then
(1) m<9;
(i4) 0 < a < 3;
(13) —1 < a; <2 for all i, and there exists some j with a; = 1;
(

iv) there are finite number of such curves.

Proof. (i) Since D is a (—m)-curve, D-D = —m and D- K =m — 2, i.e.
Zaf =a* +m and Zai:3a+m—2.
From the above two equations, we have
Ba+m—2)"= (> a)’ <90 _a?)=9(a’+m).

Thus, a < %, also a > 0 since D is effective, hence m < 12.
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When m > 10, we must have a = 0, that means >_ a? = m and > a; = m —2,
hence Y a? — " a; = 2, which implies every a; satisfies |a;] < 1 and there exists
exactly one a; with a; = —1. But we also have Y a; = m — 2 > 8, which is
impossible since we only have nine a;’s.

(ii)Whenm24,a§%§§<3. Whenm:3,a§%:
2 < 5. Hence we only need to prove there is no (—3)-curve with a = 4.

Suppose not, then there exists a;’s such that Y a? = 19 and >_ a; = 13. From
Sa? =Y a; = 6, we know —2 < q; < 3. If there is any a; with a; = 3, then the
other a;’s can only be 0 or 1, but we have ) a; = 13 and there is only nine a;’s,
which is impossible. Hence —2 < a; < 2, from > a? — " a; = 6, we can have at

most three a;’s equal to 2, which is also impossible since > a; = 13.

(17) From Y a? =a*+m, Y. a; =3a+m —2 and 0 < a < 3, we have
Zai:3a+m—22a2+m—2:§:af—2.

Hence —1 < a; < 2. And there are three cases:

Case 1, one a; equal to 2, the others equal to 0 or 1;

Case 2, one a; equal to —1, the others equal to 0 or 1;

Case 3, all a;’s are equal to 0 or 1.

By > a; =3a+m —2 > 1, we know in case 2 and case 3, there must exist
some a; with a; = 1. In case 1, if there is no a; with a; = 1, then D = ah — 21;.
From Y~ a? = a®>+m, Y a; = 3a+m—2, we have a = 0, m = 4, hence D = —2l;,
which is not an effective divisor.

(1v) Tt is obvious from the above results. O
From this lemma, we can easily obtain the following as a corollary.

Corollary 9.3.1. If there exists a (—m)-curve in Xo with m > 3, then there also

exists a (—m + 1)-curve in Xy.

Proof. If D € |ah — )" a;l;| is a (—m)-curve in Xy with m > 3, then there exists
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J with a; = 1 by (iti) of Lemma 9.3.1 . It is easy to check that D +1; is a
(—m + 1)-curve in Xy. O

If the 9 blowing up points are in general position, then there is no (—2)-curve
in Xy, as a consequence, there is also no (—m)-curve in Xy with m > 3. The
following result shows that this happens exactly when Xy is almost Fano. We

include a proof here as we could not find it in the literatures.
Lemma 9.3.2. Xy has no (—m)-curve with m > 3 if and only if —Kx, is nef.

Proof. If —K is nef, then from C'- K~!' =2 —m > 0 for any (—m)-curve C, we
know m < 2.

Conversely, assume Xg has no (—m)-curve with m > 3. Since Xg is a blowup
of P? at nine points {z;};_,, we have an effective anti-canonical divisor D. Recall
when D -3 < 0 for any irreducible curve ¥ in X, > must be a component of D.
So if D is an irreducible curve or a Kodaira curve, then D is nef. We denote the
image of D in P? as C, which is a cubic curve passing through these 9 blowing
up points.

(¢) If C is smooth, then we are done as D = C' and therefore irreducible.

(77) If C' is reduced and irreducible, then it must be a nodal or cuspidal cubic.
If {z;}{_,Nsing(C) = @ (sing(C') means the set of singular points on C'), then
D = C and we are done. Otherwise, say z; €sing(C') and we write the strict and
proper transformations of C' in Bl,, (P?) as C} and C} + E respectively. Then the
remaining x;’s must have exactly 1 point (resp. 7 points) lying on E (resp. C)
in order to avoid having (—m)-curve with m > 3. Thus D is a Kodaira curve of
type Ay or I11 (gl) for C' being a nodal or cuspidal respectively.

(#73) If C is reduced and reducible, then C' = B U Hy or Hy U Hy U Hy with
B and H,’s are conic and distinct lines in P?. As before, we must have exactly 6

x;’s on B and 3 x;’s on each H; and none on sing(C). Thus D = (' is a Kodaira

curve of type Ay, A, ITI(A)) or VI(Ay).
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(1) If C' is non-reduced, C' = 3H, D must have a (—m)-curve with m > 3.

Hence D is an irreducible curve or a Kodaira curve, and we are done. O

In the following two lemmas, we will use Lemma 2.21 in [2] to give a criteria
of a curve in X, being an ADFE or affine ADE curve. Lemma 2.21 can be
reformulated as follows: if ' = U]_,C; is a connected curve in a surface X
satisfying: (i) C2 = —2 and C; - Kx = 0 for any 4; (ii) C; - C; < 1 for any i # j;
(iii) (Ci- C))rxr < 0. Then when (C; - C}),xr <0, C'is an ADE curve, otherwise,

it is an affine ADFE curve.

Lemma 9.3.3. Suppose —Kx, (n < 8) is nef. Let C' = UC; be a connected curve
in X,. If C-Kyx, =0, then C is an ADE curve.

Proof. Since —Kx, is nef, C' - Kx, = 0 implies C; - Kx, = 0 for each 1, i.e.
(C;] € (K)* 2 Ap,. We have C? < 0 and (C; + C;)? < 0 for any i and j.
Together with the genus formula, we have C? = —2 and C;-C; < 1 for i # j. By
Lemma 2.21 in [2], we know C'is an ADE curve. O

For n =9 case, we have the following lemma.

Lemma 9.3.4. Suppose —Kx, is nef. Let C' = UC; be a connected curve in Xy.
If C-Kx, =0 and C;+ Kx, is not effective for each i, then C' is a smooth elliptic

curve, an ADE curve or an affine ADE curve.

Proof. Since —Kx, is nef, C' - Kx, = 0 implies C; - Kx, = 0 for each i, i.e.
[Cy] € (Kxy)* = Ap,. We have C? < 0 and (C; + C;)* < 0 for any i and j.
Moreover, for any effective divisor D € (Kx,)*, if D* =0, then D € |mKx,| for
some non-zero integer m. From C? < 0 and genus formula, we have C? = —2 or
0.

If there exists C; such that C? = 0, then C; € |mK]| for some non-zero integer

m. Since C; + Kx, is not effective, we know m = —1,ie. C; € | — K|. If C'is
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not irreducible, then there exists C; which intersects C;, which is impossible. So
C' = C; € | — K] is an elliptic curve or an affine Ay curve by Lemma 9.3.2.

If C2 = —2 for any i, then C; - C; < 2 for any i # j. If there exist C; and C
such that C; - C; = 2, then (C; + C;)* =0, C; + C; € |/mK]| for some integer m.
Hence C' = C;UC)} is an affine A; curve, this is because if C, is another irreducible
component of C' and assume it intersects with C;, then it must be an irreducible
component of C;, which contradicts to C; being irreducible. Otherwise, we will
have C? = —2 for each i and C; - C; < 1 for i # j. By Lemma 2.21 of [2], we
know C'is an ADFE or affine ADE curve. O]

9.4 Proof of Theorems 9.2.1 and 9.2.2

Proof. (of Theorem 9.2.1) If the nine blowup points in P? are in general position,
then for any a € @y, we have h° (X, 0 (a)) = 0 [21]. Since K - K = 0, we also
have K — a € @y and therefore h? (X, 0 (o)) = 0 by Serre duality. However
the Riemann-Roch formula gives x (X,0 (a)) = 1 + “LTQK = 0 and therefore
h' (X, 0 (a)) = 0. For the imaginary roots mK’s, from Lemma 4 and Proposition
11 in [21], we have h°(X,0(mK)) = 0 and h°(X,0(—mK)) =1 for m > 1. By
Serre duality and Riemann-Roch formula, we have h'(X,O(mK)) = 0 for any
imaginary root mK. Hence 50E % is totally non-deformable.

Conversely, if EOE ® is totally non-deformable, then X has no (possibly reducible)
(—2)-curve, hence no (—n)-curve with n > 2. By Proposition 10 in [31], this
implies the nine blowup points are non-special with respect to Cremona trans-
formations. Also from h'(X,O0(mK)) = 0 for any imaginary root mK, we get
h%(X,0(—K)) = 1, we have a unique cubic curve in P? passing through all of the

blow-up points. Hence, the nine blow-up points in P? are in general position. [J

Proof. (of Theorem 9.2.2) (i)We have h'(X,0(—mK)) = h°(X,0(-mK)) — 1
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for any m by Riemann-Roch formula. So Efs is deformable in (—mK)-direction
if and only if h°(X,O(—mK)) = 2.

Let Fy € | — K|, then by Proposition 2.2 of [5], X admits an elliptic fibration
with a multiple fiber of multiplicity m if and only if Og, (Fp) is of order m in
Pic(Fy). But Op,(mFy) = Op, if and only if h%(Op,(mFy)) = 1 as Og, (mFp) is

topologically trivial. By the exact sequence
0— OX — Ox(mFo) — OFO(mFO) — 0

together with h'(X,0x) = 0, we know h’(Ox(mkFy)) = 1+ h%(Og,(mFp)). So
m = min{n : h°(Op,(nFy)) = 1} = min{n : i%(X,0(—nK)) = 2}.

(73) If X has an ADFE curve C of type g, we can use it to construct a fully
deformable g-subbundle of 5(? 8. When (' is maximal, then this g-subbundle is
not contained in any other fully deformable Lie algebra subbundle of Efg.

Conversely, if Efs is maximal g-deformable, then we can find a base A C &5
of g such that h'(X,O(a)) # 0 for every a € A. Since x(O(a)) =1+ O‘LTQK =0,
we must have h°(O(a)) # 0 or h?(O(a)) = h°(O(K — «)) # 0, that is either a or
K — « is effective. Hence, there must exist some integers m’s such that a + mK
is effective because — K is effective, we denote the largest such m as m,,.

We claim that for every o € A, C,, € |+ m,K]| is an irreducible (—2)-curve.
If so, then C = UyeaCl, is a maximal ADFE curve of type g. If there exists
reducible C,,, we write C,, = UD;. Then each D; is perpendicular to K as —K is
nef and C,- K = 0. Since C,+ K is not effective, every D;+ K is also not effective
and D; ¢ | — K|. Hence D? = —2 for any i as D? = 0 will imply D; € | — K].
We know C, is connected, this is because if C, is not connected, then one of
its connected component must have self-intersection zero from C? = —2, which
contradicts to C, + K is not effective. Hence C' = U,eaCy, is an (affine) ADE
curve by Lemma 9.3.4. It is obvious that this curve strictly contains a g-curve,
which contradicts to Ef ® being maximal g-deformable.

(73i) The proof is similar to (it). O
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Remark 9.4.1. If Xy admits an elliptic fibration, then we can find m such that
h'(Xg, O(—mK)) # 0. Conversely, if h*(Xq, O(—mK)) # 0, we need to add the
condition of —K being nef to show that X admits an elliptic fibration. To see
this, we take x1,--- ,x5 to be 5 points on a line | C P2, and another 4 generic
points (not on 1) g, -+ ,xg in P2. Then we have an one parameter family of
conics Cy’s passing through these 4 points. If we blow up P? at these 9 points
and denote the strict transforms of | and C; with same notations, then [*> = —4,
C? = 0. Moreover C; +1 € | — K| and h°(Xy,0(—K)) = 2. But —K is not nef

as (—K) -1 = =2, which implies that Xy is not elliptic.

From the above, we can easily deduce similar results for the E,-bundle &
over X,, when n < 8, namely

(i) £ is totally non-deformable if and only if the n blowup points in P? are
in general position.

(ii) When —Ky, nef, £ is maximal g-deformable if and only if X, has a

maximal g curve.
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Appendix A

Minuscule configurations

We now construct examples of surface with an ADFE singularity p of type g and
a (—1)-curve Cy passing through p with minuscule multiplicity Cy. We call its
minimal resolution a surface with minuscule configuration of type (g, V'), where
V' is the fundamental representation corresponding to —Cl.

First we consider the standard representation V' ~ C"*! of A, = sl (n+ 1).
When we blowup a point on any surface, the exceptional curve is a (—1)-curve
E. If we blowup a point on F, the strict transform of E becomes a (—2)-curve.
By repeating this process n + 1 times, we obtain a chain of (—2)-curves with a
(—1)-curve attached to the last one. Namely we have a surface with a minuscule
configuration of type (4,,C""1).

Suppose that D is a smooth rational curve on a surface with D? = 0. By
blowing up a point on D, we obtain a surface with a chain of two (—1)-curves. If
we blowup their intersection point and iterative blowing up points in exceptional
curves, then we obtain a surface with minuscule configuration of type (D,,, C*").

Given a surface together with a smooth rational curve C' with C? = 1 on it.
We could obtain every minuscule configuration by the following process. If we
blow up three points on C', then the strict transform of C' is an (—2)-curve. By

the previous construction of iterated blowups of points in these three exceptional
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curves F;’s, we could obtain many minuscule configurations. Let us denote the
number of iterated blowups of the exceptional curve E; as m; with ¢ € {1,2,3}.
Then we can obtain minuscule configuration of type (g, V) by taking suitable

m;’s as follows.

minuscule configuration of type (g, V) (mq, ma, mg3)
(A, AFC"*1) for any k (k—1,0,n—k)
(D,,C*), (D,,S*) and (D,,S™) (n—3,1,1)
(Es,27), (Es,27) (2,1,2)

(Ey, 56) (3,1,2)

Note that we could obtain such a configuration for every adjoint representation
of E, this way. We remark that surfaces in this last construction are necessarily

rational surfaces because of the existence of C with C? = 1.



Appendix B

Affine Lie algebras

In this appendix, we recall some results on affine Lie algebras [18][21]. If (g, [,]) is
a finite dimensional simple Lie algebra, then the corresponding loop Lie algebra is
Lg := g®CJt,t!], with the Lie bracket defined by [a®t", b@t™] 1, = [a, b]@t™ ",
where a,b € g, m,n € Z.

The corresponding untwisted affine Lie algebra g is constructed as a central
extension of Lg, with one-dimensional center Cc, i.e. g = Lg®Cc. The Lie bracket
on g is defined by the formula [a®t"+ ¢, b@t™+puc] g = [a, b]@E™ " +nbp 1m0k (a,
b)e, where A\, u € C and k is the Killing form on g.

We can obtain the affine Dynkin diagram of g from the Dynkin diagram of
g by adding one node to it, corresponding to the extended root and labelling as
Cp. But in the affine ADE except affine Eg case, from the symmetry of the affine

Dynkin diagrams, we have different choices of labelling the extended root.
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