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Abstract of thesis entitled: 

ADE and Affine ADE Bundles over Complex 
Surfaces with pg = 0 

Submitted by Chen,Yunxia 

for the degree of Doctor of Philosophy 

at The Chinese University of Hong Kong in June 2013 

We study ADE and affine ADE bundles over complex surfaces X with pg = 0. 

First, we suppose X admits an ADE singularity. The exceptional locus of 

this singularity in the minimal resolution Y is an ADE curve of corresponding 

type. Using this ADE curve and bundle extensions, we construct an ADE bun-

dle over Y which can descend to X. Furthermore, we describe their minuscule 

representation bundles in terms of configuration of (reducible) (—1)-curves. 

Second, we assume X is an elliptic surface with a singular fiber of affine ADE 

type. Similar to above studies, we construct the affine ADE bundle over X which 

is trivial on each irreducible component of the affine ADE curve. 

Third, when X is the blowup of P2 at n < 9 points, there is a canonical En 

bundle over it. We give a detailed study of the relationship between the geometry 

of X and the deformability of this bundle. 
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摘要 

我们研究了 pg = 0的复曲面 X 上的 A D E 向量丛和仿射 A D E 向量丛。 

首先，我们假设X上有一个 A D E奇异点。这个奇异点在极小分解Y中 

的例外轨迹是一条相应形式的A D E曲线。利用这条A D E曲线和向量丛的 

扩张，我们构造了 Y上的一个A D E向量丛，而且这个向量丛可以下降到X 

上。此外，我们利用Y上（-1)-曲线的组合，描述了他们的极小表示向量丛。 

其次，我们假设X是一个椭圆曲面，而且X上有一个仿射 A D E形式的 

奇异纤维。类似于以前，我们构造了 X上的一个仿射A D E向量丛，而且这 

个向量丛在这条仿射ADE曲线上的每一个不可约成分上都是平凡的。 

然 后 ， 当 X 是 P 2 上 突 起 n < 9个点时， X上有一个典型的 E n 向量丛。 

我们详细的研究了 X的几何和这个En向量丛的可变形性之间的关系。 
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Introduction

It has long been known that there are deep connections between Lie theory and

the geometry of surfaces. A famous example is an amazing connection between

Lie groups of type En and del Pezzo surfaces X of degree 9 − n for 1 ≤ n ≤ 8.

The root lattice of En can be identified with K⊥X , the orthogonal complement

to KX in Pic(X). Furthermore, all the lines in X form a representation of En.

Using the configuration of these lines, we can construct an En Lie algebra bundle

over X [22]. If we restrict it to the anti-canonical curve in X, which is an elliptic

curve Σ, then we obtain an isomorphism between the moduli space of degree

9 − n del Pezzo surfaces which contain Σ and the moduli space of En-bundles

over Σ. This work is motivated from string/F -theory duality, and it has been

studied extensively by Friedman-Morgan-Witten [12][13][14], Donagi [3][4][6][8],

Leung-Zhang [21][22][23] and others [7][20][24][25].

In the first part of this thesis, we study the relationships between simply-laced,

or ADE, Lie theory and rational double points of surfaces. Suppose

π : Y → X

is the minimal resolution of a compact complex surface X with a rational dou-

ble point. Then the dual graph of the exceptional divisor
∑n

i=1Ci in Y is

an ADE Dynkin diagram. From this we have an ADE root system Φ := {α =∑
ai[Ci]|α2 = −2} and we can construct an ADE Lie algebra bundle over Y :

Eg0 := O⊕nY ⊕
⊕
α∈Φ

OY (α)

7



ADE and Affine ADE Bundles over Complex Surfaces with pg = 0 8

Even though this bundle can not descend to X, we show that it can be deformed

to one which can descend to X provided that pg (X) = 0.

Theorem 0.0.1. (Proposition 1.2.1, 1.2.2, Theorem 1.2.1 and Lemma 1.2.2)

Assume Y is the minimal resolution of a surface X with a rational double point

p of type g and C = Σn
i=1Ci is the exceptional divisor. If pg (X) = 0, then

(i) given any (ϕCi)
n
i=1 ∈ Ω0,1(Y,

⊕n
i=1 O(Ci)) with ∂ϕCi = 0 for every i, it can

be extended to ϕ = (ϕα)α∈Φ+ ∈ Ω0,1(Y,
⊕

α∈Φ+ O(α)) such that ∂ϕ := ∂ + ad(ϕ)

is a holomorphic structure on Eg0 . We denote this new holomorphic bundle as Egϕ.

(ii) Such a ∂ϕ is compatible with the Lie algebra structure.

(iii) Egϕ is trivial on Ci if and only if [ϕCi|Ci ] 6= 0 ∈ H1(Ci, OCi(Ci))
∼= C.

(iv) There exists [ϕCi ] ∈ H1(Y,O(Ci)) such that [ϕCi |Ci ] 6= 0.

(v) Such a Egϕ can descend to X if and only if [ϕCi |Ci ] 6= 0 for every i.

Remark 0.0.1. Infinitesimal deformations of holomorphic bundle structures on

Eg0 are parametrized by H1(Y,End(Eg0)), and those which also preserve the Lie

algebra structure are parametrized by H1(Y, ad(Eg0)) = H1(Y, Eg0), since g is semi-

simple. If pg (X) = q(X) = 0, e.g. rational surface, then for any α ∈ Φ−,

H1(Y,O(α)) = 0. Hence H1(Y, Eg0) = H1(Y,
⊕

α∈Φ+ O(α)).

This generalizes the work of Friedman-Morgan [12], in which they considered

En bundles over generalized del Pezzo surfaces. In this thesis, we will also describe

the minuscule representation bundles of these Lie algebra bundles in terms of

(−1)-curves in Y .

Here is an outline of our results in Part I. We first study (−1)-curves in Y

which are (possibly reducible) rational curves with self intersection −1. If there

exists a (−1)-curve C0 in X passing through p with minuscule multiplicity Ck

(Definition 2.3.3), then (−1)-curves l’s in Y with π(l) = C0 form the minuscule

representation1 V of g corresponding to Ck (Proposition 2.4.1). When V is the

1Here V is the lowest weight representation with lowest weight dual to −Ck, i.e. V is dual

to the highest weight representation with highest weight dual to Ck.
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standard representation of g, the configuration of these (−1)-curves determines

a symmetric tensor f on V such that g is the space of infinitesimal symmetries

of (V, f). We consider the bundle

L
(g,V )
0 :=

⊕
l:(−1)−curve
π(l)=C0

OY (l)

over Y constructed from these (−1)-curves l’s. This bundle can not descend to

X as it is not trivial over each Ci.
2

Theorem 0.0.2. (Theorem 2.5.1 and 2.5.2) For the bundle L
(g,V )
0 with the cor-

responding minuscule representation ρ : g −→ End(V ),

(i) there exists ϕ = (ϕα)α∈Φ+ ∈ Ω0,1(Y,
⊕

α∈Φ+ O(α)) such that ∂ϕ := ∂0+ρ(ϕ)

is a holomorphic structure on L
(g,V )
0 . We denote this new holomorphic bundle as

L
(g,V )
ϕ .

(ii) L
(g,V )
ϕ is trivial on Ci if and only if [ϕCi |Ci ] 6= 0 ∈ H1(Y,OCi(Ci)).

(iii) When V is the standard representation of g, there exists a holomorphic

fiberwise symmetric multi-linear form

f :
r⊗

L(g,V )
ϕ −→ OY (D)

with r = 0, 2, 3, 4 when g = An, Dn, E6, E7 respectively such that Egϕ ∼= aut0(L
(g,V )
ϕ , f).

When V is a minuscule representation of g, there exists a unique holomor-

phic structure on L
(g,V )
0 :=

⊕
lO(l) such that the action of Egϕ on this bundle is

holomorphic and it can descend to X as well.

In the second part of this thesis, we study the relationships between simply-

laced affine, or affine ADE, Lie theory and singular fibers of relatively minimal

elliptic surfaces. When X is a relatively minimal elliptic surface, Kodaira classi-

fied all possible singular fibers (see e.g. [2]) and we call such a curve C = ∪Ci
2Unless specify otherwise, Ci always refers to an irreducible component of C, i.e. i 6= 0.
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a Kodaira curve. Its irreducible components Ci’s span a sublattice of Pic (X)

which is isomorphic to the root lattice of an affine root system Φĝ and therefore

we can construct an affine Lie algebra bundle E ĝ0 over X.

Theorem 0.0.3. (Lemma 1.2.1, Proposition 8.1.2 and Theorem 8.2.1) Given

any complex surface X with pg = 0. If X has a Kodaira curve C = ∪ri=0Ci of

type ĝ, then

(i) given any (ϕCi)
r
i=0 ∈ Ω0,1(X,

⊕r
i=0O(Ci)) with ∂ϕCi = 0 for every i, it can

be extended to ϕ = (ϕα)α∈Φ+
ĝ
∈ Ω0,1(X,

⊕
α∈Φ+

ĝ
O(α)) such that ∂ϕ := ∂ + ad(ϕ)

is a holomorphic structure on E ĝ0 . We denote the new bundle as E ĝϕ.

(ii) ∂ϕ is compatible with the Lie algebra structure on E ĝ0 .

(iii) E ĝϕ is trivial on Ci if and only if [ϕCi |Ci ] 6= 0 ∈ H1(Ci, OCi(Ci))
∼= C.

(iv) There exists [ϕCi ] ∈ H1(X,O(Ci)) such that [ϕCi |Ci ] 6= 0.

In the third part of this thesis, we explain how the geometry of X9, a blowup

of P2 at nine points, can be reflected by the deformability of the Ê8-bundle E Ê8
0

over it. Among other things, we obtained the following results.

Theorem 0.0.4. (Theorem 9.2.1) E Ê8
0 is totally non-deformable if and only if

the nine blowup points in P2 are in general position.

Theorem 0.0.5. (Theorem 9.2.2) Suppose −KX9 is nef, then

(i) X9 admits an elliptic fibration with a multiple fiber of multiplicity m

(m ≥ 1) if and only if E Ê8
0 is deformable in (−mK)-direction but not in (−m +

1)K-direction.

(ii) X9 has a (maximal) ADE curve C of type g if and only if E Ê8
0 is (maximal)

g-deformable.

(iii) X9 has a (maximal) Kodaira curve C of type ĝ if and only if E Ê8
0 is

(maximal) ĝ-deformable.

The organization of this thesis is as follows. Section 1 gives the construction of

ADE Lie algebra bundles over Y directly. In section 2, we review the definition of



ADE and Affine ADE Bundles over Complex Surfaces with pg = 0 11

minuscule representations and construct all minuscule representations using (−1)-

curves in Y . Using these, we construct the Lie algebra bundles and minuscule

representation bundles which can descend to X in An, Dn and En (n 6= 8) cases

separately in section 3, 4 and 5. The proofs of the main theorems in this thesis

are given in section 6.

In part two, section 7 gives the construction of the (affine) ADE Lie algebra

bundles directly from (affine) ADE curves. In section 8, we assume pg(X) = 0.

We construct deformations of the holomorphic structures on these bundles such

that the new bundles are trivial over irreducible components of the curve.

We will consider the En-bundle over a blowup of P2 at n ≤ 9 points in section

9 and show how the deformability of this bundle can reflect the geometry of the

underlying surface.

In the Appendix A, we construct surfaces with ADE curves and a particular

(−1)-curve. In the Appendix B, we review the basic construction of affine Lie

algebras.

Notations: For a holomorphic bundle (E0, ∂0) with E0 = ⊕iO(Di), ∂0 means

the ∂-operator for the direct sum holomorphic structure. If we construct a new

holomorphic structure ∂ϕ on E0, we denote the resulting bundle as Eϕ.



Part I

ADE bundles

12



Chapter 1

ADE Lie algebra bundles

1.1 ADE singularities

A rational double point p in a surface X can be described locally as a quotient

singularity C2/Γ with Γ a finite subgroup of SL(2,C). It is also called a Kleinian

singularity or ADE singularity [2].

Klein [19] determined the structure of the quotient space C2/Γ. For each

subgroup Γ, the C-algebra C[u, v]Γ of Γ-invariant polynomials on C2 is generated

by three fundamental generators x, y, z, satisfying a relation R(x, y, z) = 0, where

R is a polynomial on C3. We list these equations below:

An : x2 + y2 + zn+1 n ≥ 1 (1.1)

Dn : x2 + yn−1 + yz2 n ≥ 4 (1.2)

E6 : x2 + y3 + z4 (1.3)

E7 : x2 + y3 + yz3 (1.4)

E8 : x2 + y3 + z5 (1.5)

They correspond to Γ being a cyclic group, a dihedral group and the groups of

the tetrahedron, the octahedron, and the icosahedron respectively.

That means the quotient variety C2/Γ may be viewed as a hypersurface in C3

13
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given by the equation R(x, y, z) = 0:

C2/Γ = {(x, y, z) ∈ C3|R(x, y, z) = 0}

The hypersurface C2/Γ has an isolated singularity at the origin, the corresponding

singularity is called of type An, Dn, E6, E7 or E8 respectively. The reason is if

we consider the minimal resolution Y of X, then every irreducible component

of the exceptional divisor C =
∑n

i=1Ci is a smooth rational curve with normal

bundle OP1(−2), i.e. a (−2)-curve, and the dual graph of the exceptional divisor

is an ADE Dynkin diagram. The corresponding roots in the Dynkin diagrams

are labelled as follows:

u u u u ur r r
C1 C2 Cn−2 Cn−1 Cn

Figure 1. The Dynkin diagram of An

u u u u u
u

r r r
C1 C2 Cn−3 Cn−2 Cn−1

Cn

Figure 2. The Dynkin diagram of Dn

u u u u u u
u

r r r
C1 C2 Cn−4 Cn−3 Cn−2 Cn−1

Cn

Figure 3. The Dynkin diagram of En

There is a natural decomposition

H2(Y,Z) = H2(X,Z)⊕ Λ,

where Λ = {
∑
ai[Ci]|ai ∈ Z}. The set Φ := {α ∈ Λ|α2 = −2} is a simply-laced

(i.e. ADE) root system of a simple Lie algebra g and ∆ = {[Ci]} is a base of Φ.
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For any α ∈ Φ, there exists a unique divisor D =
∑
aiCi with α = [D], and we

define a line bundle O(α) := O(D) over Y .

1.2 ADE bundles

We define a Lie algebra bundle of type g over Y as follows:

Eg0 := O⊕n ⊕
⊕

α∈Φ O(α).

For every open chart U of Y , we take xUα to be a nonvanishing holomorphic

section of OU(α) and hUi (i = 1, · · · , n) nonvanishing holomorphic sections of O⊕nU .

Define a Lie algebra structure [, ] on Eg0 such that {xUα ’s, hUi ’s} is the Chevalley

basis [17], i.e.

(a) [hUi , h
U
j ] = 0, 1 ≤ i, j ≤ n.

(b) [hUi , x
U
α ] = 〈α, Ci〉xUα , 1 ≤ i ≤ n, α ∈ Φ.

(c) [xUα , x
U
−α] = hUα is a Z-linear combination of hUi .

(d) If α, β are independent roots, and β − rα, · · · , β + qα is the α-string

through β, then [xUα , x
U
β ] = 0 if q = 0, otherwise [xUα , x

U
β ] = ±(r + 1)xUα+β.

Since g is simply-laced, all its roots have the same length, we have any α-string

through β is of length at most 2. So (d) can be written as [xUα , x
U
β ] = nα,βx

U
α+β,

where nα,β = ±1 if α + β ∈ Φ, otherwise nα,β = 0. From the Jacobi identity,

we have for any α, β, γ ∈ Φ, nα,βnα+β,γ + nβ,γnβ+γ,α + nγ,αnγ+α,β = 0. This Lie

algebra structure is compatible with different trivializations of Eg0 [22].

By Friedman-Morgan [12], a bundle over Y can descend to X if and only

if its restriction to each irreducible component Ci of the exceptional divisor is

trivial. But Eg0 |Ci is not trivial as O([Ci])|Ci ∼= OP1(−2). We will construct a

new holomorphic structure on Eg0 , which preserves the Lie algebra structure and

therefore the resulting bundle Egϕ can descend to X.

As we have fixed a base ∆ of Φ, we have a decomposition Φ = Φ+ ∪ Φ− into

positive and negative roots.
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Definition 1.2.1. Given any ϕ = (ϕα)α∈Φ+ ∈ Ω0,1(Y,
⊕

α∈Φ+ O(α)), we define

∂ϕ : Ω0,0(Y, Eg0) −→ Ω0,1(Y, Eg0) by

∂ϕ := ∂0 + ad(ϕ) := ∂0 +
∑
α∈Φ+

ad(ϕα),

where ∂0 is the standard holomorphic structure of Eg0 . More explicitly, if we write

ϕα = cUαx
U
α locally for some one form cUα , then ad(ϕα) = cUαad(xUα ).

Proposition 1.2.1. ∂ϕ is compatible with the Lie algebra structure, i.e. ∂ϕ[, ] =

0.

Proof. This follows directly from the Jacobi identity.

For ∂ϕ to define a holomorphic structure, we need

0 = ∂
2

ϕ =
∑
α∈Φ+

(∂0c
U
α +

∑
β+γ=α

(nβ,γc
U
β c

U
γ ))ad(xUα ),

that is ∂0ϕα +
∑

β+γ=α(nβ,γϕβϕγ) = 0 for any α ∈ Φ+. Explicitly:
∂0ϕCi = 0 i = 1, 2 · · · , n

∂0ϕCi+Cj = nCi,CjϕCiϕCj if Ci + Cj ∈ Φ+

...

Proposition 1.2.2. Given any (ϕCi)
n
i=1 ∈ Ω0,1(Y,

⊕n
i=1O(Ci)) with ∂0ϕCi = 0

for every i, it can be extended to ϕ = (ϕα)α∈Φ+ ∈ Ω0,1(Y,
⊕

α∈Φ+ O(α)) such that

∂
2

ϕ = 0. Namely we have a holomorphic vector bundle Egϕ over Y .

To prove this proposition, we need the following lemma. For any α =
∑n

i=1 aiCi ∈

Φ+, we define ht(α) :=
∑n

i=1 ai.

Lemma 1.2.1. For any α ∈ Φ+, H2(Y,O(α)) = 0.

Proof. If ht(α) = 1, i.e. α = Ci, H
2(Y,O(Ci)) = 0 follows from the long exact

sequence associated to 0→ OY → OY (Ci)→ OCi(Ci)→ 0 and pg = 0.



17

By induction, suppose the lemma is true for every β with ht(β) = m. Given

any α with ht(α) = m+1, by Lemma A in §10.2 of [17], there exists some Ci such

that α · Ci = −1, i.e. β := α − Ci ∈ Φ+ with ht(β) = m. Using the long exact

sequence associated to 0 → OY (β) → OY (α) → OCi(α) → 0, OCi(α) ∼= OP1(−1)

and H2(Y,O(β)) = 0 by induction, we have H2(Y,O(α)) = 0.

Proof. (of Proposition 1.2.2) We solve the equations ∂0ϕα =
∑

β+γ=α nβ,γϕβϕγ

for ϕα ∈ Ω0,1(Y,O(α)) inductively on ht(α).

For ht(α) = 2, i.e. α = Ci+Cj with Ci ·Cj = 1, since [ϕCiϕCj ] ∈ H2(Y,O(Ci+

Cj)) = 0, we can find ϕCi+Cj satisfying ∂0ϕCi+Cj = ±ϕCiϕCj .

Suppose that we have solved the equations for all ϕβ’s with ht(β) ≤ m. For

∂0ϕα =
∑

β+γ=α

nβ,γϕβϕγ

with ht(α) = m + 1, we have ht(β), ht(γ) ≤ m. Using ∂0(
∑

β+γ=α nβ,γϕβϕγ) =∑
δ+λ+µ=α(nδ,λnδ+λ,µ +nλ,µnλ+µ,δ +nµ,δnµ+δ,λ)ϕδϕλϕµ = 0, [

∑
β+γ=α nβ,γϕβϕγ] ∈

H2(Y,O(α)) = 0, we can solve for ϕα.

Denote

ΨY , {ϕ = (ϕα)α∈Φ+ ∈ Ω0,1(Y,
⊕
α∈Φ+

O(α))|∂2

ϕ = 0},

and

ΨX , {ϕ ∈ ΨY |[ϕCi |Ci ] 6= 0 for i = 1, 2, · · · , n}.

Theorem 1.2.1. Egϕ is trivial on Ci if and only if [ϕCi |Ci ] 6= 0 ∈ H1(Y,OCi(Ci)).

Proof. We will discuss the ADE cases separately in Chapter 3, 4, 5 and the proof

will be completed in Chapter 6.

The next lemma says that given any Ci, there always exists ϕCi ∈ Ω0,1(Y,

O(Ci)) such that 0 6= [ϕCi |Ci ] ∈ H1(Y, OCi(Ci))
∼= C.
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Lemma 1.2.2. For any Ci in Y , the restriction homomorphism H1(Y, OY (Ci))→

H1(Y, OCi(Ci)) is surjective.

Proof. The above restriction homomorphism is part of a long exact sequence

induced by 0→ OY → OY (Ci)→ OCi(Ci)→ 0. The lemma follows directly from

pg(Y ) = 0.



Chapter 2

Minuscule representations and

(−1)-curves

2.1 Standard representations

For ADE Lie algebras, An = sl (n+ 1) is the space of tracefree endomorphisms of

Cn+1 and Dn = o (2n) is the space of infinitesimal automorphisms of C2n which

preserve a non-degenerate quadratic form q on C2n. In fact, E6 (resp. E7) is

the space of infinitesimal automorphisms of C27 (resp. C56) which preserve a

particular cubic form c on C27 (resp. quartic form t on C56) [1]. We call the

above representation the standard representation of g, i.e.

g standard representation

An = sl (n+ 1) Cn+1

Dn = o (2n) C2n

E6 C27

E7 C56

Note all these standard representations are the fundamental representations cor-

responding to the left nodes (i.e. C1) in the corresponding Dynkin diagrams

(Figure 1, 2 and 3) and they are minuscule representations.

19
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2.2 Minuscule representations

Definition 2.2.1. A minuscule (resp. quasi-minuscule) representation of a semi-

simple Lie algebra is an irreducible representation such that the Weyl group acts

transitively on all the weights (resp. non-zero weights).

Minuscule representations are always fundamental representations and quasi-

minuscule representations are either minuscule or adjoint representations.

g Miniscule representations

An = sl (n+ 1) ∧kCn+1 for k = 1, 2, · · · , n

Dn = o (2n) C2n, S+, S−

E6 C27, C27

E7 C56

Note E8 has no minuscule representation.

2.3 Configurations of (−1)-curves

In this section, we describe (−1)-curves in X and Y .

Definition 2.3.1. A (−1)-curve in a surface Y is a genus zero (possibly reducible)

curve l in Y with l · l = −1.

Remark 2.3.1. The genus zero condition can be replaced by l ·KY = −1 by the

genus formula, where KY is the canonical divisor of Y .

Let C0 be a curve in X passing through p.

Definition 2.3.2. (i) C0 is called a (−1)-curve in X if there exists a (−1)-curve

l in Y such that π(l) = C0, or equivalently the strict transform of C0 is a (−1)-

curve C̃0 in Y . (ii) The multiplicity of C0 at p is defined to be
∑n

i=1 ai[Ci] ∈ Λ,

where ai = C̃0 · Ci.
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Recall from Lie theory, any irreducible representation of a simple Lie algebra

is determined by its lowest weight. The fundamental representations1 are those

irreducible representations whose lowest weight is dual to the negative of some

simple root. If C0 ⊂ X has multiplicity Ck at p whose dual weight determines a

minuscule representation V , then we use Ck
0 to denote C̃0. The construction of

such X’s and C0’s can be found in the Appendix A.

Definition 2.3.3. (i) We call C0 has minuscule multiplicity Ck ∈ Λ at p if C0 has

multiplicity Ck and the dual weight of −Ck determines a minuscule representation

V . (ii) In this case, we denote I(g,V ) = {l : (−1)-curve in Y |π(l) = C0}.

If there is no ambiguity, we will simply write I(g,V ) as I. Note that I ⊂

Ck
0 + Λ≥0, where Λ≥0 = {

∑
ai[Ci] : ai ≥ 0}.

Lemma 2.3.1. In the above situation, the cardinality of I is given by |I| = dimV .

Proof. By the genus formula and every Ci ∼= P1 being a (−2)-curve, we have

Ci ·KY = 0. Since Ck
0 ·KY = −1, each (−1)-curve has the form l = Ck

0 +
∑
aiCi

with ai’s non-negative integers. From l· l = −1, we can determine {ai}′s for l to

be a (−1)-curve by direct computations.

Remark 2.3.2. The intersection product is negative definite on the sublattice of

Pic(X) generated by Ck
0 , C1, · · · , Cn and we use its negative as an inner product.

Lemma 2.3.2. In the above situation, for any l ∈ I, α ∈ Φ, we have |l · α| ≤ 1.

Proof. We claim that for any v ∈ Ck
0 +Λ, we have v ·v ≤ −1. We prove the claim

by direct computations. In (An,∧kCn+1) case:

(Ck
0 +

∑
aiCi)

2

= −1 + 2ak − (a2
1 + (a1− a2)2 + · · ·+ (ak−1− ak)2)− ((ak − ak+1)2 + · · ·+ a2

n)

≤ −1.

1The usual definition for fundamental representations uses highest weight. But in this thesis,

we will use lowest weight for simplicity of notations.
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The other cases can be proven similarly.

Since l, l+α, l−α ∈ Ck
0 +Λ by assumptions, we have l·l = −1 ≥ (l+α)·(l+α),

hence l · α ≤ 1. Also l · l = −1 ≥ (l − α) · (l − α), hence l · α ≥ −1.

Lemma 2.3.3. In the above situation, for any l ∈ I which is not Ck
0 , there exists

Ci such that l · Ci = −1.

Proof. From l = Ck
0 +

∑
aiCi 6= Ck

0 (ai ≥ 0), we have ak ≥ 1. From l · l = −1,

we have (
∑
aiCi)

2 = −2ak. If there does not exist such an i with l · Ci = −1,

then by Lemma 2.3.2, l · Ci ≥ 0 for every i, l · (
∑
aiCi) ≥ 0. But l · (

∑
aiCi) =

ak + (
∑
aiCi)

2 = −ak ≤ −1 leads to a contradiction.

Lemma 2.3.4. In the above situation, for any l, l′ ∈ I, H2(Y,O(l − l′)) = 0.

Proof. Firstly, we prove H2(Y,O(Ck
0 − l)) = 0 for any l = Ck

0 +
∑
aiCi ∈ I

inductively on ht(l) :=
∑
ai. If ht(l) = 0, i.e. l is Ck

0 , the claim follows from pg =

0. Suppose the claim is true for any l′ ∈ I with ht(l′) ≤ m−1. Then for any l ∈ I

with ht(l) = m, by Lemma 2.3.3, there exists i such that l ·Ci = −1. This implies

(l − Ci) ∈ I with ht(l − Ci) = m− 1 and therefore H2(Y,O(Ck
0 − (l − Ci))) = 0

by induction hypothesis. Using the long exact sequence induced from

0→ OY (Ck
0 − l)→ OY (Ck

0 − (l − Ci))→ OCi(C
k
0 − (l − Ci))→ 0

and OCi(C
k
0 − (l − Ci)) ∼= OP1(−1) or OP1 , we have the claim.

If H2(Y,O(l − l′)) 6= 0, then there exists a section s ∈ H0(Y,KY (l′ − l)) by

Serre duality. Since there exists a nonzero section t ∈ H0(Y,O(l−Ck
0 )), we have

st ∈ H0(Y,KY (l′ − Ck
0 )) ∼= H2(Y,O(Ck

0 − l′)) = 0, which is a contradiction.

2.4 Minuscule representations from (−1)-curves

Recall from the ADE root system Φ, we can recover the corresponding Lie algebra

g = h⊕
⊕

α∈Φgα. As before, we use {xα’s, hi’s} to denote its Chevalley basis. If
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C0 has minuscule multiplicity Ck, we denote

V0 := CI =
⊕
l∈I

C〈vl〉,

where vl is the base vector of V0 generated by l. Then we define a bilinear map

[, ] : g⊗ V0 → V0 (possibly up to ± signs) as follows:

[x, vl] =


〈x, l〉vl if x ∈ h

±vl+α if x = xα, l + α ∈ I

0 if x = xα, l + α /∈ I

Proposition 2.4.1. The signs in the above bilinear map g ⊗ V0 → V0 can be

chosen so that it defines an action of g on V0. Moreover, V0 is isomorphic to the

minuscule representation V .

Proof. For the first part, similar to [27], we use Lemma 2.3.2 to show [[x, y], vl] =

[x, [y, vl]]− [y, [x, vl]].

For the second part, since [xα, vCk0 ] = 0 for any α ∈ Φ−, vCk0 is the lowest weight

vector of V0 with weight corresponding to −Ck. Also we know the fundamental

representation V corresponding to −Ck has the same dimension with V0 by lemma

2.3.1. Hence V0 is isomorphic to the minuscule representation V .

Here we show how to determine the signs. Take any l ∈ I, vl is a weight vector

of the above action. For x = xα and vl with weight w, we define [x, vl] = nα,wvl+α,

where nα,w = ±1 if l + α ∈ I, otherwise nα,w = 0. By [[x, y], vl] = [x, [y, vl]] −

[y, [x, vl]], we have nα,βnα+β,w − nβ,wnα,β+w + nα,wnβ,α+w = 0.

Remark 2.4.1. Recall for any l = Ck
0 +

∑
aiCi ∈ I, we define ht(l) :=

∑
ai.

Using this, we can define a filtered structure for I : I = I0 ⊃ I1 ⊃ · · · ⊃ Im, where

m = maxl∈I ht(l), Ii = {l ∈ I|ht(l) ≤ m− i} and Ii\Ii+1 = {l ∈ I|ht(l) = m− i}.

This ht(l) also enables us to define a partial order of I. Say |I| = N , we denote

lN := Ck
0 since it is the only element with ht = 0. Similarly, lN−1 := Ck

0 + Ck.

Of course, there are some ambiguity of this ordering, if so, we will just make a

choice to order these (−1)-curves.
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2.5 Bundles from (−1)-curves

The geometry of (−1)-curves in Y can be used to construct representation bundles

of Egϕ for every minuscule representation of g. The proofs of theorems in this

section will be given in Chapter 6.

When C0 ⊂ X has minuscule multiplicity Ck at p with the corresponding

minuscule representation V , we define2

L
(g,V )
0 :=

⊕
l∈I(g,V ) O(l).

L
(g,V )
0 has a natural filtration F •: L

(g,V )
0 = F 0L ⊃ F 1L ⊃ · · · ⊃ FmL, induced

from the flittered structure on I, namely F iL
(g,V )
0 =

⊕
l∈Ii O(l).

L
(g,V )
0 can not descend to X as OCk(C

k
0 ) ∼= OP1(1) (because Ck · Ck

0 = 1 by

the definition of the minuscule multiplicity). For any Ci and any l ∈ I, we have

OCi(l)
∼= OP1(±1) or OP1 by Lemma 2.3.2. For every fixed Ci, if there is a l ∈ I

such that OCi(l)
∼= OP1(1), then (l + Ci)

2 = −1 = (l + Ci) ·KY , i.e. l + Ci ∈ I,

also OCi(l+Ci)
∼= OP1(−1). That means among the direct summands of L

(g,V )
0 |Ci ,

OP1(1) and OP1(−1) occur in pairs, and each pair is given by two (−1)-curves in

I whose difference is Ci. This gives us a chance to deform L
(g,V )
0 to get another

bundle which can descend to X.

Theorem 2.5.1. If there exists a (−1)-curve C0 in X with minuscule multiplicity

Ck at p and ρ : g −→ End(V ) is the corresponding representation, then

(L(g,V )
ϕ :=

⊕
l∈I

O(l), ∂ϕ := ∂0 + ρ(ϕ))

with ϕ ∈ ΨY is a holomorphic bundle over Y which preserves the filtration on

L
(g,V )
0 and it is a holomorphic representation bundle of Egϕ. Moreover, L

(g,V )
ϕ is

trivial on Ci if and only if [ϕCi |Ci ] 6= 0 ∈ H1(Y,OCi(Ci)).

2When X is a del Pezzo surface, we use lines in X to construct bundles [FM]. So here we

use (−1)-curves in X to construct bundles.
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For Ck with k = 1, the corresponding minuscule representation V is the

standard representation of g. When g = An, it is simply sl (n+ 1) = aut0(V ).

When g = Dn (resp. E6 and E7), there exists a quadratic (resp. cubic and

quartic) form f on V such that g = aut(V, f). The next theorem tells us that we

can globalize this construction over Y to recover the Lie algebra bundle Egϕ over

Y . But this does not work for EE8
ϕ as E8 has no standard representation.

Theorem 2.5.2. Under the same assumptions as in theorem 2.5.1 with k = 1,

there exists a holomorphic fiberwise symmetric multi-linear form

f :
r⊗

L(g,V )
ϕ −→ OY (D)

with r = 0, 2, 3, 4 when g = An, Dn, E6, E7 respectively such that Egϕ ∼= aut0(L
(g,V )
ϕ , f).

It is obvious that Egϕ does not depend on the existence of the (−1)-curve C0,

for the minuscule representation bundles, we have the following results.

Theorem 2.5.3. There exists a divisor B in Y and an integer k, such that the

bundle L(g,V )
ϕ := SkL

(g,V )
ϕ ⊗ O(−B) with ϕ ∈ ΨX can descend to X and does not

depend on the existence of C0.

2.6 Outline of Proofs for g 6=E8

When g 6=E8, there exists a natural symmetric tensor f on its standard represen-

tation V such that g = aut0(V, f). The set I(g, V ) of (−1)-curves has cardinality

N = dimV . Given η :=(ηi,j)N×N with ηi,j ∈ Ω0,1(Y,O(li − lj)) for every li 6= lj ∈

I(g, V ), we consider the operator ∂η := ∂0 + η on L
(g, V )
0 :=

⊕
l∈I(g, V ) OY (l). We

will look for η which satisfy:

(1) (filtration) ηi,j = 0 for i > j for the partial ordering introduced in §3.4.

(2) (holomorphic structure) (∂0 + η)2 = 0.

(3) (Lie algebra structure) ∂ηf = 0.

(4) (descendent) For every Ck, if li−lj = Ck, then 0 6= [ηi,j|Ck ] ∈ H1(Y,OCk(Ck)).
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Remark 2.6.1. Property (2) implies that we can define a new holomorphic struc-

ture on L
(g, V )
0 . Properties (1) and (3) require that for any ηi,j 6= 0, ηi,j ∈

Ω0,1(Y,O(α)) for some α ∈ Φ+. We will show that if η satisfies (1), (2) and

(3), then (4) is equivalent to L
(g, V )
η being trivial on every Ck, i.e. L

(g, V )
η can

descend to X.

Denote

Ξg
Y , {η =(ηi,j)N×N |η satisfies (1), (2) and (3)},

and

Ξg
X , {η ∈Ξg

Y |η satisfies (4)},

then each η in Ξg
Y determines a filtered holomorphic bundle L

(g, V )
η over Y together

with a holomorphic tensor f on it. It can descend to X if η ∈ Ξg
X .

Since g = aut(V, f), for any η ∈Ξg
Y , we have a holomorphic Lie algebra bundle

ζgη := aut(L
(g, V )
η , f) over Y of type g, and L

(g, V )
η is automatically a representation

bundle of ζgη . Furthermore, if η ∈Ξg
X , then ζgη can descend to X.

For a general minuscule representation of g, given any η ∈Ξg
Y , we show that

there exists a unique holomorphic structure on L
(g,V )
0 , such that the action of ζgη

on the new holomorphic bundle L
(g,V )
η is holomorphic. Furthermore, if η ∈Ξg

X ,

then L
(g,V )
η can descend to X.



Chapter 3

An case

We recall that An = sl(n+ 1,C) =aut0(Cn+1) (where aut0 means tracefree endo-

morphisms). The standard representation of An is Cn+1 and minuscule represen-

tations of An are ∧kCn+1, k = 1, 2, · · · , n.

3.1 An standard representation bundle L
(An,Cn+1)
η

We consider a surface X with an An singularity p and a (−1)-curve C0 passing

through p with multiplicity C1, then I(An,Cn+1) = {C1
0 +

∑k
i=1 Ci| 0 ≤ k ≤ n}

has cardinality n + 1. We order these (−1)-curves: lk = C1
0 +

∑n+1−k
i=1 Ci for

1 ≤ k ≤ n+ 1. For any li 6= lj ∈ I, li · lj = 0. Fix any Ci, we have

lk · Ci =


1, k = n+ 2− i

−1, k = n+ 1− i

0, otherwise.

Define L
(An,Cn+1)
0 :=

⊕
l∈I O(l) over Y , for simplicity, we write it as LAn0 . LAn0

can not descend to X, since for any Ci,

LAn0 |Ci ∼= O
⊕(n−1)

P1 ⊕OP1(1)⊕OP1(−1).

Our aim is to find a new holomorphic structure on LAn0 such that the resulting

bundle can descend to X. First, we define ∂η : Ω0,0(Y,LAn0 ) −→ Ω0,1(Y,LAn0 ) on

27
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LAn0 =
⊕n+1

k=1 O(lk) as follows:

∂η =


∂ η1,2 · · · η1,n+1

0 ∂ · · · η2,n+1

...
...

. . .
...

0 0 · · · ∂


where ηi,j ∈ Ω0,1(Y,O(li− lj)) for any j > i. When j > i, li− lj ∈ Λ is a positive

root because of li · lj = 0 and our ordering of lk’s.

The integrability condition ∂
2

η = 0 is equivalent to, for i = 1, 2, · · · , n, ∂ηi,i+1 = 0,

∂ηi,j = −
∑j−1

m=i+1 ηi,m·ηm,j, j ≥ i+ 2,

Note ηi,j ∈ Ω0,1(Y,O(li − lj)) = Ω0,1(Y,O(α)) for some α ∈ Φ+. From

j−1∑
m=i+1

[ηi,m·ηm,j] ∈ H2(Y,O(li − lj)) = 0,

we can find ηi,j, such that ∂ηi,j = −
∑j−1

m=i+1 ηi,m·ηm,j. That is

Proposition 3.1.1. Given any ηi,i+1 ∈ Ω0,1(Y,O(li − li+1)) with ∂ηi,i+1 = 0 for

i = 1, 2, · · ·n, there exists ηi,j ∈ Ω0,1(Y,O(li − lj)) for every j > i such that ∂η

defines a holomorphic structure on LAn0 , i.e. ∂
2

η = 0.

We want to prove that there exists η ∈ΞAn
Y such that LAnη can descend to

X, i.e. LAnη |Ci is trivial for every Ci. To prove this, we will construct n + 1

holomorphic sections of LAnη |Ci which are linearly independent everywhere on Ci.

The following lemma will be needed for all the ADE cases.

Lemma 3.1.1. Consider a vector bundle (L :=
⊕N

i=1O(li), ∂L = ∂0 + (ηi,j)N×N)

over Y with ηi,j = 0 whenever i ≥ j. Suppose C is a smooth (−2)-curve in Y

with H1(C,OC(li)) = 0 for every i = 1, 2, · · ·N , then for any fixed i and any
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si ∈ H0(C,OC(li)), the following equation for s1, s2, · · · si−1 has a solution,

∂ η1,2|C η1,3|C · · · · · · η1,N |C
0 ∂ η2,3|C · · · · · · η2,N |C
0 0 ∂ · · · · · · η3,N |C
...

...
...

. . . . . .
...

...
...

...
. . . . . .

...

0 0 0 · · · · · · ∂





s1

...

si

0
...

0


= 0.

Proof. The above equation is equivalent to:

∂si = 0, (1)

ηi−1,isi + ∂si−1 = 0, (2)

...

η1,isi + · · ·+ η1,2s2 + ∂s1 = 0. (i)

Equation (1) is automatic as si ∈ H0(C,OC(li)). For equation (2), since

∂ηi−1,i = 0 and ∂si = 0, we have [ηi−1,isi] ∈ H1(C,OC(li−1)) = 0, hence we can

find si−1 satisfying ∂si−1 = −ηi−1,isi.

Inductively, suppose we have found si, · · · , sj−1 for the first (i− j) equations,

then for the (i− j + 1)-th equation: ηj,isi + · · ·+ ηj,j+1sj+1 + ∂sj = 0, we have

ηj,isi + · · ·+ ηj,j+1sj+1 ∈ Ω0,1(C,OC(lj)).

From ∂
2

L = 0, we have

∂ηk,m = −(ηk,k+1 · ηk+1,m + ηk,k+2 · ηk+2,m + · · ·+ ηk,m−1 · ηm−1,m).

Then

∂(sm) = −(ηm,m+1sm+1 + · · ·+ ηm,isi)

implies

∂(ηj,isi + · · ·+ ηj,j+1sj+1) = 0
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Therefore [ηj,isi+ · · ·+ηj,j+1sj+1] ∈ H1(C,OC(lj)) = 0, hence we can find sj such

that ∂sj = −(ηj,isi + · · ·+ ηj,j+1sj+1).

Let us recall a standard result which says that the only non-trivial extension

of OP1(1) by OP1(−1) is the trivial bundle. We will give an explicit construction

of this trivialization as we will need a generalization of it later.

Lemma 3.1.2. For an exact sequence over P1 : 0→ OP1(−1)→ E → OP1(1)→

0, the bundle E is determined by the extension class [ϕ] ∈ Ext1P1(O(1), O(−1)) ∼=

C up to a scalar multiple. If [ϕ] 6= 0, E is trivial, namely there exists two

holomorphic sections for E which are linearly independent at every point in P1.

Proof. With respect to the (topological) splitting E = OP1(−1) ⊕ OP1(1), the

holomorphic structure on E is given by

∂E =

 ∂ ϕ

0 ∂


with ϕ ∈ Ext1P1(O(1), O(−1))). Let t1, t2 be a base of H0(P1, O(1)) ∼= C2. Since

[ϕti] ∈ H1(P1, O(−1)) = 0, we can find u1, u2 ∈ Ω0(P1, O(−1)), such that ∂ ϕ

0 ∂

 ·
 ui

ti

 = 0,

i.e. s1 = (u1, t1)t and s2 = (u2, t2)t are two holomorphic sections of E. Explicitly,

we can take s1 = ( 1
1+|z|2 , z)

t, s2 = ( −z
1+|z|2 , 1)t in the coordinate chart C ⊂ P1. It

can be checked that s1 and s2 are linearly independent over P1.

From the above lemma, we have the following result.

Lemma 3.1.3. Under the same assumption as in Lemma 3.1.1. Suppose L|C ∼=

O⊕mP1 ⊕ (OP1(1) ⊕ OP1(−1))⊕n with each pair of OP1(±1) corresponding to two

(−1)-curves li and li+1 with li − li+1 = C. Then L|C is trivial if and only if

[ηi,i+1|C ] 6= 0 for every ηi,i+1 ∈ Ω0,1(Y,O(C)).
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Proof. For simplicity, we assume m = n = 1 and OC(l1) ∼= OP1 , OC(l2) ∼=

OP1(−1), OC(l3) ∼= OP1(1) with l2 − l3 = C. If [η2,3|C ] 6= 0, by Lemma 3.1.1

and Lemma 3.1.2, there exists two holomorphic sections for L|C which are lin-

early independent at every point in C: s1 = (x1, u1, t1)t and s2 = (x2, u2, t2)t with

u1, t1, u2, t2 given in the proof of Lemma 3.1.2. By H0(Y,OC(l1)) ∼= H0(P1, O) ∼=

C, there exists one holomorphic section for L|C which is nowhere zero on C:

s3 = (x3, 0, 0)t. These s1, s2, s3 give a trivialization of L|C . If [η2,3|C ] = 0, then

LN |C is an extension of OP1(1)⊕OP1(−1) by OP1 and there is no such nontrivial

extension.

Proposition 3.1.2. The bundle LAnη over Y with η ∈ΞAn
Y can descend to X if

and only if 0 6= [ηn+1−i,n+2−i|Ci ] ∈ H1(Y, OCi(Ci)) for every i, i.e. η ∈ΞAn
X .

Proof. Restricting LAn0 to Ci, the corresponding line bundle summands are

OCi(lk)
∼=


OP1(1), k = n+ 2− i

OP1(−1), k = n+ 1− i

OP1 , otherwise.

By Lemma 3.1.3 and our assumption, we have the proposition.

3.2 An Lie algebra bundle ζAnη

As An = sl(n + 1,C) =aut0(Cn+1), ζAnη := aut0(LAnη ) (η ∈ΞAn
X ) is an An Lie

algebra bundle over Y which can descend to X. This ζAnη does not depend on

the existence of C0. And LAnη is automatically a representation bundle of ζAnη .

3.3 An minuscule representation bundle L
(An,∧kCn+1)
η

Consider a surface X with an An singularity p and a (−1)-curve C0 passing

through p with multiplicity Ck. By Proposition 2.3.1, I(An,∧kCn+1) has cardinality(
k

n+1

)
. Define L

(An,∧kCn+1)
0 :=

⊕
l∈I O(l) over Y .
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Lemma 3.3.1. L
(An,∧kCn+1)
0 = (∧kLAn0 )(Ck

0 − kC1
0 −

∑k−1
j=1(k − j)Cj).

Proof. The bundles on both sides have the same rank, so we only need to check

that every line bundle summand in the right-hand side is OY (l) for l a (−1)-

curve in I(An,∧kCn+1). For any k distinct elements lij in I(An,Cn+1), we denote

l = li1 + li2 + · · · + lik + Ck
0 − (l1 + l2 + · · · lk), then OY (l) is a summand in the

right-hand side. Since the intersection number of any two distinct (−1)-curves in

I(An,Cn+1) is zero, we have l2 = l ·KY = −1. i.e. l ∈ I(An,∧kCn+1).

From the above lemma and direct computations, for any Ci,

L
(An,∧kCn+1)
0 |Ci ∼= O

⊕(( k
n−1)+(k−2

n−1))

P1 ⊕ (OP1(1)⊕OP1(−1))⊕(k−1
n−1).

Proposition 3.3.1. Fix any η ∈ΞAn
Y , there exists a unique holomorphic structure

on L
(An,∧kCn+1)
0 such that the action of ζAnη on the resulting bundle L

(An,∧kCn+1)
η is

holomorphic. Furthermore, if η ∈ΞAn
X , then L

(An,∧kCn+1)
η can descend to X.

Proof. As the action of ζAnη on LAnη is holomorphic, ζAnη acts on L
(An,∧kCn+1)
η :=

(∧kLAnη )(Ck
0 − kC1

0 −
∑k−1

j=1(k− j)Cj) holomorphically. The last assertion follows

from Proposition 3.1.2 and the fact that O(Ck
0−kC1

0−
∑k−1

j=1(k−j)Cj)|Ci is trivial

for every Ci.
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Dn case

We recall that Dn = o(2n,C) =aut(C2n, q) for a non-degenerate quadratic form

q on the standard representation C2n. The other minuscule representations are

S+ and S− and the adjoint representation is ∧2C2n.

4.1 Dn standard representation bundle L
(Dn,C2n)
η

We consider a surface X with a Dn singularity p and a (−1)-curve C0 pass-

ing through p with multiplicity C1, then I(Dn,C2n) = I1 ∪ I2 with I1 = {C1
0 +∑k

i=1Ci|0 ≤ k ≤ n − 1} and I2 = {F − l|l ∈ I1}, where F = 2C1
0 + 2C1 + · · · +

2Cn−2 + Cn−1 + Cn. We order these (−1)-curves: lk = F − C1
0 −

∑k−1
i=1 Ci and

l2n−k+1 = C1
0 +

∑k−1
i=1 Ci for 1 ≤ k ≤ n.

For any li 6= lj ∈ I, we have li · lj = 0 or 1. Given any li ∈ I, there exists a

unique lj ∈ I such that li · lj = 1. In this case, li + lj = F .

Define L
(Dn,C2n)
0 :=

⊕
l∈I O(l) over Y , for simplicity, we write it as LDn0 . If we

ignore Cn, then we recover the An−1 case as in the last section. They are related

by the following.

Lemma 4.1.1. LDn0 = L
An−1

0 ⊕ (L
An−1

0 )∗(F ).

Proof. Since An−1 is a Lie subalgebra of Dn, we can decompose the representation

33
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of Dn as sum of irreducible representations of An−1. By the branching rule, we

have 2n = n + n, that is C2n = Cn ⊕ (Cn)∗ with C2n and Cn the standard

representations of Dn and An−1 respectively. For I(Dn,C2n) = I1 ∪ I2, I1 forms the

standard representation Cn of An−1, and I2 forms the (Cn)∗.

From the above lemma and direct computations, for any Ci,

LDn0 |Ci ∼= O
⊕(2n−4)

P1 ⊕ (OP1(1)⊕OP1(−1))⊕2.

Similar to (An, Cn+1) case, we define ∂η : Ω0,0(Y,LDn0 ) −→ Ω0,1(Y,LDn0 ) on

LDn0 =
⊕2n

k=1 O(lk) by ∂η := ∂0 + (ηi,j)2n×2n, where ηi,j ∈ Ω0,1(Y,O(li − lj)) for

any j > i, otherwise ηi,j = 0.

By Lemma 2.3.4 and arguments similar to the proof of Proposition 3.1.1 for

the An case, given any ηi,i+1 with ∂ηi,i+1 = 0 for every i, there exists ηi,j ∈

Ω0,1(Y,O(li − lj)) for every j > i such that ∂
2

η = 0.

From the configuration of these 2n (−1)-curves, we can define a quadratic

form q on the vector space V0 = CI =
⊕

l∈IC〈vl〉 spanned by these (−1)-curves,

q : V0 ⊗ V0 −→ C, q(vli , vlj) = li · lj.

The Dn Lie algebra is the space of infinitesimal automorphism of q, i.e. Dn =

aut(V0, q).

Correspondingly, we have a fiberwise quadratic form q on the bundle LDnη :

q : LDnη ⊗ LDnη −→ O (F ).

Proposition 4.1.1. There exists η with ∂
2

η = 0 such that ∂ηq = 0.

Proof. ∂ηq = 0 if and only if q(∂ηsi, sj) + q(si, ∂ηsj) = 0 for any si ∈ H0(Y,O(li))

and sj ∈ H0(Y,O(lj)). From the definition of q, this is equivalent to η2n+1−j,i +

η2n+1−i,j = 0, i.e. ηi,j = −η2n+1−j,2n+1−i for any j > i. From li + l2n+1−i =

lj + l2n+1−j = F , we have

ηi,j ∈ Ω0,1(Y,O(li − lj)) = Ω0,1(Y,O(l2n+1−j − l2n+1−i)) 3 η2n+1−j,2n+1−i.
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We construct η which satisfies ∂
2

η = 0 with ηi,j = −η2n+1−j,2n+1−i inductively

on j − i. For j − i = 1, we can always take ηi,i+1 = −η2n−i,2n+1−i. Note we have

ηn,n+1 = 0. For j − i = 2, we have

∂ηi,i+2 = −ηi,i+1ηi+1,i+2,

∂η2n−i−1,2n−i+1 = −η2n−i−1,2n−iη2n−i,2n−i+1 = −ηi+1,i+2ηi,i+1 = −∂ηi,i+2,

so we can take ηi,i+2 = −η2n−i−1,2n−i+1.

Repeat this process inductively on j − i, we can take ηi,j = −η2n+1−j,2n+1−i

for any j > i. So there exists η satisfying ∂ηq = 0.

Until now, we have proved ΞDn
Y is not empty.

Restricting LDn0 to Cn, the corresponding line bundle summands are:

OCn(lj) ∼=


OP1(1), j = n+ 1 or n+ 2

OP1(−1), j = n− 1 or n

OP1 , otherwise.

The pairs of OP1(±1) in LDn0 |Cn are given by {ln−1, ln+1} and {ln, ln+2}. To con-

struct a trivialization of LDnη |Cn , we need the following generalizations of Lemma

3.1.2 and Lemma 3.1.3.

Lemma 4.1.2. Under the same assumption as in Lemma 3.1.1. Assume li+1, li+2 · · · li+2k

satisfy li+j · C = −1 and li+k+j = li+j − C for j = 1, 2, · · · k. If ηi+p,i+q = 0 for

2 ≤ p ≤ k, k+1 ≤ q ≤ 2k−1 and q−p ≤ k−1, i.e. the corresponding submatrix

of ∂L given by li+1, li+2, · · · li+2k looks like
∗

ηi+1,i+k+1 ηi+1,i+k+2 · · · ηi+1,i+2k

0 ηi+2,i+k+2 · · · ηi+2,i+2k

...
...

. . .
...

0 0 · · · ηi+k,i+2k

0k×k ∗
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with ηi+1,i+k+1, ηi+2,i+k+2 · · · ηi+k,i+2k in Ω0,1(Y,O(C)). Suppose [ηi+1,i+k+1|C ],

[ηi+2,i+k+2|C ], · · · , [ηi+k,i+2k|C ] are nonzero, we can construct 2k holomorphic sec-

tions of L|C which are linearly independent at every point in C.

Proof. In order to keep our notations simpler, we assume k = 2. The above

matrix given by li+1, li+2, li+3, li+4 has the form
∂ ηi+1,i+2

0 ∂

ηi+1,i+3 ∗

0 ηi+2,i+4

02×2

∂ ηi+3,i+4

0 ∂

 .

From H0(Y,OC(li+4)) ∼= H0(P1, O(1)) ∼= C2 and [ηi+2,i+4|C ] 6= 0, there exist two

holomorphic sections of L|C which are linearly independent at every point in C:

s1 = (y1, u1, x1, t1)t and s2 = (y2, u2, x2, t2)t with u1, t1, u2, t2 given in Lemma

3.1.2. Similarly, from H0(Y,OC(li+3)) ∼= C2 and [ηi+1,i+3|C ] 6= 0, we also have

two holomorphic sections of L|C which are linearly independent at every point in

C: s3 = (y3, 0, x3, 0)t and s4 = (y4, 0, x4, 0)t. If there exist a1, a2, a3, a4 such that

a1s1+ a2s2 + a3s3 + a4s4 = 0 at some point in C, then we have a1t1+ a2t2 = 0

and a1u1+ a2u2 = 0 at some point, which is impossible by the explicit formulas

for u1, t1, u2, t2 in Lemma 3.1.2. Hence we have the lemma.

Lemma 4.1.3. Under the same assumption as in Lemma 3.1.1, we assume L|C ∼=

O⊕mP1 ⊕ (OP1(1) ⊕ OP1(−1))⊕n with each pair of OP1(±1) and the corresponding

holomorphic structure as in Lemma 4.1.2. Then L|C is trivial if and only if

[ηi,j|C ] 6= 0 for any ηi,j ∈ Ω0,1(Y,O(C)).

Proof. Same arguments as in the proof of Lemma 3.1.3 and Lemma 4.1.2.

Proposition 4.1.2. The bundle LDnη over Y with η ∈ΞDn
Y can descend to X if

and only if for every Ck and ηi,j ∈ Ω0,1(Y,O(Ck)), [ηi,j|Ck ] 6= 0, i.e. η ∈ΞDn
X .
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Proof. Restricting LDn0 to Ci (1 ≤ i ≤ n− 1), the line bundle summands are

OCi(lj)
∼=


OP1(1), j = i+ 1 or 2n− i

OP1(−1), j = i or 2n− i+ 1

OP1 , otherwise.

By Lemma 3.1.3, LDnη |Ci is trivial if and only if [ηi,i+1|Ci ], [η2n−i,2n+1−i|Ci ] are

not zeros. For Cn, The pairs of OP1(±1) in LDn0 |Cn are given by {ln−1, ln+1} and

{ln, ln+2}. By Lemma 4.1.3 and ηn,n+1 = 0 (Proposition 4.1.1), LDnη |Cn is trivial

if and only if [ηn−1,n+1|Cn ], [ηn,n+2|Cn ] are not zeros. In fact, this LDnη is just an

extension of L
An−1

η′ by (L
An−1

η′ )∗(F ) for some η′∈Ξ
An−1

X with η′ ⊂ η.

4.2 Dn Lie algebra bundle ζDnη

Note that ζDnη = aut(LDnη , q) is a Dn Lie algebra bundle over Y . In order for ζDnη

to descend to X as a Lie algebra bundle, we need to show that q|Ci : LDnη |Ci ⊗

LDnη |Ci −→ OCi (F ) is a constant map for every Ci. This follows from the fact that

both LDnη and O(F ) are trivial on all Ci’s and ∂ηq = 0. From the construction,

LDnη is a representation bundle of ζDnη .

4.3 Dn spinor representation bundles L
(Dn,S±)
η

We will only deal with S+, as S− case is analogous. Consider a surface X with

a Dn singularity p and a (−1)-curve C0 passing through p with multiplicity Cn.

By Proposition 2.3.1, |I(Dn,S+)| = 2n−1. Define L
(Dn,S+)
0 :=

⊕
l∈I O(l) over Y .

Lemma 4.3.1. L
(Dn,S+)
0 =

⊕[n
2

]

m=0 ∧2m(L
An−1

0 )∗(mF + Cn
0 ).

Proof. First we check that every line bundle summand in the right-hand side is

OY (l) for a (−1)-curve l in I(Dn,S+). For any li ∈ I(An−1,Cn), we have li · Cn
0 = 0,

li · F = 0 and F · F = 0, F · Cn
0 = 1. For any 2m distinct elements lij ’s in
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I(An−1,Cn), we denote l = −(li1 + · · · li2m) + mF + Cn
0 , then OY (l) is a summand

in the right-hand side. Since l2 = −1 and l · KY = −1, l ∈ I(Dn,S+). Also the

rank of these two bundles are the same which is 2n−1 =
(
n
0

)
+
(
n
2

)
+ · · · +

(
n

2[n
2

]

)
.

Hence we have the lemma.

From the above lemma and direct computations, for any Ci,

L
(Dn,S+)
0 |Ci ∼= O⊕2n−2

P1 ⊕ (OP1(1)⊕OP1(−1))⊕2n−3

.

The Dn Lie algebra bundle ζDn0 has a natural fiberwise action on L
(Dn,S+)
0 ,

ρ : ζDn0 ⊗ L
(Dn,S+)
0 −→ L

(Dn,S+)
0 ,

which can be described easily using the reduction to An−1 (with the node Cn

being removed): recall

ζDn0 = (∧2L
An−1

0 (−F ))⊕ ((L
An−1

0 )∗ ⊗ L
An−1

0 )⊕ ((∧2L
An−1

0 )∗(F )),

L
(Dn,S+)
0 =

[n
2

]⊕
m=0

∧2m(L
An−1

0 )∗(mF ),1

and ρ is given by interior and exterior multiplications for ∧·LAn−1

0 .

Proposition 4.3.1. Fix any η ∈ΞDn
Y , there exists a unique holomorphic struc-

ture on L
(Dn,S+)
0 such that the action of ζDnη on the resulting bundle L

(Dn,S+)
η is

holomorphic. Furthermore, if η ∈ΞDn
X , then L

(Dn,S+)
η can descend to X.

Proof. First, we recall the holomorphic structure on ζDnη . In I(Dn,C2n) = I1 ∪ I2

with I1 = {li = C1
0 +
∑2n−i

m=1 Cm|n+1 ≤ i ≤ 2n} and I2 = {F− li|li ∈ I1}, let si, s
∗
i

and f be local holomorphic sections of O(li), O(F − li) and O(−F ) respectively.

By Proposition 4.1.1, we have

∂LDnη s∗i =
i−1∑
p=1

ηp,is
∗
p

1For simplicity, we omit the Cn
0 factor.
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and

∂LDnη si =
n∑
p=1

ηp,2n+1−is
∗
p −

n∑
p=i+1

ηi,psp.

Back to
(
LS

+

0

)∗
, we define si1···i2m := si1 ∧ · · · ∧ si2m ⊗ fm ∈ Γ(∧2mL

An−1

0 (−mF ))

where ij ∈ {1, 2, · · ·n} and define ∂(
L

(Dn,S+)
η

)∗ as follows:

∂Lsi1···i2m =
∑
p,q

(−1)p+qηip,2n+1−iqsi1···îp···îq ···i2m −
∑
p

∑
k 6=ip

ηip,ksi1···ip−1kip+1···i2m ,

where îj means deleting the ij component. We verify ∂
2

L = 0 by direct computa-

tions.

We claim that ∂L is the unique holomorphic structure such that the action of

ζDnη on
(
L

(Dn,S+)
η

)∗
is holomorphic, i.e.

∂ζDnη (g) · x+ g · (∂Lx) = ∂L(g · x) (∗)

for any g ∈ Γ(ζDnη ) and x ∈ Γ
((

LS
+

0

)∗)
.

We prove the above claim by induction on m. When m = 0, x = s0 ∈

Γ(∧0L
An−1

0 ), by direct computations, (∗) holds for any g ∈ Γ(ζDnη ) if and only

if ∂Ls0 = 0 and ∂Lsij = −ηi,2n+1−js0 −
∑n

p=i+1 ηi,pspj −
∑n

p=j+1 ηj,psip for any

sij ∈ Γ(∧2L
An−1

0 ). When m = 2, from the above formula for ∂Lsij, we can get the

formula for ∂Lsijkl. Repeat this process inductively, we can get the above formula

for ∂Lsi1···i2m . Hence we have the first part of this proposition.

For the second part, we will rewrite ∂L in matrix form. Firstly, we have

∂
L

(Dn,C2n)
η

=

 ∂
(L
An−1
η′ )∗(F )

B

0 ∂
L
An−1
η′


with η′ ⊂ η and the upper right block B has the following shape

B =


...

...
. . .

β ∗

0 −β

· · ·

· · ·

 ,
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for [β] ∈H1(Y,O(Cn)).

In particular, we have an exact sequence of holomorphic bundles:

0→ (L
An−1

η′ )∗(F )→ LDnη → L
An−1

η′ → 0. (∆)

By tensoring (∆) with L
An−1

η′ (−F ), we obtain a bundle S1 as follows,

0→ OY → S1 → ∧2L
An−1

η′ (−F )→ 0,

with the induced holomorphic structure given by

∂S1 =

 ∂∧0L
An−1
η′

B1

0 ∂∧2L
An−1
η′ (−F )

 =

 ∂∧0L
An−1
η′

±β · · ·

0 ∂∧2L
An−1
η′ (−F )

 .

The occurrence of ±β in that location is because ln+1 + ln+2 with ln+1, ln+2 ∈

I(Dn,C2n) is the largest element in I(An−1,∧2Cn) and F − ln+1 − ln+2 = Cn because

F = 2C1
0 + 2C1 + · · · 2Cn−2 + Cn−1 + Cn.

Similarly, we have an extension bundle

0→ ∧2L
An−1

η′ (−F )→ S2 → ∧4L
An−1

η′ (−2F )→ 0,

with

∂S2 =

 ∂∧2L
An−1
η′ (−F )

B2

0 ∂∧4L
An−1
η′ (−2F )

 ,

where

B2 =


±β

0 ±β
...

...
. . .

0 0 · · · ±β


,

for [β] ∈H1(Y,Hom(O(li+ lj + ln+1 + ln+2−2F ), O(li+ lj−F ))) = H1(Y,O(Cn))

with i, j ∈ {n+ 3, n+ 4, · · · , 2n}. And the number of ±β’s is
(
n−2

2

)
.
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Inductively, we obtain ∂(
L

(Dn,S+)
η

)∗ as above which has the shape that satisfies

Lemma 4.1.3:

∂(
L

(Dn,S+)
η

)∗ =



∂∧0L
An−1
η′

B1 · · · · · ·

0 ∂∧2L
An−1
η′ (−F )

B2
. . .

0 0 ∂∧4L
An−1
η′ (−2F )

. . .

...
. . . . . . . . .


.

The number of ±β ∈Ω1(Y,O(Cn)) in ∂L is
(
n−2

0

)
+
(
n−2

2

)
+ · · ·+

(
n−2

2[n−2
2

]

)
= 2n−3.

To prove that
(
LS

+

η

)∗
can descend to X when η ∈ΞDn

X , we need to show(
LS

+

η

)∗
|Ci is trivial for every Ci. When i 6= n, this follows from the fact that

L
An−1

η′ is trivial (Proposition 3.1.2) and Ext1P1(O,O) ∼= 0. When i = n, this follows

from Lemma 4.1.3 and β = ηn−1,n+1 ∈Ω0,1(Y,O(Cn)) with [ηn−1,n+1|Cn ] 6= 0.



Chapter 5

En case

5.1 E6 case

We recall that [1] E6=aut(C27, c) for a non-degenerate cubic form c on the stan-

dard representation C27. The other minuscule representation is C27.

We consider a surface X with an E6 singularity p and a (−1)-curve C0 passing

through p with multiplicity C1. By Proposition 2.3.1, I(E6,C27) has cardinality 27.

For any two distinct (−1)-curves li and lj in I, we have li · lj = 0 or 1.

Define L
(E6,C27)
0 :=

⊕
l∈I O(l) over Y , for simplicity, we write it as LE6

0 . If we

ignore C6, then we recover the A5 case as in section 3.1.

Lemma 5.1.1. LE6
0 = LA5

0 ⊕ (∧2LA5
0 )∗(H) ⊕ (∧5LA5

0 )∗(2H), where H = 3C1
0 +

3C1 + 3C2 + 3C3 + 2C4 + C5 + C6.

Proof. E6 has A5 as a Lie subalgebra, the branching rule is 27 = 6 + 15 + 6,

i.e. C27 = C6 ⊕ ∧2(C6)∗ ⊕ ∧5(C6)∗. The first 6 (−1)-curves in I : l1 = C1
0 , l2 =

C1
0 +C1, · · · l6 = C1

0 +C1 +C2 +C3 +C4 +C5 form the standard representation C6

of A5. The next 15 (−1)-curves are given by H− li− lj with i 6= j ∈ {1, 2, · · · , 6}.

The remaining 6 (−1)-curves are given by 2H − l1 − l2 − · · · − l̂i − · · · − l6.

42
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From the above lemma and direct computations, for any Ci,

LE6
0 |Ci ∼= O⊕15

P1 ⊕ (OP1(1)⊕OP1(−1))⊕6.

From Lemma 5.1.1, we can easily determine the configuration of these 27

(−1)-curves [29]: Fix any (−1)-curve, there are exactly 10 (−1)-curves intersect it,

together with the fixed (−1)-curve, they form 5 triangles. A triple li, lj, lk is called

a triangle if li+ lj+ lk = K ′, where K ′ = 3C1
0 +4C1 +5C2 +6C3 +4C4 +2C5 +3C6.

From the configuration of these 27 (−1)-curves in Y , we can define a cubic

form c on the vector space V0 = CI =
⊕

l∈IC〈vl〉 spanned by (−1)-curves,

c : V0 ⊗ V0 ⊗ V0 −→ C, (vli , vlj , vlk) 7→

 ±1 if li + lj + lk = K ′

0 otherwise.

The signs above can be determined explicitly [1][15] such that E6 = aut(V0, c).

Correspondingly, we have a fiberwise cubic form c on the bundle LE6
η ,

c : LE6
η ⊗ LE6

η ⊗ LE6
η −→ O (K ′).

Proposition 5.1.1. There exists η with ∂
2

η = 0 such that ∂ηc = 0.

Proof. Note ∂ηc = 0 if and only if

c(∂ηsi, sj, sk) + c(si, ∂ηsj, sk) + c(si, sj, ∂ηsk) = 0 (∗)

for any si ∈ H0(Y,O(li)), sj ∈ H0(Y,O(lj)) and sk ∈ H0(Y,O(lk)). From the

definition of c, if li+lj+lk = K ′, then the above equation (∗) holds automatically.

If li + lj + lk 6= K ′, without loss of generality, we assume li · lj = 0, then we have

the following four cases.

Case (i), if li · lk = 0 and lj · lk = 0, then (∗) holds automatically.

Case (ii), if li · lk = 0 and lj · lk = 1, then (∗) holds if ηli,K′−lj−lk = 0 .

Case (iii), if li · lk = 1 and lj · lk = 0, then (∗) holds if ηlj ,K′−li−lk = 0.

Case (iv), if li·lk = 1 and lj ·lk = 1, then (∗) holds if ηli,K′−lj−lk±ηlj ,K′−li−lk = 0,

here the sign is determined by the signs of cubic form.
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In conclusion, for any li, lj ∈ I(E6,C27), if li · lj 6= 0, then ηi,j = 0. If li · lj = 0,

then li − lj = α (j > i) for α ∈ Φ+, i.e. ηi,j ∈ Ω0,1(Y,O(α)). And for any other

ηp,q ∈ Ω0,1(Y,O(α)), we have ηi,j ± ηp,q = 0. From the signs of the cubic form

c, we know that given any positive root α, there exists 6 ηi,j’s in Ω0,1(Y,O(α)),

where 3 of them are the same and the other 3 different to the first three by a

sign. We use computer to prove we can find such ηi,j’s satisfying ∂
2

η = 0.

Until now, we have proved ΞE6
Y is not empty.

Proposition 5.1.2. The bundle LE6
η over Y with η ∈ΞE6

Y can descend to X if

and only if for every Ck and ηi,j ∈ Ω0,1(Y,O(Ck)), [ηi,j|Ck ] 6= 0, i.e. η ∈ΞE6
X .

Proof. From Lemma 5.1.1, Proposition 5.1.1 and the order of I(E6,C27), for η ∈ΞE6
Y ,

LE6
η can be constructed from LA5

η′ for some η′∈ΞA5
Y with η′ ⊂ η. Under the (non-

holomorphic) direct sum decomposition LE6
0 = LA5

0 ⊕(∧2LA5
0 )∗(H)⊕(∧5LA5

0 )∗(2H),

∂η for LE6
η has the following block decomposition:

∂
(∧5L

A5
η′ )∗(2H)

...
...

...
. . .

±β ∗ ∗ · · ·

0 ±β ∗ · · ·

0 0 ±β · · ·

∗

0 ∂
(∧2L

A5
η′ )∗(H)

...
...

...
. . .

±β ∗ ∗ · · ·

0 ±β ∗ · · ·

0 0 ±β · · ·

0 0 ∂
L
A5
η′



.

Here ±β ∈Ω0,1(Y,O(C6)), it is because the corresponding two (−1)-curves l and

l′ satisfying l − l′ = C6. The signs of β can be determined by ∂ηc = 0.

From above, we know that LE6
η |Ck (k 6= 6) is trivial if and only if LA5

η′ |Ck (k 6= 6)

is trivial. From Proposition 3.1.2, we have the theorem for k 6= 6. For C6, from

Lemma 4.1.3, LE6
η |C6 is trivial if and only if these ±β’s satisfy [β|C6 ] 6= 0.
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Note that ζE6
η = aut(LE6

η , c) is an E6 Lie algebra bundle over Y . In order

for ζE6
η to descend to X as a Lie algebra bundle, we need to show that c|Ci :

LE6
η |Ci ⊗ LE6

η |Ci ⊗ LE6
η |Ci −→ OCi (K ′) is a constant map for every Ci. This

follows from the fact that both LE6
η and O(K ′) are trivial on all Ci’s and ∂ηc = 0.

From the construction, LE6
η is a representation bundle of ζE6

η .

The only other minuscule representation C27 of E6 is the dual of the standard

representation C27, therefore L
(E6,C27)
η =

(
L

(E6,C27)
η

)∗
.

5.2 E7 case

We recall that [1] E7=aut(C56, t) for a non-degenerate quartic form t on the

standard representation C56. There is no other minuscule representation of E7.

We consider a surface X with an E7 singularity p and a (−1)-curve C0 passing

through p with multiplicity C1. By Proposition 2.3.1, I(E7,C56) has cardinality 56.

For any two distinct (−1)-curves li and lj in I, we have li · lj = 0, 1 or 2.

Define L
(E7,C56)
0 :=

⊕
l∈I O(l) over Y , for simplicity, we write it as LE7

0 . If we

ignore C7, we recover the A6 case as in section 3.1.

Lemma 5.2.1. L
(E7,C56)
0 = LA6

0 ⊕ (∧2LA6
0 )∗(H)⊕ (∧5LA6

0 )∗(2H)⊕ (∧6LA6
0 )∗(3H),

where H = 3C1
0 + 3C1 + 3C2 + 3C3 + 3C4 + 2C5 + C6 + C7.

Proof. Similar to E6 case.

From the above lemma and direct computations, for any Ci,

LE7
0 |Ci ∼= O⊕32

P1 ⊕ (OP1(1)⊕OP1(−1))⊕12

The configuration of these 56 (−1)-curves is as follows: Fix any (−1)-curve,

there are exactly 27 (−1)-curves intersect it once, 1 (−1)-curve intersects it twice.

If li+ lj + lp+ lq = 2K ′ with K ′ = 2C1
0 +3C1 +4C2 +5C3 +6C4 +4C5 +2C6 +3C7,

the four (−1)-curves li, lj, lp and lq will form a quadrangle.
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From this configuration, we can define a quartic form t on the vector space

V0 = CI =
⊕

l∈IC〈vl〉 spanned by all the (−1)-curves,

t : V0⊗V0⊗V0⊗V0 −→ C, (vli , vlj , vlp , vlq) 7→

 ±1 if li + lj + lp + lq = 2K ′

0 otherwise.

The signs above can be determined explicitly [1] such that E7 = aut(V0, t).

Correspondingly, we have a fiberwise quartic form t on the bundle LE7
η ,

t : LE7
η ⊗ LE7

η ⊗ LE7
η ⊗ LE7

η −→ O (2K ′).

Proposition 5.2.1. There exists η with ∂
2

η = 0 such that ∂ηt = 0.

Proof. Similar to E6 case, but even more calculations involved. We will omit the

calculations here and only list the conditions for ∂ηt = 0. From ∂ηt = 0 we have

when li · lj 6= 0, ηi,j = 0. That means all the nonzero ηi,j’s are corresponding to

li · lj = 0, then li − lj = α for some root α, i.e. ηi,j ∈ Ω0,1(Y,O(α)). Conversely,

given any positive root α, there exists 12 ηi,j’s in Ω0,1(Y,O(α)), where 6 of them

are the same and the other 6 different to the first 6 by a sign. We use computer

to prove we can find such ηi,j’s satisfying ∂
2

η = 0.

Until now, we have proved ΞE7
Y is not empty.

Proposition 5.2.2. The bundle LE7
η over Y with η ∈ΞE7

Y can descend to X if

and only if for every Ck and ηi,j ∈ Ω0,1(Y,O(Ck)), [ηi,j|Ck ] 6= 0, i.e. η ∈ΞE7
X .

Proof. Similar to E6 case (Proposition 5.1.2).

Note that ζE7
η = aut(LE7

η , t) is an E7 Lie algebra bundle over Y . In order

for ζE7
η to descend to X as a Lie algebra bundle, we need to show that t|Ci :

LE7
η |Ci ⊗ LE7

η |Ci ⊗ LE7
η |Ci ⊗ LE7

η |Ci −→ OCi (2K ′) is a constant map for every Ci.

This follows from the fact that both LE7
η and O(2K ′) are trivial on all Ci’s and

∂ηt = 0. It is obvious that LE7
η is a representation bundle of ζE7

η .
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5.3 E8 case

Though E8 has no minuscule representation, the fundamental representation cor-

responding to C1 is the adjoint representation of E8.

We consider a surface X with an E8 singularity p and a (−1)-curve C0 passing

through p with multiplicity C1. By direct computations, |I| = 240. In this case,

l ∈ I if and only if l−K ′ ∈ Φ, where K ′ = C1
0 + 2C1 + 3C2 + 4C3 + 5C4 + 6C5 +

4C6 + 2C7 + 3C8. So EE8
0 defined in section 1.2 can be written as follows:

EE8
0 := O⊕8 ⊕

⊕
α∈Φ

O(α) = (O(K ′)⊕8 ⊕
⊕
l∈I

O(l))(−K ′).

We will prove that (EE8
ϕ , ∂ϕ) with ϕ = (ϕα)α∈Φ+ ∈ ΨX descends to X in

chapter 6.



Chapter 6

Proof of Theorem 1.2.1

In the above three chapters, we have constructed and studied the Lie algebra

bundles and minuscule representation bundles in An, Dn and En (n 6= 8) cases

separately. We will prove the holomorphic structures on these bundles can be

expressed by forms in the positive root classes and the representation actions.

Proof. (of Theorem 2.5.1 and 2.5.2) Recall that when ρ : g −→ End(V ) is the

standard representation, L
(g,V )
η (η ∈ Ξg

Y ) admits a holomorphic fiberwise symmet-

ric multi-linear form f . And ∂ηf = 0 implies that ηi,j = 0 unless li− lj = α(j > i)

for some α ∈ Φ+. Thus ηi,j = ϕα ∈ Ω0,1(Y,O(α)). Furthermore, if ηi,j and ηi′,j′

are in Ω0,1(Y,O(α)), then they are the same up to sign. Thus we can write

ηi,j = nα,wiϕα, where nα,wi ’s are as in Chapter 2, since ρ preserves f . Namely,

∂η = ∂0 +
∑

α∈Φ+ cαρ(xα) = ∂0 +
∑

α∈Φ+ ρ(ϕα) with ϕα = cαxα.

The holomorphic structure on the bundle ζgη := aut(L
(g,V )
η , f) is ∂η = ∂0 +∑

α∈Φ+ cαad(xα), which is the same as ∂ϕ for Egϕ in Chapter 1, i.e. ζgη = Egϕ.

The only minuscule representations (g, V ) besides standard representations

are (An,∧kCn+1), (Dn, S
±) and (E6,C27). We denote corresponding actions as ρ

as usual. In each case, for Egϕ to act holomorphically on the corresponding vector

bundle, the holomorphic structure on L
(g,V )
0 can only be ∂ϕ.

The filtration of L
(g,V )
0 gives one on L

(g,V )
η , since it is constructed from exten-

48
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sions using elements in Ii\Ii+1 (section 2.4).

We note that all the above Lie algebra bundles and representation bundles

over Y can descend to X if and only if 0 6= [ϕCi |Ci ] ∈ H1(Y,OCi(Ci)) for all Ci’s,

i.e. ϕ = (ϕα)α∈Φ+ ∈ ΨX .

From the above arguments, Theorem 1.2.1 holds true for ADE except E8

case.

Proof. (of Theorem 1.2.1) It remains to prove the E8 case.

EE8
0 := O⊕8 ⊕

⊕
α∈Φ

O(α) = (O(K ′)⊕8 ⊕
⊕
l∈I

O(l))(−K ′).

We want to show that the bundle (EE8
ϕ , ∂ϕ) with ϕ = (ϕα)α∈Φ+ ∈ ΨX can

descend to X, i.e. EE8
ϕ |Ci is trivial for i = 1, 2, · · · 8. Note O(K ′)|Ci is trivial

for every i, but O(l)|Ci can be OP1(±2), hence Lemma 3.1.1 is not sufficient.

However, if we ignore C8 (resp. C7) in Y , then we recover the A7 case (resp. D7

case). Our approach is to reduce the problem of trivializing EE8
ϕ |Ci to one for a

representation bundle of A7 (resp. D7).

Step one, as A7 is a Lie subalgebra of E8, the adjoint representation of E8

decomposes as a sum of irreducible representations of A7. The branching rule is

248 = 8 + 28 + 56 + 64 + 56 + 28 + 8, correspondingly, we have the following

decomposition of EE8
0 over Y ,

EE8
0 = LA7

0 (−K ′)⊕ ∧2(LA7
0 )∗(H −K ′)⊕ ∧5(LA7

0 )∗(2H −K ′)⊕

LA7
0 ⊗ (LA7

0 )∗ ⊕ ∧3(LA7
0 )∗(H)⊕ ∧6(LA7

0 )∗(2H)⊕ (LA7
0 )∗(K ′),

where H = 3C1
0 + 3C1 + 3C2 + 3C3 + 3C4 + 3C5 + 2C6 + C7 + C8 and K ′ =

C1
0 + 2C1 + 3C2 + 4C3 + 5C4 + 6C5 + 4C6 + 2C7 + 3C8.

Step two, instead of LA7
0 , we use LA7

ϕ which is trivial on Ci for i 6= 8. We
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consider the bundle

E ′E8 = LA7
ϕ (−K ′)⊕ ∧2(LA7

ϕ )∗(H −K ′)⊕ ∧5(LA7
ϕ )∗(2H −K ′)⊕

LA7
ϕ ⊗ (LA7

ϕ )∗ ⊕ ∧3(LA7
ϕ )∗(H)⊕ ∧6(LA7

ϕ )∗(2H)⊕ (LA7
ϕ )∗(K ′).

We have ∂E ′E8 = ∂0 +
∑

α∈Φ+
A7

ad(ϕα). Since O(K ′) and O(H) are both trivial on

Ci for i 6= 8, E ′E8 is trivial on Ci for i 6= 8.

Step three, we compare E ′E8 with EE8
ϕ . Topologically they are the same.

Holomorphically,

∂EE8
ϕ

= ∂0 +
∑
α∈Φ+

E8

ad(ϕα) = ∂E ′E8 +
∑

α∈Φ+
E8
\Φ+

A7

ad(ϕα).

If we write the holomorphic structure of EE8
ϕ as a 248× 248 matrix, then ϕα with

α ∈ Φ+
E8
\Φ+

A7
must appear at those positions (β, γ) with β − γ = α, where β

has at least one more C8 than γ. That means, after taking extensions between

the summands of E ′E8 , we can get EE8
ϕ . Since E ′E8 is trivial on Ci for i 6= 8 and

Ext1P1(O,O) ∼= 0 , we have EE8
ϕ trivial on Ci for i 6= 8.

Similarly, if we consider the reduction of E8 to D7, from the branching rule

248 = 14 + 64 + 1 + 91 + 64 + 14, we have the following decomposition of EE8
0 ,

EE8
0 = LD7

0 (−K ′)⊕L(D7,S+)
0 (C7−C6

0)⊕O⊕ED7
0 ⊕(L

(D7,S+)
0 )∗(C6

0−C7)⊕(LD7
0 )∗(K ′).

Instead of LD7
0 , we consider LD7

ϕ . Similar to the reduction to A7 case as above, we

will get for (EE8
ϕ , ∂ϕ), if we take [ϕCi |Ci ] 6= 0, then EE8

ϕ is trivial on Ci for i 6= 7.

Hence we have proved Theorem 1.2.1 for type E8.

Proof. (of Theorem 2.5.3) We only need to find a divisor B in Y such that (i)

B is a combination of Ci’s and C̃0 with the coefficient of C̃0 not zero, and (ii)

O(B) can descend to X. Then if we take k to be the coefficient of C̃0 in B,

L(g,V )
ϕ := SkL

(g,V )
ϕ ⊗O(−B) with ϕ ∈ ΨX can descend to X and does not depend

on the existence of C0.
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(An, C
n+1) case, B = (n+ 1)C̃0 + nC1 + (n− 1)C2 + · · ·+ Cn.

(An,∧kCn+1) case, B = (n+1)C̃0 +(n−k+1)C1 + · · · (k−1)(n−k−1)Ck−1 +

k(n− k)Ck+1 + · · · kCn.

(Dn, C
2n) case, B = F = 2C̃0 + 2C1 + · · ·+ 2Cn−2 + Cn−1 + Cn.

(Dn, S
+) case, B = 4C̃0 +2C1 +4C2 + · · ·+2(n−2)Cn−2 +(n−2)Cn−1 +nCn.

(E6, C
27) case, B = 3C̃0 + 4C1 + 5C2 + 6C3 + 4C4 + 2C5 + 3C6.

(E7, C
56) case, B = 2C̃0 + 3C1 + 4C2 + 5C3 + 6C4 + 4C5 + 2C6 + 3C7.

Remark 6.0.1. We can determine Chern classes of the Lie algebra bundles

and minuscule representation bundles. For any minuscule representation bun-

dle L
(g,V )
ϕ ,

c1(L(g,V )
ϕ ) =

∑
l∈I(g,V )

[l] ∈ H2(Y,Z).

For any Lie algebra bundle Egϕ, we have

c1(Egϕ) = 0

and

c2(Egϕ) =
∑

α 6=β∈Φ

c1(O(α))c1(O(β)) =
∑
α∈Φ+

c1(O(α))c1(O(−α)) = dim(g)−rank(g).

In particular, the bundles we defined above are not trivial.

Remark 6.0.2. There are choices in the construction of our Lie algebra bun-

dles and minuscule representation bundles, we will see that these bundles are not

unique. Take LA2
ϕ (ϕ = (ϕα)α∈Φ+

A2

∈ ΨX) as an example. The holomorphic

structure on LA2
ϕ is as follows:

∂ϕ =


∂ ϕC2 ϕC1+C2

0 ∂ ϕC1

0 0 ∂


with [ϕC1|C1 ] 6= 0 and [ϕC2|C2 ] 6= 0. We replace ϕC1+C2 by ϕC1+C2 + ψ, where

ψ ∈ H1(Y,O(C1 + C2)) 6= 0. If [ψ] 6= 0, then ∂ϕ+ψ is not isomorphic to ∂ϕ.
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Remark 6.0.3. Our g-bundle Egη over Y is given by aut(L
(g,V )
η , f) with f :⊗r L

(g,V )
η −→ OY (D). If O(D) = O(rD′) for some divisor D′, then

f :
r⊗

L(g,V )
η (−D′) −→ OY .

And Aut(L
(g,V )
η (−D′), f) is a Lie group bundle over Y lifting Egη . In general, we

only have a G× Zr-bundle, or so-called conformal G-bundle in [12].
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Affine ADE bundles
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Chapter 7

Affine ADE Lie algebra bundles

7.1 Affine ADE curves

Definition 7.1.1. A curve C = ∪Ci in a surface X is called an ADE (resp.

affine ADE) curve of type g (resp. ĝ) if each Ci is a smooth (−2)-curve in X

and the dual graph of C is a Dynkin diagram of the corresponding type.

It is known that C is an ADE curve if and only if C can be contracted to a

rational double point. In this case, the intersection matrix (Ci · Cj) < 0 [2].

If C is an affine ADE curve, then the intersection matrix (Ci · Cj) ≤ 0 and

there exists unique ni’s up to overall scalings such that F :=
∑
niCi satisfies

F · F = 0. Dynkin diagrams of affine ADE types are drawn as follows and the

corresponding niCi’s are labelled in the pictures. ADE Dynkin diagrams can be

obtained by removing the node corresponding to C0.

Ân : t t t t t
t

��
��

��
�

HH
HH

H
HH

r r r
1C1 1C2 1Cn−21Cn−11Cn

1C0
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D̂n : t t t t t
tt

r r r
1C1 2C2 2Cn−32Cn−21Cn−1

1Cn1C0

Ê6 : t t t t t
t
t

1C1 2C2 3C3 2C4 1C5

2C6

1C0

Ê7 : t t t t t t t
t

1C1 2C2 3C3 4C4 3C5 2C6

2C7

1C0

Ê8 : t t t t t t t t
t

1C0 2C1 3C2 4C3 5C4 6C5 4C6

3C8

2C7

Figure 4. Dynkin diagrams of affine ADE types

Remark 7.1.1. We will also call a nodal or cuspidal rational curve with trivial

normal bundle an Â0 curve.

Remark 7.1.2. By Kodaira’s classification of fibers of relative minimal elliptic

surfaces [2], every singular fiber is an affine ADE curve unless it is rational with

a cusp, tacnode or triplepoint (corresponding to type II or III(Â1) or V I(Â2)

in Kodaira’s notations), which can also be regarded as a degenerated affine ADE

curve of type Â0, Â1 or Â2 respectively. In this thesis, we will not distinguish

affine ADE curves from their degenerated forms since they have the same inter-

section matrices. We also call the affine ADE curves as Kodaira curves.
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Definition 7.1.2. A bundle E is called an ADE (resp. affine ADE) bundle of

type g (resp. ĝ) if E has a fiberwise Lie algebra structure of the corresponding

type.

In the following section, we will recall an explicit construction of the loop Lie

algebra Lg-bundles and the affine Lie algebra ĝ-bundles from affine ADE curves

in X.

7.2 Affine ADE bundles

Suppose C = ∪ri=0Ci is an affine ADE curve of type ĝ in X, we will construct

the corresponding affine ADE bundle E ĝ0 of type ĝ over X as follows.

First, we choose an extended root of ĝ, say C0, then g is corresponding to the

Dynkin diagram consists of those Ci with i 6= 0, i.e. Φ := {α = [
∑

i 6=0 aiCi] ∈

H2(X,Z)|α2 = −2} is the root system of g. As above, we have a g-bundle

E (g,Φ)
0 = O⊕r ⊕

⊕
α∈ΦO(α). We define

E (Lg,Φ)
0 :=

⊕
n∈Z

(E (g,Φ)
0 ⊗O(nF )) and E (ĝ,Φ)

0 :=
⊕
n∈Z

(E (g,Φ)
0 ⊗O(nF ))⊕O.

We know Φĝ := {α + nF |α ∈ Φ, n ∈ Z} ∪ {nF |n ∈ Z, n 6= 0} is an affine

root system and it decomposes into union of positive and negative roots, i.e.

Φĝ = Φ+
ĝ ∪ Φ−ĝ , where Φ+

ĝ = {
∑
aiCi ∈ Φĝ|ai ≥ 0 for all i} = {α + nF |α ∈

Φ+, n ∈ Z≥0} ∪ {α + nF |α ∈ Φ−, n ∈ Z≥1} ∪ {nF |n ∈ Z≥1} and Φ−ĝ = −Φ+
ĝ .

To describe the Lie algebra structures, we proceed as before, for every open

chart U of X, we take a local basis eUi of E (g,Φ)
0 |U (eUi is just hUj or xUα as above),

eUnF of O(nF )|U , eUc of O|U , compatible with the tensor product, for example,

eUnF ⊗ eUmF = eU(n+m)F . Then define

[eUi e
U
nF , e

U
j e

U
mF ]Lg,Φ := [eUi , e

U
j ]Φe

U
(n+m)F , (7.1)

[eUi e
U
nF + λeUc , e

U
j e

U
mF + µeUc ]ĝ,Φ := [eUi , e

U
j ]Φe

U
(n+m)F + nδn+m,0k(eUi , e

U
j )eUc . (7.2)
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Here [ , ]Φ is the Lie bracket on E (g,Φ)
0 and k(x, y) = Tr(adx ady) is the Killing

form on g.

Lemma 7.2.1. (1) (resp. (2)) defines a fiberwise loop (resp. affine) Lie algebra

structure which is compatible with any trivialization of E (Lg,Φ)
0 (resp. E (ĝ,Φ)

0 ).

Proof. See Proposition 23 of [21].

From the above lemma, we have the following result.

Proposition 7.2.1. If C is an affine ADE curve of type ĝ in X, then E (Lg,Φ)
0

(resp. E (ĝ,Φ)
0 ) is a loop (resp. affine) Lie algebra bundle of type Lg (resp. ĝ) over

X.

Note any Ci with ni = 1 can be chosen as the extended root (Appendix B).

Proposition 7.2.2. The loop Lie algebra bundle (E (Lg,Φ)
0 , [ , ]Lg,Φ) does not depend

on the choice of the extended root.

Proof. Suppose Ck (k 6= 0) is another root with nk = 1, we denote Ψ = {β =

[
∑

i 6=k biCi] ∈ H2(X,Z)|β2 = −2}, then Ψ is a root system of g. As before, we

construct the Lie algebra bundle E (g,Ψ)
0 and E (Lg,Ψ)

0 from Ψ.

We denote α0 :=
∑

i 6=0 niCi = F − C0, the longest root in Φ. For any α =∑
i 6=0 ai(α)Ci ∈ Φ, ak(α) can only be 0, ±1. Hence there is a bijection between

Φ and Ψ given by α 7→ β = α− ak(α)F . Then from the definitions of E (Lg,Φ)
0 and

E (Lg,Ψ)
0 , we know they are the same as holomorphic vector bundles.

We compare the Lie brackets on them. We choose a local basis of E (Lg,Ψ)
0

compatible with those of E (Lg,Φ)
0 and define [, ]Lg,Ψ similarly as [, ]Lg,Φ, i.e.

(i) when β = α ∈ Φ ∩Ψ, we take xβ = xα;

(ii) when β = α + F ∈ Ψ+\Φ, we take xβ = xαeF ;

(iii) when β = α− F ∈ Ψ−\Φ, we take xβ = xαe−F ;

(iv) take hi (i 6= 0, k) as before, take h0 = −hα0 as we want [xC0 , x−C0 ]Lg,Ψ =

[x−α0+F , xα0−F ]Lg,Φ.
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It is obvious [ , ]Lg,Ψ = [ , ]Lg,Φ on E (Lg,Ψ)
0

∼= E (Lg,Φ)
0 .

For the affine case, we recall that the Killing form of g is the symmetric

bilinear map k : g× g→C defined by k(x, y) = Tr(adx ady). It is ad-invariant,

that is for x, y, z ∈ g, k([x, y], z) = k(x, [y, z]).

Lemma 7.2.2. For any simple simply-laced Lie algebra g with a Chavelly basis

{xα, α ∈ Φ;hi, 1 ≤ i ≤ r} and m∗(g) the dual Coxeter number of g, we have

(i) k(hi, xα) = 0 for any i and α;

(ii) k(xα, xβ) = 0 for any α + β 6= 0;

(iii) k(hi, hj) = 2m∗(g)〈Ci, Cj〉;

(iv) k(xα, x−α) = 2m∗(g) for any α.

Proof. Directly from the Killing form k being ad-invariant or see [28].

Proposition 7.2.3. The affine Lie algebra bundle (E (ĝ,Φ)
0 , [ , ]ĝ,Φ) does not depend

on the choice of the extended root.

Proof. Follow the notations in Proposition 7.2.2, but we will take h0 = −hα0 +

2m∗(g)ec. We will check that [ , ]ĝ,Ψ = [ , ]ĝ,Φ on E (ĝ,Ψ)
0 = E (ĝ,Φ)

0 :

(a) when β1 = α1 + F, β2 = α2 + F ∈ Ψ+\Φ, α1, α2 ∈ Φ−\Ψ we have

[hβ1enF , hβ2emF ]ĝ,Ψ = nδn+m,0k(hβ1 , hβ2)ec,

which is the same with

[h−α1enF , h−α2emF ]ĝ,Φ = nδn+m,0k(hα1 , hα2)ec,

since k(hβ1 , hβ2) = 2m∗(g)〈β1, β2〉 = 2m∗(g)〈F − α1, F − α2〉 = k(hα1 , hα2).

(b) For [hienF , xαemF ]ĝ,Φ, automatically from k(hi, xα) = 0 and loop case.

(c) When β = α + F ∈ Ψ+\Φ, α ∈ Φ−\Ψ,

[xβenF , x−βemF ]ĝ,Ψ = hβe(n+m)F + nδn+m,0k(xβ, x−β)ec,
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which is the same with

[x−αe(n+1)F , xαe(m−1)F ]ĝ,Φ = −hαe(n+m)F + (n+ 1)δn+m,0k(xα, x−α)ec,

by considering m+ n = 0 and m+ n 6= 0 separately.

(d) For [xα1enF , xα2emF ]ĝ,Φ with α1 +α2 6= 0, automatically from k(xα1 , xα2) =

0 and loop case.

For simplicity, we will omit Φ in (g,Φ), (Lg,Φ) and (ĝ,Φ) when there is no

confusion.



Chapter 8

Trivialization of E ĝ0 over Ci’s after

deformations

If C = ∪Ci is an affine ADE curve in X, then the corresponding F =
∑
niCi

satisfies F ·F = 0, i.e. OF (F ) is a topologically trivial bundle. If OF (F ) is trivial

holomorphically and q(X) = 0, then from the long exact sequence of cohomologies

induced by 0 → OX → OX(F ) → OF (F ) → 0, we know H0(X,OX(F )) ∼= C2.

Hence F is a fiber of an elliptic fibration on X.

Suppose X is an elliptic surface, i.e. there is a smooth curve B and a surjective

morphism π : X → B whose generic fiber Fb (b ∈ B) is an elliptic curve. Assume

π is singular at b0 ∈ B and Fb0 =
∑
niCi is a singular fiber of type ĝ. Hence,

we have a ĝ-bundle E ĝ0 over X. The restriction of E ĝ0 to any fiber Fb, other than

Fb0 , is trivial because Fb ∩ Ci = ∅ for any i. However, E ĝ0 |Fb0 is not trivial, for

instance O(−Ci)|Ci ∼= OP1(2). Nevertheless, we will show that after deformations

of holomorphic structures, E ĝ0 will become trivial on every irreducible component

of Fb0 .

60



61

8.1 Trivializations in loop ADE cases

In part I, we showed how to take successive extensions to make the g-bundle Eg0
trivial on every component Ci of the ADE curve C = ∪ri=1Ci. We will use the

similar method in loop ADE case.

Definition 8.1.1. Given any ϕ = (ϕα)α∈Φ+
ĝ
∈ Ω0,1(X,

⊕
α∈Φ+

ĝ
O(α)), we define

∂(ϕ,Φ) : Ω0,0(X, ELg0 ) −→ Ω0,1(X, ELg0 ) by ∂(ϕ,Φ) := ∂0 + ad(ϕ).

More explicitly, similarly as explained in section 1.2, we have

∂(ϕ,Φ) : = ∂0 +
∑
n∈Z≥0

∑
α∈Φ+

(cα+nF enFad(xα) + c−α+(n+1)F e(n+1)Fad(x−α))

+
∑
n∈Z≥0

r∑
i=1

ci(n+1)F e(n+1)Fad(hi),

Proposition 8.1.1. ∂(ϕ,Φ) is compatible with the Lie algebra structure on ELg0 .

Proof. ∂(ϕ,Φ)[ , ]Lg,Φ = 0 follows directly from the Jacobi identity.

For ∂(ϕ,Φ) to define a holomorphic structure, we need ∂
2

(ϕ,Φ) = 0, which is

equivalent to the following equations:

∂0ϕ
i
nF =

∑
p+q=n

∑
α∈Φ+ ±ai(hα)ϕα+pFϕ−α+qF ,

∂0ϕα+nF =
∑

p+q=n(
∑

α1+α2=α±ϕα1+pFϕα2+qF +
∑r

i=1 〈α,Ci〉ϕα+pFϕ
i
qF ),

∂0ϕ−α+nF =
∑

p+q=n(
∑

α2−α1=α±ϕα1+pFϕ−α2+qF +
∑r

i=1 〈−α,Ci〉ϕ−α+pFϕ
i
qF ),

where ai(hα) is the coefficient of hi in hα.

Proposition 8.1.2. Given any (ϕCi)
r
i=0 ∈ Ω0,1(X,

⊕r
i=0 O(Ci)) with ∂ϕCi = 0

for every i, it can be extended to ϕ = (ϕα)α∈Φ+
ĝ
∈ Ω0,1(X,

⊕
α∈Φ+

ĝ
O(α)) satisfying

∂
2

ϕ = 0. Namely we have a holomorphic Lg-bundle ELgϕ over X.

In order to prove this proposition, we need the following lemma.
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Lemma 8.1.1. If pg(X) = 0, then for any α ∈ Φ+, n ∈ Z≥0, H2(X,O(nF )),

H2(X,O(α + nF )) and H2(X,O(−α + (n+ 1)F )) are zeros.

Proof. Since F is an effective divisor and H0(X,KX) = 0, we have for any n ≥ 0,

H0(X,KX(−nF )) = 0. This is equivalent to H2(X,O(nF )) = 0 by Serre duality.

Similarly, H2(X,O(α+nF )) = 0 follows from H0(X,KX(−α)) ∼= H2(X,O(α)) =

0 (Lemma 1.2.1). The proof of H2(X,O(−α + (n+ 1)F )) = 0 uses the fact that

F − α is an effective divisor for any α ∈ Φ+.

Proof. (of Proposition 8.1.2): the equation ∂
2

(ϕ,Φ) = 0 can be rewritten as follows:

∂0ϕCi = 0 for i = 1, 2 · · · , r,

∂0ϕα =
∑

α1+α2=α(±ϕα1ϕα2),

∂0ϕ−α0+F = ∂0ϕC0 = 0,

∂0ϕ−α+F =
∑

α2−α1=α(±ϕα1ϕ−α2+F ),

∂0ϕ
i
F =

∑
α∈Φ+(±ai(hα)ϕαϕ−α+F ),

...

where α0 = F − C0 is the longest root in Φ.

Firstly, we can solve for all the ϕα’s, α ∈ Φ+ fromH2(X,O(α)) = 0 (Proposition

1.2.2). Secondly, we get all the ϕ−α+F ’s, α ∈ Φ+ from H2(X,O(−α + F )) = 0.

Thirdly, since we have all the ϕα’s and ϕ−α+F ’s, we can solve for all the ϕiF ’s for

1 ≤ i ≤ r from H2(X,O(F )) = 0. Do this process for ϕα+nF , ϕ−α+(n+1)F and

ϕi(n+1)F inductively on n.

By Lemma 1.2.1, there always exists ϕCi ∈ Ω0,1(X, O(Ci)) such that 0 6=

[ϕCi |Ci ] ∈ H1(X, OCi(Ci))
∼= C for each i = 0, 1, · · · r.

Theorem 8.1.1. For any given i, the holomorphic Lg-bundle ELgϕ over X is

trivial on Ci if and only if [ϕCi |Ci ] 6= 0.
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Proof. The proof will be given in section 8.3 and 8.4. In section 8.3, we deal with

all the loop ADE cases except loop E8 case which will be analyzed in section

8.4.

8.2 Trivializations in affine ADE cases

Follow the notations in section 8.1, we define ∂(ϕ,Φ) := ∂0 +ad(ϕ) on E ĝ0 , note the

adjoint action here is defined using the affine Lie bracket.

Proposition 8.2.1. ∂(ϕ,Φ) is compatible with the Lie algebra structure on E ĝ0 .

Proof. ∂(ϕ,Φ)[ , ]ĝ,Φ = 0 follows directly from the Jacobi identity and the Killing

from being invariant under the adjoint action.

It is easy to see that ∂
2

(ϕ,Φ) = 0 in the affine case is equivalent to ∂
2

(ϕ,Φ) = 0 in

the loop case. Hence we have a new holomorphic structure ∂(ϕ,Φ) on E ĝ0 .

Theorem 8.2.1. For any given i, the holomorphic ĝ-bundle E ĝϕ over X is trivial

on Ci if and only if [ϕCi |Ci ] 6= 0.

Proof. This follows from Theorem 8.1.1, 0 → O → E ĝ
ϕ → ELg

ϕ → 0 and

Ext1P1(O,O) = 0.

8.3 Proof (except the loop E8 case)

In this section, we use the symmetry of the affine ADE Dynkin diagram (except

Ê8) to show that ELgϕ is trivial on Ci if an only if [ϕCi |Ci ] 6= 0.

Recall, topologically, ELgϕ is ELg0 =
⊕

n∈Z(E (g,Φ)
0 ⊗ O(nF )), but with a holo-
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morphic structure ∂(ϕ,Φ) of the following upper triangular block shape:

∂ϕ =



. . . . . . . . . . . . . . .

. . . ∂E(g,Φ)
ϕ ⊗O((n+1)F )

∗ ∗ . . .

. . . 0 ∂E(g,Φ)
ϕ ⊗O(nF )

∗ . . .

. . . 0 0 ∂E(g,Φ)
ϕ ⊗O((n−1)F )

. . .

. . . . . . . . . . . . . . .


.

i.e. ELgϕ is constructed from successive extensions of E (g,Φ)
ϕ ⊗O(nF )’s.

Note ∂(ϕ,Φ)|E(g,Φ)
ϕ

= ∂0 +
∑

α∈Φ+ ad(ϕα). By Theorem 1.2.1, for every i 6= 0,

E (g,Φ)
ϕ is trivial on Ci if and only if [ϕCi |Ci ] 6= 0. We also know O(F )|Ci is trivial

for every i because F · Ci = 0. Thus, when i 6= 0, ELgϕ |Ci is constructed from

successive extensions of trivial vector bundles over Ci ∼= P1. This implies that

ELgϕ |Ci is trivial if and only if [ϕCi |Ci ] 6= 0 as Ext1P1(O,O) = 0.

Now we consider i = 0. Since ĝ 6= Ê8, the affine Dynkin diagram always

admits a diagram automorphism, that means we can write ELg0 as
⊕

n∈Z(E (g,Ψ)
0 ⊗

O(nF )) (see Proposition 7.2.2). Suppose the extended root corresponding to Ψ

is Ck, and the longest root in Ψ is β0.

We will rewrite the holomorphic structure ∂(ϕ,Φ) in terms of the Ψ root system.

Note ∂(ϕ,Φ) is determined by the loop Lie algebra structure which is independent of

the choice of the extended root. We choose a local base of E (g,Ψ)
0 as in Proposition

7.2.2 and define ∂(ψ,Ψ) to be the same with ∂(ϕ,Φ), then obviously ψD = ϕD when

D 6= nF .

Because (E (Lg,Φ)
ϕ , ∂(ϕ,Φ)) = (E (Lg,Ψ)

ψ , ∂(ψ,Ψ)) as a holomorphic vector bundle,

similar to the arguments in (E (Lg,Φ)
ϕ , ∂(ϕ,Φ)) case, we have when i 6= k, ELgϕ is

trivial on Ci if and only if [ψCi |Ci ] 6= 0. Note ψC0 = ϕ−α0+F = ϕC0 . So we have

Theorem 8.1.1 when g 6= E8.
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8.4 Proof for the loop E8 case

Similar to the above section, we have when i = 1, 2, · · · 8, ELE8
ϕ is trivial on Ci if

and only if [ϕCi |Ci ] 6= 0. The question is what about C0?

We recall EE8
0 := O⊕8 ⊕

⊕
α∈Φ O(α). For any α ∈ Φ, we write a1(α) as the

coefficient of C1 in α, then O(α)|C0
∼= OP1(a1(α)). Among Φ+, there are 63 roots

with a1(α) = 0, corresponding to the positive roots of the Lie sub-algebra E7;

56 roots with a1(α) = 1, corresponding to weights of the standard representation

of E7; 1 root with a1(α) = 2, which is just the longest root α0 = F − C0. We

denote EE7
0 , O⊕7 ⊕

⊕
α∈Φ,a1(α)=0 O(α), V +

0 ,
⊕

α∈Φ,a1(α)=1 O(α) and V −0 ,⊕
α∈Φ,a1(α)=−1O(α), then

EE8
0 = EE7

0 ⊕O ⊕ V +
0 ⊕ V −0 ⊕O(α0)⊕O(−α0).

When O(α) is a summand of V +
0 , i.e. O(α)|C0

∼= OP1(1), we have O(α +

C0)|C0
∼= OP1(−1) and α + C0 = F − (α0 − α) with (α0 − α) ∈ Φ+, that is

O(α + C0) is a summand of V −0 (F ). Since F = α0 + C0 satisfies F · F = 0, we

have O(F )|C0
∼= OP1 , O(α0)|C0

∼= OP1(2) and O(2F − α0)|C0
∼= OP1(−2).

For the loop E8-bundle, we have

ELE8
0 =

⊕
n∈Z

(EE8
0 ⊗O(nF ))

=
⊕
n∈Z

((EE7

0 ⊕O ⊕ V
+

0 ⊕ V −0 ⊕O(α0)⊕O(−α0))⊗O(nF ))

=
⊕
n∈Z

((EE7

0 ⊕O ⊕ V
+

0 ⊕ V −0 (F )⊕O(α0 − F )⊕O(F − α0))⊗O(nF )).

We denote L248
0 , EE7

0 ⊕ O ⊕ V +
0 ⊕ V −0 (F ) ⊕ O(α0 − F ) ⊕ O(F − α0). From

definition of ∂ϕ, ELE8
ϕ is built from successive extensions of L248

ϕ ⊗O(nF )’s, i.e.

∂ϕ =



. . . . . . . . . . . .

. . . ∂L248
ϕ ⊗O((n+1)F ) ∗ . . .

. . . 0 ∂L248
ϕ ⊗O(nF )

. . .

. . . . . . . . . . . .

 .
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So if we can prove [ϕC0 |C0 ] 6= 0 implies (L248
ϕ , ∂ϕ|L248

ϕ
) is trivial over C0, then

(ELE8
ϕ , ∂ϕ) is also trivial over C0 because of Ext1P1(O,O) = 0. Note

L248
0 |C0

∼= O⊕133
P1 ⊕OP1 ⊕ (OP1(1)⊕OP1(−1))⊕56 ⊕OP1(2)⊕OP1(−2).

In this decomposition, any of the 56 pairs of {OP1(−1), OP1(1)} is the restriction

of {O(α), O(α + C0) = O(F − (α0 − α))} to C0 for some α with a1(α) = 1 and

the triple {OP1(2), OP1 , OP1(−2)} is the restriction of {O(−C0), O,O(C0)} to C0.

We will show that the restriction of ∂ϕ|L248
ϕ

to C0 gives a non-trivial extension for

each of these pairs {OP1(−1), OP1(1)}’s and the triple {OP1(−2), OP1 , OP1(2)}.

In order to write ∂ϕ|L248
ϕ

in matrix form, we need to decompose EE7
0 into pos-

itive parts and non-positive parts, i.e. we denote E (E7,+)
0 :=

⊕
α∈Φ+,a1(α)=0O(α)

and E (E7,−)
0 := O⊕7⊕

⊕
α∈Φ−,a1(α)=0O(α). Then ∂ϕ|L248

ϕ
can be written as follows:

(∂ϕ|L248
ϕ

is a upper triangle matrix since ∂ϕ|L248
ϕ

maps any line bundle summand to

other more ”positive” line bundle summands, i.e. ∂ϕ : O(D)→ O(D
′
) is nonzero

only if D
′ −D ≥ 0)

∂ϕ|L248
ϕ

=



∂V −ϕ (F ) A12 A13 A14 A15 A16 A17

0 ∂O(F−α0) A23 A24 A25 A26 A27

0 0 ∂V +
ϕ

A34 A35 A36 A37

0 0 0 ∂E(E7,+)
ϕ

A45 A46 A47

0 0 0 0 ∂O A56 A57

0 0 0 0 0 ∂E(E7,−)
ϕ

A67

0 0 0 0 0 0 ∂O(α0−F )


.

Now we restrict this to C0, the 56 pairs {OP1(−1), OP1(1)}’s are in V −0 (F )|C0⊕

V +
0 |C0 . Since A23 = (0, 0, · · · , 0)56×1 and

A13 =


±ϕC0 ∗ · · · ∗

0 ±ϕC0 · · · ∗
...

...
. . .

...

0 0 · · · ±ϕC0


56×56

,
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if [ϕC0|C0 ] 6= 0, then we have a trivialization of the 56 pairs {OP1(−1), OP1(1)}’s

over C0 by Lemma 3.1.3 in section 3.1.

For the triple {OP1(−2), OP1 , OP1(2)}, we review the trivialization of A1 Lie

algebra bundle. In A1 case, we have an A1-bundle EA1
ϕ , which topologically is

EA1
0 = O ⊕O(C)⊕O(−C), but with a holomorphic structure as follows:

∂ϕ =


∂0 ±ϕC 0

0 ∂0 ±ϕC
0 0 ∂0

 ,

where ϕC ∈ H0,1(X,O(C)). From Part I, we know if [ϕC |C ] 6= 0, then EA1
ϕ is trivial

on C. Back to our case, the triple {OP1(−2), OP1 , OP1(2)} has the corresponding

submatrices A25 = (ϕC0)1×1, A57 = (ϕC0)1×1 and A27 = (0)1×1. Since A23,

A24, A26, A47 and A67 are all zero matrices, from the trivialization of A1 Lie

algebra bundle, we know if [ϕC0|C0 ] 6= 0, then we have a trivialization of the

triple {OP1(−2), OP1 , OP1(2)} over C0.

Hence if [ϕC0|C0 ] 6= 0, then (L248
ϕ , ∂ϕ|L248

ϕ
) is trivial on C0, which implies

(ELE8
ϕ , ∂ϕ) is also trivial on C0. Hence, we have Theorem 8.1.1 for LE8 case.
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Deformability
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Chapter 9

En-bundle over Xn with n ≤ 9

When X = Xn is a blowup of P2 at n points x1, · · · , xn with n ≤ 9, there is a

canonical (affine) Lie algebra bundle EEn0 over it, where E9 is the affine E8. In

this chapter, we will give a detail study of the relationship between the geometry

of Xn and the deformability of EEn0 .

9.1 En-bundle over Xn with n ≤ 9

The Picard group Pic(Xn) ∼= H2(Xn,Z) is a rank n + 1 lattice with generators

h, l1, · · · , ln, where h is the class of lines in P2 and li is the exceptional class

of the blow-up at xi. So h2 = 1 = −l2i and h · li = 0 = li · lj, i 6= j. Thus

H2(Xn,Z) ∼= Z1,n. The canonical class is KXn = −3h+ l1 + · · ·+ ln. Denote

Φn := {α ∈ H2(Xn,Z)|α2 = −2, α ·K = 0}.

Then Φn is a root system of type En when n ≤ 8 and Φ9 is an affine real root

system of Ê8 (also denoted as E9). More explicitly, ΦÊ8
:= Φ9 ∪ {mKX9|m 6=

0,m ∈ Z} forms a root system of (untwisted) affine E8-type (that is, Ê8-type)

with Φre
Ê8

:= Φ9 the set of real roots and Φim
Ê8

:= {mKX9 |m 6= 0,m ∈ Z} the set

69
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of imaginary roots (see [16] or [21]). We have an Ê8-bundle E Ê8
0 over X9:

E Ê8
0 = O⊕9 ⊕

⊕
α∈Φre

Ê8

O(α)
⊕
β∈Φim

Ê8

O(β)

The Lie algebra structure on E Ê8
0 is explained in [21]. When n ≤ 8, EEn0 =

O⊕n ⊕
⊕

α∈Φn
O(α) is an En-bundle over Xn.

Suppose C = ∪Ci is an (affine) ADE curve of type g in Xn, then Ci’s gen-

erates a subroot system Φ inside Φn since Ci ·K = 0 for every i. Therefore the

corresponding bundle Eg0 is a Lie algebra subbundle of EEn0 .

Suppose Eg0 is a g-bundle over a surface X corresponding to a root system

Λg ⊂ Pic(X) of type g.

Definition 9.1.1. A Lie algebra sub-bundle F of Eg0 is called strict if there exists

a sub-root lattice Λ of Λg such that F is a direct sum of line bundles corresponding

to the roots in Λ.

In order to describe E Ê8
0 as a central extension of a loop Lie algebra bundle

over X9, we pick any smooth (−1)-curve l in X9, then we have

E Ê8
0
∼= EE8

0 ⊗ (
⊕
n∈Z

O(nKX9))⊕O,

where EE8
0 is the pull-back of the E8-bundle over X8 via π : X9 → X8, the blow

down map of l. The next proposition describes the converse.

Proposition 9.1.1. When E Ê8
0 is a central extension of a loop E8-sub-bundle

over X for some strict E8-bundle FE8
0 over X9, i.e.

E Ê8
0
∼= FE8

0 ⊗ (
⊕
n∈Z

O(nKX9))⊕O,

as a Lie algebra bundle isomorphism, then there is a unique (possibly reducible)

(−1)-curve l in X such that FE8
0 is constructed from those α ∈ Λre satisfying

α · l = 0.
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Proof. Denote ∆E8 = {α1, · · · , α8} as a root base of the corresponding E8 Lie

algebra from FE8
0 , we need to find a unique (−1)-curve l in X such that l ·αi = 0

for any αi in ∆E8 . Since {±1} ×W (Ê8) acts on the set of all root bases of Ê8

simply transitively [18] and W (Ê8) acts on the set of (−1)-curves [21], we only

need to find l for one particular root base of any E8 in Ê8 and show that such a l is

unique. For example, if we take α1 = h− l1− l2− l3, αk = lk−1− lk for k = 2, · · · 8,

then we can take l = l9 and by the condition that l · αi = 0, l2 = −1 = l ·K, we

know such a l is unique.

9.2 Deformability of such E Ê8
0

In this section, we will describe relationships between the geometry of X9 and

the deformability of E Ê8
0 . Similar results for Xn and EEn0 with n ≤ 8 can be easily

deduced from this case.

Recall when Pic(X) contains a lattice Λ isomorphic to a root lattice Λg, then

we have a g-bundle E over X ([8][13][22][23][21]).

E := O⊕r ⊕
⊕
α∈Φ

O(α).

Infinitesimal deformations of holomorphic structures on E are parametrized by

H1(X,End(E)), and those which also preserve the Lie algebra structure are

parametrized by H1(X, ad(E)) = H1(X, E) since g is simple. Hence we intro-

duce the following definitions.

Definition 9.2.1. (i) E is called fully deformable if there exists a base ∆ ⊂ Φ

such that H1(X,O(α)) 6= 0 for any α ∈ ∆.

(ii) E is called h-deformable if there exists a strict h Lie algebra sub-bundle

Eh ⊆ E which is fully deformable.

(iii) E is called deformable in α-direction for α ∈ Φ if H1(X,O(α)) 6= 0.

(iv) E is called totally non-deformable if H1(X,O(α)) = 0 for any α ∈ Φ.
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Recall the holomorphic structure ∂ϕ or ∂(ϕ,Φ) defined as before on E ad-

mits a filtration determined by the height of the roots (if the root base ∆ =

{α1, α2, · · · , αr}, then for any α ∈ Φ, we have α =
∑
aiαi and the height of α is

defined to be ht(α) :=
∑
ai).

Remark 9.2.1. When E is fully deformable and if for every simple root α ∈ ∆,

O(α) = O(Cα) for some smooth irreducible curve Cα, then C = ∪α∈∆Cα is an

ADE or affine ADE curve in X. In this case, we can show that H2(X,O(α)) = 0

for any α ∈ Φ and the g or ĝ bundle E admits a deformation into a filtrated bundle

which is trivial on every Cα. When E is totally non-deformable, ∂ϕ can only be

∂0.

The main results of this section are the followings.

Theorem 9.2.1. E Ê8
0 over X9 is totally non-deformable if and only if the nine

blowup points in P2 are in general position.

Let us recall some facts about elliptic fibrations on X9 [30][32]. Any elliptic

fibration on X9 must be relatively minimal, i.e. there is no (−1)-curves in any

of its fibrations, as there is no elliptic fibration on X8, this is because the Euler

characteristic of any elliptic surface is a multiple of 12 [10] and also χ(X9) = 12.

There is at most one multiple fiber [11], say of multiplicity m. This happens

precisely when there exists an irreducible pencil of degree 3m in P2 with 9 base

points, each of multiplicity m and X9 is the blow up of P2 at these 9 points.

We can characterize the existence of such an elliptic fibration on X9 in terms

of deformability of E Ê8
0 along imaginary root directions. For instance, X9 with

−KX9 nef admits an elliptic fibration (without multiple fiber) if and only if E Ê8
0

is deformable in (−mK)-direction for some m ∈ N (with m = 1). Deformability

of E Ê8
0 can also detect the existence of ADE or Kodaira curves in X.

Theorem 9.2.2. Suppose −KX9 is nef, then
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(i) X9 admits an elliptic fibration with a multiple fiber of multiplicity m

(m ≥ 1) if and only if E Ê8
0 is deformable in (−mK)-direction but not in (−m +

1)K-direction.

(ii) X9 has an (maximal) ADE curve C of type g if and only if E Ê8
0 is

(maximal) g-deformable.

(iii) X9 has a (maximal) Kodaira curve C of type ĝ if and only if E Ê8
0 is

(maximal) ĝ-deformable.

Here we say an ADE or Kodaira curve C is maximal if it is not proper

contained in another ADE or Kodaira curve. We say E Ê8
0 is maximal g (or ĝ)

deformable if there does not exist another fully deformable (affine) Lie algebra

sub-bundle of E Ê8
0 containing this g (or ĝ) bundle.

9.3 Negative curves in X9

In this section, we study negative rational curves in X9. We can get corresponding

results for Xn with n ≤ 8 from this n = 9 case.

A divisor D in X is called a (−m)-class if D ·D = −m and D ·K = m − 2.

An effective (−m)-class is called a (−m)-curve. Note when D =
∑
niCi is a

(−m)-curve, we will also denote the corresponding curve ∪Ci as D.

Use the notations in the above section, every effective divisor D = ah −∑9
i=1 aili ∈ Pic(X9) must have a = D · h ≥ 0. It is well-known that all (−1)-

classes are effective, and there are infinite number of them in X9. There are also

infinite number of (−2)-classes, but whether they are effective or not depends on

the positions of the 9 blow-up points.

Definition 9.3.1. Let x1, · · · , xn be n distinct points in P2. These n points are

said to be non-special with respect to Cremona transformations if for any Cremona

transformation T with centers within xi’s, the points y1, · · · , yn corresponding to
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xi’s under T are distinct points such that no three points among y1, · · · , yn are

collinear.

Definition 9.3.2. ([21]) Let x1, · · · , x9 be 9 points in P2, we say they are in

general position if they satisfy the following three conditions:

(i) they are distinct points in P2;

(ii) they are non-special with respect to Cremona transformations;

(iii) there is a unique cubic curve passing through all of them.

The conditions (i) and (ii) mean that any 8 of these 9 points are in general

position. That is, no lines pass through three of them, no conics pass through six

of them, and no cubic curves pass through eight of them with one of the eight

points being a double point.

If the 9 blowing up points are in general position, then there is no effective

(−2)-class in X9 [21]. In general, there are at most finite number of (−m)-curves

with m ≥ 3.

Lemma 9.3.1. Let D = ah−
∑9

i=1 aili be a (−m)-curve in X9 with m ≥ 3, then

(i) m ≤ 9;

(ii) 0 ≤ a ≤ 3;

(iii) −1 ≤ ai ≤ 2 for all i, and there exists some j with aj = 1;

(iv) there are finite number of such curves.

Proof. (i) Since D is a (−m)-curve, D ·D = −m and D ·K = m− 2, i.e.

∑
a2
i = a2 +m and

∑
ai = 3a+m− 2.

From the above two equations, we have

(3a+m− 2)2 = (
∑

ai)
2 ≤ 9(

∑
a2
i ) = 9(a2 +m).

Thus, a ≤ −m2+13m−4
6(m−2)

, also a ≥ 0 since D is effective, hence m ≤ 12.
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When m ≥ 10, we must have a = 0, that means
∑
a2
i = m and

∑
ai = m−2,

hence
∑
a2
i −

∑
ai = 2, which implies every ai satisfies |ai| ≤ 1 and there exists

exactly one ai with ai = −1. But we also have
∑
ai = m − 2 ≥ 8, which is

impossible since we only have nine ai’s.

(ii) When m ≥ 4, a ≤ −m2+13m−4
6(m−2)

≤ 8
3
< 3. When m = 3, a ≤ −m2+13m−4

6(m−2)
=

13
3
< 5. Hence we only need to prove there is no (−3)-curve with a = 4.

Suppose not, then there exists ai’s such that
∑
a2
i = 19 and

∑
ai = 13. From∑

a2
i −

∑
ai = 6, we know −2 ≤ ai ≤ 3. If there is any ai with ai = 3, then the

other ai’s can only be 0 or 1, but we have
∑
ai = 13 and there is only nine ai’s,

which is impossible. Hence −2 ≤ ai ≤ 2, from
∑
a2
i −

∑
ai = 6, we can have at

most three ai’s equal to 2, which is also impossible since
∑
ai = 13.

(iii) From
∑
a2
i = a2 +m,

∑
ai = 3a+m− 2 and 0 ≤ a ≤ 3, we have

∑
ai = 3a+m− 2 ≥ a2 +m− 2 =

∑
a2
i − 2.

Hence −1 ≤ ai ≤ 2. And there are three cases:

Case 1, one ai equal to 2, the others equal to 0 or 1;

Case 2, one ai equal to −1, the others equal to 0 or 1;

Case 3, all ai’s are equal to 0 or 1.

By
∑
ai = 3a + m − 2 ≥ 1, we know in case 2 and case 3, there must exist

some ai with ai = 1. In case 1, if there is no ai with ai = 1, then D = ah− 2lj.

From
∑
a2
i = a2 +m,

∑
ai = 3a+m−2, we have a = 0, m = 4, hence D = −2lj,

which is not an effective divisor.

(iv) It is obvious from the above results.

From this lemma, we can easily obtain the following as a corollary.

Corollary 9.3.1. If there exists a (−m)-curve in X9 with m ≥ 3, then there also

exists a (−m+ 1)-curve in X9.

Proof. If D ∈ |ah−
∑
aili| is a (−m)-curve in X9 with m ≥ 3, then there exists
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j with aj = 1 by (iii) of Lemma 9.3.1 . It is easy to check that D + lj is a

(−m+ 1)-curve in X9.

If the 9 blowing up points are in general position, then there is no (−2)-curve

in X9, as a consequence, there is also no (−m)-curve in X9 with m ≥ 3. The

following result shows that this happens exactly when X9 is almost Fano. We

include a proof here as we could not find it in the literatures.

Lemma 9.3.2. X9 has no (−m)-curve with m ≥ 3 if and only if −KX9 is nef.

Proof. If −K is nef, then from C ·K−1 = 2 −m ≥ 0 for any (−m)-curve C, we

know m ≤ 2.

Conversely, assume X9 has no (−m)-curve with m ≥ 3. Since X9 is a blowup

of P2 at nine points {xi}9
i=1, we have an effective anti-canonical divisor D. Recall

when D · Σ < 0 for any irreducible curve Σ in X, Σ must be a component of D.

So if D is an irreducible curve or a Kodaira curve, then D is nef. We denote the

image of D in P2 as C, which is a cubic curve passing through these 9 blowing

up points.

(i) If C is smooth, then we are done as D ∼= C and therefore irreducible.

(ii) If C is reduced and irreducible, then it must be a nodal or cuspidal cubic.

If {xi}9
i=1∩sing(C) = ∅ (sing(C) means the set of singular points on C), then

D ∼= C and we are done. Otherwise, say x1 ∈sing(C) and we write the strict and

proper transformations of C in Blx1(P2) as C1 and C1 +E respectively. Then the

remaining xi’s must have exactly 1 point (resp. 7 points) lying on E (resp. C1)

in order to avoid having (−m)-curve with m ≥ 3. Thus D is a Kodaira curve of

type Â1 or III(Â1) for C being a nodal or cuspidal respectively.

(iii) If C is reduced and reducible, then C = B ∪ H0 or H1 ∪ H2 ∪ H3 with

B and Hj’s are conic and distinct lines in P2. As before, we must have exactly 6

xi’s on B and 3 xi’s on each Hj and none on sing(C). Thus D ∼= C is a Kodaira

curve of type Â1, Â2, III(Â1) or V I(Â2).
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(iv) If C is non-reduced, C = 3H, D must have a (−m)-curve with m ≥ 3.

Hence D is an irreducible curve or a Kodaira curve, and we are done.

In the following two lemmas, we will use Lemma 2.21 in [2] to give a criteria

of a curve in Xn being an ADE or affine ADE curve. Lemma 2.21 can be

reformulated as follows: if C = ∪ri=1Ci is a connected curve in a surface X

satisfying: (i) C2
i = −2 and Ci ·KX = 0 for any i; (ii) Ci · Cj ≤ 1 for any i 6= j;

(iii) (Ci ·Cj)r×r ≤ 0. Then when (Ci ·Cj)r×r < 0, C is an ADE curve, otherwise,

it is an affine ADE curve.

Lemma 9.3.3. Suppose −KXn (n ≤ 8) is nef. Let C = ∪Ci be a connected curve

in Xn. If C ·KXn = 0, then C is an ADE curve.

Proof. Since −KXn is nef, C · KXn = 0 implies Ci · KXn = 0 for each i, i.e.

[Ci] ∈ 〈K〉⊥ ∼= ΛEn . We have C2
i < 0 and (Ci + Cj)

2 < 0 for any i and j.

Together with the genus formula, we have C2
i = −2 and Ci ·Cj ≤ 1 for i 6= j. By

Lemma 2.21 in [2], we know C is an ADE curve.

For n = 9 case, we have the following lemma.

Lemma 9.3.4. Suppose −KX9 is nef. Let C = ∪Ci be a connected curve in X9.

If C ·KX9 = 0 and Ci+KX9 is not effective for each i, then C is a smooth elliptic

curve, an ADE curve or an affine ADE curve.

Proof. Since −KX9 is nef, C · KX9 = 0 implies Ci · KX9 = 0 for each i, i.e.

[Ci] ∈ 〈KX9〉⊥ ∼= ΛE9 . We have C2
i ≤ 0 and (Ci + Cj)

2 ≤ 0 for any i and j.

Moreover, for any effective divisor D ∈ 〈KX9〉⊥, if D2 = 0, then D ∈ |mKX9 | for

some non-zero integer m. From C2
i ≤ 0 and genus formula, we have C2

i = −2 or

0.

If there exists Ci such that C2
i = 0, then Ci ∈ |mK| for some non-zero integer

m. Since Ci + KX9 is not effective, we know m = −1, i.e. Ci ∈ | −K|. If C is
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not irreducible, then there exists Cj which intersects Ci, which is impossible. So

C = Ci ∈ | −K| is an elliptic curve or an affine A0 curve by Lemma 9.3.2.

If C2
i = −2 for any i, then Ci · Cj ≤ 2 for any i 6= j. If there exist Ci and Cj

such that Ci · Cj = 2, then (Ci + Cj)
2 = 0, Ci + Cj ∈ |mK| for some integer m.

Hence C = Ci∪Cj is an affine A1 curve, this is because if Ck is another irreducible

component of C and assume it intersects with Ci, then it must be an irreducible

component of Cj, which contradicts to Cj being irreducible. Otherwise, we will

have C2
i = −2 for each i and Ci · Cj ≤ 1 for i 6= j. By Lemma 2.21 of [2], we

know C is an ADE or affine ADE curve.

9.4 Proof of Theorems 9.2.1 and 9.2.2

Proof. (of Theorem 9.2.1) If the nine blowup points in P2 are in general position,

then for any α ∈ Φ9, we have h0 (X,O (α)) = 0 [21]. Since K · K = 0, we also

have K − α ∈ Φ9 and therefore h2 (X,O (α)) = 0 by Serre duality. However

the Riemann-Roch formula gives χ (X,O (α)) = 1 + α2−αK
2

= 0 and therefore

h1 (X,O (α)) = 0. For the imaginary roots mK’s, from Lemma 4 and Proposition

11 in [21], we have h0(X,O(mK)) = 0 and h0(X,O(−mK)) = 1 for m ≥ 1. By

Serre duality and Riemann-Roch formula, we have h1(X,O(mK)) = 0 for any

imaginary root mK. Hence E Ê8
0 is totally non-deformable.

Conversely, if E Ê8
0 is totally non-deformable, thenX has no (possibly reducible)

(−2)-curve, hence no (−n)-curve with n ≥ 2. By Proposition 10 in [31], this

implies the nine blowup points are non-special with respect to Cremona trans-

formations. Also from h1(X,O(mK)) = 0 for any imaginary root mK, we get

h0(X,O(−K)) = 1, we have a unique cubic curve in P2 passing through all of the

blow-up points. Hence, the nine blow-up points in P2 are in general position.

Proof. (of Theorem 9.2.2) (i)We have h1(X,O(−mK)) = h0(X,O(−mK)) − 1
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for any m by Riemann-Roch formula. So E Ê8
0 is deformable in (−mK)-direction

if and only if h0(X,O(−mK)) = 2.

Let F0 ∈ | −K|, then by Proposition 2.2 of [5], X admits an elliptic fibration

with a multiple fiber of multiplicity m if and only if OF0(F0) is of order m in

Pic(F0). But OF0(mF0) ∼= OF0 if and only if h0(OF0(mF0)) = 1 as OF0(mF0) is

topologically trivial. By the exact sequence

0 −→ OX −→ OX(mF0) −→ OF0(mF0) −→ 0

together with h1(X,OX) = 0, we know h0(OX(mF0)) = 1 + h0(OF0(mF0)). So

m = min{n : h0(OF0(nF0)) = 1} = min{n : h0(X,O(−nK)) = 2}.

(ii) If X has an ADE curve C of type g, we can use it to construct a fully

deformable g-subbundle of E Ê8
0 . When C is maximal, then this g-subbundle is

not contained in any other fully deformable Lie algebra subbundle of E Ê8
0 .

Conversely, if E Ê8
0 is maximal g-deformable, then we can find a base ∆ ⊂ ΦÊ8

of g such that h1(X,O(α)) 6= 0 for every α ∈ ∆. Since χ(O(α)) = 1+ α2−α·K
2

= 0,

we must have h0(O(α)) 6= 0 or h2(O(α)) = h0(O(K −α)) 6= 0, that is either α or

K − α is effective. Hence, there must exist some integers m’s such that α+mK

is effective because −K is effective, we denote the largest such m as mα.

We claim that for every α ∈ ∆, Cα ∈ |α+mαK| is an irreducible (−2)-curve.

If so, then C = ∪α∈∆Cα is a maximal ADE curve of type g. If there exists

reducible Cα, we write Cα = ∪Di. Then each Di is perpendicular to K as −K is

nef and Cα ·K = 0. Since Cα+K is not effective, every Di+K is also not effective

and Di /∈ | − K|. Hence D2
i = −2 for any i as D2

i = 0 will imply Di ∈ | − K|.

We know Cα is connected, this is because if Cα is not connected, then one of

its connected component must have self-intersection zero from C2
α = −2, which

contradicts to Cα + K is not effective. Hence C = ∪α∈∆Cα is an (affine) ADE

curve by Lemma 9.3.4. It is obvious that this curve strictly contains a g-curve,

which contradicts to E Ê8
0 being maximal g-deformable.

(iii) The proof is similar to (ii).
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Remark 9.4.1. If X9 admits an elliptic fibration, then we can find m such that

h1(X9, O(−mK)) 6= 0. Conversely, if h1(X9, O(−mK)) 6= 0, we need to add the

condition of −K being nef to show that X admits an elliptic fibration. To see

this, we take x1, · · · , x5 to be 5 points on a line l ⊂ P2, and another 4 generic

points (not on l) x6, · · · , x9 in P2. Then we have an one parameter family of

conics Ct’s passing through these 4 points. If we blow up P2 at these 9 points

and denote the strict transforms of l and Ct with same notations, then l2 = −4,

C2
t = 0. Moreover Ct + l ∈ | −K| and h0(X9, O(−K)) = 2. But −K is not nef

as (−K) · l = −2, which implies that X9 is not elliptic.

From the above, we can easily deduce similar results for the En-bundle EEn0

over Xn when n ≤ 8, namely

(i) EEn0 is totally non-deformable if and only if the n blowup points in P2 are

in general position.

(ii) When −KXn nef, EEn0 is maximal g-deformable if and only if Xn has a

maximal g curve.



Appendix A

Minuscule configurations

We now construct examples of surface with an ADE singularity p of type g and

a (−1)-curve C0 passing through p with minuscule multiplicity Ck. We call its

minimal resolution a surface with minuscule configuration of type (g, V ), where

V is the fundamental representation corresponding to −Ck.

First we consider the standard representation V ' Cn+1 of An = sl (n+ 1).

When we blowup a point on any surface, the exceptional curve is a (−1)-curve

E. If we blowup a point on E, the strict transform of E becomes a (−2)-curve.

By repeating this process n + 1 times, we obtain a chain of (−2)-curves with a

(−1)-curve attached to the last one. Namely we have a surface with a minuscule

configuration of type (An,Cn+1).

Suppose that D is a smooth rational curve on a surface with D2 = 0. By

blowing up a point on D, we obtain a surface with a chain of two (−1)-curves. If

we blowup their intersection point and iterative blowing up points in exceptional

curves, then we obtain a surface with minuscule configuration of type (Dn,C2n).

Given a surface together with a smooth rational curve C with C2 = 1 on it.

We could obtain every minuscule configuration by the following process. If we

blow up three points on C, then the strict transform of C is an (−2)-curve. By

the previous construction of iterated blowups of points in these three exceptional
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curves Ei’s, we could obtain many minuscule configurations. Let us denote the

number of iterated blowups of the exceptional curve Ei as mi with i ∈ {1, 2, 3}.

Then we can obtain minuscule configuration of type (g, V ) by taking suitable

mi’s as follows.

minuscule configuration of type (g, V ) (m1,m2,m3)(
An,Λ

kCn+1
)

for any k (k − 1, 0, n− k)

(Dn,C2n), (Dn, S
+) and (Dn, S

−) (n− 3, 1, 1)

(E6, 27),
(
E6, 27

)
(2, 1, 2)

(E7, 56) (3, 1, 2)

Note that we could obtain such a configuration for every adjoint representation

of En this way. We remark that surfaces in this last construction are necessarily

rational surfaces because of the existence of C with C2 = 1.



Appendix B

Affine Lie algebras

In this appendix, we recall some results on affine Lie algebras [18][21]. If (g, [, ]) is

a finite dimensional simple Lie algebra, then the corresponding loop Lie algebra is

Lg := g⊗C[t, t−1], with the Lie bracket defined by [a⊗tn, b⊗tm]Lg = [a, b]⊗tm+n,

where a, b ∈ g, m,n ∈ Z.

The corresponding untwisted affine Lie algebra ĝ is constructed as a central

extension of Lg, with one-dimensional center Cc, i.e. ĝ = Lg⊕Cc. The Lie bracket

on ĝ is defined by the formula [a⊗tn+λc, b⊗tm+µc]Lg = [a, b]⊗tm+n+nδn+m,0k(a,

b)c, where λ, µ ∈ C and k is the Killing form on g.

We can obtain the affine Dynkin diagram of ĝ from the Dynkin diagram of

g by adding one node to it, corresponding to the extended root and labelling as

C0. But in the affine ADE except affine E8 case, from the symmetry of the affine

Dynkin diagrams, we have different choices of labelling the extended root.
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