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SUMMARY

The main objective of this research is to demonstrate improved actuator point-

to-point positioning performance, as measured by settling time, for manufacturing

automation applications such as circuit board assembly and other product-transfer

operations. Automation tasks generally involve multi-axis motion, but in order to

simplify the control task, it is often possible to plan motion control separately for

each actuation device involved. The control objective then is to move a single mass

in a single axis from a starting position to a target position following the fastest pos-

sible motion trajectory while meeting final-position accuracy requirements. Position

control involves generating and imposing the actuator force command required to

accelerate the mass according to the planned motion trajectory. Thus the actuator’s

achievable force that is available for acceleration is the fundamental variable that

determines optimal settling time. Achievable force is of course limited by constraints

on heat dissipation but also possibly by additional application-specific constraints.

The actuator technology employed is the linear variable reluctance motor. Achiev-

ing maximum possible force requires optimal excitation. Naturally, achievable force

limits vary with the existence and tightness of constraints. In this research, higher

force capability is achieved when force-ripple constraints, which have been custom-

arily emphasized in positioning applications, are relaxed. The higher capability is

exploited by adopting faster motion trajectories, which are then imposed under feed-

back control to achieve faster settling time. Improved force capability with relaxed

ripple constraints is demonstrated by generating average force versus speed capa-

bility curves under ripple constraints ranging from minimal ripple to unconstrained

xii



ripple. Improved positioning performance, with relaxed ripple constraints and with-

out violating the final-position accuracy specification, is demonstrated by computing

and comparing settling time for multiple positioning tasks with trajectories based

on both extremes of force capability, lowest (no-ripple) and highest (unconstrained-

ripple) force limits.

Mathematical motor models and simulation programs are developed to help per-

form several tasks necessary for achieving the objectives of this research: (i) optimal

commutation under force ripple constraints is computed to determine ripple-specified

force limits and to provide excitation waveforms necessary for force production, (ii)

motion profiles for several positioning task scenarios are generated based on computed

ripple-specified force limits, (iii) state space integral position control simulations are

performed to evaluate the degree of success of the proposed relaxation of force ripple

constraints in improving settling time and (iv) the computed settling times for posi-

tioning tasks are examined in relation to the copper losses associated with them in

order to assess the trade-off.

Two LVR motor configurations are investigated to examine whether or not the

research results are limited to one actuator topology or to one excitation type. One

motor configuration represents typical (i.e. switched) linear and rotary variable re-

luctance motors while the other exhibits features of both switched and synchronous

varieties of variable reluctance motors. Improvements in settling time resulting from

relaxing force ripple constraints are demonstrated for both configurations and are

found to be more pronounced for the uncoupled configuration.

xiii



CHAPTER 1

INTRODUCTION

Point-to-point positioning, the controlled motion of an object from one point to an-

other, is the principal task performed by robotic machines in manufacturing automa-

tion applications such as circuit board assembly and other product-transfer opera-

tions. Because of global competition, automation industries are under great market

pressure to minimize production cycle times while meeting increasing demands on pro-

duction quality and versatility. Complex decision making is required at many levels

from human and capital resource management, to production planning, to controlling

the work flow and operation of the individual assembly machines. Point-to-point po-

sitioning control is at the most elementary level in such a hierarchy and naturally has

a direct impact on production cycle time. Consequently, manufacturers of assembly

machines are also under pressure to maximize the point-to-point positioning perfor-

mance of the motion actuators inside their machines even as accuracy requirements

become stricter.

The main contribution of this thesis is the improvement of settling time in point-

to-point positioning applications which would lead to shorter cycle times and higher

throughput. The following several sections introduce the main concepts and contain

foundational material for the topics covered in this dissertation and serve to explain

how these topics are inter-related. This chapter ends with previewing the thesis

contributions and summarizing the organization of the remainder of this document.

1.1 Point-to-Point and Continuous-Path Control

The motion of an object from a starting point in space to a target point is charac-

terized by a path (the position of all points in space the object passes through) and
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a trajectory (the instants in time the object passes through the points). Robotic

positioning control problems, depicted in Figure 1, are classified as continuous-path

(e.g., seam welding) or point-to-point (e.g., circuit board assembly) control problems.

Both control problems typically address three issues: path determination, trajectory

generation and trajectory tracking using feedback control techniques. Continuous-

path position control requires precise tracking of the whole path such as the complex

contour of a welding seam. Point-to-point positioning control, on the other hand,

requires no control of the path between the starting and target points, and so feed-

back control decisions concern only trajectories, but even then trajectory following is

critical only at the target position. This facilitates shorter operation cycles for point-

to-point positioning applications; in particular, when the desired positioning points

are known a priori, and the workspace is clear of obstacles, optimized (fastest) motion

plans can be stored and executed repeatedly in a predetermined sequence. The dis-

tinction between the two control problems is additionally important for this research

because it brings into focus the position tracking freedom unique to point-to-point

positioning and an opportunity for generating faster trajectories.

The freedom from continuous specifications for position tracking in the static sense

(tracking the path) implies freedom from continuous specifications for position, speed

and acceleration tracking in the dynamic sense (tracking the trajectory). Without

this freedom, there is no inherent flexibility in the speed and acceleration require-

ments to move an infinitesimal distance from each point in the path to the next

point. This influences trajectory generation decisions; it is common, for example,

to minimize ripple in force production in order to improve force tracking and hence

positioning accuracy, but this (and in general any constraint) must in some way di-

minish force capability. It is proposed here that trajectory tracking freedom allows

use of maximum force capability (by relaxing select constraints) thus allowing faster

trajectories, for point-to-point positioning, without detrimental effect on settling time

2



Figure 1: Points in space for continuous (top) and point-to-point paths.

and final-position accuracy. The assessment of settling time improvement based on

this proposition is not straightforward and requires the detailed numerical studies

documented in this dissertation.

1.2 Single-Axis Point-to-Point Positioning

Positioning tasks generally require multi-axis motion in various workspaces; for ex-

ample, point-to-point moves in circuit board assembly cover a rectangular workspace

and so a Cartesian configuration with three (x, y and z) linear and orthogonal axes

of motion is appropriate. It is possible to plan motion separately for each axis thus

simplifying the control problem. The principal positioning task then is for an actua-

tor to move a single mass in a single axis from a starting position to a final settling

position as fast as possible, yet meet final-position accuracy requirements. A single-

mass motion system is shown in Figure 2 where a force, f , from an actuating device

is applied to move the mass M along a linear axis (friction is ignored for clarity),

resulting in position x. In general the actuator may be electrical, hydraulic or pneu-

matic. This system would constitute the plant in a feedback point-to-point position

control system such as depicted in Figure 3.
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Figure 2: Single-axis linear motion system.

1.2.1 Time-Optimal Motion Trajectory

The minimum travel time, Topt, to complete a point-to-point positioning task is ob-

tained by solving the optimal control problem

minimize T =

∫ T

0

1 dt (1)

subject to Mẍ = f (2)
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where T is the travel time, F is the maximum actuator force and ξ is the travel

distance. The classical solution to this optimal point-to-point positioning problem is

the so-called bang-bang solution where Topt is given by

Topt = 2

√

ξ

F/M
(5)

The corresponding motion trajectory has the shape shown in Figure 4, and for a given

mass and a given travel distance, it is a function of only the maximum force available

for acceleration. From (5), it is clear that Topt decreases as F increases. It is implicitly

assumed that full acceleration and full deceleration are instantaneously possible and

that speeds are feasible up to the maximum speed at the peak of the triangular

velocity profile. This time-optimal motion trajectory is not attempted in practice;

rather, modified trajectories are obtained after imposing application-specific motion

constraints such as maximum jerk (the rate of change of acceleration) and maximum
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Figure 3: Point-to-point positioning control system block diagram.

0 0.1 0.2 0.3 0.4 0.5 0.6
−20

0

20

A
cc

el
er

at
io

n 
(m

/s
2 )

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

V
el

oc
ity

 (
m

/s
)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

D
is

pl
ac

em
en

t (
m

)

Time (s)

Figure 4: Time-optimal motion trajectory.

speed. The bang-bang trajectory becomes the idealized special case.

1.2.2 Realistic Motion Trajectories

There exist many mathematical models for generating motion trajectories subject to

realistic motion constraints on speed, acceleration and jerk (denoted below by Smax,

Amax and Jmax respectively):

|ẋ| ≤ Smax (6)

|ẍ| ≤ Amax ≡ F/M (7)

|
...
x | ≤ Jmax (8)

Model choice depends on the acceptable trade-off between achievable travel time

and motion constraints. For example, a faster trajectory may involve higher jerk than
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permitted for some applications. Two example practical motion trajectories using

the time-optimal s-curve models in [1] are shown in Figure 5. Common parameters

(force, distance and mass) with the time-optimal trajectory in Figure 4 are kept in

obtaining the practical trajectories, but speed and jerk constraints are added. Clearly,

additionally imposed motion constraints influence not only travel time but also the

trajectory shape and whether or not travel at maximum speed is feasible for any

length of time.

1.2.3 Measuring Positioning Performance

Precise definition of settling time, the positioning performance measure, is given with

the help of Figure 6. This figure shows two generic curves, a desired position trajectory

xd(t) and actual (sensed) position x(t). The desired trajectory specifies a travel

interval from ti to tf and an associated travel distance ξ from xi to xf . After tf , the

commanded position stays constant (at the target position xf ) until the next task

begins. This is summarized below

xd(ti) = xi (9)

xd(tf ) = xf (10)

ξ = xf − xi (11)

Let e(t) be the position error for the entire duration of the task and let ep(t) be

the position error during the constant-position command interval:

e(t) = xd(t)− x(t) (12)

ep(t) = e(t)|t≥tf (13)

Settling to target position is complete if max(|ep(t)|) ≤ ∆x where ∆x is the

positioning tolerance. In other words, the effective settling time is the time elapsed

between the start of motion at ti and the earliest time, ts, that x(t) enters and stays
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(a) Low jerk.
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(b) High jerk.

Figure 5: Example s-curve trajectories. The optimal trajectory in Figure 4 adheres
to the same force limit but ignores additional limits.
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Figure 6: Positioning trajectory and tracking variables.

within an envelope of height 2∆x about the target position. The following terminology

will be used for the various segments in Figure 6 and their associated time intervals:

Nominal Travel Segment: τn = tf − ti (14)

Active Settling Segment: τa = ts − tf (15)

Effective Settling Segment: τs = ts − ti (16)

1.2.4 Actuator Technology for Point-to-Point Positioning

The force necessary for robotic automation may come from electrical, hydraulic or

pneumatic actuators, but electrical (DC or AC) motors are most popular [2]. The

applications targeted in this research require controlled linear motion in one axis.

Controlled linear motion is possible with rotary motors, but rotary-to-linear con-

version mechanisms such as ball screws, lead screws, rack-and-pinions, or belts and

pulleys are required. The ability of linear motors to directly drive the load without
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such mechanisms facilitates higher performance [3, 4]; they feature simplified assem-

bly, improved reliability (there are fewer parts and they are non-contacting), higher

repeatability and accuracy (no backlash, higher stiffness), and lower maintenance

cost. Challenges with direct drive motors include the lack of gearing, which results in

the need for larger electromagnetic force both for moving the payload and rejecting

disturbances.

The actuator technology selected for this research is linear variable reluctance

(LVR) motors. Such motors are known for large inherent force ripple and higher

complexity of control [5], [6]. The interest in LVR motors is inspired by commer-

cialized products from NSK and Universal Instruments Corporation (UIC) and by

the surge in research on LVR motor applications for manufacturing machines. NSK

developed Megathrust, an LVR motor, for use in high-speed transfer systems for light

weight materials [7] several years after its rotary counterpart (Megatorque) which had

been used by the US firm Adept Technologies in direct drive robots. UIC has been

using patented LVR technology in all its so-called platform positioning systems [8].

The choice of LVR motors for this research is further motivated by the fact that they

require only the simplest materials and construction and because their naturally high

force ripple may best allow the control design to take advantage of the additional

tracking performance freedom described in Section 1.1.

Force capability at any speed, typically depicted by a force-speed curve, is a func-

tion of motor magnetic design and operation constraints such as maximum converter

voltage. Other constraints include limits on heat dissipation (to ensure integrity of

motor coils) and limits on force ripple (for example to avoid mechanical damage from

vibrations). Heat dissipation is an unavoidable consequence of force production and

its reduction is a common goal regardless of the application or the motor type. Force

ripple and torque ripple in linear and rotary VR motors is a consequence of the salient
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teeth situated on both sides of the air gap. Because of this double saliency, VR mo-

tors have a spatially-periodic variable reluctance (VR) to magnetic flux flow through

the non-uniform air gaps giving these motors their name. Force ripple in VR motors

is a prominent factor in excitation design and in force (or torque) characteristics;

consequently it impacts their positioning performance and is central in this disser-

tation. The influence of force ripple on structure vibration and on settling time is

not investigated in this research; however, this topic is discussed briefly in Sections

1.3.2.1 and 5.3.

1.2.5 Linear Variable Reluctance Motors

Theoretically there is a linear counterpart for every rotary motor including the rotary

VR motor. This section is about LVR motors and describes their construction and

principles of operation. Background information on various types of brushless linear

motors is found in [3, 4, 9, 10], and a summary of advances in linear motors and

their industrial and transport applications is found in [11]. Valuable information

pertinent to LVR motors can be gained from the existing rich treatment of their

rotary counterparts such as found in [12]-[17].

Two LVR motor configurations, coupled and uncoupled, are considered in this

research. The coupled configuration (Figure 7 (a)) relies on shared magnetic paths,

where the flux induced by energizing one phase necessarily links the turns of the other

phases, whereas the uncoupled configuration (Figure 7 (b)) consists of noninteracting

magnetic paths. The main parts of these motors are named in Figure 8 (shown using

the coupled configuration).

All linear motors have two parts on opposite sides of an air gap. The moving part

is called the translator and the stationary part is called the stator. Either one of the

two main parts, designated the active part, houses energized windings that are wound

around (toothed) poles and are responsible for producing magnetic flux; the other part
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is designated the passive part. In LVR motors, both the passive and active parts have

a magnetically salient structure that causes the reluctance of the magnetic flux path

to vary with displacement, giving these motors their name. LVR motors take many

configurations, but this research is concerned with rectangular framed LVR motors

with (1) flat air gaps (cylindrical motors have tubular air gaps), (2) concentrated

coils (the synchronous variety of variable-reluctance motors has distributed winding),

(3) double air gap (the moving part is made of two connected external pieces and

the stationary part is sandwiched between (internal to) them, (4) flux paths through

the magnetic material in directions that are parallel (longitudinal flux) as opposed

to perpendicular (transverse flux) to the direction of mechanical motion, (5) toothed

structure in the magnetic material at the air gap to provide the saliency necessary for

operation (with anisotropic structures, the saliency is achieved by constructing the

core from both magnetic and non-magnetic materials arranged in a suitable pattern)

and (6) three phases (the minimum number of phases for controlled motion in either

direction).

The middle toothed bar in both configurations of Figure 7 constitutes the passive

stator. The identical top and bottom parts holding toothed poles and concentrated

coils make the active translator (for comparative advantages of concentrated windings

with permanent magnet motors as opposed to distributed windings, see [18]–[20]).

Each phase winding is a series connection of the coils belonging to that phase (bearing

the same phase number in the figure). The misalignment between opposing stator

and translator teeth ensures the generation of force favoring alignment: When current

flows in one or more phase windings, electromagnetic fluxes flow and interact with

magnetic poles formed within the non-uniformly magnetized material of the salient

structure, and force is developed due to the tendency of magnetic fields to align. The

uniform distribution of poles and teeth allows repeating operation in cycles. The

fundamental cycle of operation corresponds to how much motion is needed before

11



(a) Coupled configuration.

(b) Uncoupled configuration.

Figure 7: Linear variable-reluctance motors.
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Figure 8: Linear variable-reluctance motor parts.
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stator and translator teeth return to the same orientation relative to each other.

Representative steps of this cycle are shown in Figure 9.

If both configurations have a common tooth pitch, a common tooth width, and a

common depth or third dimension, then their stator bars will be identical (as in the

figure). Considering both configurations and keeping as much as possible in common

provides the opportunity to examine whether or not superior performance can be

attributed to the existence of magnetic coupling or the lack thereof. In addition,

considering these two configurations helps examine whether or not the research results

are limited to one actuator topology or to one excitation type. The uncoupled motor

represents typical (i.e. switched) linear and rotary variable reluctance motors while

the coupled motor exhibits features of both switched and synchronous varieties of

variable reluctance motors.

The publications cited in this chapter chronicle the evolution of LVR motors into

viable competitors to other linear motors in various motion applications and their suc-

cessful development for industrial use in electronics assembly equipment. Cited ad-

vantages over other linear motors include modularity, lower construction cost, higher

reliability, higher force/mass ratios, electromagnetic gearing and inherent position

sensing due to salient or toothed structure in the passive part. In comparison to

induction motors, VR motors have coils on only the active component limiting resis-

tive heating to that one component; they require no flux estimation to achieve high

performance control regardless of speed of operation. In comparison to permanent

magnet motors, VR motors do not suffer from the high cost of permanent magnets

or over-heating and potential for demagnetization.

1.3 Research Objectives and Literature Review

The objective of this research is to ascertain and demonstrate improvements in point-

to-point positioning, using LVR motors as the actuating technology. Doing so requires
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(a) x = 0 (exact alignment for phase 1).

(b) x = 1
6 cycle.

(c) x = 1
3 cycle.

(d) x = 1
2 cycle.

Figure 9: Several displacements in half a cycle of motion.
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• Derivation of force models and quantification of force ripple for LVR motors

with coupled and uncoupled phases

• Determination of the optimal ripple-specified commutation

• Assessment of positioning performance in terms of settling time and average

power dissipation

All topics listed above are subjects of active research, but the overall objective of

this research as stated above, and the entirety of the framework that combines these

tasks in order to achieve the research objective, have never before been reported in

the published literature. A review of relevant published research in relation to these

topics is presented next.

1.3.1 LVR Motor Modeling

Mathematical modeling is necessary for motor characterization and control. Idealized

modeling (ignoring magnetic material saturation and, in some cases, higher spatial

harmonics) and more accurate modeling using finite element analysis are presented in

Chapter 2. The idealized models come from magnetic circuit analysis with flux-tube

based air-gap permeances; these models were first reported in [21] and [22] for the

coupled motor and in [23] for the uncoupled motor. The linear model was applied

in [24, 25] to show the applicability of the uncoupled motor as a direct drive robot

actuator: single-phase and double-phase operation were tested under feedback control

with electronic (logic-function-based) commutation.

Early efforts to model or compensate for non-linear behavior, e.g. by modifying

the control input [25], seem to be based on heuristics and experience. The first mathe-

matical representation of the magnetic system that makes no simplifying assumptions

was introduced in [26] (for the uncoupled motor) using function fitting to measured

flux linkage data; it was used to derive a dynamic uncoupled motor model for the
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full range of operation, including saturation. More recent publications on the coupled

motor include [27]-[29], where a nonlinear magnetic circuit model is developed and is

used to simulate the dynamic behavior of the motor.

Models exist in the literature for LVR motors other than the coupled and un-

coupled motors of this dissertation. MCA methods assuming linear magnetics are

reported in [30], and accounting for nonlinear magnetics in [31] and in [32], but in the

latter it was used only for two critical relative positions of stator and translator teeth

(fully aligned and fully unaligned). Models seeking a compromise between accuracy

and computational efficiency are discussed in [33]-[35]. More accurate modeling, e.g.

using finite element analysis, is discussed in [36]-[39]. In [40], measurement data is

saved in look-up tables and used in the implementation of an LVR motor in precise

positioning.

This research employs the idealized models, but expands on them in order to

obtain new results, gain insight and conduct investigations with clarity (some inves-

tigation results have been published in [41]-[46] and more recent results have been

published in [47] and [48]). The finite-element-based models in Chapter 2 are derived

by function fitting not only to flux linkage data but also to magnetic energy and

thrust force all at the same time enabling a better fit. Moreover, the resulting models

are smooth functions throughout as opposed to tabular models with multilinear in-

terpolation. The model for the uncoupled motor completely characterizes that motor

while the coupled motor model is limited to single-phase excitation.

1.3.2 Optimal Commutation of LVR Motors

Optimal commutation of VR motors is concerned with determining optimized current

profiles for desired force production; common objectives include maximizing force

production, minimizing power dissipation (from copper losses) or minimizing force

ripple. Optimal excitation to minimize ripple so as to produce smooth force or torque
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dominates the literature ([49]-[58]). With few exceptions, in all published research on

optimal excitation of linear and rotary VR motors, assumptions are made a priori on

the positions (or angular positions) for turning a phase on or off (based on the slope of

the inductance curve and the desired direction of force) and on the number of phases

that can be excited simultaneously. Multiple-phase excitation is studied, but still

under the turn-on turn-off assumptions in [59] where two-phase excitation is found to

result in reduced peaks and reduced rates of change of currents resulting in reduced

ripple and reduced normal force (more important for single sided motors where normal

force is not balanced). Minimization of average power dissipation has been examined

in [60] and [61] without a priori assumptions for rotary variable reluctance motors

and the results apply to the uncoupled motor (Figure 7 (b)). Both maximization

of force production and minimization of copper losses without a priori assumptions

are reported in [62] for the coupled configuration; however, the formulation of these

problems assumes current sources as controls without any consideration of voltage

limits.

The optimal commutation in this research differs from these publications and all

published research in redefining the commutation problems to include force ripple

specification. It extends previously published work by covering the complete range

of force-ripple values from no ripple (smooth force) to unconstrained ripple for both

maximum force and minimum average power dissipation problems. The commutation

results are conveniently employed in the assessment of LVR motor force-speed limits

as covered in Chapter 3. Commutation results are also used in computing phase

currents to be used during controlled operation as covered in Chapter 4.

1.3.2.1 Force Ripple and Structure Vibration

Vibration problems due to flexibility in structures may arise in many engineering

areas; tall buildings, suspended bridges, cranes, automobiles and robots all exhibit
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vibratory behavior. Structure vibration is not investigated in this research; however,

its consideration would be a natural and important extension to this work; specifically,

it is important to find out how vibratory behavior (and ultimately settling time) is

influenced by the proposed non-conventional high force-ripple commutation strategy.

Brief comments on select publications [63]–[71] are given here and useful insight from

them is further discussed in Section 4.1.1.5. These publications are chosen because

they address one or more relevant issues, namely (i) motor configurations like the ones

studied in this dissertation (describing vibration causes and vibration reduction), (ii)

measures that can be applied successfully towards the end of motion to recover from

the vibrations induced by fast motion (suggesting that any residual vibration caused

by the proposed high-ripple commutation strategy may be similarly overcome) and

(iii) command shaping methods that modify force (acceleration) reference trajectories

similar to those used in this research and produce trajectories that will not excite the

resonances of system structures (suggesting that optimal commutation design may

be modified to accommodate vibration reduction measures in the force production

process).

In general, when robots are moved rapidly they experience vibrations which can

excite resonances and as a result improvements in move time by commanding fast

motion may be offset by the wait time required to allow residual vibrations to subside

to acceptable levels [63]. Flexibility in robotic manipulators is unavoidable (given

constraints imposed by manufacturing and operating costs, as well as by various

operating environments) and causes residual vibration that can degrade trajectory

tracking and thus require vibration reduction measures such as input shaping [64].

Oscillatory behavior makes precise-pointing or tip-positioning in applications such

as robotic booms in the aerospace industry a daunting task that requires complex

closed-loop control [65].

A patent [66] on vibration reduction methodology issued for UIC (a developer of
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linear and rotary VR motor technology for electronic assembly and other product

transfer applications [8]) concerns the coupled LVR motor configuration of Figure 7

(a). In [66] the stator is described as susceptible to vibration (being a pseudo simply

supported beam). Vibrations are said to occur mainly when the system is approach-

ing the target position and is moving slowly, and are attributed to (i) reduced stiffness

resulting from the reduction in normal forces between the stator and the translator

as phase currents get smaller and (ii) the high gains used in the velocity control loop;

resonance frequencies are found to be within the desired (for fast positioning) veloc-

ity control loop bandwidth. Three measures for vibration suppression are described

in [66]. First, bearings are mounted on the translator via mechanical dampers and

contact the stator so that stator vibrations are transmitted to the bearings and dis-

sipated in the dampers. Second, excitation computation is modified so that, even at

zero commanded (lateral) force, currents are applied in at least one phase so that

normal force never falls below an empirically determined level; only the magnitude

of the normal force is emphasized and is satisfied through switched excitation that

provides the desired normal and lateral forces with no emphasis on the ripple content

of the lateral force. Third, conditional (applied near target position) filtering is used

to reduce the velocity loop gain and thus reduce closed loop sensitivity to vibrations.

The feedforward method of command shaping applies without regard to the par-

ticular form of the desired trajectory and has been applied successfully (including

with modifications for example to accommodate nonlinear behavior) in several differ-

ent applications [64]; a comparison of input shaping methods is given in [67]. In [68]

input shaping has been applied to a Cartesian robot to modify a square wave force

input (corresponding to the time optimal trajectory shown in Figure 4) resulting in

vibration reduction even when resonant frequencies varied (in a manner similar to

variations observed in an actual system) from the nominal values used in command

shaping. Vibration reduction is also achieved for the same system when velocity
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constraints were included in trajectory generation [69]. In [70] a method has been

presented for concurrently designing a PD feedback position controller and an input

shaper that performed better than PD control alone. The design method takes into

account limits on allowable residual vibration as well as overshoot and actuator effort

(with the possibility to integrate other requirements). Additional methods and more

literature references can be found in [71].

1.3.3 Positioning Performance Assessment

The capability of LVR motors with uncoupled phases to provide controlled linear

motion at low speeds has been recognized for some time; this is evidenced by early

publications such as [24, 25, 72]. The potential performance, particularly as measured

by force density, of rectangular and cylindrical LVR motors in controlled motion

applications is discussed in [73]-[79]. Control of the coupled motor in Figure 7 (b) to

operate as a stepper motor has also been studied in early publications [22, 80].

Despite an obvious surge in VR motor research since the early publications just

mentioned, the modern literature on LVR motor position control in the context of au-

tomated manufacturing applications is scarce. An LVR motor with uncoupled phases

is shown in [40], [52], [81]-[82] to perform well in high precision positioning experi-

ments. The coupled motor has been examined in [42] (force control), [28] (dynamic

simulation of position control) and [83] (excitation design for periodic motion). It

has been shown in [84] to perform satisfactorily in initial experimental testing and

also under additional experiments using adaptive PID sliding mode position control

[85] and adaptive integral sliding mode position control [6]. Because the model of the

uncoupled LVR motor is similar to that of rotary VR motors, their successful exper-

imental application in position and speed control with automation as the ultimate

target application deserves mention (see for example [86]–[88]).
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The research in this dissertation is different from all literature cited in this sec-

tion in a fundamental way: no published research integrates modeling, ripple-specified

commutation and position control as used in this research to seek and demonstrate im-

proved performance in point-to-point positioning and to explore the trade-offs among

force ripple, settling time and average power dissipation.

1.4 Thesis Outline

The remainder of this thesis is organized as follows: Chapter 2 derives mathemati-

cal models for the LVR motors. First linear (idealized) models are derived assum-

ing magnetic linearity and subsequent to that non-linear models are derived using

finite element analysis (FEA) methods. The FEA-based model of the uncoupled mo-

tor completely characterizes the motor while the coupled motor model is limited to

single-phase excitation. Chapter 3 uses motor models in conjunction with numerical

optimization methods to solve two optimal commutation problems: maximization of

force production and minimization of average power dissipation while producing a de-

sired average force value. Solutions to the first problem in its most general formulation

provide force-speed characterization parameterized by force ripple and also provide

input (namely, available force) to models used (Chapter 4) in generating s-curve po-

sition trajectories. Solutions to the second problem in its most general formulation

provide the actual current waveforms to populate look-up tables so that the currents

for producing commanded forces in dynamic operation (Chapter 4) can be retrieved.

Chapter 4 presents the point-to-point positioning control problem, and describes the

framework that has been developed to seek and demonstrate improvement in point-

to-point positioning. The development of the control system design and simulation

software are described, and an assessment is presented using simulation results con-

ducted with multiple positioning tasks. In order to reveal the trade-off between fast

operation and cool operation, the comparisons of settling time results are presented
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together with the associated average power dissipation. Chapter 5 summarizes the

thesis and discusses opportunities for future research.

1.5 Preview of Contributions

The main contribution of this thesis is the demonstration of improvements in point-

to-point positioning as measured by settling time; such improvements would benefit

manufacturing automation applications that require shorter cycle times for higher

throughput. A framework is developed for demonstrating the improvement and offer-

ing a prescription for finding and assessing positioning task solutions. No published re-

search has been found that integrates the four main factors influencing point-to-point

positioning: (i) actuator ripple-specified characterization and optimal static commu-

tation, (ii) determination of feasible position trajectories based on ripple-specified

optimal capability, (iii) determination of ripple-specified heat-minimizing phase cur-

rents to be recalled by the control system indexed by desired force and position, and

(iv) position control design and simulation for performance assessment and compari-

son to predictions and for examining trade-offs. The general framework is not limited

to the motors chosen in this dissertation or linear motors only. In the process of

implementing this framework, the following contributions resulted:

• Analytical modeling using functional expressions for coupled (single-phase ex-

citation) and uncoupled LVR motors from accurate numerical data

• Solutions to two optimal commutation problems, maximum force production

and desired force with minimum power dissipation for idealized coupled and

uncoupled LVR motors

– Force-speed characterization parameterized by ripple

∗ Expanded feasible trajectory space by matching minimum-time s-curve

trajectories to ripple-based force-speed capability
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– Heat-minimizing current waveforms for desired ripple-specified average

force production

– Analysis of the internal force production mechanism of LVR motors and

the influence of geometry and converter connection

– Comparison of idealized coupled and uncoupled LVR motors in terms of

their force-speed capabilities and associated performance measures

• Point-to-point position control assessment integrating optimal commutation re-

sults and digital implementation of state-space integral control

• Exploring the trade-offs among ripple, settling time and average power dissipa-

tion in the context of single-axis point-to-point positioning
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CHAPTER 2

MODELING

2.1 Introduction

This chapter is concerned with the mathematical modeling of the two LVR motors

shown in Figure 7 and introduced in Section 1.2.5. Mathematical models are neces-

sary for motor characterization (to establish motor force capability) and for motor

operation (to determine phase current excitation based on desired force production).

First idealized modeling based on magnetic circuit analysis (MCA) is presented fol-

lowed by more accurate modeling based on finite element analysis (FEA).

2.2 Idealized Models of LVR Motors

Physics-based models are derived in this section using MCA techniques. The coupled

configuration relies on shared magnetic paths, whereas the uncoupled configuration

consists of noninteracting magnetic paths. Both motors have concentrated coils on

toothed poles on the moving assembly, and each phase winding is a series connection

of the coils belonging to that phase (bearing the phase number in Figure 7). The pitch

of opposing teeth is equal, so pole-to-pole offsets provide the misalignment needed to

ensure controllability. Figure 10 shows the geometrical parameters referenced in the

discussion.

Certain restrictions must be imposed on the arrangement of poles and teeth.

Feasible pole spacings are determined by the number of teeth per pole n and the

tooth pitch pt. The pole pitch pp, representing the distance between neighboring

poles of separate phases, must satisfy

pp = (m+ 1
3
)pt (17)
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Figure 10: Geometrical parameters.

where m is an integer such that m ≥ n; the parameter pp applies to both coupled

and uncoupled configurations. The pole pitch p′p, representing the distance between

poles of a single phase, must satisfy

p′p = m′pt (18)

where m′ is an integer such that m′ ≥ n; the parameter p′p applies only to the

uncoupled configuration. Throughout this thesis m′ = m, since this choice minimizes

the total unusable area of the coil slots.

Once the distribution of poles and teeth is established, an opportunity exists

to shape the teeth. In this research, the teeth are rectangular and opposing teeth

have equal width. This is the simplest choice reducing the number of studied motor

designs to a manageable size while allowing the opportunity to explore the influence

of geometry on force production; ultimately, the research results promote designs that

would maximize force production through magnetic design (including tooth shape),

optimal excitation or both. Hence, the choice of tooth shape reduces to the choice of

the ratio of tooth width to tooth pitch. This ratio should be between 1
3
and 1

2
which
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implies that the tooth width wt and the valley width wv must satisfy

wt = pt (2 + α)/6 (19)

wv = pt (4− α)/6 (20)

where α ∈ [0, 1] is a free parameter. The minimum feasible tooth width corresponds

to α = 0; any further decrease in tooth width would eliminate tooth overlap where

overlap is desired. The maximum feasible tooth width corresponds to α = 1; any

further increase in tooth width would lead to tooth overlap where none is wanted. If

both configurations have a common pt, a common α, and a common depth or third

dimension, then their stator bars will be identical (as in Figure 7).

2.2.1 The Fundamental Cycle of Operation

The global position variable is represented by x. Position x = 0 is defined here with

phase 1 as reference and corresponds to the position at which the teeth on the poles

of phase 1 are perfectly aligned with the stator teeth (as shown in Figure 7). At this

position phase 2 and phase 3 are each at a certain offset from having the teeth on

their poles at perfect alignment with stator teeth. As the translator moves (say to

the left for example), the poles of phase 1 leave the perfect alignment position, pass

through a position of no alignment before returning to perfect alignment again at

which point a fundamental cycle of displacement equal to pt is covered (see Figure 9

for visualization). Concurrently, the other two phases also go through one cycle in a

similar fashion while at any point maintaining their offset with respect to the relative

tooth orientation of phase 1. For these three-phase motors the offset is a third of the

operating cycle.

From the magnetic point of view (focusing on the orientation of translator teeth

with respect to stator teeth) all subsequent positions as the translator continues to

move are repeats of those covered in the original cycle. Therefore, for magnetic

modeling, it is only necessary to consider a set X of values of the relative orientation
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χj of one phase covering one period; using phase 1, X = {χ1 : 0 ≤ χ1 ≤ pt}. During

dynamic operation, the relative orientation χj of any phase can be retrieved from the

global position variable x:

χj =























mod(x, pt) , j = 1

mod(x− 1
3
pt, pt) , j = 2

mod(x+ 1
3
pt, pt) , j = 3

(21)

2.2.2 Magnetic Circuit Analysis

The equivalent magnetic circuits for the coupled and uncoupled motors, constructed

according to the geometry of each motor’s magnetic material, are shown in Figure 11.

By analyzing these equivalent magnetic circuits, it is possible to derive force models

from basic design parameters. The dominant elements in the equivalent magnetic

circuits are air gap permeances and mmf sources.

The air gap regions near poles of the three phases are characterized by permeances

(P1, P2, P3) that vary as functions of displacement x and are computed from basic

design parameters using the method described in the following subsection. These

permeances are periodic functions of x, with period equal to pt and with phase-to-

phase spatial shifts equal to pt/3. If x = 0 represents a position at which the poles of

phase 1 are aligned, as shown in Figure 7, these permeances may be represented in

the form

Pj =
∞
∑

k=0

pk cos
(

k(ωx− (j − 1)2π
3
)
)

(22)

where ω = 2π/pt. The pk coefficients depend on air gap geometry and can be com-

puted from derived permeance expressions using harmonic analysis. Phase currents

(i1, i2, i3) give rise to mmf sources (F1, F2, F3) modeled by

Fj = Nij (23)

27



where N is the total number of turns for each series-connected phase winding. For

the ideal cases under consideration, in which the magnetic material is assumed to be

infinitely permeable and flux leakage is neglected, (22)–(23) completely characterize

the equivalent magnetic circuits.

2.2.2.1 Air Gap Permeance

When using the equivalent magnetic circuit method, a determination is made about

the probable flux paths through the magnetic material and the air gaps, and associ-

ated permenaces are computed. In the idealized modeling, the magnetic material is

assumed to have infinite permeability; thus the modeling relies on air gap permeances.

The position-dependent permeances that characterize the air gap regions near

poles of the three phases are computed, using the method in [21], by modeling the

flux paths through the air gap regions by straight line and circular arc segments.

Example flux paths for various displacements are shown in Figure 12 for two values

of α. The figure shows representations of opposing teeth at different displacements

and the probable flux paths, forming so-called flux tubes, at each displacement.

The permeance of each flux tube is found analytically from the parallel combina-

tion of an infinite number of differential permeances:

Ptube = µ0

∫

dA

l
(24)

where µ0 is the permeability of air, l is the length of the tube and dA is the differ-

ential cross section of the tube. At any displacement, the expression in (24) must

be evaluated for each distinctly shaped flux tube. The permeances of all flux tubes

in the air gap region near a pole are combined in parallel to obtain a single effective

permeance for that region. It is important to note that, because the LVR motors

studied are double-sided, the effective permeance of a pole region at any given dis-

placement also exists on the other side of the air gap. For the coupled motor a phase

permeance consists of two permeances associated with two poles (one on each side
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Figure 11: Magnetic circuit diagrams.
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of the air gap), whereas for the uncoupled motor a phase permeance consists of four

permeances associated with four poles (two per side).

In pursuing explicit expressions for tube permeances, it helps to identify various

spatial intervals where the flux tubes maintain their shapes at any displacement within

an interval. Example flux paths for several positions and the intervals to which they

belong are shown in Figure 13. In this figure, tubes of the same shape share one label.

Using (24), the permeances Ptube(x) of all possible tubes are found:

P1 =
µ0(wt − x)d

lg
, 0 ≤ x ≤ wt

P2 =
2

π
µ0d ln

(

1 +
0.5πx

lg

)

, 0 ≤ x ≤ 0.5wv

P2′ =
2

π
µ0d ln

(

1 +
0.25πwv

lg

)

, 0.25wv ≤ x ≤ 0.5wt

P3 =
µ0d

π
ln

(

1 +
π(0.5wv − x)

lg + 0.5πx

)

, 0 ≤ x ≤ 0.5wv

P4 =
µ0dx

lg + 0.5π(wv − x)
, 0 ≤ x ≤ 0.5wv

P4′ =
µ0d(wv − x)

lg + 0.5π(wv − x)
, 0.5wv ≤ x ≤ wv

P4′′ =
µ0d(x− wt)

lg + 0.5π(x− wt)
, wt ≤ x ≤ wv

P5 =
2

π
µ0d ln

(

lg + 0.25πwv

lg + 0.5π(wv − x)

)

, 0.5wv ≤ x ≤ wv

P5′ =
2

π
µ0d ln

(

lg + 0.25πwv

lg + 0.5π(x− wt)

)

, wt ≤ x ≤ wv

In the expressions above, the left-hand side subscripts match the labels in Figure

13. Assume, for example, that a pole associated with phase 1 is at the displacement

(and exhibits the flux tubes) shown in Figure 13 (a). The pole permeance for this

displacement is then given by P1 + 2P2 + 2P3 + P4 and corresponds to 2P1(x) for the

coupled motor and 4P1(x) for the uncoupled motor. The concept applies to the pole
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(a)
 (b)


Figure 12: Flux tubes for (a) α = 0 and (b) α = 1.

regions in any phase; however, the appropriate tooth orientation for the poles must

be carefully identified.

The piecewise continuous permeance expressions just derived (and their deriva-

tives which can be computed directly) relate the geometric design parameters to the

magnetic field computation analytically, and can provide insight into motor operation

and design. Some aspects of the influence of geometry are addressed in Chapter 3.
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Figure 13: Assumed flux paths between toothed structures at different displacement
values: (a) 0 ≤ x ≤ 0.5wv, (b) 0.5wv ≤ x ≤ 0.5wt and (c) wt ≤ x ≤ 0.5(wt + wv).

2.2.2.2 Pole Fluxes

Computation of pole fluxes is illustrated first for the coupled motor. The flux flowing

through each air gap permeance must be the product of that permeance and the

potential difference across that permeance, leading to

φjT = Pj(Fj − FT ) (25)

φjB = Pj(Fj − FB) (26)

The fluxes entering the top and bottom nodes of the magnetic circuit must sum to

zero, implying from (25) and (26) that

3
∑

k=1

Pk(Fk − FT ) = 0 (27)

3
∑

k=1

Pk(Fk − FB) = 0 (28)

Solving (27) for FT and (28) for FB shows that the potential differences across the

top and bottom portions of the magnetic circuit are identical, i.e.

FT = FB =: F0 (29)

where

F0 =

∑3
k=1 PkFk

∑3
k=1 Pk

(30)
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Substitution of (30) into (25) and (26) shows further that the fluxes in the top and

bottom portions of each pole pair are identical, i.e.

φjT = φjB =: φj (31)

where

φj =

∑3
k=1 PjPk(Fj − Fk)

∑3
k=1 Pk

(32)

The relationship between air gap permeance, phase current and pole flux is clearly

displayed by the combination of (23) and (32).

Computation of pole fluxes for the uncoupled motor follows similar steps. The top

and bottom flux expressions, which for the uncoupled motor come in a left branch

and a right branch, are given by

φjTL = Pj(Fj − FT ) (33)

φjTR = Pj(Fj + FT ) (34)

φjBL = Pj(Fj − FB) (35)

φjBR = Pj(Fj + FB) (36)

The fluxes entering the top and bottom nodes of the magnetic circuit must sum to

zero (equivalently, fluxes of the left and right branches are equal), implying from (33)

– (36) that

3
∑

k=1

Pk(Fk − FT ) =
3

∑

k=1

Pk(Fk + FT ) (37)

3
∑

k=1

Pk(Fk − FB) =
3

∑

k=1

Pk(Fk + FB) (38)

Solving (37) for FT and (38) for FB shows that the potential differences across the

top and bottom portions of the magnetic circuit are identical, i.e.

FT = FB =: F0 (39)
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F0 = 0 (40)

Finally, the fluxes in the top and bottom branches of all poles of a phase are seen to

be identical, i.e.

φjTL = φjTR = φjBL = φjBR =: φj (41)

where

φj = FjPj (42)

Again, the relationship between air gap permeance, phase current and pole flux is

clearly displayed by the combination of (23) and (42).

2.2.2.3 Inductance Matrix

Models for the phase inductances are obtained by examining the relationships be-

tween phase currents and pole fluxes. Self inductances (L11, L22, L33) and mutual

inductances (L12, L23, L31) are naturally influenced by the topologies of the equiva-

lent magnetic circuits. If the currents, fluxes and flux linkages are denoted by vectors

i, φ and λ, respectively, the inductance matrix L is defined by

λ = Nφ = Li (43)

For the coupled motor, substituting (23) and (32) into (43), reveals that the self and

mutual inductances are modeled by

Ljj = N2Pj(Pt − Pj)/Pt (44)

Ljk = −N2PjPk/Pt (45)

where Pt = P1 + P2 + P3. For the uncoupled motor, substituting (23) and (42) into

(43), reveals that the self and mutual inductances are modeled by

Ljj = N2Pj (46)

Ljk = 0 (47)
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Note that the self and mutual inductance expressions are general expressions that

hold for the basic magnetic circuit topologies under consideration; no assumptions

regarding the air gap permeance model are imbedded in these expressions.

2.2.2.4 Force Model

There are two complementary ways to model force production: one emphasizing the

forces due to each product of phase currents (the external viewpoint), the other

emphasizing the forces developed on each pole pair (the internal viewpoint). In the

first case, the force f is modeled in terms of the symmetric inductance matrix L,

current vector i and position x, and is given by the quadratic function

f = 1
2
iT
dL

dx
i (48)

where self inductances (L11, L22, L33) and mutual inductances (L12, L23, L31) are

modeled by (44)-(45). In the second case, which helps reveal internal LVR motor

behavior (as discussed in Section 3.2.2), the individual pole forces (f1, f2, f3) are

modeled by

fj =
1
2
(Fj − F0)

2dPj

dx
(49)

where F0 represents the potential differences across the top and bottom portions of

the magnetic circuit including the mmf sources and is given by (30) for the coupled

motor and by (40) for the uncoupled motor. The total force developed is thus

f = f1 + f2 + f3 (50)

2.2.3 Sinusoidal Characterization

The permeance model (22) accounts for spatial harmonics. However, all essential

features of the air gap permeances are captured by the first two terms of this infinite

series; the higher harmonics simply enhance the accuracy of the model. Hence, for

clarity and insight into LVR motor operation, the previously developed model can be
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specialized for sinusoidal air gap permeances and sinusoidal inductances. If higher

harmonics are neglected, (22) reduces to

Pj = p0 + p1 cos(ωx− (j − 1)2π
3
) (51)

and similarly sinusoidal inductances are given for the coupled motor by

Ljj = Ls + Lm cos(ωx− (j − 1)2π
3
) (52)

Ljk = Ms + Lm cos(ωx+ (j + k − 2)2π
3
) (53)

and for the uncoupled motor by

Ljk = Ls + Lm cos(ωx− (j − 1)2π
3
) (54)

Ljk = 0 (55)

where Ls is the average self inductance, Ms is the average mutual inductance, and Lm

is the variation in inductance due to air gap variation. Inductances computed with

both sinusoidal and non-sinusoidal models for the motors defined in Table 1 (with

α = 1) are displayed for comparison in Figures 14–15 (coupled motor) and Figure

16 (uncoupled motor). The mutual inductances of the coupled motor are almost as

large as the self inductances; all inductances include significant harmonic components.

Note that only the parameters of Table 1 that define the air gap geometry (d, pt, lg,

n and α) are needed for inductance computations.

2.2.4 Synchronous Feature of the Coupled Motor

This section provides an interpretation of the coupled motor as a classical dq trans-

formable synchronous motor in the first approximation where higher spatial harmonics

are excluded. As shown below, the specific way in which (52) and (53) depend on the

coefficients Ls, Ms and Lm is significant. If one substitutes the sinusoidal inductances

(52) and (53) into the force model (48), it becomes clear that phase current prod-

ucts are scaled by various spatially shifted sinusoidal functions of position. In order
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Table 1: Parameters of Coupled and Uncoupled LVR Motors

Parameter Symbol Value

Device depth d 50 mm

Tooth pitch pt 10 mm

Air gap length lg
1
4
mm

Tooth length lt 5 mm

Pole length lp 10 mm

Back iron length lb 15 mm

Teeth per pole n 3

Pole pitch integer m 4

Tooth shape factor α 0–1

Current limit imax 8.2 A

Voltage limit vmax 170 V, 270 V

Flux density limit Bmax 1.0 T

to further simplify the analysis of force production, consider the position-dependent

change of current variables defined by
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where

xj :=
1
2
ωx+ (j − 1)2π

3
(58)

The new current variables (id, iq, i0) are introduced purely for mathematical con-

venience; it is the original current variables (i1, i2, i3) that represent the currents

physically flowing in the phase windings. Substitution of (52), (53), (56) and (58)

into (48), combined with trigonometric simplification, ultimately reduces (48) to the
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Figure 14: Self inductances and their sinusoidal approximations (coupled motor).
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Figure 16: Self inductances and their sinusoidal approximations (uncoupled motor).

simpler form

f = 1
2
ω(Ld − Lq)idiq (59)

where

Ld = Ls +Ms +
3

2
Lm (60)

Lq = Ls +Ms −
3

2
Lm (61)

or equivalently

Ld = 3
2
aligned self inductance (62)

Lq = 3
2
unaligned self inductance (63)

In the new variables, (59) indicates that force is proportional to a product of just

two currents, id and iq, and the scale factor is simply a constant; the dependence on

position is no longer present.

The fact that the change of variables reduced (48) to (59) has a simple explana-

tion; the self and mutual inductances (52) and (53) happen to match the inductance
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characteristics of classical synchronous reluctance motors. In other words, this anal-

ysis has established that magnetically-coupled LVR motors are dq transformable, in

the first approximation. This interpretation is useful and is revisited in Chapter 3.

2.2.5 Validation of MCA Models

MCA offers computational efficiency and yields analytical insight; in comparison,

finite element analysis (FEA) offers accuracy but requires large computational effort

and provides only numerical results. For purposes where an MCA-based model is

attractive, it is worthwhile to use one that can predict critical motor characteristics

with an accuracy roughly comparable to an FEA-based model.

In this section, a comparative analysis to demonstrate qualitative agreement be-

tween the MCA and the FEA models is presented using two example motors of the

coupled configuration. Table 1 lists the parameters that define the geometry of the

motors being investigated. MCA requires only the parameters that define the air gap

geometry, whereas FEA requires all geometrical parameters (including those defining

magnetic material geometry). Assuming AWG 21 wire for coils gives 200 turns per

phase and a maximum phase current of about 8 A. The magnetic material is assumed

to be M19 steel.

2.2.5.1 Leakage Effect

The topology of Figure 11 (a) assumes that all flux induced by a coil will cross the air

gap. In reality, other so-called leakage paths for flux exist. As a first approximation,

the topology can be modified to include a constant leakage permeance of 2Pl in parallel

with each mmf source. In that case, the self inductances are modified by the addition

of a leakage component

Ll = N2Pl (64)
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but the mutual inductances are unchanged. Since this modification to the inductance

matrix does not depend on x, (48) shows that force production is not influenced by

this leakage effect. Considering the wedge-like air regions between the poles and back

iron of the E-cores, one possible approximation of leakage permeance is

Pl =
4µ0

π
d (65)

where d is the depth of the motor structure.

2.2.5.2 Comparative Results

MCA has been implemented inMatlab, using the air gap permeance model (22), the

inductance model (44)–(45) and the force model (48). Leakage is introduced according

to (64)–(65). FEA has been implemented in Magnet, using a 2D magnetostatic

solver and adaptive mesh refinement, yielding flux linkage and force values. Due to

symmetry, only the top half of the motor and surrounding air box is included in the

problem domain.

Coupled motors defined by Table 1, for the cases of minimum tooth width (α = 0)

and maximum tooth width (α = 1) are analyzed. The analyses are restricted to the

position interval x ∈ [0, 5] mm, i.e. one-half of the tooth pitch, due to periodicity

and symmetry. The reference position x = 0 mm is chosen to represent the aligned

position for pole-pair 1; x = 5 mm therefore corresponds to the unaligned position for

pole-pair 1. The self inductance L11(x) and mutual inductance L23(x) both possess

even symmetry about x = 0 mm. The force f(x) due to constant current in phase 1,

being proportional to the spatial derivative of L11(x), exhibits odd symmetry about

x = 0 mm.

Visualizations of the two motors in aligned and unaligned positions are shown in

Figures 17 and 18. The upper portion of Figure 17 (the aligned case) and the lower

portion of Figure 18 (the unaligned case) illustrate the logic behind the feasibility

constraints (19)–(20). The minimum feasible tooth width is generated by α = 0 since
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any further decrease in tooth width would eliminate tooth overlap where overlap is

desired. The maximum feasible tooth width is generated by α = 1 since any further

increase in tooth width would lead to tooth overlap where none is wanted.

The flux contours shown in Figures 17 and 18 are obtained from FEA with 1 A

excitation in phase 1. Magnetic coupling between phases is clearly evident. The only

difference between the two motors is the width of their teeth, yet this difference has

a very significant impact on the two air gap geometries. The motor with minimum

tooth width has relatively high-reluctance flux paths, and hence relatively lower levels

of flux. The motor with maximum tooth width has relatively higher flux densities,

and hence relatively deeper saturation of magnetic material. In the aligned position,

evidence of saturation appears at 5 A for the maximum-tooth-width motor and at 7

A for the minimum-tooth-width motor.

Comparisons between MCA and FEA are shown in Figures 19–21. FEA data for

L11 and L23 are generated by computing λ1/i1 and λ2/i3, respectively, using single

phase excitations of 1 A. FEA data for f are generated using the Maxwell stress

method. These comparisons demonstrate a qualitative agreement between the two

analysis methods, at low excitation; each method indicates the same trends with

respect to x and α. Strong magnetic coupling is revealed by the fact that the mutual

inductances are roughly as large as the self inductances. The size of the harmonics

in the spectra of the inductance-position profiles is significant; the harmonic content

of the force-position profile is further amplified due to spatial differentiation.

As a function of x, self inductance modeling mismatch is in the range of 0.3–10.8%

for the α = 0 design and 0.6–4.8% for the α = 1 design; mutual inductance modeling

mismatch is in the range of 1.4–33.7% for the α = 0 design and 0.9–16.1% for the α = 1

design; and worst-case force modeling mismatch is 1.0 N for the α = 0 design and

0.3 N for the α = 1 design. For each design individually, the inductance predictions

are in best agreement at positions for which more magnetic material occupies the air

42



Figure 17: Flux contours for α = 0 design: x = 0 and 5 mm, i1 = 1 A.

Figure 18: Flux contours for α = 1 design: x = 0 and 5 mm, i1 = 1 A.
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Figure 19: Self inductance L11(x) for α = 0 and α = 1 designs.

gap regions; in these positions, the flux paths are more predictable and hence are

more accurately modeled by simple magnetic circuits. Since the α = 0 design uses

less magnetic material in the air gap regions than the α = 1 design, the flux paths

of the α = 0 design are less well modeled by simple magnetic circuits than the flux

paths of the α = 1 design; this accounts for the differing levels of modeling mismatch

for the two designs. Since force depends on the spatial derivative of inductance, the

positions at which force modeling mismatch is large are those positions at which the

inductance slopes (rather than magnitudes) exhibit large modeling mismatch.

2.3 Modeling by Finite Element Analysis and Least Squares

LVR motors exhibit complex air gap geometry and material nonlinearities, and for

that reason FEA is an appealing analysis technique. In this section FEA is used

to derive LVR motor models that are potentially more accurate by systematically

accounting for both of these phenomena and by incorporating a novel data fitting

technique.
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Figure 20: Mutual inductance L23(x) for α = 0 and α = 1 designs.
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Figure 21: Force f(x) for α = 0 and α = 1 designs with i1 = 1 A.
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2.3.1 Linearly Parameterized Model Formulation

In this section, an accurate data-based modeling concept is pursued. Finite element

analysis is used to compute flux linkage, coenergy and force for various values of phase

current and position, and least squares methods are used to fit these data to explicit

mathematical expressions that account for spatial harmonics and magnetic saturation.

The formulation presented here results in complete three phase characterization of

the uncoupled motor. For the coupled motor, the results are restricted to single phase

excitation; consideration of multiphase excitation is complicated by the presence of

magnetic coupling making this problem much more difficult.

The relationship between user specifiable quantities and computed results is sum-

marized by

Input FEA Output

{i1, i2, i3, x} =⇒ {λ1, λ2, λ3, w, f}
(66)

where (i1, i2, i3) are the currents, x is the position, (λ1, λ2, λ3) are the flux linkages,

w is the coenergy and f is the force. The goal is to obtain a full-range FEA data set

and to fit this data set to some explicit functional relationships.

For either the uncoupled motor with multiphase excitation or the coupled motor

with single phase excitation, the magnetization characteristics may be modeled by

functions of the form

λ(x, i) =
M
∑

m=0

N
∑

n=1

cmn cos(mx∗) tanh(ni∗) (67)

where phase subscripts have been dropped for simplicity, the cmn are coefficients to

be determined, and where

x∗ =
(

2π
pt

)

x (68)

i∗ =
(

1
im

)

i (69)

denote normalized values for position and current, where im is the maximum cur-

rent. The cos functions capture periodicity and spatial harmonics, whereas the tanh
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functions capture the magnetic saturation that occurs because of the nonlinear BH

curve for steel. Note that (67) assumes even symmetry about x = 0, so the reference

position must be chosen with this in mind.

Least squares methods will ultimately be used to assign appropriate values to the

model coefficients. To emphasize the linearity of (67) with respect to these coefficients,

and to prepare for compact modeling expressions, it is beneficial to introduce the

vectorized version of the coefficient matrix, namely

C =

[

c01 · · · c0N · · · cM1 · · · cMN

]T

(70)

Vectorized cos and tanh functions may be similarly represented by

Xλ(x) =

[

cos(0x∗) · · · cos(Mx∗)

]T

(71)

Iλ(i) =

[

tanh(1i∗) · · · tanh(Ni∗)

]T

(72)

Using these vector notations, (67) may be equivalently expressed in the form

λ(x, i) = Λ(x, i)C (73)

where

Λ(x, i) = (Xλ(x)⊗ Iλ(i))
T (74)

and where ⊗ denotes the Kronecker tensor product. According to (73), flux linkage

exhibits a simple linear dependence on the coefficient vector.

From a mathematical description of flux linkage, it is possible to determine other

related quantities of interest. Coenergy is obtained by integrating flux linkage with

respect to current. Hence, it follows that coenergy may be represented in the form

w(x, i) = W (x, i)C (75)

where

W (x, i) = (Xw(x)⊗ Iw(i))
T (76)
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and where

Xw(x) = Xλ(x) (77)

Iw(i) = im

[

log(cosh(1i∗))
1

· · · log(cosh(Ni∗))
N

]T

(78)

Force is obtained by differentiating coenergy with respect to position. Hence, it

follows that force may be represented in the form

f(x, i) = F (x, i)C (79)

where

F (x, i) = (Xf (x)⊗ If (i))
T (80)

and where

Xf (x) = −2π
pt

[

0 sin(0x∗) · · · M sin(Mx∗)

]T

(81)

If (i) = Iw(i) (82)

Expressions (75) and (79) for coenergy and force have the same structure as (73).

This establishes the fact that all quantities in (66) obtained from FEA are mod-

eled by computable functions that are linearly parameterized by a common unknown

coefficient vector C.

2.3.1.1 Least Squares Data Fitting

The unknown coefficient vector C may be conveniently computed using linear least

squares methods. Suppose that the user specified input data in (66) consists of

several positions {x1, . . . , xpx} and several currents {i1, . . . , ipi}. At each possible

position-current pair defined by these sets, FEA is performed yielding values for flux

linkage, coenergy and force denoted by {λjk, wjk, fjk} where j ∈ {1, . . . , px} and

k ∈ {1, . . . , pi}. These data may be manipulated as follows.
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If one is primarily interested in studying flux linkage characteristics, the FEA

positions and currents are used to define the constant data matrices

XD
λ =













cos(0x∗
1) · · · cos(Mx∗

1)

...

cos(0x∗
px) · · · cos(Mx∗

px)













(83)

and

IDλ =













tanh(1i∗1) · · · tanh(Ni∗1)

...

tanh(1i∗pi) · · · tanh(Ni∗pi)













(84)

and the FEA flux linkages are placed by row order into the constant data vector

λD =

[

λ11 · · · λ1pi · · · λpx1 · · · λpxpi

]T

(85)

Application of (73) on a point-by-point basis yields the linear system

(XD
λ ⊗ IDλ )C = λD (86)

Assuming that the number of FEA problems pxpi is larger than the number of model

coefficients mn, (86) is overdetermined. Solution of (86) in the least squares sense

provides the coefficient vector C that minimizes the sum of the squared errors between

the computed FEA data and the modeling function (67).

Since FEA provides not only flux linkage, but coenergy and force as well, it follows

that one may wish to fit data to several functions in order to balance the quality of

data fit over all functions of interest. To prepare for such a formulation, it is necessary

to define the constant data matrices XD
w = XD

λ and

IDw = im













log(cosh(1i∗
1
))

1
· · ·

log(cosh(Ni∗
1
))

N

...

log(cosh(1i∗pi ))

1
· · ·

log(cosh(Ni∗pi ))

N













(87)
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for coenergy, and

XD
f = −2π

pt













0 sin(0x∗
1) · · · M sin(Mx∗

1)

...

0 sin(0x∗
px) · · · M sin(Mx∗

px)













(88)

and IDf = IDw for force. The associated constant data vectors for coenergy and force

are given by

wD =

[

w11 · · · w1pi · · · wpx1 · · · wpxpi

]T

(89)

and

fD =

[

f11 · · · f1pi · · · fpx1 · · · fpxpi

]T

(90)

respectively. If all FEA data are to be accounted for in the least squares fit, with

equal weights assigned to all data values, then it follows from (73), (75) and (79) that












XD
λ ⊗ IDλ

XD
w ⊗ IDw

XD
f ⊗ IDf













C =













λD

wD

fD













(91)

represents the complete set of simultaneous constraints on C. The linear system

(91) may be solved in the sense of least squares to obtain the coefficient vector C

that best fits all available data returned by the FEA solver. An obvious extension

of this idea would be to introduce weights, so that different types of data, having

differing magnitudes and/or differing levels of suspected accuracy, could be processed

accordingly.

Solving the linear system (91) and obtaining the coefficient vector C completes

single-phase excitation characterization for both motors.

2.3.1.2 Complete Three-Phase Characterization of the Uncoupled Motor

Ideally uncoupled LVR motors exhibit no magnetic coupling between phases and the

uncoupled phases of the motor have identical (with phase shifting) characteristics.
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Therefore, it is both sufficient and more computationally efficient to derive mathe-

matical models for one phase using the FEA-based modeling concept developed above.

The magnetic characteristics of all three phases can be constructed from the single

phase results by denoting the electrical position of phase j by (21) or in compact form

χj = mod
{

x− (j − 1)
pt
3
, pt

}

, j = 1, 2, 3

and the current and flux linkage of phase j by ij and λj.

2.3.2 Numerical Results for the Uncoupled Motor

Three uncoupled motors (distinguished by tooth width) are now considered. Table

1 provides the motor parameter values employed. The magnetic material is assumed

to be M19 steel. Using AWG 21 wire, the three motors accommodate N = 408, 384

and 364 turns distributed over 4 poles.

FEA has been implemented in Magnet, using a 2D magnetostatic solver and

adaptive mesh refinement. For each motor, FEA solutions were obtained over 21

positions and 4 currents, for a total of 84 data sets, each containing 3 elements (flux

linkage, coenergy and force). The positions considered cover only one-half tooth pitch,

or 5 mm, due to symmetry. The currents considered are 2, 4, 6 and 8 A, covering the

full feasible range based on current density limits and AWG 21 wire. Considering the

flux linkage of phase 1 (only self magnetization characteristics of one phase are needed

for the uncoupled motor), and employing the combined formulation (91) generates a

total of 252 constraints. Choices of M = 5 and N = 4 for (67) were made, leading to

a total of 24 model coefficients. The computed coefficient values are given in Tables

2, 3 and 4 for the α = 0, α = 0.5 and α = 1 motors, respectively.

To determine the quality of fit, it is possible to compute the values of flux linkage,

coenergy and force at any position and current using (73), (75) and (79), and to

compare these functionally computed values to the corresponding values computed

by FEA. The results of such an exercise are shown in Figure 22, where the columns
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Table 2: Magnetization Parameters for Uncoupled LVR Motor with α = 0
cmn n = 1 n = 2 n = 3 n = 4

m = 0 0.3106 -0.2690 0.3646 -0.1452
m = 1 -0.0738 -0.1002 0.3872 -0.1801
m = 2 0.0072 -0.1182 0.1699 -0.0654
m = 3 0.0473 -0.0922 0.0710 -0.0183
m = 4 0.0227 -0.0545 0.0509 -0.0146
m = 5 0.0091 -0.0197 0.0157 -0.0038

Table 3: Magnetization Parameters for Uncoupled LVR Motor with α = 0.5
cmn n = 1 n = 2 n = 3 n = 4

m = 0 0.2618 -0.2037 0.3685 -0.1596
m = 1 -0.0703 -0.1384 0.4617 -0.2195
m = 2 0.0987 -0.2664 0.2746 -0.0981
m = 3 0.1003 -0.2300 0.2291 -0.0797
m = 4 0.0293 -0.0678 0.0666 -0.0230
m = 5 0.0035 -0.0063 0.0038 -0.0001

correspond to α = 0, 0.5 and 1. The functionally computed values are shown as solid

curves, whereas the values computed by FEA are represented by individual data

points. It is clear that, over the entire current range, the models accurately capture

both harmonics and saturation; saturation can be seen since, for a fixed position,

the flux linkage does not scale linearly with current and the force does not scale

quadratically with current over the entire current range. Examination of the force

characteristics shows that for a fixed current level, both the magnitude of the peak

and the position where it occurs change with tooth width.

Table 4: Magnetization Parameters for Uncoupled LVR Motor with α = 1
cmn n = 1 n = 2 n = 3 n = 4

m = 0 0.2501 -0.2667 0.5492 -0.2489
m = 1 -0.0187 -0.2877 0.5746 -0.2469
m = 2 0.2583 -0.5364 0.4782 -0.1559
m = 3 -0.0081 -0.0008 0.0054 0.0019
m = 4 0.0007 0.0096 -0.0211 0.0114
m = 5 -0.0110 0.0148 -0.0109 0.0045
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Figure 22: Magnetization characteristics of three uncoupled LVR motors with i = 2,
4, 6, 8 A.
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2.3.3 Numerical Results for the Coupled Motor

Numerical results have been obtained for two coupled motors defined by Table 1, for

the limiting cases of α = 0 and α = 1. The magnetic material is assumed to be M19

steel. FEA has been implemented in Magnet, using a 2D magnetostatic solver and

adaptive mesh refinement.

FEA solutions were obtained over px = 21 positions and pi = 4 currents, for a

total of 84 data sets, each containing 3 elements (flux linkage, coenergy and force).

The positions considered cover only one-half tooth pitch, or 5 mm, due to symmetry.

The currents considered are 2, 4, 6 and 8 A, covering the full feasible range based

on current density limits and AWG 21 wire. In the first case, the current was i1 and

the flux linkage was λ1; this yields the self magnetization characteristics, and the

combined formulation (91) was employed to generate a total of 252 constraints. In

the second case, the current was i2 and the flux linkage was λ3; this yields the mutual

magnetization characteristics, and the reduced formulation (86) was employed to

generate a total of 84 constraints. Choices of M = 5 and N = 3 for (67) were made,

leading to a total of 18 model coefficients. The computed coefficient values are given

in Tables 5 and 6 for the α = 0 and α = 1 motors, respectively.

To determine the quality of fit, values of flux linkage, coenergy and force may

be functionally computed at any position and current using (73), (75) and (79) and

compared to the corresponding values computed by FEA. Such a comparison is shown

in Figures 23 and 24 for both motors. Figure 23 displays (self) flux linkage, coen-

ergy and force, whereas Figure 24 displays (mutual) flux linkage. The functionally

computed values are shown as solid curves, whereas the values computed by FEA are

represented by individual data points. The narrow tooth cases are presented in the

left columns and the wide tooth cases are presented in the right columns. In both

figures, it is clear that modeling errors are sufficiently small. At low currents, the

results are in agreement with those reported in Section 2.2.5. Here the high current
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Table 5: Magnetization Parameters for Coupled LVR Motor with α = 0
csmn n = 1 n = 2 n = 3 cmmn n = 1 n = 2 n = 3

m = 0 258.5789 -46.2327 1.6634 m = 0 -88.1155 -22.5049 18.2914
m = 1 -3.8173 82.9790 -36.6260 m = 1 25.5637 53.3934 -28.8636
m = 2 15.8024 -24.4336 7.5902 m = 2 -0.8060 -13.0670 5.7426
m = 3 15.1590 -24.8951 10.5166 m = 3 -5.1115 9.2179 -3.9366
m = 4 -9.9111 10.0770 -2.6479 m = 4 -2.4825 4.5060 -1.5670
m = 5 -1.1852 1.7444 -1.1874 m = 5 -2.3866 1.7537 -0.7442

Table 6: Magnetization Parameters for Coupled LVR Motor with α = 1
csmn n = 1 n = 2 n = 3 cmmn n = 1 n = 2 n = 3

m = 0 193.3332 190.5684 -95.2601 m = 0 -98.1241 -99.3508 52.3099
m = 1 -200.4790 326.3309 -135.1045 m = 1 16.4158 74.9133 -37.4303
m = 2 17.5169 -39.6764 17.5646 m = 2 -13.6747 2.2946 -0.8235
m = 3 -52.3673 67.1539 -24.9663 m = 3 5.0498 -7.7662 1.7741
m = 4 -5.6202 8.3672 -4.0503 m = 4 -8.3591 10.0670 -4.1800
m = 5 -2.9194 2.3266 -0.0365 m = 5 -4.6008 8.4670 -3.9796

results are displayed as well. Magnetic saturation is apparent at the higher currents,

e.g. for a fixed position the flux linkage does not scale linearly with current and the

force does not scale quadratically with current, over the entire current range. The

presence of spatial harmonics is also clear, at all current levels.

2.4 Conclusion

This chapter has presented linear (idealized) and non-linear modeling techniques for

LVR motors. The linear models ignore magnetic material saturation and (in some

cases) higher spatial harmonics. This research expands the utility of the idealized

models by employing them to obtain new results, gain insight and conduct inves-

tigations with clarity. In this chapter, the (idealized modeling) analysis excluding

higher spatial harmonics has established that magnetically-coupled LVR motors are

dq-transformable, in the first approximation. In Chapter 3 the idealized models are

used in conjunction with optimization theory and numerical techniques to explore

excitation optimization without assumptions (such as made with pulsed excitation)

on firing positions (when to turn a phase on or off) or the number of simultaneously
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Figure 23: Self magnetization characteristics for two coupled LVR motors with
excitations of i = 2, 4, 6, 8 A.

0 1 2 3 4 5
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0
α = 0

λ 
[W

b]

x [mm]
0 1 2 3 4 5

−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02
α = 1

λ 
[W

b]

x [mm]

Figure 24: Mutual magnetization characteristics for two coupled LVR motors with
excitations of i = 2, 4, 6, 8 A.

56



excited phases; this includes the determination of force-speed characteristics as well

as the excitation currents to be recalled during the position control simulations of

Chapter 4. They are also used in the design and simulation models in Chapter 4. A

comparative analysis has been presented to ascertain that the MCA model can predict

critical motor characteristics with an accuracy roughly comparable to an FEA-based

model (at low excitation levels).

The non-linear models of LVR motors are obtained using finite element analysis

and least squares. The models are simple in structure, involving cos and tanh func-

tions in a linearly parameterized way. The model coefficients are determined from

FEA data using linear least squares methods, with the option to combine mixed data

types to form mixed sets of constraints so as to improve the overall quality of fit.

The approach has been successfully demonstrated on three uncoupled LVR motors

and two coupled LVR motors that differ with respect to tooth geometry. FEA data

take time to generate, so it is customary to build up only a sparse tabular model

using the combination of several values of i and x. Detailed analyses require higher

resolution models, and one obvious solution would be to augment the tabular model

with multilinear interpolation; with this approach, each cell in the (i, x)-plane is mod-

eled by different functional relationships and the resulting interpolated model is not

differentiable at cell boundaries. In contrast, the approach taken here results in a

single smooth function, valid over the entire (i, x)-plane, for each variable of interest

(i.e. λ, w and f).

The simplicity of the uncoupled motor allowed the derivation of an analytical

model that completely characterizes this motor using functional expressions. This

non-linear model is used in Chapter 3 to show that conclusions from commutation

results are not a consequence of the magnetic linearity assumptions. Because of the

complexity and computational effort, coupled motor modeling by functional expres-

sions has been limited to the single-phase excitation case. Future attempts to extend

57



the approach to multiphase excitation may be to either modify the functional ex-

pressions used in data fitting or to consider the LVR motor as a type of synchronous

reluctance motor and to account for the coupled-saturation effect by examining the

magnetic properties of the d-axis under high excitation (adding the contributions from

separately constructed single phase models is not likely to produce accurate results

since superposition cannot be expected to hold within the magnetically coupled and

saturating poles).
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CHAPTER 3

OPTIMAL COMMUTATION

3.1 Introduction

This chapter is concerned with the optimal commutation of LVR motors. Optimal

commutation refers to determining optimized current profiles for desired force pro-

duction. The optimal currents are computed as phase currents versus position as

opposed to time, and that is possible because the relationship between currents and

force is static.

The presentation progresses from simple problem formulations to more advanced

formulations that are ultimately employed in the assessment of LVR motor force-

speed capability and in producing the current waveforms that would be needed during

position control operations. Two optimal goals are pursued:

1. maximizing force production

2. minimizing power dissipation while producing a desired force value

In this chapter, two formulations of the position-dependent optimal commutation

problems just listed are studied:

• instantaneous-force optimal commutation where the objective is to deter-

mine three phase currents that (i) maximize instantaneous force or (ii) minimize

instantaneous power dissipation while producing a desired instantaneous force.

This problem is solved separately for any value of the position variable x. It

is possible to compute average force and average power dissipation once opti-

mization is carried out for position values covering a spatial period of excitation
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currents, but these average quantities are not part of problem formulation and

do not influence optimal solutions.

• average-force optimal commutation where the objective is to determine

the current waveforms that (i) maximize average force or (ii) minimize average

power dissipation while producing a desired average force. This problem is

formulated and solved simultaneously for (a discrete grid of) all points in a

spatial period of excitation currents.

3.2 Instantaneous-Force Commutation

Instantaneous-force optimal commutation is presented first for the coupled motor

starting with the simplest formulations for clarity and for insight into this motor (the

coupled motor is sparsely covered in the literature). Instantaneous-force commutation

of the uncoupled motor is addressed later in a comparative analysis with the coupled

motor.

3.2.1 Minimum Power Dissipation without Current Limits

In this section, the optimization objective is to find, for a given position x, the phase

currents that provide some given desired force with minimum power dissipation. This

type of problem falls into the general category of nonlinear constrained optimization

problems.

3.2.1.1 Problem Formulation

Let z be the optimization vector (the unknown to be found), g(z) the objective

function (the scalar function of z to be optimized) and h(z) an equality constraint

function. The optimization problem may be stated as follows:

minimize g(z) (92)

subject to h(z) = 0 (93)
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For systematic treatment of the equality constraints, it is customary to introduce the

Lagrangian

L(z, λ) = g(z) + λTh(z) (94)

The vector λ contains Lagrange multipliers. As discussed in [89], the first-order

necessary conditions for this problem are

∇zL(z, λ) = 0 (95)

∇λL(z, λ) = 0 (96)

Any solution to the constrained optimization problem (92)–(93) must be a solution of

the system of simultaneous algebraic equations (95)–(96). One computational tech-

nique for solving the constrained optimization problem is thus to search for solutions

to (95)–(96) using Newton’s method.

3.2.1.2 Nonsinusoidal Formulation

Using force model (48), the optimization problem must be defined and solved sepa-

rately for each position of interest. To fit the framework of problem (92)–(93), define

z := i ≡

[

i1 i2 i3

]T

(97)

g(z) := 1
2
iT i (98)

h(z) := 1
2
iTKi− f ∗ (99)

where f ∗ denotes the desired force and where K is shorthand notation for the in-

ductance matrix derivative appearing in (48). The dependence of K on position is

suppressed. The Lagrangian becomes

L = 1
2
iT i+ λ

(

1
2
iTKi− f ∗) (100)

and hence the necessary conditions are

i+ λKi = 0 (101)

1
2
iTKi− f ∗ = 0 (102)
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This nonlinear system of equations may be solved by Newton’s method. New iterates

(i+, λ+) are obtained from current iterates (i, λ) in recursive fashion. Each iteration

involves solving the linear system






I + λK Ki

iTK 0













ĩ

λ̃






=







i+ λKi

1
2
iTKi− f ∗






(103)

to obtain the increments (̃i, λ̃), then updating the solution estimate according to







i+

λ+






=







i

λ






−







ĩ

λ̃






(104)

The iteration process is terminated once the norm of the right hand side of (103) is

sufficiently small.

3.2.1.3 Sinusoidal Formulation

Using force model (59), the optimization problem is defined and solved just once in

a position-independent fashion. To fit the framework of problem (92)–(93), define

z :=

[

id iq

]T

(105)

g(z) := 1
2

(

i2d + i2q
)

(106)

h(z) := Kidiq − f ∗ (107)

where f ∗ denotes the desired force and whereK is shorthand notation for the constant

coefficient appearing in (59). The Lagrangian becomes

L = 1
2

(

i2d + i2q
)

+ λ (Kidiq − f ∗) (108)

and hence the necessary conditions are

id + λKiq = 0 (109)

iq + λKid = 0 (110)

Kidiq − f ∗ = 0 (111)
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In this case the nonlinear system of equations admits an explicit solution, namely

id = i∗ (112)

iq = i∗sign(f ∗) (113)

where

i∗ :=

√

|f ∗|

K
(114)

The quadratic dependence of force on current is compensated by the square root in

(114).

The cost functions (98) and (106) are consistent; this is established by substituting

(57) into (106) with i0 = 0. Since the solution (112)–(113) is expressed in terms of

transformed variables, use of (56) with i0 = 0 is required for its implementation. For

constant f ∗, the optimal (id, iq) computed by (112)–(113) will be constant and the

corresponding optimal (i1, i2, i3) will be sinusoidal.

3.2.1.4 Force Control Implementation

The optimization problem posed in Sections 3.2.1.2 for the non-sinusoidal case and in

Section 3.2.1.3 for the sinusoidal case actually represents the force control problem. In

effect these sections have formulated and solved the problem of optimal force control

for the magnetically-coupled LVR motor, under the assumption that minimum copper

loss is the optimization objective. The force controller, or commutator, is essentially

a mapping from desired force and position to desired phase currents. The desired

phase currents are used as reference commands for a current-regulated inverter. Other

control objectives, such as speed control or position control, can be met by closing

control loops around the commutation subsystem.

On the one hand (with sinusoidal modeling), the magnetically-coupled LVR motor

is equivalent to a classical synchronous reluctance motor, despite having the features

of double saliency and concentrated windings (see Section 2.2.4). This result has
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conceptual value, since the classical synchronous reluctance motor is conveniently

modeled using dq variables and is generally well understood. On the other hand,

accurate modeling of air gap permeances has shown that the harmonic content of

reluctances, inductances and inductance derivatives is too large to be ignored for many

applications. For example, in the force control problem, use of sinusoidal commutation

on a nonsinusoidal motor leads to significant levels of potentially undesirable force

ripple. The nonsinusoidal formulation offers a force control scheme that actively

compensates for spatial harmonics in order to provide smooth ripple-free force.

In both formulations, if all phase currents are multiplied by −1, the force will not

be affected in any way. Furthermore, a sign change on all phase currents has no effect

on power dissipation. Hence, there are two solutions to the optimization problem,

corresponding to ±1 current multipliers, due to the quadratic dependence of force on

phase currents.

If all phase currents are multiplied by ±k, the force magnitude will be scaled by

k2 but the force sign will remain the same. This implies that once a set of optimal

phase currents is found that provides 1 N of force, the same set of phase currents

may be used for all other positive force levels by simple scaling. Similarly, a set of

optimal phase currents providing −1 N of force is sufficient to construct the phase

currents required to reach all negative force levels. Furthermore, the optimal phase

currents corresponding to positive and negative force modes are actually related to

each other in a simple way. This feature suggests that a single 1D lookup table,

together with some simple logic, would be sufficient to implement either (with or

without harmonics) optimal commutation scheme.

3.2.1.5 Examples

The optimal commutation problem was solved for an example coupled motor defined

by Table 1 (for the case of α = 1) using force commands of f ∗ = ±1 N. Note that
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only the parameters that define the air gap geometry are needed. Since there are two

motor models, one with harmonics and one without, there are two formulations of

the optimal commutation problem to consider. The results are displayed in Figures

25–26. The optimal phase currents computed for the nonsinusoidal motor are indeed

perturbations of the optimal phase currents computed for the sinusoidal motor, as

predicted. The optimal commutation scheme employs continuous excitation of all

phases rather than some switched excitation method. Consequently, this new exci-

tation scheme is a significant departure from earlier recommendations ([22], [80] and

[25]). The period of the optimal commutation is twice that of the magnetic system,

i.e. two tooth pitches. Figures 25 and 26 reveal that all phase current waveforms are

derivable from just one fundamental waveform. To reverse the force direction, the

indexing of current values should be reversed.

3.2.2 Coupled Motor Force Production Features

The uncoupled motor represents typical linear and rotary VR motors while the cou-

pled motor exhibits features of both switched and synchronous varieties of variable

reluctance motors. This section highlights the distinct internal force production be-

havior of the coupled motor, which is better visualized using the internal viewpoint

of force production. Recall that there are two complementary ways to model force

production: one emphasizing the forces due to each product of phase currents (the

external viewpoint), the other emphasizing the forces developed on each pole pair

(the internal viewpoint). In the first case, the force f is modeled in terms of the

symmetric inductance matrix L, current vector i and position x, and is given by the

quadratic function (48). In the second case, the force f is modeled as the sum of

individual pole forces (f1, f2, f3) which are given in (49); the individual pole fluxes

(φ1, φ2, φ3) are given by (32).

Numerical results have been obtained for coupled motors defined by Table 1.
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Figure 25: Optimal phase currents for both models with f ∗ > 0.
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Figure 26: Optimal phase currents for both models with f ∗ < 0.
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Figure 27: Air gap permeances and inductances of two coupled LVR motors (α =
0 and 1).

Permeances and inductances are displayed in Figure 27, for the limiting cases of

α = 0 and α = 1. Note again that all permeances and inductances include significant

harmonic components, and the mutual inductances are almost as large as the self

inductances.

The optimal excitation problem was solved for the example motors of Table 1

with α = 0 and α = 1, using force commands of f ∗ = ±1 N. The results are

displayed in Figures 28 and 29; the columns correspond to values of α, whereas the

rows correspond to phase currents, pole fluxes and pole forces. One distinction from

the uncoupled (switched) motor is immediately observed: this force control scheme

employs continuous excitation of all phases rather than some switched excitation

method (early publications report switched excitation for the coupled motor).
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Figure 28: Phase currents, pole fluxes and pole forces of two LVR motors (α =
0 and 1) for +1 N force.
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Figure 29: Phase currents, pole fluxes and pole forces of two coupled LVR motors
(α = 0 and 1) for −1 N force.
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Figures 28 and 29 reveal the internal behavior of the optimally excited motors.

Increasing position in these figures corresponds to leftward motion of the E-cores

in Figure 7 (a). The period of the phase currents and pole fluxes is twice that of

the magnetic system, i.e. two tooth pitches, whereas the period of the pole forces is

just one tooth pitch since these forces do not depend on the direction of flux. The

phase currents and pole fluxes are perturbations of the sinusoidal currents and fluxes

that provide maximum force/ampere when spatial harmonics are neglected in the

motor model. The high harmonic content in the air gap permeances and winding

inductances of Figure 27 gives rise to high harmonic content in the phase currents

and pole fluxes. The phase currents and pole fluxes each sum up to zero, even for the

realistic case when spatial harmonics are not neglected. The pole forces change signs

every one-half tooth pitch since (49) implies that

sign{fj} = sign

{

dPj

dx

}

(115)

The particular interval over which a given pole force is positive or negative can be

predicted exclusively from the spatial derivative of the corresponding air gap perme-

ance shown in Figure 27. The pole forces are attractive rather than repulsive, and

thus it is impossible to have all three poles contributing force of the desired polar-

ity at all times. Depending on position, there will be either one or two poles that

contribute force of the desired polarity and the remaining pole(s) will generate an

opposing force. For this reason, the peak values of pole forces must exceed the com-

manded force value. Intervals exist over which a given pole flux is nearly zero, and

(49) may be manipulated to show that the corresponding pole force will likewise be

nearly zero over this same interval. However, the phase currents are never identically

zero over position intervals as in the case of switched excitation strategies. This fea-

ture of continuous excitation has not been imposed a priori , but is a consequence of

the optimization. The pole forces sum up to equal the commanded force of ±1 N, as

expected.
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3.2.2.1 Influence of Air Gap Geometry

Figures 28 and 29 also illustrate the influence of motor design parameters on the

optimal excitation scheme (in this case the α parameter which sets the air gap geom-

etry). The impact of α can be seen by comparing the two columns of these figures.

For example, the shape of the phase currents is somewhat different for the two cases,

and the peak-to-peak variation of pole fluxes and pole forces is larger for α = 1 than

for α = 0. Since α clearly has an influence on the optimization results, it is logical

to consider additional design questions. Which value of α yields the smallest value

of power dissipation for the same force command, and which value of α provides the

largest value of smooth ripple-free force when current limits are imposed? These

questions are explored in Table 7.

For values of α ranging from 0 to 1 in 0.1 increments, both energy dissipation

values and maximum force values are reported in Table 7. The energy dissipation

values correspond to one period of the excitation waveforms for a ±1 N force com-

mand (computed after the optimal currents have been computed for x values covering

one such period); energy over one period is likely more relevant than instantaneous

power at specific positions. Since both force and power are quadratic functions of

current, the dissipation values reported in the table are sufficient to cover other force

commands as well; e.g. the tabulated dissipation values should be multiplied by 10

for a ±10 N force command. The trend with respect to α is essentially monotonic,

and the lowest dissipation value corresponds to α = 1. The maximum force values

represent the largest force command magnitudes that satisfy the thermal phase cur-

rent magnitude limit of 8 A (checked after the currents have been computed). In this

case, the trend with respect to α is not monotonic, and for α between 0.7 and 1.0 a

high parametric sensitivity is apparent. Such high sensitivity is simply a consequence

of the shape change in phase currents, in particular the peaking of phase currents,
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Table 7: Energy Dissipation and Maximum Force Versus Tooth Shape
α Eperiod [mJ] for f ∗ = ±1 N |f |max [N] for |i|max = 8 A

0.0 12.5 139
0.1 11.7 140
0.2 11.1 142
0.3 10.5 143
0.4 10.1 143
0.5 9.7 141
0.6 9.5 138
0.7 9.3 132
0.8 9.3 122
0.9 9.3 114
1.0 9.2 152

as α varies. It is quite interesting to note that the α = 1 design, as shown in Fig-

ure 7 (a), rates higher than the other members of this design family as far as both

energy dissipation and smooth force limit are concerned. It is important to further

investigate and verify, using experimental or detailed finite-element-based analysis, all

trends and phenomena observed under idealized modeling but in particular changes

such as seen between α = 0.9 and α = 1.0, where the maximum ripple-free force goes

from a minimum to maximum value.

3.2.3 Instantaneous-Force Commutation with Current Limits

This section addresses current limited maximization of force and minimization of

power dissipation of the coupled LVR motor. Constrained optimization is used below

for two purposes: first, to determine the motor’s continuous force limit corresponding

to some given continuous current limit; second, to determine currents that satisfy the

current limits and produce a desired force with minimum power dissipation. The roles

of tooth geometry and the connection between motor and inverter are also examined.

3.2.3.1 Problem Formulation

To accommodate constraints, such as an upper limit on some function of the opti-

mization vector, the problem statement in (92)–(93) must be modified; for example

72



adding one inequality constraint function c(z) gives

minimize g(z) (116)

subject to h(z) = 0 (117)

c(z) ≤ 0 (118)

With the addition of not one but three inequality constraints on phase currents (more

constraints in later sections), the complexity of the optimization problems increases

and so does the ability to track problem solutions analytically. Formulating necessary

conditions for optimality, such as (95)–(96) in the previous subsection, and iteratively

solving them for each optimization problem studied, despite its appeal, becomes im-

practical. A more practical and efficient alternative is to use a commercially available

software (in this case the Matlab Optimization Toolbox [90]) with the ability to de-

fine and solve constrained and unconstrained optimization problems of various types

such as linear, quadratic or nonlinear programming and general nonlinear constrained

optimization. This change is reflected in subsequent problem formulation; program-

ming details that are left out in this document (for maximum clarity) can be found

in [90] (such details include proper syntax, writing and calling function files, choosing

solution algorithms and adjusting tolerances and parameters that control algorithm

execution).

As before let z and g be respectively the optimization vector and the objective

function. The equality and inequality constraints are modified to reflect multiple

constraint functions and are represented, respectively, by hp (p ∈ P) and cq (q ∈ Q)

where p, q represent function indices and P , Q represent sets of indices. For example,

if there is no equality constraint function in an optimization problem then P = {φ}

or if there are two inequality constraint functions then Q = {1, 2}. The general
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optimization problem statement is as follows:

minimize g(z) (119)

subject to hp(z) = 0, p ∈ P (120)

cq(z) ≤ 0, q ∈ Q (121)

Obviously, the objective of maximizing some function g(z) is translated into mini-

mizing −g(z) to fit this general framework.

3.2.3.2 Maximum Instantaneous Force

The first optimization problem considered is the problem of finding magnitude con-

strained currents that maximize the magnitude of force produced at any given po-

sition. For a 3-wire connection between motor and inverter, this problem is stated

as

maximize ±1
2
iT
dL

dx
i (122)

subject to |ij| − imax ≤ 0, j = 1, 2, 3 (123)

i1 + i2 + i3 = 0 (124)

For a 6-wire connection between motor and inverter, the problem is restated in the

form

maximize ±1
2
iT
dL

dx
i (125)

subject to |ij| − imax ≤ 0, j = 1, 2, 3 (126)

to reflect the removal of the equality constraint on current. In both cases, the sign of

the objective function is chosen to match the desired force sign. These problems fit
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the general framework (119)–(121) where

z := i ≡

[

i1 i2 i3

]T

(127)

g(z) := ∓1
2
iT
dL

dx
i (128)

h1(z) := i1 + i2 + i3, only for the 3-wire connection case (129)

c1,2,3(z) := |ij| − imax, j = 1, 2, 3 (130)

Here the sets of constraint function indices are P = {1} for a 3-wire connection and

P = {φ} for a 6-wire connection and Q = {1,2,3}.

The solutions to these optimization problems have applications in bang-bang con-

trol, but they also serve to provide the continuous force limit corresponding to a given

continuous current limit. The achievable range of ripple-free force is determined by

minimizing the maximum force magnitudes over x.

3.2.3.3 Minimum Instantaneous Power Dissipation

The second optimization problem considered is the problem of finding magnitude-

constrained currents that produce a given desired force at a given position and that

further minimize the power dissipated in the winding resistances. For a 3-wire con-

nection between motor and inverter, this problem is stated as

minimize iT i (131)

subject to 1
2
iT
dL

dx
i− f ∗ = 0 (132)

|ij| − imax ≤ 0, j = 1, 2, 3 (133)

i1 + i2 + i3 = 0 (134)
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For a 6-wire connection between motor and inverter, the problem is restated in the

form

minimize iT i (135)

subject to 1
2
iT
dL

dx
i− f ∗ = 0 (136)

|ij| − imax ≤ 0, j = 1, 2, 3 (137)

to reflect the removal of the equality constraint on current. In both cases, f ∗ denotes

the desired force (positive or negative). These problems fit the general framework

(119)–(121) where

z := i ≡

[

i1 i2 i3

]T

(138)

g(z) := iT i (139)

h1(z) := i1 + i2 + i3, only for the 3-wire connection case (140)

c1,2,3(z) := |ij| − imax, j = 1, 2, 3 (141)

The solutions to these optimization problems find applications in force control,

speed control and position control. These optimization problems are solvable if and

only if the magnitude of f ∗ is within the limits identified by the solution of the

corresponding maximum force control problem.

3.2.3.4 Numerical Results

Numerical results have been obtained for the motors defined by Table 1 with α = 1

(only the parameters that define the air gap geometry and the current limit are used).

Air gap permeance computation is explained in Section2.2.2.1, the magnetic material

is assumed to be infinitely permeable and flux leakage is neglected. Numerical op-

timization was performed using the function fmincon of the Matlab Optimization

Toolbox [90]. This function finds the constrained minimum of a scalar function of

several variables starting at an initial estimate. This type of procedure is generally

referred to as constrained nonlinear optimization or nonlinear programming.
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The maximum force control problem (for positive force) is first explored for the

classical case of sinusoidal magnetics, i.e. the spatial harmonics of inductance are

temporarily neglected. For this special case, the solutions are shown separately in

Figures 30 and 31 for 3-wire and 6-wire connections, respectively. In both cases,

the optimal current profiles are trapezoidal and the resulting maximized force varies

sinusoidally about a maximized average value. At every position, the maximized force

for the 6-wire connection exceeds the maximized force for the 3-wire connection. A

ripple-free force limit can be defined by taking the minimum (over position) of the

maximized force values. With this definition, use of the 6-wire connection augments

the range of ripple-free force by 33%. Figure 32 provides further explanation of the

superiority of the 6-wire connection over the 3-wire connection. At this x the optimal

currents are i3 = −8 A with (i1, i2) equal to (8, 8) A and (4, 4) A for the 6-wire and

3-wire connections, respectively. All values of (i1, i2) with magnitudes bounded by 8

A are feasible with the 6-wire connection, whereas only values along the dashed line

are feasible with the 3-wire connection. Figure 33 shows the ripple-free force limit

with inductance harmonics included, for various values of the tooth shape parameter.

The 6-wire connection outperforms the 3-wire connection, and the wide-tooth design

outperforms all other feasible choices of tooth shape.

The minimum-copper-loss force control problem has also been solved separately for

the 3-wire and 6-wire connections. The optimal excitation currents corresponding to

the largest admissible (positive) force command are displayed for the 3-wire and 6-wire

connections in Figures 34 and 35, respectively. In the 3-wire case, the force command

cannot exceed the critical value at which the excitation currents first reach their

saturation limits; once one current saturates, the other two currents are completely

determined by the force and current equality constraints. In the 6-wire case, larger

force commands are possible since more freedom exists to increase non-saturated

currents during intervals on which one current is saturated. For the wide-tooth design,
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Figure 30: Force maximizing currents and resulting force for 3-wire connection of
α = 1 motor (excluding spatial harmonics).
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Figure 31: Force maximizing currents and resulting force for 6-wire connection of
α = 1 motor (excluding spatial harmonics).
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Figure 34: Currents for maximum ripple-free force (153 N) for 3-wire connection of
α = 1 motor (including spatial harmonics).

the 6-wire connection outperforms the 3-wire connection—in regards to ripple-free

force range—by 76%.

3.2.4 Acceleration Capability of LVR Motors

This section expands on the instantaneous-force optimal commutation results of the

previous sections in two major ways. First, the uncoupled motor is now included

and compared to the coupled motor. Second, constrained optimization methods are

used to investigate the acceleration capabilities of both magnetic configurations. The

specific measure of performance emphasized here is the ratio of current-limited ripple-

free force to moving mass or, equivalently, the maximum achievable fully controllable

acceleration (the maximum average force available for accelerating a load is considered

later). This focus is motivated by the robotic applications targeted in this research,

e.g. component placement machines used in electronics assembly.
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Figure 35: Currents for maximum ripple-free force (270 N) for 6-wire connection of
α = 1 motor (including spatial harmonics).

3.2.4.1 Force Limits

To determine force limits, the force maximization problem is solved. Based on the

results of the previous section, a 6-wire connection between motor and inverter is

assumed. Therefore, for each x, the ultimate force limits are found by solving the

constrained optimization problems (125)–(126).

For the coupled motor, (125)–(126) is a quadratic programming problem with

variables ij and constraints ij ∈ [−imax, imax] for j = 1, 2, 3. For the uncoupled mo-

tor, (125)–(126) is a linear programming problem with variables i2j and constraints

i2j ∈ [0, i2max] for j = 1, 2, 3. Solutions (f ∗, i∗) to these quadratic and linear program-

ming problems may be computed using the functions quadprog and linprog of the

Matlab Optimization Toolbox [90]. From these solutions, the following force limits
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may be determined:

f̂ ∗ = maximum {f ∗ : x ∈ [0, X]} (142)

f̄ ∗ = average {f ∗ : x ∈ [0, X]} (143)

f̌ ∗ = minimum {f ∗ : x ∈ [0, X]} (144)

The spatial period of the excitation currents, X, is equal to 2pt for coupled motors and

pt for uncoupled motors. These force limits quantify the force production capabilities

of any given motor. Note that f̌ ∗ represents the ripple-free force limit.

3.2.4.2 Minimum Instantaneous Power Dissipation

Consider now the problem of finding magnitude-constrained currents that produce

a given desired force and that further minimize the power dissipated in the winding

resistances. For each position x and each desired force fd satisfying |fd| ≤ fmax, this

problem takes the form (135)–(137), where the limits fmax and imax are interrelated

to ensure feasibility.

For coupled motors, (135)–(137) is a nonlinear programming problem with vari-

ables ij and constraints ij ∈ [−imax, imax] for j = 1, 2, 3. For uncoupled motors, (135)–

(137) is a linear programming problem with variables i2j and constraints i2j ∈ [0, i2max]

for j = 1, 2, 3. These problems may be solved using either fmincon (for coupled

motors) or linprog (for uncoupled motors) from the Matlab Optimization Toolbox

[90].

The problem statement (135)–(137) explicitly accounts for current limits. Suppose

instead that current limits are implicitly accounted for as follows. For each x and

each fd satisfying |fd| ≤ f̃max, the problem

minimize iT i (145)

subject to 1
2
iT
dL

dx
i = fd (146)
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is solved to obtain the solution i∗, and this solution is subsequently magnitude-limited

according to

ĩ∗j =























imax , i∗j > imax

i∗j , i∗j ∈ [imin, imax]

imin , i∗j < imin

(147)

for j = 1, 2, 3 where imin = −imax for coupled motors and imin = 0 for uncoupled

motors. The limits f̃max and imax must be interrelated to ensure feasibility in the

following sense: problem (145)–(146) always admits a solution i∗ for arbitrarily large

f̃max, but the magnitude-limited version of this solution ĩ∗ does not provide the desired

result f = fd unless ĩ∗ = i∗, and this latter condition is satisfied only if f̃max is set

small enough (in relation to imax) to ensure that current saturation does not occur.

The force limits identified in this section are related by

f̃max < fmax = f̌ ∗ < f̄ ∗ < f̂ ∗ (148)

Each of these force limits may be symbolically obtained for the special case of sinu-

soidal inductance. For the coupled motor, sinusoidal inductance requires sinusoidal

air gap reluctance. For the uncoupled motor, sinusoidal inductance requires sinu-

soidal air gap permeance. Although neither the reluctance nor the permeance can

be expected to be truly sinusoidal, the assumption of sinusoidal inductance leads to

the simplest possible models capturing all essential features of coupled and uncoupled

motors. Each force limit may be expressed in the form

flimit = k∆L
π

pt
i2max (149)

where ∆L denotes the magnitude of sinusoidal inductance variation and k is a con-

stant of proportionality. Values of k are listed in Table 8. The benefit in using

(135)–(137) instead of (145)–(147) is a boost in the ripple-free force range of 33% for

coupled motors and 73% for uncoupled motors.
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Table 8: Force Limit Parameters for Sinusoidal Magnetics

Limit kc ku

f̃max
9
8

1
4

f̌ ∗ 3
2

√
3
4

f̄ ∗ 7
4

3
2π

f̂ ∗ 2 1
2

3.2.4.3 Numerical Results

This section describes performance limits computed for coupled and uncoupled motors

similar to those depicted in Figure 7. The numerical case study is organized on

the basis of a family of closely related motors, half being coupled and half being

uncoupled. Every motor considered has certain dimensions in common. The common

dimensions which influence the magnetic circuit parameters are device depth, tooth

pitch and air gap length. The common dimensions which influence only the moving

mass are tooth length, pole length and back iron length. The motors are distinguished

from one another by choices of the following variable parameters: n, m, α and N .

The wire gauge, and hence the current limit, remains the same in all cases.

Table 9 provides the actual parameter values employed. Note that there are

20 motors in total, defined by permutations of magnetic configuration, n and α: 5

coupled motors with narrow teeth; 5 coupled motors with wide teeth; 5 uncoupled

motors with narrow teeth; and 5 uncoupled motors with wide teeth. The 10 motors

with narrow teeth run on a common narrow-tooth stator bar, whereas the 10 motors

with wide teeth run on a common wide-tooth stator bar. The current limit was

determined by the selection of AWG 21 wire, a 50% packing factor and a maximum

current density of 20 A/mm2.

As illustrations of (135)–(137), consider two motors, one coupled and one uncou-

pled, described by Table 9 with the choices n = 3, m = 4 and α = 1. The coupled

motor accommodates N = 224 turns distributed over 2 poles, whereas the uncoupled
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Table 9: Parameters of 20 Coupled and Uncoupled LVR Motors

Parameter Symbol Value

Device depth d 50 mm

Tooth pitch pt 10 mm

Air gap length lg
1
4
mm

Tooth length lt 5 mm

Pole length lp 10 mm

Back iron length lb 15 mm

Teeth per pole n 2, 3, 4, 5, 6

Pole pitch integer m 3, 4, 5, 6, 7

Tooth shape factor α 0, 1

Turns per phase N 224, 244, 364, 408

Current limit imax 8.2 A

motor accommodates N = 364 turns distributed over 4 poles. The inductances and

some representative optimal currents for these two motors are shown in Figures 36

and 37. The coupled motor operates at its ripple-free force limit f̌ ∗
c = 357 N under

synchronous excitation with period 2pt, whereas the uncoupled motor operates at its

ripple-free force limit f̌ ∗
u = 700 N under switched excitation with period pt.

Figure 38 displays some typical comparative results relating to force-mass ratio,

for the entire family of 20 motors. Each data point in the force-mass plane summarizes

the ripple-free force limit of the motor and identifies its moving mass. The dashed

lines identify groups of motors that differ only with respect to n; as expected, both

force and mass increase with n. The influence of α is as follows: for the coupled motor,

the wide tooth version exhibits both larger force and larger mass; for the uncoupled

motor, the narrow tooth version exhibits the larger force and the wide tooth version

exhibits the larger mass. For any fixed values of n and α, the uncoupled motor

exhibits larger force and mass in comparison with the coupled motor.

Figure 38 may also be interpreted as a selection criterion for motors within this

motor family. For example, if the given application requires a small ripple-free force
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Figure 36: Inductances and optimal currents, coupled motor.
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Figure 37: Inductances and optimal currents, uncoupled motor.
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Figure 38: Mass versus force for the various designs.

limit no larger than 164 N, then the most suitable motor would be the coupled motor

with n = 2 and α = 0 since this is the lowest mass motor that can provide the desired

force. If the force requirement is between 164 N and 238 N, then the most suitable

motor would be the coupled motor with n = 2 and α = 1. Continuing in this fashion,

it becomes clear that one of the coupled motors will be preferred for all sufficiently

small force requirements. However, at some critical force level, which turns out to

be 357 N in this study, this selection method begins to prefer uncoupled motors over

coupled motors. Moreover, the uncoupled motors with α = 0 will always be preferred

in the large force ranges exceeding 357 N since, for any fixed n, they provide the

lower mass and higher force. This selection strategy is illustrated in the figure by the

solid line, which identifies the lowest mass motor from within this motor family that

is capable of producing any given ripple-free force level.
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3.3 Average-Force Commutation

In the introduction to this chapter it has been mentioned that two formulations of op-

timal commutation are studied: instantaneous-force commutation and average-force

commutation. In the most general formulation of instantaneous optimal commutation

(Section 3.2.4), constrained optimization methods are used to determine optimal ex-

citations that would (i) maximize instantaneous force or (ii) minimize instantaneous

power dissipation while producing a desired instantaneous force. The optimizations

are performed only at zero speed with constraints only on instantaneous current. The

optimization problems are solved separately for each position of interest, each time

returning a vector i of three numbers representing three phase currents. It is possible

to compute average force and average power dissipation once optimization is carried

out for position values covering a spatial period of excitation currents, but these av-

erage quantities are not part of problem formulation and do not influence optimal

solutions.

This section is concerned with average-force optimal commutation where the ob-

jective is to determine the current waveforms that (i) maximize average force or (ii)

minimize average power dissipation while producing a desired average force. As will

become apparent in the remainder of this dissertation, consideration of average force

changes not only the optimization formulation (optimization vector and constraint

functions) but also the nature of the results and their application potential. Solv-

ing the first optimization problem provides force limits (force-speed characterization)

which can be used in evaluating LVR motor positioning capability, whereas solving

the second optimization problem provides the actual current waveforms to popu-

late lookup tables for retrieval during dynamic simulation of positioning tasks. The

optimization problems are solved simultaneously for all points in a spatial period

of operation; voltage constraints are included and the solutions are obtained over a

range of speed values thus facilitating force-speed characterization of the LVR motors.
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The concept of force ripple is introduced and used in expanding the results to obtain

ripple-parameterized force-speed characterization facilitating positioning capability

evaluation based on the amount of force ripple allowed in commutation design. With

the inclusion of force ripple control, the average-force optimal commutation comes in

two formulations:

• Average-force optimal commutation without ripple specification (the variation

of instantaneous force about the average value of force is not controlled)

• Average-force optimal commutation with ripple specification (the variation of

instantaneous force about the average value of force is controlled)

3.3.1 Average-Force Commutation without Ripple Specification

Solutions to the two average-force optimal commutation problems are now pursued so

as to produce optimal excitation currents that (i) maximize average force or (ii) min-

imize average power dissipation while producing a desired average force, but at this

point no attempt is made to control the size of ripple in the force waveforms associ-

ated with these optimal excitation currents. First equations for average force, average

power dissipation, voltage and flux density are given and then problem formulation

is addressed to explain the distinctive features of the problems considered.

3.3.1.1 Average Force

The electromagnetic force of VR motors is a function of the phase currents and the

translator position as can be seen from the analysis of Chapter 2. Unlike brushless dc

motors, for example, VR motors do not have a force constant that makes it possible

to determine the force at any translator position under a fixed current excitation

(when the current flowing through one phase of a VR motor is kept constant over a

spatial period of operation the force generated is not constant over that period). The

waveform in Figure 39 depicts generically a maximized force waveform (motor excited
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Figure 39: Illustration of VR motor force variation about an average maximal value.

to produce maximum force at all displacements). This waveform exhibits significant

force ripple; in other words, the instantaneous value of force varies significantly from

the average value. Over a spatial period X of excitation currents, equal to 2pt for

coupled motors and pt for uncoupled motors, the average value of force is given by

favg =
1

X

∫ X

0

f(x, i) dx (150)

where f(x, i) has been defined by (48), using the MCA method, and by (79), using

the FEA method (the latter is used later in this chapter). Here i is assumed to be a

given function of x and so the evaluation of favg using (150) produces a number.

3.3.1.2 Average Power Dissipation

One of the optimal commutation problems studied is concerned with excitation to

provide a desired average force while producing minimum heat. Since the current

waveform depends on desired force, the average power inherently also depends on

desired force. Although it is not straightforward to relate the average power dissi-

pation for this static problem to the dynamic behavior of the motor, it has in fact

been shown ([53]) to be equivalent to the average power in the time domain under

constant velocity operation (this measure of average power dissipation neglects iron

losses, and hence is appropriate for applications in which copper losses dominate iron
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losses). The average power dissipation Pavg over the spatial period X is defined by:

Pavg =
R

X

∫ X

0

iT i dx (151)

Again, since i is assumed to be a given function of x, the evaluation of Pavg using

(151) produces a number.

3.3.1.3 Phase Voltage

In order to produce force-speed characteristics it is necessary to account for a voltage

limit and so it is also necessary to introduce idealized model voltage equations (non-

linear equations are used in FEA assessment in Section 3.3.2). The phase voltages

satisfy

vj(x, i) = Rij + ẋ

(

dLj,:(x)

dx
i+ Lj,:(x)

di

dx

)

(152)

where Lj,: denotes the jth row of L, R denotes phase resistance and ẋ denotes speed.

3.3.1.4 Flux Density

In order to be consistent with the modeling assumption of magnetic linearity, flux

densities in the teeth must be limited (this requirement is dropped in the FEA as-

sessment in Section 3.3.2). The flux density in the teeth of each pole is computed

according to

Bj(x, i) =
Lj,:(x)i

NAt

where At denotes the cross section area of teeth for each pole.

3.3.1.5 Problem Formulation

As mentioned earlier, formulation changes from the instantaneous-force commutation

case, which are made with the purpose of increasing control over the excitation de-

sign process and increasing the application potential of the results, are accompanied

by increased complexity in various aspects of the optimization including the size of
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the optimization vector, the objective function, the number and size of constraint

functions and implementation details. The main distinction is that the constrained

optimization problems for average-force commutation are solved, i.e. the optimal ex-

citation currents are found (from one phase current since other phase currents are

shifted versions of the computed current waveform) simultaneously for all points in

a spatial period of excitation (in contrast the optimization vector z previously repre-

sented three phase currents, i.e. three numbers returned by the solver for a selected

position value). The distinction just mentioned means that (without reformulation)

the optimization vector z, representing one phase current, is infinite in dimension

since it represents a continuous function of position. Similarly constraint functions

(for voltage and flux density) are infinite in dimension.

Modified notation is now introduced to allow the optimization problems to fit the

framework of problem (119)–(121). The optimization problem solutions are sought

on a uniform mesh so that continuous functions of position are approximated by their

values at discrete position values on the mesh

xk = k
X

K
, k ∈ K = {0, . . . , K − 1} (153)

where k = K is excluded due to periodicity. Consider the phase current vector at a

point on the mesh i = [i1, i2, i3]
T and let the symbol ˜denote approximate solution

values in the sense that

ı̃j,k ≈ ij(xk), j ∈ J , k ∈ K (154)

ı̃k ≈ i(xk), k ∈ K (155)

where J = {1, 2, 3}. The approximate full current waveform Ĩ is given by

Ĩ ≈

[

i(x0)
T · · · i(xK−1)

T

]T

(156)

Evaluation on the mesh, using ı̃K ≡ ı̃0 as needed, with derivatives approximated by
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differences and integrals approximated by sums, leads to discretized functions

ṽj,k (̃ı) = Rı̃j,k + ẋ

(

dLj,:(xk)

dx
ı̃k + Lj,:(xk)

ı̃k+1 − ı̃k
X/K

)

(157)

B̃j,k (̃ı) =
Lj,:(xk )̃ık
NAt

(158)

f̃k =
1

2
ı̃Tk
dL(xk)

dx
ı̃k (159)

f̃avg =
1

2K

K−1
∑

k=0

f̃k (160)

P̃avg =
R

K

K−1
∑

k=0

ı̃Tk ı̃k (161)

Because phase current waveforms are shifted versions of one and the same waveform,

it is only necessary to solve for one phase current and so phase 1 current waveform

I1 which is approximated by

Ĩ1 ≈

[

i1(x0) · · · i1(xK−1)

]T

(162)

is chosen as the optimization vector.

3.3.1.6 Discretized Maximum Average Force

The first optimization problem determines excitation currents that provide maximum

average force. For any speed ẋ, the problem statement is

maximize f̃avg (163)

subject to |̃ı1,k| − imax ≤ 0, k ∈ K (164)

|ṽ1,k| − vmax ≤ 0, k ∈ K (165)

|B̃1,k| − Bmax ≤ 0, k ∈ K (166)

Here, average force values computed during solver iterations provides the measure

for the goodness of the solution (phase 1 current waveform). This problem fits the

93



general framework (119)–(121) where

z :=

[

i1(x0) · · · i1(xK−1)

]T

(167)

g(z) := −f̃avg (168)

c1,··· ,3K−3(z) :=













|̃i1,k| − imax, k ∈ K

|ṽ1,k| − vmax, k ∈ K

|B̃1,k| − Bmax, k ∈ K













(169)

The solution of this problem takes the form Ĩ∗1 from which the remaining phase

currents may be constructed. If this problem is solved over a range of ẋ values,

the optimal performance may be summarized by a relation of the form f ∗
avg(ẋ) or,

equivalently, an optimal force-speed curve.

3.3.1.7 Discretized Minimum Average Power Dissipation

The second optimization problem determines excitation currents that provide a de-

sired average force while producing minimum heat. For any speed ẋ, the problem

statement is

minimize P̃avg (170)

subject to f̃avg − fd
avg = 0 (171)

|̃ı1,k| − imax ≤ 0, k ∈ K (172)

|ṽ1,k (̃ı)| − vmax ≤ 0, k ∈ K (173)

|B̃1,k (̃ı)| −Bmax ≤ 0, k ∈ K (174)

Here, average power dissipation values computed during solver iterations provides

the measure for the goodness of the solution (phase 1 current waveform). Feasible

values of fd
avg, for any given ẋ, may be obtained from the optimal force-speed curves
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described above. This problem fits the general framework (119)–(121) where

z :=

[

i1(x0) · · · i1(xK−1)

]T

(175)

g(z) := P̃avg (176)

h1(z) := f̃avg − fd
avg (177)

c1,··· ,3K−3(z) :=













|̃i1,k| − imax, k ∈ K

|ṽ1,k| − vmax, k ∈ K

|B̃1,k| − Bmax, k ∈ K













(178)

The solution of this problem takes the form Ĩ∗1 from which the remaining phase cur-

rents may be constructed and the corresponding minimized average power dissipation

P ∗
avg may be computed.

3.3.1.8 Implementation and Numerical Results

The discretized optimization problems are solved using function fmincon of the Mat-

lab Optimization Toolbox [90]. This is an iterative search method, so achieving

reliable convergence requires that the unknown current values be appropriately ini-

tialized. Problem size is reduced by choosing K to be divisible by 3, so that the

discrete approximations of all phase currents can be obtained from Ĩ∗1 by circular

shifting of the data.

Table 1 provides the actual parameter values employed to compute optimal excita-

tion results for two motors (coupled and uncoupled) that run on the same stator bar.

Both copper and steel contribute to the moving mass values. Using AWG 21 wire, the

coupled motor accommodates N = 224 turns distributed over 2 poles, whereas the

uncoupled motor accommodates N = 364 turns distributed over 4 poles. The moving

steel of the coupled motor consists of one E-core on each side, whereas the moving

steel of the uncoupled motor consists of three C-cores on each side. Accordingly, the

moving mass values are M = 2.03 kg for the coupled motor and M = 2.87 kg for the

uncoupled motor. Voltage limit used is 170 V.
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3.3.1.9 Maximum Average Force

Results from solving problem (163)–(166) at various speeds are shown in Figure 40

after scaling by (unloaded) moving mass values. The uncoupled motor can produce

larger average accelerations at any given speed. On the other hand, the coupled motor

maintains a uniform average acceleration capability over a wider speed range.

The waveforms required for maximizing average acceleration are given in Figure

41 for the coupled motor and in Figure 42 for the uncoupled motor. For the zero-

speed cases, only the flux density constraints are active. For the high-speed cases, the

voltage constraints are clearly active. At all speeds, the instantaneous force deviates

substantially from the average force.

3.3.1.10 Minimum Average Power Dissipation

Results from solving problem (170)–(174) at various speeds and desired average ac-

celerations (unloaded) are shown in Table 10. Feasible values of desired average

acceleration can be determined from Figure 40. The results reveal that, for a given

desired average acceleration, the coupled motor has lower average power dissipation.

This advantage is not readily predictable without the numerical study.

The waveforms required for minimizing average power dissipation while providing

a desired average acceleration of 35 m/s2 (unloaded) are shown in Figure 43 for

the coupled motor and in Figure 44 for the uncoupled motor. For the zero-speed

cases, only the flux density constraints are active. For the higher-speed cases, the

voltage constraints are clearly active. At all speeds, the instantaneous force deviates

substantially from the average force.

3.3.2 Uncoupled Motor Assessment via FEA Modeling

Accurate FEA-data based models have been derived in Chapter 2 to fully charac-

terize uncoupled LVR motors. These models are now used in conjunction with the

heat-minimizing optimal commutation formulation of Section 3.3.1 in order to assess
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Figure 40: Maximum average acceleration versus speed.

Table 10: Comparative Minimum Power Dissipation (W)

ā(m/s2) ẋ(m/s) Coupled Uncoupled

5 0 2.09 3.33

15 0 6.29 9.94

25 0 11.25 16.77

35 0 17.86 24.05

≥ 45 0 not feasible ≥ 32.07

5 1 2.10 3.33

15 1 6.49 9.99

25 1 11.63 16.96

35 1 19.50 24.56

≥ 45 1 not feasible ≥ 33.89

5 2 2.19 3.34

15 2 7.21 10.39

25 2 13.13 18.34

35 2 21.48 28.6

≥ 45 2 not feasible ≥ 48.39
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(b) ẋ = 5 m/s.

Figure 41: Waveforms for maximum average force (coupled motor).
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(b) ẋ = 5 m/s.

Figure 42: Waveforms for maximum average force (uncoupled motor).
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(b) ẋ = 2 m/s.

Figure 43: Waveforms for minimum average power dissipation at 35 m/s2 average
acceleration (coupled motor).
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Figure 44: Waveforms for minimum average power dissipation at 35 m/s2 average
acceleration (uncoupled motor).
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the acceleration performance capability of uncoupled LVR motors. The objective of

the optimization is to produce current waveforms that minimize average power dis-

sipation while producing a desired average force or a desired average force-to-mass

ratio. Consideration of the ratio of current-limited average force to moving mass or,

equivalently, the maximum achievable average acceleration is again motivated by the

targeted manufacturing applications, focusing on the heat produced as a result of

accelerating a load.

Incorporating the FEA-based modeling of Chapter 2 results in modifying the

optimization problem given in (170)–(174) by removing flux density constraints and

by modifying the underlying phase voltage computation to use the non-idealized

functional expression for phase flux linkage λj which is defined by (73). The phase

voltage expression in (152) is replaced by

vj(x, i) = Rij + ẋ

(

dλj

dx

)

(179)

Numerical results showing optimized excitation currents are presented for three mo-

tors (distinguished by tooth width). Table 1 provides the motor parameter values

employed. The magnetic material is assumed to be M19 steel. Both copper and

steel contribute to the moving mass values. Using AWG 21 wire, the three motors

accommodate N = 408, 384 and 364 turns distributed over 4 poles. The moving

steel consists of three C-cores on each side. Accordingly, the moving mass values are

M = 2.61, 2.73 and 2.87 kg. The voltage limit is 170 V.

Results from solving problem (170)–(174) at various speeds and various desired

average force-to-mass values are shown in Table 11. Since the motivation here is

point-to-point positioning applications, the comparison is based not on a common

desired average force, but on a common desired average force-to-mass ratio instead.

As a consequence, the results will show the minimum amount of heat that must be

generated in order to provide a desired acceleration for the various motors (without

any payloads attached).
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According to Table 11, for each motor separately and for a fixed speed, average

power dissipation increases with desired average force. This increase is nonlinear (due

to magnetic saturation and voltage limits) with a higher rate of increase as desired

average force increases. For a fixed desired average force-to-mass value, there is an in-

crease in average power dissipation with speed that is more apparent at higher speeds;

the increase is higher for wider tooth widths. Comparing all motors at the same de-

sired average force-to-mass value and at the same speed, average power dissipation

increases with tooth width.

The waveforms required for minimizing average power dissipation while providing

a desired average force-to-mass value of 35 m/s2 (unloaded) are shown in Figure 45

for α = 0, Figure 46 for α = 0.5 and Figure 47 for α = 1. The corresponding average

force values required to achieve the desired average force-to-mass values are 91.35,

95.55 and 100.45 N, and they are indicated in the figures as well. For the higher-speed

cases, the voltage constraints are clearly active. At all speeds, the instantaneous force

deviates substantially from the average force. Overall the waveforms for motors with

different tooth geometry bear similarities in shape, but there are some differences,

e.g. the turn-on and turn-off positions of the phase currents are different, and so is

the deviation of instantaneous force from the average value, which is higher for wider

teeth.

At least for this group of motors, if the focus is on producing average acceleration

rather than average force, then the narrow tooth motor outperforms the others with

respect to optimization problem (170)–(174).

3.3.3 Average-Force Commutation with Ripple Specification

In the average-force commutation above, force ripple (the variation of instantaneous

force about the average force value) is not controlled. When force ripple constraints

are added, the solution space of the optimization problems expands as will become
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(b) ẋ = 2 m/s.

Figure 45: Waveforms for minimum average power dissipation at average force/mass
of 35 m/s2 (α = 0).
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(b) ẋ = 2 m/s.

Figure 46: Waveforms for minimum average power dissipation at average force/mass
of 35 m/s2 (α = 0.5).
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(b) ẋ = 2 m/s.

Figure 47: Waveforms for minimum average power dissipation at average force/mass
of 35 m/s2 (α = 1).
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Table 11: Comparative Minimum Average Power Dissipation (W)

force/mass (m/s2) ẋ (m/s) α = 0 α = 0.5 α = 1

5 0 5.38 6.09 6.96

15 0 16.99 18.89 21.92

25 0 29.86 32.56 38.81

35 0 45.00 47.96 58.56

45 0 63.04 65.73 84.48

5 1 5.41 6.17 7.21

15 1 17.00 19.06 22.33

25 1 30.00 32.77 39.31

35 1 45.22 48.21 59.85

45 1 63.43 65.98 86.38

5 2 5.52 6.23 7.24

15 2 17.19 19.22 22.48

25 2 30.60 33.19 40.37

35 2 46.64 49.07 62.71

45 2 66.00 67.52 92.61

clear shortly. First force ripple is discussed.

In the context of positioning applications, force is an important factor to consider.

However, an attribute of force production in variable reluctance motors is force ripple,

and applications differ in their tolerance of this attribute with some requiring that it

be eliminated. Qualitatively, force ripple can be described as the periodic variation

of force production around a desired constant value; force variation about a desired

average value is evident in all of force waveforms in Section 3.3.1 which were obtained

as functions of current and displacement without any restriction on force ripple. The

average value of a force waveform over a spatial period X of excitation currents is

given by (150). Mathematically, the force ripple waveform is defined as

ρ(x, i) = f(x, i)− favg (180)

and its size, ‖ρ(x, i)‖, can be quantified by a suitable choice from among several
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possible indices such as its peak-to-peak value and its p-norms over one spatial period:

‖ρ(x, i)‖ ≡











max(ρ(x, i))−min(ρ(x, i)), peak-to-peak
(

∫ X

0
|ρ(x, i)|p dx

)
1

p

, p-norm
(181)

For p = ∞ the norm definition reduces to max(|ρ(x, i)|). The size of force ripple may

theoretically take any value in the range 0 ≤ ‖ρ(x, i)‖ ≤ ∞; the lower limit ρ̌ is 0,

but realistically the upper limit ρ̂ is finite and can be found from unconstrained ripple

analysis. In summary, the range of force ripple is described by

0 = ρ̌ ≤ ‖ρ(x, i)‖ ≤ ρ̂ < ∞ (182)

For meaningful comparison of the ripple sizes of different waveforms, it is appropriate

to express ripple size in a given force waveform with respect to average force to obtain

a normalized dimensionless ratio

℘ = ‖ρ(x, i)‖ /favg (183)

It is of interest to investigate the shapes of the resulting waveforms with the differ-

ent ripple size indices in order to determine if or how the added degree of freedom

(the choice of ripple index) influences power dissipation, residual vibration and/or

command tracking ability for motion control applications. In fact, preliminary inves-

tigation on LVR motor commutation showed obvious variation in the shape of force

(and force-ripple) waveforms and the associated average power dissipation based on

the index selected for controlling force ripple in the motor force, leading to the choice

of the 1-norm for numerical results used in this research since it produced currents

with the least average power dissipation.

The average-force optimal commutation objectives are now restated to include

force ripple specification, and the following two problems are addressed:

1. maximum ripple-specified average force production resulting in force-speed char-

acteristics parametrized by force ripple
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2. minimum average power dissipation while producing a desired ripple-specified

average force

Without ripple specification, each problem as solved in the previous section would

provide one unique solution (the solution corresponding to unconstrained force rip-

ple), but when this concept is applied, it becomes possible to determine VR motor

excitation to (i) produce force waveforms without any restrictions on force ripple, (ii)

to produce smooth force with zero ripple and (iii) to produce force waveforms with

any of an infinite number of possible ripple sizes between these two extremes (but

only a few choices are necessary for obtaining practical results).

The maximum value ℘̂ of force ripple size in ripple waveform corresponds to an

optimized force with no constraints on ripple size. In order to prepare for subsequent

formulation to control the size of force ripple, the following notation is introduced

℘max = β℘̂, β ∈ [0, 1] (184)

where ℘max ≤ ℘̂ is a limit imposed on the force ripple size when computing optimal

excitation; implicitly the force waveform is associated with a speed of operation.

Mathematical formulation and solution of the optimization problems are presented

next.

3.3.3.1 Problem Formulation

The major difference from the formulation in Section 3.3.1.5 is the imposition of a

limit on force ripple. As in that section, the optimization vector and constraint func-

tions are infinite in dimension; therefore, the optimization problems are discretized

and the solutions are sought on a uniform mesh so that continuous functions of posi-

tion are approximated by their values at discrete position values on the mesh (153).

Discretization is the same as shown in Section 3.3.1.5 except for additional notation

needed in order to impose ripple constraints. Approximate discrete points of the
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ripple waveform in (180) are approximated by ρ̃k:

ρ̃k = f̃k − f̃avg

where f̃avg and f̃k are defined by (159) and (160). The full force ripple waveform ρ̃ is

given by

ρ̃ =

[

ρ(x0) · · · ρ(xK−1)

]T

Finally, the size of force ripple is approximated by ℘̃:

℘̃ = ‖ρ̃‖ /f̃avg

In addition to imposing a constraint on force ripple, explicit current constraints

are removed. Power converter instantaneous limits on current are usually too high

to be active constraints (over-current protective devices are assumed to be used);

temperature rise limits can be stated as average power dissipation limits, but for

the purposes of subsequent positioning performance assessment, average power dis-

sipation is viewed as a performance cost and is computed post simulation for each

positioning task. All other variables in the optimization problem statements remain

the same as in Section 3.3.1.5. It is now possible to proceed with discretized problem

formulation.

3.3.3.2 Discretized Maximum Average Force

This optimization problem determines the motor performance limits as defined by

ripple-specified maximum average force. For any speed ẋ, the problem is stated as

maximize f̃avg (185)

subject to ℘̃− ℘max ≤ 0 (186)

|ṽj,k (̃ı)| − vmax ≤ 0, j ∈ J , k ∈ K (187)

|B̃j,k (̃ı)| −Bmax ≤ 0, j ∈ J , k ∈ K (188)
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This problem fits the general framework (119)–(121) where

z :=

[

i1(x0) · · · i1(xK−1)

]T

(189)

g(z) := f̃avg (190)

c1,··· ,2K−1(z) :=













℘̃− ℘max

|ṽ1,k| − vmax, k ∈ K

|B̃1,k| − Bmax, k ∈ K













(191)

The solution of this problem takes the form Ĩ∗1 from which the remaining phase

currents may be constructed. If this problem is solved over a range of ẋ values for each

ripple constraint ℘max, the optimal performance can be summarized by a relation of

the form f ∗
avg(ẋ, β); equivalently optimal force-speed curves, parameterized by ℘max,

can be produced. The simulation examples of Chapter 4 use f ∗
avg(ẋ, β = 0) and

f ∗
avg(ẋ, β = 1), in determining feasible position trajectories and actuator saturation

limits for the purpose of comparing positioning performance when these two ripple

extremes are used in commutation design.

3.3.3.3 Discretized Minimum Average Power Dissipation

The second optimization problem determines excitation currents that provide a de-

sired ripple-specified average force while producing minimum heat. For any speed ẋ,

the problem is stated as

minimize P̃avg (192)

subject to f̃avg − fd
avg = 0 (193)

℘̃− ℘max ≤ 0 (194)

|ṽj,k| − vmax ≤ 0, j ∈ J , k ∈ K (195)

|B̃j,k| −Bmax ≤ 0, j ∈ J , k ∈ K (196)
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This problem fits the general framework (119)–(121) where

z :=

[

i1(x0) · · · i1(xK−1)

]T

(197)

g(z) := P̃avg (198)

h1(z) := f̃avg − fd
avg (199)

c1,··· ,2K−1(z) :=













℘̃− ℘max

|ṽ1,k| − vmax, k ∈ K

|B̃1,k| − Bmax, k ∈ K













(200)

The solution of this problem takes the form Ĩ∗1 from which the remaining phase

currents may be constructed and the corresponding optimal dissipation P ∗
avg may be

computed. Feasible values of fd
avg, for any given ẋ and ℘max, may be obtained from

force-speed curves obtained by solving the force maximization problem above. When

force ripple is limited to zero, a smooth force waveform results whose average and

instantaneous values are identical (within numerical solver tolerance). When non-zero

force ripple is tolerable, different force waveforms can be obtained depending on the

index chosen in quantifying ripple.

3.3.3.4 Implementation and Numerical Results

The discretized optimization problems are solved using function fmincon of the Mat-

lab Optimization Toolbox which requires that the unknown current values be appro-

priately initialized. Again, problem size is reduced by choosing K to be divisible by

3, so that the discrete approximations of all phase currents can be obtained from Ĩ∗1

by circular shifting of the data. In the numerical results below, the 1-norm for ripple

index is chosen. Optimal excitation results computed for the coupled and uncoupled

motors with the parameter values in Table 1 (with α = 1 and vmax = 270 V) are

presented below.

Results from solving the force maximizing problem (185)–(188) at various speeds

for several values of desired force ripple ℘max were used to produce the force-speed
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curves in Figure 48 (coupled motor) and Figure 49 (uncoupled motor). First the

problem was solved without constraints on ripple, producing the top curve in each

figure. Each point of the top curve (representing maximum average force at a cor-

responding speed) is associated with a force-displacement waveform exhibiting the

largest ripple possible. Ripple constraints for subsequent problem solutions at that

speed are specified as percentages of that maximum value. As expected with any

motor, each curve exhibits decreased achievable force with speed. Across all curves,

and for each speed value, it is seen that the maximum achievable force decreases as

maximum ripple value decreases.

The force-speed curves are useful in determining feasible average force values. For

example, ripple-unconstrained force is achievable at any desired value that falls under

the top curve and smooth force (zero-ripple) can be achieved for any value that falls

under the bottom curve. Similar logic can be applied for any intermediate ripple

value.

The heat minimizing problem (192)–(196) is solved for fixed speed and desired

average force values. The problem is solved at the extremes of ripple (with uncon-

strained ripple and with zero ripple). Example waveforms required for minimizing

average power dissipation while providing a desired force value are shown in Figures

50–51 for the coupled motor and in Figures 52–53 for the uncoupled motor. The

synchronous-motor-like behavior of the coupled motor is evident in the three-phases-

on excitation while the “switched” nature of the uncoupled motor is evident in the

one-phase- or two-phases-on excitation.

3.3.4 Influence of Ripple on Average Power Dissipation

Average power dissipation values associated with a fixed desired average force, a fixed

speed and values of β ∈ [0, 1] are obtained for the uncoupled motor from the optimiza-

tion results above and their values as percentages of the highest power dissipation
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Figure 48: Force-speed characteristics parameterized by ripple size (coupled motor).
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Figure 49: Force-speed characteristics parameterized by ripple size (uncoupled mo-
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Figure 50: Waveforms for minimum average power dissipation for a desired average
force of 40 N at 1 m/s (coupled motor).
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Figure 51: Waveforms for minimum average power dissipation for a desired average
force of 40 N at 3 m/s (coupled motor).
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Figure 52: Waveforms for minimum average power dissipation for a desired average
force of 40 N at 1 m/s (uncoupled motor).
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Figure 53: Waveforms for minimum average power dissipation for a desired average
force of 40 N at 3 m/s (uncoupled motor).
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(that of the no-ripple case) are plotted versus ripple size in Figure 54. The figure

shows that average power dissipation decreases with increased ripple. This can be

explained by the fact that more ripple corresponds to more optimization freedom over

a spatial period of operation making it possible to exploit regions of high inductance

slope (regions of better force production per ampere); these regions then contribute

proportionately more to the desired average force than regions of lower inductance

slope. For the range of speed covered in the numerical results for both motors, the

coupled motor exhibits less significant variation in force production and the associated

average power dissipation.

It has been shown in [53] that spatial average power dissipation is equivalent to

the average power dissipation in the time domain under constant velocity operation.

That equivalence is important because it is also shown (assuming motor has constant

thermal resistance) to be directly related to temperature rise in repetitive motion

applications. However, it is still necessary to perform position control simulations

(Chapter 4) to determine if the trend of improved power dissipation with ripple in

the static sense is enough to offset, under dynamic operation, higher power dissipation

from faster positioning (higher ripple content, higher force and higher currents).

3.4 Conclusion

Motivated by manufacturing applications, this chapter formulated and solved optimal

commutation problems for two LVR motor configurations resulting in a multitude of

contributions. Distinct features of the coupled motor have been presented including

the advantage of “synchronous” rather than “switched” excitation and illustration of

the motor’s internal force production mechanism and how that is influenced by air gap

geometry and the converter connection. The coupled and uncoupled configurations

are compared with focus on the heat produced as a result of accelerating a load.

Uncoupled motor performance assessment is also presented using accurate FEA-data
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Figure 54: Typical average power dissipation trend vs ripple for a fixed favg.

based modeling.

This chapter defined force ripple and identified possible ways to measure its size.

The mathematical formulation given applies to linear (including or excluding spatial

harmonics) and non-linear models of force. Force ripple in VR motors is a prominent

factor in excitation design and in force characteristics; consequently it impacts their

positioning performance and is central in this dissertation.

In the most general case, optimal commutation formulation is extended to include

force ripple specification. The results of solving the ripple-specified force-maximizing

and heat-minimizing optimal commutation problems, demonstrate that relaxing force

ripple constraints is favorable in both optimization problems when considered sep-

arately. For the purposes of positioning assessment, the first optimization provides

force limits and hence possible positioning trajectories and associated possible nomi-

nal travel times while the second optimization provides the actual current waveforms

to populate lookup tables for retrieval during dynamic simulation of positioning tasks.

While both optimization problems favor relaxed force ripple and both are desirable
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in positioning applications, they are antagonistic (faster operation requires higher

forces, higher currents and more heat); trade-offs are expected to exist in seeking

positioning solutions. This will be considered further in Chapter 4.

The results of this chapter represent improvements in optimal commutation as

it relates to the point-to-point positioning problem. Common optimal commutation

goals in the literature include maximizing force and minimizing power dissipation

(from copper losses) or minimizing force ripple while producing a given force value.

A large body of research on excitation to minimize ripple so as to produce smooth force

or torque dominates the literature ([49]-[58]). With few exceptions, in all published

research on optimum excitation of linear and rotary VR motors, assumptions are

made a priori on the positions (or angular positions) for turning a phase on or off

(based on the slope of the inductance curve and the desired direction of force) and on

the number of phases that can be excited simultaneously. Multiple-phase excitation

is studied, but still under the turn-on turn-off assumptions in [59] where two-phase

excitation is found to result in reduced peaks and reduced rates of change of currents

resulting in reduced ripple and reduced normal force (more important for single sided

motors where normal force is not balanced).

Minimization of average power dissipation has been examined in [60] and [61]

without a priori assumptions for rotary variable reluctance motors and the results

apply to the uncoupled motor (Figure 7 (b)). Both maximization of force production

and minimization of copper losses without a priori assumptions are reported in [62];

however, the formulation of these problems assumes current sources as controls with-

out any consideration of voltage limits. The optimal commutation in this research is

determined without any a priori assumption and in a general framework that is not

limited to use with the idealized models.

This research differs from these publications and other published research in re-

defining the commutation problems to include force ripple specification. Covering the
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complete range of force-ripple values from no ripple (smooth force) to unconstrained

ripple, gives rise to additional choices of motion trajectories and the excitation cur-

rents necessary for tracking them.
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CHAPTER 4

POINT-TO-POINT POSITIONING CONTROL

ASSESSMENT

4.1 Introduction

The purpose of this chapter is to demonstrate improvement in actuator performance,

measured by settling time, in single-axis point-to-point positioning applications and

to describe the framework that has been developed for that purpose. This framework

then remains as a tool to be used for finding and assessing positioning task solutions.

The development of the control system design and simulation software are described,

and the settling time results from several positioning simulations are presented and

compared to predictions. In order to examine the trade-off between fast operation

and cool operation, the associated average power dissipation results are also shown.

The implementation of the framework presented here employes idealized LVR motor

models and associated optimal commutation results. First, to aid in the presentation,

a brief description of the physical limitations relevant to point-to-point motion control

is presented.

4.1.1 Physical Limitations in Point-to-Point Positioning

It is necessary, in order to ensure the feasibility of positioning solutions, to account

for physical limitations in motion control design. Consider, for example, the issue of

trajectory generation: the optimal motion trajectory that minimizes the cycle time

for point-to-point positioning implies that productivity would be maximized if each

move is performed at the maximum possible acceleration for half the motion time and

at the maximum possible deceleration for the other half, but obviously, this cannot
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practically be achieved. To address this, minimum-time s-curve trajectories, which

account for physical limitations on positioning, provide the reference commands in

the point-to-point positioning control system. Positioning performance limitations

are discussed next, and parts of the control system they influence are indicated. For

context, the major parts of the control system are shown in Figure 55.

4.1.1.1 Temperature Limit

Motor capability is ultimately determined by temperature limits. A motor used for

periodic motion is associated with periodic currents whose RMS values determine

average power dissipation and temperature rise. Temperature rise has to be limited

to protect coil insulation. The constraints on temperature rise and the steady state

temperature for periodic motion when considering copper losses have been shown in

[53] to be equivalent to constraints on average power dissipation. For the purposes

of this research, the control system employs the heat-minimizing excitation currents

(Chapter 3) to impose commanded forces. Post processing of dynamic system simula-

tion results, with the knowledge of the current waveforms, is used to evaluate average

power dissipation according to (151) for trade-off analysis.

There are other sources of heat that have not been considered. Power dissipation

associated with friction is not computed (but friction forces are included in simula-

tions); core (hysteresis and eddy current) losses have not been modeled. In low speed

operation of VR motors, copper losses dominate while in high speed operation, core

losses dominate. In [40], eddy current losses are found to dominate core losses in the

LVR motor and were reduced (as is generally the case) by using lamination whereas

hysteresis losses were found negligible except with a very small air gap. Eddy currents

are also mitigated [15] because of the longitudinal (as opposed to transverse) flux de-

sign (see Section 1.2.5 for a definition of these terms). Inclusion of all heat sources

would enhance the results of this research by computing more precisely the penalty
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Figure 55: Control system main components.

for improved performance; however, the primary result pertaining to higher ripple,

higher force production and associated faster positioning capability is unaffected.

It is also reasonable to expect that the impact on the final outcome of this research

from not having an accurate numerical value for these additional losses is less signif-

icant compared to copper losses because major factors influencing these additional

losses remain unchanged between any two compared scenarios; the magnetic material

used, the flux saturation density, where localized magnetic saturation occurs (at the

teeth) and friction modeling all remain the same.

4.1.1.2 Voltage and Current Limits

The converter that drives the motor imposes a phase voltage limit. This limit influ-

ences the motor’s maximum achievable force and the shape of excitation waveforms

needed for producing any feasible force value; therefore, it has been taken into con-

sideration in computing the force-speed capability curves and the heat-minimizing

current waveforms presented in Chapter 3. Through its influence on force-speed char-

acterization, voltage limit influences parameters (namely maximum acceleration and

maximum speed) needed in position reference signal generation; through its influence

on excitation design, it influences current computation in response to commanded

forces during controlled operation and average power dissipation computation for

each positioning task.

The converter that drives the motor imposes a phase current limit, but this limit

is usually very high and can be handled through converter over-current protection

devices. The motor coils also impose limits on the heat which can be interpreted as
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a limit on instantaneous phase current values. However, imposing RMS or average

power dissipation limits (or as in this research monitoring and recording them as a

performance cost) is preferred to relying on instantaneous current because the opti-

mization freedom added by considering the whole periodic waveform can be exploited

to allow higher average force production.

4.1.1.3 Speed, Acceleration and Jerk Limits

The time-optimal s-curve model [1] used in generation a position trajectory for a

given travel distance ξ requires, as input parameters, a maximum speed Smax, a max-

imum acceleration Amax and a maximum jerk (time derivative of acceleration) Jmax.

These limits may be determined by the most restrictive of several possible factors.

For example, limits on jerk (which is qualitatively indicative of motion smoothness)

may stem from mechanical considerations (such as vibration or wear-and-tear), the

sensitivity of payload to jerk or other concerns related to the time rate of change of

force.

Positioning tasks require actuators to provide the force necessary for tracking

the trajectory, and so it is necessary to ensure that the force-speed capability of

the selected actuator and the trajectory input parameters are appropriately related.

Given any requirements, such as space considerations and cost (power dissipation

is examined post simulation in this research), an actuator with the highest possible

force (acceleration) capability that meets these requirements is most attractive for

fastest positioning. Therefore, a limit on acceleration specified by the application

represents a limit on actuator force capability requirements and influences the choice

of actuator (selected actuator should not be over-sized for the task). The LVR motors

characterized in Chapter 3 are used for the example positioning tasks presented in

this chapter. The manner in which position control, actuator force-seed capability

and trajectory generation parameters are related for the purposes of this research is
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explained in Section 4.3.

4.1.1.4 Cycle Time and Power Dissipation Limits

The application specification may include a limit on cycle time (equivalently a limit

on settling time) based on productivity goals and/or a limit on temperature rise

(equivalently a limit on average power dissipation) possibly for additional reasons

beside the integrity of motor coils. For the purposes of this research, these limits are

considered post simulation criteria that may be used to influence the final choice of

a positioning solution (motor, excitation and control combination).

4.1.1.5 Structure Vibration Reduction

Additional limitations on the achievable positioning performance may be imposed

specifically because of the need to suppress residual vibration; for example position-

ing trajectories may need to be modified (via command shaping); controller gains

may need to be reduced and additional cost may be incurred (to structurally stiffen

and dampen positioning system structures). Vibration is not investigated in this

research, but encouraging insight that motivates further numerical and/or experi-

mental studies to quantify and address the influence on structure vibration of the

proposed non-conventional high-ripple excitation strategy has been gained from the

select publications discussed briefly in the introductory chapter.

Measures to suppress vibrations in a coupled LVR motor that are compatible with

the high-force-ripple strategy in this research are reported in [66]. First, control band-

width is reduced only towards the end of motion (resonance frequencies are found to

be within the control bandwidth that is desired for fast positioning). It is noted at

the same time that residual vibration is likely easier to eliminate once a move is com-

pleted (it is difficult to achieve rapid motion without deflection and vibration even

with sophisticated control [67]). This suggests that exploiting the freedom from strict
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trajectory tracking before reaching the target position in generating faster trajecto-

ries (by using higher force ripple and hence higher force limits) may be combined

with vibration reduction strategies that would preserve the predicted performance

improvements. Second, only the magnitude of the normal force at the completion of

motion is critical for improved stiffness and is addressed through switched excitation

that provides the desired normal and lateral force with no restrictions on the ripple

content of the lateral force. Third, the passive anti-vibration method used does not

contradict the high-force-ripple commutation strategy of this research (the method

reported involves bearings that are mounted on the translator via mechanical dampers

and contact the stator so that stator vibrations are transmitted to the bearings and

dissipated in the dampers).

Successful implementation of command shaping (i.e. the use of trajectories that

will not excite the resonances of system structures) in [68] and [69] to achieve vibra-

tion suppression by modifying optimal or sub-optimal position reference trajectories

like those in this research provides more insight. These publications do not implicate

force ripple in the applied motive force in generating vibrations; in fact, when optimal

or sub-optimal trajectories are modified (by changing the harmonic spectrum of the

force command) for the purpose of suppressing residual vibration, the resulting com-

mands do not preserve the constant (flat) segments at maximum positive or negative

force but rather appear as if an oscillatory disturbance force has been intentionally

added to them! This suggests that force ripple (or oscillations about commanded

force values) is not categorically detrimental; it further suggests that command shap-

ing may be incorporated during optimal static commutation by including vibration

suppression objectives or constraints (targeting resonance frequencies expected for the

closed loop system). Preliminary research on LVR motor commutation showed obvi-

ous variation in the shape of force (and force-ripple) waveforms based on the index

selected for controlling force ripple in the motor force. Finally, position control design
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and command shaping may be addressed concurrently (one method is discussed in

[70]) in search for minimum settling times.

4.2 Framework for Positioning Control Assessment

The framework that has been developed for demonstrating improvement in position-

ing performance and offering a prescription for finding and assessing positioning task

solutions is now described. The objective is to facilitate the evaluation of multiple

scenarios of a point-to-point positioning task in order to provide the data necessary

to assess positioning performance and ascertain the possibility of predicted improve-

ments in performance with higher ripple (and hence higher force). The framework,

which is depicted graphically in Figure 56, integrates the major (interdependent)

factors influencing point-to-point positioning:

• Actuator ripple-specified characterization and optimal static commutation

– Determination of achievable force based on ripple-specified optimal force-

speed capability (used in identifying feasible trajectories as well as actuator

saturation limits used in position control simulations)

– Computation of ripple-specified heat-minimizing phase currents (to be re-

called by the control system indexed by position and desired force)

• Position control design and simulation

– Determination of feasible position trajectories (based on ripple-specified

optimal capability and task specifications)

– Commutation (transforming position-controller force commands into phase

current commands using lookup tables populated by heat-minimizing phase

currents)

– Position control performance assessment via feedback control system sim-

ulations and comparison to predictions
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– Examining trade-offs

In general, a positioning solution comprises an actuator of appropriate force ca-

pability, a motion trajectory, a control system and a power electronic converter (and

implicitly meets other requirements such as cost, space or environmental limitations).

In this research, actuator and force capability choices are limited to the coupled and

uncoupled motors and their force-speed curves generated in Chapter 3. Potential

positioning solutions are identified by generating a set of minimum-time feasible tra-

jectories based on the available force and task specifications (and other underlying

limitations), and are evaluated via closed loop control simulations that produce ac-

tual settling times and associated average power dissipation. The existence of multiple

solutions (associated with multiple minimum-time s-curve trajectories) permits com-

parisons to ascertain the claims made in this research, but in addition it serves the

general purpose of selecting (or discarding) a solution based on a specified upper

bound on cycle time (equivalently on settling time τs) and/or an upper bound on

temperature rise (equivalently on average power dissipation P ):

τs ≤ T d

P ≤ P d

Numerical studies are designed such that these bounds may be examined post sim-

ulation. Implementation of this framework has been achieved using code written in

Matlab and summarized as the four-task algorithm depicted in pseudo code in Fig-

ure 57. The implementation in this chapter employes the idealized models (ignoring

magnetic saturation and spatial harmonics) of LVR motors and the associated op-

timal commutation results. However, the general framework is not limited to the

motors and models chosen in this dissertation or linear motors only.
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Figure 56: Framework for point-to-point positioning solution selection.
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4.3 Feasible Trajectories and Nominal Travel Times

Point-to-point positioning has been introduced in Chapter 1. It has been mentioned

that in applications such as circuit board assembly, it is possible to plan multi-axis

motion separately for each axis thus simplifying the control problem. The principal

positioning task then is for an actuator to move a single mass M in a single axis from

a starting position xi to a final position xf as fast as possible, yet meet final-position

error tolerance ∆x (recall Figure 6); in summary

Principal Task Specifications:






















Moving Mass = M

xf − xi = ξ

|x(t)t≥ts − xf | ≤ ∆x

(201)

When the desired positioning points are known a priori, and the workspace is

clear of obstacles, optimized (fastest) motion trajectories can be stored and executed

repeatedly in a predetermined sequence. Minimum-time s-curve trajectories are pur-

sued in order to provide the fastest motion commands subject to realistic motion

constraints. The parameters needed in generating an s-curve trajectory (first intro-

duced in Chapter 1) are specified in terms of the travel distance ξ and the limits of

trajectory speed Smax, acceleration Amax and jerk Jmax:

Minimum-Time S-Curve Specifications:


































xf − xi = ξ

|ẋ| ≤ Smax

|ẍ| ≤ Amax

|
...
x | ≤ Jmax

(202)

The trajectory parameter limits are dictated by the application task (201) and by

the actuator. Focusing on the LVR motor as the actuator of choice, the force (accel-

eration) capability is defined by the ripple-parameterized force-speed curves derived
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in Chapter 3. Namely, the solutions to the force maximizing commutation problem

(185)–(188) provide matched (force capability limit, speed) pairs for use in trajectory

generation. These solutions are summarized by relations of the form f ∗
avg(ẋ, β) or

alternatively by the ripple-specified force-speed curves in Figure 48 (coupled motor)

and Figure 49 (uncoupled motor). The manner in which a (force capability limit,

speed) pair is determined is explained next with the help of Figure 58 in which a

generic optimal force-speed curve is shown.

4.3.1 Operation Limits

Assume that for some positioning task scenario the maximum speed parameter Smax

has been fixed by the application, and consider an actuator choice (specifically, an

optimal force-speed curve of the chosen motor with a chosen ripple size β = β∗).

The optimal force-speed curve is examined to determine a subregion to which mo-

tor operation is limited (negative forces included but not shown in Figure 58). The

force value f ∗
avg that corresponds to ẋ = Smax is the highest force value achievable at

the maximum trajectory speed (and also achievable at all lower speed values along

the trajectory) and represents the maximum force to be commanded of the motor.

This means that, although actuators generally have increasing force capability with

decreasing speed, motor operation conforms to adopting minimum-time s-curve tra-

jectories (gradual acceleration to Amax, or equivalently f ∗
avg(ẋ = Smax, β = β∗), at

the trajectory’s maximum speed before gradual deceleration in a similar manner),

thus excluding points on the capability curve that corresponds to either higher speed

magnitudes than Smax or force values that are not available at all speeds along the

trajectory.

Recalling Figures 48 and 49, it can be seen that a single value of Smax may be

matched with multiple average force capability limits f ∗
avg(ẋ = Smax, β ∈ [0, 1]), dis-

tinguished by ripple size. Once ripple size is also fixed to some value β∗, the force

133



limit F for trajectory generation can be set to a value within the motor capability

limit (F ≤ f ∗
avg(ẋ = Smax, β = β∗)), but for the fastest trajectory the logical choices

for force and acceleration limits are

F = f ∗
avg(ẋ = Smax, β = β∗) (203)

Amax = F/M (204)

Note that for any positioning scenario, the same F value is used in specifying both

Amax for trajectory generation and the actuator’s saturation limit (denoted Umax in

control design) for position control purposes. It is assumed that no lower limit on ac-

celeration is imposed; there is no loss of generality because if some application requires

a limit on acceleration that is lower than suggested in (204) then Amax must be set to

the lower limit for trajectory generation and the motor can either be replaced, oper-

ated according to a different capability curve or operated with an artificially lowered

saturation limit. In implementation and as indicated in the software description of

the following section, the force limit is modified to account for (approximated) friction

and the mass is modified to account for the payload. A choice of Jmax, which is taken

as a given parameter dictated by the application, completes trajectory specification.

4.3.2 Trajectory Space

A feasible-trajectory space can be generated, for a given positioning task, from per-

mutations of interdependently feasible values of the parameters in (202). Each per-

mutation when input into a minimum-time s-curve model [1] results in a feasible

trajectory featuring a selected force-speed curve and trajectory parameters that are

related as just described. The required steps are summarized by Task 2 in Figure

57. The corresponding nominal travel times are then found using (14). The resulting

trajectories are saved for use by the control system (giving the position reference)

and the nominal travel times are saved for later comparison to actual settling times.

It is of interest to note that setting trajectory force limit to the actuator’s force
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limit F implies that force values up to F may be commanded by the control system

during dynamic operation in order to enforce position reference tracking, but (by

excitation design), the currents computed to produce any force value produce that

force value on average. This implies that even when the force command issued by the

control system is held constant, that command is transformed into current commands

that (except for the ideal case of 0 ripple and perfect control) are not designed to

produce constant force; therefore it is expected to see ripple in the output force

waveforms.

An example is now given showing the generation of a feasible trajectory space.

The example helps visualize the size of the problem space (trajectory space) and the

size of the associated solution space (to be computed from complete control system

simulations). Let it be assumed that the various motion variables are limited to

those shown in Table 12 where the two available actuators have been modeled and

characterized in Chapters 2–3. According to the force-speed curves (Figures 48 and

49), each motor provides 11 levels of force capability distinguished by the ripple

size parameter β, at any specified speed; the choice of 11 levels is for computational

convenience. This means that, for each possible speed limit value, up to 22 trajectories

can be generated for simulation and analysis.

Table 13 shows the feasible-trajectory space for the motion variables listed in

Table 12 and the motors defined in Table 1 with β = 0, 1 (the positioning task is

defined by ξ = 500 mm, Jmax = 1000 m/s3, ∆x = 10 µm, and a payload of 10 kg).

Graphical depictions of the trajectories are shown in Figures 59–62. In Table 13 the

column labeled p is a scenario identifier referenced later in Section 4.6 when comparing

actual settling times to nominal (predicted) values. Note that the nominal travel time

(τn = tf−ti) of a trajectory is different from the actual settling time (τs = ts−ti), but

it represents a lower bound on settling time (one that would be achieved with perfect

control); an additional interval of active settling time (τa = ts−tf ) is inevitable under

135



% This algorithm is implemented with both coupled and uncoupled motors

% Task 1: motor characterization

for various values of β

for various values of ẋ

F=solve the optimal commutation problem (185)–(188)

store F

end

end

% Task 2: Feasible trajectories for positioning task: ξ, Jmax, Smax,M

for select values of β

for select values of S ≤ Smax and J ≤ Jmax

FileName=’TrajectoryID’

F = f∗
avg(S, β)− max(static, coulomb, viscous friction)

M = MotorMass + Payload

xd(t) = Generate Trajectory (ξ, J, S, F,M)

τn = tf − ti
save(xd(t), τn, FileName)

end

end

% Task 3: Current waveforms for mesh of ripple-specified force values

for selected ẋ and β

FileName=’TableOfCurrents’ % to add to currents database directory

for F = 0 : step : f∗
avg(ẋ, β)

(I1, I2, I3, X , F ) = solve (192)–(196)

append(I1, I2, I3, X , F , FileName)

end

end

% Task 4: position control results and performance data

for various feasible trajectories

simulate controlled positioning

store settling time τs and average power dissipation P

end

Figure 57: Four-task algorithm for implementing the framework of Figure 56.
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Figure 58: Motor operation limits.

realistic control. If more permutations on jerk and speed within their specified limits

are considered, then the number of feasible trajectories increases accordingly.

4.3.2.1 Redundant Trajectories

It is possible because of the interdependence of s-curve parameters (travel distance,

and maximum values of jerk, acceleration and speed) that multiple permutations

on these parameters produce redundant (identical) trajectories. For example, the

achievable trajectory speed (influenced by the remaining s-curve parameters) may be

lower than the specified limit (as allowed by the application); in this case no new

(unique) trajectories will result by inputting higher speeds than achievable while the

remaining parameters are kept the same.

4.4 Heat-Minimizing Phase Current Waveforms

During point-to-point control operations the control system requires a certain amount

of force from the motor. Consequently a determination of phase current values to
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Table 12: Motion Variables for Feasible Trajectory Generation

Motion Variable Possible Choices

β 1, 0.9, 0.8, . . . 0

Jmax (m/s3) 1000

Smax (m/s) 1,2,3

M (kg) 10

ξ (mm) 500

produce that force is required. The solutions to the heat-minimizing commutation

problem (192)–(196) for a desired average force value produce heat-minimizing current

waveforms (I1, I2, I3) covering the spatial period of excitation X where X = pt for

the uncoupled motor and X = 2pt for the coupled motor. A corresponding set of

displacement values covering a period of excitation is also saved (recall that force is

a function of current and displacement). Each phase current waveform is an array of

current values that correspond (one-to-one) to the values in an array of displacement

values x : 0 ≤ x ≤ X}. A database of excitation waveforms is built by computing

such waveforms for a mesh of average force values within motor’s force capability,

but since motor capability is a function of speed and ripple, each set of waveforms is

stored and tagged with a speed value and a ripple value. During operation, all current

waveforms in a lookup table are based on maximum trajectory speed assumption to

ensure voltage constraints are not violated; pursuing cooler operation by exploiting

the available voltage at lower speed is conceivable, but would require storing excitation

currents with a speed index in addition to force and position indices.

Database generation steps are summarized by Task 3 in Figure 57. Current wave-

forms for only positive force values are stored because simple logic can be employed

in deriving current values associated with the production of a negative average force.

The database would be used for dynamic operation as explained below.
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Figure 59: Position trajectories using the uncoupled LVR motor with ẋmax = 1 m/s.
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Figure 60: Position trajectories using the uncoupled LVR motor with ẋmax = 2 m/s.
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Figure 61: Position trajectories using the coupled LVR motor with ẋmax = 1 m/s.
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Figure 62: Position trajectories using the coupled LVR motor with ẋmax = 2 m/s.
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4.4.1 Force-Position-Current Lookup Tables

The modeling sections in Chapter 2 showed single valued force functions with current

and position as independent variables; however, the reverse problem (the determina-

tion of phase current values to produce a commanded force) is much harder. There

are no analytical expressions to find phase currents as functions of force and position.

A convenient way to overcome this difficulty is to approximate the needed phase j

current function by a table consisting of a finite number of phase j current values

covering a spatial period of excitation arranged as illustrated by Figure 63 so that

the row and column numbers indicate position and average force values (implicitly

each table corresponds to a speed value and a ripple value used in current computa-

tion). The finite number of table entries is determined by the densities of the position

and force grids; naturally, there has to be a compromise between accuracy (denser is

better) and computational effort (sparser is better).

Suppose that during operation the magnitude of the desired force at position x is

|u|; then the phase currents ipj that produce a positive force of magnitude |u| and the

phase currents inj that produce a negative force of magnitude |u| are found using

ip1,2,3 = interp(TableOfCurrents(I1, I2, I3, |u|, xp,method = ′linear′) (205)

in1,2,3 = interp(TableOfCurrents(I1, I3, I2, |u|, xn,method = ′linear′) (206)

where

xp = mod(x,X) (207)

xn = X − xp (208)

where, as defined before, the spatial period of excitation is given by X = pt for the

uncoupled motor and X = 2pt for the coupled motor. In the context of position

control design, this mapping from desired force and position to desired phase cur-

rents constitutes the commutation subsystem that produces reference commands for
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a current controller. Position control is achieved by closing a control loop around the

commutation subsystem.

4.5 Control System for Point-to-Point Positioning

Figure 64 shows the control system in more detail. Modeling details, description of

the different components, control design and implementation are addressed next.

4.5.1 Design and Simulation Models

Position control design in this chapter employs a linear plant model that captures

basic plant behavior while simplifying control design. The input labeled w in Figure

64 represents disturbance forces consisting of nonlinear friction forces (see Section

4.5.6) that are included in the simulation of plant physics, but are not included in the

control design model (only viscous friction is included in the design model). There

are additional phenomena taken into consideration in the position control simulations

of this chapter, such as saturation effects and quantization effects.

4.5.2 Position Reference

Underlying the control structure (Figure 64) is a common practice [51] of planning

motion before designing a control system for it, i.e. a motion trajectory (or a model

to compute it online) exists and provides the position reference r at any time during

dynamic operation. This is part of a modular approach to solving point-to-point

positioning problems while observing the interdependence of the different parts of

the solution. Generating a trajectory xd(t) has been discussed in Section 4.3; the

position reference during simulation is given by

r(t) := xd(t) (209)
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4.5.3 Dynamic Model

The idealized flux and force models used in this chapter have been presented in

Chapter 2. Once flux linkage and force models are known, the dynamic model can

be established including the dynamics of both the mechanical and the electrical sub-

systems. Starting with the electrical subsystem, the three phase voltages are given

by

vj = Rij +
dλj

dt
, j = 1, 2, 3 (210)

where R, the resistance, is assumed the same for all three phases. The flux linkages,

currents, and voltages can be compactly written in vector form

λ =













λ1

λ2

λ3













, i =













i1

i2

i3













, v =













v1

v2

v3













(211)

The mechanical system dynamics, described by Newton’s Law, complete the dy-

namic model:

dx

dt
= ẋ (212)

dẋ

dt
= M−1 (f(x, i)− ff (x, ẋ)) (213)

di

dt
=

∂λ(x, i)

∂i

−1

(x, i)

(

v −Ri−
∂λ(x, i)

∂x
(x, i)ẋ

)

(214)

where x represents the position, M the total moving mass, ẋ the velocity, i the phase

currents, v the phase voltages, λ the flux linkages (the partial derivatives of flux with

respect to currents are incremental inductance functions and with respect to position

are back-emf functions), f the motor’s force and ff viscous friction force (additional

friction force components are treated as disturbance forces, seen as the input labeled

w in Figure 64 and are included in system simulation).
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Table 13: Feasible Trajectory Tabulation, Task: ξ = 500 mm, Jmax = 1000 m/s3,
Load = 10 kg

p Motor β S ≤ Smax (m/s) F ≤ f ∗
avg(S, β) (N) File Name τn (s)

1 Uncoupled 1 1 145 U 1 1 U.dat 0.61223

2 Uncoupled 1 2 140 U 1 2 U.dat 0.47248

3 Uncoupled 1 3 130 U 1 3 U.dat 0.47248

4 Uncoupled 0 1 70 U 0 1 U.dat 0.74227

5 Uncoupled 0 2 70 U 0 2 U.dat 0.69426

6 Uncoupled 0 3 70 U 0 3 U.dat 0.69426

7 Coupled 1 1 60 C 1 1 C.dat 0.76385

8 Coupled 1 2 60 C 1 2 C.dat 0.72497

9 Coupled 1 3 60 C 1 3 C.dat 0.72497

10 Coupled 0 1 50 C 0 1 C.dat 0.83174

11 Coupled 0 2 50 C 0 2 C.dat 0.81386

12 Coupled 0 3 50 C 0 3 C.dat 0.81386

Figure 63: Phase current lookup table populated from heat-minimizing-current
database.
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4.5.4 Position Control Design

Position control is achieved using state space integral control [91] and is implemented

in the context of the overall control system structure shown in Figure 64. The imple-

mentation of this control system structure relies on a two-time-scale philosophy with

a fast time frame for electrical dynamics and a much slower time frame for mechan-

ical dynamics: it is assumed that position remains constant during the time frame

of current response. This allows the design of the feedback position control to be

independent of the electrical dynamics. An additional simplification of control de-

sign concerns disturbance forces. In particular additional (non linear) friction forces

(that are considered in system simulation) are not included during control design.

The physics-based plant model used for position control design will therefore be the

mechanical subsystem (212)-(213).

The plant is a second order linear time invariant system with input u, representing

the commanded actuator force, output y, representing the actual position, state vector

x, and constant coefficient matrices A, B, and C. The plant state vector components

are position, x1, and speed, x2. The coefficient matrices are based on the physics-

based plant model.

The control objective is to regulate the plant through the command u in order

to provide reference-position following as well as internal stability and disturbance

rejection. As can be seen by consulting the figure, the command u is a function of

the integral of position error, controller gains (K1 and K2) and state estimates x̂1 and

x̂2; speed could also be obtained by differentiating position in these examples (using

state estimation becomes more important when amplification of sensor noise through

differentiation is intolerable). The estimator used for computing x̂1 and x̂2 employs

the plant model and a feedback gain L, and is shown in Figure 65 [91]. In summary,
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the plant equation is

ẋ(t) = Ax(t) + Bu(t) (215)

y(t) = Cx(t) (216)

and the estimator equation is

˙̂x(t) = Ax̂(t) + Bu(t)− L (Cx̂(t)− y(t)) (217)

The control signal input to the plant is given by

u(t) = −K1x̂(t)−K2σ(t) (218)

where σ(t), the position error integral, is defined by

σ̇(t) = y(t)− r(t) (219)

To obtain the coefficient matrices for control design purposes, the friction term in

(213) is taken to be Fvẋ where Fv is the viscous friction coefficient (additional friction

forces are treated as disturbance forces and included in system simulation). For

notational convenience, let a = Fv

M
and b = 1

M
:

A =







0 1

0 −a






, B =







0

b






, C =

[

1 0

]

(220)

The control design parameters are the gains K1, K2 and L and are to be determined

from the closed loop eigenvalues that satisfy desired transient response.

The control law and estimator states can be substituted into state equations to

model the overall system. The states of the overall system are the original states,

their estimates and the integrator output. However, when the estimator states are re-

placed by estimator errors, the overall system equations can eventually be partitioned

to describe a regulator subsystem and an estimator subsystem for convenient com-

putation of the closed-loop system eigenvalues. The estimator error ε(t) is described
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Figure 64: Control system.

Figure 65: State estimator.

by

ε(t) = x̂(t)− x(t)

After substituting and manipulating, the plant equation is

ẋ(t) = (A− BK1) x(t)− BK2σ(t)− BK1ε(t),

and the estimator equation is

ε̇(t) = (A− LC)ε(t)

The state and output equations of the combined estimator-state-feedback system are

now given:









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ε̇(t)
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







=




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
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
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
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


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
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0













r(t) (221)

149



y(t) =

[

C 0 0

]













x(t)

σ(t)

ε(t)













(222)

where the system has been partitioned [91] in order to separate the regulator and

estimator subsystem. The top partition in (221) models the regulator states (position,

speed and integrator output) and the bottom partition models the estimator states

(position and speed estimation errors). Because of the block diagonal structure of

the coefficient matrix in (221), the eigenvalues of the overall system are the union of

the eigenvalues of the two subsystem matrices







A− BK1 −BK2

C 0







and

[A− LC]

seen on the diagonal. For notational convenience let

A =







A 0

C 0






, B =







B

0






, K =

[

K1 K2

]

.

so that






A− BK1 −BK2

C 0






= A− BK

As a result (after substituting A, B, C and the gains), the matrices that model

each subsystem and the roots of their characteristic equations (the system eigenvalues)

can now be given. The regulator subsystem is modeled by the matrices

A =













0 1 0

0 −a 0

1 0 0












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
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

0
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0
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
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


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,K =

[

K11 K12 K2

]

(223)
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The characteristic polynomial is given by

|sI − (A− BK)| = s3 + (a+ bK12) s
2 + (bK11) s+ (bK2) (224)

If the closed loop system is desired to have its three roots at s = −λr then the

characteristic polynomial must satisfy

(s+ λr)
3 = s3 + 3λrs

2 + 3λ2
rs+ λ3

r (225)

and the regulator gains must be

K11 =
1
b
3λ2

r, K12 =
1
b
(3λr − a) , K2 =

1
b
λ3
r

(226)

Larger λr corresponds to faster transient response but also to large K11, K12 and K2

which could result in problems relating to actuator saturation limits; the selection

of λr involves a trade-off between rate of response and control effort. The estimator

subsystem is governed by the matrices A and L with characteristic polynomial

|sI − (A− LC)| = s2 + (L1 + a) s+ (L1a+ L2) (227)

If the estimator is desired to have its two roots at s = −λe then the characteristic

polynomial must satisfy

(s+ λe)
2 = s2 + 2λes+ λ2

e (228)

and the estimator gains must be

L1 = 2λe − a, L2 = λ2
e − 2aλe + a2 (229)

Larger λe corresponds to faster estimator, but also to large L1 and L2 which could

result in problems relating to sensor noise amplification; the selection of λe involves a

trade-off between rate of response and signal/noise ratio. A system, such as the one

studied here, whose coefficient matrices are such that the roots of the characteristic

polynomials can be placed as desired on the open left half plane is controllable and ob-

servable. The position controller is ready for implementation with the determination
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of the gains that can now be substituted into the control law:

u(t) = −K1x̂(t)−K2σ(t)

˙̂x(t) = Ax̂(t) + Bu(t)− L (Cx̂(t)− y(t))

σ̇(t) = y(t)− r(t)

4.5.5 Current Control

The desired phase currents (which are computed as described in the following sub-

section) are regulated using proportional control where the desired phase voltages are

proportional to measured current errors, i.e.

vj
d = ki

(

idj − ij
)

(230)

where idj and ij are respectively the desired and actual phase currents, vdj is the

desired phase voltage and ki is a positive feedback gain. Voltage saturation limits are

observed and so the applied voltage is given by

vj =











vmax sign(v
d
j ) , if

∣

∣vj
d
∣

∣ ≥ vmax

vj
d , otherwise

(231)

This formulation implicitly assumes a six-wire connection of the power converter

(three separate H-bridge stages) for either the uncoupled or coupled motor.

4.5.5.1 Force-Current Mapping

Desired phase currents are determined by interpolation from lookup tables that map

desired force to desired phase currents. The database from which the tables are

populated is described in Section 4.4. The lookup tables are indexed based on dis-

placement x and the magnitude |u| of the desired force. The phase currents ipj that

produce a positive force of magnitude |u| and the phase currents inj that produce a

negative force of magnitude |u| are found using (205) and (206) respectively. The
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phase currents are determined according to the (if-then) logic below

idj =











ipj , u ≥ 0

inj , u < 0
(232)

This describes the fundamental mapping from desired force and position to desired

phase currents which constitutes the commutation subsystem that produces reference

commands for the current controller. However, for improved implementation in the

positioning examples presented in this chapter, this mapping is modified as described

next.

4.5.5.2 Modified Force-Current Mapping

The force-current mapping described above is modified in the final implementation

to facilitate a smooth transition between the cases of negative and positive force

commands. This issue is particularly important to address at the end of motion where

the force command approaches zero and could switch repeatedly between positive and

negative values (causing phase current decision to switch between lookup for ipj and

inj ); if the actual position exceeds the target position, the next force command is of

the opposite sign in order to bring the motor back to desired position. Potentially, the

positioning error and the corrective force command may cause persistent oscillations

about the target position.

To avoid large variation in output force in response to a change in phase current

commands and the potential for sustained oscillations, a smoothing function is em-

ployed as opposed to executing the lookup commands in (205)-(206) based on the

if-then logic (232). Although both coupled and uncoupled motor phase currents are

determined based on lookup tables from waveforms computed for only positive force

production and although both motors are subject to the ’if-then’ logic that leads to

a rearrangement (any time the force sign switches) of indexing phase current and po-

sition in table lookup operations, the uncoupled motor is more affected: The stored
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displacement-current waveforms for the uncoupled motor are pulsed in nature and the

displacements where pulses should start and end change based on the commanded

force magnitude and sign, can (apart from possible interpolation errors) contribute

to jumps or shifts in the returned lookup results between consecutive lookup opera-

tions. The actual change in force in response to a current command change (which

is sensitive to the slope of inductance at the time the currents are applied) may thus

be undesirably large even when change in current command is not.

The smoothing function chosen is the mathematically convenient sigmoidal func-

tion

µu =
1.0

1 + e−u/δ
(233)

where δ determines the width of the transition band around u = 0. A depiction of

this function is shown in Figure 66. The desired phase current is then obtained as

idj = (1− µu)i
n
j + µui

p
j (234)

As the commanded force magnitude increases to the left of the transition band toward

−∞ (negative force command), the function µu approaches 0 and idj approaches inj .

Similarly as the commanded force magnitude increases to the right of the transition

band toward +∞ (positive force command), the function µu approaches 1 and idj

approaches ipj . For small force commands (within the transition band), ipj and inj each

contribute a fraction of the value idj such that the fractions add to 1. Which one of

inj or ipj contributes the larger fraction depends on whether the commanded force is

negative or positive, and in either case that contribution decreases as the command

approaches 0 (at which point inj and ipj contribute equally to desired phase current

computation).

4.5.6 Friction Modeling

The position control design objective includes robustness to modeling imperfections

and unknown disturbances, and this includes friction forces that naturally occur in
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opposition to the relative motion of bodies in contact. In the plant model used in

control design only viscous friction has been modeled (by the coefficient a = Fv

M

in (4.5.4)); additional friction forces are treated as disturbance forces (the input

labeled w in Figure 64) and are included in system simulation in the numerical results

presented in this chapter. Friction is a nonlinear phenomenon that is very difficult

to model accurately, but numerous models of utility exist in the literature (see [92]

for a survey and [93] for an application example). The simple mathematical model of

friction described by the equation below and depicted in Figure 67 captures the most

recognized friction components:

ff = Fvẋ+ (Fc + (Fs − Fc)e
−(ẋ/νs)2) sign(ẋ) (235)

where Fs is the static friction, Fc is the Coulomb friction, Fv is the coefficient of

viscous friction, and νs is the Stribeck velocity. If the static friction coefficient, the

Coulomb friction coefficient and gravitational acceleration are denoted µs, µk and g

then

Fs = µsgM,

and

Fc = µkgM

The friction model (235) is problematic for computer simulation when the relative

velocity of bodies in contact is near zero. To overcome this problem, a suitable

neighborhood near zero is selected outside of which the above model is used and

inside of which friction force assumes whatever value in the range [−Fs, Fs] that is

necessary to hold velocity at zero. This logic, which is used in the simulations of this

chapter, can be concisely described as follows

|ẋ| ≤ νs AND |f − Fvẋ| ≤ Fs ⇒ ẋ = 0 (236)
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4.5.7 Digital Control Implementation

Microcontroller-based implementation is now the prevalent method of control, and

therefore, all subsequent discussion is presented assuming digital implementation.

The choice is made to discretize the position controller just derived (as opposed

to designing a digital controller for a discretized plant). Discretization is carried

out using the forward Euler method where the derivative of the generic signal z is

approximated by the difference:

ż(kTs) ≈
z(kTs + Ts)− z(kTs)

Ts

(237)

where Ts represents the microcontroller’s sampling period and k represents a discrete-

time index. Substitution into the controller equations above leads to the following

digital controller (control law and state updates):

u[k] = −K1x̂[k]−K2σ[k] (238)

x̂[k + 1] = x̂[k] + Ts (Ax̂[k] + Bu[k]− L (Cx̂[k]− y[k])) (239)

σ[k + 1] = σ[k] + Ts (y[k]− r[k]) (240)

The controller output is computed using (238) and then checked to accommodate

actuator saturation limit Umax so that the saturated controller output update is given

by

u[k] =











Umax sign(u[k]) , if |u[k]| ≥ Umax

u[k] , otherwise
(241)

The determination of this saturation limit based on actuator force capability limits

and trajectory’s task-specified acceleration (force) limit has been explained in Section

4.3 with the help of Figure 58.

4.5.7.1 Integrator Windup Compensation

During the time the actuator is at its saturation limit, when |u[k]| ≥ Umax, an extra

step is needed to ensure that the integrator output is not allowed to windup (increase
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inappropriately). One way to do that is to (i) reset the integrator output to a value

that produces a control output equal to the actuator’s saturation limit and (ii) update

the integrator output when the control output would reduce the positioning error and

keep the integrator output constant otherwise; the logic is inferred from the signs of

the controller output (the force) and the position error. This is summarized as follows

|u[k]| ≥ Umax ⇒ (242)

σ[k] = −(u[k] +K1x̂[k])/K2 (243)

σ[k + 1] =











σ[k] , if sign (u[k]) = sign (y[k]− r[k])

σ[k] + Ts (y[k]− r[k]) , otherwise
(244)

4.5.7.2 Control System Time Scales

The two-time-scale control structure means that voltage commands are updated at

a faster rate than force commands. The force command remains constant during the

electrical subsystem control time wherein applied voltages drive phase currents to

desired values. The concept is illustrated in Figure 68 depicting the time scales and

associated simulation structure. The position controller output (the applied force) is

updated every Ts seconds where Ts represents the microcontroller’s sampling period.

During this interval, the current controller output is updated Km times where Km is

an integer. Naturally simulated quantities are obtained by computing system response

to these commands on a finer mesh using a small simulation step (h seconds as shown

on the figure).

4.5.7.3 Sensor and Actuator Resolution

The simulation results presented in this chapter account for the quantization effects

encountered in the digital implementation of control systems. Let z represent generi-

cally a measured analog quantity (position, current) or a desired analog control output
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(phase voltage) and let Qz be a corresponding quantization parameter such as the

resolution of a sensor or an analog to digital converter. The quantized representation

zq of the variable z is given by

zq = Qz

⌈

z

Qz

⌉

(245)

The quantization parameters used are given in Table 14.

4.5.7.4 Simulation Overview

Positioning tasks are simulated in Matlab using the digital implementation of the

two-time-scale control system of Figure 64; the steps are summarized by the pseudo

code representation shown in Figure 68. Final selection of simulation parameters such

as control gains are made based on best settling time results without introducing

instability or violating the final position accuracy requirement. The eigenvalues of

the position control system are assumed to be real valued and clustered at λr, the

estimator eigenvalues are taken to be λe = 4λr. An initial value of λr is selected and

is modified manually in small steps until the smallest settling time is achieved; for

each selected value the sampling period Ts is set to 0.1λr. The current control gain

is taken to be 500. The remaining parameters that have not yet been specified are

given in Table 16.

Simulation of plant physics is carried out every h seconds (here h = Ts/100):

Values of position, speed and current (corresponding to time tk = kh), where k

represents a discrete time step index, are used in computing new values (corresponding

to time tk + h) by integrating the differential equations for these variables. If each of

these variables is represented generically by z then (237) gives

z(kh+ h) ≈ ż(kh)h+ z(kh) (246)

where ż represents dx
dt
, dẋ

dt
and di

dt
which have been given in (212)–(214). The voltages

appearing in (212)–(214) are the current controller outputs defined by (230)–(231)
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Table 14: Quantization Parameters

Description Quantization Parameter Value

Position sensing 10−9

Current sensing imax/2
12

Voltage actuation vmax/2
12

and updated every Tm seconds (see Figure 68). The motor flux linkages (43) and

output force (48) have been derived in Chapter 2. The friction force is computed

according to (235); subsequently the computed speed value is modified according to

(236) to account for the so called stick-slip phenomenon.

The phase voltages commanded by the current controller are applied in order

to achieve the phase currents needed to produce the force command necessary for

trajectory tracking. This force command is generated according to (238), (241) by

the position controller every Ts second. Recall from earlier discussion that the phase

currents needed to produce this force are found via commutation lookup tables in

accordance with (234) and that the currents populating the lookup tables are the

heat-minimizing currents discussed in detail in Chapter 3. The state estimates and

integrator output values appearing in these equations are found according to (239)

and (244) every Ts seconds.

At the completion of the control system simulation for each trajectory, results are

examined to ascertain that the main control objectives, namely stability and target-

position accuracy, are met, plots are generated and the settling time and average

power dissipation are recorded.

4.6 Positioning Performance Assessment

This section presents the numerical results which demonstrate that better settling

time is achievable with higher force capability facilitated by high-ripple commutation.

The positioning task is defined by ξ = 500 mm, Jmax = 1000 m/s3, ∆x = 10 µm, and

a payload of 10 kg. A solution space, S(ξ), is generated subsequent to the dynamic
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(a) Slow (Ts) and fast (Tm) control intervals.

overhead (setting parameters and initial variable values)

loop (main simulation loop): every h seconds

loop (fast subsystem loop): if mod (t, Tm) = 0

loop (slow subsystem loop): if mod (t, Ts) = 0

read and quantize position value

get position reference command

compute force command (saturable position controller output)

update estimator states

compute desired currents

end

read quantized phase current values

output desired voltages (saturable current-controller output)

end

simulate plant physics: compute forces, position, speed, and currents

end

output results

(b) Two-time-scale basic simulation structure.

Figure 68: Two-time-scale control system implementation.
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simulation of the positioning scenarios (one associated with each trajectory) and the

determination of settling time τs and average power dissipation P for each scenario.

A solution, sp ∈ S, is a point in the solution space specified in terms of settling time

and power dissipation:

sp = (τs, P (τs))p

where p is the scenario identifier (and for this case links each solution to a trajectory

in Table13). The results from 12 (8 unique) feasible-trajectory simulations for this

positioning task are presented in Figures 69–70 for the uncoupled motor and in Figures

71–72 for the coupled motor. The top plot in each figure shows actual position (plotted

as solid line) and reference position (plotted as a dashed line). The figures also show

actual (solid lines) and computed (dashed lines) speed and force (these are computed

from the position reference but are not directly controlled). Table 15 shows settling

time and average power dissipation results.

The actuators for the positioning task are taken to be the coupled and uncoupled

motors with parameters given in Table 1 (for the case of α = 1), and with force

capabilities corresponding to commutation with the extreme values of ripple size

(β = 0 and β = 1). Selection of the force values shown on the table for each speed

and ripple value based on the force-speed curves computed in Chapter 3 is illustrated

in Section 4.3.1. The position trajectories used (Table 13) have been generated using

the minimum time s-curve models in [1], and their graphical depictions have been

shown in Figures 59–60 for the uncoupled motor and in Figures 61–62 for the coupled

motor.

4.6.1 Comparison of Nominal Trajectory Times

Examination of the nominal trajectory times τn (the lower bounds on settling time

achievable only with perfect control) for the scenarios specified in Table 13 reveals

that, for each motor configuration and each Smax value, the more promising scenarios
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Table 15: Solution Space: ξ = 500 mm, Jmax = 1000 m/s3, ∆x = 10µm, Load = 10
kg

p Motor β Smax (m/s) F (N) File Name τs (s) P (W)

1 Uncoupled 1 1 145 U 1 1 prof.dat 0.6676 12.3013

2 Uncoupled 1 2 140 U 1 2 prof.dat 0.5187 33.0407

3 Uncoupled 1 3 130 U 1 3 prof.dat 0.5187 33.0407

4 Uncoupled 0 1 70 U 0 1 prof.dat 0.7507 9.8146

5 Uncoupled 0 2 70 U 0 2 prof.dat 0.7027 14.9649

6 Uncoupled 0 3 70 U 0 3 prof.dat 0.7027 14.9649

7 Coupled 1 1 60 C 1 1 prof.dat 0.7874 11.0216

8 Coupled 1 2 60 C 1 2 prof.dat 0.7487 14.9943

9 Coupled 1 3 60 C 1 3 prof.dat 0.7487 14.9943

10 Coupled 0 1 50 C 0 1 prof.dat 0.8562 10.4615

11 Coupled 0 2 50 C 0 2 prof.dat 0.8378 12.5544

12 Coupled 0 3 50 C 0 3 prof.dat 0.8378 12.5544

are associated with unconstrained ripple. For the uncoupled motor, the nominal

times of trajectories associated with unconstrained-ripple commutation are 82% (1

m/s speed) and 68% (2 m/s) of those associated with no-ripple commutation. For the

coupled motor these percentages are 92% and 89%. If the two motor configurations are

both competing for the same task then the uncoupled motor with highest achievable

force (highest ripple) and speed provides the fastest trajectory (the lowest τn).

4.6.2 Ideal-No-Ripple versus Unconstrained-Ripple Settling

Comparison of the achievable performance with unconstrained-ripple scenarios and

the corresponding nominal times, particularly with the no-ripple case reveals that,

for each motor configuration and each trajectory-speed value, actual settling times

with high ripple commutation are better than the nominal times with low ripple

commutation. For the uncoupled motor, comparing scenarios p = 1 − 3 in Table 15
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Table 16: Positioning Simulation Parameters

Parameter Symbol Value

Force smooth transition parameter δ 0.1 N−1

Stribeck velocity νs 1× 10−4 m/s

Static friction coefficient µs 0.1

Coulomb friction coefficient µk 0.05

Viscous friction coefficient Fv 1× 10−5 N.s/m

Two-time-scale factor Km 10

with p = 4− 6 in Table 13 shows

τs|β=1

τn|β=0

=











89.9% : Smax = 1 m/s

74.7% : Smax = 2, 3 m/s

and for the coupled motor, comparing scenarios p = 7−9 in Table 15 with p = 10−12

in Table 13 shows

τs|β=1

τn|β=0

=











94.7% : Smax = 1 m/s

92.0% : Smax = 2, 3 m/s

If the two motor configurations are both competing for the same task then the un-

coupled motor with highest achievable force (highest ripple) and speed provides the

fastest settling time (lowest τs).

Comparisons to the ideal (perfect control, τs = τn) no-ripple scenarios is critical

for ascertaining that better settling times are achievable with relaxed constraints on

force ripple because then it is sufficient to only ascertain that controllers exist to

successfully track the higher-ripple faster trajectories. However, it is still valuable

to also make comparisons to the no-ripple scenarios under realistic control as in the

following section.

4.6.3 No-Ripple versus Unconstrained-Ripple Settling

Comparison of settling times in Table 15 computed under realistic control for both

unconstrained and no-ripple scenarios reveals that, for each motor configuration and
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each trajectory-speed value, the unconstrained ripple scenarios are favorable. For the

uncoupled motor

τs|β=1

τs|β=0

=











88.9% : Smax = 1 m/s

73.8% : Smax = 2, 3 m/s

and for the coupled motor

τs|β=1

τs|β=0

=











92.0% : Smax = 1 m/s

89.3% : Smax = 2, 3 m/s

Unlike the results of the previous section (which allow a general association of high

ripple commutation and improved positioning performance), the results in this section

reflect comparison of best performance with the chosen control structure. With this in

mind, the results represent realistic example studies and provide the data for further

performance comparisons on the basis of average power dissipation. Higher force

(faster positioning) is associated with higher currents and hence a penalty in terms of

higher average power dissipation as can be seen from the average dissipation values

of Table 15.

4.6.4 Output Force Waveforms

The force plots (the bottom subplots in Figures 69–72) reveal force ripple in actual

force production when commanded force is constant. The presence of ripple is ex-

pected when high-ripple commutation is used, and in fact is seen to be higher in these

plots. In this case, the control system is allowed to command force values that are not

available at all displacements (but rather available on average over a spatial period).

However another reason for force ripple, common to all cases, is that commutation

design assumes that phase currents that would produce a specified force value are

available instantaneously. When ripple size is controlled based on current waveform

shaping, as is the case in this research, a perfect outcome (exactly as computed)

requires a current controller with infinite bandwidth. With finite bandwidth, ripple
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(b) High force (high ripple).

Figure 69: Position task simulation results (uncoupled motor, Smax = 1 m/s).
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(b) High force (high ripple).

Figure 70: Position task simulation results (uncoupled motor, Smax = 2 m/s).
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Figure 71: Position task simulation results (coupled motor, Smax = 1 m/s).
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ṙ

0 0.2 0.4 0.6 0.8 1 1.2
−100

0

100

t (s)

F
or

ce
 (

N
)

 

 
f

Mr̈

(b) High force (high ripple).

Figure 72: Position task simulation results (coupled motor, Smax = 2 m/s).
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would increase with increasingly degraded ability to track commanded currents. The

high harmonic content of LVR motor current waveforms presents a challenge in com-

mand following; it has been noted that while the average torque is most sensitive to

the fundamental component of the current, torque ripple is generally most sensitive to

the harmonics in the current [94]. Also, current tracking is naturally more challenging

at higher speeds of operation with sharper increases in the rate of change of current

commands and increases in induced voltage. This is evident in the plots where force

ripple increases with increasing speed.

The force plots also show oscillatory behavior at the end of motion. Smoother

force profiles are possible with less aggressive control (position controller with smaller

eigenvalues). However, the results used in comparative analysis and shown in these

figures are based on the fastest settling time while maintaining system stability; this

would provide fair comparison since the controlled variable is position not force.

An important issue for future research is the influence of force ripple on residual

vibration and ultimately settling time. Some insight has been gained from published

research on vibration as discussed in Sections 1.3.2.1 and 4.1.1.5.

4.6.5 Performance of Coupled versus Uncoupled Motors

The simulation results just presented suggest that if the coupled and uncoupled mo-

tors compete for the same task, then the uncoupled motor is favorable since it provides

faster settling times. However, combining the fact that higher profile speeds provide

better settling times and that the coupled motor maintains its force capability over

a wider range of speeds, it is reasonable to conclude that if the selected trajectory

speed exceeds a certain level (with the uncoupled motor capability declining faster),

the coupled motor would become favorable. In addition, by designing the numerical

studies for comparing motors that share the same stator bar and all common geomet-

rical parameters (as opposed to having equal volume or mass), the result is a larger
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uncoupled motor placing the coupled motor at a disadvantage. This choice has been

made in order to emphasize the influence of coupling as opposed to other parameters.

In fact, the coupled motor has been shown to provide better acceleration capability

in some force range in preliminary comparative results using the same motors in this

research [46].

4.6.6 Performance Improvement Premises

There are many steps involved in a complete evaluation of positioning control per-

formance, and so it is important to highlight the premises supporting the claim of

settling time improvements (with relaxing force ripple and improving force capabil-

ity), namely the ’YES’ answers to the following questions:

• Does higher-ripple commutation lead to higher force capability? YES X

• Do higher force values result in faster motion trajectories? YES X

• Do control simulations demonstrate successful tracking of all trajectories (fast

and slow)? YES X

• Do control simulations show faster realistic-control settling times for high-ripple

trajectories than even perfect-control low-ripple trajectories? YES X

Having demonstrated positioning performance improvement with increased force rip-

ple, it remains to discuss the trade-offs.

4.6.7 Travel Time, Force Ripple and Power Dissipation Trade-offs

From all previous discussion, it is evident that the set of feasible solutions to point-

to-point positioning can be expanded by varying the amount of force ripple permitted

in commutation design: a larger set of ripple-specified force values corresponds to a

larger set of feasible trajectories, thus expanding the search for better performance

under feedback control. This section emphasizes solution selection as represented by
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the bottom boxes of the framework in Figure 56 where a choice can be made between

faster (hotter) and slower (cooler) feasible solutions.

Recall first two interesting findings from LVR motor optimal excitation studies

presented in Chapter 3 in regards to force ripple: (i) force maximization benefits from

relaxing force ripple constraints and (ii) minimization of average power dissipation

also benefits from relaxing force ripple constraints. It is obvious, on the one hand,

that the two optimization goals are antagonistic since higher forces imply higher cur-

rents and higher power dissipation, but on the other hand it is possible to choose from

slower feasible trajectories that are based on lower force requirements and are there-

fore associated with lower average power dissipation. Lower force may be combined

with lower jerk and/or speed for less aggressive trajectories and less control effort.

Control system simulations and subsequent analysis determine the consequences of

these choices on positioning performance.

Therefore, whenever the objective of a positioning task is not one of two extremes

(the minimum settling time or the minimum average power dissipation), but rather

optimizing one goal subject to bounds on the other goal, it is beneficial to have a choice

from among a wide range of results (solution space) obtained at the completion of

the four-task algorithm in Figure 57. The solution space can be searched for the best

solution, s∗ = (t∗, p∗), based on whether a limit T d on travel time or a limit P d on

power dissipation is specified:

s
∗ ∈ S ≡























Find minimum τs : P (τs) ≤ P d

OR

Find minimum P (τs) : τs ≤ T d
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4.7 Conclusion

This chapter has demonstrated settling time improvement in point-to-point position-

ing via several control system simulations; it is demonstrated that tracking of faster

positioning reference trajectories (resulting from ripple-facilitated increase in force

capability) is possible with realistic closed loop control. A framework is presented

that serves as a prescription for planning and assessing positioning task solutions and

arriving at improved performance in point-to-point positioning. The steps involved

include generation of feasible trajectories for the task, control system design and

simulation of the feasible solutions. The results are important for high-throughput

positioning applications. In order to reveal the trade-off between fast operation and

cool operation, the comparison of settling time results is presented together with the

associated average power dissipation.

In the context of high-volume high-throughput positioning, a modest improve-

ment in actuator performance per task may add up to considerable improvement over

time. For that reason searching an expanded solution space such as described in

this research (for a tradeoff between fast operation and cool operation) is worthwhile.

Obvious ways to expand the search include examining additional indices for mea-

suring force ripple and/or expanding the range of ripple-size values (imposed during

commutation design) in combination with a wider range of trajectories; for any force

ripple value, less aggressive (low jerk and/or speed) trajectories may be compared

with more aggressive (higher jerk and/or speed) trajectories. Preliminary studies

show improved force capability with higher-ripple commutation for several indices.
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CHAPTER 5

CONCLUSIONS

Point-to-point positioning, the controlled motion of an object from one point

to another, is the principal task performed by robotic machines in manufacturing

automation applications such as circuit board assembly and other product-transfer

operations. Because of global competition, automation industries and in turn man-

ufacturers of automation equipment are under great market pressure to minimize

production cycle times while meeting increasing demands on production quality and

versatility. Complex decision making is required at many levels from human and

capital resource management to production planning to controlling the work flow and

operation of the individual assembly machines. This research is concerned with per-

formance improvements that can be achieved at the most elementary level in such

a hierarchy, namely point-to-point positioning control of the motion actuators inside

automation equipment; naturally this would have a direct impact on production cycle

time.

This research demonstrates improvement of actuator performance, measured by

settling time, in single-axis point-to-point positioning. Four main factors influenc-

ing point-to-point positioning are integrated in order to produce a framework that

serves to demonstrate the performance improvement and at the same time consti-

tutes a prescription for finding and assessing positioning task solutions: (i) actuator

ripple-specified characterization and optimal static commutation, (ii) determination

of feasible position trajectories based on optimal capability, (iii) determination of

ripple-specified heat-minimizing phase currents to be recalled by the control system

indexed by desired force and position, and (iv) position control design and simulation
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for performance assessment and comparison to predictions and for examining trade-

offs. The general framework is not limited to the motors chosen in this dissertation

or linear motors only. No published research has been found that explored this path

or produced the same results by some other means.

Achieving and demonstrating performance improvements entails detailed and multi-

layered numerical studies; conclusions from these studies are summarized in this chap-

ter and the contributions that resulted from them are highlighted. This chapter also

includes several suggestions for future research.

5.1 Summary of Conclusions

Chapter 2 first develops idealized physics-based force models for two LVR motor

topologies; magnetic saturation and spatial harmonics are neglected in order to pro-

ceed with maximum clarity and at a reduced computational burden. Next, Chapter 2

develops accurate modeling techniques for LVR motors using finite element analysis

and least squares. The models are simple in structure, involving cos and tanh func-

tions in a linearly parameterized way. The model coefficients are determined from

FEA data using linear least squares methods. The approach has been successfully

demonstrated on two coupled LVR motors and three uncoupled LVR motors that

differ with respect to tooth geometry. The simplicity of the uncoupled motor allowed

the derivation of an analytical model that completely characterizes the motor using

functional expressions.

In Chapter 3, the motor models of Chapter 2 are used in conjunction with opti-

mization techniques in solving two static ripple-specified optimal commutation prob-

lems, namely force-maximizing optimal commutation (generally finds application in

characterization and bang-bang control) and heat-minimizing optimal commutation

(generally finds application in force, speed and position control). No published re-

search has accommodated the full range of force ripple in solving these optimization
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problems. Moreover, the optimal solutions are obtained without making any assump-

tions a priori on when to turn a phase on or off or on the number of phases that

can be excited simultaneously or how to allocate force production among the excited

phases; with few exceptions noted in Section 1.3.2, optimal commutation is typically

computed under such assumptions.

The ultimate objective of the force-maximizing problem is to determine the ripple-

specified force-speed characteristics. The results show a higher capability with in-

creased ripple allowance; using the higher capability in generating minimum-time s-

curve models results in faster positioning trajectories. The objective of heat-minimizing

commutation is to determine currents that produce a desired ripple-specified force

with minimum power dissipation. The results, which would be recalled during dy-

namic operation to produce controller commanded force, indicate lower spatial aver-

age power dissipation with increased ripple allowance.

The two motor topologies are compared and contrasted. The results of improved

force capability and static average power dissipation with increased ripple apply to

both but are more pronounced for the uncoupled motor since it exhibits more force

ripple and therefore stands to benefit the most from manipulating force ripple. The

same optimal commutation formulations are used with both linear and non-linear

models with no modification other than in the substitution of the appropriate math-

ematical expressions. The results show the higher force capability with increased

ripple is not a consequence of the magnetic linearity assumptions.

Chapter 4 describes the framework that has been developed to achieve and demon-

strate improvement in point-to-point positioning. The control system components

and the simulation software are described and the results of multiple positioning

tasks are presented. It is shown that the predicted advantage in terms of reduced

settling time is confirmed under realistic control system simulation for both LVR mo-

tor configurations. The uncoupled motor represents classic linear and rotary variable
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reluctance motors whereas the coupled motor exhibits features of both switched and

synchronous varieties of variable reluctance motors. Therefore, it is reasonable to

expect that the research results are likely to have a broader applicability beyond the

specific linear-motion motors studied.

Finally, Chapter 4 discusses the trade-offs among travel time, force ripple and

power dissipation; faster operation resulting from allowing high ripple leads to higher

average power dissipation. The positioning assessment framework presented here

allows for expanding current lookup tables to dynamically match operating speeds

rather than conservatively assuming the maximum trajectory speed throughout the

motion thus allowing lower average power dissipation at the cost of memory space.

Lower dissipation is also possible by choosing lower ripple sizes in commutation design

and/or by choosing less aggressive trajectories (lower jerk and/or speed) but this

offsets some of the gain in achievable performance. Clearly, expanding the possible

solution space is important in the context of high-volume high-throughput positioning

so that tradeoff possibilities can be adequately covered.

5.2 New Contributions

1. Modeling of coupled and uncoupled LVR motors

• Assessment of the accuracy of idealized LVR motor modeling through com-

parisons to more accurate finite-element based modeling using the coupled

motor [41]

• Analytical modeling using novel functional expressions for coupled (single-

phase excitation) and uncoupled LVR motors from accurate numerical data

(from finite element analysis or measurement) by employing a novel func-

tion fitting approach that removes inaccuracies due to numerical artifacts

[44]
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2. Solutions to the maximum instantaneous-force production and desired instan-

taneous force with minimum power dissipation commutation problems

• Revealing the synchronous-like features of the coupled motor and the as-

sociated force control strategy of continuous three-phase excitation [42]

• Analysis of the internal force production mechanism of LVR motors and

the influence of geometry and converter connection [42], [43], [45]

• Analysis and comparison of idealized coupled and uncoupled LVR motors

of varying tooth geometry in terms of their instantaneous acceleration

capabilities [46]

3. Solutions to the maximum average-force production and desired average force

with minimum power dissipation commutation problems

(a) Without force ripple specification

• Comparison of idealized coupled and uncoupled LVR motors in terms

of their instantaneous acceleration capabilities and associated perfor-

mance measures [47]

• Force-speed characterization and heat minimizing current waveforms

for desired average-force production for the uncoupled motor using

accurate finite-element based models [48]

(b) With force ripple specification

• Production and comparison of force-speed characterization parame-

terized by ripple for idealized coupled and uncoupled LVR motors

• Expanded feasible trajectory space for point-to-point positioning by

matching minimum-time s-curve trajectories to ripple-based force-speed

capability
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• Heat-minimizing current waveforms for desired ripple-specified average

force production

4. Demonstrating improvements in coupled and uncoupled LVR motor point-to-

point positioning performance (reduced settling time) achieved by employing a

high-ripple commutation strategy

• Developing an integrative framework for finding and assessing solutions to

the point-to-point positioning control problem for any motor technology

• Point-to-point position control design for LVR motors incorporating opti-

mal commutation and digital implementation of state-space integral con-

trol

• Analyzing the trade-offs among force ripple, settling time and average

power dissipation in the context of single-axis point-to-point positioning

5.3 Future Research

Various opportunities exist for future work including the following:

Experimental Work: Experimental testing of the overall system is necessary

for verification of the performance improvements reported in this research.

Actuator Design to Maximize Acceleration: The results of this research,

which favor maximizing acceleration for faster point-to-point positioning despite re-

quiring increased force ripple, motivate exploring motor designs that maximize force

production and assessing them despite attributes of force or torque production such

as ripple that are perceived negative. The results in Chapter 3, which are not all intu-

itively obvious and which reveal the influence of tooth geometry and motor-converter

wire connections on force capability, provide further motivation to explore all design

factors and to subsequently use the framework presented here to assess how they

ultimately influence positioning performance.
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Consideration of Additional Force Ripple Indices: In this research, the

1-norm is used in ripple quantification. The choice of this ripple index is a result

of preliminary research indicating lower heat generation. However, preliminary re-

search also showed striking differences in the shapes of force waveforms depending

on the ripple index used. Research into input force shaping and its influence on

residual vibration, current tracking, and position or speed control might benefit from

considering other norms.

Accurate Thermal Modeling: Thermal modeling is important in applications

where productivity is limited by steady state temperature. Also, heat losses are not

limited to copper losses; other sources of heat include hysteresis losses, eddy-current

losses, skin effect losses and mechanical losses and their inclusion would facilitate

more accurate prediction of the achievable positioning performance.

Complete Model for the Coupled Motor: Unlike the simpler uncoupled

motor, a complete symbolic representation of the coupled motor model is hard to

come by, but extra effort to find one is well motivated. Numerical modeling based on

finite element data remains an option but it is inferior because of added requirements

on memory space and time.

Improved Dynamic Commutation: The excitation currents used in this re-

search come from lookup tables that correspond to the highest profile speed to ensure

voltage constraints are not violated at any point during dynamic operation, yet dy-

namic operation is not constantly at the maximum speed. Therefore, as computation

power increases, it may be possible to improve average power dissipation by saving

phase current lookup tables that are indexed by instantaneous speed as well as posi-

tion and desired force. The immediate result would be a reduction in average power

dissipation.
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Consideration of Structure Vibration: It is important to find out how the

non-conventional high force-ripple commutation strategy adopted in this research in-

fluences residual vibration and ultimately settling time. The discussion on published

research in Sections 1.3.2.1 and 4.1.1.5 motivates the assessment of positioning per-

formance after integrating vibration suppression techniques (particularly command

shaping), optimal excitation and control design to find out if advances in vibration

control methods will favor faster high-ripple LVR motor operation to slower no-ripple

LVR motor operation in the same way that such advances favored robotic systems

with faster light structures requiring specialized vibration control to slower struc-

turally stiffened and dampened systems requiring no specialized vibration control.

Further Improvement of Feedback Control Design: It is prudent to explore

additional feedback control techniques, for example robust and adaptive schemes, in

search of the best control structure, especially in experimental implementation where

performance assessment takes into account non-modeled disturbances and tempera-

ture rise from all heat sources.

There remain several opportunities for expanding on the research presented in this

dissertation; however, it provides a novel framework for identifying, implementing and

assessing feasible solutions for point-to-point positioning tasks. In a larger scope, the

framework can be implemented in the virtual prototyping of positioning systems by

seeking and assessing the positioning performance of force-maximizing designs. The

framework, while implemented in this research using LVR motors (thus filling a void

in the application of that particular technology in positioning systems), is generally

applicable to any type of linear or rotary motor.
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