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SUMMARY

Multi-agent reinforcement learning (MARL) poses the same planning problem as

traditional reinforcement learning (RL): What actions over time should an agent take in

order to maximize its rewards? MARL tackles a challenging set of problems that can be

better understood by modeling them as having a relatively simple environment but with

complex dynamics attributed to the presence of other agents who are also attempting to

maximize their rewards. A great wealth of research has developed around specific subsets of

this problem, most notably when the rewards for each agent are either the same or directly

opposite each other. However, there has been relatively little progress made for the general

problem. This thesis address this lack.

Our goal is to tackle the most general, least restrictive class of MARL problems. These

are general-sum, non-deterministic, infinite horizon, multi-agent sequential decision prob-

lems of complete and incomplete information. Towards this goal, we engage in two comple-

mentary endeavors: the creation of tractable models and the construction of efficient algo-

rithms to solve these models. We tackle three well known models: stochastic games, decen-

tralized partially observable Markov decision problems, and partially observable stochastic

games. We also present a new fourth model, Markov games of incomplete information, to

help solve the partially observable models.

For stochastic games and decentralized partially observable Markov decision problems,

we develop novel and efficient value iteration algorithms to solve for game theoretic solutions.

We empirically evaluate these algorithms on a range of problems, including well known

benchmarks and show that our value iteration algorithms perform better than current policy

iteration algorithms. Finally, we argue that our approach is easily extendable to new models

and solution concepts, thus providing a foundation for a new class of multi-agent value

iteration algorithms.

xiv



CHAPTER I

INTRODUCTION

Multi-agent reinforcement learning (MARL) [34] poses the same learning problem as tra-

ditional reinforcement leaning: How can agents learn to maximize their rewards through

interaction with their environment? Traditional reinforcement learning has formalized this

problem by modeling the environment as a Markov decision process (MDP) where the out-

come of an agent’s actions are fully explained by the state the world is in. MDPs work well

for modeling simple dynamical systems but have a hard time modeling the near boundless

complexity of the real world. A particularly interesting class of environments that MDPs

model poorly can be understood, instead, by modeling them as a relatively simple process,

but with complex dynamics attributed to the presence of other agents who are also at-

tempting to maximize their rewards. MARL addresses the reinforcement learning problem

in these environments.

We start by introducing the field of multi-agent learning and explain why game theo-

retic solutions are both reasonable and useful for our problem (Chapter 1). After reviewing

relevant background material (Chapter 2), we present achievable set methods under full

observability (Chapter 3). We then extend our results to games of incomplete information,

first by defining a new model which explicitly enumerates the beliefs of all agents (Chap-

ter 4). We then show how to solve this new model for the case when rewards are shared

(Chapter 5).

1.1 Motivation

The field of game theory has long addressed the question of how to model and predict the

behavior of multiple self interested agents acting in the same environment. Game theory is

a mature discipline containing some of the best answers we have to how competing agents

will act. MARL has taken much, as it should, from game theory. However, there are two

fundamental problems preventing game theory from being directly applied to the MARL

1



problem.

1. Few algorithms that compute general-sum game theoretic solutions efficiently scale

beyond toy problems.

2. Game theory assumes agents are fully rational, meaning they have infinite intelligence

and computational power, an assumption that clearly does not hold in the real world.

Due in large part to these two problems, game theory focuses on describing the properties

of an optimal joint-policy, while MARL is interested in prescribing a particular optimal

policy for an individual agent. This problem is even more acute in unknown environments.

This thesis primarily attempts to address the first shortcoming and utilize game theory’s

strong theoretical foundation to solve the multi-agent reinforcement learning problem. We

accomplish this by designing scalable algorithms to compute game theoretic solutions for

scalable models.

MARL has very similar goals to traditional game theory but deals with the unattain-

ability of rationality in a principled yet pragmatic way. Rationally leads to a number of

conclusions that are unreasonable for practical MARL problems. However, we should be

careful not to immediately throw out such an assumption. MARL is predicated on un-

derstanding the world in terms of other agents maximizing their own rewards. Rational

agents inhabit the idealization of this model. If we believe that other agents have bounded-

rationality we need to be careful to clearly redefine our model. On one hand, rationality

is the goal all agents should aspire to. On the other hand, rationality is unattainable, so

when designing algorithms for the real world we aim for robust algorithms - algorithms that

perform well even when our model is inaccurate and our computing power insufficient.

The first and most obvious failing of rationality is that agents may not be able to compute

their optimal course of action. Worse agents may not be able to accurately compute the

value of a particular policy (even when it’s presented to them) and may erroneously conclude

suboptimal policies are in equilibrium, or break equilibria by taking suboptimal actions. To

mitigate these problems this thesis assumes agents are willing to tolerate some small ε error

in their utility calculations and therefore will accept ε-equilibria as solutions. A more formal
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account of this assumption is given in Section 3.4.1.

Another failing of rationality, is that it assumes that the world model (a.k.a. environment

dynamics) is commonly known to all agents. These problems are known as model-based.

MARL is often interested in cases where agents have to simultaneously learn about the

world while maximizing rewards, leading to the well known exploration vs. exploitation

trade off [39]. These problems are known as model-free. While game theory can by applied

to model-free problems by viewing them as an incomplete information game with a type for

each possible observation trace, such an exact approach (a.k.a. full Bayesian policy [43]) is

impractical even in the single agent case. We believe that approximation techniques similar

to those used for traditional reinforcement learning will transfer to MARL but before such

approaches can be used we need to solve the model-based problem.

Third, rationality implies an unambiguous consensus about the definition of optimal

behavior. This implies that agents will inherently agree on a course of action. Ironically,

while game theorists agree that rational agents will agree on the definition of optimality

the theorists themselves can not agree on a definition, with many different competing views

of ideal behavior and solution concepts. It is therefore unreasonable to expect sub-rational

agents to perfectly predict each other’s behavior. It seems reasonable that with communi-

cation (either explicitly or implicitly through repeated interactions) agents would settle into

policies in equilibrium (where no player can unilaterally improve their utility). However,

there may be many equilibria so which particular equilibrium is targeted and agreed upon

(equilibrium selection) poses a huge problem. Game theory is able to tackle the problem

through axioms of fairness leading to bargaining solutions [56]. However, once again, many

such bargaining solutions exist leading to further question the applicability of the approach.

In the face of this uncertainly a large open research question for multi-agent learning is how

to efficiently and effectively converge onto an equilibrium. This thesis does not attempt to

directly answer this question, instead we compute the entire set of equilibria (the achievable

set), guaranteeing that we find the solution no matter which definition of optimal is used.

Despite the shortcomings of game theory it is the most vetted and well grounded method

for understanding multi-agent interactions. Ultimately it is the disconnect between the
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assumption of rationality and the intractability of the resulting solutions that most harms

the credibility of game theoretic solutions. It is the attempt of this thesis to bridge this

gap by developing efficient algorithms and compact models that compute game theoretic

solutions while respecting the limitations of real world agents.

1.2 Problem

Our primary objective in this thesis is to make it feasible to solve larger and more complex

sequential multi-agent reinforcement learning problems with an infinite horizon. Towards

this goal we engage in two complementary endeavors: the creation of tractable models and

the construction of efficient algorithms to solve these models.

Stochastic or Markov games [48] are a natural extension to Markov decision processes

(MDPs) for multi-agent reinforcement learning, with actions being joint actions and rewards

being a vector of rewards (one to each player). They can model a broad range of interest-

ing problems including oligopoly and monetary policy [5], network security and utilization

[58], and phenotype-expression patterns in evolving microbes [91]. Unfortunately, typical

applications of stochastic games are currently limited to very small and simple games. The

primary bottleneck for solving larger stochastic games games is the efficiency and efficacy of

current algorithms. In addition, previous attempts at solving MARL problems have focused

on limited subsets of the general models. For example, there has been a great deal of work

on zero-sum games and common-payoff games [82, 67]. In this dissertation we solve both

general sum problems and, when there is only partial observability, problems with common

payoff. We tackle solving stochastic games in Chapter 3.

While stochastic games are useful they assume complete knowledge of the environment.

In most real world problems agents are not able to completely observe the world around

them. This is particularly true when reasoning about other agent’s goals. The natural

extension of stochastic games to these incomplete information scenarios is the model known

as partially observable stochastic games (POSG). POSGs are extremely complicated and

attempts to solve POSGs have all met large computational barriers. In order to solve

POSGs we address three complementary questions: Why are POSGs very challenging to
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solve efficiently? How can we go about approximating POSGs in order to tractably solve

them? How can we solve an approximation efficiently? Chapter 4 addresses the first two

questions, and Chapter 5 addresses the final question.

For all models, we assume each agent is ε-rational, in that they are willing to be within ε

utility from optimal in order to maintain equilibrium. Our goal is to produce a joint policy

that is Pareto-optimal (no other viable joint policy gives a player more utility without

lowering another player’s utility), fair (players agree on the joint policy), and in equilibrium

(no player can gain by deviating from the joint policy). The precise meaning of fair is

intentionally left unspecified for generality. This solution concept is the game-theoretic

solution. While there are many potential equilibrium solution concepts the final algorithms

in this dissertation are only directly applicable to concepts with convex solution spaces. In

particular we target correlated equilibria in the fully observable case, and agent normal-

form correlated equilibria in the partially observable case. This solution is both broadly

applicable and useful.

1.3 Approach

The algorithms developed in this dissertation are value-based dynamic programming al-

gorithms, taking their heritage from value iteration and the Bellman-equation. At each

iteration we compute an estimate for the value (a.k.a. utility) that can be achieved in each

state. This estimate is improved over successive iterations until we can make guarantees

about the high accuracy of the values computed.

Our value-based approach is in contrast to the current dominate policy based lines of

MARL research which attempts to directly optimize agents’ policies [59, 64, 87]. Unlike

policy-based approaches, we do not need to remember policy information between iterations.

For MARL, value based approaches can have significant advantages over their policy-based

counterparts. With multiple agents the joint-policy space tends to be exponentially larger

than in the single-agent case and attempting to optimize each agent’s policy independently

is typically a non-convex problem leading to local optima.

We extend the Bellman heritage to stochastic games by utilizing the notion of an
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achievable-set function – the multi-agent analogy to the single agent value-function. In

MDPs, the value-function represents the optimal achievable utility for every state. When

there are multiple agents it is not always possible to simultaneously maximize all agent’s

utilities, so the multi-agent achievable-set-function must represent all possible combina-

tions of values. Because we now operate on sets for each state instead of scalar values the

Bellman backup becomes more complicated, although conceptually it remains unchanged.

Along with values transforming into sets, there are two additional major difficulties that

arise in the multi-agent problem. We must ensure that policies remain in equilibrium and

that the complexity of the sets does not overwhelm the problem. We solve the first problem

through linear programming and the second through polytope approximation. In each case

we are careful to prove correctness and bound the error introduced, allowing us to have

strong guarantees about the quality of our solutions.

When the world is only partially observable the problem becomes much harder. We

argue that the primary complicating feature of POSGs is that they deny a compact belief.

This means that agents must remember their entire history and reason about other agent’s

entire histories. Because of this, we believe POSGs are too general. Instead we develop a

slightly weaker model which still captures the important aspects of POSGs, but permits

tractable solution algorithms. Our new model – Markov games of incomplete information

(MaGII)– is based on making the assumption that beliefs are bounded. While this assump-

tion is simple, the consequences are non-trivial and allows us to extend existing algorithms

to solve new classes of problems. While the theory behind MaGIIs is developed for the

general-sum problem, we design an efficient algorithm for the common-payoff case based

on point based value iteration for POMDPs. This dissertation results in both a framework

to think about how to tackle general multi-agent problems, as well as concrete value-based

algorithms able to efficiently compute solutions to previously unsolved problems.
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1.4 Thesis

This dissertation presents theory, algorithms, and empirical results to support the following

thesis:

Value methods can efficiently compute useful game theoretic so-

lutions to general multi-agent reinforcement learning problems.

We clarifying the meaning of each part of this thesis as follows:

• “Value methods ...”

Value-function based approaches have proven effective for single agent problems, but

have proven to be less effective for general-sum multi-agent problems. We extend

the notion of value-functions to multi-agent domains and develop value-iteration al-

gorithms to operate on these extensions.

• “... can efficiently compute ...”

We show that our algorithms scale polynomially with respect to the size of the model,

while having low enough degree for it to be practical to solve interesting problems.

• “... useful game theoretic solutions ...”

In this thesis we target correlated equilibria in the fully observable case, and agent

normal-form correlated equilibria in the partially observable case. We provide tight

guarantees about our error, and we argue that these solution concepts are viable and

useful for real world agents.

• “... to general multi-agent reinforcement learning problems.”

The goal of this thesis is to tackle the most general, least restrictive class of MARL

problems. These are general-sum, non-deterministic, infinite horizon, multi-agent

sequential decision problems of complete and incomplete information. To the author’s

knowledge, no other body of work has directly addressed this broad class of problems.

In order to tackle partially observable problems we develop several new models that

better capture and illuminate the complexities involved with these problems.
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CHAPTER II

BACKGROUND

Sequential decision problems are, at their heart, optimization problems. The goal is to

find a policy which maximizes an agent’s utility. Two factors make this problem particu-

larly challenging: (1) The number of distinct policies grows exponentially with time. (2)

The relationship between policies and their utility can be quite complex or even partially

unknown. Because of these complications, standard general optimization techniques are

typically not directly applicable.

Sequential decision problems use various formal models to describe the relationship be-

tween policies and utility. These models typically describe the dynamics of the environment

along with the agent’s goals in the form of rewards. Such models assume agents are ratio-

nal and that their Von NeumannMorgenstern utility [89] can be broken down into a sum of

(possibly discounted) rewards. This model is either specified ahead of time (a model-based

problem) or has an assumed form with unknown values that is learned over time (a model-

free problem). This thesis deals with model-based problems. Models should be able to

accurately and compactly represent the problem at hand, while permitting tractable algo-

rithms to solve them. This has led to research into a number of different formal models for

different decision problems. This thesis utilizes and extends many of these models, which

are defined and discussed in detail in this chapter.

There are many classes of sequential decision problems. In this thesis we are interested

in solving problems that are: multi-agent (more than one agent simultaneously making

decisions and optimizing their policy), model-based (the world dynamics are known ahead of

time to all agents), infinite horizon with discounted reward (there is no planning horizon, but

rewards decay exponentially over time). We also assume all agents are ε-rational (meaning

that all agents are able to maximize their own utility to within ε of optimal, and are able to

predict the thought process of all other agents). While we do not assume there is any means
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of communication beyond what is explicitly given by the model, we do assume that agents

can observe a shared random variable equivalent to having access to the same random

number generator with the same seed. Rationality could be seen as implying a shared

random variable.

This chapter presents background on models that we use to help solve our class of

problems. First, in Section 2.1, we examine multi-agent non-sequential decision problems

(stage games). We also describe what a solution should look like in these problems because

when there are multiple agents the definition of an optimal solution is not self-evident. We

look at three basic stage games: normal form games, Bayesian games, and decentralized

decisions. In Section 2.2 we discuss the sequential version of each of these models. Because

a sequential problem can be viewed as a single shot problem where the decision is an entire

policy, the solutions concepts described for stage games translate well (with minor additional

considerations) over to their sequential counterparts.

2.1 Stage games

Stage games are one shot multi-agent decision problems. Each agent chooses an action, and

then receives a final payoff. Agents attempt to maximize this single payoff. Naively these

can be represented in tabular form. For each possible joint-decision (one for each agent)

the model can describe the utility each agent obtains. Throughout this thesis we use the

terms ”agent” and ”player” interchangeably.

A decision can come in many different forms depending on the problem. When the

world is fully observable, these decisions are actions and the model is a normal form game

(Section 2.1.1). When the world is only partially observable each agent may receive different

types of information before making their decision. Such a problem is known as a Bayesian

game (Section 2.1.2). An agent in these problems may choose a different action for each

information-state they find themselves in, and thus their decisions are not just actions but

strategies (an action choice for each information-type).

Unfortunately, agents often have multiple independent decisions which can make a tab-

ular representation unwieldy. For example, a centralized agent controlling multiple actors
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may have to make a decision for each actor. Or, even worse, an agent may have to make a

series of decisions over a number of time steps after receiving one of many possible obser-

vation. While this Any decision problem can be thought of as a stage game, with multiple

decisions being condensed into a single action representing that player’s policy. The prob-

lem with such models is that these policies grow exponentially with the horizon. These

problems are better represented by an explicit decentralized and/or sequential model such

as those presented later in Section 2.2. However, it is useful to view these models as a series

of stage-games which can be solved individually, thus we begin our tour of formal models

with single shot stage games.

Multi-agent models extend single agent decision problems by using vectors (one element

per player) to represent actions, rewards, beliefs, or observations rather than the scalars

used in single agent models. These vectors are often referred to as joints of the individual

variables. It is useful to refer to all elements of the joint except one particular player. For

a joint-action ~a where ~ai ∈ Ai we refer to all actions except for player i’s as ~a−i and the

set of possible such joint-actions as A−i =
∏
j∈A|j 6=iAj . If all other players besides player i

take joint-action ~a−i and player i takes action α then we write the full joint-action as ~a−i,α.

A similar notation is used for types and observations.

2.1.1 Normal form games

A normal form game is the simplest model of a multi-agent decision problem. Players

simultaneously take actions and then receive individual rewards (a.k.a. payoffs) based on

their joint-action. Players care only about maximizing their own personal reward and not

about what rewards the other players receive. It is assumed that all players have common

knowledge of the game being played, and that those players are rational. A normal form

game consists of a tuple 〈N,A,R〉

• N is the set of players. n = |N |

• A =
∏n
i=1Ai where Ai is the set of actions for player i

• R : A→ Rn is the reward function
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Rational players can predict the behavior of other agents, and take optimal actions.

When all players are rational their strategies will be in equilibrium, meaning that no player

has an incentive to change their action given the equilibrium solution. This solution can

come in a variety of different solution concepts depending on small differences about how

the game and the players are defined.

A Nash equilibrium [37] takes the form of n independent probability distributions (strate-

gies) over each player’s actions, where each player can not gain by changing their strategy

given that the other players don’t change their strategies. This solution concept is the most

commonly used and has the longest history within the field of game theory, but has high

computational complexity (PPAD-complete [20]), which means it most likely is not polyno-

mially solvable. It is also not a convex solution concept, meaning that the interpolation of

two joint-strategies in Nash equilibrium may not be a Nash equilibrium. For these reasons

we shy away from the Nash equilibrium solution concept.

A correlated equilibrium [7], which generalizes a Nash equilibrium, takes the form of a

single probability distribution across joint-actions. Agents observe a shared random variable

corresponding to joint-actions drawn from the correlated equilibrium’s distribution. This

informs agents of their prescribed action without directly revealing other agents’ actions;

however, information about other agents’ actions is revealed in the form of a posterior

probability after viewing the recommendation. The distribution is a correlated equilibrium

when no agent has an incentive to unilaterally deviate. One can think of a CE as having a

mediator (although one is not needed) who draws a joint-action from a known distribution

and tells each player privately which action they should take. If players can’t gain by

deviating from the mediator’s recommendation than the known distribution is a correlated

equilibrium.

Formally, a probability distribution p ∈ ∆( ~A) is a correlated equilibrium iff:

For each player i and distinct actions α, β ∈ Ai,

∑
~a−i∈A−i

p((~a−i, α))R((~a−i, α))i ≥
∑
~a−i

p((~a−i, α))R((~a−i, β))i
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As an example, take the game of chicken (Figure 1). This game has three Nash equi-

libria. Two are pure strategy equilibria (each player takes exactly one action): (Brave,

Chicken) and (Chicken, Brave). One is a mixed strategy with each player taking ’Chicken’

with probability 2
3 and ’Brave’ with probability 1

3 . This mixed strategy yields an expected

payoff of 4.66 for each player, which is the greatest average reward that the agents can

achieve using a Nash equilibrium. On the other hand, the game of chicken has an infinite

number of correlated equilibria. Because Equation 1 is linear, the constraints on distribu-

tions over joint-actions forms a closed convex set. Any distribution in this set is a correlated

equilibrium (Section 3.2 goes into more detail about these sets). The correlated equilibrium

with the highest payoff has the agents taking (Brave, Chicken) and (Chicken, Brave) each

with probability 1
4 and (Chicken, Chicken) with probability 1

2 . This yields an expected

payoff of 5.25 to each player which is better than the best Nash equilibrium.

2, 7
7, 2
6, 6

0, 0
Chicken

Chicken

Dare
Dare

Player 1

Player 2

Figure 1: The game of chicken.

2.1.2 Bayesian games

A Bayesian game is the partially observable equivalent of a normal form game. Before the

beginning of the game, each player observes a private signal (a.k.a. their type). The players

then take actions and receive rewards. The joint-signal (of which players only have partial

knowledge) is drawn from a commonly known distribution. Instead of knowing the rewards

for every joint-action, players know the rewards for every joint-action-type pair. A Bayesian

game consists of a tuple BG = 〈N,A,Θ, τ, R〉

• N is the set of players. n = |N |

• A =
∏n
i=1Ai where Ai is the set of actions for player i

• Θ =
∏n
i=1 Θi is the set of types (one for each different possible private signal θi ∈ Θi
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)

• τ ∈ ∆(Θ) is a probability distribution over joint types Θ assigning θ w.p. τ(θ)

• R : Θ×A→ Rn is the reward function

Like for actions, it is convenient to refer to the types of all players except player i. We

use a similar notation for types as we did for actions. θ−i ∈ Θ−i is a joint-type excluding

player i and Θ−i =
∏
j 6=i Θj is the type space of all players expect player i. (θ−i, θi) is a

full joint-type.

There are a number of different game theoretic solutions to Bayesian games, each of

which make slightly different assumptions [25]. We distinguish between three different

dimensions of solutions and argue for a particular solution concept based on which assump-

tions we believe to be most general and applicable.

The first distinction we make is between Nash and correlated equilibria. Nash equilib-

ria assume players choose actions independently while correlated equilibria allow player’s

actions to be dependent via a shared random variable (and thus conditionally independent

given the random variable). Correlated equilibria are more general than Nash equilibria (all

Nash equilibria are correlated equilibria) and thus will produce better results. Correlated

equilibria are also computationally much less demanding to compute. Therefore agents

have an incentive to use correlated equilibria instead of Nash equilibria when available.

While Correlated equilibria require a shared random variable (a.k.a. correlation device),

such a requirement is not particularly demanding as agents in most real world scenarios can

find or create such variables (e.g., electromagnetic or sound noise at a particularly volatile

frequency, sunspots, a dice roll, a mediator, or cryptographic techniques using communi-

cation). It might seem implausible for agents to have the ability to agree on a particular

shared random variable but if they can’t select a random variable then they also won’t be

able to perform equilibrium selection or for that matter even agree on a solution concept.

Determining a correlation device as well as equilibrium selection and solution concept agree-

ment are thus all part of the same problem and out of the scope of this thesis. Because the

requirements are low and reasonable while providing superior results at lower computational
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complexity, we will focus on correlated equilibria.

Within correlated equilibria concepts a second distinction is made with regard to the

level of communication permitted. Unlimited communication which incurs no cost to the

agents (cheap-talk) is sometimes present. In games of incomplete information cheap-talk

can expand the set of equilibria as agents can potentially share their private information

with each other. This leads to a solution concept known as communication equilibrium

[25]. However the problem of determining a communication policy (without an unbiased

mediator) is itself a complicated problem with doubts that it is possible at all [42]. We also

want to maintain as general a solution as possible so we believe that any communication

should be explicitly included in the model. While we still assume agents have access to

a shared random variable, we will not assume the presence of cheap-talk (thus agents can

not inform each other about their private information within a stage-game, only explicitly

through their actions across stages).

The third distinction we make is between strategic and agent form solutions. Strate-

gic form solutions assume that a player simultaneously controls the policy of all types of

that player while agent form treats each player type as a separate player. Strategic form

equilibria must guarantee that there is no incentive for multiple types of the same player

to simultaneously switch their policies, while agent-normal form only requires that each

individual type of a player does not have an incentive to change their policy. In effect,

strategic form must guard against coalitions between types of the same player, and is thus

more restrictive than agent form (all strategic form equilibria are agent form equilibria,

but not visa-versa). Agent-normal form will therefore provide better results. Agent-normal

form also seems more reasonable as an agent has no reason to help hypothetical versions

of themselves. Even if an agent might be a different type next time around, a sequential

solution accounts for this future possibility. Agent-form is also easier to compute. For these

reasons we believe the agent-normal form is a more appropriate solution concept.

Taking into account the three distinctions listed above we believe the appropriate solu-

tion concept for each Bayesian stage-game is the agent-normal form correlated equilibria.

For a description of various Bayesian-Nash solution concepts see [56], while other correlated
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solution concepts are examined in [25].

Definition: An agent normal form correlated equilibrium takes the form of a probability

distribution across actions and types such that agent-types don’t have an incentive to de-

viate, and that a player’s action is conditionally independent of the types of other players

(enforcing that no private information is revealed by the shared random variable). Formally,

a probability distribution p ∈ ∆(Θ×A) is an agent normal form correlated equilibrium iff:

For each player i with type ti, distinct actions α, β ∈ Ai,

∑
~a−i

∑
~θ∈Θ|θi=ti

τ(~θ)p~θ,(~a−i,α)
R(~θ, (~a−i, α)) ≥

∑
~a−i

∑
~θ∈Θ|θi=ti

τ(~θ)p~θ,(~a−i,α)
R(~θ, (~a−i, β)) (1)

For all players i, j with types ti, tj , and action α

∑
~a−i

∑
θ∈Θ|θi=ti,θj=tj

[
pθ,(~a−i,α)

]
= τ(ti)

∑
~a−i

∑
θ∈Θ|θj=tj

[
pθ,(~a−i,α)

]
(2)

An agent normal form correlated equilibrium will yield an expected payoff to each agent

i (utility) of:

Vi(p) =
∑
~θ

τ(~θ)
∑
~a

p~θ,~aRi(
~θ,~a)

2.1.3 Decentralized decisions

If all the agents of a stage game share the same reward function then the agents are cooper-

ative and not competitive. If the state of the world is fully observable (i.e., the agents are

playing a normal form game with shared reward) then the problem can be viewed as a cen-

tralized single-agent decision problem where the single agent must choose actions for each

decentralized-agent. Recall that we don’t assume agents are able to communicate private

information, but because there is no uncertainty about the state of the world and agents

are rational they are able to predict the actions of other agents and act as though there

is a centralized decision maker. The action space for the centralized decision maker is the

Cartesian product of the action spaces for each decentralized agent.
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The problem is more complicated when each cooperative agents is given private infor-

mation before they make their decision (i.e., the agents are playing a Bayesian game with

shared reward). However, we can still view the problem through the lens of a single central-

ized decision maker. Now, instead of only one action per decentralized agent, the decision

maker must assign an action to each agent for each information-state (type) of that agent.

This is equivalent to a solution to the corresponding Bayesian game and can be thought

of as a probability distribution across actions and types that satisfies Equation 1 except

because the agents share rewards there is no need for the rationality constraints. Without

the rationality constraints there will always exist an optimal integral (all variables either 0

or 1) solution to Equation 1. This means that without loss of generality we can assume an

optimal solution will be a pure strategy (no randomization in the actions taken).

2.2 Sequential decision models

Stage games represent a single decision at a single point in time. However, most agents

must make multiple decisions over time after taking observations and gaining information.

These problems are referred to as sequential decision problems. A sequential decision maker

follows a policy, which maps possible information states to actions. While its possible to view

sequential problems as a single decision over policies, the number of policies is exponential

with respect to the number of information states. It is therefore useful to have models

tailored to sequential decision problems.

Single agent reinforcement learning models the world as a Markov decision process

(MDP) where the objective is to maximize the long term expectation of a reward signal

([86] for more information). When there is uncertainty in the world, it becomes more

efficient to modify the MDP model by explicitly separating observations from underlying

dynamics, resulting in a partially observable Markov decision process (POMDP). When

the world can be be understood as containing multiple self interested agents we must once

again use different models (these are referred to as games). Game theory uses a number

of different models. For non-sequential problem (a.k.a. stage games) the models of normal

form games and stochastic games are used for fully observable and partially observable
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scenarios respectively. The sequential formulation of these problems become stochastic

games (SGs) and partially observable stochastic games (POSGs) for the fully observable

and partially observable scenarios respectively.

Each model efficiently captures otherwise unwieldy aspects of the environment (hidden

state, multiple agents, and/or sequential decisions) by making a slightly more complex

model and/or including additional assumptions. The models listed are widely used and

have been studied by a variety of fields for many decades. We use these models and previous

research on them as the foundation for this thesis and continue the tradition of extending

these models to handle additional complexity. In this section we review the well known

models listed above, what it means to solve them, and what previous work has been done

towards computing these solutions.

2.2.1 Markov decision processes (MDP)

Markov decision processes (MDPs) model fully observable single agent sequential decision

problems. In every state an agent takes an action, receives rewards and then observes the

new state they end up in (the successor state). The dynamics of this series of states is

described by the transition function which obeys a Markov property. The Markov property

guarantees that the probability of a particular successor state depends only on the previous

state and the action taken, not on any previous state. MDPs consist of a tuple MDP =

〈S, s(0), A, P,R〉

• S is the set of states

• s(0) ∈ ∆(S) is the initial state distribution

• A is the set of actions

• P : S × A → ∆(S) is the probability transition function with P (s′|s, a) being the

probability of ending up in state s′ after taking action a in state s

• R : S ×A→ R is the function
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MDPs have proved to be very useful and much research has gone into developing efficient

algorithms for computing optimal policies for MPDs. A major class of these algorithms

operates by computing the utility (a.k.a. value) of every state. This approach is based off

of the observation that if the utility of all successor states is known, then the utility of the

current state can be computed by finding the optimal action for that state. A states value

V (s) can be described recursively in terms of the value of successor states by the Bellman

equation:

V (s) = max
a
{R(s, a) + γ

∑
s′

P (s′|s, a)V (s′)} (3)

If an agent knows the value of every state (the function V : S → R a.k.a. the value-function)

then greedily taking actions (based on which one has the greatest expected value) will result

in an optimal policy.

One well known algorithm to compute the value-function is value-iteration [86] which

uses the Bellman equation as an update rule to sequentially improve the estimated utility

of each state. This is a dynamic programming approach. We start the process with an

arbitrary initialization of each value. Each time the Bellman equation is used to update a

state’s value estimate (a Bellman update) the horizon of the initial value is backed up and

its relative contribution to the current value estimate is reduced by the discount factor. In

this way the error of our estimates is driven down exponentially. In order to estimate the

value of state to within ε we only need to perform logγ(ε) backups for each state. It can

also be shown that the induced policies after each iteration of this process will not repeat,

so because there are only a finite number of policies, only a finite number of iterations are

needed to compute the exact values.

2.2.2 Partially observable Markov decision processes (POMDP)

While MDPs are useful for modeling a broad range of problems, it is often the case that past

observations can inform an agent’s current decision. A sequential decision problem with this

property is said to be partially observable as the current observation (which corresponds

to the current state in an MDP) does not completely dictate the probabilities of successor

states, and a decision maker must remember past states in order to perform optimally.

18



This large class of problems is modeled using partially observable Markov decision processes

(POMDPs) [53]. A POMDP consists of a tuple POMDP = 〈S,O,A, P,R, s(0)〉.

• S is the set of states

• O is the set of possible observations

• A is the set of actions

• P : S × A → ∆(S × O) is the probability transition function with P (s′, o|s, a) being

the probability of ending up in state s′ with observations o ∈ O after taking action

a ∈ A in state s

• R : S ×A→ R is the function

• s(0) ∈ ∆(S) is the initial state distribution

A number of different algorithms have been developed to solve POMDPs [15]. Most

of them rely on the idea of a belief space. At any point in time an agent may not know

the true underlying state, but instead will know a distribution across possible states. This

distribution captures all the agents knowledge about the state of world and is that agent’s

belief. The set of possible beliefs (∆(S)) is the belief-space. As the belief-space completely

determines what an agent needs to know, we can convert a POMDP into an MDP over

belief-space (the states in the MDP are all possible distributions over the states in the

POMDP). The resulting MDP is continuous so traditional value based approaches will not

work. Belief-space MDPs have regular structure (such as the value-function being concave

across beliefs) that can be exploited to produce efficient algorithms.

A policy of a POMDP is a mapping from belief to action. This can take a number of

different forms. Naively this can be a mapping from observation histories to actions. We

can view this map as a tree where each node is an action and each branch an observation.

This is described as a policy-tree. If a policy is represented as a tree, then the number of

nodes at level h grows exponentially (|O|h). Often this mapping has redundant branches

and can be more efficiently represented as a directed multigraph known as a policy-graph.
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Such a graph acts like a finite-state controller, with the current node being the state of

the controller outputting an action and transitioning based on the observation seen. These

policy representations are useful for policy-iteration algorithms which attempt to optimize

the policy directly.

The value of a policy-tree π : ~O → a of POMDP 〈S,O,A, P,R, s(0)〉 when starting in

state s achieves utility:

Vπ( ~O, s) = R(s, a) + γ
∑
s′∈S

∑
o′∈O

P (s′, o′|s, a)Vπ(
〈
~O, o′

〉
, s′)

A policy-tree depends only on the observations made, not the true underlying state (as

this is unobservable to the agent). This means that if a policy-tree is fixed, the utility it

receives is equal to the utility it would receive starting from each state weighted by the

probability of that state for the current belief (i.e., Vπ( ~O, b
~O) =

∑
s b

~O(s)Vπ( ~O, s))

When viewing a POMDP as a belief-MDP the policy is a continuous mapping from a

probability distribution over states to action. This is often represented by mapping actions

to hyperplanes in the belief/value space and specifying the policy as mapping to the action

with the maximum valued hyperplane for any belief. Such a representation acts as both a

value function (Section 3.1) and a policy.

2.2.3 Stochastic games

Stochastic or Markov games [48] games extend MDPs to multiple agents by using vectors

(one element per player) to represent actions and rewards rather than the scalars used

in MDPs. Alternatively, stochastic games can be be viewed as a sequence of normal-

form games. They generalize both repeated games (a stochastic game with one state) and

extensive-form games (a stochastic game with no cycles). Each state corresponds to a

normal form game where joint-actions dictate not only the rewards, but also which normal-

form game will be played next. Agents start in initial state s0. They then repeatedly choose

joint-actions, receive rewards, and transition to new states.

In our work, we assume agents are rational and attempt to maximize their long term

expected utility with discount factor γ. We assume that agents have perfect recall of all
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past joint-actions, allowing agents to change behavior and threaten or punish based on each

other’s past actions (e.g. ”if you do X, I’ll do Y”). We formally represent a stochastic game

by the tuple 〈N,S, s0, A, P,R〉.

• N is the set of players. n = |N |

• S is the set of states

• s(0) ∈ ∆(S) is the initial state distribution

• A =
∏n
i=1Ai is the set of joint-actions

• P : S ×A→ ∆(S) is the probability transition function describing the probability of

transitioning from one state to another given a joint-action ~a = 〈a1, · · · , an〉;

• R : S×A→ Rn is the joint-reward function describing the reward a state provides to

each player after a joint-action.

A solution to a stochastic game takes the form of a set of policies in equilibrium. This

means that after observing all other players’ policies no player has incentive to unilaterally

change their own policy. It is not sufficient for players to be in equilibrium for each stage-

game. Instead, players must consider their long-term utility instead of their immediate

reward. This utility is determined by the long-term policy of all players. If for every stage

game, players don’t have an incentive to change their mixed-action given a set of policies,

then those policies are in equilibrium. Therefore, in a similar way to how a single agent

policy is optimal if that agent can’t improve their policy by changing any one action, a

multi-agent joint-policy is in equilibrium if no agent can improve by changing any one

stage-game strategy given the joint-policy. This property can be used to verify that policies

are in equilibrium.

2.2.4 Threats

An important difference between policies of stochastic and normal-form games is how agents

deal with an agent that deviates from the prescribed policy. For a normal-form game, once

actions are taken the game is over. Therefore, if an agent deviates there is nothing the other
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agents can do about it. This is not the case in a sequential game. Other agents may observe

a deviation and change their policy in order to punish the deviator. Recall that we define

an equilibrium of a sequential game as a joint-policy where agents don’t have an incentive

to unilaterally deviate. The value of deviation is therefore very important when computing

equilibria. A threat is a contingency policy that agents will follow if another agent deviates

from the equilibrium. When such a threat is carried out, the value that each agent receives

is called the threat-point. While agents using policies in equilibrium should never deviate,

the threat of punishment can decrease the value of deviation and thus allow a richer set of

equilibrium policies.

There are many different types of threats depending on subtle differences in how the

game and rationality is defined. One big distinction is between credible and non-credible

threats [32]. A threat is credible if it is itself an equilibrium. A non-credible threat is

one that isn’t credible. If a threat isn’t an equilibrium, then a rational agent will have an

incentive to deviate from the threat and will therefore not follow through with it. However,

if a rational agent has the ability to somehow commit ahead of time to a threat, thereby

guaranteeing that they will follow through with it, then the a non-credible threat can be

believed and used. An equilibrium that uses only credible threats is said to be sub-game

perfect because the policy is an equilibrium to matter which state an agent ends up in.

One famous example of credible and non-credible threats is the idea of mutually assured

destruction. During the cold war both the U.S. and Russia had nuclear missiles pointed at

each-other. Each threatened the other country with nuclear annihilation if they were ever

attacked. At the time, if one country launched their missiles at the other there was no way

to prevent them from hitting their targets. The only option would be to retaliate despite it

being useless to save one’s own country. Such a retaliation is an example of a non-credible

threat - your country will be destroyed no matter what you do and you must now decide

to launch missiles in retaliation, but killing hundreds of millions of people more will have

no positive value. However, if instead of relying on human operators to launch missiles, a

machine is used that automatically retaliates if it detects an incoming nuclear strike, then

the non-credible threat can be used and it would be rational to build such a machine.
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2.2.5 Partially observable stochastic games (POSG)

A partially observable stochastic game (POSG) is the multi-agent equivalent to a POMDP

and the partially observable extension to a stochastic game. A POSG is identical to a

POMDP except instead of a single action, observation, and reward there is one for each

player which are expressed together as a joint-action, joint-observation, and joint-reward.

POSGs operate similarly to all previous sequential models. Players repeatedly choose ac-

tions, receive observations (including any reward signal), and transition to new (unobserved)

states. POSGs consist of a tuple PO = 〈N,A, S,O, P,R, b(0)〉.

• N is the set of players. n = |N |

• A =
∏n
i=1Ai is the set of joint-actions

• S is the set of states

• O =
∏n
i=1Oi is the set of joint-observations

• P : S × A → ∆(S × O) is the probability transition function with P (s′, ~o|s,~a) being

the probability of ending up in state s′ with observations ~o after taking joint-action ~a

in state s

• R : S ×A→ Rn is the joint-reward function

• b(0) ∈ ∆(S) is the initial state distribution

For POMDPs a sufficient (for optimal behavior) type space is the set of probability

distributions over possible states. This is not the case for POSGs. Not only do agents have

to worry about which state they are in, but also must worry about other player’s beliefs.

Worse, players must reason about the beliefs that players hold about each others beliefs.

This meta-reasoning continues indefinitely (reasoning about beliefs of beliefs of beliefs etc...)

and makes the problem significantly more conceptually and computationally complex. An

agents’ observations may include private information about other player’s beliefs, and in

the worst case it might be impossible to losslessly reduce a player’s type beyond the full

history.
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The POSG framework is incredibly general and thus very difficult to solve. The authors

know of no tractable attempt to compute optimal (or even reasonable) policies for general

POSGs. Much work has been done on limited subsets of POSGs. Game theory has dealt

heavily with Bayesian games (which can be thought of as finite horizon POSGs), but has

typically had a descriptive focus instead of prescriptive algorithms that compute policies.

Game theory has also dealt with stochastic games but very few game theoretic results exist

at the intersection of stochastic and incomplete information games. Those results that do

exists almost exclusively deal with two player zero-sum repeated games with incomplete

information [26]. The multi-agent learning community has also studied the two player zero-

sum case with many success (particularly for Poker [76]), and is an active area of research.

However, these results make extensive use of properties unique to zero-sum games and

don’t extend to the general case. Likewise successes have been made in MARL for games

of common payoff [78], but these also do not generalize.

2.2.6 POSGs as a Sequence of Bayesian Games

A stochastic game can be thought of as a model of the world where agents play a sequence of

normal-form games where the next game in the sequence depends on the previous game and

the actions taken. A stochastic game can then be solved by solving each normal-form stage

game augmented to include expected utility. It would be nice to use the same process

to solve a POSG by turning it into a series of Bayesian games. Unfortunately unlike

how a stochastic game can easy be seen as a sequence of normal-form games, a POSG

does not naturally correspond to a sequence of Bayesian games. However, a non-trivial

transformation can be applied to a POSG to compute successive Bayesian games which

have the same decision theoretic properties as the original POSG. Emery-Montemerlo et.al

[[23]] presented a method for achieving this transformation. The method keeps track of

two distributions and updates them each time-step: the probably of seeing a particular

observation history θ(t) (which are defined as the player types) and the probability that the

underlying state is s(t) given θ(t).

After t + 1 time steps the current Bayesian game, that is equivalent to the decision
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problem faced by players in the POSG, can be computed as follows: N and A are the same

as in the POSG. The player types, Θ(t), are all possible observation histories. The common

knowledge distribution over types, τ (t+1), can be computed recursively given the sequence

of states and actions as follows. The probability that joint-type θ(t+1) = 〈~o, θ(t)〉 at time

t+ 1 is given by:

τ (t+1)(〈~o, θ(t)〉) = τ (t)(θ(t))Pr[~o|θ(t)] where: (4)

Pr[~o|θ(t)] =
∑
s(t+1)

P (s(t+1), ~o|s(t),~a(t))Pr[s(t)|θ(t)] (5)

Because θ(t) is the history of joint observations we can compute P (s(t)|θ(t)) by treating

the POSG as a hidden Markov model and performing filtering with observations θ(t) (recall

that θ(t) includes observed joint-actions). We can compute the one step reward function:

R(t+1)(~a, θ(t)) =
∑

s(t) Pr[s
(t)|θ(t)]

∑
s′ P (s′|s(t),~a(t))R(s′,~a(t)) (6)

This reward function provides the short-term stage-game reward, however agents ac-

tually want to maximize their long term rewards (utility). However, knowing the exact

utility is tantamount to solving the problem. Instead, a standard trick is to use estimated

utilities of each successor state, V (〈~o, θ(t)〉). Using V the expected utility for each joint-

action ~a can be calculated resulting in the augmented reward R(~a, θ) =
∑

s P (s|θ)R(s,~a) +∑
~o V (〈~o, θ(t)〉)P (~o|θ).

The challenge then lies in computing the state utility estimations V (〈~o, θ(t)〉). A common

tactic when the world is fully observable is to apply dynamic programming and iteratively

compute V based on the previous estimation of V (e.g. value iteration). Unfortunately the

state-space of Bayesian games is unbounded as it includes all possible histories, making it

impossible to iterate over all states and thus infeasible to compute V in this way. If we

did have a V we would have a Bayesian game and could compute equilibria of this game.

Emery-Montemerlo et.al [23] constructed an approximation of V by removing all types

with low probability combined with a heuristic to guess V . While this provides a tractable

algorithm that might perform reasonably on some problems if the heuristic is good and

types don’t become too diluted, it likely will produce arbitrarily poor solutions to general

POSG problems.
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Our solution is to define a new model, Markov games of incomplete information (MaGII),

that by definition will produce a bounded type-space for the Bayesian stage-games (Chap-

ter 4). This will allow V to be estimated using dynamic programming (Chapter 5).

2.2.7 Decentralized partially observable Markov decision processes

When agents in a POSG share a reward signal the problem is significantly easier. This prob-

lem is known as a decentralized partially observable Markov decision processes (DecPOMDP).

Because agents share rewards, they cooperate with each other and don’t have to worry

about individual rationality, unilateral deviation, threats, or trade-offs between maximizing

on agent’s utility over another. However, because the world is still partially observable,

agents still need to reason over other agent’s possible observation histories.

We define a DecPOMDP formally as the tuple 〈N,A, S,O, P,R, b(0)〉 where:

• N is the set of players. n = |N |

• A =
∏n
i=1Ai is the set of joint-actions

• S is the set of states

• O =
∏n
i=1Oi is the set of joint-observations

• P : S × A → ∆(S × O) is the probability transition function with P (s′, ~o|s,~a) being

the probability of ending up in state s′ with observations ~o after taking joint-action ~a

in state s

• R : S ×A→ R is the shared reward function

• b(0) ∈ ∆(S) is the initial state distribution

2.3 Factored representations

The dynamics of many environments can be more efficiently defined by breaking apart the

state into a set of factors (a.k.a. features). Such a representation allows us to more naturally

define many scenarios along with being able take advantage of independencies. For example,

a state in a grid-world might include a factor for the agent’s ’x’ location along with another
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factor for the ’y’ location. Moving left/right or up/down would then only depend on one of

the factors and not the other.

When there are multiple agents, the use of factors grants even more power. Each agent

often has state specific to that agent (such as their location, observations, or actions),

leading naturally to a factored representation. Furthermore, an agent’s actions typically

only have a local effect thus a representation using local factors can be decomposed granting

even more power to factored representation [59]. Such a representation is a powerful tool

for making complex domains easier to solve. In chapters 4 and 5 we make extensive use of

factored representations by folding the belief of each agent into the underlying state using

a factored representation. Each single-shot and sequential model described in the previous

sections can make use of a factored representation. However in this thesis we will primarily

use a factored representation for POSGs and DecPOMDPs.

We define a factored POSG as the tuple 〈N,A,X, S,O, P,R, b(0)〉 where:

• N is the set of players. n = |N |

• A =
∏n
i=1Ai is the set of joint-actions

• X = {X1, · · · , X|X|} is the set of factors, each of which is a set.

• S =
∏|X|
i=1Xi is the set of states

• O =
∏n
i=1Oi is the set of joint-observations

• P : S × A → ∆(S × O) is the probability transition function with P (s′, ~o|s,~a) being

the probability of ending up in state s′ with observations ~o after taking joint-action ~a

in state s

• R : S ×A→ Rn is the joint-reward function

• b(0) ∈ ∆(S) is the initial state distribution

The important advantage of this representation is that the transition and reward func-

tions do not have to enumerate the full joint probability distributions across factors (i.e.,
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these functions need not be tabular). Instead the functions can be defined using any factor-

ization scheme, such as an algebraic decision diagram [30], Bayesian network [11], a Markov

random field [93], or as any other graphical model [35]. Other factored decision models

are defined similarly. For example, a factored DecPOMDP is identical to a factored POSG

except with a single shared reward R : S ×A→ R.
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CHAPTER III

THE ACHIEVABLE-SET METHOD FOR STOCHASTIC GAMES

This chapter addresses the problem of efficiently solving infinite-horizon general-sum stochas-

tic games of complete information. We aim to find all policies in correlated equilibrium.

We take a value based approach and extend the Bellman heritage to multiple independent

agents. Importantly, throughout this approach we are careful to make strong guarantees

about the quality of our solution. We assume the reader is familiar with single agent value-

iteration as well as basic linear programming.

In reinforcement learning, Bellmans dynamic programming equation is typically viewed

as a method for determining the value function the maximum achievable utility at each

state. Instead, we can view the Bellman equation as a method of determining all possible

achievable utilities. In the single-agent case we care only about the maximum utility, but for

multiple agents it is rare to be able to simultaneously maximize all agents utilities. Instead

of computing a single optimal value, this chapter presents methods for computing the set

of all achievable joint-utilities (a vector of utilities, one for each player). We call this set

the achievable-set. Given this goal, we can reconstruct a proper multi-agent equivalent to

the Bellman equation that operates on achievable-sets for each state instead of values.

This chapter develops this value-based dynamic programming approximation approach

for solving general-sum stochastic games. We create an algorithm with polynomial efficiency

that has strong guarantees about the error induced. It is extensible to a variety of different

solution concepts and provides good empirical results.

3.1 Multi-agent value methods

The goal of any agent (no matter which decision problem they face) is to maximize their

utility (sum of long term discounted reward). An agent does not care which policy they

ultimately execute, only the utility that the policy achieves. For sequential problems, this

utility can be broken down into the immediate stage-game reward followed by the utility
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Reward:{1,-2}

Reward:{2,-1}

State
1

State
2

pass

pass
exit

exit
end end

Figure 2: A graphical depiction of the breakup game. The Breakup Game demonstrates
the limitation of traditional value-function based approaches. Each circle is a state and arcs
are transitions for the corresponding action. At most one player has a choice of action in
each state.

achieved in each possible successor state (or belief-state). This decomposition is immensely

useful, allowing the knowledge of state utilities to be used to create policies. The estimation

of a state’s utility is known as that state’s value. This knowledge - a mapping from state

(or belief-state) to estimated utility - is known as a value function.

For single agent problems, the most basic and wildly used method for computing the

value function is value iteration (Section refsec:mdps) using the Bellman equation (Equa-

tion refeq:bellman). Many attempts have been made to extend the Bellman equation to

domains with multiple agents. Most of these attempts have focused on retaining the idea

of a value function V : S → R as the memoized solution to sub-problems in Bellman’s

dynamic programming approach [28], [49], [94]. These approaches are very similar to single

agent value iteration. They involve replacing the maximization over actions in the Bell-

man equation with an equilibrium computation (a maximization over the joint-actions such

that agents don’t want to unilaterally change their individual actions). This has lead to

a few successes particularly in the zero-sum case where the same guarantees as standard

reinforcement learning have been achieved [49]. Unfortunately, more general convergence

results have not been achieved. In fact, a negative result has shown that any value function

based approach cannot solve the general multi-agent scenario [94]. Consider the breakup

game, where we can imagine player 1 is in a relationship with player 2 and wishes to breakup

but would rather not be the one to actually end things (Figure 2).

This game has four states with two terminal states. In the two middle states play

alternates between the two players until one of the players decides to exit the game. In

this game the only equilibria are mixed (e.g., the randomized policy of each player passing
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and exiting with probability 1
2). In each state only one of the agents takes an action, so an

algorithm that depends only on a value function will myopically choose to deterministically

take the best action, and never converge to the stochastic equilibrium. This result exposed

the inadequacy of value functions to capture cyclic equilibrium (where the equilibrium policy

may revisit a state).

In the wake of this negative result, a new line of research has emerged that replaces

the value-function with a multi-dimensional equivalent referred to as the achievable-set

(Section 3.2). When there is only one agent (or agents share reward), then there is exactly

one optimal utility that can be achieved. This is not typically the case for general sum

games. It may not be possible to simultaneously maximize all agent’s utilities. Instead of

viewing a value function as describing the optimal utility for every belief-state, we advocate

that value functions should not only describe the optimal utility but the set of all achievable

utilities (from the best to the worst). It so happens that for single agents this achievable-set

can be specified with only two points (the best and the worst). This is because for single

agents, the set of achievable utilities is convex (interpolated policies produce interpolated

utilities). When we think of value functions in this way they transition well to general

sum multi-agent problems. In Section 3.2 we explore this transition and the complexities

therein.

While the achievable-set approach was rediscovered recently in the AI community, very

similar approaches have been used to solving stochastic games in game theory and operations

research, mostly focused on two-player, zero sum games or repeated games. One line of work

uses a recursive “self-generating set” approach that has a very similar flavor to achievable-

sets [1, 19, 38, 31]. A recent example of this work is that of Burkov and Chaib-draa [13]

where the set of sub-game perfect Nash equilibria is found via a repeatedly finer grain tiling

of the set. Unfortunately, none of these approaches has appealing error or computational

guarantees able to generalize to stochastic games.

Murray and Gordon [55] made a significant advance towards using achievable-sets with

stochastic games and derived an exact but intractable algorithm for calculating the achievable-

set based on the Bellman equation and proved correctness and convergence. While this exact
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algorithm is intractable, they also provided an approximation algorithm. However, their

approximation algorithm is not generally guaranteed to converge with bounded error, even

with infinite time.

Several other complaints have been leveled against the motivation behind MAL research

following the Bellman heritage. One such complaint is that value function based algorithms

inherently target only stage-game equilibria and not full-game equilibria potentially ignor-

ing much better solutions [81]. Our approach solves this problem and allows a full-game

equilibrium to be reached. Another complaint goes even further, challenging the desire to

even target equilibria [83]. Game theorists have shown us that equilibrium solutions are

correct when agents are rational (infinitely intelligent), so the argument against targeting

equilibria boils down to either assuming other agents are not infinitely intelligent (which

is reasonable) or that finding equilibria is not computationally tractable (which we tackle

here). We believe that although MAL is primarily concerned with the case when agents

are not fully rational, first assuming agents are rational and subsequently relaxing this

assumption will prove to be an effective approach.

3.2 Achievable-sets

The core idea of the algorithms presented in this chapter is to compute an achievable-set

function V : S → {Rn}, the multi-agent analogy to the single agent value-function. In

MDPs, the value-function represents the optimal achievable utility for every state. When

there are multiple agents it is not always possible to simultaneously maximize all agent’s

utilities, so the multi-agent achievable-set-function must represent all possible combinations

of values. As a group of n agents follow a joint-policy, each player i receives rewards. The

discounted sum of these rewards is that player’s utility, ui. The vector ~u ∈ Rn containing

these utilities is known as the joint-utility, or value-vector. Thus, a joint-policy yields a

joint-utility in Rn. If we examine all mixed joint-policies starting from state s, discard

those not in equilibrium, and compute all the joint-utilities of the remaining policies we will

have a set of points in Rn: the achievable-set.

Formally, let Πeq be the set of policies in equilibrium and V π(s) be the joint-value of

32



policy π starting in state s, then we define the achievable-set function (over states s) as the

function:

V (s) = {x ∈ Rn : ∃π ∈ Πeq s.t. x = V π(s)}

3.2.1 Examples

Our first example is a normal-form game given in Figure 3-A. This game has three pure

equilibria corresponding to the players playing (up, right), (down, left), and (down, right).

Any convex combination of these three policies is a valid correlated equilibrium. More

precisely, any probability distribution over these three joint-actions will satisfy the linear

inequalities defining the set of correlated equilibria (Equation 1). These are the only corre-

lated equilibria ((up, left) can never be played). The value of these policies will correspond

to the convex hull of the corresponding rewards given by the pure strategies: (2, 7), (7, 2),

and (3, 3). A graphical depiction of this hull is shown in Figure 3-B.
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Left
Up

Player 1

Player 2

Figure 3: An illustration of an achievable set for a simple normal-form game. A) A two-
player two-action normal-form game. B) The game’s achievable-set using correlated equi-
libria.

Our second example is the normal form game of chicken (Figure 4). Unlike the previous

example, this game’s achievable set has two extreme points (out of four) that each corre-

spond to a mixed correlated equilibrium. One of these mixed correlated equilibrium is also

better than any Nash equilibrium (in that it has a greater sum of rewards).

Our third example is a repeated version of the game of chicken with discount γ = 0.9

(Figure 5). We also add an extra action for player 1 which allows player 1 to punish player

2 with a revenge action. Note that this action is dominated and has outcomes worse for all

players than any other action. If we insist that only credible threats are used (Section 2.2.4),
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Figure 4: An example achievable-set. A) The game of chicken. B) The achievable-set
of correlated equilibria for chicken. For each joint-utility within the region there exists a
correlated equilibrium yielding the given rewards for each player. For example the point
(5.25, 5.25) is achieved by the agents playing (chicken, chicken) with probability 1

2 while
playing (dare, chicken), and (chicken, dare) each with probability 1

4 .

then this action will never be played and can be ignored (Figure 5-B). Even ignoring this

action and just using credible threats, the joint-strategy (chicken, chicken) is now viable

because the threat of switching to a policy where the other agent always dares (which is an

equilibrium) prevent agents from switching to dare. More formally, the value of defecting

from the always chicken policy is 7 + 2/(1 − γ) while the value of sticking with the policy

is 6/(1 − γ). With credible threats, no player can receive less than the worst equilibrium

for them. However, if we allow all threats then player 1 can force player 2 to get accept a

joint-policy which yields less than any stage-game equilibrium (Figure 5-C).

Our final example, the breakup game (Figure 6) is a multi-state sequential game. Unlike

the game of chicken, the breakup game has multiple states and thus multiple achievable

sets (one for each state). Each state has its own achievable set representing the values

starting from that state. Once again we show the achievable sets for correlated equilibria

which are therefore closed convex hulls. For example, when in state 1 (where player 1 has a

chance to breakup) the achievable set has extreme points (1,−0.5), (1,−2), and (1.8,−0.9).

This achievable-set depicts the fact that when starting in player 1’s state any full game

equilibria will result in a joint-utility that is some weighted average of these three points.

For example the players can achieve (1,−0.5) by having player 1 always pass and player

2 exit with probability 0.55. If player 2 tries to cheat by passing when its supposed to

exit, player 1 will immediate exit in retaliation (recall that history is implicitly included in
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Figure 5: An illustration of an achievable set for a simple sequential game. A) A visual
depiction of the repeated game. There is only one state which corresponds to a modified
chicken game with an extra revenge action for the row player. B) The achievable set when
only credible threats are allowed. C) The achievable set when we allow non-credible threat.

state). This threat is credible and prevents player 2 from always passing which enforces the

equilibrium.

In summary, an achievable-set contains all possible joint-utilities that players can receive

using policies in equilibrium. Each dimension represents the utility for a player. This

definition is valid for any equilibrium solution concept, but in this thesis we only compute

achievable-sets representable as convex polytopes, such as those from correlated equilibria.

Since this set contains all attainable joint-utilities, it will contain the optimal joint-utility

for any definition of “optimal.” From this achievable-set, an optimal joint-utility can be

chosen using a bargaining solution [56] (Section 3.2.2). We note that within game theory

this set is typically refereed to as the feasible set. However this term is overloaded with

linear programming (which we use in this dissertation) so to avoid confusion we call it an

achievable set.
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Reward:{1,-2}

Reward:{2,-1}

State
1

State
2

pass

pass
exit

exit
end end

(0, 0)
(1, -0.5)

(1, -2)

(1.8, -0.9)

(0.9, -0.45)

(0 .9, -1) (2, -1)

End State 1 State 2

Figure 6: The Breakup Game (above) along with each state’s achievable set (below). Circles
represent states, outgoing arrows represent deterministic actions. Unspecified rewards are
zero. The achievable-set for each state is shown for correlated equilibria using grim trigger
threats (γ = 0.9).

3.2.2 Equilibrium selection

Achievable-sets describe all possible joint-utilities that players could potential receive, but

when it comes to selecting a policy, agents must somehow coordinate and agree on a partic-

ular policy that achieves a particular joint-utility that they will target. Each policy benefits

each agent to a different degree. Therefore, agents have competing incentives to argue for

or choose one joint-policy over another. For example in the game of chicken both players

Table 1: Tabular reward and transitions for the breakup game. Each row is a possible
action of Player 1, while each pair of columns is an action of player 2. All transitions are
deterministic.

State 1
NOOP

Joint-Reward Transition

Pass (0, 0) State 2

Exit (1,−2) End

End State
NOOP

Reward Transition

NOOP (0, 0) End

State 2
Pass Exit

Reward Transition Reward Transition

NOOP (0, 0) State 1 (2, -1) End
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would want the equilibrium followed to be them choosing ”dare” and the opponent choosing

”chicken”. However if both players assumed this equilibrium they will both end up playing

”dare” to disastrous consequences. If all agents are rational then they should be able to

predict and agree on a joint-policy to follow even without communication. Despite this

conclusion it is not clear how rational agents would go about agreeing on an equilibrium.

One approach is to view equilibrium selection from an evolutionary point of view. Agents

not in equilibrium achieve lower utility and thus don’t reproduce as well. This leads to

populations converging on locally optimal equilibria. Local populations that target supe-

rior policies will out compete other local populations that have converged on less efficient

policies. In this way global populations will converge on Pareto-efficient equilibria that

maximizes social utility. This is one argument for how agents can converge on one partic-

ular policy. However, differences in starting conditions can lead to different equilibria or

depending on the conditions could even lead to cyclic behavior changes.

Another approach to equilibrium selection takes the view that the correct equilibrium is

the one that would arise if agents were to sit down and negotiate. Attempting to agree on

a such a utility target is hard problem in its own right, and known within game theory as a

bargaining problem[36]. Bargaining problems take either an axiomatic or strategic view of

the problem. Axiomatic solutions postulate that rational agents will agree on fundamental

properties of a solution (for example, that the solution should be fair to both agents and

give each equal gains). If such axioms are defined carefully, exactly one joint-utility will

satisfy the axioms and thus be the natural choice. Unfortunately, several axiomatic systems

have been proposed and there is no clear system of axioms that seems obviously correct.

Each system of axioms leads to a different solution such as the Nash bargaining solution

[36], the Kalai-Smorodinsky bargaining solution [41], or the Egalitarian bargaining solution

[40] (Figure 7).

Unlike the axiomatic view, the strategic view models the bargaining process as an explicit

sequential game where there is only a single equilibrium. The best example for this is the

two-player alternating offer game [74] where one player suggests an equilibrium and the

other player must accept or reject it. If the offer is rejected the other player get to propose
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a solution or the bargain terminates with some small probability. If no bargain is reached

the agents receive a disagreement value (which, for example, can be each agent’s safety

value). It was shown that the only equilibrium of such a situation is for the first player

to immediately offer the Nash bargaining point of the game. However, if the dynamics

of this game change slightly (for example if the next player to propose an offer is chosen

randomly instead of alternating, or players have incomplete information [75]) then the

resulting equilibrium changes. For more information on bargaining, see [56].

Clearly, equilibrium selection is a hard problem. Hundreds of papers have been written

on the subject and the field is still active. While equilibrium selection is essential for

eventually choosing a policy, it can be viewed as a separate problem from equilibrium

computation. In order to engage in equilibrium selection, agents must know the set of

possible equilibria that they can choose from. Also, often times just knowing the set of

possible equilibria is sufficient (for example when faced with the problem of mechanism

design). This dissertation focuses on equilibria computation and assumes that agents have

some unspecified means of equilibrium selection.

A) B) C)

Figure 7: Graphical interpretation of three bargaining solutions with the achievable set
(shaded) translated so the disagreement point is at the origin. a) The Nash bargaining so-
lution (maximum product of gains). b) The Kalai-Smorodinsky bargaining solution (maxi-
mum gains proportional to individually ideal gains). c) The egalitarian bargaining solution
with a comprehensive achievable set (maximum equal gains).

3.2.3 From achievable-sets to policies

Once the agents in the game agree on the joint-utility (through equilibrium selection), a

policy can be constructed in a greedy manner for each player that achieves the targeted
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utilities [55]. The construction of a policy is similar to the procedure in which a value

function can be used to construct a policy in single-agent reinforcement learning. Like for a

single agent, after a payoff has been chosen the actors in the world can dynamically achieve

the chosen payoff without needing to plan their entire policy. however, unlike a single agent,

a targeted utility-vector must be specified for each successor state and a distribution over

joint actions determined such that the expectation over joint actions and successor utility-

vectors achieves the desired payoff. After arriving in a new state the targeted payoff is

updated based on what was agreed upon in the previous state. Repeating this process will

yield a joint-policy that achieves the targeted utility. As agents care only about the utility

they achieve and not about the specific policy they use, computing the achievable-set for

each state is sufficient for optimal play in the stochastic game.

As an example consider once again the breakup game (Figure 6). Let us assume that

before the game starts agents do not know which state (1 or 2) they will first find themselves

and that there is an even probability of ending up in either state. If the players want to

achieve the value of (1,−0.5) the two players would agree to switch to a target value of

(0, 0) if the top state was reached or to a target value of (2,−1) if the bottom state was

reached. This agreement is maintained because it itself is an equilibrium and each choice

of target value for each successor state is also an equilibrium (these points are in successor

achievable sets).

3.2.4 Representing achievable-sets

A key difference between various achievable-set based approaches is in their representation

of achievable-sets. These have been represented in a number of different ways: convex

combinations of vertices [51, 27], polytopes of arbitrary complexity [38], and as unions of

hypercubes [13]. In the algorithms presented in this chapter we focus of problems where the

achievable set is closed and convex (typically this means we focus on correlated equilibria

instead of Nash equilibria). This allows us to treat the achievable set as a polytope and

represent it in a standard way using a set of halfspaces. This means we have a set of normals

Ai and a set of offsets bi where the achievable set is all points x where Ax ≤ b. In order
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to make tractable algorithms we need to bound the number of halfspaces used and thus we

utilize a regular polytope approximation (as explained in Section 3.4.2).

3.3 Exact achievable-set computation

Achievable-set based approaches replace the value-function, V (s), in Bellman’s dynamic

program (Section 3) with an achievable-set function – a mapping from state to achievable-

set. We update the achievable-set function over a series of iterations, akin to value iter-

ation. Each iteration produces an improved estimate of the achievable-set function using

the previous iteration’s estimate. Murray and Gordon’s technical report [54] presented the

details of an exact algorithm that follows this process, including a formal treatment of the

backup, various game theoretic issues, and convergence proofs. Before the first iteration,

each achievable-set is initialized to some large over-estimate and the algorithm shrinks the

sets during each iteration until insufficient progress is made, at which point the current

estimate is returned (Figure 8). Under full observability we can make guarantees that these

final sets are very close to the true achievable-sets.

3.3.1 Set-valued backups

An exact dynamic programing solution falls out naturally after replacing the value-function

in Bellman’s dynamic program with a achievable-set function. However there are two main

complications which must be worked through. The first is that achievable-sets are multi

dimensional, not just a single scalar value. This change in variable dimension complicates

the backup. In the bellman backup: V t(s) = maxa{R(s, a) + γ
∑

s′ P (s′|s, a)V t−1(s′) each

operation (additions and multiplications) transforms into a related set operation. We can

break the bellman update apart by first computing the state-action achievable-sets Q(s, a) =

R(s, a) + γ
∑

s′ P (s′|s, a)V t−1(s′) and then computing the state achievable-sets V (s) =

maxaQ(s, a). Computing the state achievable-sets for multi-agent problems is the second

Figure 8: An example achievable-set contraction.
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major complication. Instead of a simple maximization (or even a set union, which would

be the natural set equivalent), we must now worry about equilibria filtering.

An illustration of the modified set backup for state-action achievable-sets is shown in

Figure 9, where steps A→ D solve for the action-achievable-set (Q(s,~a)), and steps D → E

solve for V (s) given Q(s,~a). Figure 9 does not depict how we are performing equilibria

filtering. This process is dependant on the particular equilibrium solution concept targeted.

The Bellman equation states that the value of a state is the expected value of the

maximal action. When there are multiple agents we can’t simply maximize the joint-action,

we also have to worry about agent’s selfishly defecting (i.e., going against the prescribed

policy). This means we can only maximize over joint-actions in equilibrium. Eliminating

policies not in equilibrium (and thereby eliminating unachievable values) is the process of

equilibria filtering (Figure 9-D→E). The mechanism of filtering depends on the particular

equilibrium solution concept used so for generality we assume a filter function Feq : [A →

{Rn}] → {Rn} is provided to the algorithm, which is applied to eliminate non-equilibrium

policies. This function takes in an expected achievable-set for each joint-action and returns

the resulting achievable set for the current stage game. If we don’t care about the policy

being an equilibrium (or we allow for binding contracts) than the filter function performs

no filtering and simply returns the union over its inputs (all joint-action values). Details of

a correlated equilibrium filter function are given in Section 3.5.4.

3.3.2 Set-valued dynamic programming

The exact achievable-set dynamic program starts by initializing each achievable-set to be

some large over-estimate (a hypercube of the maximum and minimum utilities possible for

each player). Each iteration of the backup then contracts the achievable-sets, eliminat-

ing unachievable utility-vectors. Eventually the algorithm converges and only achievable

joint-utilities remain. The invariant of achievable-sets always overestimating is crucial for

guaranteeing correctness, and is a point of great concern for the algorithms given later in

this chapter.

The algorithm for this exact solution is given as Algorithm 1 where the threat function
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Fth (the outcome of defection - see Section 2.2.4) is folded into Feq. An example of the

backup step is given as Figure 9. An example of the result of this backup in the dynamic

program applied to the breakup game is given as Figure 9. Step

Algorithm 1 An Exact Achievable-set Algorithm

Inputs stochastic game (S, s(0), P,A,R), discount factor γ
equilibrium filter function Feq using threats Fth

Output state achievable-sets V
state-action achievable-sets Q

1: for all s,~a do

2: V (s)⇐ hypercube with max and min utilities:
Rpmin
1−γ , Rpmax

1−γ for each agent p
3: repeat
4: for all s,~a do
5: for all s′ do
6: Q(s,~a, s

′)⇐ P (s′|s,~a)V̇ (s′)
7: Q(s,~a)⇐

∑
s′ Q(s,~a, s

′)
8: Q(s,~a)⇐ γQ(s,~a)
9: Q(s,~a)⇐ R(s, a) +Q(s,~a)

10: for all s do
11: V (s)⇐ Feq(Q(s,~a))
12: until Converged
13: return V,Q

We have broken the algorithm up into several steps operating on the state achievable-

sets V (s) and state-action achievable-sets Q(s,~a). After initializing each achievable-set to

an overestimate (line refi:init) we repeat backups (lines 6-11) until convergence. Lines 6-11

backup each state-action achievable set and line 11 computes the final state achievable-sets.

The backup is very similar to a Bellman backup except operating on sets instead of a single

value. This changes each basic scalar operation to a set operation. In line 6, we scale each

state achievable-set by the probability of reaching that state. Scaling a set B by scalar a

is defined as: aḂ = x|x/a ∈ B. In line 7 we compute the possible expected value of taking

action ~a in state s. This achievable-set depends on which utility is targeted in the next state.

We therefore have to allow for all combinations of values in successor states Q(s,~a, s
′). This

combinatorial sum of sets
∑k

1 Qi = Q1 ⊕ Q2 ⊕ ... ⊕ Qk is known as a Minkowski sum [77]

and is defined as: A ⊕ B = {a + b | a ∈ A, b ∈ B}. Line refl:gamscale is once again a set

scaling, while line refl:trans is a translation defined as: a+B = x|x− a ∈ B.

The final backup step (line refl:eqop) is the equilibrium contraction step and can be
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quite complex. If we didn’t worry about defection, this operation would be a set union.

However, because each agent is individually rational we much ensure that the joint policy

chosen is an equilibrium. Let G(Q(s,~a)}) be the normal form game defined across Q(s,~a)

such that if players take joint action ~a, player i receives reward Q(s,~a)}i. We define the

equilibrium filtering function formally as:

Feq(Q~a) = {x|∃π ∈ ∆(A) s.t. x =
∑
~a

[π(~a)Q~a] and π is an equilibrium of G(Q(s,~a))}
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Figure 9: An example of the backup step (one iteration of our modified Bellman equation).
The state shown being calculated is an initial rock-paper-scissors game played to decide who
goes first in the breakup game from Figure 6. A tie results in a random winner. The backup
shown depicts the 2nd iteration of the dynamic program when achievable-sets are initialized
to (0,0) and binding contracts are allowed (Feq = set union). In step A the achievable-set
of the two successor states are shown graphically. For each combination of points from each
successor state the expected value is found (in this case 1/2 of the bottom and 1/2 of the
top). These points are shown in step B as circles. Next in step C, the minimum encircling
polygon is found. This feasibility region is then scaled by the discount factor and translated
by the immediate reward. This is the feasibility-set of a particular joint action from our
original state. The process is repeated for each joint action in step D. Finally, in step E,
the feasible outcomes of all joint actions are fed into Feq to yield the updated achievable-set
of our state.

3.4 A generic approximation algorithm for convex solution concepts

There are a few serious computational bottlenecks in the exact algorithm. The first problem

is that the size of the game itself is exponential in the number of agents because joint

actions are exponential in the number of players. This problem is unavoidable unless we

approximate the game which is outside the scope of this thesis. The second problem is that

although the exact algorithm always converges, it is not guaranteed to converge in finite
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time (during the equilibrium backup, an arbitrarily small update can lead to a drastically

large change in the resulting contracted set). A third big problem is that maintaining an

exact representation of an achievable-set becomes unwieldy (the number of faces of the

exact polytope may grow very large).

We make two important modifications to the exact algorithm in order to make the algo-

rithm tractable: approximating the achievable-sets with a bounded number of vertices, and

adding a stopping criterion. Our general approach for approximating each achievable-set is

to approximate the set at the end of each iteration after first calculating it exactly (in the

next section we present an algorithm that is able to skip the intermediate exact computation

step). The degree of approximation is captured by two user-specified parameter: ε1and ε2.

These parameters represent the error induced by the stopping criterion and the set approx-

imation respectively. It is useful to refer to the sum of these errors as ε(1+2) which is the

total tolerated error introduced by both the set approximation and the stopping criterion.

3.4.1 Consequences of a stopping criterion

When performing our set based dynamic programing, we must decided when to stop im-

proving each achievable-set. While we would like to continue iterating until the sets stop

improving, the sets may never converge. Instead, we add a criterion to stop when all

achievable-sets contract by less than ε1 (in terms of Hausdorff distance). This is added to

ensure that the algorithm makes ε1 progress during the exact backup of each iteration. The

set approximation introduces no more than ε2 error so the algorithm with contract each set

at least ε1− ε2 each iteration and thus will take no more than O((Rmax−Rmin)/(ε1− ε2))

iterations to converge.

After our stopping criterion is triggered the total error present in any state is no more

than ε1/(1 − γ) (i.e. if agents followed a prescribed policy they would find their actual

rewards to be no less than ε1/(1 − γ) promised). Therefore, each value in the achievable-

sets corresponds to a ε1/(1−γ)-equilibrium. Recall that our approach is to first perform an

exact backup followed by an approximation of each set. We can therefor check the stopping

criterion before approximating thereby preventing the set approximation error from effecting
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our final error.

By stopping early we yield a solution that is an ε1/(1− γ)-equilibrium of the full game

while guaranteeing there exists no exact equilibrium that Pareto-dominates the solution’s

utility. This means that despite not being able to calculate the true utilities at each stage

game, if other players did know the true utilities they would gain no more than ε1/(1−γ) by

defecting. Moreover our approximate solution is as good or better than any true equilibrium.

By targeting an ε1/(1− γ)-equilibrium we do not mean that the backup’s equilibrium filter

function Feq is an ε-equilibrium (it could be, although making it such would not alleviate the

convergence problem, but instead would guarantee that our solution is better than any ε-

equilibrium and is an (ε+ε1)-equilibrium). We do not change the filter function to guarantee

convergence. Instead, we apply the standard filter function but stop if no achievable-set

has changed by more than ε1. In other words, because we are only checking for a stopping

condition, and not explicitly targeting the ε1/(1 − γ)-equilibrium in the backup we can’t

guarantee that the algorithm will terminate with the best ε1/(1 − γ)-equilibrium. Instead

we can guarantee that when we do terminate we know that our achievable-sets contain all

equilibria satisfying our original equilibrium filter and no equilibria with incentive greater

than an ε1/(1− γ) to deviate.

3.4.2 Approximating achievable-sets

Bounding the complexity of each achievable-set is crucial for achieving a tractable algo-

rithm. At the end of each iteration we can replace each state achievable-set (V (s)) with an

N point approximation. The computational geometry literature is rich with techniques for

approximating convex hulls. However, we want to insure that our achievable estimation is

always an over estimation and not an under estimation, otherwise the equilibrium contrac-

tion step may erroneously eliminate valid policies. Also, we need the technique to work in

arbitrary dimensions and guarantee a bounded number of vertices for a given error bound.

A number of recent algorithms meet these conditions and provide efficient running times

and optimal worse-case performance [50], [16], [18].

Despite the nice theoretical performance and error guarantees of these algorithms they
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admit a potential problem. The approximation step is controlled by a parameter ε2(0 <

ε2 < ε1) determining the maximum tolerated error induced by the approximation. This error

results in an expansion of the achievable-set by at most ε2. On the other hand by targeting

ε1-equilibrium we can terminate if the backups fail to make ε1 progress. Unfortunately this

ε1 progress is not uniform and may not affect much of the achievable-set. If this is the

case, the approximation expansion could potentially expand past the original achievable-

set (thus violating our need for progress to be made every iteration, see Figure 10-A).

Essentially our approximation scheme must also insure that it is a subset of the previous

step’s approximation. With this additional constraint in mind we develop the following

approximation inspired by [17]:

ε1
ε2

I
II
III

A) B) C)

Figure 10: A) (I) achievable hull from previous iteration. (II) achievable hull after equilib-
rium contraction. The set contracts at least ε1. (III) achievable hull after a poor approxima-
tion scheme. The set expands at most ε2, but might sabotage progress. B) The hull from
A-I is approximated using halfspaces from a given regular approximation of a Euclidean
ball. C) Subsequent approximations using the same set of halfspaces will not backtrack.

We take a fixed set of hyperplanes which form a regular approximation of a Euclidean

ball such that the hyperplane’s normals form an angle of at most θ with their neighbors (E.G.

an optimal Delaunay triangulation). We then project these halfspaces onto the polytope

we wish to approximate (i.e., retain each hyperplanes’ normals but reduce their offsets

until they touch the given polytope). After removing redundant hyperplanes the resulting

polytope is returned as the approximation (Figure 10-B). To insure a maximum error of ε2

with n players: θ ≤ 2 arccos[(r/(ε2 + r))1/n] where r = Rmax/(1− γ).
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The scheme trivially uses a bounded number of halfspaces (only those from the prede-

termined set). Also, by using a fixed set of approximating hyperplanes successive approxi-

mations will strictly be subsets of each other - no hyperplane will move farther away when

the set its projecting onto shrinks (Figure 10-C). After both the ε1-equilibrium contraction

step and the ε2 approximation step we can guarantee at least ε1 − ε2 progress is made. Al-

though the final error depends only on ε1 and not ε2, the rate of convergence and the speed

of each iteration is heavily influenced by ε2. Our experiments suggest that the theoretical

requirement of ε2 < ε1 is far too conservative.

3.4.3 Computing expected achievable-sets

Another difficulty occurs during the backup of Q(s,~a). Finding the expectation over

achievable-sets involves a Minkowski sum (step B in fig 9 and line 7 in Algorithm 1), which

naively requires an exponential looping over all possible combinations of taking one point

from the achievable-set of each successor state. We can help the problem by applying the

Minkowski sum on an initial two sets and fold subsequent sets into the result. This leads

to polynomial performance, but to an uncomfortably high-degree. Instead we can describe

the problem as the following multi-objective linear program (MOLP):

Simultaneously maximize

player rewards: foreach player i from 1 to n:∑
s′

∑
~v∈V (s′)

vixs′~v

Subject to:

continuation utility: for every state s′∑
~v∈V (s′)

xs′~v = P (s′|s,~a)

(7)

where we maximize over variables xs′~v (one for each ~v ∈ V (s′) for all s′) and ~v is a

vertex in the achievable-set V (s′) and vi is the value of that vertex to player i. This returns

only the Pareto frontier. An optimized version of the algorithm described in this paper

would only need the frontier, not the full set as calculating the frontier depends only on the
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frontier (unless the threat function needs the entire set). For the full achievable-set 2n such

MOLPs are needed, one for each orthant.

Like our modified view that the Bellman equation is trying to find the entire set of

achievable policy payoffs so too can we view linear programming as trying to find the entire

set of achievable values of the objective function. When there is a single objective function

this is simply a maximum and minimum value. When there is more than one objective

function the solution then becomes a multidimensional convex set of achievable vectors.

This problem is known as multi-objective linear programming and has been previously

studied by a small community of operation researchers under the umbrella subject of multi-

objective optimization [21]. MOLP is formally defined as a technique to find the Pareto

frontier of a set of linear objective functions subject to linear inequality constraints. The

most prominent exact method for MOLP is the Evans-Steuer algorithm [12].

3.4.4 Computing correlated equilibria of sets

Our generalized algorithm requires an equilibrium-filter function Feq. Formally this is a

monotonic function Feq : P(Rn) × . . . × P(Rn)) → P(Rn) which outputs a closed convex

subset of the smallest convex set containing the union of the input sets. Here P denotes the

powerset, so Feq takes a list of subsets in Rn and returns another subset. It is monotonic so

x ⊆ y ⇒ Feq(x) ⊆ Feq(y). The inputs x and y are ordered lists of sets, so when we say x ⊆ y

we mean that corresponding sets are subsets (i.e. ∀i, xi ⊆ yi). The th reat function Fth is

also passed to Feq. Note than requiring Feq to return a closed convex set disqualifies Nash

equilibria and its refinements. Due to the availability of cheap talk, reasonable choices

for Feq include correlated equilibria (CE), ε-CE, or a coalition resistant variant of CE.

Filtering non-equilibrium policies takes place when the various action achievable-sets (Q)

are merged together as shown in step E of Figure 9. Constructing Feq is more complicated

than computing the equilibria for a stage game so we describe below how to target CE.

For a normal-form game the set of correlated equilibria can be determined by taking

the intersection of a set of halfspaces (linear inequality constraints) [28]. Each variable

of these halfspaces represents the probability that a particular joint action is chosen (via
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a shared random variable) and each halfspace represents a rationality constraint that a

player being told to take one action would not want to switch to another action. There are∑n
1 |Ai|(|Ai| − 1) such rationality constraints (where |Ai| is the number of actions player i

can take).

Unlike in a normal-form game, the rewards for following the correlation device or de-

fecting (switching actions) are not directly given in our dynamic program. Instead we have

a achievable-set of possible outcomes for each joint action Q(s,~a) and a threat function Fth.

Recall that when following a policy to achieve a desired payoff, not only must a joint action

be given, but also subsequent payoffs for each successor state. Thus the halfspace variables

must not only specify probabilities over joint actions but also the subsequent payoffs (a

probability distribution over the extreme points of each successor achievable-set). Luckily,

a mixture of probability distributions is still a probability distribution so our final halfspaces

now have
∑
~a |Q(s,~a)| variables (we still have the same number of halfspaces with the same

meaning as before).

At the end of the day we do not want feasible probabilities over successor states, we want

the utility-vectors afforded by them. To achieve this without having to explicitly construct

the polytope described above (which can be exponential in the number of halfspaces) we

can describe the problem as the following MOLP (given Q(s,~a) and Fth):

Simultaneously maximize:

player rewards: foreach player i from 1 to n:∑
~a~u

uix~a~u

Subject to:

probability constraints:
∑

x~a~u = 1 and x~a~u ≥ 0

rationality constraints: foreach player i, actions a1,a2 ∈ Ai, (a2 6= a1)∑
~a~u|ai=a1

uix~a~u ≥
∑

~a~u|ai=a2

Fth(s,~a)x~a~u

(8)

where variables x~a~u represent the probability of choosing joint action ~a and subsequent

49



payoff ~u ∈ Q(s,~a) in state s and ui is the utility to player i.

Despite scaling linearly with the number of states, this multiobjective linear program

for computing the equilibrium hull scales very poorly. The MOLP remains tractable only

up to about 15 joint actions (which results in a few hundred variables and a few dozen

constraints, depending on achievable-set size). In the next section we show how to replace

this MOLP with a series of linear programs. This dramatically increases the number of

joint-actions we can handle, up to a few hundred.

3.4.5 Proof of correctness

Murray and Gordon [54] proved correctness and convergence for the exact algorithm by

proving four properties: 1) Monotonicity (achievable-sets only shrink), 2) Achievability

(after convergence, achievable-sets contain only achievable joint-utilities), 3) Conservative

initialization (initialization is an over-estimate), and 4) Conservative backups (backups

don’t discard valid joint-utilities). We show that our approximation algorithm maintains

these properties.

1) Our achievable-set approximation scheme was carefully constructed so that it would

not permit backtracking, maintaining monotonicity (all other steps of the backup are exact).

2) We have broadened the definition of achievability to permit ε1/(1 − γ) error. After all

achievable-sets shrink by less than ε1 we could modify the game by giving a bonus reward

less than ε1 to each player in each state (equal to that state’s shrinkage). This modified game

would then have converged exactly (and thus would have a perfectly achievable achievable-

set as proved by Murray and Gordon). Any joint-policy of the modified game will yield at

most ε1/(1 − γ) more than the same joint-policy of our original game thus all utilities of

our original game are off by at most ε1/(1−γ). 3) Conservative initialization is identical to

the exact solution (start with a huge hyperrectangle with sides Rimax/(1− γ)). 4) Backups

remain conservative as our approximation scheme never underestimates (as shown in Sec-

tion 3.4.2) and our equilibrium filter function Feq is required to be monotonic and thus will

never underestimate if operating on overestimates (this is why we require monotonicity of
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Feq). CE over sets as presented in Section 3.4.4 is monotonic. Thus our algorithm main-

tains the four crucial properties and terminates with all exact equilibria (as per conservative

backups) while containing no equilibrium with error greater than ε1/(1− γ).

3.4.6 Approximate set dynamic programming

We have now presented all the pieces needed to preform approximate value iteration on

achievable sets (Algorithm 2). We first start with over estimates for each achievable set.

When then perform an exact backup using Equation 3.4.3 to improve the efficiency of our

weighted set sums. After backing up a state, we approximate it (while guaranteeing no

contraction occurs). This process is repeated until convergence to a given threshold.

Algorithm 2 An Approximate Achievable-set Algorithm

Inputs stochastic game (S, s(0), P,A,R), discount factor γ
equilibrium filter function Feq using threats Fth
approximation parameters ε1 and ε2 a set of approximation hyperplanes H

Output state achievable-sets V
state-action achievable-sets Q

1: for all s,~a do

2: V (s)⇐ hypercube with max and min utilities:
Rpmin
1−γ , Rpmax

1−γ for each agent p
3: repeat
4: for all s,~a do
5: Q(s,~a)⇐

∑
s′ P (s′|s,~a)V̇ (s′) using Equation 7

6: Q(s,~a)⇐ R(s, a) + γQ(s,~a)
7: for all s do
8: V (s)⇐ result of Equation 8
9: V (s)⇐ approximation of V (s) (e.g., using the method from Section 3.4.2)

10: until Converged to within ε1
11: return V,Q

This approximate algorithm, using Section 3.4.2’s set-approximation, yields a solution

that is an ε1/(1 − γ)-equilibrium of the full game while guaranteeing there exists no ex-

act equilibrium that Pareto-dominates the solution’s utility. This means that despite not

being able to calculate the true utilities at each stage game, if other players did know

the true utilities they would gain no more than ε1/(1 − γ) by defecting. Moreover our

approximate solution is as good or better than any true equilibrium. By targeting an

ε1/(1− γ)-equilibrium we do not mean that the backup’s equilibrium filter function Feq is
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an ε-equilibrium (it could be, although making it such would not alleviate the convergence

problem, but instead would guarantee that our solution is better than any ε-equilibrium and

is an (ε+ ε1)-equilibrium). We do not change the filter function to guarantee convergence.

Instead, we apply the standard filter function but stop if no achievable-set has changed by

more than ε1.

The primary bottleneck with this algorithm is that mutli-objective linear programming

can be costly to perform exactly. Even over a single iteration, the number of resulting

vertices can be very large, and the number of iterations required to compute these vertices

can be prohibitive. It is inefficient to first compute an exact backup and then approximate.

In the next section we show how to combine these two steps so that the backup and the

approximation can be combined into a set of linear programs.

3.5 The quick polytope approximation algorithm for all correlated equi-
libria (QPACE)

The generic achievable-set based approximation algorithm given above is severely limited in

its scalability by the complexity of multi-objective linear programs (MOLP). Both the com-

putation of Minkowski sums as well as the set-based equilibrium filtering each require one

MOLP per state per iteration. In this section we change the representation of achievable-

sets from a context combination of vertices to an intersection of half-spaces. This change

allows us to efficiently approximate each step of the backup while arriving at a final ap-

proximation no worse than the previous algorithm. Most importantly, we are now able

to extremely efficiently compute approximate Minkowski sums as well as compute the set-

based equilibrium filtering as a series of linear programs instead of a MOLP. First we discuss

the new achievable-set representation. We then make more precise our view that a stochas-

tic game is a sequence of augmented normal-form games. We then present how to improve

computation of action achievable sets (which includes the Minkowski-sum) as well as how to

compute the set of correlated equilibria (a.k.a. filtering). Finally, we give a few algorithmic

optimizations and prove that this new algorithm is still correct.
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3.5.1 Representing achievable-sets

QPACE represents each achievable-set as a set of m linear inequalities with fixed coeffi-

cients. Recall that the achievable-set is closed and convex, and can be thought of as an

n-dimensional polytope (one dimension for each player’s utility). Polytopes can be defined

as an intersection of halfspaces. Each of the m halfspaces j ∈ H consists of a normal Hj

and an offset bj such that the achievable joint-utility x is restricted by the linear inequality

Hjx ≤ bj . The halfspace normals form a matrix H = [H1, · · · , Hm], and the offsets a vector

b = 〈b1, · · · , bm〉. For example, the polytope depicted in Figure 11c can be represented by

the equation Hx ≤ b where H and b are as shown.

While any achievable-set may be represented by an intersection of halfspaces, it may

require an unbounded number. Such a growth in the complexity of achievable-sets does

indeed occur in practice; therefore, we compute an approximation using halfspaces sharing

the same fixed set of normals. Each of our polytopes differ only in their offsets, so QPACE

must only store the b vector for each V (s) and Q(s,~a). The normals H are chosen at

initialization to enable a regular approximation of a Euclidean ball (Figure 11a).

To approximate an achievable-set, we find the minimum offsets such that our approxi-

mation completely contains the original set; that is, we retain each hyperplane’s normal but

contract each offset until it barely touches the given polytope. This process is shown for

the game of chicken in Figure 11. We call this the regular polytope approximation (RPA)

of polytope P using normals H where RPA(H,P )j = maxx∈P [Hj · x] for each offset j.

We say that H permits error ε if ‖RPA(H,P )− P‖ ≤ ε. RPA was first presented in Mac

Dermed and Isbell [51].

3.5.2 Augmented stage games and threats

Agents choosing which action to execute consider not only their immediate reward but also

the long term utility of the next state in which they may arrive. The expected joint-utility

for each joint-action is known as the continuation utility, −→cu~a. Because the agents consider

both their immediate reward and their continuation utility they are in essence playing an

augmented stage game with payoffs R(s,~a) +−→cu~a.
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Figure 11: The QPACE representation. A) A Euclidean ball surrounded by halfspaces
suitable for a regular polytope approximation (RPA). The normals of each halfspace are
illustrated. Note that the halfspaces approximate the inscribed dotted circle. B) The
achievable-set from Figure 4b being approximated using the RPA from (A). Each halfspace
of the Euclidean ball is moved such that it touches the achievable-set at one point. C) The
resulting polytope approximation whose normals and offsets are specified in H and b.

Assuming that the players cooperate with each other, they choose to jointly play any

equilibrium policy in the successor state s′. Thus, the continuation utility −→cus′ of each

successor state may be any point in the achievable-set V (s′) of that state. We call the set

of possible continuation utilities, Q(s,~a), the action achievable-set function. When there is

only one successor, i.e., P (s′|s,~a) = 1, then Q(s,~a) = V (s′). When there is more than one

successor state, the continuation utility is the expectation over these utilities, i.e.,

Q∗(s,~a) =
{∑

s′
P (s′|s,~a)−→cu~as′ | −→cu~as′ ∈ V ∗(s′)

}
(9)

It is advantageous for players to punish other players who deviate from the agreed upon

joint-policy. Given rationality, players will not deviate from the chosen equilibrium and

thus players will never be forced to enact their threats. This allows threats to be any

policy not necessarily in equilibrium (so called incredible threats). The harshest threat

possible is a global grim trigger strategy, where all other players cooperate in choosing

policies minimizing the defecting player’s rewards for the rest of the game. We employ the

grim trigger strategy, as this maximizes the size of the achievable-set. The grim trigger
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Figure 12: An example approximate Minkowski sum of RPA polytopes. Our method is
exact in two dimensions and permits only ε error in higher dimensions.

threat-point (
−→
gt~ai) is a continuation utility that players choose for each joint-action ~a in the

event that player i defects. This utility can be calculated as a zero-sum game using Nash-Q

learning [33] independently at initialization.

3.5.3 Computing action achievable-sets

At the beginning of each iteration, QPACE calculates the action-achievable-set Q(s,~a) for

each state s and each joint action ~a in the stochastic game. We do so by rewriting Equation 9

using Minkowski addition. Given two sets A and B, their Minkowski sum A+B is defined

as A + B = {a + b | a ∈ A, b ∈ B}. Efficient computation of Minkowski addition of two

convex polytopes of arbitrary dimension d is an open and active problem, with complexity

O(|A|d) where |A| is the number of halfspaces; however we can approximate a Minkowski

sum efficiently using our representation as the sum of the offsets (Figure 12). We prove this

result:

Lemma 3.5.0.1. Suppose that A and B represent polytopes (Hx ≤ bA) and (Hx ≤ bB)

and H permits only ε error as discussed in Section 3.5.1. Then the weighted Minkowski

sum αA + βB for constants α, β ∈ R+ and α + β = 1 is approximated by the polytope

Hx ≤ α · bA + β · bB with at most ε relative error.
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Proof. Noting RPA(H,A) ≤ ε and RPA(H,B) ≤ ε,

RPA(H,αA+ βB) = max
x∈A

max
y∈B

[α(Hi · x) + β(Hj · y)]

= α ·max
x∈A

[Hj · x] + β ·max
y∈B

[Hj · y]

= α ·RPA(H,A) + β ·RPA(H,B)

≤ ε · (α+ β) ≤ ε,

Note that multiple additions do not increase relative error. Equation 9 rewriten as a

weighted Minkowski sum becomes: Q(s,~a) =
∑

s′ P (s′|s,~a)V (s). To improve the perfor-

mance of subsequent steps we scale the set of continuation utilities by the discount factor γ

and add the immediate reward (translating the polytope). The final offsets for the action-

achievable-sets may be computed for each j ∈ H as:

Q(s,~a)j = R(s,~a) ·Hj + γ
∑

s?
P (s?|s,~a)V (s?)j (10)

3.5.4 Defining the set of correlated equilibria

Calculating the set of CE in a normal form stage game (e.g. Figure 4b) is straightforward.

A probability distribution X over joint-actions (with x~a being the probability of choosing

joint-action ~a) is in equilibrium if and only if the reward of following the prescribed action

is no worse than taking any other action. More formally, X is a CE if and only if in state s,

for each player i, for distinct actions α, β ∈ Ai, where ~a(α) means joint-action ~a with player

i taking action α: ∑
~a
x~a(α)R(s,~a(α))i ≥

∑
~a
x~a(α)R(s,~a(β))i (11)

These rationality constraints are linear inequalities and together with the probability

constraints
∑
x~a = 1 and x~a ≥ 0 define a polytope in Rn. Any point in this polytope

represents a CE which yields a value-vector
∑
~a x~aR(s,~a). The union of all such value-

vectors (the polytope projected into value-vector space) is the achievable-set of state s

when agents do not consider utilities gained from future states.
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Agents do not play a single normal form game. Instead they play the augmented game

where in order for an agent to make a decision in the current state, they must know which

utility among the many possible in Q(s,~a) they will receive in each successor state. There-

fore, a CE of the augmented stage game consists of both a probability x~a for each joint-

action and an expected continuation utility −→cu~ai for each player and joint-action, resulting

in (n+ 1)|A|n variables. Given a state s, the set of possible CEs over the variables x~a and

−→cu~ai of the augmented game becomes:

For each player i, distinct actions α, β ∈ Ai,∑
~a∈An

x~a(α)
−−−→cu~a(α) i ≥

∑
~a∈An

x~a(α) [
−−−→
gt~a(β) i +R(s,~a(β))i] (12)

For each joint-action ~a ∈ An, and j ∈ H:

−→cu~a ∈ Q(s,~a) (i.e., Hj
−→cu~a ≤ Q(s,~a)j ) (13)

The rationality constraints (12) are quadratic because we have a variable for the con-

tinuation utility (−→cu~ai) which must be scaled by our variable for the probability of that

joint-action occurring (x~a). We can eliminate this multiplication by scaling the action-

achievable-set Q(s,~a) in inequality 13 by x~a making −→cu~ai dependent on x~a. This gives us

our polytope in R(n+1)|A|n over variables −→cu~ai and x~a of achievable correlated equilibria:

For each player i, distinct actions a1, a2 ∈ Ai,∑
~a∈An

−−−→cu~a(α) i ≥
∑
~a∈An

x~a(α) [
−−−→
gt~a(β) i +R(s,~a(β))i]

∑
~a∈An

x~a = 1 and ∀~a ∈ An, x~a ≥ 0

For each joint-action ~a ∈ An,

−→cu~a ∈ x~a Q(s,~a) (i.e., Hj
−→cu~a ≤ x~a Q(s,~a)j )

(14)

3.5.5 Computing the achievable-set function

The polytope defined above in (14) is the set of CE in joint-action-probability (x~a) and

continuation-utility (−→cu~ai) space; however, we do not ultimately want the set of CEs only
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the set of resulting value-vectors V (s). The value that a particular correlated equilibrium

presents to a player i is
∑
~a
−→cu~ai. Recall that we are approximating our achievable-sets

with a fixed set of halfspaces, where each halfspace touches a vertex of the exact polytope

(Figure 11b). This vertex will be the point in the exact achievable polytope that maximizes

the dot product with the halfspace’s normal. We can then find this vertex using a linear

program where the achievable-set is as defined in (14) and the objective function is a dot

product of the value to each player and the halfspace’s normal. In other words, we wish to

find the CE that maximizes a weighted average of the agent’s utilities where the weights are

given by the halfspace’s normal. We compute one linear program for each approximating

halfspace and update its offset to the optimal value found. For each halfspace j with normal

Hj we compute offset bj as the maximum objective function value to the following LP:

V (s)j =


max

∑
~a

∑
i∈I

Hj,i · −→cu~ai

subject to inequalities in (14)

(15)

3.5.6 Linear program solution caching

Every iteration, QPACE solves one LP (Equation 15) for each halfspace in every state.

Depending on the value of ε, the number of halfspaces and hence the number of LPs can

become very large. Solving these LPs is the main bottleneck in QPACE. Fortunately, we

can dramatically improve the performance of these LPs by taking advantage of the fact

that the solutions of many of the LPs do not tend to “change” significantly from iteration

to iteration. More precisely, the maximum offset difference for a given achievable-set in

consecutive iterations is small. For a fixed state, we can therefore expect the solution

corresponding to the LP of one iteration to be quite close to that of the previous iteration.

LPs typically spend the bulk of their running time searching over a space of basic achievable

solutions (BFS), so choosing an initial BFS close to the optimal one dramatically improves

performance. QPACE caches the optimal BFS of each state/halfspace calculation and uses

the solution as the starting BFS in the next iteration. Empirical tests confirm that after

the first few iterations of QPACE the LPs will find an optimal BFS very near the cached
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Algorithm 3 The QPACE Algorithm.

Inputs stochastic game (S, s(0), P,A,R), discount factor γ
equilibrium filter function Feq using threats Fth
approximation parameters ε1 and ε2 a set of approximation hyperplanes H

Outputs state achievable-sets V
state-action achievable-sets Q

1: for all s ∈ S, j ∈ H do
2: V (s)j ⇐ maxs′,~a(R(s′,~a) ·Hj)/γ
3: repeat
4: for all s,~a, j ∈ H do
5: Q(s,~a)j = equation (10)
6: for all s, j ∈ H do
7: V (s)j ⇐ LP (15) starting at BFS-cache(s, j)
8: BFS-cache(s, j)⇐ optimal BFS of the LP
9: until ∀s : V (s)j changed less than ε/2

10: return {V }

BFS (Figure 16f). In fact, a majority of cached BFS are actually already optimal for the

new LP. Note that even if the optimal BFS from one iteration is exactly the optimal BFS

of the next, the optimal values may be different as the offsets change.

This optimization only applies if a BFS from one iteration, x∗, is a valid BFS in the next.

Every LP has identical variables, objectives, and constraints, with subsequent iterations

differing only in the offsets b; therefore, x∗ is a basic solution for the new LP. While x∗ is

basic, it may not be feasible for the new LP. However, LP sensitivity analysis guarantees

that an optimal BFS from one iteration is a BFS of the dual problem in the next iteration

when only b changes. Therefore, we alternate each iteration between solving the primal and

dual problems.

3.5.7 Proof of correctness

Murray and Gordon [27] proved correctness and convergence for the exact algorithm

by proving four properties: 1) Monotonicity (achievable-sets only shrink), 2) Achievability

(after convergence, achievable-sets contain only achievable joint-utilities), 3) Conservative

initialization (initialization is an over-estimate), and 4) Conservative backups (backups

don’t discard valid joint-utilities). We show that our approximation algorithm maintains

these properties.
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1) Our achievable-set approximation scheme was carefully constructed so that it would

not permit backtracking, maintaining monotonicity (all other steps of the backup are exact).

2) We have broadened the definition of achievability to permit ε1/(1 − γ) error. After all

achievable-sets shrink by less than ε1 we could modify the game by giving a bonus reward

less than ε1 to each player in each state (equal to that state’s shrinkage). This modified game

would then have converged exactly (and thus would have a perfectly achievable achievable-

set as proved by Murray and Gordon). Any joint-policy of the modified game will yield at

most ε1/(1 − γ) more than the same joint-policy of our original game thus all utilities of

our original game are off by at most ε1/(1−γ). 3) Conservative initialization is identical to

the exact solution (start with a huge hyperrectangle with sides Rimax/(1− γ)). 4) Backups

remain conservative as our approximation scheme never underestimates (as shown in Sec-

tion 3.4.2) and our equilibrium filter function Feq is required to be monotonic and thus will

never underestimate if operating on overestimates (this is why we require monotonicity of

Feq). CE over sets as presented in Section 3.5.4 is monotonic. Thus our algorithm main-

tains the four crucial properties and terminates with all exact equilibria (as per conservative

backups) while containing no equilibrium with error greater than ε1/(1− γ).

3.6 Empirical results

3.6.1 Breakup game

We implemented a version of our algorithm targeting exact correlated equilibrium using

grim trigger threats (defection is punished to the maximum degree possible by all other

players, even at one’s own expense). The grim trigger threat reduces to a 2 person zero

sum game where the defector receives their normal reward and all other players receive the

opposite reward. Because the other players receive the same reward in this game they can

be viewed as a single entity. Zero sum 2-player stochastic games can be quickly solved using

FFQ-Learning [49]. Note that grim trigger threats can be computed separately before the

main algorithm is run. When computing the threats for each joint action, we use the GNU

Linear Programming Kit (GLPK) to solve the zero-sum stage games. Within the main

algorithm itself we use ADBASE [85] to solve our various MOLPs. Finally we use QHull
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[8] to compute the convex hull of our achievable-sets and to determine the normals of the

set’s facets. We use these normals to compute the approximation. To improve performance

our implementation does not compute the entire achievable hull, only those points on the

Pareto frontier. A final policy will exclusively choose targets from the frontier (using Fbs)

(as will the computed intermediate equilibria) so we lose nothing by ignoring the rest of

the achievable-set (unless the threat function requires other sections of the achievable-set,

for instance in the case of credible threats). In other words, when computing the Pareto

frontier during the backup the algorithm relies on no points except those of the previous

step’s Pareto frontier. Thus computing only the Pareto frontier at each iteration is not an

approximation, but an exact simplification.

We tested our algorithm on a number of problems with known closed form solutions,

including the breakup game (Figure 14). We also tested the algorithm on a suite of random

games varying across the number of states, number of players, number of actions, number

of successor states (stochasticity of the game), coarseness of approximation, and density of

rewards. All rewards were chosen at random between 1 and -1, and γ was always set to

0.9. A typical run is shown in Figure 13. Note that unlike single agent value iteration, the

convergence rate is very erratic (recall that a small change in utility estimation can lead to

a large change in the equilibrium).

An important empirical question is what degree of approximation should be adopted.

Our testing (Figure 15) suggests that the theoretical requirement of ε2 < ε1 is overly con-

servative. While the bound on ε2 is theoretically proportional to Rmax/(1 − γ) (the worst

case scale of the achievable-set) a more practical choice for ε2 would be in scale with the

final achievable-sets (as should a choice for ε1).

3.6.2 Random games

We ran tests to determine the scalability of QPACE across a number of different dimensions:

precision (Figure 16a), number of states (Figure 16b), number of joint-actions (Figure 16c),

and number of players (Figure 16d). We ran the algorithms over generated games, random

in the state transition and reward functions. Unless otherwise indicated, the games were
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Figure 14: A visualization of achievable-sets for the terminal state and player 1’s state of
the breakup game at various iterations of the dynamic program. By the 50th iteration the
sets have converged.

run with 10 states, 2 players, 2 actions each, and with ε = 0.05 and γ = 0.9. We used the

GLPK library as our linear programming solver, and used the FFQ-Learning algorithm [49]

to compute grim trigger threats.

As users specify more precision, the number of hyperplanes in our approximate Euclidean

ball increases exponentially. So, wall clock time increases exponentially as ε decreases as

Figures 16a confirms. The QPACE algorithm begins to do worse than Mac Dermed and

Isbell (MI09) for very low values of ε, especially in QPACE without caching (Figure 16a).

To see why, note that if an achievable-set can be represented by only a few vertices or

halfspaces (e.g. a hypercube) than MI09 will only use those vertices necessary while QPACE
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converged quickest (in total wall time). The 6, 12, and 36 hyperplane approximations are
insufficient to guarantee convergence (ε2 = 0.7, 0.3, 0.1 respectively) yet only the 6-face
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will always use all halfspaces in H.

Both MI09 and QPACE scale linearly with the number of states independent of other

parameters (Figure 16b), however QPACE is about 240 times faster than MI09 with the

default parameters. The number of variables used in each LP is linear with respect to

the number of joint-actions. LP’s in turn are polynomial with respect to the number of

variables. Therefore as expected, both algorithms are polynomial with respect to joint-

actions (Figure 16c). However, QPACE uses significantly fewer variables per joint-action

and therefore has a lower rate of growth.

QPACE scales much better than MI09 with respect to the number of players. The

number of joint-actions grows exponentially with the number of players, so both algorithms

have exponential growth in the number of players; however, the number of vertices needed

to represent a polytope also grows exponentially while the number of halfspaces only grows

polynomially. Thus, QPACE is able to handle many more players than MI09.

A natural question to ask is how much each of QPACE’s new aspects contribute to

the overall efficiency. The change of representation permits three key improvements: fewer
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variables in the linear programs, an elimination of the need to calculate vertices of the poly-

topes, fast Minkowski addition, and LP solution caching. By comparing QPACE without

caching to MI09 in Figures 16a-c we observe the impact of the first two improvements. We

now examine Figures 16e&f to determine the contribution of the last two improvements.

Both QPACE and MI09 employ Minkowski sums when computing the expected con-

tinuation utility over future states (when transitions are deterministic, neither algorithm

computes Minkowski sums). As the number of possible successor states increases, both

algorithms perform more Minkowski additions. Figure 16e graphs the effect of additional

successor states for both MI09 and QPACE and shows that while MI09 suffers from a 10%

increases in time when the number of successors is large, QPACE is unaffected.

From Figure 16f, we observe that as the number of iterations progresses, the average

number of LP iterations involved decreases quickly for QPACE with caching. The algorithm

initially takes around 100 LP iterations, and drops to less than 3 LP iterations by the sixth

iteration. On the other hand, QPACE without caching starts at around 20 LP iterations

and plateaus to a consistent 70 LP iterations. The graphs demonstrate that the LP caching

does in fact make a significant difference in running time: QPACE with caching consistently

takes around 0.2 seconds per iteration after the tenth iteration, but QPACE without caching

takes over 1.5 seconds per iteration. In the long run, LP caching contributes an order of

magnitude speed boost.

3.7 Extensions

The achievable-set based dynamic programming algorithms, specifically QPACE, presented

in this chapter can easily be augmented to target a variety of solution concepts. The easiest

means to accomplish this is to change the threat function and/or the equilibrium filter

function.

For example, QPACE can easily be modified to produce sub-game perfect equilibria by

making the threat points
−→
gt~ai variables in (14) and constraining them in a similar way to

the −→cu~ai; we then employ the same trick described in Section 3.5.4 to remove the resulting

quadratic constraints. As another example, we explore below the case of changing the
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equilibrium filter function to target commitment equilibrium instead of correlated.

QPACE can also be extended to work in games of imperfect monitoring and imperfect

recall. In these games player’s don’t observe actions so they can’t use threats and can’t

choose different continuation points for each joint-action. Thus
−→
gt~ai = −→cu~ai and the values

of Q(s,~a)j are interdependent across actions, forcing equations (9) and (14) to become one

large set of inequalities.

3.7.1 Computing Commitment Equilibria

The QPACE algorithm (3) as described so far computes the set of correlated equilibria.

However, the algorithm can be easily modified to solve for other solution concepts as well,

as long as the concept has a convex achievable region. One popular solution concept is a

commitment equilibrium (a.k.a. Stackelberg strategies), where one player in a two-player

game is able to select their strategy first (the leader), and reveal this locked-in strategy

to the other player (follower). This ability gives the leader an advantage for two reasons:

One, the leader can unilateral narrow down the choices of equilibrium, often times outright

selecting the equilibrium. This avoids any issues with equilibrium selection (Section 3.2.2).

Two, the leader is no longer constrained by rationality constraints. This improves the set of

possible strategies. Computing optimal mixed commitment strategies has proved valuable

for several real security problems, including airport security [69, 72], assigning Federal Air

Marshals to flights [88], and Coast Guard patrols [80].

The set of commitment equilibria is the same as the set of correlated equilibria except

without rationality constraints for the leader. Therefore commitment equilibria generalize

correlated equilibria, meaning that commitment equilibria can be better than any correlated

equilibria. Because the leader gets to narrow down the choice of possible equilibria by

selecting a strategy first, the advantage of being a leader is strictly beneficial (never decreases

utility) [90].

The following well known example (Figure 3.7.1) illustrates how advantageous commit-

ment can be. When players move simultaneously (a standard game without a leader), the

unique Nash equilibrium is (U,L) because U strictly dominates D and the game is solvable
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by iterated elimination of dominated policies. In this unique Nash equilibrium, Player 1

(the row player) receives a payoff of 1. However, when player 1 becomes the leader, then she

can commit to playing D. Player 2 will now rationally play R resulting in player 1 getting

a payoff of 2. If player 1 is the leader, player 1 can do even better if she uses the mixed

strategy of (.5 − ε, .5 + ε) which still leads player 2 to choose R and player 1 gets a payoff

of 2.5− ε. While it can be advantageous for the leader to commit to a mixed strategy, the

follow will never do better than his pure strategies (player 2’s decision becomes a single

agent problem).

Most of the work on computing mixed Stackelberg strategies has focused on normal-form

games (albeit combinatorialy large normal-form games) where the leader must commit to

a strategy over her entire lifetime without being able to react to the actions of the other

agent. While there is one exception that works towards computing Stackelberg strategies in

extensive-form games [46], there has been no work towards computing Stackelberg strategies

for infinite horizon sequential problems. In such problems, we can also decide to what degree

an agent can commit – perhaps a leader can only commit for short time spans and then

must necessarily open themselves up to reprisal. We can modify the QPACE algorithm to

solve this gap [47].

Every iteration of QPACE performs a backup which can be broken down into three steps:

(1) Calculate the action achievable-sets Q(s,~a), giving us the set of possible continuation

utilities. (2) Construct a set of inequalities that defines the set of equilibria. (3) Approx-

imately project this achievable-set into value-vector space by solving a linear program for

each hyperplane V (s)j . Step two is the only step that needs to be changed to compute

achievable commitment policies instead of correlated equilibria. We modify Equation 15 to

not include rationality constraints for the leader. The resulting set of inequalities defining

the set of commitment equilibria is shown in Equation 16. This gives us our polytope in

R(n+1)|A|n over variables −→cu~ai and x~a of achievable correlated equilibria:
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For each player i who cannot commit,

for each pair of distinct actions α, β ∈ Ai∑
~a∈An

−−−→cu~a(α) i ≥
∑
~a∈An

x~a(α) [
−−−→
gt~a(β) i +R(s,~a(β))i]

∑
~a∈An

x~a = 1 and ∀~a ∈ An, x~a ≥ 0

For each joint-action ~a ∈ An and halfspace j

Hj
−→cu~a ≤ x~a Q(s,~a)j

(16)

The rest of QPACE remains unchanged. Our modification to QPACE is minor and

leaves the strong theoretical properties of the original algorithm intact. Most importantly,

the algorithm converges to within ε in polynomial time and returns a set of commitment

equilibria which is guaranteed to include all exact equilibria with additional solutions being

no worse than ε-equilibria, where ε is the approximation parameter.

3.7.1.1 Commitment experiments on random games

We ran suites of experiments over sets of random games. These random games varied over

the number of states, actions, stochasticity (the number of successor states with non-zero

transition probability), and discount (γ). Unless otherwise noted, games were run with four

joint-actions, five states, two successor states, a γ of 0.9 and an ε approximation error of 0.01.

Results are averaged over 1000 games, which allows our utility results to be accurate within

0.02 with 99% confidence. A random game is generated using the following procedure:

for each state joint-action pair k successor states are chosen at random. The simplex over

these k states represents all possible probability distributions over these states. A transition

probability distribution is chosen uniformly at random from this simplex. Each state joint-

action pair is also assigned a reward for each player drawn uniformally at random. Finally,

these rewards are normalized such that each player’s rewards range between 0 and 1.

Our first set of experiments examines the scalability of the algorithm. Despite our

algorithm having fewer constraints for each linear program than the original QPACE algo-

rithm, we found our algorithm to have running time nearly identical to the original. Because
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QPACE starts each linear program at the solution of the previous iteration’s linear program,

the total number of basis changes over the course of the entire algorithm is relatively small.

Thus, fewer constraints reduces the overall running time by an insignificant amount. Our

algorithm appears to scale linearly in the number of states, joint-actions, and 1/ε (the first

two of these are shown in Figure 18).

Our second set of experiments focuses on determining the importance of commitment

vs. equilibrium selection. One of the more powerful aspects of committing is being able to

dictate which particular equilibrium of the many possible will be chosen. Without commit-

ment, players are faced with a bargaining problem to determine the which equilibrium will

be chosen. This may result in significantly less utility for a potential leader. It is important

to differentiate between the benefit of being able to commit to sub-rational policies and the

benefit of equilibrium selection. Towards this end we compute both the Kalai-Smorodinsky

bargaining solution [41], which favors equal gains to all parties, and the optimal selfish

equilibrium for the potential leader with and without commitment (Figure 19).

The results show that as γ increases, the importance of committing, over and above

just being able to select the equilibrium, decreases. This relationship is caused by threats

becoming more powerful as the horizon increases. Strong threats act as a binding mech-

anism, permitting a wider array of possible equilibria by allowing players to punish each

other for deviations without the need of someone violating her rationality constraint (as per

folk-theorems). On the other hand, the benefit of equilibrium selection remains important

regardless of the discount factor. The effect of equilibrium selection on the follower is even

more dramatic than it is for the leader (Figure 19). With a small discount factor, the set

of possible equilibria is small and thus likely to provide both players with similar utilities,

even when the leader selects selfishly. As γ increases, a leader has more options for forcing

the follower down a path more preferable to the leader at the expense of the follower.

Our third set of experiments examines how the number of actions affects the value of

committing. We tested random games with a γ of both 0.0 and 0.4 across varying numbers

of actions per player (Figure 20). We observe that as the number of actions increases, the
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relative commitment gain decreases slightly because additional actions increase the prob-

ability that a correlated equilibrium without commitment will approach the unrestricted

optimum, leaving less room for improvement by committing. While more actions decreases

the importance of committing, the importance of being able to select the equilibrium (as

opposed to having to bargain) remains high. This effect is stronger for larger values of

γ. For games with very high discount factors, increasing the number of actions tends to

increase the total value of the game, but not the relative importance of committing.

3.7.2 Dynamic halfspaces

Each polytope in QPACE is approximated by a regular set of halfspaces (Figure 11A).

Using this regular scheme, the number of halfspaces grows proportionally to ε−n where n

is the number of players. Typically (from empirical observations) only a few halfspaces

are necessary for high accuracy approximations – the rest are overkill. Determining which

halfspaces are needed in which contexts is non-trivial but avoiding unnecessary halfspace

calculations could lead to dramatic computational gains, particularly when the number of

players is large.

One simple approach to alleviate this halfspace problem is to first solve the problem

with a few regularly spaces halfspaces. We can then add halfspaces to our set H (keeping

the originals) and solve the problem again. The old halfspaces with keep their offsets,

while the new halfspaces will be initialized to a large over estimate. This will keep the

solution of the previous run as the starting point for the next run. One difficulty with

this approach is maintaining regularly spaces half-spaces each run. Minimizing the distance

between halfspace normals is crucial for our error guarantees, however if we are running the

algorithm multiple times, only the final normal distances will matter. This leads to the idea

of selecting halfspaces for the most refined run and selecting subsets for the preceding runs.

Another approach is to start with a hypercube for the first run, and then each additional

run add a halfspace normal for each vertex of the previous set of normals with unit offset.

Figure 21 shows the result of this process. Having each run use a regular set of halfspaces

improves the accuracy of that iteration and places less demand on subsequent runs.
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Another approach is to be selective about which halfspaces to add. By performing

sensitivity analysis on each linear program we can determine which variables in the linear

program are important to the result. These variables correspond to vertices in successor

achievable-sets. Therefore if a variable contributes to a linear program’s solution then the

corresponding successor halfspaces that bound that particular vertex needs to be accurate.

If they are not, then a new halfspace should be added to bound that particular vertex. On

the flip side, if a halfspace bounds no important vertices, it no longer needs to be updated.

We believe such a scheme will lead to substantial performance increases. Beyond general

dynamic halfspace allocation, we believe the same approach can be used to efficiently target

a specific achievable vector (e.g., the point that maximizes equal division of the reward).

3.7.3 Limitations

Our approach is overkill when the achievable-sets are one dimensional (line segments) (as

when the game is zero-sum, or agents share a reward function), because CE-Q learning

[28] will converge to the correct solution without additional overhead. When there are

no cycles in the state-transition graph (or one does not wish to consider cyclic equilibria)

traditional game-theory approaches suffice. In more general cases, our algorithm brings

significant advantages, however because we operate on vanilla Stochastic games with tabular

transition and reward functions the problem still scales quadratically with the number of

actions and exponentially with the number of agents. This prevents our algorithms from

running efficiently on all but the simplest problems with more than four agents. Another

large limitation is the assumption that the world is fully observable. Most multi-agent

problems have some degree of uncertainty either about the state of the world or the goals

of other agents. Neither case can be modeled by stochastic games. In the next chapter we

begin to explore game of incomplete information and how to extend ideas from this chapter

to partially observable stochastic games.
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Figure 17: A Normal-form game demonstrating the value of commitment.

0

50

100

150

200

250

0 50 100 150

64

36

25

16

9

4

2

N
um

ber of Joint-actionsW
al

l t
im

e 
(m

in
ut

es
)

States (thousands)

Figure 18: The running time of our algorithm is linear in the number of states and joint-
actions.

Leader’s best
correlated
equilibrium

Follower’s 
commitment
equilibrium

Leader’s best
commitment
equilibrium

Bargaining
correlated
equilibrium

γ

Le
ad

er
 u

til
ity

 sc
al

ed
 b

y 
1-
γ

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 0.5 1

Figure 19: The average utility of being able to select a correlated or commitment equi-
librium selfishly as opposed to the leader’s Kalai-Smorodinsky bargaining solution or the
follower’s utility when the leader selected a commitment equilibrium.

Le
ad

er
 u

til
ity

 sc
al

ed
 b

y 
1-

γ

Actions per player

0.5

0.6

0.7

0.8

0.9

1.0

2 4 6 8 10 12

Optimum

Commitment

Correlated

Correlated

γ 
= 

0.
4

γ 
= 

 0
.0

Commitment

Figure 20: The best utility achievable by the leader using either correlated or commitment
equilibria compared to the unrestricted optimum. Result are shown for γ = 0.0 and 0.4.

72



Figure 21: The sequence of unit polytopes (unit offsets) resulting from starting with a
cube and adding a normal for each vertex of the previous polytope. The set of resulting
halfspaces are fairly regular. These can be used for successive runs of increasingly accurate
approximations.
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CHAPTER IV

MARKOV GAMES OF INCOMPLETE INFORMATION

Multi-agent reinforcement learning (MARL) is challenging when the world is fully observ-

able. When the world is only partially observable (as is the case for many problems), the

problem is overwhelming. Previous research has modeled these scenarios as partially ob-

servable stochastic games (POSG) (Section 2.2.5). POSGs are extremely complicated and

attempts to solve POSGs have all met large computational barriers. In this chapter we

argue that POSGs are too general. One of the major reasons why POSGs are so hard

to solve is that beliefs grow double-exponentially with the planning horizon. This makes

reasoning over all beliefs intractable. We believe that the POSG model should be slightly

weakened by assuming that there are a bounded number of beliefs for each agent. This as-

sumption dramatically reduces the complexity of solving POSGs and leads to a novel model

– Markov games of incomplete information (MaGII, pronounced ”Ma-jai”). MaGIIs can be

converted into belief-stochastic games, allowing them to be solved (much like POMDPs

being converted into belief-MDPs). MaGIIs can approximate POSGs and exactly model

many interesting problems while being (relatively) easier to solve.

4.1 Motivation

Agents living in a POSG view their world as lacking the Markov property; agents must

utilize past observations to make optimal decisions. Even if an agent returns to the same

underlying Markovian state of the world, the dynamics of the world may appear to change

because other agent’s may have different beliefs, and thus take different actions. Naively an

agent can retain the history of all observations received. However, such retention is impos-

sible in the long run. In order to understand how to efficiently solve games of incomplete

information we need to understand how to compactly represent the useful information of

an agent’s history for decision making. We call an agent’s current compact representation

of history that agent’s belief. The set of possible beliefs that an agent might hold is referred
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to as the agent’s belief space.

For POMDPs a sufficient (for optimal behavior) belief space is the set of probability

distributions over possible states. This is not the case for POSGs. Not only do agents

have to worry about which state they are in, but they must also worry about other player’s

beliefs. Worse, players must reason about the beliefs that players hold about each other’s

beliefs. These levels of meta-reasoning are called nested beliefs, and can potentially continue

indefinitely (reasoning about beliefs of beliefs of beliefs etc...). This additional level of meta-

reasoning makes the problem significantly more conceptually and computationally complex.

An agent’s observations may include private information about other player’s beliefs, and

in the worst case it might be impossible to losslessly reduce a player’s knowledge beyond

their full observation history. We refer to an agent’s belief about the states-of-nature as

that agent’s level-zero belief (a probability distribution over states).

One way to compactly define the infinite nesting of beliefs is to utilize the notion of

common-knowledge. If a fact is common-knowledge then all players not only know that fact,

they know that other player’s know it and that all such nested knowledge is known. Most

game theoretic results assume prior common-knowledge of the game, as well as common-

knowledge of each agent’s policy (derived from the assumption of rationality). We also make

these assumptions. Thus at the first time-step there is only one infinitely nested belief for

each player defined by the common-knowledge of the model. Unfortunately, in a typical

POSG, every time-step pushes the common-knowledge back a level. For example, after 3

time-steps only level-3 beliefs are commonly known (given the previous levels) and agents

must reason about all possible level-0 through level-2 beliefs. In a single agent POMDP,

the number of beliefs about the true world state grows exponentially with time. However,

with multiple agents a belief should capture not just what has been seen, but also what

could have been seen by other agents. This product of possible histories for each agent has

doubly-exponential growth. This problem is known as ”the curse of history” [70].

There have been previous approaches that attempt to operate directly on the infinitely

nested belief structure [22] , but these must necessarily be approximations of unknown

accuracy (if we stop at the nth nested belief the nth + 1 could dramatically change the

75



outcome). These results have gotten reasonable empirical results in a few limited domains

but it seems unlikely these methods will eventually generalize to general-sum games or scale

with the complexity of the game. The POSG model typically assumes that the model itself

along with the initial state distribution b(0) is common-knowledge at the beginning of the

game. At this initial point, players only have level-zero beliefs. However, for every transition

of the game the belief levels increase by one. Every possible history could potentially lead

to a different set of nested-beliefs, and thus the belief-space grows combinatorially. Our

solution, MaGIIs, arise from assuming that this explosion of beliefs does not occur.

4.2 MaGIIs without public observations

Markov games of incomplete information (MaGII) arise from making a single simple as-

sumption: that the number of beliefs at any time-step is bounded for each agent. This

means that at any point in time there are only a fixed finite set of possible beliefs for

each agent, and that the maximum number of possible beliefs is known in advanced. Note

that we are not assuming that the total number of beliefs over all time is bounded, only

at any particular point in time. In particular, beliefs at every time-step, while bounded,

may be distinct from all previous beliefs. While this assumption seems straightforward, the

consequences are not.

First, recall that beliefs are sufficient statistics for history, meaning they capture all

relevant information previously seen. This means that an agent does not need to remember

any information or history beyond their current belief in order to make optimal decisions.

In other words, an agent’s belief is Markovian. If the number of beliefs is bounded, then

because beliefs are Markovian we can transform a POSG into a new decision equivalent

POSG where each agent’s belief is included in the underlying (unobserved) state, and each

observation corresponds to a belief. This new factored model is a MaGII and it will have a

state-space only polynomially larger (with respect to the number of beliefs) than the original

model. Such a transformation can be done for any POSG, but if there are an unbounded

number of beliefs, the resulting state-space will also be unbounded.

There is a difference between a belief that is a true sufficient statistic (no worse than
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knowing the full history) and a compressed-belief which may correspond to multiple histo-

ries. When we say that beliefs are bounded, we mean so if the first sense. We therefore

know a priori the mapping from action-observation-histories to beliefs (because we know

which histories are information-equivalent). Using induction, (with a base case of the first

observation), if we assume the previous observation was the previous belief, we can replace

each agents 〉previous-belief, observation〈 pair with a new observation that corresponds to

the new belief. There will be no more distinct observations than possible beliefs, which is

bounded. Because we know this transformation a priori, we can fold it into the transition

function. Therefore, in a MaGII, beliefs and observations are synonymous.

We define a MaGII formally as the tuple 〈N,A,O,Ω, S, P,R, b(0)〉 where:

• N is the set of players. n = |N |

• A =
∏n
i=1Ai is the set of joint-actions

• O =
∏n
i=1Oi is the set of observations (a.k.a. types, corresponding to beliefs).

• Ω = is the set of states-of-nature (underlying states) where ω ∈ Ω is the current

state-of-nature.

• S = Ω×O is the set of states. This is a factored state representation with s =

〈ω,~o〉 = 〈ω, o1, · · · , on〉 where ~o is the joint-observation/belief.

• P : S ×A→ ∆(S) is the probability transition function.

P must have a Markov property on observations (making them beliefs): For each

agent, the current state is independent from previous observations given the previous

state, joint-action, and current observation. Formally:

∀ st, st+1,~a, players i :

P (st+1|st,~a, ot+1
i , oti) = P (st+1|st,~a, oti)

• R : S ×A→ Rn is the joint-reward function

• b(0) ∈ ∆(S) is the initial state distribution
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There is no explicit observation function defined for a MaGII. Instead each agent always

observes their corresponding belief factor. This belief captures any observations the agent

may have made. A subtle but important aspect of the model is that the agent knows how

many time-steps have transpired. This means that the same observation does not necessarily

correspond to the same belief. This is very important because we allow an agent’s policy

to change over time, in other words a policy is a mapping from observation and time-step

to action. The current time-step is common knowledge so does not increase the number of

beliefs. Because policies can be time dependent, the exact belief that an observation maps

to may change over time as well.

The key to MaGIIs is that the beliefs for each agent is explicitly included as a factor in

the underlying states. This means that an agent needs to only reason about level-0 beliefs.

Each state dictates not only the environment dynamics but also the other agent’s dynamics

(who’s policies are based on beliefs which are included in the state). It might seem like

the problem has been reduced to a POMDP, but there are still two major differences. 1)

We must simultaneously compute policies for all agents (which may include equilibrium

analysis for general-sum games). 2) Agent’s still need to reason about possible beliefs

of other agents (not just the true belief). In fact, beliefs in a MaGIIs include infinitely

nested reasoning, but there are a bounded number of such beliefs. Both of these differences

must be addressed. Nested reasoning is captured by accounting for a common-knowledge

distribution over beliefs and treating the decision problem as a Bayesian game.

4.2.1 MaGIIs as a sequence of Bayesian games

Previously, in Section 2.2.6 we showed how an agent’s decision problem in a POSG can

be viewed as a sequence of Bayesian games. However there was a serious problem with

effectively utilizing this transformation; the number of types in each Bayesian game is equal

to the number of beliefs which typically grows exponentially. This is not a problem for

MaGIIs. In fact, the definition of a MaGII makes it even easier than a POSG to define the

succession of Bayesian games.

At each time-step an agent receives an observation (recall observations and beliefs are
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synonymous in a MaGII) which is that agent’s type in the current Bayesian game. Each

agent then takes an action and receives a reward based on the joint-type. The only piece

missing is a commonly known distribution across observations (types). But we can derive

this using induction. At time-step 0 the initial distribution is commonly known. Also, the

policies for each player are commonly known (again, due to rationality). The successor state

is completely determined by the previous state and the policies for each agent. Policies in

turn are mappings from belief (which is included in state) to distributions over actions. So,

for time-step t + 1 a common-knowledge distribution across states can be computed using

the common-knowledge distribution from time-step t. In particular, with joint-policy π:

pt+1(s′) =
∑
s

pt(s)
∑
~a

π(~a)P (s′|s,~a) (17)

This common-knowledge probability distribution across underlying states specifies the

complete infinite nesting of beliefs. For example, once an agent sees their belief, they know

the posterior probability of other agents beliefs along with those agents posterior beliefs

about other agents posterior beliefs, and so forth. In a MaGII, all observations are private

so the only common-knowledge is the model itself (including starting state) and the policy

each agent takes. Thus at each stage the common-knowledge distribution is independent of

all observations seen and actions taken.

We now have all the pieces needed to define the Bayesian game at each time-step. How-

ever, there is one minor complication we need to address. Bayesian games don’t explicitly

deal with uncertainty over unobservable states, only uncertainty over player types. Game

theory has typically handled this by including an extra player, called nature who has no

choice of action but has the unobserved state as their type. This is why we call the under-

lying unobservable state the state of nature. We follow this convention here.

After t + 1 time-steps the current Bayesian game, that is equivalent to the decision

problem faced by players in the MaGII, can be computed as follows: N and A are the same

as in the MaGII. The player types are equal to the private observations for each agent,

including the unobserved states for nature (Θ(t) = S). The common knowledge distribution

over types, τ (t) = pt can be computed recursively as given by Equation 17. Note that
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because nature has only one action, she does not affect this distribution. The rewards are

the same as in the MaGII (R′(θ, a) = R(s, a)).

This is equivalent to the Bayesian game that results from a POSG when we simplify by

utilize the Markov property on private observations.

4.2.2 Beliefs

MaGIIs are based on assuming there are a bounded number of beliefs. These beliefs consti-

tute the state of a MaGII and is the space over which agents must reason. However, we have

yet to describe what the actual beliefs are. Recall that the agent knows both their current

observation and the number of time-steps since the beginning of the game. This information

uniquely defines a belief, but is not the belief itself (it does not account for nested reason-

ing). In the previous section (4.2.1) we stated that the common-knowledge distribution

across states defines the infinite nesting of beliefs. This common-knowledge distribution

can be derived from the time-step dynamically using Equation 17. This distribution along

with a players private observation constitutes a belief. We prove this fact:

Lemma 4.2.0.2. In a MaGII, a common knowledge distribution τ across states combined

with an agent’s private observation is a sufficient statistic for history (the agent’s belief).

Proof. The proof is by induction on time-step. At time-step 0, agents trivially have the

same common knowledge distribution τ = o(0) as given by the model and combined with

their (known) type represents the players’ sum of useful information (their belief). Now

assume that τ is common knowledge at time t, and that combined with player’s private

signals, ~o(t) is a sufficient statistic for history. At time t + 1, player’s beliefs will include

the new observations and players must reason about which observation every other player

received (level-one beliefs).

Let us look from the perspective of agent i. At time-step t+ 1 after observation o
(t+1)
i

using a known joint-policy πt agent i wishes to determine the probability of being in state

s′.

Pr[~o(t+1)|s′, s, o(t+1)
i ,~a(t)] =

∑
~o(t) P (s′, ~o(t+1)|s, ~o(t),~a(t))Pr[~o(t)|o(t+1)

i ]. However, note

that because of the Markov property Pr[~o(t)|o(t+1)
i ] = Pr[~o(t)] = τ (t)(~o(t)). Therefore
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τ (t+1)(~o(t+1)) =
∑

~o(t) τ
(t)(~o(t))P (s′, ~o(t+1)|s, ~o(t),~a(t)) which is independent of any private

information and is thus common knowledge and identical for all players. What we have ne-

glected in the preceding equations is that any joint-observation inconsistent with a players

observed type will have probably zero for that player, however this information is already

captured by using the posterior of the joint-type distribution τ . Thus a player’s belief will

consist of a common knowledge type distribution and their private type.

Lemma 4.2.0.2 shows that MGIIs permit an efficient belief representation. This fact is

the key difference between POSGs and MaGIIs and allows us to efficiently solve MaGIIs.

4.2.3 Policies

Ultimately our goal is to figure out what actions agents should take. We are therefore

interested in computing policies. We have shown that a lossless belief in a MaGII can

take the form of a common-knowledge distribution combined with the current observation.

Therefore, an optimal policy can be a mapping from common-knowledge distribution and

observation to action.

It is more convenient to view this as a sequence of decision rules δt : O → ∆(A) that

specify the actions (or distribution across actions) each agent should take at time t. This

decision rule takes the form of a probability distribution across joint-actions for each joint-

observation. Based on the solution concept targeted, this distribution will have additional

constraints. In the case when we wish to compute Nash-equilibria or when the payoffs are

linearly related (e.g., zero-sum or common-payoff) this will mean that each agent’s action

probabilities must be independent (and such a decision rule can be broken down into n

individual decision rules, 1 per agent). However, in Section 2.1.2 we argue that an agent

normal form correlated equilibrium is a better solution concept for Bayesian games. This

is much like how we argued that correlated equilibria are a better solution concept for

stochastic games than Nash-equilibria (Section 2.1.1). We therefore leave decision rules as

general probability distributions across joint-actions.

Each decision rule δt : O → ∆(A) corresponds to a solution of the current Bayesian

stage game. A policy π = (δ0, δ1, · · · , δh) is a (possibly infinite) sequence of such decision
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rules. We use the notation πt(~o,~a) to be the probability that agents will take joint action

~a after joint-observation ~o. Again, not all decision rules are valid. They must adhere to

the conditions of the solution concept being targeted (such as maintaining that no private

information is communicated).

Given such a policy, we can compute the utility that it achieves.

Vπ(bt) = R(bt, π) + γVπ(bt+1)

where

bt+1(s) =
∑
s′∈S

bt(s′)
∑
~a∈A

πt(s′~o,~a)P (s|s′,~a)

and

R(bt, π) =
∑
s∈S

bt(s)
∑
~a∈A

πt(s~o,~a)R(s,~a)

is the expected immediate reward.

This utility computation follows the Bayesian stage game view. At each stage game

the agents receive rewards R(bt, π) (this is a vector of rewards, one for each agent) and

progress to a new Bayesian game with type distribution bt+1. Notice that the progression

of common-knowledge beliefs b is independent of the actual observations as these are all

private. This means that the sequence of decision rules and common-knowledge beliefs

is fixed ahead of time. Therefore the value of a policy starting at a distribution across

states will be equal to the linear combination of the value of that policy for each each state

separately (i.e., Vπ(bt) =
∑

s∈S b
t(s)V t

π(s)). This allows us to compute the value only at

individual states. We can then simplify the value of a policy to:

V t
π(s) =

∑
~a∈A

πt(s~o,~a)

[
R(s,~a) + γ

∑
s′∈S

P (s|s′,~a)V t+1
π (s′)

]
(18)

This trick - that the value of policy for a distribution across states is a linear combination

of the that policy for each state separately - is the same property that allows a POMDPs

value function to be represented as a set of hyperplanes supported by a policy that achieves

that value across beliefs. We use this fact when solving common-payoff MaGIIs (Chapter 5).

However, just because the policy can achieve a value does not mean the policy is acceptable;
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the same policy may be an equilibrium for some common-knowledge beliefs but not for

others.

4.2.4 Policies in equilibrium

A solution to a MaGII (or POSG) takes the form of a policy tree (a.k.a. strategy) for each

agent. A policy tree is a function mapping every sequence of observations (including any

implicit observation of one’s own action) to a distribution across actions. Note that policy

trees need not and can not be represented explicitly. Assuming agents are rational dictates

that a solution must be an equilibrium. While we have described what an equilibrium of a

Bayesian stage-game looks like, an equilibrium for the full MaGII does not directly follow.

Given fixed policy trees for each player the world becomes a hidden Markov model and the

utility for each player can be calculated (or at least sampled to arbitrary precision). We can

therefore decide if it is beneficial (for any sequence of observations) for an agent to change

one of their actions in the tree if all other actions stay the same. If no player can benefit

by changing an action, then the policy-trees are in equilibrium.

A fundamental result from single agent RL tells us that when determining if a policy is

optimal it is sufficient to only worry about changing a single action, and not all actions at

once [86] (the policy must be defined and evaluated on all states, even those off-policy). This

is true for both fully observable and partially observable domains. If we fix other agents’

policies (as we do when determining if policies are in equilibrium) then the problem looks

like a single agent problem. Therefore, to determine if a set of policies are in equilibrium

we need only make sure that no agent wishes to change a single action in any stage-game.

This hinges on insuring that when agents choose which action to execute in a stage-

game they consider not only their immediate reward but also the long term utility of the

result of their action given the other player’s policy-trees. The expected joint-utility for

each joint-action and joint-type is known as the continuation utility, −−→cu~o,~a. Because the

agents consider both their immediate reward and their continuation utility they are in

essence playing an augmented Bayesian stage game with payoffs R(s, ~o,~a) + −−→cu~o,~a. If each

of these augmented stage games are in equilibrium, and the continuation utility equals the
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true utility of following the policy trees than the policy trees are an equilibrium of the full

MaGII.

4.2.5 The relationship between POSGs and MaGIIs

A MaGII is defined with factored state and without an explicit observation function. This

makes them easy to view as a sequence of Bayesian games. However, despite these differ-

ences the important distinction between MaGIIs and POSGs lies in the Markov property

enforced on observations. To demonstrate this point we compare MaGIIs without the

Markov property to POSGs and show that they are equivalent models.

Lemma 4.2.0.3. MaGIIs without the Markov property on signals have equivalent repre-

sentational power as POSGs.

Proof. We show that MaGIIs without the Markov property and POSGs can be converted

into each other using polynomially similar space. To convert a MaGII into a POSG all we

need to do is to remove the factored representation by enumerating states and creating an

observation function that gives each agent their respective observation (as included in the

original MaGII’s state). The remaining variables are trivially similar.

To convert a POSG into MaGII we first create the factored state representation which

includes the state of the POSG along with the observations that each agent receives. There

is no observation function. The transition function P falls out naturally but becomes quite

large in the constructed MaGII requiringO(|S||A||O|n) entries while the POSG only requires

O(|S||A||O|) entries (assuming the number of successor states is small). The same is true

for the reward function which now requires O(|S||O|n) entries. Players in this new MaGII

will receive the same observations and rewards as in the original POSG.

The POSG representation is more efficient because it assumes observations are condi-

tionally independent of previous observations given the true-state, while the MaGII rep-

resentation of the POSG transitions based on all the players’ observations, not just the

underlying state. The transition and reward functions could be defined in terms of just

ω (the state-of-nature) in which case this inefficiency would not exist. We have defined

MaGIIs to explicitly look like a sequence of Bayesian games. In Bayesian games, not only
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the state-of-nature but also the joint-type determines rewards. We follow this precedence

and allow joint-types to also changes the dynamics.

While there are problems that can’t be exactly modeled by MaGIIs (Figure 24), MaGIIs

can exactly represent some problems and do a surprisingly efficient job of approximating

many other POSGs. For example, any finite horizon POSG can be represented exactly

as a MaGII where beliefs are all possible histories. While the number of beliefs will be

exponential in the horizon, there will still be a finite number of such beliefs and thus

representable as a MaGII. Even for infinite horizon problems MaGIIs can approximate the

problem by making observations include a finite history of relevant observations which could

include much if not all of the history information an agent needs. This can be done more

efficiently by choosing a good compact statistic for history. Surprisingly, in Section 5.3.4

we show how we can create a MaGIIs which allows each agent to choose for themselves an

optimal compact statistic for history and thus achieve exceptional results using very few

beliefs at each time-step. This is probably the most compelling evidence that MaGIIs can

act as very good approximations for POSGs.

4.3 MaGIIs with public observations (PP-MaGIIs)

The number of distinct beliefs grow in a POSG because agent’s must reason about other

agent’s private information. However, information that is common-knowledge does not

increase the number of beliefs it only transforms the nature of those beliefs. This allows

us to add observations which are common-knowledge (a.k.a. public observations) to the

MaGII model. This improves the expressibility of MaGIIs without hurting the tractability

of the model. While public observations ultimately improve efficiency and the power of the

model, they do make algorithms and their analysis significantly more complicated. Also,

not all problems can take advantage of public observations. This is why we do not include

public observations in the original definition of MaGIIs.

We call MaGIIs with public observations PP-MaGIIs (public/private-MaGIIs). The def-

inition of PP-MaGIIs is very similar to vanilla MaGIIs, except with the addition of a public

signal. Previously, when analyzing MaGIIs and viewing them as a sequence of Bayesian
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Figure 22: A PP-MaGII visualized as a Bayesian network.

games we were able to assume a single common-knowledge belief trajectory (there was only

one possible). This is no long the case for PP-MaGIIs which is the main complicating factor

of their analysis.

Definition 4.3.1. A PP-MaGII consists of a tuple

〈N,A, S, P,R,O, s(0), o(0)〉 where:

• N is the set of players. n = |N |.

• A = Πn
i=1Ai is the set of actions.

• O is the set of public signals, where ~o (t) is the history of public signals at time t.

• Θ = Πn
i=1Θi is the set of private signals. (each signal θi ∈ Θi corresponds to a type

for player i)

• Ω = is the set of states-of-nature (unobserved underlying states) where ω ∈ Ω is the

current state-of-nature.

• S = Ω×Θ is the set of states. This is a factored state representation with s =

〈ω, o1, · · · , on〉.

• P : S×A→ ∆(S×O) is the probability transition function with P (s′, o′|s,~a) being the

probability of ending up in state s′ with public signal o′ after joint-action ~a in state s.

P must have the following Markov property:
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Markov property
on private observations:

timestep 1 timestep t-1 timestep t

Figure 23: A visual depiction of the Markov property on private observations which must
be satisfied in a PP-MaGII.

∀ public histories ~o (t), players i and types θ
(t)
i

(θ
(t−1)
i ⊥⊥ s(t)) | ~o (t), θ

(t)
i

i.e., the state of the world is independent of a player’s previous signal given what is

common knowledge and the player’s new signal (Figure 23).

• R : S ×A→ Rn is the reward function.

• s(0) ∈ S is the initial state with known types θ(0) ∈ Θ

While there are still problems that can’t be efficiently modeled even by PP-MaGIIs (Fig-

ure 24), PP-MaGIIs can represent a larger set of problems than MaGIIs. Unlike MaGIIs,

PP-MaGIIs can represent all POMDPs by making all observations public (with only one

agent, the distinction between public and private is meaningless). Like MaGIIs, PP-MaGIIs

can approximate any POSG by folding the history of relevant observations into each signal.

Also there are many interesting problems which can be modeled exactly by PP-MaGIIs. For

example, if players have initial private information followed by purely public observations

(e.g., poker, or opponent modeling) then observations do not contain information about

the other player’s beliefs. In fact, any POSG that always has a bounded number of distinct

nested beliefs can be defined exactly as a PP-MaGII. Thus the PP-MaGII model is equiva-

lent to the class of POSGs with a bounded number of beliefs. We prove this fact, but first

need the following definition of what it means to have a bounded number of distinct nested

beliefs:

Definition 4.3.2. The set of possible beliefs is equal to the smallest set of joint-histories

that includes the actual joint history along with any joint-history h1 for which there exists
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an agent i with observations ~h2i from another history h2 in the set such that there is a

non-zero probability of h1 occurring given ~h2i.

This definition is constructive in that it describes the set recursively: first take the

actual joint-history. Then iterate over every joint-history h1 in the set and every player

i, and add every history occurring with non-zero probability given what player i observes

in history h1. This process closely follows the infinitely nested belief structure. Initially

the set captures all possible level-0 beliefs. After the first iteration all possible histories

involved in level-1 beliefs are added. Each subsequent iteration adds new histories involved

in level-n beliefs which were not involved in level-(n-1) beliefs. This process continues until

no additional histories are added.

Definition 4.3.3. The set of distinct beliefs is equal to the largest subset of possible beliefs

such that there does not exist two joint-histories such that the probability of every other

joint-history occurring is the same for both joint-histories from all player’s perspectives

(i.e., 6 ∃ histories h1, h2 s.t. ∀ players i and joint-histories h3 6= h1 or h2, h3|h1i = h3|h2i)

The set of distinct beliefs eliminates histories that lead to the same nested beliefs. These

definitions allow us to make the following claim.

Lemma 4.3.0.4. The set of possible beliefs is common knowledge.

Proof. It follows from our recursive definition of the possible belief set that in order for

a history to not be included in the set of distinct beliefs, all players must believe the

probability of that history occurring is zero given their observations. Furthermore, they

must also believe that all other players believe the history has zero probability of occurring.

Likewise they must believe that all players believe that all players believe the history has

zero probability of occurring, and so forth. If at any level a player believes the history could

have occurred then it would have been added to our set in the constructive process. This

infinite sequence of believing that the history has zero probability of occurring is exactly

the definition of common knowledge. If the histories not in the set of possible beliefs is

common knowledge then the complement set will also be common knowledge.
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Less formally, we could have proved lemma 4.3.0.4 by noticing that any agent can

construct the set of possible beliefs by initializing it with all possible joint-histories that

includes what that agent observed. This will include the true history along with all other

possible histories for other agents because each other agent’s initial belief will be added

after the first iteration of the constructive process, given the true history.

Corollary 4.3.0.1. The set of distinct beliefs is common knowledge.

Proof. This follows directly from the above theorem because the set of distinct beliefs is

independent from a player’s information given the set of possible beliefs. This independency

exists because the definition of ”distinct beliefs” is from all player’s perspectives.

This corollary allows us to prove that the class of problems PP-MaGIIs can represent is

exactly the class of POSG problems with bounded beliefs.

Theorem 4.3.1. A POSG where the set of distinct beliefs is bounded in size can be expressed

as a decision theoretically equivalent PP-MaGII.

Proof. Because the set of distinct beliefs is always common knowledge, this information can

be conveyed using only the public observations. Because this set is bounded in size we can

have the set of private observations enumerate the possible distinct private observations

for each player in the histories included in the distinct belief set. The number of such

observations can never be larger that the set of all histories and thus will also be bounded.

The Markov restriction on private observations can be viewed as requiring that private

observations only contain information about the current state of the world, and not private

information about other players’ future mental states. This is not to say that players

don’t receive persistent information about other player’s beliefs – they do – but only if

such information is contained in either the public signal or explicitly persists in the current

private signal. Thus, all information about other player’s current beliefs are either part of

the current private signal or are common knowledge. Players do not need to reason about
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Figure 24: The relationship between various sequential decision models. POSGs generalize
all models, while all models generalize MDPs. Vanilla MaGIIs do not generalize POMDPs
because any POMDP with bounded belief can be converted to a finite state MDP. PP-
MaGIIs generalize stochastic games and POMDPs (all observations are public for these
models) but can’t efficiently represent continuous private beliefs and thus don’t generalize
decentralized models or POSGs.

possible histories of past private observations, they only need to reason about possible

current private signals. The entire history of public observations may still be relevant, but

because this history is commonly known it does not add to the number of possible histories

(all possible histories include the same public observations). Furthermore, while the public

history may be infinite, its possible to compactly represent this information.

Lemma 4.3.1.1. In a PP-MaGII, a common knowledge distribution τ across states com-

bined with an agent’s private observation is a sufficient statistic for history (the agent’s

belief).

Proof. While this lemma is analogous to Lemma 4.2.0.2 about vanilla MaGII, the inclusion

of public observations makes the proof more involved. Without loss of generality let us as-

sume that the hidden state includes the private observations (the boxed region in Figure 22).

Suppose we add an additional agent to our PP-MaGII that never receives any private infor-

mation and has no choice of actions. This new agent’s belief will exactly correspond to the

sum of common knowledge. Our Markov property on private information insures that past

private information does not affect current state transitions, meaning that policies will be a

function of public observations and the current state only. Thus, our hidden state is a true

Markov state. From the new agent’s perspective, the PP-MaGII is a hidden Markov model

with a sequence of hidden states and public observations. A sufficient statistic for history in
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a hidden Markov model is a distribution over states [6]. Because our states include private

observations, a compact sufficient statistic for the history of public information comes in

the form of a probability distribution across states and private observations. Our Markov

property on private information insures that an agent’s belief only consist of the sum of

public information, which we have shown to be a common knowledge distribution across

possible joint-types, along with the current privately observed type.

Lemma 4.3.1.1 shows that PP-MaGIIs permit an efficient belief representation. This fact

is the key difference between POSGs and PP-MaGIIs and allows us to convert PP-MaGIIs

into stochastic games of complete information – a model which has both an intractable

exact solution [54] and a tractable solution with bounded error [52].

4.3.1 Ensuring the Markov Property

While PP-MaGII’s require the Markov property on private observations, it is not immedi-

ately obvious how to define models that maintain this property. Instead of the canonical

representation of a PP-MaGII given above (Figure 22), we can instead define a more com-

plex Bayes net that guarantees that the private-observation Markov property will hold. Two

examples of such models are given in Figure 25 and Figure 26. Once we have a Bayes net we

can use a Bayesian inference algorithm such as Bayes-ball [79] to determine conditional in-

dependencies and prove that the private-observation Markov property is satisfied. Although

Bayes nets provide a means of modeling many problems, there may exist PP-MaGIIs for

which no Bayesian net can capture.

4.3.2 Converting a PP-MaGII into a belief-stochastic game

The standard approach for solving a POMDP is to convert the problem into a continuous

belief-space MDP. We follow this same process and convert a PP-MaGII into a continuous

belief-space stochastic game. We show that a solution to the resulting stochastic game

will be a solution to the original PP-MaGII. While no continuous state stochastic game

algorithms exist, this continuous belief-space stochastic game can then be discretized and

solved using existing stochastic game algorithms such as QPACE [52]. While we don’t
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Figure 25: A Bayes net depicting a PP-MaGII with initial private information, followed
only by public observations. It can readily be observed that this alternate representation
for a PP-MaGII guarantees that the private-observation Markov property is satisfied.

public

private

hidden

timestep 2timestep 1 timestep  3

Figure 26: A Bayes net depicting an alternate representation for a PP-MaGII. While this
network is complicated the private-observation Markov property can be proven to hold.

provide an exact algorithm to solve the resulting continuous belief-space stochastic game,

we believe algorithms can be developed in a similar way to current POMDP algorithms

that take advantage of the belief structure to operate in the continuous state space.

Given a PP-MaGII we define the following continuous belief-space stochastic game:

• N ′ =
⋃
i∈N Oi one player for each player type. Recall that out]r solution concept is

agent-normal-form which operates as if each agent type acts independently.

• A′ = Πn
i=1∆(Ai)

|Oi| each player type submits a probability distribution across actions

in the PP-MaGII as their action in the stochastic game. Unlike in fully observable

domains, in games of incomplete information the distribution of actions not taken

by players matters, as the relative ratio of actions across player types informs other

players as to the actual type of the player. This is true even if action are unobservable.
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• S′ = S × ∆(Θ) states consist of the original state along with a common knowledge

probability distribution, τ , across types Θ.

• P ′ = S′ ×A′ → ∆(S′) :

P ′(s′, τ ′|s, τ, ~A) =
∑
~a

Pr[~a| ~A]
∑
θ

τ(θ)
∑
θ′

P (s′, θ′|s,~aθ)Pr[τ ′|s, s′, τ,~a, ~A]

where: Pr[~a| ~A] is the probability of joint-action ~a given actions distributions ~A, ~aθ ⊆ ~a

is the vector of actions taken just by agent-types θ, and τ(θ) is the current probability

mass assigned to joint-types θ.

τ transitions deterministically given the public observations s, s′, τ,~a, ~A. ~A is public

because agents are rational, and thus able to predict the behavior of other agents.

Pr[τ ′|s, s′, τ,~a, ~A] = 1 if: ∀θ′, P r[τ ′θ′ |s, s′, τ,~a, ~A]

=
∑
θ1

Pr[θ1| ~A,~a]Pr[θ′|θ1]

=
∑
θ1

∑
θ2

Pr[~aθ1| ~A]

Pr[~aθ1 = ~aθ2| ~A]
Pr[θ′|θ1]

=
∑
θ1

∑
θ2

Pr[~aθ1| ~A]

Pr[~aθ1 = ~aθ2| ~A]
P (s′, θ′|s, θ1,~aθ)

Pr[τ ′|s, s′, τ,~a, ~A] = 0 Otherwise.

• R′ = R′(s, τ, ~A)θi∈N ′ =

∑
θ1∈∆Θs.t.θ1i=θi

τ(θ1)
∑
~a∈ ~A

Pr[~a| ~A]R(s, θ,~aθ1)

• s′(0) = {s(0), τ ′(0)} where τ ′(0)(θ(0)) = 1 and 0 elsewhere.

We now argue that an equilibrium of this stochastic game (lets call it E) maps to an

equilibrium of the original PP-MaGII. E takes the form of a joint-policy mapping states to

joint-action distributions. Every observation trace of the original PP-MaGII corresponds to

a state in the stochastic game, and thus maps to a joint-action distribution of E. In partic-

ular the transition function P ′ of the stochastic game insures that the common-knowledge
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probability distribution across types τ ∈ ∆(Θ) of the successor states matches Equation 4

when τ (t)(θ(t)) is given by the current state’s common knowledge distribution. In other

words, for a PP-MaGII the sequence of Bayesian games that a POSG follows as laid out

by Emery-Montemerlo et.al [23] corresponds to the stochastic game’s states. The reward

in the stochastic game for each player type is defined to be the expected reward given the

probability distribution across other player types. This is the same expected immediate

reward in equations 1 and in the corresponding Bayesian game. Because the sequence of

Bayesian games is the same for both the PP-MaGII and the stochastic game, the continua-

tion utility of each augmented stage-game in the stochastic game for each player-type will

be the same as the continuation utilities in the PP-MaGII. This mapping allows us to com-

pare the equilibrium constraints of the stochastic game with the PP-MaGII Bayesian stage

games. The reward R′ given in the stochastic game is equal to the expected reward in both

sides of the Bayesian rationality constraints (Equation 1), thus the fully observable ratio-

nality constraints
∑
~a|ai=a1 R

′(~a)Q~a ≥
∑
~a|ai=a2 R

′(~a)Q~a equals Equation 1). Thus policies

in equilibrium for the stochastic game will be in equilibrium for the PP-MaGII. Finally,

the stochastic game is designed so that all player-types are playing independently and thus

can not collaborate with each other (as per an agent-normal form equilibrium). This also

insures that the true type of players can not be disclosed, since no true type exists in the

stochastic game. This satisfies the non-disclosure constraints (Equation 2). Therefore each

state corresponds to an augmented stage-game of the original PP-MaGII and an equilibrium

of the stochastic game E satisfies the equilibrium inequalities for all possible Bayesian-games

of the PP-MaGII. Therefore a correlated equilibrium of the stochastic game corresponds to

an agent-normal form correlated equilibrium of the original PP-MaGII.

4.3.3 Imposing the Markov property on beliefs

One of the primary purposes for developing MaGIIs and PP-MaGIIs is that we believe

that they can be used to approximate POSGs. We accomplish this approximation by using

belief-compression whereby multiple different beliefs are combined into a single belief. We

expect agents with the same belief to have no incentive to distinguish between themselves.
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For example, if two different observation-histories (~h1 and ~h2) are compressed into the same

belief θ, then we should expect an agent with belief θ to think and act identically to an

agent despite which history (~h1 or ~h2) the agent actually observed. If a rational agent

has an incentive to remember the difference between ~h1 and ~h2 then θ is not a true belief.

If we use belief-compression to approximate POSGs then we will lose information in the

compression and agents will want to remember past beliefs, breaking the Markov property

on beliefs. This may seem like a problem, but it is not.

In a MaGII, even if agents can gain information by remembering past beliefs (the MaGII

lacks the Markov property on beliefs), there exists a true MaGII (with the Markov property)

that is equivalent to the original MaGII when assuming that the Markov property holds

(agent behavior is only dictated by their current belief). In other words, we can assume

that while agents can gain by remembering past beliefs, they simply don’t act on that

knowledge. Using this assumption does not violate our assumption of rationality or the

spirit of MaGIIs. It only means that agents are acting rationally (optimally) with regards

to a different MaGII.

By forcibly imposing the Markov property on a MaGII we are in essence guaranteeing

that current Bayesian game’s factored state is drawn from the common knowledge type-

distribution. Because the type-distribution itself is commonly-known the only additional

information an agent gets is its current observation (their type). Therefore, to prevent past

beliefs from being informative we only need to make sure the game samples factored-states

independently at each time-step. To accomplish this, we can define a new MaGII where the

state-of-nature is the common-knowledge distribution. This will allow types to depend only

on the current state-of-nature and be redrawn at each time-step. This new MaGII will have

a continuous state-space, but the continuous state-of-nature will be fully observable (as it

is commonly-known) and thus will not increase the complexity of the created belief-SG.

In fact, the belief-SG of these two games will be identical. This allows us to successfully

impose the Markov property and make both the assumption that agents are rational and

that approximated beliefs will be acted upon as though they were true beliefs.
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4.3.4 Extended Example:

The single agent tiger problem [14] has been used often to test and explain POMDP algo-

rithms. In the problem there are two doors. One holds a tiger (-100 reward), the other some

money (+10 reward) with even probability of which door holds which. A contestant must

choose the correct door, but can wait and listen for growling noises (which are reported with

85% accuracy). There have been a number of multi-agent versions of this game [22, 23, 92].

However, we choose to construct yet another version because the previous multi-agent ver-

sions mostly hinge on continuous belief spaces which PP-MaGIIs can’t model exactly. Also,

our version has two agents with rewards that are not linearly related (i.e., the rewards are

not shared or zero-sum).

In our multi-agent version, the tiger is an additional agent which is actively trying to

prevent the human from opening a door. The dynamics of the world are similar to the

single agent version except the two rooms have only a low wall that permits the tiger to

attempt to jump over and reach the other room. Jumping the wall is tough for the tiger

and only succeeds 10% of the time. Also, the act of jumping causes extra noise and thus

regardless of outcome the jump causes the contestant to correctly hear the location of the

tiger’s growl. However the contestant does not observe the tiger’s action and thus does not

know if this observation was due to a jump or not. Importantly, which observation the

contestant receives (the door from which the growl was heard) is also known to the tiger.

The tiger is a second agent which wishes to prevent the human from opening either door,

receiving a reward of -1 whenever the game resets. Note that this game is not zero sum.

The tiger does not wish to eat the human, only prevent her from opening a door. The

tiger must decide on when to risk a jump based on the contestant’s confidence of the tiger’s

location. Figure 27 depicts this game represented as a PP-MaGII.

Because the tiger’s private observation along with the public observation represents the

true state, the tiger’s previous private observations will be independent of the current state

given the tiger’s current observation. Thus the private-information Markov property is

satisfied. Figure 28 depicts this game represented as a sequence of Bayesian games.
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Figure 27: A PP- representing the human vs. tiger problem. There are four states repre-
senting the set of possible observations (both private and public). There are no unobserved
states of nature. The outcome and rewards of joint-actions are given by the arrows for each
state.

The game has two non-trivial states representing the two common knowledge observa-

tions of a growl behind door one, and a growl behind door two. We could have easily chosen

to have only one state, but then we would have had to include the contestants observation

with the tiger’s type. It is easier (both conceptually and computationally) to have two

simpler Bayesian games than one complex game. In each of the state, the tiger has two

possible types corresponding to which door it is behind, while the contestant has only one

type (as the contestant has no private knowledge). A key feature of this representation is

the fact that while the contestant’s belief about the probability of which door holds the

tiger may lie in a continuous range, the particular distribution at any time step is common

knowledge, and thus agents don’t need to reason about nested beliefs.

4.3.5 From private to public observations

A PP-MaGII has explicit public observations, but just because an observation is private

(as all observations are in normal MaGIIs) doesn’t mean it isn’t also common-knowledge.

For example, a game might be defined to always give each agent the same private signal.

Or more commonly, an agent could receive a private ”reset” signal that is only given if its
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Figure 28: The Bayesian game representation of the human vs. tiger problem. There are
two states which are identical Bayesian games.

given to all agents. Agents receiving this signal could reason the reset is common knowledge.

Such a reset signal is particularly important to identify as public as it reduces the number

of beliefs to one (which can’t be done unless the signal is public). A number of researchers

have incorporated reset signals into their belief compression schemes, however there has

been no formal treatment of public signals in general.

Information is common-knowledge (a.k.a. public) if all players know it and know all

player know it ad infinitum. In other words, there is zero probability that the world is

in a state (including beliefs) where any agent doesn’t know the information. What does

this mean in terms of our PP-MaGII beliefs? First, let us be clear what information is.

The sum of a player’s information is their posterior probability over states (after knowing
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their private information). This sum of information is equivalent to their type. Public

knowledge is therefore the common-knowledge that certain types have zero probability. In

order for a type θi to be commonly known to have zero probability, then from every player’s

perspective (after learning their type) all infinitely nested beliefs of each player must assign

θi zero probability (as per the definition of common-knowledge). This reasoning should look

familiar, it is the same definition that we used for possible beliefs (definition 4.3.2).

Identifying private knowledge that is actually public is the search for beliefs that never

have positive probability at any level of the nested belief structure for any player. Because an

agent reasons about other agent’s reasoning as part of their nested beliefs, It is sufficient to

only perform this search for a single agent (each agent can perform this search for themselves

as end up with the same results). The recursive definition of possible beliefs (definition 4.3.2)

gives us an algorithmic way to identify private information that is actually public. Our goal

is to find the set of possible beliefs B. We start with the agent’s current belief (B = {θi}).

We then find all states that have positive probabilities of occurring given the beliefs in B

(S = {s : ∀θ ∈ B, p(s|θ) > 0}). We then add all beliefs that result from the states in S to

our belief set (B = {θ : ∀s ∈ S,∀i ∈ N,Sθi}). This process iterates until no more beliefs

are added to B. This is not the most efficient way to perform this search. However, we can

actually view the problem as a connected component graph search.

This above algorithm is equivalent to a connected component search on the following

undirected graph G = 〈V,E〉 for a given common knowledge belief distribution τ for PP-

MaGII 〈N,A, S, P,R,O, s(0), o(0)〉 where each state is a vertex and there exists an edge

between states if an agent in one state can believe they are actually in the other state (i.e.,

both states give an agent the same private observation and have positive probability in τ):

V ={s ∈ S : τ(s) > 0} (19)

E ={〈s′, s′′〉 ∈ V 2 : ∃i ∈ N |s′θi = s′′θi} (20)

This graph is undirected because the definition of an edge is symmetric; an agent can

only be unsure about which state they are in (positive probability on two states) if they are
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unable to distinguish between those states (they both give the same private observation).

Each connected component of this graph represented a distinct public observation. This

information is public (commonly known) because every possible nested belief only has pos-

itive probability on states within a single connected component. Therefore, once an agent

knows which component the current state is in, that agent also knows that all other agents

know that the current state is in that component as well. This knowledge is recursive, and

the knowledge of the current state’s component is public.

From a single agent’s perspective, an agent’s level-0 belief represents a probability distri-

bution over vertices (states). All of these vertices must be in the same connected component

(we defined the graph so that each of these states will have an edge between them). There-

fore, the agent knows that the true state lies within a given connected component. The

agent also knows that each agent’s level-0 belief must contain the current state, so they

must also know the true belief lies in that same component. This argument can be used

inductively to show that all agents knows know that all other agents know, ad infinitum,

which component the current state is in.

4.3.6 The advantage of public observations

Realizing that a piece of private information is public does not add any additional infor-

mation. However, it does reduce the current set of possible beliefs - once agent’s know

which connected component of states they are in, they only need to reason over states in

that component. This reduction can happen at every time-step, and can thus lead to an

exponentially smaller belief-space. For example, consider a multi-agent tiger problem (Sec-

tion 5.4.1.1) where the each agent receives the same growl signal. An agent can reason,

that once they here which door the growl sounds that the growl is public. Agents therefore

don’t need to reason about possible observation histories, they know there is exactly one

possible joint-observation history. This then makes only one belief possible for each agent,

compressing what otherwise would have been 2t possible beliefs down to just one.

Public observations are very common in multi-agent problems, however most research to

date does not utilize this information. In fact, we know of know previous formal treatment
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of pubic vs private observations. By identifying and reasoning about public observations,

we can potentially solve larger problems with more complicated belief spaces.

4.4 Conclusion

We presented a new model for multi-agent sequential decision problems with hidden state:

Markov games of incomplete information (MaGIIs). MaGIIs enforce a Markov property on

private information such that the only useful information which is not common knowledge

is a player’s most recent private signal (a player’s type). We proved that the class of

problems representable as MaGIIs is exactly the class of problems representable as POSGs

with a bounded number of distinct beliefs. This in itself has interesting ramifications for

determining the class of problems we should hope to solve efficiently.

In the next two chapters we address how to efficiently solve MaGIIs. This work builds

off of transforming a MaGII into a sequence of Bayesian games where all common knowledge

in the MaGII is compactly represented as a probability distribution across types (distinct

beliefs). This feature permits MaGIIs to be converted into a continuous but bounded belief-

space stochastic game, much as how POMDPs can be converted into continuous belief-space

MDPs.
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CHAPTER V

VALUE ITERATION FOR COMMON-PAYOFF MAGIIS

Decentralized partially observable Markov decision processes (DecPOMDPs) are a pop-

ular model for cooperative multi-agent decision problems. However, they are very diffi-

cult to solve (NEXP-complete [68]). One of the primary causes of this complexity is that

DecPOMDPs, unlike single agent POMDPs, suffer from a doubly-exponential curse of his-

tory [70] – not only do agents have to reason about the observations they see, but also about

the possible observations of other agents. This causes agents to view their world as lacking

the Markov property because even if an agent returns to the same underlying Markovian

state of the world, the dynamics of the world may appear to change due to other agent’s

holding different beliefs and taking different actions then the last time the state was vis-

ited. For POMDPs a sufficient (for optimal behavior) belief space is the set of probability

distributions over possible states. This is not the case for DecPOMDPs where an agent

must reason about the beliefs of other agents (who are recursively reasoning about beliefs

as well). This leads to nested beliefs which can make it impossible to losslessly reduce a

player’s knowledge beyond their full observation history.

This lack of a compact belief-space has prevented value based dynamic programming

(e.g., value iteration) methods from being used to solve DecPOMDPs. While value meth-

ods have been quite successful at solving POMDPs, all current DecPOMDP approaches

are policy based methods, where policies are sequentially improved and evaluated at each

iteration. Even using policy methods, the curse of history is still a big problem, and cur-

rent methods deal with it in a number of different ways. [23] simply removed beliefs with

low probability. Some use heuristics to prune (or never explore) particular belief regions

[87, 73, 61, 60]. Other approaches merge beliefs together (a.k.a. belief compression) [23, 24].

This can sometimes be done losslessly [62], but such methods have limited applicability and

still usually result in an exponential explosion of beliefs. There have also been approaches
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that attempt to operate directly on the infinitely nested belief structure [22], but these are

approximations of unknown accuracy (if we stop at the nth nested belief the nth + 1 could

dramatically change the outcome). All of these approaches have gotten reasonable empirical

results in a few limited domains but ultimately scale and generalize poorly.

Despite their computational complexity, DecPOMDPs are still much easier to analyze

and solve than POSGs - their general-sum counterparts (Section 2.2.5). This distinction

is immediately evident when looking at research on POSGs vs. DecPOMDPs (which are

common-payoff POSGs). There has been a great bulk of research into solving DecPOMDPs

while there have been almost no attempts to solve general POSGs. There even exists a suite

of public benchmark problems for DecPOMDPs while none exist for POSGs. DecPOMDPs

are a strict subset of POSGs so if we believe MaGIIs are a good approximation for POSGs

we should believe that they would be a good approximation for DecPOMDPs as well.

This chapter shows how to approximate DecPOMDP problems using a MaGII (with

shared reward) and use the framework we presented in the previous chapter to develop

a point based value iteration (PBVI) algorithm which efficiently solves the MaGII. The

algorithm developed is the first value-based (as opposed to policy-based) dynamic program

for general DecPOMDPs and outperforms all previous algorithms on standard benchmarks.

5.1 Common-payoff MaGIIs

When all agents share the same reward function the game is called common-payoff. Common-

payoff MaGIIs are thus MaGIIs where each agent receives the same reward. Just like for

DecPOMDPs, because agents share rewards they cooperate with each other and don’t have

to worry about individual rationality, unilateral deviation, threats, or trade-offs between

maximizing one agent’s utility over another. However, because the world is still partially

observable, agents still need to reason over other agent’s beliefs. This is where MaGIIs be-

come a boon over DecPOMDPs. As explained in Section 4.2.2, agents in a MaGII only need

to reason about level-0 beliefs (a distribution over states). One requirement for MaGIIs is

that agents know the policies of other agents. This requirement is satisfied in general by as-

suming agents are rational (which is a dubious assumption). However, common-knowledge
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of policies is easily justified for common-payoff games where policies are likely created to-

gether (e.g., a designer dictating a policy to each agent), or agreed on in advance (to

mutually improve utility).

5.1.1 Common-payoff MaGIIs as POMDPs

In this section we show that a common-payoff MaGII can be converted into a decision

theoretic equivalent POMDP. The corresponding POMDP has exponential actions, but

this equivalence allows us to use many theoretical POMDP results, and allows us to adapt

POMDP solutions techniques.

Given a MaGII 〈N ′, A′, O′,Ω′, S′, P ′, R′, s′(0)〉, let us define the following factored POMDP

(which we will call the belief-POMDP of the MaGII):

• S = S′

• O = {} (no observations)

• A =
∏n
i=1

∏|O′i|
j=1A

′
i is the set of actions (one action for each agent for each belief)

where ai,o∈O′i ∈ A
′
i

• P (s′|s, a),= P ′(s′|s, 〈ao1 , · · · , aon〉)

• R(s, a) = R′(s, 〈ao1 , · · · , aon〉)

• s(0) = s′(0) is the initial state distribution

An action in this belief-POMDP is essentially a strategy for each agent (a.k.a. specifies

what each agent should do for every belief they might have). In other words, it is a

mapping from observation to action (A = {O′ → A′}). The action space thus has size∏
i |A′i||O

′
i| which is exponentially more actions than the number of joint-actions in the

original MaGII. Both the transition and reward functions use the modified joint-action

〈ao1 , · · · , aon〉. This joint-action consists of one action per agent. Each agent i’s action aon

is the action prescribed to belief oi where oi is the state factor specifying which belief agent

i has. In other words, 〈ao1 , · · · , aon〉 is the action that would be taken once agents see their

beliefs and follow action a ∈ A.
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The agent in the belief-POMDP acts like a mediator for the sequence of Bayesian games

induced by the MaGII. The agent is playing a collaborative Bayesian game. At every

time-step the agent must give a strategy to each agent (a solution to the current Bayesian

game). The states of the belief-POMDP still contain the belief for each of the decentralized

agents of the MaGII. The belief-POMDP uses these underlying beliefs to transition and

give rewards based on if the agents with those beliefs took the actions that the mediator

(the agent of the belief-POMDP) prescribed. The mediator only knows what is commonly

known and thus receives no observations.

Every policy of the MaGII maps (one-to-one) to a policy in the belief-POMDP in a nat-

ural way. Recall that in Section 4.2.2 we define a belief in a MaGII as a common-knowledge

distribution along with the current observation. Thus a policy of the MaGII is a mapping

from common-knowledge distribution and current observation to action (π′ : ∆(S′)×O′ →

A′). A belief in the POMDP defined above is the common-knowledge distribution. Ac-

tions of the belief-POMDP are mappings from observations to actions. Thus a policy of

the belief-POMDP is a mapping from common-knowledge distribution to a mapping from

observations to actions (π : ∆(S) → O′ → A′). This composite function has the same

domain and range as a policy of the MaGII and thus the sets of possible functions have a

one-to-one correspondence where π(s(t))i,o = π′i(s
(t), o)

Not only is there a correspondence between policies of the two models, but these poli-

cies result in the same expected utility starting from any common-knowledge distribution

over states. Note that the initial starting distribution s0 is such a common-knowledge

distribution over states. We prove this utility equivalence:

Lemma 5.1.0.2. Let π′ :: ∆(S′) × O′ → A′ be a policy of a common-payoff MaGII

〈N ′, A′, O′,Ω′, S′, P ′, R′, s′(0)〉 and π : ∆(S) → {O′ → A′} is a policy of the belief-POMDP

with π(s(t))i,o = π′i(s
(t), o), then Vπ′(s

′(0)) = Vπ(s(0)) (the expected utility of the two policies

are equal).

105



Proof. Using Equation 18 and the fact that for common-payoff MaGIIs, stage game strate-

gies are pure (actions will be deterministic), the value of a joint-policy in a MaGII is:

MaGIIV t
π(s) = R(s,~a) + γ

∑
s′∈S

P (s|s′,~a)V t+1
π (s′)

The value of a policy-tree in a POMDP is:

Vπ( ~O, s) = R(s, a) + γ
∑
s′∈S

∑
o′∈O

P (s′, o′|s, a)Vπ(
〈
~O, o′

〉
, s′)

However we can simplify this because there are no observations. At every time-step

there is only one possible history of observations, and thus the policy tree is only a policy

chain which we can index by the time-step. Removing uncertainty over observations we get:

POMDPVπ(t, s) = R(s, a) + γ
∑
s′∈S

P (s′|s, a)Vπ(t+ 1, s′)

While the notation of these two value computations is slightly different, the policy

tree progression is identical yielding analogous actions and thus identical rewards. The

two models will receive the same expected reward at each time-step and therefore end up

receiving the same utility.

We have shown that common-payoff MaGIIs can be turned into POMDPs but this does

not mean that we can easily solve these POMDPs using existing methods. The action-

space of the belief-POMDP is exponential with respect to the number of observations of

the MaGII. Existing POMDP algorithms assume that actions can be enumerated efficiently,

which isn’t possible beyond the simplest belief-POMDPs. Luckily, belief-POMDPs exhibit

a great deal of structure which can be exploited. In Section 5.2 we develop an efficient

point-based value iteration algorithm to solve the belief-POMDP.

5.1.2 Value functions for common-payoff MaGIIs

For single or decentralized agents, a value function is a mapping from belief to value (the

maximum expected utility that the agents can achieve). In an MDP, beliefs correspond to

states so this becomes a mapping from state to utility. A belief in a POMDP is a probability
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distribution over states, so the utility function is over the continuous |S|-dimensional simplex

of probability distributions over states. Luckily this function is concave and locally linear.

A DecPOMDP’s value function is not so lucky. As Oliehoek [59] showed in his thesis, an

optimal belief for a DecPOMDP requires the entire action-observation history. This makes

the domain of any optimal DecPOMDP value function grow exponentially with history.

Common-payoff MaGIIs do not face this problem. As shown in Section 5.1.1, common-

payoff MaGIIs can be viewed as belief-POMDPs. While belief-POMDPs have exponential

action-spaces, their state-space is the same as the MaGII. We also showed that every policy

of a belief-POMDP corresponds to a policy of the MaGII which achieves the same value.

Therefore the value function of the belief-POMDP can double as the value function for the

common-payoff MaGII. This value function is a mapping from only the common-knowledge

distribution to utility. Thus this value represents the ex-ante utility (before private in-

formation is known) for an agent. The ex-post utility (after private information) can be

computed using this ex-ante value function.w

An optimal belief for a MaGII consists of a common-knowledge distribution over states

combined with the current observation. This means that the value function for a common-

payoff MaGII can look much like a POMDP’s value function - a mapping from state-

distribution to action.

We represented such a value function for a common-payoff MaGII in the same way

that is typical for belief-MDPs, by using a set of hyperplanes Γ = {α1, α2, · · · , αm} where

αi ∈ R|S|. These hyperplanes each represent the value of a particular policy across beliefs.

The value function is then the maximum over all hyperplanes. For a belief b ∈ R|S| its value

as given by the value function Γ is:

VΓ(b) = max
α∈Γ

α · b

Such a representation acts as both a value function and a policy. While each α vector

corresponds to the value achieved by following a specific policy, we only need to specify the

immediate action to take. An agent can take the prescribed action, compute the resulting
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belief state and find the new optimal α vector which will direct the agent in the next time-

step. The ex-post value can be computed in the same way with the only difference being

that the belief b should be the posterior probability distribution across beliefs after an agent

receives their observation.

5.2 Point-based value iteration for common-payoff MaGIIs

In this section we present an algorithm for solving for the optimal value function of a

common-payoff MaGII. Our algorithm very closely resembles the PERSEUS algorithm [84]

for POMDPs which is a specific version of point-based value iteration [71]. We start with a

poor approximation of the value function and at each stage of the value iteration we improve

it by performing a one-step backup. We keep improving the value function using the previous

value function estimate until the value function no longer improves meaningfully.

Recall that the difficulty with belief-POMDPs is that they have an exponential action-

space which can not be enumerated explicitly. Spaan and Vlassis [84] showed that PERSEUS

can be extended to very large action spaces by randomly sampling actions. While this may

work for some domains, often for decentralized problems only one particular strategy among

the many will prove effective. This will stymie a randomized approach.

Our approach is to overcome the exponential action space by defining an integer linear

program which computes the optimal joint-strategy for a particular starting belief. This

integer program is typically very fast because it’s linear relaxation is usually integral. First,

we review the standard point-based value iteration algorithm and then explain how to

perform our special backup.

5.2.1 Point-based value iteration

The high-level outline of our point-based algorithm is the same as PERSEUS. First, we

sample common-knowledge beliefs and collect them into a belief set B. This is done by

taking random actions from a given starting belief and recording the resulting belief state.

This sampling is given as Algorithm 4.

We then initialize our starting value function Γ0 to have a single low conservative value

vector (such as Rmin/γ). Every iteration then attempts to improve the value function at
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Algorithm 4 Belief sampling

Inputs: MaGII 〈N,A,O,Ω, S, P,R, s(0)〉
number of samples c
sampling depth d

Output: set of beliefs B : {b ∈ R|S|}
1: B ⇐ ∅
2: for 1→ c do
3: b⇐ s(0)

4: for 1→ d do
5: for all i ∈ |N |, o ∈ Oi do
6: ai,o ⇐ Random(a ∈ Ai)
7: for all s ∈ S do
8: b′(s)⇐

∑
s′∈S b(s

′)P (s′|s, a)
9: B ⇐ B

⋃
b′

10: b⇐ b′

11: return B

each belief in our belief set B. A random common-knowledge belief b ∈ B is selected and we

compute an improved policy for that belief by performing a one step backup. This backup

involves finding the best immediate strategy-profile (an action for each observation of each

agent) at belief b along with the best continuation policy from Γt. We then compute the

value of the resulting strategy + continuation policy (which is itself a policy) and inserts

this new α-vector into Γt+1. Any belief that is improved by α (including b) is removed from

B. We then select a new common-knowledge belief and iterate until every belief in B has

been improved. We give this as Algorithm 5. The details of the one step backup (line 9)

are explained in the next section.

5.2.2 One step belief backup

A value iteration backup improves the value-function by computing the best immediate

action using the current value-function as the value estimate for the next time-step. In

this way we push back the uncertainty in our value estimate by one time-step and let the

discount factor diminish our error. For a POMDP, this backup is quite simple. We can

enumerate all actions and take the best in a very similar way to the Bellman backup for

MDPs. Unfortunately we can’t do this for belief-POMDPs because the action space is too

large. Instead we define an integer linear program, one for each belief and successor policy.
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Algorithm 5 A point-based value iteration algorithm.

Inputs: common-payoff MaGII 〈N,A,O,Ω, S, P,R, s(0)〉
belief set B∀

stopping criterion εΓ
Output: value function Γ

1: Γ′ ⇐ {〈Rmin, · · · , Rmin〉}
2: repeat
3: B ⇐ B∀

4: Γ⇐ Γ′

5: Γ′ ⇐ ∅
6: while B 6= ∅ do
7: b⇐ Random(b ∈ B)
8: α⇐ Γ(b)

9: α′v ⇐ maxa∈AO maxα′∈Γ Va,α′(b) {where AO =
∏n
i=1

∏|O′i|
j=1A

′
i}

10: if α′v > αv then
11: αv ⇐ α′v
12: απ ⇐ arg maxa∈AO maxα′∈Γ Va,α′(b)
13: Γ′ ⇐ Γ′

⋃
α

14: for all b ∈ B do
15: if Γ′(b)v > Γ(b)v then
16: B ⇐ B/b
17: until Γ′ − Γ < εΓ
18: return Γ

The integer program finds the optimal pure joint strategy starting from a given belief

b ∈ B and following a given continuation policy with value α ∈ Γ. It optimizes over variables

x~a,s, one for each joint action for each state. Each variable represents the probability of

joint-action ~a being taken if the state is in fact s. Remember that a state is not directly

observed and includes the private beliefs of each agent. Our program is integral because we

restrict each variable to be either zero or one. This is equivalent to only searching for a pure

strategy. The common-payoff nature of the game allows agents to cooperate completely and

guarantees that the best strategy will be a pure strategy. We must force our variables to

be integral because otherwise agents could implicitly share private information through the

coordination mechanism.

Constraints must be imposed on the program’s variables x~a,s to insure that they form

a proper probability distribution and that the distribution provides no additional private

information to an agent beyond what they already know. More formally, the probability that

an agent takes an action is independent from any other agent’s private observation. This is
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also part of the restriction of an agent normal form correlated equilibria, although because

agents share a reward we need not worry about deviation. From an agent’s perspective,

their action is conditionally independent of the other agents’ observations.

These restrictions can be expressed by the following linear constraints (Equation 21):

For each agent i, and for each partial joint-actions of other agents ~a−i ∈ A−i

For each state s = 〈ω, o1, · · · , on〉: (where s/oi = 〈ω, o1, · · · , oi−1, oi+1, · · · , on〉)∑
ai∈Ai

x~a,s = x〈~a−i,s/oi〉 (21a)

For each unobserved factor ω ∈ Ω and for each joint-action ~a ∈ A

For each state s = 〈ω, o1, · · · , on〉 (where s/ω = 〈o1, · · · , on〉)

x~a,s = x〈~a,s/ω〉 (21b)

for each s ∈ S:∑
~a∈A

x~a,s = 1 (21c)

for each s ∈ S and ~a ∈ A:

x~a,s ≥ 0 (21d)

In order to make the description of the conditional independence constraints (21a) more

concise, we use the additional variables x〈~a−i,s/oi〉. These represent the posterior proba-

bility that agent i thinks the unobserved state is s after receiving observation oi. These

constraints enforce that an agent’s posterior probabilities are unaffected by other agent’s

observations. However, we also need to enforce that agent’s posterior probabilities are un-

affected by the unobserved state factors ω. Constraints 21b handle this is the same way as

constraints 21a. If we viewed nature as a separate agent who observes the true state but

takes no actions then (21b) could be included as part of (21a). Note that all these new

variables can be immediately substituted for and thus do not increase the number of free

variables. Constraints 21b and 21c make sure that for each state, each set of variables over

joint-actions is a probability distribution.
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Any feasible assignment of variables x~a,s represents a valid strategy for the agents. It

also corresponds to an action of the belief-POMDP. We have defined these constraints to

be independent of the current belief or continuation policy. This allows us to use this same

feasible set for all linear programs, improving performance.

In order to backup a particular belief point we must maximize the utility of a strategy

x. When using a continuation policy that has value vector α a resulting belief b′ will

achieve value
∑

s b
′(s)α(s). The resulting belief b′ after taking action ~a from belief b is

b′(s′) =
∑

s b(s)P (s′|s,~a). Putting these together, along with the probabilities x~a,s of taking

action ~a in state s we get the value of a strategy x from belief b followed by α:

Vx,α(b) =
∑
s∈S

b(s)
∑
~a∈A

∑
s′

P (s′|s,~a)α(s′)x~a,s (22)

This is the quantity that we wish to maximize, and can combine with constraints 21

to form a linear program which returns the best action for each agent for each observation

(strategy) given a continuation policy α. To find the best strategy/continuation policy pair,

we can perform this search over all continuation vectors in Γ:

Maximize:
∑
s∈S

b(s)
∑
~a∈A

∑
s′

P (s′|s,~a)α(s′)x~a,s

Over: x ∈ {0, 1}|S||A| , α ∈ Γ

Subject to: inequalities 21

(23)

Each integer program has |S||A| variables but there are also a great number of equality

constraints. Most of these equality constraints are linearly independent from the other

constraints and thus reduce the number of free variables by one each. However, these

equality constraints grow at a slower rate than the number of variables. There is one

important exception to this which are the constraints 21b. There are exactly |Ω||A| of these

constraints - one for each unobserved factor and joint-action. Therefore the number of

unobserved states does not increase the number of free variables. Taking this into account,

the number of free variables is O(|O||A|).

The optimization problem given above requires searching over all α ∈ Γ to find the best
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continuation value-vector. We could solve this problem as one large linear program with

a different set of variables for each α, however each set of variables would be independent

and thus can be solved much faster as separate individual problems.

5.2.3 The basic algorithm

A full point-based value iteration algorithm for common-payoff MaGIIs starts with collecting

beliefs using Algorithm 4. We then modify Algorithm 5 by using the one step backup

operation given in Equation 23 as step 9. This algorithm will iteratively improve the value

function at all beliefs. The algorithm stops when the value function improves less than the

stopping criterion εΓ. Therefore, at every iteration at least one of the beliefs must improve

by at least εΓ. Because the value function at every belief is bounded above by Rmax/γ we

can guarantee that the algorithm will take fewer than (|B|Rmax)/(γ · εΓ) iterations.

There are a few subtleties with this algorithm that one should be careful about. One

such subtlety is that successive value functions may not monotonically increase. It is true

that the next iteration’s value function will be greater or equal at all sampled belief points,

however in-between belief points there are no guarantees. Two α-vectors may have pivoted

on their sampled belief axis and lowered the value at their intersection. This can cause

problems when computing the backup - an optimal value of the backup may be lower than

the previous iteration’s computed value (because it relies on an in-between successor belief).

When this happens, it does not mean that the previously computed value is invalid. It only

means that the α-vector previously used is no longer supported by the sampled beliefs, and

has thus been removed from the value function. Such cases are rare, but when they happen

we can simply use the previous α-vector. To make this concrete, line 9 of Algorithm 5

should read:

αb ⇐maximum of: max
α∈Γ

b · α and max
a∈AO

max
α′∈Γ

Va,α′(b)
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5.2.4 Extracting a policy from the value function

Algorithm 5 returns a value function. Ultimately we want a policy. Using the value function

a policy can be constructed in a greedy manner for each player. This is accomplished using

a very similar procedure to how we construct a policy greedily in the fully observable case.

Every time-step the actors in the world can dynamically compute their next action without

needing to plan their entire policy.

Agents start with a known common-knowledge distribution over states. At each time-

step agents use their value function to find the value-vector α ∈ Γ that has the maximum

utility for their current common-knowledge belief. This value-vector has an associated strat-

egy (a joint-action for each state) απ. Because of the conditional independence constraints

used to create this strategy, each agent-type will have the same action across all states

consistent with that type (in other words, the strategy will be equivalent to each agent-type

being prescribed an action). This joint strategy is common-knowledge so when each agent

follows their own individual part of the strategy, they know how to update the common-

knowledge belief using Equation 17: pt+1(s′) =
∑

s p
t(s)

∑
~a απ(~a) P (s′|s,~a). In the next

state agents repeat this process of finding the best support-vector and using the prescribed

strategy followed by updating their common-knowledge belief.

5.2.5 Improved PBVI for MaGIIs

Each backup requires solving a linear program which is significantly more computationally

intensive than a traditional PERSEUS backup. This places much greater demand on the

algorithm to more judiciously utilize backups. We introduce several improvements that help

mitigate the number of heavy backups needed. First, we improve the use of randomness in

the algorithm. Second, we show how to more effectively search over the space of successor

value-vectors α ∈ Γ. Finally, we introduce light backups that do not require integer or linear

programming. These light backups are not guaranteed to be optimal, but often produce

improved value regardless.
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5.2.5.1 Improved belief sampling

The basic algorithm is a randomized algorithm in two regards. First, the algorithm is highly

dependant on the initial selection of beliefs for the belief set. The value function will not be

backed-up anywhere except these points. The value function will still be valid and useful for

all belief points, but will likely decrease in accuracy the farther away it is from a sampled

belief. Ultimately, we only need one belief point per optimal value vector. We also only need

beliefs that are reachable by the optimal policy. Recall that the value function is always an

under estimate. By omitting beliefs we are potentially lowering our value estimate in that

region. If we would never want to enter that belief region anyway, then a lower belief will

only help to keep us out. We also don’t want to spend unnecessary computation improving

suboptimal policies. It is therefore preferable for the sampled points to be clustered along

the optimal belief trajectory, while sparsely sampled elsewhere to generate coverage.

In order to make sure we improve the value function every iteration it is important to use

all the sampled belief points from one iteration in the next iteration. The basic algorithm

makes this simple by fixing the belief set ahead of the main algorithm. However, there is no

reason why we can’t add beliefs over time. This makes sense for two reasons. First, when

starting the algorithm it is easy to improve the value function with only a few value vectors

so a large number of beliefs are not needed. And second, in the process of improving the

value function and associated policies we learn about the value space and where good choice

for beliefs may lay. We use this intuition to propose a simple new method for selecting belief

points.

Our improved belief sampling (Algorithm 6) starts in the same way as the original,

albeit with fewer samples (e.g., 1/10th what would normally be used). We then run the

algorithm until convergence with a greater εΓ value (e.g., 10 times). When the algorithm

converges we add a batch of new beliefs to our sampled belief set. However, this time we

do not choose random actions. Instead, we use an επ-greedy policy (e.g., with επ = 0.1). In

this way we add points closer to the optimal trajectory, while still allowing for exploration.

We can also change the number of samples, the depth of samples, εΓ and επ over time to

gradually improve the accuracy of the value function. Experimentally our improved belief
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Algorithm 6 Improved belief sampling

Inputs: MaGII 〈N,A,O,Ω, S, P,R, s(0)〉
number of samples c
sampling depth d
greedy policy π
random exploration probability επ

Output: set of beliefs B : {b ∈ R|S|}
1: B ⇐ ∅
2: for 1→ c do
3: b⇐ s(0)

4: for 1→ d do
5: for all i ∈ |N |, o ∈ Oi do
6: if Random([0, 1]) < επ then
7: ai,o ⇐ Random(a ∈ Ai)
8: else
9: ai,o ⇐ π(i, o)

10: for all s ∈ S do
11: b′(s)⇐

∑
s′∈S b(s

′)P (s′|s, a)
12: B ⇐ B

⋃
b′

13: b⇐ b′

14: return B

sampling improves performance by an order of magnitude, allowing both faster convergence

and higher accuracy value functions.

5.2.5.2 Belief symmetry

If a MaGII has transition and reward probabilities based only upon the unobserved factors

Ω then types have no inherent meaning beyond inducing a prior on the unobserved state

factors. For these problems, the distribution is what matters not the particular label of an

agent’s type. Therefore when two common-knowledge beliefs are equal up to a change of

type labels then they will have equal value. When problems have this feature, we can use

this fact to reduce our belief sample space by sorting the labels of sampled beliefs into a

canonical representation where the most likely belief for each agent is ordered first.

Problems that transition independently from type are actually quite common. For

example, any MaGII where types only represent internal beliefs and not features of the world

have this property. More importantly, all of the methods to approximate DecPOMDPs with

MaGIIs presented below (Section 5.3) have this structure. We can therefore use this trick
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to reduce the number of samples needed to cover our belief space, and in turn reduce the

number of value-vectors needed to represent our value function.

5.2.5.3 Improved continuation policy search

Each heavy backup (as given by Equation 23) requires performing a linear program for each

continuation value α ∈ Γ. Every backup does not need to search all continuation values

every backup; we only need to find a single one that improves the backup belief. The set

of value-vectors Γ may be large. All of these vectors are optimal for some set of beliefs,

however the beliefs for which they are optimal may not be reachable from the belief being

backed up. Any value-vector that can not be reached will never be the optimal successor.

Even if a value-vector can be reached, if it has much lower value compared to other reachable

value-vectors then it is also a poor candidates for succession.

Using these insights, we try to rank the possible continuation value-vectors by likelihood

of being optimal. When performing a backup we search by greatest likelihood first and stop

as soon as we find a continuation policy that improves our belief. For each belief we keep

track of the values achieved of any successor value-vector that we previously tried. We then

estimate the value of all the other value-vectors by picking the most recent successor belief

and evaluating the value-vectors at that point. This gives a rough estimate to how well we

believe all the value-vectors will fair allowing us to prioritize the order in which we search

value-vectors.

The value-function Γ changes quickly, so the exact same value-vectors will not stick

around for many iterations. However, each value-vector is supported by a witness belief (in

B), and for a particular belief the vector it supports does not typically change drastically

over time. We therefore don’t keep ranks on value-vectors, but on the witnesses. This

allows us to rank a new value-vector using a previously computed optimal strategy based

on the new value-vector’s witness. In this way continuation value-vectors that are close to

successor beliefs are more likely to have a higher rank than value-vectors far away from

successor beliefs.
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5.2.5.4 Light backups

Backing up a belief point in the basic algorithm requires solving |Γ| separate linear programs.

We showed in Section 5.2.5.3 that not all of these linear programs need to be run - we

only need to find a single one that improves the belief’s value. However, even a single

linear program is costly. There are O(|O||A|) variables and linear programs typically have

running time quadratic in the number of variables. We introduce light backups as a means

to prevent solving unnecessary linear programs.

The value at a belief increases during a backup for two reasons. Either a better immedi-

ate strategy is found, or the value at the successor belief improves (the same strategy from

the same starting belief will always end up at the same successor belief). The second case is

common. In fact, anytime a belief improves it is often the case that other beliefs’ values are

dependent on it. We can take advantage of this fact by propagating belief updates without

searching for better strategies.

Backing up a belief for a known strategy and continuation value is very quick and

does not require solving a linear program. All we have to do is compute the value using

Equation 22 which is just a weighted sum. This weighted sum is equivalent to the value

of the linear program 23 at the previous best basic feasible solution. After every round

of heavy backups we perform multiple rounds of light backups until the values converge.

These light backups dramatically lower the number of heavy backups needed.

5.2.5.5 Improved algorithm

We have introduced a number of new parameters to the original algorithm. These control

how we sample and how quickly we add new samples. We can also change these parameters

over time. For the final improved algorithm we pass functions over time for these parameters.

While finding new sample beliefs (using Algorithm 6) we check to make sure the new belief

is not equal to a belief we previously sampled. If we find a collision we simply throw

out the belief and re-sample. While this doesn’t effect performance greatly, it does make

the algorithm more consistent and predictable. The final improved algorithm is given as

Algorithm 7.
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5.3 Approximating DecPOMDPs

We have shown how to compute the value function for common-payoff MaGIIs. While there

are problems that can be exactly represented as a common-payoff MaGII, a key motivation

for developing MaGIIs in the first place was to solve general problems. In this section we

explore a number of different methods for approximating DecPOMDPs with common-payoff

MaGIIs. This section can be viewed independently from the solutions to solve MaGIIs.

There are likely more powerful algorithms for solving MaGIIs but regardless of solution

technique the transformation from DecPOMDP to MaGII is an important modeling step.

A bad transformation has the potential to produce very poor results, even if the optimal

policies for the resulting MaGII are found. Here we present a number of different possible

approximations. The first two have been implicitly used in previous research while the third

is novel. Unlike the previous approximations, our approximation scheme has optimality

guarantees.

In all approximations the goal is to reduce the possibly infinite number of beliefs of a

DecPOMDP to a small finite set of beliefs. This belief compression should maintain an

agent’s ability to produce high quality policies as much as possible. Note that it is not

enough to specify a mapping from histories to compressed beliefs. We must also describe a

transition function that operates only on the small belief set and does not rely on observation

histories. In other words, a successor belief can only depend on the most recent belief not

any previous belief. Recall from Section 4.3.3 that it is acceptable if the MaGII we create

does not satisfy the Markov property on observations, we can assume it does. It is this

assumption (that beliefs in the MaGII are sufficient so agents dont need to remember

history) that is the true point of approximation.

In all the approximation methods presented here the states of the DecPOMDP are

used as the unobserved states in the MaGII. The transition function of the new MaGII

mirrors the DecPOMDPs for the unobserved states. The differences are in the beliefs (a.k.a.

observations) given to each agent. This makes each of these approximations equivalent to

belief compression or observation compression.
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5.3.1 Example

As an example we attempt to construct a MaGII for the multi-agent tiger problem (Sec-

tion 5.4.1.1). An agent’s observation history consists of a series of right/left growls. During

a single episode the order of these observations does matter, only how many of each type of

growl have been heard (e.g., hearing R,L,L contains the same information as hearing L,R,L).

Furthermore, it is only the difference of growls that matters, not the absolute number (e.g.,

hearing R,L,L,L contains the same information as hearing L,L). Also, the greater the dif-

ference between growl locations, the less additional growls effects an agent’s belief (e.g.,

hearing a growl left seven times is only slightly more informative than hearing the growl

left six times). This reasoning could lead us to propose a MaGII approximation of the tiger

problem with 5 beliefs corresponding to the difference of growls heard (+2, +1, 0, -1, -2).

Indeed, this turns out to be a good choice and achieves rewards close to optimal, however

our reasoning for constructing this approximation does not generalize to other models. We

want to develop approximation methods that work well across all problems.

5.3.2 Truncated history

An easy and straight forward approximation method is to simply truncate the history

of observations - in other words, assume that agents have long term amnesia and can’t

remember what they observed more than h time-steps ago. This results in
∑h

k=1O
k
i possible

beliefs for each agent. There are two ways to define these beliefs depending on whether or

not agents know the current time-step. If agents can’t remember how much time has

passed then each of these beliefs will be identical at ever time-step. Thus the policy will

be equivalent to a finite state controller where each belief is a state in the controller (with

a corresponding action to take) and each observation corresponds to a transition. The

problem of optimizing each agent’s finite state controller has been tackled by a number of

researchers. A major problem of these approaches is that optimizing finite state controllers

is not a convex optimization problem and thus suffers from local optima.
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5.3.3 Probability Threshold

Another method for bounding the number of histories is to remove or merge any history

with low probability of occurring. If we set a threshold of εh, then we can guarantee that

no more than 1/εh histories will be present at any given time-step. However, after a few

time-steps individual histories will become more and more unlikely. It is also unclear how

to handle pruned histories. One solution is to always keep the top 1/εh histories and re-

normalize perceived transition probabilities. In other words, we could pretend that pruned

histories just don’t exist. The problem with this approach and other probability threshold

based approximations is that histories with lower probability may be just as important to

reason about as more likely histories. There has been no theoretic accounting of when it

might be reasonable to ignore low probability trajectories and no algorithm evidence to

suggest doing so is generally acceptable.

5.3.4 Dynamic belief compression

We present here a novel approximation method based around letting agents themselves have

the ability to decide how they want to merge their beliefs. This pushes the onus of belief

compression onto the MaGII solver instead of the approximation method. We give agents

this ability by creating a new modified MaGII where we interleave each normal time-step

(where we fully expand each belief) with a belief-compression time-step (where the agents

must explicitly decide how to best merge beliefs). We call these two phases belief expansion,

and belief compression respectively.

In our compressed model, the type/observation given to each agent has two factors. The

first factor is the compressed belief. The second factor is the most recent observation (or ∅

if agents just compressed their belief). This second factor is used to designate which of the

two alternating phases the game is currently in (where ∅ designates belief expansion).

The first phase acts like the original DecPOMDP without any belief compression -

the observation given to each agent is their previous belief along with the DecPOMDP’s

observation. No information is lost during this phase; each observation for each agent-type

results in a distinct belief. This belief expansion occurs with the same transitions and

121



rewards as the original DecPOMDP.

The second phase is belief contraction. The dynamics of this phase are unrelated to the

DecPOMDP. Instead an agent’s actions are decisions about how to compress their belief. In

this phase, each agent-type must choose their next belief but they only have a fixed number

of beliefs to choose from (the number of beliefs ti is a free parameter). All agent-types

that choose the same belief will be unable to distinguish themselves in the next time-step;

the belief label in the next time-step will equal the action index they take in the belief

contraction phase. All rewards are zero. This second phase can be seen as a purely mental

phase and does not effect the environment beyond changes to beliefs.

The number of contracted beliefs for each agent ti are free parameters of the approxima-

tion scheme. At the beginning of the expansion phase each agent has possible observations

(a.k.a. types) θ1, θ2, · · · , θti . There is no meaning to these beliefs beyond their index and

how agents themselves define the beliefs. During the belief expansion phase the set of possi-

ble observations is {θ1, θ2, · · · , θti}×|Oi| which increases the number of possible observations

from ti to ti|Oi|. During the belief contraction phase, each agent has ti possible actions.

Whichever action index ai an agent takes will deterministically transition that agent into

the expansion phase with belief θai . The second phase can be seen as a purely mental phase

and thus does not effect the environment beyond the changes of beliefs. For this reason

we also square-root the discount factor (or only discount during belief expansion, which is

equivalent because all rewards during belief contraction are zero).

5.3.4.1 Formal approximation

Given a DecPOMDP 〈N,A, S,O, P,R, b(0)〉 we formally define the new MaGII approxima-

tion model 〈N ′, A′, O′,Ω′, S′, P ′, R′, s′(0)〉 with parameters t1, · · · , tn as:

• N ′ = |N |

• A′i = max(Ai, ti)

• O′i = (Oi
⋃
{∅} × {θ1, θ2, · · · , θti}

• Ω′ = S
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• S′ = Ω′×O′ with s′ = 〈ω′, o′1, θ′1, · · · , o′n, θ′n〉.

• P ′(s′|s, a) =


P (ω′, 〈o′1, · · · , o′n〉 |ω, a) if ∀i : oi = ∅ and θ′i = θi

1 if ∀i : oi 6= ∅ and ω′ = ω, o′i = ∅, θ′i = θ(ai mod ti)

0 otherwise

• R′(s, a) =

 R(ω, a) if ∀i : oi = ∅

0 otherwise

• s′(0) =
〈
b(0), ∅1, 1, · · · , ∅n, 1

〉
is the initial state distribution

We have constructed the MaGII such that at each time-step agents receive two observa-

tions: an observation factor oi ∈ Oi
⋃
{∅}, and their belief factor (type) θ ∈ {θ1, θ2, · · · , θti}.

The observation factor is ∅ at the expansion phase and the most recent observation, as given

by the DecPOMDP, when starting the compression phase. The observation factor therefore

distinguishes which phase the model is currently in. Agents should either all have their

observation factor be equal to the empty set (oi = ∅) or none of them. The probability

of transitioning to a state where some agents have the empty set observation while others

don’t is always zero. Note that transitions during the contraction phase are deterministic

(probability one) and the underlying state ω does not change. The action set sizes may be

different in the two phases, however we can easily get around this problem by mapping any

action outside of the designated actions to an equivalent one inside the designated action.

We described this process above as (ai mod ti). The new BB-DecPOMDP’s state size is

|S′| = |S|(|O|+ 1)ntn.

The agent specified beliefs have no intrinsic meaning - they are just labels. Their

meaning is what agents give them. As an example, note that during belief compression an

agent could rotate their actions for each agent-type (e.g., instead of action 1 they would

take action 2, and instead of action 2 they would take action 3 etc. ). This would result in

a relabeling of beliefs in the next time-step but would not affect utility. These compressed

beliefs have meaning in two important ways. First, they encode level-0 beliefs by inducing

a distribution over unobserved factors Ω. Second, because strategies are fully-observable

(due to rationality), the belief compression choices of agents are common knowledge and

123



Table 2: Dimensions of seven common DecPOMP benchmark problems. S′ are the factored
states of the optimal approximation scheme given by the compression model in Section 5.3.4.

|S′| with ti =
|N | |S| |Ai| |Oi| 1 2 3 4 5

Dec-Tiger 2 2 2 2 18 72 162 288 450

Broadcast 2 4 2 2 36 144 324 576 900

Recycling 2 4 3 2 36 144 324 576 900

Grid small 2 16 5 2 144 576 1296 2304 3600

Box Pushing 2 100 4 5 3600 14400 32400 57600 90000

Wireless 2 64 2 6 3136 12544 28224 50176 78400

Mars Rover 2 256 2 6 12544 50176 112896 200704 313600

thus change the common knowledge distribution over time. This in turn causes agents to

reach different belief-points in the belief-POMDP.

5.4 Experiments

This section gives experimental results for our our PBVI for DecPOMDP algorithm on

six well known DecPOMDP benchmark problems. On all of these problems we met or

exceeded the current best solution. This is particularly impressive considering that some

of the algorithms were designed to take advantage of specific problem structure, while our

algorithm is general.

5.4.1 Benchmark problems

We tested our PBVI for DecPOMDP algorithm on six well known DecPOMDP benchmark

problems: DecTiger, Broadcast, Grid-small, Cooperative Box Pushing, Recycling Robots,

and Wireless Network. An overview of the sizes of each problem is given in Figure 5.4.1. We

also attempted to solve the Mars Rovers problem, except its PP-MaGII transition model

was too large for our 8GB memory limit. Because Mars Rover is also a common benchmark

problem, we list its properties here.

5.4.1.1 Decentralized tiger

The single agent tiger problem [14] has been used often to test and explain POMDP algo-

rithms. In the problem there are two doors. One holds a tiger (-100 reward), the other some

money (+10 reward) with even probability of which door holds which. A contestant must
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choose the correct door, but can wait and listen for growling noises (which are reported

with 85% accuracy). Waiting results in a penalty of one (-1 reward). Figure 29 depicts this

game. There have been a number of multi-agent versions of this game [22, 23, 92]. Here we

present the standard DecPOMDP version.
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Figure 29: The single agent tiger problem. Each circle is an underlying unobserved state.

The decentralized tiger problem [57] is similar to the single agent tiger problem, except

two agents must work together to open the correct door. At every time-step the two agents

must decide to open a door or listen. The transitions are the same as in the single agent

version where if either agent opens a door (regardless of what the other agent does) then

the game resets. The rewards are mostly similar with a few exceptions. One, if one of

the agents opens the wrong door (with the tiger behind it) then the pair receives a reward

of -50, -100, or -101 depending respectively on if the other agent opened the same door,

the opposite door, or listened. Otherwise both agents receive the sum of rewards as given

by the single agent reward structure. A tabular representation of the game is given by

Table 5.4.1.1.

This game heavily favors coordination between the agents; they are penalized if they

don’t choose the same action at every stage. However, neither agent ever receives any

information about the actions of the other player, or even their own reward. They don’t

know when the game resets unless they themselves reset the game (by opening a door). In

order to solve this problem the agents must reason about the other agent’s mental states
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Table 3: Tabular reward, transition and observation functions for the decentralized tiger
problem.

State: Tiger Left
Open-left Open-right Listen

Reward Trans Obs Reward Trans Obs Reward Trans Obs

Open-left -50 .5/.5 .5/.5 -100 .5/.5 .5/.5 -101 .5/.5 .5/.5

Open-right -100 .5/.5 .5/.5 20 .5/.5 .5/.5 9 .5/.5 .5/.5

Listen -101 .5/.5 .5/.5 9 .5/.5 .5/.5 -2 1.0/0 .85/.15

State: Tiger Right
Open-left Open-right Listen

Reward Trans Obs Reward Trans Obs Reward Trans Obs

Open-left 20 .5/.5 .5/.5 -100 .5/.5 .5/.5 9 .5/.5 .5/.5

Open-right -100 .5/.5 .5/.5 -50 .5/.5 .5/.5 -101 .5/.5 .5/.5

Listen 9 .5/.5 .5/.5 -101 .5/.5 .5/.5 -2 0/1.0 .15/.85

and not just about the underlying state of the world. This makes it a suitable DecPOMDP

toy problem.

5.4.1.2 Broadcast channel

The second benchmark problem models a multi-access broadcast channel [29, 63]. There is

a single channel on which both agents wish to send messages. If agents attempt to send a

message at the same time there is a collision and neither message is sent. Each agent has a

message buffer capable of holding a single message. When there is a message in the buffer

the agent can attempt to send it. The message remains in the buffer until sent. When any

agent successfully sends their message all agents receive a reward of +1 and the sending

agent’s message buffer becomes empty. If their buffer is empty, each agent has probability

pi that their buffer receives a new message. Any other action besides successfully sending

a message has reward 0. Every time-step an agent gets a noisy observation (accurate with

probability 0.9) of if there was a collision on the network or not. This is the only observation

an agent gets. The standard broadcast channel problem has two agents with p1 = 0.9 and

p2 = 0.1. This means there are four states corresponding to the four possible configurations

of the two buffers.
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5.4.1.3 Meeting on a grid

The meeting on a grid problem [10] models agents who live in a grid world, move stochasticly,

and wish to meet each other on the grid. A small version of this problem with a 2x2 grid and

only two observations was proposed by C. Amato, D. S. Bernstein, and S. Zilberstein [2].

This version is known as the grid-small problem and has been used as a common benchmark

by DecPOMDP researchers.

The state of the world consists of each agent’s position on the grid. Therefore, with

two agents and a 2x2 grid there are 16 states. There are typically no obstacles in the grid,

and agents deterministically start in the top left corner. Each agent can move in any of the

four cardinal directions or choose to stay still, but only successfully accomplish this action

with probability 0.6 (otherwise the agent is moved randomly). If an agent moves off the

grid (intentional or otherwise), than the agent will remain in the same square. To model

the desire the meet, each agent receives a reward of 1 when they both are on the same grid

square, and a reward of 0 otherwise. Agents deterministically observe if there is a wall to

their left or right. These observations are independent of the other agent’s position. While

in general there are 4 observations possible per agent, in a 2x2 grid there are only 2 possible

observations.

5.4.1.4 Recycling robots

Problems involving robots moving around an office attempting to pick up trash have a long

history in robotics and AI [86]. A decentralized multi-agent version was proposed by C.

Amato, D. S. Bernstein, and S. Zilberstein [3]. In this version a team of two robots attempt

to clean up an office which is in a constant state of mess (there is always more trash to

find). The office has two types of trash: small cans and large cans. The large cans require

the two robots to work together in order to pick it up. Over time the robots lose power and

must recharge, or else risk loosing all power and forcing an operator to manual recharge the

robot (incurring a large negative reward).

This decision problem does not worry about low-level actions (such as moving). Instead,

each agent must decide between three high-level actions: search for a small can, search for
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a big can, or recharge. In order to successfully clean a big can both agents must be looking

for it. If either agent chooses to pick up a small can, then the team gets a reward of 2 (and

a reward of 4 if both agents seek small cans). If both agents cooperate and search for a big

can then they receive a reward of 5. Agents can be in one of two power states, either low

or high power. If agents don’t recharge they have a small probability of decreasing their

power. If this happens when the agent is already in low power, then they transition to high

power and lose reward (someone had to recharge them).

5.4.1.5 Cooperative Box-Pushing

This problem is a simplified version of a common robotics problems [44]. Operating in a

grid world, robots attempt to push a set of boxes into a goal region. There are two different

sizes of boxes (large and small). Small robots can be moved by a single robot pushing

against it, while large boxes require at least two robots pushing on it to move. Each robot

can only observe what is immediately in front of it (empty, wall, robot, small-box, big-box).

Each agent has four stochastic actions which succeed with probability 0.9 and stay put with

probability 0.1: turn left, turn right, move forward and stay put. The simplest version of

this problem takes place on a 4x3 grid world with two agents and three boxes. Agents

attempt to move all three boxes up into the top row. When they succeed, a reward of 10 is

given for small boxes and 100 for the big box. Every time-step agents also get a penalty of

-0.1 along with a larger penalty of -5 if agents bump into a wall or a box they can’t move.

5.4.1.6 Wireless Network

The wireless network problem [65] simulates two (or more) wireless devices attempting to

use the same frequency to communicate on. Each device has a queue of packets waiting

to be sent. An agent for each device attempts to minimize the number packets currently

queued. Each time-step agents receive a negative reward equal to the sum of queue lengths.

Agents can take two actions: send or not-send. Each device has a set of neighbors and if

that device sends a packet and no neighbors send, that agent’s queue is reduced by one.

Otherwise no packets are sent. Each agent’s queue is controlled by a Markov process with

two states. When in the first ”packet” state, packets are added each time-step. The second
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”idle” state adds no packets. This Markov process switches from the packet to the idle state

with probability 0.0741 and from the idle state to the packet state with probability 0.0470.

These values were obtained from observing a physical wireless device. Agents observe their

queue size and if their previous packet was sent or not. The wireless network benchmark

problem used here and elsewhere has only 2 agents.

5.4.2 Methodology

We implemented the improved MaGII PBVI algorithm in Java using the GNU Linear

Programming Kit to solve our linear programs. We ran the algorithm on all four benchmark

problems using the dynamic belief compression approximation scheme to convert each of

the DecPOMDP problems into MaGIIs. For each problem we converted them into a MaGII

with one, two, thee, four, and five dynamic types.

We used the following fixed parameters while running the PBVI algorithm: εΓ = 0.0005,

επ = 0.1, c = 100, d = 36, k = 30. Because of our choices for c and k we terminated the

search after exploring approximately 3000 sampled beliefs. There was some small variance

here due to throwing out beliefs that equaled previously sampled beliefs. All of the problems

except Wireless were solved using a discount factor γ of 0.9 for the original problem and
√

0.9 for our dynamic approximation (recall that an agent traverses two states for every one

of the original problem). Wireless has a discount rate of 0.99. Our empirical evaluations

were run on a six-core 3.20 GHz Phenom processor with 8GB of memory. We terminated

the algorithm and used the current value if it ran longer than a day (only Box Pushing and

Wireless took longer than five hours).

5.4.3 Results

Our algorithms performed very well on all benchmark problems (Table 5.4.3). Surprisingly,

most of the benchmark problems only require two approximating types in order to beat

the previously best known solution. Only Dec-Tiger required three types to perform well.

None of the problems benefited substantially from using four or five types. Only grid-small

continued to improve slightly when given more types. This lack of improvement with extra

types is strong evidence that our BB-DecPOMDP approximation is quite powerful and that
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Table 4: Utility achieved by our PBVI-BB-DecPOMDP algorithm compared to the pre-
viously best known policies on a series of standard benchmarks. Higher is better. Our
algorithm beats all previous results except on Dec-Tiger where we believe an optimal policy
has already been found.

Previous Best 1-Type 2-Types
|S| |Ai| |Oi| Utility Utility |Γ| Utility |Γ|

Dec-Tiger 2 2 2 13.4486 [66] -20.000 2 4.6161 187

Broadcast 4 2 2 9.1 [3] 9.2710 36 9.2710 44

Recycling 4 3 2 31.92865 [3] 26.3158 8 31.9291 13

Grid small 16 5 2 6.89 [66] 5.2716 168 6.8423 206

Box Pushing 100 4 5 149.854 [4] 127.1572 258 223.8674 357

Wireless 64 2 6 -175.40 [45] -208.0437 99 -167.1025 374

3-Types 4-Types 5-Types
Utility |Γ| Utility |Γ| Utility |Γ|

Dec-Tiger 13.4486 231 13.4486 801 13.4486 809

Broadcast 9.2710 75 9.2710 33 9.2710 123

Recycling 31.9291 37 31.9291 498 31.9291 850

Grid small 6.9826 276 6.9896 358 6.9958 693

Box Pushing 224.1387 305 - - - -

the policies found are near optimal. It also suggests that these problems do not have terribly

complicated optimal policies and new benchmark problems should be proposed that require

a richer belief set.

The belief-POMDP state-space size is the primary bottleneck of our algorithm. Recall

that this state-space is factored causing its size to be O(|S||O|n|t|n). This number can easily

become intractably large for problems with a moderate number of states and observations,

such as the Mars Rovers problem. Taking advantage of sparsity can mitigate this problem

(our implementation uses sparse vectors), however value-vectors tend to be dense and thus

sparsity is only a partial solution. A large state-space also requires a greater number of

belief samples to adequately cover and represent the value-function; with more states it

becomes increasingly likely that a random walk will fail to traverse a desirable region of

the state-space. This problem is not nearly as bad as it would be for a normal POMDP

because much of the belief-space is unreachable and a belief-POMDP’s value function has

a great deal of symmetry due to the label invariance of beliefs (a relabeling of beliefs will

still have the same utility).
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Figure 30: The starting belief value over for the Dec-Tiger problem with 3-types. The
algorithm converges quickly for the optimal policy, however off-policy beliefs keep getting
added and updated over time, growing the number of supports needed to represent the
value function.

5.5 Limitations

A Common-payoff MaGII is an approximation of a DecPOMDP. Solving a DecPOMDP

exactly is NP-complete [9]. Despite DecPOMDPs being hard to solve exactly, they are very

amenable to approximation. However, while our belief compression scheme in Section 5.3.4

is optimal, it is still possible for the number of beliefs to be insufficient to produce a quality

policy. The number of distinct policies used at any time-step can be no larger than the

number of beliefs. This means that for problems where there is a large difference between

using an optimal and sub-optimal policy at any given time-step there will be a significant

loss of utility if an agent uses too few beliefs.

For example, consider a problem where an agent’s action must be to repeat back an

observed password. If the number of beliefs (m) is less than the number of observations,

then an agent will be forced to merge observations and will not be able to distinguish

between them. Without being able to distinguish between observations, the agent will not

be able to take different actions, and will therefore only be able to correctly remember up

to m passwords. This problem in not limited to a single time-step. There could be delays

between when the password is given, and when a response is expected and the number of

distinct responses will still be m. If the agent is expected to react to the environment in
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Figure 31: The rate of belief improvement over time for the the Dec-Tiger problem with
3-types. Both the maximum value improvement (over all sampled beliefs) and average value
improvement are shown. New beliefs are added whenever the maximum change dips below
the εΓ threshold. After the initial convergence (Figure 30) there is little average change to
the beliefs.

the meantime, then the agent will have to forget even more passwords in order use those

beliefs to react instead of distinguishing between passwords. In fact, if an agent wishes to

remember k1 passwords but requires k2 beliefs to operate between observing the password

and recalling it, the agent will need k1 × k2 beliefs.

Loss of utility due to an insufficient number of beliefs can be mitigated in problems with

a reward structure beyond simply getting the password correct or not, for example perhaps

the agent could respond with ”I don’t know” and be penalized far less. The agent would

then be able to group all cases where he forgets the password into a single belief and take

this safety action. This dramatically lowers the cost of having too few beliefs.

The potential need for a greater distinctions between histories becomes even greater the

more possible underlying states there are in the environment. Actions can be arbitrarily

bad if the environment is in one state, while arbitrarily good in another state. While the

common-knowledge distribution across states can help mitigate this issue for some problems,

other problems may not give any common-knowledge information. In general, problems

where it is crucial to take exactly the right action (among many) in exactly the right state

(among many) will need a larger number of beliefs.
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5.6 Conclusion

This chapter used common-payoff Markov games of incomplete information (MaGII) to

tackle the problem of solving DecPOMDPs. We presented several contributions which

when combined produced a value iteration algorithm for DecPOMDPs that outperforms all

existing algorithms on a suite of infinite horizon benchmark problems. The contributions of

this chapter are made possible by utilizing the theory of MaGII presented in the previous

chapter. We first define a common-payoff MaGII and show that they can be converted

into POMDPs. Given this insight we present how an existing point-based value iteration

algorithm for POMDPs can be easily modified to solve common-payoff MaGIIs.

One of the major accomplishments presented in this chapter is the ability to convert

a DecPOMDP into a common-payoff MaGII using optimal dynamic belief compression.

This compression is achieved by modifying the game itself thereby placing the onus of

belief compression on our point-based value iteration algorithm instead of a separate belief

compression algorithm. Along with the ability to efficiently approximate any DecPOMDP

as a MaGII, we also present several algorithmic improvements to the point-based value

iteration algorithm due to the special nature of the multi-agent problem. These include:

identifying significant symmetry in the value function of the approximated DecPOMDP,

improving the method of belief sampling, and reducing the number full backups needed

each iteration. While we described and tested point-based value iteration, we believe the

advancements of this chapter opens the door towards a large and fruitful line of research

into modifying and adapting existing value-based POMDP algorithms towards the specific

difficulties of belief-POMDPs.
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Algorithm 7 Improved MaGII PBVI algorithm

Inputs: common-payoff MaGII M = 〈N,A,O,Ω, S, P,R, s(0)〉
stopping criterion function εΓ : N→ R
random exploration probability function επ : N→ [0, 1]
number of samples function c : N→ N
sampling depth function d : N→ N
sampling iterations kmax

Output: value function Γ

1: α0
v ⇐ 〈Rmin, · · · , Rmin〉

2: α0
π ⇐ random strategy

3: Γ′ ⇐ {α0}
4: B∀ ⇐ ∅
5: for k = 1→ kmax do
6: B+ ⇐ Improved_belief_sampling(M, c, d(k),Γ, επ(k)) (Algorithm 6)
7: B∀ ⇐ B∀

⋃
B+

8: repeat
9: B ⇐ B∀

10: Γ⇐ Γ′

11: Γ′ ⇐ ∅
12: while B 6= ∅ do
13: b⇐ Random(b ∈ B)
14: α⇐ Γ(b)
15: for α′ ∈ Γ sorted in descending order by: α · Γ(b)π(b) {the successor belief} do
16: α′bv ⇐ value of linear program 23
17: if α′bv > αv then
18: αv ⇐ α′bv
19: απ ⇐ optimal point of linear program 23
20: break
21: Γ′ ⇐ Γ′

⋃
α

22: for all b ∈ B do
23: if Γ′(b)v > Γ(b)v then
24: B ⇐ B/b
25: repeat
26: Γ′′ ⇐ Γ′

27: for all α ∈ Γ′ do
28: αv = maxα′∈Γ Vαπ ,α′(b) {light backup using previous best action}
29: until Γ′′ − Γ′ < εΓ(k)
30: until Γ′ − Γ < εΓ(k)
31: return Γ
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