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SUMMARY

An ergodic hidden Markov model (EHMM) can be useful in extracting underlying

structure embedded in connected speech without the need for a time-aligned transcribed

corpus. In this research, we present a query-by-example (QbE) spoken term detection

system based on an ergodic hidden Markov model of speech. An EHMM-based represen-

tation of speech is not invariant to speaker-dependent variations due to the unsupervised

nature of the training. Consequently, a single phoneme may be mapped to a number of

EHMM states. The effects of speaker-dependent and context-induced variation in speech

on its EHMM-based representation have been studied and used to devise schemes to mini-

mize these variations. Speaker-invariance can be introduced into the system by identifying

states with similar perceptual characteristics. In this research, two unsupervised clustering

schemes have been proposed to identify perceptually similar states in an EHMM. A search

framework, consisting of a graphical keyword modeling scheme and a modified Viterbi al-

gorithm, has also been implemented. An EHMM-based QbE system has been compared to

the state-of-the-art and has been demonstrated to have higher precisions than those based

on static clustering schemes.
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CHAPTER 1

INTRODUCTION

The goal of developing an automatic, unsupervised speech recognition system has eluded

researchers for the last 50 years. Although significant progress has been made in this

period, training a speech recognition system still requires considerable human supervision,

and as yet, the trained systems are not comparable in accuracy to human perception.

The development of a speech recognition system is a resource-intensive process, de-

pendent on the availability of a large amount of time-aligned labeled speech for training.

In traditional approaches to speech recognition, separate statistical models are trained for

each unit of speech. These units of speech can be whole words or subword units such as

phonemes. For each acoustic entity, exemplars are isolated from a large training set and

labeled accordingly. These isolated exemplars are then used to train the corresponding

left-right hidden Markov models for each acoustic entity.

There are nearly seven thousand different languages spoken around the world today.

The majority of the seven billion inhabitants of the world speak just a few of these lan-

guages, e.g., English, Mandarin, Spanish, or Hindi. According to some estimates, half of

the languages in use today have less than a thousand native speakers.

Out of the thousands of spoken languages, speech recognition systems have been de-

veloped for a small number of widely spoken languages. The majority of languages lack

the linguistic resources required for training a new speech recognition system. Even if

the linguistic structure of a language is known, there may not be enough trained linguists

available to transcribe the huge amount of speech data required for training. It is clear that

current methodologies for training speech recognition systems cannot be extended to new

resource-limited languages.

Different languages generally have a different set of building blocks or phonemes with

different morphological rules controlling the composition of these units. For instance, the

2



phonetic units of a tonal language, such as Mandarin, are significantly different from those

in Germanic languages. As a result, statistical models trained for one language generally

have limited potential for migration to other languages.

The goal of this research is to design a voice query-by-example (VQbE) system for

resource-limited languages using an ergodic hidden Markov model (EHMM) of speech.

EHMMs have been used successfully in a number of different applications including lan-

guage identification [1], gender identification [2], and speech coding [3]. However, there

has been limited success in their use for speech recognition [4, 5].

In the next section, a brief overview of the speech generation mechanism is presented,

and common sources of variation in speech are described. The state-of-the-art in KWS

systems is covered in Section 1.2, leading to the presentation of the proposed system based

on a single, large EHMM of speech in Chapter 2.

1.1 Origin and History of the Problem

The design of a keyword spotting system (KWS) for resource-limited languages has been

the focus of many research efforts in recent years. Since the orthographic transcription

of speech is generally not available for these languages, KWS systems take the form of a

VQbE system where the keyword search algorithm accepts a query in the form of a speech

waveform.

The goal of a KWS system is to recognize all the occurrences of an utterance in a body

of voice data. To do so, the system must look for those acoustic features that characterize

an utterance while safely ignoring those that do not alter its meaning. A brief overview of

the process of speech production to highlight the mechanisms responsible for generating

the different features of speech is provided in the following sections.

This introduction continues with an overview of the different KWS systems proposed

over the years.
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1.1.1 Speech Production

Speech contains a wealth of information. In addition to the acoustic features that define an

utterances, speech also encode non-linguistic cues containing context and speaker-specific

information. Human beings are acutely perceptive of these cues and can use them to iden-

tify a speaker’s identity (if known), gender, social and emotional state, and even general

health. In addition to the speaker-dependent variations, speech also exhibits contextual

variations such as prosodic variations in loudness or pitch in different situations.

The focus of this section is to introduce the characteristic features of speech and to

contrast these with the contextual and speaker-dependent variations that do not change the

perceptual qualities of a speech segment. The various features of speech have their origin

in the speech production mechanism. At its most basic, speech involves the generation of

sound when air is pushed through the vocal cords, and the manipulation of this sound by

the articulators to form distinct units of speech.

The articulation process is initiated in the glottis which contains the vocal folds. The

glottis changes the characteristics of speech using a process known as phonation. The

rhythmic opening and closing of the vocal folds gives rise to voiced speech. Voiced speech

has a harmonic quality that distinguishes it from unvoiced speech.

In unvoiced or voiceless speech, the glottis is wide open and sound is produced pri-

marily by the constrictions created by the articulators. Phonemes such as /V/1 and /F/ are

respective examples of voiced and voiceless phonemes. These phonemes have the artic-

ulators in the same configuration and can only be distinguished by the difference in the

phonation process. The phoneme /F/ has a noise-like quality while /V/ is characterized by

the presence of harmonics, generated by the oscillating vocal folds.

The phonation process determines the spectral character of a speech segment. The input

excitation, in voiced segments, can be modeled as a series of periodic pulses and manifests

itself as a series of evenly spaced peaks in the spectrogram of speech. The frequency of the

1 ARPABET notation has been used to denote phonemes in this paper.
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glottal pulse is called the fundamental frequency or F0 and is related to the perceived pitch

of the speech signal.

In the case of unvoiced speech, the emitted sound is mostly influenced by the articula-

tors with the glottis being wide open. The spectrum of the speech signal is wider and lacks

the characteristic harmonic structure of voiced speech. Since the vocal cords are wide open,

unvoiced speech segments generally have lower energy and shorter duration compared to

the voiced phonemes.

The articulators in various configurations, determine the unique identity of each phoneme

within the broad classes of voiced and voiceless speech. The oral and nasal cavities act as

a resonating chamber while the velum, tongue, teeth, and the lips manipulate the structure

of this resonating chamber.

The opening or closing of the nasal cavity by the velum changes the size and shape

of the vocal tract, and consequently, alter the spectral characteristics of the vocal tract.

In addition to controlling the resonance frequencies, the articulators, such as lips, teeth,

and the tongue, can also be used to form constrictions along the vocal tract to produce

turbulence required to form some consonants.

The resonances produced by the articulators appear as peaks in the frequency spectrum.

Compared to the closely spaced harmonic peaks associated with the pitch, these resonant

peaks are wider and form the envelope of the harmonics of the fundamental frequency.

These resonant peaks are known as formants and are denoted as F1,F2,F3 and so on.
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Figure 1: The spectrogram of the vowel /AO/.

The spectrogram for a sample of the vowel /AO/ is shown in Figure1 . The voiced na-

ture of the speech segment is evident by the presence of closely spaced harmonics in the

spectrogram. These harmonics lie at integer multiples of the fundamental frequency. The

fundamental frequency can be estimated by calculating the distance between the consecu-

tive peaks in the spectrogram. There are roughly nine peaks in a 1000 Hz wide segment of

spectrogram, leading to an estimate of 110 Hz for the fundamental frequency.

The formants, on the other hand, form the spectral peaks enveloping the harmonics in

the spectrogram. The first two formants lie approximately at 500 Hz and 900 Hz. The

spectrogram also reveals the existence of additional formants at 2000 Hz and 3400 Hz.

1.1.2 Acoustic Properties of Phonemes

Each phoneme has a distinct acoustic character that can be tracked to a particular configu-

ration of the vocal chords and the articulators. The air rushed through the vocal folds form

the excitation signal. In voiced speech, the vocal folds are vibrating whereas unvoiced

speech is characterized by an open configuration of the vocal fold and a sound is produced

by an obstruction in the vocal tract. This constriction can be in the form of a complete stop
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such as in stop consonants or it can be partial giving rise to fricatives and approximants.

The position of the obstruction also varies between different consonants. It can be formed

at the lips, or by the tip, blade or back of the tongue.

The velum controls the opening to the nasal cavity. A velic closure, as its name indicate,

closes the nasal cavity thus restricting the speech generation to the oral cavity. In nasal

consonants, on the other hand, the velum is lowered to open the nasal cavity while the oral

cavity is obstructed by the articulators.

In the case of vowels, the input excitation is generated by the oscillations of the vocal

folds and the spectrum of this excitation signal is shaped by the articulators. However, the

vocal tract is not obstructed like in the case of consonants but overtones of the pitch are

produced by a narrowing of the vocal tract by the articulators. In front vowels, as the name

suggests, the articulators that are responsible for shaping the spectrum of the speech signal,

lie in the front of the vocal tract. The front vowels are produced by varying the position of

the tip of the tongue and the opening of the mouth. Similarly, the back vowels are produced

by raising the body of the tongue at the back of vocal track. These vowels can be further

subdivided into high and low vowels based on the position of an articulators. The vowel

/IX/ is a high-front vowel because the tip of the tongue is high and at the front of the mouth

whereas it is back and low in the case of /AA/ which can be categorized as a low-back

vowel. Finally, the shape of the lips determine the roundedness of a vowel. For example,

/OW/ is a rounded vowel while /IY/ is not.

The particular configuration of the vocal apparatus is not known for the task of speech

recognition, and an utterance must be identified based on the acoustic qualities of the

speech signal. The spectrum of the speech signal stores important information about the

identity of a speech segments.

In the case of vowels, the spectrum of the speech signal contains a number of distinct

peaks or formants. These spectral peaks are the result of resonances produced by the ar-

ticulators and their position in the frequency domain is closely correlated to the position of

7



Figure 2: Vowel chart indicating the position of first two formants

the articulators in the vocal tract.

The higher formants are speaker-dependent and vary considerably from speaker to

speaker. The first two formants, on the other hand, are a reliable indicator of the qual-

ity of a vowel. A vowel chart, illustrating the position of first two formants for eight vowels

of North American English, is shown in Figure 2.

The position of a vowel along the vertical axis is determined by the frequency of its first

formant while the frequency of the second formant define its position along the horizontal

axis. Each of the vowel occupies a distinct region in the vowel chart. Naturally, there would

be some variation in the formant frequency of different speakers and this variation would

be different for speakers of different dialects, however, the position of the first two formants

can be used to identify a given vowel.

1.1.3 Common Sources of Variation in Speech

There are certain variations in speech that do not change its perceptual qualities. Some of

these variations, such as the rate of speech and average pitch values, are speaker specific;

others are more contextual in nature. For instance, suprasegmental features only affect a
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few syllables at a time and may include a localized change in stress, length, or intonation.

Context-dependent Variation Speakers frequently raise or lower their voices to com-

pensate for background noise. Sonority describes the relative loudness of a speech segment

relative to others and can be used to emphasize a particular syllable.

Speech characteristics also change during propagation due to a loss of energy. This

energy dissipation has a increasing frequency profile with higher frequencies components

losing more energy than the lower frequencies.

These variations in speech also extend to the frequency domain. Pitch variations are

an integral part of speech. A rising or falling pitch convey emotions, emphasize words,

and enhance the meaning of an utterance. A subtle change in stress or pitch can dramat-

ically change the meaning of an utterance. Without pitch variations, speech would sound

monotonic and unnatural.

Speaker-dependent Variation The average values of pitch and formant frequencies

exhibit certain trends across multiple speakers. These differences in the values of funda-

mental and formant frequencies have their origin in actual physiological differences among

speakers.

Across a population, there is a general tendency of male speakers having a lower aver-

age fundamental frequency than female speakers. Both the area of the vocal folds and its

elastic properties contribute to the natural fundamental frequency of speech. The larynx in

an adult male speaker is much larger than a female speaker and contributes to a lower value

of the average fundamental frequency.

Similarly, adult male speakers, in general, have longer vocal tracts than either female

speakers or children. As a result, the corresponding formant frequencies for female speak-

ers tend to be higher than that of male speakers.

The shift in the formant frequencies across speakers, however, is far from linear. A

survey of both American English and Swedish [6] speakers revealed different trends in the

ratio of average formant frequencies across speakers of different genders. It was observed
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that the formant frequencies between a female and a male speaker vary by a different scaling

factor for different groups of vowels.

It has been observed that the vowels can be differentiated reliably by the position of

the first three formants. Pitch, on the other hand, does not play as important a part in

speech recognition. Speech, which has been synthesized from smoothed-out spectrum,

has a whispering quality and still is perfectly intelligible. Consequently, the feature sets

commonly used in speech recognition, such as Linear Predictive Coefficients (LPC) and

Mel-frequency cepstrum coefficients (MFCC), remove pitch information from the speech

spectrogram.

Additionally, speech recognition systems often employ speaker adaptation and normal-

ization schemes to either adapt a model to a particular speaker or to normalize the speech

features to a trained model. For example, in vocal tract length normalization (VTLN), the

frequency axis is warped during feature extraction to account for the shift in the position of

the formants.

1.1.4 Manifold Model of Observation Distribution

In a ideal feature set, observations from a single class occupy a distinct, non-overlapping

region in the feature space. The samples from different classes in such a feature set can

be classified using proximity-based clustering algorithms such as K-means or Gaussian

mixture modeling (GMM).

Such well-behaved feature sets are not readily available for every application includ-

ing speech recognition. Both time and frequency-based representation of speech exhibit

huge variability across realizations of a single utterance. Frequency-domain representa-

tions of speech are more indicative of the perceptual qualities of speech than time samples,

and experts can usually identify phonemes by visually analyzing a spectrogram of speech.

However, even the spectrogram representation is not invariant to changes in energy, pitch

or formants, and is not robust enough to be used for accurate automatic speech recognition.

Linear Predictive Coefficients (LPC) and Mel-Frequency Cepstral Coefficients (MFCC)
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are widely used in speech recognition. MFCC representation is robust to certain common

sources of variations in speech. For example, a change in energy of the signal will only

affect a single cepstral coefficient. Retaining the lowest cepstral coefficients results in a

low-time liftering of the speech spectrum and hence cepstral representation is relatively

unaffected by pitch variations. The discrete cosine transform (DCT) component of MFCC

computation, however, is not shift-invariant and as a result any changes in the position of

a formant can significantly alter the MFCC representation of speech. It is not difficult to

see that the distribution of a single speech unit, say a vowel, would be in the form of a

low-dimensional manifold in the high-dimensional MFCC domain.

A k-dimensional Manifold M is a topological space that is locally homeomorphic to

Rk. Conceptually, a smooth k-dimensional manifold is nearly identical to a k-dimensional

hyperplane on a local scale, but this relationship does not hold globally. A simple example

would be of a circle, a one-dimensional manifold in R2. Any small open segment of the

circle would be similar to a line in R1 but globally there does not exist a homeomorphic

mapping that would map the entire circle to any open interval on the real line.

1.2 An Overview of Query-by-Example Spoken Term Detection Sys-
tems

The state-of-the-art in the field of speech recognition has come a long way over the last

five decades. From the earlier systems that would only recognize isolated digits, speech

recognition systems have evolved to be a part of our everyday life, becoming the human-

machine interface of choice for the latest generation of mobile communication devices and

gaining the ability to understand user’s intent beyond those expressed by the utterances

alone.

Even though, it is not possible to cover fifty years of progress and innovations in a single

chapter, it is necessary to present a broad overview of earlier related work. The aim of this

overview is to put the current work in perspective both by highlighting the motivations
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behind some of the ideas adopted in this work and at the same time, to distinguish the

innovating features of the current research from those carried out earlier.

The task of a KWS system is to recognize all the occurrences of an utterance in the

presence of speaker-dependent as well as contextual variations in speech. Some KWS

systems are developed for a particular application domain, limited to a small, predefined

vocabulary of utterances. Others may have the ability to process continuous speech and

accept any sequence of phonemes as a query.

The form of the input query also varies across different KWS systems. Some systems

are designed to accept text representations of keywords. A text query can either be the

phonetic transcription of the keyword or it can be an orthographic transcription of a word.

The orthographic representations are generally converted into a likely phonetic form with

the help of a grapheme-to-phoneme dictionary.

For resource-limited languages with sparse text representations, it is often more conve-

nient to perform keyword search with an actual waveform of an utterance.

Over the years, a number of different approaches have been proposed for keyword spot-

ting. These systems have used several different strategies to handle the temporal and spec-

tral variability in speech.

The variations along the time axis are handled either by the Viterbi algorithm or using

algorithms based on dynamic programming. These algorithms find an optimal alignment

between the observed frames and a reference model or template.

A number of different techniques have been adopted to handle the spectral variations

in speech. The features used in speech recognition systems, such as LPC and MFCC, are

nominally invariant to the changes in the fundamental frequency. Statistical modeling tech-

niques use a mixture of Gaussians to represent the non-linear distribution of observations in

the signal space. Furthermore, some systems employ speaker adaptation or normalization

schemes to modify the model or the feature parameters to suit a particular speaker.

In the next section, a brief overview of template-based and statistical KWS systems is
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presented with a particular focus on their feasibility for languages with limited linguistic

resources.

1.2.1 Unsupervised Approaches to Spoken Term Detection

In template-based approaches, prototypes or templates for a particular utterance are used

as a reference signal and candidates are matched against these templates using dynamic

programming algorithms.

Different occurrences of an utterance generally are not of the same length or compo-

sition. Consequently, the dynamic time warping (DTW) algorithm is used to optimally

align a candidate utterance with the referenced one. The accumulated distance between the

reference and the test utterances, after optimal alignment, is then used to rank putative hits.

The first generation of the template-based KWS systems were often limited to isolated

word recognition. The system developed by Itakura [7] was an example of early single-

speaker, isolated-word recognition systems. The developed system used LPC as a feature

set and the minimum prediction residual as the distance measure between two samples. An

optimal warping path between the test and the reference utterances was calculated using

DTW.

A speaker-independent KWS system must also handle the variability introduced by

multiple speakers. The speaker-independent speech recognition system proposed in [8]

can be considered the precursor of modern statistical keyword modeling schemes. The

system gathered statistics for a keyword by clustering 100 exemplars into groups of similar

utterances. A matrix of distances between every pair of templates was tabulated and the

templates were grouped into a fixed number of clusters such that the ratio of average inter-

cluster distance to the average intra-cluster distances was minimized. A particular utterance

was then represented by multiple templates, one from each cluster. Recognition involved

the calculation of the accumulated distance between the test utterance and each of the

reference templates. The average score of the top K comparisons was used for ranking

the test utterances.
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In an isolated-word recognition system, the boundaries for each word are assumed to be

known in advance. Either the utterances are input to the system one at a time or the task of

discovering word boundaries is delegated to a separate system. A number of approaches in

[9], [10], [11] and [12] addressed the challenges faced in implementing an efficient KWS

system for connected speech recognition.

For resource-limited languages, template-based systems offer a number of advantages

over systems based on statistical models of speech. In a template-based KWS system, a

single instance of a keyword is generally sufficient to initiate keyword search. Statistical

techniques, on the other hand, are dependent on the availability of a large set of training data

to model each keyword. Statistical techniques that model speech at subword or phoneme-

level, require the full set of phonemes to be modeled before initiating the keyword search.

Template-based systems, however, also suffer from a number of disadvantages. The

primary limitation of the template-based systems arises from their inability to leverage ad-

ditional resources for a keyword. These systems rely heavily on particular instances of an

utterance and lack an efficient mechanism to generalize patterns across multiple exemplars

of a keyword. One approach to leverage the availability of multiple exemplars for a key-

word would be to align them and take averages of the corresponding aligned segments.

However, when the observation distribution is in the form of a low-dimensional manifold,

averages often lie outside the non-linear distribution of the observations.

Some template-based systems utilize multiple prototypes of a keyword, as in [8]. How-

ever, the keyword search algorithm is applied repeatedly for each of the prototype, leading

to a significant increase in the computational complexity of the systems. Furthermore, the

use of multiple prototypes does not guarantee that the full range of variations in the pro-

nunciation of an utterance will be captured. Even more difficult is the task of selecting a

set of prototypes that is best representative of a class.

In absence of an explicit mechanism to model observation distributions, template-based
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systems have limited capabilities to generalize trends in phonetic units of speech and con-

sequently, these systems have lower accuracies than probabilistic KWS techniques.

Template-based systems are also more computationally expensive than the probabilistic

approaches to KWS. In DTW, all the frames from the test signal are compared against

those from the reference signal. Speech is highly correlated over short intervals of time.

A frame-level comparison makes template-based KWS less efficient than the probabilistic

approaches where consecutive similar frames are often represented by a single state.

One of the earliest use of acoustic models, trained in an unsupervised manner, for key-

word spotting can be traced to the system described in [13]. The process of training acoustic

segment models (ASM), in this approach, can be divided into 3 distinct stages: segmenta-

tion, segment clustering and the generation of statistical models for each segment cluster.

The short-term correlations in speech are captured by the segmentation process which di-

vides the observation sequence into a number segments with similar characteristics. The

space of acoustic segments are then reduced into a finite number of clusters. This clustering

can be performed by k-means clustering. An HMM for the segments in a single clusters

can then be trained using traditional HMM training algorithms. These acoustic segment

models define the acoustic lexicon for the development of phone or word models that may

also take into account the inter-segment transition characteristics.

Acoustic segment models dominated the field of unsupervised keyword spotting sys-

tems for the next decade. These models capture both the spectral and short-term temporal

characteristics of speech and lead to much higher precisions than template-based approach.

Various methods for the development of word and phoneme lexicon using these ASM have

been discussed in [14],[15] and [16]. The statistical-type lexicon building methods are par-

ticularly suited for phoneme models and require availability of large amount of labeled data

for extraction of the model statistics. Deterministic-type word models, on the other hand,

can build a word model with the help of a number of samples of the query and can be used

in scenarios where additional linguistic resources might not be available.
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Another approach to unsupervised statistical modeling of speech that has gained popu-

larity over the last few years, is using a single GMM universal background model (UBM)

of speech [17][18] [19]. A GMM, trained in an unsupervised manner, reduces the feature

space into a number of different classes. The posteriorgrams from the Gaussian mixtures

can then be used for keyword search using a Segmental DTW algorithm.

In the next section, we present a brief overview of the probabilistic approach to speech

recognition and highlight the issues preventing its application to resource-limited languages.

1.2.2 Supervised Statistical Modeling Techniques

In this approach to KWS, a probabilistic model of a unit of speech - either a word, syllable,

or phoneme - is trained to capture the contextual and speaker-dependent variations in the

acoustic entity using a large set of training data. Hidden Markov models (HMM) are the

most popular statistical modeling technique for speech and have dominated the field of

speech recognition for the last five decades. The probabilistic model of an utterance is

generally represented with a number of states connected in a first-order Markov chain.

Each state in the HMM represents a collection of observations with similar acoustic

character. The states in the model are hidden in the sense that the current state can only be

estimated from the directly observable speech features. These speech features can either be

continuous or may use a finite alphabet size. Most modern systems tend to use continuous

value observations. The observation density for each state is modeled by a probability

distribution, generally a mixture of Gaussian distributions.

HMMs can efficiently capture the non-linear distribution of observations in the signal

space using the emission probability density of the states. A Gaussian distribution with a

full covariance matrix is better suited to model complex observation distributions. How-

ever, the large number of free parameters in a full covariance matrix significantly increases

the amount of training data required to estimate these parameters. Alternately, a mixture of

Gaussian distributions, each with a diagonal covariance matrix, can also be used to model

these distributions.
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A diagonal covariance matrix greatly reduces the number of free parameters to be esti-

mated and thus, reduces the amount of data required for training. The diagonal structure of

the covariance matrix is also appropriate considering the coefficients of feature sets, such as

MFCC, are purported to be uncorrelated. Furthermore, arbitrarily complex distribution of

observation can be modeled with a small number of parameters by incorporating a number

of these mixtures.

In addition to observation density modeling, HMMs also provide a statistical framework

to model the temporal structure of speech. The temporal dynamics of speech are modeled

by a matrix of state transition probabilities. The state transition is a random process in this

approach, with the transition to the next state depending on the current state only. An initial

state distribution defines the probability of occupancy of each state in the model.

Traditional speech recognition systems model units of speech using a left-right or Bakis

HMM model. In this configuration, state transitions take place in a fixed order, starting

from the left-most state and moving to the right as time progresses. At each time interval,

the current state can either remain unchanged or move to one on the right of the current

state. Figure 3 depicts a 3-state left-right HMM.

The sequence of states, however, may not always be strictly in the order shown in

Figure 3. In some cases, pronunciations of an utterance may add or omit a phoneme. Such

behavior can be modeled by adding additional edges between non-adjacent states and/or

deleting an edge between neighboring states.

Figure 3: A 3-state left-right HMM.

Mathematically, an N-state hidden Markov model is defined by the parameters (A, B, π).
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The initial probability of being in each state is defined in π, a vector of length N . The tran-

sition matrix A contains the transition probability between every two states in the model.

These states are not directly observable, instead each state has a corresponding distribution

of observations B.

The success of HMMs in speech recognition comes from a solid mathematical formu-

lation and the existence of efficient algorithms for estimating the model parameters. These

algorithms take advantage of the first-order Markovian assumption to estimate the parame-

ters of the HMM in linear time. The Baum-Welch algorithm [20] estimates the parameters

(A, B, π) using an iterative process.

A number of optimization criteria for estimating the parameters of the model have

been proposed including maximum likelihood (ML) [21], maximum a posteriori probabil-

ity (MAP) [22], maximum mutual information (MMI) [23] and minimum discrimination

information (MDI) [24]. While the ML and MAP methods estimate the parameters of each

model separately, the MMI and MDI methods are suitable for simultaneously training a

set of HMMs. In the later two methods, the parameters for each model are estimated such

that the optimality criterion is maximized over the complete set of models. The goal of the

MMI approach is to find model parameters that maximize the mutual information between

the observation sequence and a set of HMMs. The MDI approach estimates the parameters

of a set of HMMs by minimizing the cross entropy between the signal probability densities

and the set of HMM probability densities. However, these alternate optimization methods,

in one way or another, uses the the Baum-Welch algorithm. An excellent resource on HMM

in speech recognition can be found in [25].

Word vs. Subword Models of Speech The objects of interest in a KWS system are

either words or strings of words in continuous speech. Although building statistical models

of speech at word-level has a number of advantages, the focus has been shifted to modeling

phonetic or acoustic units of speech in recent years.
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Early speech recognition systems were designed for applications with a small vocabu-

lary and generally built separate statistical models for each word in the dictionary. How-

ever, a KWS system would require tens of thousands of different models before it could be

used for continuous speech. Training and maintaining such a large set of models quickly

becomes infeasible and still would not handle any out-of-vocabulary words. Moreover, the

addition of a word in the dictionary would require the new statistical model to be trained

from scratch.

Modern speech recognition systems generally model speech at subword level units.

The total number of phonemes vary from language to language. However, the number of

models required for modeling phonemes is much smaller than that required to model whole

words.

An advantage of using subword models of speech is that a single set of models can be

used for all the utterances spoken in a particular language. Any keyword can immediately

be converted into a sequence of phonemes with the help of a grapheme-to-phoneme dictio-

nary. Early examples of such systems are those presented in [26] and [27] where left-right

HMMs were trained for phonemes and phone-like units of speech.

A phoneme, on the other hand, exhibits much higher variability than a word. A phoneme

may have a different form based on the phonemes immediately preceding or following it.

These realizations or allophones are perceptually similar but they may have a significantly

different representation in the signal space. Context-dependent models for phonemes are

much better at capturing the characteristics of a phoneme in different settings [28].

Phonetic models of speech have been used extensively and successfully in KWS sys-

tems. In [29], the authors presented a system for searching keywords in audio archives

using phone models of speech. The spoken term detection systems developed in [30] and

[31] also circumvented the need for separate keyword models by using existing phone mod-

els.
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Disadvantages of Statistical Keyword Modeling Schemes The first-order Markov

assumption significantly reduces the computational complexity of the training process.

However, this assumption is not reflective of the temporal structure that exists in speech.

Phonemes occur in a particular sequence in words and syllables. Human listeners can

accurately predict whole words, and even in some cases complete sentences, by listening

to a small segment of speech. Correlations in speech extend for much longer period of time

than that represented by a single state of the HMM. A first order HMM has the shortcoming

that all the prior states have no influence on the current state transitions.

According to the Markov assumption, the state transitions comprise a random process

with a fixed likelihood assigned to each state transition. This assumption is generally not

true over the life cycle of a phoneme. A phoneme has a rather short but well defined

steady state and the likelihood of a state transition increasing as it reaches towards the end

of this steady state. This behavior is not accurately modeled with a fixed state transition

probability.

However, the most significant factor that limits the application of statistical modeling

techniques to resource-limited languages is its dependence on the availability of extensive

linguistic resource for training. These approaches require the knowledge of the linguistic

composition of a language to identify the basic units of speech. Moreover, the transcription

process requires trained linguists to identify and properly label each speech segment in tens

or hundreds of hours of continuous speech.

The current paradigm of statistical modeling of speech based on human supervision has

been extremely popular and is responsible for the major breakthroughs in the field of speech

recognition. However, an excessive reliance on the availability of linguistic resources,

makes this approach infeasible for resource-limited languages.

1.2.3 Unsupervised Density Modeling Schemes

Over the years, a number of attempts have been made to minimize or even eliminate the

role of transcribed data from the training phase of the statistical modeling of speech. Some
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of the research. such as [32] and [33], have been focused on training initial acoustic models

using a small amount of annotated data and refining these models with the help of unanno-

tated or automatically annotated data.

Other research efforts have been truly unsupervised in nature where the acoustic models

of speech are built using unsupervised machine learning algorithms. The objective of these

systems is to decompose the signal space of speech into a number of clusters without any

human supervision. These systems generally use a proximity-based clustering scheme to

group similar observations into a single cluster.

The system developed in [34] is an example of unsupervised clustering of speech into

similar acoustic units. Unlabeled speech is segmented using a DTW-based algorithm, poly-

nomial models for the cepstral features in each segment are computed, and a clustering of

states is performed using Gaussian mixture modeling (GMM). Using a very limited set of

transcribed data, a joint multigram model is then built to map the clusters to the grapheme

representation of speech.

In [18], the feature space was decomposed into 50 clusters using GMM. In [35], on

the other hand, agglomerative hierarchical clustering of the observations has been used to

discover the acoustic units of speech.

These unsupervised approaches to modeling speech use Euclidean distances as a sim-

ilarity measure between observations. As discussed in Chapter 2, the Euclidean or Maha-

lanobis distances are not accurate measures of similarity when the observation distribution

is in the form of low-dimensional non-linear manifold.

Additionally, a clustering scheme solely based on proximity measures, fails to take

advantage of the temporal structure of speech. In the next section, we propose an unsu-

pervised statistical modeling framework for speech that takes into consideration both the

proximity and temporal behavior of the observation segments for signal classification.
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1.3 Development and Test Databases

A number of different speech corpora have been used both as a training and test data sets

for development and evaluations of the system. The development set must contain large

number of utterances from a variety of different speakers in order to capture the structure

of a particular language. The target languages for an EHMM-based VQbE system are those

with scarce linguistic resources. However, labeled data is required to benchmark the system

and to facilitate the evaluation of different configurations of the system.

During the course of this research, a number of different speech corpora have be used

through the different stages of development. A brief description of each of these corpora

will be presented in this section.

The first system was trained on a single-speaker subset of Wall Street Journal (WSJ)

corpus [36]. Development was then moved to the TIMIT corpus [37] which offers a larger

variety of words and speakers. Experiments on the TIDIGITS corpus[38] were crucial

in understanding the effect of different speakers on the EHMM-based representation of

speech.

A better estimate of precision of VQbE system can be provided by benchmarks on

Fisher corpus [39] of speech contains telephonic conversations between two speakers.

Compared to the high quality, read-from-transcript speech in TIMIT, the Fisher data set

is sampled at lower frequency. Furthermore, conversations are in a more natural environ-

ment, dotted with laughter, pauses and other non-speech artifacts.

The speech corpora discussed so far, are publicly available and provide speech samples

along with transcriptions to facilitate training and assessment of a VQbE system. These

speech databases also provide a platform to compare and contrast different speech recog-

nition systems. Although, these databases have widely been used for the evaluation of

supervised speech recognition systems, they have not been embraced by the unsupervised

speech recognition community. Systems, such as those developed in [4], [35] and [18], are

based on proprietary databases which are not publicly available.
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Recently, there has been new initiatives for introducing a common database for the

training and comparison of different zero-resource systems. The Center for Language and

Speech Processing at John Hopkins University conducted a workshop[40] where a number

of state-of-the-art systems were implemented and tested on a large isolated-word recogni-

tion task.

1.3.1 TIDIGITS

TIDIGITS is a database of spoken digits and contains a large number of samples of both

isolated and connected versions of digits zero through nine. The utterances are spoken

in quiet environment and sampled at 20 KHz. While the database is not linguistically

rich, it contains a small number of utterances spoken by a large number of speakers and

it is particularly suitable for the study of speaker-dependent variations in speech. There

are more than twenty five thousand digit sequences spoken by more than three hundred

speakers of different ages, genders and belonging to 22 different dialect groups.

1.3.2 The Wall Street Journal Corpus

The WSJ corpus is a large collection of text and speech selected from 2,499 stories from

the articles published in Wall Street Journal. The speech in the database is read from a

script in a studio and recorded at a sampling rate of 16 KHz.

The subset of WSJ selected and used in this thesis, contained scripted, continuous

speech from a single speaker. The selected subset of the corpus was appropriate for the in-

vestigative phase of the VQbE development as it has the necessary linguistic variety while

avoiding the problems arising due to multiple speakers or from a noisy environment.

1.3.3 TIMIT Corpus

The TIMIT speech corpus contains speech from 630 different speakers. These speakers

belong to eight major dialect groups of North American English. Each file in the database

contains read speech from a single speaker and has been recorded at a sampling rate of 16

KHz. The scripts have been especially designed to maximize the linguistic variety in the
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data set. The TIMIT corpus includes time-aligned phonetic as well as word transcriptions.

Although, an EHMM can be trained using unlabeled speech data, the availability of

time-aligned word and phoneme labels in the TIMIT corpus are invaluable for evaluation

and refinement of the system.

1.3.4 The Fisher Corpus

The Fisher Corpus contains more than two thousand hours of speech, comprised of more

than eleven thousand transcribed telephonic conversations. The conversations are up to 10

minutes long with a particular topic of discussion assigned each conversation to increase the

variety of the speech data. For each conversation, the quality of the channel, time-aligned

labels, and the age and gender of the speakers have also been recorded.

The Fisher Corpus has been developed in with particular focus on the development of

automatic speech recognition systems. Unlike the scripted speech in other corpora, the

conversations in this corpus consists of natural speech with cross-talk, non-speech artifacts

and more visible dialect variations.

1.3.5 Hausa

In this research, a database of Hausa language has been collected to understand language-

specific characteristics of an EHMM. Hausa is the second largest native language of Africa

after Swahili and spoken across a large swath of Africa in countries such as Niger, Nigeria,

Chad, Benin, Ghana and as far as Sudan. Hausa does not have a native written script and

instead Latin or Arabic script is employed as a writing system. As a result, Hausa, though

one of the widely spoken languages in Africa, has very limited textual resources for the

development of a supervised speech recognition system.

The database collected in this research consists of more than 30 hours of speech and

came from a number of radio broadcasts from Voice of America, British Broadcasting Cor-

poration, and Deutsche Welle. The speakers were largely recorded in a studio environment,

but a significant fraction of the conversations were held over a telephone line.
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The recordings were manually edited to remove segments with background music,

speech in other languages as well as poor quality speech. The original broadcasts were

recorded at different sampling rates, so the edited speech was then re-sampled at 16 KHz

to bring the different recording to a constant sampling rate.

1.3.6 Johns Hopkins University CLSB Collection

The JHU CLSB collection consists of 10825 utterances for which the benchmarks of a

number of zero-resource systems are available. It consists of isolated utterances extracted

from a multi-speaker speech corpus. The utterances in the collection are all greater than

0.35s in duration and at least six character in length. These utterances belong to 3745 word

types. However, some of the word types have only a single example in the word collection.

The word collection has been inspired by the idea initially presented in [41] and aims

to rapidly assess the ability of a keyword spotting system to identify words of the same

type spoken by different speakers. The paper provided a recipe to select a collection of

presegmented word examples drawn from a multi-speaker speech corpus. The JHU CLSP

Workshop 2012 created two such word collections from TIMIT and Switchboard Corpora.

However, only a fraction of the algorithms tested in the workshop were run on the word

collection extracted from Switchboard Corpus. As a result, the word collection derived

from TIMIT corpus has been used in this work.

1.3.7 MediaEval 2013 Spoken Web Search Database

The MediaEval Benchmark is an initiative to bring together researcher in the field of mul-

timedia evaluation, to share ideas and compare their work. The MediaEval Spoken Web

Search task is defined as “searching FOR audio content WITHIN audio content USING an

audio content query.” Every year, a new speech database of resource-limited languages is

released along with sets of development and evaluation queries.

The MediaEval 2011 database was collected by IBM Research India and consisted

of approximately 3 hours of speech from Hindi, Telugu, and Gujarati languages. The
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MediaEval 2012 database consisted of speech from four African languages and contained

close to 4 hours of speech from isiNdebele, Siswati, Tshivenda, and Xitsonga languages.

The MediaEval 2013 database is the largest of these databases both in size and linguistic

variety. The speech files in the database have been collected from a number of different

sources and under different acoustic conditions. The database contains the following 9

languages: Albanian, Basque, Czech, non-native English, Isixhosa, Isizulu, Romanian,

Sepedi and Setswana.

The test set consists of 10762 individual files containing approximately 20 hours of

data. The development set contains 515 utterances while the number of queries in the

evaluation set is 501. Ground truth files were provided for the development set. The queries

and the test files have been scrambled, and no information have been provided about the

speakers or the language spoken in each file.
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CHAPTER 2

AN ERGODIC HIDDEN MARKOV MODEL OF SPEECH

Traditional statistical approaches model speech at word or subword levels using left-right

HMMs. This requires knowledge of the linguistic structure of a language and availability

of large amounts of labeled data for training. This approach to speech recognition cannot

be adapted to a large number of resource-limited languages.

In this research, we propose a probabilistic approach to model speech signals using a

single, ergodic hidden Markov model. While the phonemes always occur in a particular

sequence in an utterance, the set of phonemes, in different combinations, form all the utter-

ances in a language. Modeling the entire signal space of a language would require a model

with a far more flexible structure than that of a left-right HMM.

EHMMs offer a good mix of straightforward training with the generalization power

of statistical modeling techniques. An EHMM provides a statistical framework to effi-

ciently capture the range of variations in speech which is absent in most template-based

approaches. By building a single model of speech, this approach eliminates the reliance

on time-aligned labeled data for training. Furthermore, the training process makes efficient

use of the available data by using every frame for the parameter estimation of the EHMM.

The next section begins with an introduction to EHMMs, and continues with a discus-

sion of different parameters governing the design of an EHMM of speech. The optimal

number of states in an EHMM , the model of the observation distribution, and the training

procedures will be discussed. The chapter will be concluded with a presentation of the

spectral and temporal characteristics of EHMM of speech for a number of languages.

Definition A hidden Markov model λ is a collection of states connected in the form

of a Markov chain. The model is completely defined by the parameters

λ = {A, B, π} (1)
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There are N states in the model but only a single state, denoted by q, can be occupied at

any given time. The next state is chosen randomly at each time increment. The probabilities

of transition between the states of the HMM are defined in the state transition matrix A.

In a first-order Markov process, the probability of transition to state j depends only on the

current state q. Consequently, the state transition matrix A is of size N×N with the element

ai j denoting the transition probability from state i to state j.

The states in the model are hidden in nature and the identity of the current state can

only be inferred from a set of observations. Each state in the model has an associated

probability distribution for observations defined in B. The observation density is often

modeled as a mixture of Gaussian distributions. The initial state distribution is defined in

π where πi = Pr(q = si).

In an ergodic HMM, each state in the model can transition to any other state in a finite

number of steps. Mathematically, a state in a Markov chain is recurrent if there is a non-

zero probability that it will be visited. A state is aperiodic if the greatest common divisor of

the number of time steps it takes to return to that state is 1. A Markov chain is irreducible

if every state can be reached from any other state in a finite number of steps. A Markov

chain is ergodic if it is irreducible and if every state in the model is aperiodic and recurrent.

Figure 4: A 4-state ergodic HMM.

An example of an EHMM with 4 states is shown in Figure 4. The EHMM depicted

in the figure is fully-connected, with edges connecting any two states in the model. An
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EHMM of a language, on the other hand, would consist of a considerably larger number

of states. Furthermore, due to the high short-term correlations in speech, the connectivity

between the states of the EHMM is generally sparse. The design of an EHMM of speech

is discussed in detail in the following section.

2.1 An EHMM of speech

The capability to capture non-linear observation distributions and the flexibility imparted

by the ergodicity assumption allow an EHMM to model complex structures. In this re-

search, the entire feature space of a language is modeled by single EHMM. A mixture of

Gaussian distributions is generally used to approximate the observation distribution in a

state and the short-term, temporal correlations in speech can be captured using the state

transition matrix.

The design of an EHMM encompasses a number of factors including the size of the

EHMM, the form of the observation distribution, initial values of the parameters, and the

training methodology. During preliminary investigations, a number of EHMMs with differ-

ent configurations were trained on a number of languages, with an aim to find the optimal

configuration for an EHMM.

2.1.1 Number of States in an EHMM

An EHMM decomposes the feature space of speech into a number of different states, each

with different observation density and state transition characteristics. The number of states

in an EHMM determines the level of detail that can be captured by the model.

For the task of keyword spotting, the number of states in an ideal EHMM should be

equal to the number of perceptual units of speech. In such a EHMM, a single state would

represent the complete range of observations within a single phonemic class of speech.

In such an ideal EHMM, different occurrence of a keyword would always correspond to

a singe state sequence of the EHMM. However, such a mapping between a phoneme and

state of the EHMM is not possible due to the unsupervised nature of the training.
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Table 1: Average log-likelihood per frame for different EHMMs
Number of States 64 128 192 256

Average lg P(O|λ) per frame -6.72 -6.61 -6.57 -6.54

Alternately, speech can be modeled with an EHMM with a very large number of states.

In this approach, each state would consist of tightly clustered set of observations, with a

high likelihood that the observations within a single state would also belong to the same

perceptual class of speech. However, this approach does not guarantee that a single percep-

tual class of speech would be modeled by a single state of the EHMM, and would require

a mechanism to identify and group the states with identical perceptual qualities. Such an

EHMM would also be able to record a much finer level of detail about the temporal char-

acteristics of observation sequences.

EHMMs have been previously used to model speech in a number of applications. In [3],

it was reported that an EHMM with 64 states can store sufficient detail to synthesize intel-

ligible speech from the sequence of states of an EHMM with very low entropy. Increasing

the number of states from 64 to 128 resulted in a noticeable increase in the perceived quality

of the synthesized speech. However, any further increase in the number of states resulted

in marginal improvements in the quality and intelligibility of the synthesized speech.

In this research, a number of EHMMs with different number of states were trained for a

number of languages. An EHMM models the speech generation mechanism. A measure of

the success of a model in explaining an observation sequence is provided by Pr(O|λ), i.e.,

the probability of observation given the model.

The implementation of the Baum-Welch algorithm in HTK provides a scaled version

of Pr(O|λ) in the form of log Pr(O|λ) per utterance, at the completion of each iteration of

the algorithm. Table 1 lists the average log-likelihood per frame for a number of EHMMs,

after the same number of iterations of the training algorithm.

It can be seen in Table 1, the average log-likelihood of an utterances increases consis-

tently with the number of states in the EHMM. The values in Table 1 indicate that larger
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EHMMs are much better generative models of speech and the number of the states in an

EHMM should be as large as possible within the allowed computation complexity of the

system.

For a fixed number of phonemes in a language, increasing the number of states in the

EHMM has an undesirable effect of fragmenting the observation distribution of a single

perceptual class into a number of states of EHMM. This one-to-many mapping between

a phoneme and the states of an EHMM can significantly complicate the task of keyword

spotting and will be discussed in detail in Chapter 4. Hence, the number of states that leads

to the highest Pr(O|λ) for a model may not be optimal for the task for keyword spotting.

Furthermore, the number of states in an EHMM cannot be increased indefinitely. In

the above experiments, if the number of states were increased beyond a certain limit, then

some of those states started to become redundant after a few iterations of the Baum-Welch

algorithm. There were no transitions into or out of these states, excluding these states from

modeling any observation in the training data.

For the EHMMs trained on the TIMIT corpus, it was observed that for EHMMs with

total number of states greater than 200, some of the states in the model would become re-

dundant in the later iterations of the training algorithm. This redundancy problem, however,

was not observed for EHMMs with less than 200 states. For larger EHMMs, particularly

with total number of states equal or greater than 512, a large number of states become

redundant after just a few iterations of the Baum-Welch algorithm.

This behavior is not unexpected as the number of phonemes, and hence the acoustic

variety, in a language is fixed and would require only a certain number of states to model

them. The total number of states in such EHMMs is much larger than the number of

phonemes and the training data can be modeled successfully with only a subset of the total

states.

The maximum number of states that can be used without running into the redundancy

problem, may also be dependent on the training procedure. In this research, a flat-start
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strategy has been used with the states initialized to values close to the global mean and

variance. Alternate approaches may include training a number of EHMMs for different

speakers or acoustic environments and merging them later into a single large EHMM of

speech.

The optimal number of states in an EHMM is a function of the acoustic variety in the

training data and may differ from one training set to another. Consequently, the number of

states required to model the single-speaker speech in WSJ corpus may not be the same as

those required for TIMIT corpus due to difference in speaker-dependent variations. Sim-

ilarly, different languages generally have different set of phonemes and consequently, a

multi-speaker training set in Hausa may require a different number of states to model than

a comparable training set in English due to differences in acoustic variety between the

languages.

2.1.2 Modeling the Observation Density

In continuous density HMM-based systems, the distribution of observations in a single

state has historically been modeled using a mixture of Gaussian distributions. Any finite

continuous-density observation distribution can be modeled with sufficiently large number

of Gaussian mixtures. Each mixture is defined by a mean value and a covariance matrix.

The contribution of each Gaussian mixture to the distribution is controlled using a weight

factor.

The emission probability b j(ot) can then be calculated as

b j(ot) =

M∑
i=1

c jiN(ot; µ ji,U jm), (2)

where the number of mixtures for jth state is M, c ji is the weight of ith mixture, while

the mean vector and covariance matrix of ith Gaussian mixture is given by µ ji and U ji

respectively. The mixture weights c ji for the jth state must satisfy the conditions
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c ji ≥ 0, (3)

M∑
i=1

c ji = 1, 1 ≤ i ≤ M. (4)

Traditional HMM-based systems model speech either at word or sub-word level. Sepa-

rate statistical models are trained for each of these units of speech using left-right HMMs.

The transcription process isolates all the examples of a particular class from the train-

ing data. There must be adequate variety in these examples to capture the full range of

variations within a class of observations. Hence, the transcription process, taking advan-

tage of human perception, classifies a wide range of potentially very different samples of a

class and collects them under a single label. Due to the large variations in these samples, a

mixture of Gaussians is required to approximate their observation density.

The left-right HMMs have a rigid structure with states occurring in a particular se-

quence. Although, left-right HMMs may allow certain states to be skipped to account for

differences in the pronunciation of an utterance, however, an observation frame at the be-

ginning of a training utterance will more likely influence a state at the beginning of the

model and vice versa. Thus, the left-right structure of the HMM limits the range of influ-

ence an observation may have on the states during the estimation process.

The mixture parameters for each state in the HMM are estimated using multiple itera-

tions of the Baum-Welch algorithm. During the parameter estimation, observations with a

high probability of being emitted from a particular mixture would have a larger influence

on the estimates of that Gaussian mixture. Hence, the weight an observation would have

on the estimates of a mixture is inversely proportional to the Mahalanobis distance of an

observation from the mean value of the mixture.

To summarize: the estimation of the HMM parameters is shaped and influenced by

three separated mechanisms in supervised speech recognition systems.
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1. Observations that are similar perceptually yet potentially very different from each

other in the feature space, are grouped together under a single label by a human

listener.

2. The influence these observations may have on the states of the HMM is controlled

by the state transition matrix.

3. The estimates of mixture parameters are influenced by those observations that are in

close proximity of those mixtures.

In the current approach, a single, large, ergodic HMM models the entire feature space

of a language. In doing so, the system eliminates the dependence on the availability of

time-aligned labeled data and the linguistic knowledge of these labels for training. How-

ever, this elimination comes at a cost since the transcription process is a very effective

speaker-invariant classification scheme that brings together potentially different observa-

tion sequences under the same label.

Furthermore, the state connectivity is much more flexible in an EHMM with every state

connected to another through a finite number of state transitions. This flexible structure of

the EHMM, together with an absence of labeled data, leaves the proximity of observations

from a Gaussian mixture as the primary force that shapes the parameter estimates.

The observation distribution within a single perceptual class of speech is highly non-

linear. As a result, some of these observations may occupy distinct regions in the feature

space. The current approach, based on EHMM of speech, lacks a mechanism to bring

together these acoustically distinct yet perceptually similar observations within a single

state of the EHMM.

The focus of the training phase in the current research is to collect observations based

on their proximity and represent them with a single Gaussian mixture. As a consequence,

the observation distribution of a single perceptual class of speech could be represented by

more than one state of the EHMM. Such a one-to-many mapping between a phoneme and
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the states of the EHMM can significantly degrade the precision of a system based on this

approach. The identification of perceptually similar states of the EHMM will be the focus

of Chapter 4.

2.1.3 Training

One of the attractive features of an EHMM is that it does not require time-aligned tran-

scribed speech for training. Since a single EHMM models the entire speech, all the training

data is considered to be of a single class and has a single label. Unannotated speech data is

available for a large number of languages and can be readily gathered from a large variety

of sources including television and radio broadcasts, podcasts, and streaming videos.

The training involves the established Baum-Welch algorithm and can be carried out

using the Hidden Markov Model Toolkit (HTK) [42]. In this work, 39-dimensional Mel-

frequency cepstral coefficients (MFCC) with delta and delta-delta coefficients were used

as a feature set. The MFCC features were generated at a frame rate of 100 using 25 ms

windows.

In the initial HMM definition, the states were fully-connected with equal transition

probability between two different states. To account for the high level of temporal correla-

tion present in speech, the initial self-transition probability was set to 0.7. The parameters

of the model were estimated using multiple iterations of the Baum-Welch algorithm [20].

The distribution of observations for a single phoneme is highly non-linear. For this

reason, the distribution of observation for a state is generally represented with a mixture

of Gaussians in traditional HMM-based approaches. In the current approach, the primary

motivation is to use a large number of states such that a single state consists of observa-

tions which are tightly clustered in the feature space and which can be modeled with a

single Gaussian distribution. Hence, the observation density for each state was modeled

with a single multivariate Gaussian distribution with a diagonal covariance matrix. The

mean value and the covariance of every state was set to the global mean and covariance of

the training data using the executable HCOMPV in the HTK. Random perturbations were
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added to the parameters of each state using a single iteration of the program, HINIT, which

updates the mean and covariance of the states using uniform segmentation of the training

data. The HEREST tool in the HTK was used to perform the iterations of the Baum-Welch

algorithm.

The first few iterations of the Baum-Welch algorithm have the largest gains in the proba-

bility of the training data given the model Pr(O|λ). The incremental gain in Pr(O|λ) reduces

significantly after 10 to 15 iterations of the algorithm at which point the training can be

stopped.

In the next section, the acoustic properties of observations within a single state of an

EHMM are presented.

2.2 Spectral Characteristics of States

The states of the EHMM were initialized randomly around the global mean value of the

speech signal. After training, however, the states represented collections of observations

having similar spectral characteristics. The states presented in this section, unless specified

otherwise, are from a 256-state EHMM of North American English trained on the TIMIT

corpus [37].

The observation distribution in each state can be visualized by transforming the mean

value of a state from MFCC domain into linear frequency domain. The computation of

MFCC is a lossy process due to the logarithmic quantization of the signal amplitude and

non-linear sampling along the frequency axis. Consequently, the inverse transformation

cannot exactly recover the mean value in the linear frequency domain and is an approxima-

tion.

The Gaussian distributions, when transformed from MFCC to linear frequency domain,

are revealed to have converged to values representing different phonetic classes of speech

including vowels, consonants, and even pauses and silent periods in the training data.

Phonemes are the basic units of a spoken language just as the alphabets are the units in
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the writing system of a language,. Phonemes have unique acoustic characteristics owing to

their particular speech generation mechanisms. As discussed in Chapter 1, vowels are char-

acterized by the presence of formants and most of the energy of the signal is concentrated

into these formants. Stop consonants, on the other hand, have noise-like characteristics and

a wider bandwidth due to the perturbation produced by sudden release of air through the

articulators.

In the case of the EHMM of North American English training using the TIMIT database,

110 of the 256 states have the characteristics of a vowel characterized by the presence of

two prominent formants. Another 31 states can be categorized as semi-vowels or glides

based on their spectral characteristics. The other 115 states collectively modeled the con-

sonants including nasals, sibilants, fricatives, plosives as well as silent parts of speech. The

silent states consist of both stop consonants, as well as pauses and silences between the

utterances.

The observation distribution from a state can be represented by its mean value which is

also the most likely observation to occur in a Gaussian-distributed observation. In order to

visualize the characteristics of observations from a single state, it is necessary to transform

the mean value from MFCC domain to linear frequency domain. The mean values, in the

linear frequency domain, for two states of an EHMM are shown in Figure 5.

The vowel can be identified by calculating its formant frequencies and consulting the

vowel chart. The first state in the Figure has its first formant close to 600 Hz while the

frequency of the second formant is approximately 1600 Hz, making it the vowel /EH/. The

second plot in Figure 5 does not have the characteristics formant structure of a vowel. The

presence of high frequency components is characteristic of fricatives. Fricatives can either

be voiced or unvoiced. Voiceless fricative such as /F/, /SH/ and /S/ can be distinguished

from voiced fricative such as /V/, /ZH/, /Z/ based on the absence of harmonic structure in

the spectrum. However, due to the liftering involved in the computation of MFCC, it is not

possible to differentiate between the two categories using the mean values of a Gaussian
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(a) (a) (b) (b)

Figure 5: Mean values of states of the EHMM corresponding to a vowel (a) and a sibilant
(b).

mixture. However, the pitch of speech segments corresponding to a given state can be

estimated separately. The estimates of the pitch values revealed that the corresponding

speech segments were predominantly unvoiced, and hence the state is a voiceless fricative.

The level of energy concentrated at high frequencies indicate a sibilant such as /S/, /SH/

which has higher energies compared to fricatives such as /F/ and /TH/. The energy of

the sibilant /S/ is concentrated at frequencies higher than 5000 Hz while for /SH/ it is

concentrated at lower frequencies.

2.2.1 An EHMM of Hausa

Hausa is a Chadic language spoken in West Africa. It is spoken by more than 52 million

people and is one of the largest spoken African languages. Hausa does not have a native

writing systems. Instead, it is written in a number of different writing systems in different

regions of Africa. Hausa is written in Boko, a Latin script, in former British-occupied areas

while it is written in Ajami, using the Arabic alphabets, in the rest of the continent.

Hausa is an ideal candidate for an unsupervised keyword spotting system since linguis-

tic resources required for training supervised statistical models are scarce. In this research,

an EHMM of Hausa was trained using 30 hours of radio broadcasts from sources including

British Broadcasting Corporation, Deutsche Welle and Voice of America.
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A detailed phonetic analysis of Hausa is beyond the scope of this thesis and very diffi-

cult in the absence of sufficient linguistic resources. However, a basic investigation of the

states of the Hausa EHMM revealed some interesting information about the language. The

mean values of observation distribution for each state were transformed to linear frequency

domain and their spectral shape used for classification.

Hausa is a tonal language. The five basic vowels each have three variants with low

tone, high tone and falling tone. This tone information is not encoded in standard writ-

ing systems. Moreover, each of the five Monophthongs has a long and a short version.

Additionally, there are four Diphthongs, which are vowels which change quality during

articulations.

A comparison of a 256-state EHMM of Hausa with an EHMM of North American

English of similar size reveal some major differences. An analysis of the mean value of

the states of the Hausa EHMM show that the number of states that can be categorized as

vowels is 125, which is larger than the 110 for the TIMIT EHMM. Hence, a larger fraction

of states in EHMM have been used to model the sounds of vowels in Hausa than for North

American English even if the TIMIT corpus uses 20 different labels for vowels of North

American English.

It is not just the number of vowels that is different between the two models but the

spectral characteristics of some of the states also differ. A comparison of states of EHMM

normally associated with the nasal /N/ in Hausa illustrated clear differences with those in

North American English. For this study, 50 speech segments containing the phoneme /N/

were extracted and the ten most frequently occurring states were selected. The plots of

spectrum of these states are shown in Figure 6a. For comparison, Figure 6b shows the plots

of states for North American English.

It can be seen from Figure 6 that, for Hausa, most of the signal energy is concentrated

in spectral peaks centered at a frequency range of 250-350 Hz. In contrast, the states for

North America English have energy distributed over a wider frequency range and among a
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(a) Hausa (b) North American English

Figure 6: Comparison of nasal consonant /N/ in Hausa and North American English

number of spectral peaks. This example demonstrates that an EHMM can effectively learn

the structure of a language being modeled and groups together observation with similar

spectral properties into a single state.

2.2.2 Classification of States based on Spectral Characteristics

Most of the states in an EHMM can easily be placed in a class of phonemes such as vowels

or consonants based on the spectral characteristics of a state. The case of the vowels is

easier of the two classes as the quality of a vowel can be determined reliably based on

the position of the formants. However, classification is more complicated in the case of

consonants.

Stop consonants, for example, are all characterized by a complete closure of the vocal

tract, followed by a sudden release of air. During this closure, there are no distinguishing

spectral features that can be used for classification. Once the stop is released, the presence

or absence of a voice bar, the voice onset time, and the evolution of the formant frequencies

can be used to distinguish between these consonants. For stop consonants at the beginning

of an utterance, the effect of the position of an articulators, and hence the identity of the

consonant, becomes apparent at the onset of the following vowel. Similarly, the movement

of formants in the preceding vowels contains important clues to the identity of consonant
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terminating an utterance.

For most consonants, the spectral shape of a speech segment is often not enough to

establish its identity. Any static classification scheme that ignores the time evolution of an

observation and considers only the current state of observation is not expected to distinguish

between such phonemes.

In the case of HMMs, however, the estimation process also takes into account the tem-

poral characteristics of training observations in addition to spectral similarity, as discussed

in detail in the next section.

2.3 Capturing the Temporal Characteristics of Speech

The idea of modeling the space of speech signal using a number of Gaussians is not unique

to an EHMM. Gaussian Mixture Models (GMM), for example, are easy to implement and

efficient to execute. GMMs have been successfully used to model speech and the Gaussian

posteriorgrams were used for keyword spotting [18]. In contrast to GMMs, an EHMM

is not a static clustering scheme and the estimation process takes into account both the

proximity of the observation sequence in the feature space as well as their temporal char-

acteristics.

The parameters of an EHMM are estimated using the Baum-Welch algorithm. This

algorithm, which generally is considered a special case of the Expectation-Maximization

(EM) algorithm, is iterative in nature. The observation likelihoods are calculated from

an initial set of model parameters and these likelihoods are, in turn, used to improve the

estimate of the model parameters. At each step of the algorithm, the mean value µi and

variance Ui for a state i are estimated as given in the following equations.

µi =

∑T
t=1 γt(i)ot∑T

t=1 γt(i)
, (5)

Ui =

∑T
t=1 γt(i).(ot − µi)(ot − µi)′∑T

t=1 γt(i)
. (6)
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The variable γt(i) determines the influence of each observation on the estimates and

is equal to the probability of being in state i at time t given the current model and the

observation sequence P(qi|O, λ).

γt(i) =
αt(i)βt(i)∑N

k=1 αt(k)βt(k)
. (7)

The terms αt(i) and βi(i) are calculated using the forward-backward algorithm.

αt(i) =

 N∑
k=1

αt−1(k)aki

 bi(ot), (8)

βt(i) =

N∑
k=1

aikbk(ot+1)βt+1(k). (9)

The calculation of the α and β variables during the forward-backward algorithm depend

both on the values of the emission probabilities and the state transition probabilities. The

impact an observation has on the estimates of µi, Ui, and the transition matrix A is directly

dependent on the value of transition probabilities ai j and the emission probabilities bk(ot).

Consequently, a state in the EHMM represents a collection of observations of similar form

and temporal characteristics.

An EHMM of North American English, trained on the training subset of TIMIT corpus

is shown in Figure 7. The EHMM consists of 256 states, each with a single Gaussian

mixture with diagonal covariance matrix. Although, the states were fully-connected before

training, it can be seen from Figure 7, that the connection between the states of the trained

EHMM are sparse. Given the current state, the next state is much easier to predict in the

trained EHMM. This fact can be precisely measured with the entropy rate of the EHMM.

The entropy rate of the EHMM is defined as

H = −

N∑
i=1

N∑
j=1

πiai j log2 ai j. (10)
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Figure 7: An ergodic HMM of English language trained on the TIMIT corpus

For a 256-state EHMM where all the states transitions are equiprobable, the entropy

rate is equal to 8 bits. Another way to interpret this number is that given the current state,

the next state can be any one of the 256 states of the EHMM and it would require 8 bits

information to encode the next state. However, in this particular case, the next state is much

easier to predict and the calculated entropy rate for the trained EHMM is 2.1383 bits. Thus,

if the current state of the EHMM is known, then the next state can be optimally encoded

with just 2.1283 bits of information. Another way to interpret this information is that a

single state of the EHMM is connected, on average, to less than five other states indicating

the sparse connectivity between the states. This measure indicates that the trained EHMM

efficiently captured the temporal structure in speech.

The self-transition probability aii is related to the expected duration d of a state by the

following equation [25].

d̄ =
1

1 − aii
. (11)

The initial self-transition probability of 0.7 corresponds to a conservative estimate of 3

frames or 30 ms for the average duration of a state. In contrast to the initial EHMM, there
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(a) Spectrum of /KCL/ (b) Spectrum of State corresponding to a
silence

Figure 8: Spectrum of two states with different average durations

are large variations in the value of self-transition probabilities in the final EHMM.

Different phonemes have different average durations due to the physical mechanism

underlying their generation. Vowels are easier to sustain due to their voiced nature. Conso-

nants, on the other hand, are shorter in duration since the glottis is in an open configuration

and the sound is produced by the rushing air passing through a constriction in the vocal cav-

ity. As a consequence, vowels tend to be longer in duration and exhibit a larger variability

in their length than stop consonants.

The average durations of the states in the EHMM follow similar trends. The self tran-

sition probabilities ranged from 0.1383 to 0.9227 with a mean value of 0.5955. The states

with the longest durations, unsurprisingly, correspond to the silence that occurred at the be-

ginning and the end of the sentences. Vowels, in general, have much larger self-transition

probabilities, and hence, longer average durations than consonants.

As discussed in the last section, the spectrum of a speech segment is often not sufficient

to distinguish between certain consonants. For example, the stop consonants are all charac-

terized by a complete closure of an articulators. For these speech segments, classification

must be based on a time evolution of the observations.

It can be seen from Eq. 8 and 9 that the parameter estimates are influenced both by the
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emission probabilities as well as the state transition probabilities. The states in Figure 8

demonstrate the fact that the temporal characteristics of observations indeed have a role in

their state assignment. The states shown in Figure 8 are indistinguishable from each other

in the frequency domain but have significantly different state transitions probabilities. The

self-transition probability for state in Figure 8a is 0.362, almost half of that for state in

Figure 8b which is 0.698. An analysis of state occupancy for the state in Figure 8b shows

that the state almost always occurs (95.6%) when the speech segment is labeled as silence

or /H#/. The state in 8a, on the other hand, has a probability of just 3.7% of having the same

label /H#/ and the highest likelihood of being part of the stop consonant /KCL/. Hence, the

observations have been differentiated successfully due to the difference exhibited in the

time domain and have been represented by different states even when they have the same

spectral characteristics.
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CHAPTER 3

KEYWORD SPOTTING USING AN EHMM OF SPEECH

An EHMM models speech with a number of states, each containing observations having

similar spectral and temporal characteristics. It has been successfully demonstrated pre-

viously that an EHMM stores enough information about speech that perfectly intelligible

speech can be synthesized from a sequence of states of EHMM.

In this research, the role of an EHMM of speech for the task of keyword spotting has

been investigated. This approach is particularly suited for languages with scarce linguistic

resources. The Voice-Query-by-Example system, envisioned in this research, accepts a

query in the form of speech waveform and retrieves all the occurrences of the query in a

possible large set of speech data.

The EHMM of speech can be used to transform speech into a model-specific represen-

tation which can then be used by a VQbE system. In addition to a form of representation,

the VQbE system would also require a framework for keyword modeling and efficient key-

word search algorithms that can use these models to find candidate utterances in the test

data.

In this research, we investigated two completely different approaches to keyword search

using the trained EHMM. The first approach is template-based in nature, and converts a

keyword into a posteriorgram of the states of the EHMM and uses this posteriogram as a

template to find the matching instances of the keyword. The second approach generates a

left-right HMM from the most likely sequence of states corresponding to a keyword and

computes the likelihood of each candidate utterance using the Viterbi algorithm. The two

approaches are presented in detail in the following sections.
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3.1 Dynamic Time Warping

In the first approach, the VQbE system is template-based in nature and uses the DTW al-

gorithm to find an optimal alignment between the test and the reference signals. In contrast

to the traditional template-based KWS systems, an utterance is represented with the pos-

terior probabilities of the EHMM states given the observation sequence. The states of the

EHMM, trained on a large set of data, convey much more information about a speech seg-

ment than the traditional representations of speech obtained through a fixed transformation

of the speech samples.

One way to represent speech in terms of the states of an EHMM is to use the most

probable sequence of states of the EHMM corresponding to a speech segment. In this ap-

proach, two speech segments can be compared by calculating the edit distance between

the corresponding sequences of states while accounting for addition, deletion, or substitu-

tion of states between the test and reference sequences. However, such a keyword search

scheme would be a form of hard-decision decoding and ignores the information contained

in N-1 states at each instant of time.

In this research, an alternate method has been adopted that takes into account the prob-

abilities from all the states of the EHMM. A speech segment is transformed into State

Posteriogram Representation (SPR) where an input speech sequence O of length T is con-

verted into a N × T matrix of state posterior probabilities P(qi|O) for an EHMM with N

states.

SPR is a EHMM-specific representation that is tied to a particular EHMM. In this rep-

resentation, each column is a vector of posterior probabilities of the states at that instant

of time and these probabilities are computed taking into account the complete observation

sequence O using the forward-backward algorithm. It should be noted that the value of

P(q|O) depends both on the value of the observations and the corresponding state transi-

tions.

47



Once the test and reference sequences have been converted into SPR, a similarity mea-

sure or distance measure must be defined between two posteriograms. Since the test and

reference sequences are generally of different length, an alignment strategy must also be

devised to align the similar segments of the two sequences in an optimal manner.

There are a number of different similarity and distance measures that have been defined

for comparing probability density functions. The Minkowski family of distance measures

includes the Lp norms in Rp. Other examples include the intersection family, the inner

product family, the square-chord family and the Shannon entropy family. For a compre-

hensive survey of similarity and distance measures between probability density functions,

see [43].

The inner product is one of the most computationally efficient similarity measure among

those defined in [43] and has been used in this research. A lattice of size Tr × Tp of inner

products is generated between the elements of the reference and the test signals with lengths

Tr and Tt respectively. An optimal path, connecting the lower left corner to the upper right

corner in this lattice, which maximizes the sum of the inner products is computed using the

DTW algorithm. This calculated sum can then be used as a similarity measure between the

test and reference signals.

Keyword spotting in this approach would involve taking a keyword-length sized win-

dow of observations and applying DTW to find the similarity score of the observation se-

quence. The window can then be moved forward by a fixed number of frames. Moving the

window by a single frame yields the best alignment between the window and a matching

utterance but it is the most expensive in terms of computations involved. On the other hand,

if the window is advanced by n frames at a time, then the computation cost is reduced by a

factor of n while the maximum possible misalignment between a window and a matching

candidates would remain under n/2 frames. A local filtering of the similarity score is often

required to remove the duplicate hits generated by a partial overlap of the window with a

matching candidate. Finally, the candidates can be ranked by the descending order of their
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similarity score. A fixed number of the top candidates are then evaluated by comparing the

associated transcript of each candidate with the label of the keyword.

3.2 The Viterbi Algorithm

Alternately, an utterance can be modeled as a left-right HMM with the model parameters

derived from the states of the EHMM. The most likely state sequence for an utterance

can be calculated by the standard Viterbi algorithm using the parameters of the EHMM

of speech. This state sequence can then be converted into a left-right HMM by merging

multiple consecutive frames which are part of the same state together to form a single state

in the keyword model. A similar scheme has also been adopted by [4] where they cited the

EHMM of speech developed in [3] as the motivation for their system.

A keyword is represented by a sequence of states q = (q0, q1, q2, . . . , qM), together with

the state transition probabilities and observations densities as defined in the EHMM. The

states in q become part of the keyword model while the remaining states of the EHMM

become part of the filler or background model.

For keyword search, an observation sequence O = (o1, o2, o3, . . . , oT ) is first converted

into State Likelihood Representation (SLR). In this model-specific representation, speech

is represented with a matrix R of size M × T represents where each column is a vector of

observation likelihoods given each state i of the keyword model. Specifically, the element

Ri, j denotes the probability Pr(o j | q = si).

The HMM model of the keyword has M states while there are T observations. Now

there can be a large number of state sequences Q = (q(1), q(2), . . . , q(T )) such that the state

assignment follow the sequence of states in q, i.e. q(1) = s0, q(T ) = sM.

The likelihood of a given observation P(O | q) can be computed as the sum of P(O |

Q) over all the possible ways a M-state sequence can be mapped to T-length observation

sequence.
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Pr(O | q) =
∑
all Q

Pr(O | Q) Pr(Q | q). (12)

However, for continuous speech recognition, it is more practical to calculate the max-

imum over the posterior probability Pr(Q | O). Since Pr(O | q) is not involved in the

optimization with respect to state sequence Q, we can instead maximize Pr(Q,O | q).

max
all Q

Pr(O,Q | q) = max
all Q

Pr(O | Q,q) Pr(Q | q). (13)

which can be calculated recursively [25] as

max(Pr(O,Q | q)) = δT (M) = [max
i
δT−1(i)aiM](oT ). (14)

This is the standard formulation of the Viterbi algorithm which can then be used to

compute the likelihood score of the observation sequences.

3.3 Comparison between Keyword Search Algorithms

The two approaches described above each have a number of advantages and disadvantages.

The template-based approach, for instance, uses the more accurate MAP estimate of a state

P(q|O) as compared to the state likelihoods P(o j|qi) used in the second approach. However,

the MAP estimate is computationally more expensive to calculate than the state likelihoods.

The optimal path in the template-based approach has the highest sum of posterior prob-

abilities of states satisfying a particular sequence. This strategy has the disadvantage that

the optimal path may contain state transitions which may not be likely considering only the

state transition matrix. The state sequence calculated by the Viterbi algorithm, on the other

hand, is guaranteed to have the highest likelihood of any of the possible state sequences.

In the left-right HMM of a keyword, frames of observations are condensed into a set

of states. This approximation while being computationally efficient, removes information

about the length of the different segments of the keyword and replaces it with more general

information contained in the state transition probabilities. In the template-based approach,
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the longer a particular segment of speech is, the higher its influence on the final similarity

score.

From a computational point of view alone, Viterbi-based algorithms are far superior

than DTW-based approaches. An immediate advantage of this approach comes from the

form of representation used in the algorithm. The SPR representation is calculated using

the forward-backward algorithm which is more computation intensive than the calculation

required for computing the state likelihoods in the SLR. Furthermore, the number of unique

states in an utterance is generally much smaller than the total number of frames. Conse-

quently, the lattice structure for the Viterbi algorithm has smaller dimensions than that used

in the DTW. In addition to the larger dimensions of the lattice, the template-based approach

uses inner product as the local distances between posteriograms. The computation of the

inner product is a relatively expensive operation compared to the addition of logarithmic

values carried out in the Viterbi algorithm.

During the preliminary trials, it was observed that the template-based approach pro-

vided marginally improved accuracy at a much higher cost of computations. Consequently,

the second approach based on the left-right HMM of the keywords and the Viterbi algo-

rithm for keyword search, have been used in this research.

3.3.1 Experiments on WSJ Corpus

To determine the efficacy of the developed VQbE system, a number of experiments were

carried out on a single-speaker subset of WSJ corpus. While the selected subset lacks

the diversity of multi-speaker speech, there still are significant contextual variations in the

pronunciation of each utterance.

A 256-state EHMM was trained on a single-speaker subset (sd_tr_l\400) of WSJ corpus.

The speech data was over three hours in length and was converted to SLR for the KWS

trials.

For each keyword, the frames corresponding to an utterance were isolated manually and

the most likely state sequence was calculated using the Viterbi algorithm. The calculated
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state sequence was then used to construct a left-right HMM for each keyword with the state

transition probabilities derived from the EHMM.

Keyword search was performed using the sliding-window method where the likelihood

score for each window of observations was calculated using the Viterbi algorithm before

sliding the window forward. Observation sequences with the highest score were then clas-

sified with the help of the transcripts.

The accuracy of a keyword search algorithm generally improves with an increase in

the length of the target keyword since longer sequences are statistically less likely to be

repeated in the data set. To take this effect into account, the keywords were divided into

three groups of short, medium, and long utterances.

A total of 40 keywords were selected for the experiments with lengths ranging from 3 to

11 phoneme. The first group consisted of keywords with the number of phonemes ranging

from 2 to 5. The second group contained keywords with lengths between 6-8 phonemes.

The longest keywords with lengths greater than 8 phonemes were placed in the third group.

The longest keyword in this group consisted of 11 phonemes.

The results of the KWS trials are presented in Figure 9. The true positive rate is plotted

along the y-axis with the number of errors per hour along the x-axis. The plot conforms

to the general trend with the VQbE having the highest accuracy for the longest keywords

at any given error rate. For keyword group 3, the VQbE system correctly identified more

than half of the candidate keywords after making only three false positives. The fraction

of correctly identified keywords, or true positive rate, rose to around 80% at 10 errors per

hour.
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Figure 9: True positive rate vs. errors per hour for WSJ trials.

The accuracy of the VQbE was rather poor for the keywords in group 1 with only a

quarter of candidate utterances found after making 10 errors per hour. However, shorter

speech segments provide a smaller window of observations for the keyword search algo-

rithm and are often part of other longer utterances.

The plot for keyword group 2 is more reflective of the average accuracy of the VQbE

system. At an error rate of 10 errors per hour, the system successfully identified more than

half of all the candidate utterances from more than three hours of continuous speech.

The precision of the implemented VQbE system is promising for a system that has been

trained without any human supervision. However, the system failed to detect a significant

fraction of the candidate utterances.

While there are no speaker-dependent variations in the test data, continuous speech still

contains vast, contextual variations which can change the representation of an utterance far

enough to miss detection. There were also a small number of candidate hits which were

53



acoustically indistinguishable from the target keyword but had a different text representa-

tion and hence were rejected during the evaluation process.

Considering the fact that the training data in the trial is from a single-speaker, it is

conceivable that the accuracy of the system on a multi-speaker every-day speech would be

significantly lower than the one obtained in these trials.

3.3.2 Experiments on TIMIT Corpus

For the multi-speaker trials, a 256-state EHMM was trained using the TIMIT corpus.

TIMIT contains speech from 630 different speakers of North American English from 8

major dialect regions within the United States. Compared to the WSJ corpus, speech from

the TIMIT corpus contains a much wider variability of speech. It was not surprising that

keyword search algorithm developed for a single-speaker application failed to detect many

candidate utterances.

The variations inherent in the posteriogram of different instances of an utterance are

illustrated in Figure 10. A posteriogram represents the probabilityP(qi|ot) of each state i

at time t. Time increases along the x-axis while the different states are plotted along the

y-axis. For better visibility, the corresponding most probable state sequences for both the

samples are denoted by (color-coded) points on the plot.

The plot depicts the state posterior probabilities for two instances of the utterance “Cal-

ifornia” spoken by two different speakers. The most probable state sequence for the first

utterance, from a female speaker, is denoted by the red circles in the plot. Utterances 2,

represented by the states denoted with “+”, was spoken by a male speaker.

There are natural variations between the two utterances along the time axis. The lengths

of two utterances are different as well as the start and end frames of individual phonemes.

More surprisingly, the sequences of states for each utterance are almost entirely different.

A state occupancy histogram, indicating the number of times each state has been visited,

reveals that a total of 47 different states were visited for the two utterances. Out of these 47

states, only 3 states were common between the two utterances.
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Figure 10: Posteriograms for two instances of the utterance “California”.

The example suggests that a single perceptual unit of speech may be mapped to more

than one state of the EHMM. A single state in the EHMM represents observations that

are similar both acoustically as well as perceptually. However, every perceptually similar

observations may not have similar representations in the feature space and as a result, may

be represented by different states of the EHMM.

From our preliminary investigation, it is clear that, in its current form, the VQbE sys-

tem based on an EHMM of speech is not invariant to the contextual or speaker-dependent

variations in speech. The proposed system must have a mechanism to identify and group

together perceptually similar states of the EHMM. Any such mechanism would require sig-

nificant changes in the way a keyword is modeled and would necessitate the development

of novel search algorithms.
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CHAPTER 4

KEYWORD SPOTTING IN MULTI-SPEAKER ENVIRONMENT

The precision of the VQbE system based on an EHMM of speech is limited due to the wide

variation displayed both by context dependent events as well as speaker variability. The

range of variations extend to both time and frequency domains.

The rate of speech and as a result, the length of an utterance fluctuates with time. Fur-

thermore, different people generally have different average rates of speech, leading to wide

variations in the span of utterances. It is not just the total length of an utterance that can

vary. Prosodic features, such as stress and rhythm, are important apparatus of communi-

cation and involve manipulation of lengths of individual phonemes to express emotions or

convey additional information.

These differences are even more significant in the frequency domain. The frequency

spectra of two perceptually similar segments of speech, extracted using Praat [44], are

shown in Figure 11. The frequency spectrum of a segment of speech, a vowel, when spo-

ken by a male speaker is shown in Figure 11a while Figure 11b contains the corresponding

spectrum from a female speaker. The voiced nature of the speech segments is immediately

evident from the presence of fine harmonic structure in the spectra. These spectral peaks

occur regularly at integer multiples of the fundamental frequency. Female voices, in gen-

eral, have higher pitch than voices from male speakers. This is also true for the example

in Figure 11 where the harmonics are spaced wider in the spectrum corresponding to the

female speaker, suggesting that fundamental frequency has a higher value for the female

speaker than it has in the case of male speaker.

The position and shape of the formants also vary across different speakers. Formants

are spectral peaks formed as a result of resonances produced by the articulators. These

spectral peaks are wider and form the outer envelope of the fine harmonics generated by

the oscillating glottal folds.
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(a) Male Speaker (b) Female Speaker

Figure 11: Gender-specific variations in the spectrum of a vowel

There are significant differences in the number as well as position of the formants in the

spectra in Figure 11. The spectrum in Figure 11a does not have any energy in frequencies

higher than 4500 Hz. On the other hand, signal energy extends up to the maximum sam-

pling frequency for the female speaker. This example suggests that the higher formants do

not play a significant role in establishing the perceptual identity of a speech segment even

though it may convey important speaker-specific information. Moreover, the first three for-

mants, which characterize a vowel, are not constant for the two cases illustrated in Figure

11.

A speech recognition system must employ a number of different strategies, applied at

different levels, to accommodate these variations while still rejecting false positives.

4.1 Speaker Invariance Schemes

The task of a speech recognition system is to recognize all the occurrences of a keyword in

the presence of speaker, context, and channel induced variation. Channel induced artifacts

are compensated by channel equalization and noise cancellation schemes and are not a

focus of this research.

Speaker-dependent and context-induced variation have similar manifestations in time

and frequency domain. Schemes aimed at compensating for these difference often conflict
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with the goal of minimizing erroneous detection of non-target utterances. The goal of this

brief overview is to understand the various sources of speaker and contextual differences

in speech segment and with an intention to highlight the deficiencies in an VQbE system

based on an EHMM of speech.

4.1.1 Time Domain

In the time domain, algorithms based on dynamic programming paradigm optimally align

an observation sequence to either a template or to a keyword model. Algorithms such as

Dynamic Time Warping (DTW) and the Viterbi algorithm can identify a candidate utter-

ance with different length composition than the original keyword.

4.1.2 Frequency Domain

A number of different strategies are employed in VQbE systems to compensate for spectral

variation that do not change the perception of a speech segment.

The form of speech representation plays an important part in the design of a speech

recognition system. In a robust feature set, speaker or context-dependent variations must

not change the representation of speech.

Features such as Linear Prediction Coefficients (LPC) and MFCC are robust to a num-

ber of sources of variation such as loudness and pitch differences in speech segments. For

instance, loudness changes would significantly change the representation of a speech seg-

ment in time and frequency domains. The differences in energy levels of a speech signal,

on the other hand, are limited to a single coefficient in the cepstral domain. Similarly,

any channel artifacts affecting a signal during its propagation can simply be subtracted in

MFCC domain compared to the complex deconvolution required in time domain.

4.1.2.1 Pitch Variation

In monotonic languages, changes in pitch levels do not affect the identity of a voiced seg-

ment of speech. The pitch values contain speaker-specific information and may convey

some additional information like emotions. In tonal languages, on the other hand, a speech
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(a) State 85 (b) State 52

Figure 12: Histogram of pitch values for different states of EHMM

segment with the same spectral shape but with a falling, rising, or constant pitch levels

may each carry completely different meanings. Speech features, such as LPC and MFCC,

discard the pitch information from the frequency spectrum and therefore, are more tailored

to monotonic languages.

In MFCC, the smoothing of the speech spectrum is carried out by a process known as

liftering. Liftering involves the low-pass filtering of the speech spectrum, which is achieved

by discarding the higher-order cepstral coefficients.

In order to understand the effects of pitch levels on the states of an EHMM, the prob-

ability distribution of the fundamental frequency F0 was estimated for each state in the

EHMM. The fundamental frequency is directly proportional to the perceived pitch of a

speech segment, with higher F0 associated with higher perceived pitch levels. An estima-

tion of F0 cannot be carried out in cepstral domain, therefore, estimates of F0 were made

separately in Praat [44], a software package for acoustic analysis. The estimates, together

with the corresponding EHMM state sequences, were used to generate a histogram of F0

for each state in the EHMM.

As an example, the histograms for the two states of the EHMM, one a vowel and the

other a sibilant, are shown in Figure 12. The mean values of these states have been pre-

sented earlier in Figure 5. To reiterate the findings in Figure 5, the first state, labeled 85,
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has spectral characteristics that make it a vowel while the second one, state 52, has the

characteristics of a sibilant consonant, most likely the palato-alveolar consonant /SH/.

F0 estimates for observations in state 52, an unvoiced consonant, have a flat histogram.

The histogram for state 85 is much more interesting, and reveals a number of trends in

F0 distribution. Firstly, most of the observations corresponding to this state were voiced,

as can be expected from a vowel. More importantly, the pitch estimates have a bi-modal

distribution with F0 estimates clustered around two distinct values. To get a clear picture,

F0 histograms were then recalculated separately for male and female speakers. The his-

togram for male speakers is color-coded in blue while the red histogram corresponds to F0

estimates for female speakers. It can be seen that the distributions of F0 values for EHMM

state are gender-specific with average F0 much higher for female speakers than it is for

male speakers.

The characteristics of the probability distribution for F0 values have a number of impor-

tant implications. The histograms demonstrate that MFCCs are invariant to differences in

F0 values and therefore, pitch levels do not have an influence on the observation densities of

states of an EHMM. Segments of speech would have similar representations in the MFCC

domain and would be represented by a single state in the EHMM as long as they have sim-

ilar spectral characteristics and exhibit similar state transitions. This would be considered

an advantage for a monotonic language where the pitch levels have no contribution to the

identity of a phoneme.

For tonal languages like Mandarin, the rising or falling pitch of a speech will be lost

during MFCC calculations. A VQbE systems designed for these language must take into

consideration the evolution of pitch levels for the task of recognition. Pitch information

can be incorporated into EHMM models, trained using the HTK, by using multiple streams

of input data during the training process.

The histograms for F0 for the voiced states of EHMM revealed another important char-

acteristic. There is a definite pattern in values of F0 for a particular state of the EHMM.
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Some of the states have a tendency of having high F0 values, while for others, F0 values

are distributed around lower mean values. The statistics suggest that different states in the

EHMM have a tendency to be spoken with certain pitch levels. This hypothesis is further

strengthened by the observation that the trends in F0 distribution were consistent for both

genders. The average value of F0 ranged from 111 Hz to 163 Hz for the male speakers in

the data set, and for the female speakers, the fundamental frequency averaged from 177 Hz

to 234 Hz.

This pattern of F0 values across the states of an EHMM can be used in a number of

different applications. An EHMM of speech has been previously used in an low bitrate

speech decoder [3]. F0 values and the state sequence corresponding to a speech segment

was estimated and transmitted at a very low entropy. At the receiver, the speech spectrum

was synthesized from the mean values of these states and the input excitation was generated

from F0 estimates. An even more efficient speech decoder is conceivable, and currently

being investigated, that would synthesize both the spectrum and the F0 values from the

state sequence of EHMM of speech. With a conditional entropy close to 2 bits for an

EHMM, such a speech decoder has the potential to achieve transmission rates of less than

200 bps.

4.1.2.2 Variation of Formants

Adult male speakers generally have longer vocal tracts and as a result, lower formant fre-

quencies than children and females. However, formant variation are far more complex with

formant frequencies exhibiting contextual as well as speaker-dependent variation that are

highly non-linear. Furthermore, these differences may not be uniform for every acoustic

unit of speech. In [6], it has been reported that the variation in first formant are more pro-

found for open vowels than it is for half-open or rounded vowels. One the other hand,

the second formant exhibits wider variability in the case of front vowels compared to back

vowels, and this pattern is consistent for both genders.

Human perception is remarkably immune to variation in the formant frequencies. A
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human listener would have no problem in understanding speech with formant variation well

beyond the range that would be considered normal. For instance, up-sampled or down-

sampled speech may push the values of formant frequencies outside those encountered

everyday yet a human listener would immediately adapt to those values.

Automatic speech recognition system, on the other hand, are not invariant to the changes

in formant frequencies. Even a slight change in one of the formant frequencies may con-

siderably change its acoustic manifestation in the feature space. In the case of MFCC,

for example, the discrete cosine transform is not shift-invariant. Even a uniform shift in

formant frequencies would change the corresponding cepstral coefficients. Further com-

plicating the matter, formants frequencies may vary independently of each other and in a

non-uniform fashion, making the observation distribution of a single acoustic class in the

feature space highly non-linear .

4.2 Manifold Model of Observation Density

The notion that the observation density for a single class could be in the form of a low-

dimensional manifold is not new. In image processing, the projections of an object on

a surface in different conditions of lighting, scale, or rotation, form a low-dimensional

manifold in the high-dimensional feature space[45] and this realization has led to a large

number of viewpoint-invariant image representation and recognition schemes.

In speech recognition, the low-dimensional manifold structure of the observation den-

sity has been the focus of a number of different approaches for phone classification [46],

dimensionality reduction [47, 48], and design of speech features [49].

In order to understand the concept of a low-dimensional manifold and the possible

implications that it may have on speech recognition, consider the example of two one-

dimensional manifolds in R2 (Figure 13).

The first example in Figure 13 is that of a circle in R2. A circle is a one-dimensional
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(a) Circle, a 1-dimensional
manifold

,
(b) Shifted spectrum

Figure 13: Observation distribution in the form of manifold

manifold because it can be represented by two or more overlapping arcs, each homeomor-

phic to a (one-dimensional subspace) straight line.

In the case of circle, the distance from the origin ρ is the independent invariant which is

unaffected by a change in angle θ. To rephrase, all the points on the circle have the property

of being at a fixed distance from the origin and this identifying property does not change

under the operation of rotation by an angle θ. This characterization of the problem is central

to the justification of the clustering schemes presented in the later part of this chapter.

Consider the second example in Figure 13, and assume that the identity of the obser-

vation is preserved under a circular shift. Given the measurement space is of dimension

N, this is an example of a one-dimensional manifold in N dimensional feature space. This

artificial example has some similarities with the frequency spectrum of phonemes. The

perception of a phoneme generally does not changes due to small shifts in formant fre-

quencies. Similarly, voice quality changes from speaker to speaker with some speakers

having well-defined, prominent formants. In other cases, the formants may have a wider

spread or lower heights. Consequently, the dimensions of the observation manifold is larger

in the case of speech since a larger number of parameters can be changed without changing

the identity of the phoneme.
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Figure 14: Classification of observations in the form of a manifold

The task of classification becomes non-trivial when the distribution of observations in

a class is in the form of a manifold.

4.2.1 Clustering Observations on a Manifold

Most linear classifiers and proximity-based clustering algorithms fail completely when ob-

servation distribution within a class is in the form of a manifold. A major impediment to

the task of classification arises from the fact that Euclidean distance are no longer a uni-

versal measure of dissimilarity or distance between two data points. This concept can be

elaborated with the help of the example in Figure 14.

Consider the task of classification when the observation density of a class is in the form

of a simple one-dimensional manifold. Consider the concentric circles of Figure 14. All

the points on any given circle belong to a single class. While this classification task may

seem trivial for a human being, automatic discovery of the two classes is extremely difficult

for unsupervised machine learning algorithms.

For classification of observations in the form of a manifold, Euclidean distances are

not a reliable indicator of class membership, though, Euclidean distances can be used in a

small neighborhood or locality. For instance, two points with the distance between them
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Figure 15: Isolating the classes using expert systems

smaller than the difference of the two radii would always belong to the same class. Distance

measures, however, cannot be used for classification on a global scale. Any two points on

the opposite sides of the outer circle are further apart from each other than they are from

all the points on the inner circle. As such, neither a linear classifier nor a proximity-based

clustering algorithms can be used for this task.

In this example, classification can be performed in at least three different ways. The first

method is the simplest (and the most frequently used in speech recognition). Delegate the

task to an expert system that actually knows how to solve this problem. Given the solution

of a sufficiently large training data, new data points can be classified using their proximity

from the pre-classified sample observations.

The second solution involves identification of a common property among the members

of a class. In this example, members of the same class are at a constant distance from

a single point in R2, the center of the circle. Thus, any point can now be classified by

measuring its distance from this reference point.
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The third method involves the knowledge of an identity-preserving operation. The cir-

cle is a one-dimensional manifold in a two-dimensional feature space. It has exactly one

degree of freedom, i.e., there is a dimension along which the independent invariant (dis-

tance from origin) remains constant. In the above example, rotation is one such operation

that does not change the class membership of an observation. Consequently, every pair of

points that can be mapped together through rotation, can be clustered together in a single

class.

4.3 State Parameter Estimation for HMM

HMMs are capable of modeling complex non-linearly distributed, time-varying observa-

tions. Instead of the static clustering scheme described in the last section, consider the

movement of minute and hour hands of a clock. The positions of the clock hands are again

distributed in the form of a circle. Additionally, the position of the clock hands changes

with time in a particular manner. HMMs can model the clock hand trajectories with a num-

ber of connected states. These states can model both the positions as well as the movements

of the clock hands.

HMMs are particularly suited to model speech where both the values and time charac-

teristics of observations must be taken into account. The Baum-Welch algorithm, described

in Sections 2.1.2 and 2.3, relies on proximity measures between observations for estimat-

ing the parameters of a HMM. The emission probability bk(ot) is inversely proportional to

the square of the Mahalanobis distance between the observation ot and the mean value µk

of the kth mixture. The parameter estimates are influenced by an observation in proportion

of its emission probability, and consequently, in proportion of its proximity from the mean

value of a mixture.

Given that the observation density in different classes of speech is non-linear, an al-

gorithm that relies on proximity measures only is not expected to estimate the parameters

of different classes of speech. However, the solutions to the current problem are still very
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similar to the ones discussed in the last section. These approaches are explained in the next

section.

4.3.1 Learning by Example

Most contemporary speech recognition systems are based on the paradigm of learning-by-

example. This approach is similar to the first solution for the static clustering task described

in Figure 14. In supervised speech recognition systems, the task of the classification is

actually performed by a human listener on a sufficiently large data set. A prerequisite to

this approach is the knowledge of the phonetic structure of speech so that the training data

can be isolated into these classes. As stated earlier, the observation distribution within a

single class is non-linear and require a model that can represent non-linear distribution. A

mixture of Gaussian if often used to model the observation density.

Human perception is remarkably immune to speaker-dependent or context-induced

variation in speech. The transcriber listens to tens or hundreds of hours of speech and

assigns time-aligned labels to each occurrences of a phonemic class in the training data.

In doing so, a large body of samples of a particular class is isolated. The observation

distribution for each class can now be modeled, in isolation from other classes, using a

proximity-based parameter estimation algorithm.

The high precisions of modern speech recognition can be partially be attributed to the

use of time-aligned annotated data for training. The transcription process offloads the dif-

ficult task of classification of the samples of a speech segment in a multitude of acoustic

environment, and in the presence of speaker-dependent and context-induced variation, to a

human being.

The transcription process is usually the most expensive phase in the development of

a speech recognition system in terms of time and capital. The transcription process is

generally carried out at utterance-level while the statistical models are generated at subword

level. The orthographic transcription of speech is converted to a phonetic one with the help

of a pronouncing dictionary. The use of pronunciation lexicon considerably accelerate the
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transcription process by automating the conversion of word labels to phoneme labels.

This approach of learning-by-example has also been carried out for the discovery of

the phonetic structure of a large EHMM in [50] and [51]. An EHMM of North Ameri-

can English was trained using the TIMIT corpus [37]. The phonetic transcription of the

training data and the associated state sequences of EHMM allowed the identification of the

substructure of an EHMM associated with a particular phoneme. In this research, however,

the target languages are resource-limited and as a consequence, acoustic models of speech

must be trained without any linguistic resources.

In the next sections, we present two unsupervised clustering schemes based on a single

large EHMM of speech. By definition, a manifold can be decomposed in a number of

coordinate charts where a manifold is “similar” to a low-dimensional subspace. The open

set on the manifold covered by a single coordinate chart is a neighborhood or locality where

Euclidean distances are relevant (due to a homeomorphism mapping it to a subspace). In the

proposed approach, an EHMM models the non-linearly distributed classes in speech with

a large number of states. If the number of states are sufficiently large, then the collection

of observations represented by a singe state would would belong to a single neighborhood.

Conceptually, a single state would consist of a set of observations that are both acous-

tically and perceptually similar. In this setting, observations are acoustically similar if they

have similar representations in the feature space. Perceptual similarity, on the other hand,

deals with how a speech segment is perceived by a listener. Hence, two instances of the

same vowel uttered by an adult male speaker and a child are similar perceptually but may

have completely different manifestations in the feature space.

The observation density for a single phoneme would be modeled by a number of such

states. The goal of a clustering schemes, in this approach, is to identify the states in an

EHMM which are similar perceptually but may have significantly different acoustic repre-

sentations.
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4.3.2 Nearest-neighbor Clustering

In Section 4.2.1, three different approaches were described for the classification of obser-

vations distributed in the form of a one-dimensional manifold. Given that the observation

densities of the classes are continuous and non-overlapping, the classification task can also

be performed using nearest-neighbor clustering.

This approach involves density modeling of the classes using a large number of Gaus-

sians in such a way as to ensure that all the observations modeled by a single Gaussian

belong to a single class. In the case of concentric circles, for example, this criteria can be

satisfied by using a sufficiently large number of Gaussians such that the maximum distance

between observations within the same Gaussian component is less than the difference in

the radii of the circles.

Gaussian components can then be merged together using an nearest-neighbor cluster-

ing scheme. Gaussian components with the smallest distance between them are merged

together to form a new cluster, consisting of a mixture of Gaussians. For clusters with

more than one Gaussian components, the minimum distance between any of two Gaussian

components from different classes can be used as the inter-cluster distance. It is obvious

that a nearest-neighbor clustering will group together all the Gaussians on a single circle

using a chain of increasingly longer Gaussian components.

This clustering scheme works in a similar manner on an EHMM of speech. The states

of the EHMM can be grouped together based on the proximity of the corresponding ob-

servation distributions in the feature space. Clustering can be stopped when the desired

number of clusters are obtained or if the minimum distance between two clusters reaches a

particular threshold.

In the case of speech, however, the observation distributions are neither continuous nor

the different densities are non-overlapping. While a sufficiently large set of training data

can be used to estimate the observation density of each phonetic class, some of the phonetic

classes in speech overlap in feature space. Diphthongs and the stop part of stop consonants
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are examples of acoustic units that overlap with other acoustic classes.

To avoid the merger of states from different acoustic classes, a K-nearest-neighbor ap-

proach can be adopted where the overall distance between two clusters is calculated based

on the distances of at most k elements of each class.

Two different distance measures were explored in this research. The 39-dimensional

MFCCs consist of 13 static cepstral features along with 13 delta, and 13 delta-delta coef-

ficients. The delta and delta-delta features improve recognition accuracy by capturing the

time variation of the static cepstral features. In the first approach, denoted as DMS, the

proximity between two states is measured using the static cepstral coefficients. The sec-

ond approach considers the full 39 cepstral coefficients to compute the dynamic distance

between two states.

4.3.3 Clustering using an Identity-Preserving Operation

Representations of speech, including MFCC, are not completely invariant to speaker-dependent

variation in speech. Speech recognition systems frequently employ speaker normaliza-

tion and adaptation schemes to compensate for speaker induced differences. The task of

speaker normalization or adaptation involves the application identity-preserving operations

that transforms either the speech features or the model parameters to reduce the mismatch

between model and observations.

Vocal tract length normalization (VTLN) has been widely used in speech recognition

both in the context of normalizing data from different speakers as well as in adapting sta-

tistical models to new speakers. These speaker-adapted speech recognition systems have

higher accuracy than their non-adapted versions.

Single-parameter vocal tract length normalization (VTLN) schemes assume that all the

formant frequencies undergo similar changes. These VTLN techniques compensate for

formant variation by a linear scaling of the frequency axis.

However, the variation in formant frequencies among different speakers is far from lin-

ear. Alternate approaches to VTLN, such as those proposed in [52] and [53], use multiple
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parameters for speaker adaptation and normalization, and are more effective than their sin-

gle parameter counterparts.

In traditional speaker adaptation and normalization schemes, the parameters for VTLN

are estimated from a sufficiently large set of training data using maximum likelihood ap-

proaches. Formant variation tend to average out across large number of samples and as a

result, there is an upper limit to the number of parameters that can be used for VTLN.

In the case of an EHMM, each state of the model can be represented by a single point

in feature space, the mean value of its observation distribution. Consequently, the optimal

frequency warping path can be estimated in much finer detail in the case of EHMM.

In the next section, a non-linear, dynamic programming approach to frequency warping

is presented for the calculation of optimal alignment between spectrally similar states of an

EHMM.

4.3.3.1 Dynamic Frequency Warping

Dynamic frequency warping (DFW) is an algorithm that can be used to optimally match

the spectral features of two states in an EHMM using frequency warping. This technique is

based on the premise that two states of an EHMM are similar if their corresponding spectra

can be aligned by frequency warping within a small user-configurable range.

Variation in second and third formants, on average, are larger than those for the first

formant [6]. DFW takes this into account and allow a linearly increasing margin of fre-

quencies for higher formants as shown in Figure 16. The optimal warping path can lie

anywhere within this allowable frequency range and is calculated using dynamic program-

ming.

To compare states of the EHMM using DFW, the mean value of each state in cepstral

domain must be converted back to linear frequency domain [54]. The MFCC coefficients

are generated by sampling the speech spectrogram along Mel-spaced frequency intervals

using the triangular function T , then taking the logarithm of the signal amplitude and finally

calculating the cepstral coefficient by taking its discrete cosine transform denoted by the
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Figure 16: Dynamic Frequency Warping

operator C.

Let mi be the MFCC coefficients representing the mean value of the state i. We can

calculate the mean value si of the state in linear frequency domain using the approximate

inverse operations to T and C.

si = T−1 exp(C−1mi) (15)

The frequency-domain representation of a model state, unlike its MFCC representation,

is sensitive to differences in amplitude. Before calculating the optimal frequency warping

between two states, the mean values must be normalized with respect to energy, using

scaling coefficients ci and c j. The optimal frequency warping F between the two energy-

normalized states can then be calculated using dynamic programming. The l2-norm of the

difference between the optimally warped mean values is taken as the dissimilarity measure

between the two states.

d(si, s j) = min
F

∣∣∣cisi − F (c js j)
∣∣∣ (16)

Formants not only differ in position but also in height and width. Wider formants tend
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Figure 17: Similar states discovered by the DFW-based clustering algorithm

to have lower peak values than narrower ones. DFW between such states at equal energy

can lead to larger dissimilarity measures due to a mismatch of formant heights. Instead

of separately normalizing the energy of each state, a more appropriate constraint would be

to limit the combined energy of si and s j, and to scale them to minimize the dissimilarity

measure. The new scaling factor k can be calculated using gradient-descent search. The

new value of the dissimilarity measure is estimated by iteratively optimizing the values of

k and F .

d(s1, s2) = min
k,F

∣∣∣∣√kcisi −
√

2 − kF (c js j)
∣∣∣∣ (17)

4.3.4 Hierarchical Clustering

We can obtain a dissimilarity matrix for the EHMM by applying DFW between every pair

of states in the EHMM. The distance measure defined in Eq. 17 satisfies the commutative

property and a total of N(N−1)
2 pair-wise calculations are required to populate the dissimilar-

ity matrix for an N-state EHMM.
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Using an agglomerative hierarchical clustering algorithm, states with the lowest dis-

similarity measure are progressively merged together into a single cluster. Clustering can

be stopped when the dissimilarity measure reaches a threshold or when the desired number

of clusters is achieved.

At the end of the clustering phase, states with similar spectral shapes are grouped to-

gether into a single cluster. Figure 17 shows an example of similar states discovered by the

clustering algorithm.
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CHAPTER 5

DESIGN OF VOICE-QUERY-BY-EXAMPLE SYSTEM USING AN
EHMM OF SPEECH

In absence of any time-aligned labeled data for training, observations are grouped into

states of an EHMM based on their proximity in the feature space and exhibition of similar

temporal characteristics. Since most feature sets, including MFCCs, are not invariant to

all speaker-dependent variation, speech segments with the same perceptual characteristics

may occupy distinct regions in the feature space, and consequently, mapped to different

states of the EHMM.

In the last chapter, a number of different schemes have been presented for the discovery

of states with similar spectral or cepstral characteristics. A knowledge of these clusters of

similar states can be used by a VQbE system to construct a improved keyword models with

an ability to search for a wider variety of candidate utterances matching a query.

In this approach, a EHMM-based VQbE system must take into account the one-to-

many relationship between phonemes and the states of the EHMM. A clustering of similar

states is not the only way that a query could be represented with more than sequences of

EHMM states. In some cases, more than one instance of a query may be available, each

corresponding to a different sequence of states of an EHMM. A query must be modeled

in such a way as to allow for its alternate pronunciations while preserving the unique time

characteristics of each pronunciation.

In this Chapter, two different approaches have been proposed to integrate the knowledge

of similarity of EHMM states to leverage the performance of a VQbE system. In the first

approach, similar states of an EHMM are merged together to form a new superstate and

in the process, this merger creates a new EHMM. The second method uses a different

approach and considers the state clustering as a logical construct and preserve the original

structure of the EHMM. The detailed explanation of these methods and their relative merits
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Figure 18: The composition of states of a CISI-EHMM of speech.

are discussed in the next sections.

5.1 A CISI-EHMM of Speech

A single state of an EHMM, when trained in an unsupervised manner, consists of observa-

tions that are perceptually as well as acoustically similar. Using a set of mappings between

phonemes and the EHMM states, an EHMM can be reduced to a context-independent,

speaker-independent EHMM (CISI-EHMM) by merging similar states into a new super-

state.

In a CISI-EHMM, a single state is a perceptual unit of speech and composed of a Gaus-

sian mixtures, each a collection of observations occupying distinct regions in the feature

space.

A CISI-EHMM can convert speech into a form of representation that is invariant to

common contextual and speaker-dependent variations.

In the next section, a procedure is presented to estimate the parameters of an CISI-

EHMM given the mappings between phoneme and states of an EHMM.
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5.1.1 Estimating the Parameters of the CISI-EHMM

The new EHMM is defined by the parameters (π′, A′, B′). These parameters can be esti-

mated from the parameters of the initial EHMM (π, A, B) and the result of the state classi-

fication.

The classification of EHMM states can be carried out in a supervised manner or any of

the unsupervised clustering schemes presented in the last chapter. The classification of the

N states of an EHMM is represented with M classes C1,C2, · · · ,CM, where each class is a

set of indices of the states of the EHMM.

An EHMM has a stationary distribution π such that

πAn = π. (18)

The elements of π are equal to the probability of occupancy of a particular state, i.e.,

πi = Pr(q = si). Since an EHMM is aperiodic and irreducible, from the fundamental

theorem of the Markov chain, the stationary distribution exists and is unique. It can be

calculated by taking the left eigenvector of the transition matrix A corresponding to an

eigenvalue of 1.

The stationary distributions π′ for the new CISI-EHMM can be directly calculated from

the stationary distribution of the original EHMM. For a superstate Ci in the new EHMM,

the stationary distribution π′i is given by Equation 19.

π′i =
∑
j∈Ci

π j. (19)

The distribution of observations corresponding to a state of the CISI-EHMM can be

represented with a mixture of Gaussian distributions. The individual Gaussian distributions

have been estimated during the training of the original EHMM. However, these distribu-

tions are not all equally probable and each can be assigned a weight to reflect this fact. In

the CISI-EHMM, the weight wi of each state can be assigned according to the likelihood

of each state.
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wk = Pr(sk | Ci) =
Pr(sk)
Pr(Ci)

=
πk∑

l∈Ci
πl
. (20)

The emission probability b j(ot) can then be calculated as

bi(ot) =
∑
j∈Ci

w jN(ot; µ j,U j), (21)

where µ j, and U j are the mean and covariance of the jth state in the original EHMM.

The state transition matrix determines the probability of transition between any two

states. The original state transition matrix is of size N × N with the (i, j) element equal to

the probability of transition from state i to state j. The sum of probabilities in each row

of the transition matrix must be equal to 1. In the modified EHMM, the N states of the

original EHMM have been grouped into M classes, leading to a new transition matrix of

dimensions M × M for the CISI-EHMM.

A state transition from one state of the same class to another is considered as a self-

transition. Similarly, all the state transitions from any of the states in one class to any of

the states in another must be considered to calculate the transition probability from class i

to class j.

a′i j =
∑
k∈Ci

Pr(sk | Ci)
∑
l∈C j

akl =

∑
k∈Ci

∑
l∈C j

πkakl∑
k∈Ci

πk

(22)

5.1.2 Keyword Model and Keyword Search Algorithm

The VQbE systems proposed in Chapter 3 can be used, without any major modifications,

for keyword search using a CISI-EHMM of speech. The only difference between these

EHMMs is that states with single Gaussian distributions have been replaced with super-

states having a distribution modeled by a mixture of Gaussians. A query can be represented

with a left-right HMM and keyword search can be carried out using the standard Viterbi

algorithm.
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The HMM model of a query consists of a number of superstates connected in a left-

to-right fashion. The observation distribution of the new superstates accurately reflect the

non-linear distribution of acoustic units of speech. However, the merger of states of an

EHMM does not preserve the individual state transition probabilities. As discussed in

Chapter 2, the conditional entropy of an EHMM of speech is very low. For most of the

EHMMs trained in this research, the conditional entropy is found to be close to 2 bits. The

low value of entropy is an indication of the high short-term correlations in speech. These

short-term correlations lead to sparse connectivity among the EHMM states.

The elements of a superstate have in common certain similarities in cepstral or spectral

domains. However, these states may have significantly different state connectivity. For

example, states within a single cluster that correspond to different speaker groups could

very well be isolated from each other.

The distinct transition probabilities of these states retain the time-evolution of the utter-

ances that they model. These transition probabilities give an EHMM-based VQbE system

the ability to distinguish among observation sequences based on their time characteristics.

The merger of these states lead to a loss of information, replacing the individual state tran-

sition probabilities of the original EHMM with ones averaged from a number of states.

In the next section, an alternate VQbE system is presented that has been particularly

tailored to preserve both the spectral as well as temporal characteristics of individual states

in an EHMM while retaining the ability to model individual segments in utterances with

multiple EHMM states.

5.2 Graphical Keyword Model and 3D Viterbi Algorithm

In conversational speech, there are large variations in the pronunciation of an utterance.

Speakers from different dialect groups pronounce certain phonemes differently. In some

cases, phonemes may be added or omitted altogether from the pronunciation of an utter-

ance.
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Figure 19: Statistical model of keyword based on an EHMM of Speech

It is not difficult to see that different instances of the same utterance may correspond

to different state sequences. Left-right HMMs are restrictive in the sense that they always

assume that the same sequence of states constitutes an utterance.

We propose a keyword model that reflects the fact that utterances and phonemes gen-

erally form sub-structures consisting of a number of states of the EHMM. The graphical

keyword model consists of a sequence of sets of states of the EHMM. Each set in the se-

quence may contain a number of states corresponding to different realizations of a speech

segment. While the keyword model has a sequential structure, a state in a particular tier can

be connected to any state in the same set or adjacent sets in the model, each with a different

transition probability.

Figure 19 shows an example of such a keyword model for an utterance. In this example,

the first phoneme of the utterance has two different forms modeled by the two states in

the first set in the keyword model. This example also illustrate how an added or omitted

phoneme can be modeled in this scheme.

In contrast to LRHMM, the graphical model based on an EHMM is richer in detail

and captures a wider range of information about the utterance. Since the elements of the

graphical keyword model are states of the EHMM, the statistics of each state are estimated

using all the training data unlike LRHMMs where models are trained individually using

separate training data.

The precision of a keyword search algorithm can be improved significantly by using a

background model. An added advantage of proposed approach is that both the keyword

model and the background/filler model can be generated from the states of EHMM. The

80



states that are not part of the keyword model become the filler or background model. In

contrast, background models must be trained separately for LRHMMs.

5.2.1 A 3D Viterbi Algorithm

The proposed keyword model may have multiple entry and exit points, with multiple paths

joining each pair of entry and exit points. Likelihood score calculations cannot be done

using the traditional Viterbi algorithm due to the presence of additional paths in the pro-

posed keyword model. However, recast in three dimensions, the likelihood score of an

observation sequence can be calculated recursively using the proposed keyword model.

Let an utterance be represented by a sequence of set of states q = (q̄0, q̄1, q̄2, . . . , q̄M)

where q̄i is the ith set in the keyword model. The states in the model are connected with

each other according to the state transition matrix A. Instead of a two-dimensional lattice

structure, a three-dimensional lattice is used with the alternate states in a set being repre-

sented along the third dimension. Figure 20 shows the modified lattice structure for the

modified Viterbi algorithm.

The Viterbi algorithm is relatively unchanged with the main difference being that now

a node in the lattice can be reached from all the nodes corresponding from the same set or

from the preceding set. Let y j be a state in set Y and xi be a state in the preceding set X,

then the log-likelihood score at Y is given by

δt(Y) = [max
i, j

(δt−1(xi)axiy j , δt−1(y j)ay jy j)]by j(ot). (23)

In the original Viterbi algorithm, there were only two transitions at each node - a self

transition into the same node and a transition from the previous node in the LRHMM to

the current node. Hence, the keyword search could be performed in order of Θ(MT P)

operations when the test set consists of P frames of speech data, T being the size of each

window and M the number of states in the LRHMM of keyword.

If implemented directly, the added dimension of the lattice considerably increases the
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Figure 20: A three-dimensional lattice for graphical keyword model

algorithm’s computational complexity. The number of nodes in each window of the modi-

fied lattice increases to N × M × T nodes where N is the average number of states in each

set. Furthermore, at each node, there are 2N possible state transitions, increasing the total

computational cost of the keyword search algorithm to Θ(N2MT P).

5.2.2 Length-normalized Optimality Criteria

We have assumed so far that the observation sequence contains a perfectly aligned occur-

rence of the keyword. However, when processing continuous speech, the start and end

positions of a matching utterance are not known in advance. One way to circumvent this

problem is to assume that all the occurrences of the keyword have the same length as the

original template.

In this sliding-window approach, a keyword-sized window of observations is processed

by the Viterbi algorithm to calculate the likelihood that it is emitted from the keyword

model. The starting position is then advanced by one frame. It is obvious that this process

is computationally very expensive. Another downside to this approach is the presence

of multiple hits near a matching candidate. As a matching candidate starts to enter the

window used by the Viterbi algorithm, the log-likelihood score gradually increases until

it reaches the peak when the candidate is optimally aligned to the search window. As a
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Figure 21: The Viterbi window for a hypothetical match

consequence, the likelihood scores must be filtered to remove duplicate high scores from a

single candidate.

Considering the large temporal variations in conversational speech, it would be imprac-

tical to assume that all the realizations of a given utterance would have the same length.

As the likelihood Pr(ot | qi) will always be less than or equal to 1, uncertainty can only

increase as more and more observations become part of the optimal path. The optimality

criteria used by the Viterbi algorithm, i.e., the sum of log-likelihood of an observations

sequence, always favor the shortest possible length of the optimal path. Hence, the obser-

vation sequence that maximizes the log-likelihood may not always be the same sequence

that contains the actual candidate.

5.2.3 Length Estimation

The lattice structure and the mapping of the observation sequence to a sample 3-state key-

word model can be seen in Figure 21. The optimal path in the lattice corresponding to the

true position of the utterance is represented by the dark nodes connected by solid lines. In

this example, the length of the sliding window is 9 while the true candidate length is 7. It

is obvious that the likelihood score at t = 9 is not truly representative of the candidate and

would be smaller than the true score of the candidate. Similarly, the likelihood score will

be maximum at t = 5, again not indicative of the true score of the keyword.

However, if the likelihood score is normalized with respect to the observation length and
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given that the observations samples from time t = 6 to t = 9 have a log-likelihood score

that is greater or equal to the running average up to that point, then the length-normalized

likelihood score would be maximum at t = 7, the true length of the candidate utterance.

This suggests a mechanism for estimating the true length of a candidate utterance. In-

stead of maximizing the sum of log-likelihood of a fixed length observation sequence, the

observation sequence that has the highest log-likelihood, considering its length, is selected.

In its simplest form, this measure is δT (M)
T . A more general form of this measure would be

δT (M)
T L where the parameter L can be used to favor shorter or longer candidates.

5.2.4 Fast Viterbi algorithm using Token-passing

In addition to estimating the length of a candidate keyword, the use of length-normalized

likelihood can significantly reduce the computational complexity of the modified Viterbi

algorithm.

In the sliding window approach, the lattice structure is populated for a window of ob-

servations and the Viterbi algorithm is calculated in isolation for this set of observations.

All the paths that reach a given node have originated from a single starting index and hence

have the same length. The path having the highest likelihood is retained while all the other

paths are discarded.

If the log-likelihood score is normalized with respect to length, then it can also be used

to select the best path among those originating from different starting indices. We can

achieve significant computational improvement by using the length-normalized optimality

criteria at all the nodes of the lattice and not just at the one corresponding to the last state of

the keyword model. Instead of applying the Viterbi algorithm on a window of observations

and advancing this window one frame at a time, we can populate a single lattice for the

entire observation sequence. The Viterbi algorithm can be applied only once on this lattice

and can be used to select and propagate the paths that are optimal considering their length.

To do this, however, the algorithm must keep track of the length of each path. This can
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Figure 22: The token-passing algorithm

be achieved by a token passing approach. Figure 22 illustrates the token-passing mecha-

nism in the modified Viterbi algorithm.

It can be seen in Figure 22 that a new path is initiated at each frame by creating a new

token. The token contains the log-likelihood of the path, which at this point is equal to

Pr(oi|q1), and its initial length. At each node in the lattice, the token having the higher

length-normalized log-likelihood would be chosen; the log-likelihood is updated in the

same manner as in the standard Viterbi algorithm and the length field in the token would be

incremented. The token is then forwarded to the adjacent nodes in the lattice until it reaches

the last row, corresponding to the last state of the keyword model. At the end of this phase,

each of the nodes in the last row of the lattice contains the token with the log-likelihood

and length of each optimal path terminating at that node.

The reduction in the complexity of the algorithm due to token passing is significant.

While the sliding window approach has M × T number of operation for each window

leading to a computational complexity of Θ(MT P) for P frames of data, the token-passing

approach only require computations to the order Θ(MP).

The token passing algorithm also offers a simple mechanism for filtering the duplicate
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results due to a single matching candidate. The optimal path that reaches the last row

annihilates not only the sub-optimal paths from the same starting frame but also those

emanating from neighboring frames. Also, in the last row of the lattice, more than one

node in a neighborhood may still share a segment of the optimal path and have the same

starting index. One such example is illustrated in Figure 21 where the nodes in the last row

at indices 5, 6, and 7 are part of the same optimal path and have the same starting index.

Using the length field of the token, the start index of each optimal path can be traced back

to the starting frame, and all the tokens except the one having the largest length-normalized

log-likelihood can be discarded.

The final form of the proposed keyword search algorithm incorporate the three-dimensional

lattice structure along with the token-passing mechanism to efficiently scores observation

sequences based on a length-normalized optimality criterion. The proposed algorithm not

only returns a likelihood score for each observation sequence but also provides an estimate

of the length of each candidate sequence.
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CHAPTER 6

EXPERIMENTS AND RESULTS

A framework for developing a Query-by-Example system based on an EHMM model of

speech has been presented in this research. EHMMs are easy to train and significantly

reduces the dimensionality of the problem by modeling speech with a number of hidden

states connected in a Markovian fashion.

The states in an EHMM consists of observations with similar acoustic and perceptual

qualities. Nevertheless, a single phoneme could be mapped to more than one state of an

EHMM due to the nonlinear distribution of observations and the unsupervised nature of the

training. In Chapter 4, two different clustering schemes for the identification of perceptu-

ally similar states of the EHMM were introduced. In Chapter 5, a framework for a VQbE

system based on an EHMM of speech has been presented. The framework consists of a

graphical keyword model for queries and a modified 3D Viterbi search algorithm to take ad-

vantage of the proposed keyword model. The graphical keyword model can be constructed

from multiple examples of a query or it can incorporate the phoneme-to-states mappings to

generate a robust model of the query that is invariant to most speaker-dependent variations.

No matter how good a VQbE may look on paper, the true value of an approach can only

be measured by testing it on natural continuous speech. The experiments that were carried

out to evaluate the different clustering schemes, keyword models, and search algorithms

are the focus of the current chapter.

The experiments can be divided into two categories. A VQbE system is a complex

system that employs a large number of parameters to control different aspect of speech

modeling and keyword search. These parameters may range from the obvious model pa-

rameters, such as the number of states in an EHMM and the number of mixtures within

a state, to the not so obvious ones, such as the slope and offset variables controlling the

optimal path during the Viterbi algorithm. These parameters must be optimized in order to
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achieve the true potential of an VQbE system.

The initial set of experiments were performed on the TIMIT corpus to take advan-

tage of the availability of time-aligned word and phoneme labels. The primary goal of

these experiments were to find the optimal configurations for a particular approach. These

configurations were used for the comparison of the systems based on different clustering

schemes. The VQbE system with the highest precision in these experiments was then used

in the second group of experiments.

The second part of the chapter focuses on the comparison of the proposed VQbE system

with the current state-of-the-art in the field of zero-resource VQbE. Over the last few years,

a number of databases have been introduced to serve as a unified platform for development

and evaluation of zero-resource VQbE systems. The EHMM-based system, developed in

this research, has been evaluated on two such databases, i.e., the JHU CLSP isolated word-

pair recognition task and the MediaEval 2013 Spoken Web Search database. The task

descriptions, observations and results for these experiments are described in the second

part of this chapter.

6.1 Comparison of Different Clustering Schemes

The primary goal of this set of experiments was to investigate the effects of different clus-

tering schemes on the precision of VQbE systems. These clustering schemes have been

proposed to address the speaker-dependent variations in state sequence representation of

speech segments.

The TIMIT Corpus contains phonetically rich speech from a large number of speakers.

The variety of speech and the size of the database is adequate for the exploratory nature of

these experiments. Furthermore, time-aligned word and phoneme labels for the utterances

simplify and expedite the evaluation process.

In the first phase of these experiments, an initial benchmark was established using the

traditional Viterbi algorithm and left-right HMMs of the queries. The second phase of these

88



experiments were carried out with the graphical keyword model of queries constructed with

the help of different clustering schemes.

Two different schemes have been proposed in this research to identify and group states

of an EHMM with similar spectral characteristics. The first method is a form of nearest-

neighbor clustering and uses the distance between the mean values of states in the feature

space (cepstral domain) for state mergers. In the second approach, two states are deemed

similar if their spectral representations can be mapped through an identity-preserving fre-

quency warping.

For each query in the evaluation set, graphical keyword models were constructed us-

ing each of the clustering schemes. These keyword models were then used for keyword

search using the 3D Viterbi algorithm and the precision measures observed for each system

were recorded and compared with the initial benchmarks. The details of these experiments

including the test setup, evaluation metric, graphical keyword model derivation and the

results of the experiments are presented in the following sections.

6.1.1 Test Setup

The TIMIT corpus is composed of two parts; approximately 3 hours of training data and

1.5 hours of speech for test purposes. The separation of the corpus into training and test

sets is aimed at supervised speech recognitions systems. In these systems, the training data

is used to train keyword or phoneme models which can then be evaluated on the test set.

An EHMM, on the other hand, has a completely different training methodology which does

not rely on any linguistic resources. Taking this fact into consideration, the training and test

sets were combined for these experiments.

An EHMM with 256 states was trained using the combined TIMIT data. This EHMM

was the largest EHMM that could be trained without the loss of states during training.

The redundant states in an EHMM is an indication that the number of states in the model

is larger than that required to model the data. These redundant states will exponentially
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increase the computational complexity of the search algorithm without making any im-

provements in the speech model.

The number of queries chosen for the trials were comparable to that reported in similar

studies [30][18]. The system developed in [30] was based on posteriorgrams of phoneme

models trained in supervised manner and the test setup consisted of 40 queries and 6 hours

of test data from the Fisher Corpus. The system described in [18] was unsupervised in

nature, with the evaluation set composed of 30 queries and 7,375 utterances from the MIT

lecture corpus [55].

In the following experiments, the evaluation set of queries is composed of 60 utter-

ances, ranging in length from 3 to 11 phonemes. Keywords were divided into three groups

according to the number of phoneme in each utterance. The first group consisted of key-

words with 3-5 phonemes while the second and third group had 6-8 and 9-11 phonemes

respectively. The average number of occurrences of each keyword in the test set was 19.85.

6.1.1.1 Evaluation Metric

The metric used to evaluate the precision of the systems in [30][18] have been P@N, and

P@10. For a systems which returns a ranked list of candidates, P@N stands for the average

precision of the top N candidates and would represent the point on the precision-recall curve

where precision and recall are equal to each other. Similarly, P@10 is equal to the average

precision of the top ten results returned by the system.

The calculation of these measure require inspection of a small number of top hits from

a system and would be convenient in a scenario where an exhaustive evaluation of the result

cannot be carried out automatically due to lack of labeled data. However, these precision

measures provide a snapshot of the system at a single point on the precision-recall curve.

A finer level of detail about the accuracy of the system can be observed by plotting the

probability of detection, i.e., the fraction of the total candidates that have been found against

the number of false positives that have been encountered. Although, this plot does not paint

as complete a picture of the system precision as Receiver Operating Characteristics (ROC)
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or Detection Error Tradeoff (DET) [56], this plot covers in sufficient detail the area of

interest for most practical applications.

6.1.1.2 Derivation of Graphical Keyword Models

For the initial benchmark, left-right HMMs of the queries were constructed using the most

likely EHMM state sequence corresponding to each query. Multiple consecutive occur-

rences of a state in the sequence were replaced by a single state to condense the sequence

into a left-right HMM of the query. The state transition probabilities of the states in the

left-right HMM were derived from those in the EHMM. Specifically, the self-transition

probability aii of ith state in the left-right HMM, which is related to the average duration of

a state, is set equal to the value in the EHMM and the probability of transition to the next

state is set to 1 − aii.

The graphical keyword models can be constructed with the help of the left-right HMMs

developed in the last step and the hierarchical clustering of the states described in Sec-

tion 4.3.4. The clustering schemes described in Chapter 4 groups together states that are

perceived to be similar based on some similarity measure.

The left-right HMM of a query can be converted into a graphical keyword model by

replacing each state in the left-right model with all the states from the same cluster. Each of

added state retain their statistics, observation densities and transition probabilities, from the

original EHMM. The resulting graphical keyword model may have more than one terminal

states and potentially multiple paths connecting each pair of terminal states. This graphical

model can then used for keyword search using the three-dimensional Viterbi algorithm.

6.1.2 Nearest-neighbor Clustering Scheme

In these experiments, the clusters of states used for construction of the graphical keyword

models were obtained by nearest-neighbor clustering of states in the cepstral domain [57].

There are a number of different configurations in which such a clustering could be used for

keyword model generation.
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Cluster Group 1 Group 2 Group 3
size DMS DMD DMS DMD DMS DMD
256 29.58 40.05 56.90
224 16.40 17.96 38.54 39.04 62.50 62.54
192 15.33 16.90 36.97 36.62 60.88 60.30
160 13.50 15.22 37.98 37.98 59.18 57.46
128 13.28 13.36 35.22 34.18 52.35 53.42
64 11.52 11.87 33.66 32.67 47.80 49.83

Table 2: Probability of detection for different clustering schemes.

The states of the original 256-states EHMM were merged in a agglomerative hierarchi-

cal clustering scheme with the initial number of clusters equal to the number of states in the

EHMM. Each subsequent state merger resulted in a modified model with the total number

of clusters one less than before. A number of these models with different total number of

clusters, each at an intermediate step during the clustering, were used to generate graphi-

cal keyword models and the recall rates of the corresponding systems were tabulated as a

function of the number of clusters in the model.

The core 13-coefficient MFCC correspond to the spectral shape of a speech segment

while the velocity and acceleration coefficients represent the time evolution of these coef-

ficient. The addition of time derivatives of the cepstral coefficients have been reported to

significantly increase the precision of speech recognition systems. As discussed in Section

4.3.2, both 13-dimensional static (DMS) coefficients as well as full 39-dimensional cep-

stral (DMD) coefficients were used for clustering and the recall rates of the corresponding

systems were computed for speech models with different number of clusters.

The fraction of true positives discovered by the system at a rate of 10 false positives per

hour, for different distance measures and cluster sizes is listed in Table 2. As discussed in

Section 6.1.1, system recalls at different rates of false positives were calculated separately

for different keyword groups.

The statistics in Table 2 reveal the detection probability of the system to be slightly
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Figure 23: Detection probability for queries in Group 3.

higher when the full 39-dimensional MFCC (DMD) were used for clustering. The differ-

ence is recall, though small, is consistent across the different configurations of the systems.

This observation reinforces the notion that the addition of time-derivatives of the cepstral

coefficients increases the precision of speech recognition systems.

As expected, detection probability for a particular system was different for different

keyword groups. Relatively higher recall rates were observed for longer utterances at the

same error threshold, with the system recall dropping significantly for keywords in Group

1.

Another trend that can be observed in Table 2 is that the probability of detecting a true

positive for a system declined with a decrease in the total number of clusters. System recall

for speech models with number of clusters equal to 160, 192, and 244 were higher than

that of the left-right models for the queries in Group 3 (Figure 23). For every other group,

the overall detection probability actually decreased relative to the system using left-right

HMMs.

When averaged across the keyword groups, the fraction of queries found at a false

positive rate of 10 per hour was equal to 0.4112 for speech model with 224 clusters, and

0.4013 and 0.4046 for EHMMs with total clusters equal to 208 and 192. This figure was
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Clusters Group 1 Group 2 Group 3 Overall
256 29.58 40.05 56.90 42.18
224 17.58 40.23 70.48 42.76
192 18.00 41.49 72.22 43.90
160 16.25 42.09 72.14 43.49
128 15.69 42.20 71.4 43.10
64 16.09 42.40 72.86 43.78

Table 3: Probability of detection for different cluster sizes and clustering schemes.

0.4218 for the system using left-right HMMs of the queries.

The result of the experiments conducted on the system based on DFW clustering is

presented in the next section, and a detailed analysis of the results is carried out in the

subsequent section.

6.1.3 Clustering using Dynamic Frequency Warping

In contrast to the nearest-neighbor clustering scheme that was based on proximity of states

in the cepstral domain, the states of the EHMM in this approach are compared in linear

frequency domain. The spectra of two states are mapped to each other through dynamic

frequency warping. Dynamic frequency warping is an identity-preserving operation that

attempts to warp the two spectra within a limited frequency interval in order to minimize

the mean square error between them.

The probability of detection, at an error rate of 10 false positves per hour, for systems

based on EHMMs with different number of clusters is given in Table 3.

System recalls for these systems are much higher than that observed for EHMMs based

on nearest-neighbor clustering in cepstral domain. The overall detection probabilities for

the systems would have been even higher if not for the queries in Group 1.

The gain in the detection probability by the addition of new states in the keyword model

is clearly correlated with the length of a query. The graphical keyword models led to the

highest improvements in system recall for longer queries, a slight increase of keywords of

medium length and the detection probability actually dropped for the queries in Group 1,
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Figure 24: Plot of true positive rate for keyword group 3.

which are 3-5 phonemes long.

The overall recall of the system peaked for the speech model with total number of

clusters equal to 192. The precision measures, otherwise, exhibit similar characteristics

to those for nearest-neighbor clustering. The detection probabilities of the systems, for

queries in Group 3, at a false detection threshold of 10 errors per hour is shown in Figure

24. For comparison, the values observed for nearest-neighborhood clustering scheme are

also shown in dotted lines.

6.1.4 Comparison of Clustering Schemes

The results of the experiments in the last sections reveal a number of similar trends for both

the systems. System recall at any given false positive rate, was directly proportional to

the length of a query. For the shortest queries in the test set, detection probability actually

declined for both the clustering schemes.

This pattern can be attributed to a number of different factors. Shorter queries are

generally composed of a smaller number of states and there is a larger impact on the overall

log-likelihood score of a candidate by a match or mismatch of a single state in the model.

For example, a change of a few frames may convert the utterance “bat” to “pat.” On the

contrary, longer utterances can still be identified if a small number of frames are masked or
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replaced.

Moreover, shorter speech sequences are encountered more frequently in speech than

longer utterances. Consequently, shorter queries tend to have a larger number of similar-

sounding false positives. Moreover, shorter utterances are often part of other longer utter-

ances. For example, one of the keywords in the test set “age” is also part of other longer

utterances such as “voltage,” “heritage,” and “percentage” but these speech segments would

be marked as false by an evaluation scheme dependent on word transcriptions of the utter-

ances. These speech segments are acoustically identical and can only be differentiated by a

language model. Hence, the precision of the current systems can be improved by utilizing

a language model at a higher layer to differentiate between such word pairs.

In context of keyword search, the states that are part of a keyword model define the ob-

servation space of the query while the remaining states constitute the background model.

The expansion of the keyword model with the states from the same cluster, increases the

allowable range of observations for a given segment of speech. While this addition ac-

commodates larger variations in a speech segment, it also increases the likelihood of false

positives. For longer keyword lengths, the advantages of expanding the keyword model

outweighs its disadvantages, resulting in higher system precision. For shorter keywords,

on the other hand, expanding the keyword model significantly reduces the system precision

because of the large number of false positives that enter the keyword model space, some of

them potentially acoustically indistinguishable from the query.

These experiments revealed a clear winner in terms of precision. The VQbE systems

based on DFW-clustering had a higher recall at the same values of false positive rate than

those based on nearest-neighbor clustering in every configuration. The DFW-based systems

consistently outperformed their counterparts at every cluster size and for every keyword

group.

The outcome of the experiments is not unexpected and has been partly explained in
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Section 4.1. A nearest-neighbor clustering scheme is based on the assumption that obser-

vations in close proximity of each other are similar and different classes of these observa-

tion occupy non-overlapping regions in feature space. Both of these assumption may not

be true in the case of MFCC features. The discrete-cosine transform used in the calcula-

tion of cepstral coefficients is not shift-invariant. The formants, on the other hand, vary

in frequencies for different speakers. Furthermore, the different formants may undergo

different frequency shifts for different speakers [6]. Hence, a non-linear shift in formant

frequencies may result in similar observations occupying distinct regions in space. While a

nearest-neighbor clustering scheme, in theory. may eventually unite these distinct observa-

tions into a single class through a chain of intermediate observations, the different classes

must have non-overlapping observation densities in order to do so. In speech, however,

different phonemes are often overlapped as in the case of diphthongs and stop consonants.

A nearest-neighbor clustering scheme, while effective for a more speaker tolerant feature

sets, did not perform as well for MFCCs.

DFW-clustering, on the other hand, is a feature-independent scheme. The mean val-

ues of EHMM states are transformed back to frequency domain where their correspond-

ing spectra are compared. The dynamic frequency warping algorithm performs a formant

matching within a user-configurable frequency range. The results in 3 confirms the success

of DFW-clustering in identifying perceptually similar states of the EHMM.

There is a strong correlation between the number of clusters in an EHMM and the

precision observed for these systems. The hierarchical clustering scheme merges clusters

with the shortest distance between them. States involved in earlier mergers are more likely

to be similar to each to each other than those in subsequent mergers. As a result, the gain

in precision of the system would be higher from these relevant states than the later ones.

It can be seen from Tables 2 and 3 that the number of clusters that led to the highest

precision is different for both schemes. For the systems based on nearest-neighbor clus-

tering, system precision declined with a reduction in the total number of clusters in the
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EHMM. This indicate that only the first few state mergers may potentially have contributed

positively to the detection probability of the system and most of the later addition only

degraded the precision of the system.

In the case of DFW-clustering, on the other hand, the EHMM with 192 clusters led

to the highest observed precision. This particular EHMM has been formed after 64 state

mergers of the original 256-state EHMM. This fact, and the overall precision of the systems

based on DFW suggest that DFW-clustering leads to a better clustering of states of the

EHMM.

6.2 Experiments on JHU CLSP Word Collection

In summer of 2012, a multidisciplinary workshop was held at Center of Language and

Speech Processing at Johns Hopkins University on the topic of “Zero-Resource Technolo-

gies and Models of Early Language Development.” One of the goals of the workshop was

to identify a unified evaluation framework for speech recognition systems that should be

relevant across multiple disciplines. Towards this goal, an isolated word collection, with

around eleven thousand words, was created.

A number of approaches consisting of different speech features as well as keyword

models were implemented and tested on the word collection. Features such as MFCC, PLP

and Intrinsic Spectral Analysis (ISA) [49] were used to represent utterances which were

compared using Dynamic Time Warping algorithm. In these template-based approaches,

the frame-to-frame comparisons were carried out using cosine product and symmetric KL-

divergence. In addition to the template-based approaches, systems using GMM [18] and

non-parametric Bayesian (NP Bayes) approach [58] to model speech were also investi-

gated.

6.2.1 Test Setup

In addition to the creation of a word-collection, the workshop proposed a recognition task

for the evaluation of different speech recognition systems.
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Let M be the utterances W = wi
M
i=1 in the word collection where each word wi =

x1x2...xTi , xt ∈ Rd is a Ti-length sequence of d-dimensional observation vectors.

The word collection has been designed with DTW-based systems in mind using a

symmetric similarity/distance measure. As a result, it is assumed that there are M×(M−1)
2

(around 60 million) unique word example pairs in the collection. Any word pair, (wi,w j) ∈

W ×W, i , j, can only have the following four combination of words.

1. C1: Same word, same speaker (SWSP).

2. C2: Same word, different speakers (SWDP).

3. C3: Different word, same speaker (DWSP).

4. C4: Different word, different speakers (DWDP).

By design, |C1| � |C2| � |C3| � |C4|. Hence, the number of instances of the same

word spoken by the same speaker is much smaller than instances of same words spoken by

different speakers. The majority of the word-pairs would consists of different utterances

spoken by different speakers.

The similarity or dissimilarity between a word pair is calculated using dynamic time

warping. A word-level dissimilarity or similarity matrix is calculated using length-normalized

dynamic time warping distances. For a particular threshold, the detection is deemed suc-

cessful if both the utterances in a word-pair returned by the system belong to the same word

class. These utterances may or may not be spoken by the same speaker. Similarly, if the

word-pair returned by the system consists of different word types, then it will be treated as

a false positive.

6.2.2 Evaluation Metric

This dissimilarity or similarity matrix obtained in the last section is used to calculate the

average precision (AP) of a system.

Average precision is defined as:
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AP =

ˆ 1

0
p(r)dr. (24)

The word-pairs are sorted into a single list of 60 million word-pairs using their similar-

ity/distance scores. Since the precision-recall curve is discrete in this case, the integral in

Equation 24 is replaced with a summation. The final form of the equation for the discrete

precision-recall curve is given below:

AP =
1
M

N∑
k=0

p(k)rel(k). (25)

In the above equation, N denotes the number of elements in the sorted list of candidates

and M is the number of true positives in this list. The precision at the kth element is denoted

byp(k) and rel(k) is an indicator function and is equal to 1 if the kth element is a true positive

and 0 otherwise.

6.2.3 Issues Specific to HMM-based Systems

The systems implemented and evaluated at JHU CLSP workshop 2012 used cosine product

and symmetric Kullback-Liebler divergence to compare corresponding frames of utterances

in a word example pair.

Cosine product is a similarity metric whereas the symmetric KL-divergence is a dis-

tance metric but both these measures satisfy the symmetry property. A similarity or dis-

tance measure will satisfy the symmetry property if d(x, y) = d(y, x). As a result, the order

in which the two utterances appear in a word example pair will not affect the outcome of

the measurement.

In a VQbE system based on an EHMM of speech, on the other hand, a query is used

to construct a (graphical) keyword model which is then used to calculate the likelihood

that an observation sequence is generated by the keyword model. For a word example pair

A-B, the likelihood of utterance B given a keyword model of A will not be the same as the

likelihood of observation sequence A given a keyword model of B. In fact, the observation

100



Figure 25: Lattice Structure for DTW

sequence used to generate the keyword model is not guaranteed to be the one with the

highest likelihood for the given model. Consequently, the number of unique word example

pairs in the current setup will be twice that for systems in [40].

The similarity (cosine product) and dissimilarity (Symmetric KL-divergence) measures

used in the JHU workshop have another desirable property that is advantageous for the

calculation of a single average precision for a system. The range of values for both co-

sine product and KL-divergence is much smaller than log-likelihoods. Subsequently, the

range of variations in the scores of word example pairs is much smaller when either cosine

product or KL-divergence is used compared to log-likelihoods.

The overall similarity (dissimilarity) measure between two utterances is calculated us-

ing the DTW algorithm. Let l1 and l2 be the lengths of two utterances in a word example

pair. The lattice generated for the algorithm would consist of l1 × l2 nodes, and the node

at ith row and jth column in the lattice would contain the local similarity/distance measure

between frame i of first utterance and frame j of the second utterance. The optimal path

connects the nodes at (1,1) and (l1, l2) and has the largest (smallest) possible sum of lo-

cal frame-to-frame similarity (distance) scores among all the possible paths connecting the

terminal nodes in the lattice.

Let N be the number of lattice nodes in the optimal path. Given that there are no
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restriction on horizontal or vertical steps, the number of nodes in this path would be at

least equal to largest of l1 and l2, and cannot be greater than l1 + l2. Hence, the total

similar/distance measure between two utterances cannot be less than 0 or greater than N,

assuming the local metric has a value between 0 and 1.

The similarity/distance measure between two utterances in this scheme would be a func-

tion of the lengths of the two utterances. The similarity score between two short utterances

would be smaller than that for two utterances with the same level of similarity but longer

lengths. In order to get a true estimate of the average precision, the scores must be ranked

according to their similarity and this score must not be influenced by the lengths of utter-

ances in the pair.

The systems in the JHU Workshop normalized the scores by dividing the similar-

ity/distance score for each word example pair by the sum of their lengths l1 + l2. The

selection of l1 + l2 as a normalizing factor is interesting since it is an upper bound on the

number of nodes N in the optimal path. The optimal path is more likely to be closer to the

diagonal connecting the terminal nodes of the trellis for similar word pairs. However, the

normalizing factor l1 + l2 led to a higher value of average precision than the true value of

N, during the reproduction of results in this research.

6.2.4 Results

The average precisions for different systems studied at JHU Workshop are presented in

Table 4. The score for the EHMM-based system, which was not part of the workshop, has

also been added to this list.

The average precision observed for the EHMM-based system is 35.1%. As discussed in

the last section, the number of word-example pairs processed by the EHMM-based system

is two times the number of word-example pairs in the original DTW-based systems in the

workshop.

The precision of the EHMM-based system is higher than any of the template-based

systems except for the ISA features. Furthermore, the EHMM-based VQbE system also
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Table 4: Average precision of an EHMM-based system vs. systems evaluated at JHU
Workshop.

Representation Metric Average Precision
EHMM log-likelihood 0.351

ISA cosine 0.496
PLP cosine 0.348

MFCC cosine 0.338
MFCC+NB Bayes (507 units) symm KL 0.445

MFCC+GMM UBM (507 units) symm KL 0.271
MFCC+GMM UBM (50 units) symm KL 0.236

ISA+NB Bayes (507 units) symm KL 0.464
ISA+GMM UBM (507 units) symm KL 0.447
ISA+GMM UBM (50 units) symm KL 0.332
English NN Posteriorgrams symm KL 0.846

scored a higher average precision than both the 50-component and 507-component GMM-

based systems using the same (MFCC) features.

The precision of every system based on ISA features, on the other hand, is higher

than any of the systems based on MFCC or PLP features. Nevertheless, the EHMM-based

system, which uses MFCC features, scored a higher average precision than a 50-unit GMM

UBM using ISA.

An EHMM is a feature-independent statistical modeling scheme and can be trained on

any speech features including ISA. It would be futile to compare an EHMM-based system

using one feature set to an alternate speech modeling schemes that uses any other feature

set, such as ISA.

An EHMM-based VQbE is a clear winner when compared to any of the GMM-based

system. However, it scored lower than the non-parametric Bayesian model of speech. To

reiterate, an EHMM-based system processed a collection of word example pairs that is dou-

ble in size to that processed by other systems and it also suffers from score normalization

issues arising from the use of log-likelihoods.

In order to investigate the extent of degradation in precision due to issues rooted in score

normalization, the mean average precision for the set of trials was calculated in the case
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of EHMM-based system. Instead of compiling the score for every word pair into a single

large list, the average precision was calculated for each trial and then averaged over the

entire set. This approach has the advantage that the candidates for each trial are evaluated

on a separate scale and hence, any variations in candidate scores across different trials do

not affect the calculated precision for the system.

For each trial, a graphical keyword model of an utterance was constructed and was used

to evaluate every word examples in the set. The candidates were then sorted according to

their log-likelihoods and the average precision was calculated for the trial. Finally, the

precision measure for the entire set was calculated by averaging the precision of individual

trials.

The mean average precision calculated for the EHMM-based system was 68.43%.

Thus, the average precision of the EHMM-based system on a trial-to-trial basis is more

than double the figure that has been calculated when the trials are merged into a single list.

The differences in these values indicate the score normalization to be a substantial factor

contributing to the lower calculated average precision of the system. However, a mean

AP of 68% is also not a conclusive proof that an EHMM-based system is better than the

NP-Bayes-based systems since these precision measures have been calculated in a entirely

different settings. A true test of these two systems can only be carried out on a single

database and using a single precision measure that does not favor a particular system.

6.3 Experiments on MediaEval 2013 Corpus

MediaEval is a community-driven benchmarking initiative offering tasks and evaluation

databases in a number of different areas including but not limited to speech, audio, images,

tags, users and contexts.

In 2013, a number of databases and associated tasks were offered. These include social

event detection for social multimedia, search and hyperlinking of television content, geo-

coordinate prediction for social multimedia, violent scenes detection in film, preserving
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privacy in surveillance videos, question answering for the spoken web, soundtrack selec-

tion for commercials, similar segments of social speech, retrieving diverse social images,

emotion in music, crowd-sourcing for social multimedia and spoken web search.

The Spoken Web Search task has been defined as “searching FOR audio content WITHIN

audio content USING an audio content query.” The primary emphasis of the task is the

development of speech recognition systems for resource-limited languages, with the ac-

companying evaluation database provided without any additional linguistic resources.

6.3.1 Test Setup

The Spoken Web Search 2013 database contains 20 hours of unlabeled speech with two sets

of queries for development and evaluation purposes. The SWS2013 database is particularly

challenging as it contains speech from nine different languages and has been recorded in

a number of different acoustic environment. Both the development and evaluation sets

contains approximately 1500 word examples from more than 500 word types. The ground

truth files for the development set have been provided to allow developers to optimize their

systems. The evaluation set, on the other hand, was tested by the organizers and the results

shared with the participants.

6.3.2 Evaluation Metrics

The systems participating in the challenge were evaluated using Term-Weighted Value

(TWV). TWV is a weighted combination of the miss and false alarm error rates over the

set of queries Q. It is defined as

TWV(θ) = 1−
1
| Q |

∑
∀q∈Q

(Pmiss(q, θ) + βP f a(q, θ)), (26)

TWV(θ) = 1−(Pmiss(θ) + βP f a(θ)).

In the above equations, Pmiss and P f a denote the probabilities of missed detection and

false alarm respectively, for a query q and threshold θ. The weight factor β is defined as
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β =
C f a(1−Ptarget)

CmissPtarget
(27)

C f aand Cmiss are the costs of false alarm and missed detection errors whereas Ptarget is

the prior probability of a target trial. For SWS2013, the values of these parameters were

set to Ptarget = 0.00015, C f a = 1 , and Cmiss = 100, leading to a value of β equal to 66.66.

The miss error rate at a given threshold θ for a query q is given by

Pmiss(q, θ) =
Nmiss(q, θ)

Nact(q)
, (28)

where Nmiss(q, θ) is the number of miss errors for query q at a threshold θ, and Nact(q)

is the total number of occurrences of query q in the data.

While the number of occurrences Nact(q) for a query in the test data is known, the

calculation of false alarm rate is not straightforward since the total number of occurrences

for every utterance is not known for the database. Instead, it is estimated that there are ntps

utterances for every second of speech in the test data. The value of ntps for the SWS 2013

database is set to 1. The false alarm error rate Nnt(q) for a query is thus estimated using this

following equation:

Nnt(q) = N−Nact(q) = ntps·Taudio−Nact(q). (29)

The false alarm error rate is then calculated as

P f a(q, θ) = N f a(q, θ)Nnt(q). (30)

The number of false alarm errors corresponding to query q and threshold θ is denoted

by N f a(q, θ).

The average error rates over the entire set of queries Q can then be calculated as

Pmiss(θ) =
1
| Q |

∑
∀q∈Q

Pmiss(q, θ), (31)
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P f a(θ) =
1
| Q |

∑
∀q∈Q

P f a(q, θ). (32)

It can be seen that the calculation of TWV, similar to the calculation of average precision

for JHU word collection, uses a single threshold θ across the trials.

In addition to the above precision measure, the participants of SWS 2013 were also

required to submit performance measures for their systems. Average memory consumption

and real-time factor (RTF) were calculated to measure the performance of the submitted

systems..

Real-time factor is a measure of speed of an automatic speech recognition systems

and is equal to the total time taken by a speech recognition system to process a body of

speech divided by the total duration of the speech contained in the database. Let A denote

the total processing time of a system for the entire set of queries, and B be equal to the

total duration of the reference database with the same unit of time used to measure both

quantities. Then for each query, the entire reference database B is processed by the system.

Given that the total number of queries is C, the total duration of speech processed by the

speech recognition system is B×C, leading to the following equation for the calculation of

RTF:

RT F =
A

B ×C
. (33)

For the SWS 2013 database, B = 71, 839 seconds, C is equal to 684 seconds for the

development set and 696 for the queries in the evaluation set.

6.3.3 Results

The SWS 2013 database is different from all the other speech corpora that have been used

so far in this research. Speech in this database belongs to a large number of different

languages, and recorded in a variety of acoustic environments, ranging from telephone

conversations to studio recordings.
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Due to the heterogeneous nature of the database, a large number of possible configura-

tions of the EHMM were tested on the database to identify the optimal parameters for the

task of keyword spotting.

EHMMs with different number of states were trained and tested for the task of keyword

spotting. Additionally, the relationship between the level of training, i.e., the number of

iterations of Baum-Welch algorithm and the precision of the VQbE system was studied.

Finally, the impact of the clustering on VQbE system was also investigated, with the system

precisions calculated for a number of different clustered EHMMs.

6.3.3.1 Precision and Level of Training

One way to assess the ability of an EHMM to model an observation sequence is to calculate

Pr(O|λ), the likelihood of observations to be emitted from the model. It has been reported in

Section 2.1.1 that the average probability of observation frames given the model increased

consistently with an increase in the number of iterations of Baum-Welch algorithm (Table

1).

In these experiments, the effects of number of iterations of the training algorithm on

the speech modeling abilities of an EHMM were investigated with a focus on the precision

of the corresponding VQbE system. A 256-state EHMM, at different levels of training,

was used for data representation and keyword model generation. Only left-right HMMs

of queries were used for these experiments. The maximum term-weighted value (MTWV)

observed for queries in the development set at different iterations of the EHMM are given

in Table 5.

Table 5: Precision of EHMM after different level of training

Number of Iterations 10 13 14 15 16 17 20

MTWV 0.0955 0.0908 0.0991 0.0988 0.0913 0.088 0.0785
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Unlike Pr(O|λ) which consistently increases with the number of iterations of the train-

ing algorithm, TWV for the VQbE system increases for a initial period, and after reaching

a peak value, the precision of the system actually declines if the training algorithm is not

halted. For SWS 2013, this point was reached at 14 iterations of the Baum-Welch algo-

rithm. This pattern in TWV values would suggest that there is an initial phase during

which the model is improved with training, gaining more information about the observa-

tion distributions and their temporal dynamics. Continuing the training beyond a certain

point, however, results in overfitting and over-generalization. The model parameters, tran-

sition probabilities more likely than observation densities, are fitted to the majority of the

observations, leading to higher Pr(O|λ) but at the cost of loss of information about the less

frequently encountered speech segments.

6.3.3.2 Optimal Number of States for Keyword Spotting

The optimal number of states in an EHMM is a function of acoustic variety in the training

data and may differ from one language to another. A small number of states may not

fully capture the characteristics of the modeled data. Conversely, if the number of states

in the EHMM is larger than that required then only a subset of the states will be used for

modeling.

For the SWS2013 data, a number of different EHMMs were trained and tested for

keyword spotting. The larger EHMMS, with number of states greater than 192, lost some

of the states during training. For these EHMMs, there would be no state transitions into or

out of these states during training, an indication that training data is being modeled with a

smaller subset of states of the EHMM. For this reason, the maximum size of the EHMMs

was limited to 256 states. The MTWVs of VQbE systems based on these EHMMs are

given in Table 6.
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Table 6: MTWV for the development set as a function of number of states in the model

States 64 128 192 256

MTWV 0.0565 0.0830 0.0868 0.0933

The maximum value of TWV was observed for the EHMM with 256 states (Table

6). This result was particularly unexpected given the elimination of states during training

for the larger EHMMs. These experiments should have been repeated on a wider range of

EHMM sizes since the MTWV maxima has been observed for the largest EHMM in the test

set. However, the new EHMMs could not be trained and tested due to the time constraints

imposed by the SWS 2013 submission dateline.

6.3.3.3 Clustering the States of EHMM

It has been observed in previous experiments that the precision of an EHMM-based key-

word spotting system is improved when perceptually similar states are grouped together in

the form of a superstate or as a cluster of states.

A graphical keyword model can be constructed from a single utterance by incorporating

knowledge of similar states of the EHMM, which can either be obtained through supervised

or unsupervised clustering schemes.

The SWS 2013 database is provided without any additional linguistics resources, and

hence, the states in the model can only be grouped in an unsupervised manner. Starting

from the pair of states with the smallest distance between them, states in the 256-state

EHMM were merged in succession to form a new model with smaller number of clusters.

The MTWVs for VQbE systems based on different EHMMs are listed in Table 7.

Table 7: MTWV for the development set as a function of number of clusters in the model

Clusters 128 160 192 224 256

MTWV 0.0849 0.1026 0.1033 0.102 0.0993
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The EHMM with 192 superstates yielded the highest value of MTWV for the systems

trained in this work. Additional state mergers led to a decrease in the MTWV of the sys-

tems. The relationship of precision and number of clusters in the EHMM is surprisingly

similar to those observed for the isolated word-pair recognition task discussed in Section

6.2 and the experiments in Section 6.1.3.

In these experiments, the new EHMMs, obtained by clustering similar states of 256-

state EHMM, consistently yielded a higher precision than EHMMs of similar sizes trained

directly using the Baum-Welch algorithm. For comparison, the MTWV for EHMM with

192 clusters is 19% higher than that of the 192-state EHMM trained directly using the

Baum-Welch algorithm.

6.3.3.4 Score Normalization

The histograms of log-likelihood scores of candidate utterances from two different trials,

are shown in Figure 26. The two queries selected for this example have significantly dif-

ferent lengths. Even though the log-likelihood scores for each trial were length-normalized

(LNorm) by dividing the total log-likelihood score of an observation sequence by its length,

the histograms in Figure 26 show significant differences in candidate scores between the

trials. In fact, the score distributions are non-overlapping with the best candidate for one

trial scoring less than the lowest scoring candidate for the second trial.

This distribution of scores is particularly problematic for the calculation of TWV. The

evaluation metric is calculated on a common threshold θ, as discussed in Section 6.3.2. In

the case of trials illustrated in Figure 26, even if the individual TWVs have the maximum

possible value of 1, the overall TWV would be much lower since the scales have not been

scaled properly.

Another indication that length-normalization is not adequately scaling the scores, comes

from the shape of the DET curve [56] in Figure 27. This DET curve has been calculated

for the entire set of queries in the development set. In a binary classification task, the distri-

bution of scores of each of the classes tend to be Gaussian distributed with different mean
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Figure 26: Histogram of length-normalized scores for two different trials

values and variances. DET curves takes advantage of this distribution of the elements of

the classes and using the probit function converts produces linear tradeoff curves.

It is immediately obvious from Figure 27 that the DET curve is not linear, a clear

indication that the candidate scores of true positives and false positives over the entire set

of queries do not have a Gaussian distribution. This fact can be attributed to the differences

in mean value and variance of individual trials that would lead to an overall distribution

that is not Gaussian. Another consequence of this issue is a calculated TWV, 0.02 in this

case, which is much lower than the TWV of a system with proper score normalization.

Score normalization is a prerequisite for any VQbE system when the precision measure-

ments involve an absolute threshold θ. However, it is particularly challenging for a system

that uses log-likelihoods due the large range of variations involved. In this work, two alter-

nate schemes for score normalization were investigated. Zero Normalization (ZNorm) [59]

rescales the score distribution to a zero mean and unit variance distribution. In order to do

so, the rescaling parameters are estimated using the entire set of candidates, true positives

as well as false alarms.

In Test Normalization (TNorm) [60], on the other hand, only the “imposter” scores

are used to estimate the scaling parameters. The exact number of false positives in a trial
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Figure 27: TWV for length-normalized scores

Table 8: Calculated TWV for a single trial using different score normalization schemes.
Scheme LNorm ZNorm TNorm
TWV 0.02 0.1033 0.116

is not known but false positives greatly outnumber the true positives in a typical trial. By

excluding a small fraction of highest scoring candidates, it is essentially guaranteed that the

remaining candidates will be dominated by the imposters or false candidates. The fraction

of candidates that has to be excluded can be chosen by trial and error. In these experiments,

it was observed that the calculated TWV was maximized when the scaling parameters were

estimated after excluding the top 90 candidates.

The value of TWV for the same set of results but different length normalization schemes

is given in Figure 8.

The estimation of scaling parameters is straightforward in the case of Zero normaliza-

tion. The TWV calculated in this manner, however, is noticeably lower than TWV cal-

culated after TNorm score normalization. Consequently, most of the trials, including the

scores given in Tables 6 and 7 were normalized using ZNorm and the scores for the final
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(a) Development Set (b) Evaluation Set

Figure 28: Maximum Term Weighted Value for Development and Evaluation Sets.

submissions (Table 11) were normalized using TNorm.

The TNorm scheme requires a number of trials to estimate the optimal fraction of can-

didates for mean and variance estimates. Furthermore, these scaling parameters can only

be estimated for the development set due to the availability of ground truth files. The same

scaling parameters were then used for score normalization for the trials carried out on the

evaluation set, with the assumption that score distributions are similar for both the query

sets.

6.3.4 Final Term Weighted Value for MediaEval SWS 2013

The DET curves and maximum term-weighted values of an EHMM-based VQbE system

(participated in SWS 2013 as Georgia Tech, Team Clements (GTC) ) for the development

and evaluation sets are shown in Figure 28. The system scored an MTWV of 0.116 for the

development queries and 0.0838 for the set of evaluation queries [61].

The systems participating in SWS 2013 can be broadly classified into two categories.

Zero-resource systems, as their name indicate, have been developed using only the re-

sources provided in the SWS 2013 database. Open systems, on the other hand, are systems

that have taken advantage of external linguistic resources, in addition to the SWS 2013
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Table 9: MTWVs for zero-resource systems submitted to MediaEval 2013.

System
Dev. Eval.

Real-time Factor
MTWV ATWV MTWV ATWV

CUHK 0.367 0.367 0.307 0.304 0.018
ELiRF 0.1699 0.1697 0.1593 0.1591 0.003
GTC 0.116 0.1156 0.0838 0.082 0.003

Telefonica 0.1158 0.0961 0.0925 0.0793 0.003
LIA - 0.0045 - -0.0013 0.00013

UNIZA 0 -0.091 0.001 -0.027 0.017
TUKE - -0.1371 - -0.1372 0.0048

database. These additional resources may include time-aligned labeled training data from

other speech corpora. These semi-supervised systems generally outperform their zero-

resource counterparts.

The precisions of zero-resource system along with their real-time factors, are listed in

Table 9.

It is immediately clear from the values in Table 9 that the systems based on static clus-

tering schemes, such as k-means and GMM, are not very effective for the task of keyword

spotting on a complex database such as SWS 2013.

The TUKE system [62] compressed the feature space of speech signal using PCA seg-

mentation and k-mean clustering, followed by GMM training on these clusters. Keyword

search was performed using Segmental DTW. The UNIZA system [63] is designed on a

similar principle and models the speech signal with 257 clusters obtained through k-mean

clustering. A segmental 1-state HMM is then used to model 0.1 sec long segments of

speech. Finally, these segment models are again grouped into 207 clusters using k-means

clustering.

The LIA system, described in [64], uses I-Vectors for the task of keyword spotting. I-

Vectors have been successfully used for language recognition [65] and speaker driarization

[66] previously. The LIA system, however, suffered from a unusually large number of

false positives that consisted of silence. The authors postulated the lack of a voice activity
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detector to be responsible for the contamination of the candidate list by these false positive

and hence, the low value of MTWV.

Another GMM-based system that achieved relatively high precision was the Telefonica

[67] spoken web search engine. The Telefonica research group has been participating in

this challenge since its inception. Their system is a well-designed with a number of unique

features. An initial GMM clustering of speech is followed by a VTLN-based speaker nor-

malization scheme. The VTLN parameters are then used to train a new background model

that is more resistant to speaker-dependent variations. The system also implements a voice

activity detector to minimize the loss of precision due to non-speech segments. Keyword

search is carried out using a proprietary two-pass DTW-based algorithm known as Infor-

mation Retrieval DTW [68, 69].

The ELiRF system [70] is a straightforward template-matching system that uses MFCC

features with Subsequence DTW [71], to achieve surprisingly high values of MTWV con-

sidering the low complexity of the system. The system, however, implemented a voice

activity detector and performed post-processing steps to remove false positives from the

list of candidates. The use of cosine distance and effective score normalization may have

also contributed to the precision of the system.

The highest precision in the zero-resource category was achieved by the CUHK System

[72] again this year. The CUHK 2012 [73] spoken web search system was a massive sys-

tem with five subsystems. Three of these subsystems were tokenizers in the split temporal

context network structure and based on Czech, Hungarian, Russian, English and Mandarin

phoneme recognizers. The two unsupervised tokenizers were based on GMM and Acoustic

Segment Modeling (ASM). The tokenizers were used to generate five streams of posteri-

orgrams, and a DTW matrix combination approach was used to aggregate the scores from

individual subsystems.

Th CUHK SWS 2013 system uses Gaussian component clustering [74], an extension

of the zero-resource GMM subsystem presented in [73]. MFCC features with delta and
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Table 10: MTWV of open systems submitted to MediaEval 2013

System
Dev. Eval.

Real-time Factor
MTWV ATWV MTWV ATWV

BUT 0.4373 - 0.3776 - 0.18
GTTS 0.4174 0.4078 0.3992 0.3806 0.24
L2F 0.3905 0.3883 0.342 0.3376 77.33

CMTECH 0.2685 0.2683 0.2623 0.2619 0.0056
IIIT 0.2765 - 0.2413 - 0.0017

SpeeD 0.068 - 0.058 - 0.00006

delta-delta coefficients were preprocessed with a voice activity detector and VTLN to min-

imize speaker variations. A GMM with 4096 components was trained, and unsupervised

phoneme segmentation was performed on the GMM-based representation of speech. For

each of these segments, a Gaussian posterior vector is then calculated by averaging the

posteriorgram of individual frames in the segment. At this point, speech is represented

by a Gaussian-by-segment data matrix X. The similarity matrix XXT is decomposed into

150 clusters using spectral clustering. Keyword search was performed using DTW on the

posteriorgrams of the final 150 clusters.

The open systems have a completely different philosophy from the systems presented

so far. These systems try to leverage existing linguistic resources by using phoneme models

or acoustic priors trained in supervised fashion and adapt them to the SWS2013 database.

The SpeeD system [75] is an automatic speech recognition system trained on 170 mil-

lion utterances in Romanian language. The precision of the system indicates that the 26

phoneme models in Romanian language are inadequate for modeling the speech in the

SWS 2013 database.

The IIIT system [76] is again based on a single language, Telugu in this case. This

system used a combination of phone models and Multilayer perceptrons (MLP) trained on

23 articulatory features. Bottle-neck features were extracted from speech parameters and

used to train a GMM with 128 components. Keyword search was performed using DTW

on these posteriorgrams.
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The CMTECH system described in [77] is based on the fusion of two different models.

The spectral model, composed of a GMM, is trained on the TIMIT corpus and then adapted

to the target database. The temporal models were again trained using the GMM features,

initially on SWS 2012 data and migrated to the current data, using a novel approach [78].

The open systems discussed so far, are based on acoustic models trained on a sin-

gle high-resource language. These models are either applied directly or adapted to the

resource-limited set of languages in SWS 2013. The precision observed for these systems

is also dependent on the level of similarity among the languages in the training and test

databases. Compared to the 26 phonemes in Romanian language, Telugu has 49 different

phonemes which could have contributed to the higher precision of the IIIT system. Hence,

the precision of a system can be increased further by extending the repository of acoustic

models borrowed from resource-rich languages. This is exactly the approach adopted by

the systems presented next in this section.

The remaining systems presented in this section [79][80][81], are all trained on a

large number of languages and the trained acoustic models were then migrated to the test

database. As expected, these systems have the highest precision of any systems presented

so far.

The L2F system in [81], for example, consists of six individual sub-systems based on

phonetic classifiers of European Portuguese, Brazilian Portuguese, and European Spanish.

The GTTS [80] and BUT [79] systems are both based on the Brno University of Technol-

ogy phoneme models. The GTTS system is based on phone models derived from 3 different

languages, i.e. , Czech, Hungarian and Russian. The BUT “Massive Parallel Approach,”

true to its name, consists of 26 sub-systems, which are trained on a number of different

languages including Czech, Hungarian, Russian, Cantonese, Pashto, Tagalog, Turkish, En-

glish, German, Portuguese, Spanish, and Vietnamese. The BUT system, unsurprisingly,

had the highest value of MTWV of any system submitted to SWS 2013.
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6.3.4.1 Keyword Model using Multiple Instances of a Query

The development and evaluation query sets in SWS 2013, each contain more than 500

unique utterances. The evaluation of a system on this basic set of utterances constituted the

mandatory part of the SWS 2013 task.

The SWS 2013 task also defined a set of optional or extended trials to study the preci-

sion of VQbE systems that can utilize multiple examples of an utterance. For this purpose,

the development and evaluation sets also contained additional samples for some of the

queries. Specifically, 194 out of a total of 505 queries in the development set and 188 of

the 501 queries in the evaluation set have more than one examples available.

In these experiments, a graphical keyword model for a query was constructed from a

number of examples of a query. In order to study the relationship between precision and

the number of available examples of a query, a number of different GKM were developed

with different number of sample utterances.

The scoring script provided by the organizers, however, expected the complete list of

queries in order to calculate the MTWV of the system. Consequently, the scores given in

Table 11 were calculated over the complete set of utterances, with only the queries with

multiple examples altered for different trials.

The precisions for the systems investigated in these experiments, grouped by the num-

ber of examples used in multi-sample keyword model, is given in Table 11. Since the

precisions vary for a subset of the total queries while the MTWV is calculated over the

entire set of queries, the actual gain in precision due to the use of multiple examples would

be higher than that given in Table 11.

Table 11: MTWV for the development set in extended trials.

Instances 2 3 5 7 9

MTWV 0.1259 0.1219 0.1151 0.1096 0.1081
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Surprisingly, the highest gain in MTWV was observed after the addition of the second

example and the precision decreased consistently (Table 11) after the inclusion of each

additional example.

This pattern is similar to that observed for EHMMs constructed by unsupervised clus-

tering schemes. For those systems, precision initially increased and after reaching an epoch,

further state mergers led to a decline in system precision. It was postulated that the states

merger later in the clustering were not as good a match as the earlier state merger. These

“bad” state mergers were considered to be the primary factor responsible for the drop in

precision.

However, all the states added to graphical keyword model in the current scheme, are

from the true instances of the query. This degradation of the system precision by the addi-

tion of these “good” states indicate that factors other than “bad” mergers are contributing

to a decline in precision.

In order to understand this behavior, we must consider the composition of the test data.

In 20 hours of speech, even with a conservative estimate of ntps = 1 (1 term per second),

there are more than 72 thousand utterances. On average, there are only 11 instances of a

particular query from the development set in 20 hours of test data. Only a fraction of these

true positives would probably benefit from the addition of a state to the graphical keyword

model. On the opposite end, even if a very small fraction of the false positives enter the

model space (the set of states that constitute the keyword model) of a query then the number

of new false positives would greatly outnumber the newly discovered true positives.
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CHAPTER 7

CONCLUSIONS

Automatic speech recognition systems have become an essential part of our everyday life.

These systems are mature, have very high precisions and have gained wide acceptance as a

human-machine interface on mobile platforms.

The development of an automatic speech recognition system is an expensive endeavor,

reliant on the availability of tens or even hundreds of hours of time-aligned labeled speech.

Speech recognitions systems have been developed for the major languages of the world,

catering to the needs of the majority of world’s population. There are more than seven

thousand different languages spoken around the world. For majority of these languages,

the development of a speech recognition system is either commercially inviable or simply

impossible due to a lack of trained linguistics.

An EHMM can be useful in extracting underlying structure embedded in connected

speech without the need for a time-aligned transcribed corpus. This technique would be

useful for languages with moderate amounts of waveform data, but no text renderings.

This approach to statistically model speech offers a good mix of straightforward training

with the generalization powers of traditional statistical modeling techniques. It is based on

the same mathematical formulation that is the foundation of most state-of-the-art speech

recognition systems.

An EHMM can model non-linear observation distributions using a number of states

with Gaussian observation distributions. The training process takes into account the tem-

poral structure of speech to group observations with similar form and dynamics within a

single model state, an ability absent in most static, proximity-based clustering schemes

such as k-means and GMM.

In contrast to supervised statistical modeling methods, an EHMM can be trained from

unlabeled speech. As a result, the vast majority of the recorded speech available on the
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web, radio, and television archives, can be used to train an EHMM. Due to the unsupervised

nature of the training, an EHMM can be trained, with minimum effort, for any language

that has a small body of recorded speech available. Another desirable feature of an EHMM

is its adaptability. An existing EHMM can be easily adapted to another data set using the

Baum-Welch algorithm. States in the original EHMM are influenced by and adapted to

the closest matching observations in the training data, and both the spectral features and

temporal behavior of the states are altered in the process.

An EHMM is an efficient model of speech. It greatly reduces the dimensionality of

the problem by modeling speech with a finite number of states while preserving substantial

amount of information contained within the original speech. It has been demonstrated that

perfectly intelligible speech can be synthesized from a sequence of states of an EHMM.

The distributions of fundamental frequencies for the different states of EHMM exhibit a

consistent pattern that can be used to construct a pitch profile of different segments of

speech. Consequently, an EHMM can be used to synthesize not only the speech spectrum

but also its excitation signal.

In absence of any human supervision, an EHMM is reliant on the robustness of speech

features to handle speaker-dependent variations. During preliminary investigations, it was

observed that the most likely state sequences corresponding to multiple realizations of an

utterance may vary significantly. This lack of invariance to contextual or speaker-dependent

variations in speech degrades the precision of an EHMM-based VQbE system.

An EHMM-based VQbE system can greatly benefit from a more robust speech rep-

resentation. In the case of speech features that are sensitive to contextual or speaker-

dependent variations, perceptually similar speech segments may not be localized in a par-

ticular region, making the overall distribution of observations from a single perceptual class

highly non-linear. Due to a dependence on Mahalanobis distances to group observations, a

single state of an EHMM would represent observations that are in close proximity to each

other in the feature space. Consequently, the observation distribution for a single phoneme
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may span more than one states of the EHMM.

The one-to-many nature of the mappings between phonemes and states of an EHMM

greatly complicates the task of keyword modeling. Different realizations of an utterance

may correspond to different sequences of EHMM states. One way to integrate the different

acoustic realizations of a keyword in a single model is to merge all the states corresponding

to a single phoneme into a new superstate. This approach can accurately model the obser-

vation density of a phoneme with a mixture of Gaussians. However, valuable information

about the individual state transitions will be lost in this process.

An alternate scheme to incorporate the one-to-many phoneme-to-state mappings in a

keyword model is by treating these clusters as a logical construct. A single unit of speech,

in this approach, would be modeled simultaneously by a number of states, each state cor-

responding to one of its possible acoustic manifestations. The set of EHMM states corre-

sponding to an utterance will constitute a substructure on the EHMM. This collection of

states can be represented with a graph, with states constituting the nodes and state transition

probabilities defining the connectivity between the nodes. This graphical keyword model

has the ability to accurately model the spectral and temporal characteristics of the model

states.

In this research, a novel variant of Viterbi algorithm has been developed for keyword

search using the graphical keyword model of a query. In this algorithm, the trellis has a

3-dimensional structure, with a slice of trellis, at any given instant of time, reflecting the

structure of the corresponding graphical keyword model. The computational complexity of

the 3D Viterbi algorithm is greatly increased by the large number of possible states transi-

tions. There can be a number of initiating and terminating nodes in the trellis with multiple

paths connecting each pair of terminal nodes. Tremendous speed improvements can be

achieved by a modification of the optimality criteria. Integrating the length of a candidate

path into the optimality criteria permits comparison of candidate paths initiating at different

instants of time. This modification in the search algorithm leads to an implementation of
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the VQbE system with a real-time factor comparable to and in some cases, exceeding the

state-of-the-art DTW-based algorithms.

The mappings between phonemes and states of an EHMM can be discovered in a num-

ber of ways. The correlations between EHMM states and phonemes can be mapped by

leveraging existing linguistic resources in a supervised manner. Conversely, these map-

pings can be discovered automatically by taking advantage of the acoustic properties of

speech.

In this research, two different schemes for the identification of similar states have been

investigated. The first method examined the role of proximity in cepstral domain as a

similarity measure and grouped together states in close proximity to each other using a

K-nearest neighbor clustering approach. Due to the non-linear density and overlapping

distributions of observations for different phonemes, this scheme had limited success in

improving the precision of a EHMM-based VQbE system.

The second approach compared the spectral features of observations from different

states for the discovery of similar states. A feature-independent scheme, state mean val-

ues were transformed back to linear frequency domain, where the corresponding spectral

features were optimally aligned through a warping of the frequency axis. The dynamic

frequency warping reduces the mean square error between the two spectra by aligning the

corresponding formants within a user-configurable range of frequencies.

The DFW-based clustering of states proved to be a promising approach, leading to a

significant increase in precision in experiments conducted on a number of speech corpora.

In these experiments, graphical keyword models, constructed from states clusters obtained

through DFW-clustering, led to noticeably higher system precisions compared to left-right

HMMs and unsupervised GMM-based systems.

There a number of unresolved issues in the current approach to EHMM-based VQbE

systems. One of these issues is the variation in scale of candidate scores from one trial

to another. The log-likelihood scores of candidates vary non-linearly with the length of a
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observation sequence. While these characteristics of score distribution do not affect the pre-

cision of individual trials, it can have a negative impact on the overall calculated precision

of the system when an absolute value of threshold is required.

It has been observed in the experiments that increasing the initial size of the EHMMs

led to higher system precisions. Yet, in the flat-start approach to training, some states in

the larger EHMMs become redundant during training. Although, this trend of increasing

precisions with larger EHMMs cannot be expected to sustain due to the fragmentation

of phonemes into larger number of states, an open area of research is the development

of alternate training initialization schemes that may lead to the training of large EHMMs

without encountering the state redundancy problem.

The optimal number of clusters that lead to the highest precision must be calculated

by trial and error. Ideally, a perfect clustering schemes would discover the perceptual

classes in speech, with the total number of clusters equal to the number of phonemes in a

language. However, the optimal number of clusters, with regards to precision, was found

to be much higher than this value. System precision peaked for EHMM with 192 clusters

but gradually declined after this peak value. While this behavior can be partly attributed to

bad mergers of phonetically different states, surprisingly, a similar behavior was observed

for keyword models constructed with actual instances of a keyword, an indication that this

loss of precision may have more than one source.

The length composition of states in a model are enforced implicitly by the state transi-

tion probabilities. These transition probabilities have a smaller contribution to the overall

likelihood of an observation sequence, with the final sum dominated by the emission prob-

abilities. The loss of precision may have likely been caused by the weak structure imposed

on the durations of states by a graphical keyword model, allowing a large number of par-

tially matching observations to be classified as positives. Hence, a solution to these issues

would require fundamental changes to the keyword modeling scheme and subsequently, to

the Viterbi algorithm.
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The higher precisions observed for the EHMM-based system over static GMM-based

system is a testament to the superiority of clustering based on a combination of similar-

ity in form and behavior over static clustering schemes. However, both the unsupervised

clustering schemes presented in this work are static in nature, with states compared and

clustered using spectral or cepstral features only. However, phonemes are complex acous-

tic structures with spans much longer than a single state of EHMM. In order to discover the

phonemic or morphemic structure of speech, correlations must be considered over a longer

duration of time than that allowed by the first order Markovian assumption underlying an

EHMM. An EHMM-based VQbE system would greatly benefit from a clustering scheme

that would group states with similar spectral and temporal characteristics.

In this thesis, the use of an ergodic hidden Markov model of speech for the task of

query-by-example spoken term detection has been investigated. The characteristics of

EHMM states have been studied both in time and frequency domains. The effects of

speaker-dependent and context-induced variation on the EHMM-based representation of

speech have been studied and used to devise schemes to minimize these variations. Two

different schemes for the identification of perceptually similar states of the EHMM have

been presented. The clustering of states of the EHMM using dynamic frequency warping

led to significant gains in system precision. A search framework, consisting of a key-

word modeling scheme and a modified Viterbi algorithm, has also been implemented. The

EHMM-based VQbE system has been demonstrated to attain higher precision than systems

of similar complexity based on static clustering schemes.
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