
NETWORK COMPRESSION VIA NETWORK MEMORY:
REALIZATION PRINCIPLES AND CODING

ALGORITHMS

A Thesis
Presented to

The Academic Faculty

by

Mohsen Sardari

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
December 2013

Copyright c© 2013 by Mohsen Sardari

NETWORK COMPRESSION VIA NETWORK MEMORY:
REALIZATION PRINCIPLES AND CODING

ALGORITHMS

Approved by:

Professor Faramarz Fekri, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Jennifer E. Michaels
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Steven W. McLaughlin
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Howard Weiss
School of Mathematics
Georgia Institute of Technology

Professor Raghupathy Sivakumar
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: 4 November 2013

To my family,

for their love and support.

iii

ACKNOWLEDGEMENTS

I have had the privilege to meet wonderful people in my life’s journey who generously

provided me with their help and support. I wish to express my gratitude to all of

them.

I would like to especially thank my advisor, Dr. Faramarz Fekri. I am grateful to

him for giving me the chance to pursue my studies and guiding me through my re-

search. What I have learned from him forms the basis of my ability to face challenging

problems throughout my life.

I would also like to express my gratitude to my thesis committee members:

Dr. Steven McLaughlin, Dr. Raghupathy Sivakumar, from whom I had the opportu-

nity to learn about wireless networks and further be inspired by his knowledge, per-

sonality and exemplar clear-thinking ability, Dr. Jennifer Michaels, and Dr. Howard

Weiss with whom I had the chance to take my first graduate course in classical

probability. I thank all of my outstanding professors for their support, inspiration,

suggestions and encouragement.

Many thanks to my close friend and primary collaborator Ahmad Beirami, the

one person who has always been there for me during the ups and downs of my life.

It was a great pleasure for me to discuss research and random topics with someone

as brilliant as Ahmad. I will miss our afternoon tea sessions!

I would also like to thank my colleagues and friends at CSIP, specially Arash Einol-

ghozati, Nima Torabkhani, Dr. Badri Vellambi, and Jun Zou. My life at Georgia Tech

would have not been pleasant without my friend, colleague, and gym-mate Dr. Josep

Miquel Jornet whose great personality, sense of humor and top-notch cooking skills

made for great memories. His Thanksgiving parties together with Dr. Massimiliano

iv

Pierobon and Dr. Yahia Tachwali made us feel at home, though thousands of miles

away from home. I would also like to express my gratitude to my friends, Farshid

Ghasemi, Reza Pourabolghasem, Payam Alipour, Alireza Khoshgoftar Monfared,

Mehdi Ramezani, Dr. Peyman Kazemian, Rasool Zandvakil, Dr. Saeed Mohammadi,

Dr. Mehran Tehrani, Farzad Inanlou, Mehdi Kiani, Arashk Norouzpour, Ali Payani

and many more that I cannot name all here, for making my life outside work fulfilling

and meaningful. Many thanks to Farshid Ghasemi, Nima Torabkhani and Alireza

Khoshgoftar Monfared for their care and support during my defense preparation.

I also greatly appreciate the help and support of Patricia Dixon, Jennifer Lunsford

and Cordai Farrar who have always been there to count on. I am certain that there

have been many more people than those I have had the joy of acknowledging here

and I apologize for not naming all of them.

Most importantly, I am very thankful to my family: my parents, for all the love

and support they have always provided, my dear Firoozeh who is the source of my

happiness, my sister-in-laws Marjan and Shadab, my brother Hamid, and my sisters

Niloofar and Nasim who have always been supportive and encouraging. I dedicate

this work to them as a token of my appreciation.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . x

LIST OF FIGURES . xi

SUMMARY . xiv

I INTRODUCTION AND RELATED WORK 1

1.1 Redundancy Elimination and Memory-assisted Compression 5

1.2 Network Compression in Wired Networks 6

1.3 Network Compression in Wireless Networks 7

II MEMORY-ASSISTED COMPRESSION FOR SIMPLE SOURCES 9

2.1 introduction . 9

2.1.1 Contributions . 9

2.2 Setup . 9

2.3 Statistical Compression Method . 13

2.4 Dictionary-based Compression Method 15

2.5 Simulation Results . 16

III CLUSTERING FOR MEMORY-ASSISTED COMPRESSION OF
COMPOUND SOURCES . 18

3.1 Introduction . 18

3.1.1 Contributions . 18

3.2 Background . 20

3.3 Packet Coding Strategies at Memory Elements 23

3.4 Theoretical Analysis . 24

3.5 Hierarchical Clustering . 26

3.5.1 Compressibility Determination 27

3.5.2 Clustering Using Hellinger Distance Metric 29

vi

3.5.3 Simulation Results . 31

3.5.4 Discussion on Complexity . 34

3.6 Non-parametric Clustering and Infinite Mixture Models 37

3.6.1 Infinite Mixture Models . 37

3.6.2 Inference . 39

3.7 Extracting Features From Statistical Compression Methods for Clus-
tering . 40

3.7.1 Experiment Results . 42

3.7.2 A Case Study on Detaching Training From Compression . . . 43

IV NETWORK COMPRESSION IN WIRED NETWORKS: ERDŐS-
RÉNYI RANDOM NETWORK GRAPHS 47

4.1 Introduction . 47

4.1.1 Contributions . 47

4.2 Notation . 48

4.3 Gain of Network Compression in ER Random Graphs 51

4.3.1 Background on ER Random Graphs 51

4.3.2 Main Result . 51

4.3.3 Proof of the Main Result . 54

V ROUTING AND PLACEMENT PROBLEM IN NETWORKS WITH
MEMORY . 58

5.1 Introduction . 58

5.1.1 Contributions . 58

5.2 Memory Placement Problem . 59

5.2.1 Hardness of Memory Placement Problem 59

5.2.2 Memory Deployment on Line Networks 60

5.3 Routing in Networks Featuring Memory 63

VI NETWORK COMPRESSION IN WIRED NETWORKS: INTERNET-
LIKE POWER-LAW RANDOM NETWORK GRAPHS 67

6.1 Introduction . 67

6.1.1 Contributions . 67

vii

6.2 Memory Deployment in Random Power-law Graphs 68

6.2.1 Random Power-law Graph Model 69

6.3 Simulation Results . 74

VII WIRELESS NETWORK COMPRESSION VIA MEMORY-ENABLED
OVERHEARING HELPERS . 78

7.1 Introduction . 78

7.1.1 Contributions . 80

7.2 Redundancy Elimination in Wireless Networks via Memory-Assisted
Compression . 81

7.2.1 Setup . 83

7.3 Code Design for Network Compression via Overhearing Helper . . . 87

7.3.1 Traditional Two–part Code 87

7.3.2 Two–part Code with Asymmetric Cost 89

7.4 Performance Evaluation of Network Compression via Overhearing
Helper . 90

7.4.1 Proof . 93

7.5 Impact of Channel Loss . 97

7.6 Simulation . 98

7.6.1 Simulaton Setup . 98

7.6.2 Simulation Results . 100

VIII MEMORY-ASSISTED COMPRESSION WITH MISMATCHED
SIDE INFORMATION . 104

8.1 Introduction . 104

8.1.1 Contributions . 105

8.2 Background and Problem Setup . 106

8.3 Main Results . 109

8.4 Discussion on Practical Code Design 113

IX MEMORY-ASSISTED COMPRESSION WORKING IN TANDEM
WITH DE-DUPLICATION . 116

9.1 Introduction . 116

viii

9.1.1 Contributions . 117

9.2 Preprocessing for Data Compression 117

9.2.1 Pattern Matching . 119

9.2.2 Value-base Fingerprinting . 120

9.2.3 Experimental Results . 121

9.3 Performance Evaluation of Compression Algorithms After Preprocessing123

9.4 Application of Clustering and Memory-assisted Compression for Com-
pression of Mobile User Data Traces 126

9.4.1 Experiment Results . 127

9.5 Impact of Memory Footprint on Compression Performance 128

X CONCLUSION . 134

10.1 Suggestions for Future Research . 137

APPENDIX A — INTERNALS OF PAQ COMPRESSION ALGO-
RITHM . 138

REFERENCES . 141

VITA . 148

ix

LIST OF TABLES

1 The compression rate of data set 1 and data set 2 with different coding
strategies. 43

2 The compression performance of memory-assisted compression when
training and test packets are chosen from different data sets. 45

3 The compression performance of memory-assisted compression on two
English text files. 45

4 Summary of wireless network compression via two–part codes. 86

5 Simulation parameters and values . 100

6 The comparison of de-duplication performance of fixed-block and value-
based fingerprinting. 122

7 Summary of performance of various de-duplication and compression
algorithms presented in Figure 36. 126

8 Results of the joint memory-assisted compression and clustering after
de-duplication for mobile users. 128

x

LIST OF FIGURES

1 The basic source, memory, and destination configuration. The node D
represents a set of clients receiving data from S. 10

2 Network Compression architecture which includes the classification/clustering
module. 13

3 The two-part design of statistical compression algorithms 14

4 The compression ratio (bits/Byte) achieved by memory-assisted algo-
rithms. 17

5 The gain g of memory-assisted compression over traditional compres-
sion (Ucomp), for memory size of 4MB for CTW and LZ compression
algorithms. 17

6 The basic memory-assisted compression scenario between two memory
elements M1 and M2 in the network. 22

7 Network packet compression flowchart. The modules in the dashed box
are the components of the K-means clustering using Hellinger distance. 27

8 The compression and decompression modules. 28

9 The distribution of the empirical entropy of the packets in the trace
under study. 29

10 The gain gcm of memory-assisted compression with source-defined clus-
tering. 33

11 Simulation results for the compression gains gm and gcm. 34

12 Empirical symbol distribution of cluster centers. 35

13 Results of various memorization and clustering schemes on compress-
ible packets after entropy classification. 36

14 Graphical model representation of Dirichlet Process mixture model. . 38

15 The internal design of the predictor. 41

16 Visualization of the data traces. 44

17 The shortest walk between the source and destination is not necessarily
a path when there are memory units in the network. 50

18 Illustration of Memory Neighborhood. 53

xi

19 The placement of memory units on a line network: the source node S
is placed at one end of the line and the i-th memory is placed at ti
from the source and τi is its left-coverage. 60

20 Variations of t and τ vs. g for a line network. 62

21 Example of routing in networks featuring memory: Memories can
change the shortest paths (shown by dashed lines) dramatically. Here,
g = 5. 64

22 The scaling of the core size |C|
N
× 100 versus N for different β’s. 73

23 The fraction of the paths passing through the core (FPPC) vs. the
core size, for RPLG of size N = 5000. 75

24 Illustration of the network-wide gain when simple Dijkstra routing is
used. Note that G is capped. 76

25 Network-wide gain of memory assisted compression G for different core
sizes and power-law parameter β, for g = 3. 77

26 An illustrative example of a wireless network with a single helper. . . 83

27 The abstract illustration of the traffic reduction problem via network
compression. The memorized sequence ym represents the total past
data overheard by M from S to the clients. 85

28 Illustration of the optimal number of bits LM that the memory node
needs to send to the client versus the relative cost of links for different
sequence lengths n . 92

29 Ratio of the output size of the helper LM to the source output size LS
vs. the packet size n for a memoryless source with an alphabet size 256. 93

30 Maximum number of mobile nodes supported by S vs. the number of
helpers in the network. The packet drop rate threshold is fixed at 10%
and the traffic generator is CBR over UDP, as in Table 5. 99

31 Maximum total throughput/goodput in the network vs. the fraction
of mobile nodes covered by helpers for (a) UDP and (b) TCP. 101

32 Fraction of satisfied users in the network vs. maximum allowed average
delay of packets for (a) UDP and (b) TCP traffic for different helper
coverage percentages. 102

33 The model abstraction of compression problem with mismatched side
information. 105

34 Gain of memory-assisted compression over the end-to-end compression.
The memory size is m = 106. 115

xii

35 Schematic of the de-duplication algorithm using fingerprinting for pat-
tern matching. 121

36 Performance of various compression algorithms on the data set intro-
duced in Section 9.2.3. 124

37 Visualization of the mobile user data traces–set 1. 125

38 Visualization of the mobile user data traces–set 2. 126

39 The compression performance of LPAQ (a) and CTW (b) algorithms
for different memory sizes and for a set of five mobile user data traces. 131

40 The average compression performance of LPAQ for different memory
sizes. 133

41 The percent improvement in compression performance per additional
MB of memory. 133

42 Design of statistical compression algorithms. 139

xiii

SUMMARY

The objective of this dissertation is to investigate both the theoretical and

practical aspects of redundancy elimination methods in data networks. Redundancy

elimination provides a powerful technique to improve the efficiency of network links

in the face of redundant data. In this work, the concept of network compression is

introduced to address the redundancy elimination problem. Network compression

aspires to exploit the statistical correlation in data to better suppress redundancy. In

a nutshell, network compression enables memorization of data packets in some nodes

in the network. These nodes can learn the statistics of the information source gen-

erating the packets which can then be used toward reducing the length of codewords

describing the packets emitted by the source. Memory elements facilitate the com-

pression of individual packets using the side-information obtained from memorized

data which is called “memory-assisted compression”. Network compression improves

upon de-duplication methods that only remove duplicate strings from flows.

The first part of the work includes the design and analysis of practical algorithms

for memory-assisted compression. These algorithms are designed based on the theo-

retical foundation proposed in our group by Beirami et al. The performance of these

algorithms are compared to the existing compression techniques when the algorithms

are tested on the real Internet traffic traces. Then, novel clustering techniques are

proposed which can identify various information sources and apply the compression

accordingly. This approach results in superior performance for memory-assisted com-

pression when the input data comprises sequences generated by various and unrelated

information sources.

In the second part of the work the application of memory-assisted compression in

xiv

wired networks is investigated. In particular, networks with random and power-law

graphs are studied. Memory-assisted compression is applied in these graphs and the

routing problem for compressed flows is addressed. Furthermore, the network-wide

gain of the memorization is defined and its scaling behavior versus the number of

memory nodes is characterized. In particular, through our analysis on these graphs,

we show that non-vanishing network-wide gain of memorization is obtained even when

the number of memory units is a tiny fraction of the total number of nodes in the

network.

In the third part of the work the application of memory-assisted compression in

wireless networks is studied. For wireless networks, a novel network compression

approach via memory-enabled helpers is proposed. Helpers provide side-information

that is obtained via overhearing. The performance of network compression in wireless

networks is characterized and the following benefits are demonstrated: offloading the

wireless gateway, increasing the maximum number of mobile nodes served by the

gateway, reducing the average packet delay, and improving the overall throughput in

the network. Furthermore, the effect of wireless channel loss on the performance of the

network compression scheme is studied. Finally, the performance of memory-assisted

compression working in tandem with de-duplication is investigated and simulation

results on real data traces from wireless users are provided.

xv

CHAPTER I

INTRODUCTION AND RELATED WORK

A large amount of content is transferred repeatedly across network links in cur-

rently existing networks. Several studies have examined real-world network traffic

and concluded the presence of considerable amounts of redundancy in the traffic

data [80, 7, 8, 87, 68]. From these studies, redundancy elimination has emerged as a

powerful technique to improve the efficiency of data transfer in data networks.

Currently, the redundancy elimination techniques are mostly based on application-

layer content caching. However, several experiments confirm that the caching ap-

proaches, which take place at the application layer, do not efficiently leverage the net-

work redundancy which exists mostly at the packet level [87]. Furthermore, caching

approaches are incapable of suppressing redundancies that exist across multiple con-

nections. They even lose opportunities for suppressing redundancy within one con-

nection because of issues such as small content size. To address these issues, a few

recent studies have considered the deployment of redundancy elimination techniques

within the network [6, 87], where the intermediate nodes in the network have been

assumed to be capable of storing the previous communication in the network and

also data processing. These works demonstrate that redundancy in the data is very

high such that simple de-duplication, i.e., removing the repeated segments of the

traffic, can give considerable bandwidth savings. However, de-duplication works well

only when the redundancy across the packets is so high that a large chunk of the

packet is simply the repetition of a previously communicated packet. Nonetheless,

the redundancy in the data goes beyond mere repetitions of the previous data chunks

1

and de-duplications is unable to capture statistical dependencies in the data. Fur-

thermore, if the repeated chunks appear with a low frequency such that they do not

repeat in the memory window, the repetition goes undetected.

Another related line of work is Content-Centric Networking (CCN) [47, 42]. The

CCN advocates segmenting data into individually addressable pieces, and proposes

an architecture where individually addressable data segments can be cached in the

network. However, there are several fundamental differences between redundancy

elimination in this work and the previous research on networking named content.

The first difference is that our approach deals with the data itself, as opposed to

the content name. As a simple example, two independent servers generating the

same content but with different names would still benefit from compression, but not

the CCN. The second difference is that CCN has a fixed granularity of a packet,

whereas one of the core features of compression algorithms is their flexibility to find

redundancy in the data stream with arbitrary granularity. In fact, it is suggested that

packet level caching, which most of the current techniques are approximately reduced

to, offers negligible benefits for typical Internet traffic [87], due to this predefined

fixed granularity.

Motivated by the benefits of redundancy elimination at the packet-level, and to

overcome the shortcomings of the previous approached, in this work, redundancy

elimination is investigated from an information-theoretic point of view. The foun-

dation of source coding was laid by Shannon in his seminal work on communication

theory [77]. The fundamental limit of compression of infinite length sequences for

the class of universal schemes is established in the Information theory literature [32].

Entropy is the fundamental limit of compression; sequences generated by a source

cannot be compressed with a rate below entropy and uniquely decoded. A compres-

sion scheme is called universal if it does not require any prior knowledge about the

source statistics. Hence, it is clear that from the practical point of view, the universal

2

family is more interesting than the non-universal one. However, as shown in [12],

there is a significant penalty, i.e., gap from the asymptotic limit, when finite length

sequences are compressed under a universal scheme. In [13], memory-assisted uni-

versal compression was suggested as a potential solution to avoid this penalty. In

memory-assisted universal compression, a sequence of length m is obtained from the

information-generating source; this sequence is stored at both the encoder and the

memory node. This lengthm sequence, called “memory” sequence, conveys important

information about the source statistics. It turns out that memory significantly im-

proves the performance of universal compression for every newly generated sequence

from the source. Thus, closing the gap between universal compression performance of

finite length and infinite length sequences. This work expands memory-assisted com-

pression in a single link to networks in a framework called “network compression”.

Currently, the underlying fabric of the networks consisting of the content sources

and server, routers, and clients perform very little, if any, memorization and hence

the memory is not utilized for redundancy elimination. The only form of memoriza-

tion a network performs is application-level caching used by solutions such as web-

caches [63, 25], content-distribution networks (CDNs) [81], and peer-to-peer (P2P)

applications [86, 67, 31]. The goal of network compression via network memory is to

utilized the memory element in the network in order to exploit the statistical corre-

lation in network data to better suppress redundancy. In a nutshell, equipping the

network with network memory elements will enable memorization of data traffic as it

flows naturally (or by design) through the network. As such, memory enabled nodes

can learn the source data statistics which can then be used (as side information)

toward reducing the cost of describing the source data statistics in compression.

Network compression is a new paradigm in compression which opens up new

research directions beyond network traffic. It requires establishing new fundamental

limits and new compression schemes that would take memory into account. This work

3

tackles some of these fundamental questions that will pave the way for realization of

network compression. Additionally, for network compression to be practically useful,

efficient compression algorithms are presented by which similar contents are identified

on the fly and used for the better compression of future similar data. This work is

then extended to find achievable network-wide gain of memory deployment in random

and Internet-like power-law network graphs. In this model it is assumed that the

memory nodes store the previous packets which have passed through them. It is

further assumed that the stored packets are utilized in the same way as in memory-

assisted compression, which in turn, results in the network flow compression. Finding

the achievable gain of compression in the network entails, first finding the optimal

location of the memory units in the network, i.e., the memory deployment problem,

and then finding the optimal routing algorithm for network compression, given that

the memory units’ locations are known. The scope of this research is further extended

to wireless networks.

While relevant, the network compression problem is different from those addressed

by distributed source compression techniques (i.e., the Slepian Wolf problem) that

target multiple correlated sources sending information to the same destination [79, 75].

In the Slepian-Wolf, the gains are achievable in the asymptotic regime. Further,

the memorization of a sequence that is statistically independent of the sequence to

be compressed can result in a gain in memory-assisted compression, whereas in the

Slepian-Wolf problem, the gain is due to the bit-by-bit correlation between the two

sequences.

Broadly, this work investigates practical and theoretical aspects of the design and

analysis of network compression and its realization in wired and wireless networks.

The body of work can be divided into three parts. The first part focuses on the design

and analysis of practical memory-assisted compression algorithms, whereas the second

part concerns with the application of memory-assisted compression in wired networks.

4

The final part of the work deals with network compression in wireless networks. The

outline of the contribution of this dissertation are presented below.

1.1 Redundancy Elimination and Memory-assisted Com-
pression

Since application-level caching cannot capture the packet-level redundancy, devel-

opment of new content-aware approaches capable of redundancy elimination at the

packet and sub-packet levels is necessary. These requirements motivate the redun-

dancy elimination of packets from an information-theoretic point of view. Compres-

sion of network packets requires data processing to be performed on individual pieces

of data which are of finite sizes. However, traditional universal compression solu-

tions would not perform well over the finite-length sequences, as such techniques can

effectively remove redundancy only in the asymptotic regime.

In Chapter 2, a simple parametric source is first considered and two algorithms

from dictionary-based and statistical families of universal data compression algo-

rithms are compared. These algorithms are based on Lempel-Ziv (LZ) universal

compression [88], and context tree weighting (CTW) universal compression [85, 84]

which are adapted for memory-assisted compression. The compression performance

of these two algorithms are characterized and it is shown that statistical compression

method out performs the dictionary-based method.

Clearly, a simple source cannot model the data traffic. In Chapter 3, the scope of

algorithms developed for simple sources are extended to the memory-assisted univer-

sal compression when the data sequences are generated by a compound source which

is a mixture of parametric sources. To accommodate the compound source, a clus-

tering technique within the memory-assisted compression framework is presented to

better utilize the memory by classifying the data sequences from a mixture of simple

information sources. Theoretical results on the achievable gains of memory-assisted

compression of compound sources with and without clustering as the sequence length

5

and memory sizes vary are obtained. Furthermore, computer simulations are per-

formed to evaluate the performance of memory-assisted compression and validate the

benefits of clustering for compression.

The application of clustering to improve compression is a novel concept that is

resulted from the idea of network compression via memory. Research in information

theory has studied the use of compression for clustering [46, 45, 29] but not other way

around. This by itself opens up new exciting research directions both in theory and

algorithms.

1.2 Network Compression in Wired Networks

In Chapter 2 and Chapter 3, the benefits of memory-assisted compression were es-

tablished. It was shown that memorization or learning of past traffic at intermediate

nodes provide extra compression gain. This gain comes from the fact that utiliz-

ing previous traffic shared between the source and intermediate memory nodes with

memory helps to close the gap between the compression performance of universal

compression techniques and entropy of each individual sequence. As the next step,

the benefits of enabling intermediate nodes in networks with the capability of storing

the past communication are explored theoretically. In Chapter 4, memory-assisted

compression is applied in Erdős-Rényi random network graphs [33] consisted of a sin-

gle source and several randomly selected memory units. Analogous to the memory-

assisted compression gain for a single link, network-wide gain of compression, or gain

of network compression in short, is defined and studied in Erdős-Rényi random net-

work graphs. The gain of network compression depends on the number of memory

units; it is discovered that there exists a threshold value for the number of memo-

ries deployed in a random graph below which the network-wide gain of memorization

vanishes.

In Chapter 6, network compression in Internet-like random power-law network

6

graphs is studied. Similar to Chapter 4, the gain of network compression in Internet-

like power-law graphs is characterized. In particular, through analysis on power-law

graphs, it is demonstrated that non-vanishing network-wide gain of memorization is

obtained even when the number of memory units is a tiny fraction of the total number

of nodes in the network. Furthermore, memory placement in the network poses some

challenges to traditional shortest path routing algorithms, as the shortest path is not

necessarily minimum cost route in networks with memory. Simulation results are

presented which validate the results of the analytical study.

In Chapter 5, the routing problem for compressed flows is solved and a modified

Dijkstra’s algorithm is presented. The last problem studied in Chapter 5 is the

memory placement in non-random network graphs. It is shown that optimal memory-

placement is not tractable in general network graphs and the challenges involved are

demonstrated by deriving the optimal memory placement on line networks.

1.3 Network Compression in Wireless Networks

In Chapter 7 the network compression in wireless networks is investigated. Data

traffic in wireless networks is ever increasing. Nevertheless, traces derived from the

real-world traffic show significant redundancy at the packet level in the mobile net-

work traffic. This has inspired new solutions to reduce the amount of redundancy

present in the packet data in order to manage the explosive traffic. In Chapter 7, a

novel approach is proposed to leverage this redundancy for reducing network flows by

employing network compression techniques via overhearing memory units deployed

as helpers in a wireless network. Each memory-enabled helper overhears the data

packets previously sent by the wireless gateway to various mobile clients within its

coverage and uses them toward forming a model about the content of the packets

from the traffic. The resulting model is then used as side information by the wireless

network compression module in a two-part code with asymmetric cost (where the

7

helper-client link is far less costly than the server-client link). It is demonstrated

that wireless network compression via overhearing helpers has a three-fold benefit: 1)

offloading the wireless gateway and hence increasing the maximum number of mobile

nodes the gateway can reliably serve, 2) reducing the average packet delay, and 3)

improving the overall throughput in the network. Furthermore, a practical two-part

coding algorithm is presented that incorporates the asymmetric cost for the wireless

network compression via overhearing helpers. Moreover, the trade-offs between the

number of clients, memory-enabled helpers, total throughput and average delay are

investigated via extensive simulations. It is demonstrated that the wireless network

compression via overhearing helpers significantly improves all of the above perfor-

mance benchmarks for both UDP and TCP traffics.

In Chapter 8, the impact of packet loss on memory-assisted compression is ex-

plored theoretically. In particular, the problem of lossless compression of finite length

sequences with mismatched side information at encoder and decoder is considered.

The information-theoretic formulation for the problem in the context of universal

compression is presented and bounds on the fundamental limit of the compression

performance in this setup is derived. Furthermore, in Section 8.4, a sequential code

design is presented for memory-assisted compression with mismatched side informa-

tion.

In Chapter 9, the interplay between memory-assisted compression and de-duplication

algorithms is investigated. In particular, we study the de-duplication using Rabin

Finger printing [60, 68] working in tandem with memory-assisted compression. The

clustering algorithms proposed in Chapter 3 are adapted for working with large real-

world data sets gathered from mobile users.

8

CHAPTER II

MEMORY-ASSISTED COMPRESSION FOR SIMPLE

SOURCES

2.1 introduction

In Chapter 2, the concept of memory-assisted compression is introduced and experi-

mental results are presented for memory-assisted compression of simple sources. The

results of this chapter provide a foundation for development of the following chapters

in this dissertation.

2.1.1 Contributions

In this chapter two compression families, namely, statistical compression family and

dictionary-based compression family are introduced and their adaption for memory-

assisted compression are presented. Furthermore, the gain of memory-assisted com-

pression is defined and characterized for both compression families [71].

2.2 Setup

Consider an information source node S which generates content to be delivered to a

destination (client) node D ∈ D connected to S through memory node µ, as shown

in Figure 1. Let xn = (x1, ..., xn) be a sequence of length n, where each symbol xi is

from the alphabet A. For example, for a 8-bit alphabet that has 256 symbols, each xi

is a byte. Note also that xn may be viewed as a packet at the network layer generated

by source S. Let E[ln(Xn)] denote the expected length resulting from the universal

compression of xn. Further, the client nodes in D request various sequences from the

source over time.

Here, we consider two compression scenarios, as follows:

9

S µ D

Figure 1: The basic source, memory, and destination configuration. The node D
represents a set of clients receiving data from S.

1. universal compression of an individual sequence with no memorization (Ucomp),

in which a traditional universal compression is applied on the sequence xn with-

out context memorization, and

2. memory-assisted universal compression of an individual sequence (UcompM),

in which the encoder (e.g., server S in Figure 1) and the decoder (e.g., at

the intermediate node µ in Figure 1) both have access to a common memory

from the same information generating source (to be explained), and they utilize

memory for compression of the sequence xn.

In Ucomp, the intermediate nodes simply forward source packets to the sub-network

D. As such, compression takes place in the source and decompression is performed

in the destination. Assuming a universal compression at source, E[ln(Xn)] would be

the length of the compressed sequence, which has to travel within the network from

S to the destination D through the intermediate node µ. Since every client in D

requests a different sequence xn over time, the source must encode each sequence

xn independently and route through µ. Now, consider the second scenario in which

the intermediate node µ, while serving as an intermediate node for different contents

destined for different clients, also constructs a model for the source S. As both source

and intermediate nodes are aware of the previous content xn sent to another client

in D, they can leverage this knowledge for the better compression of the traffic sent

over the S − µ portion of the path.

Specifically, assume that previous sequences xm1 , . . . , xmL are sent from S to clients

D1, . . . DL in the sub-networkD via µ. Under UcompM, the node µ constructs a model

10

for the source S by observing the entire length m = m1 + . . . + mL sequence. Note

that forming the source model by node µ is not a passive storage of the sequences

xm1 , . . . , xmL . This source model would be extracted differently for different universal

compression schemes that we will use as the underlying memory-assisted compres-

sion algorithm. UcompM, which utilizes the memorized sequences of total length m,

strictly outperforms Ucomp. This benefit, offered by memorization at node µ, would

provide savings on the amount of data transferred on the link S−µ without incurring

any penalty except for some linear computation cost at node µ. Please note that the

memorization is used in both the encoder (the source) and the decoder (node µ).

Thus, source model is available at both S and µ.

Let E[ln|m(Xn)] be the expected code length for a sequence of length n given a

memorized sequence of length m. The fundamental gain of memory-assisted com-

pression g (n,m) is defined as

g (n,m) ,
E[ln(Xn)]

E[ln|m(Xn)]
.

In other words, g(n,m) is the compression gain achieved by UcompM for the universal

compression of the sequence xn over the compression performance that is achieved

using the universal compression without memory.

From now on, by memory size we mean the total length m of the observed se-

quences from the source at the memory unit. To investigate the gain of memorization

in the compression of the network flow, we must consider two phases. The first is

the memorization phase in which we assume memory units have observed one or mul-

tiple sequences of total length m from the source. This phase is realized in actual

communication networks by observing the fact that a sufficient number of clients may

have previously retrieved different small to moderate length sequences from the server

such that, via their routing, each of the memory units has been able to memorize the

11

source and form a model for it. In the second phase, each client may request (a small

to moderate length) content from the source. The memory-assisted source coding is

performed in the second phase.

Here, perhaps, there is need for some clarifications. First, the memorization and

learning from traffic takes place at the network layer because the routers (or the in-

termediate relays) are observing the packets at the network layer. Therefore, network

compression should reside beneath the transport layer and above the network layer,

at layer 3.5, as shown in Figure 2. Second, the intermediate node µ must decode and

re-encode as the client at destination lacks memory and hence would not be able to

decode a packet that is encoded using memory-assisted compression. This implies

that if there are multiple routers or relay nodes on the path from the source to the

destination, the last memory enabled router (i.e., the one that is closest to the client)

must decode the packet using memory-assisted decoding and (potentially) re-encode

the result using traditional universal compression before forwarding it to the client.

Third, it is reasonable to assume that the client often lacks memory with the source.

This is because the client is not connected to the source as often, and hence, even if it

has obtained some packets from the source in the past, they may be outdated to carry

information about source contents. Whereas, the routers are to observe the source

packets much more often and hence have memorized and learned the source contents.

Therefore, due to lack of memory at the client, the memory-assisted compression

should not be applied end-to-end; from the source all the way to the client.

In the following Section 2.3 and Section 2.4, practical algorithms for memory-

assisted compression for simple sources are described, by modifying two well-known

compression algorithms, namely the statistical compression methods and the dictionary-

based compression method. Furthermore, the achievable gains g(n,m) for real Inter-

net traces are characterized. In particular, HTML and style sheet data was gathered

from CNN web server in seven consecutive days. We arbitrarily chose the web server

12

IP

Memory
Memory-Assisted Compression and

Classification/Clustering Module

Compressed Data

Figure 2: Network Compression architecture which includes the classifica-
tion/clustering module.

and similar patterns could be found using data from different web servers. Note that

these results are provided as a proof of concept for memory-assisted source coding on

real Internet traces.

2.3 Statistical Compression Method

Practical compression algorithms can be divided into two categories: statistical com-

pression method and the dictionary-based compression method. The essence of statis-

tical compression methods is to find an estimate for the statistics of the source based

on the currently observed sequence or an external auxiliary sequence. As such, the

compression engine follows a two part design, a predictor followed by an arithmetic

coder [50], as shown in Fig 42(a). The predictor estimates the statistics of the source

and a model is created using the previously seen symbols; based on this model pre-

dictions about the probability of the next symbol are issued. In short, the encoding

of every new symbol entails:

1. estimating the probability of the symbol based on the model,

2. sending the estimated probability to the arithmetic encoder, which encodes the

symbol, and

3. updating the model with the new data. As expected, the decoding process is

similar to the encoding.

13

Arithmetic

Encoder

Predictor &

Source model

context

Next bit

Probability

Prediction Compressed bit

Figure 3: The two-part design of statistical compression algorithms composed of a
predictor module and an arithmetic coding module. The predictor maintains a model
for the source to use for prediction of probability of the next bit.

The predictor can employ large selection of simple models and combine them to

create the source model. A simple and effective predictor can be constructed using

tree models; Context Tree Weighting (CTW) algorithm is a well-known example of

this approach [85, 84]. CTW is used for experiments of this sections. In CTW,

a tree of fixed depth δ is formed to represent the source model; the nodes on the

tree correspond to estimates for the statistics of the source. Each bit is compressed

according to the previous δ bits called context. Context bits determine a path in the

tree that leads to one of the lea nodes. The probability of the next bit is predicted

by the information stored in the leaf node. The predicted probability is then sent to

a binary arithmetic coder for compression. The tree nodes along the path are then

updated using the next bit.

The generalization of the CTW encoding/decoding algorithm for the case of

memory-assisted compression is immediate. As previously discussed, in memory-

assisted compression, a sequence from the source is available to both the decoder (at

µ) and the encoder (at S). This sequence is the concatenation of all the packets

sent from S to µ in Figure 1. Therefore, using this sequence, a context tree can

be constructed that will be further updated in the compression process. Note that

the source and memory node should always keep the context tree synchronized with

each other. In practical settings, a simple acknowledgment mechanism suffices for the

context synchronization.

14

2.4 Dictionary-based Compression Method

Unlike the statistical compression methods that rely on the estimation of the source

statistical parameters, dictionary-based compression methods select sequences of sym-

bols and encode each sequence using a dictionary of sequences that is generally con-

structed using the previously compressed symbols. The dictionary may be static or

dynamic (adaptive). The former does not allow deletion of symbols from the dictio-

nary, whereas the latter holds symbols previously found in the input stream, allowing

for additions and deletions of symbols as new input is being read.

One of the most efficient dictionary-based methods, that is investigate in this work,

is the LZ77 algorithm [88]. The principle of LZ77 is to use part of the previously-seen

input stream as the dictionary. The encoder maintains a window to the input stream

and shifts the input in that window from right to left as strings of symbols are being

encoded.

The implementation of the memory-assisted LZ77 in this work is based on the

open-source DEFLATE algorithm. A sequence of length m is assumed to be available

at both the encoder and the decoder. The previously seen sequence is then used as

the common dictionary. The new data to be compressed, is appended to the end of

the dictionary at the source and fed to the LZ77 encoder. The output is sent to the

decoder. Similarly, the decoder can reconstruct the intended stream by appending

the transmitted symbols to the end of the dictionary and perform the LZ77 decoding

algorithm.

15

2.5 Simulation Results

The compression performance of the memory-assisted compression algorithms de-

scribed in Section 2.3 and Section 2.4 are depicted in Figure 4. We have implemented

the memory-assisted CTW and quantified the achievable gains using real Internet

traffic data, as shown in Figure 4(a). As expected, the size of the compressed se-

quence decreases as memory size m increases. For example, for a data sequence of

length n = 100 Bytes, without memory, the compressed sequence has a length of ≈ 87

Bytes, while using a memory of size m = 4MB, this data sequences can be compressed

to 31 Bytes; almost 3 times smaller. Our simulation results for memory-assisted LZ77

with a window size of 32kB (all seizes are reported in Bytes) and various dictionary

sizes are shown in Figure 4(b).

The actual gain of memory-assisted compression g for memory size 4MB is de-

picted in Figure 34. Our results suggest that the memory-assisted statistical com-

pression method outperforms the dictionary-based method in both the absolute size

of the compressed output and also the gain of memory, i.e., the gain achieved on top

of the gain of conventional compression, by utilizing memory.

Both dictionary-based and statistical compressors can achieve the entropy limit

for very large input sequences. However, they perform poorly for short to moderate

length sequences. Therefore, the main advantage of our memory-assisted compression

is that it will overcame this limitation by exploiting the available memory.

16

(a) Memory-assisted CTW (b) Memory-assisted LZ

Figure 4: The compression ratio (bits/Byte) achieved by memory-assisted algo-
rithms.

Figure 5: The gain g of memory-assisted compression over traditional compression
(Ucomp), for memory size of 4MB for CTW and LZ compression algorithms. This
gain is achieved by utilizing memory on top of the performance of the conventional
compression.

17

CHAPTER III

CLUSTERING FOR MEMORY-ASSISTED

COMPRESSION OF COMPOUND SOURCES

3.1 Introduction

The algorithms for memory-assisted compression presented in Section 2.3 and Sec-

tion 2.4 are beneficial for compression of sequences generated by a single information

source. However, a single source cannot model the data traffic. Hence, a more com-

plete model for the source that is called “compound source model” is considered.

Compound source model is a mixture of simple information sources. The choice of

compound source model is motivated by the observation that in practice packets in the

network are generated by various applications; every application can be treated as an

information source. Therefore, in a compound source model for a content server at the

network, the sequences (packets) in the memory are from various information sources.

This raises the question that whether a naive application of memory-assisted com-

pression would suffice to achieve the expected memorization gain in memory-assisted

compression. The theoretical results in Section 3.4 demonstrate that the crude forma-

tion of the context by a memory element from the previously observed packets under

certain conditions asymptotically worsen the compression performance. Hence, we

consider clustering technique within the memory-assisted compression framework to

better utilize the memory by classifying the data packets from a mixture of sources.

3.1.1 Contributions

In Chapter 3 a clustering algorithm is presented which aims at utilizing the data in

the memory to better compress a new sequence from the compound source. The main

18

idea of the clustering is to group packets (in the memory) that can be compressed

well together. The hypothesis is that the packets in the same cluster would share

similar statistical properties and hence improve the compression performance. This

hypothesis is examined by extensive simulations on real-world data. A newly gener-

ated packet by the compound source is first classified into one of the clusters and then

the set of packets in the selected cluster is used as the memory for the compression

of the new packet.

In short, to better model a real content-generator server, it is desirable to study

a new model in which packets are from a compound (mixture) of several informa-

tion sources. This new model will influence both the theoretical analysis as well

as the algorithms developed for memory-assisted compression. In this chapter, the

related issues are addressed and a joint memorization and clustering technique for

compression is proposed that is suitable for a compound source. The questioned to

be answered in this chapter are:

1. How much performance improvement should we expect from the joint memo-

rization and clustering versus the memorization without clustering?

2. How should the clustering scheme be realized to achieve good performance from

compression with the joint memorization and clustering?

3. Given a set of clusters, how classification of an incoming new sequence into

one of the clusters in the memory is performed such that the performance of

memory-assisted compression is maximized?

The results in this chapter were presented in [73, 15]. The theoretical results in

Section 3.4 are developed by my colleague, Ahmad Beirami, and are presented for

completeness. As such, the proofs are omitted from this dissertation.

19

3.2 Background

The goal of the clustering is to group the sequences in the memory such that the total

length of all the encoded sequences is minimized. Therefore, it is natural to adapt

a clustering algorithm, among the many, that has the codelength minimization as

its principle criterion. We employ a Minimum Description Length (MDL) approach

suggested by [45]. The MDL approach is particularly interesting since it does not

need any prior distribution; it only uses the data at hand. The MDL model selection

approach is based on finding shortest description length of a given sequence relative

to a model class. In other words, MDL clustering tries to group sequences in the

memory together in such a way that the resulting total of all the codelengths in

the clusters is minimized, which is aligned with our expectation of the clustering

algorithm. We should point that the ultimate goal of memory-assisted compression

is to utilize the memory in order to minimize the codelength of the “new sequence”

using clustered memory. The simulation results in this chapter demonstrate that for

cases where the length of memory is larger than the length of the new sequence, the

MDL clustering demonstrates a very good performance close to that of compression

with source-defined clustering of the memory.

The MDL clustering and classification problem above involves finding the code-

length of a set of sequences when grouped and then compressed together. As the MDL

relies on the codelength minimization, the complexity of the codelength computation

determines the complexity of the algorithm. Therefore, finding efficient ways to find

the minimum code length of a set of sequences (or an approximation thereof) to per-

form the classification and clustering is core to the problems studied in this chapter.

Furthermore, the number of simple sources in the compound source can be unknown

a priori. In the theoretical development, a reduced form of the problem is considered

where it is assumed that the number of information sources in the compound source is

known and the number of clusters is chosen to be equal to the number of information

20

sources.

A mixture of sufficient number of parametric sources is expected to model the

complex nature of the content generator. Let A be a finite alphabet and let the

parametric source be defined using a d-dimensional parameter vector θ = (θ1, ..., θd),

where d denotes the number of the source parameters. For example, if the alphabet

size is ||A|| = 256 (byte), for a first-order Markov source the number of source param-

eters is 256×255 which is equal to the number of independent transition probabilities.

Denote µθ as the probability measure defined by the parameter vector θ on sequences

(packets) of length n. We also use the notation µθ to refer to the parametric source

itself. We assume that the d parameters are unknown.

It is assumed that both the encoder and the decoder have access to a common

memory of the previous T packets (each of size n) from the compound source. Letm =

nT denote the total memory length. Further, denote y = {yn(j)}Tj=1 as the previous T

packets shared between M1 and M2. We may view y as the concatenation of previous

T packets as well. Note that each of the packets yn(j) might be from a different

source in the compound source. Let p = (p1, ..., pK), where
∑K

i=1 pi = 1, as the

probability distribution according to which the information sources in the compound

source (consisted of K parametric sources) are selected for packet generation, i.e.,

the source i is picked with probability pi. Let the random variable Zj denote the

index of the source that has generated the packet yn(j), and hence, Zj follows the

distribution p over [K]. Therefore, at time step j, packet yn(j) is generated using the

parameter vector θ(Zj). Further, denote Z as the vector Z = (Z1, ..., ZT). We wish

to compress the packet xn with source index ZT+1, when both the encoder and the

decoder have access to a realization y of the random vector Y. This setup, although

very generic, can occur in many applications. As the most basic example, consider

the communication scenario in Figure 6. The presence of the shared memory y at M1

and M2 can be used by the encoder at M1 to compress (via memory-assisted source

21

coding) the packet xn which is requested by client C. The compression can reduce

the transmission cost on the M1 −M2 link while being transparent to the client, i.e.,

M2 decodes the memory-assisted source code and then applies conventional universal

compression to xn and transmits to C.

S1

SK

M1

M2

C

C

Figure 6: The basic memory-assisted compression scenario between two memory
elements M1 and M2 in the network. The compound source (i.e., the content server)
is shown as a set of multiple simple sources S1, . . . , SK on the left.

Let Hn(θ) be the source entropy given θ, i.e.,

Hn(θ) = E

[
log

(
1

µθ(Xn)

)]
=
∑
xn

µθ(x
n) log

(
1

µθ(xn)

)
. (1)

In this chapter log(·) always denotes the logarithm at base 2. Let cn : An → {0, 1}∗

be an injective mapping from the set An of the sequences of length n over A to the

set {0, 1}∗ of binary sequences. Denote Rn(ln, θ) as the expected redundancy of the

code with length function ln(·) which assigns a codeword length to xn, defined as

Rn(ln, θ) = E[ln(Xn)]−Hn(θ). (2)

Note that the expected redundancy is a measure of how close we can compress the

packet from the parametric source with parameter vector θ to the fundamental limit

given by Hn(θ).

22

3.3 Packet Coding Strategies at Memory Elements

In order to investigate whether or not memorization provides compression benefit for

the compound source, the following three schemes are compared:

• Ucomp (Universal compression), in which a simple universal compression is

applied on the packet xn without regard to the memorized packets y.

• UcompM (Universal compression with naive context memorization), in which

the encoder at M1 and the decoder at M2 both have access to the memorized

sequence y from the compound source, and they use y without regard to the

index Z for the naive learning of the source statistics in the compression of the

packet xn.

• UcompCM (Universal compression with source-defined clustering of the mem-

ory), in which the encoder and the decoder both have access to the clustered

memory, i.e. the memory sequence y and the index Z of the source of memo-

rized packets, from the compound source and use it toward the compression of

the sequence. Specifically, the sequence is first classified to one of the clusters

in the memory. Then, it is compressed using the sequences memorized in the

respective cluster (shared between the encoder and the decoder).

In the theoretical analysis, we use the average redundancy for the quantification of

the performance of the different coding strategies. Note that the redundancy rate and

the compression rate are interrelated since their difference is the constant entropy rate

as can be seen in (2).

Denote R̄Ucomp(n) as the average minimax redundancy of the Ucomp coding strat-

egy, given by

R̄Ucomp(n) , inf
ln

sup
θ
Rn(ln, θ). (3)

23

In UcompM, let ln|m be the naive memory-assisted length function with a memory

sequence of length m. Let Rn(ln|m, θ) be the expected redundancy of encoding a

packet of length n from the source µθ using the length function ln|m. Further, let

R̄UcompM(n,m) denote the corresponding average minimax redundancy, i.e.,

R̄UcompM(n,m) , inf
ln|m

sup
θ
Rn(ln|m, θ). (4)

In UcompCM, let ln|m,Z denote the length function for the universal compression

of a packet of length n with memorized sequences y, where the vector Z of the source

indices is known. Denote Rn(ln|m,Z, θ) as the expected redundancy of encoding a

packet xn of length n using the length function ln|m,Z. Denote R̄UcompCM(n,m) as the

expected minimax redundancy given by

R̄UcompCM(n,m) , inf
ln|m,Z

sup
θ
Rn(ln|m,Z, θ). (5)

The following is a trivial bound on the performance of UcompCM.

Remark The average minimax redundancy of UcompCM is smaller than that of

Ucomp, i.e.,

R̄UcompCM(n,m) ≤ R̄Ucomp(n). (6)

Equation (6) simply states that the context memorization with source defined clus-

tering improves the performance of the universal compression. We stress again that

the saving of memory-assisted compression in terms of flow reduction is obtained in

the M1-M2 link in Figure 6.

3.4 Theoretical Analysis

In this section, we provide discussion on the performance of the different packet coding

strategies introduced in the previous section by the analysis of the average minimax

24

redundancy.

The performance of traditional universal compression has been extensively studied

in the literature (cf. [12] and the references therein). In the case of Ucomp coding

strategy, Clarke and Barron derived the expected minimax redundancy R̄Ucomp(n) for

memoryless sources [30], which was later generalized by Atteson for Markov sources,

as the following [9]:

Theorem 3.4.1 The average minimax redundancy of Ucomp coding strategy is given

by

R̄Ucomp(n) =
d

2
log
(n

2πe

)
+ log

∫
|In(θ)| 12dθ +O

(
1

n

)
, (7)

where In(θ) is the Fisher information matrix.

Theorem 3.4.1 gives the average minimax redundancy for the Ucomp coding strategy.

According to this theorem, the performance of universal compression on finite-length

packets, with size similar to IP packets, is fundamentally limited by the inevitable

compression overhead (redundancy) imposed by the universal compression.

For the simple case of a single parametric source, Beirami et al showed in [73, 15]

that the average minimax redundancy of UcompM is given by

R̄UcompM(n,m) =
d

2
log
(

1 +
n

m

)
+O

(
1

n

)
. (8)

which also theoretically quantifies our previous results in Chapter 2. Comparing (7)

and (8), we observe that the second term in (7) can be eliminated by using memory.

This term, in fact, has a large contribution to redundancy of finite-length univer-

sal compression. Therefore, when the memory size is large enough, i.e., a sufficient

number of packets from previous communication have been stored, the overhead (re-

dundancy) of universal compression due to finite-length constraints becomes subtle.

In [15], Beirami et al studied the minimax redundancy of universal compression of

sequences from compound parametric sources. It was shown that when the number

25

of sources is more than one, the average minimax redundancy of UcompM coding

strategy as m → ∞, is given by R̄UcompM = Θ(n).1 This implies that the naive

memorization of the previous packets using UcompM without regard to which source

parameter has indeed generated the packet would not suffice to achieve the memo-

rization gain. In fact, the redundancy of UcompM is worse than the redundancy of

Ucomp, for large n. This demonstrates that UcompM (without clustering) performs

worse than Ucomp when more than one information source is employed. As such,

the clustering of the memorized packets is necessary for effective memory-assisted

compression in scenarios where the source is a mixture of several parametric sources.

In [73], the compression performance in an ideal case where we know the source of

each packet is investigated.

In short, the theoretical results presented in Section 3.2 demonstrate that if suf-

ficient memory of the past is present at the memory element, the overhead (redun-

dancy) due to finite-length universal compression may be eliminated via joint mem-

orization and clustering which in turn result in improved compression performance.

This result motivates the investigation of memorization and clustering approach in

real-world scenarios. In Section 3.5, we will further relax the source-defined clustering

assumptions and study the impact of clustering in practice.

3.5 Hierarchical Clustering

In Section 3.5, we try to answer the main question in the memory-assisted compression

setup we introduced: “How do we utilize the available memory to better compress a

packet generated by a real-world content server?” In Section 3.4, it was shown theo-

retically that clustering is necessary to effectively utilize the memory in the proposed

memory-assisted compression of traffic packets. Within this framework, we identify

two interrelated problems: 1) How do we perform clustering of memorized packets

1f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and g(n) = O(f(n)).

26

to improve the memory-assisted compression in real-world traffic? 2) Given a set of

clustered packets, how do we classify an incoming new packet (to be encoded) into

one of the clusters in the memory using which the performance of memory-assisted

compression is optimized?

Packet

Compressible

?

Forward

No Determine Cluster

via Hellinger

Distance

Compress using

Cluster Statistics

Forward

Yes

Figure 7: Network packet compression flowchart. The modules in the dashed box
are the components of the K-means clustering using Hellinger distance.

The goal of the clustering is to group the packets in the memory such that the

total length of all the encoded packets is minimized. To do so, in the sequel, we

describe a hierarchical clustering algorithm that proves to be useful for compression.

The proposed hierarchy for the content-aware joint memorization and clustering for

network packet compression is shown in Figure 7. As shown, we first identify whether

or not an incoming packet is compressible. If the packet is determined incompressible,

it is neither compressed nor stored in the memory. On the other hand, if a packet

is determined compressible, it is passed to the clustering unit which operates based

on the Hellinger distance metric. Figure 8 depicts the details of the compression and

decompression modules of the memory-assisted compression with clustering.

3.5.1 Compressibility Determination

We perform the compressibility determination based on the empirical entropy of the

data packet. Figure 9 demonstrates the distribution of the empirical entropy of 1000

27

Incoming

Packet

Memory-Assisted Compression Module

Compress

using Model

Update

Model

Outgoing

Packet

Memory

Cluster 1 Cluster 2 … Cluster K

Routing/forwarding

Module
Clustering

(a) Compression

Incoming

Packet

Memory-Assisted Decompression Module

Decompress

using Cluster

DeliverRouting/forwarding

Module

Memory

Cluster 1 Cluster 2 … Cluster K

Error

Handling

Feedback

(b) Decompression

Figure 8: The compression and decompression modules. The routing/forwarding
module handles compressibility determination. The clustering module creates source
models and stores them in the memory.

packets downloaded from CNN and Apple websites. The choice of the web servers

is arbitrary and similar patterns could be obtained using different websites. As can

be seen, using this diagram, the packets may be divided into two categories. One

category contains packets with very high entropy rate (close to 8 bits per byte) and

hence these packets are incompressible.2 The other category contains packets whose

2Note that exactly 8 bits are required to represent each data byte when no compression is in
effect.

28

empirical entropy rate is estimated to be much less than 8, and hence, these pack-

ets are compressible. Therefore, as the first step the packets are partitioned into

compressible and incompressible.

4.5 5 5.5 6 6.5 7 7.5 8
0

0.04

0.08

0.12

0.16

bits/byte

F
re
q
u
en
cy

Figure 9: The distribution of the empirical entropy of the packets in the trace under
study.

Note that the compressibility determination is very fast and only requires the

calculation of the empirical entropy, which is linear with the data packet size. If a

data packet is determined to be compressible, it is kept in the memory for memory-

assisted compression. On the other hand, whenever a data packet is determined

to be incompressible, it is not stored in the memory and simply forwarded without

compression. After the partitioning step, the packets in the resulting memory are all

compressible. Then, we will perform a clustering of the resulting memory based on

the Hellinger distance metric between the packets.

3.5.2 Clustering Using Hellinger Distance Metric

The Hellinger distance metric is a metric to quantify the similarity/difference between

two probability distributions (cf.[24]). For two probability distributions p(x) and q(x)

29

on symbols xi from alphabet A, the Hellinger distance is defined by

dH(p, q) =
1

2

√∑
xi∈A

(√
p(xi)−

√
q(xi)

)2

. (9)

In our setup, we calculate the Hellinger distance of two packets using their empirical

distribution of symbols for each individual packet. Recall that a packet xn ∈ An is a

vector of n symbols (a byte here) xi ∈ A.

3.5.2.1 Clustering

We describe as to how we cluster the packets in the memory based on Hellinger

distance. A good clustering is such that it allows efficient compression of the whole

data set. Equivalently, the packets that are clustered together should share similar

statistical properties in order to be compressed well together. Suppose the total

number of clusters is given by K, and each packet in the memory (after partitioning

step in Figure 7) needs to be assigned to one of the clusters. We use the binary

indicator cjt to denote the cluster assignment for the yn(t) (the t-th packet) in the

memory, where cjt = 1 if yn(t) is assigned to cluster j ∈ [K], otherwise cjt = 0. Then

the objective function for clustering is given by

J =
T∑
t=1

K∑
j=1

cjtdH(qt, uj), (10)

where qt is the distribution on the symbols obtained from the packet yn(t) and uj

is the probability distribution vector on the symbols associated with the packets in

cluster j. The goal of the clustering algorithm is to find the assignment cjt for j ∈ [K]

and t ∈ [T] such that J is minimized.

The problem setup suggests that the K-means clustering algorithm [18] is very

suitable for our purpose. It is an iterative algorithm which consists of two steps for

successive optimization of cjt (and hence uj). Given cluster center uj, the optimal

30

cjt can be easily determined by assigning the packet yn(t) to the closest cluster with

minimum Hellinger distance dH(qt, uj). Then, we fix cjt and update uj. The clustering

algorithm is summarized in Algorithm 1.

Algorithm 1 K-means clustering using Hellinger distance

Obtain the symbol distribution qt of each packet
Select K packets {yn(t1), yn(t2), . . . , yn(tK)} by picking one packet out of every bTKc
packets
Generate initial cluster vector uj using qtj of the selected K packets
repeat

for t ∈ [T] do

cjt =

{
1 if j = argmini dH(qt, ui)

0 otherwise

end for
for 1 ≤ j ≤ K do

uj =
∑T
t=1 c

j
tqt∑T

t=1 c
j
t

end for
until convergence or maximum number of iterations

3.5.2.2 Classification

Once the clustering of memory is performed, to compress a new packet xn, we must

first decide which cluster must be used as a side information to compress xn. There-

fore, we must classify the packet xn by assigning it to a proper cluster. The classifi-

cation algorithm is as follows. Let c be the cluster label of xn to be determined. We

compute Hellinger distance between the symbol distribution q of xn and the cluster

uj. Then xn is assigned to the closest cluster as follows

c = argmin
1≤j≤K

dH(q, uj). (11)

3.5.3 Simulation Results

The simulation results in Section 3.5.3 are divided into two parts. The first part is

designed to demonstrate the importance of the clustering and also verify the results

31

in Section 3.4. We consider K first-order Markov sources with alphabet size of 256

and source entropy Hn(θ)/n = 1 bit per byte. The length of the sequences generated

by the source are fixed to be equal to n. The number of sources in the mixture are

K = 10 and every sequence has equal chance to be from one of these sources. Further,

the compression is performed using CTW algorithm and averaged over multiple runs

of the experiment.

Figure 10 depicts memory-assisted compression with source-defined clustering,

denoted by gcm, for various memory sizes m. Joint memorization and clustering

achieves up to 6-fold improvement over the traditional universal compression, Ucomp.

Figure 11 depicts the experimental gcm using CTW, and the experimental gain of

naive memory-assisted compression, denoted by gm, for memory m = 10MB. Note

that gm is the memorization gain (which is the performance benefit of UcompM) over

Ucomp when both schemes are used for the compression of a compound source without

any clustering technique involved. As expected, with no clustering, the memory-

assisted compression may result in a worse compression rate than compression with

no memory validating our result in Section 3.4.

The second part of simulations are designed to demonstrate the effectiveness of the

content-aware joint memorization and clustering proposed in this work through com-

puter simulations. The proposed algorithm is applied to real-world packets captured

from CNN and Apple websites. To capture the packet, we used wget and wireshark [3]

open-source packet analyser together and stored the IP packets. We captured 8100

data packets from each website for our experiment. All packets have the same size

of 1434 bytes. We randomly select 100 packets from each website as test packets to

measure the compression performance. The remaining 16000 packets are then used

to construct memory and the clustering algorithm is performed on these packets.

Figure 12 demonstrates the probability distribution associated with each of the

obtained clusters after the convergence of the clustering algorithm. As can be seen,

32

10
2

10
3

10
4

10
5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

n

g c
m

m=10MB
m=1MB
m=100kB

Figure 10: The gain gcm of memory-assisted compression with source-defined clus-
tering.

clusters have significant amount of English alphabet as well as special characters that

are attributed to either text or scripts.

In order to illustrate the importance of clustering for efficient use of memory,

we have evaluated the compression rate for the following cases after the entropy

classification is performed. 1) Ucomp (Universal compression), 2) UcompM (Universal

compression with naive memorization), 3) UcompCM (Universal compression with

memorization and source-defined clustering), 4) UcompH (Universal compression with

memorization and K-means clustering using Hellinger distance).

The simulation results are shown in Figure 13. The compression rate on the

compressible packets is plotted for the different packet coding strategies. As can be

seen, our proposed clustering scheme based on the Hellinger distance metric achieves

superior performance over the traditional universal compression. Note that these

results do not demonstrate the impact of the incompressible packets. This is due to

the fact that the number of incompressible packets may vary in different websites as

some traffic traces contain more images and some contain more text/scripts. However,

33

5k 50k 500k

0.5

1

1.5

2

2.5

n

g
cm

(simulation)

g
m

 (simulation)

Figure 11: Simulation results for the compression gains gm and gcm.

the trend shown here for the compressible sequences would remain intact for different

traces. Furthermore, if we also consider the incompressible part of the data, the

resulting compression rate would be slightly worse, but still considerably better than

Ucomp and UcompM.

3.5.4 Discussion on Complexity

3.5.4.1 Compression Complexity in Theory

The memory-assisted compression has a complexity linear in the packet size. The

compressibility determination based on entropy estimation is also a linear operation

in size of packets as it only entails the computation of empirical entropy of each

packet. Thus far, these operations can be optimized to be performed on the packets

on the fly. On the other hand, the K-means clustering is a more complex operation

that needs to be performed offline. After the cluster centers are determined, which

can be done every once in a while, the classification can also be done efficiently in

linear complexity with the packet size.

The error-handling operation in the decompression setting deals with the cases

34

0 50 100 150 200 250
0

0.1
0.2

0 50 100 150 200 250
0

0.05
0.1

0 50 100 150 200 250
0

0.05
0.1

F
re
q
u
en

cy

0 50 100 150 200 250
0

0.05
0.1

0 50 100 150 200 250
0

0.1
0.2

Alphabet Symbol

Figure 12: Empirical symbol distribution of cluster centers.

where the ID of the cluster (side information) a packet is compressed with does not

exists in the memory of the decompressor. In such cases, the error handling module

would send a feedback to the sender to request the cluster center to add it to the set

of models.

3.5.4.2 Compression Complexity in Practice

The speed and performance of different compression algorithms varies widely. The

statistical compression algorithms are tailored to offer superior compression perfor-

mance, however, the compression speed of this class of compression algorithms is

considerably lower than dictionary-based compression algorithms. There are several

high-speed dictionary based compression algorithms, such as [51, 39, 40, 62]. These

algorithms are the key part of some of the massive parallel computation systems, for

example, Snappy [39] is used in Google infrastructure. The main goal in the design

of such high-speed algorithms has been to adapt LZ77 compression to achieve highest

35

0

2

4

6

8

No Compression Ucomp UcompM UcompH

b
it

/b
y

te

CTW

LZW

Figure 13: Results of various memorization and clustering schemes on compressible
packets after entropy classification.

possible speed and through this process compression performance is traded for speed.

As such, the compression performance of high-speed algorithms suffers, for exam-

ple, compression of the first 1GB of the English Wikipedia using Snappy [39], and

Gipfeli [51] has resulted in 530MB (in 2.8sec) and 410MB (in 4.3sec), respectively.

However, a typical dictionary-based (Zlib) would compress the same input to 320MB

(in 41.7sec). 3 In contrast, PAQ8, CTW, and lite PAQ compress the 1GB English

text input to 134MB (in ≈30 ksec), 211MB (in ≈13 ks), and 164MB (in ≈1 ksec),

respectively.

The high-speed compression algorithms are suitable for network compression in

wired networks where the communication throughput is high, e.g., 128MB/sec for

Ethernet 1 Gigabit/sec connection). The high-performance statistical compression

algorithms are more suitable for wireless networks where the communication speed is

lower (6.5 MB/sec for 802.11g) and higher compression rates are desirable.

3The execution time for dictionary-based algorithms is measured on an Intel Xeon W3690 CPU.
The execution time of the statistical compression methods is measured on a Intel core i5 processor
using only one of the cores.

36

3.6 Non-parametric Clustering and Infinite Mixture Mod-
els

The Hellinger distance metric proposed in Section 3.5 for clustering cannot be ex-

tended to complex statistical models. Furthermore, the k-means clustering algorithm

requires the number of clusters to be known apriori which is not the case in general.

To address this limitation, in Section 3.6, a principled clustering algorithm is pre-

sented that does not need to know the number of clusters in advance. Moreover, the

use of Hellinger distance is relaxed and a more general feature extraction scheme is

presented which is tailored to state-of-the-art statistical compression algorithms.

3.6.1 Infinite Mixture Models

In standard clustering algorithms like K-means clustering, it is assumed that the

number of clusters is fixed and known. However, in many real-world examples the

number of clusters is unknown. To address this problem, non-parametric Bayesian

models [61, 35, 19, 36] are proposed that can potentially have infinite number of

hidden clusters which naturally arise as more data become available. In other words,

instead of fixing the number of clusters to be discovered, the number of clusters is

allowed to grow as more data comes in.

The statistical process used for modeling the data generation and then clustering

is Dirichlet Process (DP) mixture model. DP mixture models are the cornerstone

of non-parametric Bayesian statistics [19, 82]. Figure 14 depicts the graphical model

representation of a DP mixture model used in the section. Nodes denote random vari-

ables, edges denote possible dependence, and plates denote replication. The mixture

model considered for generating data is assumed to have an infinite number of sources

where k-th source is described by a set of parameters θk. The source parameters are

assumed to come from a base distribution denoted by G0. In the DP mixture, the

37

vector π is a vector defined as

πk(v) = vk

k−1∏
j=1

(1− vj),

where each vj is a draw from Beta distribution with parameter α, i.e., vj ∼ Beta(1, α).

Let zi be the index of the mixture component with which the data point xi is associ-

ated. The data generating process can be described as below [19]:

• θk ∼ G0

• for i-th data point:

(a) Draw Zi ∼ V = Mult(π(v)).

(b) Draw Xi ∼ P[xi|θzi].

Data generated from this process can be partitioned according to the distinct values

of the sources. It is observed from this model that the number of mixture components

is random.

n

α

π

Zi

Xi

∞

G0

θk

Figure 14: Graphical model representation of Dirichlet Process mixture model.

38

3.6.2 Inference

Expectation Maximization [18] is generally used for inference in a mixture model.

However, with the non-parametric description of the model, Expectation Maximiza-

tion is not directly applicable. As such, two different classes of inference techniques

are used, namely, class of Markov Chain Monte Carlo (MCMC) techniques [57], and

class of variational inference techniques [19]. Both MCMC and variational inference

methods have their roots in statistical physics. MCMC are a class of algorithms for

sampling from probability distributions based on constructing a Markov chain that

has the desired distribution as its equilibrium distribution. The state of the chain

after a large number of steps is then used as a sample of the desired distribution. The

quality of the sample improves as a function of the number of steps. MCMC methods

can be slow to converge and their convergence can be dicult to diagnose. As such, in

some of the practical implementations [59] variational methods are used for inference.

The basic idea of variational inference is to formulate the computation of a marginal

or conditional probability in terms of an optimization problem. This problem is of-

ten intractable and to arrive at a solution, the problem is then relaxed, yielding a

simplified optimization problem that depends on a number of free parameters, known

as variational parameters. Solving for the variational parameters gives an approxi-

mation to the marginal or conditional probabilities of interest. In short, variational

methods are a class of deterministic algorithms that convert inference problems into

optimization problems [83].

The optimization problem in variational inference is constructed as follows. Con-

sider a model with latent variables w = {Z,V, θ} that are controlled with a known

hyperparameter α. The observations are xn = {x1, . . . , xn}. The posterior distribu-

tion of the latent variables is

log P[w|xn] = log P[w, xn]− log P[xn]. (12)

39

The variational method is based on optimizing KL divergence with respect to a so-

called variational distribution, denoted by Q[w]. The optimization problem aims to

minimize the KL divergence between Q[w] and P[w|xn]. We have

D
(
Q[w] ‖ P[w|xn]

)
= EQ

[
log Q[w]

]
− EQ

[
log P[w, xn]

]
+ log P[xn] (13)

= EQ

[
log Q[w]

]
− EQ

[
log P[θ]

]
− EQ

[
log P[V]

]
−

n∑
i=1

{
EQ

[
log P[Zi|V]

]
+ EQ

[
log P[xi|Zi]

]}
+ log P[xn]. (14)

In the variational framework the distribution Q(.) is chosen such that the opti-

mization problem in (13) is tractable. In practical implementations, a fully-factorized

variational distributions is often considered which break all of the dependencies be-

tween latent variables and the final problem becomes tractable.

In [19], it is shown that by choosing a fully-factorized Q(.) one can arrive at an

optimization problem which can be solved using standard gradient descent techniques.

The efficiency of this approach is demonstrated in [19] and an implementation of this

technique can be found in [59]. The complexity of the implementation in [59] is linear

in the number of mixture components and data points. The approximate inference

algorithm in the implementation uses a truncated distribution with a fixed maximum

number of mixture components, but almost always the number of components actually

used depends on the data.

3.7 Extracting Features From Statistical Compression Meth-
ods for Clustering

The non-parametric methods discussed in Section 3.6 provide a statistically structured

way of clustering the data points even when the actual number of clusters is unknown.

In Section 3.7, a new approach of feature extraction from statistical compressors is

40

presented. This approach lends itself to the the non-parametric clustering and as a

result superior compression performance is demonstrated.

As previously discussed in Section 2.3, the statistical compressor consists of two

parts: a predictor and an entropy coder, as shown in Figure 42(a). Let xn =

(x1, . . . , xn), xt ∈ A be the input packet. The compressor processes xn sequen-

tially such that at t-th step the predictor emits the probability distribution of the

next symbol, denoted by P[xt|xt−1
1], based on the already processed sequence xt−1

1 =

x1, . . . , xt−1. Given the probability distribution, the entropy coder maps xt to a code-

word of a length close to − log P[xt|xt−1
1] bits. The predictor, as depicted in Figure 15,

is composed of a number of simple models. Each model in predictor issues an estimate

of the probability distribution of the next symbol. Let e1, . . . , ep be the estimate of

models M1, . . . ,Mp, respectively.

Mixer

Model 1 …

Probability of

Next bit

Predictor

Model 2 Model p

2e pe
1e

Figure 15: The internal design of the predictor.

It is expected that simple models in the predictor provide consistently similar

estimates for data sequences that have similar statistical properties. As a result, if

we only use a single model in isolation, the expected estimated code length of that

model for sequences with similar structure would be concentrated around each other.

This provides the basic of the feature extraction. As such, the approach presented

41

for feature extraction is as follows: Given a set of input packets, each packet is fed

into the models M1, . . . ,Mp separately. The sequence of the estimates of each model

is then transformed to an estimated code length for the input packet. For example,

consider the sequence of the estimates generated by the j-th model Mj, i.e., ej(t),

t = 1, . . . , n. The estimated code length of Mj, denoted by lj, is

lj =
n∑
t=1

− log e1(t), for j = 1, . . . , p.

At this point, with every packet a feature vector (l1, . . . , lp) is associated. These

feature vectors provide the data point for the clustering algorithm. More details on

the internal operations of the PAQ statistical compression method is presented in

Appendix A.

3.7.1 Experiment Results

For experimentation, similar to setup in Section 3.5.3, real-world packets captured

from CNN and Apple websites are used for experiments. The IP packets of size ≈1.5

kByte are captured using the “wireshark” packet analyser. The total size of the data

traces captured from both websites is 160MB. The CNN and Apple data is referred

to as “data set 1” and “data set 2”, respectively.

The first 90% of the data packets in the beginning of each data trace are chosen

as training set and the remaining 10% are test packets. The structure of the data

packets (whole data including training and test packets) in each trace is depicted in

Figure 16. Each pixel represents a duplicate string (consecutive byte sequence). The

color of the pixel represents the length of the match: black for 1 byte, red for 2,

green for 4 and blue for 8. The visualizations are generated using the “fv” tool [1]

developed by Matt Mahoney. These visualizations clearly demonstrate the varying

patterns observed in the data sequence.

The results of the experiment are presented in Table 1. The first two rows are

42

the result of compression without using memory for both statistical and dictionary-

based algorithms. The dictionary-based compression scheme used is Gzip on Linux

using the default options and the statistical compression is lite PAQ (Appendix A)

with option 4. 4 For clustering, the implementation of non-parametric clustering from

Scikit Learn library [59] is used. Once again, it is observed that statistical compression

outperforms the dictionary-based compression. Furthermore, the effectiveness of the

clustering algorithm combined with the statistical compression is demonstrated and it

is observed that, on the average, memory-assisted compression and clustering provides

a factor of 2 improvement over the Ucomp. Moreover, the non-parametric clustering

with the features vectors chosen as the code length of the simple models provides the

same level of performance improvement as Hellinger-distance clustering (Section 3.5)

with considerably less complexity.

Table 1: The compression rate of data set 1 and data set 2 with different coding
strategies. The statistical compression scheme used is lite PAQ.

Compression Scheme
compression rate (bits/byte)
Data set 1 Data set 2

Ucomp (Dic.) 6.13 5.35
Ucomp (Stat.) 5.62 4.83
UcompM (no clustering) 2.77 2.71
UcompM with non-parametric clustering 2.64 2.47

3.7.2 A Case Study on Detaching Training From Compression

In Section 3.7.2, we investigate whether it is possible to detach the clustering from

compression. In other words, it is of interest to find out whether training and com-

pression can be performed on different and independent data sets. The objective of

this separation, if possible, is to train a joint statistical and clustering module on a

large data set and use the result of that training for compression of a wide range of

test data without the need to repeat the training. The results of our experiment are

4The option determines the amount of storage used by the algorithm. Option 4 used 50MB of
storage.

43

(a) Data set 1 (CNN)

(b) Data set 2 (Apple)

Figure 16: Visualization of the data traces. Each pixel represents a duplicate string
(consecutive byte sequence). The color of the pixel represents the length of the match:
black for 1 byte, red for 2, green for 4 and blue for 8. The horizontal axis represents
the position of the second occurrence of the string from the beginning. The vertical
axis represents the distance back to the match on a log10 scale

presented in Table 2. The setup of the experiment is as follows. We consider the data

sets introduced in Section 3.7.1. The data sets are divided into two parts each; the first

90% of the packets are considered as training data and the rest is test data. We have

considered training with data set 1 and testing with data set 2 and vice versa. Both

naive memory-assisted compression and memory-assisted compression with clustering

is considered. The number of clusters that is assigned by non-parametric clustering

algorithm to each data set is 5 and 6 for data set 1 and data set 2, respectively. As

shown in Table 2, the clustering provides a modest improvement over naive memory-

assisted compression performance. However, comparing the compression rate with

that of Table 1, it is observed that, on the average, the detaching has about 80% toll

44

on the compression performance. This performance degradation discourages detach-

ing the training and compression in applications where compression performance is

of importance.

Table 2: The compression performance of memory-assisted compression when train-
ing and test packets are chosen from different data sets.

Train Test Scheme Compression rate (bits/Byte)
Data set 2 Data set 1 UcompM 5.07
Data set 2 Data set 1 UcompM+clustering 4.89
Data set 1 Data set 2 UcompM 4.43
Data set 1 Data set 2 UcompM+clustering 4.34

We can name the sensitivity of the statistical compression algorithm to the training

as the main factor that contributes to the inefficiency of detaching the training and

compression. In other words, if the statistical properties of the training and test

data differ, this difference would result in diminishing compression performance and

undermines the benefits of memory-assisted compression. To verify this hypothesis,

we have considered two text documents written in English. These documents are

BOOK1 (a book in ASCII text titled “Far from the Madding Crowd”) and BOOK2

(ASCII text titled “Principles of Computer Speech”) from Calgary Corpus [2]. The

90% in the beginning of each file is considered as training and the remaining 10% is

considered as test data. The test data is split into 10kByte parts and the results are

averaged over the parts. In Table 3, the experiment results are summarized.

Table 3: The compression performance of memory-assisted compression on two En-
glish text files.

Train Test Compression rate (bits/Byte)
BOOK1 BOOK1 1.94
BOOK1 BOOK2 2.04
BOOK2 BOOK1 2.30
BOOK2 BOOK2 1.70

The results presented in Table 3 indicate that detaching training from compression

would increase the compression rate by 18% for BOOK1 and by 20% for BOOK2.

45

Compressing the test part of the data without memory (Ucomp) results in compres-

sion rate of 3.09 bits/Byte for BOOK1 and 2.82 bits/Byte for BOOK2. Therefore,

the gain of memory-asisted compression for BOOK1 and BOOK2 is 1.6 and 1.65,

respectively. However, after detaching training from compression would reduce the

gain of memory-assisted compression reduces to 1.5 and 1.2 for BOOK1 and BOOK2.

From the experiment above it can be concluded that even for data types that

are similar to each other, e.g., human-readable English text in ASCII format, the

sensitivity of the statistical compression to training data would have a negative impact

on the performance of the memory-assisted compression when training is detached

from compression.

46

CHAPTER IV

NETWORK COMPRESSION IN WIRED NETWORKS:

ERDŐS-RÉNYI RANDOM NETWORK GRAPHS

4.1 Introduction

In Chapter 4 and Chapter 6, the benefits of deploying memory units that enable

memory-assisted compression in wired networks are studied. The goal is to quan-

tify these benefits in terms of the amount of traffic reduction when memory-assisted

compression is employed in a network. The question to be answered is “Given the

memory-assisted source coding gain g, and a number of nodes capable of performing

compression, what is the achievable network-wide compression gain of memoriza-

tion?”

4.1.1 Contributions

In Chapter 4, the gain of network compression in the Erdős-Rényi (ER) network

graph family is studied [70]. Analogous to the memory-assisted compression gain

for a single link, network-wide gain of compression (gain of network compression in

short) is defined and studied in ER random network graphs. The gain of network

compression depends on the number of memory units; it is discovered that there

exists a threshold value for the number of memories deployed in a random graph

below which the network-wide gain of memorization vanishes.

In what follows, the necessary notions and the setting of the problem is introduced

and then the results on gain of network compression in ER graphs is presented.

47

4.2 Notation

A network is represented by an undirected graph G(V,E) where V is the set of N

nodes (vertices) and E = {uv : u, v ∈ V } is the set of edges connecting nodes u and

v. We consider a set of memory units µ = {µi}Mi=1 chosen out of N nodes where every

memory node µi is capable of memorizing the communication passing through it. The

total size of memorized sequences for each µi is assumed to be equal to m. In this

work, we focus on the expected performance of the network by averaging the gain over

all scenarios where the source is chosen to be any of the nodes in the network equally

at random. In other words, we assume that the source is located in any node of the

network with probability 1
N

. As discussed before, end-to-end compression techniques

will only be able to compress the content to a value which may be significantly larger

than the entropy of the data sequence.

After the memorization phase, we can assume the constructed source model is

available to all memory units. In the second phase, which is the subject of this section,

we assume each node in the entire network may request content from the source. The

above view simplifies our study as we are not concerned with the transition phase

during which the memorization is taking place in the memory units. Hence, we can

assume that each memory unit will provide the same memory-assisted compression

gain of g on the link from the origin node of the flow to itself. The goal of the network

compression is to minimize the total cost of communication between the source and

destinations in the network, measured by bit×hop. As will be discussed below, the

total cost of communication will depend on the memory-assisted gain g.

Consider the outgoing traffic of one of the nodes in the network, named as S,

with the set of its destinations D = {Di}N−1
i=1 each receiving different instances of the

source sequence originated at S. Let fD be the unit flow from S destined to D ∈D.

The distance between any two nodes u and v is shown by d(u, v). The distance is

measured as the number of hops in the lowest cost path between the two nodes. As

48

we will see later, introducing memories to the network will change the lowest cost

paths, as there is a gain associated with the S − µ portion of the path. Therefore,

we have to modify paths accounting for the gain of memories. Accordingly, for each

destination D, we define effective walk, denoted by WD = {S, u1, . . . , D}, which is the

ordered set of nodes in the modified (lowest cost) walk between S and D. Finding

the shortest walk is the goal of routing problem with memories.

We partition the set of destinations as D = D1 ∪D2, where D1 = {Di : ∃µDi ∈

WDi} is the set of destinations observing a memory in their effective walk, and µDi =

arg minµ∈µ{d(S,µ)
g

+ d(µ,Di)}. The total flow FS of node S is then defined as

FS ,
∑
Di∈D1

(
fDi
g
d(S, µDi) + fDid(µDi ,Di)

)
+
∑

Dj∈D2

fDjd(S,Dj). (15)

Using (15), we define d̂D, called the effective distance from S to D, as

d̂D =


d(S,µD)

g
+ d(µD,D) D ∈D1

d(S,D) D ∈D2

. (16)

In short, the effective distance is the distance when memory-assisted compression is

performed and hence the gain g applies. By definition, d̂D ≤ d(S,D) ∀D.

In a general network, the generalized network-wide gain of network compression

as a function of memorization gain g is defined as follows:

G(g) ,

∑
S∈V F0

S∑
S∈V FS

=

∑
S∈V

∑
D∈D d(S,D)∑

S∈V
∑

D∈D d̂D
, (17)

where F0
S is the total flow in the network by node S without using memory units, i.e.,

F0
S =

∑
D∈D d(S,D). In other words, G is the gain observed in network achieved by

memory-assisted scheme on top of what could be saved by an end-to-end compression

49

scheme at the source without using memory. Alternatively, G(g) can be rewritten as

∑
S∈V

∑
D∈D d(S,D)Eln(Xn)∑

S∈V
∑

D∈D
[
d(S, µD)Eln|m(Xn) + d(µD,D)Eln(Xn)

] .
To show the challenges of the memory deployment problem, we show as to how a

single memory changes the effective paths in a network with a single source. Consider

the network with the source node S placed as shown in Figure 17. The destinations

are nodes D1, . . . , D4, and g = 4. The effective walks from the source to destinations

are obviously the shortest paths when there is no memorization (Ucomp). As shown

in the figure, the placement of memory changes the effective path to D2 while the

shortest paths from the source to D1, D3, and D4 are the same as the effective paths.

Without memory, the shortest path to D2 is two hops long (S → D1 → D2), while the

memory totally changes the effective walk distance to D2 to d̂D2 = 3
4

+ 1 as depicted

in the figure.

Next, we consider the gain of network compression in the network graphs that

resemble the ER random graph [33]. The ER random graph is the building block of

the recent models for complex graphs and hence the results would be useful in much

broader contexts. We specifically direct our attention to connected random graphs

since they better describe real networks.

S D1 D2 µ

D3

D4

d̂D1
= dD1

d̂D2
< dD2

Figure 17: The shortest walk between the source and destination is not necessarily
a path when there are memory units in the network.

50

4.3 Gain of Network Compression in ER Random Graphs

4.3.1 Background on ER Random Graphs

Definition An ER random graph G(N, p) is an undirected, unweighted graph on N

vertices where every two vertices are connected with probability p.

Definition Let u, v ∈ G be any two vertices. The diameter of a connected graph

is defined as maxu,v d(u, v). Similarly, the average distance of a connected graph is

defined as E[d(u, v)].

The following properties hold for ER random graphs:

1. G(N, p) has on average
(
N
2

)
p edges.

2. If p < (1−ε) logN
N

, then G(N, p) almost surely (a.s.) has isolated vertices and thus

disconnected.

3. If p = c logN
N

for some constant c > 1, then G (N, p) is a.s. connected and every

vertex asymptotically has degree c logN [5].

4. The diameter of G(N, p) is almost surely logN
logNp

.

5. The average distance in G(N, p), denoted by d̄, is

d̄ = (1 + o(1))
logN

logNp
, (18)

provided that logN
logNp

goes to infinity as N →∞ (this condition is satisfied in the

connected regime) [28].

4.3.2 Main Result

The main question is how G(g) scales with the number of memories M . To charac-

terize the gain of network compression, we consider connected G(N, p), p = c logN
N

,

with a single source node S and all other nodes as destinations. Since the expected

51

degree of all nodes in ER graph is the same and every vertex is a destination with

equal probability, we select memories {µi}Mi=1 uniformly at random. Theorem 4.3.1

provides the scaling of G(g) with respect to M .

Theorem 4.3.1 Suppose M is the number of deployed memories in an ER random

graph. Let ε be a positive real number.

(a) If M = O
(
N

1
g
−ε
)

, then G(g) ∼ 1. 1

(b) If M = Ω
(
N

1
g

+ε
)

, then G(g) ∼ g

1−g logN (M
N

)
.

Sketch of the proof We first find an upper bound on the number of destinations

benefit form each memory. This upper bound is sufficient to derive part (a) of the

theorem. For the second part, we find a lower bound on the number of benefiting

destinations.

To characterize G(g), we first need to find F0. The average distance from the

source to a node is d̄. Thus, F0 = Nd̄. For large N , (18) results in

F0 ∼
N logN

log logN
.

Next, we need to find F . For every memory µ we consider a neighbourhoodN r(µ)

as shown in Figure 18. This neighborhood consist of all vertices v within distance r

from µ. We choose r such that, almost surely, all nodes in N r(µ) would benefit from

the memory µ. Clearly, if d(S,µ)
g

+ r = d(S, v), the benefit of the memory for node v

1Throughout this work, we have used the following asymptotic notations:

– f(x) = o(g(x)) iff |f(x)| ≤ |g(x)|ε, ∀ε,
– f(x) = O(g(x)) iff |f(x)| ≤ |g(x)|k, ∃k,

– f(x) = Ω(g(x)) iff |f(x)| ≥ |g(x)|k, ∃k, and

– f(x) ∼ g(x) iff f(x)/g(x)→ 1.

52

vanishes and only nodes at distances less than r benefit from the memory µ. Given

g, we denote this set of nodes benefiting from µ by N r(µ, g).

N r(µ, g) =

{
v :

d(S, µ)

g
+ d(µ, v) ≤ d(S, v)

}
. (19)

Since memories are uniformly placed, the average value of d(S, µ) in d̂v is equal to d̄.

Similarly, the average of d(S, v) is also d̄. Hence, solving for r in (19) and then using

the result on the average distance in (18), we conclude

r
a.s.
= (1− 1/g)

(
logN

log logN

)
. (20)

S

N r(µ, g)

µ

v

dSµ

dµv ≤ r

dSv

Figure 18: Illustration of Memory Neighborhood.

The following lemma, by Chung and Lu [28], gives an upper bound on the total

number of vertices in the neighborhood |N r(µi, g)|, where | · | is the set size operator.

Lemma 4.3.2 ([28]) Assume a connected random graph. Then, for any ε > 0, with

probability at least 1− 1
(logN)2

, we have |N r(µi, g)| ≤ (1+2ε)(Np)r, for 1 ≤ r ≤ logN .

Using Lemma 4.3.2 and (20), we deduce that

|N r(µi, g)|
a.s.

≤ (1 + 2ε)(logN)(1− 1
g

)(logN
log logN)

= (1 + 2ε)N1−1/g. (21)

53

Therefore, the total number of nodes gaining from the memories is upper-bounded

by
∑M

i=1 |N r(µi, g)| ≤M(1 + 2ε)N1−1/g. As we will see, from (21) it is clear that the

gain of memory vanishes if M is chosen small. The value N1/g is the threshold value

for the network-wide gain. More accurately, if M = O
(
N

1
g
−ε
)

, there is no gain from

memories.

4.3.3 Proof of the Main Result

Proof of Theorem 4.3.1(a) For all the nodes in N r(µi, g), we have a flow gain of

g. Let M = N
1
g
−ε, then we have

G(g) ≤ Nd̄
d̄
g
M |N r(µ, g)|+ d̄(N −M |N r(µ, g)|)

(22)

a.s.

≤ N

N − (1− 1/g)MN (1− 1
g

)
(23)

=
N

N − (1− 1/g)N1−ε ∼ 1,

where inequality in (22) follows from the double counting of the destination nodes

that may reside in more than one neighborhood. Also, (23) follows from replacing (21)

in (22).

Since we need more than n
1
g memory units to have a network-wide gain, the next

question is as to how G(g) scales when the number of memory units exceeds n
1
g . To

answer this question, we need to establish a lower-bound on the neighborhood size

and the number of nodes benefiting from memory. Further, we have to account for the

possible double counting of the intersection between the memory neighborhoods. We

use the following concentration inequality from [28] to establish the desired bound.

Proposition 4.3.3 ([28]) If X1, X2, . . . , Xn are non-negative independent random

54

variables, then the sum X =
∑n

i=1Xi holds the bound

P [X ≤ E[X]− λ] ≤ exp

(
− λ2

2
∑

E[X2
i]

)
.

This inequality will be helpful to show that the quantities of interest concentrate

around their expected values.

The following lemma provides a lower-bound on the neighborhood size |N r(µ, g)|

and the lower-bound on G(g), as we show, is immediate.

Lemma 4.3.4 Consider a set of vertices V of G(N, p) such that |V |
N

= o(1). For

0 < ε < 1, with probability at least 1− e−Np|V |ε2/2, we have

|N r(µ, g)| ≥ (1− ε)(Np)r. (24)

Proof The vertex boundary of V , denoted by Γ(V), consists of all vertices in G

adjacent to some vertex in V .

Γ(V) = {u : u 6∈ V, and u is adjacent to v ∈ V } .

Let Xu be the indicator random variable that a vertex u is in Γ(V), i.e., P [Xu = 1] =

P [u ∈ Γ(V)]. Then,

E [|Γ(V)|] =
∑
u6∈V

E[Xu] =
∑
u6∈V

P [u ∈ Γ(V)]

=
∑
u6∈V

(
1− (1− p)|V |

)
≥ p|V |(N − |V |) = (1− o(1))Np|V | (25)

where the inequality in (25) follows from

P [u ∈ Γ(V)] = 1− (1− p)|V | ≥ 1− e−p|V | ≈ p|V |,

55

and the second part holds because |V |
N

= o(1). Since, Xu’s are non-negative indepen-

dent random variables, by applying Proposition 4.3.3 with λ =
√
αE[|Γ(V)|], with

probability at least 1− e−α/2 we have

|Γ(V)| ≥ E [|Γ(V)|]−
√
αE[|Γ(V)|]

≥ (1− ε)Np|V |. (26)

By picking a single vertex and applying (26) inductively r times, and then adding up

the number of adjacent nodes, we obtain (24).

Now that we have a lower-bound on the number of nodes benefiting from each

memory, we show that by increasing the number of memories beyond M = N
1
g ,

memories cover all the nodes in the graph effectively and hence all the nodes would

gain from the memory placement.

In order to limit the intersection between the neighborhoods, we reduce r to rδ as

below:

rδ = (1− 1/g − δ)
(

logN

log logN

)
. (27)

With this choice of rδ, by lemmas 4.3.2 and 4.3.4, we deduce that the probability that

a random node u ∈ G belongs to the neighborhood N rδ(µi, g) of the memory µi is

N−1/g−δ. Hence, the expected number of the covered nodes is

E

[∣∣∣∣∣
M⋃
i=1

N rδ(µi, g)

∣∣∣∣∣
]

=
∑
u∈G

P
[
u ∈ ∪Mi=1N rδ(µi, g)

]
=

∑
u∈G

(
1− (1−N−1/g−δ)M

)
≈ N

(
MN−1/g−δ) = N, (28)

where (28) holds by choosing M = N1/g+δ.

56

To show that the number of covered nodes is concentrated around its mean, we

use Proposition 4.3.3 again with λ =
√
αE [|∪N rδ(µi, g)|]. Then, with probability at

least 1− e−α/2 we have

∣∣∣∣∣
M⋃
i=1

N rδ(µi, g)

∣∣∣∣∣ ≥ E [|∪N rδ(µi, g)|]− λ

≥ (1− o(1))N.

Hence, the memories cover, almost surely, all of the nodes.

Since all nodes are covered with high probability, we can associate each node with

a neighborhood |N rδ(µi, g)|, for which nodes’ distances in the neighborhood from

memory are (1− o(1))rδ.

Proof of Theorem 4.3.1(b) By (28), we can bound the network-wide gain of the

memory from below. We have

G(g)
a.s.
=

Nd̄

(d̄/g + rδ)N
(29)

=
1

1/g + (1− 1/g − δ) =
1

1− δ , (30)

where (29) holds because the distance of the nodes from memory is rδ, asymptotically

almost surely.

As the number of memories becomes close to N , i.e., δ → (1− 1
g
), the gain G → g, as

expected. In the next section, we verify our result in memory-assisted source coding

and the network-wide gain of memory via numerical simulations.

57

CHAPTER V

ROUTING AND PLACEMENT PROBLEM IN

NETWORKS WITH MEMORY

5.1 Introduction

The deployment of memory units in the network gives rise to a number of questions

and also brings some new challenges. In network compression, every traffic from

source to the memory node benefits from the gain g. In Chapter 4, we defined a

network-wide gain G(g) for a general network topology as a function of the number of

memory units in the network, and the fundamental gain g of memory-assisted source

coding. In this chapter, we aim at answering two fundamental (and related) questions

regarding memory-assisted network compression.

1. In practical scenarios where only a select number of nodes are capable of mem-

orization and data processing, i.e., only certain number of nodes in the network

are memory units, what would be the best strategy to choose the memory units?

In other words, where should the memory units be placed in the network?

2. After the locations of the memory units are fixed, what would be the optimal

routing algorithm? In other words, what is the best strategy to route pack-

ets between the source and destination nodes given the network topology, the

location of the memories, and the fundamental gain g of memorization?

5.1.1 Contributions

The memory placement problem in non-random network graphs is studied in Chap-

ter 5. It is shown that optimal memory-placement is not tractable in general network

graphs and the challenges involved are demonstrated by deriving the optimal memory

58

placement on line networks [74]. In Chapter 5, the routing problem for compressed

flows is solved and a modified Dijkstra’s algorithm is presented.

The memory placement in the network poses some challenges to traditional short-

est path routing algorithms, as the shortest path is not necessarily minimum cost

route in networks with memory. The well-known routing algorithms like Dijkstras

algorithm, in their original form are not applicable to networks with memory. As

such, in Chapter 6, the routing problem for compressed flows is considered and a

modified Dijkstra’s algorithm for compressed flows is presented.

5.2 Memory Placement Problem

The gain of network compression depends on the number of memory units and their

locations. Since in practical scenarios only a select number of nodes have the storage

and computational capability to function as a memory unit, it is important to find the

optimal location for such nodes. In the ER random networks, we used a probabilistic

treatment of the memory placement problem that was fit to the random nature of

the ER graph. In this section, the memory placement problem is studied in a non-

random graph and the challenges involved are presented. In particular, the optimal

placement strategy on line networks is obtained.

Let the total number of memory units be M . The goal of the memory deployment

is to find the best set of M out of N vertices in the network such that G(g), i.e., the

network-wide gain of memory, is maximized. In general, this is a hard problem as we

summarize below.

5.2.1 Hardness of Memory Placement Problem

It can be shown that the memory placement is equivalent to the well-known k-median

problem. Hence, the memory deployment problem on a general graph is an NP-hard

problem. However, a solution to the deployment problem can be obtained for certain

network topologies, which can be helpful in finding approximate solutions for general

59

networks. In this section, we demonstrate the challenges of the memory deployment

problem by considering the class of line networks.

Another challenge in finding the gain G(g) comes from the difficulty of finding

minimum cost paths in a network. Below we summarize these challenges and in-

troduce a modified routing algorithm that can help finding the effective walks in a

network and hence calculating G(g).

5.2.2 Memory Deployment on Line Networks

Consider a line network with the source node S placed at one end of the line and

the destinations placed along the line as shown in Figure 19. Therefore, we have a

total number of N nodes on the line and the total length of the line is N hops. As

mentioned before, we assume traditional universal compression would give one unit

of flow, to be sent to each destination. We consider the deployment of M memory

units on the line such that the memory µi is placed at ti from the source, as shown

in Figure 19. We find ti’s such that total flow F is minimized (or equivalently, G(g)

is maximized). The solution to the special case of “en-route” memory deployment on

line networks is studied in [49]. En-route memories are those which are only located

along routes from source to receivers. An en-route memory intercepts any request

that passes through it along the regular routing path. The solution to the en-route

memory placement problem as discussed in [49] is ti = i
M
∀µi.

S . . . µi . . .

ti

τi

Figure 19: The placement of memory units on a line network: the source node S is
placed at one end of the line and the i-th memory is placed at ti from the source and
τi is its left-coverage.

However, the memory deployment problem for network compression on a line

60

network is more challenging. The difficulty comes from the fact that each memory

can serve some of the destinations closer to source than the memory itself. In other

words, the shortest effective walk from source to the destinations is not necessarily

the same as the shortest hop distance. As shown in Figure 19, for a memory µi

located at ti, there is a left-coverage hop-length of τi towards the source to cover the

destinations on the left side of the memory. The following lemma shows how t and τ

change for different values of g.

Lemma 5.2.1 For the simple case of M = 1 and a line of hop-length N , the optimal

memory location t and coverage τ is given by

t =
2g

3g + 1
N +O(1),

τ =
g − 1

3g + 1
N +O(1). (31)

Proof Using Fig 19, we can write the total flow as

F =

∫ t−τ

0

x dx +

(
t(1− t)

g
+

∫ 1−t

0

x dx

)
+

(
tτ

g
+

∫ τ

0

x dx

)
(32)

The first term in (32) is the flow to all points on the line not covered by memory.

The second term is for the right coverage of memory and the third term accounts for

the left coverage of memory (τ). The result in (31) follows by taking the derivative

of F and equating to zero, i.e., ∂
∂t
F = 0 and ∂

∂τ
F = 0. Figure 20 shows the plot of t

and τ versus g.

As shown in Figure 20, as the gain g increases, the memory is placed on 2/3

distance from the source and the left coverage approaches 1/3.

61

5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

g

h
op

-d
is
ta
n
ce
/N

t (hop−distance of memory from the source)
τ (left coverage of the memory)

Figure 20: Variations of t and τ vs. g for a line network.

Lemma 5.2.2 The gain of single memory placement on line is G(g) = (3g+1)2

3g2+10g+3
, and

for g � 1 we have

G ≈ 3. (33)

Proof The proof is immediate from Lemma 5.2.1 and the fact that for line F0 = 1/2.

Following the results of deployment of a single memory on line, we can extend the

result and solve for the general problem of deployment of M memory nodes.

Theorem 5.2.3 Consider deployment of M memories on a line where memory µi is

placed at ti with τi left-coverage. Then,

 ti ≈ i
M
N +O(1)

τi ≈ g−1
2gM

N +O(1)
. (34)

By definition, t0 = τ0 = 0. Furthermore, G(g) = 2g2M
2g(M+1)+g2+1

, and for g � 1 we have

G ≈ 2M. (35)

62

Proof Similar to the proof of Lemma 5.2.1, we can write

F =
M∑
m=1

[
ti
g
τi +

∫ τi

0

x dx

+
ti
g

(tm+1 − τm+1 − ti) +

∫ tm+1−τm+1−ti

0

x dx

]
.

Again, by taking the derivative of F with respect to ti and τi and solving the system

of equations we arrive at

 ti ≈ ti+1+ti−1

2

τi = g−1
2g

(ti − ti−1)
, (36)

where (36) results in a tridiagonal matrix which in turn results in (34) for large M .

Further, (35) follows from (34) and F0 = 1/2 for line networks.

5.3 Routing in Networks Featuring Memory

Thus far, we have demonstrated that a non-vanishing network-wide gain is achievable

by deploying a small number of memory units in the high degree nodes in RPLG.

After the memory units are deployed, the next problem that arise is the routing

in networks with memory units. In networks featuring memory, the source com-

presses the outgoing traffic and memory nodes decompress it, and hence there exists

a compression gain between source and memory. This gain of compression poses new

problems for conventional routing schemes. For example, as shown in Figure 21, let

g = 5. Then, for node 2 the cost of routing clockwise is two, but it is only 9
5

(4
5

+ 1)

by passing through memory unit µ counter-clock wise. Hence, introducing memory

units in the network can dramatically change the effective shortest path. Routing is

a new problem in networks featuring memory which needs to be solved differently.

We consider an instance of network with a source node and fixed memory locations.

We solve the routing problem in that instance of the network and after that we will

63

be able to characterize G.

Characterizing G involves computing both F0 and F , which in turn requires find-

ing the shortest paths between all pairs of nodes with and without memory units.

The shortest path problem in a network without memories is straightforward via Di-

jkstra’s algorithm. But finding shortest paths in networks featuring memory requires

more attention. It is important to note that in network with memory if know the

shortest path from a node u to v and also w is a node on the shortest path, this

knowledge does not necessarily imply the knowledge of the shortest path from u to

w.

S

2 µ

1

Figure 21: Example of routing in networks featuring memory: Memories can change
the shortest paths (shown by dashed lines) dramatically. Here, g = 5.

The Dijkstra algorithm solves the single-source shortest path for a network with

positive edge costs. Our bit×hop cost measure is a special case in which all the

edge costs are equal to 1. However, in its original form, Dijkstra’s algorithm is not

applicable to networks with memory. In a regular network without memory nodes, the

shortest path problem can be solved using the well-known Bellman-Ford algorithm

which relies on the so-called principle of optimality: if a shortest path from u to

v passes through a node w, then the portion of the path from w to v is also a

shortest path. It is important to note that, there is another statement for principle of

optimality as follows: if w is a node on the shortest path from u to v, this knowledge

implies the knowledge of the shortest path from u to w. This latter statement only

holds in networks without memory and in general is not true for networks with

64

memory (Figure 21). Therefore, the shortest path problem requires more attention in

networks with memory. The well-known routing algorithms like Dijkstra’s algorithm,

in their original form are not applicable to networks with memory. This limitation is

due to the fact that when the algorithm runs into a memory node on the path, all

the previous edges’ costs along the path should be divided by g, and hence needs to

recalculate the whole path.

Although, having memory units in a network changes the shortest paths dramat-

ically (an example is shown in Figure 21), the principle of optimality sill holds and

this will enable us to find the shortest path using the well-known Bellman-Ford algo-

rithm which is in effect the repeated application of the principle of optimality. The

Bellman-Ford algorithm is used in distance-vector routing protocols. The distributed

version of the algorithm is used within an Autonomous System (AS), a collection

of IP networks typically owned by an ISP. While Bellman-Ford algorithm solves the

shortest path problem in networks with memory and the solution for routing within

an AS is readily provided by this algorithm, the more efficient Dijkstra’s algorithm

is more used in practice. The Dijkstra’s Algorithm is widely used in network routing

protocols, most notably IS-IS and OSPF (Open Shortest Path First) and hence it

is important to visit the challenges of finding the shortest paths in networks with

memory using the Dijkstra’s algorithm.

Here, we present a modified version of Dijkstra’s algorithm that finds the effec-

tive walk from all the nodes in a network to a destination D, in a network with a

single memory. Iterating over all nodes will provide the effective walk between ev-

ery pair of nodes in the network. The extension to arbitrary number of memories is

straightforward and skipped for brevity.

To handle the memory node, we define a node-marking convention by defining

a set M which contains the marked nodes. We say that a node is marked if it is

either itself a memory node, or a node through which a compressed flow is routed.

65

The modified Dijkstra algorithm starts with finding a node ν closest to node D.

Then, we iteratively update the effective distance of the nodes to D. The algorithm

is summarized in Algorithm 2. The notation cost(vD), used in Algorithm 2, is in

fact the effective distance. At the beginning, cost(vD) =∞ for nodes v not directly

connected to D, and then it is calculated for v in every iteration. After finding the

effective distance between every pair of vertices via the modified Dijkstra algorithm,

we can calculate F and then G.

Algorithm 2 Modified Dijkstra’s Algorithm
M = µ
while V 6= φ do
ν = the closest neighbor of D.
pathlen(ν) = cost(ν,D)
for ∀v ∈ V \ {ν,D} do

if ν 6∈ M then
cost(vD) = min{cost(vD), cost(vν) + cost(νD)}

else
cost(vD) = min{cost(vD), cost(vν)

g
+ cost(νD)}

M ←M∪ v
end if

end for
V ← V \ ν

end while

66

CHAPTER VI

NETWORK COMPRESSION IN WIRED NETWORKS:

INTERNET-LIKE POWER-LAW RANDOM NETWORK

GRAPHS

6.1 Introduction

In Chapter 6, the gain of network compression in random power-law graph (RPLG)

family is studied. This family is particularly of interest because several studies have

shown their resemblance to real-world Internet graphs [4, 34, 22]. Our study entails

first finding the optimal strategy for deploying the memory units and then inves-

tigating the effect of these memory units on the routing algorithms. The latter is

important for the numerical evaluation of the network-wide gain as well. In the fol-

lowing, we first describe the memory deployment problem in RPLG. Then, we discuss

the routing problem.

6.1.1 Contributions

Similar to Chapter 4, the gain of network compression in Internet-like power-law

graphs is characterized. In particular, through analysis on power-law graphs, it is

demonstrated that non-vanishing network-wide gain of memorization is obtained even

when the number of memory units is a tiny fraction of the total number of nodes in

the network. Furthermore, memory placement in the network poses some challenges

to traditional shortest path routing algorithms, as the shortest path is not necessarily

minimum cost route in networks with memory. The well-known routing algorithms

like Dijkstras algorithm, in their original form are not applicable to networks with

memory. This limitation is due to the fact that when the algorithm runs into a

67

memory node on the path, all the previous edges costs along the path should be

updated and hence needs to recalculate the whole path. In Chapter 6, the routing

problem for compressed flows is solved and a modified Dijkstra’s algorithm is pre-

sented. Moreover, simulation results are presented which validate the results of the

analytical study.

6.2 Memory Deployment in Random Power-law Graphs

Given a set of memory nodes µ, the goal of the memory deployment is to maximize

G, by optimally deploying those memories. In [49], authors studied a related problem

in the context of caching to maximize the cache hit-rate in the network. There, they

showed that the cache placement problem on a general graph is an NP-hard problem.

It is straightforward to draw analogies between our memory deployment problem and

the cache placement problem, which leads to the fact that the memory deployment

problem in a general graph is NP-hard. But, if we limit the deployment problem to

certain families of graphs, we can find theoretical solutions that provide insight and

enable us to predict the achievable gains.

In order to extend our study to the analysis of the achievable gain G(g) in gen-

eral networks, we consider the memory deployment gain in the network graphs that

follow the power-law degree distribution [28]. The power-law graphs are particularly

of interest because they are one of the useful mathematical abstraction of real-world

networks, such as the Internet and social networks. In power-law graphs, the number

of vertices whose degree is x, is proportional to x−β, for some constant β > 1. For

example, the Internet graphs have powers ranging from 2.1 to 2.45 [4, 34, 22]. Ac-

cordingly, in the rest of this section we specifically direct our attention to power-law

graphs with 2 < β < 3 (which include the models for the Internet graph), and pro-

vide results for memory deployment on such network graphs. We wish to study the

behavior of the network-wide gain in Internet-like power-law graphs, as a function of

68

the number of the memory units and their locations.

6.2.1 Random Power-law Graph Model

Random Power-law Graph Model: A power-law graph is an undirected, unweighted

graph whose degree distribution approximates a power law with parameter β. Basi-

cally, β is the growth rate of the degrees. To generate a random graph that has a

power-law degree distribution, we consider the Fan-Lu model [28]. In this model, the

expected degree of every vertex is given. The Random Power-Law Graph (RPLG),

with parameter β, is defined as follows:

Definition of G(β) Consider the sequence of the expected degreesw = {w1, w2, . . . , wN},

and let ρ = 1/
∑
wi. For every two vertices vi and vj, the edge vivj exists with prob-

ability pij = wiwjρ, independent of other edges. If

wi = ci−
1

β−1 for i0 ≤ i ≤ N + i0, (37)

then graph G(β) constructed with such an expected degree sequence is called an

RPLG with parameter β. Here, the constant c depends on the average expected

degree w̄, and i0 depends on the maximum expected degree ∆. That is,

 c = β−2
β−1

w̄N
1

β−1 ,

i0 = N
(
w̄(β−2)
∆(β−1)

)β−1

.

With the definition above, it is not hard to show that the expected number of

vertices of degree x in G(β) is ≈ x−β. In [28], authors showed that for a sufficiently

large RPLG, if the expected average degree of G(β) is greater than 1, then G(β) has

a unique giant component (whose size is linear in N), and all components other than

the giant component have size at most O(logN), with high probability. Since we

69

only consider connected networks, we will focus on the giant component of G(β) and

ignore all sublinear components. Further, by a slight abuse of the notation, by G(β)

we refer to its giant component. Next, we briefly describe as to how the structure of

RPLG provides insight about the efficient placement of memory units.

Although memory deployment problem in a general graph is a hard one, the RPLG

with parameter 2 < β < 3 has a certain structure that leads us to finding a very good

deployment strategy. The RPLG can be roughly described as a graph with a dense

subgraph, referred to as the core, while the rest of the graph (called periphery) is

composed of tree-like structures attached to the core. Our approach to solve the

memory deployment problem is to utilize this property and size the core of G(β)

and show that almost all the traffic in G(β) passes through the core. We propose to

equip all the nodes in the core with memory and hence almost all the traffic in G(β)

would benefit from the memories. The number of memories should be such that the

network-wide gain is greater than 1 as N → ∞. Showing that almost all the traffic

goes through the core guarantees that G > 1 as shown in Lemma 6.2.2 below. This

way, we find an upper bound on the number of memories that should be deployed in

an RPLG in order to observe a network-wide gain of network compression. We will

also verify that the number of memory units does not have to scale linearly with the

size of the network to achieve this gain.

From Definition 6.2.1, we note that the nodes with higher expected degrees are

more likely to connect to each other and also other nodes. Therefore, we expect more

traffic to pass through these nodes. In our case, we are looking to size the core, i.e.,

find the number of high degree nodes such that almost all the traffic in the graph

passes through them. Theorem 6.2.1 below is our main result regarding the size of

the core:

Theorem 6.2.1 Let G(β) be an RPLG. In order to achieve a non-vanishing network-

wide gain G, it is sufficient to deploy memories at nodes with expected degrees greater

70

than lwmin, where l is obtained from

l3−β − 1

w̄γ
= 0, (38)

and the constant γ is equal to (1 − 1
β−1

)2 β−1
3−β . The set of nodes with expected degree

greater than lwmin is defined as core: C = {u|wu > lwmin}.

Proof of the Theorem 6.2.1 follows from the lemmas below.

Lemma 6.2.2 Let d be the distance between the nodes A and B. Let µ denote a

memory unit fixed on the shortest path between A and B, with distance d′ from A,

i.e., the distance between µ and B is d − d′. If the fundamental gain of memory-

assisted compression is g > 1, then G > 1.

Proof If there was no memory on the path, we had one unit of flow from A to B and

one unit of flow for B to A. Therefore, F0 = 2d. When memory-assisted compression

is performed, the flow going from A to B is reduced to d′

g
+ (d − d′). Similarly, the

flow going from B to A is d−d′
g

+ d′. Therefore, F = d′

g
+ (d− d′) + d−d′

g
+ d′ and thus

G(g) =
2d

d′

g
+ (d− d′) + d−d′

g
+ d′

=
2g

g + 1
.

Now, considering that g > 1, the claim follows.

Our approach to find the core is to remove the highest degree nodes from the graph

one at a time until the remaining induced subgraph does not form a giant component.

In other words, as a result of removing the highest degree nodes, the graph decomposes

to a set of disjoint islands and hence, we conclude that the communication between

those islands must have passed through the core. Therefore, from Lemma 6.2.2, we

conclude that in RPLG, we will have a non-vanishing network-wide gain if we choose

the core sufficiently big such that the induced periphery of G(β) does not have a

71

giant component. The following lemma provides a sufficient condition for not having

a giant component in RPLG.

Lemma 6.2.3 ([28]) A random graph G(β) with the expected degrees w, almost

surely has no giant components if

∑
iw

2
i∑

iwi
< 1. (39)

Lemma 6.2.4 Consider a random graph G with the sequence of the expected degrees

w. If U is a subset of vertices of G, the induced subgraph of U is a random graph

with the sequence of the expected degrees w′, where

w′i = wi

∑
v∈U wv∑
v∈Gwv

.

Proof The probability that an edge exists between two vertices of U is equal to the

edge connection probability in G. Consider a vertex u in U . The expected degree of

u is

ρ
∑
v∈U

wuwv = wu

∑
v∈U wv∑
v∈Gwv

.

Proof of Theorem 6.2.1 Consider a G(β) with the set of lowest degree nodes Ul,

all having expected degrees in the interval (wmin, lwmin). According to Lemma 6.2.3,

to ensure that the induced subgraph GUl does not have a giant component, we should

have
∑

v∈Ul w
′
v

2/
∑

v∈Ul w
′
v < 1, where w′v = wv

∑
v∈Ul

wv

Nw̄
as in Lemma 6.2.4. To find

w′, we should first obtain
∑

v∈Ul wv. According to [28], we have

∑
v∈Ul wv ≈ Nw̄(1− l2−β),∑
v∈Ul wv

2 ≈ Nw̄2(1− 1
β−1

)2 β−1
3−β l

3−β.
(40)

72

From (40), we conclude that w′v = (1− l2−β)wv, for all v ∈ Ul. Thus we have,

∑
v∈Ul

w′v ≈ Nw̄(1− l2−β)2. (41)

Similarly, ∑
v∈Ul

w′v
2 ≈ Nw̄2γl3−β(1− l2−β)2. (42)

Combining (41) and (42), we obtain the relation in (38) between β and l. Having l,

we can easily obtain the size of Ul by finding the number of vertices with expected

degree less than lwmin which is readily available from (37).

Theorem 6.2.1 provides the required information to find the size of the core and hence

the number of memory units. As finding the closed-form solution for the size of the

core is not straightforward, we use numerical analysis to characterize the number of

required memory units using the results developed above.

Figure 22: The scaling of the core size |C|
N
× 100 versus N for different β’s.

In Figure 22 the scaling of the core size versus N is depicted for various β’s. As

we see, the core size is a tiny fraction of the total number of nodes in the network

73

and this fraction decreases as N grows. This is a promising result as it suggests that

by deploying very few memory units, we can reduce the total amount of traffic in a

huge network.

6.3 Simulation Results

To validate our theoretical results, we have conducted different sets of experiments

to characterize the network-wide gain of memory in RPLG. For experiments, we

used DIGG RPLG generator [21], with which we generated random power-law graph

instances with number of vertices between 1000 and 5000, and 2 < β < 3. The result

are averaged over 5 instances of generated RPLG. In our simulations, we report results

for various core sizes (number of memory units).

We first verify our assumption that a tiny fraction of the highest degree nodes

observes most of the traffic in the network. Figure 23 shows the fraction of the paths

that pass through the core (FPPC) for different core sizes and β’s. As we expected,

more that 90% of the shortest paths in the graph involves less than 2% of the highest

degree nodes to route the flow. Although our theoretical result in Theorem 6.2.1 is

asymptotic in N , Figure 23 suggests that our result holds for moderate values of N

as well. Therefore, we can place the memory units at the core and results can be

extrapolated for large graphs with large number of nodes.

To validate the network-wide gain of memory, we have considered two RPLGs

with sizes N = 2000 and N = 4000. Assume that each memory node has observed

a sequence of length m = 4MB of previous communications in the network. The

packets transmitted in the network are of size 1kB. This assumption is in accordance

with the maximum transmission unit (MTU) of 1500-bytes allowed by Ethernet at

the network layer. From our results in Chapter 2, we observe that a memory-assisted

source compression gain of g ≈ 2.5 is achievable for real traffic traces. Hence, we use

g = 3 in our simulations.

74

Figure 23: The fraction of the paths passing through the core (FPPC) vs. the core
size, for RPLG of size N = 5000.

To verify the results of routing with memory in Chapter 5, we conduct the follow-

ing experiment. If we do not use the modified Dijkstra’s algorithm in the networks

with memory (i.e., we do not optimize the routing algorithm to utilize the memories),

as Lemma 6.2.2 suggests, the network-wide gain would be bounded by 2g
g+1

. There-

fore, even for very large values of g, the network-wide gain would remain less than two

(as shown in Figure 24), which is not desirable. Figure 25 describes our results for

the achievable network-wide gain of memory-assisted compression. We measured the

total flow without memory. We also obtain the optimal paths when we have memory

units are deployed. We consider three cases in which the fraction pf nodes equipped

with memory increases from 2.5% of the nodes to 10%. All data has been averaged

over the 5 graphs in each set.

The trendlines suggest that G increases as β increases which is expected since the

FPPC increases with β. In other words, more traffic between the nodes in periphery

has to travel through the dense subgraph (core) as β increases. Further, by increasing

75

the number of memory units, the network-wide gain increases and approaches to the

upper bound g. It is important to note that enabling only 2.5% of the nodes in the

network with memory-assisted compression capability, we can reduce the total traffic

in the network by a factor of 2 on top of flow compression without using memory,

i.e., end-to-end compression. We emphasize that this memory-assisted compression

(UcompM) feature does not have extra computation overhead for the source node

(in comparison with the end-to-end compression technique in Ucomp). Further, this

feature only requires extra computation at the memory units when compared to

Ucomp. However, this extra computation incurs a linear complexity with the length of

the data traffic. Hence, overall with some additional linear computational complexity

on top of what could have been achieved using a mere end-to-end compression, the

memory-assisted compression can reduce the traffic by a factor of 2.

Figure 24: Illustration of the network-wide gain when simple Dijkstra routing is
used. Note that G is capped.

76

(a) |core|
N = 2.5% (b) |core|

N = 5% (c) |core|
N = 10%

Figure 25: Network-wide gain of memory assisted compression G for different core
sizes and power-law parameter β, for g = 3.

77

CHAPTER VII

WIRELESS NETWORK COMPRESSION VIA

MEMORY-ENABLED OVERHEARING HELPERS

7.1 Introduction

Mobile data efficiency is an important feature of wireless communication. It increas-

ingly draws attention as providers face the difficulty of handling the explosive increase

in the demand and look for solutions to reduce the cost of data delivery in wireless

networks. One potential solution is to find ways to eliminate the redundant data

that is being transmitted to clients through the bottle-neck of the network, the most

important being the last hop: the wireless link from the wireless gateway to the

mobile client. As suggested in the following, there are two main dimensions that

contribute to the redundancy within a network. 1) redundancy within the content;

and 2) redundancy across different clients. IP-layer Redundancy Elimination (RE),

in the form of repetition suppression for a single client, has been successful on the last

hop links; In [52], based on the data gathered from gateways in North American and

European wireless service providers, authors show that most mobile users can save

bandwidth with RE, some reduce their traffic volume by as much as 50%. In another

study [68], based on data traces collected from both laptop and smartphone users

over a span of three months, authors show that an average of 20% redundancy exists

within each users’s data trace. These saving are obtained in the first dimension of

redundancy. Further, recent studies in [41] show that traces derived from real-world

wireless traffic collected in a noise-free environment contain around 50% inter-client

repetition within packets, i.e., duplicate strings across packets. All these signify the

78

importance of redundancy elimination in the wireless flows. However, all the exist-

ing works [52, 68, 41] confine themselves to deduplication of repeated patterns for

redundancy elimination. While deduplication is effective in removing long repeated

bit sequences, deduplication is not suitable for suppressing sub-packet level statistical

dependencies in the data that are not mere repeatitions. It is expected to remove an

even more substantial amount of redundancy using information-theoretic compres-

sion methods when memory-enabled nodes are present in the network. The proposed

wireless network compression via memory-enabled overhearing helpers is focused on

these information-theoretic methods.

In Chapter 2 and Chapter 3, we took the first steps towards characterizing the

achievable benefits of exploiting the packet redundancies beyond simple repetition

suppression (i.e., de-duplication). Data compression and source coding are natural

candidates for this task. However, traditional compression techniques would be in-

effective in the elimination of the aforementioned two types of redundancies. The

reasons are the following: 1) redundancy within a packet cannot be effectively re-

moved due to small size of the packet [12], and 2) traditional compression methods

cannot leverage the redundancy across clients; as they compress each packet inde-

pendent of the other packets. In [71, 70], we formulated the redundancy elimination

as network compression via network memory and introduced a new framework for

compression of network data called memory-assisted compression. This approach

departs from the traditional source coding techniques in that it relies on the net-

work memory for compression. We have already explored the network-wide gain of

memory-assisted compression in wired networks. However, the gain of memorization

and memory-assisted compression is more spelled out in the bandwidth-constrained

wireless networks. On the other hand, it is more challenging to establish the mem-

orization scheme in such networks and our solution for wired networks [71, 70] is

not directly applicable to the last hop in wireless networks. This is mainly because

79

the broadcast nature of the wireless networks and also the asymmetric cost of trans-

mission in different links that need to be incorporated in the network compression

framework while guaranteeing that all packets are recoverable in a strictly lossless

manner at the clients.

7.1.1 Contributions

In Chapter 7, we study wireless network packet compression via memory-enabled

overhearing helpers. In particular, we explore the benefits of two-part coding with

asymmetric cost in the last hop wireless links, from the wireless gateway to the mo-

bile clients, by deploying memory-enabled helpers with much less costly links to the

mobile clients [72, 69]. The memory-enabled helpers are small, possibly cooperative

nodes with no backhaul connectivity but with sufficiently large storage space. The

overhearing capability of helper nodes that comes at no cost eliminates the need for

backhaul connectivity in our work. The helper nodes bring throughput enhancement

and gateway off-loading which would be of particular interest for WiFi and cellular

networks. The memory-enabled helpers overhear previously transmitted packets from

the wireless gateway to mobile clients. These overhearing packets provide statistical

information about the traffic. Then, in the compression of a new packet, this infor-

mation is sent from the overhearing (helper) node to a mobile client to supplement

(as a side information) the compressed data from the wireless gateway to the mo-

bile client; enabling the client to decompress the codeword and recover the packet.

Since the communication in the link between the overhearing memory-enabled helper

and the client is by far less costly than that of the wireless gateway and the client,

the proposed network compression via overhearing nodes, by design reduces traffic

on the link from the wireless gateway to the mobile client. In Chapter 7, we study

both analytically and experimentally the fundamental limits of the wireless network

compression via overhearing (memory-enabled) nodes. We stress that our scheme is

80

universal in the sense that we do not assume to know the distribution of the source

traffic a priori.

The network compression (via helpers) proposed in this chapter overcomes the

shortcomings of traditional universal compression. The use of helper nodes in wireless

networks is studied in various contexts from femto-cell network architectures [26] to

device-to-device collaboration in wireless networks [37]. The use of helper nodes in

the network in this work is inspired by these designs.

In Section 7.2, the application of memory-assisted compression for a sample wire-

less network scenario is presented and an abstraction of the compression problem is

described. Furthermore, a practical code design and the performance analysis of the

code is presented. Simulation results, performed in NS-2 simulator [58], are provided

in Section 7.6. Moreover, we provide a discussion about the impact of loss on network

compression in Sec. 7.5.

7.2 Redundancy Elimination in Wireless Networks via Memory-
Assisted Compression

Consider Figure 26 for an example scenario involving a single wireless gateway S, a

mobile client C and a helper M . The idea is to deploy memory-enabled helpers that

are capable of overhearing communication from the wireless gateway to all the mobile

clients inside the coverage area of the wireless gateway. The overhearing comes at

no extra cost due to the broadcast nature of the wireless communication. Although

this can be applied to every cellular or WiFi access networks, one realization of such

memory-enabled helpers can be in femto-cell network designs combined with tradi-

tional macro-cell networks, as in [26]. Here, we note that the backbone connectivity

of the helpers are not included in the problem setup, first because the learning process

of helper nodes is performed only based on the overheard data which is available for

free and secondly, solutions that rely on helper connectivity should include provisions

to deal with intermittent connectivity of the backbone connection and also the effect

81

of extra load on the backbone connection should be justified.

The proposed network compression via memory at the overhearing nodes works

as follows. First, recall that the traffic (i.e., the packets) destined to different mobile

clients from the gateway S are highly correlated. Therefore, the overhearing memory-

enabled helpers can overhear the past communication between the cell tower (or the

WiFi access-point) and mobile nodes and hence, learn the statistical properties of the

packets in the traffic. These extracted statistical properties can then be used as a

side information (if provided to the client) improving the compression performance

on the future traffic from the gateway S to any mobile client. In other words, the

memory-enabled helpers can possibly help to reduce the transmission load of the cell

tower by transmitting the side-information about the data traffic to the clients using

a less costly memory-client M -C link.

Note that the main objective of network compression is to minimize the total

communication cost and hence support more clients. As such, we can define a virtual

cost for S-C and M -C links in Figure 26. Let κ denote the ratio of the cost of com-

municating one bit in the M -C link to that of the S-C link. In practical settings, it is

rational to assume that the S-C link is much more costly than the M -C link. Hence,

κ is much smaller than unity. We use the parameter κ in our analytical development

to minimize the aggregate cost of communication. This departs from the objective of

only minimizing the total number of bits transmitted from a source to a destination in

a traditional setup. It is imperative to note that the memory-assisted compression via

overhearing memory-enabled helpers would provide additional compression benefits

over and beyond those already gained by traditional (end-to-end) compression tech-

niques, i.e., compressing the packet from S to C while there is no memory deployed.

Further, the proposed network compression only entails negligible extra computa-

tional overhead at the wireless gateway and the overhearing memory-enabled helper

while reducing the aggregate cost.

82

Helper

(M)

Mobile Client

(C)

Gateway

(S)

Figure 26: An illustrative example of a wireless network with a single helper (de-
ployed memory-enabled helper). A short-lived connection to the source by a mobile
client is shown by a solid arrow. Overhearing is shown by a dashed arrow. The link
supplementing side-information is shown by a thick solid arrow.

7.2.1 Setup

The abstract model of the network compression via overhearing memory-enabled

helper is shown in Figure 27, for a single helper and a client. We consider the traffic

reduction (compression) over the down-link. The data are delivered from the wireless

gateway S, which is the source in our abstraction, to the mobile client C. We only

consider schemes where the sequence xn, i.e. the packet, is exactly recoverable at the

client. Therefore, all the compression schemes considered are strictly lossless.

Definition Let An be the set of all sequences of length n over alphabet A. The

code cn(·) : An → {0, 1}∗ is called strictly lossless if there exists a reverse mapping

dn(·) : {0, 1}∗ → An such that

∀xn ∈ An : dn(cn(xn)) = xn.

83

All of the practical data compression schemes are examples of strictly lossless codes,

namely, the arithmetic coding and Huffman coding.

The source is assumed to generate and send different packets to mobile nodes

one at a time (unicast). The memory-enabled helpers are assumed to overhear the

communication from S to client C. Each overhearing memory-enabled helper is also

assumed to be capable of sending information to those mobile nodes in its vicinity.

The link between S and C is lossy due to the wireless channel but we assume

a proper feedback for packet retransmission would take care of packet losses on the

S-C link. Note that in practice, we consider a stable situation which is when the

transitional memorization phase is over. In other words, we assume that every over-

hearing node has been in the network for a long time and has accumulated sufficient

knowledge about the source contents’ model from all the past communication (the

memorization phase). In practice, it is rational to assume that the memory-enabled

helper has observed a sufficient number of packets (when S was serving several other

clients), and hence, the total size m of memorized packets is assumed to be suffi-

ciently large. This assumption is not necessary for network compression but it would

simplify our presentation. For example, in the experiment plotted in Figure 4(a), we

observed that m = 4MB is sufficient memorization and having further memory has

subtle effect on the gain of compression.

Figure 27 shows the abstraction of the setup in Figure 26. The basic principle in

network compression in Figure 27 can be described as following. Assume that both

M and S share the memory ym after the memorization phase. Further, assume we

use a two–part statistical compression method. A model of the source S is created

at S and M using the memory ym. Then, in the compression of a new packet xn, the

server S would only send (to the client C) the output of the arithmetic encoder which

compresses xn using the model. To complement the compressed sequence sent by S,

the memory-enabled helper M forwards (to the mobile client C) the corresponding

84

source model used by arithmetic encoder. Hence, the mobile client would be able to

decode xn although the client did not have memory (i.e., the source model). In this

scenario, the cost of sending a compressed packet using memory (on the link S-C)

would be very low relative to the cost of sending the source model on the link from

the memory-enabled helper to the client. This would achieve the principle objective

of network compression which is saving the cost on the link from the wireless gateway

S to the mobile client.

S

ym

M

ym

C

Figure 27: The abstract illustration of the traffic reduction problem via network
compression. The memorized sequence ym represents the total past data overheard
by M from S to the clients.

As mentioned before, since we wish to reduce the load of the gateway, we have

an asymmetric situation where a higher cost is associated with the channel from the

source to the client than from the helper to the client. This asymmetry between

the channel costs is motivated by real-world cellular networks where a single base-

station serves a large number of clients. Hence, if the load of the base-station by each

client is reduced, it can potentially serve a larger number of clients. For example, the

S-C link from the base-station to the client (and hence the overhearing link S-M)

can operate in a frequency different from the M -C link. Whenever the base-station

hands-off the connection to the mobile client (and the overhearing memory-enabled

helper), its frequency slot frees up and a new client can be served. Further, due to

a lower communication radius, the frequency slot allocated to the M -C link can be

reused within a cell for the link between some other memory-enabled helpers with

nearby clients. This architecture together with the proposed network compression

85

offers a significant opportunity for traffic reduction so as to deliver xn by exploiting

the side-information ym shared between S and M .

As shown in Figure 27, the memorized sequence ym is already available at both

S and M . Let xn be a packet of length n to be delivered from the source to C.

The problem of interest, in its general form, is as to how the encoder of S would

encode xn such that the aggregate communication cost on the link S-C together with

the cost of supplemented bits on the link M -C would be minimized, provided that

xn would be recovered at the client. This general formulation, would reduce to the

objective of minimizing the load of the gateway if we further assume that the cost of

the transmission on M -C link is negligible.

Table 4: Summary of wireless network compression via two–part codes.
Initialization (S and M)
The helper node M overhears the communication
of S with past clients and accumulates knowledge
about the source model and its statistics. Node S
also performs the same operations to construct the
model. The total sequence size observed by M is
ym.

Operation (S)
For every new packet (sequence) xn, S uses the
statistical model to estimate the probability of the
symbols in xn. Then, these probabilities estimates
along with xn are sent to an encoder (e.g., an arith-
metic encoder). The output of the encoder (NOT
the probability estimates) is then sent to C.

Operation (M)
Once the helper M finds out that the compressed
packet c(xn) is sent to a client within its coverage,
then M sends the probability estimates necessary
for decompression to C.

Operation (C)
The client C receives the output of the (arithmetic)
encoder from S and the probability estimates from
M and feeds them to a decoder (e.g., arithmetic
decoder) to reconstruct xn.

86

7.3 Code Design for Network Compression via Overhear-
ing Helper

The main feature of our approach is that the source can rely on the memory-enabled

helper to send side-information to clients. In the statistical universal compression

technique, this side information is in fact the source model formed at the overhearing

memory-enabled helper using the sequence ym. Now, the question is how much this

side information can improve the efficiency of compression at the source. Further,

which coding mechanism would realize that gain. We first review the traditional

two–part coding scheme (c.f. [38, 12] and the references therein) and introduce the

necessary notations and describe its adaptation for our network compression via over-

hearing memory-enabled helpers.

7.3.1 Traditional Two–part Code

For the analysis, we assume that S is a stationary parametric source. Let µθ be the

probability density function of the source depending on a d-dimensional parametric

vector θ which takes values in Θ ⊂ <d, where < is the set of real numbers. Consider a

parametric source with probability density function µθ. By this setup, for example, for

a binary Bernoulli (memoryless) source which is represented with a single parameter

γ, the probability that the source would output the sequence xn with k ones and

n − k zeroes is given by µγ(x
n) = γk(1 − γ)n−k. Please see [38] for a more detailed

discussion of the parametric sources.

If the parameter vector θ ∈ Θ was known, the ideal code length of a packet xn,

obtained from the Shannon code, would be log 1/µθ(x
n) [32]. On the other hand, since

in practice the parameter θ is not known a priori, we wish to encode the packet using

a universal probability distribution P (xn), which is in some sense close to the true

unknown probability distribution. The universal two–part code [12, 11, 64] provides

a practical solution to this problem with close to optimal code lengths which can be

87

simply implemented.

The traditional (without memory) two–part source coding scheme encodes a packet

xn as follows: the first part of the code basically describes the best estimation

θ̂(xn) ∈ Θ of the unknown source parameter vector θ? by using the statistics of

the source extracted from the packet xn. This estimate θ̂(xn) is then used in the

second part for compression of the packet xn. Therefore, roughly speaking the closer

the estimate θ̂(xn) gets to the true parameter θ?, the smaller the description length

of the packet to be compressed becomes (i.e., better compression is achieved on the

average). However, in order to provide a better estimate for θ?, we would need more

bits to describe θ̂(xn). To achieve the best code length, one should use an estimate

of the source parameter that minimizes the total code length of the two–part code,

which is the sum of the lengths of the two parts of the code. Let l2p(xn) be the length

of the codeword assigned to xn by the two–part encoder. We have

l2p(xn) = min
θ̂(xn)

{l(θ̂(xn))− logPθ̂(xn)(x
n)}, (43)

where, l(θ̂(xn)) is the universal length of the codeword describing the estimate θ̂(xn)

and − logPθ̂(x
n) is the description length of a packet xn given the estimate θ̂ when

the optimal Shannon code is used.

The optimization in (43) is studied in the literature and performance of two–part

codes has been characterized (cf. [38, 10, 66, 12]). In short, the code lengths of

traditional two–part code are characterized by the following theorem:

Theorem 7.3.1 For a d-dimensional parametric source with parameter θ ∈ Θ, we

have

E[l2p(Xn)] = Hn(θ) +
d

2
log n+ (44)

log

∫
λ∈Θ

|I(λ)| 12 dλ+O(1),

88

where |I(·)| denotes the determinant of the Fisher information matrix, defined in (50).

7.3.2 Two–part Code with Asymmetric Cost

The two–part coding strategy fits well within the framework of network compression

in Figure 27. The benefit of using two-part coding strategy for wireless network

compression problem is two-fold. First, the compressed codeword describing xn is

consisted of two parts that can be separately sent to the end-user, i.e., the client

node; one part from the source and the other from the memory-enabled helper, as

shown in Figure 27. We will incorporate the asymmetric cost of communication of

the two part of the code in our analysis. Secondly, the memorized sequence ym that

is longer than xn can be used for obtaining a better estimate of the source parameter

which translates to more efficient communication.

To proceed we will consider the natural asymmetric cost of transmission that

happens in our setup since the cost of transmission from the source to the client is

significantly higher than that of the link between the memory-enabled helper and the

client.

From (43), l2p(xn) is the length of the sequence sent by the source when the source

compresses the packet xn without regard to the memory-enabled helper. On the other

hand, by exploiting the memory-enabled helper and hence obtaining the estimate

θ̂(ym), the source only needs to send the second part of the two–part description, i.e.,

− logPθ̂(ym)(x
n). The client receive this codeword, however, at this point it is unable

to decode the codeword as the source parameter used in encoding is unknown to the

client. Thus, the codeword corresponding to θ̂(ym) is transmitted by the memory-

enabled helper M to the client. This codeword has length l(θ̂(ym)).

Therefore, the total cost of delivering xn in Fig 27, denoted by C(xn), is given by

C(xn) = min
θ̂(ym)

{κl(θ̂(ym))− logPθ̂(ym)(x
n)}, (45)

89

where κ� 1 is ratio of the cost of transmission on the M -C link to that of the S-C

link.

To characterize the average cost of communication between the source and the

destination, we need to find the expected value of (45) with respect to the true source

parameter, i.e., EXn∼θ? [C(Xn)]. In the next section, we investigate the trade-offs of

the code design and characterize the expected communication cost.

7.4 Performance Evaluation of Network Compression via
Overhearing Helper

The key to constructing a two–part code achieving the minimum communication cost

is to discretize Θ to a countable set of points Φ ⊂ Θ such that the ML estimator

restricted to Φ achieves almost the same codelength as the unrestricted ML esti-

mator [38]. The finer the discretization, the smaller the number of bits in the S-C

communication link would be. But, finer descritization would result in larger code-

lengths transmitted from M to C. We are after the optimal trade-off between these

two parts minimizing the total communication cost.

Denote the entropy of the parametric source at S generating xn by Hn(θ), defined

as

Hn(θ) =
∑
xn

µθ(x
n) log

1

µθ(xn)
= E

[
log

1

µθ(Xn)

]
. (46)

The following theorem determines the communication cost in the case of network

compression via overhearing helper. Let ym be a sequence available at S and M

generated by a d-dimensional parametric source. A sequence of length n is to be

transmitted from S to C. Let LS be the expected number of bits sent by S and LM
be the expected number of bits sent by M to the client.

90

Theorem 7.4.1 Given a memory of size m such that n
m

= o(1),1 we have

 LS = Hn(θ) + o(1)

LM = d
2

logm+
∫
λ∈Θ
|I(λ)| 12 dλ+O(1)

,

where |I(·)| denotes the determinant of the Fisher information matrix.

Proof Proof is provided in the Section 7.4.1.

Corollary 7.4.2 Let κ be the ratio of the cost of transmission on the M-C link to

that of S-C link. The expected communication cost in Figure 27 is

E[C(Xn)] = Hn(θ) + κ

[
d

2
logm+

∫
λ∈Θ

|I(λ)| 12 dλ+O(1)

]
. (47)

Remark: Theorem 7.4.1 demonstrates that when m is sufficiently large, the output

of the source is close to the sequence entropy which is the information-theoretic lower

bound on the source output size. From corollary 7.4.2, we observe that when we have

an asymmetry in communication cost, i.e., κ � 1, larger memorized sequences can

be employed while the total communication cost is still dominated by the bits sent

from the server to the client.

Example: To illustrate the trade-offs in Theorem 7.4.1, we consider a memoryless

source model with alphabet size 256, i.e., each symbol of the source is 1 byte. For small

packet lengths, a memoryless source model suffices for modeling of the underlying

source in practice so as to avoid overfitting [73]. For simplicity, we uniformly discretize

the parameter space. The memorized sequence is used to choose the best source

parameter from the discretized space. The discretization is done such that the sum

of LS and LM is minimized. The length n packet to be compressed together with the

estimated parameter is then fed to a standard arithmetic coder [50].

1f(n) = o(g(n)) if and only if limn→∞
f(n)
g(n) = 0.

91

2 4 6 8 10
4

6

8

10

12

14

16

18

20

1/κ

L M
(b
it
)

n=102

n=103

n=104

(a)

5 10 15 20 25 30 35 40
0

5

10

15

20

1/κ

L M
(b
it
)

n=102

n=103

n=104

(b)

Figure 28: Illustration of the optimal number of bits LM that the memory node needs
to send to the client versus the relative cost of links for different sequence lengths n
and the alphabet size 2: (a) memoryless source and (b) order-1 Markov source.

In Figure 28, the optimal LM for various cost ratio is depicted for both a memo-

ryless parametric source (Figure 28(a)) and an order-1 Markov source (Figure 28(b)).

As the cost ratio κ assumes smaller values, the optimal number of bits LM that the

memory node sends to the client increases.

Figure 29 shows the ratio LMLS . For example, for a packet length of 1kB, the size

of the parameter estimate is roughly the same size as the compressed packet using

the aforementioned arithmetic coder, i.e., LMLS ≈ 1. To quantify the gain of network

92

10
3

10
40

0.5

1

1.5

n

L M L S

Figure 29: Ratio of the output size of the helper LM to the source output size LS
vs. the packet size n for a memoryless source with an alphabet size 256.

compression with memory-enabled helpers over traditional compression, we define

g =
E[l2p(Xn)]

E[C(Xn)]
.

For packet sizes of length 1kB where LMLS ≈ 1, when κ� 1, we observe that g ≈ 2, as

the communication cost of M -C link is negligible.

The result of Figure 29 is used in the simulations of Section 7.6 to determine the

output bit rate of the source and the memory-enabled helper to the client.

7.4.1 Proof

Consider a d-dimensional parameter space Θ where the true source parameter θ? is

chosen from. Further, let the parameter θ? be chosen according to a prior density

w(θ) defined over Θ. The two–part coding with memory ym is comprised of three

steps. First, the ML estimate of θ? is obtained from the memorized sequence; this

estimate is denoted by θ̂(ym). In the second step, to find a codeword describing the

ML estimate the space Θ is split into a set of regions R; the center point of each

93

region R ⊂ R, denoted by φR, is used to discretize Θ. Let

Φ =
⋃
R

{φR}

be the discretized space and denote the corresponding ML estimate in Φ closest to

θ̂(ym) ∈ R by φ̂R(ym).2 Let ω(φR) denote the probability density corresponding to

w(θ) in the discretized space Φ. We have

ω(φR) =

∫
θ∈R

w(θ) dθ.

Finally, a sequence xn is compressed using a Shannon code (which is the optimal

code when the source parameter vector is known) with parameter vector φ̂(ym). The

description length of xn using the Shannon code is given by − logPφ̂(ym)(x
n). The

description length of the parameter φ̂(ym) is − logω(φ̂(ym)). Please note that the

Shannon code is sent by S whilst the parameter is transmitted from M which is less

costly by a factor κ � 1. Henceforth, the communication cost of transmitting xn

from source to client with memorized sequence ym available to the memory-enabled

helper can be written as

C(xn) = log
1

Pφ̂(ym)(x
n)

+ κ log
1

ω(φ̂(ym))
. (48)

By adding and subtracting a − log µθ?(x
n) term (which is the length of the Shannon

code using the true source parameter)and a − logPθ̂(ym)(x
n) term (which is the length

of the Shannon code using the maximum likelihood parameter after ym is observed)

from (48) and then taking expectation, we can write the expected communication

2The subscript R is dropped when it is clear from the context.

94

cost as in (49).

EXn [C(Xn)] = −κ logω(φ̂(ym)) + EXn

[
log

1

Pφ̂(ym)(X
n)

]

= −κ logω(φ̂(ym)) + EXn

[
log

Pθ̂(ym)(X
n)

Pφ̂(ym)(X
n)

]
+

+EXn

[
log

µθ?(X
n)

Pθ̂(ym)(X
n)

]
+ EXn

[
log

1

µθ?(Xn)

]
. (49)

Proof of Theorem 7.4.1 follows from the following lemmas that examine the terms

in (49). The lemmas are adaptation of our previous results on the performance of two–

part codes from [12] and other results in the literature [38]. The rightmost term in (49)

is the easiest to evaluate. By definition (46), we have EXn

[
log 1

µθ? (Xn)

]
= Hn(θ?).

For the second term from the right, we have the following lemma.

Lemma 7.4.3

EXn

[
log

µθ?(X
n)

Pθ̂(ym)(X
n)

]
= c1

n

m
+O

(
1√
m

)
,

where c1 > 0 is a constant.

Proof Consider the Taylor’s expansion of the term − log µθ?(X
n) around the ML

estimate. We have

EXn [− log µθ(X
n)] = EXn

[
− logPθ̂(ym)(X

n)
]

+(
∇ log

1

µθ(Xn)

)
(θ − θ̂(ym)) +

n

2
(θ − θ̂(ym))TI(θ̂)(θ − θ̂(ym)) +

O

(
1√
m

)
,

95

where I(θ̂) is the expected Fisher information matrix evaluated at θ̂, defined as

Iij(θ̂) = EXn

[
− ∂2

∂θi∂θj
µθ(X

n)

]
θ=θ̂

. (50)

The second term in the Taylor’s expansion is zero as the ML is the maximizer of

the likelihood function. For probability densities from the exponential family, the

Fisher information matrix is proportional to the inverse of covariance matrix, i.e.,

Eθ

[
(θ − θ̂(ym))T(θ − θ̂(ym))

]
= c1

m
I−1. Therefore, the third term in the Taylor’s

expansion would reduce to c1
n
m

.

The error term follows from the fact that the estimate θ̂(ym) is evaluated with

a length m sequence and hence the distance ||θ − θ̂(ym)||2 is bounded by 1
m

. This

concludes the proof.

Lemma 7.4.4

EXn

[
log

Pθ̂(ym)(X
n)

Pφ̂(ym)(X
n)

]
= c2

n

m
+O

(
1√
m

)
,

where c2 > 0 is a constant.

Proof The proof of this lemma again requires a second order Taylor’s expansion and

can be similarly completed with the methods in the proof of lemma 7.4.3.

Lemma 7.4.5

− logω(φ̂(ym)) = − logw(θ̂(ym)) + log

√
|I(θ̂(ym))|

+
d

2
logm+O(1).

Proof This lemma is obtained as a consequence of Lemma 10.1 in [38] which deter-

mines the total number of points in the discretized space.

96

As a consequence of Lemma 7.4.5, we observe that the minimizing prior w(θ) that

results in the minimum description length of the parameter θ̂(ym) is the so-called

Jefferey’s prior:

wJ(θ) =
|I(θ)| 12∫

θ∈Θ
|I(θ)| 12 dθ

.

Putting it all together, we arrive at the proof of Theorem 7.4.1.

Proof of Theorem 7.4.1 From lemma 7.4.5, the minimum expected communica-

tion cost from the helper

LM =
d

2
logm+

∫
θ∈Θ

|I(θ)| 12 dθ + o(1).

From the lemmas 7.4.3 and 7.4.4, we have

LS = Hn(θ?) + c
n

m
+O

(
1√
m

)
,

where c is a constant. The proof is completed by noting that n
m

= o(1) and 1√
m

= o(1).

7.5 Impact of Channel Loss

Wireless networks are prone to errors. Packets are lost due to errors, the wireless

channel, limited buffers and congestion. The effect of the packet loss on redundancy

elimination in wireless networks is first studied in [52], where the authors show that

high loss rate can be detrimental to the redundancy elimination. However, the data

gathered from gateways in North American and European wireless service providers

show that the average loss rate in the downlink of UMTS providers is around 3%

which is well below the loss rate that causes harm to redundancy elimination. We

should also point that the average loss rate on the uplink can be as high as 14%,

which if not corrected can render redundancy elimination effectively useless. In [52],

97

authors introduced loss recovery schemes which eliminate the adverse effect of loss

on redundancy elimiation when the loss rate is high. In particular, the “informed

marking” scheme, where each receiver signals the sender whenever it cannot decode

a packet due to a missing packet from its cache memory. The receiver sends a control

packet of the missing packet and the sender blacklists the corresponding packet in its

own cache; in future encoding, any blacklisted packet will be ignored.

Since the focus of this chapter is the compression of the downlink traffic and

the average loss rate in the downlink is minimal, the coding techniques discussed in

previous sections can be applied in real-world scenarios with no modification. Further,

effective schemes such as the informed marking, introduced above, with very low

overhead can be employed to counter the loss.

In high loss rate scenarios, more complicated compression schemes should be de-

veloped where one might require memory-assisted compression under mismatched

side information. The theoretical investigation of the memory-assisted compression

with mismatched side information is presented in Chapter 8.

7.6 Simulation

7.6.1 Simulaton Setup

To evaluate the performance of the proposed memory-assisted compression via helpers,

we used NS-2 simulator [58]. We employed a flat grid topography with a wireless base-

station (S) at the origin. Further, multiple memory-enabled helpers (M) are deployed

within the coverage of S. The helpers are uniformly distributed in the coverage of

S, which is assumed to be a circle of radius 250m. The communication range of the

helpers is 20m and they are placed such that they are outside of the communication

range of each other. All the mobile clients are within the communication range of S,

but only a subset is covered by helpers at any given time.

We simulate both Constant Bit Rate (CBR) traffic generator over User Datagram

98

1 2 3 4 5 6
10

20

30

40

50

60

Number of helpers

M
a
x
N
u
m
b
er

of
M
ob

il
e
N
o
d
es

Baseline
Memory−Assisted

Figure 30: Maximum number of mobile nodes supported by S vs. the number of
helpers in the network. The packet drop rate threshold is fixed at 10% and the traffic
generator is CBR over UDP, as in Table 5.

Protocol (UDP) and File Transfer Protocol (FTP) which is running over Transport

Control Protocol (TCP). We considered the case where S shares a common memory

with each of the helpers and that memory is used for compression of packets sent to

mobile nodes within the coverage of the corresponding helper. Further, each mobile

client (if covered by a helper) only helped by a unique helper node. Obviously, if a

node is not in the range of any helper, it receives its packets directly from S (via

compression without memory). For the baseline simulation scenario, we consider

the case where no helper is deployed and all the communication is conducted by S.

Hence, packets are compressed individually without using any memory, i.e., end-to-

end compression.

For FTP simulations, we consider files of size 20kbits for which a memory packet

of size 2kbits is sent from helper to the client. The details of simulation parameters

are given in Table 5.

99

Table 5: Simulation parameters and values
Parameter Value
Number of helpers (M) 0− 10
Comm. Radius of S 250m
Comm. Radius of helper 20m
CBR over UDP rate 64 kbps
UDP baseline packet size 8000 bits
Packet Drop Rate Threshold 10%
FTP file size 20kbit
TCP window size 128

7.6.2 Simulation Results

To examine the effectiveness of the memory-assisted compression, with respect to the

baseline scheme, we have considered three performance quantities and evaluated them

for both UDP and TCP scenarios. The first quantity is the maximum number of nodes

that can be supported, for the traffic described in Sec. 7.6.1. To obtain the maximum

number of nodes in Figure 30, we have increased the number of mobile nodes in the

environment until the packet drop rate exceeds a 10% threshold. We observe that

using memory-assisted compression the maximum number of nodes increases from

15 to almost 50, as shown in Figure 30. Since the bottleneck of the network is the

output bandwidth of S, we observe from Figure 30 that adding helpers beyond a

certain number does not increase the maximum number of client nodes supported.

In Figure 31, we have depicted the maximum total throughput/goodput versus

the fraction of the nodes covered by helpers. For both of the plots in Figure 31,

the number of nodes is chosen similar to the setup for Figure 30, that is, the nodes

are added to the network (while keeping the helper’s coverage constant) until the

packet drop rate reaches 10%. The total throughput for UDP traffic and the goodput

for TCP trrafic is then measured as the sum over all the clients in the network. As

expected, as helpers cover more mobile nodes in the network, higher total throughput

is achieved. Since the traffic generation for UDP and TCP scenarios is different, we

100

0.2 0.4 0.6 0.8 1
10

5

10
6

Percent of Nodes Covered by helpers

M
ax

T
ot
al

T
h
ro
u
gh

p
u
t
(b
y
ts
/
se
c)

Baseline
Memory−Assisted

(a)

0.2 0.4 0.6 0.8 1

10
5

10
6

Percent of Nodes Covered by helpers

M
ax

T
ot
al

G
o
o
d
p
u
t
(b
y
ts
/s
ec
)

Baseline
Memory−Assisted

(b)

Figure 31: Maximum total throughput/goodput in the network vs. the fraction of
mobile nodes covered by helpers for (a) UDP and (b) TCP.

101

5 10 15 20 25 30
0.2

0.4

0.6

0.8

1

Average Delay (ms)

P
er
ce
n
t
o
f
S
a
ti
sfi
ed

U
se
rs

Coverage = 35%
Coverage = 58%
Coverage = 94%

(a)

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Average Delay (ms)

P
er
ce
n
t
o
f
S
a
ti
sfi
ed

U
se
rs

Coverage = 30%
Coverage = 70%
Coverage = 90%

(b)

Figure 32: Fraction of satisfied users in the network vs. maximum allowed aver-
age delay of packets for (a) UDP and (b) TCP traffic for different helper coverage
percentages.

102

observe different amount of increase in the total throughput/goodput but the trend

is increasing for both scenarios as we increase the density of the helpers.

The third quantity of interest is the Quality of Service (QoS). To demonstrate

the benefit of memory-assisted compression on QoS, we have considered a simulation

scenario with fixed number of clients and measured the average delay of packets for

each client. Te number of helper nodes is changed to obtain the plots for different

helper coverage ratios. The number of clients per helper is fixed and we have added

more helpers to serve more number of clients. Figure 32 depicts the fraction of satisfied

clients for a given maximum allowable average delay. As we see, users experience less

amount of delay as the fraction of nodes covered by helpers increase.

103

CHAPTER VIII

MEMORY-ASSISTED COMPRESSION WITH

MISMATCHED SIDE INFORMATION

8.1 Introduction

In Chapter 8 the problem of lossless universal compression of finite length sequences

with mismatched side information at encoder and decoder is considered. There are

two scenarios that motivate the study of memory-assisted compression with mis-

matched side information at encoder and decoder. First, packet loss in wireless net-

works can result in mismatched side information; the loss recovery mechanisms in

wireless networks do not guarantee perfect delivery for overhearing nodes. Therefore,

the overhearing nodes in the networks might not receive all the packets sent by the

gateway and when memory-assisted compression is employed, the gateway and client

do not have the same side-information. Secondly, in wired networks, the routers do

not observe all the packets sent by the source as the routing algorithm may requires

packets fro the same source take different paths in the network. In Chapter 8, we

take the first steps of characterizing the performance of memory-assisted compression

with mismatched side information.

Let xn be a sequence of short to moderate length n generated by a parametric

source, with unknown parameters. Further, assume that the encoder at node S and

decoder at node D both have access to some previously generated sequences of the

source as a side information. However, this side information at the decoder , denoted

by zm, differs from the side information at the encoder, denoted by ym, by a number

of erasures. Specifically, we assume that D has acquired a number of sequences

of total length m from the source, however, some of the symbols in ym are erased

104

Sxn

ym Erasure (E) zm

D

Figure 33: The model abstraction of compression problem with mismatched side
information.

before arriving at D, as shown in Figure 33. As such, we aim at answering the

following questions: what is the fundamental limit of compression for sending xn to

D given that D has some side information about the parametric source generating

xn? Furthermore, how does the fundamental limit varies with n, m as well as the

fraction of erased symbols?

As discussed in Chapter 7, packet-level redundancy elimination in wireless net-

works can be performed by exploiting the overhearing opportunity in the wireless

environment; clients can overhear previously sent data and use the memorized pack-

ets (i.e., overheard data) to form a model of the source used in memory-assisted

compression. However, the error-prone wireless environment makes it difficult to

guarantee that the sender node and the mobile node, which has overheard the previ-

ous communications of the source with other mobile clients, have the same model of

the information source. This is because the error recovery mechanism is implemented

between the source and the client for which the packet is intended to, not the other

nodes that overhear the communication. This mismatch between the model at the

encoder and the decoder makes the memory-assisted compression challenging. We

view the overhearing in the network as an erasure channel, as in Figure 33. In other

words, a fraction of symbols from the entire previous sent packets to other clients (i.e.

ym) are erased due to overhearing at D, resulting zm.

8.1.1 Contributions

We provide theoretical results on the performance of memory-assisted compression

when the source model at the encoder and the decoder does not match. In Section 8.3,

105

we explore the impact of erasure on memory-assisted compression in wireless networks

and investigate the redundancy of memory-assisted compression in this scenario. The

average minimax redundancy is considered as the measure of performance for the uni-

versal scheme employed for compression. The idea is to devise a scheme that utilizes

the side information to reduce the parameter space in such a way that both the en-

coder and the decoder arrive at the new parameter space. The reduced parameter

space will result in better compression performance. The information-theoretic for-

mulation for the problem in the context of universal compression is presented and

bounds on the fundamental limit of the compression performance in this setup is

derived. It is shown that the side information, provided that m is sufficiently large,

reduces the leading term of redundancy (which is 1
2

log n) to O(1), if the fraction of

erased symbols is sufficiently small. Furthermore, in Section 8.4, a sequential code

design is presented for memory-assisted compression with mismatched side informa-

tion.

8.2 Background and Problem Setup

Consider a node S and two clients C and D in a wireless network where both C and

D may receive packets from S, though not perfectly. In a real-world scenario, the

node S is a wireless gateway (or tower) that is connected to Internet or the network

backbone and transmits the packets to clients in unicast sessions. In the abstraction

of the problem, node S may be viewed as a parametric source that sends independent

sequences of length n to clients. However, the source parameter is unknown to S

and clients. Now, assume that several sequences have already been destined to C

via unicast from S, but due to the broadcast nature of the wireless environment, D

also overheard some of these sequences. Let ym be a sequence of length m, which

is the concatenation of all previously sent sequences to the other clients by S. Let

zm be the resulting sequence from overhearing ym by the client D in Figure 33. It is

106

important to note that due to channel erasures, zm is the same as ym in Figure 33

except that some of the symbols in zm are marked as erased. We assume that both

S and D know the length of side information m and the number of erasures r, hence,

E = r
m

is known. As such, node D has a common side information with S that can

be utilized by S toward compression of any new sequence xn destined to D, as in

memory-assisted compression in [13, 15, 14]. However, the fundamental difference of

this setup with [13, 15, 14] is that ym and zm do not match.

For simplicity of analysis, it is assumed that the source S is a parametric source,

over alphabet A, with a d-dimensional parametric vector θ which takes values in

Θ ⊂ <d. One may extend this model to a more realistic setup for real-world sources

by considering a mixture model as studied in [15]. Let xn = (x1, . . . , xn) be a sequence

generated by the source with probability µθ(x
n). We wish to study the fundamental

limit of compression of xn, given that S and D have access to some memorized

sequences ym and zm, respectively. Further, it is of interest to characterize as to how

this limit vary as n and m as well as the erasure fraction change. In the absence of

memory-assisted compression, i.e., compression without using the common memory,

xn is universally coded by cn : An → {0, 1}∗ with the length function denoted by

l(xn). To proceed, we state the two notions of lossless compression as defined below.

Definition The code ĉn(·) : An → {0, 1}∗ is called almost lossless if there exists a

reverse mapping d̂n(·) : {0, 1}∗ → An such that

lim
n→∞

E{1err(Xn)} = 0,

where 1err(x
n) denotes the indicator function of error, i.e,

1err(x
n) =

 1 d̂n(ĉn(xn)) 6= xn,

0 otherwise.

107

Definition The code cn(·) : An → {0, 1}∗ is called strictly lossless if there exists a

reverse mapping dn(·) : {0, 1}∗ → An such that

∀xn ∈ An : dn(cn(xn)) = xn.

All of the practical data compression schemes are examples of strictly lossless codes,

namely, the arithmetic coding, Huffman coding, Lempel-Ziv algorithm, and the Con-

text Tree Weighting [84]. In Chapter 8, we only consider the universal coding cn that

are strictly lossless.

The performance of the compression employed is measured in terms of the over-

head beyond the entropy, which is called the average code redundancy as

R(cn, θ) = E[l(Xn)]−Hn(θ),

where Hn(θ) is the entropy of the parametric source induced by µθ on xn.

If the parameter vector θ ∈ Θ was known, the ideal code length of a sequence

xn, obtained from the Shannon code (ignoring the integer code length requirement),

would be log 1
µθ(xn)

. Without the knowledge of θ, one has to encode the sequence with

a penalty term that is characterized by the code redundancy. The average minimax

redundancy, defined as

R̄(n,Θ) = min
cn

max
θ∈Θ

R(cn, θ),

is a performance measure for universal lossless coding schemes. It is shown in [10, 66]

that

R̄(n,Θ) =
d

2
log
(n

2πe

)
+ log

∫
θ∈Θ

|I(θ)| 12 dθ +O

(
1

n

)
, (51)

where |I(θ)| is the determinant of the Fisher information matrix evaluated at θ.

A related result to (51) that is used in this work is the following theorem [38, 30]:

108

Theorem 8.2.1 Let Θ0 ⊂ Θ. Denote by R̄(w, θ) the expected redundancy of a com-

pression scheme with the prior w(θ) on Θ0. Then, we have

R̄(w, θ) =
d

2
log
(n

2πe

)
− logw(θ) + log |I(θ)| 12 + o(1), (52)

where the convergence is uniform in θ ∈ Θ0.

This theorem suggests that Jeffreys’ prior, defined as

wJ(θ) =
|I(θ)| 12∫

θ∈Θ0
|I(θ)| 12 dθ

, (53)

is maximin optimal. Note that Jeffreys’ prior is also minimax optimal [56].

Finally, another important relationship that we use in this chapter is the following

result by Gallager which shows that if µθ is a measurable function of θ, then

R̄(n,Θ) = sup
w(θ)

I(Xn; θ), (54)

where I(Xn; θ) is the mutual information between Xn and θ, and w(θ) is the prior

distribution on θ.

8.3 Main Results

We note that for finite length sequences, there is a large gap between the code length

of the best universal code and the source entropy, i.e., the average code redundancy

is considerable [12]. However, the side information zm obtained by overhearing, pro-

vides information regarding the parameter θ and hence can be used to reduce the

code redundancy considerably. We are after the fundamental improvement as well

as practical code designs that exploits the side information to get close to optimal

universal code lengths and is easy to implement.

Let R̄(n, E) be the average minimax redundancy of the compression employed in

109

Figure 33, where E = r
m

is the fraction of erased symbols in ym. First, we obtain a

lower limit on the average minimax redundancy for the case when the side information

at both ends is exactly the same. In other words, the encoder exactly knows the

location of erased symbols, i.e., the encoder knows zm. In this case, we have

Proposition 8.3.1 If the location of r erased symbols in the side information is

known at the encoder, i.e., node S in Figure 33, then we have

R̄(n, E) ≥ d

2
log

(
1 +

n

m− r

)
+O

(
1

n

)
. (55)

Proof Let R̄(n|λ) be the average minimax redundancy of a universal scheme com-

pressing a sequence of length n given a side information vλ, and λ > n known to both

encoder and decoder. According to [14] and using (54), the minimax redundancy

of a memory-assisted compression scheme with a side information of size λ can be

obtained as

R̄(n|λ) = max
p(θ)

I(Xn; θ|V λ)

= max
p(θ)

[
I(Xn, V λ; θ)− I(V λ; θ)

]
= R̄n+λ − R̄λ. (56)

From (51), we have

R̄(n|λ) =
d

2
log
(

1 +
n

λ

)
+O

(
1

n

)
.

The result in (55) follows from (56) and the fact that the destination has only access

to a memory of size λ = m−r and no strictly lossless compression scheme can benefit

from a side information longer than the one available at the destination.

This is a trivial upper bound, which is tight when the erasure E → 1, i.e., there is

no memory shared between S and the client. This bound is obtained by ignoring the

110

available memory at the encoder and the decoder. Then, R̄(n, E) is bounded from

above by

R̄(n, E) ≤ R̄(n). (57)

The upper bound introduced in (57) is not tight for all E . In the following, we

provide a constructive approach which leads to a non-trivial upper bound on the

average minimax redundancy when the source is memoryless. The bound is given

for binary case for the simplicity of the presentation but the extension to non-binary

alphabet is straightforward.

Theorem 8.3.2 The average minimax redundancy of a universal compression scheme

for the class of binary memoryless sources with a side information obtained through

a channel with a fraction E of symbols erased is bounded by

R̄(n, E) ≤
min(d 1E e,1)∑

i=1

2

π

(
arcsin

√
iE − arcsin

√
(i− 1)E

)
(

1

2
log

2n

πe
+ log CiE(i−1)E + o(1)

)
, (58)

where

Cα2
α1

=

∫ α2

α1

1√
x(1− x)

dx.

Proof Consider a memoryless source with parameter space Θ = (0, 1) and alphabet

A = {a, b}. The Jeffreys’ prior for this source, defined in (53), is w(θ) = 1

π
√
x(1−x)

. If

we use this prior for coding a sequence xn, the resulting redundancy would be

R̄(n,Θ) =
1

2
log(

n

2πe
) + log(π) + o(1).

However, the side information will induce another prior on the parameter space that

reduces the redundancy of the Jeffreys’ prior. Consider a sequence ym at S with m
(a)
S

number of a’s. Likewise, let m
(a)
D be the number of a’s in zm. Let θ̂S denote the ML

111

estimate of θ at S and θ̂D be the ML estimate at D. We have

θ̂S =
m

(a)
S

m

m
(a)
S − r
m

≤ θ̂D =
m

(a)
D

m
≤ m

(a)
S

m
. (59)

A strictly lossless compression scheme requires both the encoder and the decoder use

the same parameter estimate or prior. To overcome the mismatch in (59) between θ̂S

and θ̂D, we consider the following scheme: both the encoder and the decoder divide

the interval (0, 1) into sub-intervals of size r
m

. Since θ̂D ≤ θ̂S and |θ̂D − θ̂S| < E ,

the estimated parameter at the encoder and the decoder are either in the same sub-

interval or in two adjacent sub-intervals. This discrepancy can be resolved with one

extra bit sent by the encoder.

Let Θi = ((i− 1)E , iE) be the i-th sub-interval. Since, wJ(θ) is Jeffreys’ prior,

P[θ ∈ Θi] =

∫
θ∈Θi

wJ(θ) dθ

=
2

π

(
arcsin

√
iE − arcsin

√
(i− 1)E

)
.

Further, for binary memoryless sources, I−1(θ) = θ(1 − θ). Hence, according to

Theorem 8.2.1, the redundancy of a compression scheme, with the side information

that the source parameter is chosen from Θi, can be obtained as

R̄(n,Θi) =
1

2
log
(n

2πe

)
+ log

∫
θ∈Θi

|I(θ)| 12 + o(1)

=
1

2
log
(n

2πe

)
+ log CiE(i−1)E + o(1).

Thus, the result in (58) follows.

It is easy to see that the bound in (58) reduces to (51) for E → 1. This is because C1
0

reaches its maximum of π and the total number of sub-intervals within (0, 1) is one

112

and hence no extra information is needed from the source.

For the special case of E = O(1√
n
), we can provide a stronger result that exactly

characterizes R̄(n, E).

Proposition 8.3.3 If E = O(1√
n
), we have

R̄(n, E) = O(1). (60)

Proof Since E = O(1√
n
), the size of sub-interval Θi is also O(1√

n
). Let θ? ∈ Θi, then,

R̄(n,Θi) = E[log µθ(X
n)− log µθ?(X

n)]

= nD(µθ||µθ?)
(i)
=

n

2
(θ − θ?)2I(θ) + o(1)

(ii)
= O(1), (61)

where D(.||.) is the KL divergence. In (61), equality (i) follows from the second order

approximation of KL divergence and (ii) follows from the fact that (θ − θ?)2 < 1
n
.

Finally, (60) is derived from (61).

8.4 Discussion on Practical Code Design

Construction of a memory-assisted compression scheme with mismatched side infor-

mation for a memoryless source easily follows from the proof of Theorem 8.3.2. As the

proof suggests, we should first construct a code that would compress a sequence with

the side information that the parameter is from a sub-interval Θi. Let xt = x1x2 . . . xt

be a sequence with binary symbols. Clearly,

P
[
xt|θ

]
= θna(t)θt−na(t),

113

where na(t) is the number of symbols a in xt. The prior probability on the sub interval

Θi is the normalized Jefferys’ distribution, i.e.,

wJ(θ) =
|I(θ)| 12
CiE(i−1)E

.

Therefore, the probability of the sequence xt is equal to

P
[
xt1
]

=

∫ iE

(i−1)E

1

CiE(i−1)E

√
θ(1− θ)

θna(t)θt−na(t) dθ. (62)

Now, the sequence xn along with its probability can be passed to an arithmetic

encoder. However, from a practical point of view, a better compression scheme can

be used which evaluates the probability in (62) sequentially. As such, the sequential

probability estimates of xt+1 can be evaluated as follows [76]:

P
[
xt+1

1

]
= P

[
xt1
] nxt+1(t) + 1

2

t+ 1

+β × α1
na(t)+ 1

2 (1− α1)nb(t)+
1
2

Cα2
α1 (1 + t)

−β × α2
na(t)+ 1

2 (1− α2)nb(t)+
1
2

Cα2
α1 (1 + t)

,

where α1 = (i− 1)E , α2 = iE , and

β =

 1 xt+1 = a,

−1 xt+1 = b.

The results in Figure 34 show the performance of the proposed sequential com-

pression scheme for different sequence lengths, fraction of erased symbols, and side

information of length m = 106. The quantity g in Figure 34 is defined as the gain

of memory-assisted compression (with side information) over compression with no

side information, i.e., g , El(Xn)
El(Xn|Zm)

. We observe that for simple binary sequences of

114

Figure 34: Gain of memory-assisted compression over the end-to-end compression.
The memory size is m = 106.

length 100, a compression gain of 1.6 on top of the end-to-end compression of xn is

achieved, on the average. This gain is expected to be higher if we consider non-binary

sources, as observed in [15].

115

CHAPTER IX

MEMORY-ASSISTED COMPRESSION WORKING IN

TANDEM WITH DE-DUPLICATION

9.1 Introduction

In Chapter 9, the use of preprocessing for data compression is investigated. Prepro-

cessing is often used to find and remove the long repeated sequences that appear

in the data to be compressed [16]. As such, in this work we refer to preprocessing

as de-duplication. Network traffic often contains large repeated blocks. For exam-

ple, traffic from users that access the same web server contains a large number of

repeated blocks and de-duplication is an effective tool to find these blocks. The

benefits of de-duplication are complementary to those offered by the main data com-

pression algorithms. De-duplication provides a fast and efficient way of removing

repetitions that are far apart. Such repetitions remain undetected in the absence of

the de-duplication because of the physical memory constraints of the main compres-

sion engine. Furthermore, removing the input size has a positive impact on the speed

of the compression engine.

In short, preprocessing in the form of de-duplication is an effective technique to

boost the speed and overall compression performance of compression algorithms while

reducing the memory footprint. Furthermore, since the preprocessing is designed

independent of the compression engine, there the compression algorithm remains

unchanged. In Section 9.2.1 and Section 9.2.2, the details of the de-duplication algo-

rithms are discussed. It is demonstrated in Section 9.2.3 that the de-duplication algo-

rithm has to take into account the content of the packets because a simple fixed-block

de-duplication proves to be ineffective. Hence, it is demonstrated that a value-based

116

de-duplication is the method of choice.

In Section 9.3, the performance of compression algorithms after de-duplication is

studied and visual graphs are provided to demonstrate the impact of the content type

on the outcome of de-duplication and compression algorithms. We further, employ the

joint memory-assisted compression and clustering after the de-duplication and provide

compression results that enhance the benchmark on the state-of-the-art redundancy

elimination techniques.

9.1.1 Contributions

In Chapter 2 the benefits of memory-assisted compression was established and in

Chapter 3 the benefits of joint clustering and memory-assisted compression was

demonstrated. In Chapter 9, the benefits of preprocessing for improving the per-

formance of memory-assisted compression are investigated. In particular, we study

the use of de-duplication for removing the repetition in the data. Experiment results

presented demonstrate the effectiveness of de-duplication for removing the depen-

dencies that are to detected by data compression algorithms. The experiments are

performed on real-world data traces collected from thirty mobile users over a month

long period.

9.2 Preprocessing for Data Compression

Preprocessing is often used to find and remove the long repeated sequences that

appear in the data to be compressed. Removing the repeated sequences before feeding

the input sequence to the main compression engine provides three major benefits for

data compression:

1. Speed: The use of fast preprocessing for speeding up the high-performance

but low-speed statistical data compressors is a common practice. The number

of operations that a high-performance compression algorithms perform on the

117

input data scales linearly with the size of input, however, this scaling has a

large constant. Therefore, it is suitable to reduce the size of input by removing

the repetitions with fast preprocessor and then feed the outcome to the high-

performance compressor. For example, fast dictionary-based compressors such

as LZP [20] are used before a strong statistical compression algorithm, such as

PAQ, for both speed and compression ratio improvement.

2. Compression performance: Dictionary-based compression schemes usually

employ a sliding window, typically a few hundred kilobytes long. Increasing

the size of the window would increase the number of bits required to describe

a position in the window and also makes the searching more difficult. Hence,

repetitions are discovered if the repeated sequences appear in the same window

that is less than a megabytes long. The main drawback of this approach is that

the repetitions that are far apart remain undetected. Also, in statistical com-

pression schemes, finding the exact repetition is handled with a table of limited

size and new entries replace the old ones in the table. As such, repetitions that

are far from each other are missed.

3. Memory footprint: For the main compression algorithm to exploit all the

repetitions in the data, the memory footprint of the algorithm would scale

linearly with the size of the input. This is particularly undesirable when the

input size is very large. Preprocessing helps to reduce the memory footprint

of the main compression algorithm while maintaining the same level of or even

better compression performance.

In short, preprocessing in the form of de-duplication is an effective technique

to boost the speed and compression performance of compression algorithms while

reducing the memory footprint. In Section 9.2.1 and Section 9.2.2, the details of the

de-duplication algorithms are discussed.

118

9.2.1 Pattern Matching

The core to de-duplication is an efficient algorithm to fingerprint chunks of data and

use those fingerprints to find the repetitions. In [43], Karp and Rabin originally pre-

sented their pattern matching algorithm for string searching; the algorithm answers

whether a pattern sequence σ1, . . . , σl exists in a packet of length n. The pattern is

viewed as a polynomial of degree l over the finite field of characteristic 2. We have

f(σ1, . . . , σl) = σ1x
l + σ2x

l−1 + . . .+ σl (63)

The fingerprint of the pattern is defined as the remainder of division of f(σ1, . . . , σl)

by an irreducible polynomial of degree k over a finite field of characteristic 2. Hence,

the fingerprint can be viewed as a polynomial of degree k − 1. The algorithm com-

putes (63) for each of the substrings of length l of the input packet. The definition

of fingerprints in (63) makes the successive computation of fingerprints computation-

ally feasible. For example, in order to compute the fingerprint for the next pattern

σ2, . . . , σl+1 we have

f(σ2, . . . , σl+1) = σ2x
l + σ3x

l−1 + . . .+ σl+1

=
(
f(σ1, . . . , σl)− σ1x

l
)
x+ σl+1. (64)

As such, a fingerprint can be initialized in O(l) time and updated by sliding one

position in O(1) time. The finger printing process facilitates the de-duplication by

providing an easy to compute function that can quickly lead to potential duplicates

in the packets.

It is impractical to store all fingerprints that are generated by sliding a window of

length l over the input packet, since the number of generated finger prints is equal to

the length of the input which in turn result in memory blowup. To solve this problem,

119

in the simplest form, the de-duplication algorithms divide the input packets into non-

overlapping blocks of length l and store the fingerprint of each block in an easily

searchable data structure. That is, the fingerprint of bytes 1, . . . , l and l + 1, . . . , 2l

and so forth, are computed and stored. Therefore, for an input length n, this method

stores approximately n
l

fingerprints. Using larger values of l can dramatically decrease

memory requirements but slightly decreases the de-duplication efficiency. We call this

approach “fixed-block fingerprinting”.

The above algorithm is implemented and investigated in [16]. In [16], the algo-

rithm uses a default blocks of size 100 bytes and from every block a 32-bit fingerprint

is stored. These fingerprints are used to detect repeated strings. The repeated string

is represented as “< start, length >”, where start is the initial position and length

is the size of the sequence. Figure 35 provides a schematic of the de-duplication algo-

rithm. The outcome is then fed into a standard compression algorithm that efficiently

represents short (and near) repeated strings. The algorithm of Karp and Rabin has

been vastly adopted in various applications, for example [27, 48], to name a few.

9.2.2 Value-base Fingerprinting

One of the main drawbacks of the algorithm presented in Section 9.2.1 is the use of

fixed block size, i.e., the input sequence is divided into non-overlapping blocks of fixed

size and fingerprints are only stored for those blocks. Consider two packets that are

identical except that one has an extra byte inserted at the beginning. The algorithm

in Section 9.2.1, initializes at the beginning of each packet, computes and then stores

the fingerprints at fixed intervals. As such, none of the stored fingerprints for packets

match and as a result no duplicate is found by the algorithm.

To remedy this problem, it is important to store a set of fingerprints that are

more effective for finding duplicates in network packets. In [80, 54], it is suggested

to store the fingerprints according to their values, i.e., it is desirable to select a

120

Fingerprint

Computation

Fi

…
…

Pointer

Table of

Fingerprints

Seen packet Current packet

Figure 35: Schematic of the de-duplication algorithm using fingerprinting for pattern
matching.

fraction of all the fingerprints generated from the input based on their values and not

sensitive to location of the fingerprint. To this end, a prime number np is selected and

those fingerprints that their remainder modulo np evaluate to zero are stored in the

table. Therefore, a fraction of 1
np

of fingerprints are uniformly sampled and stored

irrespective of the different ways the content is packetized. Selecting a fraction of

fingerprints reduces the sensitivity to location and provides a sample of content of

the packets. It is shown in [80] that for removing duplicates from network packets of

size ≈1500 bytes, one can use blocks of size ≈100 bytes and sample 2−5 of fingerprints

to effectively find a large portion of duplicates.

9.2.3 Experimental Results

The objective of the simulations in Section 9.2.3 is to compare the performance of

fixed-block and value-based fingerprinting algorithms. The simulation results pre-

sented in Chapter 9, including the results in this section are performed on the data

set provided in [68]. The data set includes real network traffic collected from 30

different mobile users consisted of smartphone users and laptop users. The laptop

users relied only on WiFi connectivity for their network access. The smartphone users

121

relied on both WiFi and 3G connectivity. The data collection spanned a period of 3

months and yielded over 26 Gigabytes of unsecured down link data. Users accessed

the Internet as per their normal behavior. More details about the acquisition process

can be found in [68].

The summary of the experiments is presented in Table 6. Both de-duplication

algorithms are performed on the whole traces in the data set. The fixed-block de-

duplication results are based on the evaluation of the algorithm provided in [16]

with a default block length of 100 bytes and 32-bit fingerprints. The value-based

de-duplication algorithm used is from [68] that uses a large prime number (1048583)

for calculating the Rabin fingerprints. However, to reduce the number of bits to

represent the repeated strings, the algorithm uses a more efficient Jenkins hash of

each repeated sequence. In other words, the Rabin fingerprints are used to find the

potential repeated sequences within the packets an for communicating the repeated

sequences, an 8-byte Jenkins hash is used. The results of the experiments clearly

indicate that fixed block de-duplication is not suitable for removing duplicates from

network packets; fixed-block algorithm fails at detecting the duplicates and the over-

head of the algorithm results in an output larger than the original input trace. In

contrast, value-based fingerprinting is capable of reducing the input size by more than

15%. The value-based algorithm demonstrates superior performance in terms of de-

duplication ratio r = output size
input size

. In particular, in some cases, it is capable of reducing

the input size by half. This experiment demonstrates the importance of the location

sensitivity inherent in the fixed-block algorithm. Hence, in the future experiments of

Chapter 9, we only use the value-based de-duplication algorithm.

Table 6: The comparison of de-duplication performance of fixed-block and value-
based fingerprinting. The ratio r is defined as r = output size

input size
.

Method mean(r) min(r) std(r)
Fixed-block 1.004 1.000 0.002
Value-based 0.849 0.431 0.145

122

9.3 Performance Evaluation of Compression Algorithms
After Preprocessing

In Section 9.3, we investigate the compression performance of various compression

algorithms on the data set introduced in Section 9.2.3 after the preprocessing. The

results are presented for each user in the data set. The packet size in each trace

varies and is not fixed, however the packets are always less that 1500 bytes. Each

trace of each user is processed individually and the compression is performed on the

whole trace data. No clustering is performed on the data packets. In Figure 36, the

compression performance of a dictionary-based compression algorithm (Gzip ran on

Linux with default parameters) and a statistical compression algorithm (lite PAQ

ran on Linux with option 4) is demonstrated. The first bar shows the outcome of

de-duplication via value-based fingerprinting, denoted by DD in short. The second

bar is the compression result of the trace data using Gzip algorithm.

It is important to note the unexpected behavior of dictionary-based compression

that in some cases results in an output larger in size than the de-duplication algorithm,

an algorithm which is noticeably simpler than Gzip. This behavior can be justified by

a closer examination of the trace content. In Figure 37 and Figure 38 the visualization

of the user’s trace data is depicted for users 1, 10, 11, and 12. For users 10 and 12,

the de-duplication outperforms the Gzip and for users 1 and 11, it is the other way

round. It is important to observe that the visualization in Figure 37 and Figure 38

demonstrate clear difference in the structure of user data for these two sets of traces.

In Figure 37, presence of green and blue pixels that indicate the presence of long

duplicates that are tens of megabytes apart is the main reason that Gzip under

performs. This is because these duplicates remain undetected as they do not appear

in the search window of the Gzip which is less than a few megabytes long.

On the other hand, for users 1 and 11, it seems that long repeated sequences are

scarce, as pixels of black and red color dominate the area in Figure 38. In such cases,

123

012345678

1
2

3
4

5
7

8
9

1
0

1
1

1
2

1
3

1
4

1
6

1
7

1
9

2
0

2
2

2
3

2
4

2
6

2
7

2
8

2
9

3
0

bits/Byte

U
se

r
ID

D
D

 (
d

e-
d

u
p

li
ca

ti
o
n

)

G
zi

p

D
D

+
G

zi
p

D
D

+
L

P
A

Q

Figure 36: Performance of various compression algorithms on the data set introduced
in Section 9.2.3.

124

de-duplication algorithms do not perform well while Gzip efficiently takes advantage

of short term dependencies in the data.

101

102

103

104

105

106

107

108

Duplicate Offset form beginning

(a) Visualization of trace data for user 10

101

102

103

104

105

106

107

Duplicate Offset form beginning

(b) Visualization of trace data for user 12

Figure 37: Visualization of the user data traces, for users with ID 10 and 12. Each
pixel represents a duplicate string (consecutive byte sequence). The color of the pixel
represents the length of the match: black for 1 byte, red for 2, green for 4 and blue for
8. The horizontal axis represents the position of the second occurrence of the string
from the beginning. The vertical axis represents the distance back to the match on a
log10 scale.

This result reaffirms the need for using the de-duplication and compression al-

gorithms together to capture both far apart as well as the dependencies that are

closer together. In Table 7, the results of the Figure 36 are uniformly averaged over

users and the outcome is presented. The best performance is demonstrated by de-

duplication used in tandem with lite PAQ statistical compression algorithm whose

details are presented in Appendix A.

125

101

102

103

104

105

106

107

Duplicate Offset form beginning

(a) Visualization of trace data for user 1

101

102

103

104

105

106

107

Duplicate Offset form beginning

(b) Visualization of trace data for user 11

Figure 38: Visualization of the user data traces, for users with ID 1 and 11.

Table 7: Summary of performance of various de-duplication and compression algo-
rithms presented in Figure 36. The results are reported as the ratio output size

input size
.

Value-based de-duplication (DD) Gzip DD+Gzip DD+LPAQ
0.849 0.785 0.698 0.659

9.4 Application of Clustering and Memory-assisted Com-
pression for Compression of Mobile User Data Traces

In order to evaluate the performance of clustering and memory-assisted compression

for the training and compression of data traces of mobile users, we need to adapt the

statistical compression implementation to compress a large number of test packets

by training on the memory just once. We changed the source code of the LPAQ

algorithm following the suggestion of [44]. For memory-assisted compression without

clustering (UcompM), after the training on the memory is performed, the “fork()”

126

system call is used to copy the process for every test packet. By this technique,

the state of the compression algorithm after training is exactly copied for all the

test packets and allows each test packet to be compressed independently. After this,

the model is updated for each test packet as new bytes of the test packet are read,

however, the processes for different packets remain independent of each other.

Clustering is performed using the technique discussed in Section 3.6. The experi-

ment is performed per user. We have first extracted the features for every packet in

the study. The data (of each user) is then divided into two disjoint train and test

sets. The packets in the train set are then clustered using the non-parametric clus-

tering method (DPGMM from Scikit Learn library [59] which is an infinite mixture

model with the Dirichlet Process as a prior distribution on the number of clusters)

with maximum number of clusters set to 50 and all other parameters set to default.

The memory of memory-assisted compression is then formed by grouping the pack-

ets belonging to the same cluster together. The test packets are then classified (via

“predict()” method from DPGMM class) and the cluster index of each test packet

is obtained. The compression is then performed by training the statistical compres-

sion method for each cluster and then fork the process to compress the test packets

deemed to belong to the cluster.

9.4.1 Experiment Results

To characterize the gain of joint clustering and memory-assisted compression, we

have considered two scenarios for experiments. In both scenarios, we first remove

the far apart duplicates using the value-based de-duplication algorithm discussed in

Section 9.2.2. In the first scenario, the training packets are sampled uniformly from

the data trace of each user (after de-duplication). Total of 10000 packets are sampled

as training data and 1000 packets (disjoint from the training set) are sampled as test

packets. The packet sizes are different and the maximum packet size is 1500 bytes.

127

The size of training data is around 10 MB, on the average.

In the second scenario of the experiment, the first 90% of the data packets in the

beginning of each users’ trace are chosen as training set and the remaining 10% are

test packets. As the data in each user’s trace is not stationary, i.e., the statistics of

the data changes over time, the results of these two series of experiments would not

be the same. However, the trends in these experiments can be used as an indication

of the performance of the memory-assisted compression in real scenarios.

The results of the experiments are presented in Table 8. The traditional end-to-end

packet compression (Ucomp) provides no improvement and have inflated the packets

as the average compression rate is more than 8 bits per byte. The memory-assisted

compression enhances the compression performance drastically as shown in the third

column of Table 8. Furthermore, clustering provides an additional improvement on

the compression performance which is in accordance to the results of the Section 3.7.1.

Table 8: Results of the joint memory-assisted compression and (non-parametric)
clustering after de-duplication for mobile users. The results are reported in bits/byte.

Experiment Series Ucomp UcompM UcompM+Clustering
Scenario 1 8.603 5.940 5.732
Scenario 2 8.020 5.902 5.674

9.5 Impact of Memory Footprint on Compression Perfor-
mance

In Section 9.2, the physical memory requirement of a compression algorithms was

mentioned as an important factor to evaluate the compression algorithm. In Sec-

tion 9.5 the trade-off between the amount of physical memory used by a statistical

compression algorithm and its compression performance is investigated. In particular,

we study two statistical compression algorithms, namely, LPAQ and CTW. In some

wireless applications, it is desirable that clients pass the state of the compressor they

locally maintain to the gateway such that the gateway and the client can synchronize

128

their compressors and improve compression performance. The study of trade-off be-

tween the size of the physical memory and the compression performance is motivated

by such applications.

The CTW algorithm maintains a tree model for the data and hence the number

of nodes in the tree determines the amount of memory used by the algorithm. A tree

structure in computer memory can be stored in various ways:

• Allocating an array in which the data of all possible nodes in a fully extended

tree (to a certain depth) can be stored. The benefit of this method is that a

simple calculation can be used to find a child or a parent of a node. However,

often a tree (also the context tree of the CTW algorithm) is not fully extended.

This results in a very sparse array and thus a large waste of memory.

• Dynamically allocating memory space for the data of each node. The benefit is

that memory space is only required for nodes that are actually created, but the

drawback is that extra memory is required to store pointers to the children (and

if needed to the parent) of the node. Especially, when a large number of nodes

have to be allocated with a small amount of data, like in the CTW algorithm,

these pointers cause a huge overhead.

• The most efficient way of storing a data structure for statistical compression

algorithms is by using hashtables. With hashtables, an array is used in which a

fixed number of nodes can be placed. The idea is that every node is placed on a

pseudo-random index in this array. The index is calculated from a certain key

parameter with the so called hashing function. Hashtables provide an efficient

data structure for storing the data required by statistical data compression

algorithms.

In CTW algorithm, the hashing function is chosen as a pseudo-random function,

such that the result of the hashing function is the same given the same key value. It

129

is possible that different keys result in the same index; this is called a collision. To

detect such a collision it is important that there is some data stored in each node

which makes it possible to recognize if the right node has been found. If it is not the

right node, the hashing algorithm can perform a second try, adding a certain offset to

the index value and checking if the new location in the array contains the right node.

In LPAQ algorithm, two thirds of the memory used by the algorithm is used for a

hashtable which maintains the order 1 through order 6 statistical models. The hash

function used in the algorithm is a collision-free permutation, consisting of multiplying

the input by a large odd number and rotations.

Therefore, hashtables perform a critical role in practical statistical compression

methods and the dominant portion of the physical memory is allocated to these tables.

Therefore, in applications where transfer of the state of the compression algorithm

is needed, one only needs to extract the hashtable. This hashtable stores all the

necessary data used by the compression algorithm and transferring this hashtable

is sufficient to restore the state of the compression algorithm. Clearly, the more

memory allocated to the table, a higher number of nodes can be accommodated in

the table which in turn results in a higher compression performance. However, the

increase in the compression performance should outweigh the increase in physical

memory. In Figure 39, the compression performance of LPAQ (Figure 39(a)) and

CTW (Figure 39(b)) algorithms for different memory sizes is depicted for a set of five

mobile user data traces. For CTW algorithm, the number of nodes in the hashtable

is chosen as a parameter and each node occupies 8 Bytes of memory. As we expect,

the increase in memory size results in an increase in compression performance.

In Figure 40, the average compression performance of LPAQ for different memory

sizes is depicted. While more memory results in improved compression performance,

the improvement per additional MB of memory decreases considerably, as shown in

Figure 41. Therefore, for applications that are limited in physical memory, choosing

130

0

1

2

3

4

5

6

7

8

1 13 14 17 20

b
it

s/
b

y
te

User ID

6 MB

9 MB

15 MB

27 MB

51 MB

99 MB

195 MB

387 MB

771 MB

(a) LPAQ

0

1

2

3

4

5

6

7

8

1 13 14 17 20

b
it

s/
b

y
te

User ID

4 MB

16 MB

32 MB

64 MB

128 MB

256 MB

512 MB

1024 MB

2048 MB

(b) CTW

Figure 39: The compression performance of LPAQ (a) and CTW (b) algorithms for
different memory sizes and for a set of five mobile user data traces.

lower memory in exchange for a slightly reduced compression performance can be

tolerated. In particular, for wireless applications choosing the small physical memory

is beneficial as the overhead of transferring the compressor state from one node to

another is small.

Note that the the size of physical memory used by a statistical compression al-

gorithm can be significantly smaller than the size of processed data. For example,

LPAQ algorithm with option 2 only uses 9MB of physical memory. Therefore, one can

train LPAQ with large amount of data and still transfer the sate of the compressor

by sending the 9MB physical footprint of the algorithm.

The overhead of transferring the compressor is quickly compensated by the saving

that the statistical compression provides. For example, consider a scenario where a

131

client has trained a statistical compressor and moves to a new network. The client

can choose to send the state of compressor to the gateway (9MB overhead). Based

on the results in Table 8, the trained compressor can compress every byte to ≈6 bits.

Hence, if the client receives more than 30MB from the gateway (a 5sec connection

at 54Mbit/sec speed), the benefits of memory-assisted compression (realized using a

trained compressor) outweighs the overhead of sending the state of the compressor.

132

0 100 200 300 400 500 600 700 800
6.2

6.22

6.24

6.26

6.28

6.3

6.32

6.34

Memory Size (MB)

b
it
s/
b
y
te

Figure 40: The average compression performance of LPAQ for different memory
sizes.

0 100 200 300 400 500 600 700 800
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Memory Size (MB)

Im
p
ro
v
em

en
t
(%

)

Figure 41: The percent improvement in compression performance per additional MB
of memory.

133

CHAPTER X

CONCLUSION

In this dissertation the theoretical and practical aspects of redundancy elimination

methods in data networks was investigated. Redundancy elimination provides a pow-

erful technique to improve the efficiency of network links in the face of redundant

data. A broad range of issues was investigated in the dissertation ranging from es-

tablishing the concept of memory-assisted compression and the design algorithms to

application of memory-assisted compression in networks, i.e., network compression,

in both wired and wireless networks. In the following, the contribution of the thesis

are summarize.

In Chapter 2, the concept of memory-assisted compression was introduced. Memory-

assisted compression aims at compression of individual packets using the side-information

obtained from memorized data. To characterize the benefits of memory-assisted

compression, two compression families, namely, statistical compression family and

dictionary-based compression family were introduced and their adaption for memory-

assisted compression were presented. The compression performance of these two

algorithms were characterized and it was shown that statistical compression method

out performs the dictionary-based method. Furthermore, the gain of memory-assisted

compression was defined and characterized for both compression families.

The memory-assisted compression algorithms developed in Chapter 2 are benefi-

cial for compression of sequences generated by a single information source. However,

a single source cannot model the data traffic. Hence, a more complete model for

the source, called “compound source model”, was introduced in Chapter 3 and a

clustering algorithm was presented which aimed at utilizing the data in the memory

134

to better compress a new sequence from the compound source. It was shown that

the clustering would result in superior performance for memory-assisted compres-

sion when the input data comprises sequences generated by various and unrelated

information sources.

In the second part of the thesis the application of memory-assisted compression

in wired networks was investigated. In Chapter 4 and Chapter 6, the benefits of

deploying memory units that enable memory-assisted compression in wired networks

were studied. In Chapter 4, the gain of network compression in the Erdős-Rényi (ER)

network graph family was studied. Analogous to the memory-assisted compression

gain for a single link, network-wide gain of compression was defined and studied in ER

random network graphs. It was shown that the gain of network compression would

depend on the number of memory units deployed in the network. In Chapter 4, it was

discovered that there exists a threshold value for the number of memories deployed in

a random graph below which the network-wide gain of memorization would vanish.

The last problem studied in Chapter 4 was the memory placement in non-random

network graphs. It was shown that optimal memory-placement is not tractable in

general network graphs and the challenges involved were demonstrated by deriving

the optimal memory placement on line networks.

In Chapter 6, the gain of network compression in Internet-like power-law graphs

was characterized. In particular, through analysis on power-law graphs, it was demon-

strated that non-vanishing network-wide gain of memorization can be obtained even

when the number of memory units is a tiny fraction of the total number of nodes in

the network. Furthermore, memory placement in the network poses some challenges

to traditional shortest path routing algorithms, as the shortest path is not necessarily

minimum cost route in networks with memory. The well-known routing algorithms

like Dijkstra’s algorithm, in their original form are not applicable to networks with

135

memory. As such, in Chapter 5, the routing problem for compressed flows was con-

sidered and a modified Dijkstra’s algorithm for compressed flows was presented.

In the third part of the work the application of memory-assisted compression in

wireless networks was studied. In Chapter 7, a novel approach was proposed to lever-

age the redundancy in network data for reducing network flows by employing network

compression techniques via overhearing memory units deployed as helpers in a wire-

less network. Each memory-enabled helper overhears the data packets previously

sent by the wireless gateway to various mobile clients within its coverage and uses

them toward forming a model about the content of the packets from the traffic. The

resulting model is then used as side information by the wireless network compres-

sion module in a two-part code with asymmetric cost (where the helper-client link is

far less costly than the server-client link). In particular, we explored the benefits of

two-part coding with asymmetric cost in the last hop wireless links, from the wireless

gateway to the mobile clients. It was shown through computer simulations that the

helper nodes bring throughput enhancement and gateway off-loading which would be

of particular interest for WiFi and cellular networks.

The next problem studied in this part of the thesis was the impact of loss on

memory-assisted compression. Packet loss is a common feature of wireless environ-

ment. In Chapter 8, the performance of memory-assisted compression when the source

model at the encoder and the decoder does not match was theoretically investigated.

Furthermore, a sequential code design was presented for memory-assisted compression

with mismatched side information.

The last chapter of the thesis studies the interplay between memory-assisted com-

pression and de-duplication algorithms when used in tandem.

136

10.1 Suggestions for Future Research

This dissertation has opened up many interesting theoretical and practical research

possibilities in memory-assisted compression in both wired and wireless networks. In

the following, some of the open problems and future research directions are listed.

• Approximation algorithms for memory placement in a general network graph.

• Extension to multiple correlated sources.

• Fundamental limits of compression when the encoders do not communicate.

• Code design for memory units in the presence of multiple sources.

• Development of effective memory-assisted compression algorithms capable of

working on high-speed data streams, and accommodating concurrent applica-

tions.

• Collecting a data set from an Internet router and performing memory-assisted

compression and clustering on the data.

• Prototyping a modular router using Click Modular Router capable of memory-

assisted compression.

137

APPENDIX A

INTERNALS OF PAQ COMPRESSION ALGORITHM

Figure 42, depicts the schematic of statistical compressor. As previously discussed in

Section 2.3, the statistical compressor consists of two parts: a predictor and an entropy

coder, as shown in Figure 42(a). Let xn = (x1, . . . , xn), xt ∈ A be the input sequence.

The compressor processes xn sequentially such that at t-th step the predictor emits

the probability distribution of the next symbol, denoted by P[xt|xt−1
1], based on the

already processed sequence xt−1
1 = x1, . . . , xt−1. Given the probability distribution,

the entropy coder maps xt to a codeword of a length close to log P[xt|xt−1
1] bits.

In practice, Arithmetic Coding [50, 65] is used which closely approximates the ideal

code length and enjoys theoretical proof on asymptotic optimality. Each model in

predictor issues an estimate of the probability distribution of the next symbol. Let

e1, . . . , ep be the estimate of models M1, . . . ,Mp, respectively. The mixer, at every

step, combines these estimates and emits a single prediction regarding the probability

of the next symbol.

The outcome of the mixer determines the performance of the algorithm. It is

common in Information Theory to assume that the source generating xn follows a

probability distribution not known to the compression algorithm. Let Q be the

source probability distribution. Moreover, assume that the probability distribution

predicted by mixer is P. The expected length of the compressed xt is

∑
xt∈A

Q[xt|xt−1
1] log

1

P[xt|xt−1
1]

= H(Q) (65)

+
∑
xt∈A

Q[xt|xt−1
1]

(
log

1

P[xt|xt−1
1]
− log

1

Q[xt|xt−1
1]

)
,

138

Arithmetic

Encoder

Predictor &

Source model

context

Next bit

Probability

Prediction Compressed bit

(a) Two-part design

Mixer

Model 1 …

Probability of

Next bit

Predictor

Model 2 Model p

2e pe
1e

(b) Predictor Design

Figure 42: (a) The two-part design of statistical compression algorithms composed
of a predictor module and an arithmetic coding module. The predictor maintains
a model for the source to use for prediction of probability of the next bit. (b) The
internal design of the predictor.

where H(Q) is the source entropy. Note that if mixer can exactly predict the source

probability, i.e. P = Q, the second term on the right hand side of (65) evaluates to

zero (no compression penalty) and theoretically the statistical coder is optimal for

every symbol it compresses. However, the source probability is not known to the

algorithm and the predictor is designed to minimize the penalty term in (65).

The minimization is performed by assigning a weight wi to every model in the

predictor and then combine the estimates of the models using the weights. Below,

we discuss the implementation details of LPAQ which is the adaptation of PAQ, the

most effective compression algorithm known today which holds the best compression

performance in various areas.

LPAQ is a “lite” version of PAQ, about 30 times faster than PAQ8 [53] at the

cost of some compression (but similar to high-end PPM compressors [78, 23]). The

input sequence is processed sequentially and bit-wise. It follows the two part design

139

discussed in Section 2.3. The predictor in LPAQ employs seven models: k-gram

Markov models of orders 1, 2, 3, 4, 6, and a “match” model, which predicts the next

bit in the last matching context. The independent bit probability predictions of the

seven models are combined by a mixer, then arithmetic coded. The k-gram Markov

models consist of the last k whole bytes plus any of the 0 to 7 previously coded bits

of the current byte starting with the most significant bit.

PAQ mixer works with a binary alphabet and emits the probability of the next

bit being 1. The estimates are geometrically weighted [55] and combined as

P[1|xt−1
1] =

∏p
i=1 e

wi(t−1)
i∏p

i=1(1− ei)wi(t−1) +
∏p

i=1 e
wi(t−1)
i

. (66)

The weights are then updated as follows:

wi(k) = wi(k − 1) + α(xt −P[1|xt−1
1])st(ei), (67)

where st(a) = ln a
1−a . It can be verified that (67) is an instance of iterative gradient

descent [55, 17], where α is the update constant in any step. In LPAQ implementation

α = 0.002 is chosen. When the input sequence is stationary, the weights converge. It

has been demonstrated in [55] that the mixing in (66) and (67) would result in the

minimum compression penalty as defined in (65).

Here, we note that in the actual implementation, to achieve this mixing, the

estimates ei are first stretched st(.), and then the output is computed as

P[1|xt−1
1] = sq

(
p∑
i=1

st(ei)wi(t− 1)

)
,

where sq(a) = 1/(1 + e−a).

140

REFERENCES

[1] http://mattmahoney.net/dc/fv.zip.

[2] “Calgary Corpus.” http://corpus.canterbury.ac.nz/descriptions/

#calgary.

[3] “Wireshark Packet Analyser.” http://www.wireshark.org/.

[4] Albert, R., Jeong, H., and Barabasi, A.-L., “Internet: Diameter of the
world-wide web,” Nature, vol. 401, pp. 130–131, 1999.

[5] Alon, N. and Spencer, J., The Probabilistic Method–3rd edition. John Wiley
& Sons, USA, 2008.

[6] Anand, A., Gupta, A., Akella, A., Seshan, S., and Shenker, S., “Packet
caches on routers: the implications of universal redundant traffic elimination,”
SIGCOMM, vol. 38, pp. 219–230, 2008.

[7] Anand, A., Muthukrishnan, C., Akella, A., and Ramjee, R., “Redun-
dancy in network traffic: findings and implications,” in SIGMETRICS ’09: Pro-
ceedings of the eleventh international joint conference on Measurement and mod-
eling of computer systems, (New York, NY, USA), pp. 37–48, ACM, 2009.

[8] Anand, A., Sekar, V., and Akella, A., “SmartRE: an architecture for co-
ordinated network-wide redundancy elimination,” SIGCOMM, vol. 39, no. 4,
pp. 87–98, 2009.

[9] Atteson, K., “The asymptotic redundancy of Bayes rules for Markov chains,”
IEEE Trans. Info. Theory, vol. 45, pp. 2104 –2109, September 1999.

[10] Barron, A., Rissanen, J., and Yu, B., “The minimum description length
principle in coding and modeling,” IEEE Trans. Info. Theory, vol. 44, pp. 2743
–2760, Oct. 1998.

[11] Barron, A. R. and Cover, T. M., “Minimum complexity density estimation,”
IEEE Trans. Info. Theory, vol. 37, no. 4, pp. 1034–1054, 1991.

[12] Beirami, A. and Fekri, F., “Results on the redundancy of universal com-
pression for finite-length sequences,” in IEEE Intl. Symp. Info. Theory (ISIT),
pp. 1504–1508, Jul 31-Aug 5 2011.

[13] Beirami, A. and Fekri, F., “Memory-assisted universal source coding,” in
2012 Data Compression Conference (DCC), (Snowbird, Utah), p. 392, 2012.

141

http://mattmahoney.net/dc/fv.zip
http://corpus.canterbury.ac.nz/descriptions/#calgary
http://corpus.canterbury.ac.nz/descriptions/#calgary
http://www.wireshark.org/

[14] Beirami, A. and Fekri, F., “On lossless universal compression of distributed
identical sources,” in IEEE Intl. Symp. Info. Theory (ISIT), (Boston, MA),
pp. 561–565, 2012.

[15] Beirami, A., Sardari, M., and Fekri, F., “Results on the fundamental
gain of memory-assisted universal source coding,” in 2012 IEEE International
Symposium on Information Theory (ISIT ’2012), pp. 1092–1096, July 2012.

[16] Bentley, J. and McIlroy, D., “Data compression using long common
strings,” in Data Compression Conference, 1999. Proceedings. DCC ’99, pp. 287–
295, 1999.

[17] Bertsekas, D. P., Nonlinear Programming. Athena Scientific, 1999.

[18] Bishop, C. M., Pattern recognition and machine learning. Springer, 2006.

[19] Blei, D. M. and Jordan, M. I., “Variational inference for dirichlet process
mixtures,” Bayesian Analysis, pp. 121–144, 2006.

[20] Bloom, C., “LZP: a new data compression algorithm,” in Data Compression
Conference. DCC ’96. Proceedings, 1996.

[21] Brady, A. and Cowen, L., “Compact routing on power law graphs with ad-
ditive stretch,” in ALENEX, 2006.

[22] Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S.,
Stata, R., Tompkins, A., and Wiener, J., “Graph structure in the web,” in
Proceedings of the WWW9 Conference, pp. 309–320, 2000.

[23] Bunton, S., On-Line Stochastic Processes in Data Compression. PhD thesis,
University of Washington, 1996.

[24] Cam, L. L. and Yang, G. L., Asymptotics in Statistics: Some Basic Concepts.
Springer, 2000.

[25] Chan, M. C. and Woo, T. Y. C., “Cache-based compaction: A new technique
for optimizing web transfer,” in Infocom ’99: Proceedings of IEEE INFOCOM,
(New York, NY, USA), ACM, 1999.

[26] Chandrasekhar, V., Andrews, J., and Gatherer, A., “Femtocell net-
works: a survey,” IEEE Comm. Magazine, vol. 46, no. 9, pp. 59–67, 2008.

[27] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A.,
Burrows, M., Chandra, T., Fikes, A., and Gruber, R. E., “Bigtable: a
distributed storage system for structured data,” in OSDI ’06: Proceedings of the
7th symposium on Operating systems design and implementation, (Berkeley, CA,
USA), pp. 205–218, USENIX Association, 2006.

[28] Chung, F. and Lu, L., Complex Graphs and Networks. American Mathematical
Society, 2006.

142

[29] Cilibrasi, R. and Vitanyi, P., “Clustering by compression,” IEEE Transac-
tions on Information Theory, vol. 51, pp. 1523 – 1545, April 2005.

[30] Clarke, B. and Barron, A., “Information-theoretic asymptotics of bayes
methods,” IEEE Trans. Info. Theory, vol. 36, pp. 453 –471, May 1990.

[31] Cooper, B. F. and Garcia-Molina, H., “Peer-to-peer data trading to pre-
serve information,” ACM Trans. Inf. Syst., vol. 20, no. 2, pp. 133–170, 2002.

[32] Cover, T. M. and Thomas, J. A., Elements of Information Theory. John
Wiley and sons, 2006.

[33] Erdős, P. and Rényi, A., “On random graphs. I.,” Publicationes Mathemati-
cae, pp. 290–297, 1959.

[34] Faloutsos, M., Faloutsos, P., and Faloutsos, C., “On power-law rela-
tionships of the internet topology,” in SIGCOMM, pp. 251–262, 1999.

[35] Ferguson, T., “A bayesian analysis of some nonparametric problems,” The
Annals of Statistics, pp. 209–230, 1973.

[36] Ghahramani, Z. and Beal, M., “Propagation algorithms for variational
bayesian learning,” Advances in Neural Information Processing Systems, pp. 507–
513, 2001.

[37] Golrezaei, N., Molisch, A. F., Dimakis, A. G., and Caire, G., “Femto-
caching and device-to-device collaboration:a new architecture for wireless video
distribution,” IEEE Comm. Magazine, to appear.

[38] Grunwald, P. D., The minimum description length principle. The MIT Press,
2007.

[39] Gunderson, S., “Snappy.” http://code.google.com/p/snappy/.

[40] Hidayat, A., “Fastlz.” http://www.fastlz.org.

[41] Hsiang-Shen, S., Gember, A., Anand, A., and Akella., A., “Refactoring
content overhearing to improve wireless performance,” in MobiCom, (Las Vegas,
NV), 2011.

[42] Jacobson, V., Smetters, D. K., Thornton, J. D., Plass, M. F., Briggs,
N., and Braynard, R., “Networking named content,” in Proceedings of the 5th
ACM CoNEXT, pp. 1–12, 2009.

[43] Karp, R. M. and Rabin, M. O., “Efficient randomized pattern-matching al-
gorithms,” IBM Journal of Research and Development, pp. 249–260, 1987.

[44] Knoll, B. and de Freitas, N., “A machine learning perspective on predictive
coding with paq8,” in Data Compression Conference (DCC), (Snowbird, Utah),
pp. 377–386, 2012.

143

http://code.google.com/p/snappy/
http://www.fastlz.org

[45] Kontkanen, P. and Myllymaki, P., “An empirical comparison of NML clus-
tering algorithms,” in International Conference on Information Theory and Sta-
tistical Learning, 2008.

[46] Kontkanen, P., Myllymak, P., Buntine, W., Rissanen, J., and Tirri,
H., “An MDL framework for data clustering,” tech report, Helsinki Institute for
Information Technology HIIT, 2004.

[47] Koponen, T., Chawla, M., Chun, B.-G., Ermolinskiy, A., Kim, K. H.,
Shenker, S., and Stoica, I., “A data-oriented (and beyond) network archi-
tecture,” in SIGCOMM, pp. 181–192, 2007.

[48] Korn, D., MacDonald, J., Mogul, J., and Vo, K., “The vcdiff generic
differencing and compression data format,” RFC 3284, 2002.

[49] Krishnan, P., Raz, D., and Shavitt, Y., “The cache location problem,”
IEEE/ACM Transactions on Networking, vol. 8, pp. 568–582, 2000.

[50] Langdon Jr., G. G., “An Introduction to Arithmetic Coding,” IBM J. Res.
Develop., vol. 28, pp. 135–149, March 1984.

[51] Lenhardt, R. and Alakuijala, J., “Gipfeli - high speed compression al-
gorithm,” in 2012 Data Compression Conference (DCC), (Snowbird, Utah),
pp. 109–118, 2012.

[52] Lumezanu, C., Guo, K., Spring, N., and Bhattacharjee, B., “The ef-
fect of packet loss on redundancy elimination in cellular wireless networks,” in
Internet Measurement Conference, 2010.

[53] Mahoney, M., “Adaptive weighing of context models for lossless data compres-
sion,” tech. rep., Florida Tech., 2005.

[54] Manber, U., “Finding similar files in a large file system,” in Proceedings of the
USENIX Winter Technical Conference, 1994.

[55] Mattern, C., “Mixing strategies in data compression,” in Data Compression
Conference (DCC), (Snowbird, Utah), 2012.

[56] Merhav, N. and Feder, M., “A strong version of the redundancy-capacity
theorem of universal coding,” IEEE Trans. Info. Theory, vol. 41, pp. 714 –722,
May 1995.

[57] Neal, R. M., “Markov chain sampling methods for dirichlet process mixture
models,” Journal of Computational and Graphical Statistics, pp. 249–265, 2000.

[58] “The Network Simulator NS-2.” http://www.isi.edu/nsnam/ns/.

144

http://www.isi.edu/nsnam/ns/

[59] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,
V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Per-
rot, M., and Duchesnay, E., “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[60] Rabin, M. O., “Fingerprinting by random polynomials,” tech report, tr-cse-03-
01, Harvard University, 2007.

[61] Rasmussen, C. E., “The infinite gaussian mixture model,” Advances in Neural
Information Processing Systems, pp. 554–560, 1999.

[62] Reinhold, L. M., “Quicklz.” http://www.quicklz.com.

[63] Rhea, S. C., Liang, K., and Brewer, E., “Value-based web caching,” in
Proceedings of the 12th international conference on World Wide Web, WWW
’03, (New York, NY, USA), pp. 619–628, ACM, 2003.

[64] Rissanen, J., “Strong optimality of the normalized ML models as universal
codes and information in data,” IEEE Trans. Info. Theory, vol. 47, pp. 1712
–1717, July 2001.

[65] Rissanen, J. J., “Generalized Kraft Inequality and Arithmetic Coding,” IBM
J. Res. Develop., pp. 198–203, May 1976.

[66] Rissanen, J., “Fisher information and stochastic complexity,” IEEE Trans.
Info. Theory, vol. 42, pp. 40 –47, Jan. 1996.

[67] Saleh, O. and Hefeeda, M., “Modeling and caching of peer-to-peer traffic,”
in ICNP ’06: Proceedings of the Proceedings of the 2006 IEEE International
Conference on Network Protocols, (Washington, DC, USA), pp. 249–258, IEEE
Computer Society, 2006.

[68] Sanadhya, S., Sivakumar, R., Kim, K.-H., Congdon, P., Lakshmanan,
S., and Singh, J., “Asymmetric caching: Improved deduplication for mobile
devices,” in Proceedings of the ACM MOBICOM 2012 conference, ACM, 2012.

[69] Sardari, M., Beirami, A., and Fekri, F., “Wireless network compression
via memory-enabled overhearing helpers,” submitted to IEEE Transactions on
Wireless Communications.

[70] Sardari, M., Beirami, A., and Fekri, F., “On the network-wide gain of
memory-assisted source coding,” in 2011 IEEE Information Theory Workshop
(ITW), pp. 476–480, October 2011.

[71] Sardari, M., Beirami, A., and Fekri, F., “Memory-assisted universal com-
pression of network flows,” in IEEE INFOCOM, (Orlando, FL), pp. 91–99, March
2012.

145

http://www.quicklz.com

[72] Sardari, M., Beirami, A., and Fekri, F., “Wireless network compression:
Code design and trade offs,” in Information Theory and Applications Workshop
(ITA), (San Diego, CA), 2013.

[73] Sardari, M., Beirami, A., Zou, J., and Fekri, F., “Content-aware network
data compression using joint memorization and clustering,” in IEEE INFOCOM,
(Turin, Italy), April 2013.

[74] Sardari, M., Beirami, A., and Fekri, F., “Memory placement in network
compression: Line and grid topologies,” in International Symposium on Infor-
mation Theory and its Applications (ISITA), (Honolulu, HI, USA), Oct. 2012.

[75] Sartipi, M. and Fekri, F., “Distributed source coding using short to moderate
length rate-compatible LDPC codes: the entire Slepian-Wolf rate region,” IEEE
Transactions on Communications, vol. 56, pp. 400–411, March 2008.

[76] Shamir, G. I., Tjalkens, T. J., and Willems, F. M. J., “Low-complexity
sequential probability estimation and universal compression for binary sequences
with constrained distributions,” in IEEE Intl. Symp. Info. Theory (ISIT),
(Toronto, Canada), pp. 995–999, 2008.

[77] Shannon, C. E., “A Mathematical Theory of Communication,” The Bell Sys-
tem Technical Journal, vol. 27, pp. 379–423, 623–656, Jul., Oct. 1948.

[78] Shkarin, D., “PPM: one step to practicality,” in Data Compression Conference,
vol. 12, 2002.

[79] Slepian, D. and Wolf, J. K., “Noiseless coding of correlated information
sources,” IEEE Trans. Info. Theory, vol. 19, pp. 471–480, 1973.

[80] Spring, N. T. and Wetherall, D., “A protocol-independent technique for
eliminating redundant network traffic,” SIGCOMM, vol. 30, no. 4, pp. 87–95,
2000.

[81] Sundaram, R., Rao, S. B., Miller, G. L., Canfield, T. K., and Born-
stein, C. F., Optimal route selection in a content delivery network. United
States Patent 7274658.

[82] Teh, Y. W., “Dirichlet processes,” Machine Learning Summer School–Tutorial
and Practical Course, 2007.

[83] Wainwright, M. J. and Jordan, M. I., “Graphical models, exponential fam-
ilies, and variational inference,” in Foundations and Trends in Machine Learning,
pp. 1–305, NOW, 2008.

[84] Willems, F., “The context-tree weighting method: extensions,” IEEE Trans.
Info. Theory, vol. 44, pp. 792–798, March 1998.

146

[85] Willems, F., Shtarkov, Y., and Tjalkens, T., “The context-tree weighting
method: basic properties,” IEEE Trans. Info. Theory, vol. 41, pp. 653–664, May
1995.

[86] Zhuang, Z., Kakumanu, S., Jeong, Y., Sivakumar, R., and Ve-
layutham, A., “On the impact of mobile hosts in peer-to-peer data networks,”
in ICDCS ’08: Proceedings of the 26th IEEE International Conference on Dis-
tributed Computing Systems, (Beijing, China), IEEE Computer Society, 2008.

[87] Zhuang, Z., Tsao, C.-L., and Sivakumar, R., “Curing the amnesia: Net-
work memory for the internet,” tech. report, Georgia Institute of Technology,
2009.

[88] Ziv, J. and Lempel, A., “A universal algorithm for sequential data compres-
sion,” IEEE Trans. Info. Theory, vol. 23, pp. 337–343, May 1977.

147

VITA

Mohsen Sardari received his B.Sc. degree in Electrical Engineering from Sharif Uni-

versity of Technology, Tehran, Iran, in 2007. He received his M.S.E.C.E. degree from

the School of Electrical and Computer Engineering (ECE), Georgia Institute of Tech-

nology, Atlanta, GA, in 2010. He is currently a Graduate Research Assistant in the

Information Processing, Communications and Security Research Laboratory and pur-

suing his Ph.D. degree at the School of ECE, Georgia Institute of Technology, Atlanta,

GA. His current research interests include redundancy elimination, data compression,

and wireless networks. Mohsen Sardari is the recipient of 2013 Outstanding Service

Award from the Center of Signal and Information Processing (CSIP) at Georgia Tech.

148

	Titlepage
	Signatures
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Summary
	Chapter 1 — Introduction and Related Work
	Redundancy Elimination and Memory-assisted Compression
	Network Compression in Wired Networks
	Network Compression in Wireless Networks

	Chapter 2 — Memory-assisted Compression for Simple Sources
	introduction
	Contributions

	Setup
	Statistical Compression Method
	Dictionary-based Compression Method
	Simulation Results

	Chapter 3 — Clustering for Memory-assisted Compression of Compound Sources
	Introduction
	Contributions

	Background
	Packet Coding Strategies at Memory Elements
	Theoretical Analysis
	Hierarchical Clustering
	Compressibility Determination
	Clustering Using Hellinger Distance Metric
	Simulation Results
	Discussion on Complexity

	Non-parametric Clustering and Infinite Mixture Models
	Infinite Mixture Models
	Inference

	Extracting Features From Statistical Compression Methods for Clustering
	Experiment Results
	A Case Study on Detaching Training From Compression

	Chapter 4 — Network Compression in Wired Networks: Erdos-Rényi Random Network Graphs
	Introduction
	Contributions

	Notation
	Gain of Network Compression in ER Random Graphs
	Background on ER Random Graphs
	Main Result
	Proof of the Main Result

	Chapter 5 — Routing and Placement Problem in Networks With Memory
	Introduction
	Contributions

	Memory Placement Problem
	Hardness of Memory Placement Problem
	Memory Deployment on Line Networks

	Routing in Networks Featuring Memory

	Chapter 6 — Network Compression in Wired Networks: Internet-like Power-law Random Network Graphs
	Introduction
	Contributions

	Memory Deployment in Random Power-law Graphs
	Random Power-law Graph Model

	Simulation Results

	Chapter 7 — Wireless Network Compression via Memory-Enabled Overhearing Helpers
	Introduction
	Contributions

	Redundancy Elimination in Wireless Networks via Memory-Assisted Compression
	Setup

	Code Design for Network Compression via Overhearing Helper
	Traditional Two–part Code
	Two–part Code with Asymmetric Cost

	Performance Evaluation of Network Compression via Overhearing Helper
	Proof

	Impact of Channel Loss
	Simulation
	Simulaton Setup
	Simulation Results

	Chapter 8 — Memory-assisted Compression with Mismatched Side Information
	Introduction
	Contributions

	Background and Problem Setup
	Main Results
	Discussion on Practical Code Design

	Chapter 9 — Memory-assisted Compression Working in Tandem with De-duplication
	Introduction
	Contributions

	Preprocessing for Data Compression
	Pattern Matching
	Value-base Fingerprinting
	Experimental Results

	Performance Evaluation of Compression Algorithms After Preprocessing
	Application of Clustering and Memory-assisted Compression for Compression of Mobile User Data Traces
	Experiment Results

	Impact of Memory Footprint on Compression Performance

	Chapter 10 — Conclusion
	Suggestions for Future Research

	Appendix A — Internals of PAQ Compression Algorithm
	References
	Vita

