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SUMMARY

Use of model-based path planning and navigation is a common strategy in mobile

robotics. However, navigation performance may degrade in complex, time-varying envi-

ronments under model uncertainty because of loss of prediction ability for the robot state

over time. Exploration and monitoring of ocean regions using autonomous marine robots is

a prime example of an application where use of environmental models can have great bene-

fits in navigation capability. Yet, in spite of recent improvements in ocean modeling, errors

in model-based flow forecasts can still significantly affect the accuracy of predictions of

robot positions over time, leading to impaired path-following performance. In developing

new autonomous navigation strategies, it is important to have a quantitative understanding

of error in predicted robot position under different flow conditions and control strategies.

The main contributions of this thesis include development of an analytical model for the

growth of error in predicted robot position over time and theoretical derivation of bounds

on the error growth, where error can be attributed to drift caused by unmodeled components

of ocean flow. Unlike most previous works, this work explicitly includes spatial structure

of unmodeled flow components in the proposed error growth model. It is shown that, for

a robot operating under flow-canceling control in a static flow field with stochastic errors

in flow values returned at ocean model gridpoints, the error growth is initially rapid, but

slows when it reaches a value of approximately twice the ocean model gridsize. Theoretical

values for mean and variance of error over time under a station-keeping feedback control

strategy and time-varying flow fields are computed. Growth of error in predicted vehicle

position is modeled for ocean models whose flow forecasts include errors with large spatial

scales. Results are verified using data from several extended field deployments of Slocum

autonomous underwater gliders, in Monterey Bay, CA in 2006, and in Long Bay, SC in

2012 and 2013.
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CHAPTER 1

INTRODUCTION

The ocean is the last great frontier remaining on Earth. In an age when travel to the most

remote regions on the planet is made possible (and in many cases easy) by technology,

and the entire surface of the earth is covered by a global network of imaging satellites, the

world’s oceans remain, to a large extent, forbidding and impenetrable. And yet, the ocean

is essential to our lives: it serves as a source of food, a highway for trade, and an impor-

tant factor in determining global weather and climate. Understanding marine processes is

crucial in a wide range of applications, from fisheries management to wildlife conservation

to marine search and rescue and weather and climate forecasting. Mobile sensor networks

may be very effectively used for exploration and monitoring of hostile environments like

the ocean. Use of mobile sensors to better understand complex physical, chemical, and bi-

ological marine processes may perhaps be considered one of the most exciting challenges

for field robotics and control in the coming years. This goal, however, requires overcoming

a number of technical challenges, including effective motion planning and navigation in

unstructured, time-varying flows.

1.1 Statement of the Problem

In recent years, improvements in computing power have led to the creation of increasingly

accurate and high-resolution numerical ocean general circulation models (OGCMs), which

can be used to study various physical ocean processes. Even so, missing physics, unstable

dynamics, unknown boundary conditions, and numerical errors often lead to large errors

in the OGCM output data [1]. The modeling performance of OGCMs can be significantly

improved by assimilation of field measurements into the models [2, 3].

Mobile sampling networks of autonomous vehicles are particularly well-suited to this

task. Using a small fleet of autonomous vehicles, it is possible to track an evolving flow
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feature (such as an eddy), that would otherwise require a very large, dense array of tra-

ditional, moored platforms to sample at an equivalent resolution [4]. It is, furthermore,

relatively easy and inexpensive to scale the number of deployed vehicles to improve sam-

pling resolution and coverage [5].

Slow-moving vehicles are commonly utilized in ocean monitoring missions to mini-

mize energy expenditure and extend mission duration; thus drift from ambient flow be-

comes an important component of the vehicle dynamics. OGCMs can therefore be highly

useful in path-planning and navigation of autonomous vehicles in the ocean [6, 7, 8, 9].

In path-planning applications, use of predictive models allows vehicle operators to find

optimal trajectories by taking advantage of spatial and temporal variations in the flow dy-

namics. In navigation of underwater vehicles, subsurface localization may be an issue,

as signals from the global positioning system (GPS) cannot penetrate below the surface

of the water; vehicles therefore frequently rely on dead-reckoning to follow a desired tra-

jectory while underwater. Predictive models can be used to add flow corrections in the

dead-reckoned positions of vehicles, allowing for better path-following performance.

Uncertainty in the environmental model limits the ability to accurately predict vehicle

positions over time, and thus leads to degraded performance in both path-planning and

navigation applications. This error may be decreased by shortening the duration of dives

for underwater navigation [10]. However, one very naturally desires to use as long a dive

duration as possible: this allows maximal use of mission time for data collection and pursuit

of mission goals; furthermore, there is the additional motivation that while on the surface,

the vehicle runs the risk of colliding with a boat [8, 10] and is subject to wind drift [11, 12].

Therefore, given an ocean model with known prediction accuracy, it is important to know

bounds on the resulting error in predicted vehicle position over time. The main question

addressed in this dissertation is: given a known model for error in the forecast ocean flow,

what is the resulting error in predicted vehicle position over time under different ambient

flow conditions and control strategies?

3



1.2 Contributions and Outline

In this dissertation, we introduce the concept of controlled Lagrangian particle tracking

(CLPT) to model the trajectories of vehicles moving in ocean flows. CLPT is an extension

of the existing concept of Lagrangian particle tracking (LPT), used in oceanography to

model trajectories of particles passively advected by ocean flows. Typically, the motions of

these passive particles are modeled using a Langevin equation, where the particle velocity is

given by the superposition of a large-scale “mean” flow velocity and small-scale stochastic

turbulence; the “mean” flow is assumed to be known exactly. We add a third velocity

component: the controlled through-water velocity of the vehicle. We furthermore note that

the mean flow velocity is obtained from an ocean model and may include unknown errors.

The main contribution of this thesis is the development of a theoretical model for error

growth in the predicted position of an autonomous vehicle guided by ocean model forecast

flow data, given a spatially-varying model for the error in flow estimates. We find a first-

order error growth model by finding the first-order Taylor expansion of the error growth

dynamics about the modeled vehicle trajectory, and treating the error in the modeled flow as

a perturbation of the linearized dynamics. This model is used as the theoretical framework

for analyzing growth of error in predicted vehicle position under different flow conditions

and control strategies.

We first consider a control strategy known as flow-canceling control. This is perhaps the

simplest model-based control strategy that can be implemented on an underwater vehicle

over a single extended dive time. The vehicle operates with no position feedback and

simply cancels the modeled ocean flow at its current position. We show that, in a static flow

field with stochastic errors in flow values at ocean model gridpoints, the error is bounded,

and the expected error of this bound as approximately twice the ocean model gridsize.

We extend our results to a transect-following controller, which uses flow-canceling and

position-based feedback track a straight-line transect, and to a station-keeping controller,

which uses flow cancellation and position-based feedback to guide the vehicle to a desired
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station-keeping position and to keep it stationary there. We show that error growth in pre-

dicted vehicle position is reduced with use of position-based feedback, and derive bounds

on the error growth in the constant-flow case.

We test the validity of our results using numerical simulations and data collected over

three field deployments of autonomous underwater vehicles. These deployments were car-

ried out in Monterey Bay, CA, in August of 2006, and in Long Bay, SC, in January-April

of 2012 and in February of 2013. The vehicles in the latter two deployments were guided

using flow data from predictive ocean models. The observed vehicle trajectories were com-

pared with predicted trajectories from a realistic, three-dimensional simulation of vehicle

motion in modeled flow to obtain measurements of position prediction error.

The rest of this dissertation is organized as follows. A review of related work, including

Lagrangian particle tracking is given in Chapter 2. The error growth model for CLPT is

presented in Chapter 3, where we also describe the flow-canceling, transect-following, and

station-keeping controllers. The growth of error in predicted position of a vehicle operating

under flow-canceling control is described in Chapter 4. In Chapter 5 we extend these results

to the transect-following and station-keeping feedback controller. The field experiments

and collected data are described in Chapter 6. Chapter 7 contains some concluding remarks

and future research directions.
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CHAPTER 2

BACKGROUND

This chapter provides an overview of related work. A brief description of Lagrangian parti-

cle tracking is given in Section 2.1. Some existing results on path-planning and navigation

using data from predictive ocean flow modes are given in Section 2.2. A brief description

of existing state-of-the-art autonomous underwater vehicle technology and its development

is given in Section 2.3.

2.1 Lagrangian Particle Tracking

The Lagrangian formulation of fluid dynamics uses the trajectories of infinitesimal particles

advected in the flow to give a description of the flow field [13]. This description suggests

the idea of using marked “particle-like” objects to map the structure of real flow fields. It

is perhaps not surprising, then, that the idea of using particle-like “Lagrangian drifters”

to study ocean circulation has been around for hundreds of years. In the mid-eighteenth

century, the positions of drogues (small buoys with underwater appendages designed to

move with the ambient flow, as illustrated in Figure 1) observed from a fixed station were

used to probe the structure of flows [14]. Later, drifters were used to study large-scale

circulations by T. W. Fulton, who released bottles (tagged with release date and location) in

the North Sea; 502 of the original 2074 bottles were recovered, yielding the first qualitative

description of the North Sea circulation [15]. Similar experiments were repeated by O.

Krümmel off the Dutch coast in 1904 and by M. Uda in the Northwest Pacific Ocean in 1935

[14, 15]. A later iteration of this idea was demonstrated in the experiments by Stommel

in 1949, where aerial photographs of floating paper drift cards were used to study ocean

turbulence [15, 16]. Today, the most commonly used drifters are drogues similar to their

historic counterparts, but use GPS and satellite communications to measure and report their

locations over time.
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Figure 1: A modern “holey-sock” drogue (image taken from [17]).

With the advent of increasingly accurate ocean models, work is shifting from using tra-

jectories of particles to probe the structure of ocean flows, to the use of ocean flows to pre-

dict the motion of various particles; this is what we refer to as Lagrangian particle tracking

(LPT). Numerical modeling of Lagrangian particle trajectories, coupled with field obser-

vations, can indicate which flow constituents most affect Lagrangian particle distributions,

and predict accumulation zones and dwelling times for the tracked particles. Lagrangian

schemes have been used to study the dispersion of dissolved pollutants [18], of biological

species including algae [19, 20] and fish larvae [21, 22], and of macroscopic objects such

as marine debris [23].

The difficulty, historically, has been accurately modeling particle motions in the mul-

titude of turbulent scales seen in ocean/atmospheric flows. Most implementations of LPT

assume that there is a clear scale separation between the turbulent motion and large-scale

mean flow (although this assumption frequently does not hold in practice [24]). The flow
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is then assumed to be a superposition of a stochastic small-scale turbulent flow (termed the

“stochastic eddy velocity”) and a large-scale, deterministic flow field (the “mean flow”);

the goal, then, is to model the overall advection/diffusion behavior of particles in the net

flow field through aggregate analysis of particle trajectories.

The effects of small-scale turbulence on particle motion have been well studied. Taylor

[25] gives an early estimate of dispersion of particles based on Lagrangian statistics in flow.

In Taylor’s work, the turbulent scale is assumed to be infinitesimal; the stochastic motions

of particles caused by turbulent components in the flow are simulated using a random walk

model, that is

dx = F(x, t)dt + dω,

where F is the mean flow and ω is a driving noise. A more accurate description of turbulent

motion is given by the “random flight” model [26, 27, 28], in which the velocity of the

particle is modeled as a finite-memory stochastic process

dx = (F(x, t) + ν(t))dt

dν = −Aν(t)dt + Λdω,

where A determines the memory length, which characterizes the scale of the turbulence

(this model will be discussed at more length in Chapter 3). A third, more sophisticated

approach, models particle acceleration as a stochastic process [29]. Griffa [24] gives a

good overview of these three models, adapted for oceanographic applications.

The LPT stochastic particle motion models assume that the mean flow is known exactly.

In practice, the mean flow is obtained from numerical ocean models, and inaccuracies in the

modeled flow data may introduce significant errors in the prediction of particle trajectories.

Sources of error in an ocean model include missing physics; inaccuracies in the boundary

conditions; unknown variations in local bathymetry; numerical errors solving the ocean

model equations; and finite resolution of the model. There are some existing works in

oceanographic literature that address these issues. The finite size and mass of the tracked

particles may also affect their advection properties. The effects of finite particle size and
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mass have been studied, ex. in [30]. Model subgridscale flow variations are discussed in

[31] (which also gives a good overview of Lagrangian particle tracking methods). The

effects of smoothing the flow field (as by interpolation of a flow field modeled over a

discrete grid) are studied in [32].

Our work address the effects of finite grid size and subgridscale structures on the motion

of autonomous underwater vehicles operating under feedback control. This problem is re-

lated to the drifter studies described in the literature; however, the particles in the proposed

work have dynamics which are separate from the ocean model. Their net motion depends

both on the ambient flow and on their through-water motion. This adds an interesting new

dimension to the problem.

2.2 Model-Aided Navigation of Autonomous Underwater Vehicles

In many practical applications where autonomous control of underwater vehicles is used,

the vehicle navigation is implemented using a receding-horizon control (RHC), also known

as model predictive control (MPC), [33, 34, 35, 36, 37]. A good overview of MPC is given

in [38, 39]. Broadly, the idea is that the controller generates an optimal control input with

respect to a user-defined cost function, over a finite time horizon Tplan. The input is imple-

mented on the vehicle in open-loop fashion for a time interval Treplan ≤ Tplan; the state of

the vehicle is then measured and the process is repeated with initial state given by the new

vehicle state. The MPC framework is a powerful tool for guidance of underwater vehicles

because the difficulties associated with underwater localization (the lack of GPS signal un-

der the water surface and the high energy cost of sonar-based localization methods) make

closed-loop position-based feedback control impractical for long-duration missions. Dur-

ing extended field deployments, the vehicle typically uses dead-reckoning to estimate its

position while underwater, and receives a position update during periodic surfacings, when

GPS signal is available. It is therefore quite natural to use MPC control with Treplan given

by the vehicle surfacing interval.
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The receding-horizon control implementation for autonomous underwater vehicles may

differ from the classical MPC approach described above. It is common, for example, to gen-

erate a reference trajectory at each planning step, rather than directly computing a control

input. The control input is then generated using a simple on-board trajectory-following

controller. Examples of controllers which utilize this version of receding-horizon control

include the Glider Coordinated Control System (GCCS) [40, 41] and Sensorweb [6].

The generation of reference trajectories using modeled vehicle dynamics and forecast

flow data obtained from predictive ocean models is a fairly well-studied problem in the field

of underwater vehicle navigation. One approach is to use dynamic programming methods,

as in [6], which allow one to find a globally optimal path. This approach may be quite

slow and computationally intensive, however, and typically faster heuristic algorithms are

used in application. Garau et al use an A* algorithm to generate min-time paths for AUVs

in spatially varying, time-static flows [42, 11]. A Fast Marching (FM)-based algorithm

for efficient path planning in a static flow field is described in [43]; this method can be

generalized to strong [44] and time-varying flows [45]. Optimal path planning using beta-

splines is demonstrated in [7, 46]. Path planning using genetic algorithms is described in

[47, 48, 49], and case-based path planning is used in [50].

The above algorithms for generating reference trajectories assume that the flow field is

deterministic and known exactly; deviations of the real vehicle trajectory from the gener-

ated reference are not considered, and no attempt is made to quantify the expected path-

tracking performance of the vehicle under given flow conditions. Path-tracking perfor-

mance may be maintained through periodic re-planning of the reference trajectory; at the

same time, frequent replanning is undesirable for vehicles operating under the surface of

the water, since it requires operation at the surface, where the vehicle is less capable of ef-

ficient maneuvering, and may be in danger of colliding with surface craft (especially when

operating in areas near shipping lanes) [8, 10]. A prediction of the error between the real
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vehicle position and the reference trajectory over time may be used to set the replanning in-

terval to maintain appropriate path-following performance while minimizing the surfacing

frequency.

There are several works in the existing literature which consider path-planning under

uncertainty in the modeled vehicle motion. An analytic method for computing the mean and

variance of the difference between the real and modeled position of an autonomous surface

vehicle performing constant-speed maneuvers in a no-flow environment is developed in

[51] and applied to path planning through an environment with obstacles in [52]. Another

approach, based on use of an unscented Kalman filter, is used to estimate the variance of the

error in predicted position of an autonomous underwater vehicle in [53]. These methods

assume that the uncertainty in the vehicle motion can be modeled as an additive zero-mean

Gaussian white noise in the system dynamics. A more general error model can be handled

using particle methods. For example, [54, 55] use particle methods to estimate the position

distribution of a vehicle with uncertain dynamics. However, particle-based methods tend

to be computationally intensive, and give no insight into the structures in the flow field and

error which contribute most significantly to growth of error in predicted vehicle position.

2.3 Autonomous Underwater Vehicles

This section provides a short introduction to autonomous underwater vehicles, with em-

phasis on underwater gliders. The use of these vehicles in oceanographic studies motivates

the proposed research into predictability of Lagrangian paths of underwater vehicles.

In recent years, autonomous underwater vehicles (AUVs) have emerged as a highly ver-

satile technology in the field of oceanographic research. They are flexible and compact sen-

sor platforms with controlled vertical and horizontal velocity inputs, and can be roughly di-

vided into two groups: actively-propelled craft; and gliders. Gliders are variable-buoyancy

vehicles which convert vertical motion in the water column to horizontal movement. The

two groups are not entirely disjoint; hybrid gliders which combine both active and passive
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propulsion methods are being developed [56, 57, 58]. An overview of the development of

unmanned underwater vehicles is given in [59].

Actively propelled AUV models include the Iver2, manufactured by OceanServer Tech-

nology; the Folaga, manufactured by Graal Tech; the Remus 100, manufactured by Hy-

droid; and various others. These are man-portable platforms designed for easy deployment

and recovery. They are capable of deployments lasting for several hours at a time; max-

imum mission time range from approximately 6 to 24 hours. Typical horizontal speeds

range from approximately 1 to 1.5 m/s [60], with maximum depth of 80-200 m. Larger

active-propulsion autonomous vehicles such as ex. Autosub3, manufactured by the Na-

tional Oceanography Centre, the Hugin 4500, manufactured by Konsberg Maritime, and

Seahorse, manufactured by Penn State University’s Applied Research Laboratory, are ca-

pable of deployments lasting 60-72 hours, with top speeds of 1.5-2 m/s and maximum dive

depths of 1-4.5 km [60].

Buoyancy-driven underwater gliders, on the other hand, tend to have lower through-

water velocities and longer mission endurance times as compared to actively-propelled

vehicles. To dive, a glider displaces a flexible membrane, effectively sucking in a small

amount of water. This causes it to become negatively buoyant and sink in the water column.

The vertical motion is converted to horizontal glide using wings. At the bottom of the dive,

the glider displaces the membrane in the opposite direction to achieve positive buoyancy;

the resulting motion is a characteristic vertical zig-zag path. The three most commonly

used commercial gliders are reviewed by Rudnick et al in [5]. These are the Spray, built

at Scripps Inst. of Oceanography; the Slocum battery, manufactured by Webb Research

Corp., and the Seaglider, built at U. of Washington. The Spray and Seaglider are deep-

water survey vehicles, with max. dive depth of 1.5 and 1 km, and endurance of 330 and

200 days, respectively. The Slocum battery is designed for coastal surveying missions. The

max. dive depth, depending on the model, is 200 or 1000 m, and endurance is 20 days (30

days for newer models) [5, 61]. A new deep-sea glider currently being developed by Webb
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will use thermal differences to expand/contract its hull to adjust buoyancy; this model is

expected to have a mission endurance time of 3-5 years.

Autonomous underwater vehicles are commonly used in environments that are not read-

ily accessible by other survey methods (ex. under arctic ice, as described in [62, 63]), or

for ocean monitoring missions that require mobility and long-duration deployments (see for

example [5, 64, 8]), as cost of operating autonomous vehicles in the ocean is significantly

lower than running ship-based missions [65]. AUVs may also be used to track moving or

evolving ocean features, as in [66, 8, 9, 67]. Multiple AUVs may be deployed together for

improved coverage of the survey area and improved data collection, as in [68, 69, 70, 64].

The vehicles described in this section motivate the proposed study of trajectory-following

performance of autonomous agents under imperfectly modeled flow fields. As autonomous

underwater vehicles become increasingly popular sensor platforms for oceanographic re-

search, there is an increasing practical need to understand the theoretical performance limits

of such vehicles in ocean environments that are not yet fully modeled or understood. In the

proposed research, data from a field experiment off the coast of Long Bay, SC, involving

two Slocum battery gliders, will be used to verify theoretical results.
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CHAPTER 3

CONTROLLED LAGRANGIAN PARTICLE TRACKING

Controlled Lagrangian Particle Tracking is used to model the motions of vehicles (ie., con-

trolled particles) with controlled velocity inputs in ocean flow fields. Let x ∈ D ⊂ R2

denote the horizontal position the vehicle. In general, the net velocity of the vehicle is

a function of the vehicle position x, the ambient mean water velocity F, the small-scale

turbulent flow component ν(t), and the control input u:

dx(t)
dt

= g(x(t),F(x, t), ν(t), u(x,F, t)). (1)

The functional form of g depends on the dynamics of the vehicle itself, the hydrodynamic

coupling between vehicle and ambient flow, and on the ambient flow velocity. Errors can

enter the model in a number of places, causing the modeled vehicle position to diverge

from the true position observed in the field; we classify them broadly as errors in the mod-

eled vehicle dynamics (including errors in the modeled coupling between ambient flow and

vehicle motion) and errors in the modeled flow dynamics. In the case of slow-moving vehi-

cles moving in complex flow environments with a reasonable model of the vehicle motion,

the error in modeled position is dominated by the latter error source; that is, error in the

modeled flow conditions. We therefore focus on this error source in our work throughout

this dissertation.

3.1 Vehicle Motion Model

The random-flight model of [26, 27, 28, 31] is used to describe motions of material particles

moving in the ocean. The ocean flow field is decomposed into two constituent components:

a mean flow FR, and a stochastic eddy diffusion field ν, which models small-scale flow

fluctuations caused by physical eddies, as well as waves, wind-driven flows, and other

turbulent flow components. It has been shown that this approach can be used effectively

to model motions of passive drifter platforms in the ocean, provided that the parameters
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describing the turbulent flow components are known or can be estimated [31, 71]. The

random flight model is realized using the following Langevin “random flight” equation

[31]:

dx = (FR(x, t) + ν(t) + v(u(x, t)))dt (2a)

dν = −Aν(t)dt + Λdω, (2b)

where FR(x, t) is the underlying mean flow, ν is the eddy diffusion term, v is the through-

water velocity of the vehicle, and u is the control input. The matrices A and Λ ∈ R2×2 are

given by

A =


1
τ

Ω

−Ω 1
τ

 Λ =

 σ
√

2
τ

0

0 σ
√

2
τ

 . (3)

Here σ denotes the variance of the stochastic velocity fluctuations; τ represents Lagrangian

correlation time and may be interpreted as a “forgetting time” parameter; and Ω is the spin

parameter. The stochastic input ω represents zero-mean, Gaussian white noise. In the

remainder of this dissertation, it is assumed that the values of τ and σ are known and that

Ω = 0. The vehicle can be controlled by adjusting its through-water speed s(x, t) , ‖ v ‖

and heading φ(x, t) , ∠v.

For autonomous underwater gliders, the throughwater speed of the vehicle is deter-

mined by the vertical speed of the vehicle and by its dive angle, and is approximately

constant over all dives. We denote the resulting constant throughwater speed by s. In this

case, vehicle position is given by

dx = (FR(x, t) + ν(t) + v(φ))dt, (4a)

dν = −Aν(t)dt + Λdω, (4b)

where ‖ v ‖ = s and φ(x, t) = u(x, t) is the commanded vehicle heading.

Given a model forecast of the ocean flow field, it is possible to predict the vehicle posi-

tion through numerical integration of the modeled vehicle dynamics (equations (2) or (4)),
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with real flow replaced by the forecast values and ν(t) ≡ 0. We now turn to examination of

the error in the resulting predicted position of the vehicle.

3.2 Controlled Lagrangian Particle Tracking Error

Suppose that the modeled flow is available over a prediction time window [t0, t1] (where it

is possible that t1 → ∞). Let z(t), t ∈ [t0, t1], denote the predicted vehicle position obtained

from numerical integration of (2a) under a specified control law, with FR(z, t) replaced by

the modeled value FM(z, t), and ν(t) ≡ 0:

dz
dt

= FM(z, t) + v(u(z, t)). (5)

The initial conditions at time t0 are set so that z(t0) = x(t0). The position prediction error e

is defined as the offset between true and modeled vehicle position:

e(t) , x(t) − z(t), e(t0) = [0, 0]T , t ∈ [t0, t1]. (6)

We refer to the magnitude of the position prediction error as the controlled Lagrangian

prediction error (CLPE), denoted by e(t):

e(t) , ‖ x(t) − z(t) ‖ , (7)

where ‖ · ‖ represents the standard `2 norm on R2. The CLPE may be taken as a measure of

performance of the model-based vehicle position prediction.

3.3 Position Prediction Error Dynamics

The time evolution of e is described by

de
dt

= FR(x, t) + ν(t) + v(u(x, t)) − FM(z, t) − v(u(z, t))

= FM(x, t) − FM(z, t) + f(x, t) + ν(t) + v(u(x, t)) − v(u(z, t))
(8)

where f(ζ, t) , FR(ζ, t) − FM(ζ, t) is the error in modeled mean flow velocity at (ζ, t) and

e(t0) = 0. Defining

V(ζ, t; u) , FM(ζ, t) + v(u(ζ, t)) (9)
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to be the net vehicle velocity under the modeled flow, we can write the time evolution of

the error in predicted vehicle velocity as

de
dt

= V(x, t; u) − V(z, t; u) + f(x, t) + ν(t), e(t0) = 0 (10a)

dz
dt

= V(z, t; u). (10b)

For a given flow field and controller, V is a known function onD× [t0, t1]. The error in

modeled flow velocity f : D × [t0, t1] → R2 may be treated as an unknown perturbation in

the position prediction error dynamics, and ν : [t0, t1] → R2 as a noise input. Consider the

unperturbed system with zero noise:

de
dt

= V(z + e, t; u) − V(z, t; u) (11a)

dz
dt

= V(z, t; u) (11b)

In the unperturbed case, de
dt = 0 at e = 0 for all t ∈ [t0, t1]. In general, however, (11a)

is a complex nonlinear system with time-varying dynamics. The modeled ocean flow FM

component of net vehicle velocity V may include flow components that range in scale from

thousands of kilometers (like the Gulf Stream) to small eddies or filaments with size on

the order of the ocean model gridsize (the highest-resolution ocean models typically have

a gridsize of 1.5 − 2 km). The throughwater velocity of the vehicle depends on the control

law used. We assume, here, that the mean ocean flow is slowly-varying in space compared

with the size of the ocean model grid, and that the control is chosen in such a way that the

net throughwater velocity of the vehicle varies slowly in space over scales comparable to

ocean model gridsize. The dynamics of e about the point e = 0 can be approximated using

a first-order Taylor expansion of (11a), which gives the following time-varying system:

de
dt
≈ DzV(z, t; u)e.

dz
dt

= V(z, t; u) (12a)

Adding in the perturbation f and driving noise ν, we have:

de
dt
≈ DzV(z, t; u)e + f(z + e, t) + ν(t)

dz
dt

= V(z, t; u). (13a)
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The form of V depends on the choice of controller used by the vehicle. Several possible

control strategies are described in the following section.

3.4 Vehicle Controllers

In this section we describe three simple controllers for autonomous vehicles operating in

ocean flow environments with flow forecasts from predictive ocean models. These con-

trollers are chosen for their simplicity, as good starting-points for understanding the inter-

action between ambient flow and control effort in the growth of error in predicted vehicle

position, as well as for their practical importance for field operations with autonomous ve-

hicles. The first is the flow-canceling controller, which may be used to keep the vehicle

stationary in the flow, assuming that the speed and heading can be controlled directly. This

hovering behavior is used implicitly in many path-planning strategies for flow fields with

strong spatio-temporal variations to “wait out” flows that are too strong for the vehicle to

navigate directly. The second controller is the transect-following controller, which is used

to stabilize the vehicle trajectory to a straight line. We assume that the heading of the

vehicle may be controlled directly, but the speed is fixed (this is typical for slow-moving

underwater vehicles like gliders, whose through-water speed determined by the dive angle,

which is fixed before deployment in the field). In scientific applications, this controller may

be used to collect data along a cross-section of the domain of interest. The last controller

is the station-keeping controller, which may be used to drive the vehicle to a given position

of interest. As in the transect-following controller, we assume that the vehicle travels with

fixed through-water speed and that heading can be adjusted directly.

3.4.1 Flow-canceling controller

Consider a vehicle whose speed and heading can be controlled directly. Let v(u(x, t)) =

−FM(x, t), where FM(x, t) is the modeled ocean flow at position x and time t. That is,

the vehicle is able to perfectly cancel the modeled ambient flow velocity. The net vehicle
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motion is then given by

dx(t)
dt

= FR(x, t) − FM(x, t) + ν(t) = f(x, t) + ν(t). (14)

The net motion of the vehicle depends only on the structure of the error in the modeled

ocean flow.

3.4.2 Transect-following controller

The transect-following controller is used to track a straight-line trajectory (transect) ` in

the ocean flow field. We assume that the vehicle travels with constant through-water speed

‖ v ‖ = s(x, t) = s. Let T be a unit vector along the transect, pointing in the direction of

travel, and let N be normal to T. Let p ∈ ` be an arbitrary point on the transect. The

heading u is chosen to cancel modeled flow velocity normal to the transect direction, and

an additional proportional controller is used to maintain the vehicle on the transect line (as

far as is possible given fixed through-water speed of the vehicle). Let satc(·) denote the

saturation function, satc : R→ [−c, c], where

satc(y) =



−c if y < −c

y if − c ≤ y ≤ c

c if y > c.

(15)

Then for (ζ, t) ∈ D × R,

v(ζ, t)T N = −sats(FM(ζ, t)T N + K(ζ − p)T N), (16)

where K is a constant gain. Since the net through-water speed s of the vehicle is constant,

its through-water velocity along T is given by

v(ζ, t)T T =

√
s2 − sat2

s(FM(ζ, t)T N + K(ζ − p)T N). (17)

The heading angle which satisfies (16)-(17) is:

u(ζ, t) = tan−1 T2

T1
− sin−1 sats(FM(ζ, t)T N + K(ζ − p)T N)

s
. (18)
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(See Fig. 2). Let

γ(ζ) , s2 − (FT
MN + K(ζ − p)T N)2. (19)

Using the notation defined in (9), we have:

V(ζ, t) =


(
FT

MT +

√
s2 − (FT

MN + K(ζ − p)T N)2
)

T − K(ζ − p)T N if γ ≥ 0(
FT

MT
)

T +
(
FT

MN − sign
(
FT

MN + K(ζ − p)T N
)

s
)

N otherwise.
(20)

The vehicle must be able to cancel cross-track flow to apply the proportional-gain controller

without exceeding its the total available speed.

FM(t,x)

x

FM(t,x)TN

N sn
T

p

`

x− p −FM(t,x)TN−K(x− p)TN
u(x, t)

Figure 2: Schematic of the transect-following controller.

3.4.3 Station-keeping controller

The third controller we describe is the station-keeping controller. Like the transect-following

controller, this controller is defined for the constant-speed vehicle model with heading con-

trol. The vehicle should always move toward a fixed goal position g. Thus, the heading u is

chosen to cancel the modeled flow velocity in the direction normal to the desired motion.

The through-water speed of the vehicle s is assumed to be constant. Let T be the unit vector

from the vehicle position to the goal g, and let N be normal to T. Without loss of generality,

we choose the coordinate system so that g = 0. Then T(x) = − x
‖ x ‖ and N = − Jx

‖ x ‖ , where

J is the 90◦ rotation matrix. Under the flow-canceling controller, u is chosen so that net

motion is along T. Assuming ‖FM ‖ < s everywhere, so that flow cancellation is always

possible, this means that:

v(u(x, t))T N = −FM(x, t)T N. (21)
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To satisfy (21), we must have u(x, t) = tan−1 x2
x1

+π−sin−1 FM(x,t)T N
s (see Fig. 3). The resulting

through-water velocity component along T is given by

v(u(x, t))T T =
√

s2 − (FM(x, t)T N)2. (22)

gFM(t,x)

x

FM(t,x)TN

-FM(t,x)TNN
sn

T

u

Figure 3: Schematic of the station-keeping controller.

The control input is well-defined everywhere except at the goal position g = 0, where

T = − x
‖ x ‖ and N = JT are undefined. To avoid this singularity in our analysis, we switch

to a simple flow-canceling control in an area around the goal; that is, for ‖ x ‖ ≤ R, where

R ∈ R+ is a fixed threshold value, we allow for adjustments in the vehicle speed, and set

v(u(x, t)) = −FM(x, t).

Summarizing the above results, we have that under station-keeping control:

u(x, t) =


tan−1 x2

x1
+ π − sin−1 FM(x,t)T N

s , ‖ x ‖ ≥ R

tan−1 x2
x1

+ tan−1 FM(x,t)T N
FM(x,t)T T , ‖ x ‖ < R

(23)

v(u(x, t)) =


√

s2 − (FM(x, t)T N)2T − (FM(x, t)T N)N, ‖ x ‖ ≥ R

−FM(x, t) ‖ x ‖ < R.
(24)

Using the notation defined in (9), we have:

V(x, t) =


(
FT

MT +

√
s2 − (FT

MN)2
)

T, ‖ x ‖ ≥ R

0 ‖ x ‖ < R.
(25)

Given control input, the motion of the vehicle is fully specified. The position of the vehicle

can be predicted using numerical integration of (2a) (or, for a constant-speed vehicle, of

(4a)), with FR, the real flow velocity, replaced by its modeled value, FM, and ν(t) ≡ 0.
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We examine the accuracy of predicted vehicle positions for different controllers de-

scribed here, under different flow conditions, in the following chapters.
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CHAPTER 4

ERROR GROWTH UNDER THE FLOW-CANCELING
CONTROLLER

The flow-canceling controller described in Section 3.4.1 is the simplest controller based

on predictive ocean model data; it simply cancels the predicted ocean flow at the current

position of the vehicle. We derive the expected upper threshold for exponential growth of

CLPT error for one and two-dimensional flow fields. The expected thresholds are functions

of the gridsize in the ocean model used to estimate the flow.

In Sections 4.1 and 4.2, we consider the error growth caused by error in predicted flow

f alone; in those sections we therefore make the following assumption:

(A2) The small-scale eddy diffusivity is negligible, so that ν(t) ≡ 0.

Under Assumption (A2), the position estimation error evolves in times as

de
dt

=
dx
dt
−

dz
dt

= FR(x, t) − FM(x, t) + (FR(z, t) − FM(z, t)) = f(x, t) (26)

with e(t0) = [0, 0]T. In general f is an unknown function of position and time, whose values

depend on the particular realization of the ocean flow and on the model used. Under the

perfect flow canceling controller, the position of the simulated vehicle remains z(t) = z(t0).

Therefore, e(t) = x(t) − z(t0). It can be assumed, without loss of generality, that the vehicle

starts at the origin, x(t0) = z(t0) = [0, 0]T. Then, e(t) given by (26) will be equal to x(t) in

the following system:
dx
dt

= f(x, t)dt, x(t0) = 0. (27)

For simplicity, suppose that f is a function of x only. We also assume that f has equilibria;

that is, there exits a non-empty set X s.t. f(x, t) = 0 ∀x ∈ X.

4.1 The One-Dimensional Case

First consider the case when flow is one-dimensional. We make the following assumptions:
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(B1) The vehicle is confined to move on a line, so the domain of f is R. Since f is now a

scalar function, it is denoted by f ; similarly, the real vehicle position x is denoted by

x; similarly the position of the simulated vehicle is denoted z.

(B2) A uniform grid of gridsize h is defined over R. The ocean model outputs an estimate

FM of the real flow FR at each gridpoint xk = kh, k ∈ Z. We model the values

of f (x) = FM(x) − FR(x) at the grid points are independent identically distributed

random variables1, denoted by ξk (ξk = f (xk) = f (kh)). These ξk are assumed to be

symmetrically distributed around 0, with probability density function ρξ.

(B3) The initial conditions are given by x(t0) = z(t0) = 0.

The values of f are not known everywhere in R, since they depend on the structure of

the unknown flow FR, as well as on the method used to interpolate FM between gridpoints.

However, f can be approximated at any point by taking the linear interpolation of its values

at the gridpoints. For x ∈ (xk, xk+1), say that

f (x) =
(xk+1 − x) ξk + (x − xk) ξk+1

h
. (28)

Under Assumptions (B1)-(B3), f (x) has equilibria given by

xeq = (ξk+1xk − ξkxk+1)/(ξk+1 − ξk), (29)

if xeq ∈ [xk, xk+1]. Since f is time-invariant, x in (27) converges to a stable equilibrium xeq

of f . Thus, xeq marks an upper threshold on growth of the CLPT error caused by f ; the

threshold is given by E(|xeq−z(t0)|). The expected threshold will be found, with expectation

taken over all realizations of the model flow f . The following lemmas are needed for this:

Lemma 4.1.1 The position xeq in (29) is a stable equilibrium of (27) under Assumptions

(B1)-(B3) if and only if ξk > 0 and ξk+1 < 0.

1Note that, for any given realization of the ocean model and true ocean flow fields, the flow error f is a
fixed, unknown function. Expectations involving f are taken over the set of all possible realizations of the
ocean model.
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Proof: A sufficient and necessary condition for xeq to be a stable equilibrium is that it

satisfies f (xeq) = 0 and ∂ f /∂x(xeq) = (ξk+1 − ξk)/h < 0.

Suppose that ξk > 0 and ξk+1 < 0. Clearly, there exists a point xeq ∈ [hk, h(k + 1)],

given by (29), which is an equilibrium of f . Since (ξk+1 − ξk)/h < 0, xeq must be a stable

equilibrium.

Conversely, suppose that xk < xeq < xk+1 is a stable equilibrium. Using the equation for

xeq, and the fact that (ξk+1 − ξk)/h < 0, one gets:

xk <
ξk+1 xk−ξk xk+1

ξk+1−ξk
< xk+1 (30)

xk(ξk+1 − ξk) > ξk+1xk − ξkxk+1 > xk+1(ξk+1 − ξk). (31)

Subtracting the middle term from both sides of (31), gives:

ξk(xk+1 − xk) > 0 > ξk+1(xk+1 − xk), (32)

which directly gives ξk > 0, ξk+1 < 0, since xk+1 − xk = h > 0. This proves the Lemma.

Lemma 4.1.2 The probability that xeq ∈ (xk, xk+1) given ξ0 > 0 is:

Pr(xeq ∈ (xk, xk+1)|ξ0 > 0) =

(
1
2

)k+1

.

Proof: By Lemma 4.1.3, Pr(xeq ∈ (xk, xk+1)|ξ0 > 0) is simply the probability that

ξ1, ..., ξk > 0 and ξk+1 < 0. Because the values of ξ are independent,

Pr(ξ1, ..., ξk > 0, ξk+1 < 0) =

 k∏
i

Pr(ξi > 0)

 Pr(ξk+1 < 0).

The ξi are iid symmetrically-distributed variables, thus Pr(ξi > 0) = 1/2 for all i. Similarly,

Pr(ξk+1 < 0) = 1/2. Thus Pr(xeq ∈ (xk, xk+1)|ξ0 > 0) = (1/2)k+1.

With the above Lemmas, it is possible to calculate E(|xeq|), where xeq is a stable equi-

librium of (28) such that x→ xeq as t → ∞. By definition,

E(|xeq|) =

∫ ∞

0
|x|ρ|xeq |(x)dx (33)
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where ρ|xeq |(x) is the probability density function of |xeq|. The variable ξ0 can be introduced

as a conditioning variable in (33); then, using the fact that ξk are symmetrically-distributed,

zero-mean random variables, so that

Pr(ξk > 0) = Pr(ξk < 0) =

∫ ∞

0
ρξ(x)dx = 1/2, (34)

one has:

E(|xeq|) =
1
2

∫ ∞

0
|x|ρ|xeq |(x|ξ0 > 0)dx +

1
2

∫ ∞

0
|x|ρ|xeq |(x|ξ0 < 0)dx. (35)

The following variables are defined for convenience:

x+ = argminx>0{|x| : f (x) = 0, ∂ f /∂x < 0} (36)

x− = argminx<0{|x| : f (x) = 0, ∂ f /∂x < 0}. (37)

The following two lemmas are needed for the calculation of E(|xeq|):

Lemma 4.1.3 If ξ0 > 0, then xeq = x+, and moreover, xeq ∈ (xk, xk+1) where xk+1 is the

position corresponding to the first negative value of ξ; that is, ξ j > 0 for all j ∈ {1, 2, ..., k},

and ξk+1 < 0.

Proof: By the definition in (28), f is a continuous, piecewise affine function.

By continuity, f (t0) = ξ0 > 0 implies that f > 0 in some sufficiently small neighbor-

hood ε of 0. Thus x cannot become negative, since dx/dt = f (x) > 0 for all x ∈ ε; so

limt→∞ x(t) = xeq > 0.

Since f is piecewise affine, f > 0 on any interval [xk, xk+1] with ξk, ξk+1 > 0, and f must

have a zero-crossing xeq on any interval (xk, xk+1) with ξk > 0 and ξk+1 < 0. By Lemma

4.1.1, this crossing is a stable equilibrium of (27). The smallest such crossing is x+. Since

x = 0 is in the region of attraction, x→ xeq as t → ∞, and so xeq = x+.

Lemma 4.1.4 If ξ0 < 0, then xeq = x−, and moreover, xeq ∈ (x−k, x−k+1) where x−k is the

point corresponding to the first positive value of ξ, that is, ξ j < 0 for all j ∈ {−1,−2, ...,−k+

1}, and ξ−k > 0.
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The proof exactly parallels the proof of Lemma 4.1.3.

Theorem 4.1.5 Under Assumptions (B1)-(B3) of the one-dimensional problem,∫ ∞

0
|x|ρ|xeq |(x|ξ0 > 0)dx =

∫ 0

−∞

|x|ρ|xeq |(x|ξ0 < 0)dx =
3
2

h.

Therefore, E(|xeq|) = 3
2h.

Proof: The statement
∫ ∞

0
|x|ρ|xeq |(x|ξ0 > 0)dx =

∫ 0

−∞
|x|ρ|xeq |(x|ξ0 < 0)dx follows from the

symmetry of ρξ. It remains to show that E(|xeq|) = 3h/2.

Equation (35) for the expected value of |xeq| may be written as

E(|xeq|) =

∫ ∞

0
|x|ρ|xeq |(x|ξ0 > 0)dx,

which can be decomposed as

E(|xeq|) =

∞∑
k=0

∫ xk+1

xk

xρ|xeq |(x|ξ0 > 0, xeq ∈ (xk, xk+1))dxPr(xeq ∈ (xk, xk+1)|ξ0 > 0). (38)

Using Lemma 4.1.2, and applying a change of variables u = x − xk, (38) can be written as

E(|xeq|) =

∞∑
k=0

[
1
2

]k+1 ∫ h

0
(u + xk)ρ|xeq−xk |(u|ξ0 > 0, (xeq − xk) ∈ (0, h))du. (39)

To evaluate this expression, one must compute ρ|xeq−xk |(u|ξ0 > 0, (xeq − xk) ∈ (0, h)). Given

that xeq ∈ (xk, xk+1), let u∗ , xeq−xk in this interval. To find ρu∗(u|u∗ ∈ (0, h)), the probability

density of u∗ in terms of u, we consider the mapping φ : R2 → R2 : (ξk, ξk+1) 7→ (u∗, v),

where

u∗ =
hξk

ξk − ξk+1
(40)

v = ξk. (41)

Let ~ξ denote the doublet (ξk, ξk+1), and ~w denote (u∗, v). The distribution of ~w is given

by

ρ̃(~w) =

∣∣∣∣∣∣det
∂φ

∂~ξ

∣∣∣∣∣∣−1

ρ(φ−1(~w)). (42)
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The inverse map is well-defined and is given by

φ−1(~w) = (ξk, ξk+1) = (v, v(1 − h/u∗)), (43)

while ∣∣∣∣∣∣det
∂φ

∂~ξ

∣∣∣∣∣∣−1

=

∣∣∣∣∣∣∣∣∣det

 −
hξk+1

(ξk−ξk+1)2
hξk

(ξk−ξk+1)2

1 0


∣∣∣∣∣∣∣∣∣
−1

=
(ξk − ξk+1)2

hξk
=

hv
u2
∗

. (44)

Substituting (44) and (43) into (42) gives:

ρ̃(~w) =
hv
u2
∗

ρ(v, v(1 − h/u∗)). (45)

Since ξk and ξk+1 are independent, symmetrically distributed random variables and ξk >

0 and ξk+1 < 0 are given,

ρ(ξk) = 2ρξ(ξk)H(ξk) (46)

ρ(ξk+1) = 2ρξ(ξk+1)H(−ξk+1), (47)

where H(·) denotes the unit step function.

Because the values of ξ are iid, the joint probability distribution is

ρ(φ−1(~ω)) = ρ(~ξ) = ρ(ξk)ρ(ξk+1) = ρ(v)ρ(v(1 − h/u∗)). (48)

Thus, using (46)-(47), (45) may be written as

ρ̃(~w) =
4hv
u2
∗

ρξ(v)ρξ(v(1 − h/u∗))H(v)H(v(h/u∗ − 1)). (49)

Taking the marginal distribution over v gives:∫ ∞

−∞

ρ̃(~w)dv =
4h
u2
∗

∫ ∞

0
vρξ(v)ρξ(v(1 − h/u∗))dvH(h/u∗ − 1). (50)

Equation (50) is the distribution function in (39). Plugging in the above result for ρ|xeq−xk |(u|(xeq−

xk) ∈ (0, h)) in (39),

E(|xeq|) =

∞∑
k=0

[
1
2

]k+1 ∫ h

0

4h(u + xk)
u2

(∫ ∞

0
vρξ(v)ρξ(v(1 − h/u))dv

)
du

=

∞∑
k=0

[
1
2

]k+1 ( ∫ h

0

4hu
u2

(∫ ∞

0
vρξ(v)ρξ(v(1 − h/u))dv

)
du

+

∫ h

0

4hxk

u2

(∫ ∞

0
vρξ(v)ρξ(v(1 − h/u))dv

)
du

)
.

(51)
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This expression contains two integrals which will be handled in turn. Consider first the

integral ∫ h

0

4hxk

u2

(∫ ∞

0
vρξ(v)ρξ(v(1 − h/u))dv

)
du. (52)

After pulling out constants and reversing the order of integration, this becomes:

4xk

∫ ∞

0
v
(∫ h

0

h
u2ρξ(v(1 − h/u))du

)
ρξ(v)dv (53)

Using change of variables s = v(1 − h/u), the above expression may be written as

4xk

∫ ∞

0
v
(∫ 0

−∞

(v − s)2

hv2 ρξ(s)
hv

(v − s)2 ds
)
ρξ(v)dv = 4xk

∫ ∞

0

(∫ 0

−∞

ρξ(s)ds
)
ρξ(v)dv. (54)

Because ρξ is symmetric,
∫ 0

−∞
ρξ(s)ds = 1/2, the above integral is equal to 2xk

∫ ∞
0
ρξ(v)dv.

Again, it follows from symmetry of ρξ that
∫ ∞

0
ρξ(v)dv = 1/2, and this expression evaluates

to 2xk(1/2) = xk.

Similarly, one can evaluate the integral∫ h

0

4hu
u2

(∫ ∞

0
vρξ(v)ρξ(v(1 − h/u))dv

)
du = 4

∫ ∞

0

(∫ h

0

hv
u
ρξ(v(1 − h/u))du

)
ρξ(v)dv.

(55)

Once again letting s = v(1 − h/u) gives:

4
∫ ∞

0

(∫ 0

−∞

(v − s)ρξ(s)
hv

(v − s)2 ds
)
ρξ(v)dv = 4

∫ ∞

0

∫ 0

−∞

hv
v − s

ρξ(s)ρξ(v)dsdv. (56)

It can be shown, using the symmetry of ρξ, that:

4
∫ ∞

0

∫ 0

−∞

hv
v − s

ρξ(s)ρξ(v)dsdv =
h
2
. (57)

Therefore,

E(|xeq|) =

∞∑
k=0

[
1
2

]k+1 ∫ h

0

4h(u + xk)
u2

(∫ ∞

0
vρξ(v)ρξ(v(1 − h/u∗))dv

)
du

=

∞∑
k=0

(
1
2

)k+1 h
2

+

∞∑
k=0

(
1
2

)k+1

xk

=
h
4

∞∑
k=0

(
1
2

)k

+
h
2

∞∑
k=0

(
1
2

)k

k

=
h
2

+ h =
3
2

h,

(58)

where xk = kh. This proves Theorem 4.1.5.
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Theorem 4.1.6 Suppose that x(t0) = 0. The variance of |xeq| is given by

Var(|xeq − x(t0)|) =

" ∞

0

4h2v2

(v + s)2ρξ(s)ρξ(v)dsdv +
7
4

h2. (59)

Proof: Given x(t0) = 0, Var(xeq) = E|xeq|
2 − (E|xeq|)2. Then

E|xeq|
2 =

∫ ∞

−∞

|x|2ρeq(x)dx

=

∫ 0

−∞

|x|2ρeq(x|ξ0 < 0)Pr(ξ0 < 0)dx +

∫ ∞

0
|x|2ρeq(x|ξ0 > 0)Pr(ξ0 > 0)dx.

(60)

By symmetry of the distribution of ξ0, Pr(ξ0 > 0) = Pr(ξ0 < 0) = 1
2 , and∫ 0

−∞

|x|2ρeq(x|ξ0 < 0)Pr(ξ0 < 0)dx =

∫ ∞

0
|x|2ρeq(x|ξ0 > 0)Pr(ξ0 > 0)dx.

Thus, (60) can be written as

E|xeq|
2 =

∫ ∞

0
|x|2ρeq(x|ξ0 > 0)dx. (61)

Splitting this integral over the intervals [xk, xk+1) gives

E|xeq|
2 =

∞∑
k=0

∫ xk+1

xk

|x|2ρeq(x|ξ0 > 0, xeq ∈ (xk, xk+1))Pr(xeq ∈ (xk, xk+1))dx

=

∞∑
k=0

1
2k+1

∫ xk+1

xk

|x|2ρeq(x|ξ0 > 0, xeq ∈ (xk, xk+1))dx.

(62)

Using change of variables u = x − xk, (62) can be written as

E|xeq|
2 =

∞∑
k=0

1
2k+1

∫ h

0
(u2 + 2xku + x2

k)ρu(u|ξ0 > 0, xeq ∈ (xk, xk+1))du. (63)

Plugging in the distribution from (50) gives

E|xeq|
2 =

∞∑
k=0

1
2k+1

∫ h

0
4h

(
1 +

2xk

u
+

x2
k

u2

) [∫ ∞

0
vρξ(v)ρξ

(
v
(
1 −

h
u

))
dv

]
du, (64)

where ∫ h

0
4h

(
1 +

2xk

u
+

x2
k

u2

) [∫ ∞

0
vρξ(v)ρξ

(
v
(
1 −

h
u

))
dv

]
du (65)
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can be split up into the three integrals∫ h

0
4h

[∫ ∞

0
vρξ(v)ρξ

(
v
(
1 −

h
u

))
dv

]
du (66)

2xk

∫ h

0

4h
u

[∫ ∞

0
vρξ(v)ρξ

(
v
(
1 −

h
u

))
dv

]
du = 2xk

(
h
2

)
= kh2 (67)

xk

∫ h

0

4hxk

u2

[∫ ∞

0
vρξ(v)ρξ

(
v
(
1 −

h
u

))]
dv = x2

k = k2h2, (68)

where the last two integrals (67) and (68) are evaluated as in (55)-(57) and (52)-(54), re-

spectively. Using change of variables s = −v(1 − h/u) in (66), we get:∫ h

0
4h

[∫ ∞

0
vρξ(v)ρξ

(
v
(
1 −

h
u

))
dv

]
du = 4h2

" ∞

0

v2

(v + s)2ρξ(s)ρξ(v)dsdv. (69)

The value of this integral depends on the form of ρξ. Plugging (67)-(69) in (64) gives:

E|xeq|
2 =

∞∑
k=0

1
2k+1

[" ∞

0

4hv2

(v + s)2ρξ(s)ρξ(v)dsdv + kh2 + k2h2
]

=
1
2

" ∞

0

4hv2

(v + s)2ρξ(s)ρξ(v)dsdv
∞∑

k=0

1
2k +

h2

2

∞∑
k=0

k
2k +

h2

2

∞∑
k=0

k2

2k

=

" ∞

0

4hv2

(v + s)2ρξ(s)ρξ(v)dsdv + 4h2.

(70)

It follows that

Var(|eeq|) = E|xeq|
2 − (E|xeq|)2 =

" ∞

0

4hv2

(v + s)2ρξ(s)ρξ(v)dsdv +
7
4

h2, (71)

which proves the Theorem.

The result in Theorem 4.1.5 can be extended to the case where the particle’s initial

position does not coincide with a particular gridpoint (that is, in the case that Assumption

(B3) is dropped). Suppose that the particle’s initial position is x(t0) = z(t0) ∈ (xk, xk+1].

There are then 4 possible cases, depending on the values of ξk = f (xk) and ξk+1 = f (xk+1):

1). ξk > 0 and ξk+1 > 0,

2). ξk < 0 and ξk+1 > 0,

3). ξk > 0 and ξk+1 < 0,
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4). ξk < 0 and ξk+1 < 0.

Let c be a random variable which labels the above cases; c takes values in the set {1, 2, 3, 4},

with Pr(c = i) = 1
4 for all i. The expected value of |xeq − x(t0)| may be calculated using

conditional expectations:

E(|xeq − x(t0)|) =
1
4

4∑
i=1

E( |xeq − x(t0)|
∣∣∣ c = i). (72)

Theorem 4.1.7 The expected value of |xeq − x(t0)| is independent of initial conditions, that

is,

E(|xeq − x(t0)|) = 3h/2 (73)

for arbitrary x(t0) = z(t0).

Proof: Theorem 4.1.7 can be proved by calculating E( |xeq − x(t0)|
∣∣∣ c = i) for each case

in turn.

To begin, consider Case 1) (ξk > 0 and ξk+1 > 0). By monotonicity of f on (xk, xk+1),

f (x) > 0 for all x ∈ (xk, xk+1]; it is clear, then, that the particle moves in the positive

x-direction until it passes xk+1. The expected distance to the nearest equilibrium is then

E(xeq − x(t0)) = E(xeq − xk+1) + xk+1 − x(t0), (74)

where xk+1 > 0 is given. Shifting the origin to xk+1 and applying Theorem 4.1.5 gives

E(xeq − xk+1) = 3h/2. Plugging this back into (74) gives:

E( |xeq − x(t0)|
∣∣∣ c = 1) = 3h/2 + (xk+1 − x(t0)). (75)

Case 4) (ξk < 0 and ξk+1 < 0) is analogous to Case 1); this time however, f (x) < 0 for

all x ∈ (xk, xk+1]. The particle moves in the negative x-direction until it passes xk, therefore

E( |xeq − x(t0)|
∣∣∣ c = 4) = (x(t0) − xk) + 3h/2. (76)
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Next consider Case 2) (ξk < 0 and ξk+1 > 0). The expectation can be calculated as

follows:

E( |xeq − x(t0)|
∣∣∣ c = 2) = E( |xeq − x(t0)|

∣∣∣ c = 2, f (x(t0)) > 0)Pr( f (x(t0)) > 0)

+ E( |xeq − x(t0)|
∣∣∣ c = 2, f (x(t0)) < 0)Pr( f (x(t0)) < 0).

(77)

If f (x(t0)) = f (z(t0)) > 0, then f (x) > 0 for all x ∈ (x(t0), xk+1]; so the particle moves in the

positive direction until it passes xk+1. As in Case 1), the expected value of |xeq − x(t0)| is

then 3h/2 + (xk+1 − x(t0)). If, on the other hand, f (x(t0)) = f (z(t0)) < 0, then f (x) < 0 for

all x ∈ (xk, x(t0)), and the particle moves in the negative direction until it passes xk. As in

case 4), the expected value of |xeq − x(t0)| is then (x(t0) − xk) + 3h/2. Therefore (77) can be

rewritten as

E( |xeq − x(t0)|
∣∣∣ c = 2) =

(
3h
2

+ (xk+1 − x(t0))
)

Pr( f (x(t0)) > 0)

+

(
3h
2

+ (x(t0) − xk)
)

(1 − Pr( f (x(t0)) > 0))

=

(
3h
2

+ x(t0) − xk

)
+ (h − 2(x(t0) − xk))Pr( f (x(t0)) > 0).

(78)

It remains only to calculate the probability Pr( f (x(t0)) > 0). Let y0 := x(t0) − xk

(y0 ∈ (0, h]). Using (28), one can write:

Pr( f (y0) > 0|ξk < 0, ξk+1 > 0) = Pr
(

y0ξk+1 + (h − y0)ξk

h
> 0

∣∣∣∣∣ ξk < 0, ξk+1 > 0
)

= Pr
(
ξk+1 >

y0 − h
y0

ξk

∣∣∣∣∣ ξk < 0, ξk+1 > 0
)
.

(79)

This can be calculated, using the fact that ξk < 0 and ξk+1 > 0, as

Pr
(
ξk+1 >

y0 − h
y0

ξk

∣∣∣∣∣ ξk < 0, ξk+1 > 0
)

=

∫ 0

−∞

∫ ∞

y0−h
y0

s
ρξ(r)dr

 ρξ(s)ds. (80)

Lastly, consider Case 3) (ξk > 0 and ξk+1 < 0). By Lemma 4.1.1, there is a stable

equilibrium xeq ∈ (xk, xk+1) where f (xeq) = 0. By monotonicity of f within one interval, if
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f (x(t0)) < 0 then x(t0) > xeq, and if f (x(t0)) > 0 then xeq > x(t0). Therefore,

E(|xeq − x(t0)||c = 3) = E(xeq − x(t0))Pr( f (x(t0)) > 0) + E(x(t0) − xeq)Pr( f (x(t0)) < 0)

= (xk + h/2 − x(t0))Pr( f (x(t0)) > 0)

+ (x(t0) − (xk + h/2))(1 − Pr( f (x(t0)) > 0))

= 2((xk + h/2) − x(t0))Pr( f (x(t0)) > 0) − ((xk + h/2) − x(t0)),

(81)

where Pr( f (x(t0)) > 0) denotes

Pr( f (x(t0)) > 0|ξk > 0, ξk+1 < 0).

This probability can be calculated analogously to the probability in Case 2) (using y0 :=

x(t0) − xk):

Pr( f (y0) > 0|ξk > 0, ξk+1 < 0) = 1 −
∫ ∞

0

∫
y0−h
y−0 s

−∞

ρξ(r)dr

 ρξ(s)ds. (82)

Using the fact that ρξ is a symmetric function and applying change of variables r′ = −r and

s′ = −s, the above may be rewritten as

Pr( f (y0) > 0|ξk > 0, ξk+1 < 0) = 1 −
∫ 0

−∞

∫ ∞

y0−h
y−0 s

ρξ(r)dr

 ρξ(s)ds

= 1 − Pr( f (y0) > 0|ξk < 0, ξk+1 > 0).

(83)

Plugging (75),(76),(78), and (81) into (72) gives

E(|xeq − x(t0)|) = 3h/2, (84)

which is independent of the value of x(t0). This proves Theorem 4.1.7.

4.2 The Two-Dimensional Case

In the previous section, it has been shown that, in the one-dimensional case, E(|xeq−z(t0)|) =

3h/2. This result can be generalized to the two-dimensional case. The assumptions for this

case are as follows:
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(C1) The particle moves in the horizontal plane (the domain of f is R2).

(C2) The ocean model outputs an estimate FM of the flow FR at each gridpoint on a uniform

square grid over R2 with gridsize h, where xk,l = [kh, lh]T is a gridpoint indexed by

(k, l). The values of f(x) = FM(x) − FR(x) at the grid points are iid symmetrically-

distributed random variables, denoted by ~ξk,l = [ξ1
k,l ξ

2
k,l]

T (where ξ1
k,l = f 1(xk,l) and

ξ2
k,l = f 2(xk,l) are mutually independent). The pdf of ξi

k,l, where i = 1, 2, is denoted

by ρξ.

(C3) The initial position of the particle in simulation is equal to the initial position of the

physical particle: z(t0) = x(t0).

Analogous to the one-dimensional case, values of f at any point can be approximated

by taking the bilinear interpolation of grid point values; for x = [x1 x2]T ∈ (kh, (k + 1)h) ×

(lh, (l + 1)h), f is given by

f(x) =
1
h2

{[
~ξk,l((k + 1)h − x1)((l + 1)h − x2) + ~ξk+1,l(x1 − kh)((l + 1)h − x2)

+ ~ξk,l+1((k + 1)h − x1)(x2 − lh) + ~ξk+1,l+1(x1 − kh)(x2 − lh)
]}
.

(85)

In two dimensions, the particle exhibits a much richer range of behaviors than a particle

confined to move on a line, and it becomes more difficult to find limt→∞ x(t) = xeq. Instead,

this value can be approximated by finding a lower bound on E(|xeq−x(t0)|) as E(|x∗−x(t0)|),

where x∗ is defined as the smallest (w.r.t. the 1-norm in R2) equilibrium of the flow f which

satisfies the necessary stability condition ∂f i/∂xi < 0 for i = 1, 2:

x∗ = argminx∈R2

{
‖ x − x(t0) ‖1 : ∂f i/∂xi(x) < 0 ∀i

}
. (86)

Figure 4 shows the zero level sets of f1(x). Computing the `1-norm to the nearest equilib-

rium requires finding the distance to the nearest intersect of the zero level sets of f1(x) with

those of f2(x).

The main contribution of this section is summarized in the following theorem:
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Figure 4: Zero level set of the error flow in the x-direction, f1(x) = 0. Equilibria of f(x) lie
on intersections of the zero level sets for flow in the x- and y-directions.

Theorem 4.2.1 The expected value of the 1-norm of the steady-state position-prediction

error, given by ‖ x∗ ‖1, satisfies:

E(‖ x∗ − x(t0) ‖1) ≤

2
∞∑

k=0

{2(k + 1)h
4k+1

∫ −(k+1)h

−kh

∫ ∞

0

4hv
xi ρξ(v)ρξ(v(1 − h/xi))dvdxi

+
2k

4k+1

∫ −(k+1)h

−kh

∫ ∞

0

4hv
xi ρξ(v)ρξ(v(1 − h/xi))

×

1 − ∫ |xi |−kh

0

∫ ∞

0

4hv
u2 ρξ(v)ρξ(v(1 − h/u))dvdu

dvdxi
}

(87)

where h is the grid size used by the ocean model. In particular, if ρξ is Gaussian,

E(‖ x∗ − x(t0) ‖1) ≤ 2.52h. (88)

The proof of this theorem requires a sequence of lemmas, which are proved below. As

in the one-dimensional case, the following variables are introduced for convenience:

xi
+ = argminxi>0{|x

i| : f i(xiêi) = 0, ∂ f i/∂xi < 0} (89)

xi
− = argminxi<0{|x

i| : f i(xiêi) = 0, ∂ f i/∂xi < 0}, (90)

where êi is the standard ith basis vector in R2.
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Lemma 4.2.2 The value of Pr(xi
− ∈ (−(k + 1)h,−kh)|ξi

0,0 > 0) is k
(

1
2

)k+1
.

Proof: The variable xi
− represents the first stable 0 of f i, evaluated on (−∞, 0) in the

direction i. Without loss of generality, let i = 1 (x-axis). Along the axis, f 1 is a linear

interpolation of its values at the points {0,±h,±2h, . . .}. By Lemma 4.1.3, the smallest

stable equilibrium of f 1 on (−∞, 0) must lie in the first interval ((−(k + 1)h,−kh)) with

ξ1
−(k+1),0 > 0 and ξ1

−k,0 < 0.

Since ξ1
0,0 > 0 by assumption, Pr(x1

− ∈ (−h, 0)) = 0. Let

ξ1
− j,0 = min

l∈Z+
{ξ−l : ξ−l < 0}

be the first negative gridpoint flow value. Then

Pr(x1
− ∈ (−(k+1)h,−kh)|ξi

0,0 > 0) = Pr(ξ1
−(k+1),0 > 0)

k∑
j=1

( k∏
m= j

Pr(ξ1
−m,0 < 0)

j−1∏
l=1

Pr(ξ1
−l,0 > 0)

)
.

(91)

By symmetry of the distribution of ξ1
n,0, Pr(ξ1

n,0 > 0) = Pr(ξ1
n,0 < 0) = 1/2 for all n. The

above equation therefore simplifies to

Pr(x1
− ∈ (−(k + 1)h,−kh)|ξi

0,0 > 0) =

k∑
i=1

(
1
2

)k+1

= k
(
1
2

)k+1

. (92)

The calculation for x2
− is analogous. This proves the Lemma.

Lemma 4.2.3 The value of Pr(xi
+ > (k + 1)h|ξi

0,0 > 0) is
(

1
2

)k+1
.

Proof: The variable xi
+ represents the first stable 0 of f i, evaluated on the line cor-

responding to direction i. As in Lemma 4.2.2, let i = 1 (x-axis). By Lemma 4.1.3, the

smallest stable 0 of f 1 on (0,∞) must lie in the first interval (mh, (m + 1)h) with ξ1
m,0 > 0

and ξ1
m+1,0 < 0. Therefore, since ξ1

0,0 > 0 by assumption, Pr(x1
+ > (k + 1)h) is equal to the

probability that ξ1
i,0 > 0 for all i ∈ {1, ..., k + 1}. Using the fact that ξ1

n,0 are independent and

symmetrically distributed gives:

Pr(x1
+ > (k + 1)h|ξi

0,0 > 0) =

k+1∏
i=1

Pr(ξ1
i,0 > 0) =

(
1
2

)k+1

(93)

The calculation for x2
+ is analogous. This proves the Lemma.
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Lemma 4.2.4 The value of Pr(xi
+ ∈ (kh, (k + 1)h)|ξi

0,0 > 0) is
(

1
2

)k+1
.

Proof: The proof is almost identical to that of Lemma 4.2.3. Let i = 1 (x-axis). By

Lemma 4.1.3, the smallest stable 0 of f 1 on (0,∞) must lie in the first interval (kh, (k + 1)h)

with ξ1
k,0 > 0 and ξ1

k+1,0 < 0. Therefore, since ξ1
0,0 > 0 by assumption, Pr(x1

+ > (k + 1)h) is

equal to the probability that ξ1
i,0 > 0 for all i ∈ {1, ..., k}, and ξ1

k+1,0 < 0. Using the fact that

ξ1
n,0 are independent and symmetrically distributed gives:

Pr(x1
+ > (k + 1)h|ξi

0,0 > 0) =

k∏
i=1

Pr(ξ1
i,0 > 0)Pr(ξ1

k+1,0 < 0) =

(
1
2

)k+1

. (94)

The calculation for x2
+ is analogous. This proves the Lemma.

Lemma 4.2.5 The probability that x∗ lies in the interval (−(k + 1)h,−kh) is

Pr(x∗ = xi
−, x

i
− ∈ (−(k + 1)h,−kh)|ξi

0,0 > 0) =

k
4k+1 +

k
4k+1

1 − ∫ |xi
− |−kh

0

4h
u2

(∫ ∞

0
vρξ(v)ρξ(v(1 − h/u))dv

)
du

 . (95)

Proof: The value of Pr(x∗ = xi
−, x

i
− ∈ (−(k + 1)h,−kh)|ξi

0,0 > 0) is given by

Pr(x∗ = xi
−, x

i
− ∈ (−(k + 1)h,−kh)|ξi

0,0 > 0) = Pr(|xi
−| < |x

i
+|, x

i
− ∈ (−(k + 1)h,−kh)|ξi

0,0 > 0).

(96)

The dependence on ξ0 will not be written in future equations to avoid notational clutter, but

will be assumed. The variables xi
− and xi

+ are mutually independent, so that

Pr(|xi
−| < |x

i
+|, x

i
− ∈ (−(k + 1)h,−kh)) =

Pr(xi
− ∈ (−(k+1)h,−kh))Pr(xi

+ > (k+1)h)+Pr(xi
− ∈ (−(k+1)h,−kh))Pr(xi

+ ∈ (|xi
−|, (k+1)h)),

(97)

where

Pr(xi
+ ∈ (|xi

−|, (k + 1)h)) = Pr(xi
+ ∈ (|xi

−|, (k + 1)h)|xi
+ ∈ (kh, (k + 1)h))Pr(xi

+ ∈ (kh, (k + 1)h)).

(98)
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Thus,

Pr(|xi
−| < |x

i
+|, x

i
− ∈ (−(k + 1)h,−kh)) = Pr(xi

− ∈ (−(k + 1)h,−kh))Pr(xi
+ > (k + 1)h)

+Pr(xi
− ∈ (−(k+1)h,−kh))Pr(xi

+ ∈ (|xi
−|, (k+1)h)|xi

+ ∈ (kh, (k+1)h))Pr(xi
+ ∈ (kh, (k+1)h)).

(99)

Using Lemmas 4.2.2-4.2.4, the above can be written as

Pr(|xi
−| < |x

i
+|, x

i
− ∈ (−(k + 1)h,−kh)) =(

k
4k+1

)
+

(
k

4k+1

)
Pr(xi

+ ∈ (|xi
−|, (k + 1)h)|xi

+ ∈ (kh, (k + 1)h)). (100)

The remaining expression, Pr(xi
+ ∈ (|xi

−|, (k + 1)h)|xi
+ ∈ (kh, (k + 1)h)), may be calculated

as follows:

Pr(xi
+ ∈ (|xi

−|, (k + 1)h)|xi
+ ∈ (kh, (k + 1)h)) = 1 − Pr(xi

+ ∈ (kh, |xi
−|)|x

i
+ ∈ (kh, (k + 1)h))

= 1 −
∫ |xi

− |

kh
ρxi
−
(x)dx,

(101)

where xi
− ∈ (kh, (k + 1)h). Using the change of variables

u = x − kh

v = ξi
k,0

(102)

and the distribution for u∗ = x∗ − xk = x+ − kh derived in the one-dimensional case (see

(50)),

Pr(xi
+ ∈ (|xi

−|, (k + 1)h)|xi
+ ∈ (kh, (k + 1)h))

= 1 −
∫ |xi

− |−kh

0

4h
u2

(∫ ∞

0
vρξ(v)ρξ(v(1 − h/u))dv

)
du. (103)

Plugging this expression into (100) gives:

Pr(x∗ = xi
−, x

i
− ∈ (−(k + 1)h,−kh)) =

k
4k+1 +

k
4k+1

1 − ∫ |xi
− |−kh

0

4h
u2

(∫ ∞

0
vρξ(v)ρξ(v(1 − h/u))dv

)
du

 . (104)

This proves the Lemma.
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Lemma 4.2.6 The probability that x∗ lies in the interval (kh, (k + 1)h) is:

Pr(x∗ = xi
+, x

i
+ ∈ (kh, (k + 1)h)|ξi

0,0 > 0) =

k + 2
4k+1 +

k
4k+1

1 − ∫ xi
+−kh

0

4h
u2

(∫ ∞

0
vρξ(v)ρξ(v(1 − h/u))dv

)
du

 . (105)

Proof: The value of Pr(x∗ = xi
+, x

i
+ ∈ (kh, (k + 1)h)|ξi

0,0 > 0) is given by

Pr(x∗ = xi
+, x

i
+ ∈ (kh, (k+1)h)|ξi

0,0 > 0) = Pr(|xi
+| < |x

i
−|, x

i
+ ∈ (kh, (k+1)h)|ξi

0,0 > 0). (106)

For notational convenience, the conditioning variable ξi
0,0 will be dropped subsequent equa-

tions. Using independence of xi
− and xi

+, the above equations may be written as

Pr(|xi
+| < |x

i
−|, x

i
+ ∈ (kh, (k + 1)h)) = Pr(xi

+ ∈ (kh, (k + 1)h))Pr(xi
− < −(k + 1)h)

+ Pr(xi
+ ∈ (kh, (k + 1)h))Pr(xi

− ∈ (−(k + 1)h,−xi
+)|xi

− ∈ (−(k + 1)h,−kh))

× Pr(xi
− ∈ (−(k + 1)h,−kh)).

(107)

By Lemmas 4.2.2 and 4.2.4,

Pr(xi
+ ∈ (kh, (k + 1)h)) =

(
1
2

)k+1

Pr(xi
− ∈ (−(k + 1)h,−kh)) = k

(
1
2

)k+1 (108)

and

Pr(xi
− < −(k + 1)h) = 1 −

k∑
j=0

Pr(xi
− ∈ (−( j + 1)h,− jh))

= 1 −
k∑

j=0

j
(
1
2

) j+1

= (k + 2)
(
1
2

)k+1

.

(109)

Then using change of variables

u = x + (k + 1)h

v = ξi
k,0

(110)
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and the distribution for u∗ = x∗−x−(k+1) = x++(k+1)h in (50), Pr(xi
− ∈ (−(k+1)h,−xi

+)|xi
− ∈

(−(k+1)h,−kh)) can be calculated analogously to Pr(xi
+ ∈ (|xi

−|, (k+1)h)|xi
+ ∈ (kh, (k+1)h))

to give:

Pr(xi
− ∈ (−(k + 1)h,−xi

+)|xi
− ∈ (−(k + 1)h,−kh)) =

1 −
∫ xi

+−kh

0

4h
u2

(∫ ∞

0
vρξ(v)ρξ(v(1 − h/u))dv

)
du, (111)

so that

Pr(x∗ = xi
+, x

i
+ ∈ (kh, (k + 1)h)) =

k + 2
4k+1 +

k
4k+1

1 − ∫ xi
+−kh

0

4h
u2

(∫ ∞

0
vρξ(v)ρξ(v(1 − h/u))dv

)
du

 . (112)

This proves the Lemma.

The proof of Theorem 4.2.1 is given below.

The `1 norm of x∗ is |x1
∗ | + |x

2
∗ |. By assumption, the flows along the x- and y-axes are

mutually independent. The expected value of |xi
∗|, for i = 1, 2, will be computed along each

dimension independently.

First, note that the value of E(|x∗,i − xi(t0)|) is independent of the initial position x(t0).

This can be shown as follows:

First, use a shift the coordinates; for xi(t0) ∈ [kh, (k + 1)h), let x 7→ x′ = x − kh so that

x′i(t0) ∈ [0, h). Then

E(|x∗,i − xi(t0)|) = E(|x′∗,i − x′i(t0)|)

= E(x′∗,i − x′i(t0)|x′∗,i = x+
i > 0)Pr(x′∗,i = x+

i )

+ E(x′∗,i + x′i(t0)|x′∗,i = x−i < 0)Pr(x′∗,i = x−i )

= E(x′∗,i) − x′i(t0)Pr(x′∗,i = x+
i ) + x′i(t0)Pr(x′∗,i = x−i )

= E(x′∗,i) −
1
2

x′i(t0) +
1
2

x′i(t0),

= E(x′∗,i),

(113)
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which is the expected value of E(|x∗,i − xi(t0)|) when x(t0) = 0. Without loss of generality,

it will therefore be assumed for the remainder of this proof that x(t0) = z(t0) = 0.

Consider the motion along one axis. Let ξi
k, for i = 1, 2, denote the the values of ξi

i, j

along the ith axis; so that ξ1
k = ξ1

k,0 and ξ2
k = ξ2

0,k. As in the one-dimensional case, one can

write:

E(|xi
∗|) =

1
2

∫ ∞

−∞

|xi|ρ|xi
∗ |
(xi|ξi

0 > 0)dxi +
1
2

∫ ∞

−∞

|xi|ρ|xi
∗ |
(xi|ξi

0 < 0)dxi. (114)

This case differs from the one-dimensional case, however, in that Lemmas 4.1.3 and 4.1.4

no longer hold, since the particle is moving in two dimensions, and may therefore cir-

cumvent the region of positive (or negative) flow around xi = 0 by moving along the

perpendicular directions.

It follows from the symmetry of ρξ that
∫ ∞
−∞
|xi|ρ|xi

∗ |
(xi|ξi

0 > 0)dxi =
∫ ∞
−∞
|xi|ρ|xi

∗ |
(xi|ξi

0 <

0)dxi. Thus,

E(|xi
∗|) =

∫ ∞

−∞

|xi|ρ|xi
∗ |
(xi|ξi

0 > 0)dxi. (115)

Note that xi
∗ = argminxi

+,x
i
−
{|x|}, therefore

E(|xi
∗|) =

∞∑
k=0

∫ −kh

−(k+1)h
|xi|ρ|xi

∗ |
(xi|ξi

0 > 0, d1)Pr(d1|ξi
0 > 0)dxi

+

∞∑
k=0

∫ xi
k+h

xi
k

|xi|ρ|xi
∗ |
(xi|ξi

0 > 0, d2)Pr(d2|ξi
0 > 0)dxi

=

∞∑
k=0

∫ −(k+1)h

−kh
xiρ|xi

∗ |
(xi|ξi

0 > 0, d1)Pr(d1|ξi
0 > 0)dxi

+

∞∑
k=0

∫ xi
k+h

xi
k

xiρ|xi
∗ |
(xi|ξi

0 > 0, d2)Pr(d2|ξi
0 > 0)dxi,

(116)

where the shorthand d1 has been adopted for the condition “x∗ = xi
−, xi

− ∈ (−(k+1)h,−kh)”

and d2 for “x∗ = xi
+, xi

+ ∈ (kh, (k + 1)h)”.

Using Lemmas 4.2.5 and 4.2.6, and applying change of variables

u = x −
⌊ x
h

⌋
h

v = ξi
b x

hc
,

(117)
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(116) can be written as

E(|xi
∗|) =

∞∑
k=0

{ k
4k+1

∫ −(k+1)h

−kh
xiρ|xi

∗ |
(xi|ξi

0 > 0, d1)dxi

+
k

4k+1

∫ −(k+1)h

−kh
xiρ|xi

∗ |
(xi|ξi

0 > 0, d1)

×

1 − ∫ |xi |−kh

0

4h
u2

(∫ ∞

0
vρξ(v)ρξ(v(1 − h/u))dv

)
du

 dxi

+
k + 2
4k+1

∫ (k+1)h

kh
xiρ|xi

∗ |
(xi|ξi

0 > 0, d2)dxi

+
k

4k+1

∫ (k+1)h

kh
xiρ|xi

∗ |
(xi|ξi

0 > 0, d2)

×

1 − ∫ xi−kh

0

4h
u2

(∫ ∞

0
vρξ(v)ρξ(v(1 − h/u))dv

)
du

 dxi
}
.

(118)

Using the symmetry of ρξ the terms in the above equation can be combined to obtain:

E(|xi
∗|) =

∞∑
k=0

{2(k + 1)h
4k+1

∫ −(k+1)h

−kh
xiρ|xi

∗ |
(xi|ξi

0 > 0, d1)dxi

+
2k

4k+1

∫ −(k+1)h

−kh
xiρ|xi

∗ |
(xi|ξi

0 > 0, d1)

×

1 − ∫ |xi |−kh

0

4h
u2

(∫ ∞

0
vρξ(v)ρξ(v(1 − h/u))dv

)
du

 dxi
}
.

(119)

Substituting in the pdf derived in (50) gives:

E(|xi
∗|) =

∞∑
k=0

{2(k + 1)h
4k+1

∫ −(k+1)h

−kh

∫ ∞

0

4hv
xi ρξ(v)ρξ(v(1 − h/xi))dvdxi

+
2k

4k+1

∫ −(k+1)h

−kh

∫ ∞

0

4hv
xi ρξ(v)ρξ(v(1 − h/xi))

×

1 − ∫ |xi |−kh

0

∫ ∞

0

4hv
u2 ρξ(v)ρξ(v(1 − h/u))dvdu

dvdxi
}
.

(120)

The above expression holds for i = 1, 2, so E(|x∗|1) = E(|x1
∗ | + |x

2
∗ |) = E(|x1

∗ |) + E(|x2
∗ |) =

2E(|xi
∗|). This proves Theorem 4.2.1 in the general case. If ξ has a Gaussian distribution,

the above expression may be evaluated numerically to give

E(|xi
∗|) = 1.26h, (121)
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from which it follows that, in this case, E(|x∗|) = 2.52h. This completes the proof of

Theorem 4.2.1.

Theorem 4.2.1 gives an expected bound on the `1 norm of the position estimation error

caused by error in the modeled values of the flow in the 2-D case. This gives a range on the

bound of the `2 error as follows:

‖ χ ‖1 /
√

2 ≤ ‖ χ ‖2 ≤ ‖ χ ‖1 (122)

for all χ ∈ R2. In the case that ξ are Gaussian random variables, the lower bound on the `2

norm of the position estimation error satisfies:

E(‖ x∗ ‖2) ∈ [1.78h, 2.52h]. (123)

Note that the above calculations do not depend on the strength of the error flow values

at the gridpoints, only on the fact that they are independent, identically distributed random

variables. The strength (that is, the variance) of the flow, however, does affect the time it

takes for the error growth to reach an equilibrium. Since the velocity of the particle in the

ocean flow is given by a bilinear interpolation of the flow values at the gridpoints, the higher

the variance of the gridpoint values, the higher the mean particle speed; consequently, the

faster the particles converge to an equilibrium of the error flow field.

The above approach does not address the coupling between the x and y-position of the

expected equilibrium. This coupling is caused by the bilinear interpolation of the gridpoint

flow values. Because it is a bilinear interpolation of gridpoint values, the error flow along

each of the x and y directions is a continuous function in R2, with continuous level sets;

in particular, the curves f1(x) = 0 and f2(x) = 0 are continuous curves (see Figure 4).

The average distance to the nearest equilibrium, therefore, depends not only on the average

distance to an equilibrium along a particular axis, but also on the shape of the zero-level set

curve. This can be understood via the following simple example: consider two lines y = 0

and y = h, with zero-crossings at x = 1 and x = −2, respectively. The sample mean of the

norms of the crossing values is (|1| + | − 2|)/2 = 1.5. Consider a straight line joining the
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two crossing points. The mean distance from the y-axis to this line is 5/6h. In general, the

distance to the zero level set curve along the x and y-directions is less than the expected

distance to an equilibrium along a particular line parallel that axis; for this reason, Theorem

4.2.1 gives an upper bound on the true value of E(‖ x∗ ‖1) at steady state.

4.3 Eddy Diffusivity Contribution to CLPT Error Growth

The random-flight model (2) is frequently used to model motions of fluid particles in homo-

geneous, isotropic turbulence. The controlled particle is likewise subject to motion caused

by small-scale turbulent flows; in this section the contribution of these turbulence-induced

motions to the growth of the CLPT error is considered.

The Langevin equation governing the dynamics of the controlled particle is reproduced

here for easy reference:

dx = (FR(x, t) + u(x, t) + ν) dt (124)

dν = −Aνdt + Λdω. (125)

Under the flow-canceling controller, u(x, t) is chosen to cancel the estimated flow FM(x, t) =

FR(x, t) + f(x, t). It is further assumed that the spin parameter Ω = 0, so that A = 1
τ
I and

Λ = σ
√

2
τ
I, where I is the identity matrix in R2. To simplify the notation, let a = 1/τ and

L = σ
√

2
τ
. Let q denote the particle state, [x, ν]T . The total equation for the evolution of q

can be written in standard Ito form as

dq =

 0 I

0 −A

 q +

 0 0

0 Λ

 (ê3dω1 + ê4dω2) (126)

where êi, i = 1, . . . , 4, are standard basis vectors in R4, and the initial position of the

particle, x(t0), is assumed to be 0.

Claim 4.3.1 The CLPT error growth caused by the stochastic velocity term ν, for the case

that f ≡ 0, satisfies:

‖ eν(t) ‖ ≤
√

2L
a2 t

1
2 . (127)
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when t > τ.

Completing the proof of this claim requires the following two Lemmas:

Lemma 4.3.2 Let ψ2 = νTν, and say ν(t0) = 0, so that ψ2(t0) = 0. Then,

E (ψ2(t)) =
L
a

(
1 − e−2at

)
. (128)

Proof: The function ψ2 can be expressed as

ψ2 = qT

 0 0

0 I

 q. (129)

Using this definition, it can be shown that

dE (ψ2(t))
dt

= −2aE (ψ2) + 2L. (130)

This is a standard first-order ODE with solution given by

E (ψ2(t)) =
L
a

(
1 − e−2at

)
. (131)

This proves the Lemma.

Lemma 4.3.3 Let ψ1 = xTν, and say x(t0) = ν(t0) = 0, so that ψ1(t0) = 0. Then,

E (ψ1(t)) =
L
a2 −

2L
a2 e−at +

L
a2 e−2at. (132)

Proof: Given

ψ1 = xTν = qT

 0 I

0 0

 q, (133)

it can be shown that
dE (ψ1(t))

dt
= −aE (ψ1(t)) + E (ψ2(t)) . (134)

Using Lemma 4.3.2:

dE (ψ1(t))
dt

= −aE (ψ1(t)) +
L
a

(
1 − e−2at

)
. (135)

46



This non-homogeneous linear ODE can be solved explicitly to get:

E (ψ1(t)) = e−at
∫ T

0
eas L

2a

(
1 − e−2as

)
ds (136)

=
L
a2 −

2L
a2 e−at +

L
a2 e−2at. (137)

This proves the Lemma.

The proof of Claim 4.3.1 is given below.

Given perfect mean flow cancellation, and f ≡ 0 (that is, FM = FR), we have z(t) =

z(t0) = 0 and the CLPT error is then given by

e(t) = ‖ x(t) − z(t) ‖ = ‖ x(t) ‖ , (138)

where ‖ · ‖ is the standard `2-norm in R4. Define ψ as the square of the CLPT error,

ψ = e2 = ‖ x(t) ‖2 = qT

 I 0

0 0

 q. (139)

It is easy to show that

dE(ψ)
dt

= 2E

qT

 0 I

0 0

 q

 = 2E
(
xTν

)
= 2E (ψ1) . (140)

By Lemma 4.3.3,
dE (ψ(t))

dt
=

2L
a2 −

4L
a2 e−at +

2L
a2 e−2at. (141)

This equation can be directly integrated (given ψ(t0) = 0) to find:

E (ψ(t)) =
2L
a2 t +

4L
a3 e−at −

L
a3 e−2at −

3L
a3 , (142)

which is bounded above by 2L
a2 t for t > 1/a = τ, the Lagrangian correlation time of the

system.

The expected value of ‖ eν(t) ‖ = ‖ x(t) ‖ can be restricted by Jensen’s inequality:

E (‖ x(t) ‖) = E
( √

ψ(t)
)
≤

√
E (ψ(t)) < αt

1
2 , (143)
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which is satisfied with α =

√
2L
a2 , for t larger than the correlation time scales of the system.

Thus, positioning error growth caused by the stochastic eddy diffusivity term is bounded

above by a square-root time growth law. This proves Claim 4.3.1.

Remarks: The results of Sections 4.2 and 4.3 can be combined to describe the char-

acteristics of the growth of CLPT error. The initial error growth is dominated by the error

contributions caused by the large-scale error flow f, which represents inaccuracies in the

model prediction of the mean flow field. This causes an initially exponential CLPT error

growth; however, this contribution to the error growth becomes small when the particle

reaches an equilibrium of the error flow field. The long-term error contribution is domi-

nated by the eddy diffusivity ν, with CLPT error growth on the order of t1/2, as justified by

Claim 4.3.1.

4.4 Simulation of CLPT Error Growth

The CLPT error results are first tested in simulation. Two simulations are used: the first,

to verify the expected threshold for exponential growth of the CLPT error; the second, to

demonstrate motion of controlled agents in the flow defined by (27).

In the first simulation, a square area of interest is selected, centered at the origin, and

covered with a grid whose gridsize is normalized to h = 1. The error flow f is simulated by

assigning independent, jointly Gaussian-distributed random flow values at each gridpoint.

Using these values, all equilibrium points of f are computed. In the 1-D case, equilibria

are kept only if they correspond to a stable equilibrium, i.e., if d f
dx < 0. In the 2-D case,

equilibria are kept if they satisfy the necessary stability criteria, ∂ f 1

∂x < 0 and ∂ f 2

∂y < 0. Given

the set of equilibria zeq, the value

|z∗|1 = min
zeq

(|z|1) (144)

is recorded. The above calculation is repeated 105 times for each of the 1-D and 2-D cases,

and the sample mean taken over all runs. This gives a sample mean of the `1-norm to the

nearest equilibrium which satisfies necessary stability conditions in the 1-D and 2-D cases.
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In the 1-D case, the sample mean of the distance to the equilibrium is 1.5, which agrees

with the theoretical value of 1.5h calculated in Section 4.1. In the 2-dim case, the sample

mean of the minimum 1-norm of the equilibrium is 1.92h. This is less than 2.52h, the value

of the lower bound on the 1-norm of the error computed in Section 4.2, which agrees with

Theorem 4.2.1.

The second simulation demonstrates how the results for position estimation error growth

are affected by small-scale turbulent flow, modeled by the ν term in the Langevin equation

(2). In this simulation, a 2-D region of interest is set up, centered at the origin, and cover it

with a uniform rectangular grid. The gridsize used is 2.219 km in the x-direction and 1.826

km in the y-direction, which corresponds to the gridsize used by the ROMS ocean model in

the physical glider deployment in Monterey Bay (see Section 6.4.1). The values of the er-

ror flow f at gridpoints are normally distributed random variables with diagonal covariance

matrix (given by σξI2×2). Flow values at the particle position are obtained using bilinear

interpolation of the gridpoint values, with added stochastic drift ν. An Euler-Maruyama

integrator is used to find particle positions over time. The simulation is run with 400 rep-

etitions, for different values of the variance of σ (the variance of driving noise in ν), 1/τ,

and σξ. Figure 5 shows the average `2-norm of the particle position over time for differ-

ent values of the simulation parameters. The error growth is initially dominated by the

error caused by the error flow f; for longer times, the error is dominated by the small-scale

stochastic terms. The shape of the error growth curve depends on the relative strengths of

these two contributions, as shown in Figure 5.
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Figure 5: (Left) CLPT error growth over time for different values of variance σ of the
stochastic input to ν. The Lagrangian correlation time is τ = 0.28 hrs., and variance of f
at the gridpoints is σξ = 0.3 m/s. (Right) CLPT error growth over time: the variance σξ

of f at the gridpoints is varied. The variance of the stochastic input to ν is σ = 0.32. The
Langevin correlation time is 0.28 hrs.
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CHAPTER 5

ERROR GROWTH UNDER THE TRANSECT-FOLLOWING AND
STATION-KEEPING CONTROLLERS

The transect-following and station-keeping controllers differ from the flow-canceling con-

troller in that vehicle speed is assumed to be constant; thus, the “hovering” behavior of the

flow-canceling controller is not achievable. The error in predicted vehicle position, then,

depends on the interaction between the vehicle motion and the structure of the underlying

flow field as well as on the error in the predicted flow values.

5.1 Transect-Following Controller

First we analyze the error growth dynamics under the transect-following controller. Equa-

tion (20) for the net motion of the vehicle under transect-following control is reproduced

below for convenience:

V(ζ, t) =


(
FT

MT +

√
s2 − (FT

MN + K(ζ − p)T N)2
)

T − K(ζ − p)T N if γ ≥ 0(
FT

MT
)

T +
(
FT

MN − sign
(
FT

MN + K(ζ − p)T N
)

s
)

N otherwise,

where

γ(ζ) = s2 − (FT
MN + K(ζ − p)T N)2. (145)

We assume that the real and virtual vehicles are initialized on the transect line `, with

x(t0) = z(t0) ∈ `. Furthermore, for the remainder of this section, unless stated otherwise,

we make the following assumption:

(C1) For any ζ in the state-spaceD ⊂ R2,

s2 − (FM(ζ, t)T N)2 > 0.

Under Assumption (C1), the virtual vehicle is always able to cancel the flow normal to

the transect line, so that given a simulation over time interval [t0, t1], z(t0) ∈ ` means
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z(t) ∈ ` for all t ∈ [t0, t1]. Note that this assumption may not always hold in the field;

however in general, vehicles are deployed in regions where the ambient flow does not

exceed vehicle throughwater speed, so that the flow component normal to the transect can

always be canceled.

We are especially interested in cross-track component of the error in the predicted vehi-

cle position eN = NT e, which corresponds to the off-track distance of the real vehicle. We

show that the cross-track error eN , NT e is bounded in the following proposition.

Proposition 5.1.1 Consider a vehicle using transect-following control along transect `,

as described in (20). The real and virtual vehicles are initialized at x(t0) = z(t0) ∈ `.

Suppose the flow field FM satisfies Assumption (C1), and the flow speed is bounded as

‖FM(ζ, t) ‖ ≤ Fmax for all (ζ, t) ∈ D × R; that the error in modeled flow values is bounded

as supD ‖ f ‖ = fmax where fmax satisfies fmax < s − Fmax; and that the stochastic eddy

velocity ν(t) = 0 everywhere. The cross-track component of the error in predicted position

of the vehicle is bounded as

|eN| ≤
fmax

K
. (146)

Proof: The growth of error in predicted position of the vehicle for ν(t) ≡ 0 is given by

(10a):
de
dt

= V(z + e, t) − V(z, t) + f(z + e, t). (147)

Let T denote the unit vector in the direction of the transect and let N be the unit vector

normal to the transect in D. For notational convenience, we denote the along-track speed

of the modeled vehicle at position ζ ∈ D by

β(ζ, t) = FM(ζ, t)T T +

√
s2 − sat2

s(FM(ζ, t)T N + K(ζ − p)T N), (148)

where p is an arbitrary point on `. Let γ be defined as in (145). Note that, under Assumption

(C1), z(t0) ∈ ` means that z(t) ∈ ` for all t ∈ [t0, t1]; this means that (z − p)T N = 0. Also

under Assumption (C1), sign
(
FT

MN + K(ζ − p)T N
)

= sign
(
(ζ − p)T N

)
. Using this together
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with (20) and (148), equation (147) can be written as

de
dt

=


(
β(z + e, t)T − K

(
eT N

)
N
)
− β(z, t)T + f(z + e, t) if γ(z + e) ≥ 0

β(z + e, t))T +
(
FM(z + e, t)T N − sign(eN)s

)
N − β(z, t)T + f(z + e, t) otherwise,

(149)

=


(β(z + e, t) − β(z, t))T − K(eT N)N + f(z + e, t) if γ(z + e) ≥ 0

(β(z + e, t) − β(z, t))T +
(
FM(z + e, t)T N − sign(eN)s

)
N + f(z + e, t) otherwise.

(150)

The cross-track error growth is given by

deN

dt
=

d
dt

eT N =

(
de
dt

)T

N, (151)

since N is a constant vector. Using (150) in the above equation, we get:

deN

dt
=


−KeN + fN(z + e, t) if γ(z + e) ≥ 0(
FM(z + e, t)T N − sign(eN)s

)
+ fN(z + e, t) otherwise,

(152)

where fN , fT N denotes the cross-track component of f. We define a quadratic comparison

function

W(eN) =
1
2

e2
N. (153)

Then

dW(eN)
dt

=


−Ke2

N + fN(z + e, t)eN if γ(z + e) ≥ 0

(FM(z + e, t)T N − sign(eN)s)eN + fN(z + e, t)eN otherwise.
(154)

Consider fist the case where γ(z + e) ≥ 0, that is,

s2 − (FT
MN + KeN)2 ≥ 0, (155)

or

s ≥ |FT
MN + KeN| ≥ Fmax + K|eN|, (156)
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which is true if

|eN| ≤
s − Fmax

K
. (157)

By assumption, K > 0 and | fN| ≤ ‖ f ‖ ≤ fmax. Thus, from (154) we have

dW(eN)
dt

≤ −Ke2
N + fmaxeN < 0 (158)

whenever |eN| >
fmax
K and |eN| ≤ (s − Fmax)/K.

Next, consider γ(z + e) < 0. Then

dW(eN)
dt

= (FM(z + e, t)T N − sign(eN)s)eN + fN(z + e, t)eN. (159)

From Assumption (C1), it follows that

(FM(z + e, t)T N − sign(eN)s)


< 0 if eN > 0

> 0 if eN < 0.
(160)

Thus, (FM(z + e, t)T N − sign(eN)s)eN < 0 for all eN , 0. From this, we have that

(FM(z + e, t)T N − sign(eN)s)eN + fN(z + e, t)eN < 0 (161)

whenever

| fN(z + e, t)| < |FM(z + e, t)T N − sign(eN)s|, (162)

which is satisfied if

fmax < s − Fmax. (163)

From the above analysis, we have that dW(eN)/dt < 0 whenever |eN| >
fmax
K if (163) is

satisfied. It follows that the set set M =
{
eN : |eN| >

fmax
K

}
is an invariant set of (152) if (163)

is satisfied. Since eN(t0) = 0 ∈ M, eN(t) ∈ M for all t ∈ [t0, t1]. This proves the Proposition.

The growth of error in the along-track direction is more difficult to model, since there

is no feedback in the along-track direction. The along-track error growth is given by

deT

dt
= [β(z + e, t) − β(z, t)]T + fT(z + e, t). (164)
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We consider fT a perturbation of the error growth equation. Consider the unperturbed

along-track error growth:
deT

dt
= [β(z + e, t) − β(z, t)]T. (165)

Linearizing about the unperturbed equation about the modeled vehicle position z gives:

deT

dt
≈

TT DzFM(z, t) −
NT (FM(z, t) + K(z − p))√

s2 − (NT FM(z, t) + KNT (z − p))2
NT (DzFM(z, t) + KI)

 e,

(166)

where I denotes the 2×2 identity matrix. This equation depends strongly on the structure of

the ambient flow and the cross-track component of the error in predicted vehicle position.

For the remainder of this section, we only consider the cross-track error component for the

transect-following controller.

The growth of error in predicted vehicle position can be modeled under different flow

conditions and for different models of the error in flow forecast values. As in the flow-

canceling controller, we consider a case of stochastic error in the modeled flow velocity,

with error values at ocean model gridpoints given by random variables. The growth of error

in predicted vehicles position in this case is described in the following subsection.

5.1.1 Random Flow Error at Ocean Model Gridpoints

An ocean model outputs flow data FM on a limited-resolution grid G = {xm,n : m, n =

0,±1, . . . ,±∞}. The true ocean flow at each gridpoint is given by FR(xm,n, t) = FM(xm,n, t) +

f(xm,n, t). As in Chapter 4, we model the errors in modeled flow values at the ocean model

gridpoints xm,n as independent, identically distributed random variables f(xm,n) = ξm,n =

[ξ1
m,n, ξ

2
m,n]T ∈ R2. In this section we derive bounds on the growth of cross-track error of a

transect-following vehicle in an ocean flow field, with guidance from an ocean model with

stochastic errors at the model gridpoints.
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As shown in the proof of Proposition 5.1.1, the cross-track component of position pre-

diction error under the transect-following controller has dynamics:
deN
dt = −KeN(t) + fN(z + e, t)

dz
dt = V(z, t),

(167)

where eN(t0) = 0 and fN(z + e, t) , NT f(z + e, t) is the error in modeled flow in the cross-

track direction. Note that fN(z + e, t) can be expressed explicitly as a function of modeled

vehicle position z, along-track error ep,T = TT e, cross-track error eN = NT e, and time t. We

therefore write it as fN(z + e, t) = fN(eN, t; z, ep,T).

We consider a special case of (167), motivated by the following toy problem. Consider

a transect-following vehicle moving along a transect ` in an ocean domain covered by

a rectangular model grid aligned with `, as shown in Figure 6. Suppose that the initial

position of the real and simulated vehicles z(t0) = x(t0) lies on `, and that the ambient flow

can be canceled by the vehicle. Then, the real vehicle remains on ` for all t ∈ [t0, t1], and

cross-track error in predicted vehicle position corresponds to the off-track motion of the

real vehicle. We make the following assumptions about the structure of the ocean model

grid and the error fN in the modeled cross-track flow:

(D1) The ocean model grid is rectangular, with gridsize h in the direction normal to the

transect line `, with gridpoints at eN = kh for k = 0,±1, . . . ,±∞.

(D2) The values of error in modeled cross-track flow fN at ocean model gridpoints xm,n

are independent identically distributed random variables denoted by ξN
m,n. The ξN

k

are assumed to be symmetrically distributed with mean 0, with probability density

function (pdf) ρξ. The values of fN(eN, t; z, ep,T) in the cross-track direction are given

by linear interpolation of gridpoint values. In the along-track direction, the values

of fN(eN, t; z, ep,T) are piecewise constant and are given by the values at the most

recently crossed vertical line on ocean model gridpoints (see Figure 6).
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T

N

`

Figure 6: Autonomous underwater vehicle moving along straight-line transect `, with error
in the cross-track direction fN shown. The error is interpolated linearly in the cross-track
direction and is piecewise constant in the along-track direction.

Let tc
1 < tc

2 < . . . < tc
N , with tc

k ∈ [t0, t1] for all k = 1, . . . ,N, be times when the vir-

tual vehicle crosses the vertical lines of ocean model gridpoints and obtains new values of

fN. In Chapter 4 we showed that, for a vehicle moving under pure flow-canceling control

along a straight line, with error dynamics given by deN/dt = fN(eN, t), and time-invariant

fN, the error converges to a stable equilibrium of fN, with expected distance to the near-

est equilibrium given by 3h/2. Similarly, in the case of the transect-following controller,

eN approaches a stable equilibrium of (167) on each time interval (tc
n, t

c
n+1]. Suppose that

each time step tc
n+1 − tc

n is sufficiently long to allow convergence of the error to the nearest

stable equilibrium, to within any desired accuracy (the “adiabatic assumption”). We derive

expressions for the distribution of the positions of the stable equilibrium to which the error

converges as a function of the time step n. We proceed through the following lemmas:

Lemma 5.1.2 Let g(eN) denote the net cross-track error velocity in (167), so that

deN

dt
= g(eN) , −KeN(t) + fN(e, tc

n). (168)

Let en
0 = eN(tc

n) denote eN at the start of the nth time interval (tc
n, t

c
n+1] and let k0 , ben

0/hc.

57



Given g(k0h) < 0, the probability that g(en
0) < 0 is given by

Pr(g(en
0) < 0|g(k0h) < 0) =

∫ 0

−∞

[∫ γµ

−∞
ρξ(η + K(k0 + 1)h)dη

]
ρξ(µ + Kk0h)dµ∫ 0

−∞
ρξ(η + Kk0h)dη

. (169)

where

γ = −
(k0 + 1)h − en

0

en
0 − k0h

. (170)

Proof: Let ζk , g(kh) denote the cross-track error velocity at the gridpoint indexed by k.

By Assumption (D2) ζk are random variables with probability distribution functions given

by ρζk(x) = ρξ(x + Kkh). By affineness of (167) and Assumption (D2), g(eN) is given by a

linear interpolation of gridpoint values ζk. Thus

g(en
0) =

1
h

[
(en

0 − k0h)ζk0+1 + ((k0 + 1)h − en
0)ζk0

]
, (171)

and so

Pr(g(en
0) < 0|g(k0h) < 0) = Pr

(
(en

0 − k0h)ζk0+1 + ((k0 + 1)h − en
0)ζk0 < 0|ζk0 < 0

)
. (172)

Rearranging terms in the above equation and using γ defined in (170) gives

Pr(g(en
0) < 0|g(k0h) < 0) = Pr

(
ζk0+1 < −γζk0 |ζk0 < 0

)
=

∫ 0

−∞

[∫ γ

−∞

µρζk0+1(η)dη
]
ρζk0

(µ|ζk0 < 0)dµ,
(173)

where

ρζk0+1(η) = ρξ(η + K(k0 + 1)h) (174)

and

ρζk0
(µ|ζk0 < 0) =

ρξ(µ + Kk0h)∫ 0

−∞
ρξ(η + Kk0h)dη

H(−µ) (175)

(here H denotes the unit step function). Plugging (174) and (175) in (173) and simplifying

the resulting expression proves the Lemma.
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Lemma 5.1.3 Let en
0 = eN(tc

n) and let k0 , ben
0/hc. Then the probability that the stable

equilibrium eeq whose basin of attraction contains en
0 lies in [kh, (k + 1)h) is given by:

Pr(eeq ∈ [kh, (k + 1)h)) =

∫ ∞
0
ρξ(η + Kkh)dη

[∏k0
j=k+1

∫ 0

−∞
ρξ (η + K jh) dη

]
R(en

0), k < k0∫ 0

−∞
ρξ(η + K(k + 1)h)dη

{∏k
j=k0

∫ ∞
0
ρξ(η + K jh)dη

+
[∏k

j=k0+1

∫ ∞
0
ρξ(η + K jh)dη

] ∫ 0

−∞
ρξ(η + Kk0h)(1 − R(en

0))
}
, k ≥ k0

(176)

where

R(en
0) = Pr(g(en

0) < 0|g(k0h) < 0). (177)

Proof: On a given time interval n, (167) is a time-invariant, piecewise-affine, one-

dimensional flow. Given en
0 ∈ [k0h, (k0 + 1)h), there are three possible cases:

(1) ζk0 < 0 and g(en
0) < 0;

(2) ζk0 < 0 and g(en
0) > 0.

(3) ζk0 ≥ 0;

For ζk0 ≥ 0, as in Case (3), it immediately follows that eeq > k0h, since e(t) cannot pass to

an equilibrium e′eq < k0h as d
dt e|e=k0h ≥ 0. For ζk0 < 0, the location of the stable equilibrium

with basin of attraction containing e(t) depends on the initial value of d
dt e. If rd

rdt e(tc
n) =

g(en
0) < 0, as in Case (1), then, by linearity of g on [kh, en

0], g(e) < 0 for all e ∈ [kh, en
0], and

it follows that eeq < k0h. Similarly, if d
dt e(tc

n) = g(en
0) > 0 as in Case (2), then eeq > (k0 +1)h.

Consider Pr(eeq ∈ [kh, (k+1)h)) for k < k0. This is non-zero only if Case (1) is satisfied,

so that:

Pr(eeq ∈ [kh, (k + 1)h)|k < k0) = Pr(eeq ∈ [kh, (k + 1)h)|Case (1), k < k0)Pr(Case (1)),

(178)
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where, using independence of ζ j:

Pr(eeq ∈ [kh, (k + 1)h)|Case (1), k < k0) = Pr(ζk > 0)
k0−1∏
j=k+1

Pr(ζ j < 0)

=

∫ ∞

0
ρξ(η + Kkh)dη

k0−1∏
j=k+1

∫ 0

−∞

ρξ(η + K jh)dη,

(179)

while

Pr(Case (1)) = Pr(g(en
0) < 0|ζk0 < 0)Pr(ζk0 < 0)Pr(ζk0 < 0, g(en

0) < 0)

= Pr(g(en
0) < 0|ζk0 < 0)Pr(ζk0 < 0)

∫ 0

−∞

ρξ(η + ak0h)dη
(180)

The first term is given by Lemma 5.1.2, and Pr(ζk0 < 0) =
∫ 0

−∞
ρξ(η + ak0h)dη. Plugging

equations (179)-(180) in (178) gives:

Pr(eeq ∈ [kh, (k+1)h)|k < k0) =

∫ ∞

0
ρξ(η+Kkh)dη

 k0∏
j=k+1

∫ 0

−∞

ρξ(η + K jh)dη

 R(en
0), (181)

where we have used R to denote Pr(g(en
0) < 0|ζk0 < 0).

Similarly, for k ≥ k0, we have that

Pr(eeq ∈ [kh, (k + 1)h)|k ≥ k0) = Pr(eeq ∈ [kh, (k + 1)h)|Case (2), k ≥ k0)Pr(Case (2))+

Pr(eeq ∈ [kh, (k + 1)h)|Case (3), k ≥ k0)Pr(Case (3)), (182)

where

Pr(eeq ∈ [kh, (k + 1)h)|Case (2), k ≥ k0)

= Pr(ζk0+1 > 0, . . . , ζk > 0, ζk+1 < 0|ζk0 < 0, g(en
0) > 0, k ≥ k0)

=

 k∏
j=k0+1

∫ ∞

0
ρξ(η + K jh)dη

 ∫ 0

−∞

ρξ(η + K(k + 1)h)dη

(183)

and similarly,

Pr(eeq ∈ [kh, (k + 1)h)|Case (3), k ≥ k0)

=

 k∏
j=k0

∫ ∞

0
ρξ(η + K jh)dη

 ∫ 0

−∞

ρξ(η + K(k + 1)h)dη.
(184)
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Note that

Pr(Case (2)) = Pr(ζk0 < 0, g(en
0) > 0)Pr(g(en

0) > 0|ζk0 < 0)Pr(ζk0 < 0)

= (1 − Pr(ζk0 < 0, g(en
0) > 0)Pr(g(en

0) > 0|ζk0 < 0))
∫ 0

−∞

ρξ(η + ak0h)dη

= (1 − R(en
0)))

∫ 0

−∞

ρξ(η + ak0h)dη,

(185)

and

Pr(Case (3)) = Pr(ζk0 ≥ 0)

=

∫ ∞

0
ρξ(η + ak0h)dη.

(186)

Plugging (183)-(186) in (182) gives:

Pr(eeq ∈ [kh, (k + 1)h)|k ≥ k0)

=

∫ 0

−∞

ρξ(η + K(k + 1)h)dη
{ k∏

j=k0

∫ ∞

0
ρξ(η + K jh)dη

+

 k∏
j=k0+1

∫ ∞

0
ρξ(η + K jh)dη

 ∫ 0

−∞

ρξ(η + Kk0h)(1 − R(en
0))

}
(187)

Combining equations (181) and (187) proves the Lemma.

Lemma 5.1.4 Given that eeq ∈ [kh, (k+1)h), let u = eeq−kh. The distribution of u on [0, h)

is

ρu(u; k) =
h
∫ ∞

0
vρξ(v + Kkh)ρξ(v(1 − h/u) + K(k + 1)h)dv

u2
∫ ∞

0
ρξ(η + Kkh)dη

∫ 0

−∞
ρξ(η + K(k + 1)h)dη

. (188)

Proof: Let ξn
k , ξk(tc

n) + Kkh. The pdf of ξn
k is ρξn(η) = ρξ(η + K

⌊
η

h

⌋
h). With this, d

dt eN

on (tc
n, t

c
n+1] can be expressed as

deN

dt
= f ′n(eN) (189)

where f ′n takes values f ′n(kh) = ξn
k at ocean model gridpoints, and values of f ′n within each

grid cell are given by linear interpolation of the gridpoint values.
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Given that a stable equilibrium of the system (167) occurs on [kh, (k + 1)h), we solve

for the x-intercept in terms of ξn
k and ξn

k+1 as follows:

x = kh +
hξk

ξk − ξk+1
; (190)

or, in terms of u = x − kh, u = hξk/(ξk − ξk+1).

We show in Chapter 4 that the distribution of u on [0, h) is given by the marginal distri-

bution:

ρu(u) =

∫ ∞

−∞

hv
u2 ρξn(v|v ≥ 0)ρξn(v(1 − h/u)|v(1 − h/u) < 0)dv, (191)

where H denotes the unit step function, and

ρξn(v|v ≥ 0) =
ρξ(v + Kkh)∫ ∞

0
ρξ(η + Kkh)dη

H(v) (192)

ρξn(v(1 − h/u)|v(1 − h/u) < 0) =
ρξ(v(1 − h/u) + K(k + 1)h)∫ ∞

0
ρξ(η + K(k + 1)h)dη

H(v(h/u − 1)). (193)

Plugging (192) and (193) in (191) and simplifying the resulting expression proves the

Lemma.

Given e(tc
n) = en

0, the distribution of the stable equilibrium on (tc
n, t

c
n+1] whose basin of

attraction contains en
0 is

ρeq(e|eN(tc
n) = en

0) = ρeq(e|eeq ∈ [kh, (k + 1)h))Pr(eeq ∈ [kh, (k + 1)h)|eN(tc
n) = en

0), (194)

Where ρeq(e|eeq ∈ [kh, (k + 1)h)) and Pr(eeq ∈ [kh, (k + 1)h)|eN(tc
n) = en

0) are given by

Lemmas 5.1.2-5.1.4. The pdf for ξ normally distributed and e0 = 0 is shown in Figure 7.

The expected norm Eeq(|eeq|) =
∫ ∞
−∞
|e|ρeq(e)de of the stable equilibrium to which eN

converges during time interval (tc
n, t

c
n+1] is a function K and ocean model gridsize h, and

can be found from numerical integration of (194). The expected norm of the nearest stable

equilibrium as a function of K is shown in Figure 8 for initial position en
0 = 0.

We have derived the distribution of equilibria to which eN converges in a single time

interval (tc
n, t

c
n+1], given the initial position eN(tc

n) = en
0. The behavior of the cross-track error

eN, sampled at times tc
n, can be interpreted as a random walk eN,n+1 = eN,n +ωn+1, where the
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Figure 8: Expected value of |eeq|/h as a function of the feedback gain K.

distribution of the n+1st stepωn+1 is a function of eN,n and control gain K. Simulation results

indicate that, given K constant for all n, the distribution of eN,n converges to a stationary

distribution as n→ ∞. The mean and variance of eN,n over time are plotted in Figure 9.

This model for error growth is only valid so long as the cross-track error is small enough

to ensure that the vehicle through-water speed is large enough to cancel cross-track flow

and to apply a proportional-gain control to correct the real vehicle’s cross-track offset.

5.2 Station-Keeping Controller

We next turn to the case of station-keeping controller. Equation (25) for the net motion of

the vehicle under station-keeping control is reproduced below:

V(ζ, t) =


(
FM(ζ, t)T T(ζ) +

√
s2 − (FM(ζ, t)T N(ζ))2

)
T(ζ) for ‖ ζ ‖ ≥ R

0, otherwise,
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Figure 9: Mean (left) and variance (right) of |eeq| over time (in units of time steps T ).

where T(ζ) is a unit vector from ζ to the station-keeping goal, N(ζ) is a unit vector normal

to T, R > 0 is a fixed radius around the goal, and (ζ, t) ∈ D × R. For convenience, we set

the coordinate system so that the station-keeping position is at the origin. Let

β(ζ, t) , FM(ζ, t)T T(ζ) +
√

s2 − (FM(ζ, t)T N(ζ))2, (195)

denote the modeled vehicle speed in the direction toward the station-keeping goal.

For the remainder of this section, we make the following assumption:

(C2) For any ζ in the state-spaceD ⊂ R2,

s2 − FM(ζ, t)2 > 0.

That is, the virtual vehicle is always able to cancel the flow normal to the desired direction

of travel. Under Assumption (C2), given a simulation over time interval [t0, t1], the virtual

vehicle travels in a straight line toward the goal.

We confine our analysis to the case where the vehicle is far from its desired station-

keeping position. We find a bound on the error in predicted vehicle position, using the

following two Lemmas, which are taken from [72] and are reproduced here without proof:

Lemma 5.2.1 Let V : D × [t0, t1] → Rm be continuous for some domain D ⊂ Rn, and

suppose that [∂V/∂ζ] exists and is continuous onD×[t0, t1]. If, for a convex subsetW ⊂ D,
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there exists a constant L ≥ 0 such that∥∥∥∥∥ dV
dζ

(ζ, t)
∥∥∥∥∥ ≤ L (196)

onW× [t0, t1], then V(ζ, t) is Lipschitz continuous onW, with Lipschitz constant L.

Lemma 5.2.2 Let V(ζ, t) be piecewise continuous in t and Lipschitz continuous (with Lip-

schitz constant L) in ζ, for all (ζ, t) ∈ D × [t0, t1]. Let z(t) and x(t) be solutions of

dz
dt

= V(z, t) (197)

and
dx
dt

= V(x, t) + f(x, t), (198)

respectively, where x(t), z(t) ∈ D for all t ∈ [t0, t1]. Suppose that

‖ f(ζ, t) ‖ ≤ fmax ∀(ζ, t) ∈ D × [t0, t1]. (199)

Then

‖ x(t) − z(t) ‖ ≤ ‖ x(t0) − z(t0) ‖ eL(t−t0) +
fmax

L

[
eL(t−t0) − 1

]
(200)

for all t ∈ [t0, t1].

Using Lemma 5.2.1 and 5.2.2, the error in predicted vehicle position can be bounded

as in the following proposition.

Proposition 5.2.3 Let FM(ζ, t) be a differentiable, Lipschitz continuous flow field with Lip-

schitz constant LF , and suppose that ‖FM(ζ, t) ‖ ≤ Fmax for all (ζ, t) ∈ D × [t0, t1]. Let

x(t0) = z(t0) = z0 lie far from the goal, so that z(t) > R for all t ∈ [t0, t1]. Under the

station-keeping controller, the error in the predicted position of the vehicle is bounded as

‖ e(t) ‖ ≤
fmax

LV

[
eLV (t−t0) − 1

]
, (201)

where

LV = LF

1 +
F2

max√
s2 − F2

max

 +
s(Fmax + s)

R
√

s2 − F2
max

. (202)
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Proof: For notational convenience, we define the following scalar function:

α(z, t) =
FM(z, t)T JT√

s2 − (FM(z, t)T JT)2
(203)

and the matrix functions:

A(z, t) = (TFM(z, t)T + α(z, t)TFM(z, t)T J + β(z, t)I)NNT (204a)

B(z, t) = (TTT + α(z, t)TFM(z, t)T J). (204b)

To apply Lemma 5.2.2, we first show that V(z, t) is Lipschitz continuous for all z in

D′ = {z ∈ D : ‖ z ‖ ≥ R}. We do this by using Lemma 5.2.1. Using (25) for V gives

DzV(z, t) =

T(z)T(z)T −
FT

M JT(z)√
s2 − (FT

M JT(z))2
T(z)FT

M J

 DzFM(z, t)

+

T(z)FT
M −

FT
M JT(z)√

s2 − (FT
M JT(z))2

T(z)FT
M J +

(
FT

MT(z) +

√
s2 − (FT

M JT(z))2
)

I

 DT(z).

(205)

Under Assumption (C2), the virtual vehicle travels in a straight line to the origin with speed

β(z, t) given by (195). Note that T(z) =
z(t)
‖ z(t) ‖ and N(z) = JT(z) are constant along sim-

ulated vehicle trajectories. We therefore drop the argument z for notational convenience.

Substituting (203) and (195) in (205) and using the fact that

DzT(z) = −Dz
z
‖ z ‖

= −
N(z)N(z)T

‖ z ‖
, (206)

we have:

DzV(z, t) = (TTT + αTFT
M J)DzFM(z, t) −

(TFT
M + αTFT

M J − βI)NNT

‖ z(t) ‖

= B(z, t)DzF(z, t) −
1

‖ z(t) ‖
A(z, t),

(207)

where A and B are defined as in (204). Since, by assumption, FM ∈ C
1, (207) is defined

and continuous for all z ∈ D′; it remains to show that it is bounded. We have:

‖DzV(z, t) ‖ =

∥∥∥∥∥ B(z, t)DzF(z, t) −
1

‖ z(t) ‖
A(z, t)

∥∥∥∥∥
≤ ‖ B(z, t) ‖ ‖DzF(z, t) ‖ +

1
‖ z ‖
‖ A(z, t) ‖ ,

(208)

66



where ‖M ‖ for M ∈ Rn×n is the induced 2-norm defined as

max
‖ ζ ‖=1

‖Mζ ‖ =
√
λmaxMT M; (209)

here λmax(·) : Rn×n → R is the maximum eigenvalue. Then, using the fact that FM is

Lipschitz continuous with Lipschitz constant LF , we have

‖DzV(z, t) ‖ ≤
√
λmax(BT B) ‖DzF(z, t) ‖ +

1
‖ z ‖

√
λmax(AT A)

≤
√
λmax(BT B)LF +

1
‖ z ‖

√
λmax(AT A)

(210)

It is straightforward to show that

√
λmax(AT A) =

sβ(z, t)√
s2 − (FM(z, t)T JT)2

(211)

and √
λmax(BT B) =

√
1 − 2α(z, t)FM(z, t)T N + α2(z, t) ‖FM(z, t) ‖2. (212)

Using (211) and (212), inequality (210) can be written as

‖DzV(z, t) ‖

≤ LF

√
1 − 2α(z, t)FM(z, t)T N + α2(z, t) ‖FM(z, t) ‖2 +

1
‖ z ‖

sβ(z, t)√
s2 − (FM(z, t)T JT)2

.

(213)

Using the fact that

−2α(z, t)FM(z, t)T N = 2
F2√

s2 − (FM(z, t)T N)2
≤ 2

F2
max√

s2 − F2
max

, (214)

and

0 < β(z, t) = FM(z, t) +
√

s2 − (FM(bz, t)T N)2 ≤ Fmax + s (215)

we have that ‖DzV(z, t) ‖ is bounded as

‖DzV(z, t) ‖ ≤ LF

√
1 + 2

F2
max√

s2 − F2
max

+
F4

max

s2 − F2
max

+
s(Fmax + s)

R
√

s2 − F2
max

= LF

1 +
F2

max√
s2 − F2

max

 +
s(Fmax + s)

R
√

s2 − F2
max

= LV

(216)
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on any convex subset W of D′. Thus, by Lemma 5.2.1, V(z, t) is Lipschitz continuous

in z with Lipschitz constant LV , for all z ∈ D′. The Proposition then follows from direct

application of Lemma 5.2.2, with x(t0) − z(t0) = 0.

The growth of error can be approximated using a first-order Taylor expansion of the

error growth equation, as in (13). For the station-keeping controller, setting ν(t) ≡ 0, we

have:

de
dt
≈ DzV(z, t; u)e + f(z + e, t)

≈

[
B(z, t)DzF(z, t) −

1
‖ z(t) ‖

A(z, t)
]

e(t) + f(z + e, t),
(217)

with A and B defined as in (204). In Section 5.2.1, we derive bounds on the first-order error

growth in predicted vehicle position for a representative simple case, where the modeled

ocean flow FM is constant and the difference f between real and modeled flow is a function

of time only.

5.2.1 Simplest Case: Constant Flow with Constant Bias

For constant flow FM, it is possible to derive an analytic integral equation for the first-order

approximation of the error in the predicted vehicle position; this case is a simple illustration

of the dependence of position prediction error growth on ambient flow conditions. We

derive exact results in the case where f is constant “bias” flow in the ocean model.

In the case that FM is constant, DzFM ≡ 0; α and β are constant scalars; and A is a

constant matrix. The following lemma will be used in computing the growth of position

prediction error:

Lemma 5.2.4 Given A defined by (204), Ai = βi−1A.

Proof: Let M = NNT . For A defined as in (204), A2 = [TFT
M M + αTFT

M JM − βM]2.

Expanding this expression and using the fact that MT = 0 and M2 = (NNT )2 = M gives

A2 = β(TFT
M + αTFM J − βI)M = βA. (218)

Lemma 5.2.4 follows by applying (218) i times.
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The growth of position prediction error in the constant flow case is summarized in the

following proposition:

Proposition 5.2.5 Given a vehicle with dynamics described by (4a), operating under flow-

canceling station-keeping control, and constant model flow FM such that ‖FM ‖ ≤ s, the

first-order error in predicted position of the controlled particle grows as:

e(t) =

(
I +

t
‖ z0 ‖

A
)

e(t0) +

(
I +

t
‖ z0 ‖

A
) ∫ t

0

(
I −

η

‖ z0 ‖ − βη
A
)

f(z + e, t)dη (219)

for t ∈ [0, ‖ z0 ‖ /β), where A ∈ R2 is a constant matrix and β is a non-negative constant.

Proof: Since FM is constant, DzFM ≡ 0, and α, β, and A are constant,(207) can be

written as
de
dt

= −
1

‖ z(t) ‖
Ae + f (220)

The time variation is confined to the scalar factor 1
‖ z(t) ‖ , so (220) can be solved exactly as:

e(t) = e−
∫ t

0
1

‖ z(τ) ‖Adτe(t0) + e−
∫ t

0
1

‖ z(τ) ‖Adτ
∫ t

0
e
∫ η

0
1

‖ z(τ) ‖Adτfdη. (221)

Let z(t0) = z0 be the initial position of the simulated vehicle. The vehicle will travel

in a straight line toward the origin with speed β, so that z(t) =
(
1 − βt

‖ z0 ‖

)
z0, and ‖ z(t) ‖ =

‖ z0 ‖ − βt for t < β

‖ z0 ‖
. Then

−

∫ t

0

1
‖ z(τ) ‖

Adτ =
1
β

log
(
‖ z0 ‖ − βt
‖ z0 ‖

)
A. (222)

The exponential of this is given by the series definition:

e
1
β log

(
‖ z0 ‖−βt
‖ z0 ‖

)
A

=

∞∑
i=0

(
log ‖ z0 ‖−βt

β‖ z0 ‖

)i
Ai

i!
. (223)

Using Lemma 5.2.4 and simplifying the algebraic expression we get:

e−
∫ t

0
1

‖ z(τ) ‖Adτ = e
1
β log

(
‖ z0 ‖−βt
‖ z0 ‖

)
A

= I −
t
‖ z0 ‖

A. (224)

Similarly,

e
∫ t

0
1

‖ z(τ) ‖Adτ = I +
t

‖ z0 ‖ − βt
A. (225)
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Using (224) and (225) in (221) proves the Proposition.

Assuming that the real and simulated vehicles are initialized to the same position, so

that e(t0) = 0, we can consider the growth in position prediction error due to error f in the

ocean model flow prediction. For constant f, corresponding to a constant model bias, (219)

evaluates to:

e(t)=

[
t
(
I −

1
β

A
)
−
‖ z0 ‖ − βt

β2 log
‖ z0 ‖ − βt
‖ z0 ‖

A
]

f. (226)

It is straightforward to show that the error along the direction of travel, ep,T = e(t)T T, is

given by t fT − 1/β(t +
‖ z0 ‖−βt

β
log ‖ z0 ‖−βt

‖ z0 ‖
)(FM,N − αFM,T) fN, where fT and fN denote the

components of f along T and N, respectively, and similarly, FM,T and FM,N denote the com-

ponents of FM. As there is no feedback control along the vehicle’s direction of travel, the

error growth in this direction is dominated by the linear term in t. Normal to the direction

of travel, the error eN = e(t)T N is given by eN = −
‖ z0 ‖−βt

β
log ‖ z0 ‖−βt

‖ z0 ‖
fN. This error initially

grows as the vehicle is pushed off-course by the bias flow, and is later reduced as the ve-

hicle steers toward the station-keeping goal, with bound |eN| ≤
‖ z0 ‖

βe fN. We next turn to the

case of stochastic error in modeled ocean flow.

5.3 Simulation Results

We use simulations, in which both the modeled and true flow field are known, to analyze the

performance of the linearized error growth model under different flow conditions. Specif-

ically, we consider three types of simple modeled flow: zero flow, constant flow, and tidal

flow with constant amplitude. We note how the relative angle and magnitude of the flow

FM (and of the perturbation f) affect growth of error in the predicted vehicle position. We

then use these simulations as a basis for analyzing the growth of position-prediction error

observed during a field deployment.

5.3.1 Simulation Setup

The simulation was based on our field experiments; accordingly, the simulation setup was

chosen to reflect, as closely as possible, the setup used in the field. The simulated vehicles
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were Slocum gliders (please see Section 6.1 for a more detailed description of the simulated

vehicles). Glider navigation is done by generating trajectories which are then converted to

waypoint lists and passed to the glider. The glider uses a proprietary on-board waypoint-

following algorithm to follow the desired trajectory.

The simulation was run in the Glider Environment Networked Information System (GE-

NIOS), which includes a simulator module gsim and planning module gplan that generates

desired glider trajectories and converts them to waypoint lists for the glider to follow (see

Section 6.3 for a more detailed description of GENIOS). The controller is used for trajec-

tory generation as follows: the glider trajectories are simulated under the desired controller

and forecast flow field obtained from the ocean model. The same control input is then used

to generate simulated glider trajectories under a zero-flow assumption. These are converted

to waypoints and passed to the glider. The net motion of the glider following the given tra-

jectories and the ambient flow gives the desired glider motion. Waypoint lists are generated

every time a glider surfacing is detected.

Simplified flow models are used in the simulations (flow is either constant (Simulation

I) or tidal (Simulation II) with constant tidal amplitude and a single frequency component).

5.3.2 Simulation I

Glider motion is simulated under a constant-flow ocean model. The goal position is fixed at

[32.8948 N, 78.0559 W], and the glider’s initial position is [33.1272 N, 78.3028 W], 34.6

km from the goal. The glider moves with through-water speed of 32 cm/s, which matches

the speed of the transect-following glider in the real experiment. The “virtual” glider moves

in a constant flow field FM; the “real” glider moves in a flow field FR = FM + f, where f is

a constant bias flow. The simulation time is 16 hours.

We predict the error in glider position using the first-order error-growth model (226) and

compare this with the true offset between the “real” and “virtual” glider trajectories. We

vary the magnitude and the direction of FM and f relative to the straight-line trajectory from

the glider’s initial position to the station-keeping goal to test the conditions under which the
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linearized error model matches the observed offset between the “real” and “virtual” vehicle.

Results are plotted in Fig. 10, which shows the distributions of the following quantities:

Elin
T =

maxt∈[0,16 hrs]

∣∣∣elin
T (t) − esim

T (t)
∣∣∣

maxt∈[0,16 hrs]

∥∥∥ esim
p (t)

∥∥∥ ,

Elin
N =

maxt∈[0,16 hrs]

∣∣∣elin
N (t) − esim

N (t)
∣∣∣

maxt∈[0,16 hrs]

∥∥∥ esim
p (t)

∥∥∥ ,

and

Elin
norm =

maxt∈[0,16 hrs]

∣∣∣∥∥∥ elin
p (t)

∥∥∥ − ∥∥∥ esim
p (t)

∥∥∥∣∣∣
maxt∈[0,16 hrs]

∥∥∥ esim
p (t)

∥∥∥ ,

for different values of model flow and constant bias magnitude and direction. Here super-

script lin indicates values obtained from (221) and sim indicates values observed in simula-

tion. Elin
T is the discrepancy between the along-track error predicted by the linearized error

model (221) and the along-track error observed in simulation, normalized by
∥∥∥ esim

p (t)
∥∥∥.

Similarly, Elin
N is the discrepancy between the cross-track error predicted by (221) and the

cross-track error observed in simulation, and Elin
N is the discrepancy between the norm of

the error predicted by (221) and the norm of the error observed in simulation.

It can be seen from Fig. 10 that while flow magnitude and constant bias magnitude

have little effect on the discrepancy between modeled and observed offset of the real and

predicted vehicle positions, the modeled and bias flow angles do significantly affect this

discrepancy. The lowest mean and variance as a function of modeled flow angle occur for

along-track flows in the direction directly opposite to the glider’s desired direction of travel.

The mean and variance of the discrepancy increases as the flow is rotated closer to the glider

heading direction. The effect of the bias flow angle is also quite noticeable, especially as it

affects the discrepancy between modeled and observed error values in cross-track direction.

The variance of the observed maximum discrepancy in the cross-track direction increases

significantly when bias flow is in the cross-track direction.
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Figure 10: Distribution of Elin
T , Elin

N , and Elin
norm, for different values of modeled flow am-

plitude (Subfigure 10a) and direction (Subfigure 10b), and for different values of constant
bias flow amplitude (Subfigure 10c) and direction (Subfigure 10d).

5.3.3 Simulation II

In the second simulation, we use the same set-up as in Simulation I. This time, however,

the flow data FM is periodic. We use this simulation to verify the performance of the first-

order position prediction error model under more realistic flow conditions. The linearized

approximation of error is computed by integrating (207) numerically using Euler’s method

with fixed step size, and, as in Simulation I, is compared with the error (offset between

“real” and “virtual” gliders) observed in simulation.

The modeled tidal flow used in this simulation had a single constituent component with

period 12.42 hrs., corresponding to M2 (principal lunar), the dominant tidal component in

Long Bay. The magnitude and direction of the tidal flow vary over time, so that the tidal
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flow vector describes an ellipse with half-length of the major axis FM and half-length of

the minor axis FM/2. We vary FM, as well as the angle between the major axis of the tidal

ellipse and the modeled glider track.

The “real” flow is generated by perturbing the magnitude of the modeled flow, and

adding a constant bias flow. We vary the size of the perturbation and the magnitude and

direction of the constant bias flow, and compare the along-track and cross-track errors, as

well as total error magnitude, obtained from the linearized error model and observed in

simulation. The results are shown in Figs. 11-13 (Fig. 11 shows results for bias flow only;

Fig. 12 shows results for error in tidal flow magnitude only, and Fig. 13 shows results for

error in modeled flow amplitude with added constant flow bias). The magnitudes of error

in modeled tidal amplitude, and of constant bias flow, were chosen so as to be comparable

with values encountered in the field.

The results of Simulation II demonstrate the limitations of the linearized error model in

approximating position-prediction error in a time-varying flow environment. While cross-

track error predictions remain, on average, fairly good, the along-track linearized error

differs significantly from that observed in simulation. The maximum measured difference

between predicted and observed along-track error in the simulation is 1.48 km. In the case

of constant bias in the modeled flow field (Fig. 11), the distributions of Elin
T , Elin

N , and

Elin
norm vary little with the tidal flow angle and with angle of the added flow bias, but depend

strongly on the magnitude of the bias flow, with highest mean and variance corresponding

to lower values of the bias flow magnitude. In the case of perturbed tidal amplitude (Fig.

12), the distribution of Elin
T depends strongly on the amplitude of the perturbation, with

maximal discrepancy between modeled and observed along-track error occurring for larger

error amplitudes. The same factors determine greatest discrepancy between modeled and

observed error growth when both bias flow and perturbation of the tidal flow amplitude are

present (Fig. 13).

74



0 0.5 1 1.5
0

0.5

1

1.5

2

|eT
obs−eT

th|/max||eobs||

pd
f

 

 

0 0.5 1 1.5
0

5

10

15

20

|eN
obs−eN

th|/max||eobs||

pd
f

 

 

0 0.5 1 1.5
0

0.5

1

1.5

2

(||eobs||−||eth||)/max||eobs||

pd
f

 

 

ang(Ftide) = −0.00
ang(Ftide) = 60.00
ang(Ftide) = 120.00

ang(Ftide) = −0.00
ang(Ftide) = 60.00
ang(Ftide) = 120.00

ang(Ftide) = −0.00
ang(Ftide) = 60.00
ang(Ftide) = 120.00

0 0.5 1 1.5
0

2

4

6

8

|eT
obs−eT

th|/max||eobs||

pd
f

 

 

0 0.5 1 1.5
0

20

40

60

80

|eN
obs−eN

th|/max||eobs||

pd
f

 

 

0 0.5 1 1.5
0

2

4

6

(||eobs||−||eth||)/max||eobs||

pd
f

 

 

|f| = 0.02
|f| = 0.08
|f| = 0.16

|f| = 0.02
|f| = 0.08
|f| = 0.16

|f| = 0.02
|f| = 0.08
|f| = 0.16

0 0.5 1 1.5
0

0.5

1

1.5

2

|eT
obs−eT

th|/max||eobs||

pd
f

 

 

0 0.5 1 1.5
0

5

10

15

|eN
obs−eN

th|/max||eobs||

pd
f

 

 

0 0.5 1 1.5
0

0.5

1

1.5

2

(||eobs||−||eth||)/max||eobs||

pd
f

 

 

ang(f) = −0.00
ang(f) = 90.00

ang(f) = −0.00
ang(f) = 90.00

ang(f) = −0.00
ang(f) = 90.00

Figure 11: Distribution of Elin
T , Elin

N , and Elin
norm, for different values of angle of modeled tidal

ellipse (Subfigure 11a), and for different values of constant bias flow amplitude (Subfigure
11c) and direction (Subfigure 11b). The real tidal flow amplitude is the same as the modeled
one (FM), and is equal to 0.2 m/s.
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Figure 12: Distribution of Elin
T , Elin

N , and Elin
norm, for different values of angle of modeled tidal

ellipse (Subfigure 12a), and for different values of error in the modeled flow amplitude FM

(Subfigure 12b), with no constant bias flow. The real tidal flow amplitude is 0.2 m/s.
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Figure 13: Distribution of Elin
T , Elin

N , and Elin
norm, for different values of angle of modeled tidal

ellipse (Subfigure 13a), for different errors in the modeled flow amplitude FM (Subfigure
13b), and for different values of constant bias flow amplitude (Subfigure 13c) and direction
(Subfigure 13d). The real tidal flow amplitude is 0.2 m/s.
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CHAPTER 6

GLIDER FIELD DEPLOYMENTS

The theoretical results derived in Chapters 4 and 5 have been verified using data from three

field experiments: the ASAP experiment conducted in Monterey Bay, CA, in the summer

of 2006; the Long Bay experiment conducted in Long Bay, SC, in the winter of 2012; and a

ten-day follow-up study in Long Bay in the winter of 2013. The following section describes

the experimental setups used during these deployments.

6.1 Gliders

In both the ASAP and Long Bay experiments, the AUVs used were Slocum battery gliders

[65, 56] (see Figure 14). All six gliders deployed in the ASAP experiment had maximal

dive depth of 200 m. The two gliders deployed in Long Bay in 2012 had maximal dive

depths of 100 m and 200 m, respectively; the follow-up study used a 200 m glider. The

horizontal throughwater speed of the gliders depends on the hardware configuration, dive

angle, and dive depth; the effective through-water speed of the gliders used in our exper-

iments was approximately 0.3 m/s, though speeds varied from glider to glider and were

adjusted accordingly in the glider navigation software.

The gliders have two onboard computers: the science computer, which is used to log

all science data, and the flight computer, which is used to run glider missions. Glider

operators are not granted direct control over glider sensors or actuators, but are able to set

glider operating parameters, and to pass waypoints to the glider. The glider follows the

waypoint-specified trajectory using a proprietary onboard waypoint-following algorithm.

In both experiments, glider waypoint lists were generated using an onshore controller. The

gliders communicated with the onshore controller using an Iridium satellite connection

through dockserver, a shore-based computer, which collected all glider surfacing data and

sent new waypoint lists/commands to the gliders (see Figure 15).
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Figure 14: Glider Ramses used in the winter 2012 deployment near Long Bay, SC (left).
A schematic of the glider hardware is shown on the right. The battery pack can be shifted
back and forth to adjust glider pitch angle. The tail fin is used as an active rudder for
turning; in addition, the battery pack can be rotated to adjust roll for turning. The glider
schematic is taken from “Slocum G2 Glider Operators Manual” [73].

6.1.1 Glider On-Board Flow Estimation

Gliders perform an automatic on-board estimate of the depth-averaged flow velocity over

the latest dive period. This estimate was used during our field deployments to add a correc-

tion term in the predicted flow speeds obtained from ocean models.

The glider on-board flow estimate is based on the difference between the glider’s dead-

reckoned estimate of its position at the surfacing time, and the true surfacing position.

Consider the kth dive of the mission; we wish to find Fk
glider, the glider estimate of the depth-

averaged flow over the kth dive. Let Tdive be the glider dive time. During the dive, the

glider calculates its vertical speed sz using measurements of ambient pressure; the vertical

speed is converted to an estimate of horizontal speed s by multiplying by the tangent of

the angle of attack, α (which is a fixed before deployment in the field). The glider heading

is measured directly using an internal compass. The glider’s speed and heading are then

used to calculate a dead-reckoned position estimate x̂(t). Let Tsurf be the surfacing time;

x̂(Tsurf) is then the dead-reckoned surfacing position. The real glider surfacing position

is given by x(Tsurf). The depth-averaged flow estimate would be Fk
depth.avg′d = (x(Tsurf −

x̂(Tsurf)))/(Tsurf −Tdive); however, the surfacing position cannot be measured directly due to

delay in obtaining the first GPS fix. During the time required to establish a GPS position
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Ocean Model

Figure 15: Schematic of glider communication with on-shore controller. The gilder sur-
faces periodically and receives position information from the global positioning system
(GPS). It then transmits its location to a dedicated onshore computer (dockserver). The
position files on dockserver are polled by the GENIOS server. When a new surfacing is
detected, GENIOS generates a new waypoint list for the glider, using forecast flow data
from an ocean model, and uploads it to dockserver. The waypoint list is then sent to the
glider. All communication between the glider and dockserver is done via IRIDIUM satellite
linkup.

measurement, the glider is pushed about by surface flows and wind, and drifts from the

original surfacing position, so that x(TGPS) , x(Tsurf). To correct for the surface drift, the

glider obtains a second GPS fix at time T ′GPS (see Figure 16). The drift during over time

interval [TGPS, T ′GPS], d′surf = x(T ′GPS) − x(TGPS), is used as an estimate of the drift dsurf

over time interval [Tsurf, TGPS] and the time ∆T ′GPS = T ′GPS − TGPS is used as an estimate

for ∆TGPS = TGPS − Tsurf. Thus we use the estimate x′(Tsurf) = x(TGPS) − d′surf for the real

surfacing position in the depth-averaged flow velocity calculation (see Figure 17). Then

Fk
glider = (x′(Tsurf) − x̂(Tsurf))/∆T ′GPS. (227)

It should be noted that Slocum gliders have an option for current correction; using

this option enables an on-board flow cancellation algorithm. When operating with current

correction, the glider adjusts its heading to cancel the on-board flow estimate based on sur-

facing data collected for the previous dive. In coastal environments with strong tidal flows
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Figure 16: Schematic of glider dive, showing time of last dive (Tdive), last surfacing time
(Tsurf), and times TGPS and T ′GPS corresponding to the first and second glider GPS fix, re-
spectively.

which change significantly over the glider dive duration, this flow-canceling algorithm gen-

erally performs so poorly that it it preferable to have no current corrections. During the

ASAP and Long Bay deployments, the on-board current correction was therefore turned

off.

dead-reckoned glider trajectory

real glider trajectory

x(Tdive)

x̂(Tsurf)

x(Tsurf) x(TGPS)

x(T ′
GPS)

x1

x2

dsurf

d′
surf

Figure 17: Schematic of the glider’s on-board flow estimation algorithm.
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6.2 Flow Conditions and Predictive Ocean Models

The ASAP experiment in Monterey Bay, CA, was conducted under relatively light flow

conditions. Tidal flows in the region are quite weak. The real vehicles were guided using

only on-board flow estimates collected by the entire glider fleet, using a linear estimation

technique known as objective analysis (OA) [74], as described in [40]. Glider position pre-

dictions were obtained using the following three ocean models: the Navy Coastal Ocean

Model (NCOM), the Harvard Ocean Prediction System (HOPS), and the Regional Ocean

Modeling System (ROMS) developed by NASA JPL. The NCOM model is a free-surface,

primitive-equation model with global global temperature and salinity data assimilation

from the Modular Ocean Data Assimilation System (MODAS). The model is discretized on

a grid with resolution of approximately 2.24 km over the study site, and provides a 72-hour

flow forecast. The HOPS model is a primitive equation model adapted for coastal appli-

cations. The ROMS model is a free-surface, terrain-following, primitive equation model

with mean gridsize of 1.8 − 2.2 km over the study domain. The flow values at the glider

position for each ocean model were obtained using a linear interpolation of the model flow

gridpoint values.

The region around Long Bay is characterized by strong flows; as far as the author is

aware, the deployment in Long Bay in 2012 was the first attempt to operate gliders in such

difficult flow conditions over an extended period of time. The strong flows are the result of

two contributing factors: namely, the tides and the Gulf Stream. According to a 1979 study

by Lee et al. [75], tidal currents account for approximately 80% of current variability in

the cross-shore direction at 50 m water depth, and for approximately 50% at 100 m depth;

in the along-shore direction, tidal current variability accounts for approxiamtely 20% of

current variability at 50 m water depth, and for approximately 5% at 100 m. Most along-

shore variability in flow is due to low-frequency wind-driven or Gulf Stream-induced flows

[76], and Gulf Stream flows dominate at depths greater than 100 m.

The flow in the study domain is strongly influenced both by tides and by the Gulf
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Stream. The domain is a rectangular region oriented parallel to the shore-line, as shown in

Figure 18. The near edge of the domain lies about 82 km off-shore (where water depth is

approximately 30 m and tidal flows are dominant). The shelf-break, where the depth begins

to increase steeply with off-shore distance, is located approximately 110 km off-shore, at a

depth of 75 m. The far edge of the domain lies about 120 km off-shore, at a depth of 176

m, where Gulf Stream influences dominate the flow (see Figure 18).
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Figure 18: (Left) study domain for Long Bay experiment. (Right) water depth along the
cross-shore transect marked by points LB1, LB2, and LB3, showing the gradual depth
increase over the continental shelf, and steep drop-off at the shelf break. Tidal influences
dominate the flow over the shallow parts of the domain (for depths below approximately
60 m), while Gulf Steam flows dominate in the deep water.

Unfortunately, there is no available high-resolution general circulation model which

accurately captures the flow features at the edge of the Gulf Stream. We therefore used an

in-house model that combined predictions of tidal flow values with glider on-board flow

estimates to obtain a flow forecast.

Tidal flow forecasts were obtained from a database compiled by B. Blanton [76]. The

database stores amplitudes and phase angles for 37 tidal constituents at discrete nodes of

a finite-element grid over the study domain. The amplitude and phase values are based

on a series of simulations run using the Advanced Circulation Ocean Model (ADCIRC),

and have been extensively tested and verified [76]. In the Long Bay experiments, we use a

subset of the available tidal constituents, as others have negligible influence on the observed
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flow velocity; see Table 1 for a list of the tidal constituents used in Long Bay.

Table 1: Tidal constituents used to model tidal flow during the 2012 and 2013 deployments
in Long Bay, SC.

Tidal Constituent Period [hrs] Description
M2 12.42 Principal lunar semi-diurnal
S2 12.00 Principal solar semi-diurnal
N2 12.66 Larger lunar elliptic semi-diurnal
K1 23.93 Luni-solar diurnal
O1 25.82 Principal lunar diurnal

Additional flow components were computed as follows. It was assumed that the real

ocean flow FR(x, t) at the vehicle location x(t) can be expressed as the superposition of

the high-frequency tidal flow Ftidal(x, t) modeled in the ADCIRC database, an additional

low-frequency flow FLF(x, t) that does not change significantly in space or in time over the

duration of a single dive, and some other high-frequency flow components FHF(x, t):

FR(x, t) = FLF(t) + Ftidal(x, t) + FHF(x, t). (228)

We consider the low-frequency flows to be those with periods of more than 30 hours along

the glider trajectory. The tidal flow is obtained from the ADCRIC database; the low-

frequency flow must be estimated based on past glider on-board flow estimates. Let T k
dive

be the time of the kth dive, and let T k
surf be the time of the subsequent surfacing. Let Fk

glider

be the glider on-board estimate of the depth-averaged flow over [T k
dive,T

k
surf], computed as

described in Section 6.1.1. Taking the time-average of (228) over [T k
dive,T

k
surf], we get:

Fk
glider ≈

1
∆T k

∫ T k
surf

T k
dive

FR(x(t), t)dt

=
1

∆T k

∫ T k
surf

T k
dive

FLF(x(t), t)dt +
1

∆T k

∫ T k
surf

T k
dive

Ftidal(x(t), t)dt +
1

∆T k

∫ T k
surf

T k
dive

FHF(x(t), t)dt,

(229)

where ∆T k denotes T k
surf − T k

dive. Let

F̄k
LF =

1
∆T k

∫ T k
surf

T k
dive

FLF(x(t), t)dt (230)
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denote the time-averaged low-frequency flow over dive k, let

F̄k
tidal =

1
∆T k

∫ T k
surf

T k
dive

Ftidal(x(t), t)dt (231)

denote the time-averaged tidal flow, and let

F̄k
HF =

1
∆T k

∫ T k
surf

T k
dive

FHF(x(t), t)dt (232)

denote the time-averaged value of other high-frequency flow components. We have that

F̄k
LF + F̄HF ≈ Fk

glider − F̄k
tidal. However, we F̄tidal cannot be computed directly, since the

precise underwater position x(t) of the vehicle is not known on [T k
dive,T

k
surf]. To resolve

this problem, we note that tidal flow over the Long Bay domain varies slowly in space (the

change in tidal flow amplitude over a 1 km change in position does not exceed 1 cm/s). We

therefore query the tidal database at a single location x(T k
dive) and obtain the estimate

F̄k
tidal ≈ F̃k

tidal =
1

∆T k

∫ T k
surf

T k
dive

Ftidal(x(T k
dive), t)dt, (233)

and use this to estimate the de-tided flow over dive k:

Fk
detide , F̄k

LF + F̄k
HF ≈ Fk

glider − F̃k
tidal. (234)

To estimate the low-frequency flow, we apply a low-pass filter to the computed flow

data. A rectangular window with length of 5 days W5 days is applied to the data, so that all

measurements of Fdetide older than 5 days are set to 0. We use a 4th-order Butterworth filter

BF[·] with cutoff frequency 1/30 hours−1 to find the low-frequency flow component:

F̄LF ≈ BF[W5 days(Fdetide)]. (235)

Assuming that the low-frequency flow component is approximately constant in time and

space over the duration of a single dive, we generate the modeled flow values FM at the

predicted vehicle position z(t) over the following dive period [T k+1
dive,T

k+1
surf ] using the last

available value for F̄LF:

FM(z, t) = F̄k
LF + Ftidal(z, t), (236)

where Ftidal is obtained from the ADCIRC database.
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6.2.1 Reconstruction of the Long Bay Flow Field

In order to test the linearized model for growth of error in predicted vehicle position over

time given large-scale structure in the modeled flow error (described in Section 5.2), the

real ocean flow field FR must be known. This flow has to be estimated based on glider

on-board measurements of depth-averaged flow, as no other flow data are available at the

desired positions over the study domain. To perform the reconstruction, we assume that the

flow is spatially invariant, and composed of the three components FLF, Ftidal, and FHF, as

before. The real flow is approximated as in (236):

FR(z, t) ≈ F̄k
LF + Ftidal(z, t), (237)

but this time, the time interval is [T k
dive,T

k
surf]. Here F̄k

LF and Ftidal(z, t) are computed as

before.

6.3 GCCS and GENIOS

During the ASAP experiment, the gliders were controlled using the Glider Coordinated

Control System (GCCS), a Matlab-based path planning and navigation software, which is

described in detail in [40, 41]. In the Long Bay experiment, a significantly modified and

expanded version of GCCS, now called Glider-Environment Network Information System

(GENIOS), was used. A brief overview of GCCS/GENIOS is given in this section.

The GCCS glider control software was first developed at Princeton University by D.

Paley and F. Zhang. GENIOS was developed by D. Chang at Georgia Tech in 2011-2012,

using GCCS as a basis. The main part of GCCS is written in Matlab and consists of two

modules: a planning module (gplan) and a simulator module (gsim). GENIOS additionally

has an environment handler which directly handles communication between the GCCS and

underwater gliders through the dockserver.

The gplan module is used to generate glider waypoint lists. Gplan can simulate glider

motions using either a detailed three-dimensional glider model with flow data from ocean

model predictions, or a fast, less accurate two-dimensional particle model. The detailed
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glider model is used to predict future glider surfacing positions; the particle model is used to

quickly generate glider trajectories, given a glider surfacing position and control algorithm.

The glider path is then converted to a list of waypoints which the glider follows to stay on

the desired trajectory.

The gsim module uses the three-dimensional glider model and flow data from ocean

model predictions to simulate the path of each glider. This enables users to test glider

control and navigation algorithms under various flow conditions in the lab, prior to deploy-

ment in the field. This is a significant advantage, since the cost of glider deployment and

recovery can be quite high. During a real glider deployment, the gsim module is used to

predict future surfacings while a glider is underwater; this is useful for quickly generating

desired trajectories for the glider, so that they will be available as soon as the glider comes

to the surface. This was done routinely during the ASAP experiment; in Long Bay, on the

other hand, trajectories generated from the gsim-predicted position were used as “backups”;

when the glider surfaced, a trajectory would be computed from its real surfacing location

and sent to the glider. If the glider lost communication before the new trajectory had been

computed, the “backup” trajectory was used instead.

The environment handler in GENIOS was used to detect glider surfacings, as well as

to fetch and load ocean model flow data. The glider surfacing positions and times, and

ADCIRC flow estimates, were passed to gplan. The environment handler was also used to

upload waypoint lists generated by gplan to the gliders. During the ADCIRC experiment,

external software was used to handle communications between the glider and GCCS.

The environmental conditions, as well as mission goals, were quite different in the

ASAP and the Long Bay experiments. As a result, the GCCS/GENIOS configurations in

each experiment differ significantly. The control objective of the ASAP experiment was to

coordinate motions of fleet of gliders around closed tracks in a relatively mild flow envi-

ronment. During the ASAP deployment, therefore, a heavy reliance was placed on gsim

predictions of glider surfacing positions to achieve coordinated motion between gliders in
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spite of asynchronous surfacing time. Flow predictions used by gplan were computed by

averaging glider on-board flow measurements from previous dives. During the Long Bay

experiment, on the other hand, the gliders were not required to coordinate their motions;

however, the ambient flow environment was significantly more challenging, because of

high tidal flow velocities, and influence from the Gulf Stream. Therefore, desired trajecto-

ries were computed at each surfacing based on the latest GPS data available from the glider,

and current corrections based on flow obtained from ocean models were incorporated in the

trajectory generation in gplan. More details about the GCCS/GENIOS configurations used

in each experiment are given in the sections describing the individual experiments.

6.4 ASAP 2006

The Adaptive Sampling and Prediction (ASAP) field experiment was conducted in Mon-

terey Bay, CA, in August 2006. The purpose of the experiment was to study the three-

dimensional heat and mass transfer dynamics of the coastal upwelling center in the Bay

[5, 64]. A 22×40 km control volume was monitored for a period of one month using a het-

erogeneous ocean sampling network. A fleet of 10 underwater gliders, including 6 Slocum

and 4 Spray gliders, was used to take measurements of ocean states.

The gliders moved along predetermined tracks, which were chosen to optimize a user-

specified sampling metric (see [70]). The gliders were coordinated through the centralized

onshore controller to maintain sufficient inter-agent spacing to ensure good sensor coverage

of the region of interest. The control algorithm used is described in detail in [40].

6.4.1 ASAP Field Experiment Results

A virtual glider experiment was run in GCCS gsim alongside the physical experiment.

The gliders in the virtual fleet were modeled using true glider parameters, and the same

proprietary on-board controller as that used by the physical gliders. The virtual gliders

were initialized at the same positions as their physical counterparts, and their motions were

simulated using flow data from ocean models. The virtual experiment was repeated for
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three different models, as described in Section 6.2. Each virtual experiment was run over a

period of 24 hours.

A plot of the norm of the error in the position prediction over time (averaged over all

gliders and all days for which data is available) obtained using the virtual glider model is

shown in Figure 19. Note that the error grows approximately exponentially until a value of

about twice the gridsize is reached; past this point, the growth rate slows down. This agrees

with the CLPT prediction of expected threshold for exponential growth of the CLPT error,

and with the contribution of the stochastic eddy diffusivity term in the Langevin equation.

Figure 19: CLPT error for different ocean models observed during ASAP experiment.

6.5 Long Bay 2012

The Long Bay 2012 experiment was conducted off the coast of Long Bay, South Car-

olina between January 25 and April 4, 2012. The scientific goal of the experiment was to

study the physical processes driving the formation of persistent wintertime phytoplankton

blooms at the shelf break, in a region where existing ocean models predict low biological

productivity. Two Slocum gliders were deployed to monitor the study domain as part of a

heterogeneous sampling network. The gliders were assigned to track two predefined tra-

jectories: the first glider, referred to as Pelagia, followed a cross-shore transect of length

46.2 km, with endpoints at positions LB1 = [78.3300 W 33.1726 N] and LB3 = [78.0132

W 32.8524 N] (over the course of the deployment, the farshore endpoint was sometimes
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shifted inshore as far as LB2 = [78.0945 W 32.9415 N], to avoid strong currents), while

the second glider, Ramses, performed a station-keeping mission at LB3 (see Figure 20).

LB3

LB2

LB1

Long Bay

Cape Romain

Figure 20: Glider tracks for 2012 deployment in Long Bay, SC. Positions LB1, LB2, and
LB3 are marked by red circles. The first glider performed a station keeping mission at LB3,
while the second moved on the transect between LB1 and LB3.

Glider navigation was done using GENIOS (see Section 6.3). The desired trajectory for

each glider was computed using the station-keeping control law (see Chapter 3.4.3), with

modeled flow data computed as described in Section 6.2. To achieve transect-following

behavior for the glider Pelagia, the station-keeping position was switched between the two

transect endpoints.

6.5.1 Long Bay Field Experiment Results

A virtual glider experiment was run alongside the physical experiment, using the simulation

module gsim on GENIOS. The virtual gliders were initialized at the same positions as

their physical counterparts, and their motions were simulated using flow data computed as

described as in Section 6.2. The virtual glider experiments were run over periods of 24

hours, described in Table 2.

A plot of the magnitude of the error in the predicted position for each glider over time
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Table 2: Simulation start times and positions in Long Bay 2012 deployment.
Start Date and Time (UTC) Starting Position (Lon, Lat) Station Keeping Goal

17 Mar, 01:24 78.3544 W 33.1719 N LB1
18 Mar, 21:23 78.3544 W 33.1719 N LB2
19 Mar, 13:55 78.3028 W 33.1272 N LB2
23 Mar, 17:32 78.1546 W 32.9164 N LB1
25 Mar, 17:52 78.3185 W 33.1586 N LB2

is shown in Figure 21. Note that for the transect-following glider Pelagia, the error grows

approximately exponentially until a value of about 1.2 times gridsize is reached; past this

point, the growth rate slows down. This agrees with the theoretical threshold for exponen-

tial growth of the CLPT error. For the station-keeping glider, the error increases rapidly

to about 0.9 km, or roughly 1/4 of the gridsize, then slows. The CLPT error for both

gliders has a periodic variation with period of approximately 6 hours, which is the period

corresponding to the M4 tidal component. This periodic variation in CLPT error is con-

sistent with error in modeling of the tidal flows experienced by the gliders. Note also that

the transect-following glider had, in reality, a slower-than-modeled effective through-water

speed, on account of more frequent inflections as it was swimming in shallower water

(with inflections as shallow as 30 m, well below the 100 m dive limit); this accounts for a

through-water speed reduction of approximately 15 − 20%. This error in modeled velocity

in gplan may also have led to impaired flow cancellation performance and to tidal variation

in the CLPT error for the transect-following glider.

We next compare the output of the linearized model for growth of error in predicted

vehicle position (described in Chapter 5.2) with error observed in the field experiment. The

error in predicted glider position and the linearized estimate are shown in Figure 23. The

theoretical error computation based on linearized error dynamics gives a fairly accurate

estimate of the glider cross-track position prediction error, but along-track performance is

poor; this is consistent with our observations in the simulations in Section 5.3.3. There are

several possible explanations for the discrepancy between modeled and observed errors in
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Figure 21: Average CLPT error for transect-following glider (left) station-keeping glider
(right).

the predicted vehicle position: first is the fact that the flow model used by the glider was

discontinuous, with jumps occurring at glider dive times, while the first-order error growth

model assumes continuously varying ocean model flow values. Second, the error in the

ocean model flow values is computed based on the reconstruction of ocean flow data as

described in Section 6.2.1. This reconstruction technique ignores spatial variation in the

real ocean flow and may introduce inaccuracy in the values of f used in the linearized error

growth model.

6.6 Long Bay Follow-Up Deployment 2013

The Long Bay follow-up deployment took place between February 21 and March 1, 2013.

A single glider was deployed and performed a transect-following mission, using the station-

keeping controller described in Section 3.4.3. The station-keeping position alternated

between the transect endpoints, which were located at positions LB+20 = [78.1966 W

33.0367 N] and LB+40 = [78.0559 W 32.8948 N] (see Figure 24).

6.6.1 Follow-Up Field Experiment Results

To analyze position prediction error observed in the field, we run simulations of the virtual

glider in the gsim module in GENIOS. The real glider position is obtained from GPS mea-

surements of glider surfacing positions. We compare modeled and real glider trajectories

over non-overlapping 24-hour prediction periods.
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The virtual gliders are simulated in a modeled flow field FM computed as in Section

6.2, where depth-averaged flow estimates from the latest real glider surfacing preceding

the current simulation time are used to obtain the low-frequency flow components. The

magnitude of the error in modeled glider position over three simulations runs (see Table

3), and the magnitude error averaged over the three runs, is shown in Figure 25. The

error does not exhibit the characteristic growth observed in the ASAP experiment that was

indicative of position prediction error growth caused by stochastic error in the modeled flow

predictions; instead, the growth in position prediction error magnitude is approximately

linear in time. This is consistent with large-scale, slowly-varying errors in the forecast flow

values.

Table 3: Simulation start times and positions in Long Bay 2013 deployment.
Start Date and Time (UTC) Starting Position (Lon, Lat) Station Keeping Goal

22 Feb, 21:05 78.2108 W 33.0675 N LB+40
24 Feb, 04:41 78.0562 W 32.9088 N LB+20
25 Feb, 12:43 78.1774 W 33.0098 N LB+40

The real flow experienced by the glider was reconstructed from glider on-board flow

measurements as described in Section 6.2.1. The error f in modeled flow values is obtained

by taking the difference of the reconstructed flow and the estimated flow values used during

the experiment. Computed values of f along glider trajectories for the three 24-hour periods

described in Table 3 are plotted in Fig. 26.

We next compare the output of the linearized model for growth of error in predicted

vehicle position (described in Chapter 5.2) with results obtained in the field. Figure 27

shows the error in predicted glider position, together with the linearized error estimate, de-

composed into along-track and cross-track components. The theoretical error computation

based on linearized error dynamics gives a fairly accurate estimate of the glider cross-track

position prediction error, but along-track performance is poor. This is consistent with our

observations in the simulations described in Section 5.3.3. We also note that the flow model
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used by the glider was discontinuous, with jumps occurring at glider dive times; this cre-

ates inaccuracies in the linearized error model, which assumes continuously varying ocean

model flow values. Additionally, the since error in ocean model flow values is computed

based on the reconstruction of ocean flow data, there may be some inaccuracy in the values

of f used in the linearized error growth model.
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Figure 22: Error in ocean model flow prediction of cross-track (green) and along-track
(blue) flow values along three glider transects, in m/sec. Reconstructed flow based on glider
on-board depth-averaged flow measurements and ADCIRC tidal flow is used as ground
truth.
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]Figure 23: (Left) Trajectories of real (solid line) and virtual (dashed line) station-keeping
gliders from a field experiment in Long Bay, SC, in February 2013. (Right) Along-track and
cross-track error in predicted glider position over time, observed (solid line) and predicted,
based on linearization of error growth equation (dashed line).
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Figure 24: Glider tracks for 2013 follow-up deployment in Long Bay, SC. The deployed
glider moved on the transect between positions LB+20 and LB+40, marked by red circles
on the map.
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Figure 25: Magnitude of error in simulated glider position over time for three trials run
over non-overlapping 24-hour intervals (left), and averaged over the three trials (right).
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Figure 26: Error in ocean model flow prediction of cross-track (green) and along-track
(blue) flow values along three glider transects, in m/sec. Reconstructed flow based on glider
on-board depth-averaged flow measurements and ADCIRC tidal flow is used as ground
truth.

97



−78.3 −78.25 −78.2 −78.15 −78.1 −78.05 −78
32.85

32.9

32.95

33

33.05

33.1

33.15

33.2

33.25

40

40

40

60

60

60

80

80

100

100

100

LON [deg]

LA
T 

[d
eg

]

0 5 10 15

−4000

−3000

−2000

−1000

0

1000

time [hrs.]

Er
ro

r i
n 

pr
ed

ic
te

d 
po

si
tio

n 
[m

]

 

 

obs. along−track err
obs. cross−track err
lin. along−track err
lin. cross−track err

0 5 10 15
0

500

1000

1500

2000

2500

3000

3500

4000

time [hrs.]

N
or

m
 o

f e
rro

r i
n 

pr
ed

ic
te

d 
po

si
tio

n 
[m

]

−78.3 −78.25 −78.2 −78.15 −78.1 −78.05 −78
32.85

32.9

32.95

33

33.05

33.1

33.15

33.2

33.25

40

40

40

40

60

60

60

80

80

100

100

100

LON [deg]

LA
T 

[d
eg

]

0 5 10 15 20

−8000

−6000

−4000

−2000

0

2000

time [hrs.]

Er
ro

r i
n 

pr
ed

ic
te

d 
po

si
tio

n 
[m

]

 

 

0 5 10 15 20

2000

4000

6000

8000

10000

time [hrs.]

N
or

m
 o

f e
rro

r i
n 

pr
ed

ic
te

d 
po

si
tio

n 
[m

]

obs. along−track err
obs. cross−track err
lin. along−track err
lin. cross−track err

−78.3 −78.25 −78.2 −78.15 −78.1 −78.05 −78
32.85

32.9

32.95

33

33.05

33.1

33.15

33.2

33.25

40

40

40

60

60

60

80

80

100

100

100

LON [deg]

LA
T 

[d
eg

]

0 5 10 15 20

−10000

−8000

−6000

−4000

−2000

0

time [hrs.]

Er
ro

r i
n 

pr
ed

ic
te

d 
po

si
tio

n 
[m

]

 

 

obs. along−track err
obs. cross−track err
lin. along−track err
lin. cross−track err

0 5 10 15 20

2000

4000

6000

8000

10000

time [hrs.]

N
or

m
 o

f e
rro

r i
n 

pr
ed

ic
te

d 
po

si
tio

n 
[m

]Figure 27: (Left) Trajectories of real (solid line) and virtual (dashed line) station-keeping
gliders from a field experiment in Long Bay, SC, in February 2013. (Right) Along-track and
cross-track error in predicted glider position over time, observed (solid line) and predicted,
based on linearization of error growth equation (dashed line).
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CHAPTER 7

CONCLUSION AND FUTURE WORK

This chapter gives a brief review of the work described in this dissertation, and presents a

short proposal for related future research directions.

7.1 Conclusion

The main contributions of this dissertation include the derivation of bounds on the growth

of error in predicted positions of autonomous underwater vehicles guided by predictive

ocean models, under uncertainties in the modeled flow field values; and development of

a model for the growth of error in predicted vehicle positions given flow-prediction errors

with large-scale spatial structure. The error growth results were verified experimentally in

a series of field experiments conduced in Monterey Bay, CA, in 2006, and near Long Bay,

SC, in 2012 and 2013. The contributions are summarized in the following bullets:

• Bounds on growth of error in predicted vehicle position under flow-canceling con-

trol: Expected bounds are computed for error in predicted position of a flow-canceling

vehicle with adjustable through-water speed moving in a constant flow field. We have

shown that, given a limited-resolution ocean model with Gaussian, zero-mean errors

in modeled flow velocity at ocean model gridpoints, the error in predicted vehicle

position is approximately 2.5 times the ocean model gridsize.

• Bounds on growth of cross-track error in predicted vehicle position under transect-

following control: Expected bounds are computed for the cross-track component of

error in predicted position of a vehicle with constant through-water speed perform-

ing transect-following control with guidance from a predictive ocean model with

zero-mean, symmetrically-distributed stochastic errors in flow values at ocean model

gridpoints. We show that the cross-track error depends on the ocean model gridsize

and increases in time until a steady-state distribution is achieved.
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• Model for growth of error in predicted vehicle position under known continuous

perturbations of the modeled ocean flow field: A model for the growth of error in

predicted vehicle position is derived using a first-order Taylor expansion of vehicle

dynamics about the modeled vehicle trajectory. This model is used to approximate

error growth through complex, time-varying flow fields in the case where error in the

modeled ocean flow field can be approximated as a continuous, deterministic func-

tion in space and time, as when large-scale flow features are not correctly captured

by the ocean model used in the vehicle position prediction. We find an analytic ex-

pression for the first-order approximation of error growth in the cross-track direction

for the station-keeping controller, under constant flow with constant model bias. In

general, error growth depends on the structure of the flow field and the modeling

error.

7.2 Future Work

Future work will further explore topics raised during our work on the results presented

in this dissertation. Two questions emerge quite naturally from our work on controlled

Lagrangian prediction and error modeling:

1. Can data collected by autonomous underwater vehicles be used as feedback in the

ocean model to improve the prediction ability for future vehicle trajectories?

2. How does error in predicted vehicle position grow when ambient flow speed matches

or exceeds the through-water speed of the vehicle?

The question of using Lagrangian data to improve Eulerian flow models has been

around for some time in the field of oceanography; results on assimilation of position data

from freely advected floating platforms to improve ocean model flows are presented in

[77, 78, 79, 80]. The simulation results in [80] indicate that local errors in modeled flow
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values can be minimized by using targeted Lagrangian measurements of individual ener-

getic regions in the flow. Achieving such targeting with freely-advected platforms requires

some clever management of deployment times and positions; it can be done much more

easily with the use of autonomously controlled vehicles. The energetic regions of the flow

are typically characterized by the existence of Lagrangian coherent structures within the

flow. We propose to locate and track these structures using local flow measurements from

networked groups of autonomous underwater vehicles and to use collected flow data for

assimilation back into ocean models. This work will extend the results of Hsieh at al on

tracking of Lagrangian coherent structures [81].

The use of autonomous vehicles to probe energetic regions in the ocean leads naturally

to Question 2. If flow speed matches or exceeds the through-water speed of the vehicle, the

vehicle motion depends strongly on the structure of the ambient flow. The future position

may be sensitive to the initial position of the vehicle and to small perturbations in the vehi-

cle dynamics in the vicinity of coherent structures. A brief background on these structures

is given in the following section.

7.2.1 Coherent Structures in Fluid Flow Fields

The motion of advected particles in fluid flow is frequently chaotic, even in fully determin-

istic and relatively simple flow fields, so that the separation between neighboring particles

grows exponentially over time [79, 80, 82]. As a result, it is often difficult to visually inter-

pret Lagrangian time series data. In such cases, detecting organizing structures which act

as repelling or attracting surfaces in the flow can be helpful in understanding the structure

of overall motion within the field [83, 82].

Given a time-invariant flow
dx
dt

= f (x), (238)

the coherent structures can be identified with the stable and unstable manifolds associated

with the hyperbolic fixed points of the system dynamics. These manifolds frequently act as
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separatrices, partitioning regions characterized by qualitatively different dynamical behav-

ior [82, 84], and give a “skeletal” view of the overall system dynamics.

There is no general consensus in the literature, however, on how coherent structures

should be defined for systems with non-autonomous (time-varying) dynamics. There have

been several proposed definitions for Lagrangian coherent structures for periodic and quasi-

periodic flows, ex. as exponential dichotomies [85] or lobes [86, 87]. In most practical

applications, however, the flow has a general aperiodic time variation; furthermore, it may

only be available as a discrete data set over a finite time window. In this case, one cannot

directly apply analytic results from dynamical systems theory, and there is considerable

ambiguity in the definition of organizing coherent structures.

Attempts have been made to characterize coherent structures from both the Eulerian and

Lagrangian points of view. The Eulerian approach defines coherent structures as regions of

high vorticity [88], maximal vorticity gradient [89], or high vorticity-strain ratio [90, 91,

92, 93]. However, as shown in [94], information derived from the instantaneous velocity

field in time-varying systems can give misleading results.

The Lagrangian approach may be understood in terms of the following “physical” def-

inition of Lagrangian coherent structures (LCS) given by George Haller in [95]: “A hyper-

bolic LCS over a finite time interval ` [...] is a locally strongest repelling or attracting mate-

rial surface over `”. In a series of papers published between 1998 and 2001 [96, 97, 98, 99],

Haller develops a rigorous definition of LCS that supports the above intuitive understanding

of LCS.

The heuristic explanation of LCS is based on the notion of hyperbolicity in dynamical

systems theory. A hyperbolic trajectory is one that is locally either repelling or attracting;

that is, if the system is linearized about the trajectory, the fundamental solutions of the

resulting linear system are all either exponentially growing or decaying.

Characterizing the hyperbolicity of material surfaces in aperiodic flow fields is a matter
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that has been treated in a number of ways. Haller’s early analysis was based on examin-

ing the instantaneous stable and unstable manifolds associated with hyperbolic stagnation

points in a flow; hyperbolic trajectories of the time-varying system were derived by adding

slow time variation to the instantaneous dynamics [96]. A similar approach is taken by K.

Ide et al in [94]. Ide’s paper presents a method for computing “distinguished hyperbolic

trajectories” in time-varying flow using the notion of exponential dichotomies. In [97], on

the other hand, LCS are defined as material lines with locally maximal hyperbolicity times.

Other alternative measures of hyperbolicity have been used to define LCS in the literature,

including the finite-size Lyapunov exponent (FSLE), which measures the time necessary

for neighboring particles to reach a given separation [100, 101, 102], and the finite-strain

field [103]. A computationally convenient definition of the LCS in terms of the finite time

Lyapunov exponent field is suggested by Haller in [99] and further developed by S. C.

Shadden et al in [104, 82] and by F. Lekien et al in [105]. This is the definition which will

be used in the proposed work.

Lyapunov exponents may be used to characterize the stability of trajectories of non-

linear systems, as well as to note the emergence of chaos, provided that the system being

analyzed satisfies certain regularity conditions [106, 107]. In classical systems theory, the

Lyapunov exponent is defined as the exponential expansion/contraction rate about a trajec-

tory of a possibly nonlinear system [106]. Finding the Lyapunov exponent requires that the

system be integrable and known for all time; this is often not true for ocean flows, which

are computed using numerical models over a finite time horizon. The finite-time Lyapunov

exponent (FTLE) is a generalization of the Lyapunov exponent and is defined as the expo-

nential expansion rate about a system trajectory over a finite time window [104]. The FTLE

measures the amount of “stretching” of neighboring particles about a given trajectory over

a finite time window.

For computational purposes, the LCS may be defined as local maxima, or ridges in

the FTLE field [104, 82, 105, 83, 108]. The LCS computed in this way generally agree
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well with the material surfaces of maximal expansion/contraction described by Haller [82],

however [95] presents a number of important counterexamples. An important problem is

that ridges in the FTLE may correspond to trajectories with locally maximal shear (that is,

stretching along the trajectory), while in most applications, one is interested in the stretch-

ing normal to the trajectory. Therefore, when computing LCS, one should verify that ridges

in the FTLE field correspond to maxima in the normal expansion/contraction.

In spite of the various technical challenges associated with defining coherent structures

in a general time-varying flow field, these structures can be very useful in revealing the

framework of mixing and transport in the flow. Moreover, coherent structures derived from

Lagrangian particle trajectories are quite robust to discretization of the flow data and inte-

gration schemes used to simulate Lagrangian particles [97, 109, 105, 83, 82, 110]. Robust-

ness results are explicitly derived in [84], in which it is shown that computations of LCS

are robust to short-duration perturbations in the flow field, even while Lagrangian particle

trajectories deviate exponentially from the unperturbed trajectories.

7.2.2 Future Work Plan

Autonomous vehicles will be used to sample along coherent structures in the flow. A small

network of autonomous surface vehicles will be used to identify and track Lagrangian

coherent structures (LCS) in ocean flow fields using data from both predictive ocean models

and local measurements. In the second part of the future work, a swarm of networked

autonomous vehicles will be used to continuously monitor a user-specified area of interest

in the ocean. Vehicle density over the area will be modeled and energy-efficient control

strategies will be designed to maintain a desired distribution of vehicles. In both parts of

the proposed work, the effects of ambient flow on vehicle motion will be taken into account,

and of limits on communication such as range restrictions, noise, and packet loss.
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CHAPTER 8

PUBLICATIONS
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CHAPTER 9

APPENDICES

9.1 Appendix A: Notation

AUV Autonomous Underwater Vehicle
D Spatial domain of vehicle position,D ⊂ R2

FM Modeled value of deterministic component of ocean flow in the random-flight
model

FR True value of deterministic component of ocean flow in the random-flight model
f Error in modeled value of deterministic component of ocean flow (f , FR −FM)
iid Independent, identically distributed (used in reference to random variables)
` For transect-following controller, ` denotes the transect
N Unit vector pointing normal to the transect (in transect-following controller) or

normal to the direction of the station-keeping goal (station-keeping controller)
p For transect-following controller, an arbitrary point on the transect
Pr(X) Probability of event X
R Set of real numbers
s(ζ, t) AUV speed at position ζ ∈ R2 and time t ∈ R
T Unit vector pointing along the transect (in transect-following controller) or in

the direction of the station-keeping goal (station-keeping controller)
u(ζ, t) Control input (commanded heading, speed, etc.) at position ζ ∈ R2 and time

t ∈ R
v(ζ, t) Throughwater speed of AUV at position ζ ∈ R2 and time t ∈ R
x Position of AUV
Z Set of all integers
z Predicted position of AUV
ν Stochastic component of ocean flow in the random-flight model
ξ Used to denote stochastic values of error in modeled flow values at ocean model

gridpoints
ρ(·) Used to denote probability density function (pdf)
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in the Mediterranean Sea from finite-size Lyapunov exponents,” Geophysical Re-
search Letters, vol. 31, pp. 1–4, Sept. 2004.

[103] K. P. Bowman, “Manifold geometry and mixing in observed atmospheric flows,”
1999.

[104] S. C. Shadden, F. Lekien, and J. E. Marsden, “Definition and properties of
Lagrangian coherent structures from finite-time Lyapunov exponents in two-
dimensional aperiodicflows,” Physica D: Nonlinear Phenomena, vol. 212, pp. 271–
304, Dec. 2005.

[105] F. Lekien, S. C. Shadden, and J. E. Marsden, “Lagrangian coherent structures in n-
dimensional systems,” Journal of Mathematical Physics, vol. 48, no. 6, p. 065404,
2007.

[106] L. Barreira and Y. B. Pesin, Lyapunov exponents and smooth ergodic theory. Provi-
dence, Rhode Island: American Mathematical Society, 2001.

[107] G. A. Leonov and N. V. Kuznetsov, “Time-varying linearization and the perron ef-
fects,” International Journal of Bifurcation and Chaos, vol. 17, no. 04, pp. 1079–
1107, 2007.

[108] M. Mathur, G. Haller, T. Peacock, J. Ruppert-Felsot, and H. Swinney, “Uncovering
the Lagrangian skeleton of turbulence,” Physical Review Letters, vol. 98, pp. 1–4,
Apr. 2007.

[109] G. Haller, “Lagrangian structures and the rate of strain in a partition of two-
dimensional turbulence,” Physics of Fluids A, vol. 13, no. 11, pp. 3365–3385, 2001.

[110] M. Farazmand and G. Haller, “Computing Lagrangian coherent structures from their
variational theory,” Chaos, vol. 22, Mar. 2012.

115


