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SUMMARY

The rise of large data sets, or “Big Data”, has coincided with the rise of clusters with

large amounts of memory and Graphics Processing Unit, or GPU, accelerators that can be

used to process rapidly growing data footprints. However, the complexity and performance

limitations of sharing memory and accelerators in a cluster limits the options for efficient

management and allocation of resources for applications. The global address space model

(GAS), and specifically hardware-supported GAS, is proposed as a means to provide a

high-performance resource management platform upon which resource sharing between

nodes and resource aggregation across nodes can take place. This thesis builds on the

initial concept of GAS with a model that is matched to “Big Data” computing and data

transfer requirements. Contributions from this thesis include:

• A new global address space model, Dynamic Partitioned Global Address Spaces

(DPGAS), that utilizes common networking hardware

• The proposal of architectural support for DPGAS in a commodity fabric - Hyper-

Transport over Ethernet (HToE). This has led to the creation and adoption of the

HToE commercial standard

• Resource partitioning techniques that use the DPGAS model to save memory power

and cost in data centers

• Resource aggregation for efficiently using GPU-accelerated clusters

• Design, development, and evaluation of a software runtime and Application Pro-

gramming Interface (API), Oncilla, for realizing the DPGAS model

The evaluation of this new global address space model is performed using a hardware

reference model, detailed timing simulations, and a software framework with typical data

xii



center workloads. This thesis illustrates that the global address space model, when properly

matched to applications, can help to reduce overall power usage and cost, and in many cases

this model can be used to improve the existing performance of applications by keeping their

working sets in memory rather than swapping to disk.
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CHAPTER I

INTRODUCTION

Recent growth in the size of data sets in the business world [79] has led to an increased

need for computational power and large amounts of memory to support high-performance

processing of what has become known as “Big Data.” In-core applications can be used to

satisfy large memory footprints while new accelerator hardware, such as graphics process-

ing units (GPUs), provide additional computation power to process large data sets.

However, developers for cluster-based applications are constrained by current blade

designs that present barriers to low overhead, dynamic sharing of memory and accelerator

resources across nodes. If such sharing were seamless, memory and accelerator resources

could be aggregated across nodes in response to the requirements of applications rather

than being provisioned for the worst case usage scenario. Even during periods of high

demand, dynamic resource sharing could then be used to provision nodes for the average

case (e.g., in terms of memory footprints), which would result in significant power and cost

savings. Currently, existing techniques assume that applications can only efficiently access

resources on the same node and that accelerators and memory on remote nodes must be ac-

cessed through a protected software interface or message-based buffers. These constraints

illustrate a fundamental problem for managing memory resources in data centers: Efficient

management of host and accelerator memory resources in data centers is difficult due to the

cost of existing hardware solutions, the limitations of related software stacks, and the lack

of a flexible resource aggregation and resource sharing model amenable to acceleration of

“Big Data”.

This problem statement indicates that there is a need for an approach that supports sim-

plified application programming and that provides high-performance data movement using

1



scalable remote memory accesses. The global address space (GAS) model [27] satisfies

these requirements because it provides a simple mechanism for accessing remote memory

(one-sided put/get operations) and because it scales well as the size of a cluster grows.

However, previous implementations of the GAS model have typically required custom in-

terconnects [157], which can be expensive in terms of cost, or complicated software layers,

which can reduce the performance of data movement between nodes [57]. Due to these ex-

isting limitations, a new GAS-based model, Dynamic Partitioned Global Address Spaces

(DPGAS), is proposed as a suitable memory management scheme that can be constructed

using low-cost and high-performance commodity hardware. This leads to the following

thesis statement: Global address spaces built using commodity parts can achieve efficient

memory provisioning for data center applications by supporting high-performance and

low-cost data movement.

Figure 1: Challenges Addressed by the DPGAS Model

This thesis demonstrates the design of the DPGAS model as well as architectural and

software support that can be used to efficiently manage varied resources (memory and ac-

celerators) in the data center for Big Data workloads. At a high level, this thesis can be

thought of as addressing the following challenges: 1) How can hardware-supported GAS

be designed in a manner that uses commodity parts, and thus is cost-effective and easy

2



to build? 2) How can GAS be used to reduce memory overprovisioning and thereby to

reduce hardware power and cost in data centers? 3) How can GAS enable efficient ag-

gregation of host and accelerator memory resources in a programmer-friendly manner?

The DPGAS abstraction is proposed to address the first challenge, and HyperTransport

over Ethernet (HToE) is proposed as an implementation of this model using commodity

parts (HyperTransport and Ethernet). As Figure 1 shows, challenge 2) is addressed us-

ing network hardware support in the form of the “converged” fabric, HyperTransport over

Ethernet and power, cost, and performance analysis. Challenge 3) is addressed in part by

performance analysis of an HToE-based accelerator cloud and in part by the development

of the Oncilla software framework that is demonstrated by taking advantage of two existing

network layers, InfiniBand and EXTOLL.

1.1 Contributions

This thesis makes contributions in the following areas.

1.1.1 Research contributions

DPGAS Model: Hardware-supported, Dynamic GAS This work proposes that a model

built on a dynamically composed partitioned global address spaces should be used to pro-

vide high performance sharing of and aggregation of resources. Unlike previous GAS

models, DPGAS is built around the concept of extending existing physical node addressing

(typically using 40 to 48-bit addresses) to a 64-bit GAS that can be remapped at run-time

via specialized hardware support. As applications are mapped to different address ranges in

the 64-bit global address space, the physical location of each application’s memory can be

migrated to local or remote memory using specialized network hardware and non-coherent

put/get operations. This abstraction allows for extremely performant partitioning and/or

aggregation of accelerator and host memory.
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Converged, commodity fabrics: HyperTransport over Ethernet (HToE) The DPGAS

model is implemented with the creation of the HyperTransport over Ethernet hardware

layer, which was the focus of research and an industry-related specification. HyperTrans-

port over Ethernet is based around non-coherent data transfers, and it focuses on creating a

low-latency path through hardware that is then used to investigate two problem spaces. Re-

search using this fabric shows that a on-board interconnect (HyperTransport) typically used

for I/O device traffic and an off-board interconnect (Ethernet) can be combined to create

a low-latency network layer that can provide performance benefits to two different appli-

cation spaces, time-varying data center workloads and applications that rely on aggregated

memory and accelerators.

Reducing Dynamic Random Access Memory (DRAM) Overprovisioning in Data Cen-

ters One challenge addressed by this thesis is how to provision memory in data centers

for applications that may have significantly varied memory footprints with respect to time.

This thesis proposes that average provisioning of memory should be used in data cen-

ters and that the DPGAS model and its spill/receive memory allocation algorithm should

be used to satisfy temporary memory requirements for applications. Offline and online

analysis is used to determine the performance characteristics of using HToE to implement

average-case provisioning as well as to determine potential cost and power savings from

reductions in installed DRAM.

Supporting Aggregation of Accelerator and Host Memories The DPGAS model is

also used to investigate the challenge of how GAS can be used to aggregate host and ac-

celerator memory efficiently for applications executing in accelerator clouds (clusters with

a limited number of accelerators). Further research using HyperTransport over Ethernet

to support accelerator clouds demonstrates the importance of hardware design in support-

ing aggregation. Experiments showed that network adapters that are built to support the

DPGAS model need to be matched closely with the application(s) that a specific cluster is
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planning to support. For instance, the data warehousing application investigated for this re-

search requires high bandwidth streaming to a few accelerators, which puts more network

pressure on a small number of “receiver” adapters. This work demonstrates both the benefit

of using dynamic hardware updates via DPGAS but also the necessity to match hardware

characteristics with the desired application’s communication characteristics.

Insights into Programmer-Accessible Software to support DPGAS The Oncilla soft-

ware framework provides the basis for using multiple different network layers to aggregate

local and remote accelerators and memory. This portion of thesis research used Oncilla

to investigate managed GAS network fabrics (EXTOLL and InfiniBand) and to evaluate

high-performance data transfer with a sample business application (data warehousing) and

HPC application (breadth first search). Results showed that EXTOLL provides better la-

tency behavior for applications with many small packets while InfiniBand is best suited

for high-bandwidth applications including data warehousing acceleration, and this chapter

further enumerates the causes of this behavior.

This work also demonstrated that a software framework could be used with non-coherent

GAS to provide a high-performance in-memory implementation of the target data ware-

housing application. Finally, Oncilla was used to compare the programmability of normal

message passing paradigms (MPI) with GAS-based models for applications with GPU ac-

celerators and large data sets. This last insight that Oncilla can be used to make accelerator-

based clusters more accessible to programmers is discussed with respect to other potential

application spaces that were not evaluated in this thesis, including Hadoop, large graph-

based applications, and large HPC codes.

1.1.2 Engineering contributions

There are two main engineering contributions that were the result of research for this thesis:
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HyperTransport over Ethernet Hardware Reference Design As part of the research

performed before the approval process of the HyperTransport over Ethernet specification,

a hardware design was created that was targeted towards a network adapter with an on-

board Field Programmable Gate Array (FPGA). This design was then used in conjunction

with the completed HToE specification to create a detailed timing solution that was used to

evaluate the characteristics of an HyperTransport Ethernet Adapter (HTEA). Optimizations

incorporated as part of the reference design (e.g., tag remapping) and further refinements

for the simulation (parallelized hardware-based flow control) would be useful to future

implementers in terms of providing a real-world baseline for performance and logic usage.

Oncilla Runtime and Application Programming Interface (API) The Oncilla runtime

and API is a two-part software framework that allows for the realization of the DPGAS

model using “managed” GAS and Remote Direct Memory Access (RDMA) based inter-

connects, such as InfiniBand and EXTOLL. Performance is enhanced through optimized

implementations using the Oncilla runtime, and programmability is enabled through the use

of a simple API that supports allocation, aggregation, and high-bandwidth data movement

for remote and local host and accelerator memory. This software framework is evaluated in

this thesis using a data warehousing application, TPC-H, and two clusters with InfiniBand

and EXTOLL networking, respectively.

1.2 Organization

This thesis is organized as follows.

Chapter 2 addresses the origin of global address spaces as well as current implementa-

tions of this model. In addition, resource management is discussed as it relates to memory

aggregation and disaggregation (the use of memory blades or a shared pool of memory)

and the management of memory and accelerator memory resources for recent heteroge-

neous clusters based on GPUs. Additional related work is included in each chapter as it

relates to each problem space that is evaluated.
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Chapter 3 presents details on the Dynamic Partitioned Global Address Space (DPGAS)

model. First, this chapter addresses relevant trends for memory and interconnects that

provide motivation for implementation of the DPGAS model in data centers. Next, DP-

GAS is presented as an architecture and memory model that is built around a dynamically-

composed 64-bit global address space. As applications are mapped and remapped into this

GAS, the location of the application’s physical memory may change. This chapter also

discusses DPGAS control path support, which defines OS support for DPGAS mappings.

Finally, the challenges that are addressed in this thesis using the DPGAS model are dis-

cussed in detail.

Chapter 4 discusses architectural support for the DPGAS model through the imple-

mentation of a network adapter for a newly proposed converged fabric, HyperTransport

over Ethernet. This hardware design is implemented using Verilog to support efficient data

movement between nodes in an AMD- and Ethernet-based cluster. A hardware prototype

is evaluated and offline and online simulations are used to evaluate HToE’s suitability for

addressing the challenge of sharing memory resources in data centers when application

footprints are highly variable.

Chapter 5 discusses the design and ratification of the HyperTransport over Ethernet

specification. This specification was influenced by initial research performed as part of

this thesis, and HToE was further fleshed out through a collaborative effort between AMD,

other companies that make up the HyperTransport Consortium, and this author. Support

for some of the most unique features are discussed including tag remapping, HToE retry

and recovery, and support for hardware-based flow control.

Chapter 6 builds on the DPGAS model and new features suggested by the HToE spec-

ification, and it demonstrates how HToE can be used to support an accelerator cloud, a

cluster with a limited number of accelerators that are shared using GAS-based semantics.

This accelerator cloud system model is used to address a new application space, data ware-

housing. The design of a specification-compliant HToE adapter is discussed, and several
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performance optimizations for this adapter are evaluated for the target data warehousing

application.

Chapter 7 details a system-level approach to implement the DPGAS model using “man-

aged” GAS fabrics (InfiniBand and EXTOLL) for the data warehousing application. A

software runtime and API called Oncilla is proposed to enable the use of high-performance

networking layers with put/get style programming for remote memories and accelerators.

Oncilla is evaluated using EXTOLL and InfiniBand with a data warehousing application

and with a small HPC-related application, and programmability is briefly discussed for a

sample CUDA kernel.

Finally, Chapter 8 presents future areas of research for the DPGAS model and the On-

cilla software framework as well as a brief summary of the contributions of this thesis.
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CHAPTER II

RELATED WORK

The related background work for this thesis can be broken down into three distinct areas:

(1) the development of hardware (interconnects) and software to support global address

spaces, (2) techniques for aggregating and disaggregating (or partitioning) memory across

nodes in a cluster, and (3) the development of General Purpose Graphics Processing Units

(GPGPUs) for use with data warehousing applications and related developments in data

movement for accelerators. In addition to this overview, more specific related work for

certain problem spaces is included in each chapter as each space is further evaluated in

relation to the thesis hypothesis.

2.1 The Global Address Space Model and Related Interconnects

While some of the earliest multiprocessors (multiple processors with shared resources, such

as memory) used the concept of a flat address space, the concept of a global address space

largely has developed from research in multicomputers (multiple nodes each with their own

processors and memory) and the related field of parallel computing. One of the earliest ref-

erences to a flat 64-bit GAS was published in 1992 with the development of the Opal 64-bit

address space system for use with a MIPS R3000-based machine. Also in the early 1990’s,

custom machines like the J-Machine [116] started to take advantage of fast interconnects to

implement message passing schemes that allowed reads and writes to remote memory on

distinct cluster nodes. Other machines, such as the CM-5 [64], Princeton’s SHRIMP [19],

AP1000+ [61], Stanford’s FLASH [92], and Wisconsin’s Typhoon [136] focused on using

combinations of message passing and a new “virtual shared memory” model [94] (later

known as the Distributed Shared Memory (DSM) model) to implement efficient sharing of

a global memory. While each of these projects suggested different schemes to achieve high
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performance, they all focused on the use of a custom hardware interconnection network

along with a custom software layer to help manage sharing across nodes and to handle

memory coherence.

Hardware-based global address space support continued to evolve throughout the 1990’s

but complete support for this model was limited mainly to custom-built machines and su-

per computers, including Cray’s T3D and T3E. The T3D had hardware support for GAS

as well as caching of remote memory accesses, and the T3E had expanded global address

support that used high-performance “e-registers” and the shared memory (SHMEM) appli-

cation programming interface (API) to support applications without the need for caching

of remote memory accesses. This hardware support continued in later products developed

in the 2000’s, including the SeaStar [22] and Gemini interconnects [143] that were built

around a commodity interconnect for AMD’s Opteron processor, HyperTransport.

In addition to increasingly advanced memory sharing hardware, two software-only ap-

proaches for memory “sharing” were first proposed and widely studied in the early 1990’s.

The Message Passing Interface 1.0 (MPI) [109] and Parallel Virtual Machine 2.0 (PVM)

were both introduced in 1991 and continue to be used today for parallel systems. MPI has

gained slightly more traction in the scientific community due to its feature-rich set of com-

munication primitives, but PVM remains relevant due to its support for heterogeneous plat-

forms, resource allocation, and fault tolerance [56]. These two specifications are important

in that they represent some of the first software to address the problem of implementing

high-performance data movement without requiring custom hardware to implement data

transfer.

Other software that focused on managing shared memory from this time period included

the Active Messages platform [44], Split-C [33], SHMEM [144], Co-Array Fortran [29],

and Global Arrays [114]. Of these languages, SHMEM was used mainly in the context

of Cray super computers, such as the X1 [13], and Global Arrays and Split-C led to the

development of the aggregate remote copy interface (ARMCI) library [113] and Unified
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Parallel C (UPC) [155]. UPC is one of many partitioned global address space (PGAS)

languages (along with Co-Array Fortran and Titanium [168]) developed in the late 1990’s

that combine the idea of a globally shared memory model with local “private” memory that

is reserved using specific language keywords. PGAS languages are intended to increase

programmer productivity (i.e., to enable easier use of reads/writes to remote memory) for

shared memory systems, so they tend to focus on programming constructs that enable fea-

tures such as (1) one-sided communication via remote memory “put” or “get” operations,

(2) consistency structures such as barriers and fences, and (3) collective communication

support like broadcast across all processes. These languages also are intended to supple-

ment APIs like MPI to improve the speed of data movement between cluster nodes.

In addition to these languages, one research group has focused on building a low-level

run-time called GASNet [21] that is based off the Active Messages specification. GAS-

Net provides one-sided communication primitives that are mapped to specific hardware via

“conduits”, and higher-level primitives and PGAS languages can then run on top of the

GASNet framework. This run-time and the UPC language continue to be heavily investi-

gated for use with traditional HPC applications [115].

Global address space hardware and related languages evolved again with DARPA’s

High Productivity Computing Systems (HPCS) program in 2002, which led to further de-

velopment of Chapel, X10, and Fortress [99]. These languages are important for their focus

on programmer productivity (similar to PGAS languages), but the combined Cray hardware

and Chapel programming language that were selected as part of the HPCS program has so

far not made significant in-roads on PGAS- or MPI-based programming due to its develop-

ment as a revolutionary code base rather than an incremental update to existing languages

like C and Fortran. This approach offers the possibility of much higher performance but

also requires significant effort to port existing application code.

At the same time that research groups were developing hardware and novel program-

ming languages for handling shared memory, new custom interconnects started showing up
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in super computers and parallel computers. Quadrics [128] released its first QSNet cards for

the Meiko CS-2 machine, and Myrinet [20] began developing products that had support for

the GAS model through their GM message passing library. Both of these products offered

high performance but were eventually surpassed in market share by an industry-sponsored

interconnect, InfiniBand [54].

InfiniBand was initially developed from two competing efforts to implement the Vir-

tual Interface Architecture (VIA) Specification [43], Future I/O and Next Generation I/O.

The combined industry effort for InfiniBand (initially called System I/O) developed a stan-

dard methodology for implementing Remote Direct Memory Access (RDMA) and kernel

bypass operations that could be used to decrease the involvement of the CPU in initiating

data transfers to remote nodes and to improve the performance of these transfers with a

standard, high-speed interconnect. The development of this specification meant that for the

first time, high-performance data movement between nodes could be realized with an in-

dustry standard interconnect that could be developed by competing companies. Since then,

InfiniBand has made significant in-roads in the HPC space due to its high bandwidth and

low latency, and it currently is used in 41.8 % of the SuperComputing Top500 [70].

Although Ethernet has been one of the most important and common interconnects in

smaller HPC clusters and data centers over the past 20 years, the introduction of Infini-

Band, Myrinet, and Quadrics in the mid-2000’s showed that one Gigabit per second (Gbps)

Ethernet did not have high enough bandwidth or low enough latency to compete in the

HPC space. A standard for 10 Gigabit Ethernet (10GE) in 2002 [1] and the more recent

IEEE 802.3ba standard for 40 and 100 Gbps Ethernet provided the opportunity for Ethernet

to compete with InfiniBand in terms of bandwidth, but Ethernet’s typical coupling with a

TCP/IP software stack meant that concerns about latency still existed [9] [98]. However,

switch manufacturers, such as Woven Systems (now Fortinet) in 2007 demonstrated that

10 Gigabit Ethernet with TCP offloading can compete in terms of performance with single

data rate (SDR) InfiniBand; both fabrics demonstrated latencies in the low microseconds
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during a Sandia test [164]. In addition, switch manufacturers have built 10 Gigabit Ether-

net devices with latencies in the low hundreds of nanoseconds [34] [169], which has helped

mitigate some concerns about Ethernet latency.

On the software side, the Internet wide area RDMA protocol (iWARP) stack has been

designed to offer RDMA support similar to what the InfiniBand Verbs layer provides. 10GE

iWARP adapters have shown latencies that are on the order of eight to ten microseconds,

as compared to similar InfiniBand adapters with latencies of four to six microseconds [35].

More recent tests have confirmed that 10 Gigabit Ethernet latency for MPI with iWARP is

in the range of eight microseconds [89].

Ethernet has further been enhanced to compete with InfiniBand through the release of

specifications to support Data Center Ethernet, aka Converged Enhanced Ethernet (CEE)

[90]. These specifications effectively provide “lossless” Ethernet channels and other connection-

oriented features that can be implemented at the link-level (L2) layer. One of the motivating

developments for these new specifications was the desire to have “converged” interconnects

that could take advantage of Ethernet’s ubiquity and ease of use in data centers. FibreChan-

nel over Ethernet (FCoE) [151] was the first converged interconnect to take advantage of

Ethernet encapsulation, but newer specifications have since proposed encapsulating more

specialized interconnects over common interconnects (such as Ethernet and InfiniBand)

to reduce overall cabling and take advantage of the higher bandwidths available in newer

interconnect standards. For instance, a recent specification has proposed the use of In-

finiBand’s Verbs layer over Ethernet, also known as RDMA over Converged Enhanced

Ethernet (RoCEE) [30], and some companies have shown interest in using PCI Express

over Ethernet [150]. In fact, the new PCI Express 3.0 (PCIe 3.0) standard alludes to this

future of converged fabrics with the addition of a “PMux” feature that supports sending

packets from other protocols over PCIe links.

This recent proliferation of low-latency commodity interconnects means that both tra-

ditional HPC clusters and newer data centers can easily incorporate dedicated hardware
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support for GAS-based memory sharing via one-sided put/get operations. In addition to

software-oriented stacks such as GASNet, several recent specifications support dedicated

hardware for commodity GAS. The HyperShare platform includes three such specifica-

tions: native HyperTransport (HT) [42], encapsulation of HT over Ethernet [170], and HT

over InfiniBand [17]. Other groups have designed custom off-chip fabrics, such as the

EXTOLL group and associated corporation [52] and NumaScale, which provides coherent

HyperTransport support between nodes with its NumaConnect adapter [118].

2.2 Memory Aggregation and Disaggregation

This thesis deals with resource provisioning, and it specifically focuses on techniques to

better enable the aggregation and disaggregation (or partitioning) of scarce memory re-

sources. Chapter 4 focuses on how disaggregation can be used to more efficiently provi-

sion memory for time-varying applications, so the related work focuses on this aspect of

memory partitioning.

2.2.1 Memory Aggregation

Memory aggregation has been recently investigated in the data center world for large “in-

core” applications that run faster when they do not have to swap out to disk from DRAM.

While early multiprocessors provided a physically shared memory to run large jobs, cur-

rent software and hardware approaches focus on aggregating memory across a cluster built

using the DSM model.

Several research groups have investigated implementations of in-core databases, most

notably the RAMcloud project [126], vNUMA [26], and the MEMSCALE project for

MySQL-based databases [108]. Oracle, SAP, ScaleMP, [138] and others also have commer-

cial solutions, typically based on TCP/IP implementations. However, this this is some of

the first research to focus on the specific problem of using a limited number of accelerators

with a GAS model to improve the performance of in-core databases.
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2.2.2 Memory Disaggregation

Disaggregation, or partitioning of memory, has recently become an important topic for data

centers due to power concerns related to servers that are typically idle [11] and are over-

provisioned according to their average workloads [96]. The dynamic, partitioned global

address space (DPGAS) [167] [176] model discussed in Chapter 3 is a type of disaggrega-

tion that has its roots in the concept of “virtualized” resources that was furthered by projects

including Cellular Disco [59] and global memory [49] or page swapping [95] schemes for

page caching.

The closest related work to DPGAS is HP’s disaggregated memory research [96] that

was later incorporated as part of the design of their low-power Project Moonshot server

blades [68]. While DPGAS advocates using the “idle” memory on existing blades in a

data center, the disaggregated memory approach specifies that DRAM should reside in a

separate blade for cost and power reasons. These memory blades increase available mem-

ory bandwidth and enable coherent sharing between client nodes, but the DPGAS research

differs in that it focuses on using existing DRAM resources more efficiently to reduce

overprovisioning. While disaggregated memory provides better bandwidth than DPGAS,

it may also prove cost-prohibitive for small to medium data centers due to extra hardware

requirements.

2.3 Accelerators and Data Movement

APIs like the compute unified device architecture (CUDA) and open computing language

(OpenCL) have been used with HPC applications for the past few years, but more recent

research has focused on using these accelerator-oriented APIs to handle traditional data

center tasks, including using GPUs to perform database queries [8]. However, there has

been relatively little focus on merging traditional in-core databases with data transfers to

and from remote accelerator memory.

15



Support for accessing remote accelerators has been greatly improved through the ef-

forts of the high-performance community and more specifically by NVIDIA and the MPI

community. NVIDIA has greatly simplified device memory addressing through the use of

their Unified Virtual Addressing (UVA) in CUDA 4.0, the inclusion of GPUDirect support

that can facilitate peer-to-peer transfers between GPUs (GPUDirect 2.0) [140], and efficient

transfers of data from the GPU to the NIC using pinned pages in the host operating system

(GPUDirect 1.0) [141]. More recent improvements in CUDA include CUDA inter-process

communication (cuIPC) which allows for the transfer of data between distinct processes

that can exist on separate nodes [85].

The MPI community has built on top of these improvements in CUDA to provide a

seamless layer that integrates CUDA and MPI two-sided and one-sided transfer function-

ality. MVAPICH [162] and OpenMPI [156] have both provided implementations for us-

ing MPI to efficiently transfer data between remote and local GPUs and remote memory.

However, due to the current limitations of CUDA and GPUDirect, both APIs must copy

data through host memory when doing a transfer between a local and a remote GPU. The

MVAPICH group also has started work on supporting standard data center applications by

creating an interposer library that hides the complexity of the InfiniBand Verbs stack from

the application developer [127]. A related project, MPI-ACC [2] provides similar support

for using MPI with GPU memory, but it supports the OpenCL runtime in addition to the

CUDA runtime.

While GASNet provides full-featured support for implementations of PGAS languages

and data movement, there is currently little work on using it with CUDA. Two projects

that have recently started to investigate using GASNet with accelerators is the Stanford

Legion project [106] and NVIDIA’s Phalanx project, which combines GASNet with CUDA

support and task scheduling across multiple nodes [55]. Various other approaches have

focused on using virtualization to share remote GPUs [105] [133]. Despite these many

advances in data movement between accelerators, most of these projects are still focused
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on the needs of the high-performance computing community. This focus means that most

prior research has advocated the use of MPI and other techniques that may not be easily

applied to existing in-core data warehousing applications. The MVAPICH group [127] is

one of the exceptions to this trend as they are focused on both HPC applications [37] and

business applications [83].

2.4 Concluding Remarks

The current landscape for clusters illustrates a long history of improvements in concepts

related to global address space models and more importantly to performance, cluster in-

terconnects. At the same time, GPUs have become a larger part of HPC clusters and to

some extent, data centers, but data movement for these new accelerator devices is still

tied to HPC-style communication paradigms like message passing. Business applications

that have typically been designed with a single multi-threaded node as the target hardware

are not easily mapped to traditional HPC methods of communication. This thesis targets

this unfulfilled area of data movement and associated resource management using a high-

performance implementation of GAS as discussed in Chapter 3
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CHAPTER III

DYNAMIC PARTITIONED GLOBAL ADDRESS SPACES

3.1 Motivation

As discussed in Chapter 2, the past 20 years have presented several new communication

models for data movement in clusters, including message passing, shared memory, cache-

coherent NUMA, and the one-sided put-get model. Each of these models has distinct ad-

vantages and disadvantages that impact application performance. However, there are also

other ramifications of using a specific communication model with respect to its impact on

total power and cost usage in a cluster or data center.

3.1.1 Memory cost and power motivations

While many architectural improvements in data center servers have focused on reducing

power consumed by CPU and disk, several studies [66] [93] indicate that DRAM power

can consume up to 30% of the total hardware power budget and thus should not be over-

looked. One of the challenges in optimizing memory power usage is the time-varying

nature of data center workloads [58]. Servers within the data center are usually overprovi-

sioned to handle memory footprints associated with peak workloads, which leads to excess

static power dissipation. However, Figures 2a and 2b show that there is a trade-off between

the initial purchase price of DRAM and the power consumption of certain sizes and num-

bers of dual-inline memory modules (DIMMs). While larger DIMMs have lower power

consumption, they are also dramatically more expensive than using more common DIMM

sizes that benefit from manufacturing economy of scale. For instance, provisioning a server

with 128 GB of RAM using four 32 GB DIMMs uses about 60% of the power of using eight

16 GB DIMMs (26.96 W vs. 44.28 W) but also costs almost four times as much ($5280

vs. $1480).
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(a) Cost Trends

(b) Power Trends

Figure 2: DDR3 DRAM Power and Cost Trends (2012)

Furthermore, commodity server blades are packaged in a manner such that remote

blades can share only via heavyweight, OS-coordinated mechanisms between blades. Re-

mote Direct Memory Access (RDMA) and custom NUMA interconnects have provided

two approaches to make DRAM sharing easier, but they are limited by OS page regis-

tration overhead and the requirement for non-commodity parts, respectively. This limited

model of sharing leads directly to overprovisioning of memory resources and also can limit

the performance of cluster resource aggregation techniques (as discussed in further detail

in Ch. 6).

3.1.2 Interconnect motivations

The trade-off between overprovisioning and average provisioning of memory resources in

data centers might seem like a problem that is solely based on the number of applications
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that can fit within one blade’s memory, but recent trends in interconnects have empha-

sized that inter-node memory sharing can be considered as another suitable optimization

for cluster resource management.

As Figure 3a shows, maximum DRAM bandwidth has risen from .53 GB/s in 1997

to 17.10 GB/s (single-channel DDR3-2133 MHz) in 2013. During the same time frame,

interconnect bandwidth has risen even more dramatically from 0.01 GB/s to 16 GB/s for

the Aries interconnect included as part of Cray’s new Cascade system [3], shrinking the

bandwidth gap between memory and interconnect from 40x to ∼0.06x. On the other hand,

Figure 3b illustrates a divergence between the memory bandwidth of normal systems and

the memory bandwidth of stream-based processors, like GPUs. Memory bandwidth of sys-

tems using graphics double data rate, or GDDR memory (higher-frequency DRAM geared

towards GPUs), has gone from being ∼4.75x higher than that of standard DRAM in 2003

to ∼14.65x higher in 2013 with the introduction of Tesla’s K20X GPU [121]. This dispar-

ity is due to the higher clocking frequency of GDDR and the use of 384-bit-wide memory

buses compared to 128-bit buses used with dual-channel DRAM on most desktop systems.

Taking both of these figures together, interconnect bandwidth has largely matched DRAM

bandwidth improvements but accelerator memory bandwidths have grown at a much faster

rate to match recent improvements in GPU compute architecture.

Figure 4 shows the trend in latency improvements for interconnects as compared to

DRAM latency (measured for tCAS). The latency of various interconnects is measured for

one small message “ping”, or one-sided write, from a local to remote node. In general,

interconnect latency has decreased from being ∼240,000x higher than DRAM latency to

∼100x higher for low-latency fabrics like InfiniBand and EXTOLL (see Ch. 7 for more

information on EXTOLL). The dramatic convergence of on-board latency (DRAM) and

off-board latency (inter-node interconnects) provides a powerful motivation for accessing

remote memory, and this thesis builds around this concept of using high-performance in-

terconnects to provide easier sharing of memory resources while also providing suitable
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(a) DRAM and Interconnect Bandwidth

(b) GDDR and Interconnect BW

Figure 3: Interconnect Bandwidth Trends

performance to applications.

Many of the applications that could benefit from using a high-performance interconnect

to share cluster resources are traditionally served by a model built on a limited amount of

memory that is backed up by a much larger data store on disk, or increasingly by PCI

Express-based SSDs. Figures 3a and 4 show the latest bandwidth and latency numbers

for a “top-end” PCIe SSD [122]. These data points demonstrate that PCI Express-based

disks provide reasonable bandwidth (3.2 GB/s vs. 12 GB/s for high-end interconnects), but

latency still lags much farther behind other interconnects (50 µs vs. 1 µs for InfiniBand).

When combined with other performance penalties related to swapping pages to disk, this

disparity in bandwidth and latency for disk-based storage provides another motivator to
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Figure 4: DRAM and Interconnect Latency Trends

keep applications in-memory or “in-core”.

3.2 The Dynamic Partitioned Global Address Space Model

To provide efficient resource sharing, a data movement technique is needed that handles

peak memory workloads while also providing benefits that cannot be efficiently obtained

by traditional techniques, such as virtual machine (VM) consolidation [159] or memory

overcommitment [65]. The Dynamic Partitioned Global Address Space (DPGAS) model is

proposed as an abstraction that builds on the traditional software-based Partitioned Global

Address Space (PGAS) [24] model while also allowing for customizable, hardware-based

remote memory put/get operations. As the hardware-based implementation of DPGAS in

Chapter 4 demonstrates, this model supports dynamic updates for remote memory map-

pings that can also be used to address challenges such as memory overprovisioning or

resource aggregation.

Figure 5 shows a simplified overview of the DPGAS model. At the most basic level, the

virtual address space of an application can be mapped into the global address space, and the

global address space mapping determines where the physical memory for that application

is placed. By changing the global address space mapping, the application can be placed in

either local or remote memory. While PGAS languages do a similar type of mapping in
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Figure 5: Dynamic Partitioned Global Address Space Overview

software using private and shared compiler flags, the main difference in the DPGAS model

is that the mapping can be made at run-time and is manipulated at the hardware level.

The DPGAS model is split into two components: the architecture model, which details a

high-level overview of the hardware that is required to implement this dynamic partitioned

address space, and the memory model which details how remote memory is accessed and

data movement is performed when using DPGAS.

3.3 Architecture model

The DPGAS architecture model assumes that a number of processors exist, and they can all

access a distributed, global 64-bit physical address space. A set of cores on a chip will share

one or more memory controllers and low-latency link interfaces integrated onto the die,

such as those offered with the HyperTransport or QuickPath interface. All of the cores will

also share access to a memory management function that will examine a physical address

and route a request (read or write) to the correct memory controller—either local or remote.

For example, in the recent Opteron systems, such a memory management function resides

in the System Request Queue (SRQ) or System Request Interface (SRI) (both are names

for the same queue-based structure), which is integrated on-chip with the northbridge [31].
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3.4 Memory model

The memory model is built on a 64-bit partitioned global physical address space. Each

partition corresponds to a contiguous physical memory region controlled by a single mem-

ory controller, where all partitions are assumed to be of the same size. The AMD Opteron

uses partitions that can handle up to one terabyte (TB), which corresponds to the 40-bit

Opteron physical address. Thus, a system can have 224 partitions with a physical address

space of 240 bytes for each partition. Although large local partitions would be desirable for

many applications, such as databases, there are non-intuitive trade-offs between partition

size, network diameter, packaging constraints, and end-to-end latency that may motivate

smaller partitions. For instance, applications may want to use small partitions as a non-

coherent message buffer to easily share state between processes on different nodes. Due

to these various requirements, the DPGAS model incorporates a view of the system as a

dynamically changing network of memory controllers accessed from cores, accelerators,

and I/O devices.

The programming model for DPGAS provides get/put operations that correspond to

one-sided read/write operations on memory locations in remote partitions [114]. A sample

get transaction on a memory location in a remote partition must be forwarded over the

network to the target memory controller (as shown in Figure 6), and a read response is

transmitted back over the same network. Once the DPGAS memory model is enabled,

an application’s virtual address space can be allocated a physical address space that may

span multiple local and remote partitions. From an application’s point of view, remote

physical memory acts as a slightly higher latency “virtual DIMM”, and the addition of a

fast interconnect allows the use of this remote memory with latency that is still much lower

than OS page faults to a standard hard drive.

The set of physical pages allocated to a process can be static (compile-time) or dy-

namic (run-time). Multiple physical address spaces can be overlapped to facilitate sharing

and communication, although coherence is not guaranteed. A visual representation of this
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Figure 6: Detailed DPGAS Overview with Memory Functions

overlapping of global addresses to share pages is shown in Figure 6.

Islands of Coherence The DPGAS model operates over a non-coherent global physical

address space. However, if blades implement coherence, one can view the DPGAS model

as dynamically increasing the size of physical memory accessible by a blade within a co-

herence domain, as shown in Figure 7. These “islands” of coherence can be maintained

using standard protocols for intra- and inter-socket coherence but require additional hard-

ware or software constructs to support coherence between nodes. The specific size of a

coherence island is dependent on the coherence requirements of the desired application

and on hardware and software that supports the DPGAS model.

Most applications that are designed to run on top of the DPGAS model can benefit

from limited consistency models, such as eventual consistency [160]. For instance, several

business applications discussed in Section 7.8.1 rely either on eventual consistency or do

not have any strict consistency or coherence requirements.
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Figure 7: Islands of Coherence

3.5 Required Control Path Support for DPGAS

While data transfer with DPGAS is based on non-coherent put/get operations that utilize

hardware support, initial allocations for DPGAS must include some kernel-level support to

initiate and manage remote partitions.

3.5.1 Spill/Receive Model

DPGAS control path support builds on existing work using spill-receive for cache models

[131] and extends this concept for system-level allocations. Figure 8 shows that one or

more node can “spill” some memory requests to a remote memory using the non-coherent

put/get access method described in Section 3.4. One or more nodes can “receive” spill

requests by partitioning its physical resources to be accessed by remote nodes. Although

this figure shows two spill nodes and one receive node, the actual ratio of spill and receive

nodes is dependent on the algorithm that is used for allocating and sharing remote memory.

In principle, nodes can also spill and receive memory requests at the same time. For

example, if a remote node has one large, contiguous chunk of physical memory but only

one application with a small footprint and short runtime, it could in theory “spill” requests

for the small application to remote memory and fulfill “receive” requests for long-running

applications with very large footprints.

3.5.2 Memory Allocation Algorithms

Memory allocation algorithms for DPGAS are envisioned to be implemented at the op-

erating system level using a simple kernel device driver that communicates via MPI or
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Figure 8: Example of Spill/Receive Memory Allocation

by standard networking sockets. The OS is notified of changes to its available physical

memory using the capabilities of libraries like Linux’s libnuma or, in the case of a virtual

OS, updates to the hypervisor’s page tables. The memory allocation daemon negotiates for

changes to the global physical address space with daemons on other nodes and then pro-

vides dynamic mapping updates to the requesting node’s hardware address mapping regis-

ters and hardware that implements the DPGAS model. Updates to the underlying hardware

and operating system allow for transparent remapping of remote memory accesses without

requiring application involvement.

For simplicity, this section uses an AMD Opteron-based system and the HyperTransport

over Ethernet (HToE) hardware implementation of the DPGAS model to discuss allocation.

For more information on HToE. please see Ch. 4.

The envisioned process for memory allocation with DPGAS is illustrated in Figure

9. On system boot, DPGAS daemons (OS- or hypervisor-level process) are started on

each DPGAS-enabled machine, and each blade enumerates its closest (one-hop) neighbors.

The DPGAS daemon monitors current DRAM allocations and workloads, keeping track of

average load or major page faults (to disk) over a long period of time (similar to running

“ps” in the background on a Linux OS). 1) When the average allocation exceeds a preset

threshold (e.g. 80% of DRAM or 100 page faults to disk in S seconds), 2) the DPGAS

daemon issues a request to a neighboring node (or a dedicated “receive” node) via TCP/IP

for M MB of memory. 3) The daemon at neighboring Node B checks to see if it can

satisfy the DPGAS memory request and then decides how much of the requested M MB

of memory can be allocated. 4) Node A is notified whether its spill request is rejected or
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Figure 9: DPGAS Control Path and Memory Allocation

fulfilled. Then both nodes update hardware-based mapping tables in their DPGAS-enabled

network adapter (the HTEA) as well as their hardware-based mapping tables in the SRI,

and they notify the local VMM or OS of the change in the mapped physical address space.

5) Once this setup is complete, reads or writes to virtual address ranges that are mapped to

the DPGAS-based network adapter (HTEA) result in reads and writes (via HToE) to remote

memory.

This allocation model is implemented in the simulation-based experiments discussed

further in Section 4.7.

3.5.3 Memory Deallocation

Memory deallocation takes place in three situations: 1) the requesting node has finished us-

ing the remote memory it requested. Typically, this takes place when its load has decreased

below a certain threshold or a hard timeout (set globally for all nodes at start up) occurs. 2)

The node that is receiving, i.e. sharing memory via DPGAS, experiences high load (typical

when all nodes have equal amounts of memory). 3) Another Node C with better fairness

characteristics (fewer requests or a smaller amount of memory requested) needs memory

that is currently being used by the original requesting Node A. Obviously, the manner in

which memory is forcefully deallocated depends on the overall implementation goals and

28



required QoS metrics of the system, but one possible deallocation technique is as follows:

1) Node B notifies node A that it is revoking its shared memory. Node A must then pro-

vide an acknowledgement to confirm that it is done using this remote memory. If Node A

does not acknowledge within a preset time limit, Node B will change its hardware-based

mapping tables, thus ensuring that requests from Node A to Node B are rejected. 2) Both

nodes update their DPGAS-enabled NIC mappings, VMM status, and SRQ tables. 3) Node

B proceeds to allocate memory to the next highest-priority node, as requested.

3.6 Challenges Addressed by the DPGAS Model

Figure 10: Challenges Addressed by the DPGAS Model

The DPGAS model is used in this thesis to address two main challenges: 1) resource

sharing to reduce memory overprovisioning and to reduce hardware power and cost and 2)

efficient aggregation of host and accelerator memory resources in a programmer-friendly

manner. Figure 10 shows how support for each problem space is implemented using

slightly different hardware and software support. Resource sharing is examined using de-

tailed timing simulations and time-varying data center workloads in Sections 4.6 and 4.7,

and hardware support for this workload is implemented using HyperTransport over Ether-

net (Section 4.4) and a related specification (Ch. 5). This concept of resource sharing is
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extended to include the aggregation of host and accelerator memory, and is represented by

the data warehousing workload (Section 6.1.1) and an in-house data warehouse software

framework called Red Fox (Section 6.1.2). Detailed timing simulations are again used

to investigate how resources can be efficiently aggregated with the HyperTransport over

Ethernet-based implementation of the DPGAS model (Ch. 6). Finally, a full system is

evaluated that uses existing network hardware under a managed GAS software layer along

with a software runtime and API, Oncilla, that supports remote resource aggregation of

memory and accelerators (Ch. 7).

Thesis Contributions This thesis aims to solve the problem of how to efficiently manage

varied resources (memory and accelerators) in the data center for time-varying and Big

Data workloads, and it uses the DPGAS abstraction along with GAS hardware support to

provide efficient management of these resources.

As previously mentioned in Section 1.1, the contributions of this thesis are as follows:

1. A new global address space model, Dynamic Partitioned Global Address Space (DP-

GAS), that utilizes common networking hardware [167] [176]

2. The proposal of architectural support for DPGAS in a commodity fabric - Hyper-

Transport over Ethernet (HToE) [176]

3. An industry specification for HyperTransport over Ethernet [170] and HyperTrans-

port over InfiniBand [17]

4. Resource partitioning techniques that use the DPGAS model to save memory power

and cost in data centers [173]

5. Resource aggregation for exploiting GPU-accelerated clusters [174]

6. Design, development, and evaluation of a software runtime and Application Pro-

gramming Interface (API), Oncilla, for realizing the DPGAS model [172]
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3.7 Concluding Remarks

The Dynamic Partitioned Global Address Spaces, or DPGAS, model presents an abstrac-

tion that allows for hardware-based mapping of remote memory partitions to enable ef-

ficient sharing and aggregation of host and accelerator memory resources. As Chapter 4

demonstrates, this model requires a tightly integrated networking layer to implement both

the architectural model and the memory model that is detailed here.
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CHAPTER IV

ARCHITECTURAL SUPPORT FOR THE DPGAS MODEL

4.1 Introduction

While there are several existing interconnect technologies that could be used to implement

the high-performance data movement needed for the DPGAS model, this thesis focuses

on one standardized on-chip interconnect, HyperTransport, and one off-chip interconnect,

Ethernet, due to each interconnect’s performance, open specifications, and commodity na-

ture. This chapter details the implementation of hardware to support HyperTransport over

Ethernet (HToE) via an adapter called a HyperTransport Ethernet Adapter (HTEA), and

it demonstrates offline and online (simulation-based) analysis of this adapter for reducing

overprovisioning of memory for data centers.

As previously discussed in Section 3.1.1, servers in data centers are typically overpro-

visioned in terms of memory resources due to two factors: 1) the time-varying nature of

workloads that leads to peaks and valleys of demand for server resources and which makes

average provisioning difficult [58] [96] and 2) limited mechanisms for sharing memory

resources, with many existing solutions requiring custom hardware or depending on high-

overhead software stacks or drivers [18]. The DPGAS model provides a means to perform

more efficient sharing and usage of remote memory resources, and the HToE implementa-

tion of this model is used to evaluate how more efficient sharing can reduce overprovision-

ing of memory resources.

4.2 Motivation for Using HT to Support DPGAS

HyperTransport has specific benefits when compared to related protocols, such as PCI Ex-

press and Intel’s QuickPath Interconnect (QPI), and these benefits were the motivation for
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this work’s implementation of DPGAS using HyperTransport over Ethernet. HyperTrans-

port typically has had slightly lower bandwidth than PCI Express but also lower latency,

especially for smaller messages [74]. QPI is more of a layered protocol than HT (similar

to PCIe), but it has similar bandwidth characteristics [177].

Despite its similarities to QPI, HyperTransport has been an open standard for high-

performance, non-coherent implementations as recently as the early 2000’s. The HT stan-

dard for non-coherent traffic and HT’s early entry into the consumer market (via the Athlon

XP in 2003 [73] vs. QPI in 2008 [145]) were two main reasons that HyperTransport was

considered as a candidate to support DPGAS. In addition, HyperTransport also played a

key role in AMD’s Torrenza initiative (announced in 2006 [31]), which aimed to use Hy-

perTransport as an interconnect fabric to support co-processors that were manufactured as

CPU socket replacements on multi-socket server boards. At the time that this research was

performed, the IBM RoadRunner [10] was widely thought to be the first wave of Torrenza-

based servers with HT-enabled co-processors, such as FPGAs, Cell processors, or custom

ASICs. This ecosystem did not materialize as more emphasis in the HPC space was placed

on GPUs [47] and focus for later HPC interconnects moved towards PCI Express [3]. De-

spite recent market trends, many of the issues examined with this work’s HyperTransport-

based implementation are still relevant to other point-to-point interconnects including QPI

and PCI Express.

4.3 The HyperTransport Interconnect

HyperTransport (HT) is a point-to-point interconnect standard that was initially defined

in 2001 to replace the on-package front-side bus (FSB) for AMD CPUs. There is both a

coherent HyperTransport specification meant for traffic between CPU sockets and a non-

coherent specification for use with I/O devices. The HyperTransport 3.1 specification [75]

defines requirements for a low-latency, high-bandwidth interconnect for coherent memory
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access between CPU sockets with a maximum one-way bandwidth of 25.6 GB/s (using 32-

bit links). The non-coherent variant of HyperTransport can also interact with I/O devices

connected to a motherboard by an HyperTransport eXpansion (HTX) connector, such as

with the network adapter discussed in this chapter.

Figure 11: AMD Opteron CPU and Northbridge Overview

Figure 11 shows the role that HT plays in a standard AMD Opteron northbridge, as

discussed further in [31]. The HyperTransport links receive packets from the CPU via a

queue called the System Request Interface (SRI) or System Request Queue (SRQ) that sits

on the backside of the L2 cache. The SRI, memory controller, and HT links are connected

together via a high-speed crossbar. Coherence protocol-related requests travel over coher-

ent HT (cHT) links to up to seven neighboring CPU sockets, and non-coherent HT (ncHT)

packets are used to interact with devices connected via the HTX connector or with PCI Ex-

press devices by using a host bridge to translate between the two packet protocols. DRAM

read and write requests are handled by a separate memory controller that communicates to

the cHT links and SRI using the crossbar. It should also be noted that the HT links are all

connected to a host bridge (not shown) that helps to direct point-to-point HT messages to

the correct location, i.e., memory, another HT device, or back to the cache via the SRI.

At the highest level, HyperTransport links are composed of two unidirectional, point-

to-point links that are implemented using a 2- to 32-bit control and data (CAD) wire along

with a one-bit wire to indicate whether the signal on CAD is a control or data signal. A
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high-level overview of the HT link between two devices is shown in Figure 12. The specific

packet type currently being transmitted on an HT link is indicated by the CTL line. The

advantage of this design is the ability to interleave packets - an optimization referred to as

priority request interleaving. When a large data packet is being transmitted along a link,

a control packet can be injected into the middle of the data transmission and can then be

distinguished by the state of the CTL line so that the packet is steered to the correct control

buffer.

Figure 12: HT Link Overview

HT links operate at double data rate and run at speeds of up to 3.2 GHz and up to 6.4

GTransactions/sec in each direction. With 16-bit links this translates to 12.8 GB/s in each

direction and 25.6 GB/s aggregate across a single link. While 32-bit links are not common

in current systems, the HT standard defines the maximum aggregated link bandwidth as

51.2 GB/s, as compared to the maximum bandwidth of a PCI Express 3.0 16x link, which

is 32 GB/s or 16 GB/s in each direction. Since most current implementations of HT use

16x links, the maximum bandwidth for HT transfers is typically limited to 25.6 GB/s

HT packets contain either a four or eight byte command word and up to 64 bytes of

data. Each HT packet is classified according to one of three virtual channels: posted

(no response needed), non-posted (response needed), and response packets (used to re-

turn data or notifications). Figure 13 shows a HT read request packet along with fields

that are used to address and route packets between local I/O devices and main memory

in a HyperTransport-based system. The UnitID specifies the source or destination device
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Figure 13: HT Read Request Packet

and allows the local host bridge to direct requests/responses to main memory or up to 32

devices. The Source Tag (SrcTag) and Sequence ID (SeqID) are used to specify ordering

constraints between requests from a device, for example, ordering between outstanding,

distinct transactions. SrcTag typically indicates the source device for a packet and is used

to direct responses which lack address fields, and SeqID is used to specify ordering for up

to 32 packets from a particular source to a particular destination. The count field is used

to indicate either how many words should be read, or in some cases which bytes should be

read from a specific address range. Finally, the address field is used to access memory that

is mapped to either main memory or HT-connected devices. An extended HT packet can

be used that builds on this format to specify 64-bit addresses [75]. It should also be noted

that HT responses do not include address fields and instead use the SrcTag field to route

responses to the correct device.

Command and data packets are transmitted between HT devices using a credit-based

flow control, as shown in Figure 14, where one credit matches up with one physical buffer

for either a command or data packet. Credits and changes in the link status are transmitted

using special HT no-operation (NOP) packets that do not convey any memory or I/O-related

data. Due to the usage of HT as an I/O protocol that requires deadlock-free messaging, the

specification defines an ordering protocol that allows for a semi-relaxed ordering between
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packets in different virtual channels. The exception is for non-posted packets that are de-

fined to be part of a ordered sequence. Packet transmission must then maintain ordering for

this sequence’s packets from source to destination. However, transmissions from different

sources or destinations do not have any dependencies on ordering and may be reordered at

will. This HT ordering requirement is relevant to encapsulation protocols that use HT (such

as the HToE protocol) in that packets from the same source node must following Hyper-

Transport’s ordering constraints for local transmission, but packets from different sources

can be reordered with respect to each other. The proposed receiver-based optimizations in

Ch. 6 take advantage of this feature.

Figure 14: HT Link and Credit Buffers

4.4 HyperTransport over Ethernet Reference Design

HyperTransport was selected as the on-board interconnect to support the DPGAS model,

but at the time of the initial work with the DPGAS model there were few viable options

for connecting server blades with HyperTransport interconnects, mainly due to a lack of

standardized cabling. In addition, the use of the DPGAS model for data center applica-

tions necessitated interoperability with existing data center infrastructure. For this reason,
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Figure 15: HToE Block Diagram

1 Gbps Ethernet was chosen as the inter-node interconnect, and experimentation with DP-

GAS was designed based around the encapsulation of HyperTransport packets into Layer 2

(L2) Ethernet frames, that is raw Ethernet packets without any additional layering support

from the OS, such as TCP/IP. This encapsulation protocol was referred to as HyperTrans-

port over Ethernet, or HToE.

Initial requirements for the implementation of an HToE network adapter, or Hyper-

Transport Ethernet Adapter (HTEA), were defined as follows: 1) The adapter should sup-

port encapsulation and transmission of HT packets at a fast enough rate to meet the 1 Gbps

transmission rate of an Ethernet NIC. 2) Packets should be properly routed on remote nodes

without needing to modify the local HyperTransport protocol or physical links. 3) Packets

from multiple remote nodes should be handled within one pipelined adapter. 4) Remote

accesses to memory use the DPGAS model’s addressing scheme where N bits are used to

specify the remote node (and match to a remote Ethernet address) while B - N bits are used

to address memory locations within the node.

The HToE implementation, as shown in Figure 15, is based on a system with AMD

Opteron nodes where each node has an Ethernet-enabled FPGA card available in the HTX

connector slot, similar to the HTX card built by the University of Heidelberg [23]. Several

nodes are connected via an inexpensive Ethernet switch, and it is assumed that HyperTrans-

port messages sent to remote addresses via the HTEA are routed using one of two methods:
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Figure 16: HToE/HToIB Two-Node Packet Send and Receive

1) access to the northbridge address mapping tables (via the BIOS) in order to specify the

physical address space mappings for the HTEA device, or 2) an intelligent MMU that dis-

tinguishes between accesses to the local memory and the I/O address space and HT packets

that are sent for non-local addresses through the HTEA.

For a properly initialized system, there are three stages in each individual communica-

tion operation (e.g., a read request command) at a given source host and attached devices:

1) extension from the 40-bit physical address used by Opteron CPUs to a 64-bit physical

address, 2) creation of a HT packet that includes a 64-bit extended address, and 3) map-

ping the most significant 24 bits of the destination address to a 48-bit MAC address and

encapsulation of the HT packet into an Ethernet frame. These steps are shown in detail for

the two-node case in Figure 16. InfiniBand encapsulation (known as HToIB) is also shown

here but is not discussed in detail due to its similarities with Ethernet encapsulation.
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An efficient implementation could further pipeline the stages to minimize latency, but

retaining the three stages has the following advantages: 1) It separates the issue of current

processor core addressing limitations from the rest of the system, which offers a clean,

global shared address space, thus allowing implementations with other true 64-bit proces-

sors. 2) It is easy to port to other platforms that do not encapsulate by using Ethernet

frames, but use other link layer formats such as InfiniBand (as shown in Figure 16). Thus,

some efficiency was sacrificed for initial ease of implementation and for a cleaner, modular

design.

For outgoing request packets in the HTEA, the two most significant bits of the 40-bit

address are decoded to select one of four partition registers to access the 24-bit partition

address—the two most significant bits in the 40-bit address used to address the partition

register are reset in parallel with the access to the partition register. Next, three pieces of

information are needed: 1) the extended 24-bit address to form an HT read request packet

with extended address, 2) the MAC address of the destination HTEA to encapsulate the

extended HT packet into Ethernet, and 3) the local MAC address, which is used according

to Ethernet frame format to enable the response. Item 3 has been set during initialization,

so access to the source MAC address is not in the critical path. Items 1 and 2 have a direct

correspondence among them—given a destination node ID or the remote partition address,

there is a unique MAC address associated with both data fields. Therefore, the partition

register can store both the 24-bit partition address and the destination MAC address to-

gether, thus reducing access time when forming the Ethernet frame. Once the remote MAC

address and the 64-bit address have been found in the partition table, the new HT packet

is constructed and encapsulated in a standard Ethernet packet, illustrated in Figure 16 as

the Ethernet encapsulation module. The encapsulated packet is then buffered until it can be

sent using the local node’s Ethernet MAC and the physical Ethernet interface. For packets

that send a set amount of data, the control and data packets must be buffered until all the

data has been encapsulated into Ethernet frames.
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The receive behavior of the HTEA on the remote node requires a “response matching”

table where it stores, for every non-posted HT request (request that requires a response), all

the information required to route the response back to the source when it arrives. This table

is required since HT is strictly a local interconnect and response packets have no notion

of a destination 40-bit (or extended 64-bit) address. Since the formats of HT request and

response packets differ and the implementation cannot change the local HT link’s opera-

tion, the SrcTag field of each packet is used to match MAC addresses from an incoming

request packet with an outgoing response packet. Note that each request packet contains

the source MAC address, and this is the address that is stored in the “response matching”

table and that is later used as the destination MAC address for the corresponding response.

Encapsulation and buffering occur once again until the response and data can be transmitted

over Ethernet. For this reason, the structure that does response matching is shared between

incoming and outgoing data paths in the HTEA.

Also, it should be noted that because HT SrcTags are five bits, a maximum of 32 out-

standing requests can be handled concurrently by the response matching structure. If two

request packets arrive with the same SrcTag (e.g., two read requests from different nodes in

the cluster), then the latter packet is remapped before being stored in the table. When the

corresponding response leaves the HTEA, the SrcTag is mapped back to its original value

to ensure proper HT routing on the requesting local node. This “tag remapping” optimiza-

tion and an associated UnitID clumping optimization derived from this thesis is discussed

in greater detail as it relates to the HyperTransport over Ethernet specification in Section

5.4.2.

Once a response reaches the local HTEA that initiated a read request, the HT packet is

removed from its Ethernet encapsulation. The UnitID is changed again to that of the local

host bridge and the bridge bit is set to send the packet upstream. This allows the local host

bridge to route responses to the originating HT device. Other transactions, such as a posted

write or a non-posted write, involve similar sequences of events. The differences in these
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transactions are that for posted writes, no data is stored to create a response; for non-posted

writes, only a “TargetDone” response is returned, and no data needs to be buffered before

the response is sent over Ethernet. Similarly, atomic Read Modify Write commands can be

treated as non-posted write commands for the purposes of this model.

4.5 HTEA - Hardware Implementation

The hardware implementation of a network adapter for HToE, or HTEA, was designed

using Verilog and was built to interface with standard Xilinx IP cores for 1 Gbps Ethernet

and with a custom non-coherent HyperTransport “cave” (endpoint) device designed by the

University of Heidelberg [146].

Xilinx’s ISE tool was used to synthesize, map, and place and route the HToE Verilog

design for a Virtex 4 FX140 FPGA. Synthesis tests using Xilinx software indicated that

the four modules that make up the HTEA were individually capable of speeds in excess of

160 MHz—combined, unoptimized results showed that the HTEA was more than capable

of feeding a 1 Gbps or faster Ethernet adapter with a 125 MHz (1 Gbps) clock speed.

Evaluations for each of the request and reply critical paths demonstrated that the latency

overhead of this implementation is on the order of 24 to 72 ns (for a control packet with no

data and a read request response with eight double words of data, respectively). In a Xilinx

Virtex 4 FX140 FPGA, an unoptimized placement of the bridge used approximately 1,300

to 1,500 slices, or approximately 5% to 6% of the chip.

Overheads that reduced performance included the use of a serial Gigabit Ethernet MAC

interface and the use of only one pipeline to handle packets for each of the three available

virtual channels. These latency results are listed in Table 1 along with the associated latency

of the Heidelberg cave device from [146]. Total read and write latencies include latency

components that are discussed in relation to Table 2. All bridge operations assume a 125

MHz clock and discount any serialization latency normally associated with Xilinx Ethernet

MAC interfaces.
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Table 1: Latency Results for HTEA (Two-Node System)

DPGAS operation Latency (ns)
Heidelberg HT Core (input) 55

Heidelberg HT Core (output) 35
HTEA Read (no data) 24

HTEA Response (8 B data) 32
HTEA Write (8 B data) 32

Total Read (64 B) 1692
Total Write (8 B) 944

4.5.1 Memory Subsystem Latency Performance Penalties

The transfer of data between two nodes with the HTEA is low-latency at one to two

µs, but it is also important to understand the overall latency penalty that the memory

subsystem contributes to remote memory accesses. The latency statistics for the HTEA

and related Ethernet and memory subsystem components were obtained from other stud-

ies [31] [146] [81] and from the above place and route timing statistics for the HTEA

reference implementation. An overview is presented in Table 2. This HToE implementa-

tion was based on a 1 Gbps Ethernet MAC included with the Virtex 4 FPGA, but latency

numbers were only available for a 10 Gbps Ethernet IP core, which is shown below.

Table 2: Latency Numbers Used for Evaluation of Performance Penalties (Offline)

Interconnect Latency (ns)
AMD Northbridge 40

CPU to on-chip memory 60
Heidelberg HT Cave Device 35 - 55

HTEA 24 - 72
10 Gbps Ethernet MAC 500

10 Gbps Ethernet Switch 200

Using the values from Table 1 for a request to remote memory, the performance penalty

of remote memory access can be calculated using the formula:

trem req = tnorthbridge + tHTEA + tMAC + ttransmit

where the remote request latency is equal to the time for an AMD northbridge request to
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DRAM, the HTEA latency (including the Heidelberg HT interface core latency), and the

Ethernet MAC encapsulation and transmission latency. This general form can be used to

determine the latency of a read request that receives a response:

trem read req = 2*(tHToE req + tHToE resp + tMAC + ttransmit) + tnorthbridge + trem mem access

These latency penalties compare favorably to other technologies, including the cut-

through latency for the 10 Gbps Ethernet switch, which is close to 200 ns [130]; the fastest

MPI latency, which is 1.2 µs [103]; and disk latency, which is on the order of 6 to 13 ms for

hard drives, such as those in one of the server configurations used in Section 4.6 to evaluate

resource sharing with HToE [148]. Additionally, this unoptimized version of the HTEA is

fast enough to feed a 1 Gbps Ethernet MAC without any delay due to the encapsulation

of packets. As Chapter 6 shows, improvements for a 10 or 40 Gbps-compatible version

of the HTEA can include optimizations such as multiple pipelines and buffering of packets

destined for the same destination in order to reduce the overhead of Ethernet encapsulation.

These results indicate that an HToE-enabled cluster would be a viable means for im-

plementing the DPGAS model due to its low-latency data path. However, Sections 4.6 and

4.7 also consider HToE’s impact on total system power since additional accesses to remote

memory can lead to slower overall execution and can consume more static power from

other system components.

4.6 Reducing Overprovisioning with DPGAS - Offline Analysis

In the absence of a full hardware testbed, a trace-driven analysis was employed to deter-

mine potential power and cost savings offered by the DPGAS model [176]. Virtual address

traces were acquired using an instrumented SIMICS model [100] and fed through a page

table simulator to determine the number of page faults as a function of physical memory

footprints ranging from 32 MB to 1 GB. Five benchmarks were selected: Spec CPU 2006’s

MCF, MILC, and LBM [63]; the HPCS SSCA graph benchmark [7]; and the DIS Transi-

tive Closure benchmark [39]. These benchmarks had maximum memory footprints ranging
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Table 3: HP Proliant Server Configurations

Model CPU Cores Max. Memory Base Cost/Power
HP DL785 G5 eight quad-core, 2.4 GHz Opterons 512 GB ∼$42,000/1110 W
HP DL165 G5 two quad-core, 2.1 GHz Opterons 64 GB ∼$2,000/197 W

from 275 MB to 1600 MB. A 2.1 billion address trace (with 100 million addresses to warm

the page table) was sampled from memory intensive program regions of each benchmark.

These traces were used in conjunction with application and system models to assess poten-

tial power and cost savings when using DPGAS.

4.6.1 Experimental Setup

Two HP Proliant server configurations were selected as models for the offline analysis,

where the DL785 represented a high-end server with 32 threads and 512 GB of DRAM,

and the DL164 represented a low-end server with eight threads and 64 GB of DRAM (Table

3). Both configurations were expected to execute at least two VMs per core where a VM

instance was modeled as a benchmark application trace. All associated system and memory

costs and power statistics were derived from the HP Power Calculator [71] and online data

sheets [69], respectively.

Three different scenarios were investigated: 1) Using a fixed workload of VMs (bench-

marks), the DPGAS model was applied to reduce the “scale out” factor of data centers.

2) Using memory throttling to reduce the power consumption from servers that have been

overprovisioned in terms of memory to handle added applications. 3) Using the DPGAS

model to try and most efficiently map a set of applications to a fixed, global memory foot-

print in the data center. These experiments were chosen as representative strategies that

might be used in a data center to handle large time-varying workloads but that would likely

lead to memory overprovisioning and higher power usage and cost when compared with

using a DPGAS-based approach.
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4.6.1.1 Reducing Scale Out for a Fixed Workload

Scale out refers to a typical data center method for increasing application capacity, which

is to add more machines or bring idle machines online. This experiment started with a

scaled-out data center configuration of 250 servers, which consolidated a static number of

applications onto 225 servers and then onto 200 servers. The high- and low-end server

configurations both contained a certain number of applications (as recommended by an In-

tel virtualization study [25]) that was then extrapolated to a data center with 250 servers

(translating to 2,000 or 500 processor sockets for the high- and low-end server configura-

tions). Using these statistics, this data center could then support either 19,500 applications

using high-end servers or 4,700 applications using low-end servers.

In this set of experiments, the baseline memory allocation started out with enough mem-

ory to comfortably support the maximum memory footprint for every application allocated,

while a simple DPGAS-based allocation algorithm (spill/receive) took into account the

amount of unallocated free memory and decreased the provisioned amount of memory on

half of the servers by that amount. This reduction in memory is analogous to designing a

data center with half of the servers overprovisioned (receive nodes in the DPGAS model)

and half of the servers minimally provisioned (spill nodes).

4.6.1.2 Memory Throttling

When system designers overprovision servers, much of the installed memory sits idle on

each node. This experiment investigated the the power, cost, and performance implications

of memory throttling—that is, reducing the allocation for each application below its desired

level, resulting in additional cost and power savings at the expense of performance, i.e.,

page faults. This technique was used with the spill/receive model to see how DPGAS

could be combined with memory throttling to create a minimally provisioned data center

with optimal memory allocation.

Two strategies were tested with fixed applications to compare with an initial application
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allocation on 250 servers: 1) Each server had 50% of the desired memory and each appli-

cation was given 50% of its maximum memory footprint. 2) Each server had 25% as much

memory, and each application received 25% of its max footprint. These scenarios were

used to simulate the effects of memory throttling where an application might suffer from

performance loss due to lack of memory and memory fragmentation in the date center.

4.6.1.3 Fixed Memory Analysis

This experiment investigated the effects of using DPGAS’s spill/receive model for allo-

cation of a random number of applications on servers with a fixed amount of memory.

Applications were allocated until 250 servers had no available memory for new appli-

cations using both baseline (no spill/receive or memory sharing) and DPGAS allocation

algorithms.

4.6.2 Offline Analysis - Results

Results from three sets of experiments are shown here, based on a memory allocation sim-

ulation of random application workloads using both baseline (no sharing) and DPGAS

(spill/receive) memory allocation. Results for all experiments were averaged over 50 itera-

tions.

4.6.2.1 Reducing Scale Out for a Fixed Workload

The total cost savings for the low- and high-end server configurations are shown in Figures

17a and 17b with savings between normal and DPGAS allocation graphed as the third

column of each group. In the baseline (250-server) case, DPGAS has the potential to

save 22% to 26% in memory cost, which translates into a $60,000 savings for the low-end

servers and $200,000 for the high-end servers. However, it is also important to notice that

savings with DPGAS allocation drop as applications are consolidated onto fewer servers.

This is likely due to the fact that there is less free memory unallocated when using normal

allocation, and fewer nodes have memory left to act as receiving nodes for remote spilled
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allocations.

(a) Proliant DL165 G5 (b) Proliant DL785 G5

Figure 17: Scale Out Cost

Similarly, the power savings using DPGAS allocation (Figures 18a and 18b) is substan-

tial in the base case, with a savings of 3,625 (25%) and 5,875 (22%) watts of input power

for the low-end and high-end server configurations, respectively. When server consolida-

tion onto 200 servers is used, this power savings drops to 800 and 500 watts for the same

configurations. Both the cost and power results indicate that DPGAS memory allocation

is best suited for an environment that has a reasonable amount of fragmented memory that

can be utilized and for workloads that have a high amount of variability in their memory

footprints.

(a) Proliant DL165 G5 (b) Proliant DL785 G5

Figure 18: Scale Out Power

4.6.2.2 Memory Throttling

The results for cost and power in the high-end server are shown in Figures 19a and 19b.

The effects of memory throttling are dramatic, and even when less memory is allocated to
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a server, DPGAS can be used to improve memory cost and power efficiency. For instance,

reducing memory from 64 GB to 32 GB in each server reduces memory cost by $478,000

and memory power by 17,750 watts (from a base cost of $897,000 and base power of

35,500 watts). The usage of DPGAS allocation with 50% memory throttling with the high-

end server configuration can reduce the total memory cost by $570,000 and total memory

power by 21,125 watts.

(a) Proliant DL785 G5 (Cost) (b) Proliant DL785 G5 (Power)

Figure 19: Memory Throttling Effects on Power and Cost, High-end Server

Additional statistics for the low-end server configuration are shown in Table 4. These

experimental results concur with the high-end server configuration, except that power and

cost savings are smaller due to less memory fragmentation and less memory overall for

remote sharing. Overall, DPGAS enables a 10% to 22% reduction in memory cost and a

16% to 25% reduction in memory power when compared to normal allocation for the low-

and high-end servers.

Table 4: Low-end Server Cost and Power with Memory Throttling

Allocation No Throttling 50% Throttling 25% Throttling
Normal ($) $230,750 $111,250 $51,500
DPGAS ($) $171,000 $93,000 $46,250
Normal (W) 14,250 7,000 3,500
DPGAS (W) 10,625 5,875 2,625

When using memory throttling, performance must also be taken into account. The re-

sults from trace-driven analysis of the benchmark applications provide data on page fault

rates that directly correspond to the amount of memory a benchmark is given. These results
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(a) Proliant DL165 G5 (b) Proliant DL785 G5

Figure 20: Memory Throttling Performance

were used to generate Figures 20a and 20b that demonstrate the effects of memory throt-

tling on random allocations of each of the benchmark applications. In general, the usage

of memory throttling leads to an order-of magnitude increase in the number of page faults

for all applications, but some applications with small memory footprints or random access

patterns (poor spatial reuse) are affected much more by using memory throttling with nor-

mal allocation. However, additional results discussed in [171] indicate that DPGAS can

also be used to improve the performance of applications with throttled memory footprints.

If all servers are provisioned with an equal amount of throttled memory (i.e., no cost and

power savings), the DPGAS model can be used to give unallocated memory to applications

that would benefit the most from additional memory. By trading some of the power and

cost savings, page faults can be reduced system-wide while still garnering the benefits of

memory throttling.

4.6.2.3 Fixed Memory Analysis

Table 5 shows the results of random allocations for a fixed memory size. In both the low-

and high-end cases, DPGAS allocation of memory for an application failed one to two or-

ders of magnitude fewer times, due to the use of spill/receive allocations that allowed the

use of remote memory sharing. Additionally, fixed memory experiments showed that DP-

GAS can support a small number of additional applications over standard allocation (results

not shown in table), typically on the order of 30 to 40 more than a baseline allocation.

50



Table 5: Offline Analysis - Fixed Memory Workloads

Server Config Alloc. Method Workloads Allocated Alloc. Failures
Proliant 785 Normal 24,875 133
Proliant 785 DPGAS 24,875 3
Proliant 165 Normal 6,163 33
Proliant 165 DPGAS 6,163 2

4.6.3 Discussion

For these three experiments, the offline analysis indicates that using the DPGAS model

(with a suitable hardware implementation like HToE) can help to reduce the effects of mem-

ory fragmentation and reduce overall cost and power for servers when combined with other

techniques like application/VM compaction (reduced scale out) or with memory throttling.

4.7 Reducing Overprovisioning with DPGAS - Online Analysis

Initial results from offline analysis indicate the suitability of the DPGAS model and the

HTEA for high-performance data movement and subsequently for providing a temporary

remote “spill” buffer to time-varying workloads with large memory footprints [176]. This

section discusses further work that used a trace-based simulation to provide an online anal-

ysis of HToE performance in the context of a more complete system model for a 16 node

cluster [173].

4.7.1 Online Simulation Infrastructure

Figure 21 shows an illustration of the overall simulation environment, which takes advan-

tage of the open-source NS-3 network simulator project [117] and University of Maryland’s

DRAMSIM [161]. Scalable simulation is supported by the event-driven scheduling classes

used within NS-3 as well as updates that allow for distributed (MPI-based) simulations.

Detailed models in DRAMSIM and NS-3 allow the modeling of power and latency used by

DDR2 DRAM as well as per-hop latencies associated with different topologies of switched

Ethernet.

In addition, custom code was created to provide a detailed model of the HTEA and the
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Figure 21: HToE-based Simulation Infrastructure

Opteron Northbridge’s System Request Queue (SRQ) that can be used to map physical ad-

dresses to local or remote DRAM [4] [31]. The SRQ is programmed to determine whether a

physical address is mapped to the local DRAM and memory controller or to another device

attached to the crossbar in the northbridge. By using the address mapping tables, a certain

subset of physical addresses can be mapped to the HTEA and are thus satisfied by remote

memory controllers. This infrastructure uses a C++ mapping function that simulates the

operation and address range updates in the Opteron (SRQ).

4.7.2 Experimental Setup

The NS-3 and DRAMSIM-based simulation was used to evaluate four key metrics: 1)

The effect of using DPGAS spill/receive on DRAM latency, 2) the power impact of using

DPGAS in conjunction with average-case memory provisioning, 3) a more fine-grained

analysis of packet latency with DPGAS, and 4) the impact of using spill/receive on overall

network bandwidth utilization for a shared 10 Gbps Ethernet switch.

These experiments tracked several different metrics including: 1) dynamic power for

DRAM (W), 2) memory access latency for DRAM (ns), 3) link and buffering latency for

the 10 Gbps network (ns), and 4) network utilization of the 10 Gbps network (B/s).
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4.7.2.1 Application Workloads

Synthetic traces were generated based on application access patterns and inter-reference

timing from other studies that investigated benchmark suites such as Spec 2006 [84]. These

studies were used to specify the DRAM access inter-reference time for synthetic bench-

marks. The Spec 2006 benchmark represents applications that are worst-case application

workloads in terms of L2 cache misses, and some of the most intensive of these applica-

tions, such as MCF and Omnetpp, have an L2 cache miss every 4000-4500 cycles for a 2

MB L2 cache size. Enterprise applications and general-purpose applications likely have

better spatial and temporal locality than the SPEC suite, so these experiments use an inter-

reference time ranging from 10,000 to 20,000 cycles between L2 cache misses.

Three different synthetic benchmarks were used to represent different access patterns:

1) Random - a worst case scenario where there is no spatial locality within an address

stream; 2) Clustered Random - accesses are clustered around a mean address, and locality

is similar to an application repeatedly accessing several pages in the application’s address

space; 3) Strided - the access stream is specified by a stride and is related to applications

that perform large numbers of sequential array element accesses. Application footprints

were randomly assigned from 500-1500 MB, although specific tests were designed with

larger memory footprints to have one or more applications that would require spilling to a

remote node via DPGAS. The sizing of these memory footprints was drawn from insights

found in [25]. The number of read and write operations was split equally between reads

and writes.

4.7.2.2 Simulation Setup

DRAMSIM was initialized using a 4 GB module that corresponds to Micron’s MT47H512M8

TwinDie 4 GB DDR2 module [107]. Timing and power parameters were selected for the

DDR2-800 part, and one and four ranks were used to simulate 4 and 16 GB of installed

memory, respectively. The associated CPU speed was set at 3000 MHz.
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Table 6: Online Simulation - DPGAS Application and Memory Parameters

Num Nodes Apps / node Spill
Nodes

Receive
Nodes

Mem Size (GB) Apps / Re-
ceive Node

1 4,16 0 0 4,16 N/A
2 6 0 0 4/8 2
2 6,16 1 1 4,16 2,8
4 6,16 2 2 4,16 2,8
8 6,16 4 4 4,16 2,8
16 16 0 0 16/20 8
16 6,16 8 8 4,16 2,8
8 6,16 6 2 4,16 2,8

(8 for Recv)
16 6,16 14 2 4,16 2,8

(8 for Recv)

Table 6 shows the different test cases for the online simulation. NS-3 was initialized

with between one and 16 nodes, with each node connected to a single switch via a 10 Gbps

channel. NS-3’s’s raw socket layer was used to represent the transfer of HT packets in-

side Ethernet packets. Simulations were run for 100 real-world seconds, and each node

had between one and 16 applications that each generated accesses for 500,000 synthetic

addresses. For applications with a miss rate of every 20,000 cycles, this would mean that

the synthetic applications would run for about three seconds of wall-clock time. Tests with

4 GB were run with six applications per “spill” node and two applications per “receive”

node, while tests with 16 GB of memory were run with at least 16 applications for the

“spilling” node and eight applications for the “receiving” node. In each test a certain num-

ber of applications were specified to spill to other nodes, usually one to three applications

that exceeded the amount of memory for a minimally provisioned blade. This setup as-

sumed that an overprovisioned blade would have 8 GB and 20 GB of memory, while this

simulation used 4 GB and 16 GB, respectively.

Two tests were also devised to test scenarios similar to those tested by proponents of

memory blades [96] where a greater number of “client” servers could access remote mem-

ory on one central blade to support peak workloads. The first simulation used eight nodes,
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with six nodes containing 4 GB of installed memory spilling to two nodes with 8 GB of

DRAM installed. The second test used 16 nodes with fourteen spill nodes and two receive

nodes with 4 and 8 GB of installed DRAM, respectively.

4.7.3 DPGAS’s Impact on Memory Latency

Table 7 shows the average memory access latency across all simulations. The use of DP-

GAS spilling does not dramatically change the average latency for a memory access, al-

though it can cause a slight increase in average latency of a lightly loaded node that receives

remote memory requests. Changes in access patterns from DPGAS spill operations and in-

creases in the number of applications also affect the number of conflicts on open rows in

the simulated DRAM, requiring additional latency to access a new row. In most simula-

tions, access latencies varied between 60 and 70 nanoseconds. Variations between nodes

are expressed in the standard deviation calculations in Table 7.

Table 7: DRAM Access Latency with DPGAS Spill/Receive Algorithm

Simulation, DRAM Size Ave. Mem Latency (ns) Std. Dev.
2 node, 4/8GB (no DPGAS) 54.28 6.21

2 node, 4GB 53.06 2.5
4 node, 4GB 69.42 5.58
8 node, 4GB 66.29 9.5
16 node, 4GB 64.35 11.5

8 node, 4GB,8GB 67.74 10.89
16 node, 4GB,8GB 69.98 10.65

2 node, 16GB 68.11 12.51
4 node, 16GB 68.27 13.28
8 node, 16GB 68.72 14.21

16 node, 16/20GB (no DPGAS) 68.17 9.11
16 node, 16GB 68.84 7.2

Further tests showed that the latency difference for DPGAS versus non-DPGAS simu-

lations (two nodes with 4/8 GB and 16 nodes with 16/20 GB) led to an increase (16 node

case) or decrease (two node case) of less than 2 ns and a smaller standard deviation. While

the amount of traffic to the “receiving” DRAM increased, this DRAM was already under-

utilized due to lighter application loads. The decrease in standard deviation reflects that the
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average latency of memory accesses on the “spill nodes” was reduced as remote accesses

took place.

4.7.4 DPGAS’s Impact on Power Usage

DRAMSIM tracks the average power for one activation-to-activation cycle, meaning that

in this simulation it was used to track the power needed to perform one operation, whether

it be a read, write, precharge, or refresh operation. The calculated power was then averaged

across all the accesses that take place in the memory simulation to get a power value for

each type of operation the DRAM performs. Due to overprovisioning, DIMMs that are

underutilized by application workload must still be refreshed, and they still consume static

leakage energy.

This static component of DRAM power includes the power used when a DIMM is in

power-down or standby states for either active (when data is stored in the sense amplifiers)

or precharge (all data is restored to a row) modes. Additionally, static power takes into

account the power for refresh cycles that occur at regular intervals every 64 ms (for the se-

lected model DIMM). Figures 22a and 22b show the average static power savings achieved

by reducing the DRAM in each node by one DIMM. For the 4 GB case, power savings are

calculated based on provisioning each DPGAS-enabled node with 4 GB instead of an 8 GB

overprovisioned server, and for the 16 GB case, power savings are calculated in relation to

a 20 GB overprovisioned server. In the “memory blade” case, there are two receive nodes

with an extra 4 GB of memory, leading to slightly higher total power usage.

The power savings are illustrated with respect to the total power (including power for

activations, read, write, and termination commands) to give a proper sense of the total

power consumed versus the static power that can be saved by provisioning fewer DIMMs.

For the 4 GB case, each server receives half as much memory, so power savings are between

two and 19 Watts or 47 to 49% for the normal spill/receive tests. For the 16 GB case, the

overall percentage of savings is lower since overprovisioning means adding only one more
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(a) Low-end Servers (4 GB DRAM) (b) High-end Servers (16 GB DRAM)

Figure 22: Total Power and Power Savings with DPGAS Model

similar (4 GB) DIMM rather than adding multiple DIMMs. The savings for the 16 GB

experiment are between 1.5 and 16 Watts or 18% to 20%.

The memory blade experiments show similar savings for high-load environments. Com-

pared to the medium-load experiments (with an equal number of spill/receive nodes), the

memory blade tests reduce static power by 36% and 42%, compared to 47% for the medium-

load simulations.

It should also be noted that removing DIMMs from the system can increase the overall

system power if this reduction increases the system utilization. The HP Power Advisor Cal-

culator [72] was used to build a 10,000 core data center with similar DRAM characteristics

to those used in experiments based on the Proliant DL160 G6 server blade running at 60%

utilization. For the 16 GB case, removing 4 GB of DRAM from half of the blades would

result in a power savings of 3,540 Watts or 2.8%. However, if removing DIMMs increased

utilization (CPU and memory) by 5%, the power cost would increase by 3,040 Watts or

2.5%. It is unlikely that the DPGAS-based approach would increase CPU utilization be-

cause modern operating systems are already geared toward hiding the latency of accesses

to storage devices like DRAM and hard disks, and previous research indicates that most

servers are somewhat underutilized [11].
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4.7.5 DPGAS’s Impact on Packet Latency

To find a more refined value for the latency of a remote DIMM access, data was gath-

ered to model the “static” components that were not measured with the NS-3 simulation.

The latency values for the related Ethernet and memory subsystem components were ob-

tained from statistics from other studies [31] [146] [81] and from the place and route timing

statistics described in Section 4.5. An overview is presented along with measured results

for packet latency from the online simulation in Table 8. The average of an HT packet be-

ing encapsulated by the HTEA is again based on an average processing time of six cycles

at 125 MHz.

Table 8: Latency Numbers Used for Evaluation of Performance Penalties (Online)

Component Latency (ns)
AMD Northbridge 40

On-chip memory access 60
Heidelberg HT Cave Device 45

HTEA 48
10 Gbps Ethernet MAC 500

10 Gbps Ethernet Switch 200
Average Component Delay 893

Measured Transmission 185 - 939
and Buffering Delay (NS-3)

Using the formulas from Section 4.5, the performance penalty of a remote memory

access can again be calculated as follows:

trem req = tnorthbridge + tHTEA + tMAC + ttransmit

Figure 23 shows the total average one-way latency using the NS-3 transmission latency

values for ttransmit and the average component delay in Table 8 for the other delay values.

Note that the 200 ns switching delay [130] is included because NS-3 does not accurately

model all the internal components of a data center-capable Ethernet switch. This addition

likely overestimates the effect switching delay has on latency.
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Figure 23: HW Latency for HToE Remote Operation

The one-way latency varies from 1024 ns to 1238 ns for the 4 GB simulations with six

synthetic applications on each node and from 1057 ns to 1593 ns for the 16 GB simulations

with 16 applications on each node. Also, the addition of more spilling nodes doubles the

latency of simulations with eight and 16 nodes to 1478 and 1832 nanoseconds.

Despite the overall increase in latency due to buffering delay, latency still remains low

enough that remote, virtualized DRAM can be accessed without causing noticeable delay

to applications. The latency penalties again compare favorably to other technologies and

earlier offline results. The formula for one-way latency (from Section 4.5) can again be

used to determine the total latency of a read request that receives a response:

trem read req = 2*(tHToE req + tHToE resp + tMAC + ttransmit) + tnorthbridge + trem mem access

Using these refined figures and the online simulation, the read latency for a cache line

is 2,242 ns.

4.7.6 DPGAS’s Impact on Network Utilization

In addition to tracking packet latency, it is also important to analyze the overall impact of

using HToE on a shared 10 Gbps Ethernet link. Figure 24 shows the link utilization in

MB per second during the simulation time when DPGAS was being used to spill memory

requests to remote nodes. Utilization varies from 31.3 MB/s for the two-node, 4 GB test

case to 756 MB/s for the heavily loaded test case with 16 nodes and 14 nodes spilling to the
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two “memory blade” nodes. The 16 GB test cases show similar utilization to the normal

4 GB test cases, with utilization ranging from 31.3 to 250.65 MB/s. Although it would be

expected that utilization would be higher for larger numbers of spilling applications, the

synthetic benchmarks in the 16 GB tests transferred more data over a much larger interval

of time (about four seconds of real-world time versus two seconds in the 4 GB tests).

Figure 24: Network Utilization with DPGAS

The addition of more nodes and applications per node increases the utilization, but the

10,000 to 20,000 cycle intervals between memory requests keep packets spaced out for

medium-load cases, reducing link utilization. The memory blade tests for 8 and 16 nodes

show a dramatic increase in the amount of traffic with utilizations of 555 and 756 MB/s,

respectively. For the 16 node case, this translates to a utilization of more than 6 Gbps for

the combined traffic of 56 applications sending HToE requests in the same period of time

(a relatively heavy workload). This high utilization indicates that large memory blades may

need to be placed on a separate 10 Gbps link to prevent delays for other network traffic.

4.7.7 Further Discussion

The online analysis demonstrates a distinct point in time when multiple applications have

overlapping requests to spill memory via DPGAS. In real-world situations, multiple servers

may experience peak workload at the same time, but this experimental setup, specifically

for the memory blade tests, represents a heavy load or worst-case scenario. While these
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simulations do not currently incorporate a full system performance model, DPGAS ac-

cesses should have much better performance than accesses to disk.

Additionally, these experiments did not take into account other existing optimizations

for sharing memory, such as page migration. This penalizes the reported results because

pages that are most commonly used could be swapped into local memory, reducing the

number of remote accesses. On the other hand, the simulations also did not take into

account the HT transaction limitations (based on SrcTag and UnitIDs). This omission

would increase the remote access latency in heavily loaded situations unless optimizations

are designed to address this bottleneck.

4.8 Related Work

Results discussed in this chapter from both offline analysis and online simulations indicate

that the DPGAS technique has potential promise as an alternative to virtualization-related

strategies and dynamic throttling to reduce overprovisioning and power usage in data cen-

ters. Recent work in this area has included three main areas: 1) Dynamic placement and

management of applications to allow for throttling or idling of extra servers; 2) Better sup-

port for virtualization-related techniques and VM management to reduce power usage; 3)

General OS-related and architectural techniques for reducing memory-related power.

Recent work into application and VM placement for power management has started

to focus on using multiple resources, including memory and disk as inputs for when to

migrate VMs and idle servers [14]. However, much of this research still focuses on mem-

ory throttling or memory compression [91], which can negatively impact performance of

existing workloads.

Most important in the area of virtualization is improved support for VM migration and

strategies such as memory overcommitment (dynamic swapping of hot pages to support

VMs with overlapping memory footprints) [65], transparent page sharing for related VMs,

VM consolidation, and improved VM balloon drivers [159]. Each of these techniques aims
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to reduce the overall impact of a VM’s memory footprint, which may include a large mem-

ory heap but a relatively small and dynamic working set size. Managing the VM footprint in

this manner allows for idling of unused servers to conserve power, and the DPGAS model

would likely be useful in supplementing existing techniques rather than totally replacing

them. DPGAS may provide a performance boost when compared to standard memory over-

commitment as it redirects some page faults to remote memory as opposed to disk. In this

manner, the “virtual DIMM” concept could be combined with standard VM balloon drivers

to coordinate DPGAS allocations as working set sizes for VMs balloon and shrink.

Furthermore, The DPGAS model can also be used to further manage a VM’s mem-

ory footprint by allowing remote memory accesses to replace less performant techniques,

such as VM migration. Despite improvements in live migration techniques (where the

VM is still available for use during migration) [112], VM migration is still a heavy-weight

operation that takes several seconds [153] and can have downtimes in the range of millisec-

onds [86]. By providing VMs with low-latency access to remote memory segments, the

DPGAS model provides a powerful tool for reducing overprovisioning and increasing the

effectiveness of server idling techniques.

4.8.1 Power-based optimizations for DRAM

Other work has also focused on the power implications of overprovisioning DRAM with

data movement- or throttling-based solutions. An evaluation of power trends in the data

center was conducted in [97], and a design for a memory blade approach to sharing mem-

ory, disaggregated memory, was discussed in [96]. The disaggregated memory approach

had very similar goals to this research work because it also sought to reduce overprovi-

sioning of DRAM. The main difference between this implementation of disaggregation

and the related work is that the DPGAS model focuses on using existing memory that is

fragmented (due to uneven workloads in the data center) and the disaggregated memory ap-

proach focused on creating additional memory blades that can be shared between multiple

62



nodes.

The approach for resource sharing proposed in this chapter is related to RDMA-based

approaches, although DPGAS is focused on reducing registration overhead and supporting

more fine-grained access. One company that has approached using RDMA for memory

virtualization is RNA Networks (now bought out by Dell), whose Memory Virtualization

Platform uses RDMA with InfiniBand or Ethernet to allow high-bandwidth and low-latency

memory sharing [137]. This technique also helps to restrict memory power by reducing

overprovisioning.

Other higher-level approaches have addressed operating system support and data center

level support for reducing DRAM power. At the operating system level, Tolentino [154]

suggested a software-driven mechanism using control theory to limit application work-

ing set sizes and to reduce the need for DRAM overprovisioning. Additionally, many

researchers have proposed the concept of ensemble-level power management [132] to man-

age power at the server enclosure levels.

4.9 Concluding Remarks

This chapter introduces the hardware that is used to support the Dynamic Partitioned Global

Address Space model, the HyperTransport over Ethernet Adapter (HTEA), and it demon-

strates an offline and an online analysis of using HToE to reduce DRAM overprovisioning

in data centers. It provides a first-order performance analysis for HToE hardware, which

is later improved by the definition of the HToE specification (Ch. 5) and detailed timing

models used for aggregation-based applications (Ch. 6).
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CHAPTER V

THE HYPERTRANSPORT OVER ETHERNET SPECIFICATION

Shortly after the initial research into using HyperTransport over Ethernet to support DP-

GAS, the HyperTransport Consortium, or HTC, (and Georgia Tech as a research member

of this consortium) decided to pursue a full specification to support HyperTransport over

Ethernet for modern data centers. While the initial FPGA implementation of HToE focused

on creating a low-latency solution for performing put/get operations, it did not include sup-

port for features that are common in modern network adapters, such as support for failure

recovery, initialization, and optional security measures. The resulting HyperTransport over

Ethernet specification [170] is described here in terms of how it differs from earlier research

performed in Chapter 4 and in relation to the detailed simulation that is used in Chapter 6

to investigate an aggregation-related use case with accelerator-based clusters. The format

of this chapter is as follows: 1) The motivation for using Ethernet is briefly discussed, 2)

the requirements for an HToE specification are then detailed, and 3) the unique features of

this specification are demonstrated.

5.1 Logistics

The final HyperTransport over Ethernet specification was approved by the HyperTrans-

port Consortium in September of 2010, and its completion involved contributions from

multiple member groups and individuals. This author contributed initial research [176]

that discussed concepts that were further refined by the specification, such as the use of a

DPGAS-like model for remote memory allocation and Tag Remapping and UnitID clump-

ing in the HTEA (Section 5.4.2). In addition, the two main coauthors (Brian Holden and

this author) went through multiple rounds of phone conversations with HTC members from

other businesses and from AMD to fully develop recommendations for HToE flow control,
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Figure 25: Top 500 Interconnect Share (June 2013) [70]

retry and resets, and data security. As these discussions developed, HToE’s feature set

was improved and multiple figures were drawn to illustrate the correct implementation of

the specification. Although the complete HToE specification is not posted openly (except

to HTC members), a version of the specification for public consumption was written and

presented by this author [175].

5.2 Motivation for an Ethernet-based Specification

While InfiniBand has made great strides in the HPC space due to its high bandwidth and low

latency, Ethernet remains a valued interconnect for both low-end data centers and for high-

performance clusters. Figure 25 shows that despite InfiniBand’s performance advantages,

Ethernet is used in 43% of the Top 500 high-performance clusters in the world as compared

to InfiniBand’s 41%. While many of these systems currently use 1 Gbps Ethernet, newer

Ethernet standards including the 10 Gbps [1] and 40 Gbps Ethernet standards are providing

performance-related updates that aim to make Ethernet a more high-performance network-

ing fabric. At the same time, Ethernet has evolved as a lower-cost and “software-friendly”

alternative to IB. Thus, the ability to integrate HT over Ethernet would enjoy significant in-

frastructure and operating cost advantages in data center applications and certain segments

of the high-performance marketplace.
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5.2.1 Performance

Woven Systems (now Fortinet) in 2007 demonstrated that 10 Gigabit Ethernet with TCP

offloading can compete in terms of performance with SDR InfiniBand, with both fabrics

demonstrating latencies in the low microseconds during a Sandia test [164]. In addition,

switch manufacturers have built 10 Gigabit Ethernet devices with latencies in the low hun-

dreds of nanoseconds [34] [169]. Recent tests with iWARP-enabled 10GE adapters have

shown latencies that are on the order of eight to ten microseconds, as compared to similar

InfiniBand adapters with latencies of four to six microseconds [35]. More recent tests have

confirmed that 10 Gigabit Ethernet latency for MPI with iWARP is in the range of eight

microseconds [89]. In more recent years 10GE adapters with hardware acceleration have

latency in the range of six microseconds [147] and in some cases, one to two microsec-

onds, [28] which is directly comparable to the best InfiniBand implementations for small

messages.

These latencies already are low enough to support the needs of many high-throughput

applications, such as retail forecasting and many forms of financial analysis which typically

require end-to-end packet latencies in the range of a few microseconds. Additionally, the

new IEEE 802.3ba standard for 40 and 100 Gbps Ethernet aims to make Ethernet more

competitive with InfiniBand in terms of bandwidth. Although full-scale adoption is likely

to take several years, there are already several products focused on the core router market

that support 40 and 100 Gbps Ethernet. [88].

The challenge with using these lower-latency fabrics is in making their lower hardware

latencies accessible to the application software layers without having to engage higher

overhead legacy software protocol stacks that can add microseconds of latency [9] [98].

The HToE specification is a step towards that goal, since it focuses on using Layer 2 (L2)

packets and a global address space memory model to reduce dependencies on software and

OS-level techniques when performing remote memory accesses.
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5.2.2 Cost and Market Share

The continued use of low-bandwidth Ethernet (1 Gbps and 10 Gbps) indicates that cost

plays an important role in the construction of computational clusters (for example, for

market analysis and geological data analysis in the mineral and natural resource industries).

Part of the reason for this widespread market share is due to the low cost of Gigabit Ethernet

and the falling cost of 10 Gigabit Ethernet, as well as the management and operational

simplicity of Ethernet networks.

However, it should also be noted that InfiniBand still enjoys a price and power advan-

tage over 10 and 40 Gbps Ethernet due to being first to arrive in the HPC market. In 2011, a

40 Gbps, 36 port InfiniBand switch cost around $6,500 and had a typical power dissipation

of 226 Watts [76], while a 10 Gbps, 48 port Ethernet switch cost around $20,900 and had a

power dissipation of 360 Watts. As of 2013, a 10 Gbps, 52 port Ethernet switch still costs

∼$22,000 but now has an average power dissipation of 191 watts [5].

One of the strongest factors for using Ethernet is the trend toward converged networks,

driven in large part by the need to lower the total cost of ownership (TCO) of data centers.

For example, Fibre Channel (FC) has been the de facto high-performance standard for

SANs for the past 15 years. The technical committee behind FC has been a major proponent

of convergence in the data center with their introduction of the Fibre Channel over Ethernet

(FCoE) standard [48]. This standard relies on several new IEEE Ethernet standards that

are collectively referred to as either Data Center Bridging (DCB) or Converged Enhanced

Ethernet (CEE) and are described in more detail in Section 5.3.3. The approval of this

standard and subsequent adoption by hardware vendors bodes well for the continued usage

of Ethernet in data centers and smaller high-performance clusters.

Possibly one of the best indicators of the future market share for Ethernet as a high-

performance data center and cluster fabric is the willingness of competitors to embrace and

extend Ethernet technologies. Two examples are the creation of high-performance Ethernet

switches [111] and the development of RDMA over Converged Ethernet (RoCE) [6], which
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has been referred to by some as “InfiniBand over Ethernet” since it utilizes the InfiniBand

verbs and transport layer with a DCB Ethernet link layer and physical network.

5.2.3 Scalability

As the most prevalent commodity interconnect technology in previous generation data cen-

ters, there has been considerable effort devoted to constructing scalable Ethernet fabrics

for data centers. For instance, highly scalable fat tree networks have been incorporated

into data centers using 10 Gigabit Ethernet [139], while network vendors have already em-

braced the in-progress standards for Data Center Bridging as a way to create converged

SANs and a high-performance cluster fabric [90]. Other recent studies have demonstrated

techniques for active congestion management to enable further scaling of topologies con-

structed around Ethernet [164] [87].

5.3 HToE Specification Requirements

Due to the differences between the point-to-point communication of HyperTransport and

the switched, many-to-many communication of Ethernet, the HyperTransport over Ethernet

specification needs to address several key requirements to ensure correct functionality. To

manage the traversal of packets between these fabrics, the HToE specification focuses on

a bridged implementation using encapsulation of HT packets (typically up to 64 Bytes of

data) in larger Ethernet packets (up to 1500 Bytes or larger in some cases). In order to

remain faithful to end-to-end HT transparency at the software level, the requirements of

the HT protocol now translate into requirements for Ethernet transport that are realized in

Layer 2 switches.

Furthermore, to productively harness the capabilities of HToE, it must be implemented

in the context of a global system model that defines how the system-wide memory address

space is deployed and utilized. Toward this end, this specification was designed around

the use of global address space models and specifically the Partitioned Global Address

Space (PGAS) model as illustrated by previous research into the Dynamic PGAS model
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[176]. In particular, the use of a PGAS-related model increases the portability of the model

and application/system software across future generations of processors with increasing

physical address ranges.

5.3.1 On-package and Off-package Addressing

As previously discussed in Section 4.3, HyperTransport address mapping allows for I/O

devices and local DRAM to be mapped to physical addresses that are interpreted by the

processor for read and write operations. This physical address mapping is hidden from

applications using standard virtual addressing techniques in the operating system.

HToE supports a global, system-wide, noncoherent address space. Addresses must be

transparently recognized as either local or remote, and the latter must be mapped to memory

or device addresses on a remote node. Implicitly, this mapping must translate between

address spaces and Ethernet MAC addresses and vice versa. Consequently, this mapping

between local HT addresses and the global HToE address space is necessary to encapsulate

and transmit HT packets from a local node to a remote node’s memory. Additionally, the

remote node must not require modification to its local HyperTransport links in order to

route packets that have been sent from a remote node – that is, any remote requests must

appear to the local HT link as an access by a local device to a local address. More details

on the specific mapping used by HToE are discussed in Sections 5.4.1 and 5.4.2.

5.3.2 Scaling HyperTransport Ordering and Flow Control for Cluster Environments

HyperTransport is a point-to-point protocol that uses three virtual channels to send and

receive command and data packets. The HT protocol has been designed to ensure that

packet ordering on these channels is preserved on local links via the HT Section 6 Ordering

algorithm [75]. This algorithm ensures not only that packets arrive in a logical order but

also that deadlock freedom is maintained. In a switched Ethernet environment with the

possibility of packet loss, preservation of ordering becomes a much more difficult problem.

Thus, any HToE solution must guarantee that packets remain ordered correctly within their
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virtual channels. For more information on maintaining packet ordering, see Section 5.4.3.

In addition to packet ordering, the HT 3.1 specification also defines a multi-channel,

credit-based flow control algorithm. Credits typically flow between two point-to-point

links based on the receipt and processing of packets within each virtual channel. In a

scalable, switched Ethernet environment, packets could conceivably flow from multiple

sources to one destination. Furthermore, since HyperTransport packets are much smaller

than Ethernet packets, another requirement is that multiple HyperTransport packets can

be encapsulated in one Ethernet packet to reduce the overhead of encapsulation. Both of

these requirements indicate the need for a careful rethinking of how to send HyperTrans-

port credits and packets when using HToE. The main flow control requirement is that the

sender must possess credits for all HyperTransport packets that it encapsulates. Also, Hy-

perTransport packets that are encapsulated in a single Ethernet packet must be of the same

virtual circuit and headed for the same destination.

5.3.3 The Benefit of a Congestion-Managed Ethernet Network for Flow Control

One recent development that was investigated for this specification was the introduction of

several IEEE specifications, collectively known as Data Center Bridged (DCB) Ethernet or

sometimes Converged Enhanced Ethernet (CEE), depending on the company promoting it.

Data Center Bridged Ethernet aims to provide a congestion-managed Ethernet environ-

ment to support converged fabrics in the data center and was motivated by the convergence

of the Fibre Channel standard onto Ethernet fabric, aka FCoE [151]. These fabrics aim to

prevent packet loss due to congestion but do not prevent packet loss due to bit errors or other

sources such as equipment failure or fail-over. Data Center Bridged Ethernet incorporates

several specifications including per-priority flow control (IEEE 802.1Qbb), congestion no-

tification (IEEE 802.1Qau), and Data Center Bridging Capabilities Exchange Protocol and

Enhanced Transmission Selection (IEEE 802.1Qaz) [78]. These congestion-management

algorithms are especially helpful in high-performance computing because of the intensely
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self-similar nature of HPC traffic.

HyperTransport over Ethernet is intended to be used with switches that have been de-

signed for Data Center Bridging environments, such as those explicitly created to support

Fibre Channel over Ethernet. However, some of the DCB specifications would interfere

with the normal ordering and priority requirements specified by the HT Section 6 Order-

ing Requirements. For this reason, many of the solutions specified for ordering and flow

control do not explicitly require features like per-flow flow control. This means that HToE

could likely be supported on normal 10 GE hardware, but it could also be enhanced by

allowing for the usage of the DCBX protocol, per-flow priorities (for packet flows between

different sources and destinations), and Enhanced Transmission Selection for usage with

other types of network traffic.

5.3.4 Recovery from Failures

HyperTransport 3.1 has several methods for recovering from errors. A special “poison”

bit can be set in HT response packets to indicate to the source processor or device that

an operation failed (e.g., a read failed to complete). This error notification typically is

passed upstream to the initial requesting device without any notion of the initial request’s

address. In addition, HyperTransport can use the HT 3.1 retry mechanism to resend packets

between source and destination HT devices based on a Go-Back-N algorithm that relies on

sequence numbers included in HToE packets. If this mechanism should fail to recover from

errors, the host processor has the option to issue a reset using a warm or cold reset that is

communicated to devices via separate physical signals.

In the HToE environment, these requirements for recovery from errors become more

complex due to the nature of HyperTransport transactions and due to the fact that Ethernet

does not support the HyperTransport physical signals. Thus the HyperTransport over Eth-

ernet specification must ensure that 1) errors can be appropriately reported to the requesting

remote node, 2) resets can be accurately communicated to remote nodes when otherwise
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unrecoverable failures occur, and 3) resets for traffic between one source and destination

HTEA does not affect traffic from other HTEAs.

5.3.5 Requirements for Retry in HToE

The HT specification defines a retry mechanism that resends packets when errors are dis-

covered using a Go-Back-N algorithm and sequence numbers for HyperTransport packets.

This mechanism must be extended to function over Ethernet and thereby becomes part of

the HToE specification. Ethernet does not define a Layer 2 error retry protocol, so the

HToE spec uses a variant of HyperTransport 3.1’s retry algorithm that can function across

an Ethernet fabric in the presence of packet loss due to congestion or due to bit errors.

5.4 The HyperTransport Over Ethernet Specification

The HyperTransport over Ethernet specification outlines the basic functionality of the HToE

bridge device, or HyperTransport Ethernet Adapter (HTEA), that is used to encapsulate Hy-

perTransport 3.1 packets into Ethernet packets. A normal Ethernet MAC can be shared for

both HToE traffic and TCP/IP traffic, although the implementer should decide on how to

prioritize each traffic type. Alternatively, one can use different adapters to separate HToE

and TCP/IP traffic - this approach may be useful for web servers that would like to use

HToE with the spill/receive model with maximum bandwidth available for both applica-

tion and memory traffic.

To assist with the implementation of each of the specification’s requirements, function-

ality in the HTEA is divided into separate “layers” that are implemented in the hardware of

the HTEA and that communicate with other layers when processing incoming or outgoing

HT packets. Some of the more interesting aspects of the “mapping” layer, the “ordering and

flow control” layer, and the “encapsulation” layer (Figure 26) are described in the following

sections.

72



Figure 26: HyperTransport Over Ethernet Layers

5.4.1 Mapping HT Addresses into the Global Address Space

HyperTransport over Ethernet assumes that the range of memory addresses on each node

form a subset of a global, 64-bit physical address space. In order to map the local Hy-

perTransport address to a global memory address, such as those used with some PGAS

models [176], and to a destination Ethernet address for remote nodes, a few of the upper

bits from the physical address are used to select among potential remote nodes in the map-

ping layer of the HTEA as previously shown in Figure 15 in Section 4.4. This mapping

allows for a processor on a local node to make a non-coherent put or get operation to the

memory of a remote node.

While the creation of a mapping table is left up to implementers of the HTEA, the

selection of global addresses for a particular HTEA and node can be defined using OS-

level communication and subsequent PCI-style Programmed I/O commands to write to the

HTEA or by using the new functions of the Data Center Bridging Capabilities Exchange

Protocol (DCBX) [78] to communicate mapping parameters at the link layer level between

DCB-enabled switches.

This mapping of local HT packets to remote nodes also requires the creation of a logical

organization scheme to keep track of distinct source and destination pairs, known as a

Virtual Link (VL) in the specification. As shown in Figure 27, a Virtual Link couples

information such as available credits and buffers for the three virtual channels on the local

link as well as information like the destination MAC address. Once the mapping layer of
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Figure 27: HyperTransport Ethernet Adapter Virtual Link

the HTEA decides which destination MAC address a particular HT request address maps

to, the HyperTransport packet is queued according to available credits and associated buffer

space at the remote HTEA. These credits are discussed more in Section 5.4.3.

5.4.2 Tag Remapping for Higher Performance

In addition to mapping local HT requests into the global address space supported by HToE,

the HToE specification also supports mapping optimizations for the HTEA that allow for

increased scalability while still preserving the local link’s ability to transparently handle

remote HT packets without needing knowledge of their source. This particular optimization

is directly derived from previous research done to support the DPGAS model [176].

One of the limits to scalability in an HToE implementation is related to the number of

outstanding Non-Posted requests that can be issued by a HyperTransport device at one time.

Since the HTEA interface with the HyperTransport link follows all the normal protocols of

a HyperTransport device, it is limited to sending a relatively small number of Non-Posted

requests (that require a response packet) to the local link using unique Source Tag (SrcTag)

bits. Furthermore, packets that are received at a HTEA may have their own Source Tag bits

that conflict with requests from other source HTEAs. For this reason, the HToE standard

implements a technique called tag remapping [176] to maximize the number of Non-Posted
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Figure 28: Tag Remapping in the HTEA

requests that can be sent to the local HT link. Figure 28 shows how tag remapping works

with two conflicting incoming requests. The original SrcTag, Unit ID, and source MAC

address are stored in a pending request table on receipt. If a newly arrived request conflicts

with a pending request, its SrcTag and Unit ID bits are remapped and the mapping is main-

tained in the pending request table. When a response returns to the HTEA, the response’s

fields are matched up against this table to restore the SrcTag and Unit ID fields as well as

to determine the correct destination HTEA for a response.

The HyperTransport specification also specifies an optional technique called Unit ID

Clumping that can be used with tag remapping to give the HTEA additional Source Tags

for use with the local HyperTransport link. Unit ID Clumping is not a requirement for

HToE implementations, but it provides an example of how HToE can be scaled to handle

additional sending HTEAs while conforming to the requirements of the original Hyper-

Transport specification.

5.4.3 HToE Ordering and Flow Control for Multiple Senders, Single Receivers

HToE ordering relies on the HT 3.1 ordering requirements, also known as HyperTransport

Section 6 Ordering Requirements. Although there are no requirements for packets going

to different destinations (from different VLs), ordering of packets within a VL is preserved
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by the HToE retry algorithm and by sending all Ethernet packets for a specific source/des-

tination pair on the same Ethernet priority level.

In contrast to point-to-point communication, a HTEA must receive packets from multi-

ple source HTEAs. To handle this many-to-many communication pattern, the HToE speci-

fication uses a very simple credit-based principle for end-to-end buffer management – any

HyperTransport packets that are sent to a remote node must have a HyperTransport credit

for the Virtual Link before they can be encapsulated into an Ethernet packet. Additionally,

each HT credit is equal to one buffer in the receiving HTEA.

Unlike HT links where HT credit-carrying NOP packets continuously flow on the phys-

ical link, credits are passed in the HToE environment only when the receiving HTEA has

available buffers for incoming HT packets. A certain number of buffers must be reserved

to allow sending HTEAs to initiate new connections, but additional buffers and credits are

allocated by the receiving HTEA as its flow control and credit allocation schemes specify.

As buffers are filled in a receiving HTEA, the lack of available credits introduces back-

pressure on the sending HTEAs. Figure 29 shows how this backpressure causes buffers in

the sending HTEA at Node 1 to become full, pausing transactions until more credits are

available. Note that since each Virtual Link has its own set of credits, lack of credits for

one source-destination pair should not affect the traffic for another VL.

The HToE specification defines the minimum required flow control mechanism, which

is to support HT Section 6 Ordering for HT packets that map to the same HTEA-VL. How-

ever, this definition leaves open many opportunities to optimize the allocation of credits and

buffers to multiple senders. One such optimization is discussed in further detail in Section

6.2.1.

5.4.4 Encapsulation and Support for Recovery and Resets

In addition to specifying how HyperTransport packets are packed into Ethernet packets,

the encapsulation layer also interacts with recovery and reset mechanisms that have been
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Figure 29: HToE Backpressure-based Flow Control

adapted from HT 3.1 to handle HToE packets. Each HToE packet contains a special se-

quence number that is used by the HToE retry algorithm to determine if HToE packets are

received in order. This sequence number and retry algorithm are very similar to the 3.1

Go-Back-N algorithm, but each sequence number refers to an entire HToE packet, not just

one HT packet. Further error checking is provided by CRCs on both the HToE Payload and

the use of the normal Ethernet CRC.

In the case of an unrecoverable error that leads to reset, the encapsulation layer speci-

fies a method for performing link-level resets of one or more Virtual Links that is similar

to HyperTransport’s concept of cold and warm resets. Since HyperTransport over Ether-

net does not include the additional physical sideband signals that HyperTransport devices

normally include (such as the power and reset signals), resets must be passed using packets

or using OS-level communication. A special encapsulation packet header defines fields for

these selective resets, limits their scope, and keeps the entire HTEA from having to reset

due to an error between one source and one destination.

While some errors lead to reset, many errors just require a response to notify the original

requesting processor that a request packet has not received a valid response. Similar to how

HT specifies a method for sending responses with error bits to notify of errors, HToE allows
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for remote transactions to be terminated, and the HTEA can handle error notifications. To

do this the HTEA must keep track of sent HyperTransport packets that require a response

(Non-Posted packets). If the HTEA receives a notification that the response has been lost

or the remote node has been reset, it can then send a HT packet to the original requester

with the “poison” or error bit set. This additional state for remote requests allows for easier

error detection and detection of request timeouts.

5.5 Concluding Remarks

The design of HToE in support of the DPGAS model contributed to the further investigation

of HyperTransport over Ethernet by the HyperTransport Consortium, and the HToE speci-

fication provided a full implementation designed to support encapsulation of standard HT

packets over a lossy, L2 Ethernet fabric, with features including HT credit-based flow con-

trol, HT-based retry and recovery, and optimizations such as tag remapping with optional

UnitID clumping. The ratification of this specification in 2010 led to a similar specifica-

tion being created for HyperTransport over InfiniBand [17]. This specification contained

many of the same features with regards to encapsulation of HT packets into IB packets, but

there were several differences due to added features that are found in standard IB fabrics.

For example, addressing was modified to support IB Local IDs and Global IDs rather than

Ethernet MAC addresses, and many of the retry and recovery features were suggested only

for unreliable connections due to IB’s support for paired connections.

Both of these specifications provided a relatively complete guide to help hardware im-

plementers to create adapters based on the HToE and HToIB specifications, and they were

later combined with the High Node Count specification under the umbrella of the Hyper-

Share marketing terminology currently used by the HTC [77]. At the same time, these spec-

ifications did not address essential hardware questions, such as how to design an adapter to

satisfy a specific application with strict flow control and bandwidth requirements. Chapter

6 takes a closer look at a large-scale simulation that was designed to address this problem
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for a specific application domain - accelerator clouds.
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CHAPTER VI

A CONVERGED FABRIC MODEL FOR ACCELERATOR CLOUDS

The HToE specification discussed in Chapter 5 provides a complete hardware implementa-

tion of the DPGAS model that can be used in data centers to provide high-performance data

movement between local and remote memory. At the time of this specification’s ratification

in 2010, many data center operators were starting to focus on the use of new accelerators,

such as GPUs, to speed up common parallel tasks like database queries. The addition of

these new accelerators created a new challenge: How can both host and accelerator memory

resources be aggregated in a way that is high-performance and programmer-friendly?

This chapter applies the DPGAS model and the HToE network layer to solve this chal-

lenge for a specific data center configuration referred to as an “accelerator cloud” – a clus-

ter with a limited number of high-end accelerators that are provisioned to reduce Total

Cost of Ownership (TCO) and power [41]. The use of HToE for accelerator clouds is dis-

cussed in relation to a system model where accelerator and memory resources are shared

via a converged commodity fabric that provides a low-latency aggregation layer. On top of

this system model, a new application, data warehousing, is examined and evaluated using

performance-related features from the HToE specification [174]. In addition, this research

includes a detailed investigation of the HToE network adapter, or HTEA, and specific op-

timizations that can improve the network performance for the target data warehousing ap-

plication.

6.1 Motivation for Accelerating Data Warehousing

Recent growth in the size of data sets in the business world [79] has led to an increased

need for computational power and large amounts of memory to support high-performance

processing of what has become known as “Big Data”. Graphics processing units (GPUs)
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can provide added computational power, but data must first be transferred to these devices

for processing. In addition, data center applications cannot easily benefit from expensive

hardware and specialized software (e.g., message passing) that enables data movement for

other domains, such as high-performance computing (HPC), because using these frame-

works would require significant changes to the application’s design. Thus, the challenge of

efficiently using accelerator and host resources is not just a performance question but also

one of programmability.

Many business applications, such as the read-only databases used in data warehousing,

do not actually require complex solutions to ensure memory coherence between nodes;

in some cases they can take advantage of relaxed consistency requirements such as even-

tual consistency [160] or on-demand consistency [51]. For this reason, the DPGAS model

can be used to provide a memory management scheme that supports simplified applica-

tion programming and that provides high-performance data movement using non-coherent,

scalable remote memory accesses. HyperTransport over Ethernet provides the ideal hard-

ware support for these types of Big Data applications in that it is low-cost, commodity, and

has minimal dependence on software interference and coherence protocols. This chapter

focuses on the use of HToE as a high-performance network layer while Chapter 7 discusses

Oncilla, a software layer that addresses both performance and the programmability aspect

of using accelerator clouds for data warehousing.

6.1.1 Data Warehousing

Data warehousing, as used in this thesis, refers to a specific database model and access

method that is represented by an industry standard benchmark, TPC-H [152]. While TPC-

H is listed as a “decision support” benchmark, many businesses commonly refer to this type

of database model as a “data warehouse” due to its emphasis on large numbers of entries

that are typically based on customer orders or existing inventory. The TPC-H specification

details a common online transaction processing (OLTP) database schema that is filled with
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pre-generated data and that is then modified via refresh functions and accessed via decision

support query functions. For the purposes of data warehousing acceleration, this work

focuses on optimizing the query functions, which typically are read-only operations. Figure

30 shows the schema of TPC-H’s database, which is the target for query functions.

Figure 30: TPC-H Database Schema [152]

The TPC-H benchmark suite contains 21 queries, where Query 1 (Q1) is the simplest

and Q21 is the most complex. Listing 6.1 shows TPC-H query 1, which performs a SQL

select, group by, and order by operation to return the number and pricing of a certain item in

the data warehouse over a certain time period. As discussed in [165], this simple query can

be resolved into 15 relational algebra operators including sort, join, select, and aggregate.

These relational algebra operators can then be represented using 107 GPU kernels. The

creation and optimization of the GPU implementations of relation algebra primitives is the

focus of the Red Fox compiler framework.
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s e l e c t

l r e t u r n f l a g ,

l l i n e s t a t u s ,

sum ( l q u a n t i t y ) as sum qty ,

sum ( l e x t e n d e d p r i c e ) as s u m b a s e p r i c e ,

sum ( l e x t e n d e d p r i c e ∗(1− l d i s c o u n t ) ) as s u m d i s c p r i c e ,

sum ( l e x t e n d e d p r i c e ∗(1− l d i s c o u n t ) ∗ (1+ l t a x ) ) as

sum charge ,

avg ( l q u a n t i t y ) as avg q ty ,

avg ( l e x t e n d e d p r i c e ) as a v g p r i c e ,

avg ( l d i s c o u n t ) as a v g d i s c ,

count ( ∗ ) as c o u n t o r d e r

from

l i n e i t e m

where

l s h i p d a t e <= date ’1998-12-01’ − i n t e r v a l ’[DELTA]’ day

( 3 )

group by

l r e t u r n f l a g , l l i n e s t a t u s

order by

l r e t u r n f l a g , l l i n e s t a t u s ;

Listing 6.1: TPC-H Query 1

6.1.2 Red Fox compiler framework

The Red Fox compiler is designed to run complex queries with large amounts of rela-

tional data for a heterogeneous cluster and is focused on optimizing computation kernels
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Figure 31: Red Fox Compiler Flow

that run well on highly parallel architectures, such as GPUs. As Figure 31 shows, Red

Fox is comprised of: 1) A front-end to parse Datalog, a declarative language, and to cre-

ate an optimized query plan in the form of a graph of relational algebra (RA) primitives,

such as select, project, join, etc., 2) a compiler to map these RA primitives to their corre-

sponding GPU kernels using NVIDIA’s CUDA language [38], and 3) a kernel optimization

component called Kernel Weaver that applies Kernel Fusion/Fission (KFF) optimizations

to reduce the amount of data transferred to the GPU and to overlap data movement with

computation [165] [166].

Previous work has shown that database computation maps well to GPUs due the par-

allel nature of database-related operations [62], and recent work with Red Fox’s Kernel

Fusion optimization has helped to reduce the overhead of transferring data over the local

PCI Express (PCIe) bus by combining computations that operate over the same input set.

While Kernel Fusion can be used to limit the number of PCIe data transfers, the transfer

of large in-core data sets to smaller GPU global memory is still limited by the efficiency

of data transfer between cluster nodes. The system model described in this chapter and the

Oncilla framework in Chapter 7 both aim to support the efficient multi-node data transfer

mechanism needed to use Red Fox with large data sets.
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6.2 System Model for Future Accelerator Clouds

This work defines the concept of a commodity converged fabric, or a tightly integrated

network layer built around commodity parts, such as HToE, HToIB, and FCoE. As shown

in Figure 32, the goal of using commodity converged fabrics for accelerator clouds is to

change the ratio of host memory available to GPUs by aggregating memory across cluster

nodes while also enabling a simplified memory model for applications that use remote

memory or GPUs. Operationally, this model’s usage of a non-coherent, system-wide global

address space means that transfers of data from remote host memory to GPU memory now

appear as a non-uniform memory access (NUMA). This allows data center designers to

be able to size accelerator clouds for an appropriate, domain-specific acceleration capacity

and to scale these clouds without worrying about coherency traffic constraints.

Figure 32: Logical Model of Accelerator Cloud Using Converged Fabrics.

The proposed system model for an accelerator cloud includes N nodes which each have

some amount of host memory on each node. Of these N nodes, a smaller subset will

have a high-end GPU. While all nodes could be provisioned with GPUs, equipment cost

and power as part of TCO means that many data center operators are unlikely to be able to

provision GPUs with large amounts of on-board memory, such as NVIDIA Tesla GPUs, for

each node. Every node has a fast on-chip network, such as HyperTransport, that allows for
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non-coherent data transfers as well as a standard off-chip network, such as 10 or 40 Gbps

Ethernet. The implementation discussed here assumes that a standard switched topology is

used with 24 - 32 nodes connected by a single Ethernet switch. In addition, data transfers to

GPU memory are performed using HT posted writes exclusively and any data notifications,

such as communicating whether the transfer finished, are handled by software protocols, as

needed.

The data warehousing application in this model places data tables in host memory, and

these tables can be either segregated to one table per node or striped across multiple nodes.

A query application runs on one node, presumably close to the node containing a high-end

GPU, and it initiates the transfer of input data for the query using GAS put/get commands

to access remote memory.

In addition to these network characteristics, two changes are proposed for the handling

of data at the receiving node. To preserve the host memory (DRAM) to be used for ad-

ditional in-core database space with the data warehousing application, each “accelerator”

node can use peer-to-peer communication with an enhanced NIC that implements con-

verged fabric specification (i.e., an HTEA for HToE). This allows the NIC to copy data

directly from its buffers to the GPU’s memory without needing to pin pages in the host

and without needing to interact with the operating system (except to set up the transfer).

This optimization is currently supported by NVIDIA’s GPUDirect RDMA solution [37].

To further optimize the movement of data for the data warehousing application, an asyn-

chronous streaming model [12] can be used so that the GPU can execute the kernel using

input data as it becomes available in the GPU’s global memory. Since the output of the

TPC-H queries tend to be small, this allows computation and data movement to overlap,

especially for queries which are reasonably trivial to execute (e.g., select on a large data

set).

A four-node example of the complete system model is shown in Figure 33. Note that
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Figure 33: Four-Node Accelerator Cloud System Model.

this figure presents two alternate interconnects connected to the HTEA, one for Hyper-

Transport which connects directly to a northbridge based on the AMD Opteron, and one

that routes data through an I/O Hub (IOH) that supports the PCI Express protocol. Fu-

ture adapters could feasibly support either the HTX (HyperTransport) motherboard slot or

a standard PCI Express slot by performing the needed HT to PCIe transformation in the

HTEA. However, this work only addressed the former configuration (HTX-based).

6.2.1 Potential Bottlenecks and HTEA Optimizations

A key part of implementing this system model is the investigation of specific bottlenecks

that result from sharing high-end GPUs between multiple nodes. A simple diagram of bot-

tlenecks for the system model is shown in Figure 34. Several possible bottlenecks include

1) the link bandwidth of the Ethernet, link 2) the incoming processing speed of the adapter

and the size of the buffers in the HTEA, 3) the return rate of credits to “sending” nodes and

4) the transfer bandwidth of PCI Express to the GPU on the “accelerator” node. The total
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rate of data flowing through each of these links must not exceed the size of the GPU’s global

memory and 5) the rate of data consumption by the GPU once a query kernel is launched.

The experiments in Section 6.4 use measurements from current implementations on GPU

hardware for 4) and 5) and a combination of published numbers and detailed simulation

numbers to investigate bandwidth- and latency-limiting factors for accelerator clouds.

Figure 34: Potential Bottlenecks in a Shared Accelerator Cloud System Model.

To address these potential bottlenecks, several optimizations were tested in the design of

the HTEA. As Figure 35 shows, the HTEA has three components that could be optimized in

a soft-core implementation (as might be found on an FPGA). The packet transmission pro-

tocol is as follows: 1) Outgoing HT packets are encapsulated in as credits are available for

a specific source-destination pair (a VL in the HToE spec). Additionally, HT credits (aka

NOP packets) are encapsulated with HT data packets for a particular source-destination

pair. 2) Encapsulated HToE packets are sent over the Ethernet network to a remote HTEA.

3) At the remote HTEA, HToE packets are deencapsulated. Returned credits for remote

buffers are passed to the outgoing path of the HTEA, and incoming HT packets are en-

queued until they can be transmitted onto the local HT link, or HT system interface. Once

these HT packets are passed to the local HT link, the local buffers are freed, and credits are

released to be placed in outgoing HToE packets back to the originating node.

This interdependence of credits and data packets presents several points for optimiza-

tion. Outgoing HToE packets can be buffered to create a larger Ethernet payload, which

increases bandwidth but also increases the latency of each packet and the potential for

credit starvation. Also, the width of outgoing pipelines for encapsulating and sending
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Figure 35: HTEA Design and Potential Optimizations

HToE packets can be increased, increasing the rate at which HToE packets are sent to a

remote accelerator node. Similarly, the incoming pipeline for an accelerator node can be

parallelized to reduce the time needed to check an HToE packet’s checksum and to parse

incoming HT packets and credits. Parallel encapsulation and deencapsulation pipelines can

be matched by using multiple-port Ethernet adapters, similar to those found in current dual-

port Ethernet adapters, such as Intel’s 82599 10 Gbps Ethernet adapter, which supports two

full-duplex 10 Gbps ports [80].

6.3 Experimental Setup

As with the work in Section 4.7, NS-3 was again used as a synthetic trace-driven exper-

imental platform. However, this set of experiments did not use DRAMSIM and instead

focused on more detailed timing characteristics of the HTEA based on previous hardware

designs [120] [46] and publicly available numbers [82]. GPU timing numbers were gath-

ered from real experiments using TCP-H data warehousing benchmark queries run using

Red Fox [166].

The simulations used two, four, and eight nodes, with one “accelerator” node in each

simulation and a one GB data set (about 16 million HT packets, each with a payload of 64

B) striped over the remaining nodes. For example, this meant that the two-node case had

the entire one GB data set on one node while the eight node case spread the data set across

89



seven nodes equally.

6.4 Results

Packet latency is shown below for a small HToE message as a baseline for the other inves-

tigated optimization scenarios. Results for link utilization (the aggregate bandwidth across

the shared link to the receiving HTEA) was measured for three different scenarios: 1) no

optimization to the HTEA and varying payload sizes (credits and data), 2) optimization of

the outgoing path of each HTEA by using multi-port Ethernet adapters as well as four sep-

arate pipelines for encapsulation, and 3) optimization of the incoming path of each HTEA

by using multi-port Ethernet adapters as well as four separate pipelines for deencapsula-

tion and credit processing. Finally the aggregate results were used to evaluate how HTEA

bandwidth compares to other potential bottlenecks in the accelerator node.

6.4.1 HTEA Packet Latency

Table 9 shows the combined timing for one HT packet passing through a sending and re-

ceiving HTEA based on the NS-3 simulations and the Ethernet MAC timing from [46].

The latency is reasonably low for an encapsulation-based adapter with an end-to-end la-

tency of about 1.5 µs. It should also be noted that the most timing-intensive functions are

on the receiving path. This delay is due to the need for comparing headers and validating

checksums on each received Ethernet frame and HToE payload.

Table 9: Estimated Latency for HTEA Handling of One HT packet

Module Latency (ns)
HToE mapping, queuing 192

HToE credits, retry, encap 244
Ethernet MAC (out) 122

Eth switching and link 244
Ethernet MAC (in) 298

HToE deencapsulation 222
HToE queuing (in) 156

Total ∼1480
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6.4.2 Effects of Payload Sizing

In Figure 36, the link utilization is shown for one sending HTEA and one receiving HTEA

with varying HT packet payload sizes: one to 20 data packets in an Ethernet frame and

one to 50 NOP packets in a frame. The low utilization for the base case (one HT packet)

and the other one NOP experiments result from the same phenomenon. In both cases,

HT packets are encapsulated and sent as fast as possible. When the size of the sender’s

HT packet payload exceeds the size of bulk credit acknowledgments from the receiver, the

sender quickly runs out of credits.

Figure 36: Link Utilization versus NOP Payload Size for Two Nodes.

As the size of the bulk credit acknowledgments and the size of the HT data payload in-

creases, the average number of available credits for the sending HTEA increases, as shown

in Figure 37.

Both 10 and 50 NOPs in an acknowledgment payload result in the same average number

of credits available at the sender. This indicates that the encapsulation process for HT data

packets takes slightly longer than processing received credits, and that the bulk NOP size

doesn’t need to be dramatically larger than HT data payload size. However, it should be

noted that use of the bulk NOPs decreases link bandwidth slightly (Figure 36) because it

reduces the total number of Ethernet frames that are sent in the same amount of time.

Figure 38 demonstrates that using smaller or larger payloads can also affect delay within
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Figure 37: Average Number of HT Credits versus HT Payload Size for Two Nodes.

the network adapter. The outgoing path represents the delay that results when an HT packet

has a credit but must wait to be encapsulated due to the first-in, first-out (FIFO) nature of an

unoptimized HTEA. Similarly, the incoming path delay results from the latency required to

deencapsulate Ethernet frames and HToE payloads. Delay for outgoing HT data payloads

ranges from a low of 390.84 ns (20 HT packet payload) to 48.26 ms (one HT packet pay-

load), and delay for incoming payloads ranges from 154.74 ns (one HT packet payload) to

17.90 ms (20 HT packet payload). Small packet payloads have higher delay on the outgoing

path due to head-of-line blocking, but they also are processed faster at the receiver.

Figure 38: Average HTEA Delays versus HT Payload Size for Two Nodes.
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6.4.3 HTEA Pipeline Optimizations

Figures 39a and 39b show link utilization with the use of the proposed HTEA (four parallel

processing stages) pipeline optimizations for either the incoming path (deencapsulation),

outgoing path (encapsulation), or for both paths.

(a) Four Node Accelerator Cloud (b) Eight Node Accelerator Cloud

Figure 39: Link Utilization versus NOP Payload Size

These graphs for 20 HT packet payloads and varying bulk NOP payload sizes illustrate

two important concepts: 1) Pipeline width optimizations can’t make up for a mismatch in

the speed of NOPs returning from the receiver to senders, even though the wider outgoing

pipeline reduces the average wait time for encapsulation of NOPs from 42.29 ms to 1774 ns.

2) Deencapsulation pipelining affects performance much more than encapsulation pipelin-

ing, potentially boosting bandwidth up from three Gbps to 24.45 Gbps. This improvement

results from optimizing deencapsulation, which is a much more time-intensive operation

(Table 9). In some cases, aggressive encapsulation pipelines can actually reduce bandwidth

as shown by the unoptimized, 50 NOP case (6.99 Gbps) and the outgoing optimization, 50

NOP case (2.80 Gbps). This reduction in bandwidth seems to be due to an unusual case

where the optimized sender fills the receiving HTEA’s buffers and must wait until the re-

ceiver processes some of the incoming Ethernet frames before it can accept more frames
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from the sender.

In summary, the use of wider pipelines can definitely provide much better performance

for the HTEA but only in conjunction with the use of bulk NOPs. Bulk NOP acknowl-

edgments allow the rate of HT packets from senders to increase (assisted in part by wider

pipelines) while making sure that the overhead of processing credits does not delay the

encapsulation process.

6.4.4 Potential Bottlenecks in the HTEA

Finally, the HTEA design and optimizations are checked against the potential bottlenecks

described in Figure 34. As seen in Figure 40, the maximum link bandwidth was about 24

Gbps (labeled as 8Nd) over a 40 Ethernet Gbps link, which means that the “optimized”

implementation would not be limited by the available Ethernet bandwidth. At the receiving

HTEA, the measured incoming bandwidth onto the local HT system interface maxed out at

3.69 Gbps, meaning that the incoming packet stream is more limited by packet processing

in the HTEA than by the HT system interface. Finally, the query processing bandwidth

of the TCP-H Q1 and Q21 queries was much higher (2,747 Gbps and 112 Gbps) than

the PCIe transfer bandwidth (44.55 and 23.57 Gbps). Overall, these results indicate that

the network adapter is a potential bottleneck and a good focus for optimization. As the

previously discussed optimizations show, there is still room for performance enhancements

in the development of future converged commodity fabrics.

6.5 Concluding Remarks

This chapter discusses the application of the DPGAS model to solve challenges related to

the efficient use of accelerator resources in a cluster. The data warehousing application

was introduced as a new workload that is dependent on high-bandwidth transfer to accel-

erators and large pieces of host memory to store data sets “in-core”. New features from

the HyperTransport over Ethernet specification were incorporated into a model of a high-

performance HTEA, and further optimizations were used to increase link utilization from

94



Figure 40: Relative Bandwidths of HTEA, Networks, and GPU.

∼3 Gbps to ∼24 Gbps.

Chapter 7 further investigates the data warehousing workload using the concept of a

“managed” GAS network layer that underpins the Oncilla software framework. This com-

bined network layer and software is used to provide performance benefits to data warehous-

ing applications even with other commodity interconnects that are not as tightly coupled as

the commodity converged fabrics that were discussed in this chapter.
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CHAPTER VII

ONCILLA - A SOFTWARE FRAMEWORK FOR MANAGED GAS

This thesis has commented on the convergence of interconnect and memory technologies

and has proposed the DPGAS model as an abstraction that can be used to implement ag-

gregation of and high-performance data movement between accelerator and host memories

within a cluster. The preceding chapters have addressed the architectural challenges and

proposed a hardware implementation used to implement high-performance data transfers

and resource sharing, but such hardware components also require a software stack that can

expose the DPGAS abstraction to applications.

This chapter describes the design, implementation, and evaluation of Oncilla – a run-

time system and API that encapsulates the functionality necessary for dynamic manage-

ment of global address spaces in a cluster. Oncilla demonstrates a key contribution of this

thesis identified in Chapter 3 - the ability to effectively aggregate physical memory and

accelerators to meet the demands of applications.

The Oncilla software completes a real-world implementation and demonstration of the

DPGAS model and helps to validate the initial hypothesis that commodity global address

spaces can be used to create efficient and high-performance memory provisioning. The

design and evaluation of Oncilla is focused on a typical data warehousing application,

which is demanding in its use of aggregated memory and of throughput via aggregated

compute accelerators. Because there is no commercial implementation of HToE at the

moment, Oncilla is implemented over a small cluster with an existing interconnection fabric

that supports remote memory access. However, the design of the Oncilla runtime is such

that it could easily be ported to a native HToE, InfiniBand, or Ethernet layer. This network

layer portability is combined with a simplified user-level library that allows for reduced
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implementation complexity across a variety of networks and accelerators.

7.1 Current State of the Art

Before creating a new software layer oriented around GAS-based data movement, it is

important to investigate existing solutions and determine their relative strengths and weak-

nesses for solving the challenge of efficient memory and accelerator aggregation. Other

existing frameworks, such as GASNet [21], MEMSCALE [108], and rCUDA [40] support

some form of GAS-based data movement, so a new runtime should be designed to comple-

ment this existing work. NVIDIA’s Unified Virtual Architecture, or UVA, shown in Figure

41, currently has some GAS-like characteristics in that it supports a common virtual ad-

dress space across all the host and device memory on one node. However, this capability is

currently limited to one node.

Figure 41: Address Space Models for Accelerator Clusters

GASNet supports the partitioned global address space (PGAS) model of programming

with distinct shared and private memory regions (as drawn in yellow in Figure 41) and is

primarily focused on improved programmability across a wide variety of cluster intercon-

nects. However, GASNet currently does not focus on data movement between accelerator

and host memory. Research into the Phalanx model [55] has extended GASNet with a

programming model approach for using GPUs and doing GAS-oriented data transfer, but
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this project is currently in the prototype stage. Also, both GASNet and Phalanx are limited

by their programming model that requires the use of UPC-style primitives to fully take ad-

vantage of the underlying GAS model. The use of these primitives may require substantial

rewrites for business applications.

From a virtualization perspective, the rCUDA project (represented as a software vir-

tualization layer in Figure 41) implements a solution for virtualizing remote GPUs and

handling data transfers using TCP/IP, InfiniBand, and NVIDIA’s GPUDirect [141], but it

focuses more on the computation aspect of GPU virtualization rather than a cluster-wide

aggregation of resources. A closer analogue to the ideal GAS model for host memory and

accelerator memory can be found in the data transfer support found in MEMSCALE (also

shown in yellow in Figure 41), which shares some characteristics of PGAS models. The

MEMSCALE project includes support for using GAS across host memory for standard

transactional databases, and the hardware-supported GAS provided by the EXTOLL net-

work is used both by MEMSCALE and by Oncilla. Additionally, GGAS [123], also from

the University of Heidelberg, supports GAS across GPU memories using the EXTOLL

interconnect and NVIDIA’s GPUDirect.

All of these projects provide different solutions to support data movement for multi-

node applications, but they are typically focused on the high-performance community and

on developers who already have a detailed understanding of data movement APIs (e.g.,

InfiniBand Verbs, MPI, TCP/IP sockets). The ideal model would enable the coordination

of cluster I/O, memory, and network resources with an API that provides the simplicity of

NVIDIA’s UVA, as currently supported on one node. This proposed model is shown in

Figure 41.

7.2 Oncilla System Model

As shown in Figure 42, the generalized system model used with an Oncilla-supported clus-

ter combines the host memory (DRAM resources) and accelerator memory (GDDR) into
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a large, logical partition that can be used by one or more applications. Access to this

aggregated memory in a high-performance manner is supported by low-latency and high-

bandwidth hardware that supports the one-sided put/get data transfer model. While overall

application performance may be affected by the location of remotely allocated memory,

application scaling is not restricted by where the memory is physically located.

Figure 42: GAS-based GPU Cluster System Model

Oncilla’s implementation of this system model combines several different hardware

and software components to create a high-performance, commodity solution for allocat-

ing remote memory and sharing it more efficiently between cluster nodes. The hardware-

supported GAS in this model is built around EXTOLL network interface cards (NICs) or

InfiniBand HCAs, and the software layer is composed of the Oncilla runtime for data allo-

cation and movement and the Red Fox compiler for compilation and optimization of data

warehousing application kernels for the GPU. Red Fox is discussed further in Section 6.1.2.
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7.2.1 The EXTOLL Networking Fabric

EXTOLL [53] is a network fabric that enables the optimization of network performance

to support specialized networking tasks, including the consolidation of resources and low-

latency data transfer between nodes. The two most relevant aspects of EXTOLL are its

support of global address spaces (GAS) for consolidation purposes and low-overhead put

and get semantics.

While put/get operations are provided by many different networks, the one-sided com-

munication operations in EXTOLL are optimized for fine-grained communication schemes

and high-core counts. Features that have proven to be beneficial for HPC applications also

are useful for resource consolidation purposes: the need to keep memory ranges registered

is low, as the registration process is very fast ( ∼2 µs vs. ∼50 µs initial overhead for small

memory ranges when compared to IB [119]). As registration requires pinning pages in main

memory, too many registrations can reduce the number of page swap candidates and sig-

nificantly impact demand paging and system-level performance. Also, while many put/get

semantics provide few possibilities for notification about completed operations, EXTOLL

provides notifications on both sides (origin and target) that can signal completion to super-

vising processes with very little overhead. This feature helps to maximize overlap among

the various communication flows.

The EXTOLL NIC currently supports three styles of data transfer: 1) The Shared Mem-

ory Functional Unit (SMFU) [50] exposes remote memory via Linux’s mmap mechanism

and allows for direct manipulation of remote memory using put/get operations on pointers.

2) The Remote Memory Access (RMA) unit supports RDMA-style operations using low-

latency pinning of pages, as shown in Figure 43. The low-overhead put/get operations used

with RMA are based on a single-instruction dispatch of work requests [119] and are helpful

to minimize communication overhead for fine-grained messaging applications, thus maxi-

mizing overlap between computation and communication. 3) The VELO unit can be used

to send small messages using hardware “mailboxes” and is used to support MPI over the
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EXTOLL network. This work makes use of the RMA unit to implement a GAS-supported

accelerator clusters, but SMFU or VELO could also be used to perform low-latency put/get

operations with GAS.

Figure 43: EXTOLL Remote Memory Access Dataflow

Due to the API-based nature of one-sided transfers using the EXTOLL RMA unit as

well as the InfiniBand Verbs API to indirectly access memory regions, this model is re-

ferred to as a “managed” global address space. This indirect access is mostly due to the

limitations of current hardware and software stacks, but the aggregation of multiple, non-

coherent regions across the cluster and the use of put/get operations both provide similar

functionality to traditional global address spaces.

7.3 Oncilla Runtime and API

The Oncilla runtime is designed to abstract away the complexity of remote memory allo-

cation and data movement while also providing optimized data transfer between remote

and local host memory and I/O memory (on GPUs). As shown in Figure 44, the runtime

consists of a control path and a separate data path. The control path performs the request, al-

location, and freeing of local and remote memory and is accessed by an application through

the “OncillaMem” library.

The example in Figure 44 illustrates a GPU-based join operation where the input data

is stored in a table located on a remote node. Local allocations are serviced easily through

standard memory allocation techniques (malloc, or new), but remote allocation (in this case
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(a) Control Path

(b) Data Path

Figure 44: Oncilla Runtime and Use of API

via IB) requires the allocation of pinned DRAM pages on the remote node. Once an alloca-

tion takes place, the runtime keeps track of the state of the allocation and also any processes

needed on each node to set up and tear down memory buffers. This information is made

available to the application via the library, and subsequent oncilla copy (aka, ocm copy)

calls use this state to transfer data over the desired network layer.

The allocation of GPU and remote memory for a GPU-based join has the following

steps that are illustrated in Figure 44a: 1) Local GPU allocations are created using the

Oncilla API and oncilla alloc commands. The library calls cudaMalloc for each buffer.

When an IB (remote) memory buffer is specified, the Oncilla library 2) contacts the Oncilla

runtime daemon using a POSIX inter-process message. This daemon then uses a TCP/IP

socket connection to request a remote memory allocation from Node N. 3) The request is
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accepted by Node N, and this node then 4) proceeds to set up a server thread to host a IB

buffer pinned to local memory. 5) At the same time, Node N acknowledges the request

and notifies Node 1 that it has reserved a buffer for non-coherent data transfer. 6) The

Oncilla library on Node 1 adds the remote allocation to its list of existing memory regions,

and the runtime daemon forks a client thread to host the local memory endpoint for an IB

connection. At this point, there are two GPU buffers and an active IB connection that are

all managed by the Oncilla library for the join application.

The data path could consist of any high-performance network, but this work focuses

on the EXTOLL RMA network interface due to its low memory registration costs, high

bandwidth, and low latency for small messages. InfiniBand RDMA is a similar high-

performance networking fabric that is evaluated alongside EXTOLL in Section 7.5.1. Re-

gardless of the selected fabric, once the setup phase is complete, the application relies

solely on the library and network layer to transfer data from remote memory to local host

memory or local GPU global memory.

As shown in Figure 44b, the data transfer for and execution of a join operation on the

GPU proceeds as follows: 1) The Oncilla API command oncilla copy is called for each

of the inputs to the join. This diagram shows both inputs stored in a common remote host

memory buffer (with offsets specifying the total size of each input set) for simplicity - two

buffers could be used. 2) The Oncilla library checks its list of allocations and finds that the

source is remote, IB-based memory, and the destination is CUDA-allocated GPU memory.

3) The library executes an IB read into the local buffer, and then 4) a cudaMemcpy operation

is used to copy data to the GPU. If the local IB buffer is much smaller than the GPU kernel

input size and the remote IB buffer, steps 3 and 4 are repeated until all input data has

been copied to the GPU. Once the data transfer phase is complete, 5) execution of the join

kernel can proceed. In this manner, data transfer can be implemented via different network

layers while the application developer is just aware of an abstract, aggregated memory and

accelerator space that crosses multiple nodes.
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This idea of abstraction is further defined by the Oncilla API which has the concept

of “opaque” and “transparent” operators that support either naı̈ve or explicit hints about

remote memory allocation and data placement. These library interfaces allow a developer

to specify whether a large chunk of memory is needed or whether a chunk of memory on a

specific device on a certain node is needed. For example, a naı̈ve allocation might specify

that 20 GB of host memory is needed but not the location of this memory.

oncilla alloc(20 GB, DRAM)

This type of operation could allow for 20 GB of DRAM to be allocated on the local

node, across two nodes, or across four nodes. The developer in this case accepts the access

penalty for remote DRAM rather than using disk-based operations. Alternatively, a devel-

oper could specify allocation in a fashion that is closer to traditional NUMA commands.

oncilla alloc(20 GB, node1 ddr, node2 ddr, equal alloc)

This type of “transparent” operator can be extended to GPU memory, and the Oncilla

runtime helps to allocate and keep track of more advanced allocation and data movement

operations. While scheduling of computation and fair memory allocation decisions can

also be incorporated into the runtime, this work does not currently attempt to solve this

problem. Future work includes evaluating the Oncilla resource management framework

alongside existing scheduling frameworks, such as those found in [134] and [105].

7.3.1 Using Oncilla for Existing Single-node Applications

As Section 7.5 will show, Oncilla can be used to enable multi-node resource allocation and

data movement for existing single-node applications. This work has demonstrated a few

key steps that are useful to consider when using Oncilla:

• Plan data partitioning: The most important step for modifying applications to work

with remote memory is to consider how input data should be partitioned. The appli-

cations discussed in this chapter depend on aggregation of large amounts of remote
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memory for one application and the use of one accelerator, but the use of multiple ac-

celerators on multiple nodes would require placement of data sets as close as possible

to the desired accelerator.

• Support non-coherent memory accesses (or not): Applications that take advantage

of Oncilla must either conform to a model that supports non-coherent put/get oper-

ations or include additional software layers to provide consistency between shared

regions. TPC-H is an application that performs few data updates, so it conforms well

to this standard.

• Use managed allocations Oncilla’s ocm alloc can currently be used to replace GPU

allocations, local DRAM allocations and remote host memory allocations with EX-

TOLL or InfiniBand. Besides having simplified copy semantics with the ocm copy

API call, allocation with Oncilla allows the master node to keep track of existing allo-

cations for more informed resource management across the cluster. An ocm localbuf

API call provides a standard C pointer to the Oncilla allocated buffer, minimizing

code modifications.

• Define the data transfer model For aggregated data workloads like data warehous-

ing, data transfer with Oncilla is performed using multiple ocm copy calls to stream

inputs from remote host memory to local accelerators. Other applications may re-

quire small reads and writes that could affect data placement strategies and the place-

ment of data transfer calls.

7.4 Experimental Setup

Two different two-node systems are used to evaluate the Oncilla framework. Each blade in

the EXTOLL cluster includes a single-socket AMD CPU, a solid-state drive (SSD), 16 GB

of DRAM, an EXTOLL2 network interface, and a NVIDIA GTX 480 GPU with 1.5 GB

of GDDR. Each node in the InfiniBand cluster contains dual-socket Intel CPUs, a standard

105



Figure 45: Relational Algebra Benchmarks

5400 RPM hard drive, 12 GB of DRAM, an InfiniBand ConnectX-2 VPI QDR adapter, and

a GTX 670 GPU with 4 GB of GDDR.

The main application workload used to simulate large data warehousing applications

is based on relational algebra primitives like those that compose the queries represented

in the TPC-H benchmark suite [152] (discussed in Section 6.1.1). These queries are also

representative of the types of operations that Red Fox aims to support for GPU acceler-

ation. These primitives, including project, select, and join, have been optimized for the

GPU to perform efficiently when compared to CPU-only primitives [38]. However, the

performance of these GPU primitives is limited by two factors: 1) the size of GPU global

memory required for inputs, outputs, and temporary data and 2) the cost of data transfer

across the PCI Express bus.

As shown in Figure 45, the tests include two simple operations, select and join, and

three more complex operations that incorporate select, project, and join primitives. The

more complex microbenchmarks also have two variations that can take advantage of Ker-

nel Fusion [165] to reduce the impact of the PCI Express data transfer costs and to reduce

each kernel’s GPU global memory footprint. These variations are represented as nonfused

or fused (not pictured in Fig. 45) microbenchmarks in the results. The selected patterns

for each of the microbenchmarks were chosen because they use optimized versions of re-

lational algebra primitives (designed for Red Fox), and because they represent important
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subsets of the computation that is performed by TPC-H queries.

The input sets for each of these microbenchmarks are transferred to the GPU either di-

rectly from a hard drive using standard C++ file operators (fread) or from local and remote

memory using the RMA or RDMA hardware. Due to the limitations of the hardware setup,

input files are limited to 24 GB, and each node can allocate up to 12 GB of data to be ac-

cessed from local memory, RMA, or disk. The IB cluster is limited to 11 GB, so inputs are

pulled from an 11 GB allocation, where 1 GB of input is reused. Data files are represented

using binary format and are read sequentially from disk or remote memory.

As a secondary application, the SHOC BFS benchmark [36] is used to represent a sim-

ple graph algorithm and to demonstrate how Oncilla can be extended for HPC applications.

The benchmark implementation is currently limited to the size of the workload that fits on

one GPU, so one million vertices are used as input for each test. Two tests are conducted to

demonstrate the overhead of using Oncilla for remote memory allocation and data transfer

- one where the input graph resides solely in local memory and one where the input graph

resides in remote memory. An ideal implementation of this benchmark would use a multi-

node, partitioned graph with Oncilla for data movement instead of other software layers,

such as MPI, but the standard for distributed graph implementations, Graph 500 [110], cur-

rently lacks suitable support for GPU-based algorithms. For this reason, evaluation of this

application focuses on a simple evaluation of the performance aspects and programmability

of using the Oncilla model for this type of application.

7.5 Results

Before evaluating the applications, the Oncilla framework was used to perform a charac-

terization of the allocation and deallocation characteristics of the EXTOLL and InfiniBand

networks. These allocation and deallocation tests looked at timing statistics for the creation

of symmetric local and remote buffers, and they give insight into which fabric might be best

suited for a certain type of allocation.
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7.5.1 Oncilla Control Path

As Figure 46a shows, the EXTOLL network excels at small allocations while the Infini-

Band adapter provides quicker allocations of large memory regions. For the smallest allo-

cation, 64 B, EXTOLL takes 250.75 µs versus 1.35 ms in the IB case. However, for a 4

GB allocation, EXTOLL takes 1.67 s while InfiniBand takes 40.54 ms. Since both adapters

must register or pin pages in the OS to provide non-coherent buffers for one-sided put/get

operations, the difference in performance can be found in the design and optimization of

the respective kernel drivers, including support for Linux features like huge pages. For in-

stance, the EXTOLL 4 GB allocation takes 94.89 ms to be registered with the OS while the

IB allocation completes the registration process in 38.88 ms. However, for a 64 B alloca-

tion EXTOLL requires just 3.10 µs as compared to 37.68 µs for IB. These results indicate

that EXTOLL is faster for allocations smaller than 4-8 MB while IB is faster for larger

allocations.

Figure 46b shows timing for EXTOLL and IB allocate and free operations on the client,

as well as the overhead for making an Oncilla allocation for varying sizes of memory

regions. EXTOLL takes from 242.66 µs to 95.47 ms to allocate a local buffer and connect

to a remote allocation while InfiniBand takes between 1.26 ms and 40.80 ms for the same

memory region sizes. Likewise, teardown for EXTOLL takes between 59.12 µs and 73.28

ms to tear down a 64 B or 4 GB region while InfiniBand takes between 301.42 µs and 42.15

ms.

Oncilla overhead for the allocation of remote memory regions is consistently around

1.18 ms for the two-node case while deallocation of memory regions takes from 1.45 to

1.55 ms. This overhead is due to the time taken for transmission of POSIX and TCP/IP

messages that are sent between the Oncilla daemons, so it is not affected by the one-sided

setup and teardown that takes place for a server and client allocation. While this overhead is

substantial for very small allocations, the use of memory regions larger than 8 MB greatly

amortizes the Oncilla setup and teardown overhead. Local host and GPU allocations that
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(a) Server

(b) Client

Figure 46: EXTOLL and IB Allocation Time versus Size

use the Oncilla framework also incur a small overhead penalty, on the order of 1 ms, but

this overhead allows for tracking of cluster-wide resource allocations by a master daemon

that can then make informed decisions about allocation based on the available resources in

the cluster.

The use of the Oncilla framework also allows for easy comparison of hardware band-

widths for put and get operations, as shown in Figure 47. The EXTOLL network adapter

is based on an FPGA running at 156 MHz, so its realized bandwidth is limited to ∼7 Gbps

(9-10 Gbps, theoretical) while the ASIC-based IB QDR adapter has a maximum realized

bandwidth of ∼20 Gbps (32 Gbps, theoretical). Despite the frequency limitations of the

EXTOLL adapter, this diagram also illustrates its suitability for transmission of messages

smaller than 8 KB, which is discussed in more detail in [53].
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Figure 47: IB and EXTOLL Bandwidth Comparison

7.5.2 Oncilla as an Aggregation Fabric - TPC-H Microbenchmarks

Figures 48a and 48b show results for using Oncilla to aggregate host memory for a data

warehousing application, such as TPC-H. Computation time for the kernels on the GTX

670 ranges from 0.17 seconds (A Fused) up to 74.2 seconds (B Nonfused), and the fused

variants require between 2.21 (A) and 9.36 seconds (C) less computation time to process

24 GB of input data. The use of remote IB memory, as shown in Figure 48a for input data

transfer, is between 4.6x to 10.4x faster than reading input data from disk, and the use of

EXTOLL is 1.2x to 3.2x faster than transfer from an SSD disk. The use of InfiniBand

decreases the total runtime on average by 81% over standard disk (80.88 s vs. 44.20 s)

while the use of EXTOLL decreases runtime on average by 22% (71.06 s vs. 58.02 s)

when compared to reading from an SSD.

Both figures demonstrate the computational difficulty of doing join operations on a

GPU - this is due to the small input size that can be used for inner join on the GPU, and

it results in more iterations for the join, B, and C kernels. For the B nonfused kernel,

performing two joins requires 74.2 seconds (GTX 670) to 81.3 seconds (GTX 480) while

the data transfer requires just 29.0 seconds and 15.9 seconds, respectively. Benchmarks

like A Fused greatly benefit from the use of GPU shared memory and small output sizes

and can be processed with input sizes of 368 MB (GTX 480 ) or 1000 MB (GTX 670), but
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(a) HDD vs. InfiniBand

(b) SSD vs. EXTOLL

Figure 48: TPC-H with Oncilla- and Disk-Based Transfer

complex join-based operations (B Nonfused) require small input sizes of either 10 or 28

MB.

The realized bandwidth for each of the networking protocols ranges from 5.15 to 7.2

Gbps for EXTOLL and 14.8 to 17.5 Gbps for InfiniBand while disk transfer bandwidths

range from 1.5 (HDD) to 5.84 Gbps (SSD), depending on the input chunk size for each

benchmark. The high bandwidth performance in the SSD case is representative of the se-

quential nature of these microbenchmarks where large input sets, representing large data

tables, are transferred first to host memory and then to the GPU. The use of random access

patterns to select small pieces of a database table would likely favor the in-core imple-

mentations using IB and EXTOLL, despite SSD’s benefits over standard rotational HDDs.
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GPU transfer bandwidths are relatively consistent at between 2.5 to 3 GB/s (GTX 480) and

3.6 to 4.5 GB/s (GTX 670).

7.5.3 Oncilla for HPC Applications - BFS

As a simple example of how Oncilla can be used to enable multi-node resource support for

existing applications, the SHOC BFS benchmark (based on the algorithm described in [67])

was migrated to use inputs from remote memory. This migration required just three steps:

1) the replacement of local GPU allocations with Oncilla-managed GPU allocations, 2)

the addition of two remote allocations using the Oncilla API, 3) and the replacement of

cudaMemcpy calls with calls to ocm copy.

Figure 49 shows the performance overhead of the Oncilla framework when it is used

to hold an in-core data store for a standard graph of one million vertices for the SHOC

BFS benchmark. The allocation of the edge array and initial adjacency list on a remote

node takes about 5.7x (EXTOLL) to 6.1x (IB) longer for the initialization phase and 1.7

to 5.8x longer for teardown. Input data transfer takes 2.3x longer than the baseline case

with IB due to its high bandwidth, but EXTOLL in this case takes 5.42x longer due to its

lower bandwidth. Overall, BFS with IB and Oncilla is 1.96x slower than the baseline, and

EXTOLL is 2.10x slower than its relative baseline. However, comparison of data transfer

with an MPI-1 implementation shows that Oncilla data transfer is on par with traditional

message passing techniques.

Currently, this benchmark is limited to one iteration with input sizes of 4 MB and 8 MB

respectively for the edge array and adjacency list. This small input size makes it difficult

to recommend using Oncilla for this particular BFS implementation, but the ease of imple-

mentation with the Oncilla framework and reasonable performance characteristics would

likely make it more suitable for larger graphs. The poor performance shown in Figure 49 is

a direct result of the BFS algorithm being optimized for one node, so implementations that

depend on very large graphs (and would be based on MPI) would provide a better point
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Figure 49: SHOC BFS - Oncilla Overhead

for comparison between Oncilla and a message passing implementation. Future work will

focus on creating a multi-node version of BFS based on recent single-node work performed

in [104].

7.5.4 Programmability With Oncilla

Figure 50 shows the core functionality of the original SHOC BFS CUDA kernel imple-

mented in the previous section. GPU memory is allocated, data is transferred to the GPU,

computation is performed and results are read back (not shown), and then all allocated

memory is freed. While any implementation to use remote memory with this kernel would

require additional code, the goal of the Oncilla approach is to abstract away some of the

programming complexity into the C-oriented library (while the complexity of how to al-

locate memory resources is handled by the runtime). This section aims to give a brief

insight into how Oncilla compares to a related approach, MPI-3’s Remote Memory Access

API [129], which allocates “private” regions for each MPI process that can then be exposed

to local or remote processes using region-specific “windows” for sharing.

Both versions require more setup than the original code, but they differ somewhat in

the type of setup that is performed as shown in Figure 51. MPI-RMA uses base data types

(unsigned int, int) while Oncilla allocations are considered byte arrays that can be cast to

a variety of data types. In addition, Oncilla requires the explicit definition of the type of
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Figure 50: SHOC BFS Single-node Implementation

location of an allocation, for instance “local GPU”. Finally, note that MPI makes use of

the standard MPI Barrier function to synchronize the two processes that are required to set

up a remote allocation. While Oncilla creates multiple processes underneath the runtime,

these are not explicitly available to the application, so all memory accesses are necessarily

blocking. Also, the specific interconnect used with Oncilla is selected before each remote

allocation takes place. This enables use cases where one remote memory location might

be shared using IB or Ethernet while another is shared using EXTOLL for performance or

reliability reasons.

For the transfer of data from remote memory to GPU (Figure 52), Oncilla greatly sim-

plifies the transfer between remote memory (IB, EXTOLL, or another interconnect) and

local GPU memory since the library incorporates common functionality underneath its

ocm copy API call. Alternatively, MPI-RMA performs more synchronization for transfers

and provides better protection of remote memory through the use of MPI Win Lock.

Finally both Oncilla and MPI-RMA use their respective API calls to free local GPU
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(a) MPI initialization

(b) Oncilla initialization

Figure 51: SHOC Breadth First Search Initialization
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(a) MPI transfer

(b) Oncilla transfer

Figure 52: SHOC Breadth First Search Data Transfer
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memory and remote memory (Fig. 53). The core functionality of this kernel takes 44 lines

to implement with Oncilla and 49 to implement with MPI. In conclusion, Oncilla requires

more lines of code for initialization, but provides easier transfer semantics, especially be-

tween memories of different types (e.g., host vs. GPU vs. remote memory). Oncilla also

uses blocking semantics for data transfer while MPI-RMA relies on barriers to synchronize

multiple processes.

(a) MPI teardown

(b) Oncilla teardown

Figure 53: SHOC Breadth First Search Teardown

This particular CUDA kernel is too small to provide a detailed analysis of code com-

plexity between the Oncilla and MPI approach. Even so, an examination of each code

implementation can be used to speculate on when each framework should be used. MPI-

RMA is suitable for applications that already are designed for the message passing (i.e.,

multi-process) paradigm and that have strict coherence requirements amongst nodes. MPI

provides more fine-grained control over who can access remote memory - good for multi-

ple processes but not really necessary for a single, aggregated application like TPC-H or

this particular implementation of BFS. Also, Oncilla provides a similar model to GAS-

Net where the data transfer model is abstracted away from the interconnect that is used.
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For instance, MPI-RMA could be used as one of the high-performance “interconnects” for

Oncilla’s data path.

7.6 Further optimizations and cluster scalability

Important to the discussion of resource management is the use of Oncilla as a portability

framework. The same application code that is used to enable multi-node memory aggre-

gation on an IB-based cluster can then be moved to an EXTOLL-based cluster and run

without any further modifications. Similar to how open-source frameworks like Open-

Stack [32] focus on running virtualized applications on a variety of heterogeneous clusters,

Oncilla provides a path for application developers to design high-performance applica-

tions that can operate on clusters with heterogeneous network architectures. One example

would be to use the Oncilla stack to choose, at run-time, the desired networking fabric on a

per-allocation basis, dependent on application characteristics and on available networking

fabrics. For instance, small allocations and put/get operations might work best with the

EXTOLL RMA or VELO protocols, while large, bandwidth-intensive transfers might be

more suited for InfiniBand.

To this end, the Oncilla software stack must also be capable of optimizing data move-

ment across host-to-host, host-to-GPU, and GPU-to-GPU data transfers as shown in Figure

54. Future work with Oncilla will support CUDA 5 and related hardware, which can take

advantage of the Peer-to-Peer API (aka GPUDirect RDMA) to transfer data directly from

a NIC to the GPU and to reduce inter-node overheads.

Experimental results demonstrate that Oncilla provides a high-performance abstraction

for allocating memory on remote nodes and transferring it to accelerators, but many data

warehousing applications may scale to several terabytes of data. While the test infrastruc-

ture is limited in its installed memory, typical servers can be provisioned with between 256

and 512 GB of host memory. For clusters that are built around a 3D torus interconnect,

a node might have up to six nodes one hop away and up to 30 nodes one to two hops
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Figure 54: Oncilla Optimized Data Transfer for Accelerators

away. This translates to potentially having 3 - 15 TB of DRAM that can be incorporated

into the global address space and that could contain many data warehousing applications

in-core [79]. Oncilla further improves the performance and ease of use of these clusters

through low-overhead allocations and high-performance data movement.

7.7 Related Work

Other recent work has also focused on memory management for in-core business appli-

cations. For example, the MVAPICH group has pushed forward in implementing RDMA

support for core applications, including HDFS [83]. The Oncilla framework differs from

this work in that it focuses on providing a low overhead but network agnostic path for do-

ing remote memory allocations and data transfer. This approach has performance penalties

with respect to a straight-forward use of the IB Verbs API, but it also offers a simpler con-

version path for using a variety of networking substrates and additional support for remote

resource management.

As mentioned previously in Section 7.1, other projects that have focused on using global

address spaces to share cluster resources include MEMSCALE [108], rCUDA [40], and

APENET+ [15]. Much of the work for each of these projects is focused on providing sup-

port for high-performance computing applications, which means that potential applications
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can be rewritten to take advantage of the high-performance aspects of InfiniBand [135] and

CUDA optimizations [16]. Related projects in the GPU virtualization space include DS-

CUDA [124], which uses a middleware to launch HPC jobs across many GPUs in a cluster.

Oncilla aims to provide similar high-performance data movement while also focusing on

a better allocation of resources and better support for a wide variety of accelerator and

network resources, as opposed to optimizing for one specific networking fabric.

Finally, projects like RAMCloud [125] are focused on providing large, in-core mem-

ory allocations using standardized protocols. Currently, RAMCloud focuses only on host

memory and does not incorporate accelerator resources.

7.8 Oncilla and Other Application Domains

The Oncilla framework was demonstrated for a specific type of application, data warehous-

ing, which benefits from one (possibly multi-threaded) application having a large amount

of aggregated memory available to store data “in-core”. However, this framework builds

on the DPGAS model, and both Oncilla and the spill/receive model of memory sharing

are dependent on low-latency access to remote memory and the extension of an applica-

tion’s virtual memory via “virtual DIMMs” or more explicit aggregation of accelerators or

memory.

While the discussed TPC-H and BFS applications did not involve time-varying work-

loads, it would be relatively easy to add a cost-based allocation model to Oncilla’s runtime

to enable a dynamic sharing of memory and accelerator resources. One caveat is that

memory sharing in this model would either be restricted or require additional software

constraints to enforce consistency. In addition, providing dynamic sharing of accelerator

resources would likely require coordinated scheduling of tasks for using these accelerators

as examined in recent research [134].

Next, several other common applications are evaluated and discussed with respect to

how Oncilla can be extended to support workloads in the business and HPC arenas.

120



7.8.1 Business Applications

In the business space, there are at least two large systems that could possibly benefit from

Oncilla’s focus on high-performance data movement, a Hadoop implementation and Face-

book’s TAO. Both of these applications have limited consistency requirements and require

high-performance read operations from the memories of nearby nodes.

Hadoop and other software that supports the MapReduce algorithm typically use re-

peated “merge” operations as part of the reduce step, and this operation can restrict over-

all performance [163]. Recent work on an RDMA-enabled version of Hadoop, Hadoop-

A, uses RDMA to replace TCP/IP-based requests and as the basis for a more efficient

merge algorithm. By using the Oncilla API, Hadoop-A could be modified to work with

interconnects other than native InfiniBand, and Oncilla’s awareness of accelerator memory

could make Hadoop-A easier to integrate with existing GPU-based techniques for Hadoop

queries, such as those in [149].

Facebook’s TAO [158] is an alternative to the Memcache lookaside-caching architec-

ture that is optimized to store a persistent copy of the social graph and optimize read

operations according to customized parameters (e.g., privacy settings for a certain Face-

book post). TAO uses a multi-level caching hierarchy of “leaders” and “followers” with

eventually consistent semantics where writes are forwarded to a “leader” but reads can be

satisfied by any servers in a nearby “follower” tier. The Oncilla framework would not be

very useful for the traditional Facebook architecture, due to its focus on somewhat inde-

pendent memcached servers, but the performance of the graph search algorithm used for

TAO could benefit from having short-lived, low-latency connections between servers in

co-located “follower” tiers. At the same time, the Oncilla runtime would likely have to be

modified to match up more closely with TAO’s master and shared regions that might span

multiple data centers. Assuming that basic location information is available, one approach

could be to allocate 10GE connections between servers in the same data center and use

TCP/IP for inter-data center requests. One benefit of using Oncilla with TAO is that its
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eventually consistent design relies on the API to filter update messages down to followers

and to update in-core graph shards, so Oncilla’s lack of consistency support does not affect

TAO performance.

7.8.2 HPC Applications

HPC applications pose different technical challenges since many are currently based on the

message-passing paradigm. Some applications like NWChem [60] have been migrated to

use software built on top of global address models like Global Arrays, but other applica-

tions like the NAS parallel benchmarks have proved more difficult to port to GAS models

using software like UPC. This difficulty stems from the need for either all-to-all exchanges

or several of the included kernels require large-scale synchronization via barriers [45]. For

instance, in the Block Tri-diagonal solver (BT) benchmark data is partitioned into blocks

that must be exchanged with neighbors before the next time step can proceed. However, a

framework like Oncilla can also build on recent work [142] that shows that many of these

applications can be as performant as MPI variations if they incorporate relaxed semantics

and make use of point-to-point synchronizations, i.e., synchronizing only between neigh-

bors exchanging data. Again, the use of a DPGAS implementation like Oncilla would

require the addition of some sort of synchronization mechanism to enforce a relaxed con-

sistency model.

While transitioning these business and HPC applications to Oncilla would not necessar-

ily be a trivial process, recent work in using related implementations based on RDMA and

PGAS-based languages indicates that migration to Oncilla’s simpler programming model

is possible to do in a manner that preserves performance. Although many multi-node busi-

ness and HPC applications are in the early stages of incorporating accelerators, Oncilla’s

focus on solving the problem of aggregating both accelerators and memory would provide

benefits that might not be available to standard PGAS implementations.
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7.9 Concluding Remarks

The Oncilla framework and associated managed GAS system model provide an important

addition to existing research into scheduling and data placement for emerging heteroge-

neous clusters. Due to the growth of large data sets for Big Data applications, like data

warehousing, and the increasing availability of accelerator clouds, such as EC2, it is im-

portant to be able to manage both host and accelerator resources across a variety of cluster

infrastructures. This work focuses on two such networking infrastructures, EXTOLL and

InfiniBand, and the use of CUDA-based accelerators, but future heterogeneous clusters

might include multiple networks and OpenCL, CUDA, or custom accelerators. Regardless

of the accelerators or interconnects that are incorporated into future data centers, Oncilla

provides a flexible software framework that allows for the aggregation of host and ac-

celerator memories and support forks new technologies with minimal changes to existing

software.
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CHAPTER VIII

CONCLUSION

In this chapter, future extensions to this thesis are proposed and a brief summary of the

work completed is presented.

8.1 Future Work

Future extensions for this work can be divided into two main categories: hardware- and

software-related implementations of the DPGAS model.

8.1.1 Hardware Extensions

HyperTransport over Ethernet as discussed in this work provides a high-performance hard-

ware implementation of the DPGAS model, but its ultimate adoption as an industry stan-

dard may be limited by AMD’s market share and the lack of HTX-based motherboards.

Alternative interconnects like Cray’s Aries [3] provide a tightly integrated PCI Express net-

work with low-latency capabilities, but this type of hardware is likely too expensive to gain

traction in data center designs. The most likely future extension that could provide similar

hardware characteristics to the HToE implementation is the combined use of switched PCI

Express and PCI Express over Ethernet in the data center. Along with continued integra-

tion with current CPU northbridges, PCI Express 3.0 has introduced new features for better

support of virtualization and latency-specific optimizations like TLP processing hints [102]

that could be used to provide non-coherent memory-to-memory transactions. The addition

of a PCI Express over Ethernet component would improve PCIe’s scalability and provide

for easier integration into existing Ethernet-based data centers [101].

The research performed in this thesis to support HyperTransport over Ethernet illus-

trates that any converged hardware solution (PCI Express over Ethernet or otherwise) would
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need to provide the following: 1) Hardware or software support that implements the re-

quired consistency model for target applications. 2) An adapter that can be reprogrammed

to support changes to the DPGAS mapping of remote memory and that possibly can sup-

port different packet processing profiles for different applications (e.g., with accelerator

clouds). 3) A customized flow control and retry protocol that leaves the on-board inter-

connect unchanged but that works seamlessly with existing off-board interconnects. This

thesis presented the use of unmodified HT links with standard, “lossy”, L2 Ethernet, and

similar features would be vital in bringing about the adoption of new converged fabrics in

existing data centers.

8.1.2 Software Extensions

In terms of software extensions, the Oncilla framework provides a good starting point for

future research using either managed GAS or other hardware built to support the DPGAS

model.

The most important research area that has currently been under-explored relates to

scheduling of tasks across a large number of accelerators with an emphasis on mapping

aggregated resources to scheduled tasks. For instance, many schedulers assume complete

control over resources on nodes where computation is being placed, but the DPGAS model

enables the opportunity for sharing underutilized resources (e.g., DRAM on a node sched-

uled with many GPU-intensive tasks) on a time-limited basis. The availability of easier

sharing of resources also means that scheduling and resource allocation must be tied to-

gether much more closely. Oncilla currently does not focus on scheduling computation,

but this area of research is one that would greatly benefit from integration with the resource

allocation and data movement capabilities offered by the Oncilla runtime.

In addition to scheduling, another interesting area of research relates to how applica-

tions are placed in cloud computing environments. Current research focuses on how to
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place computation [32] in clusters where the relative locations of nodes are difficult to de-

termine, but there has been little research in applying this concept to resource aggregation.

From an application standpoint, aggregated resources from nodes that are many hops away

(or possibly even served by a different data center) can change the performance dynamics

and in some cases can negatively affect an application’s performance. Future work in this

area could be used to determine nearest neighbors for dynamically allocated nodes and to

manage application placement in a fashion that optimizes the latency of data movement

between applications with memory resources mapped across multiple nodes.

8.2 Summary

In this thesis, a new model for cluster-based resource management was proposed to test the

following thesis statement: Global address spaces built using commodity parts can achieve

efficient memory provisioning for data center applications by supporting high-performance

and low-cost data movement. Through the definition of the Dynamic Partitioned Global

Address Space model and implementations using HyperTransport over Ethernet and man-

aged GAS, this thesis has demonstrated that high-performance GAS support for data cen-

ters can be built using commodity interconnects. In addition, these implementations have

demonstrated good performance characteristics and have been shown to have potential for

power and cost savings when used in a data center.

To summarize, this thesis has presented the following contributions:

• A dynamic, hardware-based GAS model for resource sharing (DPGAS)

• Hardware implementations of this model based on commodity interconnects (HToE,

managed GAS)

• A technique for reduce memory overprovisioning in data centers (DPGAS spill/re-

ceive)

• A combined mechanism for aggregating both accelerator and host memory
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• Software support for applying high-performance GAS to business applications

These contributions provide an abstract model that future data center designers and de-

velopers can take advantage of, and this abstraction is supplemented by concrete examples

of hardware and software support for the DPGAS model. The evaluation in this thesis is

useful in that it provides examples of how real-world applications can have a performance

and power impact not just on one blade in a cluster but beyond the boundaries of a single

node’s compute and memory resources. The related focus on fully utilizing interconnects

to manage the aggregate resources of the cluster is one of the most interesting contributions

of this work and hopefully one that will be further improved by future research.
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J., MAZIÈRES, D., MITRA, S., NARAYANAN, A., ONGARO, D., PARULKAR, G.,
ROSENBLUM, M., RUMBLE, S. M., STRATMANN, E., and STUTSMAN, R., “The
case for RAMCloud,” Commun. ACM, 2011.

[126] OUSTERHOUT, J. and OTHERS, “The case for RAMClouds: Scalable high-
performance storage entirely in DRAM,” 2011.

[127] PANDA, D. K., “Acceleration for Big Data, Hadoop and Memcached (presenta-
tion),” HPC Advisory Council Workshop, Mar. 2012.

[128] PETRINI, F., FENG, W.-C., HOISIE, A., COLL, S., and FRACHTENBERG, E., “The
Quadrics network: High-performance clustering technology,” Micro, IEEE, vol. 22,
pp. 46 –57, Feb. 2002.

[129] POTLURI, S., SUR, S., BUREDDY, D., and PANDA, D. K., “Design and implemen-
tation of key proposed MPI-3 one-sided communication semantics on InfiniBand,”
in Proceedings of the 18th European MPI Users’ Group conference on Recent ad-
vances in the message passing interface, EuroMPI’11, 2011.

[130] “Quadrics Qs Ten G for HPC interconnect product family,” 2008. http://www.
quadrics.com/.

[131] QURESHI, M. K., “Adaptive spill-receive for robust high-performance caching in
CMPs,” in In High Performance Computer Architecture, 2009. HPCA 2009. IEEE
15th International Symposium on, pp. 45–54, 2009.

[132] RANGANATHAN, P., LEECH, P., IRWIN, D., and CHASE, J., “Ensemble-level
power management for dense blade servers,” in ISCA ’06, (Washington, DC, USA),
pp. 66–77, IEEE Computer Society, 2006.

137

http://www.extoll.de/images/extoll_slides.pdf
http://www.nvidia.com/content/PDF/kepler/Tesla-K20X-BD-06397-001-v05.pdf
http://www.nvidia.com/content/PDF/kepler/Tesla-K20X-BD-06397-001-v05.pdf
http://www.storagereview.com/micron_p320h_25_pcie_application_accelerator_review
http://www.storagereview.com/micron_p320h_25_pcie_application_accelerator_review
http://www.quadrics.com/
http://www.quadrics.com/


[133] RAVI, V. T., BECCHI, M., AGRAWAL, G., and CHAKRADHAR, S., “Supporting
GPU sharing in cloud environments with a transparent runtime consolidation frame-
work,” in Proceedings of the 20th international symposium on High performance
distributed computing, HPDC ’11, (New York, NY, USA), p. 217228, ACM, 2011.

[134] RAVI, V. and OTHERS, “Scheduling concurrent applications on a cluster of CPU-
GPU nodes,” in CCGrid 2012, 2012.

[135] REANO, C., PEA, A., SILLA, F., DUATO, J., MAYO, R., and QUINTANA-ORTI,
E., “Cu2rcu: Towards the complete rCUDA remote GPU virtualization and sharing
solution,” in HiPC, 2012.

[136] REINHARDT, S. K., LARUS, J. R., and WOOD, D. A., “Tempest and Typhoon:
User-level shared memory,” SIGARCH Comput. Archit. News, vol. 22, p. 325336,
Apr. 1994.

[137] RNA NETWORKS, “RNA Networks memory virtualization solution using RNA
MVX and Mellanox ConnectX-2 EN with RoCE accelerates business analytics by
10 times (white paper),” 2010.

[138] “Virtualization for aggregation and the vSMP architecture,” http:
//www.scalemp.com/uploads/whitepaper/vSMP_Foundation_
Technical.pdf.

[139] SCHLANSKER, M., TOURRILHES, J., TURNER, Y., and SANTOS, J., “Killer fab-
rics for scalable datacenters,” in Communications (ICC), 2010 IEEE International
Conference on, pp. 1 –6, May 2010.

[140] SCHROEDER, T. C., “Peer-to-Peer and Unified Virtual Addressing,” Cuda Webinar,
2011.

[141] SHAINER, G., AYOUB, A., LUI, P., LIU, T., KAGAN, M., TROTT, C. R., SCANT-
LEN, G., and CROZIER, P. S., “The development of Mellanox/NVIDIA GPUDirect
over InfiniBand-a new model for GPU to GPU communications,” Journal of Com-
puter Science - Research and Development, June 2011.
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