
MOBILE-TO-MOBILE CHANNELS: STATISTICAL AND EMPIRICAL MODELS

A Dissertation by

Yazan Ibdah

M.Eng, Stevens Institute of Technology, Hoboken, NJ, May. 2005

B.Sc., Yarmouk University, Irbid, Jordan, Feb. 2003

Submitted to the Department of Electrical Engineering and Computer Science

and the faculty of the Graduate School of

Wichita State University

in partial fulfillment of

of the requirements for the degree of

Doctor of Philosophy

DECEMBER 2013



c⃝ Copyright 2013 by Yazan Ibdah

All Rights Reserved



MOBILE-TO-MOBILE CHANNELS: STATISTICAL AND EMPIRICAL

MODELS

The following faculty members have examined the final copy of this

dissertation for form and content, and recommend that it be accepted in partial

fulfillment of the requirement for the degree of Doctor of Philosophy with a

major in Electrical Engineering.

Yanwu Ding, Committee Chair

Janet Twomey, Committee Member

Mahmoud E. Sawan, Committee Member

Vinod Namboodiri, Committee Member

Abu Asaduzzaman, Committee Member

Accepted for the College of Engineering

Vish Prasad, Interim Dean

Accepted for the Graduate School

Abu S. M. Masud, Interim Dean

iii



DEDICATION

To my parents, my wife and children.

iv



ACKNOWLEDGEMENTS

It has been an honor to have Dr. Yanwu Ding as my thesis advisor. I would

like to thank her for her guidance and support during this research. This course

in my life was very fruitful and full of knowledge.

v



TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Mobile-to-Mobile Wireless Fading Channels . . . . . . . . . . . . . . 1

1.1.1 Fading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Statistical Properties . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 M2M Statistical Models . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 M2M Channel Measurements . . . . . . . . . . . . . . . . . . . . . . 7

1.4 M2M Non-isotropic Models . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Motivation for the work . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5.1 Statistical Models . . . . . . . . . . . . . . . . . . . . . . . 10

1.5.2 Empirical Models . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5.3 Non-isotropic Models . . . . . . . . . . . . . . . . . . . . . 11

1.5.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . 11

1.6 Contributions of Dissertation . . . . . . . . . . . . . . . . . . . . . . 12

1.6.1 Statistical Models . . . . . . . . . . . . . . . . . . . . . . . 12

1.6.2 Empirical Models . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6.3 Non-isotropic Models . . . . . . . . . . . . . . . . . . . . . 14

1.7 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . 14

2. STATISTICAL SIMULATION MODELS FOR M2M FADING CHANNELS 16

2.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Statistical Channel Models for Cascaded Rayleigh Fading Channels . 18

2.2.1 Transfer function of cascaded Rayleigh fading channels . . . 18

2.2.2 Statistical channel models without LOS . . . . . . . . . . . 19

2.2.3 Statistical channel models with LOS . . . . . . . . . . . . . 23

2.3 Statistical Properties of Proposed Models . . . . . . . . . . . . . . . . 24

2.3.1 Second-order statistics for Model B . . . . . . . . . . . . . . 24

2.3.2 Second-order statistics for Model D . . . . . . . . . . . . . 26

2.4 Simulations Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 Probability density functions for channel envelopes . . . . 27

2.4.2 Second-order statistics . . . . . . . . . . . . . . . . . . . . 29

2.4.3 Higher-order statistics: LCR and AFD . . . . . . . . . . . 34

2.4.4 Complexity analysis . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vi



TABLE OF CONTENTS (continued)

Chapter Page

3. M2M CHANNEL MEASUREMENTS IN SUBURBAN ENVIRONMENTS . 42

3.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Measurements Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Test Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Channel Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.1 Path Loss Fading . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.2 Shadowing fading . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.3 Small-scale Fading . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Evaluation of Higher-Order Statistics . . . . . . . . . . . . . . . . . 67

3.5.1 Expressions of LCR and AFD . . . . . . . . . . . . . . . . . 68

3.5.2 Simulations of LCR and AFD . . . . . . . . . . . . . . . . . 71

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4. M2M STATISTICAL CHANNELMODELS FOR NON-ISOTROPIC CASCADED-

RAYLEIGH WITH LOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Existing Simulation Channel models . . . . . . . . . . . . . . . . . . 75

4.3 New Simulation Channel models . . . . . . . . . . . . . . . . . . . . . 77

4.3.1 Deterministic Channel Model . . . . . . . . . . . . . . . . . 78

4.3.2 Statistical Channel Models . . . . . . . . . . . . . . . . . . 79

4.3.3 Second-order statistics . . . . . . . . . . . . . . . . . . . . . 79

4.4 Simulations Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.1 Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . 82

4.4.2 Power Spectrum Analysis . . . . . . . . . . . . . . . . . . . 83

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.6 Supplemental Material . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5. CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . 89

5.1 Statistical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Empirical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Non-isotropic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

vii



TABLE OF CONTENTS (continued)

Chapter Page

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A. Proof Of (2.3.1) And (2.3.3), Autocorrelation And Cross-correlation For Model

B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

B. Proof Of (2.3.14) And (2.3.17), Autocorrelation And Cross-correlation For

Model D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

C. Proof Of (2.3.5): Squared Envelope Correlation For Model B . . . . . . . . . 106

D. Proof Of (2.3.20): Squared Envelope Correlation For Model D . . . . . . . . 108

E. Proof Of (2.3.13): Variance Of Time-average Correlations For Model B . . . 109

F. Proof Of (2.3.25): Variance Of Time-average Correlations For Model D . . . 111

G. Proof For PDF Of Envelope For Models A and B . . . . . . . . . . . . . . . 112

H. Proof Of (3.5.2), Level Crossing Rate For M2M Rician Channel . . . . . . . 113

viii



LIST OF FIGURES

Figure Page

1.1 Multiple scattering environment for mobile-to-mobile without and with LOS. 4

1.2 Statistical M2M channel models . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 PDF for Models A and B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 PDF for Models C and D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Autocorrelation for Model B. . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Cross-correlation for Model B. . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Autocorrelation for Model D. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Cross-correlation for Model D. . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 Autocorrelation for square envelope for Model D . . . . . . . . . . . . . . . . 32

2.8 Variance of auto- and cross-correlation for Model D . . . . . . . . . . . . . . 33

2.9 Normalized LCR for Model B. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.10 Normalized LCR for Model D. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.11 Normalized AFD for Model B. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.12 Normalized AFD for Model D. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.13 Autocorrelation for Models A, B, and double-ring . . . . . . . . . . . . . . . 38

3.1 Setup diagram for the Tx and Rx. . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Test area in a suburban area . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Path loss for Scenarios 1a and 1b . . . . . . . . . . . . . . . . . . . . . . . . 51

ix



LIST OF FIGURES (continued)

Figure Page

3.4 Path loss for Scenarios 2a-2d . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Path loss for Scenarios 3a and 3b . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Distributions of the shadowing in Scenarios 1a and 1b . . . . . . . . . . . . . 55

3.7 Distributions of the shadowing in Scenarios 2a and 2b . . . . . . . . . . . . . 56

3.8 Distributions of the shadowing in Scenarios 3a and 3b . . . . . . . . . . . . . 57

3.9 Small-scale distribution in Scenarios 1a and 1b . . . . . . . . . . . . . . . . . 58

3.10 Small-scale distribution in Scenarios 2a-2d . . . . . . . . . . . . . . . . . . . 61

3.11 Small-scale distribution in Scenarios 3a and 3b . . . . . . . . . . . . . . . . . 62

3.12 Doppler effect due to relative movement in Tx and Rx . . . . . . . . . . . . 64

3.13 LCR in Scenarios 1a and 1b . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.14 LCR in Scenarios 2a-2d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.15 LCR in Scenarios 3a and 3b . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.16 AFD in Scenarios 1a and 1b . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.17 AFD in Scenarios 2a-2d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.18 AFD in Scenarios 3a and 3b . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1 Autocorrelation of No-Isotropic . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Cross-correlation of No-Isotropic . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Comparison of Auto-correlation and Cross-correlation of No-Isotropic . . . . 82

x



LIST OF FIGURES (continued)

Figure Page

4.4 MAE of auto- and cross correlations of Models I and II in No-Isotropic . . . 83

4.5 Auto- and cross correlations for Model II in No-Isotropic . . . . . . . . . . . 84

4.6 Model I-L: Power spectrum for different K, κ = 2, âT = âR = 0 in 40 trials . 85
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ABSTRACT

In this dissertation, we first present statistical models for cascaded Rayleigh Isotropic

fading channels with and without line-of-sight (LOS). These models contain two individual

summations and are therefore easy to implement with lower complexity. Detailed statistical

properties, including auto- and cross-correlations of the in-phase, quadrature components of

the channels, envelopes, and squared envelopes, are derived. The time-average statistical

properties and the corresponding variance are also investigated to justify that the proposed

models achieve good convergence performance.

Then, we present mobile-to-mobile (M2M) channel measurements at 2.1GHz and 700MHz

bands in suburban and forest environments. Four test scenarios are considered for the

transmitter (Tx) and receiver (Rx) placed inside traveling vehicles or on a test cart pushed

at a walking speed. Channel models are proposed for path loss, shadowing, small-scale fading

based on measurements. The path loss exponents were found between 1.2 to 7.7, and the

reference path loss is found larger due to the placement of antenna inside vehicle. The mean

of shadowing is close to 0, and the variance varies from 1.8 to 4.9. Measurements suggest

that small-scale fading follows distributions of the Weibull and cascaded Rayleigh with LOS.

The level crossing rate and average fading duration are also justified using the measurements.

Finally, we extend the work to study Non-Isotropic channels. New models are proposed

based on cascaded Rayleigh with NLOS and LOS. We derived its statistical properties sim-

ilarly to was done for the Isotropic channels. The mean absolute errors was adopted to

verify the performance. Power spectrum analysis brought additional insight on this kind of

channels.

xiv



CHAPTER 1

INTRODUCTION

1.1 Mobile-to-Mobile Wireless Fading Channels

Mobile-to-Mobile (M2M) communications has gained a lot of attention in the past few

years. Mobile ad hoc wireless networks, wireless local area networks, vehicular-to-vehicular

(V2V), and intelligence transportation systems [1–6] are rapidly growing fields nowadays.

V2V applications such as traffic safety including airbags and anti-lock braking system, colli-

sion avoidance, and traffic monitoring. A conventional cellular base station can benefit from

a M2M connection to extend its range, reduce power consumption, and increase its overall

capacity [7].

All design and optimization stages require the use of the best channel model available

to run propagations/simulations for any network. M2M channels are often more dynamic

and less reliable than those in Fixed-to-mobile (F2M) channels. Accurate channel models

are highly desirable for analysis and designs of systems in which terminals are no longer sta-

tionary In mobile networks, users are likely to be moving in different environments, and it is

essential to use a proper channel model that reflects that environment properties. Therefore,

new channel models are needed to better fit unstudied environments as we’ll show later as

dense scattering environments where the received signal experiences deep fades.

1.1.1 Fading

The received signal experience narrow band fading, variations of received signal over time,

due to physical phenomena of wireless channel like scattering, reflection, and diffraction.
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Scattering which is our focus in our study is resulted when the obstacle/s dimensions between

the Tx and Rx are much smaller than the wavelength of the transmitted signal. Reflection is

resulted when transmitted signal is obstructed by an object with dimensions that are larger

than the signal wavelength. Diffraction occur when the signal is reflected from a surface that

has edges.

Fading can be classified as path loss, large-scale and small-scale fading.

Path loss The path loss represent the mean of the received signal at a specific distance.

It is calculated by averaging the received signal over areas that has same separation from the

Tx. Therefore, any interference associated to a specific location will be avoided and helps in

predicting the average of the received signal with no interruption.

Large-scale Usually refers to shadowing fading which is the local average of the varia-

tions in the received signal around the path loss. The local average of the received signal

can be estimated using a sliding window over distance. The window size is chosen based on

the operating frequency and its coherence distance.

Small-scale These are small variations in the received signal are caused by multi paths.

When different copies of the originally transmitted arrive at the Rx with different traveling

paths, these copies can be added constructively or destructively. As a result, received signal

will experience fast or slow fading depending how fast these changes are. If the changes

happen during one symbol, it is fast fading otherwise it is slow fading.

2



1.1.2 Statistical Properties

Second-Order Properties

Correlations are key properties when studying wireless fading channels. These properties

measure how fast the channel changes over time and movement. Correlation functions can be

spatial, frequency, and temporal correlations. Spatial correlations measures channel changes

by having multiple antennas at the Tx and Rx. It is important measure for the potential

benefit of path diversity. Frequency correlation measures frequency selectivity of a channel

and how channel changes with respect the frequency. When the channel frequency response

varies with frequency, this results in a broad envelope in time domain. The temporal cor-

relations functions which are our focus in this work, measure how fast the channel changes

over time. It is important for measure for the quality of the channel, as it measure how long

a channel property will remain in the channel. Due to relative motion between the Tx and

Rx, fading becomes correlated and varies with time.

Higher-Order Properties

Level crossing rate (LCR) and average fading duration (AFD) are important properties

when studying wireless fading channels. The LCR is a measure of channel stability and

how often it varies over time. It is the number of crossings per second that the channel

envelope crosses a specific threshold in the positive (or negative) direction. While the AFD,

is a measure of the how long the channel envelope remains below that specific threshold.

3



Figure 1.1: Multiple scattering environment for mobile-to-mobile without and with LOS.

1.1.3 Scattering

In Fig. 1.1, a scattering environment is shown for M2M with and without LOS. Scattering

can be classified in to Isotropic and non-Isotropic. Isotropic scattering assumes the use of

omni-directional antennas and angles of departures (AOD) and arrivals (AOA) of scatters are

uniformly distributed around the transmitter (Tx) and the Receiver (Rx). This assumption is

valid when the channel is a result of infinite number of scatters with equal weights. Empirical

channel measurements in [8, 9] indicated that this doesn’t occur in all M2M scenarios, and

has a great impact on channel properties. This inspire us to study the general case, the no-

isotropic scattering. While in non-isotropic scattering, the channel is resulted of non-uniform

scattering or Tx and Rx use directional antennas.
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Field measurements can be conducted using a continuous wave (CW) which is an un-

modulated signal. Using the measured received signal, the channel can be estimated, as

the original transmitted signal is known for the Rx. The estimation includes the path loss,

shadowing, and small-scale components.

Figure 1.2: Statistical M2M channel models

1.2 M2M Statistical Models

Wireless fading channel models can be classified into two groups as shown in Fig. 1.2,

deterministic and statistical models. Deterministic models don’t require trials, and a single

trial is enough to get desired properties, but much higher complexity and cost compared

with statistical models as it require more uncorrelated signals [10, 11]. On the other hand,

using statistical channel models, the desired statistical properties can be achieved by taking

the average of a number of trials. Statistical channel models require fewer uncorrelated

5



sinusoids, but a number of trials are required to achieve the desired properties. For these

advantages of statistical models, we focus on this type of models in this work.

Statistical models for Mobile-to-Mobile (M2M) channels based on cascaded Rayleigh

fading seems few in the literature (most models are for M2M single Rayleigh fading). No

channel models available in the literature for M2M appropriate to simulate scenarios in

highly dense scattering environments such as suburbs, forests and outdoor-to-indoor (O2I),

inside-vehicle-to-inside-vehicle (IV2IV), and inside-vehicle-to-walk (IV2W) scenarios. M2M

channel measurements in dense and forest areas are not many.

The M2M mathematical model, which was later referred to as the mathematical reference

model, was presented [12, 13]. Pioneering statistical models for M2M channels are found

in [14, 15], where double-ring model was proposed to represent isotropic scatters nature

around Tx and Rx. Omni-directional antennas and isotropic scattering were assumed around

the transmitter (Tx) and the receiver (Rx). The single ring channel model was originally

proposed to model a fixed-to-mobile (F2M) channel in [16]. For the scenario where both the

Tx and the Rx are in motion, and based on the work in [12, 13]. This idea was applied on

both mobile stations in [14], where the double-ring concept was used to derive a new channel

model model called a “double-ring”. The model is based on uniformly scattering applied

around both transmitter and receiver. It defines two rings of uniformly spaced scatters

with different radii, one around the transmitter and another around the receiver. In [15],

a modification to the double-ring model was proposed to generate multiple uncorrelated

complex faded envelopes.

The double-ring became popular over the past few years. It was extended in [17], and

a new statistical channel model was proposed based on Rician channel where a line of sight

6



(LOS) component exists between Tx and Rx. Similarly to work done for F2M in [18,19] can

be found in [17], were a LOS component was introduced.

Measurements in the 5GHz band were reported for V2V communications in [20–25].

In [21], testing was conducted in small city, urban and suburban areas. It was indicated

that severe (worse than Rayleigh) fading was observed for several scenarios such as urban

and small city. Similar scenarios were tested in [24] such as urban, suburban, motorway and

highway. The received signal results were compared to analytical functions, such as the Rice,

the Rayleigh distribution. Results show that LOS factor was dominant in those power mea-

surements. Even though the Rician distribution was the closest fit, measurements indicates

that possible “close to” Rician distribution can be a better fit. In [23], measurements show

that a Double-Rayleigh distribution is better fit to received power measurements than a sin-

gle Rayleigh in O2I scenarios. In [25], measurements were conducted in a dense scattering

urban environment. Although the Rx was moving in a limited area, while the Tx had more

freedom, same conclusions to the ones in [23] were obtained in [25].

The cascaded-Rayleigh model represents the second approach in statistical models. In [26,

27], the concept of a mix of single, double, triple Rayleighs was introduced to represent a

general M2M channel. Testing was conducted in urban and forest environments. Results

show that under certain conditions the double Rayleigh will dominate.

1.3 M2M Channel Measurements

Tests and measurements for V2V channels have been conducted in highway, subur-

ban, and rural roads [20–25, 28–31]. The path loss, power-delay profiles, and delay-doppler

spectra have been mainly analyzed for the 5GHz channel band [20–22,30,31]. Narrow-band
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measurement in the 5.9GHz channel has been conducted with the doppler spread and coher-

ence time characterized [32]. V2V Broad-band measurements have also been presented in

the 700MHz band [30,31]. While these studies focus on suburban, rural areas, tunnels, and

some application-specific scenarios such as traffic congestion, M2M channel measurements

in dense woody and forest areas are not many [28]. Characterization of the channel in areas

play critical roles in emergency rescue or community tree service. That motivated us to

conduct channel measurement testing areas with dense woods.

The available empirical models for M2M near ground communications are limited. The

two-ray model [33] which was originally proposed for cellular communications, is believed

to represent the M2M Path loss in rural scenarios [34]. A very recent measurements were

presented in [35] under LOS condition in rural, urban, suburban, and highways suggested

that a two-ray model is a good fit for rural areas but not for the rest of tested areas. In

general, most suburbs and rural areas streets are determined by the geography of the land,

and straight flat streets and LOS conditions are not always guaranteed.

Despite that many of possible scenarios were not tested as we show later in this paper, the

results in [34] in general provide a good baseline for same/opposite/convoy movement, eg.

the path loss exponent was found low for highway rural, and urban scenarios, but the data

was collected for suburban was not enough to draw this conclusion. This is clearly shown

in [36] where breakpoints were found in some in suburban measurements. These are common

in micro cells when the transmit antennas are at lower heights compared with macro cells.

Therefore, it is expected to have it in near ground measurements. Fixed-to-Fixed (F2F)

Empirical models based on measurements in foliage areas can be found in [29,37–40], where

additional Path loss rather than the power law of distance, accurse in dense scattering areas.

8



In other words, the Path loss (function of distance) is no longer a straight line, but has an

arc shape on the logarithmic scale. This is expected a better fitting for the results in [36]

and break-points can be integrated in the model.

1.4 M2M Non-isotropic Models

A number of non-uniform distributions were proposed to fit the AOA and AOD in a

non-isotropic scattering. Mainly are Gaussian [41], Quadrate [42], truncated Laplace [43,44],

truncated uniform [45], cosine [46], and von Mises [8] distributions. Measurements in [47]

suggested that von Mises distribution is a good fit for AOA and can approximate other

non-uniform distributions. In [9], measurements were conducted in M2M campaigns in both

a highway and an urban area. A 3-D non-isotropic scattering Rician model was proposed;

and using von Mises distribution a good fit is shown with LCR and AFD.

In [47], the power spectrum density (PSD) and correlation properties for Rician F2M

channel were derived for 3-D under non-isotropic scattering. Later, the psd was adopted

in [48], to generate Rayleigh non-isotropic channel model using gaussian samples as an input.

The spectrum shaping filter coefficients in [48] were chosen using an adaptive algorithm to

produce the desired spectrum presented in [47]. A statistical Rayleigh channel model is

proposed in [49], where both auto- and cross-correlations of the Rician proposed channel

validated the psd and correlation in [47].

Multiple-input multiple-output (MIMO) for non-isotropic scattering was investigated

in [50, 51]. A M2M statistical channel model based on cascaded-Rayleigh was proposed

in [51]. The auto- and cross-correlations were derived with the assumption that AOD and

AOA follow von Mises distribution. We’ll refer to this model as a reference model in this
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work. Rician fading channel was studied in [50] and proposed a geometric model based on a

single-, double-bounced, and LOS. In [50,51], Space-time correlation functions were derived

for their models.

1.5 Motivation for the work

1.5.1 Statistical Models

It is clear now that the double-ring statistical channel model is not suitable for all

M2M environments. Measurements in dense scattering environments confirm that the M2M

channels may undergo cascaded Rayleigh fading (more severe than single Rayleigh fading).

The proposed statistical models can be applied to simulate the underlying channels such as

dense scattering environments, O2I, and cases where large separations between Tx and Rx

are much larger than the max of both radii rings [51]. The time required to generate a sample

of the channel is a key objective for any model. Motivated by the work in [13,16–19,23,52],

the proposed models have fast convergence, low number of sinusoids, and require a small

number of trials to achieve the desired properties.

1.5.2 Empirical Models

The available V2V measurements in the literature are mainly for two cases, either both

Tx and Rx are traveling in same (convoy) or opposite direction. Other possibilities such

as approaching intersections and random movements are not many. Vehicle penetration

loss was not taken into account in most V2V measurements, as majority of testing had

antennas on the car rooftop, and the effect of having the antenna inside the vehicle was left

unexplored. There is a high possibility that the mobile device be located inside a bag or
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perse or pocket, and at a height that is lower than the rooftop of a vehicle. To complete

the picture and incorporate these factors, we conducted IV2IV measurements scenarios in

two different frequency bands. In addition, to the authors knowledge, there are no outdoor

IV2W measurements available in the literature.

1.5.3 Non-isotropic Models

The assumption of M2M channel model is isotropic scattering, uniform distribution of

AOD and AOA, is not always the case. Measurements suggested non-isotropic scattering is a

better fit to measurements in urban and highways than isotropic. The von Mises distribution

approximates some important distributions like uniform, impulse, and Gaussian. Therefore,

we adopt this distribution to generate non-uniform AODs and AOAs. The auto-, cross-

correlation, and power spectrum for the non-isotropic complex channel are found to be

different than for the isotropic models. This motivated us to in-deep study the effects of its

specific parameters and present generalization to isotropic study.

1.5.4 Performance Evaluation

M2M cascaded Rayleigh fading channel models are sparse in the literature. Therefore,

we compare proposed channel models namely models A and B with the double-ring channel

model. It is worth to mention that double-ring and the proposed models are for different

categories of M2M channels. The comparison is solely for the illustration of complexity and

performance of the proposed models. To investigate the performance of convergence, we

examine the mean square error (MSE) between simulated autocorrelation and the theoret-

ical for Models A, B, and double-ring model. The autocorrelation, as the key statistical
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property, was chosen for complexity evaluation. The speed of convergence was measured by

the averaged CPU time elapsed when generating one channel.

Since channel behavior can vary significantly with the frequency [32], this work presents

analysis for IV2IV and IV2W Narrow-band continuous wave (CW) measurements in 700MHz

and 2.1GHz frequency band in dense scattering environments. Proposed path loss models

for forest were compared to existing F2F models, although it represent a different category,

using MSE. While Path loss and large scale measurements in suburban where compared

to existing V2V results. Small-scale parameters were estimated and used to compare the

measurements with Rician, Cascaded-Rayleigh, and Weibull distributions.

In addition to models convergence tests used for isotropic channels, a new test is added

to ensure stability of the proposed models, namely the mean absolute errors (MAE) of auto-

and cross correlations. Power spectrum is presented to bring additional dimension to the

study by looking at the fourier transform of the auto- and cross correlations for proposed

channel models.

1.6 Contributions of Dissertation

1.6.1 Statistical Models

As presented in Chapter 2, contributions to this dissertation can summarized as following.

We proposed new statistical models for M2M channels that experience cascaded Rayleigh

fading without and with LOS.

We derived statistical properties for proposed models. This includes auto and cross-

correlations of the in-phase, quadrature components, and squared envelopes of the channels

are derived. The time-average statistical properties and the corresponding variance were
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also derived to confirm that the proposed models have good convergence performance. Some

derivations and proofs are too long, hence are outlined in the appendices in Appendices. We

also proposed approximations for Average fading duration (AFD) and Level crossing rate

(LCR) for Cascaded Rayleigh with NLOS. Simulations were compared to its theoretical to

demonstrate the agreement between them.

1.6.2 Empirical Models

Our contributions to this task, as presented in Chapter 3, can be summarized as following.

We conducted IV2IV and IV2W measurements in summer 2012 with and without visibility

in the 2.1GHz and 700MHz bands in highly dense scattering environments. Three different

locations were selected in northern New Jersey known for its rainforest trees. We presented

measurements results in a great detail by estimating the received signal in terms of path loss

fading, large-scale or shadowing, and small-scale fading for different scenarios. We proposed

new empirical models for IV2IV in dense areas for different components of the received signal.

We validate the proposed statistical models in Chapter 2 based on two cascaded Raleigh with

LOS principle. We used the concept of a mix of single and cascaded Rayleigh in an attempt

to find best distribution to fit measured data.

The available forms for both LCR and AFD for M2M Rician were not correct in the

literature. The right representations were derived for this type of channel. There were no

forms available for LCR and AFD for M2M Weibull channel. Therefore, we derived these

properties for this channel as well.
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1.6.3 Non-isotropic Models

Some of contributions in chapter 4 are similar to ones in chapter 3, but for a generalized

form as the isotropic model becomes a special case of non-isotropic model. We begin by

proposing new statistical channel models based on cascaded-Rayleigh with LOS for M2M

channels under non-isotropic scattering. We derived major statistical properties for proposed

models such as auto and cross-correlations of the in-phase, quadrature components. The

mean absolute errors (MAE) of auto- and cross correlations of proposed Models are presented

to ensure that the proposed models have good convergence and stable performance. The

power spectrum analysis results shed some light on key parameters in these models.

1.7 Dissertation Organization

The remainder of this dissertation is organized as follows: Chapter 2 presents statistical

channel models. It starts with a brief review of the general multiple Rayleigh channel transfer

function and presents the proposed channel models without LOS and with LOS. Then,

detailed statistical properties of the proposed models are presented. Simulation results are

provided next. After that, the chapter concludes with a summary of observations.

In chapter 3, channel measurements are presented. It begins with measurement setup

and test scenarios. Then, M2M channel models for path loss, shadowing, and small-scale

fading based on the measured received signal power are presented. After that, level crossing

rate and average fade duration for the channels are evaluated. Observations and conclusions

are presented at the end of the chapter.

The study in chapter 4 is an extension to the work in chapter 2. A brief presentation for
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existing models with NLOS and techniques to generate Non-isotropic distribution is followed

by proposed simulation models based on Cascaded Rayleigh with LOS. Then, statistical

properties are derived for models with NLOS and LOS. The effects of different parameters on

the channel behavior are investigated later by deep analysis for the power spectrum. Finally,

the chapter is concluded with observations and conclusions. Derivations of statistical channel

properties are presented in Appendices. Chapter 5 concludes the thesis with conclusions and

future work.
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CHAPTER 2

STATISTICAL SIMULATION MODELS FOR M2M FADING
CHANNELS

2.1 Literature Review

Mobile-to-mobile communications have found more and more applications in systems

where the terminals and nodes are no longer stationary [53,54], such as mobile ad hoc wireless

networks [1], wireless local area networks [2], intelligence transportation systems [3–5], and

vehicular-to-vehicular systems [6]. Consequently, successful development of statistical models

or models for mobile-to-mobile (M-M) channels is inevitable in order to understand the

statistical properties of the underlying channels and effective designs for the systems. A

pioneering mathematical reference model for M-M channels is found in the earlier work of

Akki and Haber [12] and Akki [13]. This analysis is then extended to account for scattering

in three dimensions by Vatalaro and Forcella [55]. A modified statistical model for suburban

outdoor-to-indoor M-M communications channels has been discussed in [23]. A double-

summation-of-sinusoids statistical model is applied to simulate M-M channels, assuming

omni-directional antennas and isotropic scattering around the transmitter (Tx) and the

receiver (Rx) [14]. Due to the uniform scattering around the Tx and Rx, the statistical model

in [14] is also referred to as a “double-ring” statistical model (the single-ring statistical model

is proposed for fixed-to-mobile channels [16]). The double-ring model is further modified

to generate multiple uncorrelated complex faded envelopes using orthogonal in-phase and

quadrature components [15]. The modification offers a faster convergence and lower variance

at higher complexity. The double-ring concept is also applied to modeling M-M channels

where a line-of-sight component exists between the Tx and Rx [17] (the single-ring-based
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fixed-to-mobile Rican channel models can be found in [18,19]). In [51], stochastic properties

for M-M narrow-band channels are derived from a geometrical two-ring scattering model,

assuming that both the transmitter and the receiver are surrounded by an infinite number

of local scatters. The model is further extended to a three-ring scattering model [56].

While the double-ring model characterizes a category of mobile-to-mobile channels that

follow a Rayleigh fading distribution, various measurements in dense scattering urban and

forest environments where signals diffract from street corners, building edges, and moving

vehicles, suggest that if large separations between the Tx and Rx are much larger than

both radii rings [51] at the TX and Rx, then the mobile-mobile channels follow fading

distributions that are more severe than a single Rayleigh fading. In [23], the outdoor-to-

indoor M-M radio channel measurements show that the received power follows a double-

Rayleigh distribution rather than a single Rayleigh distribution. Similar observations are

seen in the measurements [25], whereas the Tx is moving in within a circle of a 1 m and

the RX are randomly chosen within a 10 m by 10 m square with no line of sight. The

measurements in [21, 24, 57] indicate that severe (worse than Rayleigh) fading in vehicle-

vehicle channels is observed in small cities, urban, and suburban areas, motorways, and

highways.

In [26, 27], the concept of a mixture of single, double, and triple Rayleigh distributions

is introduced to represent a general M-M channel. The general multiple Rayleigh channel

transfer function was initially suggested in [23] for studying dense scattering environments.

Effective statistical models for cascaded or multiple Rayleigh fading M-M channels seem

sparse in the literature. In this paper, we develop two statistical models for a cascaded

Rayleigh fading channel with no line-of-sight (NLOS) and extend the models to channels
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with LOS. The models contain two individual summations; therefore, they are easy to im-

plement with lower complexity. With appropriately chosen parameters, the proposed mod-

els can achieve the desirable statistical properties in a small number of trials, and provide

satisfactory convergence performance. Detailed statistical properties, including auto- and

cross-correlations of the in-phase, quadrature components of the channels, envelopes, and

squared envelopes are derived for the models. The time-average statistical properties and

corresponding variance are also investigated to justify that the proposed models can achieve

good convergence performance. Extensive Monte Carlo simulation results are provided for

various statistical properties to validate the proposed models.

2.2 Statistical Channel Models for Cascaded Rayleigh Fading Channels

2.2.1 Transfer function of cascaded Rayleigh fading channels

In highly dense scattering environments, the transmission path between the Tx and Rx

are composed of many scattering paths. Fig. 1.1 illustrates a multiple scattering environment

between two mobile terminals with no LOS exists between the Tx and Rx (first graph) and

a LOS (second graph). We assume that the distance between the transmitter and receiver

is much larger than both radii of the scattering rings at the Tx and Rx, the channel in the

first graph follows cascaded Rayleigh distribution with NLOS, and that in the second graph

cascaded Rayleigh distribution with LOS.

A cascaded Rayleigh transfer function is suggested in [23], assuming that the two groups

of scatter at the transmitter and the receiver are stationary and located a relatively large

distance apart with a separation distance of D ≫ Rt +Rr, where Rt and Rr are the radii of
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the scatters around the Tx and Rx, respectively. The transfer function is presented as

ggeneral(t) =
NX
n=1

AnGT
(k

T n
)ej(ωT n

t+Φ
T n

)
MX
m=1

BmGR
(k

Rm
)ej(ωRm

t+Φ
Rm

) (2.2.1)

where subscripts T and R are associated with Tx and Rx, respectively, An,ΦT n
, n = 1, · · · , N ,

are the identically distributed random (i.i.d) amplitude and phase of N scatter components

around the Tx, Bm,ΦRm
,m = 1, · · · ,M are the i.i.d amplitude and phase of M around the

Rx, G
T
and G

R
are antennas gains, k

T n
and k

Rm
are unit vectors corresponding, respectively,

to the direction of departure and arrival of the n-th scatter at Tx and m-th scatter at the

Rx, and ω
T n

and ω
Rm

are Doppler spreads of the Tx and Rx. Efficient statistical models

for (2.2.1) were left unexplored. In this section, we develop four channel models (Models A,

B, C, and D) for the cascaded Rayleigh fading channels without and with LOS.

2.2.2 Statistical channel models without LOS

In this subsection, two models, namely Models A and B, are presented for cascaded

Rayleigh fading without LOS in (2.2.1).

Model A

In the statistical channel model, the complex scattering components in cascaded Rayleigh

fading channels are given by

g
A
(t) =

Ì√
2

Q

QX
n=1

ej
�
2πf1t cos(γn)+θn

�s√
2

P

PX
m=1

ej
�
2πf2t cos(ζm)+Φm

�
(2.2.2)

where Q and P designate the number of scatters around the Tx and Rx, respectively, f1 and

f2 are the Doppler’s shift frequencies, θn and Φm ∈ [−π, π), n = 1, · · · , Q,m = 1, · · · , P , are

the phase shifts for each scatter from the Tx and to the Rx and they are i.i.d for all n and
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m. γn represents the angle of departure for the n-th scatter at the Tx, and ζm is the angle

of arrival for the m-th scatter at the Rx, given by, respectively,

γn =
2nπ − π + ψ

4Q
, ζm =

2mπ − π + φ

2P
, (2.2.3)

where ψ, φ are independent and uniformly distributed in [−π, π). While those angles can

be chosen as either dependent on or independent of n and m [14,16,17,19], we choose them

to be independent in order to reduce the complexity of the model.

Model B

The angles of departures and arrivals for Model A, as indicated in (2.2.3), are in [0, π/2)

and [0, π), respectively. In fact, smaller angles of departures and arrivals in the scatters

are expected for the channels under discussion, because the distance between Tx and Rx

is relatively large with D ≫ Rt + Rr. However, our simulations suggest that if the range

of angles of arrivals is chosen smaller, the convergence performance of Model A degrades,

especially for the cross-correlation between the in-phase and quadrature components. We

seek an alternative model with an improved performance and the angles of departures and

arrivals are both in [0, π/2) to achieve a better representation of scattering patterns in the

channels between a TX and Rx with larger separations. We assume that Model B has the

following form: g
B
(t) =

�
g1c(t) + jg1s(t)

��
g2c(t) + jg2s(t)

�
, where gic(t) and gis(t), i = 1, 2,

are the sinusoidal functions which characterize, respectively, the scattering at the Tx and

Rx. Here, we present the steps to obtain the functions at Tx, g1c(t) and g1s(t), while same

procedure applies to obtain g2c(t) and g2s(t) at the Rx.

Let αk = 2kπ−π+ψ
KTx

, and θk, k = 1, · · · , KTx, denote the angle of departure and phase
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for the k-th scatter at the Tx, where ψ, θk are statistically independent and uniformly dis-

tributed in [−π, π) for all k, and KTx is the number of scatters around the Tx. Next, we

evaluate a summation of series of exponentials:
PKTx
k=1 exp

�
j(2πf1t cos(αk)+ θk)

�
. While the

summation admits a similar expression as the first summation in Model A, we consider a spe-

cial case, KTx = 4N with N > 1 being an integer. The summation is obtained as four terms

corresponding to the quarters of KTx,
PKTx
k=1 exp

�
j(2πf1t cos(αk) + θk)

�
=
P3
ℓ=0 Ωℓ, where

Ωℓ =
P(ℓ+1)N
n=ℓN+1 exp

�
j
�
2πf1t cos(αn)+ θn

��
=
PN
n=1 exp

�
j
�
2πf1t cos(αn+

ℓπ
2
)+ θn+ℓN

��
, ℓ =

0, · · · , 3. Introducing uniform distributed random phases Θn ∈ [−π, π), n = 1, · · · , N , where

Θn is independent of ψ, θk for all n and k, one can rewrite Ωi, i = 1, 2, 3 as

Ω1 =
NX
n=1

exp
�
j
�
2πf1t cos(αn +

π

2
)−Θn

��
, (2.2.4)

Ω2 =
NX
n=1

exp
�
j
�
2πf1t cos(αn + π)− θn

��
, (2.2.5)

Ω3 =
NX
n=1

exp
�
j
�
2πf1t cos(αn +

3π

2
) + Θn

��
. (2.2.6)

The range of angles of departure in Ωℓ, ℓ = 0, · · · , 3 is in (0, π/2) as specified by αn, n =

1, · · · , N (the range give by αk, k = 1, · · · , KTx is in (0, π/2)). We assign the sinusoidal

functions at the Tx, i.e. g1c(t) and g1s(t) equal, respectively, to the terms associated

with cos(αn) and sin(αn) in
P3
ℓ=0Ωℓ, along with a normalizing factor. Notice Ω0 + Ω2 =

2
PN
n=1 cos

�
2πf1t cos(αn) + θn

�
, and Ω1 + Ω3 = 2

PN
n=1 cos

�
2πf1t sin(αn) + Θn

�
. We obtain

g1c(t) =
q√

2
N

PN
n=1 cos

�
2πf1t cos(αn) + θn

�
, and g1s(t) =

q√
2
N

PN
n=1 cos

�
2πf1t sin(αn) +Θn

�
for Model B.

Let βk = 2kπ−π+φ
KRx

, and Φk, k = 1, · · · , KRx denote the angle of arrival and phase for

the k-th scatter at the Rx, where φ, Φk are uniformly distributed in [−π, π), and they
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are impendent for all k, and KRx is the number of scatters around the Rx. Evaluat-

ing the summation
PKRx
k=1 exp

�
j
�
2πf2t cos(βk) + Φk

��
for KRx = 4M , and following simi-

lar procedure describe above, we obtain g2c(t) =
q√

2
M

PM
m=1 cos

�
2πf2t cos(βm) + Φm

�
, and

g2s(t) =
q√

2
M

PM
m=1 cos

�
2πf2t sin(βm) +Ψm

�
for Model B. The range of angles of arrivals at

the Rx is in (0, π/2) as specified by βm, m = 1, · · · ,M . In summary, Model B is expressed

as

g
B
(t) =

�
g1c(t) + jg1s(t)

��
g2c(t) + jg2s(t)

�
(2.2.7)

where gic(t) and gis(t), i = 1, 2 are defined as

g1c(t) =

s√
2

N

NX
n=1

An(t), g1s(t) =

s√
2

N

NX
n=1

Cn(t), (2.2.8)

g2c(t) =

s√
2

M

MX
m=1

Bm(t), g2s(t) =

s√
2

M

MX
m=1

Dm(t), (2.2.9)

An(t) = cos
�
2πf1t cos(αn) + θn

�
, Cn(t) = cos

�
2πf1t sin(αn) + Θn

�
, n = 1, · · · , N,Bm(t) =

cos
�
2πf2t cos(βm) + Φm

�
, and Dm(t) = cos

�
2πf2t sin(βm) + Ψm

�
,m = 1, · · · ,M , f1 and f2

are the Doppler’s shift frequencies, θn, Θn ∈ [−π, π), n = 1, · · · , N are the phase shifts in the

n-scatter at the Tx, Φm, Ψm,∈ [−π, π),m = 1, · · · ,M are the phase shifts in the m-scatter

at the Rx and are i.i.d for all n and m, αn is the angle of departure of the n-th scatter at

the Tx, and βm is the angle of arrival of the m-th scatter at the Rx, and they are calculated,

respectively, as

αn =
2nπ − π + ψ

4N
, βm =

2mπ − π + φ

4M
, (2.2.10)

where ψ, φ are independent and uniformly distributed in [−π, π), and they are independent

to all the phases at the Tx and Rx. It is indicated that a statistical M-M model may result in
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faster convergence rates by choosing a smaller range of angles of arrivals and departures [14].

Our simulations justify the observation as well. Compared with Model A, Model B has

faster convergence and requires fewer number of trials to converge to the desired statistical

properties.

2.2.3 Statistical channel models with LOS

Adding the LOS component to Models A and B, we present two models for cascaded

Rayleigh fading channels with LOS, namely Models C and D, as

Model C: h
C
(t) =

g
A
(t) +

√
2Kej(2πf3t cos(ϕ3)+ϕ0)È
2(1 +K)

, (2.2.11)

Model D: h
D
(t) =

g
B
(t) +

√
2Kej(2πf3t cos(ϕ3)+ϕ0)È
2(1 +K)

, (2.2.12)

where K is spectral to the scatter power ratio, ϕ0 is uniformly distributed in [−π, π), f3 is the

Doppler frequency caused by the relative velocity, because both Tx and Rx have mobility,

ϕ3 is the relative angle between the relative movement and the LOS component, and the

values of f3 and ϕ3 are given, respectively, by [17] as

f3 =

����q�|v1| cos(ϕ12)− |v2|
�2

+
�
|v1| sin(ϕ12)

�2����
λ

(2.2.13)

ϕ3 = cos−1

� |v1|2 + |v3|2 − |v2|2

2|v1||v3|

�
+ϕ1 (2.2.14)

where v1 and v2 are, respectively, the speeds of the Tx and Rx, v3 is the relative speed

calculated by v3 = f3λ, λ is the wavelength of the carrier, ϕ1 is the angle between the Tx

and the LOS, and ϕ12 is the angle between the Tx and Rx directions. Model D has a slightly

additional complexity compared to Model C, due to the higher complexity in gB(t) than in

gA(t). However, as indicated by the simulation results, Model D provides faster convergence

to the desired statistical properties even for a lower value of K.
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2.3 Statistical Properties of Proposed Models

Because Models A and B, g
A
(t) and g

B
(t), have the same statistical properties, as do

Models C and D, h
C
(t) and h

D
(t), we focus on Models B and D when representing the

statistical properties in this section. To make notations less bulky, we drop the subscripts,

and use g(t) and h(t) to present, respectively, the models without and with LOS.

2.3.1 Second-order statistics for Model B

Let gc(t) = Re
�
g(t)

�
and gs(t) = Im

�
g(t)

�
be the real (in-phase) and imaginary (quadra-

ture) parts of Model B. The autocorrelation, the cross-correlation of the in-phase, quadrature

components, and the autocorrelation of complex envelopes are given below. Steps for the

proof are presented in Appendix A.

Rgcgc(τ) = E
�
gc(t+ τ)gc(t)

�
= J0(2πf1τ)J0(2πf2τ) (2.3.1)

Rgsgs(τ) = E
�
gs(t+ τ)gs(t)

�
= Rgcgc(τ) (2.3.2)

Rgcgs(τ) = E
�
gc(t+ τ)gs(t)

�
= 0, Rgsgc(τ) = E

�
gs(t+ τ)gc(t)

�
= 0 (2.3.3)
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2
s(t+ τ) + g2s(t)g

2
s(t+ τ)

�
= 4 + 4J2

0 (2πf1τ) + 4J2
0 (2πf2τ) + 4J2

0 (2πf1τ)J
2
0 (2πf2τ) +

J0(4πf1τ)J0(4πf2τ)

4NM

+
J0(4πf1τ) + J0(4πf1τ)J

2
0 (2πf2τ)

N
+
J0(4πf2τ) + J0(4πf2τ)J

2
0 (2πf1τ)

M
+
4ξ(f1, τ)ξ(f2, τ)

N2M2

−
4M

�
1 + J2

0 (2πf2τ)
�
+ J0(4πf2τ)

N2M
ξ(f1, τ)−

4N
�
1 + J2

0 (2πf1τ)
�
+ J0(4πf1τ)

NM2
ξ(f2, τ)

(2.3.5)
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where J0 is the zero-order Bessel function first kind, ξ(f1, τ) =
PN
n=1

�
E
�
cos

�
2πf1τ cos(αn)

���2
,

and ξ(f2, τ) =
PM
m=1

�
E
�
cos

�
2πf2τ cos(βm)

���2
. The expectation terms in (2.3.5) can be

evaluated numerically. It is also worth noting that, although Model B has a different proba-

bility density distribution function than the double-ring model in [14], their autocorrelation

and cross-correlation properties are the same.

The time-average correlations for Model B can be derived as

R̃gcgc(τ) = lim
T→∞

1

T

Z T

0
gc(t)gc(t+ τ)dt =

1

2MN

N,MX
n,m=1

�
Ãn(τ)B̃m(τ) + C̃n(τ)D̃m(τ)

�
(2.3.6)

R̃gcgs(τ) = lim
T→∞

1

T

Z T

0
gc(t)gs(t+ τ)dt = 0 (2.3.7)

R̃gsgc(τ) = lim
T→∞

1

T

Z T

0
gs(t)gc(t+ τ)dt = 0 (2.3.8)

R̃gsgs(τ) = lim
T→∞

1

T

Z T

0
gs(t)gs(t+ τ)dt =

1

2MN

N,MX
n,m=1

�
Ãn(τ)D̃m(τ) + C̃n(τ)B̃m(τ)

�
(2.3.9)

where Ãn(τ)=cos
�
2πf1τ cos(αn)

�
, B̃m(τ)=cos

�
2πf2τ cos(βm)

�
, C̃n(τ)=cos

�
2πf1τ sin(αn)

�
,

and D̃m(τ) = cos
�
2πf2τ sin(βm)

�
. The variance of the time-average correlations for Model

B can be derived as

Var[R̃gcgs(τ)] = E[R̃2
gcgs(τ)]− (Rgcgs(τ))

2 = 0 (2.3.10)

Var[R̃gsgc(τ)] = E[R̃2
gsgc(τ)]− (Rgsgc(τ))

2 = 0 (2.3.11)

Var[R̃gsgs(τ)] = E[R̃2
gsgs(τ)]− (Rgsgs(τ))

2 = Var[R̃gcgc(τ)] (2.3.12)

Var[R̃gcgc(τ)] = E[R̃2
gcgc(τ)]− (Rgcgc(τ))

2

=
(1+J0(4πf1τ))(1+J0(4πf2τ))+2NJ2

0 (2πf1τ)(J0(4πf2τ)+1)+2MJ2
0 (2πf2τ)(J0(4πf1τ)+1)

8NM

+
J2
0 (2πf2τ)

2N2
VÃC̃ +

J2
0 (2πf1τ)

2M2
VB̃D̃ +

1

2N2M2

�
VÃC̃VB̃D̃ + ξ(f1, τ)ξ(f2, τ)

�
− 1+J0(4πf2τ)+2MJ2

0 (2πf2τ)

4N2M
ξ(f1, τ)−

1+J0(4πf1τ)+2NJ2
0 (2πf1τ)

4NM2
ξ(f2, τ) (2.3.13)

where VÃC̃ =
PN
n=1

�
E[Ãn(τ)C̃n(τ)]−E[Ãn(τ)]E[C̃n(τ)]

�
and VB̃D̃ =

PM
m=1

�
E[B̃m(τ)D̃m(τ)]−
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E[B̃m(τ)]E[D̃m(τ)]
�
.

2.3.2 Second-order statistics for Model D

Autocorrelation, cross-correlation, autocorrelation of the complex envelopes, and auto-

correlation of the squared envelope for Model D are given below. Steps for the proof are

presented in Appendix B.

Rhchc(τ) = E
�
hc(t+ τ)hc(t)

�
=
J0(2πf1τ)J0(2πf2τ) +K cos

�
2πf3τ cos(ϕ3)

�
2(1 +K)

(2.3.14)

Rhchs(τ) = E
�
hc(t+ τ)hs(t)

�
= −

K sin
�
2πf3τ cos(ϕ3)

�
2(1 +K)

(2.3.15)

Rhshs(τ) = E
�
hs(t+ τ)hs(t)

�
= Rhchc(τ) (2.3.16)

Rhshc(τ) = E
�
hs(t+ τ)hc(t)

�
= −Rhchs(τ) (2.3.17)

Rhh(τ)=
1

2
E
�
h(t+ τ)h∗(t)

�
=

1

2

�
Rhchc(τ) +Rhshs(τ)− jRhchs(τ) + jRhshc(τ)

�
=
J0(2πf1τ)J0(2πf2τ) +Kej2πf3τ cos(ϕ3)

1 +K
(2.3.18)

R|h|2|h|2(τ) = E
�
h2c(t)h

2
c(ϱ) + h2s(t)h

2
c(ϱ) + h2c(t)h

2
s(ϱ) + h2s(t)h

2
s(ϱ)

�
(2.3.19)

=
R|g|2|g|2(τ) + 8KRgcgc(τ) cos

�
2πf3τ cos(ϕ3)

�
+8K+4K2

4(1 +K)2
(2.3.20)

For sufficient N and M , the expression of (2.3.20) can be simplified as

R|h|2|h|2(τ) =
1

(1 +K)2

�
1 + J2

0 (2πf1τ) + J2
0 (2πf2τ) + J2

0 (2πf1τ)J
2
0 (2πf2τ)

+ 2K
�
1 + J0(2πf1τ)J0(2πf2τ) cos(2πf3τ cos(ϕ3))

�
+K2

�
.

(2.3.21)

The time-average correlations for Model D can be expressed as

R̃hchc(τ) =
R̃gcgc(τ) +K cos

�
2πf3τ cos(ϕ3)

�
2(1 +K)

(2.3.22)
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R̃hchs(τ) = R̃hshc(τ) =
K sin

�
2πf3τ cos(ϕ3)

�
2(1 +K)

(2.3.23)

R̃hshs(τ) =
R̃gsgs(τ) +K cos

�
2πf3τ cos(ϕ3)

�
2(1 +K)

. (2.3.24)

The variance of the time-average correlations for Model D can be derived as

Var[R̃hchc(τ)] = E[R̃2
hchc(τ)]− (Rhchc(τ))

2 =
Var[R̃gcgc(τ)]

4(1 +K)2
(2.3.25)

Var[R̃hshs(τ)] = E[R̃2
hshs(τ)]− (Rhshs(τ))

2 =
Var[R̃gsgs(τ)]

4(1 +K)2
(2.3.26)

Var[R̃hchs(τ)] = E[R̃2
hchs(τ)]− (Rhchs(τ))

2 = 0 (2.3.27)

Var[R̃hshc(τ)] = E[R̃2
hshc(τ)]− (Rhshc(τ))

2 = 0 (2.3.28)

2.4 Simulations Results

In this section, we present extensive Monte Carlo simulation results on the statistical

properties of the proposed models. The simulation results are obtained using Ns = 106

samples in a 10s time duration with sampling period Ts = 10−5s. The frequencies in all

models are f1 = f2 = 100Hz, P = Q = 16 in Models A and C, M = N = 16 in Models

B and D, and ϕ1 = ϕ12 = π
2
in Models C and D. All plots are obtained using one trial

unless stated otherwise. We also simulate the double-ring [14] and fixed-to-mobile channel

models [16,18,58] to demonstrate the difference in statistical behavior of cascaded Rayleigh

fading and single Rayleigh fading distributions,

2.4.1 Probability density functions for channel envelopes

The distribution of channel envelopes for cascaded Rayleigh channels without and with

LOS has been discussed in [23,59,60]. Recognizing that the average power for models A and

B is one, the probability density function (PDF), the cumulative density function (CDF)
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Figure 2.1: PDF for Models A and B.
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Figure 2.2: PDF for Models C and D.
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of the envelopes of Models A and B are given, respectively, by (major steps are provided

in the Appendix G for convenience of readers): pZ(z) = 2zK0

�
z
√
2
�
, and PZ(Z ≤ z) =

1−
√
2zK1

�
z
√
2
�
, where z represents the envelope of Models A and B, i.e., |g(t)|, K0 and K1

are, respectively, the zero-order and first-order second kind modified Bessel function. Using

(12) in [60] with σi =
1√

2
√
1+K

, for i = 1, 2, the PDF for the envelope of Models C and D is

given by

pZ(z) =

8<: 4(1 +K)zI0
�
2
√
1 +Kz

�
K0

�
2
√
K
�
, for z <

√
K√

1+K

4(1 +K)zI0
�
2
√
K
�
K0

�
2
√
1 +Kz

�
, for z ≥

√
K√

1+K

(2.4.1)

where z = |h|, I0 is the zero-order first kind modified Bessel function.

Fig. 2.1 shows the simulation of the PDF of envelopes for Models A and B. The plots

indicate that distributions of envelopes of both models match the theoretical curves very well.

For comparison, simulations of the PDF for the double-ring M-M mobile channel model [14]

is plotted. While the envelope of the double-ring model follows Rayleigh distribution, Models

A and B follow cascaded Rayleigh (worse than Rayleigh) distribution.

Fig. 2.2 shows the simulation of the PDF of envelopes for Models C and D with different

values of K. For the special case K = 0, Models C and D becomes, respectively, Models

A and B up to a factor of
√
2. This figure shows that the distribution of envelopes of both

models match the theoretical curves in (2.4.1) for all values of K.

2.4.2 Second-order statistics

Autocorrelation and cross-correlation of Model B. The autocorrelation of Model B

is shown in Fig. 2.3 using one and three trials. This figure suggests that Model B converges to

the theoretical autocorrelation in one trial, and the difference between the simulation and the
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Figure 2.3: Autocorrelation for Model B.
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Figure 2.4: Cross-correlation for Model B.
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theoretical (2.3.1) is smaller in three trials. The cross-correlation is shown in Fig. 2.4 using

one, three, and five trials. While simulated cross-correlation using one trial converges to the

theoretical (2.3.3) expression reasonably well, the simulated cross-correlation converges to

the theoretical expression more closely when more trials are used.
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Figure 2.5: Autocorrelation for Model D.

Autocorrelation and cross-correlation of Model D. The autocorrelation of Model

D with different values of K is shown in Fig. 2.5. These plots indicate that the simulated

autocorrelation converges to the theoretical expression very well in one trial. It can also

be observed that the LOS component dominates the autocorrelation as τ increases. This is

because the Bessel function approaches zero when τ is large, and the autocorrelation thus

approaches K cos
�
2πf3 cos(ϕ3)

��
2(1 + K)

�−1
. The cross-correlation for various values of

K is shown in Fig. 2.6. Again, the plots indicate that the simulation results converge to

theoretical expressions in (2.3.14) and (2.3.17) in one trial.
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Figure 2.6: Cross-correlation for Model D.
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Figure 2.7: Autocorrelation for square envelope for Model D
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Fig. 2.7 plots the autocorrelation of the squared envelope for different values of K. The

simulated results converges to its theoretical in (2.3.20) in one trial. The plots suggests that

the autocorrelation of the squared envelope approaches 1 when τ is large, regardless of K. As

τ → ∞, all Bessel terms in (2.3.20) become zero, which results in R|h|2|h|2(τ) =
K2+2K+1
(1+K)2

= 1.
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Figure 2.8: Variance of auto- and cross-correlation for Model D

Variance of the time-average correlations for Model D. The variance of time-

average autocorrelation and cross-correlation for Model D with K = 0 and 10 are obtained

by averaging 200 samples for each τ . As shown in Fig. 2.8, the variance time-average autocor-

relation and cross-correlation are, respectively, in the magnitudes of 10−4 or 10−5. Since the

plot for K = 0 reflects a variance of the time-average correlations for Model B up to a factor

of 2, the small variance in the figure confirms that all proposed models have satisfactory

convergence performance.
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Figure 2.9: Normalized LCR for Model B.

2.4.3 Higher-order statistics: LCR and AFD

The level crossing rate and the average fade duration are two important statistical

properties related to channel dynamics. At a specified level R, the LCR for a channel

envelope is the rate (in crossings per second) at which the channel envelope crosses in the

positive (or negative) direction [13, 36, 58]. The AFD is the average time duration that the

envelope remains below the level R [36, 58]. Approximations for LCR and AFD are plotted

in [52, 61] for the cascaded Rayleigh fading channels. Here, we present plots by numerical

evaluation of the exact LCR and AFD functions.

LCR for Model B. The LCR for the cascaded Rayleigh channel without LOS has the

following form [60,62]:

L|g|(R) =
�
2π

√
2
� 1

2Rf1

Z ∞

0
x−2

√
a2R2 + x4 e

−R2+x4√
2x2 dx (2.4.2)

where a = f2
f1
, and R is the level. In the simulations of LCRs, the normalized LCRs and
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normalized signal level are used [12–14, 58]. For model B, the normalized LCRs is L|g|f
−1
1 ,

and normalized signal level is defined as ρ = R√
P , where

√
P is the root mean square (rms)

envelope level for the channel, and P = 2. As shown in Fig. 2.9, the simulated LCR matches

well with the theoretical (2.4.2). For comparison, we also simulated the LCR for a fixed-

to-mobile channel [16]. It can be observed that, for given signal levels, the LCR for Model

B is more likely higher than that for fixed-to-mobile and double-ring models. This can be

explained by the higher dynamics of the statistical properties in cascaded Rayleigh fading

than a single Rayleigh fading distribution.
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Figure 2.10: Normalized LCR for Model D.

LCR for Model D. The LCR for Model D is expressed as [60,62]:

L|h|(R) =
�
1 +K

� 3
4Rf1

Z ∞

0

Z π

−π
x−2

È
a2y1(R, ϑ) + x4

×
�
y2(R, ϑ, x)

�
1 + erf

�y2(R, ϑ, x)√
2

��
+

Ê
2

π
e−

y22(R,ϑ,x)

2

�
e−

√
1+K(x2+

y1(R,ϑ)

x2
)dϑdx

(2.4.3)
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where erf(·) is the error function [63], and y1(R, ϑ) and y2(R, ϑ, x) are defined, respectively,

as

y1(R, ϑ) = R2 +
K

1 +K
− 2R

√
K cos(ϑ)√
1 +K

(2.4.4)

y2(R, ϑ, x) =
2xf3

√
K sin(ϑ)

f1
È√

1 +K
È
a2y1(R, ϑ) + x4

. (2.4.5)

The LCRs of Model D with different values of K are shown in Fig. 2.10. The normalized

signal level is ρ = R, since the rms envelope level for Model D is one. While the plots indicate

a good match between the simulated LCRs and the theoretical expression in (2.4.3), it is

also observed that the higher the K, the lower the observed LCRs.
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Figure 2.11: Normalized AFD for Model B.

AFD for Model B. Using (2.4.2) and the CDF for |g|, the AFD for Model B can be

obtained as [36]:

T|g|(R) =
PZ(z ≤ R)

L|g|(R)
=
�
1−

√
2RK1

�
R
√
2
���

f1R
È
2π

√
2
Z ∞

0
x−2

√
a2R2 + x4e

−R2+x4√
2x2 dx

�−1

(2.4.6)
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Figure 2.12: Normalized AFD for Model D.

In the simulations, normalized AFD [12–14, 16, 58] is plotted. For Model B, the normalized

AFD is T|h|f1. The plots in Fig. 2.11 shows agreement between the simulated AFD with the

theoretical (2.4.6). For lower level of signals (ρ < 0 dB), the AFD of Model B is longer than

the AFDs of fixed-to-mobile and double-ring models; and for higher level of signals (ρ > 0

dB), the AFD of Model B is shorter than those of fixed-to-mobile and double-ring models.

This indicates that cascaded Rayleigh fading is more severe fading than a single Rayleigh

fading.

AFD for Model D. The AFD can be calculated as T|h|(R) =
PZ(z≤R)
L|h|(R)

, where L|h|(R)

is given in (2.4.3), and the CDF of the envelope z = |h| is given by

PZ(Z ≤ z) =

8<: 2
√
1 +KzI1

�
2
√
1 +Kz

�
K0

�
2
√
K
�
, for z <

√
K√

1+K

1− 2
√
1 +KzI0

�
2
√
K
�
K1

�
2
√
1 +Kz

�
, for z ≥

√
K√

1+K

(2.4.7)

where I0 and I1 are the modified Bessel function first kind, zero-order and first-order, re-

spectively. Fig. 2.12 shows the AFD for Model D. For lower level of signals (ρ < 0 dB), the
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value of AFD decreases when the values of K increase (stronger component of LOS), and

for higher level of signals (ρ > 0 dB), the value of AFD decreases when the values of K

decrease (weaker component of LOS).
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Figure 2.13: Autocorrelation for Models A, B, and double-ring

2.4.4 Complexity analysis

In this section, we examine the complexity of our proposed channel models. Since models

are sparse for M-M cascaded Rayleigh fading channels in the literature, we compare Models

A and B with the double-ring simulation model, one of the well-known models for M-M

Rayleigh fading channels. It is worth to mention that double-ring and the proposed models

are for different categories of M-M channels, the comparison is solely for the illustration of

complexity and performance of the proposed models. The number of additions required for

Models A and B to generate one channel sample are, respectively, 2(P +Q) and 2(M +N),

and 2MN additions are required for the double-ring model (same notations (M and N) are
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used in [14]). Besides additions, one multiplication is required for both Models A and B, and

no multiplication is required for the double-ring model. Table 2.1 lists the averaged CPU

time elapsed when generating one channel sample for Models A, B, and double-ring. A HP

Compaq 8510p computer, Intel (R) Core (TM) 2 Duo CPU T7500 @ 2.20GHz, is used with

M = N = P = Q = 8 for all models. It can be seen that the elapsed time to generate one

sample for Models A and B is much shorter than that for the double-ring model. A relative

CPU time is also listed, with TD being the referenced time for the double-ring model.

TABLE 2.1:

CPU TIME ELAPSED FOR ONE CHANNEL SAMPLE

Model Computations for one channel sample CPU

time

Relative

CPU time

Model A 2(Q+ P ) additions, 1 multiplication 3.8s 0.2 TD

Model B 2(M +N) additions, 1 multiplication 4.3s 0.23 TD

Double-Ring 2MN additions 18.8s TD

To investigate the performance of convergence, we examine the mean square error (MSE)

between simulated autocorrelation and the theoretical for Models A, B, and double-ring

model. These models have an identical theoretical autocorrelation expression (2.3.1). The

MSEs are obtained using one trial for different complexity levels. As shown in the first four

rows in Table 2.2, if the same number of additions are used to generate one channel sample,

then both Models A and B have much better convergence performance with significantly

smaller MSE than the double-ring model, and Model B provides the best convergence per-

formance. If the same number of sinusoids are used (in this case, Models A and B have much
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less complexity), the convergence performance of Models A and B is still comparable to that

of the double-ring model.

Fig. 2.13 plots the autocorrelations of Models A, B, and double-ring model for the scenario

listed in the second row of Table 2.2, whereby the number of additions to generate one channel

sample is 200 for all models. The plots indicate that Model B has a faster convergence rate

than the double-ring model.

TABLE 2.2:

MSE AND COMPLEXITY

Additions for One Model A Model B Double-Ring

Channel Sample

128
5.34× 10−4 2.12× 10−4 8.1× 10−3

{Q = P = 32} {M = N = 32} {M = N = 8}

200
3.19× 10−4 1.80× 10−4 4.69× 10−3

{Q = P = 50} {M = N = 50} {M = N = 10}

288
1.92× 10−4 1.64× 10−4 2.91× 10−3

{Q = P = 72} {M = N = 72} {M = N = 12}

392
1.78× 10−4 1.28× 10−4 2.40× 10−3

{Q = P = 98} {M = N = 98} {M = N = 14}

32: Models A and B 7.3× 10−3 2.8× 10−3 8.1× 10−3

128: Double-Ring {Q = P = 8} {M = N = 8} {M = N = 8}

2.5 Summary

We have proposed statistical models for mobile-to-mobile channels, whereby the received

signals experience cascaded Rayleigh fading with or without LOS. The models contain two
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individual summations and are therefore easy to implement with lower complexity. Further-

more, the models provide faster convergence to all the desired statistical properties, including

the pdf, autocorrelations, LCRs, and AFDs. Theoretical derivation of the time-averaged sta-

tistical properties and the corresponding variance are derived to confirm that the proposed

models have good convergence performance. Extensive Monte Carlo simulation results on

various statistical properties and complexity analysis are provided to validate the proposed

models. While measurements and tests in various highly dense scattering environments con-

firm that the M-M channels may undergo cascaded Rayleigh fading (more severe than single

Rayleigh fading), our proposed models can be used to simulate the underlying channels and

reveal the corresponding statical properties.
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CHAPTER 3

M2M CHANNEL MEASUREMENTS IN SUBURBAN
ENVIRONMENTS

3.1 Literature Review

In mobile ad hoc wireless networks and intelligence transportation systems, the nodes or

terminals are no longer stationary [1–6]. Accurate mobile-to-mobile (M2M) channel modeling

is highly desirable not only for analysis and designs of these systems, but also beneficial to

conventional cellular base station infrastructures. A series of mobile-to-mobile hops are found

helpful to extend the coverage and reduce power consumption in cellular base stations [7].

The channels in the M2M hops are different from those in cellular communication systems,

since the Tx and Rx are both in motion, in addition, the antennas at the Tx and Rx

are closer to ground levels. Small-scale M2M channel models are studied for isotropic and

non-isotropic scattering in Rayleigh, cascaded-Rayleigh, and Rician fading [14,17,24,50–52,

56, 64–66]. Intensive measurements for vehicle-to-vehicle (V2V) channels are conducted in

various highway, suburban, rural roads, and some application-specific scenarios such as traffic

congestion at 5GHz and 700MHz, e.g. [20–22, 24, 29–32, 34, 35, 67]. The path loss, power-

delay profiles, and delay-doppler spectra have been analyzed [20–22, 30–32, 34, 35, 67]. The

two-ray model [33], which was originally proposed for cellular communications, is suggested

to represent the path loss in rural V2V channels [34] and confirmed by the measurements

with a LOS environment [35]. Weibull distribution is verified for small-scale fading in urban

V2V channels by the measurements in [29,57].

In most V2V channel measurements, transmitter and/or receiver antennas are usually

placed on the roof of test vehicles. However, in many application of M2M communications,
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the mobile units (and their antennas) are often inside a vehicle traveling on roads; or inside

a pocket or bag carried by a pedestrian walking at side roads, parking lots, or woody/forest

areas. Available channel measurements and modelings for these types of M2M channels are

found limited, although the vehicle penetration loss for antennas inside a vehicle is studied

by measurements in 100 ∼ 2400MHz [68–70]. Small-scale fading is studied via measurements

for outdoor and indoor walking M2M channels [23,25,28].

A double-Rayleigh or cascaded Rayleigh distribution is found for the outdoor-to-indoor

vehicle-to-walk channels [23]. A similar observation is found in the outdoor walk-to-walk

channel measurements in a downtown (New York) area without LOS, where the Tx moves

within a circle of one meter (m) radius and Rx are randomly placed within a 10 m × 10 m

square [25]. A walk-to-walk M2M channel measurement is conducted in a forest area, where

a Weibull distribution is suggested for the small-scale fading of the channel [28]. Charac-

terization of the channels in forest areas may play critical roles in emergency rescues [28].

While empirical path loss models are obtained for fixed-to-fixed (F2F) channels in foliage

areas [29, 37–40], channel measurements and models for M2M channels in woody or forest

areas seem not many in literature.

In this paper, we conduct measurements for the M2M channels in suburban area with

dense scattering environments at 1.85 GHz frequency band, and explore the channel models

for large scale and small-scale fading. Suburban areas usually include streets with one or

two lanes in each traffic direction, and buildings or houses set back from the curb; while

urban areas have wider streets with buildings or houses closer to the curb [34]. Depending

on the tests routes and areas, the Tx and Rx travel towards or away from each other in

an angle (e.g. perpendicularly), or in convoy and opposite directions as in many V2V
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measurements (e.g. [20–22, 24, 29–32, 35, 67]). Different antenna placements are considered:

a). inside-vehicle-to-inside-vehicle (IV2IV) where the antennas of both Tx and Rx are placed

inside the test vehicles; b). inside-vehicle-to-walk (IV2W) where the antenna of Tx is inside

the vehicle and antenna of Rx is placed inside the pocket or next to the head at a walking

speed; c). walk-to-walk (IV2W) where the antenna of Tx is placed on a cart and antenna of

Rx is also placed inside the pocket or next to the head at a walking speed.

Figure 3.1: Setup diagram for the Tx and Rx.

3.2 Measurements Setup

The channel measurements were conducted in northern Kansas in November 2013 when

the trees were in their final growth, while grass was still in full growth. Test area was chosen

in a suburban area with a mix of trees, story buildings, street signs and corners, where heavy

diffracting and dense scattering to radio signals were likely to occur [33]. The areas were

scanned while the Tx was turned off before conducting the tests. A low received power at
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−140dB was recorded at the testing frequency, 1850MHz, to ensure that the selected radio

frequency was not used by other carriers. The receiver was configured to 100kHz narrow

bandwidth with −151dB sensitivity/collection threshold. The measurements were collected

using test vehicles and a mobile cart. Laptop computers were used to log the data. A Global

Position System (GPS) was connected to the laptop to record the location, elevation, and

speed. One GPS is used for the Tx and another was used at the Rx. To maintain reasonable

resolutions for the measurements, tests were halted whenever the received signal approached

low levels such as −150dB, and then resumed in the same areas to collect more data samples.

Figure 3.2: Test area in a suburban area
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The Consultix WTX-35 Test Tx at −20dB transmitting power with a 22dB power am-

plifier (PA), and modified version of Consultix MRX-34 CW Rx were used in testings. A

transmitted power of −25dB was used in case of Walk-to-Walk scenario. The Tx and Rx

were equipped with omni antenna 0dBi gain, and the Tx was powered by 12v power supply,

which was provided by either the internal batteries or externally from the power outlet in

the test vehicle. The Rx was powered by USB connection from the logging PC which was

also powered by internal battery or externally from the power outlet in the test vehicle. The

Consultix Rx was connected to the computer by a USB port, and the data was recorded at

rate of 1000 sample/sec. This rate allows to capture a max doppler of 5kHz and support

speed up to 1.8× 103 Mile/hr. The PA was powered by 12v AND 1Amp using a power in-

verter that was either connected to the car power outlet or a car battery in the Walk-to-Walk

tests. Fig. 3.1 illustrates the equipment setup for these tests.

3.3 Test Scenarios

The test areas were in suburb streets shown in Fig. 3.2. Although suburban areas are

determined by the geography of the land, trees, existing building in the area the visibility

from the Tx to Rx are not always guaranteed. Three scenarios are characterized by Antenna

location (inside or outside the vehicle.

Scenario 1 - IV2IV Suburban

In this scenario, both the Tx and Rx antennas were vertically placed inside the test vehicles

at heights of 1m above the ground level. The Tx and Rx traveled at speed 10 ∼ 30 miles/hr

with a separation distance 10 ∼ 450m between them.
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We collected two sets of measurements: visibility existed and not existed, in order to

obtain more accurate channel models. It is noticed that measurement data can also be

collected and categorized by other criterions, such as different vehicle traveling directions [32,

35].

Scenario 1a - Without LOS The test streets are shown in Fig. 3.2. The Tx and Rx

routes are shown in dashed lines. The Tx traveled in a two-way suburb street with one-lane

in each direction at street speed 10 ∼ 20 miles/hr. While the Rx was driving in a U shape

route at 10 ∼ 30 miles/hr speeds. Groups of two- or three-story or more buildings were

found 20 ∼ 40m away from the curbs. Trees, bushes, and grass were on sides of the streets.

The LOS between the Tx and Rx did not exist most the time. 110000 samples were collected

for Scenario 1a.

Scenario 1b - With LOS The test route was configured as shown in Fig. 3.2 by dotted

lines. The Tx traveled at a the local street at street speed along with the traffic and the

Rx approached the Tx then moved away after passing in the same street at speed 10 ∼ 20

miles/hr. The Tx and Rx traveled in opposite direction with a separation 10 ∼ 460m, and

there was visibility between them most time except after cross points when back of vehicle

obstruct it. Around 164000 samples were collected for Scenario 1b.

Scenario 2 - IV2W Suburban

Similarly to Scenario 1, the Tx was inside the test vehicle with antenna 1m above the ground

level. The Rx on the other hand was carried and the antenna was placed inside the pocket

at 1m above ground or next to the face at height of 1.5m. The test area is the same as for
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Scenario 1 are shown in Fig. 3.2.

Scenario 2a - Without LOS - Rx inside pocket As shown in Fig. 3.2. The Tx and

Rx routes are shown in dashed lines. The Tx this time in contrast to scenario 1a, traveled

at 20 ∼ 35 miles/hr in the streets marked by dashed U shape lines, and the Rx was moving

in the local street at pedestrian speed at 2 ∼ 3 miles/hr in the side walks marked by dashed

line. The separation between Tx and Rx was 20 ∼ 500m. Around 320000 samples were

collected for this scenario. The LOS between the Tx and Rx did not exist for most of

samples collected, excepts for those when the LOS was not blocked or partially blocked by

the buildings, and the trees.

Scenario 2b - Without LOS - Rx Next to face In this scenarios, the same setup,

conditions, and routes of Scenario 2a were used in this scenario as shown in Fig. 3.2. The

only difference is the antenna of the Rx was placed next to the face at height of 1.5m.

Around 200000 samples were collected for this scenario.

Scenario 2c - With LOS - Rx inside pocket Measurements in this scenario were collect

in the local street as shown in dotted lines as shown in Fig. 3.2. Similarly to Scenario 1b,

The Tx vehicle was moving on the local street at 10 ∼ 25 miles/hr. While the Rx was inside

the pocked at height 1m and moved at pedestrian speed on the side walk marked by dotted

line. There was visibility all the time even after crossing the Tx. Around 230000 samples

were collected for this scenario.
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Scenario 2d - With LOS - Rx Next to face In this scenario, the Rx antenna was placed

next to the face at height of 1.5m while moving in the same route of Rx in Scenario 2c. The

Tx traveled at same speed and same driving condition of Scenario 2c as showing in Fig. 3.2.

The visibility from the Tx to Rx was guaranteed in most of the measurements collected. A

total of 335000 samples were collect in this scenario.

Scenario 3 - W2W Suburban

The Tx was placed on a cart and pushed at pedestrian speed on the side walk. The Tx

antenna was at height 1m above the ground. The Tx and its PA were powered by car

battery using power inverter. The heights of the Rx were again 1m and 1.5m above the

ground. As shown in Fig. 3.2, the Tx traveled on the side walk next to the two-way suburb

street marked by dotted line approaching the Rx which was on the same side of the side

walk. The separation between Tx and Rx was 10 ∼ 450m, and the visibility between them

was partly obstructed by trees, bushes.

Scenario 3a - With LOS - Rx inside pocket In this scenario, The Rx was placed inside

the pocket similarly to Scenario 2a and Scenario 2c. As showing in Fig. 3.2, both the Tx

and Rx were traveling at pedestrian speeds walking on same side walk toward each other the

away after crossing as illustrated in dotted lines. A total of 500000 Samples were collected

for this scenario.

Scenario 3b - With LOS - Rx Next to face In contrast to previous scenario, the Rx

antenna is placed next to the face at height of 1.5m. Both the Tx and Rx moved on the same

side walk toward each other at pedestrian speeds as can be seen in dotted lines in Fig. 3.2.
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In this scenario, a total of 600000 samples were collected.

3.4 Channel Modeling

In general, the received signal power at the receiver is determined by the transmitted

power, path loss, large scale (shadowing), and small-scale fading [33]. The received signal

power in (dB) can be generally expressed as Pr = Pt−PL+S+Ω, where Pt is the transmitted

power, PL is the path loss, S is the power of shadowing, and Ω is the power of small-scale

fading [33]. In this section, we analyze the channel models for path loss, shadowing, and

small-scale fading based on the measurements obtained in scenarios 1-4. We first obtain the

path loss models, then remove the effect of path loss and obtain models for shadowing and

small-scale fading. Table 3.1 provides a summary of the proposed models for all scenarios.

3.4.1 Path Loss Fading

According to the power law, the path loss in the received power is related to the separation

distance between the Tx and Rx. The distance can be calculated by the spherical law of

cosines or haversine formula using the latitude and longitude [71–73]. We use the spherical

law of cosines in this paper.

d = cos−1
�
sin ξT sin ξR + cos ξT cos ξR cos(ηT − ηR)

�
× 6.371× 106 (3.4.1)

where d is the distance in meters, ξT, ηT are, respectively, the latitude and longitude of the

Tx recorded in the measurements, and ξR, ηR are the latitude and longitude of the Rx.

Regression models with a simple form, PL(d) = PL(d0) + 10n log(d/d0), are proposed

to estimate the path loss in [75, 76], where PL(d0) = Pt − Pr(d0) + 20 log ht + 20 log hr

characterizes the path loss at the reference distance d0, which is normally chosen as 1m for
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indoor, 100m for micro cell, and 1km for urban mobile systems [33]. Values of PL(d0) and

the path loss exponent n are estimated by the measurements.

(a) Path loss for Scenario 1a (b) Path loss for Scenario 1b

Figure 3.3: Path loss for Scenarios 1a and 1b

The path loss in Scenarios 1, 2, and 3 is expressed in the form, PL(d) = PL(d0) +

10n log(d/d0) − 20 log ht − 20 log hr, where d0 is chosen as 10m, ht and hr are the corre-

sponding antenna heights in these scenarios. The values of PL(d0) and n are obtained from

measurements. The path loss models for Scenarios 1, 2, 3 are listed as follows:

Scenario 1a: PL = 68.2455 + 44.612 log(d/d0) (3.4.2)

Scenario 1b: PL = 72.5152 + 30.968 log(d/d0) (3.4.3)

Scenario 2a: PL = 58.3428 + 46.605 log(d/d0) (3.4.4)

Scenario 2b: PL = 64.9039 + 44.923 log(d/d0) (3.4.5)

Scenario 2c: PL = 79.0416 + 23.987 log(d/d0) (3.4.6)

Scenario 2d: PL = 80.8961 + 27.120 log(d/d0) (3.4.7)

Scenario 3a: PL = 76.7948 + 24.384 log(d/d0) (3.4.8)
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Scenario 3b: PL = 75.1302 + 26.721 log(d/d0) (3.4.9)

where the antenna height at the Tx and Rx ht = 1m and hr = 1m for Scenario 1a, 1b, 2a,

2c, and 3a. And, ht = 1m and hr = 1.5m for Scenario 2b, 2d, and 3b.

(a) Path loss for Scenario 2a (b) Path loss for Scenario 2b

(c) Path loss for Scenario 2c (d) Path loss for Scenario 2d

Figure 3.4: Path loss for Scenarios 2a-2d

We have the following observations for the path loss models for Scenario 1, 2, and 3:

• Scenario 1a: Measurements of the received signal power are shown in Fig. 3.4.2 with

the proposed path loss model. The path loss exponent is found as n = 4.4612 and the
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received power at reference distance is Pr(d0) = −66.2455dB. The proposed model is

valid for the Tx-Rx distance in 15 ∼ 450m, since the received power at d = 450m is

close to −140 or −150dB, below which the measurement data is regraded as unreliable.

• Scenario 1b: As shown in Fig. 3.4.3, the path loss exponent is n = 3.0968 and reference

path loss is Pr(d0) = −70.5152dB. The model is valid for a similar range to Scenario 1a

of Tx-Rx separation of 15 ∼ 450m. The path loss exponent and the reference path

loss in Scenario 2b are found close to those observed in the suburban V2V channel

measurements at 5.9GHz [32], where the exponent around 2.3 and reference path loss

is 71.8 for data set 2 (data set 1 was collected in summer and data set 2 in winter). The

path loss exponent in Scenario 2b is higher compared to the suburban V2V channels

in [35], where the path loss exponent is 1.59. The reference path loss in Scenario 2b is

found close to that in [35], which is 64.4dB, if the vehicle loss is taken into account for

the Tx and Rx antennas inside the vehicles [68–70].

• Scenario 2a: Measurements of the received signal power are shown in Fig. 3.4(a) with

the proposed path loss model. The path loss exponent is found as n = 4.6605 and the

received power at reference distance is Pr(d0) = −56.3428dB.

• Scenario 2b: As shown in Fig. 3.4(b), the path loss exponent is n = 4.4923 and

reference path loss is Pr(d0) = −62.9039dB. The model is valid for a wider range (than

in Scenario 2a) of Tx-Rx separation in 80 ∼ 480m.

• Scenario 2c: Measurements of the received signal power are shown in Fig. 3.4(c) with

the proposed path loss model. The path loss exponent is found as n = 2.3987 and the
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received power at reference distance is Pr(d0) = −77.0416dB. The proposed model is

valid for the Tx-Rx distance in 10 ∼ 430m.

• Scenario 2d: As shown in Fig. 3.4(d), the path loss exponent is n = 2.7120 and

reference path loss is Pr(d0) = −78.8961dB. The model is valid for a wider range (than

in Scenario 2a) of Tx-Rx separation in 10 ∼ 450m.

• Scenario 3a: Measurements of the received signal power are shown in Fig. 3.5(a) with

the proposed path loss model. The path loss exponent is found as n = 2.4384 and the

received power at reference distance is Pr(d0) = −78.7948dB.

• Scenario 3b: As shown in Fig. 3.5(b), the path loss exponent is n = 2.6721 and reference

path loss is Pr(d0) = −77.1302dB. Both Scenario 3a and Scenario 3b models are valid

for a range of Tx-Rx separation 10 ∼ 380m.

(a) Path loss for Scenario 3a (b) Path loss for Scenario 3b

Figure 3.5: Path loss for Scenarios 3a and 3b

In summary, path loss exponent for LOS scenarios is lower than NLOS scenarios, which
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is found ∼ 1.4 in the IV2IV scenarios and 2.3 ∼ 1.8 in IV2W scenarios. The It can also

be observed that path loss exponent for W2W LOS scenarios is very close. The path loss

exponent in cases when the Rx is next to the face is (0.23, 0.3) higher for the LOS and

very close (−0.17) in NLOS scenarios. It is expected to be higher in IV2IV NLOS scenario

in compared to IV2W, but chances of LOS in between buildings were higher due to faster

movements in IV2IV.
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Figure 3.6: Distributions of the shadowing in Scenarios 1a and 1b

3.4.2 Shadowing fading

Shadowing characterizes the local average variation of the envelope around the path loss.

Typically, it is estimated by a moving average window over distance [33]. Depending on the

test conditions and surrounding environments, the window size is usually 5 ∼ 40 times of the

wavelength in the radio frequency [34]. Based on results of moving average windows with

different sizes using the measurements, not shown here, window sizes of 1m, 2m, 3m, and

4m, respectively were examined. These window sizes correspond to 6.2, 12.3, 18.5, and 24.7
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times of the wavelength in frequency 1.85GHz; It was observed that 4m window failed to

follow the local average of shadowing in the received signal; the 1m and 2m windows seemed

too small, as a result, picked up part of fast variations (small-scale fading) components. A

3m window appeared to be a reasonable choice to extract shadowing for the measurements

which was used in our analysis.
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(c) Distribution of the shadowing in Scenario 2c
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Figure 3.7: Distributions of the shadowing in Scenarios 2a and 2b

Let S represent the local average power (in dB) after removal of the path loss component.
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The log-normal probability density function (pdf) for shadowing is given by (5.59) [77]:

fs(s) = 10√
2πκs ln(10)

exp
�
−(10 log s−µ)2

2κ2

�
, where ln is the natural logarithm of base e, mean

µ = E[S], and variance κ2 = V[S]. Figs. 3.6(a) to 3.8(b) show the distributions of shadowing

in Scenarios 1 to 3. The probability density function of log-normal are also plotted with

values of mean µ and standard deviation κ estimated from the measurements. As listed in

Table 3.1, the means of shadowing are close to zero for all scenarios.
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Figure 3.8: Distributions of the shadowing in Scenarios 3a and 3b

The standard deviation of shadowing was found around (4.6 ∼ 5.5dB) for all NLOS cases

in suburban, and had a wider range (3.4 ∼ 7dB) for LOS scenarios. It also obvious that

having the Rx outside the vehicle results in lower standard deviation as can be seen in sub-

scenarios of scenario 2 in compared with sub-scenarios of scenario 1. It can also be observed

that (−0.9 ∼ 5.5dB) difference between pocket and next to the face in NLOS IV2W and

LOS IV2W respectively. Finally, (∼ 0dB) mean is observed in all test scenarios.

It is worth noting that a zero mean in shadowing has been reported for V2V channel
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measurements at 5.9GHz with antennas on roof [32,35]. Two data sets were collected summer

and winter, respectively. Standard deviation of shadowing were found as 2.6 ∼ 4.4dB and

2 ∼ 8.4dB for the two data sets. Measurements with LOS in the suburban environment [35]

suggested a standard deviation of shadowing around 4.41dB. This value is found close to the

standard deviations in Scenarios 1a and Scenarios 1b at 1.85GHz with the antennas inside

the vehicle.
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(a) Small-scale distribution in Scenario 1a
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Figure 3.9: Small-scale distribution in Scenarios 1a and 1b

3.4.3 Small-scale Fading

Rician and Weibull distribution have been reported for small-scale fading in V2V chan-

nels [24, 29, 57, 78]. Cascaded (double) Rayleigh fading has been suggested by the measure-

ments in M2M and V2V channels [21, 23, 25–27, 57]. Specifically, The measurements in [23]

show that the outdoor-to-indoor M2M channel follows a double Rayleigh distribution rather

than a single Rayleigh distribution, and similar observations are obtained from the measure-

ments in [26,27]. Measurements of V2V channels in [21,57] indicate that severe (worse than
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Rayleigh) fading appears in city motorways and highways. Authors in [26,27] have suggested

that M2M channels may experience fading as a combination of single, double, triple, and

quadruple product of Rayleigh fading components. In this paper, we study three distribu-

tions in our experiments: Rician, cascaded-Rayleigh with LOS, and Weibull distributions.

To fully characterize the small-scale fading in the collected measurements, we also consider

a distribution by a combination of Rician and cascaded-Rayleigh with LOS. The probability

density functions of Rician, cascaded-Rayleigh with LOS, and Weibull distributions are well

studied in literature, we re-state the results for convenience of readers.

• Rician distribution: A M2M channel with Rician distribution is expressed as [17],

hR(t) =

√
Ωg(t) +

√
ΩKej(2πtfL cos θL+ϕ0)È
(1 +K)

, (3.4.10)

where subscript “R” represents Rician, Ω is power for small-scale fading, the complex

exponential ej(2πtfL cos θL+ϕ0) is the LOS component, K is the spectral to the scatter

power ratio, fL is the Doppler frequency shift due to the motions in Tx and Rx, θL

is the angle of the relative velocity (between Tx and Tx) with respect to the Tx-Rx

direct path, and ϕ0 is the random phase offset [17,36], g(t) characterizes the scattering

component without LOS, and it is usually modeled as a complex Gaussian process

whose envelope follows a Rayleigh distribution [14,17],

g(t) =

Ê
1

MN

NX
n=1

MX
m=1

ej
�
2πf1t cos γn+2πf2t cos ζm+θnm

�
(3.4.11)

where N and M designate the number of scatters around the Tx and Rx, respectively,

f1 and f2 are respectively, the maximum Doppler’s shift frequencies at the Tx and

Rx, θnm ∈ [−π, π), n = 1, · · · , N,m = 1, · · · ,M , are the independent and uniformly
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distributed phase shifts, γn represents the angle of departure for the n-th scatter at the

Tx, and ζm is the angle of arrival for the m-th scatter at the Rx. Using (2.50) in [36],

the pdf of Rician distribution can be obtained as

f|hR|(z) =
2z(K + 1)

Ω
exp

�
− z2(K + 1)

Ω
−K

�
I0

�
2z

s
K(K + 1)

Ω

�
, z ≥ 0 (3.4.12)

where I0 is the modified Bessel function of the first kind zero-order.

• Cascaded Rayleigh with LOS: A model for M2M channel of cascaded Rayleigh with

LOS has the form

hC(t) =

√
Ωg1(t)g2(t) +

√
ΩKej(2πtfL cos θL+ϕ0)È

(1 +K)
, (3.4.13)

where subscript “C” represents cascaded, g1(t) and g2(t) are independent complex

Gaussian processes whose envelop follow Rayleigh distribution. The scattering com-

ponent in the channel is cascaded Rayleigh fading (instead of a single Rayleigh fading)

characterized by the product g1(t)g2(t),

g1(t)g2(t) =

Ê
1

N

NX
n=1

ej
�
2πf1t cos γn+θn

�Ê
1

M

MX
m=1

ej
�
2πf2t cos ζm+Φm

�
(3.4.14)

θn and Φm ∈ [−π, π), n = 1, · · · , N,m = 1, · · · ,M , are the phase shifts for each scatter

at the Tx and to the Rx, and they are independent and uniformly distributed for all n

and m. Using Eq.(12) in [60], one can obtain the pdf for cascaded Rayleigh with LOS

channel in (3.4.13) as follows:

f|hC|(z) =

8<: z
σ2
1σ

2
2
I0
�

z
σ1σ2

�
K0

�
2
q

K
1+K

�
, for z <

q
ΩK
1+K

z
σ2
1σ

2
2
I0
�
2
q

K
1+K

�
K0

�
z

σ1σ2

�
, for z ≥

q
ΩK
1+K

(3.4.15)

where K0 is the modified Bessel function of the second kind zero-order.

60



• Weibull distribution: The pdf for a Weibull distribution channel has the form [57]

f|hW|(z) = βzβ−1

�s
Ω

Γ(1 + 2/β)

�−β

exp

�
−
�
z
È
Γ(1 + 2/β)√

Ω

�β�
(3.4.16)

where subscript “W” represents Weibull, Γ(·) is the gamma function, and β is the

shape parameter for Weibull distribution.
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(a) Small-scale distribution in Scenario 2a
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(b) Small-scale distribution in Scenario 2b
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(c) Small-scale distribution in Scenario 2c
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Figure 3.10: Small-scale distribution in Scenarios 2a-2d
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To verify the closest of the models, we calculate the mean square error (MSE) of the

models by, MSE =
PN

i=1
|∆i|2

N
, where N is the total number of measurements samples, and ∆i

is the difference between the histogram of measured small scale and its theistical estimated

for the ith sample.
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(a) Small-scale distribution in Scenario 3a
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Figure 3.11: Small-scale distribution in Scenarios 3a and 3b

Extending the observations in [26,27] that M2M channels may experience fading which is

a combination of single Rayleigh and cascaded Rayleigh fading, we try to fit the measurement

data using a pdf which combines the distributions of Weibull and cascaded Rayleigh with

LOS, as Weibull is general case for Rician: fcom(z, τ) = (1−τ)f|hW|(z)+(τ)f|hC|(z), 0 ≤ τ ≤ 1,

where the subscript “com” represents combination. For special cases when τ = 0 or 1,

fcom(z, τ) becomes f|hW|(z) or f|hC|(z), respectively. Combinations of Rician and cascaded

Rayleigh with LOS were also investigated, but these fits were not as close as fcom(z, τ) fits.

Removing the path loss and shadowing components from the received power in the mea-

surements, we obtain the small-scale fading components for all scenarios. The power Ω and
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TABLE 3.1:

SCENARIOS SUMMARY

heights Path loss Shadowing

Scenario ht(m), hr(m) n, P (d0) (dB) µ (dB), κ

(dB)

K-factor Ω Envelope

Scenario 1

1a 1, 1
4.4612,

68.2455

0.0032,

5.0035

0.5187 1.8546 fcom(z, 0.1)

β = 1.8

1b 1, 1
3.0968,

72.5152

0.0180,

6.9619

0.6105 1.9553 fcom(z, 0.4)

β = 1.7

2a 1, 1
4.6605,

58.3428

-0.0091,

5.5367

0.6030 2.0219 fcom(z, 0.1)

β = 1.68

2b 1, 1.5
4.4923,

64.9039

-0.0048,

4.6170

0.5808 1.9758 fcom(z, 0.1)

β = 1.7

Scenario 2
2c 1, 1

2.3987,

79.0416

0.0823,

4.2780

0.6041 2.0099 fcom(z, 0.1)

β = 1.65

2d 1, 1.5
2.7120,

80.8961

0.0055,

3.8269

0.5493 1.9168 fcom(z, 0.2)

β = 1.77

Scenario 3

3a 1, 1
2.4384,

76.7948

0.0077,

3.3670

0.7357 1.8046 Weibull

β = 1.35

3b 1, 1.5
2.6721,

75.1302

0.0381,

4.1176

0.6495 2.2742 Weibull

β = 1.5
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the spectral to the scatter power ratio K-factor are estimated from the measurements by,

Ω = E[|h(t)|2] [36], and K =
√
1−γ

1−
√
1−γ [79], where γ = V[|h(t)|2]

(E[|h(t)|2])2 , and |h(t)| is the envelope of

the small-scale component (here we drop the subscript in the channel without confusion).

Figure 3.12: Doppler effect due to relative movement in Tx and Rx

Table 3.1 summarizes the estimated values of Ω and K-factor, and the small-scale dis-

tributions for all the scenarios under study. The values of total power of spectral + scatter

in small scale, was found Ω = (1, 85 ∼ 2.27) . It is found 1.8546 for Scenario 1a, which

is expected lower than the LOS case in scenario 1b that is 1.9553. And between 1.9168

to 2.0219 for sub-scenarios 2 which is slightly higher than sub-scenarios 1. The values of

K-factor was found (0.5 ∼ 0.7) in all scenarios. This indicates that the scatter contributes

to about (%30 ∼ %50) of the received small scale component and the rest is in the spectral

component. The lowest is found for Scenarios 1a with 0.5187. This means that half the
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small scale component is spectral and the scatter component is contributing to the second

half. K-factor is higher than for scenario 1b and sub-scenarios 2 than scenario 1a and very

close, between 0.5493 to 0.6041. This is expected since the visibility between the Tx and

Rx is better compared with scenario 1a during the tests. A strong K-factor in the LOS

component contributes to the average received power. More detailed observations in each

scenario are as follows:
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(b) LCR in Scenario 1b

Figure 3.13: LCR in Scenarios 1a and 1b

• Scenario 1: The distribution of small-scale fading is shown by the histogram in Figs. 3.9(a)

and 3.9(b). The probability density functions for Rician, Weibull, cascaded-Rayleigh

with LOS, and combination of them fcom(x, τ) with τ = 0.5, 0.4, 0.3, 0.2, and 0.1 are

plotted, respectively. It can be noticed that the envelope in this scenario does not follow

a Rician, nor a Weibull distribution. In Fig. 3.9(a), it is obvious that the fcom(z, 0.1)

distribution, labeled as 10%C 90%W , has the closest fit to measured data with pa-

rameter β = 1.8. While in Fig. 3.9(b), fcom(z, 0.4) is labeled as 40%C 60%W gave the
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closest fit to the distribution with parameter β = 1.7.
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(a) LCR in Scenario 2a
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(b) LCR in Scenario 2b
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(c) LCR in Scenario 2c
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(d) LCR in Scenario 2d

Figure 3.14: LCR in Scenarios 2a-2d

• Scenario 2: Figs. 3.10(a), 3.10(b), and 3.10(c) show, respectively, the small-scale en-

velope distribution for Scenario 2a, Scenario 2b and Scenario 2c. The distribution of

Rician, cascaded Rayleigh with LOS, and Weibull distributions are plotted. Again,

fcom(z, 0.1) distribution, labeled as 10%C 90%W with β = 1.77, is the winner in these
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scenarios with parameter β = 1.68, 1.7, and 1.65 respectively. In Figs. 3.10(d), the

closest fit was found fcom(z, 0.2) and labeled as 20%C 80%W with β = 1.77.
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(a) LCR in Scenario 3a
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(b) LCR in Scenario 3b

Figure 3.15: LCR in Scenarios 3a and 3b

• Scenario 3: Figs. 3.11(a), and 3.11(b) plots the distribution of the envelope for these

sub-scenarios. It can be indicated that the Weibull distribution is the best fit for these

scenarios with β = 1.35 and β = 1.5 respectively.

3.5 Evaluation of Higher-Order Statistics

The level crossing rate and the average fade duration are two important statistical

properties related to channel fading. At a specified level R, the LCR for a channel envelope

is the rate (in crossings per second) at which the channel envelope crosses in the positive

(or negative) direction [13, 36]. The AFD is the average time duration that the envelope

remains below the level R [36]. The expressions of LCR and AFD for Rician, cascaded with

Rayleigh, and Weibull distributions are presented as follows.

67



0 2 4 6 8 10
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

level R

N
(R

).
f 1

 

 

M2M Cascaded with LOS
Measurements
M2M Weibull
M2M Rician

(a) AFD in Scenario 1a
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(b) AFD in Scenario 1b

Figure 3.16: AFD in Scenario 1a and 1b

3.5.1 Expressions of LCR and AFD

Rician Distribution: The LCR can be obtained using (2.91) in [36], L|hR|(R) =
R∞
0 żf|hR|(z, ż)dż,

where R is the level, and f|hR|(z, ż) is the joint pdf given by

f|hR|(z, ż) =
zÈ

(2π)3Bb0
exp

�
− z2 + ŝ2

2b0

� Z π

−π
exp

�zŝ cos θ
b0

−
�
b0ż + b1ŝ sin θ√

2Bb0

�2�
dθ (3.5.1)

and where 2b0 = Ω
K+1

, ŝ =
q

ΩK
K+1

, b1 = −2b0
√
Kπf3 cos θL, and B =

Ω2π2(f21+f
2
2 )

2(1+K)2
. Using the

joint pdf in (3.5.1)and the steps in Appendix H, the LCR for the M2M Rician channel is

calculated by

L|hR|(R) = ρ

s
f 2
1 + f 2

2

2π
exp

�
− (1 +K)ρ2 −K

� Z π

−π
exp

�
2ρ
È
K(1 +K) cos θ

�
×

�s
2π

f 2
1 + f 2

2

f3 cos θLK sin θ erfc
�
− f3 cos θLK

s
2

f 2
1 + f 2

2

sin θ
�

+ exp

�
− (f3 cos θL)

2K2 sin2 θ

2(f 2
1 + f 2

2 )

��
dθ (3.5.2)

where erfc(·) is the complementary error function [63], ρ = R/
√
Ω.
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The AFD for the M2M Rician channel, T|hR|(R) is calculated by

T|hR|(R) =
1−Q

�√
2K,

q
2(K+1)

Ω
R
�

L|hR(t)|(R)
(3.5.3)

where Q(·) is Marcum’s Q-function [63]. It is worth noting that the LCR and AFD in [13]

and [36] are the special cases in (3.5.2) and (3.5.3), for without LOS K = 0, and fixed-to-

mobile (F2M) with f3 = f1 = 0.
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(a) AFD in Scenario 2a
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(b) AFD in Scenario 2b
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(c) AFD in Scenario 2c
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(d) AFD in Scenario 2d

Figure 3.17: AFD in Scenarios 2a-2d
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Cascaded Rayleigh with LOS: Using (30) in [60], the LCR for channel in (3.4.13) is

given by

L|hC|(R) =
�1 +K

Ω

� 3
4

Rf1

Z ∞

0

Z π

−π
x−2

È
a2y1(R, ϑ) + x4

×
�
y2(R, ϑ, x)

�
1 + erf

�y2(R, ϑ, x)√
2

��
+

Ê
2

π
e−

y22(R,ϑ,x)

2

�
e−

√
1+K
Ω

(x2+
y1(R,ϑ)

x2
)dϑdx

(3.5.4)

where erf(·) is the error function [63], a = f2/f1, y1(R, ϑ), and y2(R, ϑ, x) are defined,

respectively, as

y1(R, ϑ) = R2 +
ΩK

1 +K
− 2R cos(ϑ)

s
ΩK

1 +K
(3.5.5)

y2(R, ϑ, x) =
2xf3 cos θL

√
K sin(ϑ)

È√
Ω

f1
È√

1 +K
È
a2y1(R, ϑ) + x4

. (3.5.6)

The AFD for the channel of cascaded Rayleigh with LOS can be calculated as T|hC|(R) =

PZ(z≤R)
L|hC|(R)

, where L|hC|(R) is given in (3.5.4), and the CDF of the envelope z = |hC(t)| is given

by

P|hC|(Z ≤ z) =

8<: z
σ1σ2

I1
�

z
σ1σ2

�
K0

�
2
q

K
1+K

�
, for z <

q
ΩK
1+K

1− z
σ1σ2

I0
�
2
q

K
1+K

�
K1

�
z

σ1σ2

�
, for z ≥

q
ΩK
1+K

(3.5.7)

where I1 and K1 are modified Bessel functions first and second kinds first-order, respectively.

Weibull Distribution: The LCR and ADF for F2M Weibull can be found in (9) [80].

To add the effect of the Tx mobility, we replace the variance in time derivative of the channel

envelop bσ2 by bσ2 = π2Ω(f 2
1 +f

2
2 ), which is also known as the second moment of the spectrum

for M2M channel in (A5) [13]. Inserting bσ2 into (9) [80], the LCR and AFD for M2M Weibull

channel envelope can be expressed, respectively, as

L|hW|(R) =
È
2π(f 2

1 + f 2
2 )

�
R

Ì
Γ(1 + 2

β
)

Ω

�β
2

exp

24−�R
Ì
Γ(1 + 2

β
)

Ω

�β35 (3.5.8)
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T|hW|(R) =
1− exp

�
−
�
R

É
Γ(1+ 2

β
)

Ω

�β�
L|hW|(R)

. (3.5.9)

3.5.2 Simulations of LCR and AFD

To evaluate the LCR and AFD from the theoretical expressions, we need to deter-

mine the following parameters: doppler frequencies at the Tx and Rx f1 and f2, doppler

frequency in the LOS component fL, and angle of relative velocity θL. Using the mea-

surement, the doppler frequencies at the Tx and Rx are calculated by f1 = E[|vT(t)|]
λ

and

f2 = E[|vR(t)|]
λ

, where vT(t) and vR(t) are, respectively, the velocities of the Tx and Rx

in meters per second (m/s) at time t. The Doppler frequency in the LOS component is

calculated by fL = E[|vL(t)|]
λ

, where vL(t) is the relative speed with a magnitude |vL(t)| =Ê�
vT(t)− vR(t) cos

�
θTR(t)

��2
+
�
vR(t) sin

�
θTR(t)

��2
, where θTR(t) is the angle between

vT(t) and vR(t). If the Tx and Rx travel in a opposite direction, then θTR(t) = π; and

the relative speed achieves a magnitude |vL(t)| = |vT(t) + vR(t)|, which is the case presented

in [60], [67]. The angle between the relative velocity and the LOS path is evaluated as,

θL = E
�
θT(t)+ tan−1

�
vR(t) sin

�
θTR(t)

�
vT(t)−vR(t) cos

�
θTR(t)

���, where θT(t) is the angle between vT(t) and the

LOS path, θR(t) is the angle between vR(t) and the LOS path.

These angles are illustrated in Fig. 3.12, when Tx and Rx approach an intersection. The

Tx travels at speed vT(t) and is at point A at time t−∆t, and the Rx travels at vR(t) and

is at point C. At time t, the Tx arrives at point B and the Rx gets to point D. Using

the bearing angles referenced by the north-south line, θT(t), θR(t), and θTR(t) are calculated,

respectively, by

θT(t) = ΞTR(t)− ΞT(t) , θR(t) = π − ΞTR(t) + ΞR(t) , θTR(t) = ΞT(t)− ΞR(t), (3.5.10)
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where ΞT(t) and ΞR(t) are, respectively, the bearing angles of vT(t) and vT(t) referenced by

the north-south line, and ΞTR(t) is the bearing angle of the Tx-Rx LOS path referenced by

the north-south line. These angles are give by

ΞTR(t)= tan−1

�
sin(ηR(t)−ηT(t)) cos(ξR(t))

cos(ξT(t)) sin(ξR(t))−sin(ξT(t)) cos(ξR(t)) cos(ηR(t)−ηT(t))

�
(3.5.11)

Ξx(t) = tan−1

�
sin

�
ηx(t)−ηx(t−∆t)

�
cos

�
ξx(t)

�
cos

�
ξx(t−∆t)

�
sin

�
ξx(t)

�
−sin(ξx(t−∆t)) cos ξx(t) cos

�
ηx(t)−ηx(t−∆t)

��
(3.5.12)

and where ηT(t) and ξT(t) are the coordinates at Tx, and ηR(t) and ξR(t) are the coordinates

at Rx, and subscript x takes value of T or R, respectively. The time difference ∆t is chosen

as 3 seconds in the paper, to ensure the vehicle (or test cart) moves enough distance to

determine its moving direction.
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(b) AFD in Scenario 3b

Figure 3.18: AFD in Scenario 3a and 3b

Figs. 3.13(a)-3.15(b) and 3.16(a)-3.18(b) plot the normalized LCRs L|h|f
−1
1 and AFDs

T|h|f1 evaluated from the measurements for the four scenarios (here the subscript for different

channels is omitted without confusion). Theoretical expressions of LCRs in (3.5.2), (3.5.4), (3.5.8)
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and AFDs in (3.5.3), (3.5.7), (3.5.9) are also plotted for comparisons. The figures indicate

that the LCRs and AFDs evaluated from the measurements have close agreement with the

theoretical expressions from the designated distributions. For Scenario 1a, scenario-1b, and

scenarios 2a, 2b, and 2c, LCR measurements reside in between cascaded Rayleigh with

LOS (3.5.4) and Weibull (3.5.8), and same for AFD measurements reside in between (3.5.7)

and (3.5.9). For scenarios 3a, 3b the LCRs and AFDs from measurements are close to the

theoretical expressions derived in (3.5.8) and (3.5.9) for Weibull distribution.

3.6 Summary

We presented IV2IV, IV2W, and W2W M2M channel measurements in suburban area

with dense scattering environments in 1.85GHz. Empirical models for path loss, shadowing,

and small-scale fading are studied based on the measurements. The LCR and AFD are

verified from the measurements. Depending on the test scenarios, the path loss exponents

in the M2M channels are between 3.1 to 4.4 for IV2IV, and lower as 2.4 to 4.7 for IV2W

due to the placement of antenna outside the vehicle. The measurements suggest that the

mean of shadowing is close to zero, the variance varies from 5 to 6.9 for IV2IV and 3.8 to 5.5

for IV2W. The K-factor was estimated in the range of 0.5 to 0.6 assumes the received small

scale component spectral and scatter are very close. The total small scale power is found

to be around 2 for all scenarios. The small-scale fading for M2M channels in the suburban

dense scattering environment follows Weibull distribution most the time, experiences more

sever fading than a single Rayleigh or Rician fading. Some cases, a combination of weibull

and cascaded Rayleigh with LOS is closer fit for IV2IV in LOS condition or as shown in

Scenario 2c.
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CHAPTER 4

M2M STATISTICAL CHANNEL MODELS FOR
NON-ISOTROPIC CASCADED-RAYLEIGH WITH LOS

4.1 Literature Review

The main assumption when studying isotropic scattering is angles of arrivals (AOA)

and angles of departures (AOD) of scatter components are uniformly distributed around

the Tx and Rx. This also suggest the use of omni-antennas at both Tx and Rx. Recent

measurements in [8,9] reported non-uniform distributions for AOA and AOD around the Tx

and Rx. As a result, It was suggested in [8, 9] that Mobile-to-mobile (M2M) channel can

experience Non-isotropic scattering. Although this results in small difference in the first order

statistics of the channel model [81]. But, obvious differences can be seen in the second-order

channel properties such as auto-, cross-correlations, and rest of correlation properties [81].

Different non-uniform distributions are available for AOA and AOD in a non-isotropic

scattering [8, 41–46]. The von Mises [8] distributions was suggested in [9, 47] to represent

non-isotropic scattering. It is shown through measurements results in [47] that von Mises

distribution has a good fit for AOA. It was also proposed as a choice to approximate other

non-uniform distributions. A similar observation is found in [9] while conducting measure-

ments in M2M campaigns in both a highway and an urban area. A 3-D non-isotropic scat-

tering Rician model was proposed in [9]; and a good fit is shown using von Mises distribution

with measured LCR and AFD. Other possible distribution are Gaussian [41], Quadrate [42],

truncated Laplace [43,44], truncated uniform [45], and cosine [46].

A 3-D F2M Rician channel under non-isotropic scattering was proposed in [47]. The main

work focused on studying the PSD and correlation properties for this type of channel under
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non-isotropic condition. A F2M non-isotropic Rayleigh channel model was proposed in [48]

using gaussian samples as an input. By adopting the psd in [47], the spectrum shaping filter

coefficients in [48] were chosen using an adaptive algorithm to produce the desired spectrum

in [47]. A statistical M2M Rician channel model was proposed in [49]. Correlation properties

such as auto- and cross-correlations and psd spectrum in [47] were verified.

Non-isotropic scattering was extended to M2M MIMO channels in [50, 51]. Space-time

correlation functions were derived in both works. In [51], a statistical channel model with

NLOS was proposed based on cascaded-Rayleigh principle under the assumption that AOD

and AOA follow von Mises distribution. While a Rician fading geometric channel model was

proposed in [50] based on a single-, double-bounced, and a LOS.

In summary, we assume that the AOA and AOD follow von Mises distribution and adopt

the technique for calculating these angles from [82]. We present new statistical channel mod-

els based on Cascaded-Rayleigh principle with and without LOS. The statistical properties

for these M2M non-isotropic channels are derived and verified using monte carlo simulations.

4.2 Existing Simulation Channel models

The reference model which can be found in [51], suggest that at a large distance compared

to the Tx and Rx radii, the phase shift of a scatter, θmn using nth Tx and mth Rx scatter

pair, can be divided to two independent phases such as θmn = θm + θn, where θm is the mth

Rx scatter phase and θn is the nth Tx scatter phase where both are uniformly distributed

such as θm, θn ∈ (0, 2π]. The Reference simulation model can be expressed as

Model I: s(t) =
1√
PQ

QX
m=1

PX
n=1

gmne
j(2π[fT (m)ϕT (m)+fR(n)ϕR(n)]t+θm+θn) (4.2.1)
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And

gmn = ambncmn (4.2.2)

am = ejπ(δT /λ) cos(ϕT (m)−ξT ) (4.2.3)

bn = ejπ(δR/λ) cos(ϕR(m)−ξR) (4.2.4)

cmn = ej
2π
λ
(RT cosϕT (m)−RR cosϕR(n)) (4.2.5)

fT (m) = fTmax cos(ϕT (m)− ζT ) (4.2.6)

fR(n) = fRmax cos(ϕR(n)− ζR) (4.2.7)

where δT and δR are inter element spacing for MIMO in wavelength. ϕT (m) and ϕR(n) are

angles of departures and arrivals respectively. ξT and ξR are tilt angles with respect to the

x-axis for Tx and Rx. Ring radii are denoted by RT and RR for Tx and Rx. fTmax and fRmax

are the maximum doppler frequencies for Tx and Rx. ζT and ζR are angles of motion of the

Tx and Rx respectively with respect to x-axis.

For single-input-single-output case, using (4.2.1) a statistical channel for cascaded Rayleigh

with NLOS can be written in the form

y(t) =

s√
2

P

PX
n=1

ejςnej
�
2πf1t cos(γn)+θn

�Ì√
2

Q

QX
m=1

ejεmej
�
2πf2t cos(βm)+Φm

�
(4.2.8)

where ejςn and ejεm are the gains of the nth and mth scatters around the Tx and the Rx.

f1 and f2 are the max Doppler’s shift frequencies, γn and βm represent angles of departures

and arrivals of the scatters around at Tx and Rx respectively. θn, Φm ∈ [0, 2π) are phase

shifts for each scatter from the Tx and to the Rx respectively, and they are independent,

and uniformly distributed for all n and m. Adding the LOS component to (4.2.8), we obtain
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a reference model as:

Model I-L: L(t) =
y(t) +

√
2Kej(2πf3t cos(ϕ3)+ϕ0)È
2(1 +K)

, (4.2.9)

where K is spectral to scatter powers ratio, ϕ0 is uniformly distributed random in [−π, π),

f3 is the Doppler frequency caused by the relative velocity, as both Tx and Rx moving, ϕ3

is the relative angle between the relative movement and the LOS component.

AOD and AOA are calculated for the Non-Isotropic case using MMEA [51]. Using this

method, AOA and AOD can be determined by finding roots of the following

n− 1
4

N
−
Z γn

âT−π
pγ(γ)dγ = 0, n = 1, 2, .., N (4.2.10)

m− 1
4

M
−
Z βm

âR−π
pβ(β)dβ = 0,m = 1, 2, ..,M (4.2.11)

where pγ(γ) and pβ(β) follow Von Misses distribution. While âT , âR ∈ (0, 2π] are the

mean of AOD and AOA respectively. Von Mises distribution was suggested to present AOA

and AOD in Non-Isotropic scattering [8]. The probability density function of a Von Mises

distribution [83] can be expressed as

pγ(γ) =
1

2πI0(κT )
eκT cos(γ−âT ), γ ∈ [0, 2π) (4.2.12)

pβ(β) =
1

2πI0(κR)
eκR cos(β−âR), β ∈ [0, 2π), (4.2.13)

where I0 is the modified Bessel function zero order. κT and κR are parameters that control

the angular spread for γ and β respectively.

4.3 New Simulation Channel models

We begin by taking the advantage of symmetric distribution of Von Mises by choosing

P = 2N and Q = 2M . Eq. (4.2.8) can be split into two parts y(t) = y1(t)y2(t), the Tx
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scatter part of y1(t) =
q√

2
P

PP
n=1 e

jςnej
�
2πf1t cos(γn)+θn

�
can be written as

y1(t) =

s√
2

2N

NX
n=1

ejςnej
�
2πf1t cos(γn)+θn

�
+

s√
2

2N

NX
n=1

ejςn+N ej
�
2πf1t cos(γn)+θn

�
(4.3.1)

Making ςn+N = −ςn, applying same approach for y2(t) =
É√

2
Q

PQ
m=1 e

jεmej
�
2πf2t cos(βm)+Φm

�
,

and εm+M = −εm, a simulation model for cascaded Rayleigh with NLOS with non-isotropic

scattering can be expressed as

z(t) =

s
2
√
2

N

NX
n=1

cos(ςn)e
j

�
2πf1t cos(γn)+θn

�Ì
2
√
2

Q

QX
m=1

cos(εm)e
j

�
2πf2t cos(βm)+Φm

�
(4.3.2)

4.3.1 Deterministic Channel Model

A deterministic simulation model for cascaded Rayleigh with NLOS with non-isotropic

scattering can be expressed as

Model II-D: r(t) = r1(t)r2(t) (4.3.3)

where r1(t) and r2(t) can be written after expanding to their real and imaginary parts,

ri(t) = ric(t) + jris(t), i = 1, 2, where r1c(t) and r1s(t) are defined as:

r1c(t) =

s
2
√
2

N

NX
n=1

cos(Θn) cos
�
2πf1t cos(γn) + θn

�
(4.3.4)

r1s(t) =

s
2
√
2

N

NX
n=1

cos(Θn) sin
�
2πf1t cos(γn) + θn

�
, (4.3.5)

and r2c(t) and r2s(t) are defined as:

r2c(t) =

s
2
√
2

M

MX
m=1

cos(Ψm) cos
�
2πf2t cos(βm) + Φm

�
(4.3.6)

r2s(t) =

s
2
√
2

M

MX
m=1

cos(Ψm) sin
�
2πf2t cos(βm) + Φm

�
(4.3.7)
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where cos(Θn), cos(Ψm) are weights for each scatter from the Tx and to the Rx respectively,

and they are calculated as Θn = nπ−π
8N

and Ψm = mπ−π
8M

. θn, Φm ∈ [0, 2π) are phase shifts

for each scatter from the Tx and to the Rx respectively, and they are independent, and

uniformly distributed for all n and m.

4.3.2 Statistical Channel Models

Statistical model with NLOS: We allow the weights to be random to allow faster and

better convergence. Using (4.3.4)-(4.3.7), a statistical channel model can be expressed as

Model II: s(t) = r1(t)r2(t) (4.3.8)

where Θn, Ψm ∈ [0, π), cos(Θn), cos(Ψm) are weights for each scatter from the Tx and to

the Rx respectively, and they are independent, and uniformly distributed for all n and m.

Statistical model with LOS: A Statistical model using (4.3.8) for cascaded Rayleigh

with LOS in non-isotropic scattering can be expressed as

Model III: ℓ(t) =
s(t) +

√
2Kej(2πf3t cos(ϕ3)+ϕ0)È
2(1 +K)

(4.3.9)

4.3.3 Second-order statistics

Correlation statistics for Model II Correlation properties for the Non-Isotropic with

NLOS can easily derived using the equality
R π
−π exp(b sin(x) + c cos(x)) dx = 2πI0(

√
b2 + c2)

(eq.3.338− 4) in [63]. The Auto- and cross-correlation be expressed as

Rrcrc(τ) = E
�
rc(t)rc(ϱ)

�
= Re

§ Y
x=T,R

1

I0(κx)
I0
�È

κx2 − 4π2τ 2f 2
xmax

+ j4πκxτfxmax cos(âx)
�

(4.3.10)
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Rrsrc(τ) = E
�
rs(t)rc(ϱ)

�
= Im

§ Y
x=T,R

1

I0(κx)
I0
�È

κx2 − 4π2τ 2f 2
xmax

+ j4πκxτfxmax cos(âx)
�

(4.3.11)

Rrsrs(τ) = E
�
rs(t)rs(ϱ)

�
= Rrcrc(τ) (4.3.12)

Rrcrs(τ) = E
�
rc(t)rs(ϱ)

�
= −Rrsrc(τ) (4.3.13)

Rrr(τ) =
1

2
E
�
r∗(t)r(ϱ)

�
=

1

2

�
Rrcrc(τ) +Rrsrs(τ)− jRrcrs(τ) + jRrsrc(τ)

�
(4.3.14)

where Re and Im are real and imaginary parts,
Q

is the product function. When κT = κR =

0, the autocorrelation becomes Rrcrc(τ) = J0(2πf1τ)J0(2πf2τ), while the cross-correlation

becomes Rrcrs(τ) = 0
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Figure 4.1: Autocorrelation of No-Isotropic, MMEA, κ = 40, M = 50, N =M +2, t = 2 sec

Correlation statistics for Model III The Autocorrelation, Cross correlation, and au-

tocorrelation of the complex envelopes for the Non-Isotropic with LOS can be expressed

as

Rℓcℓc(τ) = E
�
ℓc(t)ℓc(t+ τ)

�
=
Rrcrc(τ) +K cos

�
2πf3τ cos(ϕ3)

�
2(1 +K)

(4.3.15)
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TABLE 4.1:

MODELS CONVERGENCE

Model Mean error Mean square error

Model I ACF 1.26× 10−2 4.1268× 10−4

Model I CCF 1.32× 10−2 4.4673× 10−4

Model II ACF 8.80× 10−3 1.7618× 10−4

Model II CCF 9.30× 10−3 1.9832× 10−4

Rℓsℓc(τ) = E
�
ℓs(t)ℓc(t+ τ)

�
=
Rrsrc(τ) +K sin

�
2πf3τ cos(ϕ3)

�
2(1 +K)

(4.3.16)

Rℓsℓs(τ) = E
�
ℓs(t)ℓs(t+ τ)

�
= Rℓcℓc(τ) (4.3.17)

Rℓcℓs(τ) = E
�
ℓc(t)ℓs(t+ τ)

�
= −Rℓsℓc(τ) (4.3.18)

Rℓℓ(τ) =
1

2
E
�
ℓ∗(t)ℓ(t+ τ)

�
=
Rrr(τ) +Kej2πf3τ cos(ϕ3)

1 +K
(4.3.19)
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(a) Cross-correlation with 1 trial
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Figure 4.2: Cross-correlation of No-Isotropic, MMEA, κ = 40, M = 50, N = M + 2, t = 2

sec
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4.4 Simulations Results

4.4.1 Correlation Analysis

The Auto- and cross-correlation comparisons in 1 and 3 trials between the reference

model I and the proposed model II are shown in Figs. 4.1 and 4.2. The results were obtained

for No-Isotropic using MMEA, κ = 40, Q = M = 50, P = N = M + 2, t = 2 sec. It can

be observed that the proposed model has a better convergence even in 1 trial as shown in

Figs. 4.1(a) and 4.2(a). Results in Figs. 4.1(b) and 4.2(b) show an even identical match for

Model II in contrast to the reference model. In Table. 4.5, a models convergence study is

shown using a total number of 50 trials. The MSE is reduced by half for Model II in compare

with Model I.
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Figure 4.3: Comparison of Auto-correlation and Cross-correlation of No-Isotropic, MMEA,

κ = 40, M = 50, N =M + 2, t = 2 sec

Figs. 4.4(a) and 4.4(b) show the mean absolute errors (MAE) of auto- and cross corre-

lations of Models I and II. The MAE in autocorrelation is obtained using a total number of
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Figure 4.4: MAE of auto- and cross correlations of Models I and II in No-Isotropic, MMEA,

κ = 40, M = 50, N =M + 2, t = 2 sec

△ = 50 trials as 1
2△
P△
k=1 |R̂rcrc(τ)−Rrcrc(τ)|+ |R̂rsrs(τ)−Rrsrs(τ)|, while cross correlation

MAE is obtained as 1
2△
P△
k=1 |R̂rcrs(τ) − Rrcrs(τ)| + |R̂rsrc(τ) − Rrsrc(τ)|, where R̂rcrc(τ),

R̂rsrs(τ), R̂rcrs(τ), and R̂rsrc(τ) are the simulated autocorrelations and cross correlations.

4.4.2 Power Spectrum Analysis

In this section, we study effects of different parameters on the channel behavior, such as

K, κx, and âx, where x = T, R. The Doppler power spectrum Shh(f) for (4.3.9) and (4.2.9)

can be obtained by calculating the fourier transform of (4.3.19). Numerical integration

was used in these simulations as their is no closed form for it. The results were obtained

using N = 200000 samples and 40 trials for Model IV. The doppler frequency spectrum was

normalized to the f1. Scatter gains were normalized as ςn = εm = 0 for all n,m.

• Effect of K: Fig (4.6), illustrates the effect of different K on the doppler frequency

spectrum. The result was obtained as an average of 40 trials, where κ = 2, and
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Figure 4.5: Auto- and cross correlations for Model II in No-Isotropic, MMEA, κ = 40,

M = 50, N =M + 2, t = 2 sec

âT = âR = 0. It can be observed that the asymmetric shape of the doppler spectrum

which resulted from the scatter non-isotropic in starts loosing its its component at

f1 + f2 as K increases. While the peak at −f1, resulted from spectral component, is

very close for all K.

• Effect of κx: The effect of the angular spread is shown in Fig. (4.7). The power

spectrum is shown for different κ with âT = âR = 0, K = 1 using an average of 40

trials. It is clear as κ increases, the power component at f1+f2 increases. This suggests

that at high κ, the component of the scatter is more focused.

• Effect of âx: Different mean of AOD and AOA are shown in Fig. (4.8) using K = 0,

and κ = 2, in average of 40 trials. The effect of on the the spectrum is by shifting it

from right to left or vise versa around the carrier frequency.
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Figure 4.6: Model I-L: Power spectrum for different K, κ = 2, âT = âR = 0 in 40 trials
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Figure 4.7: Model I-L: Power spectrum for different κ, âT = âR = 0, K = 1, in 40 trials
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4.5 Summary

In this chapter, we presented statistical channel models based on Cascaded-Rayleigh with

and without LOS for M2M scenario in non-isotropic scattering environment. We assumed

that the AOA and AOD follow von Mises distribution as suggested in published measure-

ments. The statistical properties for these proposed channel models are derived and verified

using monte carlo simulations.
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Figure 4.8: Model I-L: Power spectrum for different âT and âR, K = 0, and κ = 2, in 40

trials

Models convergence was tested using MSE similarly to isotropic channels. While stability

of the proposed models was tested using MAE of auto and cross correlations. The fourier

transform or the psd of the auto- and cross correlations for proposed channel models brought
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additional dimension to the study. The psd show asymmetric channel frequency response

with respect to the carrier frequency in contrast to F2M and M2M in isotropic. And different

psd in compare with F2M in non-isotropic environment.

4.6 Supplemental Material

The distribution is Rayleigh for M2M non-isotropic as shown in [49]. The proposed

simulation channel model can be written as

u(t) = uc(t) + jus(t) (4.6.1)

uc(t) =
MX
n=1

Bn(t) cos[2π(C1,n + C2,n)t+ ϕn] (4.6.2)

us(t) =
MX
n=1

Bn(t) sin[2π(C1,n + C2,n)t+ ϕn] (4.6.3)

where

Bn(t) =

Ê
2

M
cos[2π(S1,n + S2,n)t+ ϕ̂n] (4.6.4)

Ci,n = fdi cosµi cos βi,n, i = 1, .., I (4.6.5)

Si,n = fdi sinµi sin βi,n, i = 1, .., I (4.6.6)

(4.6.7)

N is the number of propagation paths. M = N/2 is the number of sinusoids, fdi are the max

doppler frequencies. eg. fd1 , fd2 for the Tx and Rx respectively. And the random variables

are independent for all n and distributed as

β1,n ∼M(0, κ1), β2,n ∼M(0, κ2) (4.6.8)

ϕn ∼ U [−π, π], ϕ̂n ∼ U [−π, π] (4.6.9)
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von Mises AOD isM(µ1, κ1) and AOA isM(µ2, κ2) , where µ1 and µ2 are the mean direction

of AOD and AOA respectively. This model as shown in [49] requires a high number of

sinusoids, M = 140 was used to get close results to theoretical.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Statistical Models

M2M communications have gained researchers attention recently. Rapidly growing mobile

applications where nodes are no longer fixed, such as ad-hoc networks, WLAN, and V2V

are motivating researchers to study these channels and understand its statistical properties.

Earlier versions of channel models are not suitable for all M2M communications scenarios.

Users are likely to have outdoor-to-indoor conversations, such as outdoor Tx to indoor Rx

inside a car or a building, or move in a dense scattering environment, such as in suburban

streets or forest, or between buildings.

In this work, we proposed new statistical channel models based on two cascaded Raleigh

principle with and without LOS. These models are designed for such M2M in dense scattering

environments where the received signal experience severe fading such as scattering due to

trees in forest, diffracting at building edges and streets corners, or in an outdoor-to-indoor

scenario.

Extensive Monte Carlo simulations are performed for various statistical properties to

validate the proposed models. Results show that the proposed models converge very well

to all desired properties, including the PDF, various auto- and cross-correlations, LCR, and

AFD. The new proposed models converge fast to its required statistical properties; require

small number of trials and have low complexity in terms of design, which was key objective in

our work. Due to the lack of similar cascaded Rayleigh models, and to test its complexity and

fast convergence, we simulated another existing model, double-ring model, for complexity
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comparison purpose although it is used for different catagories of M2M channels. We showed

that the proposed models can achieve the desired statistical properties usingM+N sinusoids

compared to a total of MN sinusoids required for double-ring model.

Weibull fading statistical channel models are very limited in the literature. The work in

this dissertation suggested that this distribution is a better fit than mainly known distribu-

tion as Rician. This distribution and its statistical properties provide more understanding

of channel behavior in dense scattering environments.

5.2 Empirical Models

Earlier measurements did not study all M2M communications scenarios. Users are likely

to have outdoor-to-indoor or IV2W or IV2IV conversations in dense scattering environments

such as suburban streets or forest/high-dense of trees, or experiencing a key-hole effect.

In this work, we presented M2M measurements without and with visibility in the 2.1GHz

and 700MHz bands. Measurements of IV2IV and IV2W were conducted in a highly dense

scattering environments. Different locations were selected in northern new Jersey where

rainforest trees exist heavily.

New empirical models were proposed for path loss, shadowing, and small-scale fading.

The statistical properties such as first-order, second-order are studied for these data sets of

measurements. Studying small-scale had a great attention in this study. Different distribu-

tions were used to try ft the data. Weighted sum of single and double Rayleigh was also

used in attempt to represent the channel envelope. It is shown in forest environments, that

cascaded Rayleigh with LOS, and a combination of %80 Cascaded with LOS and %20 of Ri-

cian distribution had the closest fit to the measured data envelope . The weibull distribution
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was found as the best fit distribution for suburban IV2IV and IV2W scenarios.

W2W channel measurements seems to have no attention in the literature. With avail-

ability of portable transmitters and receivers, old limitations of equipment size and power

supplies are no longer issues.

Measurements in the 700Mhz band can be extended to farther distances. This will provide

more insight on path loss in this band. No measurements of IV2IV were conducted in the

700Mhz band in this work. This can be a potential case study in M2M field measurements.

5.3 Non-isotropic Models

In this work, we proposed new statistical channel models for M2M channels based on

Cascaded-Rayleigh fading with and without LOS in a non-isotropic scattering. We adopted

MMEA method for calculating AOAs and AODs under the assumption that these angles

follow von Mises distribution. This choice of distributions was selected among other proposed

ones in the literature as supported with recent measurements.

The statistical properties for the proposed models are derived and verified using monte

carlo simulations. Simulations show good agreement between simulated models and its

theoretical. The MSE and MAE were used to test convergence and stability of the new

models. The frequency spectrum of the proposed models provided a better understanding of

key parameters of these models such as mean of AOA and AOD, spectral to scatter ratio, and

the spread factor around the mean. The psd show asymmetric channel frequency response

in contrast to isotropic channels.

The available literature on Non-isotropic is limited and there is a plenty of room to

present new models. Other Worse-than-Rayeligh in Non-isotropic are potential distribution
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to be studied. More comprehensive M2M channel measurement campaigns using directional

antennas are needed to better understand these types of channels.
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APPENDIX A

Proof Of (2.3.1) And (2.3.3), Autocorrelation And Cross-correlation For
Model B

From (2.2.7), the real and imaginary parts of Model B are given, respectively, by

gc(t) = Re
�
g(t)

�
=

Ê
2

NM

N,MX
n,m=1

�
An(t)Bm(t)− Cn(t)Dm(t)

�
(A.0.1)

gs(t) = Im
�
g(t)

�
=

Ê
2

NM

N,MX
n,m=1

�
An(t)Dm(t) + Cn(t)Bm(t)

�
(A.0.2)

For brevity of notations, we replace t+ τ with ϱ in the proceeding appendices. The autocor-

relation can be obtained by

E
�
gc(t)gc(ϱ)

�
=

2

NM
E

24 N,MX
n,m=1

�
An(t)Bm(t)− Cn(t)Dm(t)

� N,MX
k,j=1

�
Ak(ϱ)Bj(ϱ)− Ck(ϱ)Dj(ϱ)

�35
=

2

NM
E
� N,NX
n,k=1

An(t)Ak(ϱ)
M,MX
m,j=1

Bm(t)Bj(ϱ) +
N,NX
n,k=1

Cn(t)Ck(ϱ)
M,MX
m,j=1

Dm(t)Dj(ϱ)

−
N,NX
n,k=1

An(t)Ck(ϱ)
M,MX
m,j=1

Bm(t)Dj(ϱ)−
N,NX
n,k=1

Cn(t)Ak(ϱ)
M,MX
m,j=1

Dm(t)Bj(ϱ)
�
(A.0.3)

The cross-correlation is evaluated as

E
�
gc(t)gs(ϱ)

�
= E

� 2

NM

N,MX
n,m=1

�
An(t)Bm(t)− Cn(t)Dm(t)

� N,MX
j,k=1

�
Aj(ϱ)Dk(ϱ) + Cj(ϱ)Bk(ϱ)

��
(A.0.4)

Since θn,Θn,Φm,Ψm ∈ [−π, π) are statistically independent and uniformly distributed for

all n and m, we have E[
PN,N
n,k=1,n̸=k An(t)Ak(ϱ)] = E[

PN,N
n,k=1,n̸=k Cn(t)Ck(ϱ)] = 0 , and

E[
PM,M
m,j=1,m̸=j Bm(t)Bj(ϱ)] = E[

PM,M
m,j=1,m ̸=j Dm(t)Dj(ϱ)] = 0. It is easy to justify E

�
gc(t)gc(ϱ)

�
=

J0(2πf1τ)J0(2πf2τ) and E
�
gc(t)gs(ϱ)

�
= 0.

Using [63] (p. 420-421), the following identities are listed for the convenience of the

proceeding proof of the models’ statistical properties.

E[
N,NX
n,k=1

An(t)Ak(ϱ)] = E[
NX
n

An(t)An(ϱ)] =
1

2
E[

NX
n=1

Ãn(τ)] =
N

2
J0(2πf1τ) (A.0.5)
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E[
N,NX
n,k=1

Cn(t)Ck(ϱ)] = E[
NX
n

Cn(t)Cn(ϱ)] =
1

2
E[

NX
n=1

C̃n(τ)] =
N

2
J0(2πf1τ) (A.0.6)

M,MX
m=1,j

E[Bm(t)Bj(ϱ)]=
MX
m=1

E[Bm(t)Bm(ϱ)]=
1

2
E[

MX
m=1

B̃m(τ)] =
M

2
J0(2πf2τ) (A.0.7)

M,MX
m=1,j

E[Dm(t)Dj(ϱ)]=
MX
m=1

E[Dm(t)Dm(ϱ)]=
1

2

MX
m=1

E[D̃m(τ)] =
M

2
J0(2πf2τ) (A.0.8)

N,NX
n,k=1

E[An(t)Ck(ϱ)] =
M,MX
m,j=1

E[Bm(t)Dj(ϱ)] = 0. (A.0.9)
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APPENDIX B

Proof Of (2.3.14) And (2.3.17), Autocorrelation And Cross-correlation For
Model D

The real and imaginary parts of Model D, respectively, are

hc(t) = Re
�
h(t)

�
=

1√
1 +K

�Ê
1

2
gc(t) +

√
K cos

�
L(t)

��
, (B.0.1)

hs(t) = Im
�
h(t)

�
=

1√
1 +K

�Ê
1

2
gs(t) +

√
K sin

�
L(t)

��
(B.0.2)

where L(t) = 2πf3t cos(ϕ3) + ϕ0. The autocorrelation is calculated as

E
�
hc(t)hc(ϱ)

�
=

1

1 +K
E

24�Ê1

2
gc(t) +

√
K cos

�
L(t)

���Ê1

2
gc(ϱ) +

√
K cos

�
L(ϱ)

��35
(B.0.3)

The cross-correlation of Model D can be obtained as

E
�
hc(t)hs(t+τ)

�
=

1

1 +K
E

24�Ê1

2
gc(t)+

√
K cos

�
L(t)

���Ê1

2
gs(t+τ)+

√
K sin

�
L(t+τ)

��35
(B.0.4)

Notice that the phase ϕ0 in L(t) and L(ϱ) is independent of other random variables in

gc(t) and gs(t). Taking the expectation with respect to ϕ0 and using the results in the

autocorrelation and cross-correlation for Model B, one can obtain the autocorrelation and

cross-correlation as specified in (2.3.14) and (2.3.17).
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APPENDIX C

Proof Of (2.3.5): Squared Envelope Correlation For Model B

The squared envelope correlation for Model B can be written as R|g|2|g|2(τ) = E
�
g2c (t)g

2
c (ϱ)

�
+E

�
g2c (t)g

2
s(ϱ)

�
+ E

�
g2s(t)g

2
c (ϱ)

�
+ E

�
g2s(t)g

2
s(ϱ)

�
. The first term is expressed as

E
�
g2c (t)g

2
c (ϱ)

�
=

4

N2M2
E
� N,MX
n,m=1

�
An(t)Bm(t)− Cn(t)Dm(t)

� N,MX
u,p=1

�
Au(t)Bp(t)− Cu(t)Dp(t)

�
×

N,MX
q,r=1

�
Aq(ϱ)Br(ϱ)− Cq(ϱ)Dr(ϱ)

� N,MX
s,j=1

�
As(ϱ)Bj(ϱ)− Cs(ϱ)Dj(ϱ)

��
.

(C.0.1)

Expanding (C.0.1) and taking expectation with respect to the phases, we obtain E
�
g2c (t)g

2
c (ϱ)

�
= 4

N2M2 (ΥAΥB+ΥCΥD+
M2N2

8
+4κ), where ΥX = E

�PN
n Xn(t)

PN
u Xu(t)

PN
q Xq(ϱ)

PN
s Xs(ϱ)

�
,

where X = {A,B,C,D}, and

κ = E
�N,NX
n,s

An(t)As(ϱ)
N,NX
u,q

Cu(t)Cq(ϱ)
M,MX
m,j

Bm(t)Bj(ϱ)
M,MX
p,r=1

Dp(t)Dr(ϱ)] (C.0.2)

Similarly, we have E
�
g2c (t)g

2
s(ϱ)

�
= E

�
g2s(t)g

2
c (ϱ)

�
= 4

N2M2

�
M2

4
(ΥA+ΥC)+

N2

4
(ΥB+ΥD)−4κ

�
,

and E
�
g2s(t)g

2
s(ϱ)

�
= 4

N2M2 (ΥAΥD +ΥCΥB + M2N2

8
+ 4κ). The term ΥA is evaluated as

ΥA = E
� NX

p

A2
p(t)

NX
j

A2
j(ϱ)

�
+ E

� N,NX
n,u,n̸=u

An(t)Au(t)
N,NX
q,s,q ̸=s

Aq(ϱ)As(ϱ)
�

(C.0.3)

The first term in (C.0.3) is obtained as

E
� NX

p

A2
p(t)

NX
j

A2
j(ϱ)

�
=

2N2 +NJ0(4πf1τ)

8
. (C.0.4)

The second term in (C.0.3) contains the following seven cases:

• Case 1. n ̸= u, q ̸= s, n = q, u ̸= s;

• Case 2. n ̸= u, q ̸= s, n = s, q ̸= u;

• Case 3. n ̸= u, q ̸= s, u = q, n ̸= s;
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• Case 4. n ̸= u, q ̸= s, u = s, n ̸= q;

• Case 5. n ̸= u, q ̸= s, n ̸= q, u ̸= s;

• Case 6. n ̸= u, q ̸= s, n = q, u = s;

• Case 7. n ̸= u, q ̸= s, n = s, u = q.

The value of E
�PN

n An(t)An(ϱ)
PN
s,s̸=nAs(t)As(ϱ)

�
is zero for Cases 1 to 5 and identical for

Cases 6 and 7, and E
�PN

n An(t)An(ϱ)
PN
s,s̸=nAs(t)As(ϱ)

�
case 6 or 7

=
N2J2

0 (2πf1τ)−
PN

n

�
E[Ãn(τ)]

�2
4

.

Therefore, we have ΥA =
2N2+NJ0(4πf1τ)+4N2J2

0 (2πf1τ)

8
−
PN

n

�
E[Ãn(τ)]

�2
2

. In fact, the value of

ΥA can also be obtained following the steps in (48) Appendix I [84].

Similarly, we have ΥC =
2N2+NJ0(4πf1τ)+4N2J2

0 (2πf1τ)

8
−
PN

n

�
E[C̃n(τ)]

�2
2

. It is straightforward

to justify E
�
C̃n(τ)] = E

�
C̃N−n(τ)], n = 1, · · · , N by the following steps:

E
�
C̃n(τ)] =

Z π

−π
cos

�
2πf1τ cos(

2nπ − π + ψ

4N
)
� 1

2π
dψ

=
Z nπ

2N

(n−1)π
2N

cos
�
2πf1τ cos(θ)

�4N
2π

dψ

=
Z (N−n)π

2N

(N−n−1)π
2N

cos
�
2πf1τ sin(φ)

�4N
2π

dφ = E
�
C̃N−n(τ)] (C.0.5)

Denote ξ(f1, τ) =
PN
n

�
E
�
Ãn(τ)

��2
=
PN
n

�
E
�
C̃n(τ)

��2
. Then, we have

ΥA = ΥC =
2N2 +NJ0(4πf1τ) + 4N2J2

0 (2πf1τ)

8
− ξ(f1, τ)

2
(C.0.6)

ΥB = ΥD =
2M2 +MJ0(4πf2τ) + 4M2J2

0 (2πf2τ)

8
− ξ(f2, τ)

2
, (C.0.7)

where ξ(f2, τ) =
PM
m

�
E
�
B̃m(τ)

��2
=
PM
m

�
E
�
D̃n(τ)

��2
. Inserting the results for E

�
g2c (t)g

2
c (ϱ)

�
,

E
�
g2c (t)g

2
s(ϱ)

�
,E
�
g2s(t)g

2
c (ϱ)

�
, and E

�
g2s(t)g

2
s(ϱ)

�
into R|g|2|g|2(τ), we obtain

R|g|2|g|2(τ) =
4

N2M2

�
ΥA +ΥC +

N2

2

��
ΥB +ΥD +

M2

2

�
=

4

N2M2

�
N2+N2J2

0 (2πf1τ)+
NJ0(4πf1τ)

4
−ξ(f1, τ)

�
×
�
M2+M2J2

0 (2πf2τ)+
MJ0(4πf2τ)

4
−ξ(f2, τ)

�
. (C.0.8)

Expanding (C.0.8) yields (2.3.5).
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APPENDIX D

Proof Of (2.3.20): Squared Envelope Correlation For Model D

The squared envelope correlation for Model D contains four terms as indicated in (2.3.19).

The first term is evaluated as

E
�
h2c(t)h

2
c(ϱ)

�
=

1

(1 +K)2
E

24�Ê1

2
gc(t) +

√
K cos

�
L(t)

��2�Ê
1

2
gc(ϱ) +

√
K cos

�
L(ϱ)

��2�

=
1

(1 +K)2
E

24�1
2
g2c (t) +

√
2Kgc(t) cos

�
L(t)

�
+K cos2

�
L(t)

��
×
�
1

2
g2c (ϱ) +

√
2Kgc(ϱ) cos

�
L(ϱ)

�
+K cos2

�
L(ϱ)

���
(D.0.1)

Note that E[gc(t)] = E[gc(ϱ)] = 0, E[cos
�
L(ℓt)

�
] = E[cos

�
ℓL(ϱ)

�
] = 0, ℓ = 1, 2, and

E[g2c (t)] = E[g2c (ϱ)] = Rgcgc(0) = 1. We have

E
�
h2c(t)h

2
c(ϱ)

�
=

1

(1 +K)2

�
1

4
E
�
g2c (t)g

2
c (ϱ)

�
+ 2KRgcgc(τ)E

�
cos

�
L(t)

�
cos

�
L(ϱ)

��
+
K

2
E
�
cos2

�
L(t)

�
+ cos2

�
L(ϱ)

��
+K2E

�
cos2

�
L(t)

�
cos2

�
L(ϱ)

���
(D.0.2)

The autocorrelation of the squared quadrature component E
�
h2s(t)h

2
s(ϱ)

�
can be evaluated

following similar steps in obtaining E
�
h2c(t)h

2
c(ϱ)

�
. Using identities E

�
cos

�
L(t)

�
cos

�
L(ϱ)

��
=

1
2
cos

�
2πf3τ cos(ϕ3)

�
,E
�
cos2

�
L(t)

��
= E

�
cos2

�
L(ϱ)

��
= 1

2
, and E

�
cos2

�
L(t)

�
cos2

�
L(ϱ)

��
=

1
4
+ 1

8
cos

�
4πf3τ cos(ϕ3)

�
, we summarize the auto- and cross-correlations, respectively, as

E
�
h2x(t)h

2
x(ϱ)

�
=

2E
�
g2x(t)g

2
x(ϱ)

�
+8KRgxgx(τ) cos

�
2πf3τ cos(ϕ3)

�
+4K+2K2+K2cos

�
4πf3τ cos(ϕ3)

�
8(1 +K)2

(D.0.3)

E
�
h2c(t)h

2
s(ϱ)

�
= E

�
h2s(t)h

2
c(ϱ)

�
=

2E
�
g2c (t)g

2
s(ϱ)

�
+4K+2K2−K2 cos

�
4πf3τ cos(ϕ3)

�
8(1 +K)2

(D.0.4)

where x = {c, s}. Inserting (D.0.3) and (D.0.4) into (2.3.19) yields (2.3.20).
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APPENDIX E

Proof Of (2.3.13): Variance Of Time-average Correlations For Model B

The variance of the time-average autocorrelation of the real part for Model B is

Var[R̃gcgc(τ)] = E[R̃2
gcgc(τ)]− (Rgcgc(τ))

2. The first term is evaluated as

E[R̃2
gcgc(τ)]=

1

4M2N2
E
� N,MX
n,m=1

�
Ãn(τ)B̃m(τ)+C̃n(τ)D̃m(τ)

� N,MX
p,q=1

�
Ãp(τ)B̃q(τ)+C̃p(τ)D̃q(τ)

��
=

1

4N2M2

�
E
� N,NX
n,q=1

Ãn(τ)Ãq(τ)
M,MX
m,p=1

B̃m(τ)B̃p(τ)

�
+2E

� N,NX
n,q=1

Ãn(τ)C̃q(τ)
M,MX
m,p=1

B̃m(τ)D̃p(τ)

�

+ E
� N,NX
n,q=1

C̃n(τ)C̃q(τ)
M,MX
m,p=1

D̃m(τ)D̃p(τ

��
(E.0.1)

We have the following identities:

E
� N,NX
n,q=1

Ãn(τ)Ãq(τ)
�
= N2J2

0 (2πf1τ) + E
� NX
n=1

Ãn(τ)Ãn(τ)
�
−

NX
n=1

E
�
Ãn(τ)

�
E
�
Ãn(τ)

�
= N2J2

0 (2πf1τ) +
N

2
+
NJ0(4πf1τ)

2
− ξ(f1, τ) (E.0.2)

E
� N,NX
n,q=1

C̃n(τ)C̃q(τ)
�
= E

� N,NX
n,q=1

Ãn(τ)Ãq(τ)
�

(E.0.3)

E
� M,MX
m,p=1

B̃m(τ)B̃p(τ)
�
=E

� M,MX
m,p=1

D̃m(τ)D̃p(τ)
�
=M2J2

0 (2πf2τ)+
M

2
+
MJ0(4πf2τ)

2
− ξ(f2, τ)

(E.0.4)

E
� N,NX
n,q=1

Ãn(τ)C̃q(τ)
�
= N2J2

0 (2πf1τ) + VÃC̃ (E.0.5)

E
� M,MX
m,p=1

B̃m(τ)D̃p(τ)
�
=M2J2

0 (2πf2τ) + VB̃D̃ (E.0.6)

where VÃC̃ =
PN
n=1

�
E[Ãn(τ)C̃n(τ)] − E[Ãn(τ)]E[C̃n(τ)]

�
, VB̃D̃ =

PM
m=1

�
E[B̃m(τ)D̃m(τ)] −

E[B̃m(τ)]E[D̃m(τ)]
�
. Inserting (E.0.2) to (E.0.6) into (E.0.1), we obtain

E[R̃2
gcgc(τ)]=

1

4M2N2

�
2
�
N2J2

0 (2πf1τ) +
N

2
+
NJ0(4πf1τ)

2
− ξ(f1, τ)

�
×
�
M2J2

0 (2πf2τ)+
M

2
+
MJ0(4πf2τ)

2
− ξ(f2, τ)

�
+2

�
N2J2

0 (2πf1τ)+VÃC̃
��
M2J2

0 (2πf2τ)+VB̃D̃
��
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=
1

8M2N2

��
2N2J2

0 (2πf1τ)+N+NJ0(4πf1τ)−2 ξ(f1, τ)
�

×
�
2M2J2

0 (2πf2τ)+M+MJ0(4πf2τ)−2 ξ(f2, τ)
�

+4
�
N2J2

0 (2πf1τ)+VÃC̃
��
M2J2

0 (2πf2τ)+VB̃D̃
��

(E.0.7)

Recall
�
R̃gcgc(τ)

�2
= J2

0 (2πf1τ)J
2
0 (2πf2τ). We have

Var[R̃gcgc(τ)] =
1

8M2N2

�
2M2J2

0 (2πf2τ)
�
N +NJ0(4πf1τ)− 2 ξ(f1, τ) + 2VÃC̃

�
+ 2N2J2

0 (2πf1τ)
�
M +MJ0(4πf2τ)− 2 ξ(f2, τ) + 2VB̃D̃

�
+
�
N+NJ0(4πf1τ)− 2 ξ(f1, τ)

��
M+MJ0(4πf2τ)− 2 ξ(f2, τ)

�
+4VÃC̃VB̃D̃

�
(E.0.8)

Reorganizing (E.0.8), one can obtain (2.3.13).

The variance of time-average autocorrelation of the imaginary part of Model B is Var[R̃gsgs(τ)] =

E[R̃2
gsgs(τ)]− (Rgsgs(τ))

2. The first term is evaluated as

E[R̃2
gsgs(τ)]=

1

4M2N2
E
� N,MX
n,m=1

�
Ãn(τ)D̃m(τ)+C̃n(τ)B̃m(τ)

� N,MX
p,q=1

�
Ãp(τ)D̃q(τ)+C̃p(τ)B̃q(τ)

��
=

1

4N2M2

�
E
� N,NX
n,q=1

Ãn(τ)Ãq(τ)
M,MX
m,p=1

D̃m(τ)D̃p(τ)

�
+2E

� N,NX
n,q=1

Ãn(τ)C̃q(τ)
M,MX
m,p=1

B̃m(τ)D̃p(τ)

�

+ E
� N,NX
n,q=1

C̃n(τ)C̃q(τ)
M,MX
m,p=1

B̃m(τ)B̃p(τ)

��
(E.0.9)

We have Var[R̃gsgs(τ)] = Var[R̃gcgc(τ)].
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APPENDIX F

Proof Of (2.3.25): Variance Of Time-average Correlations For Model D

We present the derivation of the variance of the time-average autocorrelation of the in-

phase component in (2.3.25), while the same steps can be applied to obtain the variance of the

time-average autocorrelation of the quadrature component. The variance of the time-average

autocorrelation of the in-phase component for model D is Var
�
R̃hchc(τ)

�
= E[R̃2

hchc(τ)] −�
Rhchc(τ)

�2
. The first term is evaluated as

E[R̃2
hchc(τ)] = E

��
R̃gcgc(τ) +K cos

�
2πf3τ cos(ϕ3)

�
2(1 +K)

�2�
=

1

4(1 +K)2

�
E
�
R̃2
gcgc(τ)

�
+ 2K cos

�
2πf3τ cos(ϕ3)

�
E
�
R̃gcgc(τ)

�
+
�
K cos(2πf3τ cos(ϕ3))

�2�
(F.0.1)

Recall E[R̃gcgc(τ)] = J0(2πf1τ)J0(2πf2τ). Using E
�
R̃2
gcgc(τ)

�
obtained in Appendix E and

Rhchc(τ) from Appendix B, it is easy to obtain (2.3.25).
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APPENDIX G

Proof For PDF Of Envelope For Models A and B

The pdf and phase distribution of Models A and B are readily available in the liter-

ature [59]. Denote g = g1g2 = gc + jgs, g1 = x1 + jx2, g2 = y1 + jy2, x1, x2 ∼ N (0, σ2
1),

and y1, y2 ∼ N (0, σ2
2) are i.i.d. zero mean Gaussian normally distributed. The joint PDF

for the real and imaginary parts of g is given as pgcgs(gc, gs) =
1

2πσ2
1σ

2
2
K0

�√
g2c+g

2
s

σ1σ2

�
. To find

the pdf of the envelope, we transform the Cartesian coordinates (gc, gs) to polar coordinates

(z, η), where z =
È
g2c + g2s , and η = arctan

�
gs(t)
gc(t)

�
. The resulted transformation Jacobian

is 1/z. The joint pdf of the envelope and phase is given by pz,η(z, η) = zpgcgs(gc, gs) =

z
2πσ2

1σ
2
2
K0

�
z

σ1σ2

�
. The PDF of the envelope is obtained as pz(z) =

z
σ2
1σ

2
2
K0

�
z

σ1σ2

�
. Recogniz-

ing σ1 = σ2 = 1/
È√

2 for Models A and B, one can obtain the PDF of their envelopes.
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APPENDIX H

Proof Of (3.5.2), Level Crossing Rate For M2M Rician Channel

The LCR can be obtained by considering a general case where the scatter is asym-

metric around the spectral [36]. The first and second moments of the power spectral den-

sity (psd), b1 and b2, are used to obtain the joint pdf (2.91) in [36]. Let hRc(t) = Re[hR(t)]

denote the in-phase component of the statistical channel model in (3.4.10). The auto-

correlation of the in-phase component is written as RhRchRc
(τ) = E

�
hRc(t)hRc(t + τ)

�
=

Ω
2(1+K)

�
J0(2πf1τ)J0(2πf2τ)+K cos(2πf3τ cos θL)

�
, where J0(·) is the zero-order Bessel func-

tion first kind. The second moment of the psd is obtained by b2 = −d2RhRchRc
(τ)/dτ 2|τ=0.

Using the identities in Bessel function, J−n(x) = (−1)nJn(x),
d
dx
Jn(x) =

Jn−1(x)−Jn+1(x)
2

, and

taking the second derivative for the autocorrelation, we obtain

b2 =
Ω π2

�
f 2
1 + f 2

2 + 2Kf 2
3 cos

2 θL
�

(1 +K)
. (H.0.1)

It is observed that (H.0.1) can also be calculated as

b2 = (2π)2b0

Z π

−π

�È
f 2
1 + f 2

2 cosα−
√
Kf3 cos θL

�2dα
2π

(H.0.2)

The first moment of the psd can be obtained as

b1 = 2πb0

Z π

−π

�È
f 2
1 + f 2

2 cosα−
√
Kf3 cos θL

�dα
2π

(H.0.3)

Plugging B = b0b2 − b21 =
Ω2π2(f21+f

2
2 )

2(1+K)2
, b0, b1, and b2 into (3.5.1), one can obtain (3.5.2) from

the integral over the slope.
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